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PREFACE 

The field of combinatorial optimization has experienced a tremendous 
growth in recent years. This is for instance documented by the publication of 
many new scientific journals in this area as well as by the considerable number 
of large international conferences taking place every year. 

Big meetings have the advantage of bringing a large number of people 
together and making a quick exchange of new results possible. Due to the 
(mostly) hectic atmosphere, however, they do not provide a pIatform for 
discussing problems in detail and digging deep into new aspects. This is the 
purpose of a workshop where few people gather together and even fewer 
people are given extensive time to present their ideas. Moreover, an informal 
atmosphere not restricted by time limits makes a more profound discussion of 
all aspects of the new developments possible. 

From August 28 to August 30, 1980 the IV. Bonn Workshop on Com- 
binatorial Optimization was held at the Rheinische Friedrich-Wilhelms-Uni- 
versitat, Bonn. It was organized by the Institut fur Okonometrie und Opera- 
tions Research and generously sponsored by the Deutsche Forschungsgemein- 
schaft through the Sonderforschungsbereich 21. 

Altogether 54 scientists from 16 different countries gathered at this meeting 
in a highly stimulating atmosphere. This volume constitutes a part of the 
outgrowth of the workshop and is based on the lectures presented there. The 
papers cover a broad spectrum of the field from submodular functions to 
perfect graphs, and from vertex packing to scheduling and subtree extension. 
All papers were subjected to a careful refereeing process. 

We would like to express our sincere thanks to all authors for their 
cooperation, to all referees for their outstanding (albeit anonymous) con- 
tributions, and to the editor and publishers of this series for their support of 
this venture. 

Bonn, October 1981 

Y 

Achim BACHEM 
Martin GRQTSCHEL 

Bernhard KORTE 
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PARITY GRAPHS 

M. BURLET 
U.S.M.G., BP 53 X, 38041 Grenobie Cedex, France 

J.P. UHRY 
Universitd ScientiNue et Mddicale CNRS, IMAG BP 53 X, 38041 Grenoble Cedex, France 

A graph G = (V, E )  is a parity graph if and only if for every pair of vertices (x, y) of G all 
the minimal chains joining x and y have the same parity. 

A characterization of these graphs can be given by a condition on the odd cycles: panty 
graphs are just the graphs in which every odd cycle has two crasing chords. A theorem of 
Sachs states that these graphs are perfect. 

These graphs are then studied from the algorithmic viewpoint. Polynomial algorithms are 
defined to recognize them, and to solve the following problems: maximum independent set, 
minimum coloring, minimum covering by cliques, maximum clique. 

1. Introduction 

It is rather strange that, when a class of perfect graphs has been charac- 
terized, the algorithmic aspect is seldom studied. In particular, there are not 
only the classical problems of perfect graphs (finding a maximum stable set and 
a minimum coloring), but also the major problem of recognizing such a class of 
graphs in polynomial time. 

These problems remain unsolved for many classes of perfect graphs (Mey- 
niel’s graphs [ll], perfect 3-chromatic graphs [16], perfect planar graphs [15]). 
The only exception is the general paper of Grotschel, Lovasz and Schrijver [7] 
which gives a polynomial algorithm for maximum weighted independent set 
and minimum coloring for all perfect graphs. This algorithm based on the 
ellipsoid method unfortunately gives no idea of the structure of perfect graphs, 
and at the present time appears to be of no great combinatorial interest. 

There exist classes of perfect graphs for which these problems are solved: 
bipartite graphs and their line graphs, triangulated graphs, comparability 
graphs, and their complements. The recognition problem is also solved for a 
number of subclasses of these latter graphs (see [6]). 

Finally there are classes of graphs for which these problems are not all solved 
(for example perfect claw-free graphs ([8,9, 12]), for which the recognition is 
not yet settled, to our knowledge). 

1 
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In this study, we deal with a particular class of perfect graphs which is a fairly 
natural extension of bipartite graphs: parity graphs. 

Notation. Let G = (V(G), E(G))  be a graph with vertex set V(G) and edge set 
E(G). When no confusion is possible we will write V and E for V(G) and 
E(G).  

Definition 1. A minimal chain is an elementary chain which is an induced 
subgraph. 

In the graph of Fig. 1, chains (x, z,  t, u, y) and (x, 2, u, u, y) are minimal but 
not, for example, (x, z, t, u, u).  

Definition 2. The parity of a minimal chain is the parity of the number of its 
edges. 

In particular, if two vertices x and y are adjacent, the only minimal chain 
joining them is the chain reduced to  the edge (x, y); this chain is odd. 

Definition 3. A (simple, undirected) graph G = (V, E) is called a parity graph 
if, for every pair of vertices x and y of G, all minimal chains joining x and y 
have the same panty. 

Clearly, the notion of a parity graph generalizes that of a bipartite graph. 
Cliques are non-bipartite parity graphs. The graph depicted in Fig. 2 is a less 
trivial example. 

In Section 2 we prove that a graph G is a parity graph, if and only if each 
odd cycle of length at least five contains two crossing chords. A theorem of 
Sachs [13] enables us to confirm that these graphs are perfect. 

In Section 3 we prove some properties of these graphs, and we specify their 
minimal separating sets. These results can be compared to those of Gallai [5] 
for o-triangulated graphs. 

t U X Y 

X 
V V 

Fig. 1. Fig. 2. 
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In Section 4 a polynomial algorithm for parity graph recognition is given. It 
is also shown that these graphs are in fact built from two classes of perfect 
graphs: bipartite graphs, and ‘cographs’ studied by Corneil, Lerchs and Stewart 
[3], here called 2-parity graphs. 

More precisely: the class of perfect graphs is closed under making true or 
false twins (that is replacing a vertex by a set of two vertices linked or not by an 
edge) [lo] and under certain extensions by bipartite graphs (cf. Definition 14). 
It will follow that parity graphs are exactly those graphs arising by these 
operations from a single point. 

Finally, in Section 5, polynomial algorithms are defined for the four above- 
mentioned problems (in cardinality and in weight). This will yield another 
proof of the fact that these graphs are perfect. 

2. Characterization 

Definition 4. We say that two chords (x, y )  and (2, t) of an elementary cycle 
cross, if the vertices x, z, y,  t are different and in this order on the cycle. 

Theorem 1. A graph G = (V, E )  is a parity graph, if and only if  every odd 
elementary cycle has two crossing chords. 

Proof. Necessary condition: The condition is necessary for a cycle of 5. 
Suppose we admit the property on an odd cycle of cardinality k (k > 5) and 

prove it is still true for a cycle of cardinality k + 2. 
It is easy to check that such an odd cycle contains at least two chords, and 

two chords which do not cross create at least one odd cycle, whose cardinality 
is lower than or equal to k, and the property follows by induction. 

Sufficient condition: Take a graph G which verifies the condition and which 
is not a parity graph. As the structure we want for G is hereditary (under 
taking induced subgraphs) we shall choose a counter-example which is minimal 
with respect to the vertices. 

This counter-example has two vertices x and y joined by an even minimal 
chain (x, ul, . . . , ut, y )  and an odd minimal chain (x, 2rl ,  . . . , v,, y )  with s a 2 (cf. 
Fig. 3). 

Let 

io = min{i 1 3j > 1: (ui, vj)  E E }  , 

j o  = maxfi 1 (ub, v j )  E E }  . 

So io < t and j o  > 1, since the odd cycle formed by these two chains has two 
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Fig. 3. 

crossing chords by assumption. Now (ub, via, . . . , us, y )  and 
(ub, u ~ + ~ ,  . . . , u,, y )  are minimal chains, having the same parity, as they are 
contained in a smaller graph than G. Similarly, (x, ul , .  . . , ub, uh) and 
(x ,  ui, . . . , vh) have the same parity. However, the sum of the length of these 
four chains, (s - jo  + 2 )  + ( t  - io + 1 )  + (io + 1) + j o  = s + t + 4, is odd, which is a 
contradiction. 

Theorem 2 (Sachs [ 131). Parity graphs are perfect. 

Without proof, we mention an obvious corollary. 

Corollary 3. A graph G = (V, E )  is a parity graph if and only if it does not 
contain any of the following configurations as induced subgraphs : 
- A2k+l odd cycle, without chord, on 2k + 1 vertices, k 2 2 (also called odd hole). 
- A&+I  odd cycle, with only one short chord, on 2k  + 1 vertices, k zz 2 (a short 

- 6, cycle on 5 vertices with two non-crossing chords. 
chord is a chord giving birth to a triangle). 

Here, it seems interesting to recall two related results: 
(a) the result of Gallai [5] and Suranyi [14] that ‘0-triangulated graphs’ (in 

which every odd elementary cycle contains at least two uncrossing chords) are 
perfect, and 

(b) the more general result of Meyniel [ l l ]  that each graph which has two 
chords in every odd elementary cycle is perfect. 
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In Fig. 4, we give an example of a graph which contains two chords in each 
of its odd cycles but which is, however, neither an o-triangulated graph nor a 
parity graph. 

Fig. 4 

3. Description and properties 

Notation. For a graph G = (V, E )  and S V we shall denote by G(S) the 
subgraph induced by S. We denote by r, the set of vertices adjacent to x, 
i.e., 

For A 
when H = G(A) is a subgraph of G we shall write T,(H) for rx(A).  

V the intersection r, n A will be denoted by T,(A). Occasionally, 

Definition 5. We call two vertices x and y true twins if they are joined by an 
edge and have the same adjacents except for x and y (that is, T,\{y} = ry\{x}). 
Two vertices x and y are called false twins if they are not joined and have the 
same adjacents. 

By LovAsz [lo] we know that the operation which consists of adding one 
(true or false) twin to a vertex of a perfect graph builds a new perfect graph. 

In addition, this operation applied to a parity graph leaves a parity graph. 
This is false, however for o-triangulated graphs (Fig. 5), but true again for 
Meyniel graphs [ll]. 

Definition 6. A graph without twins will be called prime. 
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-4 --a 
Fig. 5. 

r n A  Prime graph 

Fig. 6. 
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In Fig. 6 we give an example of the reduction of a parity graph, and an 
example of a prime parity graph. 

Definition 7. In a parity graph G = (V, E), the partition induced by the vertex x, 
denoted by (P,, I,), is the ordered partition of the vertices of G into the classes 
P, and I,, where P, (resp. I,) is the set of vertices of V joined to x by an even 
minimal chain (odd minimal chain, respectively). We assume that x is joined to  
x by an even minimal chain. 

Notation. We may consider only the restriction of the bipartition induced by x 
to a subset A of V. Then we denote: P,(A) = P, r l  A and I,(A) = I, rl A. 

Lemma 4. Any minimal separating set A of a parity graph G = (V, E )  can be 
partitioned into two parts denoted R and B which have the following property: the 
vertices of R induce the same partition in W A  and the vertices of B the opposite 
partition in W A ,  that is, 

Vrl, Vrz E R P,l(V\A) = P,( W A )  and hence I,( W A )  = I,( W A ) ,  

Vrl E R, Vbl E B P,( V\A) = Ih( W A )  and hence I,( W A )  = Ph( V\A) . 

Proof. We suppose (A1 > 1 (otherwise, it would be obvious). Let CX1 and CX2 
be two different connected components of the subgraph induced on W A  (cf. 
Fig. 7). 

Let x1 belong to CXl, xz belong to CX2, z and t be two different vertices of 
A. A being minimal there exist minimal chains Cl(x1, x2) and CZ(x1, x2) joining 
x1 and x2, there only vertex from A being z for Cl(xl, xz) and t for CZ(XI,  XZ).  

Because Cl(xl, xz) and Cz(xl, x2) have the same parity we have Pf(WA) = 

Pz(WA)  or Pf(V\A) = MWA). 

odd / 

Fig. 7. 
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Lemma 5. Let A be u minimal separating set partitioned into R and B as in 
Lemma 4. If rt, r2 E R and (rl, r2) E E, then r,,( V\A) = r,( WA). 

Proof. Suppose the property is false, and let x E I',.,(V\A) and x $! r,(V\A) (cf. 
Fig. 8). Then (r2, rl, x) is a minimal chain of even parity, and hence x E Iq and 
x E P,, contradicting Lemma 4. 

Lemma 6. With the same hypotheses as those of the preceding lemma, if 
rl, r2 E R and (rl, r2) f E, then f,(B) = f,(B). 

Proof. Suppose bl f I',(B) and bl $Z T,(B), and let x be a vertex in V\A joined 
to bl (such a x exists by minimality of A) (cf. Fig. 9). As (r2, b,), (r l ,  x) and 
(r2, x) are not in E, there is a minimal chain from rl to x with length two, and 
another minimal chain from r2 to x with length three. This contradicts Lemma 
4. 

Lemma 7. With the same hypotheses as before, a connected component of the 
subgraph induced by the vertices of R has no minimal chain of length three. 

Proof. Suppose there is such a chain (r l ,  r2, r3, r4). Let us consider a vertex x of 
V\A which is adjacent to rl. From Lemma 5 we know that x is also adjacent to 
r2, r3, and r4. The subgraph induced by these vertices is a 5-cycle, chords of 
which may only come from x. This is a contradiction. 

Remark 1. This property remains true if for the set R we take the adjacents of 
any one of the vertices of a parity graph. (They form a separating set which 
need not be minimal.) 

Definition 8. A 2-parity graph is a graph in which the length of all minimal 
chains is at most two. 

Fig. 8. Fig. 9. 
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Examples of 2-parity graphs are cliques, and, more generally, complete 
multipartite graphs (a complete multipartite graph is a graph in which the 
vertices can be partitioned into stable sets, where two vertices are adjacent if 
they belong to different classes. Such graphs are o-triangulated [5]. 

Below we give a characteristic property of a 2-parity graph (for other 
properties, see [3]). 

Lemma 8. A connected 2-parity graph with more than one vertex has at least two 
(true, or false) twins. 

Proof. For a clique, it is obviously true. Otherwise, let x and y be two vertices 
which are not joined. There exists a minimal separating set A which separates 
x from y.  

Let CX, and CX, be their respective connected components, in the subgraph 
induced by V\A. 

For each vertex z of CX,, z is adjacent to all the vertices of A, otherwise 
there would be a minimal chain of length three. 

When CX, = {x} and CX, = { y } ,  then x and y are false twins, else at least 
one of CX, and CX, has cardinality greater than one, say ICX,l> 1. The proof 
continues by induction in CX,. Twins in subgraph CX, will effectively be twins 
in the initial graph, because they have the same adjacents in A. 

Corollary 9. A graph is a 2-parity graph if and only if  it arises from a single 
point by adding true or false twins (cf. Fig. 10). 

Fig. 10. 
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Theorem 10. In a prime parity graph, every minimal separating set is a bipartite 
graph (one of the two parts can be empty). 

Proof. This theorem directly follows from the preceding lemmas, where we 
have shown that a connected component of the graph G(R)  (or G(B))  was a 
2-parity graph and that for every two vertices rl and rz of such a component, 

True or false twins, relating to this component are therefore twins in graph G. 
Thus, by removing true or false twins, we can reduce this component to  only 
one vertex. 

One further property of parity graphs is given below without proof. 

Lemma 11. In a two-connected parity graph, if two joined vertices x and y have 
disjoint neighbourhoods, then I, = P,,. 

4. A constructive polynomial algorithm for recognition 

To recognize a parity graph, we shall ‘hang up’ the graph on a vertex, and 
study the structure of the different levels (defined below). It will lead us not 
only to the polynomial algorithm to recognize parity graphs, but also to a 
theorem which gives a very easy constructing characterization of parity graphs. 

This is the basis of the optimization algorithms described in Section 5 .  We 
shall study here the partition (Pa, In) induced by a well-defined vertex a of a 
parity graph G = (V, E).  

Definition 9. We shall note C(x, y)  a shortest chain (in number of edges) 
joining x to y. 

Definition 10. We call the set of vertices of G at a distance i from a the level i, 
denoted by Ni, that is, 

Ni = { x  E V J  IC(a,x)l= i } .  

The vertices of Ni are linked to a by minimal chains of the parity of i, so No 
only contains vertex a and Nl is the set of neighbourhoods of a. We will note 
by rn the cardinality of the longest minimal chain starting at a and we will set 
A’,+, = 0. 
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w 4 8 7  vw-N2 6 

Fig. 11. 

11 

Remark 2. Dijkstra’s shortest path algorithm enables us to find the partition of 
V into levels in polynomial time. 

Remark 3. An edge (x, y )  E E has its end points either on the same level or on 
two successive levels. 

In Fig. 11 we give two possible ‘hangings’ of the graph of Fig. 6. 

Lemma 12. All vertices of a connected component of the subgraph G(Ni) have 
the same adjacents at the level Ni-l. 

Proof. Let x, y E Ni and (x ,  y )  E E, let x’ E rx(AL1) (cf. Fig. 12), and suppose 
that (y, x’) !Z E. 

As the edge (x ’ ,  y)  does not exist, by concatenating a chain C(a, x ’ )  to the 
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a 
NO 

Ni-1 

X V Ni 

Fig. 12. 

chain (x’, x, y), it is possible to find a chain joining a to y which has the same 
parity as i + 1. As there exists, by definition, one chain from a to y having the 
same parity as i, we have a contradiction. 

This lemma shows that the subgraph induced by a level is a 2-parity graph 
(cf. Lemma 7). 

Definition 11. We remove the level N,, and we denote by G:,  GT, . . . , Gf the 
different connected components obtained in the subgraph induced by the lower 
levels, 

We denote by X f  the vertices of N,. adjacent to the component Gf 

Remark 4. The sets X f  are not necessarily disjoint and do not necessarily 
cover all the vertices of Ni. 

Lemma 13. If x, y E X f  and (x, y )  E E, then rx(G;)  = TY(Gf) .  

Proof. If the property is false, there exists a configuration illustrated by Fig. 13, 
where (x, u )  fiZ E. 

- There exists a chain C(a, u )  of the parity of i + 1. 
- (u, y , x )  is a minimal chain of length two, this means that we can find a 
minimal even chain (u, . . . , u, x) having all its vertices in GF. Linking this 
chain to a chain C(a, x), we obtain a chain of parity of i which connects u to 
a. This is a contradiction. 

Let u E Ty(N,i+l), u E rx(Ni+l)  and (x, u )  fZ E. 
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Fig. 13. 

Lemma 14. If x, y E X f ,  then r'(N\Xf) = ry(N.\Xf).  

Proof. Let x, y E Xf and ( y ,  2) E E. Let z E TY(Ni\Xf), and let (x, ul, .  . . , v, y)  
be the shortest path from x to y with vertices vl,. . . , vt in Gf, using at least one 
vertex of Gf. Let (x, u l , .  . . , us, y )  be the shortest path from x to y with vertices 
u l , .  . . , us in NoU * * * U AL1, using at least one vertex in N , U .  . - U Ni-l 
(cf. Fig. 14). Then (us, z ) E E  (cf. Lemma 12). Consider the cycle 

Fig. 14. 
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(x, u l , .  . . , us, z, y ,  v,, . . . , vl ,  x). The only chords are (us, y )  and, possibly, (x, y )  
and (x, z). NOW, if (x, 2) is not in E, the cycle will contain an odd cycle without two 
non crossing chords. 

Definition 12. Associate at a given level N, a graph G' = (V', E'). The vertices of 
G' are in one-to-one correspondence with the X : .  Two vertices of G' are 
connected by an edge of E' if the corresponding X :  and X: '  have a non empty 
intersection, and are not included one in the other, that is, 

Let C1,. . . , C, be the connected components of G'. Let U :  = u, ( X f ) ,  where 
k ranges over the vertices in C,. It is easy to check that the family ai = 

(Uf, . . . , Uf') is a nested family, partially ordered by inclusion. The family am 
is empty. 

Lemma 15. If X f  and Xk' belong to the same component of G', then there is no 
edge (z, w )  with z E X:\X:', w E X:'. 

Proof. Suppose there is an edge (2, w )  such that z E X:\X:', w E X f ' ,  where 
Xf and X f '  belong to the same component of G', and suppose we have chosen 
z, w, k, k' in such a way that the distance d between k and k' in the graph G' is 
as small as possible. Let k = ko, . . . , k d  = k '  be the shortest path from k to k' in 
G'. Then X p  f l  X f l  # 0, say z' E X p  f l  XT1. 

If d 2 2 ,  by Lemma 14 also (z' ,  w )  is in E, and moreover z' ex:'. So 
replacing z, w, k, k' by z', w, kl ,  k' gives a lower distance in G', which is a 
contradiction. Hence d = 1. 

Let (2, V I , .  . . , v,, z ' )  and (z', ul , .  . . , us, w )  be shortest paths with internal 
points in Gt and GF, respectively, using at least one point of G f  and GF, 
respectively. One easily checks that s and s' are odd. Then 
(z,  V I ,  . . . , v,, z', u l , .  . . , us, w, z )  is an odd cycle without crossing chords, which 
is a contradiction. 

Definition 13. An element Uf of the family Qi is called e-maximal relatively to 
the edge (x, y)  if x E Ut, y $2 Ut and U :  is maximal in Qi for this property. 

Lemma 16. In a parity graph, an e-maximal Uf not contained in any other 
e-maximal set, can be reduced by removal of true or false twins to a stable set. 
After these operations the vertices of Uf are false twins in the subgraph induced 
by NO U * * * U Ni U u k  V(G:), where the union ranges over all k with X :  U f .  
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Proof. Let Uf be a minimal e-maximal element of oUi and let K =  
{k 1 X f  C U;}. Let (x ,  y )  be an edge of G(Ni) associated to Uf chosen to satisfy 
with Uf, Definition 13. 

Let X f  and X:' where k E K and k' E K, then by choice of Ut there is no  
edge (u, v )  with u E X f \ X f '  and v E X ! ' .  Hence by Lemma 13 for any two 
vertices u and u of a component of G(U:)  we have 

r,,( V(G:))  = I'u( V ( G f ) )  where k ranges over K. 

For any two vertices u and v of G(UI) we have ru(Ni\U:)= rU(Ni\Uf) 
(cf. Lemma 14). This implies that y E r u  and y Er,, hence, by Lemma 12, 

Let us prove that for any two vertices u and u of G ( U f )  we have 
ru(Uk V ( G f ) )  = rv(Uk V ( G f ) )  where k ranges over all k with X :  p U:.  

Suppose there exists k '  $Z K with w E G:', (u, w )  E E and (v ,  w )  E E. Then 
u E Xf' and hence Uf G X:' .  As Uf is e-maximal, by Lemma 15 we have 
y E X f ' .  Hence, by Lemma 13, rU(G:') = T,(Gs') = T,(G!'), which implies that 
(u, w) is an edge, contradicting our assumption. 

Each component of G(U:)  is a 2-parity graph which can be reduced by 
removal of true and false twins to a unique vertex (cf. Lemma 8). The former 
material enables us to report the reduction inside a component of G ( U f )  on 
the whole graph G = (V, E).  

ru(N-1) = r u ( N i - 1 ) -  

The previous lemma is the fundamental argument of the recognition al- 
gorithm given later on, which will allow us to demonstrate Theorem 17 below. 

Definition 14. Let G* be a graph, and let B = ( V, U V2, A) be a bipartite graph 
with colour classes V,  and V2. Let V' be a collection of false twins in G* 
(possibly 1 V'( = 1). Then the graph arising by identifying the vertices in V' with 
certain vertices in V,  is called an extension of G* by B (cf. Fig. 15). 

Theorem 17. Every connected parity graph G = (V, E )  is obtained from a single 
vertex by the following operations : 
- @, creation of a false twin, 
- @2 creation of a true twin, 
- @s extension by a bipartite graph, 
applied successively and in any order. 

It is obvious that a graph obtained by the three operations @I, @z, @3 as 
indicated by Theorem 17, is a parity graph. 
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0- false w twins 

G 

Fig. 15. 

The following algorithm will in fact check that a graph which satisfies 
Lemmas 12, 13, 15 and 16 can be constructed by these three operations 
beginning with a single vertex. 

The algorithm consists in looking for bipartite graphs which eventually 
extend (as in dj3) a graph hung by a vertex a. We carry out this research by 
beginning from the lower level N, and then climbing from level to level. As 
soon as we detect that one of these bipartite graphs extends the remainder of 
the graph, we delete this bipartite graph. It is the inverse operation of @3. 

More precisely beginning by the level N,, we are going to  reduce into a 
stable set successively every level by the inverse of G1, 

It is clear that the level N, can be reduced to an independent set by the sole 
operations of reduction of a 2-parity graph (@T1 and @il). 

and a3. 

Lemma 18. If every level Nj (j > i )  is an independent set, then for all k the 
graphs Gf are bipartite graphs. 

Proof. Obvious. 

Let us imagine that the levels N, (j > i )  are reduced into independent sets. 
We describe the iteration which consists in reducing Ni into a stable set. In this 
iteration we are mainIy concerned with the e-maximal Uf of ai. 

For each one, starting with the minimal ones and after verification that it 
satisfies Lemma 16, we delete from G by @il a bipartite graph. This enables us 
to reduce G(Uf) by @il and @il to a single vertex. When the list of e-maximal 
elements of Qi is exhausted, we can reduce by @il and each connected 
component of G(Ni )  to a single vertex. 
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Definition 15. In the same way as the GF corresponds 
a graph H f  to an element Ur of the family ai with 

V(HI) = u V(G:) and E(HI) = UE(G:) 
k k 

where k ranges over the vertices in C,. 

to a Xb we will associate 

Recognition Algorithm for a Parity Graph 
begin 
For i := m downto 1 do 
begin 
Build the ordered family %i, find all the e-maximal elements of %i. 
while %i # 0 do 

begin 
choose UY a minimal element of OUi. 
Delete Uf from qi. 
If Ul is not e-maximal nor a maximal element of '?li then 

if 

begin 
let Ur' be an element of qi containing Ul and minimal for this property 
V(Hf' )  : = V ( H f )  U V(H:);  E(H:') : = E(H:') U E(Hf). 
end 
U :  is e-maximal then 
begin 
Check that the vertices of G(Uf) have the same neighbours in the 

Check that the vertices of a component of G(UI) have the same neigh- 

Check that every connected component of G(Uf) is a 2-parity graph and 

Delete Hi by @;I. 

Shrink G(Uf) replacing it by a single vertex. 
end 

subgraph defined in Lemma 16. 

bours in HI. 

shrink it into a single vertex. 

end 

N,,, and Ni-,. 
Check that each connected component of G(N,) has the same neighbours in 

Also check that these components are 2-parity graphs and 
Shrink them to a single vertex. 
end 
end 

Note that every shrinking performed in this algorithm can be done by 
iterating @il and @;I. 
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It is clear that this algorithm stops after a finite number of iterations, and it 
reduces any parity graph to a single vertex. So we have just established that a 
parity graph can be constructed following the operations indicated in Theorem 
17. 

Remark 5. The running time of the algorithm (Dijkstra’s algorithm, building 
the ordered family 4!li, detecting the e-maximal elements of 4!li, checking for 
neighbours, recognizing that a graph is a 2-parity graph, . . .) is bounded by the 
square of the number of vertices concerned by the operation (in [3] an 
algorithm is indicated to recognize a 2-parity graph whose running time is 
O(n2)). The number of X: (for all i and k )  is less than I l l .  So the number of 
vertices created by shrinking the e-maximal UY is less than IVl. Hence the 
number of vertices examined by each operation is less than 2 ( q .  The com- 
plexity of the algorithm presented is 0(( V’). 

Remark 6. We have just demonstrated that a graph is a parity graph if and 
only if it verifies Lemmas 12, 13 and 16. If the graph is not a parity graph, the 
algorithm finds the lemma in fault. The proof of the lemma in question then 
allows us to detect an odd cycle which does not have two crossing chords. We 
may use this algorithm to exhibit in any non-parity graph, an odd cycle which 
does not verify the hypothesis of Theorem 1. 

Remark 7. A new problem, apparently similar to that of recognizing a parity 
graph, is as follows: 

Let G be a graph, and let x and y be vertices of G. “Are all 
minimal chains joining x to y even?” 

A polynomial algorithm €or this problem would yield a polynomial algorithm to 
verify that a graph G has no chordless odd cycle. Indeed, enumerating all 
minimal chains of length 2 is polynomial. Let (x, z, y )  be such a chain. Remove 
the vertex z, and the vertices r, - {x} - { y } .  

If all the minimal chains now joining x to y are even, then x,  z, y do not 
belong to an odd chordless cycle, otherwise x, z, y do belong to an odd 
chordless cycle. The same algorithm in the complementary of G, would allow 
us to  check the hypothesis of the strong perfect graph conjecture. This problem 
appears much more difficult. 

We give here a theorem which is suggested by the preceding result. This 
theorem gives a direct proof of Sach’s theorem (when Theorem 17 is known). 

Theorem 19. If we extend a perfect graph by a bipartite graph, we obtain a new 
perfect graph. 
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Proof. It suffices to show that the cardinality of a maximum clique is equal to 
the chromatic number in all perfect graphs extended by a bipartite graph. 
Operation G3 does not increase the clique or coloring number of a graph, 
except when the graph is trivial. 

5. Polynomial algorithms in parity graphs 

The interest of the characterization in the previous section is that it enables 
the construction of polynomial algorithms for the four problems of perfect 
graphs. 

These algorithms differ from the more general algorithms as those proposed 
in [7] in that the present ones are based on the algorithm of finding a maximum 
weighted independent set in a bipartite graph, as described by Ford and 
Fulkerson [4]. This is also the case, for example, for the algorithms proposed in 
the latter book for comparability graphs. Here we aim at solving the problems 
for nonnegative integral weight functions c defined on V. 

We might think in fact that it is sufficient to solve the problem of maximum 
cardinality, as the transformation of a vertex into false or true twins enables a 
problem with an integer valued cost function to be transformed into a car- 
dinality problem. This transformation constructs a parity graph from a parity 
graph. Unfortunately, this transformation is not polynomial, and consequently, 
we shall study the more general optimization problems. 

= n, that 
is, each line of K is the characteristic vector of a maximal clique of G in (0, lp. 
Similarly, S is the matrix of all maximal stable sets of G. 

The four problems paired by duality are as follows: 

Let K be the matrix of all maximal cliques of G = (V, E), where I 

min w = 2 yi , 

subject to yk 3 c ,  
i I y i ” 0 7  

max z = 2 cixi , 

subject to Kx < 1, 
x i s o ,  

i 

min w = yi , 

subject to yS  3 c ,  
i 

max z = 2 cixi , 

subject to Sx c 1, 
i 

We solve each of the following two pairs simultaneously: 
(i) Maximum weighted stable set and minimum covering by cliques, and 

(ii) Maximum weighted clique and minimum covering by stable sets. 
The method used, which is classical since the work of Edmonds on matching, 
(cf. for example, [2]), consists in finding for any nonnegative integral weight 
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function c, defined on v, a pair of dual integral solutions x and y which satisfy 
the complementary slackness condition. 

For the three operations djl, dj2 and @3 which transform G* into graph G, 
we are content here to give the transformation on  the weight. Starting from a 
dual optimal integral pair x * ,  y *  defined on G*, we shall indicate how to 
obtain a dual optimal integral pair x, y defined on G. 

Notation. We shall denote by a the vertex of G* concerned by the operations 
GI, dj2, dj3 by c, its weight, and by KP, K ; ,  . . . , Kj‘ all the maximal cliques of 
G* containing the vertex a, associated with strictly positive components of y * ,  
denoted respectively by 

These 1 cliques are the restrictions of 21 maximal cliques of the graph G in the 
case where djl transforms a in false twins a and b, denoted respectively by 

K f ,  K2, . . . , K f ,  K!,  K!,  . . . , K f  . 

They are the restrictions of 1 maximal cliques in the case where dj? transforms 
a in true twins a and b, denoted respectively by 

K T ,  K T , .  , . , K ? .  

5.1. Maximum weighted independent set-minimum covering by maximal clique 

5.1.1. False twins a and b 
Particular case of 5.1.3 where 

B = (VI U Vz, A )  3 

5.1.2. True twins a and b (cf. Fig. 16) 

Vi = ({a), { b } ) ,  V2 = 0 ,  A = 0 

Fig. 16. 
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We define c, = max(c,, cb) = c,. 
Transformation on the pair of optimal solutions 
(i) Case where x * ( a )  = 1: 

x ( a )  = 1 ,  x(b )  = 0 ,  
y(K?) = y*(K?), . . . I Y ( W )  = Y *Wa) ; 

(ii) Case where x * ( a )  = 0: 

The components of x and y which are not defined are unchanged. This pair x 
and y fulfills the complementary slackness conditions. 

5.1.3. Extension by a bipartite graph 
Without loss of generality we suppose that the bipartite graph B = 

(V,  U V2, A) is only fixed by two false twins: a and b (cf. Fig. 17). 
We define c, = s:,- s s ,  where s:ax stands for the value of a maximum 

weighted stable set in B and s$ stands for the value of a maximum weight 
stable set in B where vertex a and vertex b have been eliminated. (In general, 
we shall note the sets in capital letters, and the value in lower case letters.) 

The idea of this transformation is quite simple. As soon as a vertex in the 
neighbourhood r,(G*) of a or b is in the maximum weight independent set of 

B 

G 

Fig. 17. 



22 M. Burlet, J.P. Uhry 

G it contains S 2 .  In the other case, it contains S L .  We translate therefore 
by c, the regret which results from putting (Y in the maximum weighted stable 
set of G*. 

Transformation on the pair of optimal solutions 
(i) Case where X*((Y) = 1. We obtain x by withdrawing from x *  its com- 

ponent X*((Y), and by extending this vector by a characteristic vector of Slax. 
(ii) Case where x * ( a )  = 0. We complete in this case with a representative 

vector of Sd. 
To obtain y, the process is slightly more elaborate. 

B 

It is necessary to  find an integer solution to  the linear system: 

(i) Case where x*(ct) = 1. We know that y*(KP)+ y* (K; )  + - - . + y*(KP) = 
c,. We shall take (a + (6  = c,. 

This linear system is of the transportation type. If its right-hand side is 
integer, an integer solution to the linear system may be found easily. It remains 
to determine ta and (6  in order that the solutions x and y found, satisfy the 
complementary slackness conditions. 

Let us construct from B = (V, U V,, A )  a new bipartite graph B’ = 

(Vi U V;, A’). 

V;= VzU{P}, V;= VI ,  A ’ = A U ( ( P , a ) , ( P , b ) ) .  

We define cs = c,. 
Solve the maximum weighted stable set in B‘ and let x’ and y’ be the integer 

*optimal pair of dual solutions obtained. There exists in B’ a stable set of 
maximum weight containing p, S s  U (p}, and such that s:, = slm. 

The complementary slackness theorem applied to B’ allows us to affirm: 
- Y ‘ ( ( P 9  a ) )+ Y ’ W ,  b))  = ca. 
- only the edges of the bipartite graph B’ with one of their extremities always 

in a maximum weighted stable set, have a possible positive component. 
We shall define: 

It is easily proved that the vector x previously described and the vector y, 
obtained by solving linear system (1) and restricting y’ on the edges of B, fulfills 
the complementary slackness conditions. 

(ii) Case where x * ( a ) = O .  This case is identical to the preceding case in 
everything, except for the quantity 

= y’(@, a)), [b  = y’((P, b)). 
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y * ( K 7 ) +  y*(K2”)+ - * * + y * ( K P ) ,  

which can be greater than c, and n o  longer equal. We shall substitute in this 
case ta and (b  by any integer solution of the following linear system of 
inequalities: 

In both cases, we were able to obtain a pair of dual integer solutions x and y 
satisfying the complementary slackness conditions. 

Remark 8. In the evaluation of the running time of the proposed algorithm we 
consider that a sequence of operations GI, G2 and G3 is known, which 
constructs G starting with a vertex. The most costly procedure contained in the 
algorithm is the determination of a maximum weighted stable set in a bipartite 
graph (it is bounded by the cube of the number of vertices of the bipartite 
graph). The total sum of the vertices from the used bipartite graphs in that 
construction is less than I VI. Hence the complexity of the algorithm is O(l q3). 
This remark uses the fact that the weight of the created vertices during the 
algorithm are necessarily of the same order as the original weights. 

5.2. Maximum weighted clique-minimum covering by maximal cliques 

Notations used here are very similar to those in the preceding paragraph. 

5.2.1. False twins a and b 
Identical with 5.2.3. 

5.2.2. True twins a and b 
We define c, = c, + cb. 
(i) Case where x*(cr) = 1, then x ( a )  = 1 and x ( b )  = 1. 
(ii) Case where x * ( a )  = 0, then x(a )  = 0 and x ( b )  = 0. 

By a similar procedure to 5.1.1 we obtain in both cases an integer vector y 
which satisfies with x the complementary slackness theorem. 

5.2.3. Extension by a bipartite graph 
It is easy to see that the maximum weighted clique is contained either in G* 

or in B. We shall restrict ourselves to the case where the maximum weighted 
clique is in G*. 
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We define 

c, = max(c,,cb)= c,. 

We find the maximum weighted clique in G*, and in B. We take for the primal 
solution x the characteristic vector on G = (V, E) of the clique which has the 
heavier weight. In order to find a'dual solution y defined on G, we shall 
proceed as in 5.1.3 by starting from a dual solution for the maximum weighted 
clique problem on graph B'. (B' is defined as before, the vertex p of B' 
supports the weight of the maximum clique defined by x and reduced by c,.) 
The dual solution y' on B' has strictly positive components on stable sets of B 
which are induced by stable sets of B'. The latter ones can be partitioned, due 
to the fact that they contain, or do not contain, the vertices a and b, in three 
families, denoted by 

The dual solutions y *  on graph G* have strictly positive components on stable 
sets which can be partitioned into two families denoted by 

Yo,"' and 9:;. 

A value is assigned to each of the stable sets of these families. This value is 
initially the (integer) component of vector y' or vector y *  corresponding to  the 
stable set. 

We shall now juxtapose two stable sets: one from a family defined in B, the 
other from a family defined in G*, in such a way as to obtain a stable set 
defined in G. Each one of the stable sets thus obtained will correspond to a 
component of the vector y which is sought. This component is defined by the 
minimum of the values associated to the two stable sets forming it. We now 
deduct the value of this minimum from the quantities corresponding to the two 
stable sets. The stable sets associated with a zero value are then removed. 

We continue to define y in the same way, for the remainder of the families. 
It is, however, necessary to proceed in a fixed order. 

We first juxtapose the family 9% with the family 9? (a is replaced by a and 
b), then the family fld with 9'2* (a is now replaced by a). At this stage, the 
dual constraints corresponding to  vertices a and b are satisfied. We can then 
juxtapose 92. (a is removed) with fls and finally juxtapose the rest of the 
latter with Sp. 

This procedure allows us to find integer dual solution y which satisfies with x 
the complementary slackness theorem. 



