
Bioinformatics
for Evolutionary
Biologists

Bernhard Haubold
Angelika Börsch-Haubold

A Problems Approach

Second Edition

Bioinformatics for Evolutionary Biologists

Bernhard Haubold • Angelika Börsch-Haubold

Bioinformatics
for Evolutionary Biologists
A Problems Approach

Second Edition

123

Bernhard Haubold
Department of Evolutionary Genetics
Max-Planck-Institute
for Evolutionary Biology
Plön, Schleswig-Holstein, Germany

Angelika Börsch-Haubold
Plön, Schleswig-Holstein, Germany

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

ISBN 978-3-031-20413-5 ISBN 978-3-031-20414-2 (eBook)
https://doi.org/10.1007/978-3-031-20414-2

1st edition: © Springer International Publishing AG 2017
2nd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-031-20414-2

Preface

Like all of biology, evolutionary biology is rapidly turning digital as we are sur-

rounded by more and more cheap computers and cheap computerized machines

for gathering data, especially DNA sequence data. This book is designed to help

biologists analyze these data using classical bioinformatics techniques.

We teach bioinformatics as a practical skill focused on the analysis of DNA

sequences on the Unix command line. We do this by posing a series of graded and

solved Problems, most of which are meant to be tackled on the Unix command line.

The Unix command line is our interface of choice, because it is malleable like no

graphical interface.

The malleability of the Unix command line takes some practice to unlock, and

opportunities for getting this practice have grown in leaps and bounds since the

publication of the first edition of Bioinformatics for Evolutionary Biologists in 2017.

In 2019 Microsoft released an improved version of their Linux subsystem that runs

on Windows 10, which was in turn improved for Windows 11 two years later. In 2019

Google’s chromeOS joined the club of Unix-capable systems with the relase of Linux

for Chromebooks. Given that the Unix command line has been part of Apple’s macOS

since 2001, this means that all four major computer operating systems—Windows,

macOS, chromeOS, and Linux—now allow users easy access to the command line.

Out of these four, we have tested on two, Windows 11 with Ubuntu 20.04 and macOS

Big Sur.

This book is intended for biologists with no prior knowledge of Unix. We cover

the fundamentals of interacting with the computer on the command line in Chapter

1. In Chapter 2 we align pairs of protein and DNA sequences and score the resulting

alignments. The alignment techniques explored here can be sped up substantially by

using exact matching, the topic of Chapter 3. In Chapter 4, we mix exact matching

with the alignment methods of Chapter 2 to arrive at the fast algorithms of modern

molecular biology underlying such popular tools as Blast. Up to this point, we have

only aligned pairs of sequences, but at the end of Chapter 4 we generalize this to

align multiple sequences. Multiple sequence alignments are the starting point for

phylogenies, the topic of Chapter 5. Phylogenies describe the evolution of multiple

species. If we are interested in the evolution of individual species, we can use

v

vi Preface

concepts from population genetics, the topic of Chapter 6. A central model of

population genetics traces a sample of genes from the present back in time to their

most recent common ancestor. This results in a tree called coalescent, which looks

similar to the phylogenies of the previous chapter. In the last chapter, Chapter 7, we

cover two topics not necessarily based on sequences, but still ubiquitous in modern

biology, the statistics of multiple testing and the fundamentals of databases.

The first edition of this book was well received and we have used it regularly in

courses taught at the Max-Planck-Institute in Plön and at Lübeck University. Some

of our students were so kind as to point out errors—thank you again!—which we

have tried our best to fix. Some errors probably remain, and we are bound to have

introduced new ones, so if you catch a bug, please drop BH a line at

haubold@evolbio.mpg.de

We will add it to the errata list maintained at

guanine.evolbio.mpg.de/beb2

and, we hope, fix it in a future edition. While fixing errors, we also strove to clarify

and in places expand the narrative. As a result, the total number of Problems has

grown from under 500 to over 800.

However, the biggest change concerns the Unix tools written for the course. We’ve

rewritten them in Go and distribute them as a biological toolbox, a “biobox”, at

While rewriting the programs,we also added a few new ones, for example plotLine,

to quickly convert pairs of �푥, �푦 values into line graphs.

Finally, let us reiterate a point from the first edition. Half of this book consists

of Answers, which you find in the yellow pages in the back. These are designed to

be read even if you do find your own solution to a particular Problem. An Answer

might expand on the Problem, might inspire you to improve your answer, and rarely,

we hope, might give you the satisfaction of having come up with a better one. In that

case we’d be particularly keen to hear from you.

Plön, Bernhard Haubold

August 2022 Angelika Börsch-Haubold

sn.pub/dy6S42

Contents

Part I Problems

1 The Unix Command Line . 3

1.1 Getting Started . 4

1.2 Files, Directories, and Programs . 11

1.3 Scripts . 18

2 Optimal Alignment . 29

2.1 Keeping Score . 29

2.2 Construction . 39

2.3 Application . 51

3 Exact Matching . 57

3.1 Keyword Trees . 57

3.2 Suffix Trees . 64

3.3 Suffix Arrays . 70

3.4 Text Compression . 81

4 Fast Alignment . 93

4.1 Global . 93

4.2 Local . 98

4.3 Glocal . 110

4.4 Assembly . 122

4.5 Multiple Sequences . 132

5 Evolution Between Species: Phylogeny . 141

5.1 Trees of Life . 141

5.2 Rooted Trees . 148

5.3 Unrooted Trees . 154

vii

viii Contents

6 Evolution within Populations . 161

6.1 Descent from One or Two Parents . 161

6.2 The Coalescent . 172

7 Interrogating and Storing Data . 183

7.1 Statistics . 183

7.2 Relational Databases . 190

Part II Answers

1 The Unix Command Line . 207

1.1 Getting Started . 207

1.2 Files, Directories, and Programs . 211

1.3 Scripts . 217

2 Optimal Alignment . 229

2.1 Keeping Score . 229

2.2 Construction . 239

2.3 Application . 250

3 Exact Matching . 257

3.1 Keyword Trees . 257

3.2 Suffix Trees . 262

3.3 Suffix Arrays . 266

3.4 Text Compression . 274

4 Fast Alignment . 287

4.1 Global . 287

4.2 Local . 291

4.3 Glocal . 303

4.4 Assembly . 312

4.5 Multiple Sequences . 320

5 Evolution Between Species: Phylogeny . 329

5.1 Trees of Life . 329

5.2 Rooted Trees . 333

5.3 Unrooted Trees . 339

6 Evolution within Populations . 345

6.1 Descent from One or Two Parents . 345

6.2 The Coalescent . 351

7 Interrogating and Storing Data . 361

7.1 Statistics . 361

7.2 Relational Databases . 367

A Unix Guide . 377

Contents ix

B Programs . 397

B.1 Own . 397

B.2 Biobox . 398

B.3 Third-Party . 398

References . 401

Index . 405

Part I

Problems

T A A G T T A T T A T T T A G T T A A T A C T T T T A A C A A T A T T A T T A A G G T A T T T A A A A A A T A C T A T T A T A G T A T T T A A C A T A G T T A A A T A C C T T C

C T T A A T A C T G T T A A A T T A T A T T C A A T C A A T A C A T A T A T A A T A T T A T T A A A A T A C T T G A T A A G T A T T A T T T A G A T A T T A G A C A A A T A C T

A A T T T T A T A T T G C T T T A A T A C T T A A T A A A T A C T A C T T A T G T A T T A A G T A A A T A T T A C T G T A A T A C T A A T A A C A A T A T T A T T A C A A T A T

G C T A G A A T A A T A T T G C T A G T A T C A A T A A T T A C T A A T A T A G T A T T A G G A A A A T A C C A T A A T A A T A T T T C T A C A T A A T A C T A A G T T A A T A

C T A T G T G T A G A A T A A T A A A T A A T C A G A T T A A A A A A A T T T T A T T T A T C T G A A A C A T A T T T A A T C A A T T G A A C T G A T T A T T T T C A G C A G T

A A T A A T T A C A T A T G T A C A T A G T A C A T A T G T A A A A T A T C A T T A A T T T C T G T T A T A T A T A A T A G T A T C T A T T T T A G A G A G T A T T A A T T A T

T A C T A T A A T T A A G C A T T T A T G C T T A A T T A T A A G C T T T T T A T G A A C A A A A T T A T A G A C A T T T T A G T T C T T A T A A T A A A T A A T A G A T A T T

A A A G A A A A T A A A A A A A T A G A A A T A A A T A T C A T A A C C C T T G A T A A C C C A G A A A T T A A T A C T T A A T C A A A A A T G A A A A T A T T A A T T A A T A

A A A G T G A A T T G A A T A A A A T T T T G A A A A A A A T G A A T A A C G T T A T T A T T T C C A A T A A C A A A A T A A A A C C A C A T C A T T C A T A T T T T T T A A T

A G A G G C A A A A G A A A A A G A A A T A A A C T T T T A T G C T A A C A A T G A A T A C T T T T C T G T C A A A T G T A A T T T A A A T A A A A A T A T T G A T A T T C T T

G A A C A A G G C T C C T T A A T T G T T A A A G G A A A A A T T T T T A A C G A T C T T A T T A A T G G C A T A A A A G A A G A G A T T A T T A C T A T T C A A G A A A A A G

A T C A A A C A C T T T T G G T T A A A A C A A A A A A A A C A A G T A T T A A T T T A A A C A C A A T T A A T G T G A A T G A A T T T C C A A G A A T A A G G T T T A A T G A

A A A A A A C G A T T T A A G T G A A T T T A A T C A A T T C A A A A T A A A T T A T T C A C T T T T A G T A A A A G G C A T T A A A A A A A T T T T T C A C T C A G T T T C A

A A T A A T C G T G A A A T A T C T T C T A A A T T T A A T G G A G T A A A T T T C A A T G G A T C C A A T G G A A A A G A A A T A T T T T T A G A A G C T T C T G A C A C T T

A T A A A C T A T C T G T T T T T G A G A T A A A G C A A G A A A C A G A A C C A T T T G A T T T C A T T T T G G A G A G T A A T T T A C T T A G T T T C A T T A A T T C T T T

T A A T C C T G A A G A A G A T A A A T C T A T T G T T T T T T A T T A C A G A A A A G A T A A T A A A G A T A G C T T T A G T A C A G A A A T G T T G A T T T C A A T G G A T

A A C T T T A T G A T T A G T T A C A C A T C G G T T A A T G A A A A A T T T C C A G A G G T A A A C T A C T T T T T T G A A T T T G A A C C T G A A A C T A A A A T A G T T G

T T C A A A A A A A T G A A T T A A A A G A T G C A C T T C A A A G A A T T C A A A C T T T G G C T C A A A A T G A A A G A A C T T T T T T A T G C G A T A T G C A A A T T A A

C A G T T C T G A A T T A A A A A T A A G A G C T A T T G T T A A T A A T A T C G G A A A T T C T C T T G A G G A A A T T T C T T G T C T T A A A T T T G A A G G T T A T A A A

C T T A A T A T T T C T T T T A A C C C A A G T T C T C T A T T A G A T C A C A T A G A G T C T T T T G A A T C A A A T G A A A T A A A T T T T G A T T T C C A A G G A A A T A

G T A A G T A T T T T T T G A T A A C C T C T A A A A G T G A A C C T G A A C T T A A G C A A A T A T T G G T T C C T T C A A G A T A A T G A A T C T T T A C G A T C T T T T A

G A A C T A C C A A C T A C A G C A T C A A T A A A A G A A A T A A A A A T T G C T T A T A A A A G A T T A G C A A A G C G T T A T C A C C C T G A T G T A A A T A A A T T A G

G T T C G C A A A C T T T T G T T G A A A T T A A T A A T G C T T A T T C A A T A T T A A G T G A T C C T A A C C A A A A G G A A A A A T A T G A T T C A A T G C T G A A A G T

T A A T G A T T T T C A A A A T C G C A T C A A A A A T T T A G A T A T T A G T G T T A G A T G A C A T G A A A A T T T C A T G G A A G A A C T C G A A C T T C G T A A G A A C

T G A G A A T T T G A T T T T T T T T C A T C T G A T G A A G A T T T C T T T T A T T C T C C A T T T A C A A A A A A C A A A T A T G C T T C C T T T T T A G A T A A A G A T G

T T T C T T T A G C T T T T T T T C A G C T T T A C A G C A A G G G C A A A A T A G A T C A T C A A T T G G A A A A A T C T T T A T T G A A A A G A A G A G A T G T A A A A G A

A G C T T G T C A A C A G A A T A A A A A T T T T A T T G A A G T T A T A A A A G A G C A A T A T A A C T A T T T T G G T T G A A T T G A A G C T A A G C G T T A T T T C A A T

A T T A A T G T T G A A C T T G A G C T C A C A C A G A G A G A G A T A A G A G A T A G A G A T G T T G T T A A C C T A C C T T T A A A A A T T A A A G T T A T T A A T A A T G

A T T T T C C A A A T C A A C T C T G A T A T G A A A T T T A T A A A A A C T A T T C A T T T C G C T T A T C T T G A G A T A T A A A A A A T G G T G A A A T T G C T G A A T T

T T T C A A T A A A G G T A A T A G A G C T T T A G G A T G A A A A G G T G A C T T A A T T G T C A G A A T G A A A G T A G T T A A T A A A G T A A A C A A A A G A C T G C G T

A T T T T T T C A A G C T T T T T T G A G A A C G A T A A A T C T A A A T T A T G G T T C C T T G T T C C A A A C G A T A A A C A A A G T A A T C C T A A T A A G G G C G T T T

T T A A C T A T A A A A C T C A G C A C T T T A T T G A T T A A A A A A C C T T T C A T T T T T A A T G T G T T A T A A T T A T T T G T T A T G C C A T A A A T T T A G T T T G

T G G C A A A A G C T T C T G T A C T G T T T A T T T A A T G G A A G A A A A T A A C A A A G C A A A T A T C T A T G A C T C T A G T A G C A T T A A G G T C C T T G A A G G A

C T T G A G G C T G T T A G A A A A C G C C C T G G A A T G T A C A T T G G T T C T A C T G G C G A A G A A G G T T T G C A T C A C A T G A T C T G A G A G A T A G T A G A C A

A C T C A A T T G A T G A A G C A A T G G G A G G T T T T G C C A G T T T T G T T A A G C T T A C C C T T G A A G A T A A T T T T G T T A C C C G T G T A G A G G A T G A T G G

A A G A G G G A T A C C T G T T G A T A T C C A T C C T A A G A C T A A T C G T T C T A C A G T T G A A A C A G T T T T T A C A G T T C T A C A C G C T G G C G G T A A A T T T

G A T A A C G A T A G C T A T A A A G T G T C A G G T G G T T T A C A C G G T G T T G G T G C A T C A G T T G T T A A T G C G C T T A G T T C T T C T T T T A A A G T T T G A G

T T T T T C G T C A A A A T A A A A A G T A T T T T C T C A G C T T T A G C G A T G G A G G A A A G G T A A T T G G A G A T T T G G T C C A A G A A G G T A A C T C T G A A A A

A G A G C A T G G A A C A A T T G T T G A G T T T G T T C C T G A T T T C T C T G T A A T G G A A A A G A G T G A T T A C A A A C A A A C T G T A A T T G T A A G C A G A C T C

C A G C A A T T A G C T T T T T T A A A C A A G G G A A T A A G A A T T G A C T T T G T T G A T A A T C G T A A A C A A A A C C C A C A G T C T T T T T C T T G A A A A T A T G

A T G G G G G A T T G G T T G A A T A T A T C C A C C A C C T A A A C A A C G A A A A A G A A C C A C T T T T T A A T G A A G T T A T T G C T G A T G A A A A A A C T G A A A C

T G T A A A A G C T G T T A A T C G T G A T G A A A A C T A C A C A G T A A A G G T T G A A G T T G C T T T T C A A T A T A A C A A A A C A T A C A A C C A A T C A A T T T T C

A G T T T T T G T A A C A A C A T T A A T A C T A C A G A A G G T G G A A C C C A T G T G G A A G G T T T T C G T A A T G C A C T T G T T A A G A T C A T T A A T C G C T T T G

C T G T T G A A A A T A A A T T C C T A A A A G A T A G T G A T G A A A A G A T T A A C C G T G A T G A T G T T T G T G A A G G A T T A A C T G C T A T T A T T T C C A T T A A

A C A C C C A A A C C C A C A A T A T G A A G G A C A A A C T A A A A A G A A G T T A G G T A A T A C T G A G G T A A G A C C T T T A G T T A A T A G T G T T G T T A G T G A A

A T C T T T G A A C G C T T C A T G T T A G A A A A C C C A C A A G A A G C A A A C G C T A T C A T C A G A A A A A C A C T T T T A G C T C A A G A A G C G A G A A G A A G A A

G T C A A G A G G C T A G G G A G T T A A C T C G T C G T A A A T C A C C T T T T G A T A G T G G T T C A T T A C C A G G T A A A T T A G C T G A T T G T A C A A C C A G A G A

T C C T T C G A T T A G T G A A C T T T A C A T T G T T G A G G G T G A T A G T G C T G G T G G C A C T G C T A A A A C A G G A A G A G A T C G T T A T T T T C A A G C T A T C

T T A C C C T T A A G A G G A A A G A T T T T A A A C G T T G A A A A A T C T A A C T T T G A A C A A A T C T T T A A T A A T G C A G A A A T T T C T G C A T T A G T G A T G G

C A A T A G G C T G T G G G A T T A A A C C T G A T T T T G A A C T T G A A A A A C T T A G A T A T A G C A A G A T T G T G A T C A T G A C A G A T G C T G A T G T T G A T G G

T G C A C A C A T A A G A A C A C T T C T C T T A A C T T T C T T T T T T C G C T T T A T G T A T C C T T T G G T T G A A C A A G G C A A T A T T T T T A T T G C T C A A C C C

C C A C T T T A T A A A G T G T C A T A T T C C C A T A A G G A T T T A T A C A T G C A C A C T G A T G T T C A A C T T G A A C A G T G A A A A A G T C A A A A C C C T A A C G

T A A A G T T T G G G T T A C A A A G A T A T A A A G G A C T T G G A G A A A T G G A T G C A T T G C A G C T G T G A G A A A C A A C A A T G G A T C C T A A G G T T A G A A C

A T T G T T A A A A G T T A C T G T T G A A G A T G C T T C T A T T G C T G A T A A A G C T T T T T C A C T G T T G A T G G G T G A T G A A G T T C C C C C A A G A A G A G A A

T T T A T T G A A A A A A A T G C T C G T A G T G T T A A A A A C A T T G A T A T T T A A T T T G G T T A G T A T A A A T G G C A A A G C A A C A A G A T C A A G T A G A T A A

G A T T C G T G A A A A C T T A G A C A A T T C A A C T G T C A A A A G T A T T T C A T T A G C A A A T G A A C T T G A G C G T T C A T T C A T G G A A T A T G C T A T G T C A

G T T A T T G T T G C T C G T G C T T T A C C T G A T G C T A G A G A T G G A C T T A A A C C A G T T C A T C G T C G T G T T C T T T A T G G T G C T T A T A T T G G T G G C A

T G C A C C A T G A T C G T C C T T T T A A A A A G T C T G C G A G G A T T G T T G G T G A T G T A A T G A G T A A A T T C C A C C C T C A T G G T G A T A T G G C A A T A T A

T G A C A C C A T G T C A A G A A T G G C T C A A G A C T T T T C A T T A A G A T A C C T T T T A A T T G A T G G T C A T G G T A A T T T T G G T T C T A T A G A T G G T G A T

A G A C C T G C T G C A C A A C G T T A T A C A G A A G C A A G A T T A T C T A A A C T T G C A G C A G A A C T T T T A A A A G A T A T T G A T A A A G A T A C A G T T G A C T

T T A T T G C T A A T T A T G A T G G T G A G G A A A A A G A A C C A A C T G T T C T A C C A G C A G C T T T C C C T A A C T T A C T T G C A A A T G G T T C T A G T G G G A T

T G C A G T T G G A A T G T C A A C A T C T A T T C C T T C C C A T A A T C T C T C T G A A T T A A T T G C G G G T T T A A T C A T G T T A A T T G A T A A T C C T C A A T G C

A C T T T T C A A G A A T T A T T A A C T G T A A T T A A A G G A C C T G A T T T T C C A A C A G G A G C T A A C A T T A T C T A C A C A A A A G G A A T T G A A A G C T A C T

T T G A A A C A G G T A A A G G C A A T G T A G T A A T T C G T T C T A A A G T T G A G A T A G A A C A A T T G C A A A C A A G A A G T G C A T T A G T T G T A A C T G A A A T

T C C T T A C A T G G T T A A C A A A A C T A C C T T A A T T G A A A A G A T T G T A G A A C T T G T T A A A G C T G A A G A G A T T T C A G G A A T T G C T G A T A T C C G T

G A T G A A T C C T C T C G A G A A G G A A T A A G G T T A G T G A T T G A A G T A A A A C G C G A C A C T G T A C C T G A A G T T T T A T T A A A T C A A C T T T T T A A A T

5808 nucleotides, roughly one percent of the genome of the pathogenic bacterium Mycoplasma

genitalium, which at 580 kb has one of the smallest genomes of any free-living organism; genes are

light, intergenic regions dark

Chapter 1

The Unix Command Line

Almost all commercial software comes with attractive graphical user interfaces that

allow us to work and play by touching and mousing. This is great for deleting a file

by dragging it into a trash can, renaming a file by clicking onto its name, or editing

text by mouse selection. However, in biology we might like to check the three billion

nucleotides of the human genome for the occurrence of a PCR primer, or compute

averages from thousands of expression values distributed across dozens of files.

Such operations are hard to perform using click-driven programs. This is because

graphical user interfaces are excellent for carrying out the tasks their creators deem

important, but they lack the universality that makes learning about computers so

fascinating. Computers are universal machines in the sense that they can perform

any precisely specified operation. All that is necessary is an interface that lets us

communicate every possible operation, not just a finite set, however large it may be.

To illustrate the importance of being able to communicate an infinite number

of possible operations, think of the communication system we all know best, our

language. Take any sentence that comes to mind and search the world-wide-web with

it. Unless you were quoting from memory, chances are, your sentence is unique. This

is because we do not memorize sentences, but use rules to construct new ones. These

rules are so fundamental, we all know them without even being aware of them. This

leaves us free to think about what to say while saying it. Moreover, the words we

utter have a curiously vague relationship to what we mean. If someone says: “John is

my friend.”, the word “friend” neither looks nor sounds like a friend. Nevertheless,

we know immediately what “friend” signifies. Taking our cue from language, we

expect all powerful communication systems to be characterized by a set of rules and

an arbitrary mapping between words and meaning. Communicating effectively with

a computer is no different.

The Unix command line, also known as the shell, is the de facto standard for text-

based, rather than graphics-based, computer communication. It has been around

since the late 1960’s and has proved flexible enough to adapt rather than go extinct

like so may other programs over the years. Its behavior is governed by a standard, the

POSIX standard. This means that once you have mastered the Unix shell on one type

of computer, you have mastered it on all. If you have never used it, now is a good

3© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_1&domain=pdf

4 1 The Unix Command Line

time to start by working through this chapter. Even if you have used the command

line before, we recommend you work through the following material to make the

most of later chapters.

We assume you are now sitting in front of a computer with an open terminal

displaying a blinking cursor like this:

jdoe@unixbox:∼$ |

1.1 Getting Started

New Terms

append (>>) head pwd

auto completion history rmdir

bash home directory rm

bc ls shell

bit man tail

cd mkdir touch

code chunk path wildcard (∗)
echo pipe zsh

export

1.1 Make a directory for this book by entering

〈cli〉≡
mkdir beb

Any command to be entered on the command line is typeset as the special code

chunk, 〈cli〉, for command line. Change directory, cd, to beb.

〈cli〉+≡
cd beb

This directory contains all our computational work, so we’d like to find it easily. We

do this by giving it a special name, BEB, and assigning the current directory to that

name.

〈cli〉+≡
BEB=$(pwd)

The command pwd prints which directory. Which is yours?

1.2 What happens when you echo the value of BEB?

〈cli〉+≡
echo $BEB

1.3 Which directory do you reach when you enter

〈cli〉+≡
cd

1.1 Getting Started 5

1.4 What happens when you do

〈cli〉+≡
cd $BEB

1.5 What happens when you do

〈cli〉+≡
cd ˜

1.6 Change again into the book directory.

〈cli〉+≡
cd $BEB

The variable BEB is useful and we’d like to remember it between shell sessions.

Whenever we try to remember something, we write it down. The place for writing

down shell variables is the resource file in the home directory, .bashrc on the

Bourne-again shell, bash, and .zshrc on the z shell, zsh. To find out which shell

you are using, query the SHELL variable by entering

〈cli〉+≡
echo $SHELL

Which is yours?

1.7 We’d like to save our BEB variable to our resource file. But resource files can be

difficult to fix when broken. So we first save a copy of .bashrc or .zshrc. The copy

command, cp, has the structure cp source destination. Here the destination is

the current directory, which is called dot.

〈cli〉+≡
cp ˜/.bashrc .

There are systems without an initial resource file. If you happen to be working

on such a system, the copy command fails, but don’t worry, you can just continue

regardless and append (>>) one line to the resource file.

〈cli〉+≡
echo "export BEB=$(pwd)" >> ˜/.bashrc

If the resource file doesn’t exist yet, it is constructed and appended to. What do you

get when you print the tail end (tail) of your resource file?

〈cli〉+≡
tail ˜/.bashrc

1.8 If the last line of your resource file looks fine, test it by opening a new terminal

window and enter

〈cli〉+≡
echo $BEB

6 1 The Unix Command Line

If you don’t get the expected result, revert to the backup copy of the resource file and

try again.

This book consists of chapters, and we bundle the computations they contain in

the directory ch, which we make with mkdir.

〈cli〉+≡
mkdir ch

We can call a directory anything we like, but Unix is case sensitive, so ch, CH, Ch,

and cH would be four distinct names. What happens when you do

〈cli〉+≡
ls

1.9 What happens when you list all the contents of your current directory?

〈cli〉+≡
ls -a

1.10 We change into ch.

〈cli〉+≡
cd ch

We are currently in Chapter 1, Section 1. Can you make directories to mirror that

structure and change into the directory for Section 1.1?

1.11 Inside beb/ch/1/1/, make two more directories, td1 and td2, and list them.

1.12 Change into td1 and back into its parent directory.

1.13 To minimize typos, the shell supports auto completion of names. Change again

into td1, but this time type only cd t followed by Tab. This completes the common

prefix of the two directories, td. To get the two possible suffixes, press Tab again.

Type 1, once more followed by Tab, to ensure correct completion.

This technique of mixing typing and tabbing is very useful once you get the hang

of it. Practice by changing in and out of the current directory. The command rmdir

removes directories. What happens if you enter

〈cli〉+≡
rmdir td*

1.14 Remake the test directories td1 and td2 and change into td1. Then touch, or

create, a test file and return to the parent directory.

〈cli〉+≡
mkdir td1 td2

cd td1/

touch tf

cd ..

1.1 Getting Started 7

Notice the slash after td1 from the auto completion. What happens if you now apply

rmdir to td1?

1.15 Can you empty td1 and then delete it?

1.16 The recursive switch, -r, allows rm to delete a directory and its contents.

Remake td1, add tf, and remove both with rm.

1.17 Recreate td1 and enter it. Create two test files, tf1 and tf2. How would you

copy both to td2?

1.18 Remove both files with one command and copy them back from td2.

1.19 File tf1 is renamed tf3 by moving it to the new name with mv.

〈cli〉+≡
mv tf1 tf3

Move tf2 to tf4. What happens when you move tf3 to tf4?

1.20 As you’ve probably noticed, the cursor cannot be positioned using the mouse.

This seems to leave the left and right arrow keys as the only navigation tools.

However, to use them, we have to move our right hand from the home row on the

keyboard, which we try to avoid. Instead of using the arrow keys, we can press the

control key and while keeping it pressed, press f, to move the cursor forward by one

position. So if C-f moves the cursor one position forward, can you guess how to

move it one position back?

1.21 When trying to get to the beginning of a line, we can keep C-b pressed until

we get there. But we might as well jump with C-a. Type

might as well jump

and jump to the beginning of the line. Then race to the end by keeping C-f pressed

and repeat a few times. But again, we might as well jump to the end. Can you guess

how that’s done?

1.22 Apart from jumping to the beginning and end of a line, we might like to jump

one word at a time. This is done through key combinations based on the meta key,

M. By default this is mapped to Esc. It may also be mapped to Alt, which again

means you can reach it without moving your left hand from the home row. M-f

moves forward one word, M-b backward. Try this again on “might as well jump”.

What does M-d do?

1.23 While editing the command line, we might make a mistake, which we can undo

with C- . What happens when you undo repeatedly?

1.24 The combination C-k deletes from the cursor to the end of the line. Try this.

What happens when you now press C-y?

8 1 The Unix Command Line

Table 1.1 Key combinations for moving the cursor and editing the command line

Key Combination Explanation

C-a position cursor at beginning of line

C-e position cursor at end of line

C-y insert deleted text

C-b move cursor back by one position

C-f move cursor forward by one position

C-d delete character right of cursor

C-k delete right to end of line

C- undo

M-b jump back by one word

M-f jump forward by one word

M-backspace delete word to the left of cursor

M-d delete word to the right of cursor

1.25 Moving the cursor with key combinations is a bit awkward at first, but once you

get used to it, working with the command line becomes much easier than it might

be right now. Experiment with the key combinations summarized in Table 1.1. How

would you use them to transform “the dog bit the man” into “the man bit the dog”?

1.26 The command line remembers commands and history lists them. However,

this list can be rather long, so we just look at its tail end by making the output of

history the input of tail.

〈cli〉+≡
history | tail

The command for switching output to input, |, is called pipe, as in, the pipe dream of

a pipeline under the Baltic Sea, which n’est pas une pipe. Can you look up the head

of the command history? How many items does your command history contain?

1.27 We’ve seen that the entries in the command history are numbered and we can

repeat a command by entering its number preceded by an exclamation mark. Try

this. What happens when you enter

〈cli〉+≡
!!

1.28 What happens when you enter

〈cli〉+≡
!-3

1.29 Like when moving horizontally along the command line, when moving ver-

tically along the command history, we can replace the up and down arrows by key

combinations. C-p moves to the previous command and when repeated to the next

one up. Again, this has the advantage compared to the up arrow key that your right

hand stays near the home row when navigating the command history. Can you guess

how to get the next command down the list?

1.1 Getting Started 9

1.30 We can keep C-p pressed until we get to the first command stored. But we

might as well jump to the beginning with the meta key, M-<. What happens when

you now try to go to the “previous” command?

Table 1.2 Key combinations for navigating the command history

Key Combination Explanation

C-p previous command

!! previous command

C-n next command

!n command number n

!-2 command two steps up the list

C-r reverse-serarch history

C-g quit history search

M-< start of history

M-> end of history

1.31 Table 1.2 summarizes the key combinations for navigating the command his-

tory. If M-< gets us to its beginning, how do we jump to its end?

1.32 A long list of commands is best navigated by searching, C-r. Search for

commands containing cd. This retrieves the last command with cd. What happens

when you press C-r again?

1.33 What happens when you press C-g?

1.34 If you’d like to learn more about features of the shell, read the user manual.

This is accessed with the program man, which itself has an entry in the manual.

〈cli〉+≡
man man

Navigate the man page with the arrow keys, q to quit. Take a look at the EXAMPLES

section in the manual entry for man. How would you find man pages for the keywords

bash or zsh?

1.35 To read up on the navigation commands listed in Tables 1.1 and 1.2, open the

man page for bash—the commands for zsh are essentially identical, so under both

shells we can do

〈cli〉+≡
man bash

Now activate the man help function by pressing h. How would you look for the

pattern Commands for Moving and History?

1.36 We’re working on a computer, but haven’t computed anything so far. So let’s

calculate the number of codons, 43.

〈cli〉+≡
echo $((4**3))

10 1 The Unix Command Line

What do you observe? And what happens if you drop the dollar?

1.37 Instead of printing the result of our computation, we can assign it to the variable

nc, for number of codons.

〈cli〉+≡
((nc=4**3))

Can you print the result of this computation?

1.38 For more detailed output, we can write a message containing our variable nc.

〈cli〉+≡
((nc=4**3)); echo "The number of codons is $nc"

Here we use a semicolon to separate the computation from the echo command. What

happens if you replace the double quotes by single quotes?

1.39 Apart from exponent (**), we can multiply (*), add (+), and subtract (-), as

expected. But what happens when we divide (/) 22 by 7?

1.40 To calculate fractions on the command line, we can use the basic calculator,

bc. Start it with the math library (-l),

〈cli〉+≡
bc -l

To quit, enter quit. What is 22/7? Do you recognize this number?

1.41 A convenient way to use bc is to pipe the output of echo into it.

〈cli〉+≡
echo ’22/7’ | bc -l

What happens if bc is run without -l?

1.42 We currently use 64-bit computers. This means a “word” in computer memory

consists of 64 bits. How many distinct 64-bit words are there? We might be tempted

to compute this on the shell, but

〈cli〉+≡
echo $((2**64))

gives zero. Can you think of a reason, why this computation fails? Attempt it with bc,

where �푛�푥 is expressed asnˆx. Can you gesstimate the result (hint: 210 = 1024 ≈ 103)?

1.43 How long a DNA sequence do we need to store as much information as a 64-bit

word?

1.2 Files, Directories, and Programs 11

1.2 Files, Directories, and Programs

New Terms

byte grep plotLine

cat gunzip printf

cres gzip redirect (>)

cutSeq Homebrew significance

cut less tar

drawGenes make translate

FASTA format octal number tr

fold od wc

git PATH which

1.44 To start the session, make a new directory for this section and change into it.

1.45 Files are kept inside directories, which may contain further directories. This

hierarchy of directories forms a tree, like the one in Fig. 1.1, where the root directory

(/) contains the six directories bin through var. What files and directories are

contained in your root directory?

1.46 The program wc prints the number of lines, words, and bytes for a file. How

many directories does your root directory contain (hint: use pipe)?

1.47 Often we are just interested in one of the three numbers listed by wc. How can

you print only the number of lines (hint: man)?

1.48 The directories directly hanging from the root of the directory tree in Fig. 1.1

can only be changed by the system administrator; for example, when installing a

program. The /bin directory contains quite a few of these programs. Can you find

out whether it contains ls on your system?

1.49 The file /bin/ls might not be the only ls on the system. We can find out

which ls we’re currently using with

〈cli〉+≡
which ls

Which which are you using?

1.50 In Fig. 1.1 the directories rooted on home are the home directories. Every user

has one and we’ve already played with making and deleting files and directories in

it. We also said that its symbol is tilde, ˜. How many files and directories does yours

contain?

1.51 Bioinformatics is centered on sequence data, so let’s look at a short sequence,

>dnaN

ATGAAAATATTA

12 1 The Unix Command Line

/

bin

ls which

etc home

alpha beth

books

beb

biobox

bin

cres drawGenes plotLines

ch

1

1

td1

tf4

td2

tf1 tf2

2

s.fasta

data

mgGenes.txt mgGenome.fasta

tmp usr var

Fig. 1.1 The Unix directory tree, slightly abridged; directories black, files gray

This data is in FASTA format, which consists of one header line followed by po-

tentially many data lines. The header line starts with greater than, >, and contains

an optional name, dnaN in our case. We could try to print this with echo, but for

multiline text printf is more appropriate, as it interprets \n as newline. How would

you print the above data with printf?

1.52 To put the output of printf into a file, we redirect (>) it into the file s.fasta.

〈cli〉+≡
printf ">dnaN\nATGAAAATATTA\n" > s.fasta

We could have called the file anything, but the extension fasta reminds us that it’s

a FASTA file. How many bytes does s.fasta contain?

1.53 Look at the file we just created,

〈cli〉+≡
cat s.fasta

and think of what you see as the file’s phenotype. What, then, is a file’s genotype?

It consists of bytes. And since one byte is eight bits, bytes are represented by octal

numbers. In octal we count 1, 2, 3, 4, 5, 6, 7, 10, 11, and so on. So to get at the

genotype of s.fasta, we generate its so-called “octal dump” with od,

1.2 Files, Directories, and Programs 13

〈cli〉+≡
od -b s.fasta

where each byte is shown as a three-digit octal number:

0000000 076 144 156 141 116 012 101 124 107 101 101 101 101 124 101 124

0000020 124 101 012

0000023

The first number in each line is the offset, followed by the actual bytes. Why do our

19 bytes amount to an offset of 23?

1.54 Codons and their amino acids are often presented as parallel sequences, for

example,

M K I L

ATG AAA ATA TTA

Similarly, we can format our sequence file to show both the characters and the

underlying triplet octal numbers

〈cli〉+≡
od -c -b s.fasta

0000000 > d n a N \n A T G A A A A T A T

076 144 156 141 116 012 101 124 107 101 101 101 101 124 101 124

0000020 T A \n

124 101 012

0000023

What are the octal codes for >, a, A, and \n?

1.55 The character codes are summarized as the ASCII code, which can be looked

up in octal, decimal, and hexadecimal notation in section 7 of the manual.

〈cli〉+≡
man 7 ascii

What is the decimal representation of A?

1.56 The ASCII code is a 7 bit code. How many characters does it specify?

1.57 od can also print the decimal representations of characters if we set the format

(-t) to unsigned integers encoded by 1 byte (u1). Among other things, decimal

character codes are used to encode sequencing errors, as we shall see later.

〈cli〉+≡
printf "A" | od -t u1

What is the decimal representation of ACGT?

1.58 We can append a second sequence to our file.

〈cli〉+≡
printf ">gyrB\nATGGAAGAAAAT\n" >> s.fasta

14 1 The Unix Command Line

What happens if you redirect (>) instead of append (>>)?

1.59 How many bytes does s.fasta now contain?

1.60 With sequence files we are usually more interested in counting the residues

rather than the bytes. To do this, we need a program from our bioinformatics toolbox,

the biobox. This is contained in the git repository biobox, which we clone into the

root of our book tree and change into.

〈cli〉+≡
cd $BEB

git clone sn.pub/dy6S42

cd biobox

To make the programs, follow the instructions at the bottom of the package page at,

and eventually run the program make.

〈cli〉+≡
make

The new programs are now listed in progs.txt and should all be contained in the

directory ./bin. If you get stuck, ask for help from a more experienced unixer. Does

bin contain all the programs listed in progs.txt?

1.61 Table B.2 lists the biobox programs used throughout this course. Which start

with plot?

1.62 To make the system aware of the new programs, we adjust the set of directories

where the system looks for programs when it receives a command. It is stored in the

variable PATH. What does your path currently look like?

1.63 We reset PATH to $BEB/biobox/bin, followed by all the current entries in

PATH.

〈cli〉+≡
export PATH=$BEB/biobox/bin:$PATH

What do you get when you now enter

〈cli〉+≡
cres -h

1.64 To make the new path permanent, we follow a similar procedure we used

for setting BEB. First we make a backup copy of the resource file, ˜/.bashrc or

˜/.zshrc, then we append (>>) the new path. However, note the single rather than

double quotes in the argument of echo. Can you explain them?

〈cli〉+≡
cp ˜/.bashrc .

echo ’export PATH=$BEB/biobox/bin:$PATH’ >> ˜/.bashrc

sn.pub/dy6S42

1.2 Files, Directories, and Programs 15

1.65 We test the new path in a new terminal window

〈cli〉+≡
cres -h

If the command isn’t found, replace the resource file by its backup and try again.

What do you get when you eventually run cres on s.fasta?

1.66 Let’s now look at some real data, which we get from the web using wget. To

be more specific, we get the data from the book website and place it into the root

directory of our book tree.

〈cli〉+≡
cd $BEB

wget http://guanine.evolbio.mpg.de/beb2/data.tgz

If you’re on a Mac, wgetmight not be installed. In that case, use your package man-

ager for installing wget. If you don’t have a package manager yet, install Homebrew

as explained at the web site

https://brew.sh

and install wget, which is also explained there.

The extension tgz in data.tgz means the file is a “tape archive” (t), and has

been gzipped (gz), or compressed. The expression “tape archive” here means that

potentially many files have been concatenated into one file. Compressed files are

binary files, which means their bytes are not all text characters as you find in the

text files we ordinarily use. Count the bytes in data.tgz, then uncompress it with

gunzip and count the characters in the uncompressed file. What is the compression

factor achieved by gzip?

1.67 We use tar to extract (-x) verbosely (-v) the files concatenated in the archive

file (-f) data.tar.

〈cli〉+≡
tar -x -v -f data.tar

What do you observe?

1.68 We don’t need the tar file any more; can you remove it?

1.69 How many data files have we just extracted? How many of them are FASTA

files?

1.70 Change back into the directory for the current Section, $BEB/ch/1/2, and

copy the genome of Mycoplasma genitalium in mgGenome.fasta from the data

directory. How long is the genome of M. genitalium?

1.71 Even though M. genitalium has one of the shortest genomes of any free-living

organism, it is still too long to print usefully to screen with cat. Instead, we just look

at its head. What do you see?

16 1 The Unix Command Line

1.72 A raw genome sequence is not very enlightening, so we annotate it with the

genes it encodes. The genes of M. genitalium are contained in mgGenes.txt. Copy

it from data and look at its head. What do you see?

1.73 What does the tail of mgGenes.txt look like?

1.74 As we just saw when we looked at the head of mgGenes.txt, the first gene

in the list, dnaN, has coordinates 686–1828 on the plus strand. Use cutSeq to cut

out this interval from the genome and translate it with translate. How long is the

resulting protein sequence?

1.75 The second gene in mgGenes.txt has coordinates 1828–2760. By how much

do the first and the second genes overlap?

1.76 How many genes does M. genitalium have?

1.77 We could use cat to look at the full gene file, but then its lines would just fly

across the screen. Instead, we use the pager less.

〈cli〉+≡
less mgGenes.txt

Try leafing through the genes. For help with navigating, press h. Do you notice

anything about the help page?

1.78 The number of genes on the forward and reverse strands should be roughly

equal. To investigate this, let’s begin by counting the number of genes on the forward

and reverse strands. So we use cut to cut the strand column, the fourth, from

mgGenes.txt, and grab the lines containing plus with grep.

〈cli〉+≡
cut -f 4 mgGenes.txt | grep + | head

How many genes are on the forward strand, how many on the reverse strand? Do

these two numbers add up to the total number of genes?

1.79 Do you think the discrepancy between the number of genes on the forward and

reverse strands is significant? How could you find out?

1.80 From our quick glances at mgGenes.txt with head and tail, it looks as

though genes at the beginning of the list are mainly on the forward strand, genes at

the end on the reverse. Since the list is ordered according to starting position rather

than strand, this is intriguing. Do genes on the 5’ half of the genome really prefer

the plus strand, those on the 3’ half the minus strand? To get a visual impression of

strandedness along the genome, we plot the pluses and minuses we just counted in a

single line. So we delete the newline characters using another translation program,

tr and print the result.

〈cli〉+≡
cut -f 4 mgGenes.txt | tr -d ’\n’ | awk ’{print}’

1.2 Files, Directories, and Programs 17

What do you see?

1.81 We can leave out the awk part in the last command.

〈cli〉+≡
cut -f 4 mgGenes.txt | tr -d ’\n’

What happens then?

1.82 The long line of pluses and minuses can be folded using fold. Can you fold it

into lines length 50?

1.83 In our plot of pluses and minuses the genes look as if they are all equally long,

but we know that’s not the case. In order to draw the genes to scale, we convert their

coordinates to small boxes using the program drawGenes. To see how this works,

pipe two toy genes, one on the forward, the other on the reverse strand, through

drawGenes.

〈cli〉+≡
printf "100 400 +\n600 1500 -\n" | drawGenes

What happens?

 0 200 400 600 800 1000 1200 1400 1600

Position

Fig. 1.2 The plot of our two toy genes

1.84 To actually draw our toy genes, we pipe the output of drawGenes through the

program plotLine.

〈cli〉+≡
printf "100 400 +\n600 1500 -\n" | drawGenes | plotLine

Can you modify the call to plotLine to generate the graph shown in Fig. 1.2 (hint:

-h)?

1.85 Draw the genes of M. genitalium. Is the 5’/3’ bias in strandedness still visible?

18 1 The Unix Command Line

1.3 Scripts

Scripts are short programs, often written to be thrown away like a shopping list. We

look at two types of scripts, shell scripts and Awk scripts.

New Location

beb

biobox ch

1

1 2 3

data

1.86 Can you make a new directory for the current section?

Shell

New Terms

ampersand (&) for loop seq

apt histogram sort

emacs remainder (%)

1.87 In Answer 1.79 we sketched a test of the idea that 525 genes could by chance

split into 299 on the forward strand and 226 on the reverse. We said this test would

involve a lot of coin tossing, so we postponed it until now, when we give it to the

machine. To begin with, we need a source of random numbers. Try a few times

〈cli〉+≡
echo $RANDOM

Can you use these numbers and remainder (%) to simulate coin tossing?

1.88 We’d like to repeat our coin tosses many times. In the shell, repetition is

typically done with seq. Can you print the numbers from 1 to 3 with it (hint: man)?

1.89 We can capture the results of seq in a variable.

〈cli〉+≡
s=$(seq 3)

What does s contain?

1.90 We can also use seq to drive a for loop.

〈cli〉+≡
for a in $(seq 3); do echo $a; done

1.3 Scripts 19

How would you flip a coin three times?

1.91 Our scripts are becoming a bit too unwieldy for the command line, time to put

them into files. For this we need an editor. We recommend emacs as it strikes a nice

balance between the needs of beginners and power users. Command line programs

like emacs are distributed as packages and administered by a package manager. If

you’re on macOS, you might already have used Homebrew, for example, to install

wget. The different flavors of Unix come with their own package managers. What

is the package manager on your system and how can you use it to install emacs

(google)?

1.92 You might be wondering how often we need to use our package manager.

That depends. Table B.3 shows the extra programs required on Ubuntu and the

corresponding packages. Table B.4 does the same for Homebrew. So at this point

you can take a break from the course, and install all extra programs in one step. Or

you can install individual packages whenever an unknown program crops up. How

do you proceed?

1.93 The freshly installed emacs is either a console program that runs in the current

terminal, or a graphical program that runs in its own window. Start emacs,

〈cli〉+≡
emacs

Did your package manager install console emacs or graphical emacs?

1.94 We open a script for coin tossing, ct.sh. On graphical emacs that’s

〈cli〉+≡
emacs ct.sh &

An ampersand (&) after a command sends it from the default foreground to the

background. So on console emacs just leave out the ampersand (&). What happens

if you start graphical emacs without the ampersand, or console emacs with the

ampersand?

1.95 Here is our script for coin tossing, ct.sh.

Prog. 1.1 (ct.sh)

〈ct.sh〉≡
for a in $(seq $1)

do

echo $(($RANDOM % 2))

done

ct.sh is the first of 64 programs we write together throughout the book, Table B.1

lists them all. Notice in the first line of ct.sh the variable $1. This is the first value

on the command line. So we can run

〈cli〉+≡
bash ct.sh 3

20 1 The Unix Command Line

to toss a coin three times. How would you count the number of heads (1’s) among

525 coin tosses (hint: grep & wc)?

1.96 Write a for loop to repeat the coin tossing experiment 20 times. Do you find

a result with 299 or more heads?

1.97 Again, the script just generated is a bit unwieldy for the command line, time to

return to emacs. It recognizes the same key combinations as the shell for navigation

and editing. In fact, the commands for moving horizontally along the command line

and for editing it listed in Table 1.1 are all preserved. What about the “vertical”

commands for moving up and down the command history in Table 1.2?

1.98 There are a few additional emacs commands that make editing easier, and the

best way to learn about them is to work through the emacs tutorial, which you can

start with C-h t. What is the key combination for ending the tutorial?

1.99 Can you remember the key combination for ending an emacs session?

1.100 Write a script for iterated coin tossing, ict.sh. Make it read the number of

iterations and the number of coin tosses per iterations from the command line.

〈cli〉+≡
bash ict.sh 30 525

Do you find 299 heads or more in 30 iterations?

1.101 It’s a bit tedious to compare random numbers with 299, so we draw a histogram

instead. Fig. 1.3 shows the results of 1000 iterations and we see that 299 is on

the extreme right of this distribution. Can you reproduce it with histogram and

plotLine?

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 230 240 250 260 270 280 290 300

C
ou

nt

Heads

Fig. 1.3 Histogram of 1000 experiments tossing a coin 525 times

1.3 Scripts 21

1.102 For actually counting the experiments with at least 299 heads, numerical

sorting again helps.

〈cli〉+≡
bash ict.sh 100 525 | sort -n | tail

In case you’re wondering what happens with default sort, try

〈cli〉+≡
printf "2\n10\n" | sort -n

and omit -n. What do you observe?

1.103 How often do you find 299 or more heads in 100, 1000, and 10,000 trials?

Are the genes in M. genitalium distributed randomly between the forward and the

reverse strands?

1.104 Next, we investigate the bias in strandedness along the genome. We already

saw this in our earlier plots of pluses and minuses, but now we’d like to test the null

hypothesis of no such bias. Can you think of a way to do this (no programming, just

thinking)?

1.105 Copy the file mgGenes.txt from data to your current directory. How many

genes are on the plus strand among the first 525/2 ≈ 263 genes?

1.106 The -R option of sort randomizes the result. What do you observe when you

apply it to the strand column in mgGenes.txt?

1.107 The option -n adds line numbers to the output of cat. What do you observe

when you add line numbers to the strand column, followed by sort -R?

1.108 Write a script that shuffles the strands and counts the number of pluses in the

first half of the M. genitalium genome. Call the script ss.sh, for shuffle strand, and

pass the number of iterations via the command line. Run it a few times—do you ever

find the original number of pluses or more by chance alone?

1.109 Run ss.shwith 1000 iterations and save the results in ss.dat. Then plot the

corresponding histogram and make the x range large enough to include the observed

number of forward genes. We can even mark the observed number of forward genes

by drawing an arrow with the -g option of plotLine. This allows us to pass arbitrary

code to the program gnuplot, which does the actual plotting for plotLine.

-g "set arrow from x1,y1 to x2,y2"

How significant is the observed bias in strandedness?

Awk

New Terms

action END block regular expression

BEGIN block literate programming variance

diff pattern

22 1 The Unix Command Line

1.110 Instead of directly programming the shell, we can use a programming lan-

guage that integrates well with the shell. Awk has traditionally been that language.

Like in the shell, $1, $2, and so on refer to positions in input, but with a twist: What

do you observe when you enter

〈cli〉+≡
awk ’{print $2, $3}’ mgGenes.txt | head

1.111 What happens when you leave out the argument of print?

〈cli〉+≡
awk ’{print}’ mgGenes.txt | head

1.112 To print the lengths of genes, we can subtract the start from the end and add

one.

〈cli〉+≡
awk ’{print $3 - $2 + 1}’ mgGenes.txt | head

Can you plot a histogram of gene lengths?

1.113 Use Awk to print gene length, accession, and name. What is the shortest gene

in M. genitalium? The longest?

1.114 We can also sum the gene lengths and print the result after the last line of

input has been read.

〈cli〉+≡
awk ’{s = s + $3 - $2 + 1}END{print s}’ mgGenes.txt

Which fraction of the genome is covered by genes?

1.115 What is the average gene length?

1.116 Apart from the average gene length, we’d also like to calculate its variance, the

average squared difference from the average. If we have �푛 lengths, ℓ�푖 , their variance

is

�푠2
ℓ =

1

�푛 − 1

�푛
∑

�푖=1

(

ℓ�푖 − ℓ
)2

, (1.1)

where ℓ is the average length. According to equation (1.1), we first calculate the

average length, then the variance, which means we have to store the lengths. In our

next program, varLen.awk, we do this using the array lengths.

Prog. 1.2 (varLen.awk)

〈varLen.awk〉≡
BEGIN {

n = 0

}

{

l = $3 - $2 + 1

lengths[n] = l

1.3 Scripts 23

n++

}

END {

〈Calculate variance of gene lengths, Prog. 1.2〉
}

This is a good point to explain our notation for code. We write it in chunks. A

chunk is referred to by its name, here 〈varLen.awk〉. This is followed by (≡) if the

chunk is defined or (+≡) if it is appended to. Chunks can contain chunks, here

〈varLen.awk〉 contains 〈Calculate variance of gene lengths, Prog. 1.2〉. This chunk

is filled in later. For the time being, you can mark it as a comment in your code.

Calculate variance of gene lengths.

In the book we disambiguate code chunks by program numbers, but this is not

necessary when you write your own code. This style of chunk-wise programming in

the context of plenty of ordinary prose was invented in the early 1980’s by Donald

Knuth, who calls it literate programming [27, ch. 4].

We begin to fill in the chunk 〈Calculate variance of gene lengths, Prog. 1.2〉. Can

you print the first three entries of the array lengths?

1.117 What happens if we omit the BEGIN block?

1.118 The standard method to iterate over the entries of an array is a for loop.

for (i = 0; i < n; i++) {

...

}

The first argument of for, the initialization, i = 0, is executed once. Then the test in

the second argument, i < n, is carried out. If it is true, the action block is executed.

Then the third argument is executed by incrementing the running variable, i++. At

this point the little waltz test-action-count is repeated, until the test fails. If the block

consists of a single line, the curly brackets can be omitted, for example

for (i = 0; i < n; i++)

print lengths[i]

We continue working on our chunk 〈Calcultate variance of gene lengths〉 and

calculate the average gene length, which we save to the variable avg. Can you do

that and print avg, just to make sure?

1.119 What is the variance of gene lengths in M. genitalium?

1.120 The opposite of the END block we just worked on is the BEGIN block, which

we’ve also seen already. It is executed before any input is read. For example, Awk

gives us another handy calculator.

〈cli〉+≡
awk ’BEGIN{print 540447/580076}’

24 1 The Unix Command Line

Can it calculate 264?

1.121 BEGIN and END are examples of patterns, one of the two building blocks of

Awk programs. The second are actions. So Awk programs have the structure

pattern {action}

pattern {action}

...

Whenever a pattern is true, the action is applied to the current line of input. As we’ve

already seen in programs like

〈cli〉+≡
awk ’{print $1}’ mgGenes.txt | head

when we leave out the pattern, the action is applied to every input line. We can also

leave out the action, for example,

〈cli〉+≡
awk ’/\+/’ mgGenes.txt | head

prints lines with a plus, so the default action is print $0. The two slashes enclose

a regular expression, a notation for sets of strings. In the regular expression library

used by some Awk implementations, + is a quantifier. To ensure its literal meaning,

we prefix the plus with a backslash. What happens when we match (˜) plus in the

fourth column without any action?

〈cli〉+≡
awk ’$4 ˜ /\+/’ mgGenes.txt | head

1.122 Given that minus isn’t part of the regular expression syntax, how would you

print all the genes on the minus strand?

1.123 You might be wondering whether it’s really necessary to specify the fourth

column for matching; why not match the whole line? But it turns out there is a

difference between matching just the fourth column and matching the whole line.

〈cli〉+≡
awk ’$4 ˜ /-/’ mgGenes.txt > minus1.txt

awk ’/-/’ mgGenes.txt > minus2.txt

The program diff compares two files line by line. What is the difference between

minus1.txt and minus2.txt?

1.124 The number of lines, or number of records (NR), is a built-in Awk variable.

So

〈cli〉+≡
awk ’END{print NR}’ mgGenes.txt

1.3 Scripts 25

prints the number of lines in the input. Copy the file mgGenome.fasta to your

current directory. How many lines does it contain? Compare your result with wc -l.

1.125 The number of fields (NF) is also a built-in Awk variable, NF. Can you print

the last field of every line in mgGenes.txt?

1.126 Some genes have names, others don’t. The genes with names have lines with

five fields, the others lines with four. So by filtering for lines with five fields we filter

for the genes with names.

〈cli〉+≡
awk ’NF == 5’ mgGenes.txt | head

What percentage of genes has names?

1.127 FASTA files consist of one or more headers and data. We can filter for the

headers by looking for lines with >.

〈cli〉+≡
awk ’/>/’ mgGenome.fasta

Here the > can appear anywhere in the line. But header markers only appear at the

beginning of lines. The regular expression for the beginning of a string is ˆ, so we

can write

〈cli〉+≡
awk ’/ˆ>/’ mgGenome.fasta

The file mgProteome.fasta contains the proteome of M. genitalium. Copy it to

your directory. How many entries does it contain?

1.128 Instead of filtering for headers, we can filter for data by negating (!) the match

for header.

〈cli〉+≡
awk ’!/ˆ>/’ mgGenome.fasta | head

The function length gives the length of a string.

〈cli〉+≡
printf "ACGT\n" | awk ’{print length($1)}’

Can you calculate the genome length of M. genitalium?

1.129 We’ve already seen that the sequence in mgGenome.fasta consists of over

8000 lines. How can we convert this into one contiguous sequence inside awk? This

is called concatenation. It is done by writing two strings next to each other.

〈cli〉+≡
head -n 3 mgGenome.fasta | awk ’{t = t $1}END{print t}’

Can you avoid including the first field of the header?

1.130 The function split splits a string at a delimiter into an array, a, of substrings,

which contains the first substring at a[1]. split returns the length of the array.

〈cli〉+≡
printf "axb\n" |

awk ’{n=split($1,a,"x");for(i=1;i<=n;i++)print a[i]}’

26 1 The Unix Command Line

a

b

What happens when you split at a or b instead of x?

1.131 We often try to avoid empty lines in output. But how do we recognize empty

lines? In an empty line the beginning is directly followed by the end. We’ve already

seen the regular expression for the beginning of a string, ˆ. The regular expression

for the end is $. Can you filter out the empty lines generated in Problem 1.130?

1.132 What happens when you use the empty string as delimiter in split?

1.133 The first token in the header of mgGenome.fasta has the form

>a|b|c|d|

How would you split it into a, b, c, and d? Beware that a command like

grep > mgGenome.fasta

would be interpreted as a redirect and overwrite mgGenome.fasta.To get a verbatim

>, place it in single quotes, ’>’.

1.134 We’ve already seen integers as indexes for arrays. But strings can also index

arrays, which is handy for counting strings.

printf "A\nA\nA\nC\nC\nT\n" | awk ’{counts[$1]++}’

To iterate over an array with an unknown set of indexes, we use a version of the for

loop that visits all of them.

for (i in array)

print i, array[i]

Can you print the nucleotide counts we just generated?

1.135 Let’s combine some of the Awk tricks we’ve seen so far and write a program

for counting residues, cres.awk. First, we count the residues in each line. Then we

print the total residue count followed by the count of each individual residue.

Prog. 1.3 (cres.awk)

〈cres.awk〉≡
!/ˆ>/ {

〈Count residues, Prog. 1.3〉
}

〈Print total residue count, Prog. 1.3〉
〈Print residue counts, Prog. 1.3〉

}

END {

1.3 Scripts 27

We now fill in the three chunks of cres.awk, one chunk per Problem. Can you first

count the residues?

1.136 Can you print the total residue count?

1.137 So far, we’ve used the print command for printing. This is like the shell

command echo. If we’d like more control over the formatting, we can use printf,

in the shell and in Awk, too. For example, we can print a floating point number with

%f and a tab with \t.

〈cli〉+≡
awk ’BEGIN{r=22/7; printf "22/7\t%f\n", 22/7}’

To learn more about printf, take a look at the man page for awk and search for The

printf Statement. Can you print a table of the count and frequency of each residue?

1.138 What are the nucleotide frequencies in the genome of M. genitalium? Is there

anything unusual about them?

1.139 Repeat this analysis for the proteome. What is the least frequent amino acid?

The most frequent? To answer these questions, it helps to cut off the first two lines of

the output. Read the tail man page to see how to use -n for this. Also, it’s helpful

to sort by the third column, rather than by the default first. The man page for sort

explains under -k, how.

Chapter 2

Optimal Alignment

When we align two sequences, we in fact propose an evolutionary history for them.

A history, where we account for three kinds of events, mutation, insertion, and

deletion. These events are not all equally important, which we express by giving

them individual scores summarized in a score scheme. Given such a scheme, we can

look for the most likely history of two sequences, their optimal alignment.

2.1 Keeping Score

When scoring alignments, we aim to give high scores to true alignments, which

means, alignments that reflect the actual evolutionary history of their sequences.

The overall score of an alignment is composed of the score for residue pairs and

the gap score. Historically, more attention has been paid to scoring residues than

gaps. And among the residues it is particularly the amino acids whose evolution has

been studied in connection with scoring alignments. We begin by looking at how

alignments relate to evolution, then investigate the relationship between amino acids

and the genetic code, before we study how the evolution of amino acids is simulated

to obtain scores for pairs of amino acids.

New Location

beb

biobox ch

1

1–3

2

1

data

2.1 Can you make a new directory for this section and change into it?

29© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_2&domain=pdf

30 2 Optimal Alignment

Alignments and Evolution

New Terms

allele gap opening open reading frame (ORF)

al homology overlap alignment

coding sequence (CDS) indel synonymous mutation

gap extension keyMat

2.2 Consider a short example sequence, �푆 = ACCGT, which is passed from parent

to child to grandchild, and so on. If replication were perfect, nothing would ever

change. However, we only need to look at the delightful diversity around us to

remind ourselves that mutations do occur. Say, the G at position 4 in our example

sequence changes into a C. Now the ancestral sequence has split into two versions,

or alleles, which we visualize in Fig. 2.1A.

The alignment at the bottom of Fig. 2.1A summarizes this scenario by writing

nucleotides with a common ancestor on top of each other. Such nucleotides are called

“homologous”. Use the program al to align the two example sequences. Can you

recapitulate the alignment score you get (hint: al -h)?

A aaaaaaaaaaaa B

ACCGT

ACCCTACCGT

G4 → C4

ACCGT

ATCGTA ACCT

M: G4 → C4M: C2 → T2

I: -6 → A6 D: C3 → -3

ACCGT

ACCCT

ATCGTA

AC-CT-

Fig. 2.1 Evolution of one sequence into two with one mutation (A), and with two mutations (M),

an insertion (I), and a deletion (D) (B); the evolutionary histories are followed by the true alignment

2.3 Fig. 2.1B shows another evolutionary history and the corresponding alignment.

This one contains not only mutation, but also insertion and deletion. Use al to align

the sequences. Do you get the true alignment?

2.4 An insertion in one sequence implies a deletion in its partner. Since the two

events cannot be distinguished as long as we only align two sequences, insertions

and deletions are often collectively called indels. Indels are denoted by gaps. Gaps

of length �푙 are traditionally scored as

�푔(�푙) = �푔o + (�푙 − 1)�푔e,

where �푔o is the score for opening a gap and �푔e for extending it. This means a gap

of length 1 has score �푔o. A popular alternative gap scoring scheme is to count every

2.1 Keeping Score 31

gap position as an extension,

�푔(�푙) = �푔o + �푙�푔e.

Which gap-scoring scheme is implemented in al?

-14

-12

-10

-8

-6

-4

-2

 0

 0 1 2 3 4 5

g(
l)

l

Fig. 2.2 Gap score, �푔(�푙) as a function of gap length, �푙

2.5 Write an Awk program, gapScore.awk, to print �푙 and �푔(�푙) for gaps of lengths

0 to 5 with �푔o = −5 and �푔e = −2. Fig. 2.2 shows the resulting plot with plotLine.

Can you reproduce it?

2.6 With few exceptions, we can only observe contemporary sequences, while an-

cestral sequences remain unknown. Given two contemporary sequences, �푆1 = ACCGT

and �푆2 = ATGT, we wish to infer their evolutionary history by aligning them. One

possible alignment is

ACCGT

ATGT-

Here is an evolutionary scenario compatible with that alignment. It consists of three

mutations and one insertion:

ACGG

ACCGT ATGT

C2 → T2

G4 → T4

G3 → C3

-5 → T5

Draw an alternative evolutionary scenario leading to �푆1 and �푆2.

2.7 Consider the two sequences �푆5 = ACAGTTC and �푆6 = AGTTC. Without much

thinking, write down what seems to you their most natural alignment. Then align

them with al. What do you observe?

32 2 Optimal Alignment

2.8 There is an alignment method where flanking gaps always have score zero called

overlap alignment. Use al in overlap mode to align �푆5 and �푆6 again.

2.9 Instead of playing with toy sequences, we now align two real sequences con-

tained in hbb1.fasta and hbb2.fasta. Copy these files from $BEB/data to your

current directory. How long are the sequences they contain and what are their func-

tions?

2.10 Align the two �훽-globin mRNA sequences using al. Where do they differ?

2.11 What is the position of the mutation in the two sequences (hint: -L)?

2.12 The mutation might be in the 5’ untranslated region (UTR) or inside the coding

sequence (CDS). To find out, use the program translate to translate hbb1.fasta.

Proteins start with a start codon, ATG, encoding methionine, M, and end with a stop

codon, denoted by an asterisk *. translate takes the reading frame as argument.

Which reading frame gives the longest uninterrupted protein sequence, also called

the longest open reading frame, ORF?

2.13 The program keyMat looks up patterns in a sequence, for example all stop

codons in the translation of hbb1.fasta.

〈cli〉+≡
translate -f 3 hbb1.fasta | keyMat ’*’

What is the start and end position of the human �훽-globin in the translation?

2.14 Is the mutation we observed in the CDS?

2.15 In the following steps we find out, whether the mutation leads to an amino acid

change or not. Use the program cutSeq to cut out the human �훽-globin and save it in

hbb1p.fasta.

2.16 Cut out the chimp �훽-globin and save it in hbb2p.fasta.

2.17 Next we’d like to align the �훽-globin sequences from human and chimp. We’ve

already seen that for nucleotide sequences we only distinguish between matches

and mismatches. For proteins we make finer distinctions, which are summarized

in matrices of scores for pairs of amino acids. One of these is PAM70, shown in

Fig. 2.3. PAM70 is symmetrical; what does that mean?

2.18 PAM70 is contained in the file pam70.txt, which is part of the Blast software

package. Copy this from the data directory to your current directory. How many

entries does pam70.txt contain? Compare that to the 20 standard amino acids.

What are the extra entries in pam70.txt?

2.19 Write an Awk script to print the match scores for the canonical 20. What are

the smallest and largest match scores?

2.20 Edit your script to print out only the mismatch scores. Again, what are the

smallest and largest values? Use the difference between these values as the number

of bins for a histogram of mismatch values drawn with histogram and plotLine.

2.1 Keeping Score 33

A R N D C Q E G H I L K M F P S T W Y V

A 5 -4 -2 -1 -4 -2 -1 0 -4 -2 -4 -4 -3 -6 0 1 1 -9 -5 -1

R -4 8 -3 -6 -5 0 -5 -6 0 -3 -6 2 -2 -7 -2 -1 -4 0 -7 -5

N -2 -3 6 3 -7 -1 0 -1 1 -3 -5 0 -5 -6 -3 1 0 -6 -3 -5

D -1 -6 3 6 -9 0 3 -1 -1 -5 -8 -2 -7 -10 -4 -1 -2 -10 -7 -5

C -4 -5 -7 -9 9 -9 -9 -6 -5 -4 -10 -9 -9 -8 -5 -1 -5 -11 -2 -4

Q -2 0 -1 0 -9 7 2 -4 2 -5 -3 -1 -2 -9 -1 -3 -3 -8 -8 -4

E -1 -5 0 3 -9 2 6 -2 -2 -4 -6 -2 -4 -9 -3 -2 -3 -11 -6 -4

G 0 -6 -1 -1 -6 -4 -2 6 -6 -6 -7 -5 -6 -7 -3 0 -3 -10 -9 -3

H -4 0 1 -1 -5 2 -2 -6 8 -6 -4 -3 -6 -4 -2 -3 -4 -5 -1 -4

I -2 -3 -3 -5 -4 -5 -4 -6 -6 7 1 -4 1 0 -5 -4 -1 -9 -4 3

L -4 -6 -5 -8 -10 -3 -6 -7 -4 1 6 -5 2 -1 -5 -6 -4 -4 -4 0

K -4 2 0 -2 -9 -1 -2 -5 -3 -4 -5 6 0 -9 -4 -2 -1 -7 -7 -6

M -3 -2 -5 -7 -9 -2 -4 -6 -6 1 2 0 10 -2 -5 -3 -2 -8 -7 0

F -6 -7 -6 -10 -8 -9 -9 -7 -4 0 -1 -9 -2 8 -7 -4 -6 -2 4 -5

P 0 -2 -3 -4 -5 -1 -3 -3 -2 -5 -5 -4 -5 -7 7 0 -2 -9 -9 -3

S 1 -1 1 -1 -1 -3 -2 0 -3 -4 -6 -2 -3 -4 0 5 2 -3 -5 -3

T 1 -4 0 -2 -5 -3 -3 -3 -4 -1 -4 -1 -2 -6 -2 2 6 -8 -4 -1

W -9 0 -6 -10 -11 -8 -11 -10 -5 -9 -4 -7 -8 -2 -9 -3 -8 13 -3 -10

Y -5 -7 -3 -7 -2 -8 -6 -9 -1 -4 -4 -7 -7 4 -9 -5 -4 -3 9 -5

V -1 -5 -5 -5 -4 -4 -4 -3 -4 3 0 -6 0 -5 -3 -3 -1 -10 -5 6

Fig. 2.3 PAM70 amino acid score matrix; match scores are shown in red

2.21 Align the two �훽-globins using PAM70. Is there an amino acid difference

between human and chimp �훽-globin?

Mutations and the Genetic Code

New Terms

geco polarity random genetic code

mutational space

2.22 Fig. 2.4 shows the genetic code, which maps the 43 = 64 codons to 20 amino

acids. The first codon position is occupied by the nucleotides in the first column of

the code table, the second codon position by the nucleotides in the top row, and the

third codon position by the nucleotides in the last column. What is the smallest and

the largest number of codons encoding the same amino acid?

2.23 Mutations at the third codon position are often synonymous, leading to the

blocks of four identical amino acids in the genetic code, which correspond to given

first and second codon positions. Are there also synonymous mutations at these two

positions?

2.24 Amino acids are separated by one, two, or three nucleotide mutations. Can you

find an example for each starting with phenylalanine (F)?

34 2 Optimal Alignment

F
ir

st
P
o
si

ti
o
n

T
h
ird

P
o
sitio

n

Second Position
T C A G

T Phe/F Ser/S Tyr/Y Cys/C T

Phe/F Ser/S Tyr/Y Cys/C C

Leu/L Ser/S Ter/* Ter/* A

Leu/L Ser/S Ter/* Trp/W G

C Leu/L Pro/P His/H Arg/R T

Leu/L Pro/P His/H Arg/R C

Leu/L Pro/P Gln/Q Arg/R A

Leu/L Pro/P Gln/Q Arg/R G

A Ile/I Thr/T Asn/N Ser/S T

Ile/I Thr/T Asn/N Ser/S C

Ile/I Thr/T Lys/K Arg/R A

Met/M Thr/T Lys/K Arg/R G

G Val/V Ala/A Asp/D Gly/G T

Val/V Ala/A Asp/D Gly/G C

Val/V Ala/A Glu/E Gly/G A

Val/V Ala/A Glu/E Gly/G G

Fig. 2.4 The genetic code with three-letter and single-letter amino acid designations

2.25 Amino acids are not just separated by one, two, or three nucleotide mutations,

they also differ greatly in their chemical properties. One of these properties is polarity

and Fig. 2.5 shows the structures of the 20 amino acids color-coded and ordered by

polarity. What is the least polar amino acid? The most polar?

2.26 The polarities of the amino acids shown in Fig. 2.5 are listed in the file

polarity.dat [18]. Copy it to your current directory. What is the average polarity

of amino acids (awk)?

2.27 Next, we plot the polarities.

〈cli〉+≡
awk ’!/ˆ#/{print $2, 0, $1}’ polarity.dat | sort -n |

plotLine -Y -0.2:2 -u y -P -x Polarity

Try running this code. Can you explain what it does?

2.28 Fig. 2.6A shows the genetic code with the amino acids color-coded by polarity.

It looks as though amino acids are clustered in blocks of similar color. To test this,

we shuffle the amino acids among the codons, only the stop codon is left unchanged.

Fig. 2.6B shows one such random code. Do you think its color distribution is less

homogeneous than that of the natural genetic code?

2.29 Instead of comparing the two codes in Fig. 2.6 by eye, we can quantify the

effect of mutations on them. We do this by calculating the mean squared difference

in polarity between the amino acids in the given genetic code and the amino acids

reached by all of its one-step mutations [19]. Let’s call this quantity �푑. The program

geco can either iterate to compute �푑 for multiple random codes, or, without iterations,

compute �푑 for the natural code. What is �푑 for the natural code?

2.1 Keeping Score 35

NH

SH

Leucine, L Isoleucine, I Phenylalanine, F Tryptophane, W Cysteine, C

S

OH

Methionine, M Valine, V Tyrosine, Y Proline, P Alanine, A

OH

b

OH

N

NH

NH2

N

HN

H

Threonine, T Glycine, G Serine, S Histidine, H Arginine, R

H2NH2

O

NH2

H2

O

N

O

HOH

O

OH

Glutamine, Q Lysine, K Asparagine, N Glutamate, E Aspartate, D

4 5 6 7 8 9 10 11 12 13

Fig. 2.5 The side chains of the 20 amino acids specified by the genetic code color-coded by their

polarity, which ranges from 4.9 to 13. Glycine is merely bound to a hydrogen atom, the dot, •

2.30 To find out whether the �푑 value of the natural code is different from that

of random codes, we might want to look at all possible codes and calculate �푑 for

each one. The number of possible codes is the same as the number of possible

arrangements of 20 books on a shelf, 20 factorial,

20! = 2 × 3 × ... × 20

Can you use Awk to calculate 20!?

36 2 Optimal Alignment

A aaa B

T C A G

T Phe/F Ser/S Tyr/Y Cys/C T

Phe/F Ser/S Tyr/Y Cys/C C

Leu/L Ser/S Ter/* Ter/* A

Leu/L Ser/S Ter/* Trp/W G

C Leu/L Pro/P His/H Arg/R T

Leu/L Pro/P His/H Arg/R C

Leu/L Pro/P Gln/Q Arg/R A

Leu/L Pro/P Gln/Q Arg/R G

A Ile/I Thr/T Asn/N Ser/S T

Ile/I Thr/T Asn/N Ser/S C

Ile/I Thr/T Lys/K Arg/R A

Met/M Thr/T Lys/K Arg/R G

G Val/V Ala/A Asp/D Gly/G T

Val/V Ala/A Asp/D Gly/G C

Val/V Ala/A Glu/E Gly/G A

Val/V Ala/A Glu/E Gly/G G

T C A G

T Ser/S Val/V Pro/P Met/M T

Ser/S Val/V Pro/P Met/M C

Ala/A Val/V Ter/* Ter/* A

Ala/A Val/V Ter/* Thr/T G

C Ala/A Arg/R Tyr/Y Cys/C T

Ala/A Arg/R Tyr/Y Cys/C C

Ala/A Arg/R His/H Cys/C A

Ala/A Arg/R His/H Cys/C G

A Lys/K Gly/G Leu/L Val/V T

Lys/K Gly/G Leu/L Val/V C

Lys/K Gly/G Asp/D Cys/C A

Phe/F Gly/G Asp/D Cys/C G

G Trp/W Glu/E Asn/N Ile/I T

Trp/W Glu/E Asn/N Ile/I C

Trp/W Glu/E Gln/Q Ile/I A

Trp/W Glu/E Gln/Q Ile/I G

4 5 6 7 8 9 10 11 12 13

Fig. 2.6 The standard genetic code (A) and a randomized version (B) color-coded by polarity

 0

 200

 400

 600

 800

 1000

 1200

 6 8 10 12 14 16

C
ou

nt

d

Fig. 2.7 Distribution of the �푑 values for polarity from 104 random genetic codes, the arrow marks

the polarity of the natural genetic code

2.1 Keeping Score 37

2.31 Fig. 2.7 shows the �푑 values from 104 random genetic codes generated with

geco. Can you reproduce it? Is the �푑 value of the natural code unusual?

2.32 Let’s formally test our impression that the genetic code evolved to minimize the

effect of mutations on polarity. So we calculate the frequency with which a random

code appears that has a �푑 value less or equal to that of the natural code. What is the

error probability when rejecting the null hypothesis that the structure of the natural

code is random?

2.33 Apart form polarity, amino acids also differ according to hydropathy, volume,

and charge. These quantities are stored in the files hydropathy.dat, volume.dat,

and charge.dat. Is the genetic code optimized with respect to them, too?

Scoring Amino Acids using PAM Matrices

New Terms

background frequencies odds ratio paste

divergence time pam percent accepted mutations

getSeq

2.34 When scoring amino acids, time is taken into account. The more time elapses,

the more likely an amino acid has mutated. Time is itself measured in mutations, the

unit being percent accepted mutations, or PAM [9]. To get an idea what 1% protein di-

vergence might mean in years, let’s look at two homologous proteins, one from human

(P49792), the other from our closest extant relative, the chimp (H2QII6). Use getSeq

and the accessions to obtain the two sequences from uniprot sprot.fasta and

align them with al and PAM70. What is the percent mismatch between them?

2.35 To get the PAM scoring system off the ground, Margaret Dayhoff and her

colleagues looked up the mutation probabilities for pairs of amino acids in multiple

sequence alignments and normalized them to 1% mismatch [9]. Their results are

given in file pam1.txt. Copy this to your working directory, $BEB/ch/2/1. An

entry �푚�푖 �푗 in pam1.txt indicates the probability that the amino acid in column �푗 has

mutated into the amino acid in row �푖 after 1 PAM has elapsed. What is the mutation

probability of alanine to serine? Serine to alanine?

2.36 On the main diagonal of pam1.txt, we find the match probabilities after 1

PAM. What is the average match probability (hint: tail)? Can you make sense of

the result?

2.37 The program pam can multiply the PAM1 matrix �푛 times with itself to simulate

amino acid evolution over the time interval PAM�푛. Calculate the percent mismatch

between protein sequences for �푛 = 2, 5, 10, 20, 50, 100. What do you observe?

2.38 Instead of calculating individual values for percent mismatch, we can loop over

the values we are interested in and plot the result. Write the script pm.sh that reads

38 2 Optimal Alignment

�푛 from the command line and prints the percent mismatch as a function of PAM�푛.

Fig. 2.8 shows the resulting plot. Can you reproduce it? If you find pm.sh slow, try

incrementing the for loop by two (or more) using a version of seq that includes the

increment, for example,

〈cli〉+≡
seq 1 2 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

%
-M

is
m

at
ch

PAMn

Fig. 2.8 The percent mismatch as a function of the percent accepted mutations, PAM�푛

2.39 The file aa.txt contains the background frequencies of amino acids [9].

Copy it to your working directory. What is the least frequent amino acid? The most

frequent?

2.40 We’ve already seen that the match probability is on the main diagonal of the

probability matrix. Save these entries for �푛 = 70 to the file matchProb.txt. The

ratio of match probabilities to background frequencies is a measure of amino acid

conservation. What is the most conserved amino acid (hint: paste)? Take a look at

the amino acid side chains in Fig. 2.5. Can you make sense of your result?

2.41 Division by the background frequency can also be applied to the whole proba-

bility matrix using pam. Can you recapitulate the probability ratios we just calculated

to measure conservation?

2.42 The probability ratios just computed are also called odds ratios. These are

usually expressed as logarithm base two, thus giving an information measure in bits.

The final match score is traditionally expressed in half bits rounded to the nearest

integer. What is the match score of the most conserved amino acid for PAM70?

2.2 Construction 39

2.43 The logarithm can be applied to all odds ratios using pam. This gives the final

PAM70 score matrix we already saw in Fig. 2.3. What happens to the score of the

most conserved amino acid when you double the divergence time to PAM140?

2.2 Construction

Given that we now know how to score an alignment, we might be tempted to pick the

best one from all possible alignments. But as we shall see, the number of possible

alignments is very large indeed, and we spend some time calculating exactly how

large. So instead of going through all possible alignments, we could draw a rectangle

with the query sequence along the vertical axis, the subject sequence along the

horizontal, and mark the matching parts. Such dot plots are already quite useful,

but it turns out that calculating the full alignment is very similar to calculating the

number of possible alignments.

New Location

beb

biobox ch

1

1–3

2

1 2

data

2.44 Can you make a new directory for this section and change into it?

The Number of Possible Alignments

New Terms

bottom up solution numAl recursion

dot programming matrix top down solution

2.45 Given two sequences of a single nucleotide, �푆1 = A and �푆2 = T, how many

possible alignments are there?