Parity graphs 25 

Remark 9. Section 5.2.3 supposes an algorithm is known for the weighted 
coloring problem for a bipartite graph (dual problem of maximum weighted 
clique). Such an algorithm, apparently never described, is not difficult to 
imagine in O(n3). Using arguments like those of Remark 8, the complexity of 
the algorithm proposed in Section 5.2 is O(l q3). 

The very short and technical final Section 5.2 obscures the fact that the 
problems ‘maximum cardinality clique’ and ‘minimum coloring’ have an almost 
‘greedy’ solution. Yet, here again, we find that a parity graph is very much like 
a bipartite graph: the maximum cardinality clique problem is easier than the 
maximum cardinality independent set problem. 
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A {0,2}-matching is an assignment of the integers 0 ,2  to the edges of a graph G such that 
for every node the sum of the integers on the incident edges is at most two. A tow is the 
(0-1)-incidence vector of a hamilton cycle. We study the polytope P(G) ,  defined to be the 
convex hull of the {0,2}-matchings and tours of G. When G has an odd number of nodes, 
the travelling salesman polytope, the convex hull of the tours, is a face of P(G).  We obtain 
the following results: 

(i) We completely characterize those facets of P ( G )  which can be induced by an 
inequality with (O-l)-coefficients. 

(ii) We prove necessary properties for any other facet inducing inequality, and exhibit a 
class of such inequalities with the property that for any pair of consecutive positive integers, 
there exists an inequality in our class whose coefficients include these integers. 

(iii) We relate the facets of P ( G )  to  the facets of the travelling salesman polytope. In 
particular, we show that for any facet F of the travelling salesman polytope, there is a 
unique facet of P ( G )  whose intersection with the travelling salesman polytope is exactly E 

1. Introduction 

Let G = (V, E) be a finite undirected graph and let c = (c,: j E E) be a vector 
of real edge costs. The infamous travelling salesman problem is to find a 
hamilton cycle of G, the sum of whose edge costs is minimum. (If G has no 
hamilton cycle, this fact should be discovered.) A major obstacle to  be 
overcome in this process is the verification of a proposed optimum tour. 
Indeed, even if one has discovered the optimal tour, but is forced to convince a 
nonbeliever of the tour’s optimality, it is generally necessary to perform a 

* Research supported, in part, by NSF grant ENG 79-02526 to  Carnegie Mellon University. 
** Supported by the University of Bonn (Sonderforschungsbereich 21 @FG), Institut fur Opera- 

tions Research). On leave of absence from Department of Computer Science, The University Of 
Calgary, Canada. Research supported, in part, by National Science and Engineering Research 
Council of Canada. 
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quantity of work effectively as large as that performed in finding the optimum 
tour in the first place. 

This need for a good optimality condition prompted the development of the 
area of polyhedral combinatorial optimization. This approach was pioneered by 
Jack Edmonds in solving matching problems [4], matroid optimization prob- 
lems [S ,  61 and, as a special case, branching problems [7]. The idea is to 
represent the feasible solutions to 'a discrete optimization problem by their 
incidence vectors and consider the convex hull of these vectors viewed as points of 
R". If a linear system sufficient to define such a polyhedron can be discovered, then 
linear programming duality theory provides a general min-max optimality 
criterion. 

So far, the results obtained using this approach have not been as successful 
for the travelling saIesman problem as for these other problems. At present no 
complete characterization of a linear system sufficient to define the convex hull 
of the set of incidence vectors of the hamilton cycles-the so called travelling 
salesman polytope-is known. An extensive study of this polytope was carried 
out by Grotschel [8] as a part of his doctoral dissertation. This continued 
earlier work of Chvhtal [l] who introduced the class of 'comb inequalities', 
which were generalized ([8, 111) to provide what is at present the largest known 
class of essential inequalities for the travelling salesman polytope. Other classes of 
essential inequalities for the travelling salesman polytope have been obtained by 
Grotschel [9] and Maurras [14]. However, even though the incompleteness of 
these linear systems is unsatisfactory from a theoretical point of view, these partial 
systems have provided the basis for successful cutting plane approaches to 'real 
world' problems (see [2, 10, 151). 

There is a problem that arises when dealing with the travelling salesman 
polytope that does not arise when dealing with the polyhedra of matroids and 
matchings: The travelling salesman polytope is not full dimensional. This 
means that there does not exist a unique (up to a positive multiple) minimal 
defining linear system as there does for these other polytopes. In fact an 
inequality can always be replaced by another obtained by multiplying by a 
positive constant and adding any linear combination of the equations which 
define the affine space containing the polytope. Generally, full dimensional 
polytopes seem more pleasant to handle, so what is often done when studying 
the travelling salesman polytope is to consider, in fact, the SO called monotone 
trauelling salesman polytope: the convex hull of the incidence vectors of the 
hamilton cycles and all subsets of hamilton cycles of a graph. Then the 
travelling salesman polytope is a face of this larger polytope, the face obtained 
by requiring Z (xi: j E E )  = I VI. 

We study here a different full dimensional extension of the travelling 
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salesman polytope. If the number of nodes of G is odd, then, again, the 
travelling salesman polytope is a proper face of this larger polytope. In the next 
section we introduce this polytope and completely characterize all the essential 
inequalities of a defining linear system which can be scaled so as to have 
(0-1)-coefficients. In Section 3 we prove several necessary properties of any 
non 0-1 essential inequalities, and give a class of such inequalities. These 
inequalities have the property that for G sufficiently large, any desired con- 
secutive pair of positive integers can be obtained as coefficients. Finally, in 
Section 4, we relate the results of Section 3 to the previously known classes of 
essential inequalities for the travelling salesman polytope. In particular, we 
show that there exists a natural injection of the set of facets of the travelling 
salesman polytope into the set of facets of our polytope. 

One point of terminology should be clarified at this point. A facet of a 
polyrope P is a maximal nonempty proper face, that is, a face of dimension one 
less than that of P. A facet inducing inequality is any inequality which is 
satisfied by all members of P, and satisfied with equality by precisely the 
members of some facet F or P. For general polytopes, if we have a minimal 
defining linear system, then there will be exactly one facet inducing inequality 
for each facet of P. If the polytope is of full dimension, then every inequality in 
the system will be facet inducing. However if the polytope is not of full 
dimension, then this minimal defining system will also include sufficient linear 
equalities or  inequalities to determine the affine space containing the polytope. 

2. Tours and {0,2}-matchings 

For any edge j of G = (V, E) we let + ( j )  denote the two nodes of G incident 
with j .  For any Sc V we let S ( S )  denote the set of edges having exactly one 
end in S and we let y(S)  denote the set of edges having both ends in S. We 
abbreviate S({v} )  by S ( u )  for z, E V. For any J C E and any vector x = 
(x]: j E E) we let x ( J )  = Z (x]: j E J). If K is any graph, we will sometimes use 
E ( K )  and V ( K )  to denote the edge set and node set respectively of K. 

Now consider the following linear system: 

We define a tour to be the incidence vector of the edges of a hamilton cycle 
of G. It is easily verified that the integer solutions to  (2.1)-(2.3) are the tours of 
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G and all incidence vectors of collections of node-disjoint paths. Moreover, if 
the inequalities in (2.2) are replaced by equations, then the integer solutions 
are precisely the tours. (This latter system is one of the earliest integer 
programming formulations of the travelling salesman problem [3] . )  The con- 
straints (2.2) are called degree constraints; the constraints (2.3) are called 
subtour elimination constraints. 

Now suppose we remove the upper bound from (2.1). That is, we replace it 
by 

0 xi for all j E E . (2.4) 

The set of 0-1 valued solutions obviously remains unchanged but the set of 
integer solutions is greatly enlarged. A 1-matching of G is a set of edges 
meeting each node at most once. We say that it is perfect if it meets each node 
exactly once. Let M be a 1-matching of G and let x = (xi: j E E) be defined by 

0 i f j E E - M ,  
2 i f j E M .  XI = 

We call such a vector a {0,2}-matching of G and we let P (G)  denote the 
convex hull of the tours and {0,2}-matchings of G. 

If x is a {0,2}-matching of G, then x satisfies (2.2), (2.4) and (2.3) for all those 
S C  V such that IS1 is odd. Of course, every tour will also satisfy these 
inequalities, and in fact P(G)  is the convex hull of the integer solutions to this 
system. This is because every such integer solution other than a tour or a 
{0,2}-matching can be written as 0.5x1+o.5x2 where x1 and x2 are {0,2}- 
matchings. 

In the case that 1 Vl is even, any tour can also be expressed as 0 . 5 ~ ~  + 0.5x2, 
choosing x1 and x2 as the two complementary perfect {0,2}-matchings contained 
in the edges of the tour. Thus when IVI is even, the vertices of P ( G )  are just 
the {0,2}-matchings. However, when is odd, the situation is quite 
different. Let TSP(G) denote the travelling salesman polytope of G, i.e., the 
convex hull of the set of tours of G. Then TSP(G) is the face of P (G)  obtained 
by taking the intersection of P (G)  with the affine space defined by 

x ( 6 ( i ) )  = 2 for all i E V. (2-5) 

This is because a graph with an odd number of nodes cannot have a perfect 
1-matching and, therefore, if x is a {0,2}-matching of G, then there must exist at 
least one node for which x(6(u))<2. Conversely, every tour of G satisfies 
(2.5). Therefore, our objective in this section is to determine several classes of 
facets of P ( G )  which we will then relate to TSP(G). 
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M ( G )  = {x E WE:. 

For any S C V we let G[S] denote the node induced subgraph of G induced 
by S. We say that S C V is hypomatchable (or 1-critical) if for every u E S, the 
graph G[S - {u}] has a perfect 1-matching. Necessarily, this implies that IS1 is 
odd. Let Q = { S  V S is hypomatchable and IS1 3 3) and let M ( G )  be the convex 
hull of the incidence vectors of the I-matchings of G. Edmonds [4] proved the 

x j s O  f o r a l l j E E ,  

x ( 6 ( i ) )  S 1 for d l  i E V,  

x ( y ( S ) )  (IS( - 1)/2 for all S E Q} . 

(In fact, the theorem as stated by Edmonds had Q equal to the set 0, all odd 
cardinality subsets of V. However, the restriction to  hypomatchable sets is 
implicit in his algorithm used to prove the theorem.) This system of inequalities 
is ‘almost’ minimal. Pulleyblank and Edmonds [16] showed that all the in- 
equalities (2.6) are necessary, all the inequalities (2.7) which do not violate a 
rather technical condition are necessary and an inequality (2.8) is necessary if 
and only if G[S]  is nonseparable, i.e., contains no cut node. 

Since a vector x is a {0,2}-matching if and only if x/2 is the incidence vector 
of a 1-matching, a linear system sufficient to define the convex hull of the set of 
2-matchings of G can be obtained by simply doubling the right-hand sides of 
the linear system (2.6)-(2.8), and trivially, this linear system defines P ( G )  for 
I VI even. But when I VI is odd, there is an inequality of the form (2.8) which 
requires x(E) s 1 Vl - 1, and of course, every tour of G violates this inequality. 

It is worth noting at this point that a travelling salesman problem on a graph 
G = (V, E )  with 1 V( even can easily be transformed into an equivalent problem 
on a graph G’ = (V’, E’)  with I V’I odd. Simply duplicate some node v and its 
incident edges, giving each duplicate edge the same cost as the original. Join u 
and its duplicate with a simple path having two new nodes and three edges of 
cost zero. The solution of the travelling salesman problem for G’ yields the 
solution for G. 

Since P ( G )  contains all {0,2}-matchings of G, P ( G )  is of full dimension. 
Therefore for each facet F of P ( G )  there exists a unique (up to a positive 
multiple) inequality ax s a such that F = {x E P ( G ) :  ax = a} and every x E 
P ( G )  satisfies ax s a. itloreover, the set of all such inequalities is the minimal 
defining linear system which we would like to find. Unfortunately, we are 
unable to explicitly describe this system, but in the following three propositions 
we define three classes of such facet-inducing inequalities. We will then show 
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that every facet-inducing inequality with 0-1 coefficients belongs to one of 
these classes. 

Proposition 2.2. For every j E E, xi 2 0 induces a facet of P ( G ) .  

Proof. Let 0 denote the zero vector indexed by E and let uk, for k E E, denote 
the vector which is zero everywhere but the kth coordinate and uk = 2. Then 
{0} U {uk: k E E - { j}} is a set of /El affinely independent vectors satisfying 
xi = 0. Since {x E P ( G ) :  xi = 0} is a proper face of P ( G ) ,  the dimension of this 
face is IEl - 1 and the result follows. 0 

It is clear that those graphs G which have isolated nodes are uninteresting 
from a point of view of P(G) ,  since their deletion leaves the polytope 
unchanged. Henceforth we will always assume that G has no isolated nodes, 
however, G need not be connected. Of course, if G is not connected, then 
there exist no tours so the results really reduce to results on M ( G ) .  

Proposition 2.3. For every u E V, x(6 (u ) )  S 2 does not induce a facet of P ( G )  if 
and onZy if u has a single neighbor w E V and 6(w) # 6(u ) .  

Proof. If u has a single neighbor u, then any x E P ( G )  satisfying x(S(u))  = 2 
also satisfies x(6 (u ) )  = 2. If there exists k E 6 ( u )  - S(u),  then the unit vector uk 
defined in the proof of Proposition 2.2 satisfies uk(6(u))  = 2 but uk(6(u))  = 0. 
Therefore {x E P ( G ) :  x ( 6 ( u ) )  = 2) is not a maximal proper face of P ( G )  and so 
x(6(u) )  = 2 does not induce a facet. 

Conversely, suppose that u has a single neighbor w but S ( w )  = S(u) .  Let 
h E S(u) .  For any j E E - S ( u )  let d' be defined by 

Then ($: j E E - 6(u)}  U {u": k E 6(u ) }  is a set of [El affinely independent 
{0,2}-matchings of G, all satisfying x ( 6 ( u ) )  = 2. Therefore x ( 6 ( u ) )  6 2 induces a 
facet of P ( G ) .  

Finally suppose that u has more than one neighbor. Then for any j E  
E - 6 ( u )  there exists a {0,2}-matching ii' which is zero everywhere except for 
the jth component and one component corresponding to  a member of 6(u) .  
Then, as before, {iij: j E E -  6(u ) }  U {u": k E S ( u ) }  is a set of [El affinely 
independent {0,2}-matchings of G satisfying x ( 6 ( u ) )  = 2, so x ( 6 ( u ) )  6 2 induces 
a facet of P ( G ) .  0 



The travelling salesman polytope and {0,2}-matchings 33 

In fact, Propositions 2.2, 2.3 and 2.6 follow immediately from the facet 
characterizations [16] of the matching polytope M(G).  For suppose that ax s a is. 
a facet inducing inequality for M ( G )  and that ax 6 2 a  is a valid inequality for 
P(G). Then there is a set M of /El affinely independent incidence vectors x of 
1-matchings all satisfying ax = a. The set = (2 x: x E M }  is then a set of IEl 
affinely independent {0,2}-matchings all satisfying ax = 2a, which establishes that 
the inequality is facet inducing for P(G).  

If I Vl is odd, then, of course, no perfect 1-matching or {0,2}-matching of G 
can exist. Thus we define an np (‘near perfect’) 1-matching to be a 1-matching 
incident with every node of V but one. 

Similarly, an np-{O,2}-matching is a {0,2}-matching x of G satisfying x(E)  = 

I VI - 1. In other words, only one node is unsaturated. Then a graph G is 
hypomatchable if and only if for every v E V, there exists an np-(O,2}-matching 
(or a np-1-matching) which leaves u unsaturated. In [16] the following theorem 
was proved. 

Theorem 2.4. If G is a nonseparable hypomatchable graph, then there exist IE( 
np-1-matchings of G, whose incidence vectors are afinely independent. 

This result was proved constructively, via an algorithm which actually 
constructed the np-1-matchings. Using this result, it was then shown that for 
S C V such that IS[ 3 3, G[S] hypomatchable and nonseparable, the inequality 
x ( y ( S ) )  < (IS1 - 1)/2 induces a facet of M ( G ) .  A shorter, nonconstructive proof 
of this result has been obtained by Lovhsz, which we describe here. 

Lemma 2.5. For every S 
nonseparable, x ( y ( S ) ) s  (IS1 - 1)/2 induces a facet of M(G). 

V such that IS1 3 3 and G[S] is hypomatchable and 

Proof (Lovasz). Let X be the set of incidence vectors x of 1-matchings of G 
which satisfy x ( y ( S ) )  = (IS] - 1)/2. Since the inequality x ( y ( S ) )  =S (IS1 - 1)/2 is 
easily seen to be satisfied by all members of M(G),  all we need show is that the 
affine rank of X is equal to IEI, or in other words, there is a unique (up to a 
positive multiple) nonzero vector a = (a,: j E E )  and scalar a such that ax = a 
for every x E X. To do this, we will show that any such a must satisfy a, = k for 
some constant k, for all j E y ( S )  and a, = 0 for all j E E - y ( S ) .  For then, if we 
‘scale’ a by dividing every component by k, we see that this inequality must be 
a scalar multiple of the inequality x ( y ( S ) )  < (IS] - 1)/2. 

so suppose there exist i E S such that a, takes on different values for edges j 
in 6 ( i )  n y ( S ) .  Let the graph G’ be obtained from G[S]  by ‘splitting’ i into two 
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nodes i’ and i” such that all the edges j of 6 ( i )  n y ( S )  for which ai takes on the 
minimum value are incident with i’ and all the others are adjacent with i”. 
Since G[S] was nonseparable, G’ is connected and in addition must have a 
perfect 1-matching. For if not, by Tutte’s theorem [17] (viz (2.8)), there would 
exist a nonempty subset Y of the node of G’ such that deleting Y creates at 
least I Yl + 2 odd cardinality components. 

Let Y’ be the subset of S consisting of‘all nodes of Y n S together with i if 
at least one of i ’ ,  i” belongs to Y. Then by checking cases one can verify that 
G [ S -  Y’] has at least lYl odd cardinality components. Therefore for any 
v E Y ,  G[S - {v’}]  does not have a perfect 1-matching, contrary to  G[S] being 
hypomatchable. 

So let x* be the incidence vector of a perfect matching of G’, and let 
j ’ E  S ( i ‘ )  and j”E S( i” )  be such that xi?; = x ;  = 1. Let x1 and x 2  be obtained 
from x *  setting the j ’  and j “  components respectively to  zero. Then x l ,  x2 E X 
but ax’ > ax’, a contradiction to ax = a for all x E X. Therefore, the value of 
aj is constant for all j E y ( S ) .  Moreover, it is easily verified that for every 
j E E - y ( S ) ,  there exists x’ E X  such that x ;  = 1. Moreover, the vector x’’ 
obtained from x’ by setting the jth component to  0 also belongs to X. 
Therefore, we must have ai = 0 for j E E - y ( S )  and the result follows. 0 

Proposition 2.6. For every S 5 V such that 1.91 2 3 and G[S]  is hypomatchable 
and nonseparable, x ( y ( S ) )  (IS1 - 1) induces a facet of P(G). 

Proof. This is an immediate corollary of Lemma 2.5. 0 

The important difference between Lemma 2.5 and Proposition 2.6 is that in 
the latter we were forced to restrict S to being a proper subset of V, because 
every tour of G violates the inequality x ( E )  S I q - 1. For the case S = V, we 
have the following result for P(G).  

Proposition 2.7. Let G‘ = (V, E‘) be a spanning subgraph of G which is 
hypomatchable, nonseparable and nonhamiltonian and such that E’ is maximal 
with this property. Then x(E’)  s I Vl - 1 induces a facet of P(G).  

Proof. Since G’ is nonhamiltonian and I bl is odd, every member of P(G)  must 
satisfy x(E’)  s I q- 1. All we need show is that there exist IEf affinely in- 
dependent members of P ( G ) ,  all of which satisfy x(E’)  = I q - 1. First we note 
that since G’ is nonseparable and hypomatchable, it follows from Proposition 
2.4 that there exists a set X of IE‘I affinely independent incidence vectors of 
np-1-matchings of G’. Let x be obtained from X by taking each x € X ,  
doubling it and defining the jth component to be zero for all j E E - E.  Then 
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x is a set of IE’I affinely independent np-{O,2}-matchings of G. Moreover, 
xi = 0 for all j E E - E’, for all x E x. For each j E E - E’, there exists a 
hamilton cycle whose edges are contained in E’ U { j } ,  by the maximality of E’. 
Let tJ be the tour corresponding to such a hamilton cycle. Then tj(E‘) = 1 V ]  - 1, 
for all j E E - E‘ and we let T = { t ’ :  j E E - E’}. It is easily seen that T u k is 
a set of IEl affinely independent members of P ( G )  all satisfying x(E’) = I Vl - 1, 
since for j E  E-E‘, t’ is the only member of TUX for which the j th 
component is nonzero. 0 

We note that if G is nonhamiltonian, then the inequality of the previous 
proposition is simply x(E)  S 1 V(  - 1 which is facet inducing for P ( G )  if G is 
nonseparable and hypomatchable. However, when G is hamiltonian, then G’ 
must be a proper spanning subgraph of G, which is therefore not node induced. 
In general, the number of these subgraphs is very large. 

We make use of one more preliminary result. For any X C  V let c ( X )  
denote the number of components of G[ V- XI having an odd number of 
nodes. Tutte’s classical theorem characterizing those graphs having perfect 
1-matchings is the following. 

Theorem 2.8 (Tutte [17]). G has a perfect 1-matching if  and only if for every 
x c v, 1x1 2 c ( X ) .  

A less classical theorem characterizing those graphs which are hypomatch- 
able was proved independently by Pulleyblank and Edmonds 1161 and LOV~SZ 
[=I. 

Theorem 2.9. G = (V, E )  is hypomatchable if  and only if I V( is odd and for 
every nonempty X c V, 1x1 2 c ( X ) .  

Of course, the important part of these theorems is the sufficiency of the 
condition, i.e., the assertion that if G has no perfect matching or is not 
hypomatchable, then there exist X C V such that 1x1 < c(X) .  It is not difficult 
to strengthen this in the following manner. 

Corollary 2.10. Let G = (V, E )  be a connected graph which has no perfect 
matching and is not hypomatchable. Then there exists nonempty X *  C V which 
maximizes c(X) - 1x1 over all nonempty X C V, and such that G[  V -  X * ]  
consists only of (at least IX*l+ 1) hypomatchable components. 

Proof. We prove by induction on I q. If I Vl  = 1, then G is hypomatchable; if 
I = 2 or 3, then the assertion is easily checked. Suppose G has k nodes and 
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the result is true for all smaller graphs. By Theorems 2.8 and 2.9 there exists 
nonempty X C V such that c ( X )  - (XI > 0, let X *  be chosen such that c ( X * )  - 
( X * (  is maximum and, subject to this, the number of nonhypomatchable 
components of G [  V -  X * ]  is minimum. If there are no such components, then 
we are done, so suppose that S is the nodeset of a nonhypomatchable 
component. If IS1 is odd, then by induction there is 0 f Xs C S such that 
G[S - Xs] consists of at least IXsl + 1 hypomatchable components. Then 

c(X* u X,)  - (x* u xsla c ( X * )  - (x*l , 

but G [  V -  ( X *  U Xs)] contains fewer nonhypomatchable components than 
does G [ V -  X * ] ,  a contradiction. If (SI is even, then let v be any node of S, 
which is not a cutnode of G[S] and let X ’ =  X U { v } .  Then 

C(X’)- /X’J  = c ( X * )  - Jx*J 

and if G [ S - { v } ]  is hypomatchable, then we have contradicted the choice of 
X * .  If not, then as before we use induction to find Xs C S - { v }  such that 
X‘  U Xs contradicts the choice of X.  

Our next theorem provides a characterization of all those facet inducing 
inequalities of P ( G )  which can be scaled so as to have 0-1 coefficients. Thus 
we say that an inequality ax c a is a (0-1)-inequality if every aj E (0, -1, 1). We 
will also say that such an inequality is a (0-k)-inequality if every aj E (0, - k, k} 
for some positive real number k. Then, of course, to any (0-k)-inequality there 
corresponds a (unique) (0-1)-inequality obtained by multiplying by l /k.  

Note that this definition allows us to consider the inequality xi a 0 for j E E 
(equivalently, -xi S 0) as a (0-1)-inequality. It might be asked whether there 
exist other facet inducing inequalities ax s a for P ( G )  having aj < 0 for some j .  
We can answer this in the negative; all others are obtained from nonnegativity 
constraints by scaling. 

Lemma 2.11. If a x  s a is a facet inducing inequality for P ( G )  having aj < 0 for 
some j E J, then this inequality must be ajxj s 0. 

Proof. Since P ( G )  is of full dimension, if we let M be the set of {0,2}- 
matchings x of G satisfying ax = a and let T be the set of tours t of G 
satisfying at = a then the affine rank of X = M U T must be IEI. Therefore 
ax = a is the unique hyperplane containing all elements of X. Suppose a, < 0. 
If there existed P E M for which Pj > 0, then setting the j th component of P to 
0 would yield another {0,2}-matching of G violating ax S a. If there existed 
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t E T with 4 > 0, then setting the jth component to zero gives the incidence vector 
x of a hamilton path of G, for which ax>a. But x is the average of two 
{0,2}-matchings of G, at least one of which must violate ax S a. Thus we must 
have xj = 0 for all x E X so ax S a is a positive multiple of the nonnegativity 
constraint -xi S 0. 0 

For any J C  E we let r ( J )  denote the maximum possible value for x ( J )  for 
all {0,2}-matchings and tours x of G. This ‘rank’ function is important for it is 
the smallest possible value for a if the (O-1)-inequality n ( J ) S  a is to be valid 
for P(G) .  Moreover, if a > r(J), then no member of P ( G )  can satisfy x ( J )  = a. 
Thus r(J) is the only possible value for a if x(J)  S a is to induce a facet of 

Finally, let W denote the set of all u E V such that either u has at least two 
P(G) -  

neighbors, or, if u as a single neighbor w, then 6 ( u )  = 6(w) .  

Theorem 2.12. The following is the complete set of facet inducing (O-1)-in- 
equalities of P (G) :  

x j 3 0  f o r a l l j E E ,  (2.9) 

x(6(i))  S 2 for all i E W ,  (2.10) 

nonseparable, hypomatchable, (2.11) 
x(y (S) )  S IS( - 1 for all S 5 V, (SI 3 3, G [ S ]  

x(E‘) s I VI - 1 for all edge maximal spanning subgraphs 
G’ = (V, E‘)  of G which are hypomatchable, 
nonhamiltonian and nonseparable. (2.12) 

Proof. We saw in Propositions 2.2, 2.3, 2.6 and 2.7 that all these inequalities do 
induce facets of P ( G ) .  Now we show that every facet inducing (O-1)-inequality 
is of one of the above types. Let ax S a be facet inducing. By Lemma 2.11, if 
ax S a is not of the form (2.9), we must have a 3 0, so l e t ’ E  = { j E E :  uj = 1). 
Then the inequality a x s a  must be x(E’)Sr(E’) .  Edmonds observed, in 
the context of matroid polyhedra, that if such an inequality is facet inducing, 
then two properties must hold: First, E‘ must be closed, i.e., for every 
j E E - E’, we must have r(E’ U { j } )  > r(E’). Otherwise x(E’ U {i}) S 

r(E’ U { j } )  = r(E’) would be a stronger valid inequality than ax S a, contradic- 
ting the necessity of a facet-inducing inequality. Second, E’ must be nonsepar- 
able, i.e., there cannot exist nonempty S, T E‘ such that S U T = E’ and 
r (S)+  r(T) = r(E’). For in this case, the inequality x ( E ’ ) S  r(E‘) is implied by 
the sum of the inequalities x(S)  s r(S) and x ( T ) S  r (T)  which means that it can 
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be replaced with these two different inequalities, again contradicting the 
necessity. So we know that E‘ is closed and nonseparable. 

Let V’ be the set of nodes incident with edges in E’. If the graph G’= 
(V’, E’)  has a perfect {0,2}-matching or contains a hamilton cycle of G, then 
r (E’ )=  IV’I and so a x < a  is implied by one half of the sum of the degree 
constraints for the nodes in V’. Since the degree constraints are valid in- 
equalities the facet a x  < a can be necessary only if it is identical to a degree 
constraint (2.10). Furthermore the assumption that G’ has a perfect {0,2}-  
matching means that V’ = {u, u }  and 6 ( u )  = 6 ( u )  = E’. 

Now suppose that G’ is hypomatchable. Then r(E’) = 1 V’I - 1. If V’C V, 
then since E’ is closed we must have E’ = y(  V’). If G‘ were separable, then E’ 
would be separable, so we must have G’ = G[ V’] is hypomatchable, nonsepar- 
able, so that ax S a is an inequality of the form (2.11). If V’ = V, then G’ is a 
hypomatchable non-hamiltonian spanning subgraph of G which must also be 
nonseparable and edge maximal with these properties, since E’ is closed and 
nonseparable. Thus ax < a is a constraint of the form (2.12). 

Finally, suppose that G‘ has no perfect matching and is not hypomatchable. 
By Corollary 2.10 there exist nonempty X C V’ such that G‘[ V’ - X ]  consists 
of at least 1x1 + 1 hypomatchable components, and c’(X)- (XI is maximized, 
where c’(X) denotes the number of odd components of G’[ V’ - XI. If we sum 
the degree constraints (2.10) for the nodes of X and the constraints (2.11) for 
the node sets of the components of G’[ V’ - XI (or the nonseparable blocks of 
these components if they contain cutnodes), then we obtain a valid inequality 
x ( E )  S 1 V’I - (c’(X) - IXl), where I? 2 E‘. (If some of these components are 
single nodes, the constraint (2.11) is trivial and can be dropped.) Now if 1x1 = 1 
and every component of G’[ V’- XI consists of a single node, then ax < (Y 

must be a degree constraint (2.10). Otherwise the inequality x(E) S 

I V’[ - ( c ‘ (X)  - 1x1) has been derived as the sum of at least two different valid 
inequalities. We will show that r(E‘) = I V’I - (c’(X) - 1x1) which will contradict 
x(E’) < r(E‘) being facet, since we can obtain it (or a stronger inequality) from 
other inequalities. 

Clearly r(E’) S I V’l - (c’(X) - 1x1); all we need do is find some x *  E P ( G )  
giving equality. Construct a bipartite graph G from G’ having one node u ( x )  
for each x E X, one node u(K)  for each component K of G’[ V’- XI and an 
edge joining u ( x )  and u(K)  if and only if x was adjacent (in G’) to some node 
of K. If there is no 1-matching which covers all nodes u ( x )  for x E X, then by 
Hall’s theorem, there is a set X c  X such that fewer than 1x1 nodes u(K)  for 
components K of G’[ V’- XI are adjacent to nodes u ( x )  for x E x. But then 
c‘(X - 2) - IX - Zl > c ’ ( X )  - 1x1 a contradiction. So we can construct x *  by 
letting x , ? = 2  for each edge corresponding to an edge of a maximum 1- 
matching of G, by letting xT be defined equal to an appropriate np-{0,2}-matching 
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for each component of G'[ V'- XI and x ;  = 0 otherwise. Then x* E P(G)  and 
x*(E') = 21x1 + X {IS( - 1: S is the nodeset of a component of G[V- X I }  = 

1 v( - (C'(X) - 1x1). 0 

3. General facets of P ( G )  

We discuss three topics in this section. First we establish some necessary 
conditions which must be satisfied by any facet inducing non-@-l)-inequality of 
P(G).  Second, we describe such a class of non-(0-1)-inequalities having the 
following property: For any pair (s, s + 1) of consecutive positive integers, there 
exists a graph G and a facet inducing inequality whose coefficients include s 
and s + 1. Third we describe a lifting procedure which allows us to obtain facets 
of P ( G )  from facets of P(G') for a subgraph G' of G. 

As we remarked in Section 2, if G has an even number of nodes, then tours 
are the midpoints of lines joining pairs of {0,2)-matchings and so by Theorem 
2.1 P ( G )  has only 0-1 facets. Thus the only graphs we will consider in the 
remainder of this paper are those having an odd number of nodes. 

Let ax < Q be an integer inequality. We say that this inequality is non-(0-l) 
if it is impossible to scale the coefficients so that ajE{O, +1} for all j E E .  In 
other words, there exist two nonzero coefficients with different magnitudes. If t 
is a tour of G = (V, E ) ,  we let E ( t )  = { j  E E :  4 = 1). 

Theorem 3.1. Let G have an odd number of nodes and let ax S a be a non-(0-1) 
facet inducing inequality for P(G).  Let E+ = { j E E :  ai+ 0) and let G' be the 
subgraph of G induced by the edges in E+. Let M be the set of {0,2}-matchings x 
satisfying ax = a and let T be the set of tours t satisfying at = a. Then 

ai > O  for all j E E' and Q > 0 ,  

every x E M is a np-matching of G ,  

(3.1) 

(3.2) 

(3.3) 
for every node v of G, M contains a np-matching deficient 
at v ,  

any basis of T U M contains at least one tour t for which 
E ( t ) C  E+; there exists a basis B of T U M such that every 
t E B satisfies IE(t) - E+l s 1 . 

(3.4) 

Note that (3.4) imples that G+ is a spanning hamiltonian subgraph of G, 
which of course implies that G' is hypomatchable. Condition (3.3) adds that M 
contains a np-matching of G deficient at every node of G. Moreover, there 
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exists a basis of M U T, thus, a subset of the points sufficient to uniquely define 
the facet, consisting solely of np-matchings and tours which are either con- 
tained in G+ or else induce hamilton paths in G’. 

Proof. Since P(G) is of full dimension, the affine rank of X = M U T must be 
IEI, so ax = a is the unique hyperplane containing all elements of X. Since 
a x s a  is a non-(0-1)-inequality, Lemma 2.11 yields a 2 0 ,  which in turn 
implies a > 0, so (3.1) is immediate. Now we show that G+ must be connected. 
If not, let K be a component of G+ and let a’ and a” be defined by 

aj if j E E ( K ) ,  
0 otherwise ; 

0 i f j E E ( K ) ,  
aj otherwise. 

a; 

If there exists xl, x 2 E X  such that a’x1>a’x2, then we can find such xl, 
x2EM. For let t E  T. Since we assume G+ is not connected, E ( t ) f l E +  will 
consist of some number of disjoint paths, and consequently can be expressed as 
the average of two {0,2}-matchings xl, x 2  both of which must be in M. But then 
we must have a’xl s art s a‘x2 and so one of xl, x 2  would serve as a substitute 
for t. Since, therefore, xl, x2E M we can define x* equal to x1 on E ( K )  and 
equal to x 2  on the rest of G and then ax* > a, a contradiction. Therefore 

G+ is connected. (3.5) 

If every x E M satisfied x(S(u)) = 2 for some u E V, then since every t E T 
must satisfy t (6 (u ) )  = 2, we must have ax s a being a degree constraint (2.10). 
Since we have assumed that a x s a  does not induce a 0-1 facet, we must 
have, therefore, 

for each u E V there exist x E M such that x(6(u)) = 0 .  (3.6) 

Now we show that 

every x E M satisfies x(E+) = I V(G+)l- 1 (3.7) 

which will mean that every x E M induces a np-matching of G+. 
Suppose that some x E M satisfies x(6(u) n E+) = x(6(u) n E+) = 0 for some 

u, u E V(G+). Assume that x, u and u are chosen so that the distance in G+ 
from u to u is minimum. (This is well-defined in view of ( 3 4 . )  If u and u were 
adjacent in G+, then by defining xj = 2 for an edge j of E+ joining u and u, we 
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would violate the constraint ax a. Therefore there exists a node w different 
from u and u on a shortest path in G' from u to u and by (3.6) we can find 
i E M satisfying 2 ( 8 ( w ) )  = 0. There exists a path in G+, starting at w, whose 
edges alternately have the value two in x and 2. If we replace the values of xi 
with those of ij for the edges in the path, then we will obtain a {0,2}-matching 
x *  E M deficient at w and (at least) one of u, u. But this contradicts the 
minimal distance property of x,  u, U. Thus IV(G')l is odd and (3.7) is 
established. 

If T = 0, or if there exists a basis B of M U T which is contained in M, then 
a x  s a must be the constraint x ( E + )  1 V(G)I - 1 since, by (3.7), every element 
in the basis satisfies it as an equality. This is a 0-1 facet and thus it must be of 
the type (2.11) or (2.12) by Theorem 2.12. Since we assume a x  s a is not a 
(0-1)-constraint, therefore, every basis of M U T contains at least one tour. 

(We remark that to this point this proof parallels a proof of Lovasz [13], who 
gave a nonalgorithmic proof of the sufficiency of the linear system (2.6)-(2.8) 
for the 1-matching polytope.) 

So we must have T f  0. We will show that 

for any tour t E T, either E ( t )  C E+ or else E(t )  induces a 
hamilton path in G+ . (3.8) 

For suppose E( t )  P E + .  Then there is j E E ( t )  with ai = 0 and E( t )  - { j }  consists of 
the edges of an even length path of G since G has an odd number of nodes. This 
path can be expressed as the average of two complementary np-matchings x1 and 
x2 of G, and at = 0 . 5 ~ ~ '  + 0 . 5 ~ ~ ~  = a which implies that xl, x2  E M (since every 
x E P(G) satisfies a x  6 a). If E ( t )  n E+ is not a hamilton path of G+, then it is 
easily verified that one of x', x2  will violate (3.7). Thus (3.8) is established. 

Now in order to complete the proof, we must show that 

(3.9) 
there exists a basis B* of T U M such that every t E B* satisfies 
IE(t)- E+I s 1 . 

This will imply that G' is a spanning subgraph of G, and.hence (3.7) will imply 
(3.2), which combined with (3.6) will prove (3.3). 

Let B be a basis of M U T containing a minimum number of tours t for which 
] E ( t )  - E+l> 1, and suppose that t is such a tour. Then E(F) induces an (even 
length) hamilton path T O  of G', and E(  7) - E' consists of a single odd length path 
T', which contains an even number of nodes (including the end points u, u which 
are nodes of G') (see Fig. 3.1). Moreover, since IE(7) - E'I > 1, we have 
lE(7r1)l 3 3. Now for each w E V* = V(T') - {u, v } ,  let x w  be the np-matching of 
G obtained by taking the (unique) perfect matching of the path obtained from t b y  
deleting w. 
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Fig. 3.1. 

Let s E V(G+)- {u, u}  and let f E M  satisfy P(s(s)) = 0 and fj = 0 for all 
j E  E + .  (By (3.6), there exists P E M satisfying the first property, and we can 
simply require 4 = 0 for all j E E - E+.)  Finally, let 2 be obtained from R by 
giving Zj the value two for the second, fourth, etc. edges of T'. Then i? EM. 
Now it can be easily verified that 

) V * J t = C ( x W :  w E  V * ) + i - f ,  

so 7 is a linear combination of M +  = { x w :  w E V*} U {Z, 2). Moreover, a = 
a t =  (1/1V*l)Z (axw: w E V*)+ a - a so we must have Z ( a x w :  w E V*)= 
1 V*la. But since every x w  satisfies a x w  S a, we must have, therefore, axw = a 
for all w E V*. Therefore M' C M, and so any basis of B - { F} U M' will be a 
basis of M U T which contradicts our choice of B. Thus (3.9) is established. 

Finally, note that if there existed a basis B of M U  T such that every tour 
t E B satisfied ]E( t )  - E+l = 1, then every x E B would satisfy x(E+) = 1 Vl - 1, 
so our constraint would necessarily be the inequality x(E+) S I Vl - 1 which 
induces a (O-1)-facet of the form (2.12). Thus (3.4) is established and the proof 
is complete. 0 

The consequences of this theorem are quite important. It shows that any 
facet inducing non-(0-1)-inequality must come from a (spanning) subgraph of G 
which contains hamilton cycles of G. We now examine such a class of facets. 

A simple example of a graph G for which P(G) has a non 0-1 facet is the 
graph of Fig. 3.2(a). If we let a = (ai: j E E) be the vector of edge coefficients 
indicated in the figure, then ax s 14 is a facet of P ( G ) .  

It is easy to verify that the inequality is valid; we show that it is a facet by 
exhibiting IE(G)l = 12 affinely independent members of P ( G )  satisfying ax = 

14. These will consist of eleven {0,2}-matchings and one tour. In order to 
obtain the {0,2}-matchings, we consider the seven np-{O,2}-matchings of the 
centre heptagon and extend each to a np-{O,2}-matching of G by setting xi = 2 
for the edge j joining u and u. These are easily seen to  be independent and use 
only the edge j of the graph G* obtained by contracting the heptagon (see Fig. 
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G ’  G” 

(a) (b) 

Fig. 3.2. Graph G for which P ( G )  has a non-(Gl)  facet. 

3.2(b)). We can give any one of the other four edges of G* the value two and 
extend it to a np-{O,2}-matching of G which is near perfect on the heptagon, 
and thereby obtain four more. Finally, the unique tour on G is affinely 
independent from the {0,2}-matchings and so we are done. 

Notice that the idea of the construction was to take a large set of np-{O,2}- 
matchings which were also near perfect on a certain induced subgraph, and 
then complete them with a tour. This provides the basis for a general con- 
struction. 

Let G’ = (V’, E‘) be a subgraph of a hamiltonian graph G. We define 

r(G’) = I V’( - max{t(E’): t is a tour of G} . 

We call r the segmeM number of G’; it equals the smallest number of segments 
of some hamilton cycle of G which cover all the nodes of G’. For example, if H 
is the heptagon of Fig. 3.2(a), then T ( H )  = 2. If G is nonhamiltonian, then the 
function T is not defined. 

V for a graph G = {V, E )  we let G x S denote the graph 
obtained by contracting the subgraph G[S] to a single pseudonode. Thus, in 
Fig. 3.2, G* = G x V ( H ) .  

For any S 

Theorem 3.2. Let G = (V, E )  be hamiltonian, let G’ = (V, E‘) be a node 
induced subgraph of G and suppose that 

G’ is hypomatchable and nonseparable , 

G x V‘ is hypomatchable and nonseparable. 

Let a = (aj:  j E E )  be defined by 

for j E E‘ , a. e ’ cg;- 1 for j  E E -  E’ , 
and let 

(Y (T(G‘)- 1)(1 - 1)+ I V’I - 1 

Then ax G a! induces a facet of P ( G ) .  

(3.10) 

(3.11) 
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Proof. We first prove the validity of ax S a. If X is a {0,2}-matching of G, then 
I(E) S I q- 1 and X(E') S I V'I - 1 and so aX S a. Moreover aX = a if and only 
if X is near perfect on both G and G'. If X is a tour of G, then X(E) = I Vl 
and X(E') S 1 V'I - T(G') so a2 = (T(G') - 1) X(E) + X(E') S (T(G') - 1)(1 v- I) 
+IV'I- 1=  a, and we have a x =  a if and only if X(E')= ~ V ' ~ - T ( G ' ) .  
Since ax S a is valid for all vertices of P(G),  it is valid for P(G).  

We show that ax S a is facet inducing by exhibiting IEl affinely independent 
members x of P ( G )  satisfying ax = a. By (3.10) and Proposition 2.4, there are 
IE'l affinely independent np-{O,Z}-matchings of G'. Let i be any np-{O,2}- 
matching of G x V' which is deficient at the pseudonode V'. We extend each of 
our np-{O,2}-matchings of G' to  a np-{O,2}-matching of G by defining it equal 
to R on E - E'. Let X o  be the set of affinely independent matchings thereby 
obtained. Then ax = a for all x E Xo.  

By (3.11) and Proposition 2.4 there are IE-E'I affinely independent np- 
{0,2}-matchings of G x V'. Let X be such a set, which contains f, and let X' be 
obtained from 2 - {a}  by extending each x E 2 - {R} to  a np-{072}-matching of 
G. Then X' is a set of IE - E'I - 1 affinely independent {0,2}-matchings of G, 
each x E X' satisfies ax = a, and it is straightforward to verify that X o  U X' is 
affinely independent. 

Finally, let t be a tour of G satisfying t(E') = I V'I - T(G'). Then at = a and 
since t (E)  = I VI but x(E) = I VI - 1 for all x E X o  U X' ,  we see that X o  U X' U 
{ t }  is affinely independent completing the proof. 0 

Thus, the example of Fig. 3.2 is simply an application of Theorem 3.2, taking 
G' to be the heptagon. The smallest graph G we know for which P(G)  has 
such a facet inducing non-(0-1)-inequality is the example of Fig. 3.3. We let G' 
be the triangle, and then x(E - E') + 2x(E') S 8 is facet inducing. 

The graph of Fig. 3.4 is a nine node example of a graph for which P ( G )  has a 
facet inducing inequality with coefficients 2 and 3. Again G' is the center 
triangle. Then T(G') = 3 and 2x(E - E') + 3x(E) S 18 is facet inducing. 

We obtain a facet inducing inequality of P ( G )  for a graph G containing any 
desired consecutive pair (s, s + 1) of integers as its nonzero coefficients by a 
generalization of the construction of Fig. 3.4. Start with an odd polygon P 
having k nodes, for k s + 1. Then attach s + 1 'ears'-paths of length three- 
to adjacent pairs of nodes of P. Finally choose some node u* which is an 

&=;\ righthand side = 8 

1 2 1 

Fig. 3.3. Seven node graph for which P ( G )  cannot be described by a set of (@l)-inequalities. 
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righthand side = 18 
2 

2 

Fig. 3.4. Fig. 3.5. 

interior node of some ear. Join v *  to the non-corresponding node of each other 
ear. Then for this graph G it will follow from Theorem 3.2 that (s + 1) x 
x(E(P))  + s x(E - E(P)) S sk + 2s2 + s + k - 1 is facet inducing for P ( G )  (see 
Fig. 3.5). 

Suppose we have a spanning subgraph G’ = (V, E’) of G and suppose we 
know a facet inducing inequality a’x S a’ for P(G’) .  We will say that a facet 
inducing inequality ax S (Y for P ( G )  is obtained by lifting u’x < a’ if 

a’= a, a;= aj f o r a l l j E E ’ .  

In other words, we do not change the existing coefficients or right-hand side, 
we simply define those coefficients not previously defined in such a manner that 
the resulting inequality induces a facet of P ( G ) .  

A simple method of obtaining such inequalities is the following sequential 
lifting procedure. 

Procedure 3.3 (sequential lifting) 
Input: G = (V, E), a spanning subgraph G’ = (V, E’) and a facet inducing 

Output: A facet inducing inequality ax s a of P ( G )  obtained by lifting a’x S 

Procedure 

inequality a‘x s a of P(G’) .  

a!. 

[ O ]  Initially, define a, = a; for j E E’ and let S = E’. S is the set of edges for 

[ 11 For each j E E - S, do the following 
which a, has been defined. 

[la] Let u, u, be the ends of j .  Let 
a, = min{l/2(a - ax): x is a {0,2}-matching of the graph (V, S) x 

U { a  - ax: x is the incidence vector of a hamilton path in (V, S )  
[ V -  {u, v)l) 

from u to v}.  
[lb] Let S = S U{j>. 

End 
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Notice that sequential lifting leaves all old coefficients and the right-hand side 
of the inequality unchanged. The idea is to (sequentially) define each aj as large 
as possible such that the inequality will remain valid, considering edges in 
SU{j}.  Further, suppose we have a set X ‘  of IE‘I affinely independent 
members x of P(G’) satisfying ax = a. We can enlarge it to  such a set X for 
ax S a and P(G)  by adding the following step: 

[lc] For each x E X’, add a new compohent xj  = 0. If the minimum in [la] 
was achieved by a {0,2}-matching, let i j  be this {0,2}-matching extended 
by defining i{ = 2. If the minimum was achieved by a hamilton path, let 
Rj be the tour obtained by defining 2; 

Then, if we let X be the final X‘, the ‘triangular structure’ of the i’ will assure 
that X is affinely independent. This verifies that ax < a is indeed facet inducing 
for P(G). This means, of course, that we will always finish with a 5 0 (see 
Theorem 3.1). 

Sequential lifting can be applied in many different orders to the edges, 
generally resulting in different lifted inequalities. Moreover, there can be facet 
inducing inequalities of P ( G )  obtained by lifting from a ’ x s  a’, but not 
obtainable by sequential lifting. 

Our main interest in this procedure is that it shows that ‘unpleasant facets 
are, in effect, retained when edges are added to the graph. In particular, if we 
were to restrict our attention to complete graphs, Theorem 3.2 and Procedure 
3.3 show that for n sufficiently large, there is a facet inducing inequality 
containing any desired consecutive pair of positive integers among the 
coefficients. 

Finally, we can see, using Theorem 3.1, that the new coefficients defined by 
sequential lifting will never be larger than the largest previously existing 
coefficient, and generally, these new coefficients tend to decrease to zero as 
more edges are added. 

1. Let X‘ = X’ U {ai}. 

We have the following conjecture. 

Conjecture 3.4. Let Kn be the complete graph on n nodes. For any positive integer 
s, there exists an integer N ( s )  such that for n 3 N(s ) ,  there is a facet inducing 
inequality of P(K,,) whose coefficients include all integers from 0 to s. 

4. Facets of the travelling salesman polytope 

In this section we discuss the relationship between facets of TSP(G) and 
facets of P ( G ) .  Most studies of TSP(G) are restricted to the case of G being a 
complete graph, because solving travelling salesman problems on complete 
graphs is polynomially equivalent to the more general problem. An interesting 
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feature of the results of the previous sections is that they do apply to general 
graphs. However, in this section we too will restrict ourselves to complete, 
graphs to facilitate comparison with previously known results. We adopt the 
notation of Grotschel and Padberg [ l l ]  and let Q F  denote TSP(K,,). We let E,, 
and V ,  respectively denote the edge set and node set of K.. First we mention 
two preliminary results. 

Proposition 4.1 ([ll, Theorem 2.21). The dimension of QF is n ( n - 3 ) / 2 =  
IE,,I - I V,,l for n 2 3. 

Corollary 4.2. The minimal afine space containing Q F  is equal to 

{ x  E R E n :  x(6( i ) )  = 2 for all i E V,,} . 

The importance of this corollary is that it completely characterizes which 
inequalities induce the same facet as some prescribed facet inducing inequality 
for Q F .  We summarize this as follows. 

Corollary 4.3. Let ax S a be a valid inequality for Q F .  Then for any A = 

(Ai E W : i E V,,) and any p > 0, the inequality 

( p a ) x  + Aix(6(i)) S pa + 2 A (  V,,) 
i E  V. 

is a valid inequality for Q F .  Moreover, if we let F = { x  E QF: ax = a}, then the 
set of members of Q F  satisfying (4.1) with equality is F. F is a facet if and only if 
every inequality whose corresponding hyperplane intersects Q F  in exactly F is of 
the form (4.1) for appropriate p and A. 

Of course, this corollary is a specialization of a fundamental polyhedral 
result: The inequalities in a linear system that defines a polyhedron are only 
unique up to positive multiples and the addition of equations satisfied by all 
members of the polyhedron. 

For the remainder of this section, we let P,, = P(K,,), for n 3 3. We now 
prove a basic result relating the facets of QF and P,, for n 3 3, odd. It states 
that for each facet F of Q F ,  there exists a unique facet F’ of P,, such that 
F = F n Q F .  This uniqueness is not true for general polyhedra, as illustrated in 
Fig. 4.1. In each case the ‘ridge pole’ is a face of the ‘tent’ and the marked end 
of the ridge pole is a facet of the face. Fig. 4.l(a) has the uniqueness property, 
but Fig. 4.l(b) does not. 

Finally, we remark that the proof of the following theorem will consist of an 
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Fig. 4.1. 

algorithm which starts with a facet inducing inequality a x s a  of Q? and 
transforms it into a facet inducing inequality of P,,, which induces the same 
facet of Q?. 

Theorem 4.4. For any facet F of Q?, there exists a unique facet F’ of P,, such 
that F = F‘ n Q+. 

Proof. Let F be a facet of Q? and suppose that F = { x  E Q?: ax = a} where 
ax < a  is a valid inequality for Q F .  We assume that a 3 0 .  If not we add 
sufficiently high multiples of degree constraints so as to have this property. If 
we consider the inequality 

ax + x Aix(G( i ) )  s a + 2 x hi 
iE V iE V 

we can see that varying hi for a node i has no effect on the feasibility of a {0,2}- 
matching X satisfying X ( G ( i ) )  = 2 or on a tour X which also must satisfy 
X ( G ( i ) )  = 2. However, if X is a {0,2}-matching deficient at i, then by choosing an 
appropriate value for hi, we can ensure 

every {0,2}-matching deficient at i satisfies (4.2), (4.3) 

(4.4) 
there exists an np-{O,2}-matching deficient at i which satisfies 
(4.2) with equality. 

In fact it can be verified that this is given by 

hi f maxiax - a : x is a {0,2}-matching of G deficient at i} . (4.5) 

Since a 3 0, this maximum will always be attained for a near perfect matching. 
Since the choice of deficient node provides a partition of the near perfect 
matchings, the hi are determined independently and uniquely. Thus, using 
Corollary 4.3, there is a unique (up to a positive multiple) inequality that is 
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valid for Q T  and P,,, induces F and satisfies (4.3) and (4.4), two necessary 
conditions for it to be facet inducing for P,. This is (4.2) with Ai defined as in 
(4.5). Let F’ = {x E P,,: x satisfies (4.2) with equality, for Ai as in (4.5)). We 
show that F‘ is a facet of P,. 

Since F is a facet of Q T ,  there exists a set T of lE,,/- 1V.l affinely 
independent tours satisfying (4.2) with equality. For each node i, our choice of 
hi ensures that there exists a np-{O,2}-matching x i  deficient at i satisfying (4.2) 
with equality. Let M = { x i :  i E V,,}. Then, for each i E V,,, x i  is the only 
member of T U M which does not satisfy x ( S ( i ) )  = 2. Thus it is affinely 
independent from T U M - { x i } .  Therefore T U M is affinely independent of 
cardinality IE,( so F’ is a facet of P,, and F‘ f l  P,, = F. 0 

Perhaps surprisingly, there are presently only three classes of facets for Q T  
appearing in the literature. The first such class, the so called ‘trivial’ facets, are 
those induced by nonnegativity constraints xj 3 0 for all j E E,, [ l l ,  Theorem 
3.21. These obviously correspond to the inequalities (2.9) for P,,. 

The second class of facets are those induced by the subtour elimination 
constraints x ( y ( S ) ) S  IS1 - 1 for S C V,, 2 s  IS1 =S n - 1 [ l l ,  Theorem 6.11. For 
any such S, the subtour elimination constraints corresponding to S and V,, - S 
induce the same facet of Q+. (Simply sum one half the degree constraints for 
all nodes in V, - S, subtract one half the sum of degree constraints for nodes in 
S and add this to the constraint x(y(S)) G (SI - 1.) In particular, the edge 
‘capacity’ constraints xj =s 1 for j E E induce the same facets as the subtour 
elimination constraints for the cardinality n - 2 subsets of V,. By Theorem 4.4 
there exists a unique facet of P,, which determines this ‘doubly defined’ facet of 
QT. Of course, this is the inequality (2.11) for the odd cardinality one of 1.91, 

The third class of facets, induced by generalized comb constraints is more 
IVfl-SI. 

complex. Let Wi c V, for i = 0,1, . . . , k satisfy 

(won W,. (a l  for i =  1,2 , .  .. , k ,  (4.6) 

IWi- W o l ~ l  for i =  1 ,2  , . . . ,  k ,  (4.7) 

)Win Wj(=O for l s i c j s k .  (4-8) 

Then we call the graph C with nodeset Uz0 W, and edge set uh y ( W )  a 
comb in K,,; W, is the handle and Wi are called the teeth for i = 1,. . . , k. The 
comb inequality corresponding to C is given by 

where for r E R, [ r l  denotes the smallest integer no less than r. 
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Note that the coefficients of a comb inequality will be 0, 1 or 2. Such 
inequalities were introduced by Chvatal [l] who required equality in (4.6), 
resulting in a (0-1)-inequality. We call such a comb simple. In a simple comb, 
each tooth has exactly one node in the handle. In a general comb, a tooth may 
have several nodes in the handle, and all edges joining these nodes have 
coefficient 2 in the inequality. A major result of Grotschel and Padberg [ll, 
Theorem 6.21 is that for k 2 3, odd, every comb inequality induces a facet of 

It is a routine matter to apply the procedure of the proof of Theorem 4.4 in 
order to find the corresponding facet inducing inequality for P,,. We illustrate 
this with the following theorem. 

QnT. 

Theorem 4.5. Let C be a simple comb having an odd number k of teeth such that 
I V(C)l is even. If 1 V(C)l S n - [k/21, then the facet of P,, corresponding to the 
facet of QnT, induced by the comb inequality for C i s  obtained by sequentially 
lifting a facet of the form of Theorem 3.2 for a subgraph G of K,. 

Proof. Let ax S a be the comb inequality corresponding to C. Let G be the 
spanning subgraph of K,, whose edge set consists of E(C) together with those 
edges having at least one end not in the comb. That is, we exclude those edges 
both of whose ends are in V(C), but which are not in E(C).  We will show first 
that an application of the procedure of the proof of Theorem 4.4 obtains a 
facet inducing inequality for P ( G )  of the form of Theorem 3.2. 

We first compute the value Ai for each i €  V,,, as given by (4.5). For 
i E V(C), the maximum value of ax for a {0,2}-matching x deficient at i is 
I V(C)l- 2. For i E V,, - V(C), this maximum is I V(C)l. Therefore 

1/2[k/2] - 1 for i E V(C) , 
for i E V, - V(C)  Ai = {1/2[k/2, 

When we use these values of Ai in (4.2), we obtain the following new 
coefficients a;  for each edge j. 

[k/21 - 1 
rk/2] -1 for jE6(V(C)) ,  
[k/21 

for j E E(C) , 

for j E y(  V, - V(C)) . 

Now let S = V,, - V(C).  Then G [ S ]  is a complete graph on an odd number 
of nodes, and so is hypomatchable and nonseparable. The graph G X S can also 
be easily checked to be hypomatchable and nonseparable. Because IS1 = 

n - I V(C)la [k/21, G is hamiltonian. Moreover, the segment number 
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r ( G [ S ] )  = 7(C) = [k/2] so the coefficients a]  are in fact given by 

These then are the coefficients of a facet of the form of Theorem 3.2 for G, 
so the resulting right-hand side, a’, must equal 

( T ( G [ S ] )  - l)(n - 1) + IS1 - 1 

as prescribed by the theorem. 
Now let d ’ x  6 a” induce the facet of P, corresponding to the comb inequality 

for C. By again using the procedure of the proof of Theorem 4.4, we see that 

for j E E ( G ) ,  
a’= { z [ G [ S ] ) - 2  f o r j E E , , - E ( G ) ,  
a” = a‘ . 

We will complete the proof by proving that the values a” = T(G[S]) -  2 for 
j E E,, - E ( G )  are those given by sequential lifting. 

Suppose that we have sequentially lifted the coefficients for the edges of 
some (possibly empty) subset J of E, - E ( G )  and obtained the desired value. Let 
j E E , , - ( J U E ( G ) ) .  Let u, u be the ends of j ,  let Gi denote the graph 
(V,, J U E ( G ) ) ,  and let denote Gi[ V,, - {u ,  u } ] .  Then the maximum value of 
a {0,2}-matching of (? is a’- 2(7(G[S]) - 1). The maximum sum of the edge 
costs of a hamilton path in G’ from u to u is ar - (7 (G[S] ) -2 ) .  Thus 
sequential lifting will define a y = ( ~ ( G [ S ] ) - 2 )  and the proof now follows by 
induction. 

Fig. 4.2 illustrates a small example of this process. Let C be the ten node-five 
tooth comb of Fig. 4.2(a), in KI3.  The comb inequality gives each edge the 
coefficient 1 and has (Y = 7. The graph G of Fig. 4.2(b) consists of C, the 
subgraph induced by the set S of non-comb nodes and all edges joining these 
two parts. The procedure of Theorem 4.4 calculates Ai = f for the nodes i of C 
and Ai = for the nodes i of S. Thus the coefficients a; are as indicated, 3 
for edges of y ( S )  and 2 for all other edges and a’ = 26. Sequential lifting will 
then cause all edges of EI3 - E ( G )  to have the coefficient 1, which induces 
the facet of PI3 corresponding to  the facet of QF induced by C. 

It is certainly possible to study the results of applying the procedure of 
Theorem 4.4 to combs having an odd number of nodes. In fact, this can be used 
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Fig. 4.2. 

to provide other classes of non-(O-l) facets of P,,. However, for the remainder 
of this section we wish to briefly discuss cases when facet inducing inequalities 
of P,, induce facets of QF. In particular, for inequalities of the form (2.12), 
those induced by hypomatchable nonhamiltonian nonseparable edge maximal 
subgraphs. A graph G is said to be hypohamiltonian if G is nonhamiltonian, 
but G - {v} is hamiltonian for all v E V. It is an easy exercise to verify that if n 
is odd, then any edge maximal spanning hypohamiltonian subgraph of K,, 
satisfies our conditions of (2.12). Grotschel [9] showed that those spanning 
edge-maximal hypohamiltonian subgraphs of K,, which satisfy a certain tech- 
nical property, do induce a facet of the monotone travelling salesman polytope. 
(He did not settle whether or not this technical property was indeed necessary.) 
Thus there is an obvious connection between our inequalities (2.12) and the 
monotone polytope. For the travelling salesman polytope itself, some in- 
equalities (2.12) are facet inducing and some are not. For example the in- 
equality (2.12) for the graph GI of Fig. 4.3(a) is facet inducing for Q:, but that 

(a) (b) 

Fig. 4.3. (a) Facet inducing for Q:; (b) Not facet inducing for 0:. 
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Fig. 4.4. Modified Petersen graph. 

of the graph G2 of Fig. 4.3(b) is not. (Note that both graphs satisfy the 
necessary conditions for (2.12) to apply, but neither is hypohamiltonian.) 

The inequality (2.12) for GI is equivalent to  the facet inducing inequality of 
the comb obtained by deleting node v. On the other hand, edge j of G2 belongs 
to no hamilton cycle of K7 which contains six edges of G2. Therefore the 
inequality (2.12) for Q’, is implied by the nonnegativity constraint for edge j .  

However, there are examples of inequalities of the form (2.12) which are 
facet inducing for QF and which do not seem to arise from any known class of 
facet inducing inequalities. For example, the inequality (2.12) for the modified 
Petersen graph of Fig. 4.4 is facet inducing for KI1. This can be shown using a 
slight modification of the proof of Maurras [14] that the inequality x(E) S 9 is 
facet inducing for QF, where E is the edge set of any subgraph which is a 
Petersen graph. 

5. Concluding remarks 

When we wish to study a polytope such as the travelling salesman polytope, 
which is not of full dimension, we generally have considerable choice as to 
which full dimension polyhedron (if any) we will embed it in. We have studied, 
here, a particular polyhedron, P,, which has several interesting properties. First 
(Theorem 4.4), for any facet of Q F ,  there is a unique facet of P, which 
intersects QnT in exactly this facet. Thus we can partition the facets of P, into 
three classes: those that contain all of QnT, those that contain no facet of QnT, 
and those that intersect QF in a facet. Theorem 4.4 shows that there is a 
bijection between the facets in the third class and the facets of QF. 

In Theorem 2.12 we completely characterized those facets of P ( G ) ,  for 
general G, for which the inducing inequality can be scaled so as to  have 0-1 
valued coefficients. The most interesting set of facet inducing (0-1)-inequalities 
were those of (2.12). At the end of the previous section we saw that some of 
these do indeed induce facets of TSP(G) itself. 
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In Theorem 3.1, we determined several properties possessed by non-(O-l)- 
inequalities which induce facets of P(G). One of these properties is that the 
subgraph of G induced by the edges having positive coefficients in such an 
inequality must be spanning, and indeed, must be hamiltonian. This has one 
rather negative consequence: Such inequalities will probably be harder to use 
in a cutting plane approach than, for example, the comb inequalities which 
have been used so successfully by Grotschel [lo] to solve a ‘real world’ 
travelling salesman problem. However, a possible area for future research 
would be to see if ‘simpler’ equivalent inequalities (for TSP(G)) can be found 
for classes of such inequalities. 
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POLYHEDRA FOR COMPOSED INDEPENDENCE SYSTEMS 

William H. CUNNINGHAM* 

Institute for Operations Research, University of Bonn, 5300 Bonn 1, West Germany 

We consider a composition for independence systems, and show how knowledge of 
polyhedral descriptions of the small systems provides such a description for the composed 
system. Applications to other compositions, including sums and substitutions, are treated. 
Theorems of Chvktal on graph substitution and Bixby on the composition of perfect graphs 
are proved. 

1. Introduction 

An independence system H is a pair (E, 9) where E is a finite set and 9 is a 
non-empty family of subsets of E, called independent sets, satisfying 

If A B E 9, then A E 9 

The optimum independent set problem for H is: Given a real weight cj for 
each j E E, find I E 9 so that Z (cj:  j E I )  is maximized. 

We remind the reader of two prototype examples of independence systems. 
Let G be a simple graph, let E = V(G), and let I E 9 if and only if I is a stable 
set of G, that is, no two elements of I are adjacent in G. We call this first 
example a graphic independence system. The optimum independent set prob- 
lem for graphic systems is well known to be NP-hard in general. It can be 
solved in polynomial time for a number of special classes of graphs, for 
example, bipartite graphs, edge graphs, perfect graphs, and claw-free graphs. 

The second prototype example occurs when E is the set of elements and 9 is 
the family of independent sets of a matroid. These are defined axiomatically as 
independence systems which also satisfy: 

For every A C E, all maximal independent subsets of A have the 
same cardinality. 

* Supported by Sonderforschungsbereich 21 (DFG), Institut fiir Okonometrie und Operations 
Research, Universitat Bonn, W. Germany. On leave from Department of Mathematics and 
Statistics, Carleton University. Research partially supported by a grant from N.S.E.R.C. of 
Canada. 
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An important special class of matroids consists of those for which E is the 
edge-set of a graph G and 4 is the set of edge-sets of forests of G. Another 
occurs when E indexes the columns of a matrix and ‘independent’ means 
‘linearly independent’. For matroids the optimum independent set problem can 
be solved by a simple ‘greedy’ algorithm, and this algorithm runs in polynomial 
time provided that there exists a similarly efficient algorithm for determining, 
for a given A C E, whether A E 4. 

For most of the classes of independence systems H for which the optimum 
independent set problem is well solved, there is also a polyhedral description of 
the independent sets. That is, there is an explicit (though possibly large) 
collection of inequalities whose solution set forms the convex hull P of 
(incidence vectors of) independent sets of H. (For example this is the case when 
H is a matroid, or when H is a graphic independence system arising from an 
edge graph or a perfect graph.) In this paper we investigate a certain com- 
position for independence systems, introduced in [4], from a polyhedral view- 
point. We show how knowledge of explicit polyhedral descriptions for two 
independence systems leads to such a description for their composition. This 
result is applied to provide similar results for some other compositions; for 
example, we obtain a proof of the theorem of Chvfital [2] on ‘graph sub- 
stitution’ which motivated this research. 

2. Preliminaries 

We will deal with polyhedral representations in the form 

C (UijXj: j E E) bi, i E L , 

x j 2 0 ,  j E E .  

The inequalities (2) are called trivial; those of (1) are non-trivial. If the 
solution set of (l), (2) is to be the convex huIl P of independent sets of H, we 
can assume that av 2 0 for i E L, j E E; it will often be convenient also to 
assume that each bi = 1. The latter assumption is valid provided that H has no 
‘loops’, that is, no elements j with ci} $Z 4. (Of course, in treating the optimum 
independent set problem, loops would simply be ignored.) We will make this 
assumption. It is equivalent to the assumption that P has affine rank IEI + 1 
(‘full dimension’). Also, in this situation each of the trivial inequalities defines a 
facet of P. 

Two simple unary operations on independence systems are deletion and 
contraction. Given H = (E, 9) and an element e E E, H\e, the independence 
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system obtained by deleting e, is defined to be (E\{e}, 9'), where $'= 

{I: E\{e} 2 I E 9}; H/e, the independence system obtained from H by con- 
tracting e is defined to be (E\{e}, ,"), where 9" = {I: I G E\{e}, I U{e} E 9}. 
(Notice that contracting an element may introduce loops; these may then be 
deleted.) 

Proposition 1. Let H = (E, 9) be an independence system and let e E  E. If 
non-trivial inequalities for H are 

2 (aijxj: j E E )  s 1, i E L ,  

then non-trivial inequalities for H\e are 

2 (aijxj: J E E\{e}) s 1, i E L ,  

and non-triuial inequalities for Hle are 

2 (a,ixi: j E E\{e})S 1 - a,, i E L .  

Proof. Let P' be the polyhedron for H\e. Then if x = (xi: J E E\{e}) is in P', 
clearly (0, x )  E P. But the converse is also true, because if (0, x) E P, then (0, x) 
is a convex combination of independent sets of H, none of which contains e. So 
x E P' if and only if (0, x) E P, which is true if and only if (x 3 0, and) 
Z (ai,xj: J E E\{e}) S 1, i E L, as required. 

Now let P'' be the polyhedron for Hle. If x = (xi:  J E E\{e}) is in P", then 
(1, x )  E P. Again the converse is true, because if (1, x)  E P, then (1, x)  is a convex 
combination of independent sets each of which contains e, so x is a convex 
combination of independent sets of Hle. Thus x E P" if and only if (1, x) E P, 
and so x E P" if and only if (x 2 0 ,  and) ai, + Z (aijx,: J E E\{e } ) s  1, as 
required. 

It is worth remarking that, in addition to being able to get very easily 
polyhedral descriptions for H\e and Hle from one for H, we also can solve the 
optimum independent set problem for H\e and Hle, whenever we can solve it 
for H. In the first case, we assign e a sufficiently large negative weight, and in 
the second case a large positive weight, and then solve the problem on H. 

We now introduce an elementary composition for independence systems. Let 
HI = (E, and H2 = (E2, &) be independence systems for which El n E2 = 0. 
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The direct sum of Hl and H2 is H = (E, 9) where E = El U E2 and 9 = 

(11 U 12:  1 1  E 9 1 ,  I2 E 9 2 ) .  The following result is easy to prove. 

Proposition 2. For k = 1 and 2, let non-trivial inequalities for Hk be 

2 (aixj:  j E E k )  s 1, i E Lk . 

If H is the direct sum of HI and H2, then non-trivial inequalities for H are 

2 (a$xj:  j E El) S 1, 

(a$xj: j E  E 2 ) S  1, 

i E L1 , 

i EL2.  

An independence system is said to be separable if it has a non-trivial 
expression (one in which El f 0 f E2) as a direct sum. Since these systems can 
be handled in a straightforward manner by restricting attention to their 
irreducible summands (this also applies to the optimum independent set 
problem), we henceforth assume that independence systems are non-separable. 
For technical reasons we also assume that each has at least two elements. 
These two assumptions already imply that there are no loops. We point out 
that the direct sum has a very natural interpretation as applied to graphic 
independence systems, or to matroids arising from graphs or matrices. 

3. A composition theorem 

The main results of this paper concern the composition which we define now. 
Let Hl = (El U {e} ,  9,) and H2 = (E2 U {e} ,  92) be independence systems, where 
El fl E2 = 0 and e !Z! El U Ez. The composition of Hl and H2 is the independence 
system Hl * H2 = (E, 9) where E = El U EZ and 9 = {Il U 12: II E 91 and I2 U 
{ e }  E 92, or I1 U { e }  E 91 and I2 E 92}. This composition was introduced in [4], 
and was treated mainly from the viewpoint of ‘circuits’-minimal non-in- 
dependent sets. It is not difficult to show that, if Hl and H2 are non-separable 
and have at least two elements, then H has these properties too. In the case in 
which Hl and H2 are graphic, arising from connected graphs GI, G2 respec- 
tively, HI * H2 is also graphic, and arises from the graph G constructed as 
follows. Delete the vertex e from GI and G2 and join every neighbour of e in 
GI to every neighbour of e in G2. Similarly, if HI and Hz are matroids, then so 
is HI * H2 (see [4]). Moreover, if Hl and H2 are forest matroids of graphs GI, 
G2, then HI * H2 is the forest matroid of a graph G arising from GI, G2 as follows: 
Identify the edge e of G1 with the edge e of G,, and then delete e. 
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Before describing the construction of a polyhedron for Hl * H2 from those 
for Hl and H2, we make an observation relevant to the optimum independent 
set problem for HI * H2. Every independent set of HI * H2 is of the form Il U I2 
where either I, is independent in Hl\e and I2 is independent in HJe or Il is 
independent in Hlle and I2 is independent in H2\e. Therefore one way to solve 
the independent set problem over Hl * Hz is: Solve the problem over H2\e 
(with the given weights cj)  to obtain I2 and over Hde to obtain I;. Then assign 
e weight C (cj: j E 12)- Z (cj:  j E 1;) and solve the problem over Hl to obtain I,. 
Then an optimal independent set for Hl * Hz is (Il U Iz)\{e} if e E Il and Il U I ;  
otherwise. The above construction was described for the case of graphic 
independence systems in [3]. 

The main polyhedral result of the paper is the following. 

Theorem 1. For k = 1 and 2 let non-trivial inequalities for Hk = (Ek U {e},  $ k )  be 

Then non-trivial inequalities for Hl * H2 are 

uL~Z ( a i x j : j E E l ) +  ~ i e z  ( a $ j x j : j E E z ) s a ! e +  a $ e - ~ a , ~ , e ,  1 2  

i E L1, m E L 2 .  (4) 

Proof. Let P, Pl,  P2 be the polyhedra for H l * H 2 ,  H I ,  H2 respectively. We 
claim that, where x k  denotes (x i :  j E &) for k = 1 and 2, then (XI, x’) E P if 
and only if there exists a number a, OSa Sl, such that (a,xl)E Pl and 
(1 - a, x’) E P2. Suppose that this claim is true. Then, to find inequalities for P, 
we can use Fourier elimination to  eliminate a from the system: 

The inequalities obtained from adding a$, times an inequality from (5) to U ;  

times an inequality from (6) are precisely the inequalities of (4). The other 
inequalities arising from this process are (xi 3 0, j E El U E2, and) inequalities 
of the form 

2 (a ix , :  j E E l )  s 1 - a t ,  i E L1 (and similarly for Lz) . 

But it is easy to see that there must be m E L2 for which a$, = 1; choosing i 
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and this m in (4) leads to an inequality at least as strong as 

Now we must prove the claim. Suppose first that x = (XI, x 2 ) E  P. Then 
x = C &(I: U J ; )  + C p j ( I j  U J;) where hi, ij 2 0, C Ai + Z pj = 1, It E J :  U 
{ e }  E I: E 9’, J? U {e} E 9’. Take C hi = a. Then Z Ai(J: U { e } )  + C pjI;  = 
(a, x’) E P1. Similarly (1 - a, x’) E P2. 

Now suppose that (a, x’) E PI and (1 - a, x’) E P2 for some a, 0 C a S 1. 
Then (a, x‘) = Z A !I! + E p and (1 - a, x’) = E A;I; + Z p $ J’, , where A ;, p i ,  
A:, pk a 0, C A ;  + 2 p i  = Z A; + Z p’, = 1, e G! It E j1, e E Jk E e G! I ;  E j2, 

e E J’, E $7‘. Then (I: U J’,)\{e} E 9 for all i and rn, and (I; U J:)\{e} E 9 for 
all j and k, and it is straightforward to get (XI, x’) as a convex combination of 
these. This completes the proof. 

When considering polyhedral descriptions for independence systems, it is 
natural to be interested in minimal descriptions, that is, descriptions for which 
every inequality is essential to the definition of the polyhedron. Equivalently, 
since our polyhedra have full dimension, we are interested in knowing which of 
the inequalities in a description of the system correspond to facets of the 
polyhedron. In the context of Theorem 1, if both of the inequalities from (3) 
used to create an inequality from (4) correspond to facets of their polyhedra, 
then the resulting inequality (4) usually yields a facet too. This can fail when 
one of the original inequalities is x, s 1; it may be that this is essentially the 
only way it can fail, but I have been unable to prove this. There are special 
cases in which one can prove that all of the resulting inequalities must yield 
facets if the original ones did; an example is the substitution composition for 
graphs described in the next section. 

4. Substitution composition 

There are a number of applications of Theorem 1 to the proof of polyhedral 
results on other kinds of compositions. As an example, consider the following 
composition for graphs, called substitution by Chvatal [2]. Let GI, G2 be graphs 
having disjoint vertex sets and let e be a vertex of GI. The graph G obtained 
by substituting G2 for the vertex e of GI is obtained as follows. Delete e from 
GI, and join every neighbour of e in GI to every vertex of G2. We can 
generalize this graph composition to a composition of independence systems, in 
the following way. Let HI = (El  u {e}, 9]) and H2 = (E2, 9’) be independence 
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systems with E2 fl (El U ( e } )  = 0. Let H = (E, 9) be defined by E = El u E2 and 
9 = {I: e $Z I E 9,) U{(II  UIz)\{e}: e E 11 E 91, I,  E A}; we say that H is obtained 
by substituting H2 for the element e of HI, and write H = Hl[Hz; e l .  For the 
special case of graph substitution, the following is a theorem of Chv&tal[2], which 
motivated the present work. 