2.46 Let �푓 (�푚, �푛) be the number of possible alignments of two sequences of lengths

�푚 and �푛. We’ve seen that their alignment can end in three possible ways: residue/gap,

gap/residue, and residue/residue. A residue reduces the remaining sequence by one,

a gap doesn’t. We can thus write the number of possible alignments as the sum of

the number of alignments when we exclude the last column,

40 2 Optimal Alignment

�푓 (�푚, �푛) = �푓 (�푚 − 1, �푛) + �푓 (�푚, �푛 − 1) + �푓 (�푚 − 1, �푛 − 1). (2.1)

If we apply this to our example of two sequences length 1, we get

�푓 (1, 1) = �푓 (0, 1) + �푓 (1, 0) + �푓 (0, 0)

We could go on applying equation (2.1), but we shouldn’t, as there are no sequences

of negative length. Moreover, there is only one way to align a sequence of any length

to a “null” sequence consisting only of gaps. In other words,

�푓 (�푖, 0) = �푓 (0, �푗) = �푓 (0, 0) = 1. (2.2)

What is the number of possible alignments of two sequences of lengths 1 and 2?

2.47 An equation that refers to itself, like equation (2.1), is called a recursion.

Recursions have a close connection to one of our favorite structures in evolutionary

biology, trees. If, for example, we wanted to know the number of alignments of two

sequences of lengths 2 and 3, we can draw a tree with �푓 (2, 3) as its root, �푓 (1, 3),
�푓 (2, 2), and �푓 (1, 2), as its children, and so on.

�푓 (2, 3)

�푓 (1, 3)

? ? ?

�푓 (2, 2)

? ? ?

�푓 (1, 2)

? ? ?

Can you complete the tree? What is the number of possible alignments for two

sequences lengths 2 and 3?

Fig. 2.9 The recursion tree for computing the number of possible alignments of two sequences

length 3

2.48 Fig. 2.9 shows the recursion tree tree for two sequences of length 3. How many

alignments are there?

2.49 The direct approach to solving equation 2.1 is also called top down, as we walk

from the root at the top of the recursion tree down to its leaves. This is a bit tedious,

2.2 Construction 41

so we get the computer to do it for us. Fig. 2.9 was drawn using the program numAl

in top down mode (-t), printing the tree (-p), and rendering it with dot. dot prints

to the X11 terminal (-T); if this doesn’t work on your computer, you can print to

PNG instead and open the resulting file in a viewer.

〈cli〉+≡
numAl -t -p 3 3 | dot -T x11

If we concentrate on sequences of equal length, what are the longest for which numAl

can draw the recursion tree (C-c aborts)?

2.50 If we let numAl count the leaves for us, we can calculate the number of possible

alignments conveniently.

〈cli〉+≡
numAl -t 3 3

To simplify things, we stick to sequences of equal length. Write a loop to measure the

run times of top down computation with pairs of sequences of lengths 1, 2, Plot

your results (don’t overdo it). Do you recognize the shape of the function you get?

You might find it useful to change the number format on the y axis to engineering

with zero significant digits using the gnuplot command

set format y ’%.0e’

2.51 The top down approach uses roughly constant time per possible alignment.

How long is that on your computer?

2.52 Without -t, numAl can quickly determine the number of possible alignments

for longer sequences. What is the number of possible alignments between two se-

quences length 100?

2.53 How long would it take to compute the number of possible alignments of length

100 top down?

2.54 The default mode of numAl is called bottom up, were we invest a little memory

and in return get a huge increase in speed. Let’s again calculate the number of

possible alignments between two sequences length 3. We start by writing down the

4 × 4 matrix like in Fig. 2.10A. Then we apply equation (2.2) and initialize the first

column and the first row to 1 (Fig. 2.10B). The rest of the matrix we fill by summing

their three neighbors according to equation (2.1). Can you finish calculating the

number of alignments of two sequences length 3?

2.55 The program numAl can also print the programming matrix (-p). Take a look

at a few short sequences to see how the numbers grow very quickly. How many

possible alignments are there between two sequences length 9?

2.56 The number of possible alignments grows so quickly that the numerical system

of numAl eventually overflows. What is the longest pair of sequences for whichnumAl

still works?

42 2 Optimal Alignment

A a B a C

0 1 2 3

0

1

2

3

0 1 2 3

0 1 1 1 1

1 1

2 1

3 1

0 1 2 3

0 1 1 1 1

1 1 3 ?

2 1

3 1

Fig. 2.10 Bottom up computation of the number of possible alignments of sequences length 3

using a matrix (A), that we initialize (B) and fill in (C)

Dot Plots and Match Plots

New Terms

alcohol dehydrogenase (Adh) gene duplication plotSeg

dot plot match plot rep2plot

Drosophila guanche ortholog repeater

Drosophila melanogaster paralog

A T A T T A C T A T

A * * * *

T * * * * *

A * * * *

T * * * * *

T * * * * *

A * * * *

C *

T * * * * *

A * * * *

T * * * * *

Fig. 2.11 Dot plot for comparing ATATTACTAT to itself

2.57 Fig. 2.11 shows a matrix with the same short sequence, ATATTACTAT, written

along both axes. Each matrix entry is either blank for mismatch, or a dot for match.

Notice first of all the stretch of dots along the main diagonal. You can also see crosses

of three dots for ATA, which is the same read backwards. A dot plot like Fig. 2.11

can be drawn quickly in an editor once you realize there are only four possible

rows, one for each nucleotide. So once you’ve figured out a row for a nucleotide,

the corresponding rows can be filled by copy and paste. What is the dot plot for

GATATAGATATA?

2.58 While it is reasonably simple to draw dot plots in an editor, we’d like to make

it even simpler. The program dot.awk automatically draws the dot plots we just

2.2 Construction 43

typed. First, we split the query and subject into character arrays, then we print the

header of the dot matrix, and finally the rest of it.

Prog. 2.1 (dot.awk)

〈dot.awk〉≡
BEGIN {

〈Split query and subject, Prog. 2.1〉
〈Print header of dot matrix, Prog. 2.1〉
〈Print rest of dot matrix, Prog. 2.1〉

}

We run dot.awk by passing a query sequence, q, and a subject sequence, s, from

the command line.

〈cli〉+≡
awk -f dot.awk -v q=ATATTACTAT -v s=ATATTACTAT

Inside dot.awk, the variables q and s can now be treated like any other variable.

Can you split q and s into character arrays (hint: split)?

2.59 Let’s write the subject sequence along the header of the dot plot. Can you do

that?

2.60 Can you print the rest of the dot plot?

2.61 Many of the dots in a dot plot are part of longer matches and it would be helpful

if we could just plot these longer matches rather than all the dots they consist of.

The program repeater finds matches that cannot be extended—just the kind we

need. For the example sequence in Fig. 2.11 we can extract the matches of minimum

length 1 (-m) and print all their positions (-p).

〈cli〉+≡
printf ">s1\nATATTACTAT\n>s2\nATATTACTAT\n" |

repeater -m 1 -p

We can pipe this through rep2plot and plotSeg to generate a segment plot of the

matches, which we call “match plot”. What do you observe when you compare your

match plot to the dot plot in Fig. 2.11?

2.62 Fig. 2.12 shows the match plot of mRNA for human �훽-globin (hbb1.fasta)

and chimp �훽-globin (hbb2.fasta) for a minimal match length of 5. Depending on

the match length you choose, this plot can be quite crowded due to random matches.

How long are the longest of these random matches?

2.63 With the �훽-globin sequences you might have wondered, which one is written

against which axis. Can you think of a simple test to decide?

2.64 Fig. 2.13 shows the alcohol dehydrogenase (Adh) region of Drosophila mela-

nogaster compared to the same region in D. guanche.One of the two regions contains

a transposon indicated by the jump in matches from one diagonal to another. Can

you tell which fruit fly got the transposon?

44 2 Optimal Alignment

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

C
him

p beta-globin

Human beta-globin

Fig. 2.12 Match plot of �훽-globin mRNA from chimp and human with minimal match length 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
D

. guanche (kb)

D. melanogaster (kb)

Fig. 2.13 Match plot of the Adh region from D. melanogaster and D. guanche

2.2 Construction 45

2.65 The files dmAdhAdhdup.fasta and dgAdhAdhdup.fasta contain the se-

quences plotted in Fig. 2.13. Can you copy them and then reproduce that figure?

2.66 When used with -r, repeater also includes the reverse strands in the analysis.

For example, compare the two repeater runs with or without -r.

〈cli〉+≡
printf ">s1\nAACCT\n>s2\nAAGGT\n" | repeater -m 2 -p

printf ">s1\nAACCT\n>s2\nAAGGT\n" | repeater -m 2 -p -r

Produce a match plot for the Adh region with minimum match length 12. What

happens when you include the reverse strand (hint: diff)?

2.67 The Drosophila Adh region contains two genes, Adh and Adh-dup. The co-

ordinates of their coding sequences, CDSs, are listed in Table 2.1, split into ex-

ons. These data are also contained in the Genbank files dmAdhAdhdup.gb and

dgAdhAdhdup.gb. Copy them to your current directory. Can you extract the CDS

coordinates to make sure the entries in Table 2.1 are correct?

Table 2.1 Coordinates of the coding sequences (CDSs) in the Adh region of D. melanogaster and

D. guanche

Organism Gene Exon 1 Exon 2 Exon 3

D. melanogaster Adh 2021–2119 2185–2589 2660–2926

D. melanogaster Adh-dup 3226–3321 3748–4152 4204–4521

D. guanche Adh 1984–2076 2145–2549 2613–2879

D. guanche Adh-dup 3221–3316 3540–3944 4007–4345

2.68 Cut out the four CDSs listed in Table 2.1 with cutSeq and translate them just

to double check the coordinates. Does a CDS contain the stop codon?

2.69 Fig. 2.14 shows the match plot with the CDSs and their exons marked by extra

lines. Notice the denser matches inside the CDSs compared to outside. We’d like to

reproduce this figure. The first step is to write a script, exex.sh that extracts the

exon start positions from the CDS lines in the Genbank files. One way to do this, is

by repeated application of tr in the script exex.sh.

Prog. 2.2 (exex.sh)

〈exex.sh〉≡
grep CDS |

tr -d ’a-zA-Z() ’ |

tr ’,’ ’\n’ |

tr -s ’.’ ’ ’

46 2 Optimal Alignment

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
. guanche (kb)

D. melanogaster (kb)

Fig. 2.14 Match plot of the Adh region of D. melanogaster and D. guanche with the coding

sequences (CDSs) marked by long horizontal and vertical lines, and the exons within the CDSs by

short lines near the axes

Do you understand what it does?

2.70 We save the annotations for our dot plot in annot.txt. Can you use exex.sh

to construct the exons for D. melanogaster?

2.71 Can you construct the exons for D. guanche?

2.72 What remains, is to draw the long vertical lines to delineate Adhdm and

Adh-dupdm, and the long horizontal lines to delineate Adhdg and Adh-dupdg. So

we write the program lines.awk and save the start and end coordinates of the

exons in arrays s and e. Each set of lines depends on the same four array entries,

the start and end positions of the two genes. For the vertical lines these positions

are interpreted as x coordinates with the y coordinates supplied from outside; for

the horizontal lines these positions are interpreted as y coordinates with the x co-

ordinates supplied from outside. Depending on which coordinates are supplied, we

know which lines to draw.

Prog. 2.3 (lines.awk)

〈lines.awk〉≡
{

s[NR] = $1

e[NR] = $2

}

END {

2.2 Construction 47

〈Extract gene positions, Prog. 2.3〉
if (y1) {

〈Draw vertical lines, Prog. 2.3〉
} else {

〈Draw horizontal lines, Prog. 2.3〉
}

}

Can you extract the gene positions?

2.73 Can you draw the vertical lines?

2.74 Can you draw the horizontal lines?

2.75 Can you use lines.awk to draw the vertical lines?

2.76 Can you use lines.awk to draw the horizontal lines?

2.77 Can you now reproduce Fig. 2.14?

2.78 Did the transposon insert into an exon or an intron?

2.79 With four genes in a pairwise plot, there are six homology relationships. As

shown in Fig. 2.15, two of these homology relationships are between the pairs of

orthologs Adhdm/Adhdg and Adh-dupdm/Adh-dupdg, while the remaining four are

between pairs of paralogs. Which of these six homology relationships are visible in

the match plot Fig. 2.13?

Adhdm Adh-dupdm

Adhdg Adh-dupdg

Fig. 2.15 All genes are characterized by homology (box); the solid lines connect orthologs, the

dashed lines paralogs

2.80 In our match plots of Drosophila Adh we used a minimum match length of 12.

How likely is it to find random matches of this length? To find out, we randomize

one of the sequences and repeat the analysis.

〈cli〉+≡
randomizeSeq dgAdhAdhdup.fasta > r.fasta

cat r.fasta dmAdhAdhdup.fasta | repeater -p -r -m 12 |

rep2plot | wc -l

48 2 Optimal Alignment

Write a script, ranAdh.sh, to randomize dgAdhAdhdup.fasta and look up the

longest match with dmAdhAdhdup.fasta. How many random matches length 12 or

longer do you find on average in 100 reshuffles?

Global and Local Alignment

New Terms

alignment matrix local alignment trace-back

global alignment

2.81 In an alignment we stitch together the matches in a match plot like that of the

Drosophila Adh region in Fig. 2.13. To see how this is done, let’s start with a pair

of short query and subject sequences, �푞 = AG and �푠 = ACG. Fig. 2.16 shows them

written along the edges of an alignment matrix, which is similar to the programming

matrix we used for computing the number of possible alignments. And again, each

sequence is preceded by a null element, a gap. A matrix entry, {�푖 �푗 , is the score of the

best alignment between the partial sequences up to that point, �푞 [1...�푖] and �푠[1... �푗].
The very first entry is zero. The first column is then filled with the scores of A/- and

AG/--. Let’s set gap opening and gap extension to -1. Can you fill in the first column

of the matrix?

- A C G

- 0

A

G

Fig. 2.16 Initial alignment matrix for a pair of query and subject sequences, �푞 = AG and �푠 = ACG

2.82 Rather than computing the entries in each cell of the first column from scratch,

we can picture them as an extension of the alignment in the preceding cell by a gap:

{�푖 �푗 = {�푖−1, �푗 + �푔e.

We emphasize this way of thinking by placing a little arrow pointing to the cell of

the alignment we extended:

- A C G

- 0

A ↑ −1

G ↑ −2

Can you fill in the first row of the alignment matrix?

2.2 Construction 49

2.83 The remainder of the alignment matrix is filled in by picking the best extension

from among the three neighboring cells.

↑ {�푖−1, �푗 + �푔e

← {�푖, �푗−1 + �푔e

տ {�푖−1, �푗−1 + score(�푞 [�푖], �푠[�푗])
Let’s score a match as 1 and a mismatch as -1. Can you fill in the rest of the matrix?

2.84 The program al can print the matrix of scores with -P s. Can you do that for

our score scheme and example sequences?

2.85 The score of the optimal alignment is now written in the lower right hand

corner of the matrix. To get the corresponding alignment, we trace the arrows we

left behind from the bottom right back to the top left. This generates the alignment

from right to left, which we invert to get our customary left-right notation. Can you

reconstruct the optimal alignment between AC and ACG in this way?

2.86 Fig. 2.17 shows the alignment matrix for a new pair of query and subject

sequences, �푞 = TACAGTCC and �푠 = TTCAGGGTCC. What is their optimal alignment?

- T T C A G G G T C C

- 0 <-1 <-2 <-3 <-4 <-5 <-6 <-7 <-8 <-9 <-10

T ˆ-1 \1 <0 <-1 <-2 <-3 <-4 <-5 <-6 <-7 <-8

A ˆ-2 ˆ0 \0 <-1 \0 <-1 <-2 <-3 <-4 <-5 <-6

C ˆ-3 ˆ-1 ˆ-1 \1 <0 <-1 <-2 <-3 <-4 \-3 <-4

A ˆ-4 ˆ-2 ˆ-2 ˆ0 \2 <1 <0 <-1 <-2 <-3 <-4

G ˆ-5 ˆ-3 ˆ-3 ˆ-1 ˆ1 \3 <2 <1 <0 <-1 <-2

T ˆ-6 ˆ-4 \-2 ˆ-2 ˆ0 ˆ2 \2 <1 \2 <1 <0

C ˆ-7 ˆ-5 ˆ-3 \-1 ˆ-1 ˆ1 ˆ1 \1 ˆ1 \3 <2

C ˆ-8 ˆ-6 ˆ-4 ˆ-2 ˆ-2 ˆ0 ˆ0 ˆ0 ˆ0 ˆ2 \4

Fig. 2.17 Alignment matrix of �푆1 = TACAGTCC and �푆2 = TTCAGGGTCC with match score 1,

mismatch -1, �푔o = �푔e = −1

2.87 Fig. 2.18 shows the trace-back for the Adh locus in D. melanogaster and D.

guanche. When you compare it to the match plot of the same region in Fig. 2.13,

you can see in what sense an alignment stitches together matches. Fig. 2.18 was

generated using al -P t and the default score scheme, and plotted with plotSeg.

Can you reproduce Fig. 2.18?

2.88 In a global alignment we assume homology across both sequences as sketched

in Fig. 2.19A. But in many cases homology is only local like in Fig. 2.19B. To

find such local regions of homology, we again start with our alignment matrix, only

this time the first row and column are initialized to zero to stop the trace-back if it

reaches any of these cells. Why should the trace-back of a local alignment stop when

it reaches the first row or column?

50 2 Optimal Alignment

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
. guanche (kb)

D. melanogaster (kb)

Fig. 2.18 Trace-back of the alignment of the Adh region of D. melanogaster and D. guanche

2.89 After initialization, the local alignment matrix is filled in by taking the max-

imum over the three possible extensions and no extension, which has score zero.

Fig. 2.20 shows such an alignment matrix for the example sequences we already

aligned in Fig. 2.17. The trace-back starts at the maximum entry of the matrix,

which happens to coincide with the maximum for the global matrix, 4, in the bottom

right corner. It stops at the first 0. What is the optimal local alignment?

A B

Fig. 2.19 Global (A) and local (B) homology between pairs of sequences; homologous regions are

shown in black

2.90 There is generally only one global alignment. But for local alignments we are

often also interested in the second best, the third best, and so on. What is the second

best local alignment in Fig. 2.20 that does not intersect the best path?

2.91 Calculate the best local alignment between the Adh regions of D. melanogaster

and D. guanche and compare the coordinates you get with the CDS coordinates listed

in Table 2.1. Which exon, or exons, in which genes contain the best local alignment?

2.92 Where is the second best local alignment?

2.3 Application 51

- T T C A G G G T C C

- 0 0 0 0 0 0 0 0 0 0 0

T 0 \1 \1 0 0 0 0 0 \1 0 0

A 0 0 0 0 \1 0 0 0 0 0 0

C 0 0 0 \1 0 0 0 0 0 \1 \1

A 0 0 0 0 \2 <1 0 0 0 0 0

G 0 0 0 0 ˆ1 \3 <2 <1 0 0 0

T 0 \1 \1 0 0 ˆ2 \2 <1 \2 <1 0

C 0 0 0 \2 <1 ˆ1 ˆ1 \1 ˆ1 \3 <2

C 0 0 0 ˆ1 \1 0 0 0 0 ˆ2 \4

Fig. 2.20 Local alignment matrix of �푆1 = TACAGTCC and �푆2 = TTCAGGGTCC with match score 1,

mismatch -1, �푔o = �푔e = −1

2.3 Application

Optimal alignment is slow when applied to long sequences. But many interesting

questions in biology can be tackled with sequences so short, a program like al has

all the speed we need. For example, we’ve already noticed that the match plot of the

Adh region of Drosophila in Fig. 2.13 contains no trace of the homology between

Adh and Adh-dup. Can we use optimal alignment to detect that homology? And if

so, can we reconstruct the evolutionary history of the Adh locus?

New Location

beb

biobox ch

1

1–3

2

1 2 3

data

2.93 Can you make a new directory for this section and change into it?

Detecting Homology

New Term

null distribution

2.94 To reacquaint ourselves with the Drosophila Adh region, take a look at Fig. 2.21,

which shows the exons of the two coding sequences, CDSs, whose coordinates

are contained in the Genbank files dmAdhAdhdup.gb and dgAdhAdhdup.gb. The

program plotLine can draw several data sets when presented with three columns,

52 2 Optimal Alignment

 0 500 1000 1500 2000 2500

Position

dm
dg

Fig. 2.21 The exons of the coding sequences of the two Adh genes in D. melanogaster (dm) and

D. guanche (dg); the first three exons belong to Adh, the second three to Adh-dup

x, y, and category. Fig. 2.21 was generated using exex.sh and drawGenes. Can you

reproduce the part for D. melanogaster?

2.95 Can you now add the exons for D. guanche?

2.96 Local alignment already told us that exon 2 in Adh and Adh-dup is the most

conserved region of the Adh locus. So let’s concentrate on that exon and save its

four copies in separate files called, for example, dmAdhE2.fasta. Can you do that

(cutSeq)?

2.97 How long are the four copies of exon 2?

2.98 There are six possible comparisons between the four Adh genes marked by the

bullets:

Adhdm Adh-dupdm Adhdg Adh-dupdg

Adhdm • • •
Adh-dupdm • •
Adhdg •
Adh-dupdg

We’d like to replace the bullets with scores, so in our program scores.shwe write

two nested loops to generate all comparisons between distinct sequences. We’ve

already seen that do blocks are closed by done. Here we see an if block, which is

closed by fi.

Prog. 2.4 (scores.sh)

〈scores.sh〉≡
for i in gA gD mA mD

do

for j in gA gD mA mD

do

if [${i} != ${j}]

then

〈Calculate score, Prog. 2.4〉
fi

2.3 Application 53

done

done

Can you finish the script?

2.99 Can you replace the bullets by scores?

2.100 As shown in Fig. 2.15, some exon pairs have arisen due to gene duplication

(paralogy), others by speciation (orthology). How do our alignment scores differ for

paralogs and orthologs?

2.101 Clearly, the scores between orthologous pairs are much larger than between

paralogous pairs. The question is, are the low scores between paralogous pairs still

significant? To test this, we repeatedly generate random alignments using ral.sh.

Prog. 2.5 (ral.sh)

〈ral.sh〉≡
for a in $(seq $1)

do

randomizeSeq $2 |

al $3 |

grep Score

done

Fig. 2.22 shows the distribution of 1000 such scores for Adhdm/Adh-dupdm. Can you

reproduce this plot?

 0

 20

 40

 60

 80

 100

 120

 140

-520 -500 -480 -460 -440

C
ou

nt

Score

Fig. 2.22 The null distribution of alignment scores for exon 2 from Adhdm and Adh-dupdm

2.102 What is the significance of the score of Adhdm/Adh-dupdm?

54 2 Optimal Alignment

2.103 What is the significance of the remaining three comparisons between dupli-

cated genes? What do you conclude about the relative sensitivity of match plots vs

alignments?

The Evolutionary History of the Adh Locus

New Terms

midRoot nj rooted tree

mutator plotTree unrooted tree

2.104 Given that there is appreciable homology between all four copies of exon 2,

let’s quantify it. A good quantifier of homology, or rather, lack thereof, is the number

of mismatches per site. What is the number of mismatches per site between exon 2

from Adhdm and Adhdg?

2.105 The scriptmism.sh calculates the mismatches per site between the four copies

of exon 2. Can you finish it?

Prog. 2.6 (mism.sh)

〈mism.sh〉≡
echo 4

for i in dmAdh dmDup dgAdh dgDup

do

printf "%s " $i

for j in dmAdh dmDup dgAdh dgDup

do

〈Calculate mismatches per site, Prog. 2.6〉
done

printf "\n"

done

2.106 Mismatches are distances and distance matrices can be summarized into a

tree using the program nj. Can you make sense of its output?

2.107 Plot the output of nj with plotTree. What do you get?

2.108 Fig. 2.23A shows the rooted tree based on mismatches. We added the root

with midRoot. Can you reproduce Fig. 2.23A?

2.109 The number of mismatches tends to be smaller than the number of mutations

because a mutation can affect a site more than once, but each mismatch is only

counted once. To see the difference between mismatches and mutations, we can

2.3 Application 55

A B

 dmAdh

 dgAdh

 dmDup

 dgDup

0.01

 dmAdh

 dgAdh

 dmDup

 dgDup

0.01

Fig. 2.23 Rooted mismatch (A) and mutation (B) tree of Drosophila Adh exon 2; the two trees are

almost identical

artificially mutate a sequence with the program mutator and then count its mis-

matches. Since the original sequence and its mutated version are aligned, we prevent

gap insertion by giving gap opening a large negative score of, say, −500.

〈cli〉+≡
mutator -m 0.5 dmAdhE2.fasta | al -p -500 dmAdhE2.fasta |

awk ’/ˆE/{print $5/405}’

What do you observe when you try this a couple of times?

2.110 The number of mutations per site, �푘, can be estimated using the Jukes-Cantor

equation [22],

�푘 =
−3

4
log

(

1 − 4�푚

3

)

, (2.3)

where �푚 is the number of mismatches per site. What is the number of mutations

corresponding to the number of mismatches you got?

2.111 Given a mismatch matrix as input, the program mut.awk converts this to

mutations using equation (2.3).

Prog. 2.7 (mut.awk)

〈mut.awk〉≡
NF == 1 {

print

}

NF > 1 {

printf $1

〈Calculate row of mutations, Prog. 2.7〉
printf "\n"

}

56 2 Optimal Alignment

Can you complete mut.awk?

2.112 Fig. 2.23B shows the mutation tree of Adh corresponding to the mismatch

tree on the left. Can you reproduce it?

2.113 Given that the divergence time between D. melanogaster and D. guanche is

approximately 32 million years [16], how old is the duplication of Adh?

Chapter 3

Exact Matching

We have already seen that alignments contain exact matches. So far we haven’t

made use of this—even when comparing two identical sequences, we filled in the

entire alignment matrix to find what amounts to one long exact match. It might be

quicker to first look for exact matches and build alignments from them. As we shall

see in Chapter 4, this is the approach used in modern alignment tools like Blast. This

means that exact matching, the topic of this chapter, is eminently useful for inexact

matching.

The basic task in exact matching is to look up a short pattern, say �푃 = ACA, in a

potentially long text, say �푇 = CACAGACACAT. In this case, �푃 starts in �푇 at positions

2, 6, and 8:

�푃 �푇

123 12345678901

ACA CACAGACACAT

To find �푃 in �푇 , we can either use both as given, or preprocess them to speed up the

search. Preprocessing is done with tree structures, a perhaps surprising reappearance

of evolution’s central metaphor. In this section we look at preprocessing the pattern,

in Sections 3.2 and 3.3 we look at preprocessing the text. In Section 3.4, finally, we

use text preprocessing for text compression.

3.1 Keyword Trees

We begin our exploration of exact matching with what’s known as the naı̈ve algorithm

for exact matching. It is actually quite fast, but does have its limitations. These

limitations are overcome by using a keyword tree, which efficiently matches not only

one but an arbitrarily large set of patterns. This is called set matching.

57© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_3&domain=pdf

58 3 Exact Matching

New Location

beb

biobox ch

1

1–3

2

1–3

3

1

data

3.1 Can you make a directory for the new Section 3.1?

New Terms

drawKt keyword tree ps2pdf

dvips latex revComp

evince naı̈ve matching set matching

3.2 Regardless of the kind of matching we do, our sequence data comes in FASTA

files, and we begin by reminding ourselves how to parse them. Let’s generate a

FASTA file with two entries and two lines of sequence data each.

〈cli〉+≡
printf ">s1\nTATTC\nTCTTC\n>s2\nAGTTA\nCTAAT\n" > s.fasta

cat s.fasta

>s1

TATTC

TCTTC

>s2

AGTTA

CTAAT

Next, we write the program readFasta.awk that separates the headers from the

data and concatenates the data. It is not a particularly useful program by itself, but

we shall use ideas from it in our implementation of the naı̈ve algorithm.

〈cli〉+≡
awk -f readFasta.awk s.fasta

>s1

TATTCTCTTC

>s2

AGTTACTAAT

Inside readFasta.awkwe generate the concatenated sequence by dividing the work

into dealing with headers, data, and the last sequence.

3.1 Keyword Trees 59

Prog. 3.1 (readFasta.awk)

〈readFasta.awk〉≡
〈Deal with headers, Prog. 3.1〉
〈Deal with data, Prog. 3.1〉
〈Deal with last sequence, Prog. 3.1〉

Dealing with the data is a bit easier than dealing with the headers, so we start with

that. Can you implement it?

3.3 FASTA headers open the subsequent sequence and close the previous one. So

when we encounter a header, it might be the first one, in which case we just print it.

Otherwise, we print the previous sequence, t, reset it, and then print the new header.

Can you implement the chunk of code dealing with the headers?

3.4 Having already printed the last header, the end of file prompts us to print the

corresponding sequence. Can you implement the chunk of code dealing with the last

sequence?

Step 1 2 3

�푇 CACAGACACAT CACAGACACAT CACAGACACAT

�푃 ACA ACA ACA

Match 0 111 0

Step 4 5 6

�푇 CACAGACACAT CACAGACACAT CACAGACACAT

�푃 ACA ACA ACA

Match 10 0 111

Step 7 8 9

�푇 CCACAGACACAT CCACAGACACAT CCACAGACACAT

�푃 ACA ACA ACA

Match 0 111 0

Fig. 3.1 Naı̈ve matching algorithm; 1 is match, 0 mismatch

3.5 In the naı̈ve matching algorithm we start at the first position of �푃 and �푇 , and

march �푃 as far as we can. If we get to the end of �푃, we report a match, otherwise

we stop. Then we move �푃 one position with respect to �푇 and start again. Fig. 3.1

illustrates this idea, which we implement in the program naive.awk. The heart of

the program is the function naive, which prints all starting positions of the pattern

in the text. But first things first, can you deal with the data?

Prog. 3.2 (naive.awk)

〈naive.awk〉≡
〈Deal with headers, Prog 3.2〉
〈Deal with data, Prog. 3.2〉
〈Deal with last sequence, Prog. 3.2〉

60 3 Exact Matching

function naive(p, t) {

m = split(p, pa, "")

n = split(t, ta, "")

〈Find matches, Prog. 3.2〉
}

3.6 When we find a header, it might be the first, in which case we just print it.

Otherwise, we call naive and then print it. Can you implement the code chunk

dealing with headers?

3.7 Can you implement the code chunk dealing with the last sequence?

3.8 The most interesting part of naive.awk is, of course, the chunk for finding

matches. In it we need to break out of a for loop on mismatch. This is done by

saying break, as in

if (a[i] != b[j])

break

Can you implement the chunk for finding matches? Where in s.fasta does AT

appear?

3.9 Let’s look again at the example sequences in Fig. 3.1. Where does ACA appear

in CACAGACACAT?

3.10 Where does ACGTCG occur in the genome of M. genitalium? Where does its

shorter variant ACGTC occur?

3.11 So far, we have only looked at the forward strand of the M. genitalium genome.

The program revComp computes the reverse complement of a sequence. Is ACGTCG

unique across the entire genome of M. genitalium?

3.12 The naı̈ve algorithm becomes slow when applied to a pattern that matches

everywhere, for example, �푃 = AAA, �푇 = AAAAAAAAAA. In that case the run time is

expected to be of the order of the product of the lengths of �푃 and �푇 , �푂 (|�푃 | × |�푇 |).
Let’s measure the run time of naive.awkwhen searching for 20 As followed by a G

in ten million As. We generate a random sequence 10 Mb long, change C, T, and G to

A, and save it to ran.fasta. Then we do a timed search.

〈cli〉+≡
ranseq -l 10000000 | tr ’CGT’ ’A’ > ran.fasta

time awk -f naive.awk -v p=AAAAAAAAAAAAAAAAAAAAG ran.fasta

The command time returns three time measurements; the actual time elapsed (real),

the time taken by the user’s process (user), and the time taken by system processes

(sys). How long does naive.awk take?

3.13 How long does it take to search for only the G in the 10 Mb of A? Can you

explain the difference?

3.1 Keyword Trees 61

3.14 Scripting languages like Awk or Python tend to be slower than compiled

languages like C or Go. The programnaiveMatcher is written in Go and implements

the same algorithm as naive.awk. What are the run times when searching for the

20 As followed by G in ran.fasta?

3.15 The naı̈ve matching algorithm outlined in Fig. 3.1 can also be understood as

a graph consisting of nodes and edges as shown in Fig. 3.2A. Each node represents

a state in the matching procedure and each edge a response to match or mismatch.

Match is illustrated by gray lines, mismatch by red arrows. The defining characteristic

of the naı̈ve algorithm is that upon every mismatch, or “failure”, matching resumes

at the beginning of �푃; hence all red arrows in Fig. 3.2A point to the first node.

However, a match to �푃 = ACA implies an additional match to the first character of

�푃. Therefore, instead of returning to the beginning of �푃, the algorithm only needs to

compare the characters from �푃[2] = C onward. This is illustrated in Fig. 3.2B. What

are the failure links for �푃 = AAA?

A B

b

b

b

b

A
C

A

b

b

b

b

A
C

A

Fig. 3.2 A pattern to be matched shown as a graph. Grey lines are followed upon match, red arrows

are “failure links” that are followed upon mismatch. Naı̈ve failure links (A) always return to the

beginning of the pattern. Better failure links (B) incorporate the fact that after the last A has been

matched, the first A has also already been matched

3.16 To systematically construct failure links, we begin with a self-referential arrow

to the root. This means, don’t move in the tree if there’s a mismatch. If the first

character matches, but is followed by a mismatch, we return to the root (Fig. 3.3A).

After this initialization, we work our way from top to bottom. For each node, we go

to its parent and follow its failure links until we find a match. The node reached by

the match is the target of the next failure link. For example, in Fig. 3.3B we look

for a match to T; after following the parent’s failure link, we follow the match link

and have thus found the target for the failure link. Next, two existing failure links

are followed without a match, hence the new failure link points to the start node

(Fig. 3.3C). Then one failure link is followed before we find a match in Fig. 3.3D,

62 3 Exact Matching

A — B C D E F

b

b

b

b

b

b

b

T
T

A
T

T
T

→

—

b

b

b

b

b

b

b

T
T

A
T

T
T

→

—

b

b

b

b

b

b

b

T
T

A
T

T
T

→

—

b

b

b

b

b

b

b

T
T

A
T

T
T

→

—

b

b

b

b

b

b

b

T
T

A
T

T
T

→

—

b

b

b

b

b

b

b

T
T

A
T

T
T

Fig. 3.3 Systematic construction of failure links going from the initialization (A) through to the

fully preprocessed pattern (F)

and this move is repeated in Fig. 3.3E. Finally, two failure links need to be followed

before a match is found leading to the complete set of failure links in Fig. 3.3F. Can

you construct the failure links for �푃 = ATATAT?

A B C

b

b

A

b

C

b

G

1

−→

b

b

A

b

C

b

G

1

2 −→

b

b

A

b

C

b

G

b

T

1

2

3

−→

D E

b

b

A

b

C

b

G

b

T

b

C

b

G

b

A

1

2

3 4

−→

b

b

A

b

C

b

G

b

T

b

C

b

G

b

A

1

2

3 4

5

Fig. 3.4 Sequential construction of a keyword tree in five steps for the five patterns �푃1 = ACG,

�푃2 = AC, �푃3 = ACT, �푃4 = CGA, and �푃5 = C

3.1 Keyword Trees 63

3.17 Keyword trees were originally developed for matching sets of patterns, say

all entries in a dictionary for spell checking. We start a bit smaller and match five

patterns, or keywords: �푃1 = ACG, �푃2 = AC, �푃3 = ACT, �푃4 = CGA, and �푃5 = C.

Notice that �푃2 is contained in �푃1 and �푃3, �푃5 in all others, and �푃1 and �푃3 have the

matching prefix AC. To make searching efficient, matching prefixes are summarized

as common paths in the keyword tree. Its construction is shown in Fig. 3.4, where the

patterns are sequentially fitted into a growing tree. The first partial tree for �푃1 = ACG

in Fig. 3.4B should look familiar from our graphs for single patterns, except for the

label on the terminal node indicating the pattern just matched.

Repeat the keyword tree construction using paper and pencil. Can you enter the

failure links?

A —— B

 1

 2 3

 4

 5

 6 7 8

1

b

b b

b b

b b b

A

C

C G

G T A

{5}

{2, 5}

{1} {3} {4}

Fig. 3.5 Drawing keyword trees with drawKt as “phylogenies”, without failure links (A), and as

more conventional graphs with failure links(B)

3.18 Let’s use the keyword tree from Fig. 3.27 to search for the five patterns in

�푇 = ACGC. We start at the root and walk into the tree and into the text. Whenever we

find a match, we advance in the text and in the tree. If we find a mismatch, or run

out of matches, we just follow the failure link and don’t move in the text. But there

is a problem. Can you spot it?

3.19 We can use the program drawKt to draw keyword trees as text in Newick

format.

〈cli〉+≡
drawKt -t ACG AC ACT CGA C

(((4[G->7{1}],5[T->1{3}])3[C->6{2,5}],

((8[A->2{4}])7[G->1])6[C->1{5}])2[A->1])1[->1];

Fig. 3.5A shows the visualization of this tree with plotTree. Can you reproduce it?

64 3 Exact Matching

3.20 As a more conventional alternative to the “phylogeny” notation of a keyword

tree, drawKt can also draw the graph with labeled edges shown in Fig. 3.5B in LATEX.

Can you reproduce that figure?

3.21 If you haven’t used LATEX before, take a look at ktWrapper.tex and add three

lines after the command \begin{document}.

\title{Our Keyword Tree}

\author{Alpha \& Beth}

\maketitle

What do you observe when you typeset the page again?

3.22 The program keyMat looks for exact matches using a keyword tree. What is

the run time of keyMat when searching for a string of 20 A followed by a G in

ran.fasta? Compare your result to the corresponding run time of naiveMatcher.

What happens when you double the number of As in the pattern?

3.23 The program sblast implements a simple version of the popular search tool

Blast. It relies on exact matching and sblast can either use a keyword tree or the

naı̈ve method for exact matching. The file ecoliK12.fasta contains the genome

of the K12 strain of the bacterium Escherichia coli, which lives in the gut of warm-

blooded animals like us. The K12 strain is widely used in genetic engineering. Cut

out the first kb of that genome and search for it with sblast in the genome of

the pathogenic E. coli strain O157H7 in ecoliO157H7.fasta. How long does this

take? How long does it take with naı̈ve matching?

3.2 Suffix Trees

Exact matching is about finding patterns in a text. This can be sped up by preprocess-

ing. With keyword trees we preprocessed the patterns, now we preprocess the text.

To search a text efficiently, we need an index, like the index of this book. However,

a suffix tree is a special index as it references every substring of the text, not just a

list of words like a book index.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1 2

data

3.24 Can you first construct and then go to the working directory for this section?

3.2 Suffix Trees 65

New Terms

date shustring suffix tree

drawSt

3.25 A suffix is the end of a word. What are the suffixes of CATGGCAT?

3.26 Fig. 3.6 shows the suffix tree of �푡 = CATGGCAT. Every suffix is represented as

a path from the root to a leaf labeled with the starting point of the suffix. To search

for, say, �푝 = CAT in �푡, start matching at the root and simultaneously walk into the

tree and the pattern, until the pattern is found. The leaves in the subtree now reached

indicate the starting positions of �푝 in �푡. Where is �푝 = AT in �푡? Where �푝 = X?

G
.
.
.
$

$

G
.
.
.
$

$

G
C
A
T
$

C
A
T
$

G
.
.
.
$

$

TG
C
A
T

AT$

b

2

b

7

b

1

b

6

b

4

b

5

b

3

b

8

bbbbb

9

b

Fig. 3.6 Suffix tree of CATGGCAT$

3.27 A suffix tree is constructed by first drawing a root, a leaf, and a connecting

edge. The edge is labeled with the first suffix, to which we add an end marker, or

“sentinel” character, $. The leaf is labeled “1” to refer to the first suffix. The result of

this first construction step is shown in Fig. 3.7A. Then the second suffix, ATGGCAT$,

is taken and fitted into the partial tree. Its first character, A, mismatches the initial C of

the first suffix, so we make a new branch to get Fig. 3.7B. This is repeated for suffixes

3 and 4 to get Fig. 3.7C and D. The fifth suffix, GCAT$, matches the existing suffix

GGCAT$ for one character; the next mismatch breaks the branch to give Fig. 3.7E.

The same thing happens when we add CAT$ to get Fig. 3.7F. Can you finish the suffix

tree?

3.28 Can you construct the suffix tree for GTTCAAAT by hand?

3.29 A path label in a suffix tree consists of the concatenated labels starting at

the root and ending somewhere in the tree. Now, any path label that ends above

an internal node is a repeat. In particular, paths labels that end just above nodes

connected only to leaves, cannot be extended to the right without losing the match.

What are the path labels of such “frontier” nodes in Fig. 3.6? What is the longest

repeat in CATGGCAT?

66 3 Exact Matching

1 2 3 4 5 6 7 8 9

C A T G G C A T $

A B C D

C
A
T
G
G
C
A
T
$

b

1

b

A
T
G
G
C
A
T
$

C
A
T
G
G
C
A
T
$

bb

b

12

ATGGCAT$

C
A
T
G
G
C
A
T
$

TGGCAT$

bb b

b

12 3

ATGGCAT$

C
A
T
G
G
C
A
T
$

G
G
C
A
T
$

TGGCAT$

b b b b

b

12 34

E F

ATGGCAT$

CATGGCAT$

G

C
A
T
$

G
C
A
T
$

T
G
G
C
A
T
$

b b

b b

b

b

b

12 3

45

ATGGCAT$

C
A
T

G
G
C
A
T
$

$

G
C
A
T
$

G
C
A
T
$

TGGCAT$

b b

b b

b

b b

b

b

1

2 3

456

Fig. 3.7 The first six steps in the construction of the suffix tree for CATGGCAT$

3.30 The program repeater uses suffix trees to find repeats. What is the longest

repeat in the genome of M. genitalium? Does the result change if you include the

reverse strand?

3.31 Is the repeat we just found particularly long? To answer, we compute the length

of the longest repeat expected in a random version of the M. genitalium genome. We

begin by calculating the probability of a match between two random nucleotides.

Since there are four possible matches, AA, CC, GG, and TT, the probability of ran-

domly drawing two identical nucleotides from a sequence where each nucleotide

has frequency 1/4 is (1/4)2 × 4 = 1/4. However, in real sequences, the nucleotides

usually do not occur with equal frequencies. Use the program cres to compute the

nucleotide composition of M. genitalium in mgGenome.fasta. What is the proba-

bility of drawing AA when picking two random nucleotides from the genome of M.

genitalium?

3.32 What is the probability of drawing a pair of identical nucleotides from the

genome of M. genitalium?

3.33 To get from the match probability, �푃m, to the expected length of the longest

repeat in the genome of M. genitalium, consider a toy dot plot with three matches,

two of length 1, one of length 2:

3.2 Suffix Trees 67

A A C C

T

T

A

A

The probability of drawing a dot is �푃m. The probability of drawing a diagonal of

length �푙, and hence a match of length �푙, is �푃�푙
m. The expected number of such diagonals

is their probability times the number of cells in the dot plot. When comparing two

sequences of length �퐿, this is (�퐿−�푙)2, which is approximately �퐿2. Hence the expected

number of �푙-mer matches, �푛e, is

�푛e = �푃�푙
m × �퐿2.

Since we are looking for the longest such match, we set �푛e = 1. What is the expected

length of the longest repeat in the genome of M. genitalium? How does this compare

to the observed longest repeat?

3.34 To check the expected match length just computed, randomize the sequence of

M. genitalium with randomizeSeq and compute the longest repeat in that random-

ized version. What is its average length from, say, 100 repeats?

3.35 The program drawSt draws suffix trees. By default it draws them without a

sentinel and assumes that the tree is contained in file st.tex. So we can calculate

the suffix tree without sentinel for our example sequence, CATGGCAT.

〈cli〉+≡
printf ">s\nCATGGCAT\n" | drawSt -w st1.tex > st.tex

latex st1

dvips st1

ps2pdf st1.ps

evince st1.pdf &

We can also include a sentinel (-s), which gives Fig. 3.6.

〈cli〉+≡
printf ">s\nCATGGCAT\n" | drawSt -s -w st2.tex > st.tex

What’s the difference?

3.36 Most books come without an index. One reason for this is that making an

index is a lot of work. We have already seen that repeater is quick when applied

to the genome of M. genitalium. However, with just half a megabase, this genome

is tiny compared to, say, ours with 3.1 gigabases. So the question is, how time-

consuming is it to construct suffix trees in general? Consider the naı̈ve construction

method depicted in Fig. 3.7 and apply it to a sequence consisting only of one kind of

nucleotide, for example AAAA. How does the run time of naı̈ve suffix tree construction

scale as a function of sequence length?

68 3 Exact Matching

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

Sequence length (Mb)

mono
rand

Fig. 3.8 Run time of repeater as a function of sequence length; the program was either given

mononucleotide (mono) or random sequences (rand) as input

3.37 The program repeater uses a more efficient algorithm for constructing suffix

trees than the naı̈ve construction in Fig. 3.7. Fig. 3.8 shows its run time as a function of

sequence length for mononucleotide and random sequences. On Windows-Ubuntu

we found that parsing mononucleotide sequences is much quicker than parsing

random sequences, while on macOS the effect was less pronounced. repeater

relies on the library libdivsufsort. Benchmarks for this library show that text

over a single character is analyzed more quickly than text over the full alphabet1.

So the general trend of our results is in line with this earlier observation, but the

magnitude of the effect seems to be system-dependent. This just goes to show that

it is always a good idea to make specific measurements. Fig. 3.8 was constructed

using the script repeater.sh, where we iterate over five sequence lengths between

1 and 20 Mb and generate the corresponding random sequence. Then we measure the

run time for a mononucleotide version of the random sequence and for the original

random sequence. After the time measurements, we delete the sequence files again.

Prog. 3.3 (repeater.sh)

〈repeater.sh〉≡
for a in 1 2 5 10 20

do

ranseq -l ${a}000000 > r.fasta

tr ’CGT’ ’A’ < r.fasta > m.fasta

〈Measure time for mononucleotide sequence, Prog. 3.3〉
〈Measure time for random sequence, Prog. 3.3〉
rm r.fasta m.fasta

done

1 https://github.com/y-256/libdivsufsort/blob/wiki/SACA Benchmarks.md

3.2 Suffix Trees 69

To measure the time for the mononucleotide sequences, we convert the random

sequence to all A and time repeater. The command timewithout any qualifications

refers to a built-in bash command. This is a bit fickle to use as part of a pipeline.

Instead, we use the program date. If you’re on macOS, the default date command

differs from our description here, but gdate corresponds to our date. What is the

default output of date (or gdate)?

3.38 date can print the date in various formats, which are prefixed by a plus. For

example, date can print the seconds since the Unix epoch started on 1st of January

1970.

〈cli〉+≡
date +%s

How many seconds have elapsed since then?

3.39 We’d like to use date to measure run times, for which seconds often don’t

give us enough resolution. So let’s measure the run time of ls with nanosecond

precision.

〈cli〉+≡
date +%N; ls; date +%N

How many nanoseconds does ls take on your computer?

3.40 To measure the run time of a command, we store its start and end time, and

subtract start from end. We also append the category mono to the time measurement

to distinguish it from the time for random sequences. Since we are not interested in

the actual output of repeater, we redirect it to the “null device”, /dev/null. This

is actually a file, you can picture it as a bottomless bin.

〈Measure time for mononucleotide sequence, Prog. 3.3〉≡
st=$(date +%s.%N)

repeater m.fasta > /dev/null

en=$(date +%s.%N)

rt=$(echo "$en - $st" | bc -l)

echo $a $rt "mono"

Can you measure the time for the random sequence?

3.41 Can you reproduce Fig. 3.8?

3.42 The same logic used to find repeats can be used to find unique substrings, as

any path label that ends on a terminal branch is unique. Can you look up the shortest

unique substring or substrings in CATGGCAT from its suffix tree Fig. 3.6?

3.43 The program shustring finds shortest unique substrings. How long are the

shortest unique substrings in the genome of M. genitalium?

3.44 As with the longest repeat, we’d like to know whether the shortest unique is

due to chance or not. So we write the script shustring.sh to find out.

70 3 Exact Matching

Prog. 3.4 (shustring.sh)

〈shustring.sh〉≡
for a in $(seq $1)

do

randomizeSeq mgGenome.fasta |

shustring -r |

tail -n +3 |

head -n 1

done

How often do you find a shortest unique substring of length 6 or less in 100 random

versions of the M. genitalium genome?

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

Le
ng

th

Position (100 kb)

Fig. 3.9 The shortest unique substrings at every position along the genome of M. genitalium

3.45 Apart from the globally shortest unique substrings, the program shustring

can also print the local shustrings at every position. Fig. 3.9 shows the lengths of

these local shustrings as a function of sequence position. Can you reproduce it?

3.3 Suffix Arrays

The nodes of suffix trees consume a lot of computer memory. This becomes a

problem when computing suffix trees for very long sequences such as mammalian

genomes with their billions of nucleotides. Hence a space-saving alternative to suffix

trees has been developed, the suffix array [34]. It consists of the alphabetically sorted

suffixes of the input sequence.

3.3 Suffix Arrays 71

New Location

beb

biobox ch

1

1–3

2

1–3

3

1 2 3

data

3.46 Can you make and change into the directory for this section?

New Terms

enhanced suffix array lcp interval tree string depth

inverse suffix array longest common prefix suffix array

3.47 Like suffix trees, suffix arrays are built from suffixes. So we begin by writing

the program suf.awk that converts a sequence into its suffixes. It concatenates the

sequence data and then prints the starting position and sequence of each suffix.

Prog. 3.5 (suf.awk)

〈suf.awk〉≡
!/ˆ>/ {

t = t $1

}

END {

n = length(t)

for (i = 1; i <= n; i++)

print i, substr(t, i)

}

Can you run suf.awk on CATGGCAT?

3.48 A list of suffixes isn’t a suffix array yet, but it’s close. Fig. 3.10A shows the

suffix array for CATGGCAT$. This time we include the sentinel for easier comparison

with the corresponding suffix tree in Fig. 3.10B. The actual suffix array is just the

column of integers headed sa. So a suffix array is an array of suffix starting positions

after the suffixes have been sorted alphabetically. Compare the order of suffixes in

the suffix array and the suffix tree. Do you notice anything?

3.49 Can you reproduce the suffix array in Fig. 3.10A?

3.50 Fig. 3.11A shows the suffix array for another example sequence, ACCCA$.

Notice again the parallel order of suffixes in the suffix array and leaves in the

suffix tree next to it, Fig. 3.11B. Apart from the leaves, this order also implies the

positions of the internal nodes. Take for example the internal node with path label

72 3 Exact Matching

A B

�푖 sa[�푖] suf [�푖]
1 9 $

2 7 AT$

3 2 ATGGCAT$

4 6 CAT$

5 1 CATGGCAT$

6 5 GCAT$

7 4 GGCAT$

8 8 T$

9 3 TGGCAT$

G
.
.
.
$

$

G
.
.
.
$

$

G
C
A
T
$

C
A
T
$

G
.
.
.
$

$
TG

C
A
T

AT$

b

2

b

7

b

1

b

6

b

4

b

5

b

3

b

8

bbbbb

9

b

Fig. 3.10 Suffix array (A) and suffix tree (B) of CATGGCAT$

A B

�푖 sa suf

1 6 $

2 5 A$

3 1 ACCCA$

4 4 CA$

5 3 CCA$

6 2 CCCA$

C
C
C
A
$

$

C
A
$

A
$

C

A
$

CA$

b

1

b

5

b

2

b

3

bb

4

bbb

6

b

Fig. 3.11 Suffix array of ACCCA$ (A) and corresponding suffix tree (B)

A in Fig. 3.11B. The leaves connected to that node refer to suffixes 5 and 1. These

are neighbors in the suffix array, where they occupy entries sa[2] = 5 and sa[3] = 1.

We denote this interval sa[2...3]. There are three more intervals that correspond to

the three nodes we haven’t characterized yet. Can you write down the suffix array

intervals for them?

3.51 To further illustrate the close relationship between suffix array and suffix tree,

we add to our suffix array the array for “common prefixes”, cp, where cp[�푖] is the

longest common prefix between suf [�푖] and its left neighbor, suf [�푖 − 1]. Fig. 3.12A

shows the first three common prefixes. The very first suffix has no left-hand neighbor,

hence its common prefix is “not defined”, nd. The second suffix has no common

prefix, but the third one has the common prefix A. This is also marked in red in

both the suffix array and tree in Fig. 3.12. Can you fill in the missing three common

prefixes?

3.3 Suffix Arrays 73

A B

index sa suf cp

1 6 $ nd

2 5 A$ -

3 1 ACCCA$ A

4 4 CA$?

5 3 CCA$?

6 2 CCCA$?

C
C
C
A
$

$

C
A
$

A
$

C

A
$

CA$

b

1

b

5

b

2

b

3

bb

4

bbb

6

b

Fig. 3.12 Partial table of common prefixes (A) and their occurrence in the suffix tree (B)

Table 3.1 Incomplete table of longest common prefix lengths, the lcp array

index sa suf cp lcp

1 6 $ nd -1

2 5 A$ - 0

3 1 ACCCA$ A 1

4 4 CA$ - ?

5 3 CCA$ C ?

6 2 CCCA$ CC ?

3.52 A suffix array is a much simpler structure than a suffix tree—a list of suffix

starting positions compared to a set of branching nodes. However, the suffix tree is

merely hidden in the suffix array. To uncover it, we need the lengths of the common

prefixes, rather than the prefixes themselves. So in Table 3.1 we add the lcp array

to the suffix array, where lcp[�푖] is the length of cp[�푖]. As the first entry in cp is

undefined (there is no suffix to the left of it), we give it a length less than the smallest

entry in the lcp array, -1. Can you fill in the missing lcp values?

3.53 The path label of a node in a suffix tree starts at the root and ends just above

the node. Its length is also called the string depth of the node. Consider again the

suffix tree in Fig. 3.11B. What are the string depths of its internal nodes?

3.54 Compare the string depths of the suffix tree in Fig. 3.11B with the longest

common prefix lengths in Table 3.5. What do you notice?

3.55 The close relationship between suffix tree and suffix array means it is possible

to reconstruct the tree from the array. To be more precise, for this reconstruction we

need the suffix array enhanced by its lcp array. This combination of suffix array and

lcp array is called an “enhanced suffix array”. Given an enhanced suffix array, we

first extend the lcp array by a “stop” entry, -1, as shown in Fig. 3.13A. In addition,

74 3 Exact Matching

we write next to the lcp array an empty table with the three distinct string depths 2,

1, and 0 as headers.

A B

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

cc

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

C D

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

cc

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

Fig. 3.13 The enhanced suffix array with an auxiliary table for reconstructing the corresponding

suffix tree from lcp intervals

Now we traverse the lcp array to find the intervals in the sa array that correspond

to the suffix tree. Starting from the top, we check at each position the relationship

between the current entry in the lcp array, lcp[�푖] and the next entry, lcp[�푖 + 1] [35,

p. 85ff]:

• If lcp[�푖] = lcp[�푖 + 1], do nothing.

• If lcp[�푖] < lcp[�푖 + 1], open one or more intervals. The number of intervals to

open is lcp[�푖+1] − lcp[�푖]. The string depths of the opened intervals are the values

between lcp[�푖] + 1 and lcp[�푖 + 1]. In our example, lcp[1] = −1 and lcp[2] = 0;

since lcp[1] < lcp[2], we open 0 − −1 = 1 interval with string depth −1 + 1 = 0.

To denote this, we draw the gray line in Fig. 3.13B. Similarly, in the next step we

observe lcp[2] < lcp[3] and open another lcp interval, as shown by the red line

in Fig. 3.13C.

• If lcp[�푖] > lcp[�푖 + 1], close one or more intervals where string depth is greater

than lcp[�푖 + 1] and has occurred in the interval to be closed. In our example, we

observe in Fig. 3.13D that lcp[3] > lcp[4]. Since the string depth of the red, but

not of the gray interval, is greater than lcp[4] and it occurs in the interval under

consideration, the red interval is closed, while the gray interval remains open.

Can you draw the remaining lcp intervals in Fig. 3.13?

3.3 Suffix Arrays 75

A B

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0
0 − [1...6]

1 − [2...3] 1 − [4...6]

2 − [5...6]

Fig. 3.14 Lcp intervals (A) and lcp interval tree (B) of ACCCA$ using matching colors

3.56 The nested structure of the lcp intervals in Fig. 3.14A can be converted to a

stripped version of the suffix tree, the lcp interval tree shown in Fig. 3.14B. Each

node in the lcp interval tree has the format ℓ − [�푖... �푗], where ℓ is the string depth, �푖

the start index, and �푗 the end index in the suffix array. This lcp interval tree is the

suffix tree in Fig. 3.11 stripped of its leaves. And while it is a bit tedious to go from

an enhanced suffix array to an lcp tree, and hence to a suffix tree, it is easier to move

from a suffix tree to the lcp interval tree. This is not a transformation we would carry

out in practice, but it does help us get a feeling for the relationship between suffix

trees and arrays. Can you draw the lcp interval tree of CATGGCAT$?

3.57 The program drawSt can automatically draw lcp interval trees. Can you draw

the lcp interval tree of CATGGCAT$?

3.58 Let’s study the relationship between enhanced suffix arrays and suffix trees

with a longer example sequence, �푆 = GTAAACTATT$. Can you compute its suffix

array?

3.59 Can you add—by hand—the lcp values to the suffix array?

C
.
.
.
$

A
.
.
.
$

TT$

C
.
.
.
$

A

T
T
$

A
.
.
.
$

T$

A$

T

G
.
.
.
$

C
.
.
.
$

A$

b

4

b

3

b

8

b

5

b

b

7

b

2

b

9

bb

10

bb

1

b

6

bb

11

b

Fig. 3.15 Suffix tree of GTAAACTATT$

76 3 Exact Matching

3.60 Fig. 3.15 shows the suffix tree of GTAAACTATT$. Can you reproduce it by hand

and then with drawSt?

3.61 Can you construct the nested lcp intervals for your enhanced suffix array of

GTAAACTATT$? Looking at the suffix tree in Fig. 3.15 might help.

0 − [1...11]

1 − [2...5]

2 − [2...3]

1 − [8...11]

2 − [9...10]

Fig. 3.16 Lcp interval tree of GTAAACTATT$

3.62 Fig. 3.16 shows the lcp interval tree for GTAAACTATT$. Can you reproduce it

by hand and using drawSt?

3.63 The point to take away from what we have seen so far is that enhanced suffix

arrays imply suffix trees. The efficient computation of lcp arrays is therefore central

to the application of suffix trees. In the following couple of problems we see how to

do this. The crucial insight is that the lcp value for a suffix �푆 [�푖...] imposes a lower

bound of the lcp value of the suffix one step to the right, �푆 [�푖 + 1...]. Consider, for

example, the sequence ACCCACG. Its first suffix matches AC at position 5; from this

we can conclude that its second suffix matches at least the C at position 6 from the

previous match. In other words, if ℓ is the length of the common prefix of �푆 [�푖...],
then ℓ− 1 is the lower bound of the lcp for �푆 [�푖 + 1...]. The emphasis here is on lower

bound; in our example, the CC at the beginning of the second suffix matches the CC

at the beginning of the third rather than just the first C guaranteed by the lower bound

of 1. To use the lower bound insight, we traverse the suffix array in the same order

in which the suffixes appear in the input sequence. The mapping between sa and �푆

is called the inverse suffix array, isa, which is defined as

isa[sa[�푖]] = sa[isa[�푖]] = �푖.

Can you add the isa of ACCCA$ to the left of its suffix array in Fig. 3.14A?

3.64 The program isa.awk takes as input the sorted output from suf.awk, which

it stores, together with the isa. Then it prints the suffix array with isa as an additional

column.

Prog. 3.6 (isa.awk)

〈isa.awk〉≡
{

n = NR

3.3 Suffix Arrays 77

sa[n] = $1

suf[n] = $2

〈Construct isa, Prog. 3.6〉
}

END{

printf "# i\tsa\tisa\tsuf\n" # print the output table

for (i = 1; i <= n; i++)

printf "%d\t%d\t%d\t%s\n", i, sa[i], isa[i], suf[i]

}

Can you finish isa.awk and run it on ACCCA$?

Algorithm 1 Algorithm for computing lcp array [23]

Require: �푡 {input sequence}
Require: �푛 {length of �푡}
Require: sa {suffix array}
Ensure: lcp {array of lengths of longest common prefixes}
1: for �푖 ← 1 to �푛 do

2: isa[sa[�푖]] ← �푖 {construct inverse sa}
3: end for

4: lcp[1] ← −1 {initialize lcp}
5: ℓ ← 0

6: for �푖 ← 1 to �푛 do

7: �푗 ← isa[�푖]
8: if �푗 > 1 then

9: �푘 ← sa[�푗 − 1] {�푡 [�푘...] is left-hand neighbor of �푡 [�푖...] in sa}
10: while �푡 [�푖 + ℓ] = �푡 [�푘 + ℓ] do

11: ℓ ← ℓ + 1

12: end while

13: lcp[�푗] ← ℓ

14: ℓ ← max(ℓ − 1, 0) {ℓ cannot become negative}
15: end if

16: end for

3.65 Algorithm 1 shows how to compute the lcp array in linear time [23]. The

inverse suffix array, isa, is computed in lines 1–2. Then we iterate over the positions

in the input sequence, �푡. For each suffix �푡 [�푖...], we require the suffix with the longest

matching prefix, �푡 [�푘...]. We look up �푘 in two steps. First, we look up the position

of �푡 [�푖...] in the suffix array. This is isa[�푖] and we call it �푗 . The suffix most similar

to �푡 [�푖...] is the left hand neighbor of sa[�푗], so �푘 is sa[�푗 − 1]. Now we can compare

�푡 [�푖 + ℓ...] and �푡 [�푘 + ℓ...], where ℓ is the length of the matching prefix from the

previous round, minus one. When we’ve found the first mismatch, we set lcp[�푗] to

ℓ. We finish this round by decrementing ℓ by one.

We implement this algorithm in the program esa.awk, which takes as input the

sorted output of suf.awk. It stores the suffixes and extracts the input sequence from

them. Having parsed the input, we compute the isa and the lcp array, before we print

the output, the enhanced suffix array.

78 3 Exact Matching

Prog. 3.7 (esa.awk)

〈esa.awk〉≡
{

〈Store sa and suf, Prog. 3.7〉
〈Find input sequence, �푡, Prog. 3.7〉

}

END {

〈Compute isa, Prog. 3.7〉
〈Compute lcp, Prog. 3.7〉
〈Print enhanced suffix array, Prog. 3.7〉
}

Can you store the suffix array, sa, and the suffixes, suf?

3.66 Algorithm 1 requires access of the input sequence. Can you extract it from the

suffixes?

3.67 Can you compute the isa?

3.68 To compute the lcp array, we split the input sequence into its character array

and initialize the computation, which consists of a loop over all suffixes in �푡. For

each suffix �푡 [�푖...], we look up its most similar partner in the text, �푡 [�푘...]. Then we

calculate the lcp value as the length of the match between these two suffixes.

〈Compute lcp, Prog. 3.7〉≡
〈Split �푡 into character array ta, Prog. 3.7〉
〈Initialize lcp computation, Prog. 3.7〉
for (i = 1; i <= n; i++) {

〈Find suffix most similar to �푡 [�푖...], �푡 [�푘...], Prog. 3.7〉
〈Calculate lcp value, Prog. 3.7〉

}

Can you split the input sequence into its character array?

3.69 Can you initialize the lcp computation?

3.70 Next we look up the suffix most similar to �푡 [�푖...], �푡 [�푘...], via the inverse suffix

array, as outlined in lines 7–9 of Algorithm 1. Here the continue command is

useful, which says, “skip the rest of the loop”. This skipping only makes sense if

some condition is true:

if (cond) {

continue

}

Since the action block of the if-clause consists of a single statement, we could leave

out the curly brackets.

Can you find the suffix that is most similar to �푡 [�푖...]?

3.3 Suffix Arrays 79

3.71 Now we match the prefixes of �푡 [�푖...] and �푡 [�푘...] to get the desired lcp value,

lcp[�푗]. This is done in a while loop:

while (cond) {

do something

}

Like in the if-clause, action blocks for whilewith more than one statement must be

in curly brackets, action blocks with one statement can be. The minimum of lcp[�푗]
is ℓ, the match length from the previous round minus one. Can you calculate the lcp

value?

3.72 Can you print the enhanced suffix array?

3.73 Can you apply esa.awk to ACCCA$?

3.74 Now we apply our programs suf.awk and esa.awk to real sequences to

identify longest repeats. We do this using the script lrep.sh.

Prog. 3.8 (lrep.sh)

〈lrep.sh〉≡
awk -f suf.awk $1 |

sort -k 2 |

awk -f esa.awk |

tail -n +2 |

sort -k 3 -n -r |

head -n 1

Can you explain what it does?

3.75 What is the longest repeat in the Adh region of D. guanche?

3.76 The program randomizeSeq randomizes an input sequence, which is useful

to judge whether a repeat might be due to chance. Is the longest repeat we just found

longer than expected by chance alone? Can you formally test the null hypothesis that

the observed longest repeat is merely due to chance?

3.77 We’ve seen that the longest repeat just identified occurs at position 988 of the

Adh region in D. guanche. Where else does it occur?

3.78 We’ve already used the program repeater to find longest repeats. Can you

use it to double-check the longest repeat in the Adh region of D. guanche?

3.79 We have established that our suffix array pipeline works as intended. Can you

use it to find the longest repeat in the Adh region of D. melanogaster?

3.80 Where does the longest repeat just identified in the Adh region of D. melano-

gaster occur apart from 3908?

80 3 Exact Matching

3.81 Next, we search for the longest repeat in the combined Adh regions of D.

melanogaster and D. guanche. But before we run lrep.sh, can you place a lower

bound on the length of the repeat we’ll find?

3.82 What is the longest repeat in the combined Adh regions of D. melanogaster

and D. guanche? Can you explain your result?

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

lc
p

Position

Fig. 3.17 Lcp values along the Adh region of D. guanche

3.83 The entries in an lcp array tell us at every position in the sequence how far we

can walk without becoming unique. Let’s plot them with the script plotLcp.sh.

The expression $@ in its first line means every token on the command line. Can you

explain what the rest of plotLcp.sh does?

Prog. 3.9 (plotLcp.sh)

〈plotLcp.sh〉≡
awk -f suf.awk $@ |

sort -k 2 |

awk -f esa.awk |

tail -n +3 |

cut -f 2,3 |

sort -n

3.84 Fig. 3.17 shows the lcp values of the Adh region of D. guanche. The y range is

adjusted to include the maximum repeat length we have observed. None of the values

seems to be particularly large, which agrees with our conclusion from statistics that

the longest match may well be due to chance. Can you reproduce Fig. 3.17?

3.85 Fig. 3.18 shows the lcp values along the Adh region of D. melanogaster. Can

you reproduce it?

3.4 Text Compression 81

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lc
p

Position

Fig. 3.18 Lcp values along the Adh region of D. melanogaster

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000

lc
p

Position

Fig. 3.19 Lcp values along the Adh region of D. guanche on the background of D. melanogaster

3.86 Fig. 3.19 shows the plot we’ve been working towards, the lcp values along the

Adh region of D. guanche on the background of D. melanogaster. Notice the peak

of 37. Can you reproduce Fig. 3.19?

3.4 Text Compression

The ability to compress data underlies computer applications ranging from mp3

players to read mappers. Of the many methods for data compression, we look at

a classic combination of three steps, sorting, reordering, and encoding [6]. The

82 3 Exact Matching

sorting is intimately connected to a sorted structure we already know, the suffix

array. The reordering converts runs of any character into runs of zeros, and the

encoding squeezes unused bits out of bytes.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1 2 3 4

data

3.87 Can you make the directory for this section and change into it?

Sorting

New Terms

Burrows-Wheeler transform runs of characters string rotation

bwt

Compressed Original Sorted Compressed

A4C2T5C2 ↔ AAAACCTTTTTCC → AAAACCCCTTTTT ↔ A4C4T5

Fig. 3.20 Compression through run length encoding

3.88 Consider the sequence AAAACCTTTTTCC marked original in Fig. 3.20. It can

be compressed by looking for runs of individual characters and encoding the initial

four As, for example, as A4. This kind of compression is easy to reverse, hence the

double-headed arrow to the left in Fig. 3.20. Run encoding becomes more effective

as the number of characters in runs increases. The ultimate list of runs would be

obtained by sorting the characters, but unfortunately this is irreversible, as indicated

by the arrow pointing only to the right in Fig. 3.20. However, there is a way to almost

sort a version of the text that turns out to be highly compressible and reversible. We

begin with a text,

tobeornottobe$

and write its “rotations” by shifting the text one position to the left and attaching the

character that falls off at the beginning, t, to the end, as if the text were written on a

ring:

3.4 Text Compression 83

obeornottobe$t

Can you write down the first five string rotations of thatisthequestion$?

3.89 Fig. 3.21A shows all the string rotations of tobeornottobe$. It was generated

using the program rotate.awk.

Prog. 3.10 (rotate.awk)

〈rotate.awk〉≡
!/ˆ>/ {

t = t $0

}

END {

n = split(t, ta, "")

for (i = 1; i <= n; i++) {

〈Print string rotation, Prog. 3.10〉
}

}

Can you print a string rotation and thus finish rotate.awk (hint: %)?

A B

tobeornottobe$

obeornottobe$t

beornottobe$to

eornottobe$tob

ornottobe$tobe

rnottobe$tobeo

nottobe$tobeor

ottobe$tobeorn

ttobe$tobeorno

tobe$tobeornot

obe$tobeornott

be$tobeornotto

e$tobeornottob

$tobeornottobe

$tobeornottobe

be$tobeornotto

beornottobe$to

e$tobeornottob

eornottobe$tob

nottobe$tobeor

obe$tobeornott

obeornottobe$t

ornottobe$tobe

ottobe$tobeorn

rnottobe$tobeo

tobe$tobeornot

tobeornottobe$

ttobe$tobeorno

Fig. 3.21 Rotations (A) and sorted rotations (B) of tobeornottobe$

3.90 Once we’ve got the rotations, we sort them to get Fig. 3.21B. Can you reproduce

it?

3.91 In the sorted rotation in Fig. 3.21B, the first and last columns are of particular

interest. The first column contains the characters of the text alphabetically sorted.

We would like to submit them to run length encoding, but have already realized

that we can’t convert that back into the original text. But the last column can be

converted back into the original, as we shall see later. This last column is known

84 3 Exact Matching

as the Burrows-Wheeler transform in honor of its two discoverers [6]. What is the

Burrows-Wheeler transform of tobeornottobe$?

3.92 How is the Burrows-Wheeler transform useful? To find out, we need to analyze

longer texts. For longer texts it is inconvenient to read off the last column of a set

of sorted rotations. So we look again at the rotations in Fig. 3.21A and realize that

up to the sentinel, they are the suffixes. And after sorting in Fig. 3.21B, they form

a suffix array. Now, the last column in the rotation is the position just to the left of

the start of the suffix. In other words, we can read the Burrows-Wheeler transform

of text �푡 off the suffix array of �푡:

bwt[�푖] = �푡 [sa[�푖] − 1] (3.1)

for all sa[�푖] > 1. Can you encode tobeornottobe$ into its Burrows-Wheeler

transform using suf.awk and sort?

3.93 The program bwt computes the Burrows-Wheeler transform of an input se-

quence. Let’s take for now as our “sequence” Shakespeare’s Hamlet in the file

hamlet.fasta. Browse through it with less. Then count its characters. What is

the most frequent and the least frequent character in Hamlet?

3.94 Use bwt to transform Hamlet and browse the transformation with an eye for

runs of characters. What do you notice?

3.95 Let’s quantify our impression that more characters end up in runs with the

Burrows-Wheeler transform. Our example sequence in Fig. 3.20 contains two runs

of length 2, one run of length 4, and one run of length 5. The program runs.awk

counts the number of runs of each length.

Prog. 3.11 (runs.awk)

〈runs.awk〉≡
!/ˆ>/ {

t = t $0

}

END {

n = split(t, ta, "")

〈Count run lengths, Prog. 3.11〉
〈Print run lengths and counts, Prog. 3.11〉

}

Look at the sequence in Fig. 3.20 and think about how you’d count the lengths of its

runs. Can you implement this part of runs.awk?

3.96 Can you print the run lengths and their counts?

3.97 What is the length of the longest run in Hamlet?

3.98 What is the length of the longest run in the Burrows-Wheeler transform of

Hamlet?

3.4 Text Compression 85

100

101

102

103

104

105

106

 0 100 200 300 400 500 600

C
ou

nt

Length

ori
bwt

Fig. 3.22 The distribution of run lengths in the original version of Hamlet (ori) and after Burrows-

Wheeler transformation (bwt)

3.99 Fig. 3.22 shows the distribution of run lengths in the original Hamlet and in its

Burrows-Wheeler transform. Clearly, the transform has a huge effect on the amount

of sequence located in runs of characters. Can you think of why this might be?

3.100 Can you reproduce Fig. 3.22?

3.101 Let’s abolish the context preference of characters by randomizing Hamlet

using randomizeSeq. What is now the effect of the Burrows-Wheeler transform?

Table 3.2 Decoding the Burrows-Wheeler transform eoobbrttenot$o. Sorted characters give

the start, �푆, of the rotation (A); juxtaposition of �푆 with the ends of the rotation, �퐸 (B); track the

character occurrences in �푆 and �퐸 (C)

A B C

�푆

$

b

b

e

e

n

o

o

o

o

r

t

t

t

�푆 �퐸

$ e

b o

b o

e b

e b

n r

o t

o t

o e

o n

r o

t t

t $

t o

�푆 �퐸

$1 e1

b1 o1

b2 o2

e1 b1

e2 b2

n1 r1

o1 t1

o2 t2

o3 e2

o4 n1

r1 o3

t1 t3

t2 $1

t3 o4

86 3 Exact Matching

3.102 Say, we are given eoobbrttenot$o and all we know about it is that it’s a

Burrows-Wheeler transform. How can we decode it? The answer is, by sorting and

counting. First, we sort the transform’s characters and write them in one column

(Table 3.2A). These are the starting characters of the sorted rotations, hence we label

that column �푆. Then we write the transform, which consists of the ends of the sorted

rotations, in a column next to it, column �퐸 (Table 3.2B).

Now we count the occurrences of each character in each column. So in Table 3.2C

the first $ in �푆 becomes $1, the first b becomes b1, the second b b2, and so on for

the rest of column �푆. Then we count the character occurrences in column �퐸 . To

decode the first character, we look up the rotation that ends in $; it starts with t2.

Then we look for the rotation that ends with t2, it starts with o2. Then we look

for the rotation that ends with o2, b2, and so on, until we find $. Can you decode

nhhuttttoieie$ssaq?You can check your result with the decoding option of bwt.

Reordering with Move to Front

New Terms

move to front mtf

3.103 We’ve seen that the Burrows-Wheeler transform can reversibly increase the

number of runs of characters in a sequence. So let’s think a bit more about runs of

characters. Fig. 3.20 suggests that we can summarize a run like AAAA as A4. But,

there is also another way to take advantage of runs. We could encode the example in

Fig. 3.20 by just writing the first character of each run, followed by a place holder,

say a zero:

AAAACCTTTTTCC→ A000C0T0000C0

This would be particularly useful if we could encode zeros using less space than an

ordinary character, which occupies eight bits, or one byte. In fact, there is a way

to squeeze bits from bytes, as we shall see later. For now we concentrate on the

placeholder notation. To use it, we begin by mapping each character in the alphabet

of the input to a number,

Character Number

A 0

C 1

T 2

Can you write down such a character mapping for tobeornottobe?

3.104 To encode our example sequence AAAACCTTTTTCC (Fig. 3.20), we take its

first character, A, look up its number in the alphabet, 0, and write down the 0. We

repeat this until we get to the C. Its position in the alphabet is 1, so our encoding now

becomes

3.4 Text Compression 87

0 0 0 0 1

As C is not at the front of the alphabet, we move it to the front to get

Character Number

C 0

A 1

T 2

The next C is 0. Then we have the T, a 2, and we move it to the front to get

Character Number

T 0

C 1

A 2

The next four Ts are zeros. At the end we have a 1 for the first C and a 0 for the

second. So our result is

0 0 0 0 1 0 2 0 0 0 0 1 0

Can you encode TATAAATTTT?

3.105 Our encoding into small integers relies on moving characters to the front of

the alphabet, hence its official name “move to front” [6]. It is implemented in the

program mtf. Can you use mtf to encode thatisthequestion and its Burrows-

Wheeler transform?

3.106 What is the most frequent move to front code in Hamlet?

3.107 What is the most frequent move to front code in Hamlet after Burrows-

Wheeler transform?

3.108 Fig. 3.23 shows the frequency distribution of move to front codes in the

original Hamlet and in its Burrows-Wheeler transform. As we might expect, the two

distributions are very different. Can you write a script to format the codes, fc.sh,

and use it to reproduce Fig. 3.23?

3.109 Like the Burrows-Wheeler transform, move to front is only useful if reversible.

Decoding starts with the encoded sequence, say

0 0 0 0 1 0 2 0 0 0 0 1 0

and the alphabet used,

Character Number

A 0

C 1

T 2

The first four codes are converted to A, followed by a C, which is moved to front, and

so on. What is the decoding of

0 0 0 1 0 1 0 1 0 1

if C is 0 and G is 1? You can check your result with the decoding option of mtf.

88 3 Exact Matching

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

C
ou

nt
 (

x
10

00
)

Code

mtf
bwt/mtf

Fig. 3.23 Frequency distribution of code counts in Hamlet after move to front only (mtf) or after

Burrows-Wheeler transform and move to front (bwt/mtf)

Squeezing Bits from Bytes

New Terms

bowtie fixed length code huff

bunzip2 gunzip hut

bwa gzip prefix code

bzip2 Huffman code variable length code

3.110 When storing characters, each residue is usually stored as a byte, which

occupies four bits. A code where each element occupies the same amount of space

is called a “fixed length code”. How many bits are required to store the nucleotides

of the M. genitalium genome with the fixed length code of one byte per character?

Table 3.3 Fixed length code of the DNA nucleotides

Character Code

A 00

C 01

G 10

T 11

3.111 Genomes consist of only four characters, which can be encoded by 2 bits each,

as shown in Table 3.3. How many bits does the genome of M. genitalium occupy

with this new fixed length code?

3.4 Text Compression 89

3.112 Consider this run of bits,

11011110000011101011

Can you decode it using Table 3.3?

Table 3.4 Two variable length codes for DNA; A is a prefix code, B isn’t

A B

Character Code

A 0

C 100

G 101

T 11

Character Code

A 0

C 000

G 101

T 11

3.113 We can save even more space if we give up the requirement that each code

has the same length. Table 3.4A shows such a variable length code for DNA. How

much space does the genome of M. genitalium now occupy? How much space do we

save compared to two bits per nucleotide?

3.114 Consider this run of bits

11001011111011110

Can you decode it with Table 3.4A?

3.115 The codes in Table 3.4A and B differ by one bit in the code for C. This makes

the code for A a prefix of the code for C. To see the problems that causes, try decoding

11001100011

Where does it break down?

A —— B —— C —— D

A C G T

b

b

b

A C

G

T

b

b

0

b

0

A

0

C

1

G

1

T

1

b

b

0

b

0

A/000

0

C/001

1

G/01

1

T/1

1

Fig. 3.24 Construction of a prefix code for DNA

90 3 Exact Matching

3.116 Variable length codes only work if no code is prefix of another. Such codes are

called “prefix codes”. The construction of prefix codes is based on binary trees. We

start with the characters we wish to encode as leaves (Fig. 3.24A). Then we construct

an arbitrary tree (Fig. 3.24B), and mark its left branches 0, its right branches 1

(Fig. 3.24C). Now we read the code of each character as its path label (Fig. 3.24D).

Can you construct an alternative prefix code for DNA?

3.117 Not all prefix codes are equally effective. How many bits are required by the

code in Fig. 3.24D to store the genome of M. genitalium? Compare that to the code

in Table 3.4A.

3.118 Can you come up with an even worse code using the tree notation?

A ——————— B

C:0.158 G:0.159 T:0.337 A:0.346 0.317

C:0.158 G:0.159

T:0.337 A:0.346

C D

0.654

0.317

C:0.158 G:0.159

T:0.337

A:0.346 1.00

0.654

0.317

C:0.158 G:0.159

T:0.337

A:0.346

Fig. 3.25 Construct a Huffman tree of DNA from weighted nodes; A shows just the leaves, B the

first clustering, C the second, and D the last

3.119 To find an optimal code, we construct the tree from weighted nodes, where

the weight of a node is the frequency of its character as shown in Fig. 3.25A. Then

we merge the two lightest nodes, C and G, into a node weighing the sum of their

weights (Fig. 3.25B). We now consider the remaining three nodes with weights

0.317, 0.337, and 0.346. As before, we join the lightest pair with weights 0.317

and 0.337 (Fig. 3.25C). The remaining two nodes are joined in the root to complete

tree construction (Fig. 3.25D). A tree like this can now be labeled and the codes

read off, as we saw earlier (Fig. 3.24D). This method of finding optimal codes was

published in 1952 by David Huffman [21] and the codes are thus called Huffman

codes [8, p.385ff]. Can you construct the Huffman codes for the Adh region of D.

melanogaster?

3.4 Text Compression 91

 0-A/0

 1

 0

 0-C/100

 1-G/101

 1-T/11

0.1

Fig. 3.26 Huffman tree for the genome of M. genitalium

3.120 The program hut constructs the trees underlying Huffman codes, let’s call

them Huffman trees. Fig. 3.26 shows the Huffman tree for the genome of M. genital-

ium with branch lengths that are proportional to node weights. Can you reproduce

Fig. 3.26?

3.121 Huffman trees are curious structures. Can you plot the Huffman tree for the

proteome of M. genitalium (mgProteome.fasta)?

3.122 A Huffman tree is constructed from residue frequencies. Can you determine

the most frequent amino acid or amino acids in the proteome of M. genitalium from

its Huffman tree? You can check your answer with cres.

3.123 The program huff takes as input a Huffman tree and a sequence. It then prints

a stream of zeros and ones to show the corresponding bit encoding. Can you compute

the bit encoding of the M. genitalium genome? How many bits does it consist of?

3.124 If we are just interested in the number of bits in a Huffman encoding, we can

run hut -b. This allows us to calculate the compression ratio of Huffman encoding

by dividing the number of bits in the original sequence by the number of bits in the

encoding. What is that ratio for Hamlet?

3.125 As with any encoding, we need to also be able to decode a Huffman encoding.

Consider this sequence of bits encoded under the Huffman tree in Fig. 3.26:

010011111111001000

The first 0 in the sequence leads to A in the Huffman tree. Then we parse 100 for

a C. Can you decode the rest of the sequence? You can check your result with the

decoding option of huff.

3.126 The methods we have covered, Burrows-Wheeler transform with bwt, move

to front with mtf, and Huffman encoding with hut, are meant to be applied in that

order. So we’d like to write a pipeline like

92 3 Exact Matching

bwt hamlet.fasta | mtf | hut -b

However, we’ve already seen that the output of mtf is a blank-delimited list of

numbers, while hut takes a stream of characters as input. The gap between these

two programs is filled by num2char. Can you calculate the compression ratio of

Hamlet when subjected to Burrows-Wheeler transform, move to front, and Huffman

encoding?

3.127 Our compression scheme does not include explicit encoding of repeats, a

component of the popular compression program gzip. Still, let’s find out the com-

pression ratio of gzip and compare it to the hypothetical ratio achieved with our

combination of Burrows-Wheeler transform, move to front, and Huffman encoding.

To make this a fair comparison, we first remove the FASTA header and the newlines.

〈cli〉+≡
tail -n +2 hamlet.fasta | tr -d ’\n’ > hamlet.txt

What is the compression ratio of gzip on Hamlet? gunzip unzips the result of

gzip.

3.128 While gzip does not use the Burrows-Wheeler transform, bzip2 does. In

fact, a number of programs with prominent “b” and “w” in their names are based

on the Burrows-Wheeler transform, for example the read mappers bowtie [32] and

bwa [33]. What is the compression ratio of bzip2 on hamlet.txt? bunzip2 unzips

the result of bzip2.

3.129 We’ve played with a play quite a bit, so let’s return from Hamlet to the genome

of M. genitalium. What are the compression ratios of gzip, bzip2 and our approach?

Chapter 4

Fast Alignment

We’ve seen that optimal alignment is slow but accurate while exact matching is

fast but cannot account for mutations. In this chapter we tweak exact matching to

get fast alignments. We begin with the easiest case, global alignment between a

query and a subject of similar lengths. Then we move to the best known application

of fast alignment, local alignment between a short query and a long subject as

implemented in Blast. Sometimes it is useful to align only the query in full, for

example, when aligning a PCR primer to its target genome, and we show how to do

such global/local or “glocal” alignment efficiently. The reads of a shotgun sequencing

run are assembled by overlapping them, and overlap alignment is the next kind of

alignment we encounter. Finally, we generalize from aligning pairs of sequences to

aligning multiple sequences.

4.1 Global

We’ve used the optimal global alignment method implemented in al to align the

Adh regions of D. melanogaster and D. guanche, sequences that are a few kilobases

long. But how can we align, say, bacterial genomes that are a few megabases long?

By using exact matching.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1

data

4.1 Can you make a new directory for this section?

93© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_4&domain=pdf

94 4 Fast Alignment

New Terms

data streams mummer nucmer

dnaDist

4.2 We’ve said optimal alignment is slow, so let’s measure how slow using date (or

gdate on macOS). Can you recall how to time ls?

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Length (100 bp)

Fig. 4.1 Run time of optimal global alignment implemented in al as a function of sequence length

4.3 Fig. 4.1 shows the run time of our optimal aligner al as a function of the length

of both input sequences. Can you write the script rtAl.sh to reproduce it?

4.4 Mummer is a software package for quickly aligning pairs of genome sequences.

The acronym MUM in its name stands for maximal unique match. As we saw when

working with repeater, maximal matches cannot be extended to the left or the

right. But in contrast to repeater, mummer looks for unique maximal matches.

Fig. 4.2 shows the MUMs found by mummer for the Adh region of D. melanogaster

and D. guanche, which should by now look familiar. The output of mummer can be

converted to plotSeg input with mum2plot. Can you reproduce Fig. 4.2?

4.5 Let’s look at the first five MUMs in the Adh region.

〈cli〉+≡
mummer dmAdhAdhdup.fasta dgAdhAdhdup.fasta | head -n 5

> DGADHDUP

679 549 22

2251 2211 23

2410 2370 26

2452 2412 23

4.1 Global 95

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000 4500

D
. guanche

D. melanogaster

Fig. 4.2 mummer plot of the Adh region in D. melanogaster and D. guanche

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

)

Length (10 kb)

Fig. 4.3 Run time of mummer as a function of sequence length

The three columns indicate the start in the first sequence, the start in the other

sequence, and the length of the MUM. Can you cut out the very first MUM and find

it in the other sequence?

4.6 How long are the shortest and longest MUMs in the Adh region?

4.7 mummer writes copious output, which we don’t always need. But what happens

when you try to throw it away by redirecting it to the null device?

〈cli〉+≡
mummer r.fasta r.fasta > /dev/null

96 4 Fast Alignment

4.8 The data streams of the shell are numbered. Standard input is 0, standard output

is 1, and standard error is 2. By default, > redirects the standard output, but we can

redirect the standard error instead.

〈cli〉+≡
mummer r.fasta r.fasta 2> /dev/null

What happens now?

4.9 We can also redirect standard error and standard out.

〈cli〉+≡
mummer r.fasta r.fasta &> /dev/null

What do you observe now?

4.10 Fig. 4.3 shows the run time of mummer as a function of sequence length. For

10 kb al takes 6.9 s, mummer a mere 0.006 s. In other words, on a pair of 10 kb

sequences mummer is 1000 times faster than al. Can you write a script rtMummer.sh

to reproduce Fig. 4.3?

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5

T
im

e
(s

)

Mutation Rate

Fig. 4.4 The run time of mummer on pairs of 500 kb sequences as a function of mutation rate

4.11 We’ve already seen that mummer works with exact matches. In fact, when

aligning two identical sequences, there is only a single match. What happens to the

run time as we increase the number of matches by mutating the sequence? Fig. 4.4

shows that only very high mutation rates have a significant effect on run time. The

program mutatormutates a sequence. Can you use it in a script rtMummer2.sh to

reproduce Fig. 4.4?

4.12 In addition to drawing dot plots, the Mummer package contains programs for

counting the number of single nucleotide polymorphisms, or SNPs, in an alignment.

This goes well beyond the capabilities of ordinary dot plots. The program for counting

4.1 Global 97

SNPs is nucmer, which is used in conjunction with show-snps. Let’s start from our

500 kb random sequence, and mutate 1% of its positions, in other words, we expect

5000 mutations. Then we run nucmer, which generates the file out.delta, from

which show-snps extracts the SNPs. The output of show-snps is a table with one

line per SNP. If we cut off the table header, we can directly count the SNPs.

〈cli〉+≡
mutator r1.fasta > r2.fasta

nucmer r1.fasta r2.fasta

show-snps out.delta | tail -n +6 | wc -l

How many SNPs do you find between r1.fasta and r2.fasta?

4.13 We can exactly count the number of mismatches between two sequences using

the program dnaDist. What is the number of SNPs nucmer should have found

between r1.fasta and r2.fasta?

4.14 What happens to the SNP count of nucmer as you ratchet up the mutation rate

in a script mutate.sh?

4.15 Clearly, mutation affects the number of MUMs. Fig. 4.5 shows the number

of MUMs as a function of mutation rate. Without mutation, there is only a single

MUM. With very high mutation, there are only a few, and in between there are many.

Can you write a script numMum.sh to reproduce Fig. 4.5?

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5

M
U

M
s

(x
 1

00
0)

Mutation Rate

Fig. 4.5 The number of MUMs as a function of mutation rate

4.16 We close our investigation of the Mummer package by aligning the genomes of

two strains of E. coli, K12 and O157H7. These are contained in filesecoliK12.fasta

and ecoliO157H7.fasta,and Fig. 4.6 shows their mummerdot plot. Notice the large

inversion at 1.5 Mb in K12 and 2 Mb in OH157H7. Can you reproduce this plot?

98 4 Fast Alignment

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 0 1x106 2x106 3x106 4x106 5x106

O
157H

7

K12

Fig. 4.6 mummer plot of two E. coli strains, K12 and O157H7

4.2 Local

Fast local alignment is epitomized by Blast, the “basic local alignments tool”, which

we already encountered when we talked about keyword trees. We start our explo-

ration of Blast with the simple version we used previously, sblast, which produces

ungapped alignments. Then we look at the Blast program maintained by the NCBI.

This is designed for searching potentially very large databases. In such a search for

needles in haystacks it becomes important to assess the significance of an alignment,

for which Blast supplies its own statistics.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1 2

data

4.2 Local 99

4.17 Can you make the directory for this section and change into it?

Simple Blast

New Terms

extension steps high-scoring pair word list

4.18 Blast is a fast version of the optimal local alignment implemented in al. So

let’s start with al and use it to calculate something we’ve seen before, the optimal

local alignment between the Adh regions of D. melanogaster and D. guanche. Where

is it located again, and what is its score?

4.19 What is the best alignment of the Adh region returned by the simple Blast

algorithm implemented in sblast? Is it identical to that returned by al?

A
�푞

B
�푞

�푠

C

�푠

Fig. 4.7 Blast algorithm. Preprocess the query sequence, �푞, into overlapping words (A); search the

words in the subject, �푠, (B); extend matches until the score cannot be improved any further to yield

high-scoring pairs (C)

4.20 The first step in the Blast algorithm is to break the query into overlapping

words (Fig. 4.7A). The words are then searched for in the subject (Fig. 4.7B) and

we already saw that keyword trees make this step fast. The matches are extended to

give the set of alignments, or “high-scoring pairs” in Blast nomenclature (Fig. 4.7C).

They are filtered according to score and perhaps other criteria and those that pass

are returned as the final set of alignments. Let’s look in more detail at the first step,

100 4 Fast Alignment

the conversion of the query into a word list. How long are the words used by sblast

and how many of them are there when using the D. melanogaster Adh as query?

4.21 mummer uses unique matches. Are the words used by sblast unique when

searching for D. melanogaster Adh?

4.22 After breaking the query into words, the words are searched for in the subject

(Fig. 4.7B). This search is carried out on the forward and the reverse strand of the

subject. We’ve already seen that the program keyMat can search multiple patterns

simultaneously. These can be supplied either on the command line or as a FASTA

file, whichever is more convenient. How many matches of the words in melanogaster

Adh are found in guanche?

4.23 sblast returns three alignments for the Adh region. Are they the same as the

top three alignments returned by al?

4.24 Clearly, it is possible that the extension step (Fig. 4.7C) breaks off too early.

Why might that be? The extension is governed by the number of steps allowed that

don’t improve on the last best score. If this parameter is too small, alignments may get

truncated. If this parameter is too large, the algorithm is slowed down unnecessarily.

By increasing the number of idle extension steps we can recover the full second

alignment with sblast. What is the smallest number of idle extensions that gives

the optimal result?

4.25 Blast is all about speed. How long does sblast take to find the top three Adh

alignments compared to al?

4.26 The files dmChr*.fasta contain the genome sequence of D. melanogaster.

How long is it?

4.27 How many matches to the melanogaster query words are contained in the

melanogaster genome?

4.28 Where is the Adh region in the genome of D. melanogaster?

4.29 How long does sblast take to find the Adh region in the genome of D.

melanogaster?

4.30 What happens if we take the guanche Adh as query?

4.2 Local 101

NCBI Blast

New Terms

blastn makeblastdb

4.31 NCBI Blast consists of a set of programs, we start with nucleotide Blast

implemented in blastn. Which alignments does it return for the Adh regions of D.

melanogaster and D. guanche?

4.32 The default mode of blastn is called megablast. It is very fast, but—as we

just saw—not particularly sensitive. A more sensitive mode is somewhat confusingly

called blastn and invoked with the -task option.

〈cli〉+≡
blastn -task blastn -query dmAdhAdhdup.fasta \

-subject dgAdhAdhdup.fasta

What are the best three results returned by this? How does this compare to the three

best results returned by sblast?

4.33 By default, blastn prints the resulting alignments nucleotide by nucleotide.

However, in many instances a table of alignment coordinates is all we need and

easier to understand. Such a table also has the advantage that it can be parsed by

downstream programs. The -help option of blastn gives a number of options for

formatting the output. Can you generate output in tabular format?

4.34 Let’s turn to the more typical Blast application of searching a short query

in a long subject. Where does blastn locate the melanogaster Adh region in the

melanogaster genome? How does that compare to the sblast result?

4.35 What happens when you use the guanche sequence as query?

4.36 How long does the blastn search of the D. melanogaster genome take com-

pared to sblast?

4.37 blastn can work on a binary, compressed version of the subject, a Blast

database. This is constructed with the program makeblastdb, which takes as manda-

tory arguments a file of input sequences (-in), the name of the database (-out),

and the type of the database (-dbtype). To make individual sequences accessible

by their accessions, we also opt to parse the sequence IDs (-parse seqids).

〈cli〉+≡
makeblastdb -in subject.fasta -out dm -dbtype nucl \

-parse_seqids

How long does database construction take?

4.38 What is the compression ratio of makeblastdb?

4.39 How long does it take to search the new database for the melanogaster Adh

using the default megablast mode?

102 4 Fast Alignment

4.40 How long does the database search take with the more sensitive blastn task?

4.41 By default, blastn runs in a single thread. It can also use multiple parallel

threads with the option -num_threads. What is the run time of the blastn task

with eight threads?

4.42 We’ve seen that we can query a Blast database much more efficiently than the

unprocessed subject, but is database construction reversible? In other words, can we

get the subject sequences back? In that case we wouldn’t need the subject sequences

any more, which take up four times more disk space. The program blastdbcmd is

designed to query Blast databases, its -info option gives basic information.

〈cli〉+≡
blastdbcmd -db dm -info

Database: subject.fasta

8 sequences; 137,567,484 total bases

...

How long is the longest sequence in the dm database?

4.43 With blastdbcmdwe can also retrieve the entries in the database. For example,

we can retrieve all entries.

〈cli〉+≡
blastdbcmd -entry all -db dm | head

How many nucleotides does the output contain compared to the input?

4.44 So, database construction is reversible. But it can do more than allow quick

searching on a smaller file. For example, we can list just the titles of the sequences

and their lengths by setting the output format, -outfmt.

〈cli〉+≡
blastdbcmd -db dm -entry all -outfmt "%t %l"

How long is chromosome 2L? Can you retrieve it and measure its length?

4.45 The ability of Blast to find the query in the subject depends on the divergence

between query and subject. To look at the relationship between Blast searches and

divergence, we cut out a 5 kb region from chromosome 2L of D. melanogaster at

coordinates that are easy to recognize, 10,000,001–10,005,000. Then we mutate the

fragment with mutator and search for the mutated sequence.

〈cli〉+≡
cutSeq -r 10000001-10005000 dmChr2L.fasta > frag1.fasta

mutator -m 0.01 frag1.fasta > frag2.fasta

blastn -query frag2.fasta -db dm -outfmt 6

4.2 Local 103

What happens for mutation rates of 0.03 and 0.3? Try a couple of runs.

4.46 Let’s write a program, megablast.sh, to determine the number of successful

runs out of 100 for a given mutation rate. First we generate the 100 randomized

fragments. These serve as the query for blastn. A successful run might return more

than one fragment, so to prevent over-counting, we set the maximum number of

high-scoring pairs to 1. To speed things up, we use eight threads.

Prog. 4.1 (megablast.sh)

〈megablast.sh〉≡
printf "" > frag2.fasta

for a in $(seq 100)

do

mutator -m $1 frag1.fasta >> frag2.fasta

done

blastn -max_hsps 1 -num_threads 8 -query frag2.fasta \

-db dm -outfmt 6 |

wc -l

How many successful runs do you get for a mutation rate of 0.3?

4.47 Let’s write blastn.sh, which does the same thing as megablast.sh, except

that it uses blastn as task. It also sets the �퐸-value to 10−20, which you can think of

as the �푃-value for an alignment.

Prog. 4.2 (blastn.sh)

〈blastn.sh〉≡
printf "" > frag2.fasta

for a in $(seq 100)

do

mutator -m $1 frag1.fasta >> frag2.fasta

done

blastn -max_hsps 1 -num_threads 8 -task blastn \

-query frag2.fasta -db dm \

-evalue 1e-20 -outfmt 6 |

wc -l

How many successful blastn searches do you now get with a mutation rate of 0.3?

4.48 Fig. 4.8 shows the number of successful Blast runs as a function of the mutation

rate for megablast and blastn. The fraction of successful runs is also called the

sensitivity. blastn is more sensitive than megablast (we also saw that it is slower).

Can you reproduce Fig. 4.8? The required script, call it sens.sh, might run for a

while.

104 4 Fast Alignment

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%
-S

uc
ce

ss

Mutation Rate

m
n

Fig. 4.8 Percent successful Blast runs as a function of the mutation rate for megablast (m) or

blastn (n)

Blast Statistics

New Terms

�퐸-value �푃-value

4.49 In our script blastn.sh we already used the �퐸-value and we said at the time

that you can think of it as an alignment’s �푃-value. To be more precise, the �퐸-value

is the number of alignments with a score as good as that observed or better expected

by chance alone. It is also called the “expectation value”. To give an example, let’s

cut the interval 3101–3200 from the guanche Adh, align it with task blastn, and

save the result in the file blast.out

〈cli〉+≡
cutSeq -r 3101-3200 dgAdhAdhdup.fasta > dgFrag.fasta

blastn -max_hsps 1 -task blastn -query dgFrag.fasta \

-db dm > blast.out

Fig. 4.9 shows an abridged version of blast.out. The first line gives the score,

or rather two scores, the bit score of 41.9 and the raw score of 45. The raw score

corresponds to the scores seen with al and sblast. The underlying scoring scheme

is shown at the bottom of the Blast output. Can you recapitulate the raw score?

4.50 The raw score depends on the scoring scheme. To have a score that is inde-

pendent of the scoring scheme, the authors of Blast devised the bit score, �푆′. It is a

function of the raw score and two parameters extracted from the scoring scheme, �휆

and �퐾 [30, p. 100f],

�푆′ =
�휆�푆 − log(�퐾)

log(2) .

4.2 Local 105

...

>NT_033777.3 Drosophila melanogaster chromosome 3R

Length=32079331

Score = 41.9 bits (45), Expect = 0.005

Identities = 27/30 (90%), Gaps = 0/30 (0%)

Strand=Plus/Minus

Query 8 TAATGCCAGTGGCAGTGGCAGGGGCACTGG 37

|||||||||||||| |||||| |||| |||

Sbjct 9098607 TAATGCCAGTGGCAATGGCAGTGGCATTGG 9098578

...

Gapped

Lambda K H

0.625 0.410 0.780

...

Matrix: blastn matrix 2 -3

Gap Penalties: Existence: 5, Extension: 2

Fig. 4.9 Abridged output from a blastn run

Can you recapitulate our bit score of �푆′ = 41.9?

4.51 The �퐸-value is a function of the bit score, the length of the query, �푚, and the

length of the subject, �푛,

�퐸 = �푚�푛2−�푆′
.

Can you recapitulate our �퐸-value of 0.005?

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P

E

true
E=P

Fig. 4.10 The �푃-value of statistics as a function of the �퐸-value returned by Blast

4.52 In statistics we are used to �푃-values rather than �퐸-values. �푃-values are related

to �퐸-values through the function

106 4 Fast Alignment

�푃 = 1 − �푒−�퐸 .

Fig. 4.10 shows the �푃-value as a function of the �퐸-value. Notice that for small �퐸-

values the two are indistinguishable. So in practice, we can think of small �퐸-values

as �푃-values. But we shouldn’t forget that �푃-values cannot become larger than 1,

while �퐸-values can. Can you write a program eval.awk to reproduce Fig. 4.10?

4.53 Let’s recapitulate the �푃-value through simulation. We write the program

simStats.sh on the pattern of megablast.sh starting with an empty file that

holds the randomized sequences we need. Then we run blastn and print the results

with a score at least as large as our bit score of 41.9.

Prog. 4.3 (simStats.sh)

〈simStats.sh〉≡
printf "" > ran.fasta

for a in $(seq $1)

do

randomizeSeq dgFrag.fasta >> ran.fasta

done

blastn -num_threads 8 -task blastn -query ran.fasta \

-db dm -outfmt 6 |

awk ’$12>=41.9’

What is the simulated �푃-value of our alignment? How does that compare to the

theoretical �푃-value?

Discover Protein Families

New Terms

blastp neato reciprocal Blast hits

circo ranDot unidirectional Blast hits

4.54 We’ve used sblast to compare the melanogaster Adh as query to the guanche

Adh as subject. What happens when we switch query and subject?

4.55 Fig. 4.11 shows a graph of Blast hits among ten yeast proteins. Arrows point

from query to subject. Most arrows have two heads, which means they are reciprocal

hits where homology is found regardless of the query/subject labeling. Can you spot

the one unidirectional hit?

4.56 Fig. 4.11 was drawn using the program neato. It takes as input a graph file in

dot notation. We can think of the dot notation as a programming language for graphs

that is interpreted by neato. So here is our first dot program, g1.dot.

4.2 Local 107

1 7 0 7 2 1

2 0 6 1

3 4 4 1
2 2 3 9

2 5 3 8

3 0 6 7

4 6 8 0

4 6 8 1

3 3 8 9

Fig. 4.11 Proteins (nodes) and their Blast hits (edges), which are either reciprocal Blast hits of the

form query ↔ subject, or unidirectional Blast hits between query → subject

Prog. 4.4 (g1.dot)

〈g1.dot〉≡
graph G {

a -- b

b -- c

c -- a

}

We visualize this.

〈cli〉+≡
neato -T x11 g1.dot

In case x11 isn’t recognized on your system, try one of the output formats listed by

neato, for example portable network graphics, png, which you can save to file and

then open with your system’s viewer.

〈cli〉+≡
neato -T png g1.dot > g1.png

Can you write g2.dot to specify the graph in Fig. 4.12?

4.57 We draw Fig. 4.11 with prgram yeast.dot, where we first declare the nodes

as filled in with the color lightsalmon. Then we declare the edges as having arrows in

both directions. This is followed by the actual edges; if we write more than one edge

per line, we separate them by semicolons. At the end we specify the single edge with

just a forward arrow. So a local edge annotation overrides the global declaration of

double heads.

108 4 Fast Alignment

1 2

3

5

4

Fig. 4.12 Example graph

Prog. 4.5 (yeast.dot)

〈yeast.dot〉≡
graph G {

node [style=filled, color=lightsalmon]

edge [dir=both]

170 -- 721; 170 -- 2061; 170 -- 3441

721 -- 2061; 2239 -- 2538; 2239 -- 3067

2239 -- 3441; 2538 -- 4680; 2538 -- 4681

3067 -- 3389; 3067 -- 3441; 3389 -- 3441

721 -- 2239 [dir=forward]

}

What happens when we layout yeast.dot with the program circo instead of

neato?

4.58 The program ranDot draws random graphs in dot notation. Can you draw a

graph with ten nodes where all nodes are connected to all other nodes?

4.59 How many edges could in theory be drawn between the nodes (proteins) in

Fig. 4.11? What proportion of these is actually found?

4.60 If �푎 is homologous to �푏 and �푏 is homologous to �푐, then we infer that �푎 is

also homologous to �푐, even if the direct Blast hit doesn’t exist. Are the proteins in

Fig. 4.11 all homologous to each other?

4.61 Sets of homologous proteins are called protein families and their underlying

genes form gene families. Fig. 4.11 shows a yeast gene family, and we’ve already

seen the pairs of Adh genes in Drosophila. But what about Mycoplasma genitalium,

which has one of the smallest genomes of any organism? Does it also contain gene

families? We investigate this question on the level of proteins. The proteome of M.

genitalium is contained in mgProteome.fasta. How many proteins does it consist

of?

4.2 Local 109

4.62 Protein families are discovered through all-against-all Blast searches. How

many pairwise comparisons can be carried out between the proteins of M. genitalium?

4.63 The headers in mgProteome.fasta consist of the prefix lcl|MG followed by

a number and a brief description of the protein function.

〈cli〉+≡
grep ’ˆ>’ mgProteome.fasta | head -n 3

>lcl|MG_002 DnaJ domain protein

>lcl|MG_003 DNA gyrase, B subunit

>lcl|MG_004 DNA gyrase, A subunit

The prefix is redundant. We delete it and redirect the result to mgProteome2.fasta.

〈cli〉+≡
awk -F ’_’ ’/ˆ>/{print ">" $2}!/ˆ>/{print}’ \

mgProteome.fasta > mgProteome2.fasta

Can you explain this Awk code?

4.64 We use protein Blast implemented in the program blastp to find all pairwise

hits among the M. genitalium proteome. Our �퐸-value is 10−5 and we restrict the

output to no more than one hit per query.

〈cli〉+≡
blastp -query mgProteome2.fasta -subject mgProteome2.fasta \

-evalue 1e-5 -max_hsps 1 -outfmt 6 > mgp.bl

How many Blast hits are there?

4.65 The number of times a protein appears among the queries is the number

of homologs it has in the proteome. Which proteins have the largest number of

homologs?

4.66 What are the functions of the proteins with most homologs?

4.67 How many proteins have at least one homolog?

4.68 Fig. 4.13 shows the protein families in the proteome of M. genitalium. It is

drawn using blast2dot and circo. Can you reproduce it?

4.69 The central circle in Fig. 4.13 contains the ABC transporters 410, 180, and

179. How many entries does the circle contain in total? Can you write the program

entr.sh to list their functions?

4.70 To learn more about ABC transporters, we look them up in the Prosite database.

This consists of two files, prosite.dat and prosite.doc.prosite.dat contains

protein motifs, prosite.doc documentation on the protein families characterized

by the motifs. By searching the documentation for “ABC transporter” we get to the

right entry. Can you find it? What is the major function of ABC transporters?

110 4 Fast Alignment

0 0 2

0 1 9

2 0 0 3 8 6

0 0 3 2 0 3

0 0 4 2 0 4

0 0 8

3 2 9 3 8 7

4 4 2

0 1 0 2 5 0

0 1 4

0 1 5
0 4 2

0 6 5

0 7 9

0 8 0

1 1 9

1 7 9

1 8 0

1 8 7

2 9 0

3 0 4

4 1 0

4 6 7

5 2 6

3 0 3

3 9 0

4 2 1

0 2 1

2 6 6

3 3 4

3 4 5

0 2 4 3 8 4

0 2 5 0 6 0 5 1 7

0 3 2 0 9 6

0 3 6

1 1 3

1 3 6

0 4 8 2 9 70 6 4 4 6 8

0 6 7

0 6 8

3 9 5

0 8 9

1 3 8

1 4 2

4 5 1

1 3 3 4 5 2

1 3 9 4 2 3

1 7 2 3 2 4

1 8 1 3 0 2

1 8 5 2 6 0 1 9 0 3 7 1

1 9 1 1 9 2

2 0 9 3 7 02 2 5 2 2 6

2 4 1 2 4 2

2 6 1 0 3 1

2 6 3 2 6 5

2 9 3 3 8 5

3 0 7

3 0 9

3 3 8

3 0 8 4 2 5

3 1 0

3 2 7

3 4 4

3 1 2

3 2 6 4 5 0

3 9 9 4 0 1

4 1 4 5 2 5

4 3 2 4 4 3

4 3 9 4 4 0

Fig. 4.13 Protein families in the proteome of M. genitalium

4.71 By default, blast2dot excludes singletons, but it can include them with -s.

Fig. 4.14 shows the protein families as colorful islands in a sea of gray singletons.

Can you reproduce it?

4.3 Glocal

We saw that in Blast, we chop up the query into overlapping words and use them

to locate promising regions in the subject (Fig. 4.7). However, when we align, say,

the Adh region from D. melanogaster with the genome of the same species, we

know that the query can be aligned globally. Similarly, a sequencing read obtained

from a given organism can be aligned globally to its genome sequence. We call such

global/local alignment glocal alignment. We look at two cases, the global alignment

4.3 Glocal 111

0 0 2

0 1 9

2 0 0 3 8 6

0 0 3 2 0 3

0 0 4 2 0 4

0 0 8

3 2 9 3 8 7

4 4 2

0 1 0 2 5 0
0 1 4

0 1 5
0 4 2

0 6 5

0 7 9

0 8 0

1 1 9

1 7 9

1 8 0

1 8 7

2 9 0

3 0 4

4 1 0

4 6 7

5 2 6

3 0 3

3 9 0

4 2 1

0 2 1

2 6 6

3 3 4

3 4 5

0 2 4 3 8 4

0 2 5 0 6 0 5 1 7

0 3 2 0 9 6

0 3 6

1 1 3

1 3 6

0 4 8 2 9 7

0 6 4 4 6 8

0 6 7

0 6 8

3 9 5

0 8 9

1 3 8

1 4 2

4 5 1

1 3 3 4 5 2 1 3 9 4 2 3

1 7 2 3 2 4

1 8 1 3 0 2

1 8 5 2 6 0

1 9 0 3 7 1

1 9 1 1 9 2 2 0 9 3 7 0

2 2 5 2 2 6

2 4 1 2 4 2

2 6 1 0 3 1

2 6 3 2 6 5

2 9 3 3 8 5

3 0 7

3 0 9

3 3 8

3 0 8 4 2 5

3 1 0

3 2 7

3 4 4

3 1 2

3 2 6 4 5 0 3 9 9 4 0 1

4 1 4 5 2 5

4 3 2 4 4 3

4 3 9 4 4 0

4 7 4

3 6 2

0 8 5

1 8 2

2 8 6

0 5 2

2 3 6

2 9 2

3 1 4

4 4 6

1 1 8

2 1 9

2 5 5

0 9 4

1 5 1

5 0 5

4 2 9

3 5 7

4 0 0

2 0 2

2 1 4 2 2 3 2 7 3 4 5 7 1 1 6

2 6 43 6 74 1 71 7 7

2 3 2

3 0 13 7 30 9 04 2 4
4 4 82 1 12 8 5

3 7 9

0 5 8

0 7 4

2 2 1

2 3 5 0 7 6 3 5 9 4 1 2 1 5 2 2 1 8

2 7 6

2 8 1

3 4 2

2 5 6

3 8 8

0 2 7

2 4 5

3 4 1

3 6 9

0 0 6 3 1 9

0 3 0

0 7 2

3 5 6 2 1 2 0 8 8 1 1 0 4 6 0 4 0 8

4 1 10 5 91 4 51 5 02 0 7

2 4 4

4 5 4

0 1 1

1 6 82 1 64 3 84 6 5

4 6 9

0 9 1

2 1 7

4 2 7

3 2 2

3 6 10 2 30 5 4

3 4 6 1 6 1 2 7 5 3 3 7 3 4 0 4 6 6 0 5 5

1 4 4

0 0 9

2 0 8

4 2 8

0 2 0

1 0 7 1 8 8

3 4 3

0 8 1

2 2 0

3 0 5

3 9 7

1 0 0

2 7 2

3 5 0

3 7 5

0 4 3

1 6 3

1 8 3

2 1 0

2 2 7

2 5 3

2 1 3

5 2 4

1 2 8 2 2 8 4 0 4 3 5 8 4 4 1 4 9 1 2 8 2

0 4 6

1 0 80 5 63 0 01 5 44 7 0

1 1 7

4 0 5

4 8 1

2 3 4

0 7 8

0 9 52 3 70 0 52 8 0

3 1 6

2 8 93 5 14 3 7

0 4 4 1 4 3 4 9 8 3 2 5 3 3 2 4 5 8 1 5 7 1 5 9

3 3 0

2 2 2

0 4 1

0 8 2

0 8 3

0 9 3

1 0 3

1 6 0

3 5 2

3 5 5

3 6 8

0 6 6 1 0 1

4 7 6

1 3 5

4 7 8

3 8 1

0 9 2

1 0 2

2 6 7 2 7 0 3 9 3 4 1 9 1 8 4 2 0 1 1 6 9

0 7 3

0 9 9

1 7 34 0 64 2 60 6 11 7 1

3 1 8

3 6 6

1 7 4

2 5 4

1 6 4

4 3 5

2 9 9

1 9 74 8 22 4 72 6 8

5 2 2

4 5 5

4 6 2

0 5 1

1 6 2

1 7 02 9 53 9 2

0 2 8

1 8 9

1 9 8

3 6 0

4 2 2

1 1 1

1 8 6

0 5 7 1 2 3 3 6 4 0 8 7 1 0 9 2 6 9 0 3 3 0 4 0
2 1 5

3 8 0

4 6 3

0 3 82 9 1

3 6 3

1 3 7

1 5 8

1 4 1

3 2 8

1 6 7

2 5 7

2 9 6 1 4 8

3 5 3

4 0 3

4 1 8

0 9 7

1 5 3

2 4 9

3 0 6 3 6 5 2 3 0 3 1 1 1 4 0 2 5 2 0 4 5

4 7 3

0 7 5

0 8 6

0 2 22 7 12 9 83 7 73 9 1

0 3 7

1 1 4

5 1 5

2 3 1

2 7 8

3 8 9

0 5 02 0 62 8 33 3 6

0 1 2
0 4 7

0 7 71 7 54 3 11 4 9

2 4 6

2 4 8 4 5 9 0 8 4 1 4 7 1 5 6 3 2 3 3 8 3 4 0 9 0 0 1
1 3 2

2 3 3

4 6 1

0 9 81 2 0

4 3 3

0 5 3

2 2 4

3 9 6

4 4 5

0 3 5

1 2 6

4 0 7

3 5 4

4 5 6

0 7 1

1 0 4

1 2 2

1 7 8 4 0 2

4 3 0

0 1 8

0 3 4

0 6 3

1 2 9

2 3 8

2 7 7

2 5 8

2 7 4

3 1 7

3 2 1

1 5 5

5 2 1

2 0 5

3 2 0 0 0 7 0 4 9 1 0 5 1 4 6 3 9 8 4 4 7

0 1 3

2 8 4

0 2 6

1 2 7

2 5 93 3 53 7 84 8 00 2 9

2 3 9

3 3 9

1 7 61 9 53 3 10 6 9

0 7 0

1 1 5

4 9 4

3 9 43 4 71 1 23 1 33 1 5

4 6 4

1 0 6

4 7 7 2 6 2 3 4 9 1 3 4 1 2 4 1 6 5 2 8 7 3 4 8 1 6 6 2 2 9
3 7 4

4 3 4

4 4 4

1 2 5

1 3 03 8 2

1 2 1

2 5 1

5 1 6

0 3 9

0 6 2

2 4 0

2 7 9

2 9 4

1 9 6 4 5 3

1 9 4

3 7 2

3 7 6

Fig. 4.14 The protein families of M. genitalium as colorful islands in a sea of gray singletons

of a gene-sized query to a longer subject, and the global alignment of sequencing

reads to their genome of origin.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1 2 3

data

4.72 We start by creating a working directory for this section. Can you do that?

112 4 Fast Alignment

k-Error Alignment

New Term

kerror

4.73 The simplest alignment is exact matching, so let’s begin with that, using a 100

bp fragment from the melanogaster Adh region, which we first copy to our working

directory.

〈cli〉+≡
cp $BEB/data/dmAdhAdhdup.fasta .

cutSeq -r 2301-2400 dmAdhAdhdup.fasta > dmFrag.fasta

We should be able to locate the fragment in the parent sequence with an exact matcher

like keyMat, but also with an inexact matcher like al. Can you do both?

4.74 In biology, sequences are always subject to mutation. So we mutate a single

random position in our fragment.

〈cli〉+≡
mutator -n 1 dmFrag.fasta > dmFrag2.fasta

Can you convince yourself that inexact matching still works, while exact matching

fails?

4.75 We’ve already seen that al is too slow for large subjects. So we use the same

trick as for Blast and chop up our fragment into “words”. In Blast the words are used

to pick a matching region from both the query and the subject (Fig. 4.7). In glocal

alignment, there is no need to pick a region from the query, only from the subject, so

we rethink the partition strategy. Two aspects matter, the number of words and their

lengths. A small set of words is easier to handle than a large set of words, and long

words create fewer spurious matches than short words. In other words, the ideal set

of words has a few long entries. Can you think of such a set of words for our mutated

fragment?

4.76 Our current example contains a single mismatch, but more generally, we can

think of �푘 errors, where an error is either a mismatch or a gap. In �푘-error alignment,

we first set �푘 as the maximum number of errors allowed. Then we divide the query

into �푘 + 1 contiguous fragments of equal length, knowing that one of them will form

an exact match to the relevant subject region (Fig. 4.15A). The program kerror can

print the fragment list. What does that look like for dmFrag2.fasta compared to

the word list of sblast?

4.77 Having constructed the fragments, kerror searches for them in the subject

(Fig. 4.15B). For each match, it constructs an alignment matrix and calculates the

alignment in the traditional way (Fig. 4.15C). How long does kerror take to locate

our 100 bp fragment in the genome of D. melanogaster?

4.3 Glocal 113

A

�푆

�푄
�푎 �푏

Δ

B

�푆

�푄
�푎 �푏

Δ
�푏

C

�푆

�푄
�푎 �푏

Δ

�푄

Fig. 4.15 The �푘-error alignment method comprises three steps: Division of the query into �푘 + 1

contiguous fragments (A), exact search for the fragments (B), and checking whether or not a �푘-error

alignment has been found by filling in the alignment matrix anchored by the exact match (C)

4.78 Our implementation of kerror searches only the forward strand of the subject,

while sblastdoes the more sensible thing searching the forward and reverse strands.

Bearing this in mind, which of the two programs is faster?

4.79 It is surprising that in our example kerror is faster than sblast, because

aligning by matrix traversal, as done by kerror, is much more time-consuming than

the Blast strategy of aligning by extension. So let’s investigate this further. How

many matches do the two fragments used by kerror produce on the forward strand

of the genome of D. melanogaster?

4.80 How many matches do the 90 words used by sblast generate on the forward

strand of the melanogaster genome?

4.81 kerror returns gapped alignments, while sblast is restricted to ungapped

alignments. To see the difference, we construct a version of our fragment that contains

a single nucleotide deletion.

〈cli〉+≡
cutSeq -r 1-49,51-100 -j dmFrag.fasta > dmFrag3.fasta

Can you check whether your fragment contains the intended gap?

4.82 How does kerror handle the fragment with the deletion (dmFrag3.fasta)

compared to sblast?

4.83 What about a single nucleotide insertion? We begin again by constructing a

fragment.

〈cli〉+≡
cutSeq -r 1-50,50-100 -j dmFrag.fasta > dmFrag4.fasta

114 4 Fast Alignment

Can you convince yourself that the query now contains a single nucleotide insertion?

4.84 How does kerror handle the fragment with the insertion (dmFrag4.fasta)

compared to sblast?

4.85 We now graduate from carefully constructed fragments to real sequences. Can

you find the full melanogaster Adh region in the genome? You might like to write a

script kerror.shwith an escalating number of possible errors like �푘 = 1, 2, 4, ...

4.86 sblast also found parts of the guanche Adh region in the melanogaster

genome. We can establish the minimum number of errors necessary for replicat-

ing this with kerror using al.

〈cli〉+≡
cp $BEB/data/dgAdhAdhdup.fasta .

al dmAdhAdhdup.fasta dgAdhAdhdup.fasta | head

Do you think a search for the guanche Adh in the melanogaster genome with kerror

is feasible?

Read Mapping

New Terms

BAM file Phred score samtools

coverage SAM file

4.87 Mapping sequencing reads is by far the most common application of glocal

alignment. Mapping is global for the read and local for the template. The program

sequencer simulates a DNA sequencing machine. The number of reads it generates

is specified via the coverage, which is the number of nucleotides sequenced divided

by the template length. To start small, we sequence the Adh region of D. melanogaster.

〈cli〉+≡
sequencer dmAdhAdhdup.fasta > reads.fasta

What is the coverage you get?

4.88 We map the reads with blastn, ask for tabular output, and redirect it to the

file adh.bl.

〈cli〉+≡
blastn -query reads.fasta -subject dmAdhAdhdup.fasta \

-outfmt 6 > adh.bl

Now we can think about an individual position and ask, how many reads are stacked

on top of it. Fig. 4.16 shows the coverage per position along the melanogaster Adh

from our sequencing simulation with overall coverage 1 and 15. The figure was

generated with the program cov.awk, which we write now. At the beginning we

initialize its variables. In the central block we look at the lines of Blast results and

4.3 Glocal 115

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
ov

er
ag

e

Position

c=1
c=15

Fig. 4.16 Coverage per position along the melanogaster Adh region for total coverage of 1 and 15

store the subject start and end in columns 9 and 10. A match on the reverse strand is

marked by a start greater than the end, in which case we switch the coordinates. At

the end we print the coverage at each position.

Prog. 4.6 (cov.awk)

〈cov.awk〉≡
〈Initialize variables, Prog. 4.6〉
{

s = $9

e = $10

if (s > e) {

〈Switch start and end, Prog. 4.6〉
}

for (i = s; i <= e; i++)

cov[i]++

}

〈Print coverage per position, Prog. 4.6〉

There are two variables to initialize in the BEGIN block, the template length, �푛, and

the array of coverages, cov.

〈Initialize variables, Prog. 4.6〉≡
BEGIN {

〈Get template length, �푛, Prog. 4.6〉
〈Initialize array of coverages, cov, Prog. 4.6〉

}

The template length is provided by the user. Can you make sure (s)he has actually

done so?

116 4 Fast Alignment

4.89 At the beginning, the coverage of every position is zero. Can you initialize the

array of coverages?

4.90 To switch the start and end position, one of them is best saved to a temporary

variable first. Can you implement the switch?

4.91 Can you print the coverage per position?

4.92 Can you now generate your version of Fig. 4.16?

4.93 Fig. 4.16 shows that with overall coverage 1 many sites remain unsequenced,

while—at least in our simulation—some sites have a coverage greater than 5. Can

you count the sites with coverage 0, 1, and so on, for overall coverage 1?

4.94 Fig. 4.17 shows the site coverages for our sequencing simulation for overall

coverages 1 and 15. The maximum for �푐 = 15 is at 15, the maximum for �푐 = 1 is, in

fact, zero. What do the distributions from your simulation look like?

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20 25 30

N
um

be
r

of
 S

ite
s

Coverage

c=1
c=15

Fig. 4.17 The distribution of site coverages in our sequencing simulation with overall coverage 1

and 15

4.95 How many sites remained unsequenced with coverage 15?

4.96 Just to see how far we can take this, let’s insist we sequence every last nucleotide.

What is the coverage we need for that? To explore this systematically, we write

the script simCov.sh, which iterates across coverages 1 to 100 and reports “all

sequenced” for every winning coverage.

4.3 Glocal 117

Prog. 4.7 (simCov.sh)

〈simCov.sh〉≡
for a in $(seq 100)

do

printf "%s " $a

sequencer -c $a dmAdhAdhdup.fasta > reads.fasta

blastn -query reads.fasta -subject dmAdhAdhdup.fasta \

-outfmt 6 |

awk -f cov.awk -v n=4761 |

awk ’{c[$2]++}END{for(a in c)print a, c[a]}’ |

sort -n |

head -n 1 |

awk ’/ˆ0/{print}!/ˆ0/{print "all sequenced"}’

done

For which coverages is every nucleotide sequenced?

4.97 Read mapping is usually done with a dedicated mapping program, for example

bwa. We’ve already mentioned bwa in the context of the Burrows-Wheeler transform,

but haven’t used it yet. It requires an index of the template to run.

〈cli〉+≡
bwa index -p dmAdh dmAdhAdhdup.fasta

Do you recognize any of the acronyms printed during index construction?

@SRR006041.1 FGR9I4U01AIGBG length=54

CTCGAGAATTCTGGATCCTCCATACATACTGCAACAATTTGTAACTTTACTTCC

+SRR006041.1 FGR9I4U01AIGBG length=54

;;;;;;;;;;;;:::9;;:::::8::9:9:99:::;9;;;;9;:9888887788

Fig. 4.18 Example read in FASTQ format taken from data published by The International Genome

Sample Resource [13]

4.98 Sequencing machines return for each base not just its identity, but also its

quality. This information is stored in FASTQ format, a variant on the FASTA format.

Fig. 4.18 shows an example, which is one of the myriad reads published by The

International Genome Sample Resource, a consortium focusing on human genetic

diversity [13]. Like every read, it consists of four lines, a header starting with @, the

sequence, a second header starting with +, and a quality score for each base in the

sequence in line 2. The quality score, �푄, is written as the numerical value of the

character. For example, the first base, C, has a semicolon as quality score. What is

the value of �푄 denoted by semicolon?

4.99 The ASCII values in FASTQ files are shifted by 33 to give the final quality

score, �푄′ = 59 − 33 = 26. This is also called a “Phred score” because it was

118 4 Fast Alignment

first introduced in the Phred software package for analyzing sequencing reads. The

corresponding error probability is

�푃e = 10−�푄/10,

which in our case is ≈ 0.0025.

〈cli〉+≡
echo ’e(-2.6 * l(10))’ | bc -l

What is the error probability corresponding to the remaining distinct scores, :, 9, 8,

and 7?

4.100 We generate a fresh batch of reads with coverage 15 and store them in

reads.fasta.

〈cli〉+≡
sequencer -c 15 dmAdhAdhdup.fasta > reads.fasta

Now we’d like to convert these reads from FASTA to FASTQ before we map them

with bwa. This is a bit of an ad hoc conversion, as no real differences in quality

are involved, we’d just like to play with the FASTQ format. So we write an ad hoc

program to generate it for us. We’ve already seen that files with multiple FASTA

entries can be tricky to deal with, so we simplify them first with fasta2tab. What

is its output when applied to reads.fasta?

4.101 We now need a program, tab2fastq.awk, to convert fasta2tab output to

FASTQ. Can you write it? You can use the same, arbitrary quality value for each

nucleotide, for example, semicolon.

4.102 Can you convert reads.fasta to reads.fastq?

4.103 Now we can map our reads.

〈cli〉+≡
bwa mem dmAdh reads.fastq > adh.sam

adh.sam is a SAM file, which consists of a header and a body.1 Header lines start

with @. So we can filter for the header lines.

〈cli〉+≡
grep ’ˆ@’ adh.sam

@SQ SN:DMADH LN:4761

@PG ID:bwa PN:bwa VN:0.7.15-r1142-dirty \

CL:bwa mem dmAdh reads.fasta

Our header consists of two lines, a line for the reference sequence (@SQ), and a line for

the program used (@PG). The sequence line contains the sequence name, DMADH,

and its length, 4761. The program line contains the program identifier (ID), its name

(PN), the version (VN), and the command line (CL). What does your header look like?

1 The SAM format is specified at http://samtools.github.io/hts-specs/SAMv1.pdf

4.3 Glocal 119

Table 4.1 The mandatory fields of a SAM file

Col. Meaning

1 Query

2 Comment flag; 0: none, 4: unmapped, 16: reverse-complement

3 Subject

4 Position

5 Mapping quality

6 Match string; M: match, D: deletion, I: insertion, S: soft clipping from read

7 Name of read mate

8 Position of read mate

9 Template length

10 Read sequence

11 Base quality

4.104 A SAM file consists of eleven mandatory columns, which might be followed

by additional columns. The mandatory columns are listed in Table 4.1. Column 2

indicates whether a read is mapped to the reverse strand. How are reverse reads

stored in adh.sam?

4.105 SAM files are often kept in their more compact binary representation, BAM,

which we generate with the view command of samtools.

〈cli〉+≡
samtools view -b adh.sam > adh.bam

What is the compression ratio between our SAM and BAM files?

4.106 We can convert a BAM file back into SAM.

〈cli〉+≡
samtools view adh.bam | head

Is the compression lossless?

4.107 BAM files are often kept in sorted format.

〈cli〉+≡
samtools sort adh.bam > adhS.bam

In what way is adhS.bam sorted?

4.108 Sorting again reduces the file size—by how much?

4.109 A sorted BAM file can be indexed.

〈cli〉+≡
samtools index adhS.bam

What is the new index file called?

4.110 An indexed BAM file can be visualized. For this, we apply “text view”, or

tview, to the BAM file, which displays the reads with respect to the reference

sequence, the melanogaster Adh region.

〈cli〉+≡
samtools tview --reference dmAdhAdhdup.fasta adhS.bam

120 4 Fast Alignment

At the top we see a row of coordinates, followed by the reference sequence and the

underlined consensus sequence. The remaining lines are forward reads indicated by

dots and reverse reads indicated by commas. To quit the viewer, press q. Press ? for

help, Esc to cancel (for example the help screen). Can you color the reads according

to base quality?

4.111 Positions in an alignment are denoted by the sequence name and the position

separated by colon,

name:position

Can you jump to position 2000?

4.112 Let’s scale up our simulation and sequence chromosome 2L of D. mela-

nogaster with a coverage of 15. How many nucleotides are now contained in the

reads?

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Reads (x1000)

blast
bwa

Fig. 4.19 Run times of blastn and bwa as a function of the number of 100 bp reads mapped onto

chromosome 2L of D. melanogaster

4.113 Fig. 4.19 shows the run times of blastn and bwa as a function of the number

of reads mapped. Let’s begin with blastn. It requires a Blast database to run

efficiently. Can you construct it for chromosome 2L?

4.114 We write a script, timeBlast.sh, to measure the run times of blastn as

a function of the number of reads analyzed. The number of lines we retrieve with

head is twice the number of reads.

4.3 Glocal 121

Prog. 4.8 (timeBlast.sh)

〈timeBlast.sh〉≡
for a in 1 2 5 10 20 50 100

do

((nl=$a*1000*2))

head -n $nl reads2L.fasta > query.fasta

〈Time Blast run, Prog. 4.8〉
echo $a $rt

done

Can you time the Blast run (date)?

4.115 It’s time to run timeBlast.sh and save the results for later use. Can you do

that?

4.116 What happens to the Blast run times if we set the number of threads to 8?

4.117 How long would Blast take to map all the reads?

4.118 bwa requires an index to run. Can you construct it?

4.119 Now we write the script timeBwa.sh. In a FASTQ file the number of lines

is four times the number of reads.

Prog. 4.9 (timeBwa.sh)

〈timeBwa.sh〉≡
for a in 1 2 5 10 20 50 100

do

((nl=$a*1000*4))

head -n $nl reads2L.fastq > reads.fastq

〈Time bwa run, Prog. 4.9〉
echo $a $rt

done

bwa runs much faster with multiple threads than without, so we timed it with 8

threads using -t 8. In addition, we minimized the verbosity with -v 1. Can you

also time bwa like that?

4.120 How long would bwa take to map all reads?

4.121 Can you reproduce Fig. 4.19?

122 4 Fast Alignment

4.4 Assembly

Over 40 years after its invention, shotgun sequencing remains the standard method

for sequencing DNA [38]. Shotgun sequencing consists of two steps, sequencing of

random reads in the lab and assembly of these reads in the computer. Assembly is

essentially a puzzle with potentially millions of pieces and the way we piece together

the pieces is through fast alignment.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1 2 3 4

data

4.122 Can you construct the directory for this section and change into it?

Overlapping and Merging Reads

New Terms

olga overlap graph

4.123 Assembly is done by overlapping pairs of reads. Fig. 4.20A illustrates such

an overlapping pair of reads, where a suffix of read �푎 matches a prefix of read �푏. To

make this concrete, we consider the pair �푎 = GATAC and �푏 = TACAG. What is their

overlap?

A B

�푎

�푏

�푎 �푏

Fig. 4.20 Cartoon of overlap between reads �푎 and �푏; A shows the overlap alignment, B the overlap

graph

4.124 The program al implements alignment in overlap mode, where flanking gaps

are ignored in the score. Can you use al to overlap �푎 and �푏?

4.4 Assembly 123

4.125 Just to remind ourselves—what does the global alignment of �푎 and �푏 look

like? And the local alignment?

4.126 In assembly, overlapping reads are merged into contigs. What is the contig

resulting from merging �푎 and �푏?

4.127 The program sass is a simple assembler. Can you use it to assemble �푎 and

�푏?

A B

GATAC

TACAG

 3

GATAC

TACAG

 3 1

Fig. 4.21 Overlap of minimum length �푘 = 3 between oligos GATAC and TACAG (A); including the

additional overlap without threshold (B)

4.128 An overlap between two reads can also be visualized as a graph, where the

nodes are the sequences, and the edges point from matching suffix to matching prefix

(Fig. 4.20B). Can you draw the overlap graph for the reads in Fig. 4.22?

�푏

�푎

�푐

Fig. 4.22 Three overlapping reads

4.129 Nodes in overlap graphs are often labeled with the actual read sequence rather

than the read name. In that notation the edges are usually labeled with the overlap

length. Fig. 4.21A shows the optimal overlap we have already identified. However,

there is another overlap in the opposite direction if we also include overlaps of

length 1 (Fig. 4.21B). Can you draw the complete overlap graph for the two reads

�푟1 = CCTTG and �푟2 = CTTGA?

4.130 The program olga calculates the overlap graph between reads. The resulting

graph is in dot notation, which we can plot with dot. This uses the same rendering

system we already saw in neato and circo; so again, if -T x11 doesn’t work on

your system, try -T png. Can you use olga to draw the overlap graph for �푟1 and �푟2?

4.131 The file pentamers.fasta contains oligos of length 5. How many pentanu-

cleotides does it contain? Are �푟1 and �푟2 among them?

124 4 Fast Alignment

AATTT

TAGTT

 1

TCCTC

 1

TCTAG

 1

TGAAT

 1

TTCTA

 2

TTTCT

 3

AGTTC

CCTTG

 1

CTAGT

 1

CTTGA

 1

GTTCC

 4

 2

 2

 3

 4

 1

 2

 3

 2

 4

 1

 1

 1

 1

 1

 1

 1

 3

 2

 1

 1

 3

 4

 3

 1

 1

 1

 2

 2

 1

 1

 1

 2

 2

 4

 1

 3

 3

 1

 1

 1

 1

 1

 1

 1

 3

 2

 4

 2

 2

 1

 1

 3

 1

 4

Fig. 4.23 Complete overlap graph between twelve nucleotides of length five

4.132 Fig. 4.23 shows the complete overlap graph of the oligos inpentamers.fasta.

Can you reproduce it and spot �푟1 and �푟2?

4.133 Fig. 4.24 shows the overlap graph for our pentamers restricted to overlaps of

3 or more. Can you reproduce it?

4.134 The overlap graph Fig. 4.24 gives an idea of how to assemble sequencing

reads: Start at the node that has no incoming edge as this must be the leftmost read,

and work your way to the last edge. If there is more than one outgoing edge, choose

the “heavier” one. If there are several outgoing edges with the same maximum

weight, pick an arbitrary one among them. Can you reconstruct the sequence from

which the twelve reads in Fig. 4.24 were sampled? You can check your answer with

sass.

4.135 We can save our assembly into a template sequence.

〈cli〉+≡
sass -t 3 pentamers.fasta > template.fasta

Now we try to sequence the template using sequencer in shredder mode (-S),

which means it only samples the forward strand. We also abolish sequencing errors

4.4 Assembly 125

AATTT

TTTCT

 3

AGTTC

GTTCC

 4

TTCTA

 3

CCTTG

CTTGA

 4

CTAGT

 3 TAGTT

 4

TGAAT

 3

TCCTC

 3

 4

 3

TCTAG

 4

 3

 3

 3

 4

 3

 4

Fig. 4.24 Overlap graph for the same dozen oligos shown in Fig. 4.23, this time with minimum

overlap 3

(-e 0) and set the seed for the random number generator (-s 2) to make sure you get

the same reads as us in this instance.

〈cli〉+≡
sequencer -s 2 -r 5 -S -e 0 -c 4 template.fasta > reads.fasta

What happens when you assemble these reads with sass and minimum overlap of 3

or minimum overlap of 2?

4.136 Fig. 4.25A shows the overlap graph for our reads with a minimum overlap

of 3. The two graphs for the two contigs are clearly visible. However, there are a

number of redundant reads in the input, which make the graph messy. They have been

removed in Fig. 4.25B. Can you write a script, reduce.sh, to remove redundant

reads, and use it to reproduce Fig. 4.25B?

126 4 Fast Alignment

A B

ATTTC

ATTTC

 5

ATTTC

 5

TAGTT

GTTCC

 3

GTTCC

 3

TCCTC

TCCTC

 5

GAATT

 3

AATTT

 4

 3

GAATT

 5

 3

TCTAG

 3

TCTAG

 5

CTAGT

 4

 3

 5

 4

 3

 3

 5 4

 4

 4 5

 5 5

 3

 5

 3

TTGAA

 3

 3

TTGAA

 5

 3

 5

 4

 3

 3

 5

 5

 3

 5

 3

 4

AATTT

ATTTC

 4

CTAGT

TAGTT

 4

GAATT

 4

 3

GTTCC

TCCTC

 3

 3

TCTAG

 4

 3

TTGAA

 3

Fig. 4.25 An overlap graph with all reads (A), and reduced to the unique reads (B)

4.137 Can you draw the overlap graph for the single contig?

4.138 We’ve seen the problem that there might not be enough links in the graph to

cover the length of the template. Here is a set of reads to illustrate a different type of

problem.

〈cli〉+≡
sequencer -s 18 -r 5 -S -e 0 -c 4 template.fasta |

bash reduce.sh > reads.fasta

What do you observe when you assemble these reads with minimum overlap 3?

Scaling Up

New Terms

�푁50 velvetg velveth

hashing

4.139 To assemble whole genomes, we need more sophisticated tools than our

simple assembler, sass. The programs velveth and velvetg together form the

4.4 Assembly 127

popular assembler velvet used in real-world genome projects [43]. To explore it,

we’d like to start with a sequence without the complications of real sequences, but

still of realistic size. So we copy the genome of M. genitalium, randomize it, and

sequence the randomized version with coverage 1 and no errors.

〈cli〉+≡
cp $BEB/data/mgGenome.fasta .

randomizeSeq mgGenome.fasta > rg.fasta

sequencer -e 0 rg.fasta > reads.fasta

To assemble the reads, we first hash them. Hashing converts a read—more precisely

a substring of a read—into a number. This number is used to look up the read in a

read table. In velvet, hashing is carried out by velveth. It takes as main parameters

an output directory, assem, and the length of the words, or �푘-mers, to be hashed,

21. There are various additional options, in our case to tell the program we’re using

short reads (-short) in FASTA format (-fasta).

〈cli〉+≡
velveth assem 21 -short -fasta reads.fasta

What do you observe?

4.140 velveth has now generated the directory assem. What does it contain?

4.141 What happens when you run velvethwith a hash length of 32?

4.142 We revert to hash length 21 and assemble the reads with velvetg. This takes

as argument the expected coverage (-exp cov).

〈cli〉+≡
velveth assem/ 21 -short -fasta reads.fasta

velvetg assem/ -exp_cov 1

The resulting contigs are now contained in

assem/contigs.fa

How many contigs do you get?

4.143 What happens when you double the coverage to 2?

4.144 Let’s write a program to summarize the steps of our shotgun simulation,

simShot.awk. We begin by interacting with the user before we sequence the tem-

plate, hash the reads, assemble the reads, and count the contigs.

Prog. 4.10 (simShot.awk)

〈simShot.awk〉≡
BEGIN {

〈User interaction, Prog. 4.10〉
〈Sequence template, Prog. 4.10〉
〈Hash reads, Prog. 4.10〉
〈Assemble reads, Prog. 4.10〉
〈Count contigs, Prog. 4.10〉

}

128 4 Fast Alignment

In the user interaction, we require a coverage and a template. If we don’t get both,

we print a usage message and exit.

〈User interaction, Prog. 4.10〉≡
if (!c || !t) {

〈Print usage message, Prog. 4.10〉
exit 1

}

In the usage message we request the coverage and a template. The blank at the

beginning of the string in the second line is significant.

〈Print usage message, Prog. 4.10〉≡
m = "Usage: awk -f simCov.awk"

m = m " -v c=<cov> -v t=<template>"

The usage message still lacks switches to collect the arguments for the three programs

we will run, sequencer (s), velveth (h), and velvetg (g). Can you add these to

the message and then print it?

4.145 To sequence the template, we first construct the command for sequencer

from the coverage, its additional arguments, and the template. The reads are redi-

rected to reads.fasta. Then we send the command to the system with the Awk

function system. Execution of sequencer might take some time, so we give our-

selves feedback about what’s going on.

〈Sequence template, Prog. 4.10〉≡
cmd = "sequencer -c %s %s %s > reads.fasta"

cmd = sprintf(cmd, c, s, t)

printf("# running sequencer...")

system(cmd)

print "done"

Next, we hash the reads with velveth. It writes messages to the screen, which we

don’t need here. Can you run velveth “quietly”?

4.146 Can you now quietly assemble the reads?

4.147 The contigs are assembled, so we count them and print their count as a

function of the coverage.

〈Count contigs, Prog. 4.10〉≡
printf("%s\t", c)

cmd = "grep -c ’ˆ>’ assem/contigs.fa"

system(cmd)

How many contigs do you get with error-free sequencing of the randomized genome

with coverage 5?

4.148 Fig. 4.26 shows the number of contigs as a function of the coverage for our

randomized genome when sequenced without error. Can you construct your own

version of Fig. 4.26?

4.4 Assembly 129

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16 18 20

C
on

tig
s

Coverage

Fig. 4.26 The number of contigs as a function of the coverage in simulated shotgun runs on the

shuffled genome of M. genitalium

4.149 What is the smallest coverage resulting in a single contig in your simulations?

4.150 Clearly, the more we sequence, the better our assembly, but let’s be a bit

more specific about the relationship between the coverage, �푐, and the probability of

sequencing a particular nucleotide. If we picture shotgun sequencing as randomly

drawing individual nucleotides from a genome of length �퐿, the probability of getting

a particular one is 1/�퐿 and the probability of not getting it is 1−1/�퐿. The probability

of not sequencing a nucleotide in �푠 trials is

�푃0 =

(

1 − 1

�퐿

)�푠

.

To simplify this, we first rewrite

(

1 − 1

�퐿

)�푠

= �푒�푠 ln(1− 1
!
) ,

and use the approximation ln(1 + �푥) ≈ �푥 to get

�푃0 ≈ �푒−�푠/�퐿 = �푒−�푐 .

How many nucleotides of our randomized M. genitalium genome are expected to be

left unsequenced if it is shotgunned with coverage 10?

4.151 How many nucleotides are expected to be left unsequenced with a coverage

of 15, or of 20?

4.152 What is the theoretical coverage necessary to achieve an expected combined

gap length of 1?

130 4 Fast Alignment

4.153 What is the theoretical coverage necessary to achieve a combined gap length

of 0?

4.154 The default sequencing error in sequencer is 0.1%, one base per kb. How

many contigs do you get in ten trials with coverage 20 and the default sequencing

error rate?

4.155 We’ve seen that sequencing errors wreck our single contig result. Does greater

coverage help?

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

S
hu

st
rin

g-
Le

ng
th

Position (100 kb)

obs
ran

Fig. 4.27 Shustring lengths along the observed genome of M. genitalium (obs) and its randomized

version (ran)

4.156 The programsequencer simulates sequencing errors as random changes that

are indistinguishable from true nucleotides. We’ve already seen that real sequencing

data comes with quality scores for every nucleotide in every read (Fig. 4.18). We won’t

emulate this here and hence continue to pretend the sequencing data is perfect, while

acknowledging that it never is. However, we now turn from the shuffled M. genitalium

genome to the real thing. To remind ourselves of the difference, look at Fig. 4.27,

where the shortest unique substring lengths are plotted along the randomized and

the observed genome of M. genitalium. Out of the roughly six hundred thousand

shustring lengths, we plot only those greater than 24 and 1% of the rest to keep

plotting nimble.

〈cli〉+≡
shustring -l mgGenome.fasta | tail -n +3 |

awk ’NR%100 == 0 || $2 > 24 {print $1, $2, "obs"}’ \

> sl.dat

Can you reproduce Fig. 4.27?

4.4 Assembly 131

4.157 Let’s simulate error-free sequencing of M. genitalium with coverage 20. How

many contigs do you get?

4.158 So far we have simulated shotgun sequencing by picking random reads. In

real shotgun sequencing experiments, random fragments of mean length, say, 500

bp are picked and sequenced from both ends. This approach is called paired-end

sequencing. The information about read pairing is passed on to the assembly program.

So we repeat the sequencing experiment, but this time generate paired-end reads in

sequencer (-p) and use the option -shortPaired in velveth. In velvetgwe set

the “insert length”, that is, the length of the fragment sequenced from both ends, to

500 (-insert len).

〈cli〉+≡
awk -f simShot.awk -v c=$c -v s="-e 0 -p" \

-v t=mgGenome.fasta \

-v h="-shortPaired -fasta" \

-v g="-exp_cov $c -ins_length 500"

How many contigs and nucleotides do you get?

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6
C

ontigs (100 kb)

M. genitalium (100 kb)

Fig. 4.28 Comparison between the genome of M. genitalium and a simulated shotgun sequence

with coverage 20

4.159 Let’s compare the contigs we just got to the ideal result, the complete forward

or reverse strand of the M. genitalium genome. For this we concatenate the contigs

we got and plot their matches with the genome of M. genitalium using mummer.

132 4 Fast Alignment

〈cli〉+≡
echo ">contigs" > contigs.fa

grep -v ’ˆ>’ assem/contigs.fa >> contigs.fa

mummer -b -c mgGenome.fasta contigs.fa | mum2plot |

awk ’{f=100000;print $1/f, $2/f, $3/f, $4/f}’ |

plotSeg -x "M. genitalium (100 kb)" \

-y "Contigs (100 kb)"

Fig. 4.28 shows the plot of our particular contigs. Can you interpret it? What do your

contigs look like?

4.160 Apart from the number of contigs, a second popular measure of assembly

quality is the so-called �푁50. This is related to the median contig length, which in turn

is similar to the mean contig length. So before we define the �푁50, we remind ourselves

of median and mean. The median is the midpoint of a sorted set of numbers, the

mean its average. Consider eleven toy contigs with lengths

31, 66, 74, 6, 5, 79, 83, 52, 10, 90, 28

What is the median and the mean contig length?

4.161 The �푁50 is found in three steps. First, we calculate the total contig length.

Then we sort the contig lengths and calculate their cumulative length. Finally, we

search for the point at which the cumulative length is greater or equal to half the

total length. What is the �푁50 of our toy contigs?

4.162 What is the �푁50 of your last assembly?

4.5 Multiple Sequences

We’ve spent quite some time on aligning pairs of sequences. But that’s just a special

case of aligning multiple sequences. Multiple sequence alignments are the starting

point of many types of analyses in molecular evolution, most prominently among

them perhaps phylogeny reconstruction. As we shall see, multiple sequence align-

ments themselves are calculated from phylogenies.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1 2 3 4 5

data

4.163 Can you make the directory for this section and change into it?

4.5 Multiple Sequences 133

Optimal Multiple Sequence Alignment

New Term

multi-dimensional matrix

4.164 To optimally align �푛 sequences, an �푛-dimensional alignment matrix is needed.

To construct multi-dimensional matrices, we start from zero dimensions, a mere dot

in Fig. 4.29A. By doubling this dot and drawing a connecting edge, a one-dimensional

matrix is generated, which can accommodate a single sequence, �푆1, written from

left to right as indicated by the arrow in Fig. 4.29B. In the next round of doubling

we get the familiar two-dimensional matrix for aligning pairs of sequences, �푆1 and

�푆2 in Fig. 4.29C. The trace-back is indicated by the red arc. How large is the two-

dimensional alignment matrix?

A B C D E

b b b

�푆1
b b

bb

�푆1

�푆2

b b

bb

�푆1

�푆2
b b

bb

�푆3

b b

bb

b b

bb

b b

bb

�푆1

�푆2
b b

bb

�푆3

�푆4

Fig. 4.29 Building multi-dimensional matrices to optimally align multiple sequences. The number

of dimensions ranges from zero (A) to four (E) and corresponds to the number of sequences, �푆8 ,

that can be written along its edges and hence aligned. Sequences are indicated by colored arrows

labeled �푆8 . They all start at the same node. The red arc indicates the trace-back

4.165 We can again double the two-dimensional alignment matrix in Fig. 4.29C to

get a cube for aligning three sequences. By doubling this, we get the hyper-cube in

Fig. 4.29D for aligning four sequences. How large is the matrix required for aligning

�푛 sequences length ℓ?

4.166 Do you think optimal multiple sequence alignment is feasible?

134 4 Fast Alignment

Aligning to a Reference

New Terms

anchor alignment sops sum-of-pairs score

>a

GAGCTCAACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGCGTC

>b

GAGGTCAGACCGGTTGGTAGGCGTTCATTATTGGGAGGCAGGCGTATGTC

>c

GAGCTCAGACGGGTTGGTGCGTTCATTAATGGGAGGCTGGCGTACGTC

>d

GAGCTCAACCGGTTGGTAGGCGTTCATTATTAGGACGGAGACGCGTC

Fig. 4.30 The four sample sequences in sample.fasta for multiple sequence alignment

4.167 We’ve seen that pairwise optimal alignment cannot in practice be generalized

to multiple sequences. Instead, the problem of multiple sequence alignment is solved

by reducing it to pairwise alignment. The simplest version of this is to align all

sequences to a reference, a technique also called anchor alignment as the sequences

are anchored on the reference. Consider the four sequences �푎, �푏, �푐, and �푑 in Fig. 4.30,

which are contained in sample.fasta. To carry out anchor alignment, we need

all four sequences in separate files, a.fasta, b.fasta, and so on. Can you split

sample.fasta into its component sequences (getSeq)?

4.168 Let’s make sequence �푎 our reference and align sequence �푏 to it with our

optimal aligner al. Can you do that?

4.169 We’d like to save the output of al in FASTA format. For this we write the

program al2fasta.awk, where we interact with the user and print the sequence.

Prog. 4.11 (al2fasta.awk)

〈al2fasta.awk〉≡
〈Interact with user, Prog. 4.11〉
〈Print sequence, Prog. 4.11〉

Sometimes we’d like to save the query, sometimes the subject. So we tell the user

that we are converting a target, which can be either the query or the subject.

〈Interact with user, Prog. 4.11〉≡
BEGIN {

if (target != "Subject" && target != "Query") {

u = "Usage: awk -f al2fasta.awk "

u = u "-v target=<Subject|Query>"

4.5 Multiple Sequences 135

print u

exit

}

}

When printing the sequence, we either print the header, or the sequence data.

〈Print sequence, Prog. 4.11〉≡
〈Print header, Prog. 4.11〉
〈Print sequence data, Prog. 4.11〉

The name of the sequence is marked by the first “Query” or “Subject” line we

encounter.

〈Print header, Prog. 4.11〉≡
$1 == target && NR < 3 {

printf ">%s\n", $2

}

Can you print the sequence data?

4.170 Now we are in a position to save our nascent anchor alignment in, say,

anc.fasta. Can you do that?

4.171 Any gap introduced in the reference is carried into the next round. So the

reference sequence might accumulate gaps as we go along. Since al cannot align

gap characters, we replace them by N and store the new reference sequence in

r.fasta.

〈cli〉+≡
al a.fasta b.fasta | tail -n +7 | grep Q | tr ’-’ ’N’ |

awk ’{printf ">r\n%s\n", $3}’ > r.fasta

What does our multiple sequence alignment look like after we’ve anchored sequence

�푐?

4.172 Can you add sequence �푑 to our alignment?

4.173 Now that we’ve got an alignment, we’d like to score it. A popular score for

multiple sequence alignments is the sum-of-pairs score. It is calculated by iterating

over the alignment columns. For each column, all pairs of residues are scored, pairs

of gaps are ignored, and a residue paired with a gap is given a gap score. There is no

gap opening. The grand total of these pair scores is the sum-of-pairs score. Consider

the alignment

A-

A-

TT

and let match be 1, mismatch -3, and gap -2. What is the sum-of-pairs score of this

mini-alignment? You can test your answer with sops, a program for calculating the

sum-of-pairs score.

4.174 What is the sum-of-pairs score of our anchor alignment?

136 4 Fast Alignment

4.175 We picked sequence �푎 as our reference, but we might as well have picked

another one. What does the alignment anchored on �푐 look like?

4.176 What is the sum-of-pairs score of the alignment anchored on sequence �푐?

4.177 We’ve seen that the sum-of-pairs score changes when we switch from se-

quence �푎 as anchor to sequence �푐. Can you explain why?

a GAGCTCA-ACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGCGTC

d-..........A.................C....A......

b ...G...G..........A.............G.....C.....

Fig. 4.31 Blast anchor alignment of the four sequences in Fig. 4.30

4.178 Blast has an anchor mode, where the query serves as the anchor. If we take

sequence �푎 as the query and the rest as the subject, we can set the output to one of

the four anchor formats, 1–4. We find format 3 the most useful.

〈cli〉+≡
cat b.fasta c.fasta d.fasta > subject.fasta

blastn -task blastn -query a.fasta \

-subject subject.fasta -outfmt 3

Fig. 4.31 shows a slightly edited version of the result. Can you make sense of it?

4.179 What does output format 4 look like?

4.180 Output formats 1 and 2 make the same distinction between matches as formats

3 and 4. But there is another difference. Can you spot it?

Aligning without Reference

New Terms

guide tree progressive alignment upgma

mafft sed

4.181 Without an anchor to pile our sequences on, we can still calculate a multi-

ple sequence alignment efficiently. This is done in three steps: Calculate pairwise

distances (Fig. 4.32A and B), cluster distances into a guide tree (Fig. 4.32C), and

align sequences in the order implied by the guide tree (Fig. 4.32D–F). This pro-

cedure is called progressive alignment as opposed to optimal alignment in multi-

ple dimensions, which is too slow. Consider again our four example sequences in

sample.fasta (Fig. 4.30). We begin constructing their progressive alignment by

calculating their distances as entries in a distance matrix,

4.5 Multiple Sequences 137

A B C

�퐷

�퐶

�퐵

�퐴

→

�퐴 �퐵 �퐶 �퐷

�퐴 0 6 6 2

�퐵 6 0 4 6

�퐶 6 4 0 6

�퐷 2 6 6 0

→
�퐴 �퐷 �퐵 �퐶

Leaf

b

b Internal Node

b

Root

D E F

�퐷

�퐴

→ �퐵

�퐶

→ �퐵

�퐶

�퐷

�퐴

Fig. 4.32 Alignment of multiple sequences as progressive pairwise alignment along a guide tree:

Four sequences (A) are aligned pairwise and their distances stored in matrix B, which is summarized

as tree C; traversal of this tree from the leaves to the root guides the alignment (D–F)

�푎 �푏 �푐 �푑

�푎 0 10 10 10

�푏 10 0

�푐 0

�푑 0

As distances we use the number of errors returned by al. Can you fill in the distance

matrix?

 a

 d

 b

 c

1

Fig. 4.33 The guide tree for the four sequences in Fig. 4.30

4.182 In progressive alignment, the distance matrix (Fig. 4.32B) is converted into a

tree (Fig. 4.32C), which guides the subsequent construction of the multiple sequence

alignment. The tree is thus called guide tree. We get to know the details of methods

138 4 Fast Alignment

for tree construction from distances in the next chapter. For now, we just take the

program upgma to convert our distance matrix into a tree and plot it with plotTree.

The format of the distance matrix read by upgma is the Phylip2 format, which consists

of the number of taxa, 4 in our case, followed by four rows of data. Each data row

consists of the sequence name, followed by the distances. Fig. 4.33 shows our guide

tree. Can you reproduce it?

4.183 The multiple sequence alignment we’re after is constructed by traversing the

guide tree in Fig. 4.33 from the leaves to the root. The first internal node we encounter

is the cluster (�푎, �푑), so we align sequences �푎 and �푑 first. Can you save their alignment

in prog.fasta?

4.184 The second pair of sequences we reach walking up the guide tree in Fig. 4.33

is (�푏, �푐). Can you add their alignment to prog.fasta?

4.185 The last internal node we reach on our way up the guide tree in Fig. 4.33 is the

root, ((�푎, �푑), (�푏, �푐)). So we align the two alignments (�푎, �푑) and (�푏, �푐). We do this

by inserting gaps into alignments (�푎, �푑) and/or (�푏, �푐) in prog.fasta. The first gap

we insert is into (�푎, �푑) and converts CAAC into CA-AC. We do this using the stream

editor sed.

〈cli〉+≡
sed ’s/CAAC/CA-AC/’ prog.fasta | fasta2tab

The sed command s/a/b/ means substitute a by b. Can you replace prog.fasta

with its new version?

4.186 Alignment (�푎, �푑) is still two residues shorter than alignment (�푏, �푐). Can you

insert another gap to fix this?

4.187 What is the sum-of-pairs score of the alignment in prog.fasta?

4.188 mafft is a popular program for computing multiple sequence alignments [24,

25]. It’s name stands for Multiple sequence Alignment using Fast Fourier Transform.

Fast Fourier transform is a computational technique that we only mention here to

explain the double f in mafft. Let’s apply mafft to our sample sequences in default

mode.

〈cli〉+≡
mafft sample.fasta

What is the sum-of-pairs score of the resulting multiple sequence alignment?

4.189 mafft tells us that its default alignment strategy, the authors call it FFT-NS-

2, is “fast but rough”. We have just seen that there is room for improvement of the

alignment score, so we take the authors’ advice and use the --auto option.

〈cli〉+≡
mafft --auto sample.fasta

2 evolution.genetics.washington.edu/phylip.html

4.5 Multiple Sequences 139

What is the score of the alignment you get now?

4.190 The strategy just picked by mafft, L-INS-i, is described by the authors as

“probably most accurate”, but “very slow”. Speed is not an issue with our short toy

sequences, but we know that accuracy could still be improved. Here is another variant

of mafft, which uses an algorithm the mafft authors call “parttree” to calculate the

guide tree.

〈cli〉+≡
mafft --parttree sample.fasta

What is the score of the alignment this time?

4.191 Let’s turn from toy sequences to real data. We have already looked at the

primate mitochondrial genomes in primates.fasta. Here we concentrate on the

simians among the primates, P. troglodytes, P. paniscus, H. sapiens, G. gorilla,

P. pygmaeus1, P. pygmaeus2, and H. lar. Can you extract their sequences into

simians.fasta?

4.192 What is the sum-of-pairs score of the simians alignment with the --auto

option?

4.193 With our toy sequences we found that the alignment quality could be improved

by using the --parttree option and nothing else. Is this also the case with the

simians data?

 P troglodytes

 P paniscus

 G gorilla

 H sapiens

 P pygmaeus1

 P pygmaeus2

 H lar

0.01

Fig. 4.34 The mafft guide tree for our seven simian sequences

4.194 mafft can save its guide tree to a file called input.tree; and since at this

point we are only interested in the guide tree, we throw away the rest of the output

by redirecting it to the null device.

〈cli〉+≡
mafft --auto --treeout simians.fasta > /dev/null

140 4 Fast Alignment

The tree is now in simians.fasta.tree. Fig. 4.34 shows it, for which we refor-

matted the taxon labels with sed.

〈cli〉+≡
sed ’s/ˆ[0-9]_//’ simians.fasta.tree | plotTree

As we’ve said, the sed command s/a/b/ means substitute a by b. What are a and

b in this case?