Theorem 2. Let 

z ( a i x j :  j E E I U { e } ) s l ,  i E L 1 ,  (7) 

be non-trivial inequalities for HI = (El U {e} ,  9,) and H2 = (E2, 9,) respectively. 
Then nun-trivial inequalities for Hl[Hz; e ]  are 

2 (aixj:  j E El)+ a t  2 (a i jx j :  j E E2) s 1, i E L1, m E L 2 .  (9) 

Proof. Define H ;  to be (E2 U {e} ,  U {e}) .  (In the graph case, this amounts to 
adding e as a vertex to G2 and joining it to  every other vertex.) Then it is easy 
to see that Hl * H ;  = Hl[H2; el .  Therefore, if we can determine non-trivial 
inequalities for HI from those for H2, we can just apply Theorem 1. We claim 
that such inequalities are 

The proof is easy: where x2 = (x i :  j E E2), (xe, x’) is in the polyhedron for Hi 
if and only if (0 s x, s 1, and) (1 - x,)x’ E P2, which is true if and only if (10) 
holds, as required. Now applying Theorem 1 to (7) and (10) gives (9), and the 
proof is complete. 

(There is a second method of substituting an independence system Hz= 
(Ez, 9 2 )  for an element e of an independence system Hl = (El U (e} ,  $ 1 ) .  The 
resulting independence system H = (E, 9) is defined as follows: E = EI U E2 
and 9 = (Il U 1’: Il U { e }  E or I2 E 9’}; it is treated in [4], for example. This 
composition can also be seen to generalize the substitution composition for 
graphs, when we change the definition of ‘independent’ to “does not contain 
the vertex-set of a clique”. Another motivaEion for considering this com- 
position is its relation to a natural method of composing Boolean functions. An 
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independence system is associated with a monotone Boolean function f as 
follows: f (A)  = 0 if and only if A is independent. The composition referred to 
arises from substituting the values of one Boolean function into a variable of 
another. This second substitution composition can also be derived from the 
*-composition. If we form H’; = (E2 U {e}, 9;) by defining 9‘; = {I: e $Z I }  U 
{ I  U {e} :  I E 9,}, then H = HI * H;. Therefore, a result like Theorem 2 for this 
composition can be derived from Theorem 1. We leave the details to the 
reader.) 

5. Perfect and semi-perfect systems 

An independence system H = (E, 9) is perfect if and only if there is a 
collection of non-trivial inequalities for H having bi = 1 and aij = 0 or 1 for all i. 
It is well known (see [2], for example) that an independence system is perfect if 
and only if it arises from the stable sets of a perfect graph. It is easy to see from 
Theorem 2 that, if Hl, H2 are perfect, then so is H1[H2; el, so Chvhtal’s 
theorem generalizes the result that the substitution composition of perfect 
graphs is again perfect. Similarly, one can see from Theorem 1 that if H1 and 
H2 are perfect then so is Hl * H2. Therefore, Theorem 2 generalizes a theorem 
of Bixby [I], that the *-composition of perfect graphs is perfect. 

Let us call an independence system H = (E, 9) semi-perfect if there is a 
collection of non-trivial inequalities for H such that bi = 1 and a$ = 0 or E~ for 
all i. Clearly, perfect independence systems are semi-perfect; so are matroids 
and graphic systems arising from edge-graphs (matchings). It is easy to see from 
Theorem 1 that if HI and H2 are semi-perfect, then so is Hl * H2. Thus, for 
example, if Hl and H2 are matroids, then Hl * H2 is semi-perfect; but this of 
course follows from the fact [4] that Hl * H2 is itself a matroid. Interestingly, 
the substitution composition does not preserve semi-perfection. 

6. Sums 

The direct sum composition is a special case of a general construction for 
independence systems. Given systems Hl = (El, 91) and H2 = (E2, 92), their 
sum Hl + H2 = (E, 9) is defined by E = El U E2 and 9 = {I1 U 1 2 :  I1 E 91, I2 E 
92). The direct sum is the special case in which El fl E2 = 0. For the more 
general sum it would be useful to be able to obtain an explicit description of 
the polyhedron for HI + HZ in terms of such descriptions for HI, H2. When Hl, 
H2 are matroids, H I +  H2 is also a matroid, and there is a formula [6] 
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for its rank function in terms of the rank functions of H I ,  H2. Therefore, 
in this special case such a description of the polyhedron for H I +  H2 is 
available. 

In general, however, we should not expect such a description for the 
polyhedron of the sum to be easy to discover, as the following example shows. 
Let G be a 3-regular graph having edge-set E, and let H = (E, 9), where 
9 = {I C E :  I is a matching of G}. Then H’ = H + H is an independence 
system (E, 9’), and there exist I E 9’ with 111 = I if and only if G is 3-edge 
colourable. On the one hand, there exists an explicit description for the 
polyhedron of H [5]; on the other hand, the problem of deciding whether such 
9 exists is NP-hard [7]. 

However, we can provide a description of the sum in another special case, 
namely when HI, Hz have just one common element, as an application of 
Theorem 1 .  In this special case, the sum is sometimes called the ‘series 
connection’ of Hl and Hz. The polyhedral description for this composition is 
given in the following result. 

Theorem 3. Let Hk = (Ek U {e} ,  9 k )  for k = 1 and 2 be independence systems, 
where El  fl E2 = 0, and suppose that a collection of non-trivial inequalities for Hk 
is 

Then a collection of non-trivial inequalities for HI + Hz is 

i E L1, m E Lz . (14 )  

Proof. The proof is based on the existence of an expression for H I +  HZ in 
terms of *-compositions. (There is a sort of converse, that H l *  H z =  
( H I +  Hz)/e7 but we will not need this.) Let H ;  be obtained from HI by 
replacing e by f and H ;  be obtained from H2 by replacing e by g,  where f, 
g!ZEE,UEzU{e} .  Let H ’ =  (E’ ,$ ’ )  be defined by E ’ = { e , f , g }  and 9‘= 
{ I  C E’: ) I [  < 3). Then it is straightforward to verify that Hl + HZ = 

Hi * H’ * H;. 
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NOW, we apply Theorem 1 to Hi * H ' * H ; .  A collection of non-trivial 
inequalities for H' is clearly 

x, s 1 , x, s 1 , x, s 1 , :xe + ;xf + ;x, c 1 

Therefore, by Theorem 1, a list of non-trivial inequalities for Hi * H' is 

Simplifying, we get (15), (16) and 

Applying Theorem 1 again to  compose Hi * H with Hi,  we obtain 

x e s l ,  

2 (a$xj: j E El )  6 1, i E L1 , 

( U ~ ~ X ~ :  j E E2) =s 1, rn E L 2 ,  

i E L1, rn E L2. 
a;  a2,,a: 

6 a;, + - - - 
1+a;, l + a $ '  

Multiplying the last inequalities by 1 + a$ and simplifying, we have the 
desired collection of inequalities, and the proof is complete. 0 
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We generalize independence systems (E, 9) arising from claw-free graphs, 2-matroid 
intersections and 6-matchings by weakening matroid axioms. Motivated by the augmenting 
path theory for claw-free graphs (cf. [8, 101) as well as 2-matroid intersections (cf. [6]) we 
introduce the concept of the Dependence Graph DPG(2, X )  where X is supposed to be an 
independent set and Z C E\X. If X, Y E 9 such that 1 Yl= 1x1 + 1, we show that a so-called 
W-path W always exists in DPG(Y\X, X). As (X\ W) U (W\X) does not need to be 
independent, implications for this exchange as well as for an augmentation from X to an 
independent set X' having one element more than X are discussed. 

1. Introduction 

Given a finite set E an independence system (E, 9) consists of a nonempty 
system 9 of subsets of E satisfying 

Y G X E 9 * Y E 9 .  

We call a set X C E independent if X E 9, dependent otherwise. A base of X ,  
X C E, is a maximal independent subset of X, a circuit of (E, 9) is a minimal 
dependent subset of E (maximal and minimal with respect to  set inclusion). An 
independent set of maximal cardinality will also be called a maximum in- 
dependent set. Without loss of generality we can restrict ourselves to in- 
dependence systems, which are normal, i.e., { e } E  4 for all e E E. 

If d = (AI, i E I )  is a family of subsets of E, then T C E is called a 
transversal of d; if there exists a bijection T : T +. I such that 

x E A,,,, for all x E T. 

An extension of Hall's theorem for the existence of a transversal of d (cf. [9]) 
says that the family d can be partitioned into r subfamilies each of which 
possesses a transversal, if and only if 

for all K c  I. 

Let (E, 9) be an independence system and X E 9, Z C E. Then for each 
69 
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e E E\X we denote by %(e, X )  the system of all circuits contained in X U { e }  
and by %(Z, X )  the system UeEaX %(e, X ) .  The families considered here for 
X,  Y E  9 are of the type (c\Y, CE %(Y, X ) ) .  

2. (2,2)-Systems and examples 

Definition 2.1. Let (E, 9 )  be an independence system and p ,  r be the minimal, 
positive integers such that 

(i) for all X E 9, e E E\X the set X U{e} contains at most p distinct circuits; 
(ii) for all X ,  Y E 9 the family (c\Y, C E %(Y, X ) )  can be partitioned into r 

subfamilies each of which possesses a transversal. 
Then (E, 9) is called a @, r)-sysfern. 

The motivation for introducing the concept of @, r)-systems is to describe 
two, in general not equivalent, properties of the systems of circuits %(Y, X ) ,  
where X and Y are both independent, and on this basis to analyze how ‘far’ an 
independence system is from being a matroid. In fact, it can be shown (see [3]) 
that in the case of p = 1 and r = 1 conditions (i) and (ii) are equivalent and, 
therefore, matroids are just (l,l)-systems. Thus, @, r)-systems provide a 
classification scheme for independence systems, in particular for those, which 
are closely related to well known combinatorial optimization problems such as 
travelling salesman problems, vertex-packing in finite graphs or the matchoid 
problem. For a related investigation as well as other axiomatic foundations of 
(p, r)-systems the reader is referred to [3]. 

Furthermore, for the case of p = 2 and r = 2, conditions (i) resp. (ii) reflect 
those properties which play an important role for the existence of augmenting 
paths when determining a maximum vertex-packing in a claw-free graph or a 
maximum independent set in two matroids. We will come back to this aspect 
later. 

The basic subject of this paper is the class of (2,2)-systems. Within the 
hierarchy of @, r)-systems, given by the positive integers p and r, they directly 
follow matroids, since (f, 1)- or (1, ?)-systems do not exist for f > 1: by the 
equivalence of conditions (i) and (ii) for p = 1 and r = 1 and by the  minimality 
of p and r, p = 1 resp. r = 1 would imply r = 1 resp. p = 1. However, as the 
following example shows, there exist (p, r)-systems, where p and r are not 
equal. 

Example 2.2. Let (E, 9) be given by E = {1,2,3,4,3} and by its system of 
circuits {{1,2,4}, {2,3}, {3,4}, {2,5}, {4,5}}. It is easy to check that (E, 9) 
is a (p, r)-system with p = 2, but X = {2,4}, Y = {1,3, 5) yield I%(Y, X)l = 5 > 
21{2,4}) = 4; hence r > p .  
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To make the reader more acquainted with the concept of (2,2)-systems, we 
will first review some examples, which have been studied more or less in- 
tensively within the last few years. A detailed investigation can be found in [3]. 

2.1. 2-Matroid intersection 

Let M(E,  91), M(E,  92) be two matroids. Then the independence system 
(E, 9), where 9 is given by f l  4i2 is called a 2-matroid intersection. It could 
happen that (E, 9) is again a matroid, i.e., a (1, 1)-system. In general, however, 
(E, 9) is a (2,2)-system. 

The problem of finding a maximum independent set in a 2-matroid inter- 
section in polynomial time has been solved by Edmonds [l] and Lawler [6]. We 
note that the latter approach is based upon a concept of augmenting paths in a 
special digraph, which goes back to  Krogdahl (cf. Lawler [6]). 

2.2. Vertex-packing in claw-free graphs 

Let G = (E, %?) be a finite, simple graph with vertex set E and edge set %. 
The independence system (E, 9) consisting of all subsets of pairwise non- 
adjacent vertices is called its vertex-packing independence system, which, for the 
sake of brevity, will be called VP-independence system. If G does not contain 
the complete, bipartite graph K1,3 as induced subgraph, then G is said to be 
claw-free. In particular, its VP-independence system is a matroid, iff G does 
not contain an induced K1,2. Otherwise it is a (2,2)-system. 

Based upon a concept of augmenting paths polynomial algorithms for finding 
a maximum vertex-packing in a claw-free graph G have been designed by 
Minty [S] and Sbihi [lo]. 

2.3. Claw-free graph-matroid intersection 

Again we consider a finite, simple, claw-free graph G = (E, %). For any 
vertex e E E we define 

N ( e )  : = {e' E E :  3 C E %' C = {e, el}} , 

the neighbourhood of e, and we look at 

E' := {e  E E :  N ( e )  is a clique} . 

Now we define an arbitrary matroid M ( E ' , 9 ' )  over E' and extend it to the 
whole ground set E by adjoining all e E E\E' as free elements, which yields a 
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matroid M(E,  9~). It can be shown that (E, 9), 9 given by 9 := n&, 
where (E, 9 ~ )  is the VP-independence system of G, is either again a matroid or 
a (2,2)-system. 

A polynomial algorithm to solve the related maximum independent set 
problem is not known. However, claw-free graph-matroid intersections 
generalize the concept of matching-forests as introduced by Giles [4]. For let 
GI = (V, E )  be a finite, loopless, 'mixed' graph, i.e., let E consist of directed as 
well as undirected edges. Then a matching-forest in GI is a forest in G' such 
that for every vertex u E V the number of edges directed to u plus the number 
of undirected edges incident to u is at most 1. It is easily shown that for X 
being a matching-forest it is sufficient that the directed edges of X constitute a 
forest and that the condition on the incidence at the vertices as stated above 
holds. Now consider the set E' of all those directed edges e = (u, u )  such that 
there exists an undirected (or directed, but different) edge el, which is incident 
to (directed to or from) the vertex u. For any such edge we add a new vertex u, 
to V and replace e = (u, u )  by e = (ue, u ) .  

Finally we delete the directions of all directed edges. We obtain an un- 
directed graph G2 and observe that the matching-forest independence system 
of G' is now given by the intersection of the matching independence system of 
G2 and the graphic matroid over that subgraph of G', which is induced by the 
directed edges of GI. 

Note, that for any of the corresponding undirected edges in G2 there is 
always one endpoint to which only this edge is incident. If we now go over to 
the line-graph G of G2 we can represent the matching-forest independence 
system of G' by the intersection of a matroid and the VP-independence system 
of a claw-free graph exactly as introduced above. 

A polynomial algorithm to find a maximum matching-forest in a mixed graph 
has been designed in [4], but a straightforward generalization of augmenting 
paths is not its basis. 

2.4. b-Match ings 

Here we consider a finite, loopless graph G = (V, E )  (multiple edges are 
allowed) together with a mapping b E N ", which assigns to each vertex u E V a 
positive integer b,, the capacity of vertex u. A set of edges X C E is called a 
b-matching or degree-constrained subgraph of G, if for all u E V the number 
of edges of X incident to u is less or equal to b,. Obviously, the system of all 
b-matchings of G relative to the mapping b constitutes an independence 
system (E, 9), which, once again, is either a matroid (a rather special case) or a 
(2,2)-system. 

The problem of finding a maximum b-matching in G in polynomial time has 
been solved by Edmonds [2] .  
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2.5. Matchoids 

As before let G = (V, E )  be a finite, loopless graph possibly containing 
multiple edges. For any vertex u E V and any subset A of E we define 

A(u) := {e  E A: e is incident to v }  

Now, for each vertex u E V let there be given a matroid on E(u),  say 
M(E(u) ,  9 ( u ) ) .  The independence system (E, 9), obtained via 

9 : = { X  C E :  X ( u )  E 9 ( u )  Vu E V} 

is called a matchoid on G. We point to the fact that the enlargement of 
M(E(u) ,  9 ( u ) )  to M(E, by adjoining the elements e E E\E(u) as free 
elements provides a common ground set for all matroids and thus 9 = nuEV9a,. 

When all matroids M(E(u),  9 ( u ) )  are b,-uniform, (E, 9) becomes a b- 
matching independence system, and if G consists of 2 vertices together with the 
multiple edges E we obtain the case of a 2-matroid intersection. Matchoids are 
either (1, 1)-systems or (2,2)-systems. 

Although they have been studied by several authors (cf. [5,6,7]), a poly- 
nomial algorithm to find a maximum independent set in an arbitrary matchoid 
has not yet been found. Up to now such an algorithm has been developed for 
the case of polymatroids, which are represented as 2-dimensional subspaces of 
a linear space, by Lovtisz [7]. The purpose of this study is to give some idea 
how to carry over the concept of augmenting paths to the general case of 
(2,2)-systems, thus suggesting an approach to the problem of determining a 
maximum independent set in a (2,2)-system in polynomial time. 

3. The dependence graph 

The concept of the dependence graph has been introduced within the 
framework of 2-matroid intersection algorithms by Krogdahl and Lawler [6]. 
To allow a more general point of view we will modify their concept slightly. 

Definition 3.1. Let (E, 9) be a (2,2)-system and X E  9. Then for X and 
2 C E\X the dependence graph DPG(2, X )  is a bipartite graph with vertex set 
V = 2 U X and edge set K as follows: 

(i) {e,  e'} E K if and only if e E 2 and e' E C for some circuit C E %(e, X ) ;  
(ii) an edge {e, e'} is doubled if and only if there exist Cl, C, E %(e, X )  such 

that C, # C, and {e,  e'} C Cl n C2; one of the edges is then assigned to C1, the 
other to C,. 
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For algorithmic reasons it could be useful to color the edges corresponding 
to the possibly two different circuits in X U {e} by two different colors. We note 
that every circuit CE %(Z, X) is ‘taken up’ once in DPG(2, X) as described. 

The construction of DPG(2,X)  can be performed in polynomial time 
(depending on testing for independence) for any X E 9 and Z C E\X: 

(i) If X U{e} E 9, nothing has to be done. 
(ii) If X U {e} E 9, delete from X U {e} erements e’ as long as dependence is 

guaranteed. The resulting subset of X U {e} is a circuit Cl. 
(iii) If there exists e’ E Cl such that X U {e}\{e’} $Z 9, then for X U {e}\{e’} we 

get a circuit C2 S X U {e} different from Cl by the same procedure as in (ii). 

Definition 3.2. A W-path W in DPG(Z, X), X E 9, Z C  E\X,  is a path 
(el, e2, . . . , e21r+l) in DPG(Z, X )  without repetition of vertices such that the 
following conditions are fulfilled: 

(i) X U {ei} contains exactly one circuit for i = 1 and i = 2k + 1; 
(ii) those edges of W, which connect ei and ei+l resp. ei+l and ei+2 correspond 

to different circuits Cl, C2 both from %‘(ei+l, X )  (i.e., in case of a coloration of 
the edges of DPG(Z,X) these two edges have different colors) for i = 
2,4, .  . . , 2k  -2; 

(iii) {el, e3, . . . , e2k+l} E 4. 
The number 2k + 1 5  3 is called the length of W; a single vertex e E 2 such 
that X U {e} E 9 is considered as a W-path of length 1. 

We note that this definition of a W-path generalizes the notion of an 
augmenting path in claw-free graphs as well as a source-to-sink path in the 
bordergraph as considered in [6] for 2-matroid-intersections; the latter in the 
case that any C E %’( W\X, X )  is either a circuit of the matroid Ml or of M2. 

Associated with a W-path W of length 2k + 1 are 2k different circuits, every 
one of which is represented by an edge in W. 

Theorem 3.3. Let (E, 9) be a (2,2)-systern and X, Y E  4, (XI + 1 = I YI. Then 
there is a W-path W in DPG( Y\X, X). 

Proof. If there exists an element e E Y\X such that X U {e} E 9, W = {e}, a 
W-path of length 1. So suppose that %(e, X )  f 0 for all e E Y\X. 

By definition of a (2,2)-system, the family (c\Y, CE %(Y, X ) )  can be 
partitioned into 2 nonempty subfamilies (QY, CE V 1 ( Y ,  X ) )  and (QY, C E 

%‘2( Y, X)), each of which possesses a transversal, say TI and T2, respectively. In 
particular, there exist two bijections 7rl : Tl + %‘I( Y, X), 7 ~ 2  : T2+ %2( Y, X) such 
that x E 7ri(x)\Y for all x E T, and i = 1,2, respectively. 

Now we label for all e’ E IT;. that edge between e and e’, which represents the 
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circuit a(e’) and where e is given by {e} = 7ci(e’) rl (Y\X),  i = 1,2. Consider 
that subgraph 6 of DPG(Y\X,X), which consists of the vertices v =  
(X\ Y )  U (Y\X)  and the Iabelled edges. We observe that each vertex in G has 
degree s 2. Hence the connected components of G consist of isolated vertices, 
simple paths or simple cycles. Since I Y\XI = (X\YI + 1, one of these com- 
ponents must be a W-path. 

Example 3.4. Let a claw-free graph-matroid intersection (E, 9) be given by 
graph G and the graphic matroid arising from graph G’ as shown in Fig. 1. 
Then X = (2, b, c, 4, d, e} and Y = (1, f, 3, g, 5 ,  h, 7) are both independent. For 
DPG(Y,X) we obtain the graph shown in Fig. 2, where the dotted edges 
represent the matroid circuits. A W-path W in DPG(Y, X )  is W = 

(L2,  f, b, 3,  c, g ,  4,s). 

- - 
1 2 f 

0 r - J 

b 3 C 

G :  G’ : 

0 - 0 

4 4 5 

o h  

o d  

- 
7 

Fig. 1. 

Fig. 2. 
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Corollary 3.5 (Sufficient Optimality Criterion). Let (E, 9) be a (2,2)-system 
and X C E be a base of E such that there exists at most one element e E E\X 
with the property 

X u { e }  contains exactly one circuit. 

Then X is of maximal cardinality within 9. 

Corollary 3.5 as well as Theorem 3.3 in general do not hold for other than 
(1, 1)- and (2,2)-systems. The example illustrated in Fig. 3 goes back to 
Sakarovitch (cf. [lo]). The edges of this hypergraph are considered to be the 
circuits of an independence system (E, 9). One easily verifies that for any 
X E  9, e E E\X, (W(e,X)[S2. In particular for X =  {3,4,6,7} and any e E  
Y = {1,2,5,8,9}, )W(e, X)l = 2. However, (C\Y, CE Z ( Y ,  X ) )  = ((31, {4}, {3}, 

Thus (E, 9) 

Fig. 3. 

4. The exchange (X \  W )  U ( W \ X )  

As the algorithms for 2-matroid intersection and claw-free graphs show, 
trying to find a W-path in DPG(E\X, X )  for some known X seems to be one 
of the essential features. Before looking at the general case of arbitrary 
(2,2)-systems let us review the situation for the examples presented above and 
derive some further results. 

4.1. 2-Matroid intersection 

For any X ,  Y E  9 we can partition the family (C\Y, CE %(Y, X ) )  into two 
subfamilies (C\ Y, C E Wl( Y, X ) ) ,  (C\ Y, C E Wz( Y, X ) ) ,  where %,( Y, X ) ,  
W 2 ( Y ,  X )  are circuits of the matroids M ( E ,  M ( E ,  9z). Clearly, both families 
possess a transversal, say TI and T2. Now we can represent q1(Y,  X )  resp. 
Wz( Y, X )  by a matching MI resp. M2 in DPG( Y\X, X )  and the union of these 
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two matchings represents the system %(Y, X). Since 1 YI = 1x1 + 1, there exists 
a W-path W. If C is a circuit in both matroids and CE %(E\X, X ) ,  then one 
may add the corresponding edges in DPG(E\X, X )  twice, which guarantees 
that edges in W, which represent a circuit from M(E, or M(E, 92) follow 
each other alternately. This allows to shortcut W, as described in [6] to  obtain a 
W-path W’, for which (X\ W’) U ( W \ X )  E 9 holds. 

In general (2,2)-systems shortcutting is not as efficient. We do not necessarily 
obtain a new W-path W’ ‘shorter’ than W, so that the existence of a W-path 
W fulfilling (X\ W) U (W\X)  E 9 cannot be deduced. 

4.2. Vertex -packing in claw - free graphs 

Due to the special structure of the circuits % of (E, 9), the VP-independence 
system of a claw-free graph G, the edges in DPG(E\X, X )  correspond exactly 
to the circuits CE %(E\X, X). Thus a W-path W in DPG(E\X, X )  allows the 
augmentation from X to 2 := (X\  W) U (W\X) and 1x1 = 1x1 + 1. 

4.3. Claw - free graph-matroid intersection 

This is one of those cases, where the possibility of shortcutting a W-path W 
is limited. If we restrict ourselves to W-paths, where those edges, which 
represent the circuits of the matroid, form a matching (this is always possible), 
then the following may occur: 

In W there is an even number of edges of G between two 
consecutive edges representing matroid circuits. 

Then main cycles, as introduced in [6], cannot be eliminated by shortcutting. 
Moreover, := (X\  W) U (W\X)  can contain one or even more distinct cir- 
cuits of the matroid. 

4.4. b-Matchings 

For graphs G = (V, E )  possessing no multiple edges we can derive a result, 
which could be used to generalize the concept of augmenting paths as known 
from 1-matchings to a concept of ‘augmenting subgraphs’. First, we reformulate 
Theorem 3.3 for this type of b-matching independence systems to obtain a 
W-path possessing some specific structure. 

Theorem 4.1. Let (E, 9) be a b-matching independence system for the simple, 
finite graph G = (V, E )  and X, Y E  9 such that IYI = 1x1 + 1. Then there is a 
W-path W = (e l ,  . . . , eZk+,) in DPG( Y\X, X )  with the following property: 
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Those edges of W, which represent the system %,( W\X, X )  C %,, 
the system of circuits arising at vertex v, form a matching Mu for all 
V E V .  

( P )  

Proof. If W = {e}, nothing has to be shown. So let 2k + 1 > 1. 
If X U {e}, e E Y\X, contains a circuit C E %,, then e must be incident to 

vertex v and ( X ( v ) (  = b,. Since G is simple and b, > 0 for all v E V, there exists 
for each circuit CE %(Y, X )  a unique_vertex v such that CE Hence we can 
partition %( Y, X )  into at most 21x1 many systems %,( Y, X )  each of them being 
a subsystem of %,. 

Moreover, each family (C\ Y, C E %,( Y, X ) )  possesses a transversal T, and 
the labelling of the edges {e, e’}, where e’E T, and e is given by T,(e’) f l  

(Y \X) ,  yields a matching M, in DPG(Y\X, X ) ,  which represents the system 

Since every edge is incident to at most 2 distinct vertices in DPG(Y\X, X ) ,  
UUEVM, induces a subgraph G, one of whose components mustbe a W-path 
W = (el, . . . , eZk+l), which by construction of 

%dY, XI .  

fulfills property (P) .  0 

Let us look now at the exchange (X\ W )  U (W\X). 

Theorem 4.2. Let (E, 9) be as in Theorem 4.1 and W a W-path in 
DPG(Y\X, X ) ,  where X, Y E 9, 1x1 + 1 = I YI; W is assumed to fulfill (P) .  Then 
(X\ W )  U (W\X)  contains at most one circuit. 

Proof. Let Mu be the matching, which represents the system %‘,(W\X, X )  # 0 
for some v E V. Then for any other e E W, which is not covered by an edge of 
M, either two edges from matchings Mu f Mu, M, f Mu, u # w, are incident to 
el or one edge from a matching Mu, u f v, is incident to e. 

Candidates for the latter situation are el or eZk+l. For the vertices w1 resp. 
WZk+l, both f u, which el resp. e2k+l is incident to in G, the conditions 

IX u {ei)(wi)l s bwl , Ix u {eZk+l}(wZk+l)l &k+l 

hold. 

G. Hence, 
Thus all e E W, which are not covered by Mu, are not incident to vertex v in 

I(X\W) U (W\X)(v)/  = b, for all vertices v E V with %,(Y, X )  f 0. 

However, if el and e ~ k + ~  are both incident to a vertex 5 in G, i.e., w1 = W Z k + l =  5 
and if IX(C)l= b,- - 1, then ((X\ W )  U (W\X)(C)l= b,- + 1, which means that 
(X\ W )  U (W\X)  contains a circuit C E %,-, which is unique. 

If w1 # WZk+l or if JX(V)I s b,- - 2, then (x\ W )  u ( W\X) E 3. 
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Example 4.3. Let a b-matching independence system (E, 9 )  be given by graph 
G in Fig. 4 together with the mapping b : V-+{l, 2}, which assigns the number 
1 to vertices ul, u2, u3, u5, u6, u7 and the number 2 to u4. Then for X = {2,5,6}, 
Y = {1,3,4,7}, both independent sets, we obtain as DPG(Y\X, X )  the second 
graph of Fig. 4. We observe that W = (3,2, 1,5,4) is a W-path in 
DPG( Y\X, X), but the exchange (X\ W) U (W\X)  = {1,3,4,6} yields a 
dependent set. However, the exchange (X\  W') U (W'\X) for W' = {3,2,1,5} 
yields the independent set {1,3,6}. For this set and Y we obtain another path 
W = (4,6,7) and the corresponding exchange yields Y. Thus we have aug- 
mented by exchanging twice a W-path resp. parts of a W-path. 

G :  

Fig. 4. 

4.5. Matchoids 

By an almost identical argumentation as used in Theorem 4.1 we can show 
the following theorem. 

Theorem 4.4. Let (E, 9) be a matchoid on G = (V, E) ,  a simple, finite graph, 
and X,  Y E  9 such that (YI = (XI+ 1. Then there is a W-path W =  
(el, . . . , eZk+l) in DPG(Y\X, X )  such that: 

Those edges of W, which represent the system qU( W\X, X ) ,  form a 
matchingfor all u E V. (Q) 

However, as the following example shows, (X\ W) U (W\X)  can contain 
more than one circuit. 

Example 4.5. Let the matchoid (E, 4) be given by graph G = (V, E) of Fig. 5, 
where V =  {v l , .  . . , v12} and E = (1,. . . ,13}, together with a number of k- 
uniform matroids as induced by the mapping b : v\{us}+{l, 2}, which assigns 
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6 G :  v 

9 V 

10 
V 

Fig. 5. 

the number 1 to each vertex ui, i E (1,. . . , 12}\{17 5)  and the number 2 to 01. 
Furthermore, let a graphic matroid M(E(v5) ,  $(us)) be defined by graph G' of 
Fig. 5. X = {2,4,6,8, 10,12} and Y = {1,3,5,7,9, 11,13) are both independent 
in the matchoid (E, 9). W = (1,2,3,4,5,6,7) is a W-path in DPG(Y, X )  
fulfilling (a), but (X\ W) U (W\X) = {1,3,5,7,8, 10, 12) contains the two cir- 
cuits {3,5,8} and {1,7, 12). 

5. W-paths and augmentation 

The question arises how to use a single or several W-paths for the deter- 
mination of a maximum independent set in a (2,2)-system, resp. the examples 
presented in Sections 2.3, 2.4 and 2.5. 

First, let (E, 9) be a (2,2)-system and X, Y be two independent sets such 
that /YI = 1x1 + 1. From Theorem 3.3 we know that there is a W-path W' in 
DPG(Y\X, X), whose set of vertices is contained in (X\ Y) U (Y\X). If 
(X\ W') U (W'\X) is independent, we can augment. Otherwise we can enlarge 
X\ W' by a subset W1 of W'\X to a base X2 of (X\ W') U (W'\X). We observe 
- W1 is nonempty; 
- 1x21 1x1 < I YI; 
- Jx2 n Y I  > Ix n Y I .  
Consequently, in DPG(Y\X*, X') = DPG(Y\(X U W1), X') there exists a W- 
path W C ( Y\X2) u (X2\ Y). In particular, W n W1 = 0. Again, we can check, 
whether ( X 2 \ W )  U ( W \ X 2 )  is independent and, if this is not the case, go over 
to (X2\W)U until we have reached a number rn such that the condition 

5 1 wl = (2 lx n wil) + 1 
i =  1 i =  1 
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is fulfilled. Then we have augmented. Since 

I x ~  n Y I  < Ixi" n YI for all 1 s i G m , 

where X' = X, m is bounded from above by I Y\X]  ( S  14IEIJ + 1). 
Now let us specify how the knowledge of Y can be avoided for an 

augmentation of X. We have to determine sequences W', W ,  . . . , W" and 
W', p,. . . , W m  such that for i = 1,. . . , m 
- W' is a W-path in DPG(E\[X U (UiI: Wj)], X i )  and W '  fi (UiI: Wj) = 0, 
- W is a subset of W'\Xi  such that Xi+' := (Xi\  W i )  U W is a base of 

and 
(Xi\ Wi) u ( W'\X'), 

for i = l ,  . . . ,  m -  
j = l  j = l  

but 
m 

~ ~ w q = ( ~ ~ x f l  j = l  W,J)+ l .  
j=l  

The essential part of an algorithm for the determination of a maximum 
independent set in a (2,2)-system would consist in determining such sequences 
relative to an independent set X .  

6. Conclusions 

We have generalized the concept of an augmenting path from special 
examples to the general case of (2,2)-systems and indicated, how an in- 
dependent set X could be augmented by using a finite sequence of such 
generalized augmenting paths, which have been called W-paths. We could 
show in Theorem 3.3 that in case of X ,  Y E  9, I YI = 1x1 + 1, a W-path always 
exists in DPG(Y\X, X )  and thus in DPG(E\X, X ) .  Since the number of such 
W-paths W needed for augmentation is bounded from above by [${EIJ + 1 and 
due to the special restrictions on W' for i = 2, . . . , m we believe that there is a 
polynomial algorithm for the determination of a maximum independent set in a 
(2,2)-system. 

As far as the design of such an algorithm for the special cases of a matchoid 
or the intersection of a matroid with the VP-independence system of a 
claw-free graph is concerned it would be interesting to investigate the cor- 
responding sequences of W-paths with respect to their special structure. 
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TRANSFORMATIONS WHICH PRESERVE PERFECTNESS AND 
H-PERFECTNESS OF GRAPHS 

J. FONLUPT and J.P. UHRY 
I.M.A.G., B.P. 53 X, 38041 Genoble Ckdex, France 

A graph G is h-perfect if the convex bull of the incidence vectors of the independent sets 
of G is a polytope defined by nonnegativity constraints, clique constraints and odd holes 
constraints. 

We prove the two following theorems: 
(1) A graph obtained by identification of two vertices of a bipartite graph is h-perfect. 
(2) If in a perfect graph there exists two vertices b and c such that all the minimal chains 

between b and c have an odd number of vertices, the graph obtained by identification of b 
and c is perfect. 

1. Introduction 

Let G = (V, E) be a finite, undirected, loopless graph; V is the set of vertices 
of G and E denotes the set of edges of G. We define P ( G )  as the convex hull 
of the incidence vectors of independent sets of G. P ( G )  is a polytope and 
therefore can also be characterized by a set of inequality constraints. 

It is well known that a graph G is perfect [4] if and only if P ( G )  is defined by 
the following constraints: 

(1) nonnegativity constraints on the variables associated with the vertices of 
G. 

(2) clique constraints. 
When G has odd holes, it is also necessary to introduce a third type of 
constraint: 

(3) odd hole constraints. 
Of course, constraints (l), (2) and (3) are in general not sufficient to 

characterize P ( G )  for a given graph G. If this characterization is sufficient, we 
shall call the graph G an h-perfect graph. Chvatal [3] was the first author to 
be interested in h-perfect graphs and some interesting classes of h-perfect 
graphs have been studied in [2] and [5]. 

In this paper, we study simple operations on graphs which preserve per- 
fection (Section 3) and h-perfection (Section 4). 

In Section 2, we give some definitions and define some notation we shall use 
throughout this study. 

83 
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2. Definitions and notation 

(a) A chain from a E V to b E V is a sequence T = ( ~ 1 , .  . . , uk) of not 
necessarily distinct vertices such that: 
- U ]  = a ;  
- uf b ;  
- ( ~ j ,  ui+l) f E V 1 s i =Z k. 
A chain T from a E V to b E V is minimal if there exists no proper sub- 
sequence of T which is a chain from a to b. 

A pseudo-cycle of G is a sequence of vertices D = ( u l , .  . . , uk) such that: 
- D is a chain from u1 to U k :  

- (uk, 01) E E. 

consecutive vertices of D. 
(u, w )  is a chord of D if u and w are adjacent vertices of G but not 

A pseudo-cycle is odd if its length (Dl is odd. 
D(G) will denote the set of odd pseudo-cycles of G. 
A chordless pseudo-cycle with distinct vertices is a hole. 
C(G) will denote the set of odd holes of G. 
Finally, let us call S(G) the family of independent sets of G and O(G)  the 

(b) x represents a vector of RIV1 and to each vertex u E V we associate one 

The incidence vector xs of a subset S of V is defined by 

family of maximal cliques of G. 

coordinate of x noted x,. 

- x t =  1 if ~ E S .  
- x t = O i f  v G S .  

If T = (ul ,  . . . , uk) is a sequence of not necessarily distinct vertices of V, we 
shall set 

k 

x (T)  = 2 x,. 
i = l  

Note that if u E V, xu will appear in the description of x ( T )  as many times as u 
appears in the description of T. 

For example, the pseudo-cycle D = (a, b, c, d,  e, f, c, g )  described by Fig. 1 is 
a pseudo-cycle of length 8 and 

x(D)  = xa + xb  + 2& + Xd + x, + xf + xg . 

(c) A graph G is perfect (see [3]) if and only if P ( G )  is defined by 
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' X S O ,  

X x u s l  v 0 E .n(G), 
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b f 

Fig. 1 

A graph G is h-perfect if and only if P ( G )  is defined by 

(3) 

It is obvious that the incidence vector xs of an independent set of G is an 
extreme point of the polytope defined by constraints (1) and (2) (resp. (3), (4), 
(5)). It is also obvious that if x is an integer extreme point of tbe polytope 
defined by (l), (2) (resp. (3), (4), (5)), x is the incidence vectot of an in- 
dependent set of G. Therefore, in order to prove that a graph is perfect (resp. 
h-perfect) we need to prove that all the extreme points of the polytope defined 
by (l), (2) (resp. (3), (4), (5)) are integer (in fact 0-1) points. 

3. A new class of h-perfect graphs 

3.1. Definition 

Let G = (V,, V2, E) be a bipartite graph with b, c two non-adjacent vertices 
of G. If we delete b and c from G and add a new vertex a whose adjacent 
vertices are the union of adjacent vertices of b and c, we get a new graph 

= (e E). We call the graph obtained from G by identification of b and c. 
In this section we want to  prove that G is a h-perfect graph (Theorem 1 of 
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Section 3.2). This result is true if 
suppose from now on that G is not a bipartite graph. This implies that 

belongs to Vz. 