4.195 The guide tree in Fig. 4.34 differs from the standard simian phylogeny. Can

you see how?

Chapter 5

Evolution Between Species: Phylogeny

Sometime in the summer of 1837, Charles Darwin (1809–1882) wrote in his note-

book “I think”, and continued by drawing a phylogeny. When he published his

thinking in 1859, The Origin of Species contained a single figure: a phylogeny. We

already saw that phylogenies in the form of guide trees are useful for computing mul-

tiple sequence alignments. But beyond clever computing, phylogenetic trees embody

biologists’ thinking. Taxonomies are trees and evolution is pictured as a tree. Trees

consist of trees, and this hierarchical structure is explored further in the following

section. Phylogenetic trees may or may not have a root, and we show the distinct

methods to calculate rooted and unrooted trees in two later sections.

5.1 Trees of Life

Trees are by no means new to us at this point in the course, and Fig. 5.1 shows another

one with 10 taxa, whose common ancestor is the root. The tips of the branches are

all lined up at time zero indicated by the vertical dotted line; left is the past, right the

future. In this section we show how to write, traverse, and count trees.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1

data

5.1 Can you make a directory for this section?

141© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_5&domain=pdf

142 5 Evolution Between Species: Phylogeny

0.01

T1

past ← 0 → future

Root

T2
T3
T4
T5
T6
T7
T8
T9
T10

Fig. 5.1 A random tree of 10 taxa with the Root marked; all branches end at time zero, the present,

indicated by the dotted line

New Terms

genTree molecular clock preorder traversal

inorder traversal postorder traversal travTree

5.2 Phylogenies are trees, which are often written using nested parentheses [29, p.

312]. For example, (A(B)(C(D)(E))) corresponds to the tree

A

B C

D E

Each node has a name and all branches have the same length. Phylogenies are often

written in a specialized parenthesis notation, the Newick format1. In Newick format,

the tree above is

(B,(D,E)C)A;

Can you spot the differences between Newick and plain parentheses?

5.3 Phylogenies typically only contain leaf labels, interpreted as extant species,

while the internal nodes—the common ancestors—usually remain anonymous. Can

you write the leaves-only version of (B,(D,E)C)A;?

5.4 In addition to the topology of a phylogeny, its branch lengths are meaningful.

In Newick format, branch lengths are delimited by colons, for example

(B:1,(D:1,E:1));

The program plotTree converts this string to the tree in Fig. 5.2. Can you reproduce

it?

1 evolution.genetics.washington.edu/phylip/newick doc.html

5.1 Trees of Life 143

 B

 D

 E

0.1

Fig. 5.2 Graphical representation of (B:1,(D:1,E:1));

 human

 chimp

 gorilla

0.1

Fig. 5.3 Schematic phylogeny of human, chimp, and gorilla

5.5 Fig. 5.3 shows a fanciful phylogeny of human, chimp, and gorilla. Can you

reproduce it?

 root

 ancestor

 human

 chimp

 gorilla

0.1

Fig. 5.4 Schematic phylogeny of human, chimp, and gorilla with internal nodes labeled ancestor

and root

144 5 Evolution Between Species: Phylogeny

5.6 We just said that in phylogenies the internal nodes are usually not labeled.

However, they can be labeled, as shown in Fig. 5.4. Can you reproduce it?

 human

chim
p

go
ril

la

0.1

Fig. 5.5 Unrooted tree of human, chimp and gorilla

5.7 In mathematics and computer science, all trees have a root. But in biology, we

often talk about “unrooted” trees, for example Fig. 5.5 is the unrooted version of our

human/chimp tree. Can you reproduce it?

5.8 Strictly speaking, there is no such thing as an unrooted tree. Can you explain in

what sense the tree in Fig. 5.5 is, in fact, rooted, but also “unrooted”?

5.9 A classical method to root a tree is to look for the most distant pair of taxa on

the tree and place the root mid-distance. This is called “midpoint rooting” and is

implemented in the program midRoot. What do you get when you apply it to the

unrooted tree in Fig. 5.5?

 human

 chimp

 gorilla

1

Fig. 5.6 Plot of ((human,chimp),gorilla);

5.1 Trees of Life 145

5.10 The program plotTree always shows a scale bar, even if we don’t put explicit

branch lengths in the underlying Newick string. We can set the scale with -c.

〈cli〉+≡
printf "((human,chimp),gorilla);\n" | plotTree -c 1

Fig. 5.6 shows the tree we just generated. What are the assumed branch lengths if

we don’t state any?

 6

 4

 2

 1

 3

 5

 8

 7

 9

0.1

Fig. 5.7 A tree with all nine nodes labeled

5.11 Fig. 5.7 shows a tree with all nine nodes labeled. Can you reproduce it?

5.12 As we’ve already said, a tree consists of trees. So in Fig. 5.7 the tree rooted on

node 6 consists of subtrees rooted on nodes 8 and 4, and so on. This hierarchical,

or recursive, structure leads to a method for traversing a tree, where the function

traverse calls itself:

traverse(node)

visit(node)

traverse(leftChild(node))

traverse(rightChild(node))

Since the root is always visited first, then each one of the two children in turn, the

procedure is called preorder traversal. In what order are the nodes of Fig. 5.7 visited

if we start at the root? You can check your result with travTree.

5.13 Instead of preorder, a tree can also be traversed inorder by first visiting the left

child, then the root in the middle, and finally the right child:

traverse(node)

traverse(leftChild(node))

visit(node)

traverse(rightChild(node))

146 5 Evolution Between Species: Phylogeny

In what order do we now visit the nodes of Fig. 5.7?

5.14 Lastly, we can also visit the root last, which is called postorder traversal:

traverse(node)

traverse(leftChild(node))

traverse(rightChild(node))

visit(node)

In what order does this visit the nodes in our example tree Fig. 5.7?

5.15 The example tree right at the beginning of this chapter, Fig. 5.1, shows a

random tree of ten taxa generated with genTree and plotted with plotTree. Draw

a few such trees yourself. What difference does the -a option make?

5.16 When reconstructingphylogenies,we often talk about a molecular clock. Under

the molecular clock model, mutations occur with constant rate along all branches of

a phylogeny. Trees generated by genTree have this property. But in contrast to the

clocks of everyday life, the molecular clock is stochastic, which is why the branches

fluctuate around the zero line, rather than end there exactly. Stochastic processes

tend to converge with the number of trials, in our case the number of mutations.

Their expected number can be set with -t. What do you observe with -t values of

100 compared to, say 10,000?

5.17 We like drawing random trees, it’s fun. But however many random trees we

draw with, say, ten taxa on an idle Friday afternoon, they all have distinct branching

patterns. That’s because there are so very many possible trees with ten taxa. Exactly

how many, can be computed based on the following consideration [14, p. 20ff]: Two

taxa are connected by a single rooted tree:

b b

b

�퐴

b

�퐵

�푒1 �푒2

�푒3

The third taxon,�퐶, can be added to any of the three edges �푒1, �푒2, and �푒3, giving three

trees:

b b b

b

b

b

�퐴 �퐵 �퐶

�푒1 �푒2

�푒3

�푒4

�푒5

b b b

b

b

b

�퐴 �퐶 �퐵

�푒1 �푒2

�푒3

�푒4

�푒5

b b b

b

b

b

�퐵 �퐶 �퐴

�푒1 �푒2

�푒3

�푒4

�푒5

The fourth taxon can be added to any one of the five edges �푒1, �푒2, ..., �푒5, yielding

3 × 5 = 15 rooted trees. How many trees with five taxa are there?

5.1 Trees of Life 147

5.18 In general, the number of rooted, bifurcating trees for �푛 taxa is

3 × 5 × ... × (2�푛 − 3).

We write the program numTrees.awk to compute the number of rooted phylogenies

as a function of �푛.

Prog. 5.1 (numTrees.awk)

〈numTrees.awk〉≡
BEGIN {

if (!n) {

print "Usage: awk -f numTrees.awk -v n=<n>"

exit

}

〈Calculate number of trees, Pr. 5.1〉
〈Print number of trees, Pr. 5.1〉

}

Can you calculate the number of trees?

5.19 Can you print the number of trees as a function of the number of taxa?

5.20 What is the number of trees with ten taxa?

100

1020

1040

1060

1080

10100

10120

10140

10160

10180

 0 10 20 30 40 50 60 70 80 90 100

T
re

es

Taxa

Fig. 5.8 The number of possible trees as a function of the number of taxa

5.21 Fig. 5.8 shows the number of possible trees as a function of the number of

taxa, which quickly grows very large indeed. Can you reproduce Fig. 5.8?

148 5 Evolution Between Species: Phylogeny

5.2 Rooted Trees

How can we calculate phylogenetic trees from data rather than just simulate them

as we did in the previous section? Given the huge number of possible phylogenies,

finding the correct one might seem impossible. Fortunately, it is well possible once

we understand a tree as the summary of pairwise distances. This means we can work

our way from distances to trees, and the simplest method for this returns rooted trees.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1 2

data

5.22 Can you make a directory for this section and change into it?

New Terms

phylonium three point criterion ultrametric distances

pps

 A

 B

 C

 D

0.5

Fig. 5.9 Example phylogeny with four taxa

5.23 Fig. 5.9 shows a phylogeny with a scale bar. This implies all pairwise distances

between taxa. For example, the distance between �퐴 and �퐵 is 0.5 + 0.5 = 1. We can

enter such distances in a distance matrix.

5.2 Rooted Trees 149

�퐴 �퐵 �퐶 �퐷

�퐴 -

�퐵 1 -

�퐶 ? ? -

�퐷 ? ? ? -

Can you enter the missing five distances?

A B

�퐴 �퐵 �퐶 �퐷

�퐴 -

�퐵 2 -

�퐶 4 4 -

�퐷 6 6 6 -

�퐴 �퐵

b

�퐶

b

�퐷

b

1

1

1 1

2

3

Fig. 5.10 A distance matrix (A) and the corresponding tree with branch lengths (B)

5.24 Our example matrix contains only the lower triangle. Why can we omit the

upper triangle?

5.25 Let’s work the other way round, from the distance matrix to the tree. Fig. 5.10

shows another distance matrix and the corresponding tree with all branch lengths

marked. The first step in constructing this tree is to pick the two entries with the

smallest distance and construct the corresponding partial tree from them. Can you

do that?

5.26 Picking a pair of taxa means we merge them in a new node, their ancestor. Say,

we merge taxa �푥 and �푦 into (�푥, �푦). The distance between some other taxon, |, and

(�푥, �푦), is the average distance between | and �푥 and | and �푦. Since we merged taxa

�퐴 and �퐵, the distance between (�퐴, �퐵) and �퐶 is (4 + 4)/2 = 4; similarly, the distance

between (�퐴, �퐵) and �퐷 is (6 + 6)/2 = 6. So the new distance matrix is

(�퐴, �퐵) �퐶 �퐷

(�퐴, �퐵) -

�퐶 4 -

�퐷 6 6 -

We repeat picking a pair of taxa with the smallest distance to construct the next

partial tree. Can you do that?

5.27 After the merge, our new distance matrix is

(�퐴, �퐵, �퐶) �퐷
(�퐴, �퐵, �퐶) -

�퐷 6 -

150 5 Evolution Between Species: Phylogeny

Now there is no choice which pair to pick, and we end with Fig. 5.10B. Distance

matrices are stored in Phylip format, which we’ve already seen, and which turns the

matrix in Fig. 5.10A into

4

A 0 2 4 6

B 2 0 4 6

C 4 4 0 6

D 6 6 6 0

The program upgma converts this distance matrix into the corresponding tree. Can

you reproduce Fig. 5.10B?

5.28 Our program is called upgma, because the tree-building algorithm it imple-

ments is called “Unweighted Pair-Group Method using an Arithmetic average”, or

UPGMA, which we shall write Upgma [41, p.359f]. The name of this method is per-

haps its most challenging aspect. As we’ve seen, Upgma works by repeatedly picking

the smallest entry from a distance matrix and adjusting the matrix accordingly. The

program upgma can also print these intermediate matrices. Can you do that?

Table 5.1 Another distance matrix

�퐴 �퐵 �퐶 �퐷

�퐴 -

�퐵 6 -

�퐶 2 6 -

�퐷 6 4 6 -

5.29 Table 5.1 shows another set of distances. Can you calculate the Upgma tree

from them? You can check your intermediate matrices with upgma.

A B

�퐴 �퐵 �퐶 �퐷

�퐴 0 5 7 10

�퐵 5 0 4 7

�퐶 7 4 0 5

�퐷 10 7 5 0

 D

 A

 B

 C
1

Fig. 5.11 Distance matrix (A) and corresponding Upgma tree (B)

5.2 Rooted Trees 151

5.30 In a Upgma tree, all terminal branches end exactly at the implied zero line.

We’ve already seen that this means the underlying sequence data mutates with a

constant rate along all branches, in other words, the molecular clock applies. But

Upgma doesn’t even allow for stochastic wobble around the zero line. What does

that imply about the mutation rates along the tree branches?

5.31 Fig. 5.11 shows another distance matrix and the corresponding tree. What do

you notice when you try to recover the input distances from the tree?

5.32 We’ve seen there can be discrepancies between a Upgma tree and the distances

from which it was constructed. Perfect agreement between tree and distances is

called “ultrametricity”. Any three ultrametric distances fit on a tree like this

�퐴 �퐵 �퐶

b

b

In other words, two of the distances are equal, in this case �푑�퐴,�퐶 = �푑�퐵,�퐶 , and the

other distance cannot be greater than them, �푑�퐴,�퐵 ≤ �푑�퐴,�퐶 = �푑�퐵,�퐶 . This is called the

“three point criterion”. It ensures that the leaves in an ultrametric tree fall in line.

Ultrametricity also implies that for �푛 taxa there are no more than �푛−1 distinct entries

in the distance matrix. How many distinct entries are in Fig. 5.11A?

5.33 Having no more than �푛 − 1 distinct entries is necessary for ultrametricity, but

it isn’t sufficient. Can you think of an example to show this?

5.34 Let’s construct a phylogeny from some real sequence data. The file

hominidae.fasta

contains the D-loop of the mitochondrial genome. The D-loop is a 900 bp region of

the mitochondrial genome that mutates rapidly. The sequences were obtained from

the four great apes, human, chimp (Pan), gorilla, and orangutan (Pongo). These

four apes are also known as the Hominidae, hence the name of the file. How many

nucleotides is each sequence long (cres)?

5.35 The program pps prints the polymorphic sites in an alignment. How many

polymorphic sites are in the great apes alignment? Is the gapped site counted as

polymorphic?

5.36 Distances are calculated by counting the number of mismatches between se-

quences. Let’s consider the first ten polymorphisms of the great apes and format

them for easy eyeballing. A dot indicates a match to the human sequence in the first

row.

〈cli〉+≡
pps -d hominidae.fasta | cutSeq -r 1-10 | getSeq -c Pos |

fasta2tab | tr -d ’a-z’

152 5 Evolution Between Species: Phylogeny

Can you fill in the corresponding mismatch matrix?

Hom Pan Gor Pon

Hom

Pan

Gor

Pon

You can check your result with dnaDist.

5.37 Next, we look at all the mismatches between the four sequences. Do they form

ultrametric distances?

A B

 Pongo

 Gorilla

 Homo

 Pan

0.01

 Pongo

 Gorilla

 Homo

 Pan

0.01

Fig. 5.12 Phylogenies of the great apes based on the D-loop of the mitochondrial genome; uncor-

rected mismatches (A), Jukes-Cantor distances (B)

5.38 Molecular distances are usually expressed on a per-site basis. The simplest

molecular distance is the number of mismatches per site. Fig. 5.12A shows the

corresponding tree. Can you reproduce it? What is our closest relative among the

great apes?

5.39 As the number of mutations grows, the probability that a mutation affects the

same position twice also grows. This means that the number of mismatches is a

lower bound on the number of mutations. The relationship between the number of

mutations per site, �푘, and the number of mismatches per site, �푚, is summarized in

the Jukes-Cantor equation, which we already saw a while back, equation (2.3). What

is the largest value of �푚 for which �푘 is defined?

5.40 What is the expected numberof mismatches per site for two randomsequences?

You can check your answer with ranseq and dnaDist.

5.2 Rooted Trees 153

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

k

m

jc
m

Fig. 5.13 The number of mutations per site, �푘, as a function of the number of mismatches per site,

�푚, when calculated with the Jukes-Cantor equation, jc, or without correction, m

5.41 Fig. 5.13 shows the number of mutations as a function of the number of

mismatches. Clearly, the number of mismatches can be a strong underestimate of the

number of mutations. We generated Fig. 5.13 with the program jc.awk.

Prog. 5.2 (jc.awk)

〈jc.awk〉≡
BEGIN {

for (i = 0; i < 0.75; i += 0.01) {

jc = -3/4 * log(1 - 4/3 * i)

print i, jc, "jc"

print i, i, "m"

}

}

Can you reproduce Fig. 5.13?

5.42 Fig. 5.12B shows the great apes tree with Jukes-Cantor distances. Can you

draw it? Do you think the difference to the uncorrected tree is important?

5.43 The file primates.fasta contains the full mitochondrial genome sequences

of primates. How many sequences does it contain and how long are they on average?

5.44 Fig. 5.14 shows the Upgma trees of primates based on two methods to compute

the distances. The first, in Fig. 5.14A, is based on a mafft alignment. How long

does it take to reproduce this tree?

5.45 Instead of aligning sequences, we can estimate distances between them directly,

which is often much quicker. The program phylonium implements a fast method

to calculate alignment-free distances based on exact matches [26]. It takes as input

154 5 Evolution Between Species: Phylogeny

A B

 C albifrons
 H sapiens
 G gorilla
 P paniscus
 P troglodytes
 H lar
 P pygmaeus1
 P pygmaeus2
 C sabaeus
 C pygerythrus
 C aethiops
 C tantalus
 M mulatta
 M sylvanus
 P hamadryas
 P nemaeus
 S entellus
 N larvatus
 P roxellana
 P melalophos
 T obscurus
 C guereza
 P badius
 C variegatus
 N coucang
 L catta
 T bancanus

0.01

 C albifrons
 H lar
 P pygmaeus1
 P pygmaeus2
 G gorilla
 H sapiens
 P paniscus
 P troglodytes
 N larvatus
 P roxellana
 S entellus
 P melalophos
 P nemaeus
 T obscurus
 C guereza
 P badius
 M mulatta
 M sylvanus
 P hamadryas
 C sabaeus
 C pygerythrus
 C aethiops
 C tantalus
 C variegatus
 N coucang
 L catta
 T bancanus

0.01

Fig. 5.14 Upgma tree of primates from their mitochondrial genomes; based on alignment (A),

based on fast distance estimation (B)

genomes in separate files, so we split primates.fasta into one file per sequence.

To do this, we use the neat property of Awk that we can use redirection as if we were

working directly on the shell. Then we create a new directory primates, and move

the sequences into it.

〈cli〉+≡
fasta2tab primates.fasta |

awk ’{f=$1 ".fasta";printf ">%s\n%s\n", $1, $2 > f}’

mkdir primates

mv *_*.fasta primates

How long does it take to reproduce Fig. 5.14B (we ignore phylonium’s warnings

about lack of homology)?

5.46 Do the two primate trees in Fig. 5.14 have the same topology?

5.3 Unrooted Trees

All groups of organisms have a common ancestor, which means that their phyloge-

netic trees are, in fact, rooted. As we’ve seen, the Upgma algorithm quickly generates

rooted phylogenies. Its underlying assumption that a real clock was used to measure

branch lengths fits our intuition that the leaves of a phylogeny should all be located

in the present. However, branch lengths are usually not measured with conventional

clocks, but estimated from the number of mutations, which form a molecular clock.

5.3 Unrooted Trees 155

The molecular clock is stochastic and hence won’t fit a Upgma tree. If the discrep-

ancy is small, we still get the correct tree, but as we shall see, this is not guaranteed.

Fortunately, there is a slightly more involved method of tree reconstruction from

distances that works where Upgma fails. This method is called neighbor-joining

and gains accuracy by losing rootedness. We can add a root afterwards, but a more

pressing problem is to quantify the uncertainty surrounding the placement of any

node in the tree, not just the root. We solve this problem by pulling ourselves up by

our bootstraps.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1 2 3

data

5.47 Can you construct the directory for this section and change into it?

New Terms

additive distances clac midpoint rooting

bootstrap four point criterion neighbor-joining

A ————— B

�퐴

�퐵 �퐶

�퐷

b

b

b

1 1

4

1 1

4

�퐴 �퐵 �퐶 �퐷

�퐴 - 5 7 10

�퐵 5 - 4 7

�퐶 7 4 - 5

�퐷 10 7 5 -

Fig. 5.15 Tree with unequal terminal branches (A) and the corresponding distance matrix (B)

156 5 Evolution Between Species: Phylogeny

5.48 Consider the tree in Fig. 5.15A with its drastically unequal terminal branches.

Fig. 5.15B shows the distances read off the tree. Evidently, the distances are not

ultrametric. This means they don’t conform to the three point criterion, according to

which among the three distances between any triple of taxa, two are equal and the

third not greater. Can you find three taxa that contradict this?

5.49 What is the first pair of taxa joined by Upgma when analyzing the distances in

Fig. 5.15B? How does that compare to the true tree?

 C

 D

A

B

1

Fig. 5.16 Unrooted version of the phylogeny in Fig. 5.15A

5.50 Distances that fit a tree, like those in Fig. 5.15B, are called additive. Additivity

is based on four taxa. Fig. 5.16 shows such a tree, which is in fact the tree we started

off with in Fig. 5.15A after unrooting. There are six distances defined by this tree,

�푑�퐴�퐵, �푑�퐴�퐶 , �푑�퐴�퐷, �푑�퐵�퐶 , �푑�퐵�퐷, and �푑�퐶�퐷 . However, the tree only has five branches,

four terminal branches and one central branch. So the tree is overdetermined by the

distances. Two of the distances only involve terminal branches. Which are they?

5.51 The remaining four distances, �푑�퐴�퐶 , �푑�퐴�퐷 , �푑�퐵�퐶 , and �푑�퐵�퐷 traverse the stem of

the tree. We can divide them into two pairs that each cover the full tree. Can you spot

these pairs?

5.52 The sum of distances that cover the terminal branches cannot be greater than

the sum of distances that cover the whole tree,

�푑�퐴�퐵 + �푑�퐶�퐷 ≤ �푑�퐴�퐷 + �푑�퐵�퐶 , �푑�퐴�퐵 + �푑�퐶�퐷 ≤ �푑�퐴�퐶 + �푑�퐵�퐷 .

On the other hand, the pairs of distances that cover the whole tree must be equal,

�푑�퐴�퐶 + �푑�퐵�퐷 = �푑�퐴�퐷 + �푑�퐵�퐶 .

5.3 Unrooted Trees 157

Combining these two observations, we arrive at the four point criterion of additivity,

�푑�퐴�퐵 + �푑�퐶�퐷 ≤ �푑�퐴�퐷 + �푑�퐵�퐶 = �푑�퐴�퐶 + �푑�퐵�퐷 .

Can you convince yourself that the four point criterion holds for the distances in

Fig. 5.15B?

5.53 The neighbor-joining algorithm recovers the correct tree from the distances in

Fig. 5.15B. We begin by just writing down their top triangle:

�퐴 �퐵 �퐶 �퐷 �푟�푖
�퐴 - 5 7 10

�퐵 - 4 7

�퐶 - 5

�퐷 -

The last column, �푟�푖 , is reserved for the row sums. Compute by hand the values of �푟�푖 ,

remembering that the distance matrix is symmetrical.

5.54 In the next step of neighbor-joining we prepare the later selection of a pair of

neighbors. For this we compute for each pair of taxa, �푖, �푗 , the difference between its

distance, �푑�푖 �푗 , and the normalized sum of the corresponding row sums, �푟�푖 , �푟 �푗 :

�푆�푖 �푗 = �푑�푖 �푗 −
�푟�푖 + �푟 �푗

�푛 − 2
,

where �푛 is the number of taxa. Can you compute the �푆�푖 �푗 -values by hand and write

them in the lower triangle of the distance matrix? You can check your results with

nj in matrix-printing mode.

5.55 Instead of clustering the pair of taxa with the smallest distance as in Upgma,

neighbor-joining clusters the taxa with the smallest �푆�푖 �푗 . If the new cluster is called

�푐, the distance between �푐 and some other cluster, �푘, is

�푑�푘�푐 = (�푑�푖�푘 + �푑 �푗 �푘 − �푑�푖 �푗)/2.

The other distances are unchanged. Let’s cluster (�퐴, �퐵). Can you adjust the distance

matrix accordingly? You can again check your result with nj.

5.56 We still need to know the lengths of the branches connecting the new cluster �푐

and leaves �푖 and �푗:

�푑�푖�푐 =
(�푛 − 2)�푑�푖 �푗 + �푟�푖 − �푟 �푗

2(�푛 − 2) ,

and

�푑 �푗�푐 =
(�푛 − 2)�푑�푖 �푗 + �푟 �푗 − �푟�푖

2(�푛 − 2) .

Compute (by hand) the branch lengths for the new cluster.

5.57 To summarize, the neighbor-joining algorithm consists of four steps; given

distances �푑�푖 �푗 ,

158 5 Evolution Between Species: Phylogeny

• compute the row sums

�푟�푖 =
∑

�푗

�푑�푖 �푗

• compute the matrix for neighbor selection

�푆�푖 �푗 = �푑�푖 �푗 − (�푟�푖 + �푟 �푗)/(�푛 − 2)

• identify neighbors as taxa with smallest �푆�푖 �푗 and cluster them in node �푐 with

�푑�푘�푐 = (�푑�푖�푘 + �푑 �푗 �푘 − �푑�푖 �푗)/2

• calculate branch lengths

�푑�푖�푐 =
(�푛 − 2)�푑�푖 �푗 + �푟�푖 − �푟 �푗

2(�푛 − 2)

�푑 �푗�푐 =
(�푛 − 2)�푑�푖 �푗 + �푟 �푗 − �푟�푖

2(�푛 − 2)

This procedure is repeated until there are only three clusters left, �푖, �푗 , �푘, which is

the stage we have reached in our example. These are joined to the pseudo-root �푟, by

branches with the following lengths

�푑�푟�푖 = (�푑�푖 �푗 + �푑�푖�푘 − �푑 �푗 �푘)/2
�푑�푟 �푗 = (�푑 �푗�푖 + �푑 �푗 �푘 − �푑�푖�푘)/2
�푑�푟 �푘 = (�푑�푘�푖 + �푑�푘 �푗 − �푑�푖 �푗)/2

What are the lengths of the last three branches added to our example tree?

5.58 Now we know how neighbor-joining works. Can you use its implementation

in nj to reproduce Fig. 5.16?

5.59 It is often more convenient to read rooted trees than unrooted trees. A popular

method for rooting a tree is to place the root midway between the most distant taxa

on a tree. This is called “midpoint rooting”. Can you midpoint root our example

tree? You can check your answer with midRoot.

5.60 Let’s turn from toy data to the Hominidae sequences in hominidae.fasta.

Fig. 5.17 shows the distances between the sequences next to the neighbor-joining

tree. Can you reproduce the tree?

5.61 Are the Hominidae distances additive?

5.62 Given that biological data is always noisy, we’d like to gauge the reliability of

the trees we calculate. A classical method for doing this is called the bootstrap. This

is a general statistical method to answer the question, how much would our result

vary if we sampled again? Applied to our phylogeny problem, the question becomes,

how much would our phylogeny vary, if we repeatedly sampled other sets of 896

5.3 Unrooted Trees 159

A B

Homo Pan Gorilla Pongo

Homo 0.00 0.10 0.11 0.18

Pan 0.10 0.00 0.11 0.19

Gorilla 0.11 0.11 0.00 0.19

Pongo 0.18 0.19 0.19 0.00 Gorilla

 P
on

go

Homo

P
an

0.01

Fig. 5.17 Distances (A) and tree (B) for the Hominidae data set

homologous nucleotides from the genomes of our Hominidae? Collecting additional

samples is often difficult. The answer provided by bootstrap is to resample the

original sample with replacement [12]. Compared to actually going to the lab and

collecting more data, this solution is so simple, it almost amounts to pulling yourself

up by your bootstraps.

The bootstrap method is widely used and our program dnaDist implements the

classical version where the 896 columns in our Hominidae alignment are sampled

with replacement to generate a new pseudo-sample. The distance matrix is computed

from this pseudo-sample, and the procedure is repeated. Can you run dnaDistwith

ten bootstrap iterations?

5.63 We can pipe the distance matrices through nj to get the corresponding trees.

Does their topology vary?

5.64 What we’d like to know is the frequency of, say, the (Homo, Pan) clade in a

large set of trees. The program clac is a clade counter. What is the frequency of the

(Homo, Pan) clade in 1000 bootstrap samples of the Hominidae sequence data?

5.65 Given a reference tree, clac can also enter the bootstrap values. This is how

we generated Fig. 5.18. Notice that only one of the two internal nodes is labeled

with a bootstrap percentage. The other node is the (effective) root and since the clade

defined by the root always has 100% bootstrap support, clac omits that value. Can

you reproduce Fig. 5.18?

160 5 Evolution Between Species: Phylogeny

 Gorilla

 P
on

go

 46

Homo

P
an

0.01

Fig. 5.18 The Hominidae tree with one bootstrap value for the (Homo, Pan) clade

Chapter 6

Evolution within Populations

Distinct species originate from differences between members of one species. Over

time these differences can lead to the formation of distinct populations, which might

eventually become unable to interbreed. One species has split in two. The differences

within species are the subject of population genetics. Here the descent of genes takes

center stage. This is often modeled using yet another tree, the coalescent.

6.1 Descent from One or Two Parents

We all have two parents, but each of our chromosomes only comes from one of

them. Men even know which parent gave which sex chromosome, the father the Y,

the mother the X. Here we explore the ramifications of individual descent from two

parents and genetic descent from one parent.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1–3

6

1

data

6.1 Can you make the new directory for this section and change into it?

161© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_6&domain=pdf

162 6 Evolution within Populations

Two Parents

New Terms

drag partial ancestor universal ancestor

6.2 Sexual organisms like us usually have two parents, four grandparents, and eight

great-grandparents. How many great-great-great-grandparents do you have?

6.3 How many ancestors did you have 33 generations back? How does that compare

to the world population 33 generations back of roughly 400 million people1?

PSfrag

�푏0

�푖1

�푔1

�푏1

�푖2

�푔2

�푏2

�푖3

�푔3

�푏3

�푖4

�푔4

�푏4

�푖5

�푔5

�푏5

�푖6

�푔6

�푏6

�푖7

�푔7

Fig. 6.1 Simulation of the ancestors of a single individual in a population of seven individuals.

Ellipses and boxes indicate two sexes, the dots two genes; �푔8 stands for generation �푖, �푏 9 for �푗

generations back

1 https://en.wikipedia.org/wiki/World population

6.1 Descent from One or Two Parents 163

6.4 Fig. 6.1 shows a simulation of the ancestry of a single individual, �푖4. The

population consists of seven individuals and their lines of descent that end in �푖4
traced over seven generations from �푔1 at the top to �푔7 at the bottom. When we

go back one step from the present in �푏0 to �푏1, we find two parents of distinct

shape, a mother and a father. This figure was generated using a program for drawing

genealogies, drag. Can you draw your own version of this figure?

6.5 So we can fill in the first line of a table of observed and expected ancestors of

individual �푖4 moving back in time.

Back Observed Expected

�푏1 2 2

...

Can you fill in the rest?

�푏0

�푖1

�푔1

�푏1

�푖2

�푔2

�푏2

�푖3

�푔3

�푏3

�푖4

�푔4

�푏4

�푖5

�푔5

�푏5

�푖6

�푔6

�푏6

�푖7

�푔7

Fig. 6.2 Same as Fig. 6.1 but with all lines of descent included

6.6 Fig. 6.2 shows the same simulation as Fig. 6.1, but this time all lines of descent

are included, not only those leading to �푖4. To get such a pair of figures, use the same

164 6 Evolution within Populations

seed for the random number generator between runs of drag. Can you draw your

own pair of matching figures?

6.7 In Fig. 6.2 we can walk from any individual forward in time to visit all its

descendants. By doing so, can you explain the color coding of green, blue, and red

individuals?

6.8 As we go back in time in Fig. 6.2, partial ancestors go extinct leaving only

universal ancestors and non-ancestors [37]. Let’s concentrate on the point in time

where partial ancestors vanish. Do you notice anything when you compare Fig. 6.1

and Fig. 6.2?

6.9 As you go back further in time, do the partial ancestors reappear? Can you

explain your observation?

6.10 drag also has a statistical mode without graphics output,-a. So we can simulate

the time to the first universal ancestor and the time to the disappearance of partial

ancestors.

〈cli〉+≡
drag -a

If one of the results is zero, there weren’t enough generations in the simulation to

reach that point. How long does it take until the first universal ancestor appears in a

population of size 1000? How variable is this number between runs?

6.11 How many generations does it take until the first universal ancestor appears in

a population of size 2000?

6.12 What is the average number of generations until partial ancestors disappear

from a population of 1000?

6.13 The expected number of generations until the disappearance of partial ancestors

in a population size �푁 is 1.77 log2(�푁) [37]. For �푁 = 1000 this is 17.6, which fits

our simulation result of 17.8 quite well.

〈cli〉+≡
echo ’1.77 * l(1000) / l(2)’ | bc -l

Let’s explore the relationship between population size and no partial ancestors a bit

more systematically through the script nopanc.sh.

Prog. 6.1 (nopanc.sh)

〈nopanc.sh〉≡
Usage: bash nopanc.sh <N> <iterations>

for a in $(seq $2)

do

〈Sum number of generations, Prog. 6.1〉
done

o=$(echo "$sum / $2" | bc -l)

e=$(echo "1.77 * l($1) / l(2)" | bc -l)

printf "%d %.2f %s\n" $1 $o obs

printf "%d %.2f %s\n" $1 $e exp

6.1 Descent from One or Two Parents 165

Can you sum the number of generations?

 4

 6

 8

 10

 12

 14

 16

 18

 10 100 1000

G
en

er
at

io
ns

 to
 n

o
pa

rt
ia

ls

N

obs
exp

Fig. 6.3 Time to no partial ancestors as a function of population size, �푁 ; the observed values (obs)

are averages of 100 simulation runs

6.14 Fig. 6.3 shows the time to the loss of partial ancestors as a function of population

size. The observed and expected curves are quite close. Can you generate your own

version of this figure?

One Parent

New Terms

drawf waiting time Wright-Fisher model

most recent common ancestor

6.15 In contrast to individuals, who have two parents, genes only have one. Fig. 6.4

shows a third version of Fig. 6.1, where the lines of descent are restricted to those

of the two genes in individual �푖4. Can you use drag to generate your own version of

this figure?

6.16 In Fig. 6.4 the two genes find their most recent common ancestor two steps

back. We say most recent, because all nodes on the genealogy further back are also

common ancestors, but not most recent. In our example, the most recent common

ancestor is also the first universal ancestor to appear. Is that always the case?

166 6 Evolution within Populations

�푏0

�푖1

�푔1

�푏1

�푖2

�푔2

�푏2

�푖3

�푔3

�푏3

�푖4

�푔4

�푏4

�푖5

�푔5

�푏5

�푖6

�푔6

�푏6

�푖7

�푔7

Fig. 6.4 Tracing the genes of individual �푖4

�푔1

�푔2

1 2 3 4 5 6 7 8 9 10

Fig. 6.5 Two generations of a population size 10 under the Wright-Fisher model

6.17 Populations are often modeled as consisting of genes without reference to

individuals or gender. This abstract model of a population is called the Wright-Fisher

model in honor of two founding figures of population genetics, Ronald A. Fisher

(1890–1962) and Sewall Wright (1889–1988). Fig. 6.5 shows two generations in the

evolution of 10 genes under the Wright-Fisher model. To get from one generation to

the next, ancestors are simply picked at random, as indicated by the arrows. To see

how this works, we can generate random numbers between 1 and 10.

〈cli〉+≡
echo "$RANDOM % 10 + 1" | bc

If you are on zsh—most likely under macOS—this won’t work, but here’s a

workaround.

6.1 Descent from One or Two Parents 167

〈cli〉+≡
v="$RANDOM % 10 + 1"; echo $v | bc

Can you generate ten random numbers between 1 and 10 to extend Fig. 6.5 for one

more generation?

A B

1 2 3 4 5 6 7 8 9 1 0

�푔1

�푔2

�푔3

�푔4

�푔5

�푔6

�푔7

�푔8

�푔9

�푔10

8 2 9 1 3 5 6 7 4 1 0

�푔1

�푔2

�푔3

�푔4

�푔5

�푔6

�푔7

�푔8

�푔9

�푔10

Fig. 6.6 Tangled (A) and untangled (B) versions of the same Wright-Fisher population

6.18 Fig. 6.6A depicts ten generations of a Wright-Fisher population consisting of

ten genes. It was generated with a program for drawing Wright-Fisher populations,

drawf. Can you generate your own version of this tangled image?

6.19 With all the crisscrossing ancestral lines connecting the genes between gen-

erations, it is a bit hard to see what is going on. drawf can also draw untangled

lines of descent. Fig. 6.6B shows the untangled version of Fig. 6.6A. This makes

it much simpler to trace ancestry back in time. Can you draw your own pair of

tangled/untangled figures?

6.20 Does Fig. 6.6 contain a common ancestor of all genes?

6.21 The program drawf can mark the common ancestor of the entire population

(-m). With a population size of �푁 = 10, how many generations are required to be

reasonably certain that a common ancestor is found?

6.22 When going one generation back in time, the numberof lineages that eventually

end up in the common ancestor either stays the same, or decreases. For example,

in Fig. 6.7 that number goes from originally ten in �푏0 to six in �푏1. You can think

of each gene (dot) in Fig. 6.7 as randomly picking its ancestor in the preceding

generation. Occasionally two genes pick the same ancestor. What is the probability

of this occurring?

168 6 Evolution within Populations

�푏1

�푏0

Fig. 6.7 Two generations of a population under the Wright-Fisher model consisting of ten genes

6.23 If two genes pick an identical ancestor, their lineages fuse and the number

of ancestral lineages is reduced by one. Let’s write a program for picking random

ancestors, panc.awk. It takes as arguments a seed for the random number generator

and a population size.

Prog. 6.2 (panc.awk)

〈panc.awk〉≡
BEGIN {

〈Set usage, Prog. 6.2〉
〈Pick ancestors, Prog. 6.2〉
〈Print ancestors, Prog. 6.2〉

}

Can you set the usage?

6.24 Ancestors are random integers between 1 and �푁 . We draw �푁 of them and store

them.

〈Pick ancestors, Prog. 6.2〉≡
srand(seed)

for (i = 0; i < N; i++) {

r = int(rand() * N + 1)

anc[r] = 1

}

Can you print the ancestors we just generated?

6.25 Let’s run panc.awk ten times in a loop and print the number of distinct

ancestors at the end of the output.

〈cli〉+≡
for a in $(seq 10)

do

awk -f panc.awk -v N=10 -v seed=$RANDOM

done | awk ’{print $0, NF}’

Do you get any runs with ten distinct ancestors?

6.26 We’ve seen that the probability of two genes having the same ancestor in the

previous generation is 1/�푁 . So the probability of two genes not having a common

ancestor is 1− 1/�푁 . The probability of three genes not having a common ancestor is

6.1 Descent from One or Two Parents 169

(

1 − 1

�푁

) (

1 − 2

�푁

)

and hence the probability of �푁 genes not having the same ancestor is

�푃0 (�푁) =
(

1 − 1

�푁

) (

1 − 2

�푁

)

...

(

1 − �푁 − 1

�푁

)

. (6.1)

Let’s write the program pn.awk to compute �푃0(�푁).
〈pn.awk〉≡
BEGIN {

if (!N) {

print "Usage: awk -f pn.awk -v N=<N>"

exit

}

pn = 1

for (i = 1; i < N; i++)

pn *= (1 - (N - i) / N)

print pn

}

What is �푃0(10)?

6.27 Our program panc.awk simulates one generation of ancestor picking. Can you

use it to simulate �푃0(10)?

�푏2

�푏1

�푏0

Fig. 6.8 The Wright-Fisher population of Fig. 6.7 traced back one more generation

6.28 We are interested in the most recent common ancestor of a group of genes.

Fig. 6.8 shows two steps on our way to the most recent common ancestor rather

than just the single step in Fig. 6.7. The number of ancestral lines in green now

declines from six to three. To model this situation, we distinguish the number of

active lineages, �푛, from the population size, �푁 . The calculation of the probability of

no ancestor is now a function of the population size �푁 and the sample size �푛, but the

shape of equation (6.1) doesn’t change

�푃0 (�푁, �푛) =
(

1 − 1

�푁

) (

1 − 2

�푁

)

...

(

1 − �푛 − 1

�푁

)

.

Since �푁 is usually large, we can ignore terms with �푁−2 or smaller to get

170 6 Evolution within Populations

�푃0(�푁, �푛) ≈ 1 − 1

�푁
− 2

�푁
− ... − �푛 − 1

�푁
.

The complement of this is the probability of an ancestor event,

�푃a(�푁, �푛) =
1 + 2 + ... + �푛 − 1

�푁
=
�푛(�푛 − 1)

2�푁
.

What is the probability of observing an ancestor event if �푁 = 1000 and �푛 = 10?

6.29 If some event has probability �푝, then the expected waiting time until the event

occurs is 1/�푝. What is the expected number of generations we have to wait in a

population of size �푁 = 1000 for the number of active lineages to decline from

�푛 = 10 to �푛 = 9?

6.30 Let’s simulate the time to an ancestor event under the Wright-Fisher model. And

since we don’t have a preference for a particular ancestor event, let’s just simulate

all of them until we reach the most recent common ancestor. So our program,

tmrca.awk, takes as input a population size, �푁 , a sample size, �푛, and a seed for

the random number generator. Given that we’ve got these variables set, we seed

the random number generator and print the sample size as a function of the zeroth

generation. Now we iterate until there is only one lineage left. In the loop we count

the generations, pick �푛 lineages out of �푁 , determine the new number of lineages

we got, and report any change in the number of lineages. Then the new number of

lineages becomes the current number of lineages.

Prog. 6.3 (tmrca.awk)

〈tmrca.awk〉≡
BEGIN {

〈Set usage, Prog. 6.3〉
srand(seed)

print 0, n

while (n > 1) {

g++

〈Pick �푛 lineages out of �푁 , Prog. 6.3〉
〈Count lineages, Prog. 6.3〉
〈Report change in lineages, Prog. 6.3〉
n = new_n

}

}

In the usage we make sure the user has set �푁 , �푛, and the seed for the random number

generator. Can you do that?

6.31 We pick �푛 lineages out of a population of �푁 genes.

〈Pick �푛 lineages out of �푁 , Prog. 6.3〉≡
for (i = 0; i < n; i++) {

r = int(rand() * N)

6.1 Descent from One or Two Parents 171

lineages[r] = 1

}

Can you count the distinct lineages we picked?

6.32 We are done with the lineages, so we delete them again.

〈Count lineages, Prog. 6.3〉+≡
for (lineage in lineages)

delete lineages[lineage]

Since the waiting time to ancestor events scales with the population size, it is usually

expressed in units of �푁 generations. Can you check if there’s been a change in the

number of lineages and print a message if so?

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

Li
ne

ag
es

N generations

Fig. 6.9 One simulation of the number of lineages as a function of �푁 generations

6.33 Fig. 6.9 shows the number of lineages as a function of �푁 generations for an

initial sample of �푛 = 20 and a population size of �푁 = 104. We simulated this with

tmrca.awk. Can you generate you own version of Fig. 6.9?

6.34 The expected time to the most recent common ancestor measured in �푁 gener-

ations is [40, p. 76]:

�퐸
{

�푇MRCA (�푛)
}

= 2

(

1 − 1

�푛

)

. (6.2)

What is the expected �푇MRCA for �푛 = 2 and �푛 → ∞?

6.35 According to equation (6.2), the expected time to the most recent common

ancestor for a sample of size �푛 = 10 is 0.9. What is the average time to the most

recent common ancestor in 1000 simulation runs with �푁 = 104?

172 6 Evolution within Populations

6.2 The Coalescent

A sample of genes under the Wright-Fisher model is connected by lines of descent

that we like to trace to their most recent common ancestor. These lines of descent

form a tree, the root of which is the most recent common ancestor. This tree is called

coalescent, and we explore its construction and use in this section.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1–3

6

1 2

data

6.36 Can you make the directory for this section and change into it?

New Terms

coalescent Poisson distribution VCF format

curl population mutation rate Watterson’s equation

exponential distribution segregating sites watterson

ms

6.37 The coalescent is based on the Wright-Fisher model. So to get us started,

Fig. 6.10A shows a population of ten genes evolving for ten generations under the

Wright-Fisher model. We’ve already drawn such figures with the program drawf.

Can you do it again?

A B C

�푔1

�푔2

�푔3

�푔4

�푔5

�푔6

�푔7

�푔8

�푔9

�푔10

1 2 3 4 5 6 7 8 9 10 123 4 5 67 8910

Present

Past

3 4 9

Fig. 6.10 A population under the Wright-Fisher model (A), its untangled version (B), and the

coalescent for three of its lineages (C)

6.2 The Coalescent 173

6.38 If you look carefully at Fig. 6.10A, you should find three blue lineages. These

are more apparent when we untangle the lines of descent in Fig. 6.10B. Investigations

of real genes are usually restricted to small samples, the three blue genes might be

such a sample. Their lines of descent form a tree. If we just concentrate on this

tree, we can further reduce it to the nodes where two lines of descent collide as we

move from the present into the past. A different way of looking at such a collision

is to say that two lines of descent merge, or “coalesce”, into one. The collection of

such coalescence events is depicted in Fig. 6.10C and is called the “coalescent”. It

describes the descent of a sample of genes evolving under the Wright-Fisher model

from the present to the most recent common ancestor. Can you draw the coalescent

for genes 5, 6, and 8?

6.39 As we’ve said, coalescents are random trees or genealogies. To construct a

coalescent, we represent it as an array, where nodes 1–4 in green are leaves, nodes

5–7 in black are inner nodes.

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Draw an example tree with these nodes. What is the sample size,�푛, for this coalescent?

�푇4

�푇3

�푇2

Fig. 6.11 Coalescent with time intervals �푇8 indicating how long the tree consists of �푖 lines

6.40 All nodes of a coalescent are annotated with coalescence times. The leaves are

in the present, which is time zero:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Time 0 0 0 0

To compute the times of the three inner nodes, we divide the coalescent into intervals

�푇�푖 , where �푖 is the number of lines of descent in the tree during that time (Fig. 6.11).

Where would �푇1 be in this graph, and why is it not shown?

174 6 Evolution within Populations

6.41 To compute �푇�푖 , start from the probability of a coalescence event we’ve already

seen,

�푃a(�푁, �푛) =
�푛(�푛 − 1)

2�푁
.

This means the time to the next coalescence event is an exponentially distributed

random variable with mean

1/�푃�푎 (�푁, �푛) = 2�푁/�푛/(�푛 − 1).

Since we usually only know the sample size �푛 and not the population size �푁 , we

measure time in units of �푁 generations. So the mean of �푇�푖 becomes �휆 = 2/�푖/(�푖 − 1).
If �푟 is a uniformly distributed random variable, then an exponentially distributed

random variable with mean �휆 is calculated as �푡 = −�휆 log(1 − �푟). Let’s write a

program, ti.awk, that calculates �푇�푖 . It takes as input the �푖 and a seed for the random

number generator. After seeding, we calculate �휆 and then the random time interval

�푇�푖 . Can you set the usage?

Prog. 6.4 (ti.awk)

〈ti.awk〉≡
BEGIN {

〈Set usage, Prog. 6.4〉
srand(seed)

la = 2 / i / (i-1)

t = -la * log(1 - rand())

print t

}

6.42 Can you fill in the three missing node times in our tree construction table?

6.43 We now write a program to calculate coalescence times, coat.awk. Its central

statement should look familiar from ti.awk, but this time we wrap the computation

of �푇�푖 in a loop and sum the times in the variable t.

Prog. 6.5 (coat.awk)

〈coat.awk〉≡
BEGIN {

〈Set usage, Prog. 6.5〉
srand(seed)

t = 0

for (i = n; i >= 2; i--) {

〈Calculate coalescence time, Prog. 6.5〉
}

}

coat.awk takes as input the sample size, �푛, and a seed for the random number

generator. Can you set its usage?

6.2 The Coalescent 175

6.44 Can you calculate the coalescence time and print it?

6.45 What is the average time to the most recent common ancestor from 100 itera-

tions with �푛 = 5? You can compare your result to equation (6.2).

6.46 Having seen how to assign times to nodes, we next construct a random tree

from them—the coalescent. This requires shuffling a set of nodes. Consider the five

nodes 1, 2, 3, 4, 5; after shuffling, they might have the order 4, 5, 1, 2, 3. Can you think

of an effective way to shuffle the numbers 1, 2, ..., 5 without using the computer?

1 2 3 4 5 → 1 2 3 4 5 → 1 2 3 4 5 →

4 5 1 2 3

1 2 3 4 5 → 1 2 3 4 5 → 1 2 3 4 5

Fig. 6.12 Shuffling the numbers 1, 2, ..., 5 into 4, 5, 1, 2, 3

6.47 In a computer, we keep the five nodes to be shuffled in an array. Then we pick

random nodes from that array as shown in Fig. 6.12. By not replacing the nodes

we’ve picked, we get a shuffled version of the original array. Unfortunately, this isn’t

very efficient. Can you see why?

6.48 Let’s say we have an array, �푎, of �푛 nodes. We can shuffle them efficiently by

combining picking nodes with swapping nodes:

1. Pick a random number �푟 between 1 and �푛

2. Swap �푎 [�푟] and �푎 [�푛]
3. Reduce �푛 by 1

4. Repeat

This method of sampling without replacement depends on distinguishing between

the value of an index, �푖, and the value of an array, �푎, at that index, �푎 [�푖]. Can you

shuffle 1, 2, 3, 4, 5 using the random indexes 1, 3, 1, 2?

6.49 To construct a coalescent we need to a apply the shuffling procedure to the array

of leaves and internal nodes. For this we add three auxiliary rows to our table so we

can transparently overwrite node labels. We also need rows for the first and second

child of the internal nodes. Table 6.1 shows the augmented table for constructing the

coalescent. We begin with the first internal node, 5, and pick a random first child

among the four leaves.

〈cli〉+≡
echo "$RANDOM % 4 + 1" | bc

176 6 Evolution within Populations

Table 6.1 Table for constructing the coalescent

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Child1

Child2

Time 0 0 0 0

Say, we pick a 1. Can you make the corresponding entry in Table 6.1?

6.50 Having assigned the first child, we make the move from shuffling, that is, we

replace node 1 by the rightmost leaf in this round, 4. Can you enter this in Table 6.1?

6.51 We draw another random number, but this time only the first three leaves are

candidates

〈cli〉+≡
echo "$RANDOM % 3 + 1" | bc

Say, this is 2; then the second child of 5 is node 2, which is in turn replaced by node

5. So in the next round, node 5 is among the children to chose from. Can you enter

these two changes in Table 6.1?

Algorithm 2 Construct coalescent

Require: �푛 {sample size}
Require: tree {Array: �푛 leaves, �푛 − 1 internal nodes}
Ensure: Tree topology

1: for �푖 ← �푛 to 2 do

2: �푝 ← 2 × �푛 − �푖 + 1 {Parent}
3: �푐 ← �푖 × ran() + 1 {Draw first child, 1 ≤ �푐 ≤ �푖}
4: tree[�푝].child1 ← tree[�푐]
5: tree[�푐] ← tree[�푖] {Replace first child}
6: �푐 ← (�푖 − 1) × ran() + 1 {Draw second child, 1 ≤ �푐 ≤ �푖 − 1}
7: tree[�푝].child2 ← tree[�푐]
8: tree[�푐] ← tree[�푝] {Replace second child by parent}
9: end for

6.52 As we’ve seen, in each round of coalescent construction the first child of some

node { is replaced by the rightmost child available in that round, and the second

child is replaced by {. Algorithm 2 summarizes these steps. Say, the remaining child

indexes drawn are all 1. Can you finish constructing the coalescent?

6.53 Can you plot the coalescent we’ve just constructed?

6.54 Let’s write a program for automatically picking the children, pick.awk

6.2 The Coalescent 177

Prog. 6.6 (pick.awk)

〈pick.awk〉≡
BEGIN {

〈Set usage, Prog. 6.6〉
srand(seed)

for (i = n; i >= 2; i--) {

〈Pick children, Prog. 6.6〉
}

}

pick.awk takes as input the sample size, �푛, and a seed for the random number

generator. Can you set the program’s usage?

6.55 Now we pick the children and print them in a table.

〈Pick children, Prog. 6.6〉≡
print "# Pa\tC1\tC2"

for (i = n; i >= 2; i--) {

c1 = int(rand() * i + 1)

c2 = int(rand() * (i-1) + 1)

no = 2 * n - i + 1

printf "%d\t%d\t%d\n", c1, c2, no

}

Can you use pick.awk together with coat.awk to generate another coalescent for

�푛 = 4?

6.56 At this stage, we have coalescence times and a branching order. To achieve

biological relevance, we still need mutations. Mutations are rare events and the

probabilities of rare events are modeled by the Poisson distribution. So we generate

mutations as Poisson-distributed random variables for each branch length �푡 with

expectation

�휆 = �푡�휃/2,

where �휃 = 2�푁�휇 and �휇 is the number of mutations per generation for the region con-

sidered. The program rpois generates Poisson-distributed random numbers given

a mean. Let �휃 = 10; can you use rpois to generate a random number of mutations

for �푡 = 0.5?

6.57 Fig. 6.13 shows an example coalescent. Can you draw for each of its six

branches a random number of mutations (�휃 = 10)?

6.58 The number of mutations across all branches of a coalescent is given by

Watterson’s equation [42],

�퐸{�푆} = �휃

�푛−1
∑

�푖=1

1

�푖
, (6.3)

where �퐸{�푆} is the expected number of mutations, or segregating sites. This equa-

tion is implemented in the program watterson. What is the expected number of

178 6 Evolution within Populations

1 2 4 30.00

0.16

0.20

0.23

�푏1 �푏2

�푏4

�푏6
�푏3

�푏5

Fig. 6.13 Example coalescent with coalescence times and branches labeled

segregating sites for �푛 = 4 and �휃 = 10? How does this compare to the number of

mutations you just simulated?

6.59 The program ms [20] is a popular coalescent simulator and we can use it to

generate one sample of size 4 with �휃 = 10 and tree printing.

〈cli〉+≡
ms 4 1 -t 10 -T

ms 4 1 -t 10 -T

60977 30522 51696

//

(2:0.209,(3:0.042,(1:0.030,4:0.030):0.012):0.167);

segsites: 6

positions: 0.0675 0.1627 0.2495 0.2952 0.3512 0.4482

010111

101000

010111

010111

Row by row this output means:

1. Repetition of the command

2. Initialization of the random number generator

3. Blank

4. Start of the first sample

5. Coalescent tree in Newick format

6. Number of segregating sites (mutations): 6

7. Positions of the mutations along the interval (0, 1)
8. Start of four haplotypes, each six segregating sites long, 0 indicates ancestral

state, 1 mutant

Can you plot ten coalescents with �푛 = 4 and �휃 = 10? What happens when you change

�휃?

6.2 The Coalescent 179

 3

 4

 1

 2

0.01

Fig. 6.14 Coalescent for a sample of size 4

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120

F
re

qu
en

cy

S

Fig. 6.15 Distribution of the number of segregating sites in 104 simulated samples of size 4 with

�휃 = 10

6.60 Fig. 6.14 shows a coalescent for four homologous genes. What does the scale

bar mean?

6.61 Fig. 6.15 shows a histogram of the number of segregating sites for 104 simulated

samples with �푛 = 4 and �휃 = 10. Can you generate your own version of Fig. 6.15?

6.62 Say, you observe 50 segregating sites in a sample of four genes and the pop-

ulation mutation rate is �휃 = 10. We’ve already calculated with watterson that

the expected number of segregating sites for this combination of sample size and

mutation rate is 18.3. So you might think, observing 50 segregating sites is a lot

compared to the expected 18.3. Can you test the null hypothesis that the observed 50

segregating sites arose under the Wright-Fisher model?

6.63 Next, we’d like to investigate some real mutations in mice. A great source of

mouse mutation data is provided by the mouse genomics group at the Wellcome

Sanger Institute. We can list the files in the Sanger mouse data repository using

180 6 Evolution within Populations

curl, a program to transfer URLs. Please note that the slash at the end of the URL

is significant.

〈cli〉+≡
url=https://ftp.ebi.ac.uk/pub/databases/mousegenomes/

curl $url | less

What do you see?

6.64 To suppress progress messages from curl, we run it silently.

〈cli〉+≡
curl -s $url | less

Mutation database releases have names starting with REL. Can you count the number

of releases posted by the Sanger Institute?

6.65 As of this writing, the directory for the current mutation data is

REL-1505-SNPs Indels

and we adjust our URL accordingly.

〈cli〉+≡
url=${url}REL-1505-SNPs_Indels/

Can you list the contents of this directory?

6.66 Mutation data is stored in “variant call format”, or VCF, files. Of the two types

of mutations, single nucleotide polymorphisms (SNPs) and indels, we concentrate

on the SNPs, as they are the only type of mutation modeled by the coalescent. VCF

files can be quite large. On the right hand side of the listing returned by curl you

find the file size in bytes. Our SNP file is called

mgp.v5.merged.snps all.dbSNP142.vcf.gz

How large is it?

6.67 We now concentrate on our target SNP file, so we adjust the URL one more

time for convenient handling.

〈cli〉+≡
url=${url}mgp.v5.merged.snps_all.dbSNP142.vcf.gz

The program tabix allows us to query VCF files over the net without downloading

them. Can you list the chromosome names contained in our VCF file (man)?

6.68 The tabix query resulted in the index file *.tbi in your current directory.

How large is that compared to the file it indexes (ls -l)?

6.69 We’d like to work on the shortest mouse chromosome. A VCF file is described

in its header and ours contains contig, or chromosome, lengths. Now, by convention

chromosomes are ordered by descending length, so chromosome 1 is the longest

followed by 2, and so on. Mice have 19 autosomes, which would make chromosome

19 the shortest mouse chromosome. How long is chromosome 19, and is it the

shortest autosome?

6.2 The Coalescent 181

6.70 The last line of the header section is the header of the subsequent SNP table.

Its first nine columns are mandatory. Can you list them and guess what they mean?

6.71 The columns beyond the first nine describe the samples that make up the data

set. Can you count the samples in our data set?

6.72 Let’s look at the first two SNPs on chromosome 19. What are their positions

and alleles?

〈cli〉+≡
tabix $url 19 | head -n 2

6.73 tabix can be used to download slices of SNP data, for example the 1 kb region

50,900,001–50,901,000 on chromosome 19.

〈cli〉+≡
tabix $url 19:50,900,001-50,901,000

Notice that it’s ok to use commas in numbers, which makes them more legible. How

many SNPs does this region contain?

6.74 We would like to compare the number of SNPs we just observed to an expec-

tation. For this we need two things, sample size, �푛, and the population mutation rate,

�휃. What is the sample size?

6.75 To estimate �휃, we count the SNPs on chromosome 19.

〈cli〉+≡
tabix $url 19 | wc -l

This took us 2.5 minutes, working with remote data does have its disadvantages.

How many SNPs are on chromosome 19?

6.76 Can you estimate �휃 per site using Watterson’s equation (watterson)?

6.77 How many SNPs are expected in our 1 kb region?

6.78 Is the difference between observed and expected SNPs significant?

Chapter 7

Interrogating and Storing Data

When analyzing data, statistics is never far off. In fact, statistics is a structured

approach to data analysis. Such a structured approach becomes especially important

when analyzing the multiple simultaneous experiments that are characteristic of

genomics. One aspect of data analysis rarely mentioned is that we can only compute

with data stored in a suitable format. The emphasis on human-readable text in Unix

is already very helpful, but as we shall see, next to text, tables are the second great

idea in digital data storage.

7.1 Statistics

Compared to other branches of mathematics, statistics is a young discipline. Take

Student’s �푡 test, which assesses the hypothesis that two small samples are drawn

from the same population by comparing their means. It was published in 1908

by William S. Gosset (1876–1937), who used “Student” as a pseudonym for his

work in statistics [39]. Gosset trained as a chemist and worked all his life in the

management of the Guinness brewery, first in Dublin and later in London. A central

aim of the company leadership at the time was to make brewing scientific. This

required experimentation on such things as the effect of the resin content of hops on

beer quality. However, once the relevant measurements had been made, a structured

approach to their interpretation was also needed; how large a difference in hop resin

content made a significant difference to the shelf life of stout? Today we call the

investigation of such questions “statistics” and Gosset was one of its pioneers. Rather

than the resin content of hops, we take as our example an investigation of the effect

of acute amebic colitis on gene expression in humans [5].

183© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_7&domain=pdf

184 7 Interrogating and Storing Data

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1–3

6

1–2

7

1

data

7.1 Can you create the directory for this section and change into it?

Single Experiments

New Terms

efetch Monte Carlo method testMeans

esearch Student’s �푡 test

7.2 The study on acute amebic colitis we are using as our example was published

with document identifier (doi) [36]

10.1016/j.parint.2011.04.005

We can search for this doi in Pubmed, a database of medical literature. Pubmed is

part of the Entrez database collection, which can be accessed through programs of

the edirect software suite. Here we use esearch to search for the document and

efetch to fetch it in XML format.

〈cli〉+≡
esearch -db pubmed -query "10.1016/j.parint.2011.04.005" |

efetch -format xml | less

How many patients were included in this study?

7.3 The expression data collected in the colitis study was deposited in the Geo

database, from where we can download and unpack it.

〈cli〉+≡
url="ftp://ftp.ncbi.nlm.nih.gov/geo/datasets/"

url=$url"GDS4nnn/GDS4374/soft/GDS4374.soft.gz"

curl $url -o GDS4374.soft.gz

gunzip GDS4374.soft.gz

What does the file contain (less)?

7.4 The colitis study is based on measurements from day 1 of the infection and from

day 60, long after recovery through treatment with an antibiotic. Can you find out

which columns correspond to which of these two categories?

7.1 Statistics 185

7.5 To simplify the data analysis, we split the data into two files, d1.txt and

d60.txt for day 1 and day 60. Each file contains just an identifier and eight columns

of the expression data. The identifier is constructed by concatenating the probe name

and the locus name in the first two columns of the original data via a dollar.

〈cli〉+≡
awk ’!/ˆ[!ˆ#]/’ GDS4374.soft |

tail -n +2 |

awk ’{printf "%s$%s", $1, $2;

for(i=3;i<=10;i++)printf "\t%s",

$i; printf "\n"}’ > d1.txt

Can you construct d60.txt?

7.6 What do you observe when you look at the head of d1.txt?

7.7 What do you observe when you look at the tail of d1.txt?

7.8 Each line in d1.txt and d60.txt corresponds to a distinct expression probe.

How many expression probes were assayed?

7.9 All entries in d1.txt (and d60.txt) not called chr* or control are presum-

ably genes. A gene may have more than one probe. How many distinct genes were

assayed?

7.10 What are the genes with the largest number of probes?

7.11 We start by investigating a single gene, ACKR2, which stands for “atypical

chemokine receptor 2”. Chemokines are a critical part of the inflammation response

and amebic colitis leads to inflammation of the intestinal mucosa. What are the

expression levels of ACKR2 on day 1 and day 60?

 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7

Expression level

d1
d60

Fig. 7.1 The ACKR2 expression levels on day 1 and day 60 plotted along the x axis

7.12 Fig. 7.1 shows the expression levels of ACKR2 on day 1 and day 60 plotted along

the x axis of a graph. Colitis appears to reduce ACKR2 expression. We generated

Fig. 7.1 with the help of expr.sh, which takes as input the name of a gene and

writes its expression values ready for plotting.

186 7 Interrogating and Storing Data

Prog. 7.1 (expr.sh)

〈expr.sh〉≡
for a in d1 d60

do

grep $1 ${a}.txt |

tr ’\t’ ’\n’ |

tail -n +2 |

awk -v c=${a} ’{print $1, 0, c}’

done

Can you reproduce Fig. 7.1?

7.13 We’d like to know whether the expression of ACKR2 decreases significantly due

to acute amebic colitis. A simple way to summarize our sets of eight measurements

are their averages. What are the average expression levels of ACKR2 on day 1 and

day 60?

7.14 The expression values are given as log2. In other words, an expression value of

2 corresponds to 22 = 4 units of expression, a value of 3 to 23 = 8 units of expression.

The fold change between these two expression values is 23−2 = 2. What is the fold

change in average expression of ACKR2 between day 1 and day 60?

7.15 The fold change we just determined might seem a bit small, but our question

remains, is it significant? We answer this by testing whether the averages we just

calculated are significantly different. The programtestMeans implements Student’s

�푡 test to answer this question. Do you think the two averages differ?

7.16 For Student’s �푡 test, �푡 is defined as

�푡 =
�푚1 − �푚2

�푠�푝
√

1/�푛1 + 1/�푛2

, (7.1)

where �푚1 and �푚2 are the sample means, �푛1 and �푛2 the sample sizes, and �푠�푝 the

pooled standard deviation,

�푠�푝 =

√

(�푛1 − 1){1 + (�푛2 − 1){2

�푛1 + �푛2 − 2
,

where {1 and {2 are the sample variances. The null hypothesis tested by the �푡 test is

that �푚1 = �푚2, in which case �푡 = 0. Can you recapitulate the �푡 you just computed

(var)?

7.17 The �푡 test is based on the assumption that the variables are drawn from a normal

distribution. This may or may not be the case. Can we test the means of ACKR2

expression without making this assumption? A popular strategy for answering this

question is to shuffle the expression values among day 1 and 60 and to recalculate

their averages. To see how this works, we save the ACKR2 expression values in the

7.1 Statistics 187

file ackr2.dat using our script expr.sh. Then we generate 16 random numbers

and save them in file r.txt. These numbers are used as prefixes of the expression

values and sorted, which shuffles the expression values. Now we divide the data into

two equal halves with head and tail and calculate the average of each half.

〈cli〉+≡
bash expr.sh ACKR2 > ackr2.txt

for a in $(seq 16); do echo $RANDOM; done > r.txt

for a in head tail

do

paste r.txt ackr2.txt |

sort -n |

${a} -n 8 |

awk ’{s+=$2}END{print s/8}’

done

What’s the difference between the averages after shuffling compared to the original

difference?

7.18 The shuffling test we just outlined belongs to the class of “Monte Carlo”

methods. Can you explain their peculiar name?

7.19 To actually carry out a hypothesis test with our Monte Carlo method, we’d have

to repeat the shuffling many times and calculate the frequency with which we find a

difference between the two shuffled means that is at least as great as the difference

between the original means. The program testMeans implements this Monte Carlo

procedure when used with option -m. What is the �푃-value for ACKR2 computed with

Monte Carlo? How does this compare to the �푃-value with the �푡 test formula?

7.20 What happens if you carry out the test with much fewer, say 100, iterations?

7.21 We’ve investigated a single gene, and we’d now like to apply our test to all

33,297 expression probes. Why might this be problematic?

Multiple Experiments

New Terms

Benjamini-Hochberg correction false discovery rate false positive rate

Bonferroni correction false negative rate simNorm

7.22 The program simNorm generates samples drawn from a normal distribution.

We use it to simulate two experiments with �푚 = 100 samples of size �푛 = 8 with

arbitrary mean 12 and look at the top of one of them.

〈cli〉+≡
simNorm -i 100 -m 12 > exp1.txt

188 7 Interrogating and Storing Data

simNorm -i 100 -m 12 > exp2.txt

head exp1.txt

ID x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

s_1 12 13 15.2 13 11.5 11.3 12.2 12.4

s_2 11.8 12.3 10.6 11.2 11.5 12.4 12.2 12.5

s_3 11.8 13.2 14.1 11.3 11.9 12.5 11 13

...

The files we just generated contain the values for sample 1, �푠1, followed by the

values for sample 2, �푠2, and so on. We can think of the samples in exp1.txt as

control, the samples in exp2.txt as experiment for genes �푥1, �푥2, and so on. Since

we’ve generated the two data files from the same normal distribution, there can be

no significant differences between them. Still, when we apply testMeans to the two

files we find positive results. How many such positive values do you get if the cutoff

value of �푃 for calling a result positive is the customary �훼 = 0.05?

7.23 Pseudo-positive, or false-positive results occur with an expected frequency

�훼. What is the observed false positive rate if we repeat the simulation with 104

experiments?

7.24 False-positive results occur more frequently the more tests we carry out. In

fact, the probability of getting at least one false positive in �푚 tests with threshold �훼

is

�푓p (�훼, �푚) = 1 − (1 − �훼)�푚.

What is �푓p (0.05, 100)?

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

f p

Number of tests

0.05
0.01

0.001
0.0001

Fig. 7.2 The probability of obtaining at least one false-positive result, �푓p, as a function of the

number of hypothesis tests for �훼-values ranging from 0.05 to 10−4

7.1 Statistics 189

7.25 As illustrated in Fig. 7.2, the more tests we carry out, the greater the probability

that we obtain at least one false-positive. Can you write a script fp.sh to reproduce

Fig. 7.2?

7.26 In statistics the false positive rate is also known as the type I error. So far, we

set this to �훼 = 0.05 per experiment. However, we can also regard the 104 experiments

as a single unit. Then we can divide the original �훼 by the number of tests carried out

to assess the null hypothesis that the ensemble contains no sample with a significant

difference. This division of �훼 by the number of tests was proposed by Carlo Emilio

Bonferroni (1862–1960) and is thus called Bonferroni correction. What is the false

positive rate if we analyze our 104 experiments using the Bonferroni correction?

7.27 Now we simulate 104 experiments with different means, say, 12 and 11.

〈cli〉+≡
simNorm -i 10000 -m 12 > exp1.txt

simNorm -i 10000 -m 11 > exp2.txt

Since we have drawn the samples from distinct distributions, any �푃-value greater

than �훼 would indicate a false negative test. What is the false negative rate, �훽, if we

leave �훼 = 0.05?

7.28 If the difference in means, also called the “effect size”, is small, we need bigger

samples to detect it. What happens to the false negative rate if you increase the

sample size from 8 to 16? to 32?

7.29 The false negative rate is also known as the type II error. We’ve seen that the

Bonferroni correction is used to minimize the type I error. What happens to the type

II error if you re-analyze exp1.txt and exp2.txt with Bonferroni correction?

7.30 As we’ve seen, minimizing the type I error can lead to a large type II error.

Hence the concept of false discovery rate, fdr, has been developed. The fdr is the

fraction of false-positive results among the rejected hypotheses, rather than among

all hypotheses. In order to set the fdr to some level �훿, the original �푃-values are sorted

in ascending order, �푃1 ≤ �푃2 ≤ ... ≤ �푃�푚; then a particular �푃-value at position �푗

is significant if it is less than �훿 divided by the number of tests multiplied by the

position, �푃 �푗 ≤ �훿 �푗/�푚. This method is due to Yoav Benjamini and Yosef Hochberg

and hence also known as the Benjamini-Hochberg correction [4]. What is the type

II error, or �훽, with �훿 = 0.05?

7.31 To explore the robustness of the Benjamini-Hochberg correction with respect

to type I error, we return to a data set without any significant differences, but keep

the large sample sizes for now.

〈cli〉+≡
simNorm -n 32 -i 10000 -m 12 > exp1.txt

simNorm -n 32 -i 10000 -m 12 > exp2.txt

190 7 Interrogating and Storing Data

What is the type I error in your simulation with �훼 = 0.05?

7.32 How large is the type I error with the Benjamini-Hochberg correction, �훿 =

0.05?

7.33 What happens when you set �훿 to the more permissive value of 0.1?

7.34 Let’s now return to the real expression data from amebic colitis. Benjamini-

Hochberg corrections are often carried out with the relatively permissive threshold

of �훿 = 0.1. How many distinct loci are deemed significant under that parameter? Is

ACKR2 among them?

7.2 Relational Databases

In the late 1960’s the British mathematician Edgar F. Codd (1923–2003) proposed

a new model for storing and accessing data. This model, called the relational data

model, has become the standard way of dealing with large data sets [7]. Originally

used mainly in government and business, relational databases are now also ubiquitous

in genomics [17]. In this section we learn how to construct and query relational

databases.

Server
DB1, DB2,...

c1

c2
c3

c4

c5

c6

c7
c8

c9

c10

Fig. 7.3 A database server hosting several databases in red connected to ten clients in blue

There are a number of software systems available for doing this and they all

implement the query language SQL. However, there are differences, and the most

important distinction is between systems with a client-server structure and those

without. Systems with a client-server structure, such as Oracle, Mysql, and Post-

gresql, are usually centered on a server hosting one or more databases (Fig. 7.3).

A potentially large number of clients connects via the internet to this server. As an

example, we look at the Ensembl database collection, which contains genome data

on vertebrates and is managed by Mysql [3].

Server-client systems are powerful and can be challenging to construct and admin-

ister, as opposed to mere querying. For single-user databases there are also simpler

7.2 Relational Databases 191

systems available, where the database is just a local file. As an example for this kind

of system we experiment with the Sqlite database management system.

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1–3

6

1–2

7

1 2

data

7.35 Can you construct the directory for this section and change into it?

A Database of Colitis Expression Data

New Terms

Ensembl Mysql SQL

entity relation (ER) model primary key sqlite3

foreign key relational database xtract

7.36 We continue working with the colitis data. Can you copy the files d1.txt and

d60.txt from the last session?

7.37 Fig. 7.4 shows an entity relation (ER) model of the database we wish to con-

struct. Boxes are entities, ellipses attributes, and the diamond denotes a relationship.

It’s a one-to-one relationship, where each entry in d1 has a corresponding entry in

d60. The underlined attribute, Probe, is a unique primary key. We construct the

database with the SQL script colitis.sql. It consists of two major chunks, one

for each of the two tables in colitis.db.

Prog. 7.2 (colitis.sql)

〈colitis.sql〉≡
〈Create d1, Prog. 7.2〉
〈Create d60, Prog. 7.2〉

Table d1 consists of attributes—the table columns—and a unique identifier of each

row, the primary key. In our case the probe name serves as primary key.

〈Create d1, Prog. 7.2〉≡
create table d1 (

〈Attributes, Prog. 7.2〉
primary key(Probe)

);

192 7 Interrogating and Storing Data

d 1
S y m

M 1
M 2

M 3

M 4
M 5

M 6 M 7

M 8

1-60

1

d 6 0

S y m

M 1

M 2
M 3

M 4

M 5

M 6

M 7

M 8

1

Probe

Probe

Fig. 7.4 Entity-relation (ER) model for colitis.db

We declare the ten attributes, which are common to both tables: A probe name of up

to 255 characters, a gene symbol of up to 255 characters, and eight measurements.

〈Attributes, Prog. 7.2〉≡
Probe varchar(255),

Sym varchar(255),

M1 float,

Can you finish the attribute declarations?

7.38 Table d60 has the same attributes and primary key as d1. In addition, it has a

foreign key. A foreign key connects some attribute x in the current table with some

attribute y in a different table. It is declared on the pattern

foreign key(x) references some table(y)

7.2 Relational Databases 193

In our case, Probe in d60 refers to Probe in d1 to make sure that d60 contains no

entry without a corresponding entry in d1. Can you construct d60?

7.39 We can now create the database colitis.db and list its tables. Commands

starting with a dot are “meta commands”; they are not part of SQL, but specific to

sqlite3.

〈cli〉+≡
sqlite3 colitis.db < colitis.sql

sqlite3 colitis.db .tables

What do you get?

7.40 Next, we look at the table schema.

〈cli〉+≡
sqlite3 colitis.db .schema

What are the table schema?

7.41 Time to fill our two tables, d1 and d60, with data. For that we still need to split

the first entry in each row into the probe ID and the locus symbol. Can you do that?

7.42 There is one more formatting step before we can import the data, sqlite3

expects pipe symbols, |, as column delimiters. Can you replace the tabs in d1.txt

and d60.txt by pipes?

7.43 Now we can import the data and query it.

〈cli〉+≡
sqlite3 colitis.db ".import d1.txt d1"

sqlite3 colitis.db ".import d60.txt d60"

sqlite3 colitis.db "select * from d1 limit 10"

What do you see?

7.44 We count the 33,297 entries in table d1.

〈cli〉+≡
sqlite3 colitis.db "select count(*) from d1"

Can you check that d60 also has 33,297 entries?

7.45 We select the expression data for ACKR2 and build our query from a select

part, a from part, and a where part—the building blocks of many queries.

〈cli〉+≡
s="select *"

f1="from d1"

w="where sym like ’ACKR2’"

q="$s $f1 $w"

sqlite3 colitis.db "$q"

194 7 Interrogating and Storing Data

8079117|ACKR2|5.72763|6.04518|5.67683|5.69512|...

Can you get the corresponding expression data from day 60?

7.46 In the statistics section we concentrated on average expression values. So let’s

calculate the average expression of ACKR2 on day 1. The code is not particularly

elegant, because SQL lacks loop constructs, but there we are. You might be wondering

why we write m1 rather than M1 as shown in Fig. 7.4. This is to prompt us to point out

that capitalization in attribute names is ignored, so writing m1 is identical to writing

M1. As we saw before, the average expression of ACKR2 on day 1 is approximately

5.82.

〈cli〉+≡
s="select (m1+m2+m3+m4+m5+m6+m7+m8)/8"

q="$s $f1 $w"

sqlite3 colitis.db "$q"

Can you repeat this computation for day 60?

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16

C
ou

nt

Expression

d1
d60

Fig. 7.5 Histograms of average expression values in the colitis study from day 1 and day 60

7.47 Fig. 7.5 shows the histograms of average expression values from days 1 and

60. At this resolution, the two distributions look very similar. Can you reproduce

Fig. 7.5?

7.48 The SQL function max gives the maximum of a set of values. For example, we

can select the gene with the highest average expression on day 1. This is an interval

starting at position 50,320,334 on chromosome 14.

〈cli〉+≡
s="select sym, max((m1+m2+m3+m4+m5+m6+m7+m8)/8)"

q="$s $f1"

sqlite3 colitis.db "$q"

7.2 Relational Databases 195

chr14:50320334-50320632|13.5845

Such intervals are used to monitor background hybridization, so we exclude them.

The percent symbol in the like phrase matches any string. Now we get a control

region.

〈cli〉+≡
w="where sym not like ’chr%’"

q="$s $f1 $w"

sqlite3 colitis.db "$q"

control|13.528025

When we exclude chromosome intervals and controls, we find the gene RNA45S5.

The 45S ribosomal DNA encodes the precursor for the three rRNAs, 18S, 5.8S, and

28S, that are an essential part of the ribosomes in eukaryotes.

〈cli〉+≡
w="$w and sym not like ’control’"

q="$s $f1 $w"

sqlite3 colitis.db "$q"

RNA45S5|13.2305125

Can you find the most highly expressed gene on day 60?

7.49 The SQL function min gives the minimum of a set of values. It works like max.

Which gene had the smallest average expression on day 1? on day 60?

7.50 Expression values are often discussed in terms of fold change. For this we need

information from the two tables, d1 and d60. We obtain this by joining them on their

primary key, probe. The query we’re about to write is a bit longer, so it gets its own

script, fc.sql. By writing as fc, we declare the variable fc, for fold change. It

allows us to sort the result by the fold change. In the joined table, all attribute names

are duplicated, so they are disambiguated with the dot notation.

Prog. 7.3 (fc.sql)

〈fc.sql〉≡
select d1.sym, (d1.m1+d1.m2+d1.m3+d1.m4+

d1.m5+d1.m6+d1.m7+d1.m8)/8-

(d60.m1+d60.m2+d60.m3+d60.m4+

d60.m5+d60.m6+d60.m7+d60.m8)/8 as fc

from d1 join d60

where d1.probe=d60.probe

and d1.sym not like ’chr%’

and d1.sym not like ’control’

order by fc

We run this query.

〈cli〉+≡
sqlite3 colitis.db < fc.sql | head

196 7 Interrogating and Storing Data

What do you observe?

7.51 Let’s reformat the exponents we’ve just calculated into actual fold changes

using the program fc.awk. It interacts with the user, reads the data, calculates the

fold change, and prints it.

Prog. 7.4 (fc.awk)

〈fc.awk〉≡
BEGIN {

〈User interaction, Prog. 7.4〉
}

{

〈Read data, Prog. 7.4〉
〈Calculate fold change, Prog. 7.4〉
〈Print fold change, Prog. 7.4〉

}

In the user interaction, we respond to a call for help by showing how fc.awk is

intended to be used.