We remark that, if T = (b, u 2 , .  . . , v ~ ~ + ~ ,  c )  is a chain in G between b and c, 
we can associate to T, after identification of b and c an odd pseudo-cycle 
D = (a, uz, . . . , uZk+l) of G. 

Conversely any odd pseudo-cycle of G contains a and can be written as 
D = (a, uz, . . . , uZk+l) with uZi E V2, 1 S i S k ,  and u2i+l E Vl, 1 C i S k. 

Therefore, we can associate to  D a chain T between b and c in G: 

is a bipartite graph. Therefore, we shall 

(1) One of the two vertices 6, c for instance b belongs to Vl and the other c, 

(2) There exists a chain (b, . . . , c) in G. 

T = (b7 UZ, . . . , ~ + 1 ,  C) . 

Note that ID1 = IT1 - 1. 
The two following lemmas are obvious. 

Lemma 1. Every subgraph of G is either a bipartite graph or a graph obtained 
from a subgraph of G by identification of b and c. 

Lemma 2. The maximum cardinality of a clique of G is less than or equal to 
three. 

3.2. The main result 

Theorem 1. The graphs obtained by identification of two nonadjacent vertices of 
bipartite graphs are h -perfect. 

Before proving this theorem, we make some useful remarks and prove two 
preliminary lemmas (Section 3.3). In Section 3.4 we present a labelling pro- 
cedure for the vertices of G. Then, some results related to this procedure are 
stated. The final proof of Theorem 1 (Section 3.5) is an easy consequence of 
these last results. In Section 3.5 we prove a corollary of Theorem 1. 

3.3. Remarks and preliminary lemmas 

Considering cliques of cardinality 3 as holes of length 3, Theorem 1 is 
equivalent to showing (by Lemma 2), that P ( G )  is identical to the polytope 

V v E V ,  
V ( u ,  W)EE, 

x(C)==f(lCI-1) V C E  C(G) .  
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More precisely, we just need to prove that all the extreme points of P a  have 
0-1 coordinates. 

If Theorem 1 is false, we can assume that, among the graphs which do not 
satisfy this theorem, G has the minimum number of vertices. 

Let xo = (x;, u E v> be a non-integer extreme point of Pa. 

Proof. First, assume that there exists w E V such that x t  = 0. All the feasible 
solutions of P a  which satisfy the constraint x, = 0 generate the polytope Paw 
where c, is obtained from G by deletion of w. But by Lemma 1 and our 
assumption of minimality on t?, G, is an h-perfect graph. This implies that any 
extreme point of P a  such that x, = 0 is an integer extreme point. Therefore 

From these relations and the clique constraints of P G ,  if there exists w E V 
such that x t  = 1, w is an isolated vertex of G. But this implies that G is also an 
h-perfect graph which is contrary to  our assumption. 

O < x ; S l V u E V .  

Lemma 4. lf x = (xu, v E V )  E Pa,  then x(D) =s i(1D1- 1) V D E D(G). 

Proof. Consider an odd pseudo-cycle which is not a hole of length 2k  + 1, 

Suppose by induction on k that Lemma 4 is true for all odd pseudo-cycles of 

If a vertex appears more than once in D, we can assume by a suitable 

D = (Vl, u2, . . . , UZk+l). 

length less than 2k  + 1. 

indexing of the vertices that 

D = (ul, . . . , z ) ~ ~ ,  . . . , u ~ ~ + ~ )  with 1 < i s k and u1 = uzi. 

If all the vertices of D are distinct, there exists a chord in D. Again by a 
suitable indexing of the vertices, D can be written as 

D = (vl, . . . , uZi, . . . , v ~ k + l )  with 1 < i s k and (w,  zb-1) E B .  

Thus, if D is not a hole, we can suppose that 

D1 = (Ul, . . . , u2i-1) E D(G) . 
As D I  ' IDd, 

k 

x(D) = x(D1) + C (xYj + x,,.,,) 6 &ID11 - 1) + k - i + 1 . 
j = ;  

Therefore X ( D )  f ( l ~ l -  1). 
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3.4. Labelling procedure on the set of uertices of G 

First, let us set xg = x: and x!  = x:. 
Then, we shall define the subset El of saturated edges of E: (u, w) E El if 

and only if 

(u, w ) € E  and xO,+xO,= 1. 

A chain T, from b E Vl to  u E Vl U V, is an alternating chain if 

T = (ul, . . . , uk) with u1 = b, uk = u 

(uzi, 1 < 2i < 2i + 1 S k . 
and 

E El, 

An elementary result we shall use in the next two lemmas is: a chain T from 
b E Vl to u E Vz is an alternating chain if and only if 

xo(T) = X; + X: + 4(1TI - 2) 

On Fig. 2, T is an alternating chain of length 2k. The edges of El are marked 
by a continuous line. 

Fig. 2. 

A chain from c E V, to u E Vl U V, is an alternating chain if: 

Starting from a vertex u E Vl U V,, we can now define a general labelling 
procedure denoted P(u) .  

Procedure P(u) .  
Step 1. Give to u the label E = +l. 
Step 2. If u E Vl is labelled with E, label all the still unlabelled vertices 

Step 3. If u E V, is labelled with - E ,  label all the still unlabelled vertices w 
adjacent to  u with --E. 

of Vl such that (u, w) E El with + E .  
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-1 -1 -1 -1 v, +1 +1 c +1 

+1 +1 +1 -1 -1 -1 -1 
P(b) P(c) 

Fig. 3 

Repeat Steps 2 and 3 until it is impossible to label more vertices. Note that 
we shall be concerned with P(b)  and P(c). On Fig. 3 edges of El are marked with a 
continuous line. 

Lemma 5. (a) All the vertices of an alternating chain (b, . . . , v )  are labelled by 
P(b)  and all the vertices of an alternating chain (c, . . . , v )  are labelled by P(c). 

(b) If v is labelled by P(b)  (resp. by P(c)),  there exists an alternating chain 
from b to v (resp. from c to v). 

Proof. (a) Immediate by the description of Procedure P(u) .  

graphs and this result is classical [l]. 
(b) Procedure P ( u )  is similar to an alternating path algorithm for bipartite 

Lemma 6. A vertex v cannot be labelled by both P(b)  and P(c). 

Proof. Suppose that there exists a vertex v which is labelled by P(b)  and P(c). 
Step 2 of Procedure P ( u )  shows that we can suppose that v E V,. 

By Lemma 5, there exists two alternating chains (b,. . . , v )  and (c,. . . , v). 
Concatenating these two chains at v, we obtain a chain T from b to c, 

Let D be the odd pseudo-cycle associated with T, 
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As TI and Tz are alternating chains, 

As xOyr > 0 by Lemma 3, xo(D) > $(ID1 - 1) which is impossible (Lemma 4). 
The cases 1 = 1 and I = k are similar. 

Remark. Vertices labelled by P ( b )  or P(c )  induce the same labelling on 
corresponding vertices of G (b  and c induce label +1  on a) .  Note that, by 
Lemma 6, this label is well defined. 

Lemma 7 .  Let C be an odd hole of G such that xo(C) = $(ICl- 1). The number of 
vertices of C labelled with +1 is equal to the number of vertices of C labelled with 
-1. 

Proof. Let C be an odd hole of G such that xo(C) = f(lCl- 1) and let T = 

(b, . . . , c) be its associated chain in G. Again let us set 

x!=x;  and x:=xO,. 

Describing T from b to c, let v be the last vertex of T labelled by P(b) .  Note 
that v E Vz and has a label -1. 

If Tl is the subchain of T between b and v and T3 is the subchain of T 
between v and c, 

xo( T )  = x'( Ti) + xO( T3) - X: 

and 
X"C) = XO(T1) - x: - x:  + XO(T3) . 

If Tl is not an alternating chain between b and v, 

Therefore, 

On the other hand, there exists an alternating chain Tz from b to v (Lemma 5 )  
(cf. Fig. 4). Concatenating Tz and T3 at v, we get a chain T' from b to C, and 

If D is the associated odd pseudo-cycle to  T', [Dl = I CI - 1 TlI + I T2(. x0( T2) = 
IT'I = IT1 - IT11 + IT2l. 
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C 

Fig. 4. 

x t  + x: + ;(I T21 - 2) since T2 is an alternating chain. Therefore xo(D) = 

XO( T2) - x i  - x: + xO( T3). 

Using relation (6) we find 

This is impossible by Lemma 4. 
Therefore Tl is an alternating chain between b and u and the vertices of TI 

are successiveIy labelled with + 1 and - 1 (Lemma 5). 
By a similar method we can prove that all the vertices labelled by the 

Procedure P ( c )  form a subchain (w, . . . , c )  of T and w has a label +l. 
All the labelled vertices of C form a chain (v, . . . , w) such that u has a label 

-1, w has a label +1 and two adjacent labelled vertices have different labels. 
This implies the result. 

3.5. Proof of Theorem 1 

Let us define the subset of saturated holes C,(G) by CE C,(G) if CE c(G)  

If xo is an extreme point of P G ,  xo is the unique solution of the linear system 
and xo(C) = $(ICl- 1). 
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Let us define now another solution of system (L): x' = (x:, v E v) by 
- x: = xt  if v is not labelled, 
-x:= x t+  1 if u has a IabeI +l, 
- xf, = xt  - 1 if v has a label -1. 

The different steps of Procedure P ( u )  show that 

xZ+x' ,= l  V ( V , W ) € E l .  

Moreover, x'(C) = @Cl - 1) V CE Cl(G)  by Lemma 7 .  This proves that x' is a 
solution of linear system (L) distinct from xo, a contradiction. 

3.6. A related result 

Let G = (Vl, V2, E) and G' = (Vi, Vi, E') be two bipartite graphs. Let G be 
the graph obtained by identification of a E V, and a' E V; and identification of 
b E Vz and b' E V;.  

Corollary 1. G is a h-perfect graph. 

can be constructed by identifying first a and a'.  The graph obtained G' is 
bipartite. Then we identify b and b' and we apply Theorem 1. 

4. Some operations preserving perfectness of graphs 

4.1. Theorem 1 cannot be extended to perfect graphs. 

Here is a counterexample. Consider graph G, as depicted in Fig. 5. Let us 
identify i& and i5 and call v5 the new vertex in the graph c. c is a well-known 
graph (the 'Five rays wheel') and it is known that P ( G )  is defined by nonnegativity 
constraints, clique constraints, odd hole constraints and also the constraint 

Fig. 5. 
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5 

2 X , + ~ X x , S 2  
i = l  

However, we have the following result. 

4.2. 

Theorem 2. Let G = (V, E) be a perfect graph with the following property: there 
exist two distinct vertices b and c such that all the minimal chains between b and 
c have odd length. Then, the graph G = (v, E )  obtained by identification of 6 
and c is a perfect graph. 

Proof. (1) Note that 6 and c are nonadjacent vertices of G. Let us call a the 
vertex obtained by identification of 6 and c. 

- a g o  a n d R E R ( G ) ,  
- o r a E R  andR-{a}+{6}orR-{a}+{c}belongs t oR(G) .  

It is obvious that a subset of vertices of G which satisfy one of these conditions 
is a clique of G. 

On the other hand if R E R(G) and a does not belong to 0, R is a clique of 
G. If a belongs to R and R - {a }  + {b} is not a clique of G, there exists a vertex 
v E R such that (b, v) Sr E. Therefore (c, v )  E E. 

If R - {a} + {c} is not a clique there exists a vertex w distinct from v such 
that (c, w )  $Z E and (6, w )  E E. But this is impossible since the chain (6, w, u, c )  
is a minimal chain of length 4. 

(2) Let us prove that R E R(G) if and only if 

(3) This last resuft proves that the polytope 

xu 3 0 V v E V ,  

1p"' V R E R ( G ) ,  

may also be characterized as the intersection of the polytope P ( G )  defined by 

I uEn 

and the hyperplane H of R1" defined by the equation 

xb - & = 0 .  

Elementary results on polytopes show that any extreme point xo of P(G)  n H 
which is not an extreme point of P ( G )  may be written as 
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xo= ax '+ 0x2, ff >0, p > 0, ff + p = 1 

where x' = (xi, v E V) is an extreme point of P ( G )  which satisfies x i  - x: > 0, 
and x2 = (x:, v E V) is an extreme point of P ( G )  which satisfies x;  - x', < 0. 

As x' and x2 are integer extreme points, 

x : ,=1 ,  x f = 0  

x ; = o ,  x ' ,=1 .  
and 

Since x! - x! = 0,  this implies that 

Let us set 

V' = (v, v E V and x t  = 1) 
= (v, v E V and x t  = 0 )  

v = ( v , v E  Vandx:=&) .  
(7) 

We note that x! = x: = 4. Therefore b and c belong to V3. 
(4) Let G' be the subgraph of G induced on the subset of vertices V3. By (7) 

there is no clique of cardinality 3 or more in G', and G' is a bipartite graph. 
Therefore there exist two independent sets S;  and S; which partition V3 and 
since all the minimal chains between b and c have odd length we can assume 
without loss of generality that both b and c belong to S; .  

By (7) Sl = Vl u S ;  and S2 = Vl U S; are independent sets of G; therefore xsl 
and xsz belongs to P ( G ) .  

Moreover b and c belong to S1 and not to  S2. Hence xsl and xs2 belong to H. 
But xo=$(xs~+xs2) .  xo cannot be an extreme point of P ( G ) n  H. All the 

This proves that e is a perfect graph. 
extreme points of IS are integer extreme points and IS = P(G) .  

Corollary 2. Let G be a perfect graph with the following property: there exist two 
nonadjacent vertices a and b of G such that all the minimal chains between a 
and b have even cardinality. The graph G obtained by adding to the edges of G a 
new edge (a, b )  is perfect. 

proof. Consider the graph G' obtained by adding to the vertices of G a new 
vertex 6 and to the edges of G a new edge (a, 6). G is a perfect graph and all 
the minimal chains between b and 6 have odd cardinality. 
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By Theorem 2, the graph G obtained by identification of b and 6 is perfect. 

Conclusion. Theorem 2 and Corollary 2 may be generalized to a more general 
class of graphs. Moreover, they have interesting applications in the study of 
perfect graphs. A forthcoming paper will study these extensions and ap- 
plications. 
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A constructive method is described for proving the Edmonds-Giles theorem which yields 
a good algorithm provided that a fast subroutine is available for minimizing a submodular 
set function. 

The algorithm can be used for finding a maximum weight common independent set of two 
matroids, for finding a minimum weight covering of directed cuts of a digraph, and, as a new 
application, for finding a minimum cost k strongly connected orientation of an undirected 
graph. 

As a theoretical consequence of the algorithm, we prove a combinatorial feasibility 
theorem for Edmonds-Giles polyhedron and then we derive a discrete separation theorem 
which says, roughly, an integer valued submodular function B and an integer valued 
supermodular function R can be separated by an integer valued modular function provided 
that R C B. 

0. Introduction 

In [2] Edmonds and Giles have proved a quite general min-max relation for 
submodular functions on graphs. This result includes such specializations as 
Hoffman's circulation theorem, Edmonds' polymatroid intersection theorem [l] 
and the Lucchesi-Younger theorem [15,16] on directed cuts. Despite this 
generality, the proof is not too difficult to understand, but it is far from being 
constructive. One of the purposes of the present paper is to describe an 
algorithmic proof of the Edmonds-Giles theorem. This proof yields a poly- 
nomial bounded algorithm provided that a fast subroutine is available for 
minimizing a submodular set function. It should be noted that such subroutines 
indeed exist for the specializations mentioned above. 

Recently, Grotschel, Lovasz and Schrijver [ l l ]  developed a procedure for 
minimizing an arbitrary submodular function. Their algorithm, which uses the 
ideas of the ellipsoid method, is a good one. It also implies a rather surprising 
result, namely, the number of sets X whose value b ( X )  is explicitly needed 

*This paper was written, partly, while the author was visiting the University of Waterloo, 
Waterloo, Ontario, Canada N2L 3G1. 
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during the algorithm can be bounded above by a polynomial function of n, the 
cardinality of the ground set. I think it is a great challenge for combinatorial 
optimization to find a ‘proper’ combinatorial algorithm for minimizing a 
submodular function (‘proper’ means that the algorithm may use integer 
arithmetic only and no approximation procedure). 

Actually, the method of Grotschel et al. is suitable for algorithmically solving 
the Edmonds-Giles problem itself. Hence in this sense the present algorithm is 
not the first one. However our method which operates with such classical 
combinatorial devices as augmenting path, labelling technique etc., also pro- 
vides a proof for the Edmonds-Giles theorem while the method of Grotschel et 
al. does not lend itself to such a proof. In fact, their method essentially makes 
use of the theorem itself. 

Since the Edmonds-Giles theorem implies Edmonds’ matroid intersection 
theorem as well as Lucchesi-Younger theorem on the maximum number of 
edge-disjoint directed cuts, the specializations of our procedure obviously 
provide algorithms for these cases. These specializations are rather important 
for their own sake, so it seems to be worthwhile to work out the details and 
exploit the special advantages for these cases. See [7,8]. As a further ap- 
plication of the method we shall show how to find the cheapest k-strongly 
connected orientation of a 2k-edge-connected undirected graph if the two 
possible orientations of any edge may have different costs. me existence of 
such an orientation was proved by Nash-Williams [17]. See also [5]. )  

A theoretical consequence of our algorithm is a combinatorial feasibility 
theorem from which a discrete separation theorem will be derived. This states, 
roughly, that the integer valued super- and submodular functions r and b can 
be separated by an integer valued modular function provided that r S b. This 
theorem can be considered as a counterpart of the well-known ‘continuous’ 
result that a concave and a convex function on a convex, compact set in R”  can 
be separated by a linear function if the concave function nowhere exceeds the 
convex one. 

Another corollary gives a common generalization of the augmenting circuit 
theorem from network flow theory and its counterpart in matroid intersection 
theory [12, 131. 

1. Preliminaries 

Throughout the paper we work with a finite ground set V of n elements. If 
A G V, the complement of A is denoted by A. Sets A, B G V are co-disjoint if 
A and B are disjoint. Sets A, B V are intersecting if none of A n B, A - B, 
B - A  is empty. If, in addition, A U B f  V, then A and B are crossing. A 
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family 9 of subsets of V is intersecting (crossing) if A n B, A U B E 9 for all 
intersecting (crossing) members A, B of 9. A set function b is submodular on 
A, B if b ( A )  + b(B)  2 b ( A  fl B )  + b ( A  U B). If equality holds the function is 
modular on A, B. A function r is supermodular if -r is submodular. A set A is 
called a uG-set if u E A, u 

Let G = (V, E) be a directed graph with n vertices and m arrows. (we use 
the term ‘arrow’ rather than directed edge.) Multiple arrows are allowed but 
loops not. An arrow uu enters (leaues) B C V if B is a uii-set (ua-set). For 
H c E, pH(B) stands for the number of arrows in H entering B. 

Set p ( B )  = p E ( B )  and define &(B) = ~ H ( B ) .  For a single element set we use 
p(u)  instead of p({u}). 

Often we shall not distinguish between a subset H of E and its incidence 
vector x .  For example, p,(B) = pH(B). 

Let 9’ be a crossing family of subsets of V and A’ be a (0, +1) matrix the 
rows of which correspond to the members of F, the columns correspond to the 
elements of E and 

A. 

-1 if e leaves F, 
+1 if e enters F, 

0 otherwise. 

Let b’ be an integer-valued function on 9’ submodular on crossing members 
of 9’. Without loss of generality we can assume that V, 0 CZ 9’. Let d be a 
nonnegative vector in RE, that is, d is a weighting of the arrows. The theorem 
of Edmonds and Giles can be formulated as follows. 

Theorem 1. The linear programming problem 

max dx 
s.t. 0 < x < 1, A’x < b’ , 

has an integral optimal solution provided that it has a feasible solution at all. If, 
in addition, d is integer-valued there exists an integral optimal solution to the 
dual linear programming problem. 

Remark. Actually, Edmonds and Giles proved their theorem in a more general 
form. They allowed d to have negative components and the bounds €or x were 
arbitrary, not necessarily 0 and 1. It should be noted however, that the three 
special cases mentioned earlier (Edmonds’ matroid polyhedron theorem, the 
Lucchesi-Younger theorem and graph orientation) are consequences of this 
apparently weaker version. Moreover, if d# 0, the algorithm can simply be 
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modified without losing the polynomial bound. If in (1) the more general 
constraint f x S g is prescribed (f, g integer-valued) the algorithm can also be 
extended to handle this case. That transformation assures finite termination 
and so provides a proof for the general form of the theorem. However in this 
case the polynomial bound may be destroyed as is the case in network flow 
theory where the out-of-kilter algorithm is not a good algorithm. In order to 
get a proper good algorithm for this genera1 case some scaling technique seems 
to be needed [3]. Here we do not go into details in this direction but only 
mention how the general problem (in principle) can be converted into form (1). 

(a) If d ( e )  < 0, replace e = uu by e’ = uu. Set f’(e’) = -g(e)  and g’(e’) = -f(e) 
and d’(e’) = -d (e ) .  If d ( e )  a 0, set f(e) = f(e), g’(e) = g(e), d’ (e)  = d(e) .  

(b) Set f”(e) = 0 and c(e) = g’(e)-f’(e) for each arrow e and set b’(X)  = 

b ( X )  - Z (g’(e): e enters X )  + 
(c) Replace any arrow e by c (e )  parallel arrows. The new problem is now 

equivalent to the original one and is of form (1). 

(f‘(e):  e leaves X )  for X E 9’. 

First we shall prove Theorem 1 and give an algorithm for the even more 
special case when the family of subsets in question is intersecting and the 
function on the family is submodular on each intersecting pair. In Section 8 we 
show how this proof and algorithm extends to general crossing families. 

2. Intersecting families 

In order to avoid confusion, instead of p, let 9 denote an intersecting 
family of subsets of V and assume that $j $Z $, VE 5 Let b be an integer- 
valued function on 9, submodular on intersecting sets and b ( V )  = 0. Let A be 
defined in the same way as matrix A’. Consider the dual pair of linear 
programs: 

max dx 
s.t. O S x G l ,  A x s b ,  

and 

min by + l r  (3) 
s.t. y, z 3 0 ,  ( y ,  z ) [  A I ]  3 d,  

where the components of y and z correspond to the elements of 9 and E, 
respectively, and I denotes the identity matrix (of appropriate size). 

The complementary slackness conditions are 
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x(e )>O+ya ,+z (e )=  d ( e ) ,  

z ( e ) > O + x ( e ) = l ,  

y (F)  > 0- a$x = b(F) , 

where a, denotes the column vector of A belonging to e and a$ stands for the 
row vector of A belonging to F. One can see that y determines uniquely the 
optimal vector z, namely z ( e )  = d ( e ) -  ya,, if this value is positive and 0 
otherwise. Thus henceforth we shall refer to the dual solution only by the 
vector y .  

Since we are interested in 0-1 vectors x the optimality criteria are as follows: 

x(e )  = 1 + ya, s d ( e )  , 
x(e )  = O-,  yu, 2 d(e )  , 
y(F)  > O +  aT.x = b(F)  

(4) 

Starting with any integral feasible solution to (2), the algorithm will construct 
vectors x and y satisfying (4). The method is based on two ideas. The first one 
makes it possible for the dual program to be handled with the help of a 
so-called potential which is a I q-dimensional vector (unlike the usually much 
higher dimensional vector y ) .  At the end of the process the optimal y will be 
simply reconstructed from the potential. The second idea is a generalization of 
the classical augmenting path method. Roughly speaking, we shall use an 
augmenting system of disjoint paths rather than one augmenting path for 
performing a single augmentation. This set of paths will be determined by 
introducing appropriate auxiliary arrows: a path in the extended graph will 
define disjoint paths in the original one. 

Let us fix a feasible 0-1  solution x to (2) and denote a$x by ax(F) or briefly 
a(F).  This is a function on 9 depending on x and a simple counting argument 
shows that a is modular, i.e., o(K) + a(L)  = a ( K  rl L)  + a ( K  U L). The feasi- 
bility of x means that a ( F )  s b(F) for each F E 9. 

A member F of 9 is called 6-strict (with respect to x) or briefly strict when it 
is not ambiguous if u(F)  = b(F). For example, V is always strict since u(V) = 
b(V)=O. 

Lemma 2. If K and L are intersecting strict members of 9, then K fl L and 
K U L are also strict. 

Proof. b(K) + 6 (L) = a ( K )  + a(L)  = u(K n L) + a ( K  U L)  b(K fl L) + b(K U 
L )  S b ( K )  + b(L) from which a ( K  fl L)  = b(K n L) and a(K U L) = b(K U L )  
follow, as required. 0 
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Denote by P ( v )  the intersection of all strict sets containing a vertex v of G. 
( P ( v )  depends on x.) 

Lemma 3. (a) P ( v )  is strict. 

strict. 
@) If a family of strict sets forms a connected hypergraph, the union is again 

Proof. Both statements are direct consequences of Lemma 2. 0 

3. Potentials 

Assume, besides x, we have a vector p in RV  called a potential such that 

where a(uv) = d(uv)  - p ( v )  + p(u) .  
Since adding a constant to each component of p does not affect (5) it can be 

assumed that the minimum component of p is 0. Let the different potential 
values be 0 = po<pl< .  . . <pk. I f  k > O  let V, = { u : p ( u ) 2 p i } ,  i = 1,2 , .  . . , k .  

Lemma 4. (5c) is equivalent to the fact that each V ,  partitions into strict sets. 

Proof. For 2, E v, (5c) implies P(v)c V,, thus the components of hypergraph 
{ P ( v ) :  v E V,} partition V,. Denote by X(v) the set of these components. 
Lemma 3(b) states that the members of X ( V , )  are strict. 

The reverse direction is obvious. 0 

The notation X ( V , )  introduced in the proof will also be needed later. 
For F E 9, define y ( F )  = C (pi - pi-l), where the summation is taken over 

those indices for which F E X(V, ) .  (Here the empty sum is defined to be 
zero.) 

Claim. For any arrow e = uv, p ( v )  - p ( u )  = ya,. 

Proof. Let ti (s i )  denote the number of sets in X( K) which are entered (left) by 
e. Obviously both ti and si are 0 or 1. Now we have 
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yu, = 2 ( y ( ~ ) :  e enters F )  - 2 ( y ( ~ ) :  e leaves F )  
F F 

= 2 (2 (pi - pi-1: F E x(v,)): e enters F )  
F i  

Here we made use of the fact that ti = si whenever u, u E V,  or u, u $Z V,. 
Furthermore, if p ( u )  > p ( u )  then the second sum is empty, while p ( u )  > p ( v )  
implies that the first sum is empty. 0 

By this claim and the definition of y we need a 0 - 1  feasible vector x and a 

We shall refer to an arrow uu as a 1-arrow (with respect to the given vector 

The algorithm will maintain (5a) and (5c) and the number of arrows violating 

potential p satisfying (5). 

x) if x(uu) = 1 while uu is a 0-avow if x(uv)  = 0. 

(5b) will gradually reduce. 

4. Inner algorithm and proof 

The core of our procedure is the following. 

Inner algorithm 
Input. x : 0-1 feasible solution to (2), 

p : potential, 
e = ab: 0-arrow, 

so that (5a) and (5c) hold but e violates (5b). 
Oufpuf. x': 0-1 feasible solution to (2), 

p': potential, 
so that (5a) and (5c) continue to hold, e does not violate (5b) and any arrow can 
violate (5b) only if it violates (5b) with respect to x and p. 
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Assume this algorithm is available. At the beginning let p = 0 and x be an 
arbitrary 0-1 feasible solution to (2). Repeat the Inner Algorithm until there 
are no more arrows violating (5b). After no more than IEl applications of this 
algorithm its output will satisfy all the three criteria in (5). 

To describe the Inner Algorithm, define an auxiliary digraph H = (V, A) 
(depending on the current x and p) as follows. Set A = AB U Aw U AR where 

AB = {uu: uv is a 1-arrow and d(uv) s 01, 

Aw = {uu: uu is a 0-arrow and d(uu) 2 0) , 
AR = {uu: u E P ( v )  and p ( u )  = p(v ) }  . 

(Note that A may contain parallel arrows.) Refer to the elements of AB, AW 
and AR as blue, white and red arrows, respectively. 

Try to find a directed path in H from a to b. There may be two cases. 
Case 1. b e  T = {v: v can be reached from a in H}. Obviously, 

(P) there is no arrow in H leaving T. 

Revise the potential as follows: 

where 6 = min(6,, 6 ~ ,  aW, SR), where 

6, = d(ab) ,  

8B = min{d(uu): uv is a 1-arrow of G leaving T} , 
tiw = min{-d(uv): uz, is a 0-arrow of G entering T }  

SR = min(p(u) - p ( v ) :  u g! T, u E P(u)  n T }  . 
and 

(Here the minimum is defined to be plus infinity when it is taken over the 
empty set.) 

Claim. 6 > 0 .  

Proof. Since e violated (5b), 6, >O.  If d(uv)SO for a 1-arrow uu leaving T, 
then uu would be a (blue) arrow in H leaving T, contradicting (P), therefore 
& > O .  If d ( u u ) s O  for a 0-arrow uu entering T, then uu would be a (white) 
arrow in H leaving T, contradicting (P), so 6w > 0. Finally, from (5c), p ( u )  3 
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p(u) whenever u E P(u) ,  that is SR20. If there were u and u with u$Z T, 
u E P(u)  n T and p(u)  = p(u), then uu would be a (red) arrow in H leaving T, 
contradicting (P). 0 

The revised function dl(uu) is 

d(uu)  - 6 

d(uu) otherwise . 

if uu leaves T, 
dl(uu) = d(uu)+ 6 if uu enters T, 

Claim. (5a) continues to hold. 

Proof. For a 1-arrow uv, d(uu) 2 0. If, indirectly dl(uu) < 0, then uu leaves T 
by (6). Now d(uu)  3 6 B  2 6, that is, dl(uu) 2 0, a contradiction. 

Claim. If (5b) was true for a 0-arrow uu, it continues to hold. 

Proof. Since d(uu)  s 0, the indirect assumption dl(uu) > 0 and (6) would imply 
that uu enters T Now - d ( u u ) 2  a W 2  6, that is, dl(uu) = d(uu)+ 6 S O ,  a 
contradiction. 

Claim. (5c) continues to hold. 

Proof. Note that P ( u )  does not depend on the potential change. Let u E P(u)  
and suppose indirectly that p’(u) < p’(u). Then u Sr T, u E P ( u )  n T, thus 
p’(u) = p ( u )  and p’(u)  = p(u)  + 6. Hence p ( u )  - p(u)  < 6. On the other hand 
p(u)  - p(u)  2 aR 2 6, a contradiction. 0 

If 6 = a,, the arrow e = ab satisfies (5b), and thus the solutions x’ = x and p‘ 
satisfy the requirements of the Inner Algorithm. 

If 6 < 6, then repeat the Inner Algorithm using, as inputs, the same x, the 
revised potential p := p‘ and the same arrow e = ab which still violates (5b). 
Observe that the arrow set induced by T in the new auxi l ia j  digraph H’ is the 
same as it was in H. Moreover, the definition of 6 ensures that H’ contains at 
least one arrow leaving T (which is blue, white or red according as 6 is equal to 
8 ~ ,  6w or aR). This implies that the set T’ = { u :  u can be reached from a in H’} 
properly includes T. Consequently, after at most I Vl-  1 iterations, either the 
equality 6 = 6, will hold or vertex b will be reached from a.  This is Case 2. 

Case 2. There is a directed path from a to b in H. Let U be a shortest path. 
(Actually, we shall use only the fact that there is no  red ‘shortcut’ arrow to U, 
that is, if the vertices of U in order are a = UO, ul ,  . . . , uk = 6, then u,vi+, o’a 2) 
must not be a red arrow.) 
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Since ba is a white arrow in H, U and ba form a directed circuit in H. This 
may include blue, white and red arrows. Let El be the set of arrows in G which 
correspond to the blue or white arrows of that circuit. Define a new vector x r  as 
follows: 

1 - x ( e )  if e E E l ,  
x’(e) = {x(e)  otherwise . 

m a t  is, a 1-arrow in El becomes a 0-arrow, while a 0-arrow will be a 1-arrow.) 
We shall prove that x r  and p r : = p  satisfy the requirements of the Inner 
Algorithm. For a member F of 9 let p,(F) (S,(F)) stand for the number of red 
arrows of U entering (leaving) F. 

Lemma 5. x’ is a feasible solution to (2). 

Proof. The proof consists of proving a number of claims. 

Claim. agx’ = agx + p , (F) -  Sr(F). 

Proof. This is quite easy when p,(F) = S,(F) = 0 and, in general, follows by a 
simple induction on p,(F) + a@). 

We have to prove that a$x ’S  b(F).  By the claim it suffices to prove that 
p,(F) =s E(F),  where E(F)  = b(F)-  a,.(F) (recall that a;(F) = a g x ) .  Now E ( F )  is 
submodular on intersecting members of 9. 

Let uu be a red arrow of U entering F such that p ( u )  (= p ( v ) )  is as large as 
possible, and if there are more such arrows let uu be the last one on the path U 
(starting from a). 

Claim. p,(F U P(u) )  = p,(F)-  1. 

Proof. Since no red arrow enters P ( v )  and uu does not enter F U P ( v ) ,  
p,(F U P(u))  S p,(F) - 1 .  On the other hand if st is another red arrow of U 
which enters F, then we claim that s 62 P ( v )  (that is, st enters F U P ( u )  as well): 
in the contrary case p ( s )  5 p ( u )  by (5c) thus the maxima1 choice of p ( v )  implies 
p ( s )  = p ( t )  = p(u) .  However, this implies that su is a red arrow. Because of the 
choice of uu, st precedes uu on the path U (starting from a )  thus su is a red 
shortcut arrow to U, a contradiction. 0 

Claim. p,(F) & ( F )  for any F E 9. 

Proof. By induction on p,(F). Observe that “ E ( F ) ~ O  for each F E 9 ”  is 
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equivalent to “x is a feasible solution to (2)” and &(F)  = 0 if and only if F is 
strict (with respect to x). Let p,(F) > 0 and let uu be defined in the same way as 
in the previous claim. Then 

E ( F ) =  & ( F ) + & ( P ( ~ ) ) ~ E ( F ~ P ( ~ ) ) + E ( F u P ( ~ ) ) ~ ~ + & ( F u P ( ~ ) )  

2 1 + p,(F u P(u) )  = p,(F) . 

Here we used the submodularity of E, the induction hypothesis for F U P ( v )  
and the previous claim. 

This completes the proof of the lemma. 0 

After proving the lemma, let us investigate what happened to the optimality 
criteria. Since ab  has become a 1-arrow it does not violate (5b). If uu is a new 
1-arrow, then uu was a white arrow in H so d(uu) 2 0. If uu is a new 0-arrow 
then uu was a blue arrow in H thus d(uu)SO. That is, (5a) continues to hold 
and new 0-arrow violating (5b) has not arisen. 

Claim. (5c) holds with respect to X‘ and p’.  

Proof. From Lemma 4 we know that V,  is the union of disjoint strict sets 
XI, X,, . . . , X, where each Xi is strict with respect to x. Since no red arrow 
leaves any strict set and no red arrow enters V,  (for a red arrow uv we had 
p ( u )  = p ( u ) )  we have p,(Xi) = &(Xi) = 0 whence = ag,c, that is, each Xi is 
strict with respect to x’. Apply again Lemma 4. 0 

The current primal solution x is 0-1 valued throughout the algorithm 
regardless the integrality of the objective function d. If, in addition, d was 
integral, then the current potential p is also integral throughout the process, and 
hence so is the dual solution (y, 2). These observations complete the proof of 
Theorem 1, when the set system 9 in question is intersecting. 0 

5. Steps of the algorithm 

Before describing the algorithms in detail some remarks are needed about 
the steps and the number of steps of the algorithm. In order to apply the 
algorithm we have to be able to determine the set P ( v )  for each vertex u, in 
any intermediate stage. To this end suppose we have an oracle which can 

(O) 
decide, for any primal solution x and vertices u, u whether or not 
there exists a strict uii-member of 9. 
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A simple argument shows that P(u)  consists of those vertices u for which the 
answer is no. This means that, in constructing the auxiliary digraph H belong- 
ing to a given stage of the algorithm, A R  can be defined as A R =  

{uu: p ( u )  = p ( u )  and there is no strict uii-set}. 
If oracle (0) is available and its run needs at most g steps, then P ( v )  can be 

determined in at most gn steps for a fixed vertex v. For all u this means n2g 
steps. 

Another part of the algorithm tries to find a directed path from a to b in the 
auxiliary digraph H. This can be done with a well-known labelling technique. If 
this is accomplished by a breadth-first search then a shortcut free path will 
automatically be produced, if it exists. If no path exists from a to b in H, the 
set of labelled vertices will just be T. The labelling procedure needs at most n2 
steps. Moreover, if S < 6, occurs during the algorithm and the Inner Algorithm 
is started again with the same x and p : = p ’ ,  then the labels determined 
previously may be used again (recall that T C  T‘). In this case the new 
auxiliary digraph arises simply from the old one in such a way that some arrows 
from T to T are added while some arrows from f to T are deleted. Therefore 
the overall complexity of the Inner Algorithm can be bounded by O(n2 + n2g).  

The Inner Algorithm will be applied at most !El times. From the optimal 
primal solution x and potential p the optimal dual solution can be obtained in 
at most O(n3) steps since the components of the hypergraph {P(u):  u E Vi} can 
be obtained in O(n2) steps and we have at most n different v’s. Consequently, 
the optimal primal-dual solutions to linear programms (2) and (3) can be 
obtained in at most O(mn2g + n’) steps provided that a starting 0-1 feasible 
solution to (2) and oracle (0) is available. 

In order for (0) to be available we need a subroutine for minimizing a 
submodular function, namely minimize &(F)  (= b(F)  - wx((F)) over the vii- 
members F of 9. If the minimum is negative, the current vector x is not 
feasible, if the minimum is zero, then there exists a strict vii-set, if the 
minimum is positive, then u E P(u).  

Algorithm for intersecting 9 
Input. G :  directed graph, 

9: intersecting family, 9 C 2 7  
b :  9- 2 integer-valued function, submodular on intersecting 

d :  E -  R+ nonnegative objective function, 
x: 0-1 feasible solution to (2). 
x: optimal 0-1 solution to (2),  

pairs, 

Output. 
y ,  z :  optimal solution to (3), which is integral if d is. 
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Step 1. 
1.0. Determine P(u) ,  for each u E V. 
1.1. If every 0-arrow satisfies (5b), the current x is optimal. Go to Step 4. 
1.2. Select an arrow e = ab violating (5b). 
1.3. Form the auxiliary digraph H = (V, A) and try to  find a directed path 

from a to b by the labelling technique (making use of labels deter- 
mined but not deleted previously). If a path U exists go to Step 3. 

Step 2 (Change in potential). 
2.0. Let T be the set of the labelled vertices. Count 6 and set 

2.1. If 6 = 6, delete all the labels and go to 1.1. 
2.2. Go to 1.3. 

p ( u ) : = p ( u ) + 6  whenever u$Z T. 

Step 3 (Change in x ) .  Denoting by El the set of arrows of G corresponding 
to the blue and white arrows of the circuit U +  ba, set 

1 - x(e) if e E El ,  
x(e) := {x(e) otherwise . 

Go to 1.0. 
Step 4 (Forming the optimal solution (y, 2) to (3)). 

4.0. Let the different values of p be 0 = po < p 1  < * * * <pk. Set V,  = 

4.1. For each i, determine the components of the hypergraph {P(u):  u E 

4.2. For F E 9, set y ( F )  = Z (pi - where the summation is taken over 

4.3. For a 1-arrow e, set z(e) = d(e )  - ya,, for a 0-arrow e set t ( e )  = 0. 

{ u :  p ( u ) > p i }  for i = 1,2 , .  . . , k. 

v}. Denote by X(V) the set of these components. 

those indices i for which F E X(V,) .  (The empty sum is zero.) 

Halt. 

6. Starting feasible solution 

In this section we investigate the problem of finding a 0-1 feasible solution to 
(2). It is assumed again that 9 is an intersecting family and b is submodular on 
intersecting members of 9. 

Feasibility Theorem. There exists a 0-1 feasible solution to (2)  if  and only if 

i 

for disjoint members X I ,  x2,. . . , xk Of 9. 
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Proof. Necessity. For a feasible solution x we have Z b ( X i ) 2 Z  a ( X i )  = 

Sufficiency. A simple trick due to Hoffman [18] will enable us to reduce the 
problem to  that investigated before. Extend the graph G = (V, E) by adding a 
new vertex r and IEl new arrows as follows. For each vertex u E V join 6 ( u )  
parallel arrows from r to u. For each F E  8 let b’(F)= b(F)+ZU, ,6(u) .  
Obviously b’ is submodular on intersecting members of 9. Furthermore, since 
S(F)CC, , ,  6(u )  and b ( F ) s - 6 ( F )  by (7), it follows that b‘ is nonnegative. 

Let us consider the linear program (2) with respect to the extended graph G’ 
and the new function b’ whereas 9 remains the same. A simple argument 
shows that 

(T(UXJ 2 -S(UX, ) .  

the original program has a feasible solution if and only if the new 
program has a feasible solution x = (XI, x2) in which x2(e) = 1 for 
each new arrow e. 

(A) 

Here the components of x1 and x2 correspond to  the original and new arrows, 
respectively. 

Let the new objective function be d ( e )  = 1 if e is a new arrow and d ( e )  = 0 if 
e is old. Since b ’ s O  the identically zero vector is an appropriate starting 
feasible solution. Apply the algorithm with this starting solution. By (A) what 
we have to prove is that the value of the optimal solution to the new program is 
just IEl. The algorithm provides a primal solution x and a potential p which 
satisfy (5). Suppose indirectly that x2(ru) = 0 for a new arrow ru. Observe that 
only the new arrows violated (5b) at the beginning of the algorithm, therefore 
p ( r )  = 0 throughout the algorithm. Furthermore, x2(ru) = 0 and (5b) imply that 
p ( u )  > 0. Therefore the set X = { v :  p ( u )  > 0} is non-empty. From Lemma 4 X 
is a disjoint union of some strict sets X,. That is X = UX, and b’(X,) = ax(Xl ) .  
Moreover, no original 1-arrow enters X and no original 0-arrow leaves X 
because of (5a) and (Sb), respectively. Thus Z, ax,(X,) = - 6 ( X ) .  Furthermore, 
since x&u) = 0 we have ax.(X) < Z (6(u):  u E X). Consequently, Z, a;(X,)  = 

Z, cX,,(X) + Z, axz(X,) < - 6 ( X )  + Z (6(u): u E X) which X I  b (X , )+  
Z (S(v) :  u E X )  = Z b’(X,) < C. ( S ( v ) :  v E X) - 6 ( X ) ,  that is, C, b(X , )  < - 6 ( X ) ,  
contradicting the hypothesis of the theorem. 

from 

0 

7. A discrete separation theorem 

In this section we shall make use of the simple observation that, for (2) to 
have a feasible solution, it suffices to require (7) only for those families of 
disjoint members XI, X,, . . . , X ,  of 8 where Xi U Xj  E 4 implies that b(Xi)+ 
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b(X,) < b(X,  U Xi) (i f j ) .  Indeed, if (7) were not true in general under this 
weaker restriction, then C b(Xi)  < - S ( u X , )  for some family { X I ,  X2,  . . . , X,} .  
Let k be as small as possible such that this inequality holds. Now, for some Xi 
and Xj, say X I  and X,, X I  U X 2  E 9 and b ( X J  + b(X2) 3 b(X1 U X2),  whence 
{ X I  U X,, X,, . . . , X,}  would also violate (7). But this family consists of k - 1 
sets only, contradicting the minimality of k.  

Let X be a family of subsets of S closed under union and intersection. Let R 
and B be two integer-valued functions on X which are super- and submodular 
on any two members of X, respectively. 

Discrete Separation Theorem. If R ( X )  B ( X )  whenever X E X, there exists an 
integer-valued modular function m such that R ( X )  =s m ( X )  =S B ( X )  for each 
x E x. 

Proof. We can suppose that n ( X :  X E Yf) # 0. For otherwise join an extra 
vertex to each member of X. Let (S ’ ,  X’) and (Sr‘, 5°C’) be two copies of (S, X) 
and join k parallel arrows from any s‘ E S’ to s” E S” and from s” to s‘, where k 
is a big number. Here ‘big’ means that the outdegree function 6 satisfies: 

-S(X’)  =s B ( X )  , (8a) 

S(X“) 3 R ( X )  , (8b) 

S(X’ U Yrr) 3 R ( Y )  - B ( X )  , (8c) 

for any X, Y E X. Obviously, increasing k ,  S(X‘l) increases since X # 0 and so 
does S(Xr U Y )  whenever X # Y. Thus, for sufficiently large k ,  (8a), (8b) and 
(8c) (for X # Y )  will hold. If X = Y then S(X’ U X ” )  = 0 for any k ,  however 
0 3 R ( X )  - B ( X )  follows from the hypothesis. 

Denoting by E the set of arrows and by V =  S’ U S“ we have a directed 
graph G = (V, E )  and a family 9 = X‘ U X“ U { V }  on its vertices. (Note that 
the fact 0 @ 9 in (2) requires the assumption n ( X :  X E X) # 0.) Furthermore 
set b(X’)  = B ( X )  for X ’ E  X’ and b(X”)  = - R ( X )  if X ”  € X” and b(V)  = 0. 
Using the remark done at the beginning of this section, the Feasibility Theorem 
requires just the truth of (8a), (8b) and (8c). Therefore, by the Feasibility 
Theorem we have an integer-valued feasible solution x .  Let us define rn(K)= 
r X ( K ‘ )  = px(K’) - S,(K’) for K E X. Then rn satisfies the requirements of the 
theorem. 0 

Remark. The main content of the Separation Theorem is that the separating 
modular function is integer-valued. Actually, the existence of a not necessarily 
integer-valued separating function follows simply from the classical real 
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separation theorem since a submodular (supermodular) function on X C 2s can 
be extended to a convex (concave) function on R S  so that the convex function 
nowhere exceeds the concave one. 

In our treatment the Feasibility Theorem-and so the Separation Theorem- 
was a by-product of a more or less complicated algorithm. Of course there exist 
simpler proofs of them which do not use arrow-weights. In [6] we proved 
directly a theorem in terms of orientations of an undirected graph, which is 
equivalent to the Feasibility Theorem. However in that paper the Separation 
Theorem was not explicitly mentioned. In [9] we refine the proof of [6] by 
extending a method of Lawler and Martel [this volume, pp. 189-2001 and prove a 
feasibility theorem for the general case (when f S x S g ) .  Hence we have a good 
algorithm not depending on f and g and this allows us to obtain the separating 
modular function in polynomial time. 

For an instance of applicability of the Discrete Separation Theorem we show 
how Edmonds’ matroid intersection theorem [ l ]  follows from it. An equivalent 
version of Edmonds’ theorem states that two matroids MI and M2 on S, with 
the same rank r, have a common base if and only if bl(X) + b2(S - X )  2 r for 
any X C S, where bi is the rank function of Mi, i = 1,2.  To see the sufficiency, 
let X consist of all subsets of S, set B ( X )  = b l ( X )  and R ( X )  = r - b2(S - X). 
Since B ( X )  R ( X ) ,  by the Discrete Separation Theorem, an integer-valued 
modular function m separates B ( X )  and R ( X ) .  It is an easy exercise to check 
that m is 0-1 valued on the vertices and the set X = {x: m ( x )  = l} is just a 
common base. 

Another easy consequence of our separation result is a theorem on poly- 
matroids due to Giles [lo]. Let b, and b2 be two submodular functions on all 
subsets of S such that bi(0) = 0 and bi is monotone increasing, that is b i ( X )  3 
b j ( Y )  for X 2 Y, i = 1,2. 

Theorem 7. If x 2 0 is an integer-valued vector (X E Z ” )  such that x ( T ) S  
bl(T)  + b2(T) for each T C S, then x = x1 + x2 for some nonnegative integer- 
valued vectors xI and x2 for which xi(T) s bj(T) for each T C S and i = L2.  
(Here x(T)  stands for C. (x(s): s E T) . )  

Proof. Apply the Discrete Separation Theorem to the functions R ( T )  = 

x ( T ) - b ; ( T )  and B ( T ) =  b2(T) where b ; ( T ) =  minxc= ( b , ( X ) + x ( T - X ) ) .  0 

8. Crossing families 

In this section we prove the Edmonds-Giles theorem for the more general 
case of crossing families and show how the algorithm of Section 5 can be 
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extended. The idea behind this extension is that, with a crossing family 9’ and 
function b’ on 9’ submodular on crossing members of W ,  one may associate an 
intersecting family 9 and a function b on 9 submodular on intersecting 
members of 9 so that the sets of feasible solutions to (1) and (2) coincide. Then 
we can apply the algorithm developed for solving (2). 

We shall need a theorem due to Lov6sz [14]. 

Theorem 8. Let 9°C 2“ be a crossing family (0, VSr F), b“ be a function on 9” 
submodular on any two crossing members of srr. Define 9 = { X :  X = u Xi # V, 
X. E P, Xi n X, = 0) and b ( X )  = mi@ b”(X.): X, E 9’, X = U Xi, X, n Xj = 

k?). If X ,  Y E  S a n d  X U  Y f  V, then X U Y, X n Y E  S a n d  b ( X ) +  b ( Y ) a  
b(X U Y )  + b(X n Y).  (Note that 9” c 9 and b”(X) 2 b ( X )  for X f 9”.) 

Proof. Let X ,  Y E  9 be such that X U  Y f  V. Then X =  u X i ,  b ( X ) =  
Z b”(X)  for some disjoint members X, of 9” and Y = u y7 b ( Y )  = Z b”(Y,) 
for some disjoint members Y,  of F. 

If we have some members A, of F’ which form a connected hypergraph and 
their union is not V, then this union is in 9”. Therefore the components 
formed by the hypergraph {Xi}  U { Y, }  are disjoint members of 9”, thus X U Y 
is in 9. Furthermore X n Y = U ( X i  n Y , :  xl. fl Y,  # 0) whence X f l  Y E  9. 

We need the following lemma. 

Lemma 9. Suppose that the members Al, A2, . . . , A, and B1, B2, . . . , Bk, k, 12 
1, of 9’‘ partition A and B, respectively, {Ai} U {Bj} forms a connected hyper- 
graph and A U B # V. B e n  A U B € 9” and Z b”(Ai) + Z b“(Bi) 2 
,”(A U B )  + b ( A  n B) .  

Proof. The first part of the lemma is simple (for a similar observation see 
Lemma 3). To see the inequality we proceed by induction on k + 1. The case 
k + 1 = 2 is obvious so assume k + 1 > 2. Deleting an appropriate edge of a 
hypergraph, say Ak, the resulting hypergraph remains connected. Now the 
induction hypothesis holds for A’ = A - Ak and B ;  thus 

k-1 I 

b”(Ai) + bff (Bj)  2 b”(Ar U B )  + b(A’ f l  B ) .  
i = l  j =A  

Adding b“(Ak) to both sides we get 

b“(Ai) + b”(Bj) 2 b“(A’ U B )  + b”(Ak) + b(A’ fl B )  . 

Since A‘ U B and Ak are crossing members of 9” we have 
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b”(A’ U B )  + b”(Ak) 2 ,’’(A’ U B U Ak) + b”((A’ U B )  fl A k )  

= b”(A U B )  + b”(B n A k )  . 

Furthermore, A’ n B and Ak n 3 are disjoint. Thus 

From the last three inequalities the lemma follows. Cl 

Let Cl, c k ,  . . . , C,,, be the components of the hypergraph {Xi} U { Y,} .  Apply- 
ing Lemma 9 to A = X n  Ch and B =  Y n  Ch, h = 1,2, .  . . , m, we get 

b ( X )  + b( Y )  = 2 (c b”(X, fl C h )  + c b”( Y,  n c h ) )  

h=l i I 

3 2 (b”((X U Y )  f l  Ch) + b(X f l  Y f l  c h ) )  
h=I 

3 b ( X u Y ) + b ( X n Y ) .  

This completes the proof of Theorem 8. 0 

In fact, what we need is the following version of Lovhsz’s theorem. 

Lemma 10. Let 9’ c 2” be a crossing family, b’ be a function on 9’ submodular 
on any two crossing members of 9’. Define 

In other words 9 - { consists of non-empty sets arising as the intersection of 
some painvise co-disjoint members of 9’. Let b ( X )  = min@ b’(Xi): X = n X i ,  
xi E sl, % n x, = 0 )  and b (V) = 0. 

Then 9 is an intersecting family and b is submodular on any two intersecting 
members of 9. 

Proof. Apply Lovisz’s theorem for 9’ = { X :  r7 E sl} and b”(X) = b’(X). C! 

Denote by PI and Pz the polyhedra defined by (1) and (2) respectively. Now, 
for (l), b‘ is the given function on 9’ while b and 9 for (2) are defined as in 
Lemma 10. 

Lemma 11. PI = Pz. 
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Proof. Since 9‘c 9 and b(F’)< b‘(F’) for F ’ E  9’ we have PI 2 Pz. On the 
other hand, for a vector x in PI and for F E 9 we have 

for some X ,  E 9, where F = f l X ,  and fix = 0. (9) shows that x E P2. 0 

Lemma 12. For F E 9 - { V) the following statements are equivalent: 
(a) F is b-strict; 
(b) F is the intersection of some b‘-strict members of 9’; 
(c) F is the intersection of some painvise co-disjoint b’-strict members of 9’. 

Proof. (a)+ (c) simply follows from (9). (c)+ (b) is trivial. To see (b)+ (a), let 
F = nF;- where each 6, i = 1,2 , .  . . , t, is a b’-strict member of 9’. If among 
these sets F;- there are two which cross, then they can be replaced by their 
intersection which is a b’-strict member of 9’. Thus if we assume t to be 
minimal, then the sets F, are painvise non-crossing and since their intersection F 
is non-empty they are pairwise co-disjoint. Thus b(F) S Z b’(F;-) = Z ax(F;.) = 

ax(F). From this and (9), b(F) = ax(F),  as required. Note that this replacement 
operation yields a polynomial procedure. 0 

Taking into consideration Lemmas 10 and 11, in order to solve (l), it suffices 
to solve (2) with respect to b. The only difficuIty arising from this approach is 
that of how one can work with the new function b when originally only b’ is 
specified and from an algorithmic point of view the definition of b is rather 
complicated. Fortunately, we do not need the explicit values of b at all. We 
have seen that, in order to apply the algorithm of Section 5, only oracle (0) has 
to be available. The following lemma shows that this is indeed the case 
provided that the same oracle is available concerning the given 9’ and b’. 

Lemma 13. Given x E PI (= P2) and u, u E V, there exists a b-strict vii-set in 9 
if and only if there exists a b‘-strict vii-set in 9’. 

Proof. Let F’ E 9’ be a b’-strict vii-set. Then b(F‘) C b’(F‘) = ux(F’) zs b(F’), 
i.e., F ‘  is b-strict. Conversely, let F E 9 be a 6-strict vii-set. By Lemma 12, F 
is the intersection of some b’-strict members of 9’. One of them is a vii- 
set. 0 

Lemma 13 shows that, in order to get a primal solution x and a potential 
which satisfy all three optimality criteria, the algorithm developed for intersec- 
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ting families can be applied without any change for a crossing family as well. 
The only difference occurs in Step 4 when the optimal dual solution is formed. 

Performing Step 4 we shall have an optimal dual solution y to (3). From this 
we have to get an optimal solution to the dual of (1). For any F E 9 with 
y(F) > 0, F is a b-strict member of 9. Let y’(Xi) := y(F) for each Xi where the 
sets Xi are pairwise co-disjoint b’-strict members of 9’ whose intersection is F 
(see Lemma 12(c)). 

It can immediately be seen that this vector y’ is an optimal solution to the 
dual of (1). At this point the proof of Theorem 1 has been completed. In order 
to complete the algorithm we must be able to find algorithmically the sets Xi  
mentioned above. The remainder of this section is devoted to this purpose. 

Lemma 14. A b-strict set F, for which the hypergraph {P(u) :  u E F} is con- 
nected, can be obtained constructively as the intersection of pairwise co-disjoint 
b’-strict members of 9’. 

Proof. Let u be a vertex of F. By Lemma 13, P ( u )  = { v :  there is no b’-strict 
u6-set}. With the help of oracle (0) we can produce P ( u )  as the intersection of 
some b’-strict members of 9’. By Lemma 12 we can algorithmically obtain 
P ( u )  as the intersection of pairwise co-disjoint b’-strict members of 9. 

and we have 
obtained co-disjoint b’-strict members X, and Y ,  of 9’ such that X = nX,. and 
Y = n Y,. Then X U Y = n(Z: Z = U E;., xi and Y ,  are crossing). Here 
any set Z is b’-strict thus Lemma 11 applies again. That is, we can get X U Y 
too as the intersection of pairwise co-disjoint b’-strict members of 9’. Now 
Lemma 14 follows since {P(u): u E F }  is connected. 

Now suppose that X, Y are two crossing b-strict members of 

0 

Together with the potential p provided by the algorithm let V,  be defined as 
in Section 4. Recall that X ( V , )  was the collection of components of the 
hypergraph {P(u):  u f VJ. If y(F)>O, then F E  UX(V,)  and apply Lemma 
14. 

Having finished the algorithmic proof of Theorem 1, we state the cor- 
responding Feasibility Theorem for crossing families. The proof proceeds along 
the same line as that of the first Feasibility Theorem, so it is omitted. 

Feasibility Theorem B. There exists a 0-1 solution to (1) if and only if 
Z b‘(Xij) 3 -S(UXi) for disjoint non-empty sets X I ,  X,, . . . , X ,  where each Xi is 
the intersection of pairwise co-disjoint members X ,  of 9’, j = 1,2, . . . , ki. 
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9. Augmenting circuits 

A basic result of network flow theory states that a feasible circulation is of 
minimum cost if and only if it admits no augmenting circuit with negative 
weight. In matroid theory a similar theorem, concerning two matroids on a 
weighted ground set, states that a common independent set of k elements is of 
maximum weight if and only if there is no augmenting circuit with negative 
weight in an appropriately defined auxiliary digraph (see [12,13]). Here we 
show that these theorems are specializations of our more general result. For 
another general augmenting circuit result, see [19]. 

Let x be a feasible 0-1 solution to (1). Form a digraph D = (V, A)  depending 
on x as follows. Set A = A, U A, U A R  where 

A w  = {vu:  uv is a 0-arrow) , 
A, = { v u :  uv is a 0-arrow} , 
AR = {uv:  there is no b’-strict vii-set in Sr} . 

Let 1 :(e) if e E A,, 
d’(e)  = - d ( e )  if e E A,, 

if e E A R .  

Augmenting Circuit Theorem. A n  integer valued 0-1 solution to (1) is optimal if 
and only if there is no negative circuit in D with respect to the valuation d’.  

Proof. Let x be optimal. Starting with this x, apply the algorithm. We shall get 
a potential p such that x and p satisfy the optimality criteria. Let C be any 
circuit in D with vertices xl, x2,. . . , xk. The length A(C) of C is X!=l d’(xjxi+l) 
(where xk+l= i~) .  If X ; X ~ + ~ E  A,, then xixi+l is a 1-arrow, thus d‘(xixi+l)= 
d(xixi+l) 2 p(xi+l) - p(xi).  If xix;+l E Aw,  then xi+lxi is a 0-arrow, thus d(x;+lxi) s 
p(Xi)- p(xi+l), that is, d’(xixi+J 5 p(xi+l )  - p(x ; ) .  Finally, if xixi+l E A R ,  then 
p ( x i )  s p ( ~ ~ + ~ ) ,  that is, d’(xjxi+l) 5 p ( ~ ~ + ~ )  - p(x i ) .  Now we have A (C) = 

Conversely, suppose x is not optimal. Again apply the algorithm starting 
with this x and the identically zero potential as inputs. Performing the 
algorithm, since x is not optimal, Case 2 will occur sometimes, say when the 
Inner Algorithm is applied for x, a potential p and a 0-arrow ab. There is a 
path from a to b in the auxiliary digraph H with vertices a = x l ,  x2, . . . , xk = b. 
If xixi+l is a blue arrow in H, then xixi+l E AB and d‘(xixi+l)= d(x ix;+l )s  
p (x i+ l ) -p (x ; ) .  If x;xi+l is a white arrow in H, then is a 0-arrow. Thus 
xixi+l E Aw and d(xi+lxi)  2 p ( x i )  - p(x i+ , )  whence d ’ ( ~ , x , + ~ )  s p(xi+l) - p(x i ) .  If 

221 d’(xix;+i) a C. @ ( ~ i + i ) -   xi)) = 0. 
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xixi+l E A R ,  then xixi+l E AR and d’(xixi+l) = 0. Finally ba E Aw and d’(ba) < 
p(a)  - p ( b )  (since ab violated (5b), that is d(ab) > p ( b )  - p(a)). Hence the 
length h(C) of the circuit C = xl, x2, . . . , xk, x1 is EL1 d’(xixi+l) < 
EL1 p(Xi+,) - P(Xi) = 0. 

If we consider the more general form of (1) when d is not restricted to be 
nonnegative and f s x s g is required, then the same theorem is true provided 
that the auxiliary graph D = (V, A) is defined as follows. A = A B  U A w  U A R  

where 

A B  = { uu : x(uu) > f (uu)}  , 
A w  = {uu :  x(uu) < g(uu)} ,  

A, = {uu: there is no b’-strict vii-set %’} 

and the costs are 1 :(el if e E A ~ ,  
d’(e)= -d(e) if e E A w ,  

i f e E A R .  

10. Orientations 

In this last section we present a new application of Edmonds-Giles theorem 
which, somewhat surprisingly, concerns undirected graphs. Let H = (V, A) be 
an undirected graph. The following theorem is due to Nash-Williams [17] (see 
also [5]) .  

Theorem 15. H has a k-strongly connected orientation if and only if H is 
2k-edge connected. 

(A directed graph is k-strongly connected if p ( X )  2 k for 0 C X C V.) 
Suppose that the two possible orientations uu and uu of an edge may have 

different costs c(uu)  and c(uu). We are interested in a minimum cost k-strongly 
connected orientation of H. 

By means of c(uv)  define a directed graph G = (V, E). Let E consist of those 
arrows uu for which c(uu) > c(uu) and if c(uu) = c(vu), then one of uu and vu 
(it does not matter which one) also belongs to E. Furthermore, let d(uu)= 
c(uu) -c(uu) .  Then G is an orientation of H with nonnegative costs on its 
arrows. 



A n  algorithm for submodular functions on graphs 119 

Our purpose is to reverse some arrows of G so that the new digraph will be 
k-strongly connected and the total weight of reoriented arrows will be maxi- 
mum. Such a reorientation can be described by means of a 0-1 vector x where 
x(e) is 1 if e is to be reoriented and 0 otherwise. Set 9’ = { X :  0 C X C V }  and 
b’(X)  = p ( X )  - k where p ( X )  is the indegree function of G. 

Consider the linear program (1) for this G, 9’ and b’ and observe that a 0-1 
vector x is a feasible solution to (1) if and only if it defines a k-strongly 
connected reorientation of G. Therefore our algorithm can be applied if we 
show that, in this case, oracle (0) is available. This is indeed the case since the 
oracle requires a subroutine to decide whether or not there exist k +  1 
arrow-disjoint paths from u to u in a directed graph which is a simple flow 
problem. 

By means of a similar transformation we can algorithmically find a minimum 
cost k-strongly connected orientation of H which satisfies some additional 
constraints. For example, it can be required that the indegree of any vertex u 
should satisfy the inequality f ( u ) s p ( u ) <  g ( u )  where f and g are given in 
advance. 
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We consider the problem of finding an optimal family of nested rooted subtrees of a tree. 
We give a linear algorithm for the associated 1.p. for this problem. 

A generalization of this problem is that of finding an optimal ‘lower closed set’ of nodes in 
an acyclic graph for which polyhedral and polarity characterizations are given. These 
problems are useful relaxations when solving more complicated sequencing problems. 

1. Introduction 

Many combinatorial optimization problems arising in practice are being 
handled by implicit or partial enumeration schemes, their success relying on the 
thorough knowledge of the polyhedral structure and efficient algorithms of 
relaxed versions of those problems. This note was thus motivated, for consider 
the following sequencing problem which up to relaxation of budget constraints 
models a real world situation. 

A tree shaped pipeline network for the transportation of one utility from one 
central source to a number of potential users is to be set up sequentially over K 
periods numbered from 1 to K. 

Demand has the following structure: if user i can be supplied with the utility 
starting at time t no later than a given period t;,  then this user has a constant 
demand of d, units per period starting at period max(r, t f ) ,  r: given, otherwise 
his demand is lost; that is he recurs to an alternative. Each unit supplied yields 
a constant profit. There are costs associated with the construction of each link 
that result in annuities starting the period the costs are incurred, plus a final 
instalment at period K. 

A plan to set up the network-with some links possibly never being built-is 
to be determined, so as to maximize the net discounted profit over a given 
planning horizon. This problem may be cast into the form of Section 2 by a 
judicious choice of graphs and parameters therein. 

The tree T of Section 2 is constructed from the given network, by adding to 
it a hanging node corresponding to each user at the appropriate places. The 
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weights on the edges are given by the sum of the discounted operating costs 
and profits for the corresponding period, as well as the set up costs. These edge 
weights may vary from one period to the other as a consequence of the given 
demand structure, the presence of a discount factor and the set up costs. 

2. Optimal nested family of subtrees (NFS) 

Given a tree T = (V ,  r, E) with root r and K weight functions ck : E -+ R on 
its edges, find a family J' C J2  C . * . C JK C E such that each Jk spans an 
r-rooted subtree of T and the weight sum X f = ' c k ( J k )  is maximized. Herein 
ck  ( J k )  = Z {c ! :  j E J"}  . 

Example. Fig. 1 depicts a case with K = 3 and = {1,2,3,4}. The edges are 
denoted by numbers in brackets, the other numbers beneath the edges 
represent the weights c!.  The optimal solution, given with thick lines is visibly 
J' = {1,3} = J2 ,  J3  = {1,3,4} and has value 5. 

The problem may be viewed as a relaxation and a generalization of the 
sequencing problem treated in Horn [3], i.e., we do not, as Horn does, require 
IJ'I = 1, IJ'I = lJk-'l + 1, k = 2, . . . , K, but do not require any particular struc- 
ture of the weight functions, either. 

= N edges are numbered from 1 to N such that if there is a 
path towards r from edge k to edge j ,  then j < k .  Call so) the edge 
immediately following j on the path joining j to  the root. Without real loss of 
generality assume that r has degree one. 

Let to) be the tail and h ( j )  be the head of j if T is oriented as an 
arborescence with in-root r. 

Let x k  = (x!: j E I?)€ R E  be interpreted as the incidence vector of set Jk, 
whenever it has (0-1)-components. 

With these conventions, the NFS problem may be given the formulation of 

Suppose the 

Fig. 1. Example of the NFS problem. 
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the following linear program: 

123 

maximize 2 c fx f ,  
i, k 

s.t. ~ f - ~ $ j , c O :  j = 2  ,..., N , k = l ,  . . . ,  K ,  

x k -  I 1  xk''G0: j = 1,. . . , N,  k = 1 , .  . . , K -  1 ,  ( 1 )  
x i s  1: 
x f a . 0 :  

k = 1,. . ~, K ,  

j =  1,. . . , N, k = 1 , .  . ., K .  

The 1.p. ( 1 )  has integral extremal solutions due to the fact that it has a totally 
unimodular constraint matrix, which is immediate from the fact that its dual is 
the network flow problem (2): 

minimize 2 {vf: k = 1,. . . , K } ,  

s.t. - 2 { v f : s ( i )  = j } +  vf - hf-' + hf 3 cf: j = 1, . . . , N, ,  

k = l ,  ..., K ,  (2) 
u f ,  h ; a O :  

( h r =  hy = 0: 
j =  1 , . . . ,  N, k = 1 , . . . ,  K ,  

j = 1 , .  . . , N )  . 

The network is obtained as follows: 
Step 1.  Make K copies of the (directed) line graph of arborescence T, where 

edge j gives rise to node (j, k )  of the kth line graph, there is an arc carrying 
nonnegative flow (v-variables) from node ( i ,  k )  to node (j, k ) ,  iff h ( i )  = t( j) .  

Step 2. For k = 1, . . . , K - 1 join (j, k )  to (j, k + 1) with arcs carrying non- 
negative flows ( h  -variables). 

Step'3. Introduce a node 0 and join it to all nodes (j, k )  with arcs carrying 
flow bounded below by the cj. 

Step 4. Join the nodes (1, k ) ,  k = 1,. . . , K to node 0 with arcs carrying 
nonnegative flows (variables vf ) ,  whose sum is to be minimized. 

The special form of the network makes it possible to formulate an algorithm 
that solves the dual (2) and the primal (1) in O(N . K) time. 

Description of the algorithm 
Find the solution to the dual problem by double backward recurrence. First 

set the flows on the arcs from 0 to (j, k )  to their bounds and set the h variables 
equal to zero. The nodes are then scanned in decreasing order (w.r. to k and 
w.r. to their distance from the root) as follows: the incoming flows of node 
(j, k )  are known; if their sum is positive, set the unique outgoing v-flow equal to 
this sum and let the incoming h-flow be equal to zero, else set the latter equal 
to the negative of that sum and the former equal to zero. For the first tree, i.e., 
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k = 1, use the flows on the arcs between 0 and the nodes (j, 1) instead of the 
h -variables. 

Find the primal solution by double forward recurrence, i.e., a variable xf is 
set equal to 1 for some k, if its successor xto.) is equal to 1 and the correspond- 
ing dual variable vf is positive, in this case, x! will also be set equal to 1 for all 
r >  k. 

Algorithm 
Dual 

z : = o  
for j := 1, N do 

for k := 1, K do 
begin h f  := 0; Ef := cf end 

for k := K downto 1 do 
begin 
for j := 1, N do begin vf := 15; end 
for j := N downto 1 do 

begin 
if vi" < 0 then 

begin 
if k > 1 then begin Ef-' := E k - ' +  vk. Ef := Ek - vk. hk-' := -uf end 

1 7  I 1 ,  I 

vi" := 0 
end 

else z := z + v !  
else if j > 1 then uso.) : = vfo.) + vf 

end 
end 
Primal 

for j : = 1, N do begin xy : = 0 end 
for k := 1, K do begin xo" := 1 end 
for j := 1, N do 

begin 
if xto.) = 1 and (vf > 0 or xf-' = 1) then xf := 1 
else xf := 0 
end 

for k := 1, K do 

Validity of the algorithm 
(i) Examination of the dual part of the algorithm shows that it may be 

viewed as an implementation of a proof by double backward induction (on k 
and j )  of its own validity. In fact it follows immediately that the nonnegative 
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dual variables constructed satisfy the node inequalities of (2) with = for k > 1 
and with 2 for k = 1, hence the solution constructed is dual feasible. 

(ii) The primal part obviously produces the incidence vectors of the edge 
sets of K nested rooted subtrees. 

(iii) The value of the dual solution is z = 2f='=, v :  and v :  = 2E1 Efxf, where 
Ef are set at their final values. Thus, to  show that the pair of solutions formed 
by the algorithm is optimal, it suffices to verify that Cf='=, Efxf = Zf=:=, cfxf. But 
C'k 1 1 1  = ck - hb + hf-' for k = 1,. . . , K.  For j fixed, let k* be the smallest index 
with xf = 1, if it does not exist, the equation is trivially satisfied, otherwise it is 
satisfied, if hf'-l= 0. But xf' = 1 implies by the definition of k* and the primal 
part, that vf' > 0, hence hf '- l= 0. 

Table 1 gives the optimal solutions of (2) and (1) for the example of Fig. 1. 

Table 1 

j , k  11 21 31 41 12 22 32 42 13 23 33 43 
~ 

C: 4 3 3 2 -3 4 -2 -3 -1 -8 -2 6 
u: 2 0 1 0  0 0 0 0 3 0 4 6 
h: 3 4 2 3 0 8 0 0 0 0 0 0 

1: 1 0  1 0  1 0  1 0  1 0 1 1 2 = 5  

3. Optimal lower closed sets of nodes of a graph (LCS) 

Let G = (V, E) be a directed, connected acyclic graph and c : V - t  W a 

For any S C V, let 
weight function on its nodes. 

6 ( S ) : = G E E :  t ( j ) E S ,  h ( j ) $ Z S } ,  Vo:={vE V :  6 ( V - v ) = 0 } ,  
V T  := {v  E v: 6 ( v )  = 0). 

We call a subset S of V lower closed if, whenever v E S and v = tG) ,  then 
h ( j ) E  S, and denote the family of these sets by D(G), i.e., D(G):= {Sc V: 
6(S) = 0) (D(G) is the family of node sets corresponding to  directed coboun- 
daries, see, for instance, [I]). 

The problem of finding S E D ( G )  with maximal weight sum can be written 
as the following 1.p.: 

maximize cTx, x E IW ", 

s.t. xu 2 0, v E vo, 
(3) 

(4) 

(5)  

(6) 

xu - x, s o ,  (v ,  w ) E  E ,  

xu s 1, u E V T .  
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As in the preceding paragraph, this 1.p. can be interpreted as the dual of a 
network flow problem, and solved as such. 

The polyhedron, 

Q := { x  E R v: x satisfies (4), (5), (6)}, (7) 

is contained in the unit hypercube, by (4)-(6) and G being acyclic. Its set of 
extreme points ext(Q) consists of 0/1 valued vectors and any x E ext(Q) is the 
incidence vector of some set S E D(G) and vice versa. 

The nested subtree problem is an instance of problem (3)-(6), namely for the 
graph G consisting of K disjoint copies Tk of the directed line graph of 
T = (V, 8) and all additional arcs (uk,  uk+l) ,  where u k  and vk+l are copies in T k  
and Tk+' of v E E, for all 1 s k < K. 

Next, we establish a polarity relation between Q and the polyhedron, 

P = { x E R V :  u S x s l ,  S E D ( G ) } ,  (8) 

where us denotes the incidence vector of S. We may write (4), (5) and (6) as 

- e "xsO,  v E  Vo, 
b j x s 0 ,  j E E ,  

e " x s 1 ,  v E  VT, 

where e" E R "  denotes the uth unit vector and b j € R V  the vector with 
components big.) = 1, big., = -1, b; = 0 otherwise, i.e., the jth row vector of the 
edge-node incidence matrix of G. 

Consider 

P '=conv{e":uE VT}+cone{bl : j€E;-e":vE VO}. (9) 

We show that P = P'. 
P' C P follows immediately from e"uS s 1, -euus S 0 and b'u" S 0 for any 

u E  V , j E E ,  SED(G). 
Further, using Farkas' lemma, it is easily established, that P' = 

{x E R": zx s 1 for all z E Q} = {x E R": zx s 1 for all z E ext(Q)} and from 
ext(Q) C {a": S E D(G)} follows P C P'. 

Note that for any directed acyclic graph G there is a unique minimal 
subgraph G* in the sense of arc inclusion that preserves the partial order on 
the nodes induced by G. From this it follows immediately, that the extreme 
rays of the cone in (9) are defined by the vectors b1 corresponding to the arcs of 
G* and -e", u E V". 
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4. Rooted tree intersections (RTI) 

The following is a special case of the LCS problem and a generalization of 
the NFS problem, as one easily verifies. 

Let E be a finite set with weights c : E+R associated to its elements. Let 
further T, = (V,, r,, E) ,  m = 1, . . . , M, be trees with roots r,, each having E as 
its set of edges. Without real loss of generality assume r, is the hanging node of 
e d g e e o € E f o r a l l  m = l ,  . . . ,  M. 

Find a subset J C E that maximizes c ( J )  = C. {cj:  j E J }  and spans a subtree 
with root r, in every one of the trees T,, 1 S m S M. 

Let Q, be the convex hull of the edge incidence vectors of the rooted 
subtrees of T,, 1 S m C M.  Then we have for the sets of extreme points 

This is in contrast to  the case treated in [2], where the rootedness of the 
subtrees is not required, for consider the following example. 

Example. Let E = {1,2,3,4} and M = 2 with Tl and T2 the chains shown in 
Fig. 2. Let 8, be the convex hull of the edge incidence vectors of the subtrees 
(chains) of T,. Then, an enumeration of the extreme points of f l  l?12 shows 
that this polyhedron has the fractional extreme points 

aside from the edge incidence vectors of the common subchains of TI and Tz, 
as kindly pointed out to us by W. Altherr. 

1 2 3 4  2 4 1  3 
n c- " " v v Y 0 

Tl T2 

Fig. 2. 
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A graph G has property C(m' ,  n - )  if for any choice of m + n points u1, . . . , u,,,, v , ,  . . . , v, 
in G there is a cycle in G which includes all of u1, . . . , urn, but none of v1, . . . , v,. We discuss 
the family of implications 'C(m', n-)+ C(r', s-)) for various non-negative integral values of 
m, n, r and s. The general question as to when such implications hold seems quite difficult. 
We discuss some reductions of these problems and prove the implication C(n', I-)+ 
C(n  + 1+, 0-) valid for n = 2,3,  and 4. The Petersen graph shows that this implication fails for 
n = 9. 