〈User interaction, Prog. 7.4〉≡
if (h) {

u = "Usage: sqlite3 colitis.db < fc.sql | "

u = u "tr ’|’ ’\\t’ | awk -f fc.awk [-v h=1]"

print u

exit

}

How would you call for help?

7.52 We read the symbol and the exponent.

〈Read data, Prog. 7.4〉≡
sym = $1

ex = $2

Now we calculate the fold change, which is either an increase or a decrease. We

make a note of the type of fold change and turn negative exponents positive.

〈Calculate fold change, Prog. 7.4〉≡
type = "incr"

if (ex < 0) {

type = "decr"

ex *= -1

}

Can you print the fold change and its type?

7.53 Which genes are the most upregulated in acute amebic colitis?

7.2 Relational Databases 197

7.54 We can look up the function of genes in the Entrez database collection, which

we have already encountered. It is almost certainly built from relational databases at

some level, but these are not exposed to external users. Instead, we can use command

line programs like esearch and efetch to find gene functions in the gene database.

The function reports are in XML, from which we can extract tagged elements using

xtract. Here we extract the summary.

〈cli〉+≡
q="REG1B [GENE] AND Homo sapiens [ORGN]"

esearch -db gene -query "$q" |

efetch -format docsum |

xtract -pattern DocumentSummary -element Summary

What is the function of the most up regulated gene, REG1B?

7.55 Which genes are the most down regulated in acute colitis?

7.56 What is the function of the most down regulated gene, AQP8?

Go

7.57 We have seen that SQL—albeit very useful—lacks easy branching and looping.

As a result, SQL is often embedded in a proper programming language. As an

example, we look at a program in the programming language Go [11]. Go is developed

at Google, where it is used for building web server infrastructure. The programs in

the biobox are also written in Go. Our program for demonstrating SQL embedding is

called fc and prints fold changes. The Go code for fc is contained in the file fc.go,

which consists of some 50 lines in its final form. This might seem like a lot, but

don’t worry, we’ll go slow and show you every line of code. The outline of fc.go

has hooks for imports and the logic of the main function. As before, a good way to

use these hooks is to enter them as comments, which start with two forward slashes

in Go, rather than the hashes we used in Awk.

// Hooks make good comments.

Prog. 7.5 (fc.go)

〈fc.go〉≡
package main

import (

〈Imports, Prog. 7.5〉
)

func main() {

〈Main function, Prog. 7.5〉
}

198 7 Interrogating and Storing Data

In the main function we open the database connection, construct the query, run the

query, and print the result.

〈Main function, Prog. 7.5〉≡
〈Open database connection, Prog. 7.5〉
〈Construct query, Prog. 7.5〉
〈Run query, Prog. 7.5〉
〈Print result, Prog. 7.5〉

We open a connection to our colitis database. If this doesn’t work, we throw a fatal

error with a message.

〈Open database connection, Prog. 7.5〉≡
cd := "colitis.db"

db, err := sql.Open("sqlite3", cd)

if err != nil {

log.Fatalf("couldn’t open database %q", cd)

}

sql and log are packages, which we have to import to make the functions sql.Open

and log.Fatal available.

〈Imports, Prog. 7.5〉≡
"database/sql"

"log"

We also import a package for connecting an sqlite3 database. However, we won’t

directly refer to the package go-sqlite3 and Go prohibits importing superfluous

packages. To signal the compiler we are using the package even though we don’t

refer to any of its members, we mark it as a blank import by the underscore.

〈Imports, Prog. 7.5〉+≡
_ "github.com/mattn/go-sqlite3"

We use the same query we used before, only in Go strings are concatenated with the

plus operator.

〈Construct query, Prog. 7.5〉≡
q := "select d1.sym, (d1.m1+d1.m2+d1.m3+d1.m4+" +

"d1.m5+d1.m6+d1.m7+d1.m8)/8-" +

Can you complete the query?

7.58 We run the query.

〈Run query, Prog. 7.5〉≡
rows, err := db.Query(q)

Can you check whether we’ve had an error?

7.59 We defer the closure of the results rows we’ve just created until the end of the

current function, main.

〈Run query, Prog. 7.5〉+≡
defer rows.Close()

7.2 Relational Databases 199

We print the result in an output table, which we prepare before we iterate over the

table rows.

〈Print result, Prog. 7.5〉≡
〈Prepare output table, Prog. 7.5〉
for rows.Next() {

〈Print a row, Prog. 7.5〉
}

Which columns does our output table contain?

7.60 We layout our table with a tab writer. This writes to the standard output

stream—the screen—and uses at least one blank as column delimiter. A tab writer

needs to be flushed after everything has been written to it, so we defer flushing ours.

The first thing we write is a fenced-off table header.

〈Prepare output table, Prog. 7.5〉≡
w := tabwriter.NewWriter(os.Stdout, 1, 1, 1, ’ ’, 0)

defer w.Flush()

fmt.Fprint(w, "#Sym\tFC\tType\n")

We import the tabwriter and os.

〈Imports, Prog. 7.5〉+≡
"text/tabwriter"

"os"

The table generated by our query contains two columns. Can you remember what

they are?

7.61 We prepare two variables for storing the data we read, a string for the gene

symbols and a floating point number for the exponent of the fold change.

〈Prepare output table, Prog. 7.5〉+≡
var sym string

var e float64

When printing a row, we first scan its entries into the two variables we just declared.

For this we supply the addresses, or pointers, of our variables, which we access with

a prefixed ampersand.

〈Print a row, Prog. 7.5〉≡
err = rows.Scan(&sym, &e)

Can you check the error?

7.62 By default, we set the type of change to increase. But if the exponent is negative,

we set the type to decrease and make the exponent positive. Then we calculate the

fold change with the power function from the package math.

〈Print a row, Prog. 7.5〉+≡
t := "incr"

if e < 0 {

t = "decr"

e *= -1

200 7 Interrogating and Storing Data

}

f := math.Pow(2, e)

Can you import the package math?

7.63 We print the final output.

〈Print a row, Prog. 7.5〉+≡
fmt.Fprintf(w, "%s\t%.6f\t%s\n", sym, f, t)

Can you import fmt?

7.64 Can you guess the meaning of %s and %.6f in our printing command?

7.65 Before we can compile our program, we initialize the current directory as a Go

module. This can have any name, we call ours alpha.beth.

〈cli〉+≡
go mod init alpha.beth

What do you observe?

7.66 We tidy up our module.

〈cli〉+≡
go mod tidy

What do you observe?

7.67 Now we can compile and run fc.

〈cli〉+≡
go build fc.go

./fc | head

What happens?

7.68 Which genes changed least between the two measurements?

Esembl

7.69 In contrast to Entrez, the Ensembl database collection does expose its SQL

interface, so that anybody can query its Mysql database management system. We

store the connection details in variable c and then redirect the names of all Ensembl

databases into the file dbs.txt.

〈cli〉+≡
c="-h ensembldb.ensembl.org -u anonymous"

mysql $c -e "show databases" > dbs.txt

7.2 Relational Databases 201

This works on bash, because it splits words on white space. On zsh, this behavior

is invoked by first entering

setopt sh_word_split

How many databases make up Ensembl?

7.70 We are interested in the databases for human (Homo sapiens). How many are

there?

7.71 The core databases of an organism are called * core *. How many core

databases are there for human?

7.72 The core databases have version numbers. What is the highest version number

for human-core you can find?

7.73 We list the tables in homo sapiens core 106 38.

〈cli〉+≡
c="$c homo_sapiens_core_106_38"

mysql $c -e "show tables"

How many are there?

7.74 The table seq region contains information on the human genome sequence.

We list its attributes.

〈cli〉+≡
mysql $c -e "describe seq_region"

How many are there?

7.75 We’d like to look at the contents of seq region. We could just list the whole

table, but let’s be cautious and count its rows first.

〈cli〉+≡
mysql $c -e "select count(*) from seq_region"

How many rows does seq region have?

7.76 We can just peek at the first ten rows of seq region.

〈cli〉+≡
mysql $c -e "select * from seq_region limit 10"

The coordinate system IDs are all 1 in our result. So we ask, how many distinct

coordinate system IDs are there?

〈cli〉+≡
q="select count(distinct(coord_system_id))"

q="$q from seq_region"

mysql $c -e "$q"

202 7 Interrogating and Storing Data

How many do you find?

7.77 The attribute coord system id in table seq region suggests that there is a

table coord system, and there really is. Can you list its attributes?

7.78 How many entries does coord system have?

7.79 What is the coordinate system ID for chromosomes from the GRCh38 version

of the human genome?

7.80 We take a look at the names of the chromosomal sequence regions in GRCh38

to find that the names of the human chromosomes are, not surprisingly, 1–22, X, and

Y.

〈cli〉+≡
q="select * "

q="$q from seq_region"

q="$q where coord_system_id = 4"

q="$q limit 30"

mysql $c -e "$q"

We’ve seen that seq region contains lengths. So we list the lengths of the chromo-

somes for GRCh38 and guess their names are those that don’t start with CHR or MT

for mitochondrion.

〈cli〉+≡
q="select name, length"

q="$q from seq_region"

q="$q where coord_system_id = 4"

q="$q and name not like ’CHR%’"

q="$q and name not like ’MT’"

mysql $c -e "$q"

Is that true?

7.81 Fig. 7.6 shows the lengths of human chromosomes. Let’s reproduce it. We’ve

seen that the names of autosomes are numbers, so they are easy to plot along the x

axis. The sex chromosomes are characters, so we write a program to convert them

to numbers. The program is called fcl.awk for “format chromosome lengths”.

Prog. 7.6 (fcl.awk)

〈fcl.awk〉≡
/ˆX/ { print 23 "\t" $2 }

/ˆY/ { print 24 "\t" $2 }

/ˆ[0-9]/

Can you reproduce Fig. 7.6?

7.82 The SQL function sum sums a range of numbers. Can you use it to calculate

the total length of the human genome?

7.2 Relational Databases 203

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 0 5 10 15 20 25

Le
ng

th

Chromosome

Fig. 7.6 Human chromosome lengths; chromosome 23 is the X, chromosome 24 the Y

7.83 Chromosomes are numbered by size. Their relative size was originally deter-

mined by looking at condensed chromosomes through the microscope. However, the

DNA in chromosomes is complexed with proteins, mainly the histones that form the

nucleosome cores. This means that chromosome length is not perfectly correlated

with DNA content. Can you spot the “misorderings” in Fig. 7.6? You might also like

to take another look at chrLen.dat.

7.84 We turn to genes. Can you list the attributes of table gene?

7.85 How many genes are known for the human genome?

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

C
ou

nt

Gene length (x 100 kb)

Fig. 7.7 The length distribution of human genes

204 7 Interrogating and Storing Data

7.86 Fig. 7.7 shows the distribution of gene lengths on a logarithmic y axis. The

vast majority of genes are less than half a megabase long, but a few go up to 2.5 Mb.

Can you use table gene to reproduce the histogram of gene lengths?

7.87 Which portion of the human genome is covered with genes?

7.88 The 2.2 Gb of “genes” might suggest that most of the genome is coding.

However, genes consist of expressed parts, the exons, and unexpressed parts in

between, the introns. The exons are stored in table exon. Can you list its attributes?

7.89 Exons contained in all transcripts of a gene are called constitutive. So we can

sum the nucleotides contained in constitutive exons.

〈cli〉+≡
q="select sum(seq_region_end - seq_region_start + 1)"

q="$q from exon"

q="$q where is_constitutive=1"

mysql $c -e "$q"

What portion of the human genome is covered by constitutive exons?

7.90 If we’d like to inquire about a particular gene, we need be able to query for

its name. Table xref contains the attribute display label, which corresponds to

the gene names we used in the colitis expression analysis. For each gene, xref also

contains a description of its function. One of the genes we singled out in the

colitis study was ACKR2. Can you list its description?

7.91 Important entities in Ensembl such as genes or transcripts are labeled with a

stable ID, stable id. A stable ID can, for example, be entered on the Ensembl web

site (www.ensembl.org) to quickly and unambiguously look up information on a

particular gene. We’d like to look up the stable ID of ACKR2. For this we need to

join gene and xref via gene.display xref id and xref.xref id.

〈cli〉+≡
q="select display_label, gene.stable_id"

q="$q from xref join gene"

q="$q where display_xref_id = xref_id"

q="$q and display_label like ’ACKR2’"

mysql $c -e "$q"

What is the stable ID of ACKR2?

Part II

Answers

�푔1

�푔2

�푔3

�푔4

�푔5

�푔6

�푔7

�푔8

�푔9

�푔10

�푔11

�푔12

�푔13

�푔14

�푔15

�푔16

�푔17

�푔18

�푔19

�푔20

�푔21

�푔22

�푔23

�푔24

�푔25

�푔26

�푔27

�푔28

�푔29

�푔3

�푔31

�푔32

�푔33

�푔34

�푔35

�푔36

�푔37

�푔38

�푔39

�푔40

1 23 456 7 89 10111213 14 15 1617 1819 20 212223 24 252627 28 2930

Wright-Fisher population of 30 genes over 40 generations; the red dot in �푔3 indicates the most

recent common ancestor of genes 6, 18, 11, and 29; their genealogy is shown in green

Chapter 1

The Unix Command Line

1.1 Getting Started

1.1 Ours happens to be,

/home/beth/books/beb

your’s is bound to be different.

1.2 We get the path of the current directory.

1.3 We find out with

〈cli〉+≡
pwd

which in our case is /home/beth. This directory is called the home directory.

1.4 We return to the beb directory.

1.5 We again change into the home directory, which is denoted by tilde (˜).

1.6 Ours is /bin/bash.

1.7 Right at the end you should see the export line we just produced, on our test

environment this is

export BEB=/home/beth/books/beb

If you get something quite different, copy your backup resource file to the home

directory and try again.

1.8 ls lists files and directories, so we get ch, the one directory contained in our

current directory, beb.

1.9 In addition to ch, we get .bashrc, a dot, and a double dot. A file preceded by

a dot like .bashrc is a hidden file, which is why we didn’t see .bashrc with plain

ls. The single and double dots are special hidden “files”. The single dot is the name

of the current directory, the double dot the name of the parent directory.

207© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_8&domain=pdf

208 1 The Unix Command Line

1.10 We make directory 1, change into it, and repeat.

〈cli〉+≡
mkdir 1

cd 1

mkdir 1

cd 1

1.11 We make our directories and list them.

〈cli〉+≡
mkdir td1 td2

ls

1.12 We change into td1 and back into its parent.

〈cli〉+≡
cd td1

cd ..

1.13 The star, or wildcard (∗), matches any completion of td, so we delete both td1

and td2, which we can see with ls.

1.14 This causes the error message

rmdir: failed to remove ‘td1’: Directory not empty

1.15 We delete the file td1/tf and remove the empty directory td1.

〈cli〉+≡
rm td1/tf

rmdir td1/

1.16 We make the directory td1, add a file, and remove td1 recursively.

〈cli〉+≡
mkdir td1

touch td1/tf

rm -r td1/

1.17 We make td1, change into it, and touch tf1 and tf2. Then we use the wildcard

notation to copy the two new files to the neighboring directory.

〈cli〉+≡
mkdir td1

cd td1/

touch tf1 tf2

cp * ../td2/

1.1 Getting Started 209

1.18 We remove the files and copy them from the neighboring directory to the

current directory using the wildcard notation.

〈cli〉+≡
rm *

cp ../td2/* .

1.19 We move tf2 to tf4 and then tf3 to tf4.

〈cli〉+≡
mv tf2 tf4

mv tf3 tf4

The system has now overwritten the old tf4 by tf3without checking whether that’s

really what you intended to do. The same thing would happen when moving files

containing valuable information, so beware.

1.20 C-b moves the cursor one position back.

1.21 C-e jumps to the end of a line.

1.22 M-d is a command for editing the command line, it deletes the word to the right

of the cursor.

1.23 Repeated undo rolls back the steps taken so far.

1.24 C-y pastes (yanks) what was just deleted.

1.25 Our solution is to delete man (M-backspace), move in front of dog by three

M-b, insert man (C-y), delete dog (M-d), jump to the end of the line (C-e), and insert

dog (C-y).

1.26 We use head to look at the head of the command history.

〈cli〉+≡
history | head

The command numbering tells us there are 1000 items in our list. Your result may

well differ.

1.27 Two exclamation marks repeat the last command.

1.28 The command !-3 repeats to the current command minus 3.

1.29 C-n gets the next command down the list.

1.30 The command history doesn’t wrap around, so C-p on the first command

doesn’t do anything. We can, of course, walk to the next command down with C-n.

1.31 M-> is the opposite of M-< and gets us to the most recent command line, which

may well be empty.

1.32 Repeated C-r walks up the matching commands in the history.

1.33 C-g exits the history search.

210 1 The Unix Command Line

1.34 The command for finding man pages for a keyword like bash is

〈cli〉+≡
man -k bash

1.35 The help page contains a section on searching, which explains that

/pattern

generates a search; it also tells us to quit with q. So we quit the help page

q

This means that

/Commands for Moving

gets us to the section on moving along the command line and

/History

to the section on moving along the command history.

1.36 The expected answer, 64, is printed—or rather echoed—to the screen. When

we drop the dollar, we get a syntax error as echo expects a value, which is referred do

by the dollar, rather than a computation, which is started by the double parentheses.

1.37 We access the value of a variable by prefixing it with a dollar.

〈cli〉+≡
echo $nc

1.38 Strings in single quotes are echoed verbatim, so $nc is not replaced by its value.

1.39 The shell can only compute with integers, so it tells us 22/7 is 3.

〈cli〉+≡
echo $((22/7))

1.40 The answer given by bc is 3.142..., which is roughly the ratio of a circle’s

circumference to its diameter, �휋.

1.41 Without -l, bc reverts to integer division.

1.42 The computation presumably fails because the result is too large; but the

command

〈cli〉+≡
echo ’2ˆ64’ | bc

gives the result 18,446,744,073,709,551,616. This is more difficult to read than its

approximation,

264
=

(

210
)6.4

≈
(

103
)6.4

≈ 1019.

1.43 32 nucleotides is all we need, since

432
= 264.

1.2 Files, Directories, and Programs 211

1.2 Files, Directories, and Programs

1.44 We change into the directory for Chapter 1, make the directory for Section 2,

and change into it.

〈cli〉≡
cd $BEB/ch/1/

mkdir 2

cd 2/

1.45 We list the contents of the root directory.

〈cli〉+≡
ls /

1.46 There are 24 directories in our root directory, yours might be different.

〈cli〉+≡
ls / | wc

1.47 The -l option gets the lines.

〈cli〉+≡
ls / | wc -l

1.48 We try to list /bin/ls,

〈cli〉+≡
ls /bin/ls

to find that—at least on our system—ls is contained in /bin, it may be located

somewhere else on yours.

1.49 On our system, the current which command is located in the same directory

as the current ls command, /bin.

〈cli〉+≡
which which

1.50 We find out by listing and counting.

〈cli〉+≡
ls ˜ | wc -l

1.51 We print the header line and the data line, each terminated by a newline.

〈cli〉+≡
printf ">dnaN\nATGAAAATATTA\n"

1.52 s.fasta contains 19 bytes, the five characters of the header >dnaN, the twelve

nucleotides ATGAAAATATTA, and two newlines.

〈cli〉+≡
wc -c s.fasta

212 1 The Unix Command Line

1.53 An octal 23 corresponds to a decimal 2 × 81 + 3 × 80 = 19.

1.54 From the output of od we take

Octal Code Character

076 >

141 a

101 A

012 \n

You can think of octal 012 as the stop codon of a line of text.

1.55 A corresponds to decimal 65.

1.56 The ASCII code comprises 27 = 128 characters, which is also the number of

entries in the ASCII table of the manual.

1.57 ACGT corresponds to decimal 65, 67, 71, and 84.

〈cli〉+≡
printf "ACGT" | od -t u1

0000000 65 67 71 84

0000004

1.58 The redirect (>) overwrites a file—so beware.

1.59 It contains 38 bytes.

〈cli〉+≡
wc -c s.fasta

1.60 The number of lines in progs.txt and the number of programs in the biobox

should agree.

〈cli〉+≡
wc -l progs.txt

ls bin/ | wc -l

1.61 There are three plotting programs in Table B.2, plotLine, plotSeg, and

plotTree.

1.62 It’s a list of directories separated by colons, which includes, for example, the

directory /bin we’ve already looked at.

〈cli〉+≡
echo $PATH

1.63 You get the help message for cres. If this fails, try again setting the path,

perhaps in a new terminal window.

1.64 A string in single quotes is printed verbatim, while in double quotes variables

are replaced. In our case variable replacement would lead to an unnecessarily verbose

entry in the resource file.

1.2 Files, Directories, and Programs 213

1.65 We run cres on our sequence file, which is located in the directory for Section

1.2, to get the total nucleotide count of 24 and the nucleotide frequencies.

〈cli〉+≡
cres $BEB/ch/1/2/s.fasta

Total: 24

Residue Count Fraction

A 14 0.583

G 4 0.167

T 6 0.25

1.66 There are 190 million bytes in the compressed file, 600 million characters when

uncompressed. So the compression ratio is a bit better than 3.

〈cli〉+≡
wc -c data.tgz

gunzip data.tgz

wc -c data.tar

1.67 We get a report on which files were extracted into the new directory data.

data/

data/dmChr3R.fasta

data/dmChr3L.fasta

...

1.68 We remove data.tarwith rm.

〈cli〉+≡
rm data.tar

1.69 We’ve extracted 47 data files, of which 27 are FASTA files.

〈cli〉+≡
ls data | wc -l

ls data/*.fasta | wc -l

1.70 We change into our working directory, copy the genome sequence and find it

is roughly 580 kb long.

〈cli〉+≡
cd $BEB/ch/1/2/

cp $BEB/data/mgGenome.fasta .

cres mgGenome.fasta

Total: 580076

Residue Count Fraction

A 200544 0.346

C 91515 0.158

G 92306 0.159

T 195711 0.337

214 1 The Unix Command Line

1.71 We get the FASTA header and nine lines of DNA sequence.

〈cli〉+≡
head mgGenome.fasta

>gi|84626123|gb|L43967.2| Mycoplasma genitalium G37, complete genome

TAAGTTATTATTTAGTTAATACTTTTAACAATATTATTAAGGTATTTAAAAAATACTATTATAGTATTTA

ACATAGTTAAATACCTTCCTTAATACTGTTAAATTATATTCAATCAATACATATATAATATTATTAAAAT

ACTTGATAAGTATTATTTAGATATTAGACAAATACTAATTTTATATTGCTTTAATACTTAATAAATACTA

CTTATGTATTAAGTAAATATTACTGTAATACTAATAACAATATTATTACAATATGCTAGAATAATATTGC

TAGTATCAATAATTACTAATATAGTATTAGGAAAATACCATAATAATATTTCTACATAATACTAAGTTAA

TACTATGTGTAGAATAATAAATAATCAGATTAAAAAAATTTTATTTATCTGAAACATATTTAATCAATTG

AACTGATTATTTTCAGCAGTAATAATTACATATGTACATAGTACATATGTAAAATATCATTAATTTCTGT

TATATATAATAGTATCTATTTTAGAGAGTATTAATTATTACTATAATTAAGCATTTATGCTTAATTATAA

GCTTTTTATGAACAAAATTATAGACATTTTAGTTCTTATAATAAATAATAGATATTAAAGAAAATAAAAA

1.72 We copy mgGenes.txt and list its first ten lines. Each line describes one gene

with an identifier, a start and an end position, the strand, and a name, if available.

〈cli〉+≡
cp $BEB/data/mgGenes.txt .

head mgGenes.txt

MG_001 686 1828 + dnaN

MG_002 1828 2760 +

MG_003 2845 4797 + gyrB

MG_004 4812 7322 + gyrA

MG_005 7294 8547 + serS

MG_006 8551 9183 + tmk

MG_007 9156 9920 +

MG_008 9923 11251 +

MG_009 11251 12039 +

MG_010 12068 12724 +

1.73 The layout is the same as for the head, one line per gene, three or four fields

per line.

〈cli〉+≡
tail mgGenes.txt

MG_462 566186 567640 - gltX

MG_463 567627 568406 -

MG_464 568399 569556 -

MG_465 569528 569914 - rnpA

MG_466 569883 570029 - rpL34

MG_467 570055 570990 -

MG_468 570994 576345 -

MG_526 576351 577205 -

MG_469 577268 578581 -

MG_470 579224 580033 -

1.2 Files, Directories, and Programs 215

1.74 cres tells us there are 381 residues, but one of these is the stop codon, so the

protein consists of 380 amino acids.

〈cli〉+≡
cutSeq -r 686-1828 mgGenome.fasta | translate | cres | head

1.75 The first gene ends at 1828, so the last nucleotide of its stop codon is the first

nucleotide of the subsequent gene. So the first and second genes overlap by one

nucleotide. Overlapping genes are a feature of small genomes.

1.76 M. genitalium has 525 genes.

〈cli〉+≡
wc -l mgGenes.txt

1.77 less has the same navigation commands as man. That’s because man uses

less as pager. By repeatedly pressing the space bar, we can move forward through

the list of genes.

1.78 M. genitalium has 299 genes on the forward strand and 226 genes on the reverse.

Since 299 + 226 = 525, it all adds up.

〈cli〉+≡
cut -f 4 mgGenes.txt | grep + | wc -l

cut -f 4 mgGenes.txt | grep - | wc -l

1.79 299 seems quite different from 226. One way to test the significance of the

difference of 73 genes would be to repeatedly toss a coin 525 times and determine

the frequency with which at least 299 heads are found. Repeatedly tossing a coin

525 times—that’d be an awful lot of coin tosses, so we postpone this until we know

how to get the computer to do it for us.

1.80 We see that pluses are clustered 5’, minuses 3’.

++++++++++-----+++++...++-+----+-----------

1.81 We lose the newline at the end of the string, it is now concatenated with the

prompt. Not so nice.

1.82 From the man page we learn about the -w switch of fold.

〈cli〉+≡
cut -f 4 mgGenes.txt |

tr -d ’\n’ |

awk ’{print}’ |

fold -w 50

The uneven distribution of strandedness is now even more noticeable than in the

stretched-out string.

216 1 The Unix Command Line

++++++++++-----+++++++++++++---++-+++--++++++++-++

+++--------+--++++++++++++++-+++++++++++++++++++++

+++++++++-+++++++++++++++++++-+++++--+-+++++++++++

++

++++++-+++-++-++---+++++++++++++++++++++-+++++++++

+++++++++++-++++++---------+++++++++-+++++--------

-------+---------++++++-+++-------------------+---

-------++---------+-+--------------+++--------+++-

-+++-++-+---++-+++-+++------------+++-+-----------

---------------+-------------++++----+++++--------

-----++-+----+-----------

1.83 We get two columns of numbers, pairs of x and y values marking the corners

of boxes for genes. Upward boxes on the positive strand and downward boxes on the

negative.

100 0

100 1

400 1

400 0

600 0

600 -1

1500 -1

1500 0

100 0

1.84 We list the options, from which we learn how to adjust the y range (-Y), set

the x axis label (-x), and unset the y axis (-u y). Since the y range isn’t shown in

Fig. 1.2, we experiment with a few ranges to find that -5:5 looks about right.

〈cli〉+≡
plotLine -h

printf "100 400 +\n600 1500 -\n" | drawGenes |

plotLine -Y -5:5 -x Position -u y

1.85 We draw the genes to get Fig. 1.4, where the bias in strandedness is immediately

visible.

〈cli〉+≡
cut -f 2-4 mgGenes.txt | drawGenes |

plotLine -Y -5:5 -x Position -u y

1.3 Scripts 217

 0 100000 200000 300000 400000 500000 600000

Position

Fig. 1.4 The genes along the genome of M. genitalium

1.3 Scripts

1.86 We change into the directory for this chapter, make the section directory, 3,

and change into it.

〈cli〉≡
cd $BEB/ch/1/

mkdir 3

cd 3/

1.87 The remainder of dividing by 2 is always either zero or one. So our source

of random 1 and 0 is the remainder (or modulo) operation, %, applied to random

integers.

〈cli〉+≡
echo $(($RANDOM % 2))

1.88 With man seq we find we can do

〈cli〉+≡
seq 3

1.89 The variable s contains the numbers 1, 2, and 3 in a row.

〈cli〉+≡
echo $s

1 2 3

1.90 We loop the coin tossing step.

〈cli〉+≡
for a in $(seq 3); do echo $(($RANDOM % 2)); done

1.91 On Ubuntu, which is the most widely used Unix on Windows, the package

manager is called apt. Its installation function is usually coupled with an update

218 1 The Unix Command Line

and a search. The result of a search for emacs is a bit overwhelming, so we reduce

it with grep to entries that start with emacs.

〈cli〉+≡
sudo apt update

apt-cache search emacs | grep ˆemacs

sudo apt install emacs

On macOS, brew also has a search function, and it is usually a good idea to search

for a package before installing it. Installing emacs with brew is thus

brew search emacs

brew install emacs

1.92 It’s up to you. If you opt for install now, this takes a bit of time. If you opt for

install later, remember to do so when a command isn’t found.

1.93 Homebrew installs by default console emacs. apt installs by default graphical

emacs. Graphical emacs can be converted into console emacs by starting it with no

window.

〈cli〉+≡
emacs -nw

1.94 Graphical emacswithout ampersand blocks the command line until it is stopped

by entering C-c on the command line. C-c is a general mechanism for interrupting

a running program.

Console emacs with ampersand doesn’t start the editor at all.

1.95 We grab the 1’s and count them.

〈cli〉+≡
bash ct.sh 525 | grep 1 | wc -l

1.96 We didn’t get a positive result, but you might have.

〈cli〉+≡
for a in $(seq 20)

do

bash ct.sh 525 | grep 1 | wc -l

done

1.97 The commands in Table 1.2 are also preserved. So key combinations like C-p,

C-n, M-<, and M-> move up and down the screen. C-r searches backward (and C-s

forward).

1.98 It says in the tutorial that C-x k followed by Enter terminates the tutorial. In

fact, this is the general mechanism for killing a buffer, in this case the tutorial buffer.

1.99 The tutorial promised that C-x C-c gets you out.

1.100 Our script, ict.sh, calls ct.sh.

1.3 Scripts 219

Prog. 1.4 (ict.sh)

〈ict.sh〉≡
for i in $(seq $1)

do

bash ct.sh $2 |

grep 1 |

wc -l

done

We ran it, but in 30 iterations never found at least 299 heads.

1.101 We carry out the simulation and save the results to the file ict.dat. Then we

sort numerically (-n) the results to find the minimum and maximum, 231 and 299

in our case. We use the difference between 231 and 299, 68, as the number of bins

in the final histogram.

〈cli〉+≡
bash ict.sh 1000 525 > ict.dat

sort -n ict.dat | head -n 1

sort -n ict.dat | tail -n 1

histogram -b 68 ict.dat | plotLine -x Heads -y Count

1.102 The default alphabetical order flips the numerical order of 2 and 10.

1.103 Here are our results:

Iterations ≥ 299

100 0

1000 2

10000 8

So our error probability when rejecting the null hypothesis of random distribution

between strands is about �푃 ≈ 10−3. Since this is much lower than the usual rejection

threshold of �훼 = 0.05, we would reject the null hypothesis and conclude that the

distribution of genes between strands is biased in M. genitalium. But we find this

puzzling as the strand labels are arbitrary. So perhaps it is chance, after all?

1.104 We came up with this:

• Determine the number of + observed in the first half of the strand list and call it

�푛o.

• Shuffle the strand list and again count the + in the first half of the list, call it �푛1.

• Repeat the shuffling and counting.

• Determine the frequency with which �푛�푖 ≥ �푛o.

1.105 We copy the file mgGenes.txt to our working directory and find there are

227 genes on the positive strand in its upper half.

〈cli〉+≡
cp $BEB/data/mgGenes.txt .

head -n 263 mgGenes.txt | grep + | wc -l

220 1 The Unix Command Line

1.106 We run the command

〈cli〉+≡
cut -f 4 mgGenes.txt | sort -R | less

to find a block of + followed by a block of -, or the other way round. That’s because

sort -R clusters identical elements in a list; so the only variation in its result is the

order of the blocks of plus and minus.

1.107 sort -R randomizes the numbers in the first column and hence also the

column of plus and minus.

〈cli〉+≡
cut -f 4 mgGenes.txt | cat -n | sort -R | less

1.108 Here is our ss.sh.

Prog. 1.5 (ss.sh)

〈ss.sh〉≡
for a in $(seq $1)

do

cut -f 4 mgGenes.txt |

cat -n |

sort -R |

head -n 263 |

grep + |

wc -l

done

When we ran it, we got 156, 149, 153, 153, 150, and so on, but never anything close

to 227.

〈cli〉+≡
bash ss.sh 10

1.109 We run the simulation, find an appropriate number of bins for the histogram,

38 in our case, and plot the results to get the distribution in Fig. 1.5. We set the x

range such that it includes the observed value of 227, draw an arrow pointing to 227

on the x axis, and observe that its position is far to the right of the histogram.

〈cli〉+≡
bash ss.sh 1000 > ss.dat

sort -n ss.dat | head -n 1

sort -n ss.dat | tail -n 1

histogram -b 38 ss.dat |

plotLine -X 125:230 -x "Forward Genes" -y Count \

-g "set arrow from 227,20 to 227,2"

In other words, the bias in strandedness is very significant and had already been

observed in the original publication of the M. genitalium genome, where the authors

suggest it has to do with the movement of the replication fork around the circular

1.3 Scripts 221

genome [15]. The M. genitalium genome is arranged such that the start and end of

the sequence coincide with the origin of replication.

 0

 20

 40

 60

 80

 100

 120

 140

 140 160 180 200 220

C
ou

nt

Forward Genes

Fig. 1.5 Distribution of the number of M. genitalium genes found on the first half of the forward

strand by chance alone; the observed number of 227 forward genes is marked by the arrow

1.110 We print the second and third column of the input.

686 1828

1828 2760

2845 4797

...

1.111 Without an argument, we print the entire line. The full line is called $0, so we

get the same result with

〈cli〉+≡
awk ’{print $0}’ mgGenes.txt | head

1.112 We build a pipeline for plotting.

〈cli〉+≡
awk ’{print $3 - $2 + 1}’ mgGenes.txt | histogram |

plotLine -x "Gene Length (bp)" -y Count

This gives us the distribution of gene lengths in Fig. 1.6, which is quite heavy-tailed.

1.113 We assign the gene length to a variable for convenient printing, then we sort

numerically and look at the top of the list.

〈cli〉+≡
awk ’{l = $3 - $2 + 1; print l, $1, $5}’ mgGenes.txt |

sort -n | head

222 1 The Unix Command Line

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000

C
ou

nt

Gene Length (bp)

Fig. 1.6 Distribution of gene lengths in M. genitalium

We find five unnamed genes length 74. We can safely assume they don’t code for

proteins as 74 is not even a multiple of 3.

74 MG_479

74 MG_489

74 MG_493

74 MG_496

74 MG_499

...

At the end of the list we find the gene hmw2, which is involved in cell adherence [10]

and is 5418 bp long.

5418 MG_218 hmw2

1.114 We’ve already looked up the genome length of 580,076 bp, but there’s

no harm in doing it again. The combined length of the genes is 540,447 bp. So

580076/540447× 100 ≈ 93% of the genome is covered by genes.

〈cli〉+≡
cres $BEB/data/mgGenome.fasta

awk ’{s = s + $3 - $2 + 1}END{print s}’ mgGenes.txt

echo ’540447/580076*100’ | bc -l

93.16830898020259414200

1.115 We divide the sum of gene lengths by the number of lines to get the average

gene length, approximately 1 kb.

〈cli〉+≡
awk ’{s += $3 - $2 + 1; c++}END{print s / c}’ mgGenes.txt

1.3 Scripts 223

1029.42

Here we abbreviated the expression s=s+x to s+=x and c=c+1 to c++.

1.116 The first entry in lengths is lengths[0], the second lengths[1], and the

third lengths[2]. So we program

〈Calculate variance of gene lengths, Prog. 1.2〉≡
print lengths[0], lengths[1], lengths[2]

and run it.

〈cli〉+≡
awk -f varLen.awk mgGenes.txt

1143 933 1953

1.117 To omit the BEGIN block, we can either delete it or comment it out with

hashes. Working with comments is easily reversible, so that’s our preferred method

when experimenting with code. Without the BEGIN block, we lose the first entry.

933 1953

In Awk, a variable is declared and initialized to its null value at run time. Awk

guesses the type of the variable from its context and if there is nothing to go by,

the default type is string. So without the BEGIN block, the first time n is used, it’s a

string; then we add to it, at which point it becomes a number. But that’s after we’ve

read the first length. That number is not lost, we can access it via its index, the empty

string,

print lengths[""]

But it’s simpler to just initialize n to zero.

1.118 We sum the gene lengths and divide by their number to find the average.

〈Calculate variance of gene lengths, Prog. 1.2〉+≡
for (i = 0; i < n; i++)

s += lengths[i]

avg = s / n

print "avg:", avg

1.119 We repeat the iteration across the lengths and apply equation (1.1).

〈Calculate variance of gene lengths, Prog. 1.2〉+≡
for (i = 0; i < n; i++)

ss += (lengths[i] - avg)ˆ2

var = ss / (n - 1)

print "var:", var

So we compute that the variance of gene lengths is roughly 6.6 × 105.

〈cli〉+≡
awk -f varLen.awk mgGenes.txt

224 1 The Unix Command Line

1143 933 1953

avg: 1029.42

var: 662399

1.120 Yes, awk can calculate 264 ≈ 1.8 × 1019.

〈cli〉+≡
awk ’BEGIN{print 2ˆ64}’

18446744073709551616

1.121 We print all genes on the plus strand.

MG_001 686 1828 + dnaN

MG_002 1828 2760 +

MG_003 2845 4797 + gyrB

...

1.122 We just switch the character in the match field from plus to minus. Since

minus is not part of the regular expression syntax, we can safely omit the backslash,

but there’s also no harm in leaving it in.

〈cli〉+≡
awk ’$4 ˜ /-/’ mgGenes.txt | head

MG_011 12701 13564 -

MG_012 13569 14432 -

MG_013 14395 15216 - folD

...

1.123 We apply diff to minus1.txt and minus2.txt.

〈cli〉+≡
diff minus*

This gives two lines of output.

46a47

> MG_261 315701 318325 + polC-2

The first line tells us that line 46 in the first file was added (a) to make line 47 in the

second file. That line concerns gene polC-2, which is on the plus strand, but has a

name with a hyphen (minus).

1.124 We copy the file and find that awk and wc both tell us there are 8289 lines in

mgGenome.fasta.

〈cli〉+≡
cp $BEB/data/mgGenome.fasta .

awk ’END{print NR}’ mgGenome.fasta

wc -l mgGenome.fasta

1.3 Scripts 225

1.125 The last field in a line is called $NF. It is either a gene name or the gene strand,

if there’s no name.

〈cli〉+≡
awk ’{print $NF}’ mgGenes.txt | head

dnaN

+

gyrB

...

1.126 We count the lines with five fields and divide by the total number of lines

times 100 to find that only 42%, or less than half, of the genes have names.

〈cli〉+≡
awk ’NF == 5{c = c + 1}END{print c / NR * 100}’ mgGenes.txt

41.7143

1.127 We copy the proteome, count the headers and print the result to find that the

genome of M. genitalium encodes 476 proteins.

〈cli〉+≡
cp $BEB/data/mgProteome.fasta .

awk ’/ˆ>/{c++}END{print c}’ mgProteome.fasta

1.128 We sum the lengths of the data lines to find the familiar 580,076 bp.

〈cli〉+≡
awk ’!/ˆ>/{s+=length($1)}END{print s}’ mgGenome.fasta

580076

1.129 We filter for the data lines to avoid including part of the header.

〈cli〉+≡
head -n 3 mgGenome.fasta | awk ’!/ˆ>/{t = t $1}END{print t}’

1.130 Splitting at a gives an empty string followed by xb.

〈cli〉+≡
printf "axb\n" |

awk ’{n=split($1,a,"a");for(i=1;i<=n;i++)print a[i]}’

xb

Similarly, splitting at b gives ax followed by an empty string.

〈cli〉+≡
printf "axb\n" |

awk ’{n=split($1,a,"b");for(i=1;i<=n;i++)print a[i]}’

226 1 The Unix Command Line

ax

1.131 We split our toy string as before and pipe the result through a filter that stops

empty lines.

〈cli〉+≡
printf "axb\n" |

awk ’{n=split($1,a,"b");for(i=1;i<=n;i++)print a[i]}’ |

awk ’!/ˆ$/’

ax

1.132 An empty string as delimiter splits the target string into all characters.

〈cli〉+≡
printf "axb\n" |

awk ’{n=split($1,a,"");for(i=1;i<=n;i++)print a[i]}’

a

x

b

1.133 We get the header, remove the first character, split at |, and remove the empty

line.

〈cli〉+≡
grep ’>’ mgGenome.fasta | tr -d ’>’ |

awk ’{n=split($1,a,"|");for(i=1;i<=n;i++)print a[i]}’ |

awk ’!/ˆ$/’

gi

84626123

gb

L43967.2

1.134 We add a for loop with in to the end of our script to list each nucleotide and

its count. Our Awk program is constructed in two steps to make it fit the page; you

can also try this, it works. But on the screen we’d normally just write the Awk code

in one string—or use an editor.

〈cli〉+≡
a="{counts[\$1]++}"

a="$a END{for(c in counts) print c, counts[c]}"

printf "A\nA\nA\nC\nC\nT\n" | awk "$a"

1.3 Scripts 227

A 3

C 2

T 1

1.135 We split each line and count the residues it contains. We also sum the total

residue count.

〈Count residues, Prog. 1.3〉≡
n = split($1, a, "")

for (i = 1; i <= n; i++)

counts[a[i]]++

t += n

1.136 We’ve already done the sums, so we just print the result.

〈Print total residue count, Prog. 1.3〉≡
print "Total:", t

1.137 We print a table header and then iterate over the residues to print the count

and frequency of each one. A residue is a string (%s), a count a decimal integer (%d),

and a frequency a floating point number (%f).

〈Print residue counts, Prog. 1.3〉≡
printf "Res.\tCount\tFreq.\n"

for (nuc in counts)

printf "%s\t%d\t%f\n", nuc, counts[nuc], counts[nuc]/t

1.138 We run cres.awk and find that the nucleotide frequencies are far removed

from one quarter; the genome of M. genitalium is very A/T rich.

〈cli〉+≡
awk -f cres.awk mgGenome.fasta

Total: 580076

Res. Count Freq.

A 200544 0.345720

C 91515 0.157764

G 92306 0.159127

T 195711 0.337389

1.139 We run cres.awkon the proteome, cut off the first two lines of the output, and

sort by amino acid frequencies. This tells us cysteine is the least frequent amino acid

with roughly 1%, leucine the most frequent with roughly 11%. Both frequencies are

quite far from 5%, the frequency we’d get if the twenty amino acids were uniformly

distributed.

〈cli〉+≡
awk -f cres.awk mgProteome.fasta | tail -n +3 | sort -k 3 -n

228 1 The Unix Command Line

C 1446 0.008238

...

L 18730 0.106704

Chapter 2

Optimal Alignment

2.1 Keeping Score

2.1 We change into the chapter directory and make the directory for this chapter,

2. We change into that directory, make the directory for this section, 1, and change

into that. Don’t forget to make your life easier by using TAB to complete the names

of the directories when you change into them.

〈cli〉≡
cd $BEB/ch/

mkdir 2

cd 2/

mkdir 1

cd 1/

2.2 We print ACCGT into s1.fasta and ACCCT into s2.fasta before we align the

two sequences.

〈cli〉+≡
printf ">s1\nACCGT\n" > s1.fasta

printf ">s2\nACCCT\n" > s2.fasta

al s1.fasta s2.fasta

The alignment score is 1, which makes sense as match is 1 and mismatch -3, so we

have 4 − 3 = 1.

Query s1 (5 residues)

Subject s2 (5 residues)

Score 1

Error 1 (0 gaps, 1 mismatch)

Query 1 ACCGT 5

||| |

Subject 1 ACCCT 5

229© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_9&domain=pdf

230 2 Optimal Alignment

2.3 We print ATCGTA into s3.fasta and ACCT into s4.fasta. Then we align the

two sequences.

〈cli〉+≡
printf ">s3\nATCGTA\n" > s3.fasta

printf ">s4\nACCT\n" > s4.fasta

al s3.fasta s4.fasta

Our result is not the true alignment in Fig. 2.1B, as that has only two matches, while

the one picked by al has three. So the historically wrong alignment can have the

greater score.

Query s3 (6 residues)

Subject s4 (4 residues)

Score -10

Errors 3 (2 gaps, 1 mismatch)

Query 1 ATCGTA 6

| | |

Subject 1 ACC-T- 4

2.4 We saw that the alignment

Query 1 ATCGTA 6

| | |

Subject 1 ACC-T- 4

has score -10. With three matches (1), one mismatch (-3), �푔o = −5, and �푔e = −2,

this means al scores gaps as

�푔(�푙) = �푔o + (�푙 − 1)�푔e

2.5 Our version of gapScore.awk is

Prog. 2.8 (gapScore.awk)

〈gapScore.awk〉≡
BEGIN{

go = -5

ge = -2

print 0, 0

for (l = 1; l <= 5; l++)

print l, go + (l-1) * ge

}

We run the program and plot the result.

〈cli〉+≡
awk -f gapScore.awk | plotLine -x l -y "g(l)"

2.1 Keeping Score 231

2.6 Our solution contains three mutations and one deletion. It is one solution out of

many:

ATCTT

ACCGT ATGT

C3 → G3

T5 → -5

T2 → C2

T4 → G4

2.7 We spontaneously thought these two sequences should be aligned as

ACAGTTC

--AGTTC

However, al gives us

ACAGTTC

A--GTTC

which has the same score. Alignments with the same score, or co-optimal alignments,

cannot be distinguished with al. It just picks one of them.

2.8 This time we get the alignment we originally favored,

ACAGTTC

--AGTTC

However, its score of 5 reflects only the matches, the two flanking gaps are ignored.

2.9 We copy hbb1.fasta and hbb2.fasta, and print their residue counts together

with their header lines.

〈cli〉+≡
cp $BEB/data/hbb*.fasta .

cres -s hbb*.fasta | grep ’ˆ>’

We see that hbb1.fasta contains the 628 nucleotides of the mRNA encoding

the �훽-globin subunit of human hemoglobin, while hbb2.fasta contains the 748

nucleotides of the mRNA encoding the �훽-globin of Pan troglodytes, the chimp.

The chimp sequence was predicted from the genome sequence rather than observed

directly.

>NM_000518.5 Homo sapiens...(HBB), mRNA: 628

>XM_508242.4 PREDICTED: Pan troglodytes...(HBB), mRNA: 748

2.10 We align the two sequences to find they differ by a large indel at the 5’ end and

a single mutation in the rest of the sequence.

〈cli〉+≡
al hbb1.fasta hbb2.fasta

232 2 Optimal Alignment

2.11 We used a line length of 20 and paged through the result with less to find

that the mutation is at position 59 in the human sequence and at position 179 in the

chimp sequence.

〈cli〉+≡
al -L 20 hbb1.fasta hbb2.fasta | less

2.12 With reading frame 3 we get the longest ORF.

〈cli〉+≡
translate -f 3 hbb1.fasta

>NM_000518.5 Homo sapiens...(HBB), mRNA - translated

ICF*HNCVH*QPQTDTMVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFE

SFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENF

RLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH*ARFLAVQFLLKVPLFP

KSNY*TGGYYEGP*ASGFCLIKNIYFHC

2.13 The first M is the start, it is at position 17. The next downstream asterisk (*)

marks the end of the protein, it is at position 164. So, �훽-globin covers interval

17–164.

〈cli〉+≡
translate -f 3 hbb1.fasta | keyMat M

translate -f 3 hbb1.fasta | keyMat ’*’

2.14 The mutation is at nucleotide position 59. The protein starts in frame 3 at amino

acid 17, so the starting nucleotide of the protein is 16× 3 + 2 = 51. This is upstream

of the mutation, which is hence inside the CDS.

2.15 We cut out the protein sequence without the stop symbol and save it to

hbb1p.fasta.

〈cli〉+≡
translate -f 3 hbb1.fasta | cutSeq -r 17-163 > hbb1p.fasta

2.16 The third reading frame gives the longest ORF.

〈cli〉+≡
translate -f 3 hbb2.fasta

>XM_508242.4 PREDICTED: Pan troglodytes...(HBB), mRNA - tr...

IT*TSPCGATP*GWPIYSQEQGGQEPGLGIKVRAEPSIAYICF*HNCVH*QPQTDTMVHL

TPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAH

GKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFT

PPVQAAYQKVVAGVANALAHKYH*ARFLAVQFLLKVPLFPKSNY*TGGYYEGP*ASGFCL

IKNIYFHC

2.1 Keeping Score 233

It stretches from the first M in position 57 to the first downstream stop in position

204.

〈cli〉+≡
translate -f 3 hbb2.fasta | keyMat M

translate -f 3 hbb2.fasta | keyMat ’*’

So the chimp �훽-globin lies between amino acids 57 and 203.

〈cli〉+≡
translate -f 3 hbb2.fasta | cutSeq -r 57-203 > hbb2p.fasta

2.17 PAM70 is symmetrical, because the score of a pair of amino acids is independent

of their order; the pair WR, for example, has the same score as the pair RW.

2.18 We copy pam70.txt to our current directory and count its 25 residues, which

means the score matrix has 252 = 625 entries.

〈cli〉+≡
cp $BEB/data/pam70.txt .

head -n 2 pam70.txt | awk ’!/ˆ#/{print NF, NF*NF}’

The five extra residues are listed to the right of the canonical 20. They consist of four

ambiguity codes and the stop codon.

• B for aspartate or asparagine

• J for leucine or isoleucine

• Z for glutamate or glutamine

• X any amino acid

• * translation of stop codons

2.19 The scores for the 20 canonical amino acids are contained in lines 3–22 of

pam70.txt. In our script we print the entries on the main diagonal of these lines,

and sort them. We find the smallest match score is 5, the largest 13. You can find

these values in Fig. 2.3, too.

〈cli〉+≡
awk ’NR>2 && NR<23 {print $(NR-1)}’ pam70.txt | sort -n

2.20 We store the sorted mismatch scores in the file mm.dat and find that -11 is the

smallest and 4 the largest.

〈cli〉+≡
awk ’NR>2 && NR<23 {for(i=2;i<NR-1;i++)print $i}’ pam70.txt |

sort -n > mm.dat

head -n 1 mm.dat

tail -n 1 mm.dat

So we plot the distribution of mismatch values as a histogram with 4 − −11 = 15

bins to get Fig. 2.24.

〈cli〉+≡
histogram -b 15 mm.dat | plotLine -x Score -y Count

234 2 Optimal Alignment

 0

 5

 10

 15

 20

 25

 30

-12 -10 -8 -6 -4 -2 0 2 4 6

C
ou

nt

Score

Fig. 2.24 The distribution of mismatch scores in PAM70

2.21 The -m switch of al takes a substitution matrix as argument. The alignment

shows that the chimp and human �훽-globin sequences are identical. Thus the two

codons generated by the mutation encode the same amino acid, the mutation is

synonymous.

〈cli〉+≡
al -m pam70.txt hbb1p.fasta hbb2p.fasta

2.22 The smallest number of codons per amino acid is also the smallest possible,

one; methionine (M) and tryptophane (W) are encoded by single codons. The largest

number of codons per amino acid is six; leucine (L), serine (S), and arginine (R) are

each encoded by six codons.

2.23 Leucine (L) is encoded by TT[AG] and CT[TCAG]. So the two codons TT[AG]

can mutate at their first position to CT[AG]without amino acid change. There are no

synonymous mutations at the second codon position.

2.24 Phenylalanine is encoded by TT[TC]. It can mutate in one step into, for ex-

ample, leucine (L), as its six codons differ either at the first or the third position.

Phenylalanine is two mutations removed from histidine (H) encoded by CA[TC]; and

it is three mutations removed from glutamine (Q) encoded by CA[AG].

2.25 The least polar amino acid is leucine, the most polar aspartate.

2.26 We copy the polarity data. To calculate the average polarity from it, we exclude

the header lines, sum and count the polarities, and divide the sum by the count. The

average polarity of amino acids is 8.325.

〈cli〉+≡
cp $BEB/data/polarity.dat .

2.1 Keeping Score 235

awk ’!/ˆ#/{s+=$2;c++}END{print s/c}’ polarity.dat

2.27 The script produces the plot of the amino acids along an axis of polarity shown

in Fig. 2.25. The input to the plot consists of three columns of data, x, y, and group—

in this case the amino acid names. The y range is scaled such that the legend fits

(-Y). Since this is a one-dimensional plot, the y axis is meaningless, so it is unset

(-u). We plot only points (-P) and label the x axis “Polarity” (-x). The colors in

your plot will be the default eight colors that gnuplot rotates through. In Fig. 2.25

we replaced them with the polarity colors in Fig. 2.5.

 4 5 6 7 8 9 10 11 12 13

Polarity

Leu
Ile

Phe
Trp
Cys
Met
Val
Tyr
Pro
Ala
Thr
Gly
Ser
His
Arg
Gln
Lys
Asn
Glu
Asp

Fig. 2.25 Amino acid polarities

2.28 This is a bit hard to tell because one-step mutations can lead to highly diverse

jumps in the codon table. A mutation in the first position corresponds to vertical

jumps by four, eight, or twelve cells. A mutation in the second codon position

corresponds to horizontal jumps ranging from one to three cells. A mutation in the

third position corresponds to vertical jumps also ranging from one to three cells.

In other words, the code table does not depict amino acids in mutational space.

This makes it difficult to judge whether similar amino acids are in fact mutational

neighbors.

2.29 We run geco and extract the �푑 value for the natural code, which is 6.138.

〈cli〉+≡
geco polarity.dat | grep d

2.30 We write a loop to compute

236 2 Optimal Alignment

20! = 2432902008176640000 ≈ 2.4 × 1018.

The approximation is found by calculating that �푙�표�푔(20!)/�푙�표�푔(10) ≈ 18.4, which

means 20! has 19 digits.

〈cli〉+≡
awk ’BEGIN{p=1;for(i=2;i<=20;i++)p*=i;print p, p/10ˆ18}’

To keep 20 books in order, let alone a whole library, is no mean feat...

2.31 We extract the �푑 values from the simulation and plot them with the arrow and

an expanded x range to get Fig. 2.7.

〈cli〉+≡
geco -n 10000 polarity.dat | grep ˆd | awk ’{print $2}’ |

histogram | plotLine -x d -y Count \

-g "set arrow from 6.138,200 to 6.138,0" \

-X 5:17

The �푑 value of the natural code, 6.138, is unusually small.

2.32 We ran the simulation with one million iterations to find that the deviation

of the natural code from random with respect to polarity is highly significant, �푃 =

2.5 × 10−5.

〈cli〉+≡
geco -n 1000000 polarity.dat |

grep ˆd |

awk ’$2<=6.138{c++}END{print c/NR}’

2.33 We have summarized our results in Table 2.2. The genetic code is optimized

with respect to polarity and—to a lesser extent—hydropathy. This is not surprising

as polarity and hydropathy are closely related, polar molecules are hydrophilic, non-

polar molecules hydrophobic. But there is no optimization with respect to volume

or charge.

Table 2.2 Testing code optimization with respect to polarity, hydropathy, volume, and charge

Attribute �푑 �푃

Polarity 6.138 2.5 × 10−5

Hydropathy 9.394 7.9 × 10−3

Volume 2266 0.11

Charge 4.728 0.56

2.34 We get the two proteins, align them with the PAM70 matrix we’ve already

got handy and look at the first four lines of output. This tells us the %-mismatch is

36/3224× 100 ≈ 1%. In other words, we can think of 1 PAM as the divergence time

between human and chimp, roughly 5 million years.

2.1 Keeping Score 237

〈cli〉+≡
getSeq P49792 $BEB/data/uniprot_sprot.fasta > human.fasta

getSeq H2QII6 $BEB/data/uniprot_sprot.fasta > chimp.fasta

al -m pam70.txt human.fasta chimp.fasta | head -n 4

2.35 We copy the file with the mutation probabilities.

〈cli〉+≡
cp $BEB/data/pam1.txt .

It tells us the probability that alanine has mutated into serine after 1 PAM is 0.28%,

the probability that serine has mutated into alanine during the same time interval is

0.35%. These probabilities are quite small, as only roughly five million years have

elapsed.

2.36 The data occupies the last 20 lines of the file, which we extract with tail.

Then we compute the average match probability of the entries on the main diagonal,

0.99023. This corresponds to (1 − 0.99023) × 100 ≈ 1%, the unit of time we are

considering.

〈cli〉+≡
tail -n 20 pam1.txt | awk ’{s+=$(NR+1)}END{print s/NR}’

2.37 We calculate, for example, �푛 = 2, to find roughly 2% mismatch.

〈cli〉+≡
pam -n 2 pam1.txt | tail -n 20 |

awk ’{s+=$(NR+1)}END{print (1-s/NR)*100}’

1.941

As we increase �푛, we find that the percent mismatch diverges more and more from

the percent accepted mutations (Table 2.3). This makes sense: The percent mismatch

cannot exceed 100%, while the number of mutations has no upper bound.

Table 2.3 The percent mismatch as a function of the percent accepted mutations, PAM�푛

PAM�푛 %-Mismatch

1 1.0

2 2.0

5 4.8

10 9.2

20 17.2

50 36.1

100 55.7

2.38 We write the script pm.sh and just sample every tenth point along the x axis.

238 2 Optimal Alignment

Prog. 2.9 (pm.sh)

〈pm.sh〉≡
for a in $(seq 1 10 $1)

do

printf "%s\t" $a

pam -n $a pam1.txt |

tail -n 20 |

awk ’{s+=$(NR+1)}END{print (1-s/NR)*100}’

done

We run the script for �푛 = 1, ..., 1000 and pipe the result through plotLine.

〈cli〉+≡
bash pm.sh 1000 | plotLine -x PAMn -y %-Mismatch

The percent mismatch in Fig. 2.8 seems to approach a limit of (1−1/20)×100 = 95%,

which again makes sense, given that there are 20 amino acids.

2.39 We copy the frequency file, cut the header from the frequency table, and sort

its entries. We find that tryptophane (W) is the least frequent amino acid, glycine (G)

the most frequent.

〈cli〉+≡
cp $BEB/data/aa.txt .

tail -n 20 aa.txt | sort -k 2 -n aa.txt

W 0.010

...

G 0.089

2.40 We write the entries on the main diagonal to the file matchProb.txt. We

also extract the frequencies and write them to the file freq.txt. Then we paste

the two data columns together, divide match by background probabilities, and sort

numerically.

〈cli〉+≡
pam -n 70 pam1.txt | tail -n +2 |

awk ’{print $1,$(NR+1)}’ > matchProb.txt

tail -n 20 aa.txt > freq.txt

paste matchProb.txt freq.txt | awk ’{print $1, $2/$4}’ |

sort -k 2 -n

We find that tryptophane (W) is the most conserved amino acid by quite some margin.

The reason for this might be that tryptophane is the only amino acid with two rings

(Fig. 2.5). Any mutation to another amino acid might therefore disrupt the protein

structure to an unusual degree and be selected against.

A 4.9069

S 5.17

...

2.2 Construction 239

M 27.9667

W 84.57

2.41 We apply the division by background frequency to all 400 entries in the

probability matrix using pam. Then we extract the 20 rows of the probability matrix

proper, print its diagonal elements, and sort them.

〈cli〉+≡
pam -n 70 pam1.txt | pam -a aa.txt | tail -n 20 |

awk ’{print $1, $(NR+1)}’ | sort -k 2 -n

The results are identical to what we just got with slightly less automation.

A 4.9069

S 5.1700

...

M 27.9667

W 84.5700

2.42 We calculate the log base two of the odds ratio for tryptophane and multiply

by two to get the half bits.

〈cli〉+≡
echo ’l(84.57)/l(2)*2’ | bc -l

12.80414814703370653426

Rounding this to the nearest integer gives a match score for tryptophane of 13.

2.43 We calculate PAM140 and find that the match score of tryptophane is now 12.

〈cli〉+≡
pam -n 140 pam1.txt | pam -a aa.txt | pam

2.2 Construction

2.44 We change into the directory for our current chapter, make a directory for the

new section, and change into it.

〈cli〉≡
cd $BEB/ch/2/

mkdir 2

cd 2/

2.45 There are three possible alignments of two sequences of length one.

A

-

-

T

A

T

240 2 Optimal Alignment

In case you were tempted to also align a gap with a gap, please don’t, gaps differ

fundamentally from residues—gaps aren’t part of the data—and cannot be aligned

with each other.

2.46 We apply equations (2.1) and (2.2) to find there are five possible alignments

between two sequences of lengths 1 and 2.

�푓 (2, 1) = �푓 (1, 1) + �푓 (2, 0) + �푓 (1, 0)
= 3 + 1 + 1

= 5

2.47 We complete the recursion tree.

�푓 (2, 3)

�푓 (1, 3)

�푓 (0, 3) �푓 (1, 2)

�푓 (0, 2) �푓 (1, 1)

�푓 (0, 1) �푓 (1, 0) �푓 (0, 0)

�푓 (0, 1)

�푓 (0, 2)

�푓 (2, 2)

�푓 (1, 2)

�푓 (0, 2) �푓 (1, 1)

�푓 (0, 1) �푓 (1, 0) �푓 (0, 0)

�푓 (0, 1)

�푓 (2, 1)

�푓 (1, 1)

�푓 (0, 1) �푓 (1, 0) �푓 (0, 0)

�푓 (2, 0) �푓 (1, 0)

�푓 (1, 1)

�푓 (0, 1) �푓 (1, 0) �푓 (0, 0)

�푓 (1, 2)

�푓 (0, 2) �푓 (1, 1)

�푓 (0, 1) �푓 (1, 0) �푓 (0, 0)

�푓 (0, 1)

By counting its leaves, we find there are 25 possible alignments between sequences

of lengths 2 and 3.

2.48 The number of leaves on that tree is 63, so there are 63 possible alignments of

two sequences length 3.

2.49 On our computer, length 4 was still ok, length 5 barely visible, and length 6

took longer than we cared to wait, so we aborted with C-c.

2.50 We ran the iteration for 15 steps and saved the results in numAl.out. Then we

extracted the data from numAl.out for plotting Fig. 2.26A.

〈cli〉+≡
for a in $(seq 15); do numAl -t $a $a; done > numAl.out

awk ’{print NR, $(NF-1)}’ numAl.out | tr -d ’(’ |

plotLine -x Length -y "Time (s)"

Fig. 2.26A looks like an exponential function. So we plot it again with a logarithmic

y axis to get Fig. 2.26B. Its slope still increases along the x axis, so we are dealing

with more than exponential growth, we can call it hyperexponential growth.

〈cli〉+≡
awk ’{print NR, $(NF-1)}’ numAl.out | tr -d ’(’ |

plotLine -x Length -y "Time (s)" -l y \

-g "set format y ’%.0e’"

2.2 Construction 241

A B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12

T
im

e
(s

)

Length

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2 4 6 8 10 12

T
im

e
(s

)

Length

Fig. 2.26 Linear (A) and logarithmic (B) plot of the run time of top down computation of the

number of possible alignments as a function of sequence length

2.51 On our machine, we measured 111.34 s for 4.46× 1010 alignments, so roughly

2.5× 10−9 s, or 2.5 nanoseconds, per alignment. This is best seen when we print the

output of bc in engineering format.

〈cli〉+≡
echo ’111.34 / 4.46 / 10ˆ10’ | bc -l |

awk ’{printf "%e\n", $1}’

2.496413e-09

2.52 There are roughly 2 × 1075 possible alignments between two sequences length

100.

〈cli〉+≡
numAl 100 100

f(100, 100) = 2.053716830872416e+75 (0.0001451 s)

2.53 Since it takes roughly 2.5 nanoseconds per alignment, it would take 5× 1066 s,

or

5 × 1064/3600/24/365.25 ≈ 1.6 × 1057 years.

〈cli〉+≡
echo ’5 * 10ˆ64 / 3600 / 24 / 365.25’ | bc -l |

awk ’{printf "%e\n", $1}’

1.584404e+57

This dwarfs the age of the universe of roughly 1010 years. A good algorithm can

make the difference between immediately and never.

242 2 Optimal Alignment

2.54 We fill in the table.

0 1 2 3

0 1 1 1 1

1 1 3 5 7

2 1 5 13 25

3 1 7 25 63

The answer is in the bottom right hand corner, 63. We already knew this from

counting the leaves in the recursion tree in Fig. 2.9, but it’s much easier this way.

2.55 We run numAl to find there are 1,462,563 possible alignments between two

sequences of length 9, roughly 1.5 million (Fig. 2.27).

〈cli〉+≡
numAl -p 9 9

0 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1 1

1 1 3 5 7 9 11 13 15 17 19

2 1 5 13 25 41 61 85 113 145 181

3 1 7 25 63 129 231 377 575 833 1159

4 1 9 41 129 321 681 1289 2241 3649 5641

5 1 11 61 231 681 1683 3653 7183 13073 22363

6 1 13 85 377 1289 3653 8989 19825 40081 75517

7 1 15 113 575 2241 7183 19825 48639 108545 224143

8 1 17 145 833 3649 13073 40081 108545 265729 598417

9 1 19 181 1159 5641 22363 75517 224143 598417 1462563

Fig. 2.27 The programming matrix for computing the number of possible alignments between two

sequences of length 9

2.56 A bit of trial and error shows that the longest pair of sequences for which numAl

gives a result has length 404.

〈cli〉+≡
numAl 404 404

For a pair of sequences length 405 the number of possible alignments is given as

infinity, which is, of course, a bit of an overstatement.

2.57 We typed the plot in Fig. 2.28 into our editor. Notice the two forward off-

diagonals for the repeat GATATA and the ascending line for reading ATATAGATATA

backward.

2.58 We looked up the definition of split in the man page for awk. Then we split

the query and subject into the arrays qa and sa and saved their lengths in m and n.

〈Split query and subject, Prog. 2.1〉≡
m = split(q, qa, "")

n = split(s, sa, "")

2.2 Construction 243

G A T A T A G A T A T A

G * *

A * * * * * *

T * * * *

A * * * * * *

T * * * *

A * * * * * *

G * *

A * * * * * *

T * * * *

A * * * * * *

T * * * *

A * * * * * *

Fig. 2.28 Dot plot comparing GATATAGATATA to itself

2.59 We begin with printing a single blank. Then we iterate over the subject array

and for each nucleotide print a blank followed by the nucleotide. We close the line

with a newline character.

〈Print header of dot matrix, Prog. 2.1〉≡
printf " "

for (i = 1; i <= n; i++)

printf " %c", sa[i]

printf "\n"

2.60 For the rest of the dot plot, we start every row with a nucleotide, followed by a

blank and a dot for match or a second blank for mismatch.

〈Print rest of dot matrix, Prog. 2.1〉≡
for (i = 1; i <= m; i++) {

printf "%c", qa[i]

for (j = 1; j <= n; j++) {

c = " "

if (qa[i] == sa[j])

c = "*"

printf " %c", c

}

printf "\n"

}

2.61 We run our pipeline to print the two sequences, find their repeats, convert the

repeats to segments and plot the segments to get Fig. 2.29 containing all matches at

least two bases long. Segments of length 1 are ignored by plotSeg.

〈cli〉+≡
printf ">s1\nATATTACTAT\n>s2\nATATTACTAT\n" |

repeater -m 1 -p | rep2plot | plotSeg

244 2 Optimal Alignment

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

Fig. 2.29 Match plot of ATATTACTATwith itself; compare to the corresponding dot plot in Fig. 2.11

2.62 We copy the two FASTA files to our current working directory. As we increase

the minimum match length, the smallest that gives a clean plot is 10. In Fig. 2.30 we

draw an arrow to mark the tiny blank corresponding to the synonymous mutation we

found earlier at position 59 in the human sequence. Notice the two backslashes in

the plotSeg command, which continue the line across the carriage returns.

〈cli〉+≡
cp $BEB/data/hbb1.fasta .

cp $BEB/data/hbb2.fasta .

cat hbb*.fasta | repeater -m 10 -p | rep2plot |

plotSeg -x "Human beta-globin" \

-y "Chimp beta-globin" \

-g "set arrow from 59,300 to 59,200"

2.63 Print two sequences of different lengths to find out that the first sequence is

written along the x axis, the second along the y axis.

2.64 The jump in the matches highlights a region in D. melanogaster that isn’t present

in D. guanche. So the transposon inserted into the Adh region of D. melanogaster.

2.65 We copy d[mg]Adh*.fasta. Then we extend our pipeline of repeater,

rep2plot, and plotSeg by converting from bp to kb to get Fig. 2.13.

〈cli〉+≡
cp $BEB/data/d[mg]Adh*.fasta .

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |

repeater -m 12 -p | rep2plot |

awk ’{f=1000; print $1/f, $2/f, $3/f, $4/f}’ |

plotSeg -x "D. melanogaster (kb)" -y "D. guanche (kb)"

2.2 Construction 245

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

C
him

p beta-globin

Human beta-globin

Fig. 2.30 Match plot of human and chimp �훽-globin; the arrow points to the single mismatch

2.66 We couldn’t see any difference by eye, so we saved the forward matches to

the file adhF.txt and the forward and reverse matches to file adhR.txt. Then we

compared adhF.txt and adhR.txt with diff.

〈cli〉+≡
cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |

repeater -m 12 -p | rep2plot > adhF.txt

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |

repeater -m 12 -p -r | rep2plot > adhR.txt

diff adhF.txt adhR.txt

The difference between them is a single line, so inclusion of the reverse strand results

in one extra match.

0a1

> 99 -1836 88 -1847

2.67 We copy the Genbank files, grep for CDS, and find the entries in Table 2.1.

〈cli〉+≡
cp $BEB/data/*.gb .

grep CDS dm*.gb dg*.gb

dm*.gb: CDS join(2021..2119,2185..2589,2660..2926)

dm*.gb: CDS join(3226..3321,3748..4152,4204..4521)

dg*.gb: CDS join(1984..2076,2145..2549,2613..2879)

dg*.gb: CDS join(3221..3316,3540..3944,4007..4345)

246 2 Optimal Alignment

2.68 We cut out the four CDSs using the join option of cutSeq and translate them

to find that the stop codon is part of a CDS.

〈cli〉+≡
cutSeq -r 2021-2119,2185-2589,2660-2926 \

-j dmAdhAdhdup.fasta > dmAdhCds.fasta

cutSeq -r 3226-3321,3748-4152,4204-4521 \

-j dmAdhAdhdup.fasta > dmDupCds.fasta

cutSeq -r 1984-2076,2145-2549,2613-2879 \

-j dgAdhAdhdup.fasta > dgAdhCds.fasta

cutSeq -r 3221-3316,3540-3944,4007-4345 \

-j dgAdhAdhdup.fasta > dgDupCds.fasta

translate *Cds.fasta

2.69 With exex.sh we grep for CDS and carry out three translations. The first

removes all characters, parentheses, and blanks. The second converts commas into

newlines, and the third converts runs of dots into single blanks.

2.70 We run exex.sh and print the exons as horizontal lines with y coordinates

corresponding to the end of the vertical D. guanche sequence, which is 4433 bp

long. We redirect the result into annot.txt.

〈cli〉+≡
bash exex.sh < dmAdhAdhdup.gb |

awk ’{print $1, 4433, $2, 4433}’ > annot.txt

2.71 This time the coordinates extracted from the Genbank file are y coordinates

and the x coordinate is zero. We append the new lines to annot.txt.

〈cli〉+≡
bash exex.sh < dgAdhAdhdup.gb |

awk ’{print 0, $1, 0, $2}’ >> annot.txt

2.72 We take the start of the first exon, the end of the third, the start of the fourth,

and the end of the sixth.

〈Extract gene positions, Prog. 2.3〉≡
p[1] = s[1]

p[2] = e[3]

p[3] = s[4]

p[4] = e[6]

2.73 For the vertical lines the positions are interpreted as x coordinates.

〈Draw vertical lines, Prog. 2.3〉≡
for (i = 1; i <= 4; i++)

print p[i], y1, p[i], y2

2.74 For the horizontal lines the positions are interpreted as y coordinates.

〈Draw horizontal lines, Prog. 2.3〉≡
for (i = 1; i <= 4; i++)

2.2 Construction 247

print x1, p[i], x2, p[i]

2.75 For the vertical lines we take the D. melanogaster exons as input and supply

the y coordinates. These extend from the end of the D. guanche sequence, 4433,

to the start of its first exon, 1984. We print the vertical lines and append them to

annot.txt.

〈cli〉+≡
bash exex.sh < dmAdhAdhdup.gb |

awk -v y1=4433 -v y2=1984 -f lines.awk >> annot.txt

2.76 For the horizontal lines we take the D. guanche exons as input and supply the

x coordinates, which extend from zero to the end of the last D. melanogaster exon,

4521. We draw the horizontal lines and append them to annot.txt.

〈cli〉+≡
bash exex.sh < dgAdhAdhdup.gb |

awk -v x1=0 -v x2=4521 -f lines.awk >> annot.txt

2.77 We transform our two data files, adhR.txt and annot.txt, from bp to kb and

pipe them through plotSeg. In plotSeg, we label the axes and adjust their ranges

to get Fig. 2.14. Since the y range is reversed, the y axis label is written top to bottom

rather than bottom to top as in standard graphs.

〈cli〉+≡
cat adhR.txt annot.txt |

awk ’{f=1000;print $1/f, $2/f, $3/f, $4/f}’ |

plotSeg -x "D. melanogaster" -y "D. guanche" \

-X "-0.2:4.7" -Y "4.7:0"

2.78 As can be seen in Fig. 2.14, the transposon inserted into an intron of Adh-dup

in D. melanogaster.

2.79 Only the orthologs show up in Fig. 2.13. The gene duplication leading to the

paralogs is so old that mutation has erased any homology detectable by our match

plot.

2.80 Our script ranAdh.sh reads the number of iterations and the minimum repeat

length from the command line.

Prog. 2.10 (ranAdh.sh)

〈ranAdh.sh〉≡
for a in $(seq $1)

do

randomizeSeq dgAdhAdhdup.fasta > r.fasta

cat r.fasta dmAdhAdhdup.fasta |

repeater -p -r -m $2 |

rep2plot |

wc -l

done

248 2 Optimal Alignment

We ran the script with 100 iterations and repeat length 12, and counted the random

matches. There were 2.4 on average

〈cli〉+≡
bash ranAdh.sh 100 12 | awk ’{s+=$1;c++}END{print s/c}’

However, when you look at random plots, the matches are usually not on the main

diagonal. So there can be no doubt that the ensemble of matches on the main diagonal

in Fig. 2.13 is due to homology. But perhaps we shouldn’t place much weight on any

individual match of length 12 between our two Adh sequences.

2.81 We apply the gap scoring scheme to fill in the first column of the alignment

matrix.

- A C G

- 0

A -1

G -2

2.82 We extend the preceding cells by gaps and leave the corresponding arrows

pointing backwards.

- A C G

- 0 ← −1 ← −2 ← −3

A ↑ −1

G ↑ −2

2.83 We fill in the remaining six cells and note the back pointers.

- A C G

- 0 ← −1 ← −2 ← −3

A ↑ −1 տ 1 ← 0 ← −1

G ↑ −2 ↑ 0 ↑ −1 տ 1

2.84 We store the sequences in files and align them with score printing. The score

scheme is �푔o = �푔e = −1 (-p, -e), mismatch -1 (-i), and match is left to its default 1.

〈cli〉+≡
printf ">s1\nAG\n" > q.fasta

printf ">s2\nACG\n" > s.fasta

al -P s -p -1 -e -1 -i -1 q.fasta s.fasta

- A C G

- 0 <-1 <-2 <-3

A ˆ-1 \1 <0 <-1

G ˆ-2 ˆ0 ˆ-1 \1

2.85 We follow the alignment path to find

q A-G

s ACG

2.2 Construction 249

We can check the result with al.

〈cli〉+≡
al -p -1 -e -1 -i -1 q.fasta s.fasta

2.86 We start the trace-back at the bottom right corner and move diagonally, which

means we get C/C. This is repeated twice to give TCC/TCC. Then we move horizontally

twice to get --TCC/GGTCC. Five more diagonal moves give the final alignment

q TACAG--TCC

s TTCAGGGTCC

Its score is 7 − 1 − 2 = 4, as stated in the bottom right hand corner of the matrix.

2.87 We transform the coordinates of the trace-back to kb, convert them to segments,

and pipe them through plotSeg. Conversion to segments is achieved by printing

every other line with a terminal blank instead of a carriage return.

〈cli〉+≡
al -P t dgAdhAdhdup.fasta dmAdhAdhdup.fasta |

awk ’{f=1000;print $1/f, $2/f}’ |

awk ’NR%2==1{printf "%s ", $0} NR%2==0’ |

plotSeg -x "D. melanogaster (kb)" -y "D. guanche (kb)"

2.88 Trace-back along the first row or column can only add gaps to the alignment.

Gaps can only decrease the score. To avoid this, local alignment matrices have their

first rows and columns filled with stop signals, zeros.

2.89 The optimal local alignment is a truncated version of the global alignment.

Apart from the alignment itself, we also note its coordinates.

q 3 CAG--TCC 8

s 3 CAGGGTCC 10

2.90 The second best non-redundant alignment is

q 6 TC 7

s 2 TC 3

The query segment was already part of the best alignment, but not the subject seg-

ment, which makes this a new alignment. This is the situation sketched in Fig. 2.19,

where a fragment in the top sequence is homologous to two fragments in the bottom

sequence.

2.91 We align the two sequences using the local algorithm.

〈cli〉+≡
al -l dmAdhAdhdup.fasta dgAdhAdhdup.fasta

The result covers the second exon of Adh, which is best seen when we tabulate our

results.

250 2 Optimal Alignment

Organism Alignment Adh exon 2

D. melanogaster 2182–2594 2185–2589

D. guanche 2142–2554 2145–2549

It seems as if conservation stretches a tiny bit into both flanking introns.

2.92 We calculate the two best alignments.

〈cli〉+≡
al -l -n 2 dmAdhAdhdup.fasta dgAdhAdhdup.fasta

This time, the second exon of Adh-dup is picked, but only the 3’ intron-exon junction

is fully conserved.

Organism Alignment Adh-dup exon 2

D. melanogaster 3829–4158 3748–4152

D. guanche 3621–3950 3540–3944

2.3 Application

2.93 We change into the directory for Chapter 2, make the directory for Section 3,

and change into it.

〈cli〉≡
cd $BEB/ch/2/

mkdir 3

cd 3/

2.94 We copy the script exex.sh and the Adh Genbank files to our current directory.

Then we extract the exon coordinates for D. melanogaster, remove their offset to make

them start at zero, place them on the plus strand, and draw them as genes. The “genes”

are marked dm, saved in cds.dat, and plotted with nice dimensions.

〈cli〉+≡
cp ../2/*.gb ../2/exex.sh .

bash exex.sh < dmAdhAdhdup.gb |

awk ’{o=2021; print $1-o, $2-o, "+"}’ | drawGenes |

awk ’{print $0, "dm"}’ > cds.dat

plotLine -Y -2:8 -u y -x Position cds.dat

 0 500 1000 1500 2000 2500

Position

dm

2.3 Application 251

2.95 We repeat the exon extraction for D. guanche, only this time we draw the exons

on the negative strand and append the results marked dg to cds.dat. By applying

plotLine to cds.dat we reproduce Fig. 2.21.

〈cli〉+≡
bash exex.sh < dgAdhAdhdup.gb |

awk ’{o=1984; print $1-o, $2-o, "-"}’ | drawGenes |

awk ’{print $0, "dg"}’ >> cds.dat

plotLine -Y -2:8 -u y -x Position cds.dat

2.96 We copy the FASTA files into our working directory and cut the sequences

along the coordinates given in Table 2.1.

〈cli〉+≡
cp $BEB/data/d[gm]Adh*.fasta .

cutSeq -r 2185-2589 dmAdhAdhdup.fasta > dmAdhE2.fasta

cutSeq -r 3748-4152 dmAdhAdhdup.fasta > dmDupE2.fasta

cutSeq -r 2145-2549 dgAdhAdhdup.fasta > dgAdhE2.fasta

cutSeq -r 3540-3944 dgAdhAdhdup.fasta > dgDupE2.fasta

2.97 We apply cres to the four sequences separately (-s) to find they are all 405 bp

long.

〈cli〉+≡
cres -s *E2.*

2.98 We print the sequences compared, followed by the score of their alignment.

〈Calculate score, Prog. 2.4〉≡
printf "%s %s " ${i} ${j}

al d${i}*E2.* d${j}*E2.* |

grep Sc

2.99 We run scores.sh.

〈cli〉+≡
bash scores.sh

So we can fill in our table.