1. Introduction 

Let m and n be non-negative integers and let G be a graph with at least 
rn + n points. We will say G has property C(m+, n - )  (or simply, G is C(m+, n-) )  
if for all sets S of m + n points in G, where S = {u l ,  . . . , urn, u l ,  . . . , u,} say, G 
has a cycle which passes through each of u l , .  . . , urn, but which misses all of 
u1,. . . , u,. 

Special cases of C(m+, n-) have been studied by many authors. For example, 
if p = I V(G)( ,  then C@+, 0-) is equivalent to  having a Hamiltonian cycle and 
the literature here is so vast as to defy inclusion in our bibliography. TWO 
excellent references are surveys by Bermond [l] and Bondy [2]. 

The largest integer n such that G is C(n', 0-) has been called the cyclability 
of G by Chvfttal [4]. Cyclability has also been studied by Halin [7], Holton, 
McKay, Plummer and Thomassen [lo], Mesner and Watkins [ll],  Plummer and 
Wilson [13], Sallee [14] and Watkins and Mesner [16]. A close variation is treated 
in a very recent paper of Bondy and Lovftsz [3]. 

In this paper we shall concern ourselves with relationships between 

* Supported by the University of Melbourne, Universitat Bonn (Sonderforschungsbereich 21 
(DFG), Institut fur Operations Research), and the University Research Council of Vanderbilt 
University. 
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C(m+,  n- )  and C(r+,  s-), given certain relationships among m, n, r, and s. In 
particular, when does the implication ‘C(m+,  n-)+ C(r+,  s-)’ hold ? This seems 
to be quite difficult to settle completely. We present partial results and indicate 
(cf. the proof of Theorem 3.3) the difficulties which-currently, at any rate- 
seem to prevail. 

For any terminology not defined in this paper, the reader is referred to the 
book by Harary [S] or to a previous paper of McKay, Thomassen, and the 
present authors [lo]. Denote the connectivity of G by K(G). Since we are 
concerned with the existence of cycles of certain types, throughout this paper, 
we shall assume our graphs to be 2-connected, unless otherwise specified. 

Let u and v be any two points in graph G. Throughout this paper we shall 
have many occasions to talk of paths with endpoints u and v. We shall use the 
notation [u, u] to denote such a path which contains both endpoints, (u, v )  to 
denote such a path containing neither endpoint and [u, v) and (u, v ]  will be the 
corresponding paths containing only one of the two endpoints. In addition, 
sometimes we shall want to make it clear to the reader that a path [u, v ]  also 
includes among its interior points, say, a, b, c, d and e in which case we shall 
write [u, a, b, c, d ,  e, v], with similar notation for ‘open’ and ‘half-open’ paths. 

Suppose u is a point of graph G and there are three openly disjoint paths 
joining u to  some subgraph H of G-  u such that these three paths have only 
their endpoint f u lying in H. We shall have occasion to call the three paths a 
tripod at u. 

We shall also wish to consider paths joining two different tripods in a 
configuration, but having only their endpoints in said configuration. Such a 
path will be called a jumper. 

2. Elementary relationships 

Consider the lattice of Fig. 1. It is clear that all upward arrows of implication 
hold; i.e., C ( m + ,  n + 1-)+ C ( m + ,  n - )  holds for all m and n. For ease of reading 
we have displayed only those in column two of Fig. 1. It is equally clear that all 
implications of type C(m+, n-)+ C ( m  - 1+, n - )  hold. We display these in Fig. 1. 

We proceed to study some of the possible horizontal implications. The result 
below is due independently to Mesner and Watkins [ l l ]  and to Halin [7]. Since 
a direct proof is short, we include it for completeness. 

Lemma 2.1. Suppose 2 c n p - 1. Then G is C(2+, n - 2-) iff G is n-connected. 

Proof. (t) Let u, b, u l , .  . . , u , - ~  be any n points in G. By Menger’s theorem 
there are at least n openly disjoint (hereafter 0.d.) paths in G joining u and b. 
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2-connected 

3-connected 

4-connected 

10-conneered 

But then at least two of these paths-say PI and P2&ontain n o  ui and the 
union PI U P2 is a cycle. 

(+) If G is complete, then G is (p - 1)-connected and hence n-connected. 
Suppose G is not complete. Then G contains a cutset S of points separating 
two other points, say a and b. Moreover, we may choose S so that IS1 = K(G) = 

m. Now any cycle through a and b must contain at least two points of S and it 
follows that G is not C(2', m - 1-). 

Suppose now that G is not n-connected. Thus K(G)  = m s n - 1 and hence 
G is not C(2', n - 2-), a contradiction. 0 

This result establishes the equivalence between the first two columns of Fig. 
1. The next lemma due to Halin [7, Satz 5.41 shows that in any horizontal row 
of Fig. 1, either of the left-hand-most two properties (i.e., k-connected or 
C(2+, k - 2-)) in fact implies all properties to the right in that particular row. 
(To avoid clutter we have deleted the corresponding implication arrows in Fig. 
1 except those from column 2 toward column 3.) 

Lemma 2.2. Suppose n 2 2. Then G i s  n-connected iff G i s  C(n - k+, k-) for all 
k, 0 s  k s n - 2 .  

Proof. (+ ) Let k be any integer such that 0 s k s n - 2 and let MI, . . . , u, be 
any set of n distinct points in G. We must find a cycle through u1,. . . , un-k 

nected, so by a classical theorem of Dirac [6] there is a cycle C in H (and 
hence in G) through u l r . .  . , u,-k. 

which misses U,-k+l, . . . , u,. But H = G - U,-k+l- . * * - U, is ( n  - k)-con- 

(t) Let k = n - 2 and apply Lemma 2.1. 0 

Our next lemma shows that if we can verify the top-most left-to-right 
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implication between two contiguous columns of Fig. 1, then in fact all im- 
plications directly beneath this one hold. 

Lemma 2.3. Suppose m 2 2 and n 2 1. Then if C(m+, n-)+ C(m + 1+, n - 1-) is 
a valid implication, so is C(m+, n + l-)+ C ( m  + 1+, n- ) .  

Proof. Suppose G is C(m+, n + 1-) and let U = { u l , .  . . , urn+1} and W = 

{ w l , .  . . , w,} be disjoint subsets of V(G).  Now G -  w, is C ( m + ,  n - )  and hence 
by hypothesis, G - w, is C ( m  + 1+, n - 1-). Hence there is a cycle C in G - w, 
through u l , .  . . , urn+1 which avoids w l , .  . . , w , - ~ .  But this same cycle C is a 
cycle in G passing through all points of U and no points of W and the 
conclusion follows. 0 

In particular, by Dirac's theorem if G is 3-connected, then G is C(3+, 0-). 
Combining this with Lemma 3.3 we obtain all left-to-right implications from 
column 2 to column 3 in Fig. 1. 

Our final elementary result relates the size of certain cutsets S in a graph G 
which is C(s+, k - )  to the number of components in G - S, c(G - S ) .  It will be 
used many times in proving Theorem 3.3. 

Lemma 2.4. Suppose G is a graph with cutset S, s and k are integers with s 2 2, 
k 2 0, IS1 = s and that G is C(s+, k - ) .  Then (1) s 2 k + 2, and (2) i f  k 2 1 ,  then 
c (G - S )  c s - k .  

Proof. (1) Since G is C(s+, k-), G is also C(2+,  k - )  and hence ( k  + 2)-con- 
nected by Lemma 2.1. Thus s 2 k + 2 as desired. 

(2) Suppose S = {ul, . . . , uk, u ~ + ~ ,  . . . , us}. Also suppose G - S has s - k + 1 
components, Cl, . . . , C,-k+, and select a vi from V(C,), 1 s - k + 1. Since 
k 2 1, s-  k + 1 ~s and hence G is C(s - k + I+, k- ) .  So let R be a cycle 
through vl,  . . . , vs-k+l which misses u l , .  . . , uk. Then R must use at least 
s - k + 1 points in S whereas, on the other hand, there are only s - k points 
available in S and we have a contradiction. 

i 

We remark that the demand that k 3 1 is necessary in Lemma 2.4(2), for 
pick arbitrary integers r and s such that r s s s 2  and consider graph H = 

Ks + K,. (Here the + sign means all possible lines between the complete graph 
Ks and the independent set Kr are present.) Clearly H is C(s+, 0-). But, letting 
S = V(Ks)  in H, it is also clear that G - S has r components and, since r may 
be arbitrarily large, conclusion (2) of Lemma 2.4 fails to hold. 
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3. Main results 

In this section we will show that the implication C(n’, 1-)+ C(n + l’, 0-) 

Before proceeding we present a variation on Menger’s theorem due to 
holds for n = 3 and 4. 

Perfect [12] which will be extremely helpful in proving our two results. 

Theorem 3.1. Let G be a k-connected graph, a E V(G), B C V(G) - {a}  and 
IBI 3 k.  Suppose further that there is a set of k - 1 points bl, . . . , bk-1 in €3 and for 
each i = 1, . . . , k - 1 a set of openly disjoint paths Pi joining a to bi such that 
V ( 8 )  n B = {bi}. Then there exist k openly disjoint paths Qi joining a to bi for 
i = 1, . . . , k - 1 and Qk joins a to a point bk E B - {bl, . . . , bk-1). Moreover, 
V(Qi)  fl B = bi for i = 1, . . . , k.  

It is important to realize at the outset that the Qi’s need not be the same 
paths as the Pi’s. 

Theorem 3.2. If G is C(3’, 1-), then G is C(4+, 0-). 

Proof. Let a, b, c and d be any four points in G. By hypothesis there is a cycle 
C through a, b and c, missing d. We seek a cycle through all four of these 
points. By Lemma 2.2, G is 3-connected, so there are three openly disjoint 
paths from d to cycle C. Clearly we are done unless the endpoints of these 
three paths-call them a, P and y-are painvise separated on C by points a, b 
and c (see Fig. 2). 

Y 
Fig. 2. 

NOW again by Lemma 2.2 and by Perfect’s theorem there are 3 0.d. paths 
from a to a, P and a point 6 where 6 lies in the subgraph of Hl consisting 
[P, b, 7, c, a ]  U [y, d ]  U [a, d ]  u [d,  PI.  Again, we are finished unless 6 = 7. 

By symmetry there must be a path joining b to a and openly disjoint from 
HI - (p, d ]  - (y, b] and a third from c to /3 which is openly disjoint from 

Suppose some two of these three paths have a point in common. Without 
H1- (a, cl - (7, cl. 
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H2 : 

Fig. 3. 

loss of generality, suppose [a, y ]  and [c,p] have a point 7r in common. Then 
[a, .rr, c, y, b, p, d, a, a ]  is a cycle through a, b, c and d and we are done. So we 
may suppose all three paths are point-disjoint (cf. Fig. 3). 

But since 
is not C(3+, 1-) there must be a path in G - H2 joining two points of 

Denote G - a - j3 - y by Go. By Lemma 2.4, some two of a, b, c and d lie in 
the same component of Go. By symmetry we may suppose a and b lie in a 
common component of Go. It then follows that there is a path Q in G which 
joins the tripod at a and that at b, but has only its endpoints in common with 

Again by symmetry we may assume the endpoint v, of Q on the tripod of a 
lies on [a ,  a) .  But then regardless of whether the other endpoint vb of Q lies on 
[b, a ) ,  [b, p )  or [b, y) ,  a cycle through a, b, c and d is easily found. 

Thus subgraph H2 is a homeomorph of the complete bigraph 

G-  H2. 

H2- (Y - j3- 7. 

0 

Theorem 3.3. If G is C(4+, 1-), then G is C(5’, 0-). 

Proof. Let a, b, c, d and e be any five points in G. We must prove the 
existence of a cycle passing through all five. In the many cases to follow we 
finish by producing such a cycIe. For the sake of brevity, we shall refer to such 
a cycle as a ‘5-gon’. 

By hypothesis, there is a cycle C through b, c, d and e, but which fails to pass 
through a. Since G is 3-connected by Lemma 2.2, there are three 0.d. paths 
from a to three different points of cycle C, say n-1, 7r2 and 7r3. 

Moreover, we may assume that any two of the 7ri’s are separated on C by 
points in {b, c, d, e } ,  for otherwise we would be done. 

By symmetry, it will suffice to treat the two configurations of Fig. 4. 
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2:  
L a 

Fig. 4. 

First consider the configuration L1 of Fig. 4. We note that in Theorem 3.2 
every cycle through {a,  b, c, d }  also passed through {a, p, y} .  Hence the 
arguments of that theorem show that {a,  b, c, d, a }  all lie on a cycle. Hence the 
vertices {a,  b, c, d, e}  of the subgraph L1 also lie on a cycle in G. 

Now we assume configuration L2 of Fig. 4 obtains. 
By Perfect’s theorem we may assume there are three 0.d. paths from b to the 

rest of the configuration L2 - (b, 7r2) - (b, 7r3) and furthermore, that two of these 
three paths end at points 7r2 and 7r3. The reader may easily check that there will 
be a desired 5-gon unless the third path ends at 7r1 or at a point 7r4 lying in the 
interior of path C(c, d )  (i.e., that part of cycle C between c and d which does 
not contain b and e )  (see Fig. 5). 

Fig. 5. 

Case 1. Suppose the third path joins b and such a 7r4. Then by a similar 
argument from point c, the desired 5-gon is obtained unless the third path from 
c ends at 7r1 or 7r2. 

Case 1.1. Suppose the third path from c ends at 7rl. Then considering three 
0.d. paths from d, the desired 5-gon is obtained unless the third path from d 
ends at 7r2 or rr3. 

Case 1.1.1. Suppose the third path from d ends at 7r3. Considering three 0.d. 
paths from e, the third must end in 7r3 or 7r4 or we are done. 



136 D.A. Holton, M.D. Plummer 

Case 1.1.1.1. Suppose the third path from e ends at 7r4. The resulting 
configuration is thus bipartite (with bipartition {{a, b, c, d, e} ,  {T,, 7 r 2 ,  7 3 ,  7r4}}) 

(cf. Fig. 6, a drawing reflecting more of the symmetry of the configuration). 

Fig. 6. 

One easily sees that if there is a jumper joining a point in the tripod of c to a 
point in the tripod of d, a desired 5-gon results. Similarly, no jumper from the 
tripod of c or d to a tripod of a, b or e can exist, except possibly one ending in 
7rz (cf. Fig. 7). But G - 7rl - 7r3 - 7r4 has at most two components by Lemma 2.4 
and hence a jumper from 7rz to the tripod of c or d must exist. Without loss of 
generality, assume it joins 7r2 to the tripod of c as shown in Fig. 7. 

Fig. 7. 
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Now, by Lemma 2.4, G - 7rI - 7r2 - 373- 7r4 has at most three components. 
But c, d and e all lie in different components of G - 7r1 - 7r2 - 7r3 - 7r4 so it 
follows that G - 7rl - 7r2 - 7r3 - 7r4 has exactly three components and since a 
and b cannot share a component with c or d, it follows that a, b and e share 
the same component of G -  7rl - 7r2- 7r3-  7r4. It follows then that there is a 
jumper joining some two of the three tripods at a, b and e. By the symmetry, 
we need treat only one of the three possible cases, say a jumper between the 
tripods of a and b. But then in G a desired 5-gon results and Case 1.1.1.1 is 
complete. 

Case 1.1.1.2. Suppose the third path from e ends at 7r3 (cf. Fig. 8(a)). 

C 

d 

1 

Fig. 8(a). 

Again since G - rrl - 7r2 - 7r3 - 7r4 can have at most three components, there 

It is easy to see that a 5-gon exists for any jumper other than those labelled 
must be jumpers between some of the tripods at a, b, c, d and e. 

A, B, C ,  D or E in Fig. 8(b). 

C 

d 

Fig. 8@). 

Claim 1. There is a jumper of type D or E. 
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Proof of Claim 1. Suppose not. Now H = G- 7rl- 7r3- r4 has at most two 
components by Lemma 2.4. First let us suppose that 7rz and c are in the same 
component of H. Then by our previous work there must be a jumper J from 7rz to 
the tripod of c. Suppose J ends at a point of (r3, c]. Then there are no jumpers of 
type A, B or C or else we obtain a 5-gon. Thus G - rl - 7 r ~  - 7r3 - 7r4 has at least 
four components, contradicting Lemma 2.4. A similar contradiction is reached if J 
ends on (7r4, c ]  or (7rl, c ] .  

Thus 7rz and c are not in the same component of H and similarly neither are 
rz and d.  So {q 7r3, 7r4} separates {a, b, e} from {c, d }  in G. 

Now there is, by the hypothesis of this theorem, a cycle C in G passing 
through a, b, c and d, but missing r3. But then C must pass through r1 and r4 

and, in fact, {rl, 7r4} separates points c and d from points a and b on cycle C. 
Let P denote the segment of C joining 7rl and 7r4 and containing c and d. Then 
P U [r4, b ]  U [b, r3] U [r3, a ]  U [a, el U [e,  r l ]  is a 5-gon and we are finished. 
This completes the proof of Claim 1 and hence there must be jumpers of type 
D or E (or both). 

Among all jumpers of type D or E, let a. be that endpoint of such a jumper 
which is closest to b on [b, r4). By symmetry we may assume a jumper of type 
D exists. Let one such be JD. Note that ao# b or we are done. 

Now there may exist a jumper J joining some point y of (ao, n4] to a point p 
on (b, ao). Among all such p’s choose one-&-dosest to b on (b, ao). Again 
note Po # b, or a desired 5-gon exists. 

First, let us assume such a J exists (cf. Fig. 9). 

e 
‘TI1 

Fig. 9. 

Claim 2. {r1, r3, Po} separate (a, b, e }  from {c, d }  or the desired 5-gon exists. 

Proof of Claim 2. Suppose {TI, 7~3, Po} does not separate {a,  b, e }  from {c,  d).  
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Then there must exist a jumper from one of the tripods at a, b or e, or from 
7rz, to  a tripod at c or d or perhaps to  the path (PO, 7r4] U (J  - Po) U JD. Let j 
denote such a jumper. From previous work we know a 5-gon will result unless .f 
has one endpoint S1 on an a, b or e tripod and the other endpoint Sz on 
(J - Po) u ( P o ,  T 4 ] .  

If Sz lies on (J - Po) U (Po, m4), a 5-gon is readily found. 
So if {7rl, m3, Po} do not separate {a,  b, e}  from {c, d} ,  the only jumpers 

preventing it either have one endpoint at 7 r ~  or one at 7r4 (or both). But then 
H = G - 7rl - 7rz - 7r3 - 7r4 certainly has {a,  b, e}  in different component(s) from 
that (those) of {c, d}. Moreover, since can have at most three components, a 
jumper of type A, B or C must exist. 

First suppose a type A jumper exists. Then no jumper from 7rz exists or a 
5-gon is readily found. So suppose there are jumpers from 7r4 (but none from 
rZ). Then in each case a 5-gon exists and moreover, the said 5-gon does not use 
the A-type jumper. 

Similarly, we are done if B or C-type jumpers exist. This completes the proof 
of Claim 2. 

But then, as before, if {r1, 7r3, Po} separates {a, b, e} from {c, d }  in G, let R 
denote a cycle containing {a, b, c, d }  in G - 7r3. R can be modified to produce a 
5-gon through {a, b, c, d, e} .  

So now suppose a jumper of type J does not exist. 

Claim 3. {r1, 7r3, ao} separates {a,  b, e}  from {c, d }  in G or else a 5-gon exists. 

Proof of Claim 3. Suppose {~1,7r3, ao} does not separate {a,  b, e> from {c, d }  in G. 
As before, there must be jumpers from the tripods of a, b or e (or from 7rz) to  the 
tripods of c or d or to (JD - ao) U (ao, m4] and we are done immediately unless said 
jumper has one endpoint on (ao, 7r4]. (N.B. an endpoint on J D  - a. would be 
equivalent to  a jumper from the tripods of a, b or e to (7r4, d] and this has been 
covered previously.) The proof now proceeds as in Claim 2. 

Again, as before, if {m1, 7r3, ao} separates {a,  b, e}  from {c, d }  in G, a 5-gon 
through all of a, b, c, d and e can be found using the hypothesis of the 
theorem. 

This completes Case 1.1.1.2. 
Case 1.1.2. Suppose the third path from d ends at 7rz. Then a 5-gon is easiiy 

obtained unless the third path from e ends at 7r3 or 7r4. 

Case 1.1.2.1. Suppose the third path from e ends at 7r3. Then from the 
drawing of the resulting configuration as rendered in Fig. 10, we see that this 
case is isomorphic to Case 1.1.1.1. 
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d b 

TI 
3 

a e 

Fig. 10. 

Case 1.1.2.2. Suppose then that the third path from e ends at 7r4. Then, from 
the drawing in Fig. 11 of the resulting configuration, once again, we have a case 
isomorphic to Case 1.1.1.1. 

Fig. 11. 

Case 1.2. Suppose the third path from c ends at r2. Applying Perfect’s 
theorem at point d, we obtain a 5-gon unless the third path ends at 7r2 or 7r3 
(see Fig. 12). 

Fig. 12. 
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Case 1.2.1. If the third path from d ends at 7r3, apply Perfect’s theorem at e. 
A 5-gon will result unless the third path ends at 7r3 or 7r4. 

Case 1.2.1.1. Suppose the third path from e ends in 7r4. Then the drawing of 
the resulting configuration in Fig. 13 shows yet again that we have a case 
isomorphic to Case 1.1.1.1. 

b C 

Fig. 13. 

Case 1.2.1.2. If the third path from e ends in 7r3, then we have the 
configuration of Fig. 14, which is isomorphic to Case 1.1.1.2. 

Fig. 14. 

Case 1.2.2. Suppose the third path from d ends at 7r2. Applying Perfect’s 

Case 1.2.2.1. Suppose it ends in z4 (cf. Fig. 15). We see immediately that this 

Case 1.2.2.2. If the third path from e ends at r3, as before, we see that this 

Case 2. Suppose the third path from b ends in 7rl. Applying Perfect’s 

theorem at e, a 5-gon results unless the third path ends at 7r3 or r4. 

case is isomorphic to Case 1.1.1.2. 

case is isomorphic with Case 1.1.1.2. 
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Fig. 15. 

theorem at e, we obtain a 5-gon unless the third path ends at r3, or at a point 
.rr4 in (c, d ) .  

Case 2.1. Suppose it ends in such a r4. Then redrawing the resulting 
configuration as in Fig. 16 and comparing with Fig. 12, we see that this case is 
isomorphic to Case 1.2. 

Fig. 16. 

Case 2.2. So suppose the third path from e ends at 7r3. Since G is 3- 
connected, we may apply [lo] and without loss of generality assume that 
G contains one of the two configurations in Fig. 17. Furthermore, by this 
lemma, in Fig. 17(i), r5 $Z {rl, r3} and in Fig. 17(ii), r, $Z {7rl, r3}, but {xl, x2} fl 
{TI, r 3 }  may be non-empty. 

Case 2.2.1. Assume G contains the configuration of Fig. 17(i). Then a 5-gon 
is present unless r5 = rz. In this latter situation, consider the third path from d.  
We obtain a 5-gon unless it ends at 7rz, 7r3 or in (c, r2) (cf. Fig. 18). 

Case 2.2.1.1. Suppose the third path from d ends on r2 (cf. Fig. 19). 
By Lemma 2.4, G - rl - r2 - r3 has at most two components. It is easy to 

see that no jumpers exist between any two of the three tripods at a, b or e, or  
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(ii) 

Fig. 17. 

Fig. 18. 

b 

a 

e 

Fig. 19. 
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else a 5-gon obtains. So by Lemma 2.4 at least two of these three tripods are 
joined to the {c,  d}-lobe of G - 7rl - 7rz- 7r3 by jumpers. (Note: by {c,  d}-lobe 
we mean that component of G - 7r1 - 7rz - 7r3 containing c and d.) One easily 
checks that a 5-gon exists unless there is a jumper J joining a point 7rs in (c, d )  
to a point on one of the tripods at a, b or e. But if J meets a line of symmetry 
type [b, 7r2) we have a configuration isomorphic to Case 1.1.1.1 and if it meets a 
line of symmetry type [b, 7r3) the resulting configuration is isomorphic to Case 
1.1.1.2. 

Case 2.2.1.2. Suppose the third path from d ends on 7r3. This case is 
isomorphic to Case 2.2.1.1. 

Case 2.2.1.3. Suppose the third path from d ends at a point 7r6 in (c, 7r2) (cf. 
Fig. 20). 

a 

C 

b 

d 

e 

Fig. 20. 

Once again, G - 7r1 - 7rz - 7r3 has at most two components, so jumpers exist. 
If any jumpers join any two of the tripods at a, b and e, we obtain a 5-gon. So 
by Lemma 2.4 at least two of the tripods at a, b and e are joined to the 
{c,  d, 7r4}-lobe of G - 7rl - 7rz - 7r3. But in all cases here a 5-gon obtains. 

Case 2.2.2. Assume G contains the configuration of Fig. 17(ii). 
Case 2.2.2.1. Suppose {xl, xz} f l  {7rl, 7r3} = 0. By symmetry we need check 

only six possible locations for point 7r7. For example, it suffices to consider 
7r7 E (7r3, a ]  U ( ~ 3 ,  el U (7r3, b]  U [b, 7r2) U (7rz, a ]  u {7r2}. If 7r7 belongs to  any of 
the first five paths, a 5-gon is present. For example, if 7r7 E (7r3, a ] ,  then 
[a,  7 r 5 ,  7r4, c, XI, d,  x2, 373, e, TI, b, 7r2,  a ]  suffices. 

So the sole remaining case to check is 7r7 = 7r2 (cf. Fig. 21). 
Since G - 7rl - 7rz - 7r3 has at most two components, once again there exist 

jumpers. But as before any jumper joining any two of the three tripods at a, b 
and e will help to form a 5-gon. Thus there must exist a jumper from one of 
these three tripods to the component of G - 7r1 - 7r2 - 7r3 containing c and d. 
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e 

C 

l. 
X 

2 

Fig. 21 

But then once again a 5-gon exists in all cases. 

may assume that x1 = al and x2 # r3. Then we have a 5-gon unless r7 = r2. 

Case 2.2.2.2. Suppose I{xl, x2} n {rl, r3}1 = 1. Without loss of generality we 

So assume r7 = r2. 
Since G - rI - r2 - r3 has at most two components, once again there exist 

jumpers. As before, every jumper joining any two of the three tripods at a, b, 
and e will help produce a 5-gon. Thus we have a jumper [a,P] from one of 
these three tripods to the {c, d}-lobe of G - rl - r2 - 7r3. If p E [c, d], then the 
5-gon is formed using the argument above with mf, = p and r7 = a. If p E 

[r6, r2), then we replace [r6, r7] = [r6, r2] by [r6, p, a]  to obtain the 5-gon. If 
p E [c, xz] U [d,  x2] U [c,  r l ]  U [d, rl] we are in Case 2.2.1. In the remaining 
cases, i.e., p E [x2, r3], a 5-gon is readily found. 

Case 2.2.2.3. Suppose x1 = rl and x3 = r3. Since G is C(4+, 1-), there is a 
cycle through b, a and e missing rt. 

In the configuration MI of Fig. 22 this cycle X requires the use of each of the 
paths [r3, b] ,  [a3, a] and [r3, el. Hence there must exist a jumper from one of 
these three paths, or from one of the three paths [r1, b ] ,  [rl, a] or [rl, el. By 

1 

Fig. 22. 
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symmetry, we may assume a jumper [a l ,p l ]  from a1 in (7r3,b). If P I E  
(773, a )  U ( ~ 3 ,  e )  U ( T I ,  a )  U ( T ~ ,  e )  U ( T ~ ,  a )  U (m2, e ) ,  a 5-gon exists. 

Suppose PI E ( T I ,  b). If (al ,  PI) C X, then, since (rl, P I )  $Z X, (PI, b )  C X.  
Similarly, ( T ~ ,  al) $Z X, so (al ,  b )  C X .  So X contains a triangle [al ,  pl, b, all, a 
contradiction. 

A similar contradiction results if p1 E (m2, b),  
If p 1  E [c,  T ~ )  U [c, T ~ )  U [d, T ~ )  U [d, 7j3), then the 5-gon is obtained as in 

Case 2.2.1. Hence p 1  E (c, d )  (cf. configuration M2 of Fig. 23). 

1 

Fig. 23. 

But note that if we delete path ( ~ 3 ,  al) from M2 the resulting configuration is 
precisely that of Fig. 8 and we are done by Case 1. 0 

We think it worthwhile to point out to the reader that in a 3-connected graph 
if there is a cycle through some four points which misses a fifth, then it does not 
necessarily follow that there is a cycle through all five. Just consider the 
complete bipartite graphs K(4, n )  for all n 2 5. 

4. Concluding remarks 

The implication C(n+, 1-)+ C(n + 1+, 0-) does not hold for n = 9 as is shown 
by the Petersen graph. In fact, this implication fails for n = 9, 12, 14, 15, and 
for all n 3 17 as is demonstrated by the known existence of hypohamiltonian 
graphs of order n + 1 for each n in this range. For a survey of the state of the 
art of hypohamiltonian graphs, see [5,15]. In particular, if there is a counter- 
example to the above implication for values of n = 10, 11 or 13 it cannot be 
a hypohamiltonian graph, for it has been shown that hypoharniltonian graphs 
of orders 11, 12 and 14 do not exist. It is unknown at this time whether there is 
a hypohamiltonian graph on 17 points. 

Despite much searching, the only counterexamples to the validity of the 
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implication known to the present authors remain these hypohamiltonian 
graphs. The Petersen graph is known to be the smallest hypohamiltonian 
graph. These facts lead us to close by hazarding two conjectures. 

Conjecture 1. C(n+,  1-)+ C ( n  + 1+, 0-) holds for n = 5,6 ,7  and 8. 

Conjecture 2. If C(n+, 1-)+ C(n + 1+, 0-) fails, the only exceptions are hypo- 
hamiltonian. 
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AN EFFICIENT PRIMAL SIMPLEX ALGORITHM 
FOR MAXIMUM WEIGHTED VERTEX PACKING 
ON BIPARTITE GRAPHS* 

Yoshiro IKURA and George L. NEMHAUSER 
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We present in graphical terms a primal simplex algorithm for maximum weighted vertex 
packing on bipartite graphs. For a graph on n vertices, when all of the weights equal one, 
the number of pivots is bounded by n2 and the running time of the algorithm is O(n4). For 
general integer weights a scaling technique is used and the bounds are increased by a factor 
equal to the logarithm of the largest weight. 

1. Introduction 

Let G = (V, E) be a finite, undirected, loopless graph without multiple 
edges. A vertex packing, independent set or stable set in G is a subset P C V 
such that vl, v, E P implies (v,, v,) Sr E; a clique in G is a subset C C  V such 
that vl, v, E C implies (vl, v,) E E. 

Let w, be a real, positve number assigned to v, E V ;  w, is called the weight of 
v,. The maximum weighted vertex packing problem is to  find a vertex packing P 
such that w ( P )  = Z, U,EP w, is maximum. The case of w, = 1 for all v, E V is 
called the cardinality problem. 

The weighted vertex packing problem is NP-hard for general graphs. Fur- 
thermore, many restricted cases, such as the cardinality problems on triangle- 
free graphs [14] and cubic planar graphs [7], are also NP-hard. On the other 
hand, polynomial algorithms are known for claw-free graphs [13, 151, graphs 
without long odd cycles [S], and perfect graphs [8]. The latter class, which 
includes bipartite graphs, comparability graphs and chordal graphs, is parti- 
cularly interesting because of the connection between the combinatorial pack- 
ing problem and linear programming. 

On perfect graphs, the maximum weighted vertex packing problem can be 
formulated as the linear program [2, 6, 121: 

*This research has been supported by National Science Foundation Grant ECS-8005350 to 
Cornell University. 
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max 2 wjxj,  
j :  I+€ V 

wp) 2 xj 3 1 for all maximal cliques C ,  
j :  u j € C  

xj 3 0 for all uj E V ,  

since there is a one-to-one correspondence between extreme points of the 
polytope and packings. Although the number of cliques can be exponential in 
the number of vertices, the ellipsoid method of Khachian [ l l ]  has been adapted 
to run in polynomial time for (VLP) on perfect graphs by Grotschel et al. [S]. 
Nevertheless, their method is not combinatorial and is unlikely to  be practical 
for computation. The challenge still remains to find efficient combinatorial 
procedures for the class of perfect graphs. For the subclasses of perfect graphs 
mentioned above, efficient combinatorial algorithms are known. In particular, 
the weighted vertex packing problem on bipartite graphs can be reduced to a 
maximum flow problem. 

Here we give an efficient primal ‘simplex-like’ method in graphical terms for 
solving (VLP) on bipartite graphs. For the cardinality problem, the number of 
pivots is bounded by n2 and the running time of the algorithm is O(n4), where n 
is the number of vertices. For general integer weights, the bound on the 
number of pivots in the basic algorithm involves the sum of the vertex weights; 
however, using a scaling technique of Edmonds and Karp [5], the bound on the 
number of pivots is reduced to n2(1 + l), where 

2’ =s max w, < 2‘+’ . 
j :  uj€ V 

While no unsolved problems are treated in this paper and the running time 
bound of our algorithm is not an improvement on existing bounds, we view our 
contribution as a step in the development of polynomially bounded simplex 
methods. Furthermore, our approach may be applicable to vertex packing 
problems on larger classes of perfect graphs. 

2. Graphical description of primal and dual solutions 

For bipartite graphs, the clique constraints (1.1) simplify to 

xi + xi s 1 for all (ui, v j )  E E ,  (2.1) 

and the dual of (VLP) is the problem of covering weighted vertices by a 
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minimum number of edges: 

c ye 3 wj for all vj E V, 
e: vj€e  

ye 2 0 for all e E E . (2.3) 

The algorithm to be given maintains an integral primal feasible solution- 
(1.2) and (2.1) are satisfied and xi € (0,l) for all v, € V-and a complementary 
dual solution: 

if ye # 0 where e = (vi, v,) ,then xi + xi = 1 , (2.4) 

if xi# 0 ,  then C ye = w,. 
e: v,€e 

Optimality is achieved when the dual feasibility conditions (2.2) and (2.3) are 
satisfied. 

Without loss of generality, we assume that G is connected and contains at 
least two vertices. We call u, a black vertex if v, E P (x, = 1) and call u, a white 
vertex if v, E V\P = F (x, = 0). 

To describe the primal and dual solutions graphically, we associate with an 
integral primal feasible solution a spanning forest. Each tree T, = (V,, E,) in the 
forest has a special white vertex v, called the root of T,. Each tree is alternating 
in the sense that all tree edges connect a white vertex and black vertex. The 
cost of a tree T,, c(T,), is the sum of the black vertex weights of the tree minus 
the sum of the white vertex weights of the tree. 

By deleting an edge e from a tree T, we would obtain two trees T :  and T:, 
where T ;  is the tree that contains u, and us is the vertex of T:  that is contained 
in e. T:  is called the branch of e and is denoted by Be; v, is called the root of&. 
Be is called a white or black branch according to whether its root is white or  
black. The cost of Be, c(Be), is the cost of Ti.  

The dual solution corresponding to a given packing and associated spanning 
forest is defined by 

if e is not a tree edge, 

ye = c(B,) if e is a tree edge and its branch is black, (2.6) i" 
-c(B,) if e is a tree edge and its branch is white. 
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Fig. 1 shows an alternating tree T, rooted at 0,. The numbers on the edges 

Some important facts about the dual solution are summarized in Proposition 
are the ye’s. 

1. 

c f T,) = 0 

Fig. 1. All vertex weights are equal to one. The underlined vertex is the root. 

Proposition 1. Given a packing P, associated spanning forest and dual solution 
(2.6), then 

(a) if v, is not a root of a tree, then the dual constraint (2.2) is an equality; 
(b) the primal and dual solutions satisfy the complementary slackness con- 

(c) dual infeasibilities occur only when 
ditions (2.4) and (2.5); 

(i) a tree T, has c(T,) < 0, in which case Xe: u,Ee ye = w, + c(T,), 
(ii) a black branch Be has c(Be) < 0, in which case ye = c(Be), 

(iii) a white brunch Be has c(B,) > 0, in which case ye = -c(Be). 

Proof. (a) Let eo, e l , .  . . , ep be the edges adjacent to vj with eo the edge on the 
unique path from vj to  the root. Since the tree is alternating, we have 

(b) Since roots are white vertices, (2.5) follows from (a); (2.4) is implied by 
ye = 0 for non-tree edges and the alternating structure of the trees. 

(c) Statements (ii) and (iii) follow directly from the definition of the ye’s;  (i) 
is implied by c(T,) = - w, + 2,: vrEe ye. 0 

y = w . - p  
eg I 1 = 1  Ye,. 

If c ( T , )  3 0 for each of the trees in the spanning forest and ye 3 0 for all 
e E E, then the corresponding primal and dual solutions are optimal. However, 
if either of these conditions fails to hold, then the structure of the spanning 
forest and, perhaps, the packing are changed as described in the next section. 
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3. Fundamental algorithmic operations 

The fundamental steps are classified in two ways. The first category deals 
with the packing and the second with the structure of the spanning forest and 
the dual solution. 

A change in the packing P is called an augmentation. Let Q be the set of 
vertices in a tree or black branch. An augmentation switches the colors of all of 
the vertices in Q so that the new primal solution is given by P ' =  
P u ( Q n P ) \ ( Q n P ) .  In order for P' to be a packing, it is necessary and 
sufficient that no edges exist joining a vertex in Q n to a vertex in (WQ) n 
P. The necessity of this condition is obvious; sufficiency follows because, in a 
bipartite graph, no pair of white vertices in the same tree can be joined by an 
edge. Furthermore, 

-c(T,) for a t ree ,  

-ye  for a black branch Be.  
w(P' ) -  w ( P ) =  

Thus, if there exists an augmenting tree-a tree T, with c ( T , )  < 0 and none of 
the white vertices in T, is adjacent to  a black vertex not in T, or an 
augmenting branch-a black branch Be with ye < 0 and none of the white 
vertices in Be is adjacent to a black vertex not in Be, then P' is a packing with 
w(P')  > w(P) .  If there is no augmenting tree or branch, then the algorithm will 
do a degenerate operation that does not change the packing. 

There are six types of changes in the structure of the spanning forest as 
explained below and illustrated in Fig. 2. The first three follow augmentations 
and the last three are degenerate operations. It is obvious from the nature of 
these constructions that all of the operations preserve a spanning forest 
consisting of alternating trees with white roots and the dual variables satisfy the 
conditions (2.4) and (2.5). 