Adhdm Adh-dupdm Adhdg Adh-dupdg

Adhdm — −344 209 −305

Adh-dupdm — −361 81

Adhdg — −342

Adh-dupdg —

2.100 Paralogs have negative scores, orthologs positive.

2.101 We run 1000 iterations and save the scores to ral.out. Then we generate the

histogram and plot it. We stretch the x range slightly to insert more space between

the tic labels.

252 2 Optimal Alignment

〈cli〉+≡
bash ral.sh 1000 dmAdhE2.fasta dmDupE2.fasta |

awk ’{print $2}’ > ral.out

histogram ral.out |

plotLine -x Score -y Count -X -530:-430

2.102 We can directly count the number of random scores greater or equal to -344.

〈cli〉+≡
bash ral.sh 1000 dmAdhE2.fasta dmDupE2.fasta |

awk ’$2>=-344{c++}END{print c/NR}’

Even in 104 iterations the count was zero. This is not surprising when we look at

the distribution of random scores in Fig. 2.22, where the observed value of -344 is

very far to its right. We can illustrate this by marking -344 on the x axis as shown in

Fig. 2.31.

〈cli〉+≡
histogram ral.out |

plotLine -x Score -y Count -X -540:-340 \

-g "set arrow from -344,20 to -344,1"

 0

 20

 40

 60

 80

 100

 120

 140

-500 -450 -400 -350

C
ou

nt

Score

Fig. 2.31 The null distribution of alignment scores for exon 2 from Adhdm and Adh-dupdm; the

arrow points to the observed score

2.103 All our comparisons had �푃 < 10−3 and looked highly significant. Clearly,

alignment is much more sensitive than exact matching when it comes to detecting

homology.

2.104 We run al and read 49 mismatches from the “Errors” line of its output. Then

we calculate 49/405 ≈ 0.12 to get the mismatches per site.

2.3 Application 253

〈cli〉+≡
al dmAdhE2.fasta dgAdhE2.fasta | grep ’ˆE’

echo ’49/405’ | bc -l

2.105 We align the two sequences, get the error line, and parse the number of

mismatches from its fifth field. Then we divide the number of mismatches by the

sequence length.

〈Calculate mismatches per site, Prog. 2.6〉≡
al ${i}E2.fasta ${j}E2.fasta |

awk ’/ˆE/{printf " %.4f", $5/405}’

2.106 We save the result of the mismatch computation to mism.out and apply nj

to it. The resulting tree is shown in parentheses notation. Not much of a tree, so far.

〈cli〉+≡
bash mism.sh > mism.out

nj mism.out

(dmDup:0.0982,dgDup:0.102,(dmAdh:0.0623,dgAdh:0.0587):0.155);

2.107 We calculate the tree and get the plot in Fig. 2.32. This is an unrooted tree of

our sequences.

〈cli〉+≡
nj mism.out | plotTree

 dmDup

 d
gD

up

dmAdh

dg
A

dh

0.01

Fig. 2.32 Unrooted mismatch tree of Drosophila Adh exon 2

2.108 We insert midRoot into our pipeline.

〈cli〉+≡
nj mism.out | midRoot | plotTree

254 2 Optimal Alignment

2.109 The number of mismatches per site varies, we got, 0.37, 0.36, 0.36, 0.38, and

0.36 on our first five trials, all much smaller than 0.5.

2.110 In our case we have

mismatches mutations

0.36 0.50

0.37 0.51

0.38 0.53

〈cli〉+≡
for a in 0.36 0.37 0.38

do

echo "-3/4*l(1-4/3*${a})" | bc -l

done

All these mutation estimates are close to 0.5. So even on sequences as short as 405

bp, the Jukes-Cantor equation works quite well.

2.111 We iterate over the mismatch values, convert them to mutations, and print

them.

〈Calculate row of mutations, Prog. 2.7〉≡
for (i = 2; i <= NF; i++) {

k = -3/4 * log(1 - 4/3 * $i)

printf " %.4f", k

}

2.112 We convert the mismatches to mutations and draw the tree.

〈cli〉+≡
awk -f mut.awk mism.out |

nj |

midRoot |

plotTree

The mismatch and mutation trees are similar but not identical.

2.113 We recall the computation of the number of mutations, or substitutions, per

site.

〈cli〉+≡
awk -f mut.awk mism.out

4

dmAdh 0.0000 0.4190 0.1320 0.4019

dmDup 0.4190 0.0000 0.3935 0.2326

dgAdh 0.1320 0.3935 0.0000 0.4190

dgDup 0.4103 0.2326 0.4190 0.0000

2.3 Application 255

The average number of substitutions for speciation is (0.1320 + 0.2326)/2 = 0.1823

and for duplication (0.4190 + 0.4019 + 0.3935 + 0.4190)/4 ≈ 0.4084. So the dupli-

cation time is roughly 0.4084/0.1823× 32 ≈ 72 million years.

Chapter 3

Exact Matching

3.1 Keyword Trees

3.1 We change into the directory holding the chapters, make directory 3 for the new

chapter, change into it, make directory 1, and change into that.

〈cli〉≡
cd $BEB/ch/

mkdir 3

cd 3/

mkdir 1

cd 1/

3.2 If we are not dealing with a header line, we are dealing with a data line. In that

case we concatenate it to form the text, t.

〈Deal with data, Prog. 3.1〉≡
!/ˆ>/ {

t = t $0

}

3.3 We match the initial >. If we are not in the first line, we are not dealing with the

first header, so we print the previous sequence and reset it.

〈Deal with headers, Prog. 3.1〉≡
/ˆ>/ {

if (NR > 1) {

print t

t = ""

}

print

}

257© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_10&domain=pdf

258 3 Exact Matching

3.4 The END pattern just triggers printing of the sequence, t, constructed up to that

point.

〈Deal with last sequence, Prog. 3.1〉≡
END {

print t

}

3.5 As in readFasta.awk, dealing with the data means concatenating the current

sequence.

〈Deal with data, Prog. 3.2〉≡
!/ˆ>/ {

t = t $0

}

3.6 We match the header. If it’s not the first one, we call naive and reset the text, t.

Then we print the header.

〈Deal with headers, Prog 3.2〉≡
/ˆ>/ {

if (NR > 1) {

naive(p, t)

t = ""

}

print

}

3.7 We call naive on the last sequence.

〈Deal with last sequence, Prog. 3.2〉≡
END{

naive(p, t)

}

3.8 We loop over the text and over the pattern while matching their characters. If we

reach the end of the pattern, we print its starting position in t.

〈Find matches, Prog. 3.2〉≡
for (i = 1; i <= n-m+1; i++) {

for (j = 1; j <= m; j++)

if (pa[j] != ta[i+j-1])

break

if (j > m)

print i

}

We look for AT in s.fasta and find two matches.

〈cli〉+≡
awk -f naive.awk -v p=AT s.fasta

3.1 Keyword Trees 259

>s1

2

>s2

9

3.9 We generate the test sequence and search it to find the expected matches at

positions 2, 6, and 8.

〈cli〉+≡
printf ">s3\nCACAGACACAT\n" > s3.fasta

awk -f naive.awk -v p=ACA s3.fasta

>s3

2

6

8

3.10 We copy mgGenome.fasta to our working directory and search it for ACGTCG.

We remove the header line from the output, and find the pattern occurs once. Then

we search for its slightly shorter sibling, ACGTC, which occurs 51 times.

〈cli〉+≡
cp $BEB/data/mgGenome.fasta .

awk -f naive.awk -v p=ACGTCG mgGenome.fasta | grep -v ’ˆ>’ |

wc -l

awk -f naive.awk -v p=ACGTC mgGenome.fasta | grep -v ’ˆ>’ |

wc -l

3.11 We reverse complement the genome sequence and find that it contains three

copies of ACGTCG. So ACGTCG is not unique in M. genitalium.

〈cli〉+≡
revComp mgGenome.fasta | awk -f naive.awk -v p=ACGTCG

>gi|84626123|gb|L43967.2| Mycoplasma genitalium G37...

88125

208713

542138

3.12 The real time is 37.8 s on our machine.

3.13 It took 3.57 s on our machine, roughly a tenth of the search for 20 As. That’s

because in the previous run we had 106 × 21 = 2.1 × 107 character comparisons,

while now there was a mismatch in the first position, so there were roughly 20 times

fewer comparisons. We don’t know why this translates to 10% rather than 5% run

time, but that just goes to show the importance of run time measurements.

260 3 Exact Matching

3.14 We time the search for the long pattern and the lone G.

〈cli〉+≡
time naiveMatcher AAAAAAAAAAAAAAAAAAAAG ran.fasta

time naiveMatcher G ran.fasta

Searching for the long pattern takes 0.21 s, roughly a 180-fold increase in speed

compared to the Awk program. Just searching for the G took 0.04 s, which again

seems less than the twenty-fold speed-up expected from the number of matches.

However, matching isn’t the only thing going on in naiveMatcher, it also reads the

data, allocates memory etc., aspects not taken into account by our idea that run time

is proportional to the number of comparisons.

3.15 The failure links for AAA jump up one node each.

b

b

b

b

A
A

A

3.16 We initialize the links of the root and the first node down. Then we work our

way down the “tree” and for every node follow the parent’s failure links until we

either find a match or reach the root.

b

b

b

b

b

b

b

A
T

A
T

A
T

→

b

b

b

b

b

b

b

A
T

A
T

A
T

→

b

b

b

b

b

b

b

A
T

A
T

A
T

→

b

b

b

b

b

b

b

A
T

A
T

A
T

→

b

b

b

b

b

b

b

A
T

A
T

A
T

→

b

b

b

b

b

b

b

A
T

A
T

A
T

3.17 Fig. 3.27 shows the keyword tree with the failure links included.

3.1 Keyword Trees 261

b

b

A

b

C

b

G

b

T

b

C

b

G

b

A

1

2

3 4

5

Fig. 3.27 Keyword tree with failure links for the five patterns �푃1 = ACG, �푃2 = AC, �푃3 = ACT,

�푃4 = CGA, and �푃5 = C

3.18 In our matching, we first find �푃2 = AC and �푃1 = ACG next. Then we follow the

mismatch link twice to find �푃5 = C. However, we have missed the first occurrence of

C. So, having constructed the tree and its failure links, there is a third and last step

in the construction of keyword trees. In that step we visit every node and collect the

matches on the path of failure links starting at the current focal node. These matches

are stored in an output set attached to the focal node.

3.19 We pipe the tree through plotTree.

〈cli〉+≡
drawKt -t ACG AC ACT CGA C | plotTree

3.20 We draw the keyword tree and also ask for a LATEX wrapper. Then we follow

the instructions given by drawKt and typeset the document, convert the resulting

device-independent file to postscript, and convert the postscript to pdf. We can view

the pdf with evince or some other pdf viewer. evince opens a new window to

display the pdf. As usual, the ampersand (&) leaves the command line responsive

while the new window is active.

〈cli〉+≡
drawKt -w ktWrapper.tex ACG AC ACT CGA C > kt.tex

latex ktWrapper

dvips ktWrapper

ps2pdf ktWrapper.ps

evince ktWrapper.pdf &

3.21 There is now a title line, an author line, and the current date. LATEX is a

typesetting system used, for example, to typeset this book. It is best described by its

authors [31, 28].

3.22 We run naiveMatcher and keyMat on the short and long pattern. keyMat is

approximately twice as fast as naiveMatcher on the short pattern. Doubling the

pattern length doubles the run time of naiveMatcher but leaves that of keyMat

unchanged.

〈cli〉+≡
time naiveMatcher AAAAAAAAAAAAAAAAAAAAG ran.fasta

time keyMat AAAAAAAAAAAAAAAAAAAAG ran.fasta

time naiveMatcher AAAAAAAAAAAAAAAAA...G ran.fasta

262 3 Exact Matching

time keyMat AAAAAAAAAAAAAAAAA...G ran.fasta

3.23 We copy the genomes of E. coli K12 and O157H7, cut out the query from K12,

and search for it in O157H7 with a keyword tree and with naı̈ve matching.

〈cli〉+≡
cp $BEB/data/ecoliK12.fasta .

cp $BEB/data/ecoliO157H7.fasta .

cutSeq -r 1-1000 ecoliK12.fasta > q.fasta

time sblast q.fasta ecoliO157H7.fasta

time sblast -n q.fasta ecoliO157H7.fasta

The search with keyword tree takes 0.3 s, the naı̈ve search 60 s, that is, 200 times

longer.

3.2 Suffix Trees

3.24 We change into the directory for this chapter, make a directory for the current

section, and change into that. Did you tab to auto complete the path and simplify life

on the command line?

〈cli〉≡
cd $BEB/ch/3/

mkdir 2

cd 2/

3.25 There are eight characters in CATGGCAT, so it has eight suffixes.

1 CATGGCAT

2 ATGGCAT

3 TGGCAT

4 GGCAT

5 GCAT

6 CAT

7 AT

8 T

3.26 Walk into the suffix tree to find AT above leaves 2 and 7; so AT starts in �푡 at

positions 2 and 7. X is nowhere, which we discover right at the root of the tree.

3.27 We add AT$, T$, and $ to get Fig. 3.6. The branch for the sentinel, $, is not

really necessary, as by definition it can never be searched for, but for completeness

sake we also include it when drawing suffix trees.

3.28 We start suffix tree construction with the first suffix on an edge connecting the

root and the first leaf and then add all other suffixes to the tree as shown in Fig. 3.7.

The result is Fig. 3.28.

3.2 Suffix Trees 263

T
$

A
T
$

T
$

A

T
.
.
.
$

C
.
.
.
$

$

T

G
.
.
.
$

C
.
.
.
$

A$

b

6

b

5

b

7

b b

2

b

3

b

8

bb

1

b

4

bb

9

b

Fig. 3.28 Suffix tree for GTTCAAAT

3.29 There are four frontier nodes and their path labels are AT, CAT, G, and T. So the

longest repeat in CATGGCAT is CAT.

3.30 We copy the genome of M. genitalium to our working directory. Then we run

repeaterwith -r on its forward and reverse strand, to find the same longest repeat

of 243 bp on both strands.

〈cli〉+≡
cp $BEB/data/mgGenome.fasta .

repeater -r mgGenome.fasta

3.31 We calculate the nucleotide frequencies of M. genitalium.

〈cli〉+≡
cres mgGenome.fasta

The frequency of A is 0.346, so the probability of drawing AA is 0.3462 ≈ 0.12,

which is quite different from the 1/4 of the equiprobable case.

3.32 We again calculate the nucleotide frequencies of M. genitalium, pick them from

the output, and sum their squares.

〈cli〉+≡
cres mgGenome.fasta |

awk ’/ˆ[ACGT]/{s+=$3*$3}END{print s}’

The probability of randomly picking a pair of identical nucleotides from the genome

of M. genitalium is roughly 0.284, which isn’t all that different from the 1/4 we get

when assuming equal nucleotide frequencies.

3.33 We need to solve

1 = �푃�푙
m × �퐿2

for �푙. By rearranging and taking logarithms, we get

�푙 =
log(1/�퐿2)
log(�푃m)

.

264 3 Exact Matching

By substituting �푃m = 0.284 and �퐿 = 580, 076, we find that the expected longest

repeat in M. genitalium has length �푙 ≈ 21.1. This is much shorter than the observed

longest repeat of length 243.

〈cli〉+≡
echo ’l(1/580076ˆ2)/l(0.284)’ | bc -l

21.08534205633167458539

3.34 We pipe the randomized genome through repeater and make sure we count

results only once by cutting them off after the first line.

〈cli〉+≡
for a in $(seq 100)

do

randomizeSeq mgGenome.fasta |

repeater |

tail -n +2 |

head -n 1

done | awk ’{s+=$1}END{print s/NR}’

The average we found was 20.1, which isn’t identical to 21.1, but close. One reason

for the discrepancy might be that in our model all starting points in the matrix are

independent of each other, which is a simplification. In any case, random longest

matches are much shorter than the observed match of 243.

3.35 Without sentinel, the branch leading to leaf 9 is gone, as the sentinel is not part

of the text any more. Moreover, all the additional three branches occupied by just a

sentinel in Fig. 3.6 are now empty in Fig. 3.29.

G
G
C
A
T

G
G
C
A
T

G
C
A
T

C
A
T

G
G
C
A
T

TG

C
A
T

AT

b

2

b

7

b

1

b

6

b

4

b

5

b

3

b

8

bbbb

b

Fig. 3.29 The suffix tree for CATGGCAT without sentinel

3.36 When we apply naı̈ve suffix tree construction to a sequence like AAAA, it displays

its worst case: for every suffix we have to walk from beginning to end. This leads

to a run time that is quadratic in input length, which doesn’t scale well. Now, our

scenario of a sequence consisting only of A isn’t realistic. But genomes do contain

long exact repeats, which have the same effect as our mononucleotide sequence. In

general, we should avoid construction algorithms that might run in time quadratic in

the length of their input.

3.2 Suffix Trees 265

3.37 We get the day of the week, the day of the month, the month, and the year. This

is followed by the time.

〈cli〉+≡
date

Tue 14 Jun 2022 01:27:02 PM CEST

3.38 January 1st 1970 was 1,655,206,301, or 1.7 × 109, s ago. That’s also roughly

the number of heart beats for a person born around that time.

3.39 ls took 2,815,900 ns on our computer, roughly 3 ms.

〈cli〉+≡
echo ’198105600-195289700’ | bc

3.40 We repeat the code for mononucleotides without the conversion to all A. This

time we tag with rand.

〈Measure time for random sequence, Prog. 3.3〉≡
st=$(date +%s.%N)

repeater r.fasta > /dev/null

en=$(date +%s.%N)

rt=$(echo "$en - $st" | bc -l)

echo $a $rt "rand"

3.41 We run repeater.sh, save its output and plot it with plotLine using lines

and points. The quotes around the axis labels are required to turn the multiple strings

separated by blanks into single strings. The -L option gives lines and points, -P

would be only points. If in doubt, get help with -h. We also move the key center top

so it doesn’t intersect the graph.

〈cli〉+≡
bash repeater.sh > repeater.dat

plotLine -x "Sequence length (Mb)" \

-y "Time (s)" -L \

-g "set key top center" repeater.dat

3.42 If we extend the path label of a frontier node by one nucleotide, it becomes

unique. So we have ATG, CATG, GC, GG, and TG. Of these six unique substrings, GC,

GG, and TG are the shortest.

3.43 We run shustring on both strands of the M. genitalium genome and find two

shortest unique substrings of length six.

〈cli〉+≡
shustring -r mgGenome.fasta

>gi|84626123|gb|L43967.2| Mycoplasma genitalium...

Count Position Length Shustring

1 174222 6 GACGGC

2 567107 6 GCCGGG

266 3 Exact Matching

3.44 We run shustring.sh with 100 iterations and count the occurrences of

shustrings length 6 or less. We don’t find any.

〈cli〉+≡
bash shustring.sh 100 | awk ’$3<=6’

3.45 We run shustring on the genome sequence, extract the genome positions in

units of 100 kb and the shustring lengths, and plot them.

〈cli〉+≡
shustring -r -l mgGenome.fasta | tail -n +3 |

awk ’{print $1/100000, $2}’ |

plotLine -x "Position (100 kb)" -y Length

3.3 Suffix Arrays

3.46 We change into the directory for this chapter, make the directory for this section,

and change into it.

〈cli〉≡
cd $BEB/ch/3/

mkdir 3

cd 3/

3.47 We apply suf.awk to CATGGCAT to get a triangle of suffixes.

〈cli〉+≡
printf ">s\nCATGGCAT\n" | awk -f suf.awk

1 CATGGCAT

2 ATGGCAT

3 TGGCAT

4 GGCAT

5 GCAT

6 CAT

7 AT

8 T

3.48 As we read the entries in the suffix array, sa, from top to bottom, we get the

same sequence of suffices as when we read the leaves of the suffix tree from left to

right.

3.49 We apply suf.awk to CATGGCAT$, sort the suffixes, and print them with a new

index.

〈cli〉+≡
printf ">s\nCATGGCAT$\n" | awk -f suf.awk | sort -k 2 |

cat -n

3.3 Suffix Arrays 267

3.50 The root corresponds to interval sa[1...6], the node with path label C to interval

sa[4...6], and the node with path label CC to interval sa[5...6].
3.51 Fig. 3.30A shows all common prefixes, which are also color-coded in the

column of suffixes. These colors are repeated in the suffix tree in Fig. 3.30B. All

three edges leading to an inner node of the suffix tree are labeled by a common prefix,

because a suffix tree essentially summarizes the common prefixes of suffixes.

A B

index sa suf cp

1 6 $ nd

2 5 A$ -

3 1 ACCCA$ A

4 4 CA$ -

5 3 CCA$ C

6 2 CCCA$ CC

C
C
C
A
$

$

C
A
$

A
$

C

A
$

C
A$

b

1

b

5

b

2

b

3

bb

4

bbb

6

b

Fig. 3.30 Complete table of common prefixes (A) and their occurrence in the suffix tree (B)

3.52 Table 3.5 shows the suffix array, sa, with the complete lcp array.

Table 3.5 Complete table of longest common prefix lengths, the lcp array

index sa suf cp lcp

1 6 $ nd -1

2 5 A$ - 0

3 1 ACCCA$ A 1

4 4 CA$ - 0

5 3 CCA$ C 1

6 2 CCCA$ CC 2

3.53 The root has no path label, so its string depth is zero, then there are two internal

nodes with string depth 1 and one with string depth 2.

3.54 The distinct entries in the lcp array, 0, 1, and 2, correspond to the string depth

of the suffix tree in Fig. 3.11B.

3.55 Fig. 3.31 shows the construction of the remaining lcp intervals.

3.56 We’ve got the suffix array and the suffix tree in Fig. 3.10, so we can draw the

lcp interval tree in Fig. 3.32 from them.

268 3 Exact Matching

E F G

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

cc

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

cc

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

Fig. 3.31 Completing the construction of lcp intervals begun in Fig. 3.13

0 − [1...9]

2 − [2...3] 3 − [4...5] 1 − [6...7] 1 − [8...9]

Fig. 3.32 Lcp interval tree of CATGGCAT$

3.57 We pipe CATGGCAT$ through drawStwith the interval option (-i) and redirect

the output to st.tex. We also write a LATEX wrapper file, which we typeset and view

with evince.

〈cli〉+≡
printf ">s\nCATGGCAT$\n" | drawSt -i -w wrapSt.tex > st.tex

latex wrapSt

dvips wrapSt

ps2pdf wrapSt.ps

evince wrapSt.pdf &

3.58 We print the suffixes, sort them, and add a new index column.

〈cli〉+≡
printf ">s\nGTAAACTATT$\n" | awk -f suf.awk | sort -k 2 |

cat -n

1 11 $

2 3 AAACTATT$

3 4 AACTATT$

4 5 ACTATT$

5 8 ATT$

6 6 CTATT$

7 1 GTAAACTATT$

8 10 T$

9 2 TAAACTATT$

10 7 TATT$

11 9 TT$

3.3 Suffix Arrays 269

3.59 We compare every suffix with its left-hand neighbor and write down the length

of their common prefix. We do this by hand for now, but will soon automate it.

1 11 $ -1

2 3 AAACTATT$ 0

3 4 AACTATT$ 2

4 5 ACTATT$ 1

5 8 ATT$ 1

6 6 CTATT$ 0

7 1 GTAAACTATT$ 0

8 10 T$ 0

9 2 TAAACTATT$ 1

10 7 TATT$ 2

11 9 TT$ 1

12 -1

3.60 To automatically draw the suffix tree, we generate the LATEX input file, typeset

its wrapper, and view it.

〈cli〉+≡
printf ">s\nGTAAACTATT$\n" | drawSt > st.tex

latex wrapSt.tex

dvips wrapSt

ps2pdf wrapSt.ps

evince wrapSt.pdf &

3.61 Rather than following the rules about the relationship between lcp[�푖] and

lcp[�푖 + 1], we just looked at the suffix tree to find the clusters in Table 3.6. In case

you were tempted to also include, for example, the interval 1− [2...4], recall that an

interval contains all the leaves of its subtree.

Table 3.6 Lcp intervals in the enhanced suffix array of GTAAACTATT$

�푖 suf sa lcp

1 $ 11 -1

2 AAACTATT$ 3 0

3 AACTATT$ 4 2

4 ACTATT$ 5 1

5 ATT$ 8 1

6 CTATT$ 6 0

7 GTAAACTATT$ 1 0

8 T$ 10 0

9 TAAACTATT$ 2 1

10 TATT$ 7 2

11 TT$ 9 1

12 — — -1

270 3 Exact Matching

3.62 The topology of the lcp interval tree is the suffix tree in Fig. 3.15 stripped of

its leaves. The node content can be read from the enhanced suffix array that we’ve

annotated with lcp intervals in Table 3.6. To draw this with drawSt, we use its

interval option (-i).

〈cli〉+≡
printf ">s\nGTAAACTATT$\n" | drawSt -i > st.tex

latex wrapSt.tex

dvips wrapSt

ps2pdf wrapSt.ps

evince wrapSt.pdf &

3.63 Tables 3.7A–F show the enhanced suffix array of ACCCA$ and the construction

of its inverse. We start in Table 3.7A at �푖 = 1 and sa[1] = 6, which means that

isa[6] = 1. In Table 3.7B we move to �푖 = 2 and sa[2] = 5, so isa[5] = 2. Table 3.7C

takes us to �푖 = 3, and so on.

Table 3.7 Construction of the inverse suffix array of ACCCA$

A B C

isa �푖 sa suf cp lcp

1 6 $ - -1

2 5 A$ - 0

3 1 ACCCA$ A 1

4 4 CA$ - 0

5 3 CCA$ C 1

1 6 2 CCCA$ CC 2

isa �푖 sa suf cp lcp

1 6 $ - -1

2 5 A$ - 0

3 1 ACCCA$ A 1

4 4 CA$ - 0

2 5 3 CCA$ C 1

1 6 2 CCCA$ CC 2

isa �푖 sa suf cp lcp

3 1 6 $ - -1

2 5 A$ - 0

3 1 ACCCA$ A 1

4 4 CA$ - 0

2 5 3 CCA$ C 1

1 6 2 CCCA$ CC 2

D E F

isa �푖 sa suf cp lcp

3 1 6 $ - -1

2 5 A$ - 0

3 1 ACCCA$ A 1

4 4 4 CA$ - 0

2 5 3 CCA$ C 1

1 6 2 CCCA$ CC 2

isa �푖 sa suf cp lcp

3 1 6 $ - -1

2 5 A$ - 0

5 3 1 ACCCA$ A 1

4 4 4 CA$ - 0

2 5 3 CCA$ C 1

1 6 2 CCCA$ CC 2

isa �푖 sa suf cp lcp

3 1 6 $ - -1

6 2 5 A$ - 0

5 3 1 ACCCA$ A 1

4 4 4 CA$ - 0

2 5 3 CCA$ C 1

1 6 2 CCCA$ CC 2

3.64 We transcribe the definition of the inverse suffix array into Awk.

〈Construct isa, Prog. 3.6〉≡
isa[sa[n]] = n

Then we run isa.awk on the suffix array of ACCCA$.

〈cli〉+≡
printf ">s\nACCCA$\n" | awk -f suf.awk | sort -k 2 |

awk -f isa.awk

In the result, sa[1] = 6, so isa[6] = 1, as expected.

3.3 Suffix Arrays 271

i sa isa suf

1 6 3 $

2 5 6 A$

3 1 5 ACCCA$

4 4 4 CA$

5 3 2 CCA$

6 2 1 CCCA$

3.65 The first column of the input contains the suffix array, the second the suffixes.

As index we use the number of records, NR.

〈Store sa and suf, Prog. 3.7〉≡
n = NR

sa[n] = $1

suf[n] = $2

3.66 The input sequence is suffix number 1, which we save to variable t.

〈Find input sequence, �푡, Prog. 3.7〉≡
if ($1 == 1)

t = $2

3.67 As we did before, we just follow the definition isa[�푠�푎 [�푖]] = �푖.

〈Compute isa, Prog. 3.7〉≡
for (i = 1; i <= n; i++)

isa[sa[i]] = i

3.68 We apply the Awk function split with an empty string as delimiter and

generate the character array ta.

〈Split �푡 into character array ta, Prog. 3.7〉≡
split(t, ta, "")

3.69 We set the first lcp value to -1 as stated in line 5 of Algorithm 1. Awk

automatically initializes the ℓ to zero.

〈Initialize lcp computation, Prog. 3.7〉≡
lcp[1] = -1

3.70 From the isa we get the position of �푡 [�푖...] in the suffix array, �푗 . The desired

partner of �푡 [�푖...] is �푡 [�푘...], where �푘 = sa[�푗 − 1]. But sa[�푗 − 1] only makes sense if �푗

is not the first position in sa; otherwise, we skip the rest of the loop.

〈Find suffix most similar to �푡 [�푖...], �푡 [�푘...], Prog. 3.7〉≡
j = isa[i]

if (j == 1)

continue

k = sa[j-1]

272 3 Exact Matching

3.71 Lines 10–14 of Algorithm 1 show the details of how the lcp value is calculated.

We transcribe them into Awk.

〈Calculate lcp value, Prog. 3.7〉≡
while (ta[i+l] == ta[k+l])

l++

lcp[j] = l

if (l > 0)

l--

3.72 We print the index, the suffix array, the lengths of the longest common prefixes,

and the suffixes.

〈Print enhanced suffix array, Prog. 3.7〉≡
printf "# i\tsa\tlcp\tsuf\n"

for (i = 1; i <= n; i++)

printf "%d\t%d\t%d\t%s\n", i, sa[i], lcp[i], suf[i]

3.73 We pipe the sorted output of suf.awk through esa.awk to get the enhanced

suffix array.

〈cli〉+≡
printf ">s\nACCCA$\n" | awk -f suf.awk | sort -k 2 |

awk -f esa.awk

i sa lcp suf

1 6 -1 $

2 5 0 A$

3 1 1 ACCCA$

4 4 0 CA$

5 3 1 CCA$

6 2 2 CCCA$

3.74 The script lrep.sh extracts suffixes from its input sequence and sorts them.

The sorted suffixes are the input to esa.awk. From its output, lrep.sh removes the

header before sorting it in reverse by lcp value. The longest repeat is in the first row

of the output.

3.75 We copy the Adh region of D. guanche to our working directory and run

lrep.sh on it.

〈cli〉+≡
cp $BEB/data/dgAdhAdhdup.fasta .

bash lrep.sh dgAdhAdhdup.fasta

The longest repeat has length 12 and one copy of it occurs at position 988.

3325 988 12 TACATTACATTA...

3.3 Suffix Arrays 273

3.76 We randomize the D. guanche Adh region 100 times and count the frequency

with which we find a longest repeat of length 12 or greater.

〈cli〉+≡
for a in $(seq 100)

do

randomizeSeq dgAdhAdhdup.fasta | bash lrep.sh | cut -f 3

done | awk ’$1>=12{c++}END{print c/NR}’

Our result happens to be 0.46, which would be an unacceptably large error probability

when rejecting our null hypothesis, so we don’t. In other words, the longest repeat

we found in the Adh region of D. guanche may well be due to chance.

3.77 We use keyMat to search for TACATTACATTA and find that, as expected, it

occurs at position 988, and also at position 983.

〈cli〉+≡
keyMat TACATTACATTA dgAdhAdhdup.fasta

3.78 We run repeaterwith the positions option (-p) on the D. guanche Adh region

and find that, as expected, its longest repeat is TACATTACATTA, which occurs at

positions 983 and 988.

〈cli〉+≡
repeater -p dgAdhAdhdup.fasta

3.79 We copy the D. melanogaster Adh region to our working directory and apply

lrep.sh to it.

〈cli〉+≡
cp $BEB/data/dmAdhAdhdup.fasta .

bash lrep.sh dmAdhAdhdup.fasta

The longest repeat has length 16, and one of its copies is found at position 3908.

3890 3908 16 TCGATGTCCTGATCAA...

3.80 We run repeaterwith the positions option to find that the longest repeat also

occurs at position 2345.

〈cli〉+≡
repeater -p dmAdhAdhdup.fasta

3.81 The longest repeat for the concatenated Adh sequences must be at least as long

as the longer of the two repeats seen in the individual sequences, that is, it should be

at least 16 bp long.

3.82 We concatenate the two Adh sequences and pipe them through lrep.sh.

〈cli〉+≡
cat d[gm]AdhAdhdup.fasta | bash lrep.sh

274 3 Exact Matching

1591 3287 37 AGCAAGGTTCTCATGACCAAGAATATAGCGGTGAGTG...

As expected, the longest repeat is at least 16 bp long. In fact, the actual longest

repeat of 37 bp is much longer than this lower bound. The reason for this is that

the two alcohol dehydrogenase sequences were taken from two Drosophila species;

the relatedness between these species means there is much more sequence similarity

between than within the sequences.

3.83 The script plotLcp.sh calculates the enhanced suffix array from the input

sequence. It then cuts off two lines, the header and the first line of the table. The first

line of the table is cut off, because we saw earlier that its lcp entry is by definition -1.

The remaining lcp values are extracted from the table and sorted by suffix position.

3.84 We plot the lcp values for the two Adh regions using plotLcp.sh on the Adh

region of D. guanche and plot the resulting lcp values with an adjusted y range.

〈cli〉+≡
bash plotLcp.sh dgAdhAdhdup.fasta |

plotLine -Y 0:40 -x Position -y lcp

3.85 We repeat the run of plotLcp.sh on the melanogaster sequence and plot the

output.

〈cli〉+≡
bash plotLcp.sh dmAdhAdhdup.fasta |

plotLine -Y 0:40 -x Position -y lcp

3.86 We run plotLcp.sh on the two Adh regions and adjust both the y range and

the x range. The range of the x axis is the length of the D. guanche Adh, 4433 bp.

〈cli〉+≡
bash plotLcp.sh d[gm]AdhAdhdup.fasta |

plotLine -Y 0:40 -X 0:4433 -x Position -y lcp

3.4 Text Compression

3.87 We change into the chapter’s directory, make a new subdirectory, and change

into that.

〈cli〉≡
cd $BEB/ch/3/

mkdir 4

cd 4/

3.88 We shift thatisthequestion$ five times to the left to get

3.4 Text Compression 275

thatisthequestion$

hatisthequestion$t

atisthequestion$th

tisthequestion$tha

isthequestion$that

3.89 The trick is to use the modulo operator, %, to wrap around the positions in the

string.

〈Print string rotation, Prog. 3.10〉≡
for (j = 0; j < n; j++) {

p = (i-1+j) % n

printf("%c", ta[p+1])

}

printf("\n")

3.90 We run rotate.awk on our text and pipe the result through sort.

〈cli〉+≡
printf ">s\ntobeornottobe$\n" | awk -f rotate.awk | sort

3.91 We read the last column of Fig. 3.21B from top to bottom to get the Burrows-

Wheeler transform of tobeornottobe$,

eoobbrttenot$o

3.92 We copy suf.awk and use it to compute the suffix array of tobeornottobe$.

Then we sort the suffixes to get Table 3.8A.

〈cli〉+≡
cp ../3/suf.awk .

printf ">s\ntobeornottobe$\n" | awk -f suf.awk | sort -k 2

Now we construct the Burrows-Wheeler transform from the suffix array by applying

equation (3.1). So we go through the entries in the suffix array from the top and

concatenate the characters �푡 [14− 1], �푡 [12− 1], �푡 [3− 1], and so on from Table 3.8B.

The only exception is that we define �푡 [0] as the sentinel. This gives us the transform,

eoobbrttenot$o

3.93 We copy hamlet.fasta, run cres on it, cut off the header of its output and

sort the character counts to find that ampersand is the least frequent, followed by J.

Underscore is the most frequent character because it is used instead of blanks. The

most frequent proper character is e, followed by t.

〈cli〉+≡
cp $BEB/data/hamlet.fasta .

cres hamlet.fasta | tail -n +3 | sort -k 2 -n

276 3 Exact Matching

Table 3.8 The suffix array (A) of tobeornottobe$ (B)

A B

14 $

12 be$

3 beornottobe$

13 e$

4 eornottobe$

7 nottobe$

11 obe$

2 obeornottobe$

5 ornottobe$

8 ottobe$

6 rnottobe$

10 tobe$

1 tobeornottobe$

9 ttobe$

1 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4

t o b e o r n o t t o b e $

& 5 2.83e-05

J 9 5.09e-05

(16 9.06e-05

...

t 10986 0.0622

e 14484 0.082

_ 32239 0.182

3.94 We transform Hamlet and see long runs of characters as we browse through it.

〈cli〉+≡
bwt hamlet.fasta | less

...

rrstgtptrswtsIIII____________________LLLLLLLLLLLLLLLLLLLLLLL

LLNNNNNNNNNN

NNNNNNNRHH

...

3.95 The first run starts at position �푠 = 1. The first position where a second run

might start is �푖 = 2. If the current text position differs from the previous one, we’ve

reached the start of a new run. In that case we compute the length of the run by

subtracting its start from the current position. We store the run length and update the

start of the next run to the current position. Having looped over the text, we store the

length of the last run.

〈Count run lengths, Prog. 3.11〉≡
s = 1

for (i = 2; i <= n; i++) {

if (ta[i-1] != ta[i]){

l = i - s

3.4 Text Compression 277

cl[l]++

s = i

}

}

l = i - s

cl[l]++

3.96 We iterate over all lengths and print them with their counts.

〈Print run lengths and counts, Prog. 3.11〉≡
for (l in cl)

print l, cl[l]

3.97 We run runs.awk on hamlet.fasta and find that the longest run has length

3 and occurs 7 times.

〈cli〉+≡
awk -f runs.awk hamlet.fasta

1 170253

2 3204

3 7

3.98 We apply runs.awk to the transformed hamlet.fasta and look at the last

entry in the sorted output to find that the longest run now has length 567 and occurs

once.

〈cli〉+≡
bwt hamlet.fasta | awk -f runs.awk | sort -n | tail

...

410 1

503 1

567 1

3.99 In natural languages like English there are strong preferences for certain com-

binations of phonemes, and hence characters. Since the Burrows-Wheeler transform

sorts on suffixes and then returns the prefixing character of each suffix, it exposes

the context preference of the characters in a text.

3.100 We generate a list of run lengths labeled ori and another labeled bwt. We sort

both lists and store them in runs.dat. Then we plot runs.dat with plotLines.

We log-transform the y axis, expand the x range a bit to the left to make the ori curve

visible, expand the y range a bit to the bottom to make the tail of single runs visible,

and print the numbers along the y axis in “engineering” format.

〈cli〉+≡
awk -f runs.awk hamlet.fasta | awk ’{print $1, $2, "ori"}’ |

sort -n > runs.dat

bwt hamlet.fasta | awk -f runs.awk |

278 3 Exact Matching

awk ’{print $1, $2, "bwt"}’ | sort -n >> runs.dat

plotLine -x Length -y Count -l y -X -20:600 -Y 0.5: \

-g "set format y ’%.0e’" runs.dat

3.101 We randomize hamlet.fasta and run it through runs.awk. Then we also

apply the Burrows-Wheeler transform to the randomization and again print the run

lengths.

〈cli〉+≡
randomizeSeq hamlet.fasta | awk -f runs.awk

randomizeSeq hamlet.fasta | bwt | awk -f runs.awk

The two distributions are almost identical, for example,

1 155446

2 8791

3 972

4 147

5 19

6 7

7 2

In other words, in random sequences the Burrows-Wheeler transform has no effect

on the distribution of run lengths.

3.102 We prepare our auxiliary table with the �푆 and �퐸 column in Table 3.9 and find

that the message is thatisthequestion$. We can check this with bwt in decoding

mode.

〈cli〉+≡
printf ">s\nnhhuttttoieie\$ssaq\n" | bwt -d

Table 3.9 Decoding the Burrows-Wheeler transform nhhuttttoieie$ssaq

�푆 �퐸

$1 n1

a1 h1

e1 h2

e2 u1

h1 t1

h2 t2

�푆 �퐸

i1 t3

i2 t4

n1 o1

o1 i1

q1 e1

s1 i2

�푆 �퐸

s2 e2

t1 $1

t2 s1

t3 s2

t4 a1

u1 q1

3.103 The alphabet can be in any order, we use the order in which the characters

appear in the input:

Character Number

t 0

o 1

b 2

Character Number

e 3

r 4

n 5

3.4 Text Compression 279

3.104 This time our alphabet just contains two entries, T and A:

Character Number

T 0

A 1

The encoded sequence is

0 1 1 1 0 0 1 0 0 0

3.105 We print the string in question and pipe it through mtf alone or through bwt

and mtf.

〈cli〉+≡
printf ">s\nthatisthequestion\n" | mtf

printf ">s\nthatisthequestion\n" | bwt | mtf

The results contain the alphabet in double quotes at the end of the header. The

untransformed “sequence” contains one zero after move to front, the transformed

sequence six.

>s - mtf "thaisequon"

0 1 2 2 3 4 2 4 5 6 7 2 5 5 6 8 9

>s - bwt - mtf "nhutoie$saq"

0 1 0 2 3 0 0 0 4 5 6 1 1 7 8 0 9 10

3.106 We run mtf on hamlet.fasta, cut off the header, convert the blanks to

newlines, sort the codes, count the unique codes, and reverse-sort them by count.

〈cli〉+≡
mtf hamlet.fasta | tail -n +2 | tr ’ ’ ’\n’ | sort |

uniq -c | sort -n -r | head

We find that 3 is the most frequent code with 4 not far behind.

13453 3

13338 4

10617 5

10357 2

...

3.107 We apply bwt to hamlet.fasta, run the result through mtf, and sort the

code counts.

〈cli〉+≡
bwt hamlet.fasta | mtf | tail -n +2 | tr ’ ’ ’\n’ | sort |

uniq -c | sort -n -r | head

We find that 0 is now by far the most frequent code.

88093 0

22769 1

13090 2

280 3 Exact Matching

9157 3

7046 4

...

3.108 We run hamlet.fasta through either mtf only, or through bwt followed

by mtf, and format the codes with fc.sh. We transform the two output columns

of fc.sh to three columns, consisting of code, count, and a marker, either mtf

or bwt/mtf. We store the data in mtf.dat, which we plot with plotLines after

dividing the counts by 1000.

〈cli〉+≡
mtf hamlet.fasta | bash fc.sh |

awk ’{print $2, $1, "mtf"}’ > mtf.dat

bwt hamlet.fasta | mtf | bash fc.sh |

awk ’{print $2, $1, "bwt/mtf"}’ >> mtf.dat

awk ’{print $1, $2/1000, $3}’ mtf.dat |

plotLine -x Code -y "Count (x 1000)"

In the script fc.sh we remove the header, convert the rows of codes to a single

column, count the unique codes, and sort them by code.

Prog. 3.12 (fc.sh)

〈fc.sh〉≡
tail -n +2 |

tr ’ ’ ’\n’ |

sort |

uniq -c |

sort -n -k 2

3.109 The decoded sequence is CCCGGCCGGC, which we can check using mtf in

decoding mode by supplying the alphabet in double quotes at the end of the header.

The input to mtf consists of numbers delimited by blanks rather than a sequence of

characters without delimiters as we are used to in FASTA files.

〈cli〉+≡
printf ">s \"GC\"\n0 0 0 1 0 1 0 1 0 1\n" | mtf -d

3.110 The genome of M. genitalium contains 580,076 nucleotides, so it occupies

580, 076 × 8 = 4, 640, 608 bits.

3.111 Each code is two bits long, so the M. genitalium genome now occupies

580, 076 × 2 = 1, 160, 152 bits.

3.112 We look up 11 to find T, 01 to find C, and so on, to finally get TCTGAATGGT.

Decoding fixed length codes like Table 3.3 or the genetic code is easy.

3.113 We copy the file mgGenome.fasta to our current directory. Since the nu-

cleotides differ in their space requirements, we count them with cres.

3.4 Text Compression 281

〈cli〉+≡
cp $BEB/data/mgGenome.fasta .

cres mgGenome.fasta

A 200544 0.346

C 91515 0.158

G 92306 0.159

T 195711 0.337

So we compute a space requirement of

200544 + (91515 + 92306) × 3 + 195711 × 2 = 1, 143, 429

bits. This is 1, 143, 429/1,160, 152 × 100 ≈ 98.6% of the two bit encoding. Not

much of a saving, but abandoning bytes helped a lot.

3.114 The first 1 is not a code yet, so we read the next bit to get 11. That’s T. Then

we read 0, that’s A, and so on until we get

TAAGTTATTA

3.115 The first two bits give T, the next 0might be an A or the prefix of C, we extend

to 00, which might be an AA or the prefix of C. This ambiguity is resolved in the next

step, the 1 decides we’ve read AA. We extend the 1 to 11, which gives us a C, but

then we are stuck—000 is either C or AAA and there is no way to distinguish between

these two possibilities. We cannot decode this string of bits any further.

3.116 We can switch the labels of the branches joined at the root to get an alternative

prefix code.

b

b

1

b

0

A/100

0

C/101

1

G/11

1

T/0

0

So there is nothing special about labeling the left branch zero. All we have to do is

give the two child branches distinct labels.

3.117 We again look up the counts for A (200544), C (91515), G (92306), and T

(195711). Then we calculate a space requirement of

(200544 + 91515) × 3 + 92306 × 2 + 195711 = 1, 256, 500

bits. This is slightly more than the 1,143,429 bits required under the prefix code in

Table 3.4A and also more than the 1,160,152 bits for the code with a fixed length of

2.

282 3 Exact Matching

3.118 We can relabel the leaves in Fig. 3.24D such that the most frequent nucleotides

get the longest codes,

b

b

0

b

0

A/000

0

T/001

1

G/01

1

C/1

1

This code would require

(200544 + 195711) × 3 + 92306 × 2 + 91515 = 1, 464, 892

bits.—Not exactly the direction we’d like to optimize a code in.

3.119 We copy the sequence to our current directory and count its nucleotides with

cres

〈cli〉+≡
cp $BEB/data/dmAdhAdhdup.fasta .

cres dmAdhAdhdup.fasta

A 1417 0.298

C 1007 0.212

G 989 0.208

T 1348 0.283

So we first join C and G into a node of weight 0.42. The lightest node we can form

next is by joining A and T into a node of weight 0.581. Finally, we join these two

clusters in the root to get Fig. 3.33A, which leads to the Huffman codes in Fig. 3.33B.

A B

1.001

0.420

G:0.208 C:0.212

0.581

T:0.283 A:0.298

b

b

0

G/00

0

C/01

1

b

1

T/10

0

A/11

1

Fig. 3.33 Binary tree (A) to construct Huffman codes (B)

3.120 We run hut on mgGenome.fasta and plot the tree with plotTree.

〈cli〉+≡
hut mgGenome.fasta | plotTree

3.4 Text Compression 283

3.121 We copy the proteome and concatenate all sequences into a single one. Then

 0

 0

 0

 0-Q/0000

 1
 0
 0-C/000100

 1-W/000101

 1-P/00011

 1
 0-D/0010

 1-T/0011

 1
 0-L/010

 1
 0-A/0110

 1-E/0111

 1

 0

 0
 0-V/1000

 1-F/1001

 1

 0
 0-R/10100

 1
 0-M/101010

 1-H/101011

 1-S/1011

 1

 0
 0-N/1100

 1
 0-Y/11010

 1-G/11011

 1
 0-I/1110

 1-K/1111

0.1

Fig. 3.34 Huffman tree for the proteome of M. genitalium

we construct and plot the Huffman tree shown in Fig. 3.34.

〈cli〉+≡
cp $BEB/data/mgProteome.fasta .

echo ">mgProteome" > mgp.fasta

grep -v ’ˆ>’ mgProteome.fasta >> mgp.fasta

hut mgp.fasta | plotTree

3.122 In Huffman trees the most frequent residues have the shortest codes. The

shortest code in the Huffman tree of the M. genitalium proteome in Fig. 3.34 has

length 3. There is only one such code in the tree, that for leucine, L. So leucine is

the most frequent amino acid in the proteome of M. genitalium. We confirm this by

directly counting the amino acids and sorting their counts.

〈cli〉+≡
cres mgProteome.fasta | tail -n +3 | sort -k 2 -n -r

L 18730 0.107

K 16671 0.095

I 14520 0.0827

...

284 3 Exact Matching

3.123 We calculate the Huffman tree with hut and store it in mgGenome.nwk. Then

we use that tree to encode the M. genitalium genome with huff. According to cres,

the result contains 1,143,429 bits, which agrees with our previous calculation.

〈cli〉+≡
hut mgGenome.fasta > mgGenome.nwk

huff mgGenome.nwk mgGenome.fasta | cres

Total: 1143429

Residue Count Fraction

0 475880 0.416

1 667549 0.584

3.124 We count the 176,682 characters in Hamlet with cres and the 838,648 bits

in its encoding with hut, so the compression ratio is roughly 1.69.

〈cli〉+≡
cres hamlet.fasta | grep Total

hut -b hamlet.fasta

echo ’176682 * 8 / 838648’ | bc -l

3.125 We decode the sequence ACTTTTAACA and check this by decoding the bits

with huff.

〈cli〉+≡
printf ">s\n010011111111001000\n" | huff -d mgGenome.nwk

3.126 We construct the pipeline to find that the final number of bits is 511,512. The

compression ratio is therefore 2.76.

〈cli〉+≡
bwt hamlet.fasta | mtf | num2char | hut -b

echo ’176682 * 8 / 511512’ | bc -l

3.127 With wc we find that the number of bytes in hamlet.txt is 176,682, after

gzip it is 70,426, and we unzip hamlet.txt.gz to return to the original file. So the

compression ratio of gzip on Hamlet is 2.51, a bit less than our ratio of 2.76. When

we’re done, we reverse the action of gzip with gunzip.

〈cli〉+≡
wc -c hamlet.txt

gzip hamlet.txt

wc -c hamlet.txt.gz

echo ’176682 / 70426’ | bc -l

gunzip hamlet.txt.gz

3.128 We bzip hamlet.txt. The number of bytes is now 55,538, and unbzip it

again to return to the original hamlet.txt. So the compression ratio of bzip2 is

3.18, quite a bit better than our 2.76. Explicit encoding of repeats seems to pay.

3.4 Text Compression 285

〈cli〉+≡
bzip2 hamlet.txt

wc -c hamlet.txt.bz2

bunzip2 hamlet.txt.bz2

echo ’176682 / 55538’ | bc -l

3.129 We begin by removing the header and the newlines from the genome of M.

genitalium. Then we find that gzip has a compression ratio of 3.56, bzip2 of 3.82,

and our approach of 3.69. In other words, our approach, which we’ve taken from

the original Burrows-Wheeler paper [6], again gives us an efficiency in between two

established implementations. Not bad for a first attempt.

〈cli〉+≡
tail -n +2 mgGenome.fasta | tr -d ’\n’ > mgGenome.txt

gzip mgGenome.txt

wc -c mgGenome.txt.gz

gunzip mgGenome.txt.gz

echo ’580076 / 163167’ | bc -l

bzip2 mgGenome.txt

wc -c mgGenome.txt.bz2

bunzip2 mgGenome.txt.bz2

echo ’580076 / 151811’ | bc -l

bwt mgGenome.fasta | mtf | num2char | hut -b

echo ’580076 * 8 / 1256825’ | bc -l

Chapter 4

Fast Alignment

4.1 Global

4.1 We change into the directory for chapters, make the directory for this chapter,

change into that, make the directory for this section, and change into that.

〈cli〉≡
cd $BEB/ch/

mkdir 4

cd 4/

mkdir 1

cd 1/

4.2 We sandwich ls by time measurements with nanosecond precision and compute

their difference to find that ls takes something like 5 milliseconds.

〈cli〉+≡
start=$(date +%s.%N); ls; end=$(date +%s.%N)

dur=$(echo "$end-$start" | bc)

echo $dur

4.3 We iterate over the sequence lengths. For each length we construct a random

sequence, record the start time, and calculate the alignment, which we throw away

by writing to the null device. Then we record the end time and the duration as the

difference between start and end. At the end we echo the duration as a function of

the sequence length.

Prog. 4.12 (rtAl.sh)

〈rtAl.sh〉≡
for a in 1 2 5 10 20 50 100

do

ranseq -l ${a}00 > r.fasta

start=$(date +%s.%N)

287© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_11&domain=pdf

288 4 Fast Alignment

al r.fasta r.fasta > /dev/null

end=$(date +%s.%N)

dur=$(echo "$end - $start" | bc)

echo $a $dur

done

Now we run rtAl.sh, store its output, and plot it.

〈cli〉+≡
bash rtAl.sh > rtAl.dat

plotLine -x "Length (100 bp)" -y "Time (s)" -L rtAl.dat

4.4 We copy the two Adh sequences and run mummer on them. Then we pipe the

result through mum2plot and plot it with plotSeg.

〈cli〉+≡
cp $BEB/data/d[mg]Adh*.fasta .

mummer dmAdhAdhdup.fasta dgAdhAdhdup.fasta | mum2plot |

plotSeg -x "D. melanogaster" -y "D. guanche"

4.5 The first MUM starts at position 679 in the melanogaster sequence and ends

at position 679 + 22 − 1 = 700. We cut it with cutSeq and find it with keyMat at

position 549 in the guanche sequence.

〈cli〉+≡
cutSeq -r 679-700 dmAdhAdhdup.fasta > mum.fasta

keyMat -p mum.fasta dgAdhAdhdup.fasta

4.6 We extract the MUM lengths from the mummer output and sort them to find that

the shortest MUM has length 21, the longest 37. The 37 might look familiar, we

found it already as the length of the longest common prefix—the longest common

prefix is always a MUM.

〈cli〉+≡
mummer dmAdhAdhdup.fasta dgAdhAdhdup.fasta | grep -v ’ˆ>’ |

awk ’{print $3}’ | sort -n | head -n 1

mummer dmAdhAdhdup.fasta dgAdhAdhdup.fasta | grep -v ’ˆ>’ |

awk ’{print $3}’ | sort -n | tail -n 1

4.7 This redirection only removes the last two lines of output. That’s because mummer

writes its messages to the standard error stream and its output to the standard output

stream. A plain redirect, >, only redirects the data on the standard output stream.

4.8 The messages are gone, all we get are two lines of output for the 10 kb match.

> Rand1

1 1 10000

4.9 This time we get no output at all.

4.1 Global 289

4.10 We write the script rtMummer.sh on the same pattern as rtAl.sh. However,

this time we iterate over steps of 10 kb instead of 100 bp. We redirect all output to

the null device and print the run time as a function of sequence length.

Prog. 4.13 (rtMummer.sh)

〈rtMummer.sh〉≡
for a in 1 2 5 10 20 50 100 200 500

do

ranseq -l ${a}0000 > r1.fasta

start=$(date +%s.%N)

mummer r1.fasta r1.fasta &> /dev/null

end=$(date +%s.%N)

dur=$(echo "$end - $start" | bc)

echo $a $dur

done

Then we run the script, store its results, and plot them.

〈cli〉+≡
bash rtMummer.sh > rtMummer.dat

plotLine -L -x "Length (10 kb)" -y "Time (s)" rtMummer.dat

4.11 We write the script rtMummer2.sh on the pattern of rtMummer.sh. We

generate a 500 kb sequence, which we mutate with rates ranging from 0 to 0.5. Then

we measure the run time and report it as a function of mutation rate.

Prog. 4.14 (rtMummer2.sh)

〈rtMummer2.sh〉≡
ranseq -l 500000 > r1.fasta

for a in 0 0.01 0.02 0.05 0.1 0.2 0.5

do

mutator -m $a r1.fasta > r2.fasta

start=$(date +%s.%N)

mummer r1.fasta r2.fasta &> /dev/null

end=$(date +%s.%N)

dur=$(echo "$end - $start" | bc)

echo $a $dur

done

We run the script, save the results, and plot them.

〈cli〉+≡
bash rtMummer2.sh > rtMummer2.dat

plotLine -L -x "Mutation Rate" -y "Time (s)" rtMummer2.dat

4.12 We got 4832 SNPs, which is reassuringly close to the expected 5000.

290 4 Fast Alignment

4.13 We pipe the two sequences throughdnaDist and find 4832 mismatches, exactly

the number counted by nucmer.

〈cli〉+≡
cat r1.fasta r2.fasta | dnaDist -r

4.14 We write the script mutate.sh on the pattern of rtMummer2.sh. We again

iterate over mutation rates and print the expected and observed number of mutations

as a function of the mutation rate.

Prog. 4.15 (mutate.sh)

〈mutate.sh〉≡
for a in 0 0.01 0.02 0.05 0.1 0.2 0.5

do

mutator -m $a r1.fasta > r2.fasta

nucmer r1.fasta r2.fasta &> /dev/null

e=$(cat r[12].fasta |

dnaDist -r |

tail -n +3 |

awk ’{print $2}’)

o=$(show-snps out.delta | tail -n +6 | wc -l)

echo $a $o "obs"

echo $a $e "exp"

done

Then we run mutate.sh, save the result, and plot the number of SNPs divided by

1000 as a function of the muation rate. Fig. 4.35 shows that the observed number of

SNPs is exact until it breaks down for high mutation rates.

〈cli〉+≡
bash mutate.sh > mutate.dat

awk ’{print $1, $2/1000, $3}’ mutate.dat |

plotLine -L -x "Mutation rate" -y "SNPs (x 1000)"

4.15 We write the script numMum.sh on the pattern of mutate.sh. We iterate over

the mutation rates and for each rate print the number of MUMs as a function of

mutation rate.

Prog. 4.16 (numMum.sh)

〈numMum.sh〉≡
for a in 0 0.01 0.02 0.05 0.1 0.2 0.5

do

mutator -m $a r1.fasta > r2.fasta

n=$(mummer r1.fasta r2.fasta |

tail -n +2 |

wc -l)

echo $a $n

done

4.2 Local 291

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4 0.5

S
N

P
s

(x
 1

00
0)

Mutation rate

obs
exp

Fig. 4.35 The expected and observed number of SNPs as a function of the mutation rate

Then we run numMum.sh, save its output, and plot the number of MUMs divided by

1000 as a function of the mutation rate with plotLine.

〈cli〉+≡
bash numMum.sh > numMum.dat

awk ’{print $1, $2/1000}’ numMum.dat |

plotLine -L -x "Mutation Rate" -y "MUMs (x 1000)"

4.16 We copy the sequence files, run mummer on both the forward and the reverse

strand (-b), and report the matches on the reverse strand relative to the query (-c).

Then we transform the mummer output to plot segments and visualize them with

plotSeg.

〈cli〉+≡
cp $BEB/data/ecoli*.fasta .

mummer -b -c ecoliK12.fasta ecoliO157H7.fasta | mum2plot |

plotSeg -x "K12" -y "O157H7"

4.2 Local

4.17 We change into the directory for this chapter, make the directory for this section,

and change into it.

〈cli〉≡
cd $BEB/ch/4/

mkdir 2

cd 2/

292 4 Fast Alignment

4.18 We copy the two sequences, align them locally, and find that the optimal local

alignment has coordinates 2182–2594 in D. melanogaster and 2142–2554 in D.

guanche with a score of 217.

〈cli〉+≡
cp $BEB/data/d*Adh*.fasta .

al -l dmAdhAdhdup.fasta dgAdhAdhdup.fasta

4.19 We run sblast to find three alignments, the best of which coincides with the

best alignment returned by al. That’s reassuring.

〈cli〉+≡
sblast dmAdhAdhdup.fasta dgAdhAdhdup.fasta

#qa sa qs qe ss se score

DMADH DGADHDUP 2182 2594 2142 2554 217.0

DMADH DGADHDUP 3829 4028 3621 3820 80.0

DMADH DGADHDUP 3225 3328 3220 3323 68.0

The columns in the output of sblast are query accession (qa), subject accession

(sa), query start (qs), query end (qe), subject start (ss), subject end (se), and

alignment score (score).

4.20 All query words have the same length, 11, and there are 4751 of them. This is

consistent with the length of the D. melanogaster Adh, 4761, since 4751 + 11 − 1 =

4761.

〈cli〉+≡
sblast -l dmAdhAdhdup.fasta dgAdhAdhdup.fasta | tail -n +2 |

awk ’{print length($3)}’ | sort | uniq

sblast -l dmAdhAdhdup.fasta dgAdhAdhdup.fasta | tail -n 1

cres dmAdhAdhdup.fasta

4.21 With sort and uniq we find that there are 17 words in dmAdhAdhdup.fasta

that are not unique.

〈cli〉+≡
sblast -l dmAdhAdhdup.fasta dgAdhAdhdup.fasta | tail -n +2 |

awk ’{print $3}’ | sort | uniq -c | sort -n -r |

head -n 18

2 TTTTTTTTTTT

2 TTTTTTTTTAA

2 TGTTTTTTTTT

2 TGTCCTGATCA

2 TCGATGTCCTG

...

4.2 Local 293

4.22 We convert the words in melanogaster Adh into a multiple FASTA file. The

words are printed in three columns, name, number, sequence. We concatenate the

name and the number into the FASTA header, which is followed by the sequence.

〈cli〉+≡
sblast -l dmAdhAdhdup.fasta dgAdhAdhdup.fasta | tail -n +2 |

awk ’{printf ">%s\n%s\n", $1 $2, $3}’ > dmWords.fasta

Now we search for the melanogaster words on the forward and reverse strands of

guanche. We remove the header lines and count the remaining lines to find 274

matches.

〈cli〉+≡
keyMat -r -p dmWords.fasta dgAdhAdhdup.fasta | grep -v ’ˆ#’ |

wc -l

4.23 We run al to find that in the second alignment the query segment returned

by sblast ends at 4028 rather than 4158. In other words, the second alignment

returned by sblast is 4158 − 4028 + 1 = 131 nucleotides too short.

〈cli〉+≡
al -l -n 3 dmAdhAdhdup.fasta dgAdhAdhdup.fasta

4.24 With a bit of trial and error we find that with 52 idle extensions sblast gives

the same result as al.

〈cli〉+≡
sblast -s 52 dmAdhAdhdup.fasta dgAdhAdhdup.fasta

#qa sa qs qe ss se score

DMADH DGADHDUP 2182 2594 2142 2554 217.0

DMADH DGADHDUP 3829 4158 3621 3950 102.0

DMADH DGADHDUP 3225 3328 3220 3323 68.0

4.25 sblast takes approximately 30 milliseconds, al 2780 milliseconds. So on this

small example sblast is 2780/30 ≈ 90 times faster than al.

〈cli〉+≡
time al dmAdhAdhdup.fasta dgAdhAdhdup.fasta > /dev/null

time sblast -s 52 dmAdhAdhdup.fasta dgAdhAdhdup.fasta \

> /dev/null

echo "2780/30" | bc -l

4.26 We copy the files to our current directory and use cres to find that the genome

sequence of D. melanogaster is roughly 138 Mb long.

〈cli〉+≡
cp $BEB/data/dmChr*.fasta .

cres dmChr*.fasta

294 4 Fast Alignment

4.27 We repeat our search with keyMat, only this time we look through the entire

genome to find a staggering 1,257,060 matches on the forward and reverse strands.

〈cli〉+≡
keyMat -r -p dmWords.fasta dmChr*.fasta | grep -v ’ˆ#’ |

wc -l

4.28 We run sblast and find that the Adh region is located at 14,614,315–

14,619,393 in accession NT 033779.

〈cli〉+≡
sblast dmAdhAdhdup.fasta dmChr*.fasta

#qa sa qs qe ss se score

DMADH NT_033779.5 3005 4589 14617327 14618911 1549.0

DMADH NT_033779.5 1720 2951 14616038 14617269 1184.0

DMADH NT_033779.5 1 921 14614315 14615235 909.0

DMADH NT_033779.5 916 1690 14615229 14616003 731.0

DMADH NT_033779.5 4648 4743 14619298 14619393 96.0

This accession corresponds to the left arm of chromosome 2.

〈cli〉+≡
head -n 1 dmChr*.fasta | grep NT_033779

>NT_033779.5 Drosophila melanogaster chromosome 2L

4.29 On our computer, sblast takes approximately 12 s.

〈cli〉+≡
time sblast dmAdhAdhdup.fasta dmChr*.fasta

4.30 When we aligned the Adh regions from D. melanogaster and D. guanche, we

learned that the minimum number of idle extension steps should be 52 rather than the

default 30. Using this, we find a hit in region 14,616,500–14,618,480of chromosome

2L, which extends from 2142 to 3950 in the query.

〈cli〉+≡
sblast -s 52 dgAdhAdhdup.fasta dmChr*.fasta

#qa sa qs qe ss se score

DGADHDUP NT_033779.5 2142 2554 14616500 14616912 217.0

DGADHDUP NT_033779.5 3621 3950 14618151 14618480 106.0

DGADHDUP NT_033779.5 3220 3323 14617547 14617650 64.0

DGADHDUP NT_033779.5 2766 2879 14617131 14617244 50.0

This region overlaps the coding regions of Adh and Adh-dup, which extend from

2021 to 4521.

〈cli〉+≡
grep CDS $BEB/data/dmAdhAdhdup.gb

4.2 Local 295

CDS join(2021..2119,2185..2589,2660..2926)

CDS join(3226..3321,3748..4152,4204..4521)

4.31 We find the single region, 3195–3328, in the melanogaster sequence.

〈cli〉+≡
blastn -query dmAdhAdhdup.fasta -subject dgAdhAdhdup.fasta

These 132 homologous nucleotides are far fewer than the 411 nucleotides in the top

alignment found by al and don’t even overlap it.

〈cli〉+≡
al -l dmAdhAdhdup.fasta dgAdhAdhdup.fasta

4.32 The best three results of blastn cover the region 1917–4517, compared to

2182–4158 for the three regions returned by sblast with -s 52. Now the sblast

result is contained in the larger blastn result.

4.33 We look at the help page and find that -outfmt 6 gives tabular output, while

-outfmt 7 gives tabular output with comments.

〈cli〉+≡
blastn -task blastn -query dmAdhAdhdup.fasta \

-subject dgAdhAdhdup.fasta -outfmt 6 |

head -n 3

DM DG 72.107 1452 296 29 2036 3420 1993 3402 0.0 761

DM DG 76.552 1015 212 11 1917 2926 1886 2879 0.0 732

DM DG 75.888 788 175 5 3743 4517 3535 4320 5.38e-161 556

From the comments in output format 7 we learn what the 12 columns mean:

1. query accession

2. subject accession

3. % identity

4. alignment length

5. mismatches

6. gaps

7. query start

8. query end

9. subject start

10. subject end

11. �퐸-value

12. bit score

4.34 We begin by redirecting the chromosome files into a subject file. Then we run

blastn and find two fragments, which cover the region 14,614,315–14,619,405 on

chromosome 2L. This is a mere 13 nucleotides longer than the region identified by

sblast in five fragments, 14,614,315–14,619,393. So the original, ungapped Blast

algorithm depicted in Fig. 4.7 and implemented in sblast is already quite useful.

〈cli〉+≡
cat dmChr*.fasta > subject.fasta

blastn -query dmAdhAdhdup.fasta -subject subject.fasta \

-outfmt 6

4.35 With the default megablast mode, blastn finds a single alignment of 134

nucleotides. This is much less than the 961 nucleotides aligned by sblast. However,

296 4 Fast Alignment

if we set the task to blastn, the top 3 alignments have a combined length of 1917,

so the difference between the modes can be drastic.

〈cli〉+≡
blastn -query dgAdhAdhdup.fasta -subject subject.fasta \

-outfmt 6

blastn -task blastn -query dgAdhAdhdup.fasta \

-subject subject.fasta -outfmt 6 | head -n 3 |

awk ’{s+=$4}END{print s}’

4.36 blastn takes approximately 2.5 s, sblast took 12 s, so blastn is roughly 5

times faster than sblast.

〈cli〉+≡
time blastn -query dmAdhAdhdup.fasta -subject subject.fasta \

-outfmt 6

4.37 The output of makeblastdb says that it took approximately 1.5 s on our

computer.

4.38 We count the number of bytes in subject.fasta and the number of bytes

in the files generated by makeblastdb, dm.*. Dividing one by the other gives a

compression ratio of roughly 4.

〈cli〉+≡
wc -c subject.fasta

wc -c dm.*

echo ’139287503/34432775’ | bc -l

4.39 The database search took 60 milliseconds compared to 2.5 seconds on the native

subject. That’s a 40-fold speed-up, eight times more than the difference between

blastn and sblast with uncompressed data.

〈cli〉+≡
time blastn -query dmAdhAdhdup.fasta -db dm -outfmt 6

echo ’2.5/0.06’ | bc -l

4.40 The more sensitive run took 460 milliseconds on our machine, 8 times more

than the default megablast run.

〈cli〉+≡
time blastn -task blastn -query dmAdhAdhdup.fasta -db dm \

-outfmt 6

echo ’460/60’ | bc -l

4.41 On our machine the run time with eight threads was 210 milliseconds, that

is, less than half of the single-threaded run time. However, it wasn’t one eighths, as

might have been expected. Notice also the difference between the real time and the

user time when running multiple threads.

4.2 Local 297

〈cli〉+≡
time blastn -num_threads 8 -task blastn \

-query dmAdhAdhdup.fasta -db dm \

-outfmt 6 > /dev/null

4.42 The database information says that the longest sequence has 32,079,331 bases,

or 32 Mb.

4.43 We run the database entries through cres and get the same 137,567,484

nucleotides as for subject.fasta.

〈cli〉+≡
blastdbcmd -entry all -db dm | cres

cres subject.fasta

4.44 From blastdbcmd we get that chromosome 2L is 23,513,712 bases long. We

retrieve chromosome 2L by its accession, NT 033779, and find that its residue count

is also 23,513,712.

〈cli〉+≡
blastdbcmd -db dm -entry NT_033779 | cres

4.45 With mutation rate 0.03 we always find a hit, with mutation rate 0.3 we often

don’t.

4.46 We run megablast.shwith a mutation rate of 0.3 and get 33 successful runs.

This number varies slightly from run to run.

〈cli〉+≡
bash megablast.sh 0.3

4.47 We run blastn.shwith 100% success.

〈cli〉+≡
bash blastn.sh 0.3

4.48 We write the program sens.sh to compare the sensitivity of megablast

and blastn. In sens.sh we iterate over the mutation rates 0, 0.1, ..., 0.7. For each

mutation rate we run megablast.sh and blastn.sh and print the results with a

category “m” for megablast and a category “n” for blastn.

Prog. 4.17 (sens.sh)

〈sens.sh〉≡
for a in $(seq 0 0.1 0.7)

do

m=$(bash megablast.sh $a)

n=$(bash blastn.sh $a)

echo $a $m "m"

echo $a $n "n"

done

298 4 Fast Alignment

We run sens.sh, store the results, and plot them with plotLine.

〈cli〉+≡
bash sens.sh > sens.dat

plotLine -L -x "Mutation Rate" -y "%-Success" sens.dat

4.49 The match score is 2, the mismatch score -3. The alignment consists of 27

matches and 3 mismatches. This means the raw score should be �푆 = 2×27−3×3 = 45,

which is also what’s printed.

4.50 We calculate �푆′ = (0.625 × 45 − log(0.41))/log(2)) ≈ 41.9, as expected.

〈cli〉+≡
echo ’(0.625 * 45 - l(0.41)) / l(2)’ | bc -l

4.51 We calculate �퐸 = 100 × 137, 567, 484 × 2−41.9 ≈ 0.003. That’s not exactly

0.005, and we are not sure why. To calculate �퐸 , we need a power function, but bc

doesn’t have one. Instead, we can apply the fact that

�푎�푏 = �푒�푏 log(�푎) .

〈cli〉+≡
echo ’100 * 137567484 * e(-41.9*l(2))’ | bc -l

Alternatively, we can use Awk.

〈cli〉+≡
awk ’BEGIN{print 100 * 137567484 * 2ˆ-41.9}’

4.52 We write the program eval.awk, where we iterate over a range of �퐸-values.

For each �퐸-value we print two things, the �푃-value as a function of the �퐸-value,

which we mark as “true”, and the �퐸-value as a function of itself, which we mark as

“E=P”.

Prog. 4.18 (eval.awk)

〈eval.awk〉≡
BEGIN {

x=0.01

for (e = x; e <= 0.5; e += x) {

print e, 1-exp(-e),"true"

print e,e,"E=P"

}

}

We run eval.awk and plot the result with plotLine, where we center the key.

〈cli〉+≡
awk -f eval.awk |

plotLine -x E -y P -g "set key top center"

4.2 Local 299

4.53 We run simStats.shwith 1000 iterations and count the lines it returns, 13 in

our case.

〈cli〉+≡
bash simStats.sh 1000 | wc -l

So �푃 ≈ 0.01, which is a bit larger than the �퐸-value of 0.005, which is virtually

identical to the �푃-value. In this case the theoretical �퐸-value is slightly too small, or

over-optimistic as to the alignment’s significance.

4.54 We get the same result regardless of which sequence we designate query. This

is reassuring, though not guaranteed, as the Blast algorithm sketched in Fig. 4.7

treats query and subject differently.

〈cli〉+≡
sblast -s 52 dmAdhAdhdup.fasta dgAdhAdhdup.fasta

sblast -s 52 dgAdhAdhdup.fasta dmAdhAdhdup.fasta

4.55 The exception is the pair 721 → 2239, where the comparison is only significant

if 721 is query, not if 2239 is query.

4.56 We now have numbers instead of characters as node names, but this makes no

difference to the plot notation.

Prog. 4.19 (g2.dot)

〈g2.dot〉≡
graph G {

1 -- 2

2 -- 3

2 -- 5

4 -- 5

}

We apply neato to g2.dot and get Fig. 4.12.

〈cli〉+≡
neato -T x11 g2.dot

4.57 The program circo draws connected nodes on the circumference of a circle

to give Fig. 4.36.

〈cli〉+≡
circo -T x11 yeast.dot

4.58 We set the edge probability to 1 and plot the resulting graph with neato to get

Fig. 4.37A and with circo to get Fig. 4.37B.

〈cli〉+≡
ranDot -p 1 | neato -T x11

ranDot -p 1 | circo -T x11

300 4 Fast Alignment

1 7 0

7 2 1

2 0 6 1

3 4 4 1

2 2 3 9 2 5 3 8

3 0 6 7
4 6 8 0

4 6 8 1

3 3 8 9

Fig. 4.36 The yeast protein family of Fig. 4.11 laid out with circo instead of neato

A B

1
2

3

4
5

6

7
8

9

1 0

1

2

3

4

5

6

7 8

9

1 0

Fig. 4.37 Ten nodes with all possible edges drawn with neato (A) and circo (B)

4.2 Local 301

4.59 There are 10 proteins and

(

10

2

)

=
10 × 9

2
= 45

protein pairs, each characterized by up to two edges. So the number of possible edges

is 90. Of these, 25, that is 25/90 ≈ 28%, actually exist.

4.60 Yes, they are all homologous to each other, because regardless of where in

Fig. 4.11 we start, we can reach any of the other proteins.

4.61 We copy the proteome and count its 476 entries.

〈cli〉+≡
cp $BEB/data/mgProteome.fasta .

grep ’ˆ>’ mgProteome.fasta | wc -l

4.62 The number of pairwise comparisons between the 476 M. genitalium proteins

is 113,050.

〈cli〉+≡
echo ’476 * 475 / 2’ | bc

4.63 The -F option sets the field separator from default white space to underscore.

Then the program either deals with a header line or with a data line. For a header

line we print >, followed by everything after the underscore. A data line is printed as

is.

4.64 The file mgp.bl has 836 entries, which is also the number of Blast hits.

〈cli〉+≡
wc -l mgp.bl

4.65 We cut the query column from the Blast result, sort it, count the unique entries,

sort their counts, and look at the top proteins. Proteins 410, 180, and 179 each have

17 hits. Since one hit is bound to be to the query itself, they each have 16 homologs

in the proteome.

〈cli〉+≡
cut -f 1 mgp.bl | sort | uniq -c | sort -n -r | head

17 410

17 180

17 179

16 526

...

4.66 We get the header lines of proteins 410, 180, and 179 to find that all three are

ABC transporters. 410 transports phosphate, the other two metal ions.

〈cli〉+≡
grep ’>410’ mgProteome2.fasta

302 4 Fast Alignment

grep ’>180’ mgProteome2.fasta

grep ’>179’ mgProteome2.fasta

4.67 We count 101 proteins that appear at least twice in the query list.

〈cli〉+≡
cut -f 1 mgp.bl |

sort |

uniq -c |

awk ’$1 > 1’ |

wc -l

4.68 We apply blast2dot to the Blast result and pipe the graph through circo.

〈cli〉+≡
blast2dot mgp.bl | circo -T x11

4.69 The circle contains the 17 entries 410, 421, 303, 119, 014, 304, 015, 042, 065,

290, 187, 179, 467, 080, 526, 079, and 180. We write the program entr.sh to iterate

over them.

Prog. 4.20 (entr.sh)

〈entr.sh〉≡
for a in 410 421 303 119 014 304 015 042 065 \

290 187 179 467 080 526 079 180

do

grep ">$a" mgProteome2.fasta

done

We run entr.sh to find that all members of the great circle are ABC transporters,

with the apparent exception of 042, which is annotated as “spermidine”. However, a

web search revealed that this is in fact an ABC transporter of spermidine. So, without

exception, the 17 members of the great circle in Fig. 4.13 are ABC transporters.

〈cli〉+≡
bash entr.sh

4.70 We copy prosite.doc.

〈cli〉+≡
cp $BEB/data/prosite.doc .

We open the file in less and search for “ABC transporter”.

{PDOC00185}

{PS00211; ABC_TRANSPORTER_1}

{PS50893; ABC_TRANSPORTER_2}

{BEGIN}

* ATP-binding cassette, ABC transporter-type, signature and profile *

ABC transporters belong to the ATP-Binding Cassette (ABC) superfamily which

uses the hydrolysis of ATP to energize diverse biological systems. ABC

transporters are minimally constituted of two conserved regions: a highly

4.3 Glocal 303

conserved ATP binding cassette (ABC) and a less conserved transmembrane domain

(TMD). These regions can be found on the same protein or on two different

ones. Most ABC transporters function as a dimer and therefore are constituted

of four domains, two ABC modules and two TMDs [1].

...

{END}

The entry says next that “The major function of ABC import systems is to provide

essential nutrients to bacteria.” Perhaps this explains also why it is the largest gene

family in M. genitalium—all nutrients that require active transport into the bacterial

cell need to be taken care of.

4.71 We include the singletons in blast2dot and color the nodes using colors we

pick from the list quoted in the help section of blast2dot,

www.graphviz.org/doc/info/colors.html

Then we pipe the graph through circo.

〈cli〉+≡
blast2dot -s -C lightgray -c lightsalmon mgp.bl |

circo -T x11

4.3 Glocal

4.72 We change into the directory for Chapter 4, make the directory for Section 3,

and change into that.

〈cli〉≡
cd $BEB/ch/4/

mkdir 3

cd 3/

4.73 We use keyMat and the local mode of al to look for our 100 bp fragment in

the melanogaster Adh. keyMat just gives us the expected starting position, 2301, al

the full local alignment with zero errors.

〈cli〉+≡
keyMat -p dmFrag.fasta dmAdhAdhdup.fasta

al -l dmFrag.fasta dmAdhAdhdup.fasta

4.74 We run keyMat on dmFrag2.fasta and get no result, then we run al in local

mode and get an alignment with a single mismatch, all as expected.

〈cli〉+≡
keyMat -p dmFrag2.fasta dmAdhAdhdup.fasta

al -l dmFrag2.fasta dmAdhAdhdup.fasta

304 4 Fast Alignment

4.75 If we divide the fragment into two parts of equal length, the mismatch can only

be located in one of them, and we have minimized the number of matches to look at.

4.76 By default, �푘 is set to 1 in kerror. So we run it with -l to print the fragment

list. We find two fragments of length 50, as expected.

〈cli〉+≡
kerror -l dmFrag2.fasta dmAdhAdhdup.fasta

#Id Start Fragment

1 1 GACCACCAAGCTGCTGAAGACCATATTCGCCCAGCTGAAGACCGTCGATG

2 51 TCCTGATCAACGGAGCTGGTATCCTGGACGATCACCAGATCGAGCGCACC

In contrast, with sblast we get all possible words of length 11, of which there are

100 − 11 + 1 = 90.

〈cli〉+≡
sblast -l dmFrag2.fasta dmAdhAdhdup.fasta | head -n 4

#qa n word

DMADH 1 GACCACCAAGC

DMADH 2 ACCACCAAGCT

DMADH 3 CCACCAAGCTG

4.77 We copy the genome to our working directory. Then we execute a timed kerror

run, which takes 1.6 s, and gives one hit in the Adh locus on chromosome 2L, as

expected.

〈cli〉+≡
cp $BEB/data/dmChr*.fasta .

time kerror dmFrag2.fasta dmChr*.fasta

4.78 We already have a run time for kerror, 1.6 s for the forward strand, so we

time the sblast run, which takes 4.4 s for the forward and reverse strands. This is

significantly more than twice the time required by kerror, so kerror is faster than

sblast in this instance.

〈cli〉+≡
time sblast dmFrag2.fasta dmChr*.fasta

4.79 We convert the two fragments used by kerror into a FASTA file and submit

that to a search with keyMat across the forward strand of the melanogaster genome.

This returns a single match.

〈cli〉+≡
kerror -l dmFrag2.fasta dmAdhAdhdup.fasta |

awk ’!/ˆ#/{printf ">%s\n%s\n", $1, $3}’ > kerrorF.fasta

keyMat -p kerrorF.fasta dmChr*.fasta

4.3 Glocal 305

4.80 Again, we convert the words listed by sblast into a FASTA file, which we

submit to keyMat. This uncovers 3220 matches. In other words, sblast checks

3220 times more fragments than kerror on the same input sequence. This slows

sblast down compared to kerror.

〈cli〉+≡
sblast -l dmFrag2.fasta dmAdhAdhdup.fasta |

awk ’!/ˆ#/{printf">%s\n%s\n", $2, $3}’ > sblastF.fasta

keyMat -p sblastF.fasta dmChr*.fasta | grep -v ’ˆ#’ | wc -l

4.81 We run al to compare the original fragment as query with the new one as

subject and observe the expected gap in the subject.

〈cli〉+≡
al dmFrag.fasta dmFrag3.fasta

4.82 kerror finds the gapped alignment as expected. For sblastwe have to adjust

the score threshold from 50 to 49 in order to find the expected two alignments. So

sblast breaks alignments at gaps.

〈cli〉+≡
kerror dmFrag3.fasta dmChr*.fasta

sblast -t 49 dmFrag3.fasta dmChr*.fasta

4.83 We use al to compare the original fragment as query to the new one and

observe the single nucleotide inserted in the subject.

〈cli〉+≡
al dmFrag.fasta dmFrag4.fasta

4.84 kerror again finds the gapped alignment as expected. Then we run sblast

in default mode to find the two expected fragments length 51 and 50; as with the

deletion, sblast breaks the “true” glocal alignment at the gap.

〈cli〉+≡
kerror dmFrag4.fasta dmChr*.fasta

sblast dmFrag4.fasta dmChr*.fasta

4.85 We wrote the script kerror.sh to drive kerror with �푘 = 20, 21, 22, Now,

the fragment length is the sequence length divided by �푘 + 1. The melanogaster Adh

region is 4761 bp long, so �푘 = 29
= 512 would result in fragments of length 9 or 10.

That seemed a bit short, so we stopped at �푘 = 28 = 256.

Prog. 4.21 (kerror.sh)

〈kerror.sh〉≡
for a in $(seq 0 8)

do

((e=2**$a))

echo $e

kerror -k $e dmAdhAdhdup.fasta dmChr*.fasta |

grep Errors

306 4 Fast Alignment

done

We run kerror.sh and observe first of all how kerror slows down as we increase

�푘. We also find that for �푘 = 256 the minimum number of errors is 148. In addition,

kerror returns a second alignment with 228 errors. We would pick that with the

fewer errors.

〈cli〉+≡
bash kerror.sh

4.86 From the al result we find that we’d have to run kerror with �푘 = 1987

or greater. But that implies fragment lengths of 2 or 3, which would result in an

overwhelming number of matches for checking. So searching for the guanche Adh

region in the melanogaster genome wouldn’t be a good idea. So the simple Blast

algorithm is more sensitive than �푘-error.

4.87 We count the template nucleotides, 4761, and the read nucleotides, 4800, which

gives a coverage of 4800/4761 ≈ 1. This fits with the expected coverage of 1.

〈cli〉+≡
cres dmAdhAdhdup.fasta

cres reads.fasta

4.88 If the user didn’t set n, we print a usage message and exit.

〈Get template length, �푛, Prog. 4.6〉≡
if (n == 0) {

print "Usage: awk -f cov.awk -v n=<n>"

exit

}

4.89 We iterate over the �푛 template positions and set the coverage to zero.

〈Initialize array of coverages, cov, Prog. 4.6〉≡
for (i = 1; i <= n; i++)

cov[i] = 0

4.90 We assign the value of the start position to the temporary variable, assign the

end to the start, and assign the temporary value to the end. This roundabout way of

switching the values of two variables via a temporary variable is a standard idiom in

most programming languages.

〈Switch start and end, Prog. 4.6〉≡
tmp = s

s = e

e = tmp

4.91 We print the coverage for each position with a for loop over the template

positions inside an END block.

〈Print coverage per position, Prog. 4.6〉≡
END {

4.3 Glocal 307

for (i = 1; i <= n; i++)

print i, cov[i]

}

4.92 We run cov.awk on adh.bl, mark the result with “c=1”, and store it in

cov.dat. Then we repeat the cycle of simulation, coverage calculation, and data

storage for coverage 15. The final plot is generated with plotLine.

〈cli〉+≡
awk -f cov.awk -v n=4761 adh.bl | \

awk ’{print $0, "c=1"}’ > cov.dat

sequencer -c 15 dmAdhAdhdup.fasta > reads.fasta

blastn -query reads.fasta -subject dmAdhAdhdup.fasta \

-outfmt 6 > adh.bl

awk -f cov.awk -v n=4761 adh.bl | \

awk ’{print $0, "c=15"}’ >> cov.dat

plotLine -x Position -y Coverage cov.dat

4.93 We pick the rows marked “c=1” from cov.dat, count the coverages, and print

them as a sorted list.

〈cli〉+≡
awk ’$3=="c=1"’ cov.dat |

awk ’{c[$2]++}END{for(a in c)print a, c[a]}’ | sort -n

We find that the per site coverage in our simulation ranges from 0 to 7.

0 1899

1 1684

2 712

3 357

4 53

5 31

6 21

7 4

4.94 We mark the results we just produced “c=1” and save them in the file

countCov.dat. Then we repeat the calculation for coverage 15 and append the

marked results to countCov.dat. In a third step we plot the two distributions with

plotLine.

〈cli〉+≡
awk ’$3=="c=1"’ cov.dat |

awk ’{c[$2]++}END{for(a in c)print a, c[a]}’ | sort -n |

awk ’{print $0, "c=1"}’ > countCov.dat

awk ’$3=="c=15"’ cov.dat |

awk ’{c[$2]++}END{for(a in c)print a, c[a]}’ | sort -n |

awk ’{print $0, "c=15"}’ >> countCov.dat

plotLine -x Coverage -y "Number of Sites" countCov.dat

308 4 Fast Alignment

4.95 In our experiment there were 4 unsequenced sites left with coverage 15; we

looked this up in countCov.dat. Down from 1899 with coverage 1, but still not

zero.

〈cli〉+≡
less countCov.dat

4.96 We run simCov.sh and find that coverages 49, 61, 96, and 98 result in all

nucleotides being sequenced at least once. The message here is, a few nucleotides

are bound to escape sequencing even in an idealized sequencing experiment with

very high coverage.

〈cli〉+≡
bash simCov.sh | grep all

4.97 The message lines include

[bwa_index] Pack FASTA... 0.00 sec

[bwa_index] Construct BWT for the packed sequence...

[bwa_index] 0.00 seconds elapse.

[bwa_index] Update BWT... 0.00 sec

[bwa_index] Pack forward-only FASTA... 0.00 sec

[bwa_index] Construct SA from BWT and Occ... 0.00 sec

We recognize FASTA, of course, but perhaps also BWT, which stands for “Burrows-

Wheeler transform”, from Section 3.4, and SA, which stands for “suffix array”, from

Section 3.3.

4.98 There are at least two ways to find out, we could look up semicolon in the

ASCII table in section 7 of the manual, or we could use od to give us the specific

decimal value we are looking for, �푄 = 59.

〈cli〉+≡
man 7 ascii

printf ";" | od -t u1

4.99 Table 4.2 lists each of the four new characters plus semicolon for complete-

ness sake. For each character we get its raw score, its quality score, and the error

probability.

Table 4.2 Characters, their raw score, �푄, Phred score, �푄′, and the implied error probability for

the quality characters in the example read in Fig. 4.18

Character �푄 �푄′ �푃e

; 59 26 0.0025

: 58 25 0.0032

9 57 24 0.0040

8 56 23 0.0050

7 55 22 0.0063

4.3 Glocal 309

〈cli〉+≡
printf ":987" | od -t u1

echo ’e(-2.5 * l(10))’ | bc -l

echo ’e(-2.4 * l(10))’ | bc -l

echo ’e(-2.3 * l(10))’ | bc -l

echo ’e(-2.2 * l(10))’ | bc -l

4.100 We get two columns, the first contains the sequence header, the second the

sequence data.

〈cli〉+≡
fasta2tab reads.fasta | head -n 3

Read1 AGCAAATTTTGAATATAGGGC...

Read2 ACTCGAGTTGGTCAAATTGCA...

Read3 CCTATATTCAAAATTTGCTCA...

4.101 We print the header, the sequence, and again the header. Then we print a

semicolon for each nucleotide in the read.

Prog. 4.22 (tab2fastq.awk)

〈tab2fastq.awk〉≡
{

printf("@%s\n%s\n+%s\n", $1, $2, $1)

for (i = 1; i <= length($2); i++)

printf(";")

printf("\n")

}

4.102 We convert the FASTA file to tabular format, convert that to FASTQ, and

redirect the result to reads.fastq.

〈cli〉+≡
fasta2tab reads.fasta |

awk -f tab2fastq.awk > reads.fastq

4.103 Your header should look similar to ours, the version of bwa might have

changed, though.

4.104 We filter for the first read mapped to the reverse strand, which happens to be

Read4 mapped to position 1240 on the template.

〈cli〉+≡
awk ’$2==16’ adh.sam | head -n 1

Read4 16 DMADH 1240 60 100M * 0 0 ACCGAT... *

We can search for this read and find it at position 1240 on the forward strand.

〈cli〉+≡
keyMat ACCGAT dmAdhAdhdup.fasta

310 4 Fast Alignment

We can also retrieve the read and find that it is the reverse complement of what is

shown in the SAM file.

〈cli〉+≡
getSeq "Read4$" reads.fasta

>Read4

...ATCGGT

In other words, in a SAM file every read is listed in its forward orientation.

4.105 Our SAM file contains 192,548 bytes, our BAM file 21,192 bytes, which

amounts to the large compression ratio of approximately 9. Your values may well

differ.

〈cli〉+≡
wc -c adh.sam

wc -c adh.bam

echo ’192548 / 21192’ | bc -l

4.106 We save the decoded BAM file to a temporary SAM file and compare it with

the original to find we’ve lost the header.

〈cli〉+≡
samtools view adh.bam > t.sam

diff t.sam adh.sam

This is the intended default behavior, but we can also retain the header with samtools

view -h.

4.107 We look at the sorted file to find it is sorted with respect to the read position

in column 4.

〈cli〉+≡
samtools view adhS.bam | cut -f 4 | head

4.108 We already measured that the unsorted file contains 21,192 bytes. The sorted

file contains 13,812 bytes, which amounts to an additional compression ratio of

roughly 1.5.

〈cli〉+≡
wc -c adhS.bam

echo ’21192 / 13812’ | bc -l

4.109 The index is called adhS.bam.bai.

4.110 From the help menu we learn that b colors the bases. Our bases are all yellow,

which, again according to the help menu, indicates a quality of 20–29. This makes

sense as the semicolons we put as quality scores in the FASTQ file correspond to a

quality of 26.

4.111 We press g and enter

DMADH:2000

4.3 Glocal 311

The desired position is now the leftmost position on the screen.

4.112 We generate the reads, count the 352,705,700 nucleotides they contain,

roughly 353 million, and convert them to FASTQ. This last step takes a slightly

tedious 80 s on our machine; printing 353 million semicolons takes its toll.

〈cli〉+≡
sequencer -c 15 dmChr2L.fasta > reads2L.fasta

cres reads2L.fasta

fasta2tab reads2L.fasta |

awk -f tab2fastq.awk > reads2L.fastq

4.113 We run makeblastdb on dmChr2L.fasta and call the database dmChr2L.

〈cli〉+≡
makeblastdb -in dmChr2L.fasta -out dmChr2L -dbtype nucl

4.114 As we’ve done before, we use date—or gdate on macOS—to time a com-

mand, here blastn. By subtracting the start from the end we get the run time. We

write the output of blastn to the null device, the bin of the command line.

〈Time Blast run, Prog. 4.8〉≡
start=$(date +%s.%N)

blastn -query query.fasta -db dmChr2L > /dev/null

end=$(date +%s.%N)

rt=$(echo "$end - $start" | bc)

4.115 We run timeBlast.sh, mark its output lines with blast, and redirect them

to time.dat

〈cli〉+≡
bash timeBlast.sh | awk ’{print $0, "blast"}’ > time.dat

4.116 In timeBlast.shwe insert -num threads 8 in the blast command and run

the script again. The run times stay the same, which we find disappointing, but there

we are.

4.117 Fig. 4.19 shows that the run time is linear in the number of reads. It took 24

s to map 105 reads. There are 3.5 × 106 reads, so it would take 35 × 24 = 840 s to

map all reads.

4.118 We run the index function of bwa on chromosome 2L and call the index

dmChr2L.

〈cli〉+≡
bwa index -p dmChr2L dmChr2L.fasta

4.119 We again use date to measure time.

〈Time bwa run, Prog. 4.9〉≡
start=$(date +%s.%N)

bwa mem -t 8 -v 1 dmChr2L reads.fastq > /dev/null

end=$(date +%s.%N)

312 4 Fast Alignment

rt=$(echo "$end - $start" | bc)

4.120 It takes bwa 1 s to map 105 reads, so for all 3.5 × 106 reads it would take 35

s. That’s 840/35 = 24 times faster than Blast with the added advantage that bwa can

be further sped up by adding more threads, hardware permitting.

〈cli〉+≡
bash timeBwa.sh

4.121 We run timeBwa.sh, mark its lines bwa, and append them to time.dat.

Then we plot the times with plotLine.

〈cli〉+≡
bash timeBwa.sh | awk ’{print $0, "bwa"}’ >> time.dat

plotLine -L -x "Reads (x1000)" -y "Time (s)" time.dat

4.4 Assembly

4.122 We change into the directory for this chapter, make directory 4 for this section,

and change into it.

〈cli〉≡
cd $BEB/ch/4/

mkdir 4

cd 4/

4.123 The overlap between �푎 and �푏 consists of the suffix TAC in �푎 and the same

prefix in �푏. It can be visualized in an overlap alignment.

GATAC--

--TACAG

4.124 We print the sequences to files and apply al in overlap mode to get the

expected overlap alignment.

〈cli〉+≡
printf ">a\nGATAC\n" > a.fasta

printf ">b\nTACAG\n" > b.fasta

al -o a.fasta b.fasta

Query 1 GATAC-- 5

|||

Subject 1 --TACAG 5

4.125 We calculate the global and local alignments.

〈cli〉+≡
al a.fasta b.fasta

al -l a.fasta b.fasta

4.4 Assembly 313

We find that the global alignment isn’t very convincing.

Query 1 GATAC 5

| |

Subject 1 TACAG 5

The local alignment, on the other hand, is just the overlap.

Query 3 TAC 5

|||

Subject 1 TAC 3

4.126 When merging �푎 and �푏 we get GATACAG.

4.127 We run sass with a score threshold of 3 to get the expected contig.

〈cli〉+≡
sass -t 3 a.fasta b.fasta

4.128 We write the matches suffix to prefix and get

�푏 �푎 �푐

4.129 There’s only one overlap between �푟1 and �푟2, CTTG, which has length 4.

CCTTG

CTTGA

 4

4.130 We print the two reads to two files and visualize them with olga. We could

also have printed the reads to a single file or piped them directly through olga.

〈cli〉+≡
printf ">r1\nCCTTG\n" > r1.fasta

printf ">r2\nCTTGA\n" > r2.fasta

olga r1.fasta r2.fasta | dot -T x11

4.131 We copy pentamers.fasta, count its 12 entries, and find that �푟1 and �푟2 are

among them.

〈cli〉+≡
cp $BEB/data/pentamers.fasta .

grep ’ˆ>’ pentamers.fasta | wc -l

grep CTTG pentamers.fasta

4.132 We draw the overlap graph, where the leftmost node is �푟1 and the right-hand

neighbor it points to is �푟2.

〈cli〉+≡
olga pentamers.fasta | dot -T x11

314 4 Fast Alignment

4.133 We restrict olga to overlaps of miminum length 3.

〈cli〉+≡
olga -k 3 pentamers.fasta | dot -T x11

4.134 We begin with CCTTG, append the A from CTTGA, then the AT from TGAAT,

and so on, to finally get

CCTTGAATTTCTAGTTCCTC

We check our answer by running sass.

〈cli〉+≡
sass -t 3 pentamers.fasta

4.135 We run sass with minimum overlap 3 and get two contigs.

〈cli〉+≡
sass -t 3 reads.fasta

>Contig_1

TCTAGTTCCTC

>Contig_2

TTGAATTTC

Contig 2 overlaps contig 1 by two nucleotides. So when we assemble with an overlap

of 2, we get a single contig two nucleotides shorter at the 5’ end than the template,

CCTTGA...

〈cli〉+≡
sass -t 2 reads.fasta

>Contig_1

TTGAATTTCTAGTTCCTC

4.136 To write reduce.sh, we remove the header lines, sort the reads (which we

assume occupy only a single line), pick the unique reads, and convert them to FASTA

output.

Prog. 4.23 (reduce.sh)

〈reduce.sh〉≡
grep -v ’ˆ>’ |

sort |

uniq |

awk ’{printf ">%d\n%s\n", NR, $1}’

We plot the reduced set of reads to get Fig. 4.25B.

〈cli〉+≡
bash reduce.sh < reads.fasta | olga -k 3 | dot -T x11

4.4 Assembly 315

4.137 We run olga on the reduced set of reads with minimum overlap 2 to get

Fig. 4.38, where the two subgraphs of Fig. 4.25B are joined together.

〈cli〉+≡
bash reduce.sh < reads.fasta | olga -k 2 | dot -T x11

AATTT

ATTTC

 4

TTGAA

 2

TCCTC

 2

TCTAG

 2

CTAGT

GTTCC

 2 TAGTT

 4

GAATT

 4

 3

 2

 3

 3 2

 2

 4

 3

 2

 3

Fig. 4.38 Overlap graph for the same set of reads as Fig. 4.25B, except now the minimum overlap

is 2 rather than 3, which leads to the merger of the two subgraphs

4.138 We calculate the assembly to find a single contig, but its last five nucleotides

don’t match.

〈cli〉+≡
sass -t 3 reads.fasta > cont.fasta

al cont.fasta template.fasta

Query 1 ------ATTTCTAGTTCCTTGAAT 18

|||||||||||||

Subject 1 CCTTGAATTTCTAGTTCCTC---- 20

316 4 Fast Alignment

4.139 We are given some feedback about the progress of velveth, in particular,

that it constructs a “splay table”, a table where each column is stored in a separate

file, and destroys it again. This is presumably the hash table from which velveth

extracts the read overlaps based on exact matches of the 21-mers.

4.140 The directory assem contains three files, Log, Roadmaps, and Sequences.

The “roadmaps” are used for assembly, the sequences are our original reads.

〈cli〉+≡
ls assem/

4.141 With a hash length of 32, we get a polite message saying that velveth can

only handle �푘-mers up to length 31.

〈cli〉+≡
velveth assem/ 32 -short -fasta reads.fasta

4.142 We count the contigs by counting their header lines, 1332 in our case, yours

is bound to be different but should be similar.

〈cli〉+≡
grep ’ˆ>’ assem/contigs.fa |

wc -l

4.143 We repeat the sequencing with coverage 2 and run the assembly with an

expected coverage of 2. This time we get 1870 contigs, that is, more than the 1332

before. Our investment in sequencing doesn’t seem to have paid off so far.

〈cli〉+≡
sequencer -e 0 -c 2 rg.fasta > reads.fasta

velveth assem/ 21 -short -fasta reads.fasta

velvetg assem/ -exp_cov 2

grep ’ˆ>’ assem/contigs.fa | wc -l

4.144 The arguments for sequencer, velveth, and velvetg are not mandatory,

so we put them in square brackets. Then we print the complete message.

〈Print usage message, Prog. 4.10〉+≡
m = m " [-v s=<sequencer_args"

m = m " -v t=<velveth_args>"

m = m " -v g=<velvetg_args>]"

print m

4.145 We construct the command for velveth and redirect its output to the null

device. We also report that the program is running.

〈Hash reads, Prog. 4.10〉≡
cmd = "velveth assem/ 21 %s reads.fasta "

cmd = cmd "> /dev/null"

cmd = sprintf(cmd, h)

printf("# running velveth...")

system(cmd)

4.4 Assembly 317

print "done"

4.146 We work on the same pattern as with velveth: We construct the command

for velvetg with output redirection to the null device and report it is running.

〈Assemble reads, Prog. 4.10〉≡
cmd = "velvetg assem/ %s "

cmd = cmd "> /dev/null"

cmd = sprintf(cmd, g)

printf("# running velvetg...")

system(cmd)

print "done"

4.147 We run simShot.awk with coverage 5 and no sequencing error to get 534

contigs. That’s better than the 1870 contigs we got with coverage 2, but still nowhere

close to the single contig we’re hoping for.

〈cli〉+≡
awk -f simShot.awk -v c=5 -v t=rg.fasta -v s="-e 0" \

-v h="-short -fasta" -v g="-exp_cov 5"

4.148 We write a loop to drive the shotgun simulation and save the results to

simShot.dat, which we plot with plotLine.

〈cli〉+≡
for a in $(seq 20)

do

awk -f simShot.awk -v c=${a} -v t=rg.fasta -v s="-e 0" \

-v h="-short -fasta" -v g="-exp_cov ${a}"

done > simShot.dat

plotLine -x Coverage -y Contigs simShot.dat

4.149 In our simulations, coverage 16 and 17 gave us a single contig each, but

coverage 18 gave us 2 contigs, back to 1 for coverages 19 and 20. So this varies, but

it seems coverage 20 is pretty safe.

〈cli〉+≡
grep -v ’ˆ#’ simShot.dat

1 1379

2 1852

...

15 3

16 1

17 1

18 2

19 1

20 1

318 4 Fast Alignment

4.150 We need the probability that a nucleotide is not sequenced times the length of

the template:

580076 × �푒−10 ≈ 26.

That is, the expected combined length of all gaps in the assembly is 26.

〈cli〉+≡
echo ’580076*e(-10)’ | bc -l

4.151 With coverage 15 we expect 0.2 unsequenced nucleotides, with coverage 20

that’s down to 0.1%.

〈cli〉+≡
echo ’580076*e(-15)’ | bc -l

echo ’580076*e(-20)’ | bc -l

4.152 By solving

�퐿�푒−�푐 = 1

for �푐 we find

�푐 = − ln

(

1

�퐿

)

.

In our case the theoretical coverage �푐 ≈ 13.3.

〈cli〉+≡
echo ’-l(1/580076)’ | bc -l

4.153 Again we write for the desired coverage

�푐 = − ln

(

0

�퐿

)

,

but since ln(0) = −∞, �푐 = ∞ in this case. In other words, a combined gap length

of 0 cannot be achieved. However, in real-world shotgun sequencing things like

sequencing errors and repeats create much more problems than the unattainability

of certainty with a stochastic process like sequencing.

4.154 We run simShot.awk without the sequencing error argument ten times and

find between 11 and 56 contigs.

〈cli〉+≡
c=20

for a in $(seq 10)

do

awk -f simShot.awk -v c=$c -v t=rg.fasta \

-v h="-short -fasta" -v g="-exp_cov $c"

done

4.155 We ran the simulation ten times with coverage 30 and got between 17 and 58

contigs. Greater coverage doesn’t seem to help in this case.

4.4 Assembly 319

〈cli〉+≡
c=30

awk -f simShot.awk -v c=$c -v t=rg.fasta \

-v h="-short -fasta" -v g="-exp_cov $c"

4.156 We calculate the shustring lengths of the randomized sequence, mark them

ran, and append them to the data file sl.dat. Then we plot sl.dat with position

measured in units of 100 kb with plotLine.

〈cli〉+≡
shustring -l rg.fasta | tail -n +3 |

awk ’NR%100==0{print $1, $2, "ran"}’ >> sl.dat

awk ’{print $1/100000, $2, $3}’ sl.dat |

plotLine -x "Position (100 kb)" -y Shustring-Length

4.157 We set the coverage to 20, the sequencing error to zero and find 219 contigs.

That is a lot more than the single contig we got when sequencing the randomized

version of the genome.

〈cli〉+≡
c=20

awk -f simShot.awk -v c=$c -v s="-e 0" \

-v t=mgGenome.fasta -v h="-short -fasta" \

-v g="-exp_cov $c"

4.158 We got 187 contigs. Not a great improvement compared to our single-end

result, but there we are. Expect to see paired-end reads in real shotgun sequencing.

4.159 We’ve seen these dot plots before; the lines parallel to the main diagonal are

matches on the forward strand, the others matches on the reverse strand. Together

they cover almost the entire template. The plot of your contigs is bound to look

different. Fig. 4.39 shows another example.

4.160 For the median, we sort the contig lengths and look up the sixth element, 52.

For the mean, we calculate the average, 47.6.

〈cli〉+≡
n="31\n66\n74\n6\n5\n79\n83\n52\n10\n90\n28\n"

printf $n | sort -n | tail -n +6 | head -n 1

printf $n | awk ’{s+=$1}END{print s/NR}’

4.161 We calculate the total contig length of 524. Then we sort the contigs, calculate

their cumulative length, and report the contig length where the cumulative length is

at least 262, which is 74.

〈cli〉+≡
printf $n | awk ’{s+=$1}END{print s}’

printf $n | sort -n | awk ’{s+=$1;if(s>=262){print $1;exit}}’

320 4 Fast Alignment

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

C
ontigs (100 kb)

M. genitalium (100 kb)

Fig. 4.39 Dot plot of the contigs generated in a simulated shotgun sequencing of M. genitalium

4.162 We calculate the total contig length, 575,125 in our case. Then we sort the

contig lengths and find an �푁50 of 82,061.

〈cli〉+≡
cres -s assem/contigs.fa | awk ’/ˆ>/{print $2}’ |

awk ’{s+=$1}END{print s}’

cres -s assem/contigs.fa | awk ’/ˆ>/{print $2}’ | sort -n |

awk ’{s+=$1;if(s>=575125/2){print $1; exit}}’

4.5 Multiple Sequences

4.163 We change into the directory for this chapter, 4, make the directory for this

section, 5, and change into it.

〈cli〉≡
cd $BEB/ch/4/

mkdir 5

cd 5/

4.164 If |�푆�푖 | is the length of �푆�푖, the two-dimensional alignment matrix has |�푆1 | × |�푆2 |
entries. If we want to be exact, we recall that each sequence is prefixed by a gap, so

the number of cells in a two-dimensional alignment matrix is (|�푆1 | + 1) × (|�푆2 | + 1).
4.165 The alignment matrix for aligning �푛 sequences length ℓ contains (ℓ+1)�푛 cells.

4.5 Multiple Sequences 321

4.166 The space and time requirements for optimal alignment are already a burden

for pairs of sequences and become prohibitive for multiple sequences. For this reason,

optimal multiple sequence alignment is hardly ever done by computer—aligning by

hand would be more realistic.

4.167 We copy sample.fasta to our working directory and split it by looping over

the sequence names and calling getSeq on each one.

〈cli〉+≡
cp $BEB/data/sample.fasta .

for a in a b c d

do

getSeq $a sample.fasta > ${a}.fasta

done

4.168 We run al on a.fasta and b.fasta to get an alignment with two gaps in �푎.

That’s our multiple sequence alignment at this stage.

〈cli〉+≡
al a.fasta b.fasta

4.169 The sequence data is contained in subsequent target lines.

〈Print sequence data, Prog. 4.11〉≡
$1 == target && NR > 3 {

print $3

}

4.170 We run al twice to extract first the query, then the subject. We save both in

anc.fasta and view them in tabular format, as this makes it easier to compare the

sequences than FASTA.

〈cli〉+≡
al a.fasta b.fasta |

awk -f al2fasta.awk -v target=Query > anc.fasta

al a.fasta b.fasta |

awk -f al2fasta.awk -v target=Subject >> anc.fasta

fasta2tab anc.fasta

a GAGCTCA-ACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGC--GTC

b GAGGTCAGACCGGTTGGTAGGCGTTCATTATTGGGAGGCAGGCGTATGTC

4.171 We align r.fasta to c.fasta and find that there are no new gaps in the

reference, but one gap in �푐. So we can just add �푐 to our alignment. Then we make

sure everything looks ok by printing the alignment in tabular format.

〈cli〉+≡
al r.fasta c.fasta |

awk -f al2fasta.awk -v target=Subject >> anc.fasta

fasta2tab anc.fasta

322 4 Fast Alignment

a GAGCTCA-ACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGC--GTC

b GAGGTCAGACCGGTTGGTAGGCGTTCATTATTGGGAGGCAGGCGTATGTC

c GAGCTCAGACGGGTTGGT--GCGTTCATTAATGGGAGGCTGGCGTACGTC

4.172 We align r.fasta to d.fasta and find that again there are no new gaps in

the reference. So we just extract �푑 and add it to our alignment. Using fasta2tab,

we find that the reference is unchanged, and we’ve constructed our final alignment.

〈cli〉+≡
al r.fasta d.fasta |

awk -f al2fasta.awk -v target=Subject >> anc.fasta

fasta2tab anc.fasta

a GAGCTCA-ACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGC--GTC

b GAGGTCAGACCGGTTGGTAGGCGTTCATTATTGGGAGGCAGGCGTATGTC

c GAGCTCAGACGGGTTGGT--GCGTTCATTAATGGGAGGCTGGCGTACGTC

d GAGCTCA-ACCGGTTGGTAGGCGTTCATTATTAGGACGGAGACGC--GTC

4.173 The sum-of-pairs score of the first column is 1− 3− 3 = −5, the sum-of-pairs

score of the second column is 0− 2− 2 = −4, so the sum-of-pairs score of the whole

alignment is −5 − 4 = −9, which we test with sops.

〈cli〉+≡
printf ">s1\nA-\n>s2\nA-\n>s3\nTT\n" | sops

4.174 We apply sops to anc.fasta to find that its sum-of-pairs score is 111.

〈cli〉+≡
sops anc.fasta

4.175 We align �푐 with �푎, store it in anc2.fasta, and notice that �푐 is gapped.

〈cli〉+≡
al c.fasta a.fasta |

awk -f al2fasta.awk -v target=Query > anc2.fasta

al c.fasta a.fasta |

awk -f al2fasta.awk -v target=Subject >> anc2.fasta

fasta2tab anc2.fasta

So we replace the gaps in the aligned �푐 by N and store it in r.fasta.

〈cli〉+≡
al c.fasta a.fasta | tail -n +7 | grep Q | tr ’-’ ’N’ |

awk ’{printf ">r\n%s\n", $3}’ > r.fasta

Now we add sequences �푏 and �푑 to the alignment to get our final alignment, which

looks good in tabular format.

〈cli〉+≡
al r.fasta b.fasta |

awk -f al2fasta.awk -v target=Subject >> anc2.fasta

al r.fasta d.fasta |

4.5 Multiple Sequences 323

awk -f al2fasta.awk -v target=Subject >> anc2.fasta

fasta2tab anc2.fasta

c GAGCTCAGACGGGTTGGT--GCGTTCATTAATGGGAGGCTGGCGTACGTC

a GAGCTCA-ACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCG--CGTC

b GAGGTCAGACCGGTTGGTAGGCGTTCATTATTGGGAGGCAGGCGTATGTC

d GAGCTCA-ACCGGTTGGTAGGCGTTCATTATTAGGACGGAGACG--CGTC

4.176 We run sops on anc2.fasta and find that the sum-of-pairs score is now

119, up from previously 111.

〈cli〉+≡
sops anc2.fasta

4.177 The difference is in the gapped region on the right hand side of the alignment.

When anchored on �푎, this is

a GC--GTC

b GTATGTC

c GTACGTC

d GC--GTC

When anchored on �푐, it is

c GTACGTC

a G--CGTC

b GTATGTC

d G--CGTC

This gives an extra match between C in �푑 and �푐 and hence the higher score.

4.178 Sequence �푎 on top is the anchor, any match to it is a dot. Sequence �푑 is shown

with the gap we had also found. Sequence �푏 is truncated at its 3’ end, because Blast

calculates local alignments. Sequence �푐 is missing altogether, its central gap appears

to make the two flanking alignments non-significant.

4.179 We run anchor Blast with output format 4 to find that all nucleotides are

printed rather than just the mismatches.

〈cli〉+≡
blastn -task blastn -query a.fasta \

-subject subject.fasta -outfmt 4

a GAGCTCA-ACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGCGTC

d GAGCTCA-ACCGGTTGGTAGGCGTTCATTATTAGGACGGAGACGCGTC

b GAGGTCAGACCGGTTGGTAGGCGTTCATTATTGGGAGGCAGGCG

4.180 We run anchor Blast with output format 1 and see that the insertion in �푏 is

written as a subscript rather than accommodated by a gap in �푎 and �푑.

〈cli〉+≡
blastn -task blastn -query a.fasta \

-subject subject.fasta -outfmt 1

324 4 Fast Alignment

a GAGCTCAACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGCGTC

dA.................C....A......

b ...G.............A.............G.....C.....

\

|

G

4.181 We run al on sample.fasta as query and subject and extract the number of

errors. Then we can fill in the distance matrix line by line. The individual distances

range from 3 to 12.

〈cli〉+≡
al sample.fasta sample.fasta | grep Errors

�푎 �푏 �푐 �푑

�푎 0 8 10 3

�푏 8 0 7 9

�푐 10 7 0 12

�푑 3 9 12 0

4.182 We write the distance matrix, convert it to a tree with upgma, and plot it with

plotTree.

〈cli〉+≡
echo 4 > sample.dist

echo a 0 7 10 3 >> sample.dist

echo b 8 0 7 9 >> sample.dist

echo c 10 7 0 12 >> sample.dist

echo d 3 9 12 0 >> sample.dist

upgma sample.dist | plotTree

4.183 We run al on a.fasta and d.fasta, save their alignment in prog.fasta,

and see that it is gap-free.

〈cli〉+≡
al a.fasta d.fasta |

awk -f al2fasta.awk -v target=Query > prog.fasta

al a.fasta d.fasta |

awk -f al2fasta.awk -v target=Subject >> prog.fasta

fasta2tab prog.fasta

a GAGCTCAACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGCGTC

d GAGCTCAACCGGTTGGTAGGCGTTCATTATTAGGACGGAGACGCGTC

4.184 We add the alignment of b.fasta and c.fasta to prog.fasta and see that

the two pairwise alignments are out of whack.

〈cli〉+≡
al b.fasta c.fasta |

4.5 Multiple Sequences 325

awk -f al2fasta.awk -v target=Query >> prog.fasta

al b.fasta c.fasta |

awk -f al2fasta.awk -v target=Subject >> prog.fasta

fasta2tab prog.fasta

a GAGCTCAACCGGTTGGTTGGCGTTCATTATTAGGAGGGAGGCGCGTC

d GAGCTCAACCGGTTGGTAGGCGTTCATTATTAGGACGGAGACGCGTC

b GAGGTCAGACCGGTTGGTAGGCGTTCATTATTGGGAGGCAGGCGTATGTC

c GAGCTCAGACGGGTTGGT--GCGTTCATTAATGGGAGGCTGGCGTACGTC

4.185 We save the stream-edited prog.fasta to a temporary file, move that back

to prog.fasta, and check this worked.

〈cli〉+≡
sed ’s/CAAC/CA-AC/’ prog.fasta > tmp.fasta

mv tmp.fasta prog.fasta

fasta2tab prog.fasta

4.186 We substitute CGCG by CG--CG and make sure this worked. The gap position is

unambiguous as the two alternative arrangements, r-- or -r-, would give a smaller

score. Then we replace the old version of prog.fastawith the new one and check

again. Now all sequences have the same length and we are done.

〈cli〉+≡
sed ’s/CGCG/CG--CG/’ prog.fasta | fasta2tab

sed ’s/CGCG/CG--CG/’ prog.fasta > tmp.fasta

mv tmp.fasta prog.fasta

fasta2tab prog.fasta

4.187 We apply sops to prog.fasta and find that its sum-of-pairs score is 119,

the best possible.

〈cli〉+≡
sops prog.fasta

4.188 We pipe the mafft output through sops to find that the sum-of-pairs score is

71, much worse than the scores of the two alignments we constructed semi-manually,

111 and 119. When we look at the alignment, we can see that the terminal gaps in

sequences �푎 and �푑 don’t make much sense.

〈cli〉+≡
mafft sample.fasta | sops

mafft sample.fasta | fasta2tab

a gagctca-accggttggttggcgttcattattaggagggaggcgcgtc--

b gaggtcagaccggttggtaggcgttcattattgggaggcaggcgtatgtc

c gagctcagacgggttggt--gcgttcattaatgggaggctggcgtacgtc

d gagctca-accggttggtaggcgttcattattaggacggagacgcgtc--

326 4 Fast Alignment

4.189 We calculate the alignment with the --auto option and pipe it through sops

to get a score of 87—better than 71, but still worse than 111 or 119. Again, inspection

of the alignment shows that the second set of gaps in sequences �푎 and �푑 has drifted

too far downstream to capture the maximum amount of homology.

〈cli〉+≡
mafft --auto sample.fasta | sops

mafft --auto sample.fasta | fasta2tab

a gagctca-accggttggttggcgttcattattaggagggaggcgcgt--c

b gaggtcagaccggttggtaggcgttcattattgggaggcaggcgtatgtc

c gagctcagacgggttggt--gcgttcattaatgggaggctggcgtacgtc

d gagctca-accggttggtaggcgttcattattaggacggagacgcgt--c

4.190 We pipe the alignment through sops to find the score of 119 we had hoped

for. We can also see directly that the downstream gaps in sequences �푎 and �푑 are

now in the correct place. It took us a few attempts to get there, so a given multiple

sequence alignment is not necessarily optimal with respect to the tool used.

〈cli〉+≡
mafft --parttree sample.fasta | sops

mafft --parttree sample.fasta | fasta2tab

a gagctca-accggttggttggcgttcattattaggagggaggcg--cgtc

b gaggtcagaccggttggtaggcgttcattattgggaggcaggcgtatgtc

c gagctcagacgggttggt--gcgttcattaatgggaggctggcgtacgtc

d gagctca-accggttggtaggcgttcattattaggacggagacg--cgtc

4.191 We copy primates.fasta to our working directory. Then we write a loop

for appending the sequences to simians.fasta.To make sure we are not appending

to existing data, we start by emptying simians.fasta.

〈cli〉+≡
cp $BEB/data/primates.fasta .

printf "" > simians.fasta

for a in P_trog P_pan H_sap G_gor P_pyg H_lar

do

getSeq ${a} primates.fasta >> simians.fasta

done

4.192 We pipe the alignment through sops and find that the sum-of-pairs score is

140,228.

〈cli〉+≡
mafft --auto simians.fasta | sops

4.5 Multiple Sequences 327

4.193 We run mafft with --parttree, which increases the run time from one

second to over a minute. In spite of this heavy investment in run time, the new

sum-of-pairs score, 140,084, is actually worse than the 140,228 we got before.

〈cli〉+≡
mafft --parttree simians.fasta | sops

4.194 a is ˆ[0-9]_, which is any number beginning at a line followed by an

underscore; b is nothing. So the substitution amounts to deleting any leading digit

followed by an underscore.

4.195 In most phylogeniesof the simians, chimps are most closely related to humans.

However, in the guide tree chimps are most closely related to gorillas. This just goes

to show that guide trees are rather approximate phylogenies.

Chapter 5

Evolution Between Species: Phylogeny

5.1 Trees of Life

5.1 We change into the directory for chapters, make a directory for this chapter, 5,

change into it, make a directory for this section, 1, and change into that.

〈cli〉≡
cd $BEB/ch/

mkdir 5

cd 5/

mkdir 1

cd 1/

5.2 In Newick only internal nodes are delimited by parentheses, subtrees are sepa-

rated by commas, and the tree is terminated by a semicolon.

5.3 Without internal node labels, our tree becomes

(B,(D,E));

5.4 We print the Newick string of our tree and pipe it through plotTree.

〈cli〉+≡
printf "(B:1,(D:1,E:1));\n" | plotTree

5.5 Again, we pipe the Newick string through pipePlot. Notice that the branch

length from gorilla to the root is 1.1, which is the branch length of human or chimp

(1.0) plus the distance from their most recent common ancestor to the root (0.1).

〈cli〉+≡
printf "((human:1,chimp:1):0.1,gorilla:1.1);\n" | plotTree

5.6 We add “ancestor” and “root” to the tree and plot it.

〈cli〉+≡
printf "((human:1,chimp:1)ancestor:0.1,gorilla:1.1)root;\n" |

plotTree

329© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_12&domain=pdf

330 5 Evolution Between Species: Phylogeny

5.7 We print a single node with three children and plot it. Notice that the gorilla

branch now has the combined length of the two branches it was generated from, 1.2.

〈cli〉+≡
printf "(human:1,chimp:1,gorilla:1.2);\n" | plotTree

5.8 Fig. 5.5 is an ordinary tree with a root and three leaves. The “unrooted” aspect

is expressed through its radial layout, which means there is no preferred direction

of time, the position of the true ancestor is uncertain. In other words, trees with

bifurcating roots are called rooted and drawn like Fig. 5.4, trees with trifurcating

roots are called unrooted and drawn in radial layout like Fig. 5.5.

 gorilla

 human

 chimp

0.1

Fig. 5.19 Midpoint-rooted phylogeny of human, chimp, and gorilla

5.9 We apply midRoot to our unrooted tree and get Fig. 5.19. This is the same tree

we started out with, Fig. 5.3, since branch rotation does not change the evolutionary

history. In other words, (A,B); tells the same evolutionary story as (B,A);.

〈cli〉+≡
printf "(human:1,chimp:1,gorilla:1.2);\n" | midRoot |

plotTree

5.10 A branch without length is drawn by plotTree as a branch with length 1.

5.11 We leave out the branch lengths and just concentrate on getting the labels right.

〈cli〉+≡
printf "(((1,3)2,5)4,(7,9)8)6;\n" | plotTree

5.12 The preorder traversal of the tree in Fig. 5.7 visits nodes 6, 4, 2, 1, 3, 5, 8, 7,

and 9. We check our result with travTree.

〈cli〉+≡
printf "(((1,3)2,5)4,(7,9)8)6;\n" | travTree

#Label Parent Dist. Type

6 none 0 root

4 6 0 internal

5.1 Trees of Life 331

2 4 0 internal

1 2 0 leaf

3 2 0 leaf

5 4 0 leaf

8 6 0 internal

7 8 0 leaf

9 8 0 leaf

5.13 The inorder traversal visits 1, 3, 2, 5, 4, 7, 9, 8, and 6, which we check with

travTree.

〈cli〉+≡
printf "(((1,3)2,5)4,(7,9)8)6;\n" | travTree -i

#Label Parent Dist. Type

1 2 0 leaf

3 2 0 leaf

2 4 0 internal

5 4 0 leaf

4 6 0 internal

7 8 0 leaf

9 8 0 leaf

8 6 0 internal

6 none 0 root

5.14 The postorder traversal visits 3, 1, 5, 2, 9, 7, 8, 4, and 6, which we check with

travTree.

〈cli〉+≡
printf "(((1,3)2,5)4,(7,9)8)6;\n" | travTree -o

#Label Parent Dist. Type

3 2 0 leaf

1 2 0 leaf

5 4 0 leaf

2 4 0 internal

9 8 0 leaf

7 8 0 leaf

8 6 0 internal

4 6 0 internal

6 none 0 root

5.15 With -a, the branch lengths correspond to absolute times. As a result, the

terminal branches all end at the same imaginary zero time. Without -a, the branch

332 5 Evolution Between Species: Phylogeny

lengths are proportional to the number of mutations along the branches. In that case

the branches fluctuate around the imaginary zero, as shown in Fig. 5.20.

〈cli〉+≡
genTree | plotTree

 T1

 T2

 T3

 T4

 T5

 T6

 T7

 T8

 T9

 T10

10

Fig. 5.20 Random phylogeny of ten taxa with branch lengths proportional to the number of

mutations

5.16 With -t 100, the branches fluctuate widely around the zero line, as shown

in Fig. 5.21A. The fluctuations are much smaller with -t 10,000, as shown in

Fig. 5.21B.

〈cli〉+≡
genTree -t 100 | plotTree

genTree -t 10000 | plotTree

A B

 T1

 T2

 T3

 T4

 T5

 T6

 T7

 T8

 T9

 T10

1

 T1

 T2

 T3

 T4

 T5

 T6

 T7

 T8

 T9

 T10

100

Fig. 5.21 Random phylogeny with an expected 100 mutations (A) and 10,000 mutations (B)

5.2 Rooted Trees 333

5.17 Given a rooted tree of four taxa, there are seven edges to which we can add the

new root. So there are 3 × 5 × 7 = 105 trees with five taxa.

5.18 We directly transcribe the equation we’ve been given.

〈Calculate number of trees, Pr. 5.1〉≡
nt = 1

for (i = 3; i <= n; i++)

nt *= 2 * i - 3

5.19 We print the number of taxa, n, and the number of trees, nt.

〈Print number of trees, Pr. 5.1〉≡
print n, nt

5.20 There are 34,459,425, or 34 million, distinct trees with ten taxa. No wonder we

never saw the same one again.

〈cli〉+≡
awk -f numTrees.awk -v n=10

5.21 We wrap numTree.awk in a loop and plot the result with the y axis log-scaled.

〈cli〉+≡
for a in $(seq 2 100)

do

awk -f numTrees.awk -v n=$a

done | plotLine -l y -x Taxa -y Trees

Like with the number of possible alignments, we are looking at hyperexponential

growth.

5.2 Rooted Trees

5.22 We change into the chapter directory, 5, make the directory for this section, 2,

and change into it.

〈cli〉≡
cd $BEB/ch/5/

mkdir 2

cd 2/

5.23 Here is the complete distance matrix:

�퐴 �퐵 �퐶 �퐷

�퐴 -

�퐵 1 -

�퐶 3 3 -

�퐷 3 3 2 -

334 5 Evolution Between Species: Phylogeny

5.24 Distances are symmetric in the sense that the distance between London and

Hamburg is equal to the distance between Hamburg and London. As a result, distance

matrices are symmetrical and one triangle implies the other.

5.25 Taxa �퐴 and �퐵 have the smallest distance, 2, so the corresponding tree is

�퐴 �퐵

b

1 1

5.26 We pick the pair (�퐴, �퐵), �퐶 to get the tree

�퐴 �퐵

b

�퐶

b

1

1 1

2

5.27 We put the distances into the file ex1.dist, either on the command line with

printf or with an editor. Then we run upgma and plotTree.

〈cli〉+≡
printf "4\n" > ex1.dist

printf "A 0 2 4 6\n" >> ex1.dist

printf "B 2 0 4 6\n" >> ex1.dist

printf "C 4 4 0 6\n" >> ex1.dist

printf "D 6 6 6 0\n" >> ex1.dist

upgma ex1.dist | plotTree

The tree we get looks a bit different from Fig. 5.10B, but it’s meaning is the same.

 D

 C

 A

 B

0.1

5.28 We run upgma on our example distances with matrix printing switched on.

There are three intermediate matrices followed by the final tree.

〈cli〉+≡
upgma -m ex1.dist

5.2 Rooted Trees 335

4

A 0 2 4 6

B 2 0 4 6

C 4 4 0 6

D 6 6 6 0

3

C 0 6 4

D 6 0 6

(A,B) 4 6 0

2

D 0 6

(C,(A,B)) 6 0

(D:3,(C:2,(A:1,B:1):1):1);

5.29 Fig. 5.22 shows the three steps required to calculate the tree.

�퐴 �퐵 �퐶 �퐷

�퐴 -

�퐵 6 -

�퐶 2 6 -

�퐷 6 4 6 -

(�퐴, �퐶) �퐵 �퐷

(�퐴, �퐶) -

�퐵 6 -

�퐷 6 4 -

(�퐴, �퐶) (�퐵, �퐷)
(�퐴, �퐶) -

(�퐵, �퐷) 6 -

→ →

�퐴 �퐶

b

1 1

�퐴 �퐶 �퐵 �퐷

b

b

1 1

2 2

�퐴 �퐶 �퐵 �퐷

b

b

b

2

1

1 1

2 2

Fig. 5.22 Tracing the Upgma algorithm

To check our results, we generate the distance matrix and apply upgma to it.

〈cli〉+≡
printf "4\n" > ex2.dist

printf "A 0 6 2 6\n" >> ex2.dist

printf "B 6 0 6 4\n" >> ex2.dist

printf "C 2 6 0 6\n" >> ex2.dist

printf "D 6 4 6 0\n" >> ex2.dist

upgma -m ex2.dist

4

A 0 6 2 6

B 6 0 6 4

C 2 6 0 6

D 6 4 6 0

336 5 Evolution Between Species: Phylogeny

3

B 0 4 6

D 4 0 6

(A,C) 6 6 0

2

(A,C) 0 6

(B,D) 6 0

((A:1,C:1):2,(B:2,D:2):1);

5.30 A Upgma tree not only implies a molecular clock, it also implies that the

stochastic clock, the number of mutations per unit time, behaves like a conventional

clock, where the second hand moves exactly once per second, rather than on average.

5.31 The distance matrix implied by the tree is

�퐴 �퐵 �퐶 �퐷

�퐴 0 6 6 8

�퐵 6 0 4 8

�퐶 6 4 0 8

�퐷 8 8 8 0

which is quite different from the input in Fig. 5.11.

5.32 There are 4 distinct entries, 4, 5, 7, and 10. That’s one more than allowed under

Upgma.

5.33 Let’s switch 6 and 4 in the first column of the distance matrix Fig. 5.10A to get

�퐴 �퐵 �퐶 �퐷

�퐴 -

�퐵 2 -

�퐶 6 4 -

�퐷 4 6 6 -

Now we consider taxa �퐴, �퐵, �퐶, for which we have �푑�퐴,�퐵 = 2, �푑�퐴,�퐶 = 6, and �푑�퐵,�퐶 = 4.

Here the three-point criterion doesn’t hold, as the maximum of these three distances,

6, is unique among the three, while the three-point criterion posits that it shouldn’t

be.

5.34 We copy the sequence data to our current directory and run cres in separate

mode, -s. We find that all four sequences are 896 characters long, but note that the

Pongo sequence contains a gap character, so it consists only of 895 nucleotides.

〈cli〉+≡
cp $BEB/data/hominidae.fasta .

cres -s hominidae.fasta

5.2 Rooted Trees 337

>Homo: 896

Residue Count Fraction

A 273 0.305

C 297 0.331

G 96 0.107

T 230 0.257

>Pan: 896

Residue Count Fraction

A 277 0.309

C 291 0.325

G 91 0.102

T 237 0.265

>Gorilla: 896

Residue Count Fraction

A 278 0.31

C 292 0.326

G 95 0.106

T 231 0.258

>Pongo: 896

Residue Count Fraction

- 1 0.00112

A 281 0.314

C 309 0.345

G 93 0.104

T 212 0.237

5.35 With default options, we find 219 polymorphic sites.

〈cli〉+≡
pps hominidae.fasta | head -n 1

>Positions (219)

This is reduced to 218 if we exclude the gapped position with -g. So by default, pps

counts gapped sites as polymorphic, though many authors skip gapped positions by

default.

〈cli〉+≡
pps -g hominidae.fasta | head -n 1

>Positions (218)

5.36 We count the mismatches and find

Hom Pan Gor Pon

Hom 0 3 4 7

Pan 3 0 5 6

Gor 4 5 0 9

Pon 7 6 9 0

338 5 Evolution Between Species: Phylogeny

We check this by getting the raw mismatches with dnaDist.

〈cli〉+≡
pps hominidae.fasta | cutSeq -r 1-10 | getSeq -c Pos |

dnaDist -r

5.37 We get a distance matrix with six distinct entries, so they are not ultrametric.

〈cli〉+≡
dnaDist -r hominidae.fasta

4

Homo 0 80 93 145

Pan 80 0 95 153

Gorilla 93 95 0 150

Pongo 145 153 150 0

5.38 We calculate the tree from the raw mismatches. Our closest relative is chimp,

but note that the branch from (human, chimp) to ((human, chimp), gorilla) is very

short. It almost looks as if there was a trifurcation between what later became human,

chimp, and gorilla.

〈cli〉+≡
dnaDist -u hominidae.fasta | upgma | plotTree

5.39 The log of zero or less is not defined; so �푚 has to be less than 3/4 for

equation (2.3) to work.

5.40 The probability of drawing two identical nucleotides is the probability of

drawing two As, or two Cs, or two Gs, or two Ts, which is 4 × (1/4)2 = 1/4. So the

probability of drawing two different nucleotides is 1− 1/4 = 3/4, the point at which

the number of mutations in equation (2.3) becomes infinite. We can calculate�푚 from

pairs of random sequences and find that for long sequences it approaches 3/4.

〈cli〉+≡
ranseq -l 100000 -n 2 | dnaDist -u

2

Rand1 0 0.75018

Rand2 0.75018 0

5.41 We run jc.awk and plot the result with the key moved out of the way.

〈cli〉+≡
awk -f jc.awk | plotLine -x m -y k -g "set key center top"

5.42 The default distance is Jukes-Cantor. So we calculate the corrected tree and

find that in this case the correction is almost imperceptible.

〈cli〉+≡
dnaDist hominidae.fasta | upgma | plotTree

5.3 Unrooted Trees 339

5.43 We copy primates.fasta, count the 27 sequences and 446,204 nucleotides

it contains, and calculate the average length of a primate mitochondrial genome,

16,526 bp.

〈cli〉+≡
cp $BEB/data/primates.fasta .

grep -c ’ˆ>’ primates.fasta

cres primates.fasta

echo ’446204 / 27’ | bc -l

5.44 Tree construction from a distance matrix is very quick. So we only measure

the run time of mafft (58 s on our computer) and ignore the rest. The default plot

size of 640 × 384 pixels gets a bit crowded, so we set the size to 840 × 840 pixels.

〈cli〉+≡
time mafft primates.fasta > mafft.fasta

dnaDist mafft.fasta | upgma | plotTree -d 840,840

5.45 We run phylonium on the primate sequences and calculate the tree. The

distance computation takes about 0.1 s on our computer.

〈cli〉+≡
time phylonium primates/*.fasta | upgma | plotTree

5.46 The trees in Fig. 5.14 do not have the same topology, for example, in Fig. 5.14A

the closest relative of humans is the gorilla/chimp clade, while in Fig. 5.14B it is

chimp alone.

5.3 Unrooted Trees

5.47 We change into the directory for this chapter, 5, make the directory for this

section, 3, and change into it.

〈cli〉≡
cd $BEB/ch/5/

mkdir 3

cd 3/

5.48 We pick three taxa, �퐴, �퐵, and �퐶. Their distances are �푑�퐴�퐵 = 5, �푑�퐴�퐶 = 7, and

�푑�퐵�퐶 = 4. Among this triple of distances there isn’t a pair of equal distances, so the

three point criterion is not fulfilled.

5.49 Under Upgma we’d first form the node (�퐵, �퐶), but on the tree the closest

neighbor of �퐵 is �퐴, not �퐶.

5.50 Distances �푑�퐴�퐵 and �푑�퐶�퐷 cover only the terminal branches.

5.51 The first pair that covers the full tree is {�푑�퐴�퐷 , �푑�퐵�퐶 }, the second {�푑�퐴�퐶 , �푑�퐵�퐷}.

340 5 Evolution Between Species: Phylogeny

5.52 By plugging the distances into the equation describing the four point criterion,

we get

5 + 5 ≤ 10 + 4 = 7 + 7,

which is true.

5.53 Here is the distance matrix with the row sums entered:

�퐴 �퐵 �퐶 �퐷 �푟�푖
�퐴 - 5 7 10 22

�퐵 - 4 7 16

�퐶 - 5 16

�퐷 - 22

5.54 We fill in the �푆�푖 �푗 values to get

�퐴 �퐵 �퐶 �퐷 �푟�푖
�퐴 - 5 7 10 22

�퐵 -14 - 4 7 16

�퐶 -12 -12 - 5 16

�퐷 -12 -12 -14 - 22

To check this, we generate the distance matrix and run nj with matrix printing. The

first five lines of the output give the expected augmented distance matrix.

〈cli〉+≡
printf "4\n" > fourTaxa.dist

printf "A 0 5 7 10\n" >> fourTaxa.dist

printf "B 5 0 4 7\n" >> fourTaxa.dist

printf "C 7 4 0 5\n" >> fourTaxa.dist

printf "D 10 7 5 0\n" >> fourTaxa.dist

nj -m fourTaxa.dist | head -n 5

4

A 0 5 7 10 22

B -14 0 4 7 16

C -12 -12 0 5 16

D -12 -12 -14 0 22

5.55 We calculate the distance matrix with cluster (�퐴, �퐵).
�퐶 �퐷 (�퐴, �퐵)

�퐶 - 5 3

�퐷 - 6

(�퐴, �퐵) -

We check this by running nj with matrix printing and grabbing the second matrix.

〈cli〉+≡
nj -m fourTaxa.dist | tail -n +6 | head -n 4

5.3 Unrooted Trees 341

3

C 0 5 3 8

D -14 0 6 11

(A,B) -14 -14 0 9

The output also contains the �푆 �푗�푖 values and the row sums, which are not strictly

necessary once the algorithm is down to the last three taxa.

5.56 The branch from �퐴 to its ancestor has length 4,

�푑�퐴(�퐴�퐵) = (2 × 5 + 22 − 16)/4 = 4,

and the branch from �퐵 to its ancestor length 1,

�푑�퐵(�퐴�퐵) = (2 × 5 + 16 − 22)/4 = 1.

5.57 We follow the formulae just given to get

�푑�푟�퐶 = (5 + 3 − 6)/2 = 1

�푑�푟�퐷 = (5 + 6 − 3)/2 = 4

�푑�푟 (�퐴�퐵) = (3 + 6 − 5)/2 = 2

5.58 We run nj on our distance matrix and plot the tree.

〈cli〉+≡
nj fourTaxa.dist | plotTree

5.59 The most distant pair of taxa is (�퐴, �퐵) and the midpoint between them happens

to be the position of the root in Fig. 5.15A. We can reproduce this by running nj on

our distance matrix, piping the resulting tree through midRoot and plotting it.

〈cli〉+≡
nj fourTaxa.dist | midRoot | plotTree

 A

 B

 C

 D

1

5.60 We copy the Hominidae data, calculate the distances, transform them into the

neighbor-joining tree, and plot it.

342 5 Evolution Between Species: Phylogeny

〈cli〉+≡
cp $BEB/data/hominidae.fasta .

dnaDist hominidae.fasta | nj | plotTree

5.61 For additivity we require

�푑pongo,homo + �푑pan,gorilla = �푑pongo,pan + �푑homo,gorilla

But when we plug in the numbers from Fig. 5.17A, we get

0.18 + 0.11 ≠ 0.19 + 0.11

The discrepancy is small, but still. So always beware of the noisiness of real data.

5.62 We run dnaDist with the bootstrap option and can clearly see the variations

in the distances.

〈cli〉+≡
dnaDist -b 10 hominidae.fasta | head

4

Homo 0 0.0238115 0.0192173 0.0330852

Pan 0.0238115 0 0.0295941 0.0401165

Gorilla 0.0192173 0.0295941 0 0.0354217

Pongo 0.0330852 0.0401165 0.0354217 0

4

Homo 0 0.0238115 0.028434 0.0330852

Pan 0.0238115 0 0.0249645 0.0354217

Gorilla 0.028434 0.0249645 0 0.0330852

Pongo 0.0330852 0.0354217 0.0330852 0

5.63 The answer to this question depends on chance. We got the original pair (Homo,

Pan) and also (Homo, Pongo). So the topology did vary.

〈cli〉+≡
dnaDist -b 10 hominidae.fasta | nj | plotTree

5.64 We run the bootstrap with 1000 iterations and count the clades to find that in

only 47% of trees the (Homo, Pan) clade appeared. In other words, in approximately

half of the trees the closest relative of human was not chimp. This means we shouldn’t

rely too much on that particular split.

〈cli〉+≡
dnaDist -b 1000 hominidae.fasta | nj | clac

#ID Count Taxa Clade

1 466 2 {Homo, Pan}

2 201 2 {Homo, Pongo}

3 136 2 {Gorilla, Pongo}

4 97 2 {Gorilla, Homo}

5.3 Unrooted Trees 343

5 71 2 {Gorilla, Pan}

6 29 2 {Pan, Pongo}

5.65 We calculate the reference tree before we rerun the bootstrap analysis based on

it. This time the result is a tree, which we plot.

〈cli〉+≡
dnaDist hominidae.fasta | nj > hominidae.nwk

dnaDist -b 1000 hominidae.fasta |

nj | clac -r hominidae.nwk | plotTree

Chapter 6

Evolution within Populations

6.1 Descent from One or Two Parents

6.1 We change into the chapter directory, create the directory for this chapter, 6,

change into it, create the directory for this section, 1, and change into that.

〈cli〉≡
cd $BEB/ch/

mkdir 6

cd 6/

mkdir 1

cd 1/

6.2 Another two rounds of doubling tells us we have 32 great-great-great-

grandparents.

6.3 A naı̈ve calculation tells us we had

233 ≈ 8.6 × 109

ancestors 33 generations back, perhaps 20 times more than the world population at

that point and a bit more than the current world population of eight billion people.

〈cli〉+≡
echo "2ˆ33" | bc

echo ’2ˆ33 / 4 / 10ˆ8’ | bc -l

6.4 We run drag with the number of generations set to 7 and the population size

also set to 7. We trace the ancestry of individual �푖4 and render the resulting dot code

with neato.

〈cli〉+≡
drag -g 7 -n 7 -t 4 | neato -T x11

345© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_13&domain=pdf

346 6 Evolution within Populations

6.5 The expected number of ancestors in �푏�푖 is 2�푖. This number quickly outstrips the

population size, so the observed number of ancestors falls behind before stalling at

5.

Back Observed Expected

�푏1 2 2

�푏2 3 4

�푏3 4 8

�푏4 5 16

�푏5 5 32

�푏6 5 64

6.6 We used 3 as seed for the random number generator so we can trace either just

individual �푖4 or all individuals on a constant background.

〈cli〉+≡
drag -s 3 -g 7 -n 7 -t 4 | neato -T x11

drag -s 3 -g 7 -n 7 -t -1 | neato -T x11

6.7 Blue individuals have left no descendants in the present. Red individuals are

ancestors of all extant individuals, they are universal ancestors. Green individuals

are somewhere in between as they have left some descendants in the present, they

are partial ancestors.

6.8 As soon as the partial ancestors have vanished, the two rather tangled graphs

become identical.

6.9 We can run the simulation for, say, 50 generations, and find that the partial

ancestors in green quickly go extinct never to reappear in a sea of red and a smattering

of blue.

〈cli〉+≡
drag -g 50 | neato -T x11

This is because once an individual has all present day individuals among its descen-

dants, its ancestors also have that property. Green partials are lost irreversibly. Not

so the non-ancestors. They can go extinct in simulations with small populations and

then reappear again. In any case, the rapid disappearance of partial ancestors means

that eventually we all have the same ancestors. So next time someone tells you at a

party she is a descendant of X, who lived a long, long time ago, you know there are

only two possibilities: Either this is true, then it is true for everyone, or, alas, it is

false.

6.10 In all of 10 trials we always got eight generations until the appearance of the

first universal ancestor. So this value looks remarkably constant.

〈cli〉+≡
for a in $(seq 10)

do

drag -a -g 25 -n 1000 | grep univ

done

6.1 Descent from One or Two Parents 347

6.11 This time we got 8 times 9 generations and twice 8 generations.

〈cli〉+≡
for a in $(seq 10)

do

drag -a -g 25 -n 2000 | grep univ

done

6.12 We adjust our simulation and find that it takes on average 17.8 generations for

partial ancestors to disappear from a population of 1000.

〈cli〉+≡
for a in $(seq 100)

do

drag -a -g 25 -n 1000

done | awk ’/part/{s += $2; c++}END{print s/c}’

6.13 We run drag with the population size from the input, filter for no partial

ancestors, and print the number of generations. This is then summed.

〈Sum number of generations, Prog. 6.1〉≡
n=$(drag -a -n $1 -g 25 | awk ’/part/{print $2}’)

((sum=$sum+$n))

6.14 We iterate over population sizes from 10 to 1000 in approximately doubling

steps and save the results in the file nopanc.dat. Then we plot the results with

plotLine and move the key to avoid it intersecting the curves.

〈cli〉+≡
for a in 10 20 50 100 200 500 1000

do

bash nopanc.sh $a 100

done > nopanc.dat

plotLine -L -l x -x N -y "Generations to no partials" \

-g "set key top center" nopanc.dat

6.15 We trace the genetic ancestry of individual 4 for seven generations in a popu-

lation of size seven.

〈cli〉+≡
drag -t 4 -G -g 7 -n 7 | neato -T x11

6.16 In repeated runs the most recent common ancestor of the genes is often not

reached at all in seven generations, but there are always universal ancestors. So the

most recent common ancestor of two genes certainly isn’t always located in the first

universal ancestor of all individuals.

〈cli〉+≡
for a in $(seq 10)

do

drag -t 4 -G -g 7 -n 7 | neato -T x11

done

348 6 Evolution within Populations

6.17 We generate ten random numbers between 1 and 10.

〈cli〉+≡
for a in $(seq 10)

do

echo "$RANDOM % 10 + 1"

done | bc

Our extension of the Wright-Fisher model in Fig. 6.5 looked like this, yours is bound

to look different:
�푔1

�푔2

�푔3

1 2 3 4 5 6 7 8 9 10

6.18 We run drawf in default mode and pipe its result through neato.

〈cli〉+≡
drawf | neato -T x11

6.19 The trick is again to use the same seed for the random number generator

between runs.

〈cli〉+≡
drawf -s 3 | neato -T x11

drawf -s 3 -u | neato -T x11

6.20 No it doesn’t, there are still two lines active in generation �푔1, we’ve marked

them in green.

8 2 9 1 3 5 6 7 4 1 0

�푔1

�푔2

�푔3

�푔4

�푔5

�푔6

�푔7

�푔8

�푔9

�푔10

6.21 We used �푁 = 30 and found a red common ancestor in all simulations.—But the

times to the most recent common ancestor vary widely, so this is still no guarantee.

6.1 Descent from One or Two Parents 349

〈cli〉+≡
for a in $(seq 10)

do

drawf -g 30 -u -m | neato -T x11

done

6.22 The probability of two specific genes picking a common ancestor is 1/�푁×1/�푁 =

1/�푁2. Since there are �푁 opportunities for picking the same ancestor (each gene

has one ancestor), the probability of any two genes picking the same ancestor is

�푁 × 1/�푁2 = 1/�푁 .

6.23 If the seed or the population size haven’t been set, we ask for them and exit.

〈Set usage, Prog. 6.2〉≡
if (!seed || !N) {

print "Usage: awk -f panc.awk -v N=<N> -v seed=<seed>"

exit

}

6.24 We print the keys in anc.

〈Print ancestors, Prog. 6.2〉≡
for (a in anc)

printf " %d", a

printf "\n"

6.25 Here is the result of one run of the loop, in ten trials there is no instance of

ten distinct ancestors. In fact, we ran the loop a couple of times and never saw ten

distinct ancestors.

1 2 3 4 6 5

1 2 3 4 5 7 8 9 10 9

1 3 4 5 6 7 8 9 10 9

3 5 6 7 9 10 6

3 4 5 6 7 8 10 7

1 2 4 5 7 8 9 10 8

3 4 5 6 7 8 10 7

4 5 6 7 8 9 6

1 2 3 4 5 6 8 9 8

2 4 6 8 9 5

6.26 We run pn.awk to find that for �푃0(10) ≈ 4 × 10−4.

〈cli〉+≡
awk -f pn.awk -v N=10

350 6 Evolution within Populations

6.27 We run panc.awk 20,000 times and calculated the frequency of finding ten

ancestors. It is 5.5× 10−4 in our case, which is reasonably close to the mathematical

result of 3.6 × 10−4.

〈cli〉+≡
for a in $(seq 20000)

do

awk -f panc.awk -v N=10 -v seed=$RANDOM

done | awk ’{if(NF==10)c++}END{print c/NR}’

6.28 We use our formula to calculate

�푃a(1000, 10) = (10 × 9)/2/1000 = 0.045.

〈cli〉+≡
echo ’10 * 9 / 2 / 1000’ | bc -l

6.29 That waiting time is 1/�푃a(1000,10) ≈ 22.2.

〈cli〉+≡
echo ’1 / (10 * 9 / 2 / 1000)’ | bc -l

6.30 If �푁 , �푛, or the seed are not defined, we print a usage message and exit.

〈Set usage, Prog. 6.3〉≡
if (!N || !n || !seed) {

printf "Usage: awk -f tmrca.awk -v N=<N> -v n=<n> "

printf "-v seed=<seed>\n"

exit

}

6.31 We count the keys in the array lineages.

〈Count lineages, Prog. 6.3〉≡
new_n = 0

for (lineage in lineages)

new_n++

6.32 If the number of lineages has decreased, we print it as a function of �푁 genera-

tions.

〈Report change in lineages, Prog. 6.3〉≡
if (new_n < n)

print g / N, new_n

6.33 We run tmrca and pipe the result through plotLine.

〈cli〉+≡
awk -f tmrca.awk -v N=10000 -v n=20 -v seed=$RANDOM |

plotLine -x "N generations" -y "Lineages"

6.2 The Coalescent 351

6.34 For a sample of 2, the expected time to their ancestor is �푁 generations, for

a very large sample 2�푁 generations. In other words, the expected time to the most

recent common ancestor varies by no more than a factor of two between large and

small samples.

6.35 We run the simulation 1000 times, sum the time to the most recent common

ancestor, and divide by 1000. Our result, 1.78, is pleasingly close to the expectation

of 1.8.

〈cli〉+≡
for a in $(seq 1000)

do

awk -f tmrca.awk -v N=10000 -v n=10 -v seed=$RANDOM

done | awk ’$2==1{s+=$1;c++}END{print s/c}’

6.2 The Coalescent

6.36 We change into the directory for this chapter, 6, make the directory for this

section, 2, and change into it.

〈cli〉≡
cd $BEB/ch/6/

mkdir 2

cd 2/

6.37 We run drawf with default parameters and plot the result with neato.

〈cli〉+≡
drawf | neato -T x11

6.38 Genes 5 and 8 coalesce first in generation �푔8 and are joined by gene 6 in

generation �푔6.

5 8 6

6.39 First, we draw an example coalescent with all nodes labeled. It has four leaves,

so it describes the genealogy of a sample of �푛 = 4 genes.

〈cli〉+≡
printf "((1:.1,2:.1)5:.9,(4:.2,3:.2)6:.8)7;\n" | plotTree

352 6 Evolution within Populations

 7

 5

 1

 2

 6

 4

 3

0.1

By convention, only leaves are labeled in a coalescent, so we leave out the labels of

the internal nodes.

〈cli〉+≡
printf "((1:.1,2:.1):.9,(4:.2,3:.2):.8);\n" | plotTree

 1

 2

 4

 3

0.1

6.40 �푇1 would begin with the most recent common ancestor, the root of the coales-

cent, and go on forever. It is not shown, because the coalescent stops at the most

recent common ancestor.

6.41 If the user didn’t set �푖 or the seed, we print a usage message and exit.

〈Set usage, Prog. 6.4〉≡
if (!i || !seed) {

print "Usage: awk -f ti.awk -v i=<i> -v seed=<seed>"

exit

}

6.42 We run ti.awk and get �푇4 = 0.10, �푇3 = 0.03, �푇2 = 0.29.

〈cli〉+≡
for i in 4 3 2

do

ti=$(awk -f ti.awk -v i=${i} -v seed=$RANDOM)

echo T_${i} $ti

done

6.2 The Coalescent 353

So the coalescence times are 0.1 for node 5, 0.1 + 0.03 = 0.13 for node 6, and

0.13 + 0.29 = 0.42 for node 7.

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Time 0.00 0.00 0.00 0.00 0.10 0.13 0.42

6.43 If the user omitted the sample size or the seed, we print a usage message and

exit.

〈Set usage, Prog. 6.5〉≡
if (!n || !seed) {

print "Usage: awk -f coat.awk -v n=<n> -v seed=<seed>"

exit

}

6.44 We calculate the coalescence time like we did in ti.awk, but here we sum the

times and print the cumulative times as a function of the number of active lineages.

〈Calculate coalescence time, Prog. 6.5〉≡
la = 2 / i / (i-1)

t += -la * log(1 - rand())

print i, t

6.45 We compute the average from our simulation, 1.599.

〈cli〉+≡
for a in $(seq 1000)

do

awk -f coat.awk -v n=5 -v seed=$RANDOM

done | awk ’$1==2{s += $2; c++}END{print s/c}’

This is close to the expectation from equation (6.2) of 1.6.

〈cli〉+≡
echo ’2 * (1 - 1/5)’ | bc -l

6.46 We take a deck of cards, pick our favorite suit, hearts, and take the first five

cards, Ace, 2, 3, 4, and 5. We shuffle the five cards and lay them out. Voilá, we have

randomized the order of 1, 2, ..., 5.

6.47 Whenever we pick an empty cell, we have to try again.

6.48 We pick the entry at position 1 and swap it with the entry at position 5. Then

we pick the entry at position 3 and swap it with the entry at position 4, and so on.

In the last step the entry at position 2 is swapped with itself, so nothing changes and

we get our final permutation, 4, 2, 5, 3, and 1.

�푟 = 1, �푛 = 5 �푟 = 3, �푛 = 4 �푟 = 1, �푛 = 3 �푟 = 2, �푛 = 2 Result

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

5 2 3 4 1

1 2 3 4 5

5 2 4 3 1

1 2 3 4 5

4 2 5 3 1

1 2 3 4 5

4 2 5 3 1

354 6 Evolution within Populations

6.49 We note that child1 of node 5 is 1.

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Child1 1

Child2

Time 0 0 0 0

6.50 We replace node 1 by node 4.

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4

Child1 1

Child2

Time 0 0 0 0

6.51 We enter node 2 as the second child of node 5 and replace node 2 by node 5.

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4 5

Child1 1

Child2 2

Time 0 0 0 0

6.52 We continue the construction with parent 6. Its first child is the node at position

1, which is 4. Then node 3 is placed at position 1, and is thus drawn as the second

child of 6. Finally, the node at position 1 is replaced by node 6:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4 5

3

6

Child1 1 4

Child2 2 3

Time 0 0 0 0

6.2 The Coalescent 355

This leaves only two children for 7, 5 and 6; so the final topology is

〈cli〉+≡
printf "digraph g{7->5;7->6;5->1;5->2;6->4;6->3}\n" |

dot -T x11

7

5 6

1 2 4 3

6.53 Our node times were 0.1, 0.13, and 0.42, which gives us the branch lengths.

〈cli〉+≡
printf "((1:0.1,2:0.1):0.32,(3:0.13,4:0.13):0.29);\n" |

plotTree

 1

 2

 3

 4

0.1

6.54 If the user hasn’t set a sample size or a seed, we print a usage message and exit.

〈Set usage, Prog. 6.6〉≡
if (!n || !seed) {

print "Usage: awk -f pick.awk -v n=<n> -v seed=<seed>"

exit

}

6.55 We first run pick.awk.

〈cli〉+≡
awk -f pick.awk -v seed=$RANDOM -v n=4

Pa C1 C2

5 1 2

6 1 2

7 1 1

356 6 Evolution within Populations

Then we run coat.awk.

〈cli〉+≡
awk -f coat.awk -v n=4 -v seed=$RANDOM

T_4 0.156085

T_3 0.204576

T_2 0.234759

So we can fill in our table:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4 5

3 6

6

Child1 1 4 3

Child2 2 5 6

Time 0.00 0.00 0.00 0.00 0.16 0.20 0.23

From this we plot the tree.

〈cli〉+≡
printf "(((1:0.16,2:0.16):0.04,4:0.2):0.03,3:0.23);\n" |

plotTree

 1

 2

 4

 3

0.01

6.56 We calculate �휆 = 0.5 × 10/2 = 2.5 and run rpos with this mean.

〈cli〉+≡
rpois -m 2.5

6.57 We loop over the six branch lengths to find a total of four mutations.

〈cli〉+≡
for a in 0.16 0.16 0.04 0.2 0.03 0.23

do

printf "%s " $a

l=$(echo "$a / 2 * 10" | bc -l)

rpois -m $l

done

6.2 The Coalescent 357

0.16 0

0.16 1

0.04 0

0.20 0

0.03 0

0.23 3

6.58 Our tree had four segregating sites, which is far fewer than the expected 18.3.

〈cli〉+≡
watterson -n 4 -t 10

6.59 We run the simulations, grab the trees, and plot them. We know from our

coalescent construction that the branching order and the branch lengths are not

affected by �휃, only the mutations on the branches. Just to remind ourselves that that’s

the case, we play with �휃 = 10 and �휃 = 99.

〈cli〉+≡
ms 4 10 -t 10 -T | grep ’ˆ(’ | plotTree

ms 4 10 -t 99 -T | grep ’ˆ(’ | plotTree

6.60 In a coalescent, the scale bar measures branch lengths in units of �푁 generations,

where�푁 is the total number of copies of that particular gene. The scale bar in Fig. 6.14

is �푁/100 generations long.

6.61 We generate 104 replicates with ms, extract the number of segregating sites,

and plot their histogram.

〈cli〉+≡
ms 4 10000 -t 10 |

awk ’/ˆs/{print $2}’ |

histogram -f |

plotLine -x S -y Frequency

6.62 We simulate 104 samples and compute the frequency of samples with at least

50 segregating sites. That frequency is the error probability when rejecting the null

hypothesis that the observation arose under the Wright-Fisher model. It turns out

that �푃 ≈ 0.025, so we reject the null hypothesis and start looking for an alternative

explanation.

〈cli〉+≡
ms 4 100000 -t 10 |

awk ’/ˆs/{if($2>=50)s++;c++}END{print "P=",s/c}’

6.63 We get a HTML file listing directories and files.

6.64 At the time of writing we counted 10 releases.

〈cli〉+≡
curl -s $url | grep REL | wc -l

358 6 Evolution within Populations

6.65 We run curl on the current URL and get a HTML-formatted list of files.

〈cli〉+≡
curl -s $url

6.66 From the previous curl listing we find that our target file contains a whopping

21 G, that is gigabytes. So it would be nice if we could query this large file without

downloading it.

6.67 The tabix man page tells us that -l lists the chromosome names. These are

the autosomes 1–19, the sex chromosomes X and Y, and the mitochondrial genome

MT.

〈cli〉+≡
man tabix

tabix -l $url

1

2

...

19

X

Y

MT

6.68 We find that the index file contains 2.5 MB, over eight thousand times less than

the parent file.

〈cli〉+≡
ls -l *.tbi

echo ’21000/2.5’ | bc -l

6.69 We grab the lines with contig lengths, format them as a table, and sort that

table by chromosome length. We find that, indeed, chromosome 19 is the shortest

mouse chromosome with 61.4 Mb.

〈cli〉+≡
tabix -H $url | grep length | tr ’,=’ ’\t’ | tr -d ’>’ |

sort -k 5 -n

##contig <ID MT length 16299

##contig <ID 19 length 61431566

##contig <ID 18 length 90702639

##contig <ID Y length 91744698

##contig <ID 17 length 94987271

##contig <ID 16 length 98207768

...

6.2 The Coalescent 359

6.70 We might want to access the header line repeatedly, so we save it to file. Then

we list the first nine column headers.

〈cli〉+≡
tabix -H $url | tail -n 1 > h.txt

awk ’{for(i=1;i<=9;i++)print i,$i}’ h.txt

1 #CHROM

2 POS

3 ID

4 REF

5 ALT

6 QUAL

7 FILTER

8 INFO

9 FORMAT

The important columns for us are 1 (chromosome), 2 (position), 4 (reference base),

and 5 (alternative alleles). If you’re interested in more details on the VCF format,

take a look at the VCF specification at

https://samtools.github.io/hts-specs

6.71 There are 45 columns in total, so the sample size is 45 − 9 = 36.

〈cli〉+≡
awk ’{print NF}’ h.txt

6.72 The first SNP is a T/G polymorphism at position 3,000,287, the second SNP is

a G/A polymorphism at position 3,000,430.

6.73 We count the number of lines in the region and find that it contains 65 SNPs.

〈cli〉+≡
tabix $url 19:50,900,001-50,901,000 | wc -l

6.74 Mice are diploid and 36 of them were genotyped, so we might be tempted to

say �푛 = 2 × 36 = 72. However, the mice in the sample are inbred strains, so we treat

them as effectively haploid and set �푛 = 36.

6.75 The SNP count returns 1,819,897 SNPs, 1.8 million.

6.76 According to Watterson’s equation,

�휃 =
�푆

∑�푛−1
�푖=1 1/�푖

.

�푆 is the number of SNPs, 1,819,897, divided by the length of chromosome 19,

61,431,566. To get the harmonic number,
∑�푛−1

�푖=1 1/�푖, we realize that according to

Watterson’s equation this is equal to �푆 for �휃 = 1. So we run watterson with �휃 = 1

and �푛 = 36, to get
∑�푛−1

�푖=1 1/�푖 ≈ 4.15.

〈cli〉+≡
watterson -t 1 -n 36

Using these numbers, we estimate �휃 = 0.007 per nucleotide.

〈cli〉+≡
echo ’1819897/61431566/4.1467814’ | bc -l

360 6 Evolution within Populations

6.77 Our �휃 per site becomes 7 for the 1 kb region, and with �푛 = 36 we calculate that

approximately 29 SNPs would be expected.

〈cli〉+≡
watterson -t 7 -n 36

6.78 We simulate 104 samples of 36 haplotypes with �휃 = 7 and calculate the

frequency with which we find 65 or more segregating sites. That frequency is 0.005,

so the observed number of SNPs is incompatible with the simple Wright-Fisher

model we used in our simulation.

〈cli〉+≡
ms 36 10000 -t 7 |

awk ’/ˆs/{if($2>=65)s++;c++}END{print s/c}’

Chapter 7

Interrogating and Storing Data

7.1 Statistics

7.1 We change into the directory for chapters, make the directory for this particular

chapter, 7, change into that, make the directory for this section, 1, and change into

that, too.

〈cli〉≡
cd $BEB/ch/

mkdir 7

cd 7/

mkdir 1

cd 1/

7.2 We are told in the abstract that eight patients were included.

7.3 We browse the file with less and find that it contains a header section delimited

by three characters, hat, exclamation mark, and hash. This is followed by the data

table consisting of 18 columns. The first column is the name of the expression

probe, the second the name of the genetic locus. This is followed by 16 columns of

expression values for that probe.

7.4 The 18 columns are described in the section ˆDATASET. Columns 3–10 are the

expression measurements from day 1, columns 11–18 the expression measurements

from day 60.

7.5 We repeat the command for constructing d1.txt, except this time we print data

columns 11–18.

〈cli〉+≡
awk ’!/ˆ[!ˆ#]/’ GDS4374.soft |

tail -n +2 |

awk ’{printf "%s$%s", $1, $2;

for(i=11;i<=18;i++)printf "\t%s",

361© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20414-2_14&domain=pdf

362 7 Interrogating and Storing Data

$i; printf "\n"}’ > d60.txt

7.6 The first ten lines of d1.txt contain a mix of genome locations, chr*, and genes

with names like OR4F17, which stands for “olfactory receptor family 4 subfamily F

member 17”.

〈cli〉+≡
head d1.txt

7896736$chr1:53049-54936 5.39918 5.61156...

7896738$chr1:63015-63887 3.00959 4.17693...

7896740$OR4F17 4.20353 4.95256...

7896742$LOC100134822 6.7929 7.1427...

7896744$OR4F29 6.25756 6.58153...

7896746$chr1:564951-565019 8.24911 8.7578...

7896748$chr1:566062-566129 9.42788 9.9854...

7896750$chr1:568069-568136 6.29291 5.08721...

7896752$M37726 8.16604 8.28596...

7896754$LOC100287934 7.45301 6.97922...

7.7 The last ten lines of d1.txt contain only control probes.

〈cli〉+≡
tail d1.txt

...

7896730$control 6.59805 7.52338...

7.8 We count the lines in d1.txt or d60.txt to find that 33,297 probes were

assayed.

〈cli〉+≡
wc -l d1.txt

7.9 We extract the gene names from the probe identifiers in the first column, remove

lines containing chr and control, and count the remaining unique entries to find

that 20,414 distinct genes were assayed.

〈cli〉+≡
cut -f 1 d1.txt | tr ’$’ ’\t’ | cut -f 2 | grep -v chr |

grep -v con | sort | uniq | wc -l

7.10 We repeat the previous command, except that this time we use uniq -c to

count the distinct genes. Then we reverse-sort the gene counts and print the first 10.

Their probe counts vary from 26 for LINC00965 to 12 for DUX4.

〈cli〉+≡
cut -f 1 d1.txt | tr ’$’ ’\t’ | cut -f 2 | grep -v chr |

grep -v con | sort | uniq -c | sort -n -r | head

7.1 Statistics 363

26 LINC00965

17 SNORD115-24

17 IGKC

16 SPDYE16

16 LOC100134822

15 USP17L15

15 NBPF25P

13 PKD1P6-NPIPP1

12 GOLGA8R

12 DUX4

7.11 We use grep to find the rows of ACKR2 expression values. There happen to be

only two, one for each day monitored.

〈cli〉+≡
grep -i ACKR2 d*.txt

d1.txt:8079117_ACKR2 5.72763 6.04518 5.67683 5.69512 ...

d60.txt:8079117_ACKR2 6.59111 6.40809 6.11825 6.2248 ...

7.12 We run expr.sh on ACKR2 and plot its results with plotLine, without the y

axis.

〈cli〉+≡
bash expr.sh ACKR2 | plotLine -P -x "Expression level" -u y

7.13 We compute the average expression values of ACKR2 with Awk. It is 5.8 on

day 1 and 6.3 on day 60.

〈cli〉+≡
grep ACKR2 d*.txt |

awk ’{s=0;for(i=2;i<=NF;i++)s+=$i;print $1,s/(NF-1)}’

d1.txt:8079117_ACKR2 5.82425

d60.txt:8079117_ACKR2 6.30631

7.14 We calculate the fold change as �푓 = 2 |�푎1−�푎2 | and find a �푓 = 1.4. So acute

amebic colitis leads to a 1.4-fold decrease in the expression of ACKR2.

〈cli〉+≡
awk ’BEGIN{d=6.30631-5.82425; print 2ˆd}’

1.39674

7.15 testMeans works on pairs of files, so we extract the expression values for

ACKR2 into files ackr2 1.txt and ackr2 60.txt and then apply testMeans to

them. We find �푃 = 10−4, which indicates a highly significant difference if our

acceptance threshold is the customary �훼 = 0.05.

〈cli〉+≡
grep ACKR2 d1.txt > ackr2_1.txt

grep ACKR2 d60.txt > ackr2_60.txt

testMeans ackr2_1.txt ackr2_60.txt

364 7 Interrogating and Storing Data

ID m1 m2 t P

8079117_ACKR2 5.82 6.31 -5.33 0.000106

We are shown the two means, the �푡 statistic for Student’s �푡 test, and the �푃-value.

7.16 The program var tells us �푎1 = 5.8243, �푎2 = 6.3063, {1 = 0.0213, and {2 =

0.0441. So �푡 = −5.33, as printed by testMeans.

〈cli〉+≡
tr ’\t’ ’\n’ < ackr2_1.txt | tail -n +2 | var

tr ’\t’ ’\n’ < ackr2_60.txt | tail -n +2 | var

echo ’(5.8243-6.3063)/sqrt(7*(0.0213+0.0441)/14)/sqrt(2/8)’ |

bc -l

7.17 We got the averages 6.133 and 5.997, so the difference is 0.136, which is much

smaller than the original difference of roughly 0.48.

〈cli〉+≡
echo ’5.8243-6.3063’ | bc -l

7.18 Like gambling at the Monte Carlo Casino in Monaco, a Monte Carlo method

in statistics is based on chance.

7.19 We run testMeans with 107 replicates and find �푃 ≈ 3 × 10−5, which is even

smaller than the �푃 ≈ 10−4 found with the �푡 test.

〈cli〉+≡
testMeans -m 10000000 ackr2_*.txt

ID m1 m2 t P

8079117$ACKR2 5.82 6.31 -5.33 3.18e-05

7.20 With 100 iterations we got �푃 < 10−2. One implication of the Monte Carlo

method with �푛 iterations is that we cannot exactly quantify �푃-values less than 1/�푛.

7.21 A “significant” difference might not be all that surprising if we repeat an

experiment 33 thousand times.

7.22 We remove the header line and extract four pseudo-positive results from our

data, which is close to the expectation of 100 × �훼 = 5.

〈cli〉+≡
testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5<=0.05’

7.23 We run simNorm twice to create new versions of exp1.txt and exp2.txt.

Then we apply testMeans and find 485 false positives, which again is close to the

expectation of 104 × 0.05 = 500.

〈cli〉+≡
simNorm -i 10000 -m 12 > exp1.txt

simNorm -i 10000 -m 12 > exp2.txt

testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5<=0.05’ | wc -l

7.1 Statistics 365

7.24 With 99% probability, that is almost certainly, will we have at least one false

positive in 100 tests without true difference when �훼 = 0.05.

〈cli〉+≡
echo ’1 - (1 - 0.05)ˆ100’ | bc -l

7.25 In the script fp.sh we iterate over the �훼-values. For each �훼-value we iterate

over 104 tests and print the results marked by �훼.

Prog. 7.7 (fp.sh)

〈fp.sh〉≡
for a in 0.05 0.01 0.001 0.0001

do

awk -v a=${a} \

’BEGIN{for(i=1;i<=10000;i++)print i, 1-(1-a)ˆi, a}’

done

Then we run fp.sh and generate a log/log plot with plotLine. We move the key

out of the way of the graph.

〈cli〉+≡
bash fp.sh |

plotLine -l xy -x "Number of tests" -y "f_p" \

-g "set key center right"

7.26 We use the same computation of the false positive rate as before, except this

time we divide �훼 by 104. With this correction, we find no false positives. We know

that all samples were drawn from the same population, so this is the correct result.

〈cli〉+≡
testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5<=0.05/10000’

7.27 We count 5,466 false negative tests, so �훽 > 0.5. The small difference in means

and the small sample size makes more than half the results false negative.

〈cli〉+≡
testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5>0.05’ | wc -l

7.28 With �푛 = 16 we find �훽 = 0.23.

〈cli〉+≡
simNorm -n 16 -i 10000 -m 12 > exp1.txt

simNorm -n 16 -i 10000 -m 11 > exp2.txt

testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5>0.05’ | wc -l

With �푛 = 32 we find �훽 = 0.02, which might be a level of under-reporting we are

prepared to live with.

〈cli〉+≡
simNorm -n 32 -i 10000 -m 12 > exp1.txt

simNorm -n 32 -i 10000 -m 11 > exp2.txt

testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5>0.05’ | wc -l

366 7 Interrogating and Storing Data

7.29 We run the analysis with the corrected �훼 and find a disconcertingly large

false negative rate of 0.82. This means, the Bonferroni correction leads to a large

type II error and thereby obscures a lot of true differences between the two sets of

experiments.

〈cli〉+≡
testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5>0.05/10000’ |

wc -l

7.30 We count the non-significant values among the sorted �푃-values to find the false

negative rate, �훽, which is 0.02 in our case. This is close to the �훽 we saw before, only

this time with correction for multiple testing.

〈cli〉+≡
testMeans exp1.txt exp2.txt | tail -n +2 | sort -g -k 5 |

awk ’$5>NR*0.05/10000’ | wc -l

7.31 As expected, the type I error is approximately �훼, in our case it happens to be

0.0501.

〈cli〉+≡
testMeans exp1.txt exp2.txt | awk ’!/ˆ#/ && $5<=0.05’ | wc -l

7.32 In our simulation the type I error is removed entirely. In other words, the

Benjamini-Hochberg correction removes the type I error as thoroughly as the Bon-

ferroni correction, but without the concomitant increase in type II error.

〈cli〉+≡
testMeans exp1.txt exp2.txt | tail -n +2 | sort -g -k 5 |

awk ’$5<=NR*0.05/10000’ | wc -l

7.33 Our type I error is still zero.

〈cli〉+≡
testMeans exp1.txt exp2.txt | tail -n +2 | sort -g -k 5 |

awk ’$5<=NR*0.1/10000’ | wc -l

7.34 We run testMeans on the experimental data and analyze the sorted �푃-value

keeping in mind that a total of 33,297 tests is being carried out. We filter out the

control probes and end up with 25 significant loci, among them ACKR2.

〈cli〉+≡
testMeans d*.txt | tail -n +2 | sort -k 5 -g |

awk ’BEGIN{m=33297;d=0.1}{if($5<=NR*d/m)print}’ |

tr ’$’ ’\t’ | awk ’{print $2}’ | sort | uniq |

grep -v control | wc -l

7.2 Relational Databases 367

7.2 Relational Databases

7.35 We change into the directory for this chapter, 7, make the directory for this

section, 2, and change into that.

〈cli〉≡
cd $BEB/ch/7/

mkdir 2

cd 2/

7.36 We copy the two files from the neighboring directory.

〈cli〉+≡
cp ../1/d*.txt .

7.37 We declare the remaining seven measurements. Mind the comma after the last

declaration.

〈Attributes, Prog. 7.2〉+≡
M2 float,

M3 float,

M4 float,

M5 float,

M6 float,

M7 float,

M8 float,

7.38 We can reuse the attributes and add the keys.

〈Create d60, Prog. 7.2〉≡
create table d60 (

〈Attributes, Prog. 7.2〉
primary key(Probe),

foreign key(Probe) references d1(Probe)

);

7.39 We get the names of the two tables we just created, d1 and d60.

7.40 The table schema are the structures of the tables in a database. These structures

are reproduced by showing the SQL commands we used for creating the tables.

7.41 We replace the dollar by a tab, write the result to a temporary file, and move

the temporary file to its old name.

〈cli〉+≡
tr ’$’ ’\t’ < d1.txt > tmp

mv tmp d1.txt

tr ’$’ ’\t’ < d60.txt > tmp

mv tmp d60.txt

368 7 Interrogating and Storing Data

7.42 We work on the same pattern we just saw, replace tabs by pipes, save to a

temporary file, and move the temporary file to the old name.

〈cli〉+≡
tr ’\t’ ’|’ < d1.txt > tmp

mv tmp d1.txt

tr ’\t’ ’|’ < d60.txt > tmp

mv tmp d60.txt

7.43 We get all attributes for the first ten lines of table d1.

7896736|chr1:53049-54936|5.39918|5.61156|5.29747|5.36575|...

7896738|chr1:63015-63887|3.00959|4.17693|3.14918|2.88891|...

7896740|OR4F17|4.20353|4.95256|3.69622|3.83216|...

7896742|LOC100134822|6.7929|7.1427|6.52695|7.12517|...

...

7.44 We repeat the counting for table d60 and find that, as expected, it also has

33,297 entries.

〈cli〉+≡
sqlite3 colitis.db "select count(*) from d60"

7.45 We edit the from part to refer to table d60 and repeat the query.

〈cli〉+≡
f60="from d60"

q="$s $f60 $w"

sqlite3 colitis.db "$q"

8079117|ACKR2|6.59111|6.40809|6.11825|6.2248|...

7.46 We edit the query to select from table 60, run it again, and find as before that

the average expression of ACKR2 on day 60 is 6.31.

〈cli〉+≡
q="$s $f60 $w"

sqlite3 colitis.db "$q"

7.47 We construct the histogram for day 1 and mark it d1. Then we construct the

histogram for day 60, mark it d60, and append it to the data for day 1. In the last step

we plot the two histograms with plotLine.

〈cli〉+≡
q="$s $f1"

sqlite3 colitis.db "$q" | histogram |

awk ’{print $0, "d1"}’ > hist.dat

q="$s $f60"

sqlite3 colitis.db "$q" | histogram |

awk ’{print $0, "d60"}’ >> hist.dat

plotLine -x Expression -y Count hist.dat

7.2 Relational Databases 369

7.48 We just change the table we select from and find that on day 60 the ribosomal

precursor is also the most highly expressed gene.

〈cli〉+≡
q="$s $f60 $w"

sqlite3 colitis.db "$q"

RNA45S5|13.2882375

7.49 On day 1 the long intergenic non-protein coding RNA 910, LINC00910, had

the lowest expression. On day 60 it was the small nuclear RNA SNORD115-4.

〈cli〉+≡
s="select sym, min((m1+m2+m3+m4+m5+m6+m7+m8)/8)"

q="$s $f1 $w"

sqlite3 colitis.db "$q"

q="$s $f60 $w"

sqlite3 colitis.db "$q"

7.50 Many of the fold changes are negative. There is no easy way to fix this inside

SQL as it lacks if clauses. Also, remember that we’ve just calculated the exponents,

�푥, of a fold change �푓 = 2�푥 . Again, this cannot be expressed easily in SQL.

AQP8|-1.7650625

SLC26A2|-1.5081625

CLDN8|-1.4194175

SLC30A10|-1.34726375

TRPM6|-1.3328225

ABCG2|-1.31636

TMIGD1|-1.18503125

CKB|-1.1636475

CD177|-1.15492875

HMGCS2|-1.1079

7.51 We run fc.awk with the variable h set to a value that is neither zero nor the

empty string.

〈cli〉+≡
awk -f fc.awk -v h=1

7.52 We print a table of symbol, fold change, and type. The simplicity of the table

makes it suitable for further downstream analysis.

〈Print fold change, Prog. 7.4〉≡
printf "%s\t%f\t%s\n", sym, 2ˆex, type

7.53 We filter the output from fc.awk for increase and look for the greatest to find

that REG1B and REG1A have the largest fold changes.

〈cli〉+≡
sqlite3 colitis.db < fc.sql | tr ’|’ ’\t’ | awk -f fc.awk |

awk ’$3 ˜ /ˆi/’ | sort -k 2 -n -r | head

370 7 Interrogating and Storing Data

REG1B 10.505706 incr

REG1A 7.136121 incr

MMP3 5.495597 incr

S100A8 4.393582 incr

MMP1 3.980694 incr

DMBT1 3.686329 incr

CHI3L1 3.499157 incr

AQP9 3.212249 incr

S100A9 3.009985 incr

SLC6A14 2.818331 incr

7.54 REG1B and in particular REG1A are associated with islet cell regeneration.

The authors of the colitis study suggested that these two genes are also involved in the

regeneration of the intestinal mucosa, which is ulcerated in acute amebic colitis [36].

7.55 We repeat our esearch query, only this time we filter for decrease.

〈cli〉+≡
sqlite3 colitis.db < fc.sql | tr ’|’ ’\t’ | awk -f fc.awk |

awk ’$3 ˜ /ˆd/’ | sort -k 2 -n -r | head

AQP8 3.398887 decr

SLC26A2 2.844475 decr

CLDN8 2.674775 decr

SLC30A10 2.544291 decr

TRPM6 2.518950 decr

ABCG2 2.490370 decr

TMIGD1 2.273683 decr

CKB 2.240231 decr

CD177 2.226733 decr

HMGCS2 2.155317 decr

7.56 We repeat our query and replace REG1B by AQP8. We find that AQP8 is

expressed in the colon, where it encodes a water channel. Given that colitis causes

diarrhea, which is associated with dehydration, changes in water channel expression

in the colon seems like a plausible response.

〈cli〉+≡
q="AQP8 [GENE] AND Homo sapiens [ORGN]"

esearch -db gene -query "$q" | efetch -format docsum |

xtract -pattern DocumentSummary -element Summary

7.57 We append the missing part of the query.

〈Construct query, Prog. 7.5〉+≡
"(d60.m1+d60.m2+d60.m3+d60.m4+" +

"d60.m5+d60.m6+d60.m7+d60.m8)/8 " +

"from d1 join d60 " +

"where d1.probe=d60.probe " +

"and d1.sym not like ’chr%’ " +

"and d1.sym not like ’control’"

7.58 We work on the same pattern as the previous error check and abort with message

if things went awry.

〈Run query, Prog. 7.5〉+≡
if err != nil {

log.Fatalf("couldn’t run %q", q)

}

7.2 Relational Databases 371

7.59 We’ve previously had three columns, the gene symbol, the fold change, and the

type of change. That’s what we should aim for here, too.

7.60 The first column is the gene symbol, the second the exponent of the fold change.

7.61 If there is an error, we bail with a friendly message.

〈Print a row, Prog. 7.5〉+≡
if err != nil {

log.Fatal("can’t scan this row")

}

7.62 We just add math in quotes to our list of imports.

〈Imports, Prog. 7.5〉+≡
"math"

7.63 We add fmt in quotes to the list of imports.

〈Imports, Prog. 7.5〉+≡
"fmt"

7.64 Like in the printf function of Awk and the shell, these are printing verbs, %s

is replaced by a string, %.6f by a floating point number with six significant digits.

7.65 We are told the module alpha.beth has been created and that we should run

go mod tidy next.

go: creating new go.mod: module alpha.beth

go: to add module requirements and sums:

go mod tidy

7.66 We are told that Go is finding the go-sqlite3 package and that it found a

particular version of it. In our case version 1.14.13.

go: finding module for package .../go-sqlite3

go: found .../go-sqlite3 in .../go-sqlite3 v1.14.13

7.67 We get a nicely formatted table of fold changes.

#Sym FC Type

OR4F17 1.139907 incr

LOC100134822 1.106722 incr

...

7.68 We cut off the table header, sort by fold change and look at the genes with the

smallest fold changes, which have remained remarkably constant.

〈cli〉+≡
./fc | tail -n +2 | sort -n -k 2 | head

372 7 Interrogating and Storing Data

SPACA6 1.000005 decr

OR2T5 1.000009 incr

SNORA48 1.000010 incr

MAML1 1.000017 incr

GRIK2 1.000023 decr

LHX6 1.000026 incr

MIR105-2 1.000033 decr

KLK4 1.000038 decr

APBA3 1.000043 decr

SNORA14A 1.000049 decr

7.69 At the time of writing, Ensembl consisted of a staggering 17,119 databases.

〈cli〉+≡
tail -n +2 dbs.txt | wc -l

7.70 We filter for the 431 databases on human.

〈cli〉+≡
grep homo_sapiens dbs.txt | wc -l

7.71 We count the 59 core databases for human.

〈cli〉+≡
grep homo_sapiens_core_ dbs.txt | wc -l

7.72 We sort the version numbers to find that at the time of writing the highest is

106.

〈cli〉+≡
grep homo_sapiens_core_ dbs.txt | tr ’_’ ’\t’ |

sort -k 4 -n | tail -n 1

7.73 There are 77 tables in homo sapiens core 106 38.

〈cli〉+≡
mysql $c -e "show tables" | tail -n +2 | wc -l

7.74 We get a table with four rows, one for each attribute. An attribute is called

field in Mysql. Each field has a type and cannot be null. The field seq region id

is the primary key. The default value of each field is null, and seq region id is

automatically incremented whenever a new row is added to seq region.

Field Type Null Key Default Extra

seq region id int(10) unsigned NO PRI NULL auto increment

name varchar(255) NO MUL NULL

coord system id int(10) unsigned NO MUL NULL

length int(10) unsigned NO NULL

7.75 There are 268,933, roughly 270 thousand, rows in seq region, so listing all

of them wouldn’t be very productive.

+----------+

| count(*) |

+----------+

| 268933 |

+----------+

7.2 Relational Databases 373

7.76 There are nine distinct coordinate system IDs among the 270 thousand entries.

+----------------------------------+

| count(distinct(coord_system_id)) |

+----------------------------------+

| 9 |

+----------------------------------+

7.77 We list its six attributes coord system id, species id, name, version,

rank, and attribute.

〈cli〉+≡
mysql $c -e "describe coord_system"

7.78 We count nine entries in the table. We might have guessed this from the fact

that there are nine distinct coordinate system IDs in seq region.

〈cli〉+≡
mysql $c -e "select count(*) from coord_system"

+----------+

| count(*) |

+----------+

| 9 |

+----------+

7.79 We list all of coord system to find that the chromosomes from GRCh38 have

ID 4.

〈cli〉+≡
mysql $c -e "select * from coord_system"

7.80 It is true, we get the expected 24 chromosomes.

〈cli〉+≡
mysql $c -e "$q" | tail -n +2 | wc -l

7.81 We store the chromosome lengths in the file chrLen.txt so we don’t have to

repeatedly query Ensembl while experimenting with the plotting. Then we format

the chromosome lengths and plot them with plotLine.

〈cli〉+≡
mysql $c -e "$q" | tail -n +2 > chrLen.dat

awk -f fcl.awk chrLen.dat |

plotLine -x Chromosome -y Length -P

7.82 We edit the first line of our current query and find that the human genome

comprises 3,088,269,832 bp, 3.1 Gb.

〈cli〉+≡
q="select sum(length)"

q="$q from seq_region"

374 7 Interrogating and Storing Data

q="$q where coord_system_id = 4"

q="$q and name not like ’CHR%’"

q="$q and name not like ’MT’"

mysql $c -e "$q"

+-------------+

| sum(length) |

+-------------+

| 3088269832 |

+-------------+

7.83 There are three chromosomes that have more DNA than their name would

suggest. The closest call is for chromosome 10 with 134 Mb and chromosome 11

with 135 Mb. Among the short chromosomes we have two odd pairs. Chromosome 19

has 59 Mb, chromosome 20 has 64 Mb; and chromosome21 has 47 Mb, chromosome

22 has 51 Mb.

7.84 We describe table gene to find 16 attributes.

〈cli〉+≡
mysql $c -e "describe gene"

7.85 We count the 69,340 entries in gene, so there are roughly seventy thousand

genes known in human.

〈cli〉+≡
mysql $c -e "select count(*) from gene"

+----------+

| count(*) |

+----------+

| 69340 |

+----------+

7.86 We cut the table header from the gene lengths, divide them by 100,000, and

save them in the file len.dat. Then we plot them with histogram and plotLine.

The y axis has a log scale, which is only possible if there are no zeros among the y

values. So wherever there’s a zero y, we set it to 1.

〈cli〉+≡
q="select seq_region_end - seq_region_start + 1"

q="$q from gene"

mysql $c -e "$q" | tail -n +2 |

awk ’{print $1/100000}’ > geneLen.dat

histogram geneLen.dat |

awk ’$2!=0{print}$2==0{print $1, 1}’ |

plotLine -x "Gene length (x 100 kb)" -y Count -l y

7.2 Relational Databases 375

7.87 The combined gene length is roughly 2.2 Gb, which means that at most

2.2/3.1 ≈ 71% of the human genome are covered with genes. We say “at most”, as

the entries in gene might overlap.

〈cli〉+≡
q="select sum(seq_region_end-seq_region_start+1)"

q="$q from gene"

mysql $c -e "$q"

+--+

| sum(seq_region_end-seq_region_start+1) |

+--+

| 2194529663 |

+--+

7.88 We describe exon to find 13 attributes.

〈cli〉+≡
mysql $c -e "describe exon"

7.89 We count the 43,460,686 nucleotides, 43 Mb, in constitutive exons, which

cover only 1.4% of the human genome. It seems that vast regions of our genome

contribute little to the functioning of our cells.

+--+

| sum(seq_region_end-seq_region_start+1) |

+--+

| 43460686 |

+--+

〈cli〉+≡
echo ’43/3088’ | bc -l

7.90 We look up the entries for ACKR2 and are reminded that it is an “atypical

chemokine receptor 2”.

〈cli〉+≡
q="select *"

q="$q from xref"

q="$q where display_label like ’ACKR2’"

mysql $c -e "$q"

7.91 We find that ENSG00000144648 is the stable ID of ACKR2. It’s clear why we

like using mnemonic names like ACKR2 rather than stable IDs...

+---------------+-----------------+

| display_label | stable_id |

+---------------+-----------------+

| ACKR2 | ENSG00000144648 |

+---------------+-----------------+

Appendix A

Unix Guide

This is a summary of some of our favorite Unix commands. It is meant to be read next

to a computer running the Unix operating system, so that readers can experiment.

For further reading we recommend the system’s online documentation. In addition,

we have learned our Unix craft from books, for example [1].

New Location

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1–3

6

1–2

7

1–2

a

data

We create the directory a for appendix and change into it.

〈cli〉≡
cd $BEB/ch/

mkdir a

cd a/

File Editing

Of the various text editors available on Unix systems, we recommend emacs, as it

comes with a standard graphical user interface for casual use. At the same time, it

is a powerful tool for professionals. We start it and simultaneously create the file

new.txt. If the file new.txt had already existed, we’d have opened it.

〈cli〉+≡
emacs new.txt &

377

B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

378 A Unix Guide

This opens a window with standard menus runningemacs. We can now edit new.txt

using keyboard input and mouse moves. In addition, emacs comes with a rich set

of keyboard shortcuts, called “key bindings”, making its use much more efficient.

Table A.1 lists the key bindings we use regularly in our own work. The table also

illustrates the principle of creating different versions of commands through alternate

use of the control key, C, and the meta key, M. Commands referring to sentences only

work if a full stop is followed by at least two blanks. Two of these key combinations

are special: C-x and M-x. C-x is a prefix for other key combinations, and we have

listed the ones we find most useful in Table A.2. M-x is also a prefix for further

commands, but these are called by extended names like calendar rather than one or

two characters. Again, Table A.2 lists our favorites. The full list of key bindings can

be accessed by C-h b. The best place to start using the key bindings is the “Emacs

Tutorial” opened by C-h t.

Table A.1 Paired emacs key bindings (shortcuts)

Key Binding Key Binding

C-a move to beginning of line M-a move to beginning of sentence

C-b move backward one character M-b move backward one word

C-d delete character M-d delete word to the right

— — M-BACKSP delete word to the left

C-e move to end of line M-e move to end of sentence

C-f forward one character M-f forward one word

C-g keyboard quit — —

C-h help M-h mark paragraph

C-k delete line M-k delete sentence

C-l center buffer on current line M-l lower-case word

C-n next line — —

C-p previous line — —

— — M-q layout paragraph

C-r search backward M-r move to top/bottom of window

C-s search forward — —

C-t transpose characters M-t transpose words

— — M-u upper-case word

C-v scroll up M-v scroll down

C-w delete selection M-w copy selection

C-x command prefix (Table A.2) M-x execute extended command (Table A.2)

C-y paste — —

C-z suspend frame M-z delete to character

C- undo — —

C-SPC set mark — —

C-+ increase font size — —

C-- decrease font size — —

— — M-< move to beginning of buffer

— — M-> move to end of buffer

A Unix Guide 379

Table A.2 A selection of frequently used composite commands in emacs

Key Binding

C-M-\ indent region

C-x C-c quit

C-x C-f find file

C-x C-s save buffer

C-x C-w write file

C-x b switch buffer

C-x k kill buffer

C-x o switch to other buffer

M-x calendar start calendar

M-x count-words count lines, words, and characters

M-x g go to line

M-x help start help menu

M-x rename-buffer rename the current buffer

M-x shell run shell in emacs buffer

Working with Files

The myriad things we need to do with text files on a regular basis include viewing

them, measuring their size, and finding patterns in them. Table A.3 lists some of the

commands to carry out these tasks. The second command in that table, cp, copies

one or more files.

〈cli〉+≡
cp $BEB/data/aa.txt $BEB/data/polarity.dat .

The first command in Table A.3, cat, writes the contents of a file to the screen.

〈cli〉+≡
cat polarity.dat

Unix commands tend to come with options, for example, cat can number the lines

in a file.

〈cli〉+≡
cat -n polarity.dat

Commands and their options are documented in the manual pages, which are accessed

using the program man; for example,

〈cli〉+≡
man ls

This invokes the text viewer less, which responds to some of the same key bindings

as emacs, e. g. C-v to scroll down and M-v to scroll up. Inside man, h invokes help

and q quits.

380 A Unix Guide

Table A.3 Commands for working with files

Command Explanation

cat print (conCATenate) to screen

-n print numbered lines

cp file1 file2 copy file1 to file2, overwrite old file2 if it exists

cp file1 file2 toDir copy file1 and file2 to directory toDir

cut -f n cut the nth field

diff fromFile toFile find differences between fromFile and toFile

grep pattern print lines matching pattern

-v print lines not matching

head filename print first 10 lines of file

-n n print first n lines

less pager for viewing text

ls list names of all files in current directory

-l long listing for more information

mv file1 file2 move file1 to file2, overwrite old file2 if it exists

rm filenames remove named files, irrevocably

-r remove recursively directories and their contents

rmdir directory remove named directory

sort sort files alphabetically by line

-n sort numerically

-k n sort by column �푛

-r reverse sort

-R randomize

tail print last 10 lines of file

-n print last n lines

+n n start printing file at line n

uniq filenames filter out repeated lines in sorted input

-c count repeated lines

wc count lines, words, and characters

-l count lines

Entering Commands Interactively

Any command entered at a command prompt is interpreted by a program called the

“shell”, which runs inside a terminal window. There are different kinds of shells and

we can echo ours by printing the value of the variable SHELL.

〈cli〉+≡
echo $SHELL

The following description applies to the bash. Its most popular alternative, the zsh

is very similar. If the bash isn’t already running, it can be started by entering bash.

The command line auto completes prefixes of commands and file names in

response to pressing TAB once if the prefix is unique. Otherwise, by pressing TAB a

second time, the list of possible completions is presented. The most effective way of

interacting with the command line is to let this auto completion feature do as much

work as possible by mixing typing and tabbing. This may seem tricky at first, but

after a while it becomes second nature.

A Unix Guide 381

Like man, the shell is responsive to the same basic key bindings as emacs, which

is an added benefit from learning them.

Combining Commands: Pipes

Unix commands such as those listed in Table A.3 can be combined into programs

by using the output of one command as the input of another. To do this, individual

commands are combined via pipes denoted by a vertical line, |. For example, we

count the files in the current directory by making the output of ls the input of wc.

〈cli〉+≡
ls | wc -l

The shell can also expand file names, which allows us to count the files that end in

.txt.

〈cli〉+≡
ls *.txt | wc -l

Redirecting Output

By default, the result of a command is printed to the standard output stream called

stdout. This usually corresponds to the screen. We can redirect (>) the output from

the screen to a file.

〈cli〉+≡
ls > tmp

Now there’s a new file, tmp, containing the list of files.

〈cli〉+≡
ls

cat tmp

Redirection deletes the original contents of the target file. Its variant >> appends to

whatever is already in the file.

〈cli〉+≡
ls >> tmp

cat tmp

The redirection can also go the other way:

〈cli〉+≡
cat < tmp

382 A Unix Guide

Shell Scripts

Any command entered on the command line can be submitted to the system from a

text file called a “shell script”. We generate the shell script ls.sh for listing files.

〈cli〉+≡
echo ls > ls.sh

cat ls.sh

This can be executed by passing it to the bash.

〈cli〉+≡
bash ls.sh

The program bash reads ls.sh and follows the instructions it contains. Reading

and writing are the two operations permitted to user beth on ls.sh. We find out

about these file permissions with the long form of ls.

〈cli〉+≡
ls -l ls.sh

-rw-r--r-- 1 beth beth 3 Jun 24 10:39 ls.sh

The string -rw-r--r-- displays ten mode bits describing the file permissions. The

first mode bit is either d or dash for directory or file. The next three bits describe the

permissions of the user, beth. The first user bit is either r or dash for read or not.

The second user bit is either w or dash for write or not. The third user bit is either

x or dash for execute or not. The next three mode bits describe the permissions of

members of the group beth. The last three mode bits describe the permissions of all

users.

We switch on the execution mode bit of ls.sh for all users.

〈cli〉+≡
chmod +x ls.sh

ls -l ls.sh

-rwxr-xr-x 1 beth beth 3 Jun 24 10:39 ls.sh

Now we, and all other users, can execute ls.sh.

〈cli〉+≡
./ls.sh

Shell scripts can contain do loops and conditional statements. Say, a set of sequence

files with names of the form fileName.txt need changing to fileName.fasta.

The script files.sh generates 10 example files.

〈files.sh〉≡
for f in 1 2 3 4 5 6 7 8 9 10

do

echo ’>s’${f} > s${f}.txt

echo ’ACCGT’ >> s${f}.txt

done

A Unix Guide 383

The variable f takes the values of the list to the right of in. The value of f is

referenced by writing it in curly brackets and prefixing it with $. The command echo

prints its argument. These files are in FASTA format, a header line starting with >

followed by one or more lines of sequence data.

Instead of explicitly specifying a sequence of numbers, seq can be used:

for f in $(seq 10)

To change the file extensions from .txt to .fasta, we construct the script

rename.sh by looping over all arguments on the command line, which are con-

tained in the variable $@.

〈rename.sh〉≡
for f in $@

do

mv ${f} ${f%txt}fasta

done

So we can capture all files with extension .txt and replace their extension by

.fasta.

〈cli〉+≡
bash rename.sh *.txt

Directories

Directories may contain files and other directories. The Unix file system is thus

hierarchical and can be depicted as a tree of directories. Fig. A.1 shows a portion of

this tree. There are four special directory names:

1. / The root directory is the most basic directory situated at the root of the file

system.

2. ˜ The home directory is accessed after logging in. It is the only directory in

which a user can create files and directories.

3. . The working directory is the user’s current location.

4. .. The parent directory is up one level from the working directory.

The full name of a directory such as

/home/beth

is known as its path. A forward slash (/) can therefore either refer to the root directory

or function as a delimiter of directory names. Table A.4 summarizes the essential

commands for working with directories.

384 A Unix Guide

/

bin etc home

alpha beth

books

beb

biobox ch

1

1–3

2

1–3

3

1–4

4

1–5

5

1–3

6

1–2

7

1–2

a

data

tmp usr var

Fig. A.1 Part of a directory tree

Table A.4 Commands for working with directories

Command Explanation

cd .. move up one level in the file system

cd return to home directory

cd directoryname change to the named directory

mkdir directoryname make the named directory

pwd print working directory

rmdir directoryname remove the named directory

Filters

Programs for filtering textual data are the bread and butter of bioinformatics. The

following sections introduce four of the most popular filters: grep, tr, sed, and awk.

Three of these, grep, sed, and awk, make use of a common notation for specifying

patterns in strings. Such patterns are called “regular expressions”, and we’ll see a

few examples.

a 10

b 11

c 12

d 15

e 11

Fig. A.2 Sample data contained in the file data.dat

A Unix Guide 385

grep

We copy the file of example data to our current directory and look at its contents,

which are also shown in Fig. A.2.

〈cli〉+≡
cp $BEB/data/data.dat .

cat data.dat

We extract the lines matching 11.

〈cli〉+≡
grep 11 data.dat

b 11

e 11

With -v we get the lines not matching.

〈cli〉+≡
grep -v 11 data.dat

a 10

c 12

d 15

We can also search for more complex patterns, for example, [25] matches 2 or 5.

〈cli〉+≡
grep ’[25]’ data.dat

c 12

d 15

tr

The program tr is used to translate or delete characters. Unlike many Unix tools,

tr does not take file names as arguments, it only reads from stdin. We delete the

line breaks.

〈cli〉+≡
tr -d ’\n’ < data.dat

a 10b 11c 12d 15e 11

We translate blanks to newlines.

〈cli〉+≡
tr ’ ’ ’\n’ < data.dat

386 A Unix Guide

a

10

...

Or we convert the line labels in data.dat to upper case using character ranges.

〈cli〉+≡
tr a-z A-Z < data.dat

A 10

B 11

Number ranges are written similarly, which allows us to convert numbers into char-

acters.

〈cli〉+≡
tr 0-9 a-z < data.dat

a ba

b bb

c bc

d bf

e bb

A biologically more relevant translation is to encode A or G as purine (R) and C or T

as pyrimidine (Y).

〈cli〉+≡
echo ACGT | tr AGCT RRYY

RYRY

sed

We’ve already used emacs, which is an interactive editor. In contrast, sed is a non-

interactive, “stream” editor. Perhaps the simplest operation with sed is to delete a

single line, say the second line.

〈cli〉+≡
sed ’2d’ data.dat

a 10

c 12

d 15

e 11

Instead of deleting the second line, we print it.

〈cli〉+≡
sed ’2p’ data.dat

A Unix Guide 387

a 10

b 11

b 11

c 12

d 15

e 11

By default, sed applies its pattern to every line it encounters and prints all other

lines unchanged. That’s why we get “b 11” twice. But we can restrict the output to

the matching line with -n.

〈cli〉+≡
sed -n ’2p’ data.dat

b 11

We can also print line ranges.

〈cli〉+≡
sed -n ’2,4p’ data.dat

b 11

c 12

d 15

So we can replace “head -n” with “sed -n”.

〈cli〉+≡
head -n 2 data.dat

sed -n ’1,2p’ data.dat

a 10

b 11

Like directories in paths, regular expressions are delineated by forward slashes. We

can thus print lines that match b.

〈cli〉+≡
sed ’/b/p’ data.dat

a 10

b 11

b 11

...

As before, we can restrict the output to matching lines, which gives us an alternative

to grep.

〈cli〉+≡
sed -n ’/b/p’ data.dat

grep b data.dat

388 A Unix Guide

b 11

Similarly, we can express the complement of matching in sed and grep.

〈cli〉+≡
sed ’/b/d’ data.dat

grep -v b data.dat

a 10

c 12

d 15

e 11

Apart from the print and delete operations, which in practice are often dealt with

using grep, sed can carry out substitutions, which grep can’t. We substitute the

first occurrence of 1 in each line by one.

〈cli〉+≡
sed ’s/1/one/’ data.dat

a one0

b one1

...

The global version of this command replaces all occurrences of 1 by one.

〈cli〉+≡
sed ’s/1/one/g’ data.dat

a one0

b oneone

...

The regular expression first encountered with grep, [25], which specifies 2 or 5,

can also be used in a substitution.

〈cli〉+≡
sed ’s/[25]/x/g’ data.dat

a 10

b 11

c 1x

d 1x

e 11

Awk

Awk mixes a programming language with the line- and pattern-based paradigm of

grep and sed. The following exposition is adapted from the original description of

the language by its authors [2, Appendix A]. An Awk program is executed as

A Unix Guide 389

awk ’program’ <file>

or

awk -f program.awk <file>

Each program consists of patterns and associated actions.

pattern {action}

Table A.5 Patterns in Awk

Pattern Meaning

BEGIN true before any input lines are processed

END true after all input lines have been processed

expression any expression in the Awk language

pattern, pattern pattern range; true if in range

/regular expression/ true if matched

The pattern is evaluated for each input line and if true, the statements in the

action block are executed. Table A.5 lists the most common patterns. Expressions

and regular expressions can be combined with the logical operators && (and), ||

(or), and ! (not). Actions are specified through sequences of statements, some of

which are listed in Table A.6.

Table A.6 Awk actions

Action Meaning

delete array element delete specific entry from an array

exit terminate program

if (expression) statement [else statement] conditional execution

input-output statement see Table A.7

for (expression; expression; expression) statement repeat a fixed number of times

for (variable in variable) statement iterate over the keys of a hash

{statement} statements are grouped by curly brackets

while (expression) statement execute while true

Statements are separated by newlines or semicolons, lines starting with # are

comments. The most common input and output functions of Awk are listed in

Table A.7.

One of these, printf, produces formatted output. Formatting is done via the

format conversion commands listed in Table A.8. Apart from printf, which prints

to the screen (stdout), these format conversion commands are also recognized by

sprintf, which prints to a string.

Awk has a number of built-in variables (Table A.9). Of these, NF, the number of

fields, is particularly useful, as it allows traversal of all fields in a line, as in

390 A Unix Guide

Table A.7 Input and output in Awk

Action Meaning

close(fileOrPipe) close file or pipe

command | getline pipe into getline

print print current line

printf fmt, expr-list print formatted output

system(cmd) send cmd to the shell for execution

Table A.8 Formatting for printf and sprintf in Awk

Command Meaning

%c character

%d decimal number

%e engineering convention, [-]d.dddddde[-+]dd

%f floating point number, [-]d.dddddd

%g general: %d, %f, or %e, whichever is shorter

%s string

for (i = 1; i <= NF; i++)

print $i

Table A.9 Awk built-in variables

Variable Meaning

ARGC number of arguments on command line

ARGV array of arguments on command line, ARGV[0...ARGC-1]

FILENAME name of current input file

FS field separator

NF number of fields in current line

NR number of records (= lines)

Awk is designed for manipulating strings and Table A.10 lists its built-in string

functions, including sprintf.

Table A.10 Awk string manipulation functions; s & t: strings, r: regex, i & n: integers

Function Meaning

gsub(�푟, �푠, �푡) globally substitute �푟 by �푠 in �푡

index(�푠, �푡) return first starting position of �푡 in �푠 or 0 for no match

length(�푠) return length of �푠

match(�푠, �푟) return first starting position of �푟 in �푠 or 0 for no match

split(�푠, �푎, �푓) split �푠 on �푓 into fields saved in �푎, return number of fields

sprintf(fmt, expr-list) return expr-list as a string formatted according to fmt

sub(�푟, �푠, �푡) like gsub, except that only first occurrence of �푟 in �푡 is replaced by �푠

substr(�푠, �푖, �푛) return �푛-char substring starting at �푖

A Unix Guide 391

Awk also provides a selection of arithmetic functions such as log and exp, which

are listed in Table A.11.

Table A.11 The arithmetic functions of Awk

Function Meaning

cos(�푥) cos(�푥)
exp(�푥) �푒G

int(�푥) truncate �푥 to integer

log(�푥) natural logarithm

rand() random number, �푟, 0 ≤ �푟 < 1

sin(�푥) sin(�푥)
sqrt(�푥)

√
�푥

srand(�푥) seed the random number generator with �푥; if �푥 is omitted, �푥 = current second

Expressions are combined using the operators in Table A.12. Perhaps the most

obscure—but in practice very useful—operator is string concatenation, which is

implied when writing strings next to each other. We print bioinformatics by

concatenating bio and informatics.

〈cli〉+≡
awk ’BEGIN{a="bio"; b="informatics"; c=a b; print c}’

Table A.12 Awk operators

Operators Meaning

= += -= *= /= %= ˆ= assignment

?: conditional expression

|| OR

&& AND

in key in hash

˜ !˜ regular expression match and its negation

< <= > >= != == comparisons

s1 s2 concatenate strings s1 and s2

+ - addition, subtraction

* / % multiplication, division, modulo

! NOT

ˆ to the power of

++ -- increment, decrement, can be used in prefix and postfix notation

$ field (column)

We print the second column of our example data, which we format as decimal

numbers, %d.

〈cli〉+≡
awk ’{printf "%d\n", $2}’ data.dat

392 A Unix Guide

10

11

...

Awk is designed for computation on data, which is difficult or impossible in grep

or sed. We sum the entries in the second column.

〈cli〉+≡
awk ’{s += $2}END{printf "sum: %d\n", s}’ data.dat

sum: 59

We calculate the average of these five numbers.

〈cli〉+≡
awk ’{c++; s += $2}END{printf "avg: %g\n", s/c}’ data.dat

avg: 11.8

Awk arrays behave like hash tables with strings or numbers as keys. We count the

occurrences of the numbers in the second column of the input data file. One of these

occurs twice, 11.

〈cli〉+≡
awk ’{s[$2]++}END{for(a in s)print a, s[a]}’ data.dat

10 1

11 2

12 1

15 1

As a final example, we print all lines that match either 2 or 5. To express “print the

whole line”, we can write

print $0

or

print

But we can also just rely on the default action, which is printing the line. So we have

a choice between three increasingly terse versions of the same command.

〈cli〉+≡
awk ’/[25]/{print $0}’ data.dat

awk ’/[25]/{print}’ data.dat

awk ’/[25]/’ data.dat

c 12

d 15

Like the rest of Unix, awk is described in its man pages. In addition, we recommend

the book on Awk by the authors of Awk, which to us is a model of clarity and

usefulness [2].

A Unix Guide 393

Regular Expressions

Regular expressions denote sets of strings. In our previous example, [25], the set

contains 2 and 5. Another example for a set of strings is the dot (.). It contains all

strings of length one. As a rule, everything is text in Unix, and as a consequence,

regular expressions are used in many Unix programs, not just the three examples we

saw above, grep, sed, and Awk, but also in emacs and the shell. Knowing about

regular expressions is thus very useful when using Unix.

Character Classes

Character classes are written in square brackets. For example, [ab] matches either

a or b. The complement of a character class is[ˆab], which matches anything but a

or b. Some character classes are used so frequently, there is a standardized notation

for them. Of the five character classes listed in Table A.13, we try digit.

〈cli〉+≡
sed ’s/[[:digit:]]/x/g’ data.dat

a xx

...

Table A.13 Five popular character classes

Class Meaning Code

[:alpha:] Letters [A-Za-z]

[:cntrl:] Control characters —

[:digit:] Digits [0-9]

[:space:] Whitespace characters [\t\n\r\f\v]

[:print:] Printing characters [ˆ[:cntrl:]]

Table A.14 Anchors in regular expressions

Expression Explanation

\ �푏 Word boundary

^ Beginning of line (except when used inside a character class)

$ End of line

394 A Unix Guide

Anchors

Anchors allow a position within a string to be referenced, and Table A.14 lists the

three most important ones, word boundary (\b), beginning of line (ˆ), and end of

line ($). We substitute the 1 at the end of a line by x.

〈cli〉+≡
sed ’s/1$/x/’ data.dat

a 10

b 1x

c 12

d 15

e 1x

Table A.15 Quantifiers in regular expressions

Number of matches (�푥) Expression

�푚 ≤ �푥 {m,}
�푚 ≤ �푥 ≤ �푛 {m,n}
�푥 ≥ 0 *

�푥 ≥ 1 +

Quantifiers

There are four different types of quantifiers in regular expressions (Table A.15).

They are greedy, which means they maximize the number of matches. For example,

the expression .* would match the entire line of text rather than stopping at the

beginning of the line upon encountering the first match. Quantifiers are part of the

extended repertoire of regular expressions, which are the default in Awk, but have to

be activated in grep and sed with -E. So we print lines containing two consecutive

1s with grep, sed, and awk.

〈cli〉+≡
grep -E ’1{2}’ data.dat

sed -E -n ’/1{2}/p’ data.dat

awk ’/1{2}/’ data.dat

b 11

e 11

A Unix Guide 395

Backreferences

Assigning values to variables is one of the most important operations in traditional

programming languages. In regular expressions, backreferences provide an analo-

gous mechanism. For example, to substitute the first pair of identical digits by just

a single occurrence of that digit, we use extended sed with two back references \1,

which refer to the first token matched. Instead of the second \1, we could just as well

have written \2, which refers to the second token matched, as they are identical.

〈cli〉+≡
sed -E ’s/([0-9])(\1)/\1/’ data.dat

a 10

b 1

c 12

d 15

e 1

Appendix B

Programs

Many of the programs used in this book are part of every Unix installation. Those that

aren’t, fall in three categories: programs we write ourselves (Table B.1), programs

from our collection of bioinformatics tools (biobox, Table B.2), and third-party tools

(Tables B.3 and B.4).

B.1 Own

Table B.1 shows the 65 programs we write ourselves and their numbers.

Table B.1 Own programs

al2fasta.awk, 4.11 fc.sql, 7.3 nopanc.sh, 6.1 runs.awk, 3.11

blastn.sh, 4.2 fp.sh, 7.7 numMum.sh, 4.16 scores.sh, 2.4

coat.awk, 6.5 g1.dot, 4.4 numTrees.awk, 5.1 sens.sh, 4.17

colitis.sql, 7.2 g2.dot, 4.19 panc.awk, 6.2 shustring.sh, 3.4

cov.awk, 4.6 gapScore.awk, 2.8 pick.awk, 6.6 simCov.sh, 4.7

cres.awk, 1.3 ict.sh, 1.4 plotLcp.sh, 3.9 simShot.awk, 4.10

ct.sh, 1.1 isa.awk, 3.6 pm.sh, 2.9 simStats.sh, 4.3

dot.awk, 2.1 jc.awk, 5.2 ral.sh, 2.5 ss.sh, 1.5

entr.sh, 4.20 kerror.sh, 4.21 ranAdh.sh, 2.10 suf.awk, 3.5

esa.awk, 3.7 lines.awk, 2.3 readFasta.awk, 3.1 tab2fastq.awk, 4.22

eval.awk, 4.18 lrep.sh, 3.8 reduce.sh, 4.23 ti.awk, 6.4

exex.sh, 2.2 megablast.sh, 4.1 repeater.sh, 3.3 timeBlast.sh, 4.8

expr.sh, 7.1 mism.sh, 2.6 rotate.awk, 3.10 timeBwa.sh, 4.9

fc.awk, 7.4 mutate.sh, 4.15 rtAl.sh, 4.12 tmrca.awk, 6.3

fc.go, 7.5 mut.awk, 2.7 rtMummer2.sh, 4.14 varLen.awk, 1.2

fcl.awk, 7.6 naive.awk, 3.2 rtMummer.sh, 4.13 yeast.dot, 4.5

fc.sh, 3.12

B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

397

398 B Programs

B.2 Biobox

In addition to the programs we write ourselves, we use 54 programs contained in a

set of computational tools for biology, our “biobox” (Table B.2), which is explained

in Section 1.2 and hosted at

Table B.2 Programs from the biobox used in this book

al drawSt mtf plotTree sequencer

blast2dot fasta2tab mum2plot pps shustring

bwt geco mutator randomizeSeq simNorm

clac genTree naiveMatcher ranDot sops

cres getSeq nj ranseq testMeans

cutSeq huff num2char rep2plot translate

dnaDist hut numAl repeater travTree

drag histogram olga revComp upgma

drawf kerror pam rpois var

drawGenes keyMat plotLine sass watterson

drawKt midRoot plotSeg sblast

B.3 Third-Party

In addition to our own programs and the biobox, we use a number of third-party

tools. Almost all of these third-party tools can be installed using a package manager,

either apt on Ubuntu and similar systems (Table B.3) or Homebrew on macOS

(Table B.4). The one exception to this rule is ms1. This needs to be downloaded and

compiled according to the instructions on its web site. Once you’ve compiled it, copy

ms into $BEB/biobox/bin to make it available on your system.

1 http://home.uchicago.edu/rhudson1/source/mksamples.html

sn.pub/dy6S42

B.3 Third-Party 399

Table B.3 Third-party programs used in this book and where to get them from when using the apt

package manager on systems like Ubuntu

Program Package

blastn, etc. ncbi-blast+

bwa & samtools samtools

curl curl

dot, etc. graphviz

emacs emacs

esearch, etc. ncbi-entrez-direct

evince evince

mafft mafft

ms none (but see above)

mummer, etc. mummer

mysql mysql-client

phylonium phylonium

sqlite3 sqlite3

velveth, etc. velvet

Table B.4 Third-party programs used in this book and where to get them from when using the

Homebrew package manager on systems like macOS

Program Package

blastn, etc. blast

bwa bwa

dot, etc. graphviz

emacs emacs

esearch, etc. brewsci/science/edirect

evince evince

gdate coreutils

mafft mafft

ms none (but see above)

mummer, etc. mummer

mysql mysql

phylonium phylonium

samtools samtools

sqlite3 sqlite3

velveth, etc. velvet

wget wget

References

1. Abrahams, P.W., Larson, B.R.: UNIX for the Impatient, 2nd Edition. Addison-Wesley (1996)

2. Aho, A.V., Kernighan, B.W., Weinberger, P.J.: The AWK Programming Language. Addison-

Wesley, Reading, MA (1988)

3. Aken, B.L., Achuthan, P., Akanni, W., Amode, M.R., Bernsdorff, F., Bhai, J., Billis, K.,

Carvalho-Silva, D., Cummins, C., Clapham, P., Gil, L., Girón, C.G., Gordon, L., Hourlier, T.,

Hunt, S.E., Janacek, S.H., Juettemann, T., Keenan, S., Laird, M.R., Lavidas, I., Maurel, T.,

McLaren, W., Moore, B., Murphy, D.N., Nag, R., Newman, V., Nuhn, M., Ong, C.K., Parker,

A., Patricio, M., Riat, H.S., Sheppard, D., Sparrow, H., Taylor, K., Thormann, A., Vullo,

A., Walts, B., Wilder, S.P., Zadissa, A., Kostadima, M., Martin, F.J., Muffato, M., Perry, E.,

Ruffier, M., Staines, D.M., Trevanion, S.J., Cunningham, F., Yates, A., Zerbino, D.R., Flicek,

P.: Ensembl 2017. Nucleic Acids Research 45(D1), D635 (2017)

4. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful

approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289–300

(1995)

5. Börsch-Haubold, A.G., Montero, I., Konrad, K., Haubold, B.: Genome-wide quantitative anal-

ysis of histone H3 lysine 4 trimethylation in wild house mouse liver: Environmental change

causes epigenetic plasticity. PlosOne 9, e97568 (2014)

6. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech. Rep.

124, Digital Equipment Corporation, Palo Alto, California (1994)

7. Codd, E.F.: A relational model for large shared data banks. Communications of the ACM 13,

377–387 (1970)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT

Press, Cambridge, MA (2001)

9. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins.

In: M.O. Dayhoff (ed.) Atlas of Protein Sequence and Structure, vol. 5/suppl.3, pp. 345–352.

National Biomedical Research Foundation, Washington DC (1978)

10. Dhandayuthapani, S., Rasmussen, W.G., Baseman, J.B.: Disruption of gene mg218 of my-

coplasma genitalium through homologous recombination leads to an adherence-deficient phe-

notype. Proceedings of the National Academy of Sciences 96(9), 5227–5232 (1999)

11. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language. Addison-Wesley, New

York (2016)

12. Efron, B.: Bootstrap methods: another look at the Jackknife. The Annals of Statistics 7, 1–26

(1979)

13. Fairley, S., Lowy-Gallego, E., Perry, E., Flicek, P.: The International Genome Sample Resource

(IGSR) collection of open human genomic variation resources. Nucleic Acids Research 48,

D941–D947 (2020)

14. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)

401

B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

402 References

15. Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D., Bult,

C.J., Kerlavage, A.R., Sutton, G.G., Kelley, J.M., Fritchman, J.L., Weidman, J.F., Small, K.V.,

Sandusky, M., Fuhrmann, J.L., Nguyen, D.T., Utterback, T., Saudek, D.M., Phillips, C.A.,

Merrick, J.M., Tomb, J., Dougherty, B.A., Bott, K.F., Hu, P.C., Lucier, T.S., Peterson, S.N.,

Smith, H.O., Venter, J.C.: The minimal gene complement of Mycoplasma genitalium. Science

270, 397–403 (1995)

16. Gao, J., Watabe, H., Taotsuka, T., Pang, J., Y., Z.: Molecular phylogeny of the Drosophila

obscura species group, with emphasis on the old world species. BMC Molecular Evolutionary

Biology 7, 87 (2007)

17. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book, 2nd edn.

Pearson (2008)

18. Grantham, R.: Amino acid difference formula to help explain protein evolution. Science 185,

862–864 (1974)

19. Haig, D., Hurst, L.D.: A quantitative measure of error minimization in the genetic code. Journal

of Molecular Evolution 33, 412–417 (1991)

20. Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation.

Bioinformatics 18, 337–338 (2002)

21. Huffman, D.: A method for the construction of minimum-redundancy codes. Proceedings of

the I.R.E 40, 1098–1101 (1952)

22. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: H.N. Munro (ed.) Mammalian

Protein Metabolism, vol. 3, pp. 21–132. Academic Press, New York (1969)

23. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix

computation in suffix arrays and its applications. LNCS 2089, 181–192 (2001)

24. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: MAFFT: a novel method for rapid multiple

sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066

(2002)

25. Katoh, K., Standley, D.M.: MAFFT multiple sequence alignment software version 7: improve-

ments in performance and usability. Molecular Biology and Evolution 30, 772–780 (2013)

26. Klötzl, F., Haubold, B.: Phylonium: fast estimation of evolutionary distances from large

samples of similar genomes. Bioinformatics 36, 2040–46 (2020)

27. Knuth, D.E.: Literate Programming. The Center for the Study of Language and Information

Publications (1992)

28. Knuth, D.E.: The TEXbook. Addison-Wesley, Reading, Massachusetts (1994)

29. Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms, vol. 1. Addision

Wesley, Boston (1997)

30. Korf, I., Yandell, M., Bedell, J.: BLAST. Basic Local Alignment Search Tool. O’Reilly (2003)

31. Lamport, L.: A Document Preparation System: LATEX, 2nd edn. Addison-Wesley, Boston

(1994)

32. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment

of short DNA sequences to the human genome. Genome Biology 10, R25 (2009)

33. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,

Durbin, R., 1000 Genome Project Data Processing Subgroup: The sequence alignment/map

format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

34. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. SIAM

Journal on Computing 22, 935–948 (1993)

35. Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and

Phylogenetic Reconstruction. Enno Ohlebusch, Ulm (2013)

36. Peterson, K.M., Guo, X., Elkahloun, A.G., Mondal, D., Bardhan, P.K., Sugawara, A., Duggal,

P., Haque, R., Petri Jr., W.A.: The expression of REG 1A and REG 1B is increased during

acute amebic colitis. Parasitology International 60, 296–300 (2011)

37. Rohde, D.L.T., Olson, S., Chang, J.T.: Modelling the recent common ancestry of all living

humans. Nature 431, 562–566 (2004)

38. Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., Petersen, G.B.: Nucleotide sequence of

bacteriophage �휆 DNA. Journal of Molecular Biology 162, 729–773 (1982)

References 403

39. Student: The probable error of a mean. Biometrica 6, 1–25 (1908)

40. Wakeley, J.: Coalescent Theory: An Introduction. Roberts & Company, Colorado (2009)

41. Waterman, M.S.: Introduction to Computational Biology; Maps, Sequences and Genomes.

Chapman & Hall/CRC, London (1995)

42. Watterson, G.A.: On the number of segregating sites in genetical models without recombina-

tion. Theoretical Population Biology 7, 256–276 (1975)

43. Zerbino, D., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn

graphs. Genome Res 18(5), 821–829 (2008)

Index

ABC transporter, 109

ACKR2, 185, 186, 190, 193, 204

additive distance, 155–157

alcohol dehydrogenase (Adh), 42, 43, 45, 51,

80

evolution, 54, 56

in genome, 100

lcp values, 80, 81

longest repeat, 79, 80

MUMs in, 95

transposon, 43, 47

tree, 55, 56

alignment, 31

and evolution, 29–33

application, 51–56

construction, 39–50

detecting homology, 51–54

gap extension, 30, 48

gap opening, 30, 48, 55

gap score, 29

global, 48–50, 93–97

glocal (global/local), 93, 110–121

�푘-error, 112–114

local, 48–50, 98–110

number of alignments, 39–41

optimal, 29–56, 94, 133

overlap, 30, 32

random, 53

score, 29–39, 49, 53

sensitivity compared to match plot, 54

trace-back, 48–50, 133

alignment matrix, 48–50, 112, 133

allele, 30

alphabet, 86

amebic colitis, 184–186, 190, 196

amino acids

background frequencies, 37, 38

charge, 37

hydropathy, 37

match probability, 38

polarity, 33, 34

side chains, 38

volume, 37

ancestors

non-, 164

number of, 162, 163

partial, 162, 164

universal, 162, 164, 165

anchor alignment, 134–136

apt, 18, 398

AQP8, 197

ASCII code, 13

assembly, 122–132

assembly quality, 132

awk, 17, 22–27, 384, 388–392

action, 21, 24, 389

array, 22, 23, 392

BEGIN block, 21, 23, 115, 389

break, 60

character array, 78

comment, 23, 389

concatenation, 25, 391

continue, 78

default action, 24, 392

END block, 21, 23, 389

for loop, 23, 26, 60, 389

initialize variables, 115

length, 25, 390

number of fields (NF), 25, 389, 390

number of records (NR), 24, 390

pattern, 21, 24, 389

print, 22, 27, 390

printf, 27, 389, 390

split, 25, 26, 43, 390

405

B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists,
https://doi.org/10.1007/978-3-031-20414-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

406 Index

split FASTA file, 154

usage message, 128

while, 79, 389

BAM file, 114, 119

bash, 4, 5, 9, 69

ampersand (&), 18, 19

append (>>), 4, 5, 14, 381

arguments ($@), 80

auto completion, 4, 6, 7

file permissions, 382

for loop, 18, 20, 38

history, 8

if block, 52

PATH, 11, 14

pipe, 4, 8, 11, 381

quotes, 14

redirect (>), 12, 14, 381

scripts, 18–21, 382–383

SHELL, 5

split words, 201

time, 60, 69

undo, 7

bc, 4, 10

Benjamini, Y., 189

Benjamini-Hochberg correction, 187, 189, 190

�훽-globin, 32, 43

binary file, 15

binary tree, 90

biobox, 14

al, 30–32, 37, 49, 51, 93, 94, 96, 99, 100,

104, 112, 114

blast2dot, 109, 110

bwa, 88

bwt, 82, 84, 86, 91

clac, 155, 159

cres, 15, 91, 151

cutSeq, 11, 16, 32, 45, 52

dnaDist, 94, 97, 152, 159

drag, 162–164

drawf, 165, 167, 172

drawGenes, 11, 17, 52

drawKt, 58, 63, 64

drawSt, 65, 67, 75, 76

fasta2tab, 118

geco, 33, 34, 37

genTree, 142, 146

getSeq, 37, 134

histogram, 18, 20, 32

huff, 88, 91

hut, 88, 91, 92

kerror, 112–114

keyMat, 30, 32, 64, 100, 112

midRoot, 54, 144

mtf, 86, 87, 91, 92

mum2plot, 94

mutator, 54, 55, 96, 102

naiveMatcher, 61, 64

nj, 54, 157–159

num2char, 92

numAl, 39, 41

olga, 122, 123

pam, 37–39

plotLine, 11, 17, 20, 21, 32, 51

plotSeg, 42, 43, 49, 94

plotTree, 54, 63, 138, 142, 146

pps, 148, 151

randomizeSeq, 67, 79, 85

ranDot, 106, 108

ranseq, 152

rep2plot, 42, 43

repeater, 42, 43, 45, 66–69, 79, 94

revComp, 58, 60

sass, 125, 126

sblast, 64, 98–101, 104, 106, 112–114

sequencer, 114, 124, 128, 130

shustring, 65, 69, 70

simNorm, 187

sops, 134, 135

testMeans, 184, 186–188

translate, 11, 16, 32

travTree, 142, 145

upgma, 136, 138, 150

var, 186

watterson, 172, 177, 179, 181

bit, 4, 10, 88, 89

Blast, 64, 93, 98–110, 114

algorithm, 99

all-against-all, 109

anchor mode, 136

bit score, 104

database, 101, 102

�퐸-value, 103–105

extension step, 99, 100

graph of hits, 106

high-scoring pair, 99, 103

megablast mode, 101

mutation rate, 103

NCBI, 101–103

�푃-value, 104, 106

reciprocal hit, 106

sensitivity, 103

sequence divergence, 102

simple, 99–100

statistics, 98, 104–110

tabular output, 101

unidirectional hit, 106

word list, 99, 100, 112

Index 407

blastdbcmd, 102

blastn, 101–106, 114, 120

blastp, 106, 109

Bonferroni correction, 187, 189

Bonferroni, C. E., 189

bootstrap, 158, 159

Bourne-again shell, 5

bowtie, 88, 92

bunzip2, 88, 92

Burrows-Wheeler transform, 82, 84, 87

decode, 86

encode, 84

suffix array, 84

bwa, 92, 117, 118, 120, 121

byte, 12, 14, 15, 88

bzip2, 88, 92

cat, 11, 15, 16, 21

cd, 4, 9

chromosome, 202

circo, 106, 108, 109

coalescence

probability of, 174

time to, 174

times, 173, 175

coalescent, 161, 172–181

construction, 175, 176

intervals, 173

mutations, 177

pick children, 177

population mutation rate, 179, 181

population size, 174

sample size, 173, 174, 181

scale bar, 179

time to the most recent common ancestor,

175

Codd, E. F., 190

code chunk, 4

coding sequence (CDS), 30, 32, 45

codons, 9

coin tossing, 18, 20

command history, 8

command line, 4

compared to graphical user interface, 3

compared to language, 3

editing, 7

navigating, 7

common ancestor, 141

compiled vs. scripting language, 61

compression, 15, 81–92, 101, 119

contig, 123, 125, 127, 128

control vs. experiment, 188

control key, 7

coverage, 114, 116, 127–129

cp, 5

cres, 11

curl, 172, 180

cursor, 4, 7

cut, 11, 16

D-loop, 151

Darwin, C., 141

data stream, 94

date, 65, 69, 94

Dayhoff, M. O., 37

descent

one parent, 165–171

two parents, 162–165

diff, 21, 24, 45

directory, 11, 383–384

./bin, 14

/bin, 11

BEB, 4, 5, 14

beb, 4

ch, 6

data, 16, 21

delete, 7

home, 4, 11, 383

make a, 4

path, 4, 383

root, 11, 383

tree, 11, 384

distance matrix, 54, 137, 148, 149, 157, 159

divergence time, 37

dot, 39, 41, 123

dot notation, 106, 108

dot plot, 42–48, 66, 96

Drosophila guanche, 42, 43, 52

Drosophila melanogaster, 42, 43

dvips, 58

dynamic programming matrix, see alignment

matrix

echo, 4, 10, 12, 14, 27

edirect software, 184

editor, see text editor

efetch, 184, 197

emacs, 18–20

empty lines, 26

empty string, 26

enhanced suffix array, 71, 73, 75–77, 79

Ensembl database collection, 190, 191,

200–204

coordinate system, 201, 202

core, 201

human, 201

entity relation (ER) model, 191

attribute, 191, 192

408 Index

foreign key, 191, 192

primary key, 191, 192

Entrez database collection, 184, 197, 200

Escherichia coli, 64

genome alignment, 97

esearch, 184, 197

evince, 58

exact matching, 57–93, 96, 112

failure link, 61

graph, 61

naı̈ve, 58–60

pattern, 57

preprocessing, 57

run time, 60

set, 58, 63

exon, 45, 47, 204

exponential distribution, 172, 174

export, 4

expression data, 184, 185, 190, 193, 194

expression probe, 185

false discovery rate, 189

fast alignment, 93–140

FASTA file, 15

dealing with data, 59

dealing with header, 59, 60

dealing with last sequence, 59

FASTA format, 11, 12

FASTQ file, 121

FASTQ format, 117, 118

Fisher, R. A., 166

fixed length code, 88

fold, 11, 17

fold change, 186, 195–197

four point criterion, 155, 157

gapped alignment, 113

gdate, 69, 94

Genbank file, 45

gene duplication, 42, 53

genetic code

mutation, 33–37

number of possible codes, 35

random, 33, 34, 37

Geo database, 184

git, 11, 14

gnuplot, 21, 41

Go, 197–200

comment, 197

compile, 200

main function, 198

module, 200

package, 198

pointer, 199

printing, 200

string concatenation, 198

tab writer, 199

Gosset, W. S., 183

great apes, 151–153

grep, 11, 16, 20, 384–385

tr, 385–386

guide tree, 136–139

gunzip, 11, 15, 88, 92

gzip, 11, 15, 88, 92

Hamlet, 84, 87, 91

hashing, 126, 127

head, 4, 16, 120

histone, 203

history, 4

Hochberg, Y., 189

Homebrew, 11, 15, 19, 398

Hominidae, 158, 159

homology, 30, 47

Huffman code, 88, 90

Huffman tree, 91

Huffman, D., 90

human genome, 202–204

indel, 30, 180

inexact matching, 112

insertion, 31

intestinal mucosa, inflammation of, 185

intron, 47

inverse suffix array, 71, 76

inversion, 97

Jukes-Cantor distance, 153

Jukes-Cantor equation, 55

keyword tree, 57–64

Knuth, D. E., 23

LATEX, 64

latex, 58

lcp array, 73, 76–78, 80

lcp interval, 74, 76

lcp interval tree, 71, 75

lcp value, 75

less, 11, 16, 84

lines of descent, 163, 165

literate programming, 21, 23

longest common prefix, 71

longest repeat, 79

ls, 4, 11, 69, 94

M. genitalium, see Mycoplasma genitalium

macOS, 19, 68, 69

Index 409

mafft, 136, 138

make, 11, 14

makeblastdb, 101

man, 4, 9, 11, 18, 27

match length, 67

match plot, 42–49

sensitivity compared to alignment, 54

match probability, 66

maximal unique match (MUM), 94, 97

mean, 132

median, 132

merging reads, 122–126

meta key, 7

mismatch matrix, 152

mismatches per site, 152

mitochondrial genome, 153

mkdir, 4, 6

modulo (%), see remainder

molecular clock, 142, 146, 154

molecular distance, 152

Monte Carlo method, 184, 187

mouse chromosomes, 180

mouse mutation data, 179

move to front, 86–87

mRNA, 32, 43

ms, 172, 178

multi-dimensional matrix, 133

multiple sequence alignment, 132–140

mummer, 94–97, 131

mutation, 31, 96, 112

compared to mismatch, 54, 55, 152

mutational space, 33

mv, 7

Mycoplasma genitalium, 2, 15

gene lengths, 22, 23

genes, 2, 16, 17, 25

genome, 15, 27, 60

genome length, 25

genome size in bits, 88

longest repeat, 66, 67

nucleotide frequencies, 27

protein families, 109

proteome, 25, 91, 108, 109

shortest unique substring, 69, 70, 130

strand, 16, 21

Mysql, 190, 191

�푁50, 126, 132

nanosecond precision, 69

neato, 106–108

neighbor-joining, 155, 157, 158

Newick format, 63

normal distribution, 186, 187

nucleosome, 203

nucleotides, 2

nucmer, 94, 97

null device (/dev/null), 69

null distribution, 51

null hypothesis, 37, 79

octal number, 11, 12

od, 11–13

odds ratio, 37, 38

open reading frame (ORF), 30, 32

Oracle, 190

ortholog, 42, 47, 53

overlap graph, 122, 123, 125

overlapping reads, 122–126

�푃-value, 103

package manager, 19

paired-end sequencing, 131

PAM matrix, 37–39

PAM70, 32

paralog, 42, 47, 53

paste, 37, 38

percent accepted mutations, 37

Phred score, 114, 117

Phylip, 138

Phylip format, 150

phylogeny, see tree

phylonium, 148, 153

pipe, see bash

Poisson distribution, 172, 177

polymorphic site, 151

population genetics, 161

population mutation rate, 172

population size, 164, 165

Postgresql, 190

prefix code, 88, 90

preprocessing, 64

primates, 153

printf, 11, 12

programs, overview, 397–398

progressive alignment, 136–140

Prosite database, 109

protable network graphics, png, 107

protein families, 106

ps2pdf, 58

pseudo-sample, 159

Pubmed database, 184

pwd, 4

quality score, 117, 130

random match, 43, 47

random number, 18, 166

read mapping, 114–121

410 Index

recursion, 39, 40

bottom up solution, 39, 41

programming matrix, 39, 41

run time, 41

top down solution, 39–41

tree, 40, 41

REG1B, 197

regular expression, 21, 24, 26, 393–395

relational data model, 190

relational database, 190–204

client-server, 190

remainder (%), 18

reverse complement, 60

rm, 4, 7

rmdir, 4, 6, 7

rpois, 177

rRNA, 195

run time

blastn, 120

bwa, 120

keyword tree, 64

measure, 69

mummer, 96

optimal alignment, 94

runs of characters, 82, 84–86

SAM file, 114, 118, 119

sample with replacement, 159

sample without replacement, 175

samtools, 114, 119

scripting language, 61

sed, 136, 140, 384, 386–388

segregating site, 172, 177

seq, 18, 38

sequencing error, 118, 130

sexual organism, 162

shell, 3, 4, 9, see bash

shotgun sequencing, 93, 122, 127, 129, 131

shuffle array, 175

simians, 139

single nucleotide polymorphism (SNP), 96, 97,

180

sort, 18, 21, 27, 84

speciation, 53

species, 161

SQL, 190, 191, 193, 200

attribute declaration, 192

embedding, 197

join tables, 195, 204

limitations, 197

max, 194

min, 195

query, 193

sum, 202

Sqlite, 191

sqlite3, 191, 193, 198

standard error, 96

standard input, 96

standard output, 96

standard output stream, 199

statistical significance, 11, 21, 53, 54, 181, 186

statistics, 183–190

multiple experiments, 187–190

single experiments, 184–187

stop codon, 32

string rotation, 82, 83

Student’s �푡 test, 183, 184, 186

suffix, 65, 71, 84

suffix array, 70–81

as alternative to suffix tree, 70

common prefix, 72

intervals, 72

suffix tree, 64–70, 75, 76

as index, 64

construction, 65

drawing, 67

internal node, 65

leaf, 65

longest repeat, 65

path label, 65, 69, 73

root, 65

run time, 67, 68

search, 65

sentinel, 65, 67

shortest unique substring, 69

string depth, 71, 73

sum-of-pairs score, 134, 135, 138

synonymous mutation, 30, 33

tabix, 180, 181

tail, 4, 5, 8, 16, 27, 37

tape archive, 15

tar, 11, 15

text editor, 19, 42

text file, 15

The Origin of Species, 141

thread, parallel computing, 102, 121

three point criterion, 148, 151, 156

touch, 4, 6

tr, 11, 16, 45, 384

tree, 141–159

bifurcating, 147

bootstrap, 155

branch lengths, 142

directory, 383

from distances, 148–159

midpoint rooting, 144, 155, 158

Newick format, 142

Index 411

number of possible trees, 146

overdetermined, 156

parenthesis notation, 142

random, 175

recursive structure, 145

root, 141

rooted, 54, 147–154, 158

scale bar, 145

topology, 142, 154

traversal, 142, 145, 146

unrooted, 54, 144, 154–159

type I error, 189

type II error, 189

Ubuntu, 68, 398, 399

ultrametric distance, 148, 151, 156

ungapped alignment, 113

universal ancestor, see ancestors

Unix, 3, 19

graphics, x11, 107

POSIX standard, 3

Unix epoch, 69

untranslated region (UTR), 32

Unweighted Pair-Group Method using an

Arithmetic average, Upgma, 150, 156

variable length code, 88–90

variance, 21–23

variant call format (VCF), 172, 180

velvetg, 126, 128, 131

velveth, 126, 128, 131

waiting time, 165, 170

Watterson’s equation, 172, 177, 181

wc, 11, 20

wget, 15, 19

which, 11

wildcard (∗), 4

Windows, 68

Wright, S., 166

Wright-Fisher model, 165, 166, 172, 173

common ancestor, 167, 168

lines of descent, 172, 173

most recent common ancestor, 165, 169,

171, 172

number of lineages, 170, 171

pick ancestor, 167, 169

population size, 168, 169

sample size, 169

simulate, 170

test, 179

Wright-Fisher population, 167

XML, 197

xtract, 191, 197

z shell, 5

zsh, 4, 5, 9, 166, 201

	Preface
	Contents
	Part I Problems
	Chapter 1 The Unix Command Line
	1.1 Getting Started
	1.2 Files, Directories, and Programs
	1.3 Scripts

	Chapter 2 Optimal Alignment
	2.1 Keeping Score
	2.2 Construction
	2.3 Application

	Chapter 3 Exact Matching
	3.1 Keyword Trees
	3.2 Suffix Trees
	3.3 Suffix Arrays
	3.4 Text Compression

	Chapter 4 Fast Alignment
	4.1 Global
	4.2 Local
	4.3 Glocal
	4.4 Assembly
	4.5 Multiple Sequences

	Chapter 5 Evolution Between Species: Phylogeny
	5.1 Trees of Life
	5.2 Rooted Trees
	5.3 Unrooted Trees

	Chapter 6 Evolution within Populations
	6.1 Descent from One or Two Parents
	6.2 The Coalescent

	Chapter 7 Interrogating and Storing Data
	7.1 Statistics
	7.2 Relational Databases

	Part II Answers
	Chapter 1 The Unix Command Line
	1.1 Getting Started
	1.2 Files, Directories, and Programs
	1.3 Scripts

	Chapter 2 Optimal Alignment
	2.1 Keeping Score
	2.2 Construction
	2.3 Application

	Chapter 3 Exact Matching
	3.1 Keyword Trees
	3.2 Suffix Trees
	3.3 Suffix Arrays
	3.4 Text Compression

	Chapter 4 Fast Alignment
	4.1 Global
	4.2 Local
	4.3 Glocal
	4.4 Assembly
	4.5 Multiple Sequences

	Chapter 5 Evolution Between Species: Phylogeny
	5.1 Trees of Life
	5.2 Rooted Trees
	5.3 Unrooted Trees

	Chapter 6 Evolution within Populations
	6.1 Descent from One or Two Parents
	6.2 The Coalescent

	Chapter 7 Interrogating and Storing Data
	7.1 Statistics
	7.2 Relational Databases

	Appendix A Unix Guide
	Appendix B Programs
	B.1 Own
	B.2 Biobox
	B.3 Third-Party

	References
	Index