Operation 1. Changing a root. Following an augmentation on a tree T, with 
more than one vertex and c ( T , ) <  0, v, E V, adjacent to v, is selected as the 
new root to form the tree Tb. Let e' = (v, up). The dual variable adjustment is 

Given a tree Tq containing us, let Pq,,s = {e: e a tree edge on the path joining 
0, to us}, Pbq,,s = {e E Pq,.: Be black} and P &  = Pq,,\Pbq.s. 

Operation 2. Attaching a black vertex to a tree. Following an augmentation 
on a tree T, = {v,}, the tree Ti is formed by attaching the edge e' = (v, up)  to 
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c (T,) = -2 c ( T p ) = 2  c ( T , ) = - I  c ( T , ) = O  c ( T ' , ) =  1 

Operation 1 Operation 2 

c ( T, ) = - 1  c ( T ; ) = O  c ( T r )  = -2 

Operation 3 Operation 4 

- c ( T ; ) =  1 
c ( T , ) = O  

c ( T, ) = - 1  c ( T ; ) = O  c ( Tr - ) = I  E - 

c ( T ; ) = O  

Operation 5 Operation 6 

Fig. 2. 

T,, where up E V, is a white vertex. The dual variable adjustment is 

Operation 3 .  Cutting a black branch. Following an augmentation on a black 
branch Be, of T, with ye, < 0, the edge e' = (vq, v t )  is deleted from T, to obtain 
the trees Ti and Ti. The dual variable adjustment is 
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y e  +ye  - ye* 9 

ye + y e  + ye*  9 

c v : )  + c(T, )  - Ye, 7 

c ( T : ) + - y e ,  9 

y e . + O .  

V e  E Pkq 7 

v e  E PYq 9 

Operation 4 .  Attaching one tree to another. Let v, E V, be a white vertex, 
c(T, )  < 0, Oh E V, a black vertex, s# r, and 2 = (0, v h ) .  T, is attached to T, to 
form T:  by making 2 a tree edge. The dual variable adjustment is 

ye + Y e  + c(T,)  9 

y e  + Y e -  c(T,) 9 

Ve E P $ ,  

V e  E PTr 7 

c ( C )  +c(T , )  + C(Tr). 

Operation 5. Cutting a branch and attaching it to a tree. As in Operation 3, a 
black branch Be,, e’ = (vq, vt), with ye, < 0 is cut from T, Then, as in Operation 
4,  Be, is attached to T, to form the tree Ti (here s and r may be the same) using 
the edge e^ = (v, vh), where v, is a white vertex of Be, and Uh E V, is a black 
vertex. The dual variable adjustmeat is 

y e  + y e  - ye‘ 9 

y e  + y e  + y e ,  , 

c(T:)+c(Tr)- Ye, 7 

c(T:) + c ( K )  + Ye, > 

y e * + O .  

V e  E Pkq U PTt 7 

V e  E PTq U P:,t 7 

(Note that if s = r, then c(T;)  = c(Tr), and if there exists e E pr,q fl Ps,h, ye iS not 
changed since it is both increased and decreased by ye, . )  

Operation 6. Cutting a white branch. Given a white branch Be$ of To the edge 
e ’ =  (vq7 v f )  is deleted from T, to obtain the trees Ti and Ti. The dual variable 
adjustment is 

Y e + y e + y e * ,  V ~ E P Z I ~ ,  

Ye + y e  - ye, 9 v e  E PYq 9 

dT:) +c(T , )  + ye 7 

c ( T : ) + - y e ,  

ye, + O  . 
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(Note that if ye, = 0, there is no dual variable change.) 
Identifying appropriate degenerate operations is the key to the finiteness of 

the algorithm. This requires a partition of the trees as described in the next 
section. 

4. Tree partition and cutting of white branches 

Each tree is partitioned into subtrees which are then assigned to one of three 
classes: 

(1) the deficient class 9 - e a c h  member is a subtree such that the sum of the 
weights of the white vertices is greater than the sum of the weights of the black 
vertices. 

(2) the neutral class X - e a c h  member is a subtree such that the sums of the 
weights of the white and black vertices are equal. 

(3)  the saturated class Y-each  member is a subtree such that the sum of the 
weights of the white vertices is less than the sum of the weights of the black 
vertices. 

Given a tree 7'' the partitioning, cutting, and determination of subtrees is 
done recursively. When a white branch is cut from T, the dual variables are 
adjusted in the remainder of the tree (see Operation 6) and then the two 
resulting trees are handled separately. When a black branch is placed in one of 
the classes, a temporary dual variable adjustment is made in the remainder of 
the tree as if the black branch had been cut (see Operation 3). After the 
partitioning, dual variables that have been temporarily adjusted are restored to 
their original values. 

Let E:= { e  E E , :  Be is white}, E : = { e E  E,: Be is black}, E:-= 
{ e  E E:: ye < 0}, and E? = 

{ e  E E:: ye = O}. 
E$ = { e  E E:: ye = 0}, E:- = { e  E E:: ye < 0}  

Algorithm : tree partition and cutting of white brunches 
Given T, X, 9 and 9: 
If E:- U E:- = ,0 

thenif c(T, )=O then X t X U T ,  
elseif c(T,)<O 

then if E$ = 0 then 9 +9 U T, 
else let Be,, . . . , Be, be the maximal branches of T, with e, E E f .  Cut 

these branches from T, to form the trees T:  and Tii, i = 1 , .  . . , p 
(Operation 6) 
9+-9 U T:  and X t X  uyc1 Tsi 

elseif E?= 0 then Y t Y U  T, 
else let Be,, . . . ,Be, be the maximal branches of T, with ei E E:'. 

N c N  ub, Be; and Y t Y U  T:  
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else if there exists e' E EF- with ye 3 0 V e of Be, where 21, is the root of Be,, 
then treat Be, as if it were a tree T:  with c(T:)  = ye (but do not cut e' 
from T).  Temporarily adjust dual variables in the remainder of the 
tree T :  and then check Ti and T: recursively. 

else there exists e' E E:- with ye 3 0 V e of Be, where 21, is the root of Be.. 
Cut Be from T to form the trees T :  and T:  (Operation 6). Adjust 
dual variables in Ti and then check Ti and T:  recursively. 

While there exists Be,, BE E 9 in the same tree, where ê  has one end in Be, and the 
other in Be,  combine the two branches into the single branch B:,. 
9 +(9\(Be. u Be)) u B:.. 

repeat. 

y cut _.) 

A c < T,) = 0 
- 

Fig. 3. 
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The algorithm is illustrated in Fig. 3.  The output is a collection of partitioned 

Later we will need some properties of the partitioned trees that are simple 

(a) For i = 1,. . . , k ,  E;- = 0. 
(b) A branch Be of T, which is a member of 9 does not contain any 

branches Be, with el E E?. 
(c) 0, E 9 implies Dl is a tree T, with c(T,) < 0 or a branch Be of T, with 

e E EF-. Conversely, if c(T,) < 0 or  7', contains a branch B, with e E EF-, then 
there exists D, E 9 such that Dl is included in T,. 

trees {T,,, . . . , Trk}.  

consequences of the construction. These are given below. 

(d) If T , = D l E 9 ,  then c(T,)<Oandc(T,)-y,<OVeEEF.  
(e) If 7', = Dl E 9, then for el = ( v ,  v,) E P!,, and V e E P:,, ye + ye,  > 0. 
(f) Let up be a leaf of T,. P,, contains at most one member of 9, one 

member of X and one member of Y. If P,,  contains a member of 9, that 
member contains v,. If P,,p contains a member of Y, that member contains u, 
(see Fig. 4). 

T4 T5 
Fig. 4. 
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(g) If T, = Si E 9, then c(T,)>O and ye > O V  e E E ! .  
(h) If T r = N i € . N ,  then c (T, )=Oandy,>OVe€E; .  

5. The algorithm 

The essential idea of the algorithm is to achieve optimality by making 9 = 0. 
Step 0 (initialization) 
Let P - 0 ,  T,+-{u,}, c (T , )+ -w , ,  Vu,E V, ye-O V e E E ,  Y t 0 ,  X t 0 ,  

Step 1 (checking optimality) 

then output P and {ye: e E E} as the optimal primal and dual solutions. 
else if there exists 0, E 9 that is an augmenting tree T, 

9 = {{v,} :  u, E v). 

I f 9 = 0  

then go to Step 2. 
elseif There exists 0, E 9 that is an augmenting branch Be, 

then go to Step 3. 
else go to Step 4. 

Step 2 (augmentation on a tree) 

then P+P U {u,}. Execute Operation 2 (attaching a black vertex to  a tree). 
If T, = {u,> 

T,+B, T,+T:,  h t s .  
Go to  Step 5. 

T, +-B, Tp + Tb, h t p .  
Go to Step 5. 

else P t P U (V, n p)\( V, fl P ) .  Execute Operation 1 (changing a root). 

Step 3 (augmentation on a branch) 
Let Q be the vertices of Be,. P t P U (Q n P)\(Q n P). Execute Operation 3 

(cutting a black branch). T, t T:, T, t T:,  h t t. 
Go to Step 5. 
Step 4 (attaching a deficient member to a tree) 
There exists a non-tree edge 2 = (u, oh), where up E p belongs to 0, E 9 and 

vk E P belongs to T,. 
If 0, is a tree T, 

then execute Operation 4 (attaching one tree to another). 
T, t 0 ,  T, +- T:, h t s .  
Go to Step 5. 

else Let 0, be the branch Be, of T,. Execute Operation 5 (cutting a branch 
and attaching it to a tree). T, +- T:, T, + T:, h + s .  

Go to Step 5. 
Step 5 (tree partition and cutting of white branches) 
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Apply this algorithm (see the previous section) to Th. 
Go to Step 1. 

6. Complexity of the algorithm 

When the algorithm stops (9 = 0) in Step 1, properties (a) and (c) of the 
partitioned trees imply that dual feasibility has been achieved. Thus the primal 
and dual solutions are optimal. 

Suppose Di E 9. Define the deficiency of Di: 

-c(T, )  > 0 if Di is a tree T,, 
-ye  > 0 if Di is a black branch B e ,  

d ( D i ) =  

and the deficiency of 9 to be d ( 9 )  = ZDi,, d ( D i ) .  If the optimality conditions 
are not satisfied, d (9)  > 0. 

We now investigate how d ( 9 )  changes between successive calls of Step 1, 
which we call an iteration. Suppose (9# 0, $), ( { y e } ,  { j e } ) ,  ({c(T,)} ,  { ~ { p , ) } )  and 
(P, P )  are the deficient class, dual variables, tree costs and packing before and 
after some iteration, respectively. 

Proposition 2. If an iteration involves an augmentation, 

Proof. (a) Suppose the augmentation occurs on D,,  which is a tree T, with 
more than one vertex (see Operation 1). We have c(Tb)  = - c ( T , ) >  0 and 
yLf = yet - c(T,)  3 0 by property (a) of tree partitioning. Thus we have EF- = 0 
after Step 2 since E:- = 0 by property (a). Now if E:- # 0, then E;- # 0 and it 
will be necessary to cut white branches from Tb. However, each of these 
branches yields a tree whose pieces belong to either X or 9’. Finally, after 
cutting such branches, the tree f,’ that remains has = 0, for if there existed 
eEEE- in Fm then in a subtree of T, during the partitioning algorithm, we 
would have had e E E:-, which is not possible since such branches would have 
been cut. Thus the collection of trees {f,,, . . . , f , k }  generated from T, have all 
of their pieces contained in members of Y U N ,  6 = 9\{DJ and d(9)  - d ( $ )  = 

(b) Suppose the augmentation occurs o n  D,, which is a branch I?,, of T, (see 
Operation 3). The deficiency of the vertices in the subtree T :  has not changed 
since Ti was partitioned as if Be, had been cut. The argument that the 
deficiency of the vertices in Be, is reduced to zero is identical to the argument in 

w ( B ) -  w(P)= -c (T , )>O.  
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(a) of this proof. Hence 9 = 9\@1} and d ( 9 ) -  d ( 6 )  = w(@)- w(p) = -ye > 0. 
(c) Suppose the augmentation occurs on D,, which is a tree T, = {u,} and u, is 

attached to T, by e' = (u,, u,) to obtain Ti (see Operation 2). Clearly, DI g 6. 
To show that the deficiency of the collection of vertices of T:  following Step 5 
is not larger than the deficiency of the vertices of T, prior to Operation 2, it 
suffices to prove that c ( f s ) ~  c(Ts) and ie 2 ye V e E P&. 

After Operation 2 we have y: - ye = w, > 0 V e E P:,, and c(T:) -  c(T,) = w,. 
Thus, it suffices to show that if any white branches are cut in the partitioning 
procedure, j e  3 yb - w, V e E P:., and c ( f s )  c (T:) -  w,. We have ye 2 0 V e E 

P;p in Ts, which implies y: 2 -w, V e E P r p  in T:.  The result now follows since 
the change of dual variables in the cutting of white branches implies c ( ~ ) z  
c (T: )+  min{y',: e E P&} and V e E P:., ye 2 yL+ min{yb: e E P$}.  0 

Proposition 3. If an iteration involves a degenerate operation (Step 4) and a 
member of 9 is connected to 

(a) a member of 9, then d ( @ )  > d ( 9 )  (deficient-saturated connection); 
(b) a member of N, then d ( $ )  = d ( 9 ) ,  191 = 191 and I{v E fi,: 6; E $}I > 

(c) a member of 9, then d ( $ )  = d ( 9 )  and 161 < 191 (deficient-deficient 
[{v E D,: Di E 9}1 (deficient-neutral connection); 

connection). 

Proof. We assume that D, is joined to either D2, NI or S1, where the latter 
element belongs to the tree T,, to  form the tree T:. Without loss of 
generality, we can assume that D, is a tree T, since if it were a branch Be, of T,, 
the deficiency of the vertices in the subtree T:  would not change. Thus, we are 
dealing with Operation 4 and T, is joined to 7'' by the edge 2 = (v, u h ) .  

In T:, PT, = PYh U P &  U {i?} and P'& = PZh u PTP. First we will show that no 
white branches are cut in the partitioning of Ti. In Ti,  V e E PTh U {e} we have 
y I. = ye - c(T,) -c(T,) > 0 since ye 3 0 by property (a) of partitioning; V e E 
PEP we have y: = ye - c(T , )>  0 by property (d) of partitioning. Thus yL > o  
V e E P;' so that if no temporary dual variable adjustments occur, n o  white 
branches will be cut. Now suppose that Bel is the first black branch of T: that 
yields a temporary dual variable adjustment. Consider el = (vq, 0,) E P:,h SO that 
only dual variables on the path Ps,t change. We have V e E PTr, ye = y: + y:, = 

ye + ye,. Since ye a 0, qe < 0 implies ye, < 0. But ye < 0 and yel < 0 imply that Be 
would have been cut when T, was partitioned. Now suppose that el E PTp; 
V e E P:h U (2) we have ye = ye + ye, > 0 since ye 3 0 by property (a) and y, > 0 
by property (b). Finally, V e E P:, f l  Pkp we have ye = ye + ye, > 0 by property 
(e). The same argument applies to multiple, temporary dual variable changes SO 

we have shown that no branches will be cut from Ti in Step 5.  
Suppose that vh belongs to  S, E 9 By property (f), S1 contains us. T, may also 
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contain members of 9 U N,  but since these members would have no effect on 
the change in deficiency, it suffices to assume that T, = S1, which is notationally 
easier to treat. To show that the deficiency of the collection of vertices in 
D1 U S1 is less than -c (T , ) ,  it is sufficient to show that y :  > c ( T , )  V e E P'& and 
c(T:)  > c(T,).  We have y:  = ye + c(T,)  > c(T,) V e E P& since ye > 0 by pro- 
perties (a) and (b). We have y : =  y e + c ( T , ) > c ( T , )  V e € P ; , h  and c ( T j ) =  
c ( T , ) +  c(T,)  > c(T,)  since ye > 0 and c'(T,)> 0 by property (g). Since P:,, = 

Pyp U P:,h, the proof of (a) is complete. 
Now suppose that vh belongs to NIEN. T, may contain members of 9 

attached to N1 and a member of Y attached to N1 as explained in property (f) 
and illustrated in Fig. 4. However, these members would have no effect on the 
change in deficiency so it suffices to treat the notationally simpler case T, = Nl. 
To show that the deficiency of the collection of vertices in D1 U N ,  equals 
-c (T , ) ,  it is sufficient to show that y :  2 c(T,)  V e E P:,, and c ( T : )  = c(T,) .  We 
have yk > c(T,)  V e E P;p as explained above. We have y', = ye + c(T,)  5 c(T,) 
V e E P:,h and c ( T : )  = c ( K )  + c ( z )  = c ( r )  since ye 3 0 and c(  Ts) = 0 by property 
01). Furthermore, min{y',: e E Pyp} > c(T,)  = c(T:)  which implies that a member 
81 of G will be formed that contains D1 and at least the edge C = (up u h ) ;  the 
remainder of Nl will be put in N. Thus 8, has the same deficiency as D1, but a 
larger number of vertices, which completes the proof of (b). 

Finally, suppose that Oh belongs to g 2 €  97. As in the two previous cases, 
other members of T, would have no effect on the change in deficiency so we 
treat the case in which T, = D2. To show that the deficiency of the collection of 
vertices in D1 U D2 equals -c (T, ) -  c(T,) ,  it is sufficient to show that y:  > c ( T , )  
+ c(T,) V e E P:, and c ( T : )  = c ( T ) +  c(T,). We have y :  > c(T,) V e E PTP as 
explained above, which implies yb > c(T,)  + ~ ( 7 " )  since c(T,) < 0. We have 
Y :  = ye + c ( T )  > c(T, )+  c(T,) V e E P;,h since ye > c(T,).  Since c(T:) = 

c(T,)  + c(T,)  < min{y:: e E P;,,}, dl = D1 U D2 U (2) becomes a member of 9 
with deficiency equal to -c (T , ) -  c (T , ) ,  which proves (c). 0 

Assume that w, is an integer for all u, E V. Let M = Xrr:o,EV w, and n = I Vl. 

Theorem 1. The algorithm requires at most (n  - l)M iterations and its running 
time is O(n3M).  

Proof. Initially d ( 9 )  = M and each augmentation and deficient-saturated con- 
nection reduces d ( 9 )  by a positive integer. Therefore, the number of these 
iterations cannot exceed M. Between these iterations there can be a sequence 
of deficient-neutral and deficient-deficient connections. Suppose following a 
reduction in d ( 9 ) ,  we have 191 = kl, and the members of 9 collectively contain 
k 2  vertices, k z a k l .  Then from Proposition 3(b) and (c), prior to the next 
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decrease in d (  ), there can be at most n - kz deficient-neutral connections and 
k l  - 1 deficientdeficient connections. Consequently, the length of such a 
sequence is bounded by kl  - 1 + n - kZ < a, and the total number of iterations 
is bounded by (n - 1)M. 

Each dual change involves O ( n )  calculations to change the dual variables 
along some path, and the number of dual changes (including temporary ones) 
per iteration is also O(n) since there can be one for each tree edge. The 
remaining work of an iteration, e.g., changing the packing is also O(n). Hence 
the running time per iteration is O(n2) and the total running time is 
o ( ~ ~ M ) .  

Observe that Theorem 1 still applies if we modified the algorithm by 
removing the priority on augmentations. In other words, it is not necessary to 
search for the existence of augmentations. So long as 9# 0, a completely 
arbitrary choice of one of its members suffices in Step 1 to obtain the result of 
Theorem 1. 

7. A scaling method for weighted vertex packing problems 

Here we use a scaling method developed by Edmonds and Karp [5] for 
transportation problems and show that by a recursive adjustment of the 
weights the running time of our algorithm becomes polynomial in the problem 
input. 

Define 1 by 

and change the weight w, to wy= Lw,/2'], for all j. From (7.1) we have 
wy E (0, 1). The weighted vertex packing problem on G with weights {w;}  is a 
cardinality vertex packing problem on the subgraph Go = ( V O ,  Eo), where 

= {v, 1 w," = 1). Hence, we can solve this problem with our simplex method in 
at most n2 steps. Let Po be the optimal packing and P the spanning forest 
obtained at optimality. 

and a spanning forest F1-l 
that represent an optimal solution to the weighted vertex packing problem with 
weights (wj-'}. Then define new weights by w) = [w,/2'-'], for all j -  Now we solve 
the new problem with weights w f  for all j .  The packing PZ-l and the forest F1-' 
form a feasible basis for this problem, since only the objective function has 
been changed. 

For i = 1,2, . . . , 1, suppose we have a packing 
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Proposition 4. Let d, be the deficiency of the optimal solution (PI-', F'-') with 
respect to the problem with weights w; for all j .  Then d, < n, i = 1,2,  . . . , 1. 

Proof. For all j ,  2wj-I s wi s 2wj-I + 1. With the weight 2wj-I on  vj for all j ,  
(P', F"') is an optimal solution; hence the deficiency is zero. Let D1, . . . , Dq 
be the members of 9 obtained from the new weights. We will show that 
d(Dj)  s IDj n Pi-*1 for all j ,  where Pi-' = v\Pi-'. Suppose with respect to the 
forest P', Dj is in a black branch Be. Let Be,, . . . , Be, be the white tl-anches in 
Be such that Dj = Be\u;=,Be,. Note that r may be zero, i.e., Dj = Be. 

We write for a subset S C V, w ' ( S )  = C j : v j E s  wi and wi-'(S)  = Cj:ujE~  wj-'.  
Then 

With the weights wj- ' ,  the white branch Be, was not cut; hence, 

Combining (7.2) and (7.3), we get 

where ye is the value of the dual variable associated with Be in the optimal 
solution ( P I ,  P'). Since ye 3 0, d ( ~ ~ )  < loj n Pi-']. 

Therefore, the total deficiency di is given by 

a a 

The same argument applies if Dj contains a root of a tree. 

Since, for i = 1, . . . , 1, the initial deficiency in the ith problem is bounded by 
n, the number of iterations for the ith problem is bounded by n2. Therefore, we 
have the following theorem. 
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Theorem 2. By the recursive scaling method, the algorithm finds an optimal 
solution in at most nZ(Z + 1)  iterations. 

Of course, it would be nice to have a primal simplex algorithm whose 
running time is independent of the vertex weights. We expect that either the 
algorithm given or an appropriate modification of it enjoys this property and 
hope to obtain such a result. 

8. Relation to the primal simplex method 

The algorithm that has been given is a primal 'simplex-like' method. It 
maintains a basic feasible solution to the linear probram 

max wx 

A x + I s = l ,  x , s S O  

where A = (a l , .  . . , a,,) is the m x n edge-vertex incidence matrix of G, I = 

(h l , .  . . , h,) is an m x m identity matrix, 1 is a vector of ones, and w = 

(wl, . . . , w,). xi is the variable for vi, j = 1, . . . , n, and si is the slack variable for 
eh i =  1, . .  . ,  m. 

Each operation given in Section 3 corresponds to a primal simplex pivot in 
the sense that the pivot element in the simplex tableau is positive. We will 
describe this result without all of the details; these can be found in [lo]. 

We characterize a basic feasible solution by the basis matrix B = (b,, . . . , b,) 
where, without loss of generality, we assume that bi = ah i = 1, . . . , k ,  bi = hi, 
i = k +  1 , .  . . , m. Thus the set of vertices whose variables are basic and 
non-basic, respectively, are VB = {v l ,  . . . , vk} and VN = { v ~ + ~ ,  . . . , v"], and the 
set of edges whose slack variables are basic and non-basic, respectively, are 
EB = {ek+l, . . . , em} and EN = {el, . . . , ek}. 

Proposition 5. The graph F = (V, EN) is a spanning forest of G, with the 
collection of trees { T :  vi E v"}. contains vi E VN and is alternating in the 
sense that each of its edges joins a white vertex to a black vertex. 

For v, E V N  let ii, = B-la, and for ei E EN let 6 = B-'hj. Since B is totally 
unimodular, all of the non-zero components of 5, and h; equal -tl. Let 
2, = (al ,  . . . , Zm,)T and hi = (hl ,  . . . , hmi)T. 

- -  - 

Proposition 6. (a) For i = 1, . . . , k ,  cj, = 1 (-1) if and only if vi is a black (white) 
vertex of T,. 
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(b) For i = k + 1, . . . , m, iii, = 1 (-1) if and only if ei E EB meets a single 

(c) For i = 1, . . . , k, hii = 1 (-1) if and only if vi is in Be,, and vi and Be, are of 

(d) For i = k + 1, .  . . , m, hii = 1 (-1) if and only if ei E EB meets a single 

vertex of 7', which is white (black). 

the same (opposite) color. 

vertex of Be, and that vertex is of the opposite (same) color as Be,. 

Let wB= (wl,. . ., wk, Ok+l,. . . , O m ) ,  Wr = wr- wBiir for v r E  VN and z j =  
- w B h  for ej E EN. These are the reduced costs in the simplex method. The 
following result is a direct consequence of Proposition 6. 

Proposition 7. W, = -c(Tr) for all v, E VN, Fj = -ye, for all ej E EN. 

Propositions 6 and 7 provide the characteristics of the simplex tableau 
needed to describe the operations of Section 3 in linear programming terms. 
These are given in the following proposition. 

Proposition 8. (a) Operation 1. it, > 0; si = 1 for all i E {k + 1, . . . , m }  such that 
iii, = 1 (both ends of ei are white vertices); there exists p, 1 < p  k such that 
x, = iip = 1 and (up vr) E EN. The simplex method executes a non-degenerate 
pivot by making x, basic and x, non-basic. 

(b) Operation 2. W,= w,>O; i i i r = O ,  i = 1, .  . . , k ;  si = 1 for all i E  
{k + 1 , .  . . , m }  such that iii, = 1; there exists i*,  k + 1 s i* s m, such that 
iii*, = 1. The simplex method executes a non-degenerate pivot by making x, 
basic and si* non-basic. 

(c) Operation 3. Fi > O ;  Be, is a black branch with root vt so that i i r j  = xt = 1; 
si = 1 for all i E {k + 1, . . . , m }  such that ii, = 1. The simplex method executes a 
non-degenerate pivot by making sj basic and x, non-basic. 

m, such that iii=, = 1 and 
si* = 0 (the end of ei* not in T, is black). The simplex method does a degenerate 
pivot by making v, basic and si* non-basic. 

i* G m, such that iip, = 1 and 
si* = 0. The simplex method does a degenerate pivot by making si basic and si* 
non-basic. 

(f) Operation 6. Bej is a white branch with root ur so that i i r j  = 1 and Xr = 0. 
The simplex method does a degenerate pivot by making sj basic and Xr 

non-basic. 

(d) Operation 4. W,  > 0; there exists i*, k + 16 i* 

(e) Operation 5. Fj > 0; there exists i*, k + 1 

Operations 1-5 are done in Steps 2-4 of the algorithm. They correspond to 
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choosing a non-basic variable with positive reduced cost and pivoting. Since, in 
Step 1, all white branches have non-positive reduced costs and, as noted 
previously, it is not necessary to  do augmentations prior to degenerate opera- 
tions, these are standard simplex steps. However in Step 5, the pivoting 
(Operation 6) is non-standard. Pivoting is only done on white branches, which 
must be distinguished, and these (because of the temporary dual variable 
adjustments) may have non-positive reduced costs. 

We close by observing that our work can also be interpreted as a dual 
simplex method for (ELP), and thus can be considered as being complementary 
to recent developments on primal simplex algorithms for network flow prob- 
lems by Cunningham [3,4] and Ban, Glover and Klingman [l]. 
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We consider zeroone solutions to inequality systems having inequalities involving only 
two variables. Special cases include the independent node problem, the node covering 
problem, and the set packing problem. We develop a unified framework using a class of 
bidirected, transitively closed graphs and show properties of the zeroone solutions in terms 
of these graphs. A type of clique inequality is defined and shown to yield facets of the 
convex hull of zeroone solutions, extending well-known results for the independent node 
problem. For the latter problem, the development of perfect graphs has been important with 
regard to characterizing polytopes which have only zero-one vertices. We place our work in 
that setting, give some results, and conjecture some properties of perfect graphs involving 
our more general graph structures. 

1. Introduction 

We consider inequality systems with zero-one variables where the in- 
equalities have only two variables per inequality. Without loss of generality, 
there are four possible inequalities for any pair xi, xj of variables: 

xi + xj 3 1 ,  

xi - xj 3 0 ,  

-xi + xj 2 0 ,  

-xi - xi 3 - 1 .  

Our main object of study is the convex hull of tero-one solutions to inequality 
systems made up of inequalities of this type. 

Besides being interesting as inequality systems in their own right, as we 
consider them here, such inequalities arise as logical implications of general 

* Supported by Sonderforschungsbereich 21 (DFG), Institut fur Operations Research, Uni- 
versitat Bonn. W. Germany. 
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zero-one programming problems and have been called degree-two constraints 
[l, 7,8, 121. For example, Guignard and Spielberg [7] build up logical in- 
equalities of this and more general types and exploit them in limiting and 
guiding the enumerative search in solving zero-one problems. Their prop- 
agation procedure is used to fix variables or to finally give what we call a 
transitively closed graph. Hammer and Ngyen [8] used degree-two inequalities 
as a key in their M O S S  procedure. 

We will represent these systems of inequalities by a certain type of graph, 
called bigraphs, which are similar to the bidirected graphs for the general 
matching problem [4]. 

A case of special interest is the independent node problem. In that problem, 
a zero-one variable xi is associated with node i, for each node i, and the 
inequality xi + xi 6 1 is required if the edge [ i ,  j ]  is present. The nodes i having 
xi = 1 and satisfying these inequalities form an independent set of nodes, i.e., a 
set of nodes such that no edge connects any two nodes in the set. Any set 
packing problem [ll] can formally be converted to an independent node 
problem on the ‘intersection graph’, i.e., the graph with a node i for the ith 
subset and an edge [i, j ]  if the ith and jth subset have a nonempty intersection. 

The node covering problem involves constraints xi + xi 3 1 for every edge 
[i, j ] .  The nodes with xi = 1 form a node cover, i.e., every edge meets at least 
one such node. The complement of a node cover is an independent set, and 
clearly a node cover containing the minimum number of nodes among all node 
covers for a given graph is the complement of an independent set containing 
the maximum number of nodes among all independent sets of the given graph. 

Although a general set packing problem can be converted to a node packing 
problem via the intersection graph, the same is not true of set covering. In 
the case of set packing, there are many families of sets which will give the same 
intersection graph. The intersection graph, and its associated cliques to be 
discussed in Section 3, gives a canonical representation of any set packing 
problem. 

2. Degree-two inequalities and bidirected graphs 

A bidirected graph G = (N, E) is a set N of nodes and a set E of edges 
where each edge e E E has two ends. Each end of an edge meets a node i E N 
and has an associated sign. The signs for the two ends of an edge need not 
agree. Thus, an edge e is denoted as the unordered pair [i, j ]  where i and j are 
the two nodes met by the ends of edge e. In addition, the signs of the ends of 
the edge lead to three types of edges: 
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(+, +) edges 
(-, -) edges 
(+, -) edges 

e = [ i ,  j ]  with two plus ends, 
e = [ i ,  j ]  with two minus ends, 
e = [ i ,  j ]  with a plus end at i and a minus end at j. 

A (-, +) edge of a bidirected graph G is defined accordingly. Note that edges 
of the form [i, i] may present in the graph. We call such edges loops. 

This definition is the same as in [4]. Here, however, we have a different use 
of such graphs. A system of inequalities each of which has two zero-one 
variables can be represented by a bidirected graph having a node i for each 
variable xi and an edge for each inequality: 

xi + xi 3 1 
-xi  -xi 3 -1 

xi - xi 3 0 

gives a (+, +) edge [ i ,  j ] ,  

gives a (-, -) edge [ i ,  j ] ,  

gives a (+, -) edge [ i ,  j ] .  

Thus, for any inequality system with inequalities of these types there is a 
unique bidirected graph, and any bidirected graph represents such an in- 
equality system. 

A loop [i ,  i ]  of a (+, +) type corresponds to the inequality xi + xi 5 1. In 0-1 
variables, this inequality implies xi = 1. Similarly, a (-, -) loop gives -xi  - xi 2 
-1, or xi = 0. A (+, -) loop does not give an inequality since it would give 
xi - xi 3 0. 

Two edges e and e’ may meet the same pair of- nodes [ i ,  j ]  if they are of 
different type, e.g., if e is a (+, +) edge and e’ is a (+, -) edge. That is, an 
inequality system may well include the two distinct inequalities: 

x i + x j a l  and x i - x j 2 0 .  

Note that the last two inequalities imply a (+, +) loop at node i. 
Given a bidirected graph G, we form the transitive closure G* of G, 

inductively, by adjoining edges to G as follows: if node j has two distinct 
incident edges e and e‘ with a plus end of e meeting j and a minus end of e’ 
meeting j ,  then the new edge, if not already in G, to be adjoined to G has as its 
two ends the other end of e and the other end of e’. To be more explicit, 
suppose the edge e has the other end meeting node i and edge e’ has the other end 
meeting node k. Then, the new edge e* has one end meeting node i, with the same 
sign as the end of e meeting i, and the other end of e* meets node k with the same 
sign as the end of e’ meeting k (cf. Fig. 1). It is allowed that i be equal to k or that i 
be equal to  j or that j be equal to k, but edges e and e‘ are required to be distinct. 
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e’ 

Fig. 1. 

We need not adjoin an edge already present with the same sign pattern 
because that would correspond to writing the same inequality twice. Similarly, 
a (+, -) loop can be dropped because it corresponds to the trivial inequality 

A transitively closed graph is a bidirected graph G such that G is equal to its 
transitive closure G*. That is, all of the edges e* which might be required to be 
adjoined to G are already present in G. 

A simple bidirected graph is a bidirected graph with no loops and no two 
edges meeting the same pair of nodes. 

To obtain a simple, transitively closed graph from a transitively closed graph 
we carry out the following reductions. mere is no need to repeat the process 
of forming the transitive closure on the reduced graph.) 

First, if a node i has a (+, +) loop, then the inequality x, + x, 3 1 must be 
satisfied, so any 0-1 solution must have x, = 1. Likewise, if (-, -) loop is at 
node i, then -x, - x, Z= -1,  so x, = 0 is satisfied by every 0-1 solution. In this 
case, the node i and all incident edges can be deleted from the graph. Clearly, 
if a node i has both a (+,+) loop and a (-,-) loop, then there is no 0-1 
solution to the problem. In the next section we prove that there is a 0-1 
solution whenever the transitive closure has no node with both a (+, +) loop 
and a (-, -) loop. 

We also show that if the transitive closure has no loops at all, then for any 
node i there is a 0-1 solution with x, = 0 and another 0-1 solution with X, = 1. 

Second, if there is a (+, -) edge [i, j ]  and a (-, +) edge [ i ,  j ] ,  then x, 5 x, and 
x, 3 x, so x, = x, and we eliminate one variable. In the graph, we ‘shrink’ the two 
nodes [i, j ]  together as in Fig. 2(a). Likewise, if there is a (+, +) edge [i, j ]  and a 
(-, -) edge [i, j ] ,  then x, + x, 3 1 and -x, - x, 3 - 1 hold and thus x, = 1 - x,. We 
can eliminate x, using the substitution x, = 1 - x,. Fig. 2(b) illustrates this case. 

Third, if there is a (+, -) edge [ i , j ]  and a (+, +) edge [i,j], then we have a 

x, - x, 25 0. 
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(+, +) loop for node i. Likewise, if there is a (+, -) edge [i, j ]  and a (-, -) edge 
[ i , j ] ,  we have a (-, -) loop for node j .  This shows that we can always work 
with simple, transitively closed graphs. 

We are interested in these graphs because we want to represent inequality 
systems. Thus, we can consider that a duplicate (+, +) edge [i, j ]  can be 
eliminated in the same way that an inequality x, + x, 3 1 can be eliminated if it 
has already appeared in the inequality system. In the same way, changing a 
variable x, to x :  = 1 - x, does not essentially change the inequality system. This 
change is represented in the graph by changing all the signs of ends of edges at 
a given node. That is, changing x, to 1 - x, changes each plus end meeting node 
i to a minus end and each minus end meeting node i to a plus end without 
affecting the transitive closure of the bidirected graph. 

Therefore, we can say that our graphs are not essentially changed by 
duplicating an edge, including the signs of its ends, or by changing all of the 
signs at a node. 

The construction of the transitive closure of a given bidirected graph G can 
be done by ‘scanning’ each edge of the transitive closure G* exactly once. We 
first state what the main step, scanning an edge, consists of. 

Scan edge e = [i, j ] :  If e has a plus endat node i, look at every other edge e’ with 
a minus end at i and adjoin e*, as required in the definition of transitive closure, if 
it is not already present. If e has a minus end at node i, then look at every other 
edge e’ with a plus end at i. Do the same for node j .  

We can start with a list of edges in any order and start scanning each edge in 
turn. New edges e can be adjoined to the bottom of the list. Terminate when 
every edge, either originally present or adjoined, has been scanned. 

To show that this simple scanning procedure produces the transitive closure 
requires only showing that, for the graph produced, every pair of edges e and 
e‘ meeting node i with oppositely signed ends eventually gets looked at. But 
scanning the edge e or e’ further down on the list must result in looking at the 
pair because at that point the other edge is present. 

Since the order of work in the scanning step can be kept down to O ( n )  and the 
number of edges in G* is at most O(n2), the total work required to get the 
transitive closure of a bidirected graph is at most O(n’), where n = INI. 
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3. Bigraphs 

For this section we concern ourselves with simple, transitively closed 
bidirected graphs. Call such graphs bigraphs. A 0-1 solution to the inequality 
system associated with a bigraph G is called a 0-1 solution for G. 

Proposition 1. The subgraph Gs induced b y  a subset S of the nodes of a bigraph 
G is a bigraph. 

Proof. Clearly Gs is bidirected and simple. Gs is transitively closed because 
every edge of the transitive closure of Gs is an edge of the transitive closure of 
G. Since G is a bigraph the proposition follows. 

The following two constructions are used frequently in both this section and 
the next. 

Construction 0 (Assigning a variable the value 0) (cf. Fig. 3). For any bigraph G 
let T be the subset of nodes of G consisting of a node i and all of its 
neighboring nodes j met by an edge [ i t  j ]  having a plus end at node i and let 
R = N - T. For k E T we construct a partial solution x T  as follows: 

0 if k = i or [ i ,  k ]  is a (+, -) edge, 
1 if [i, k] is a (+, +) edge. Xk = ( 

Fig. 3. Construction 0. 
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Construction 1 (Assigning a variable the value 1) (cf. Fig. 4). For any bigraph G 
let U be the subset of nodes of G consisting of a node i and all of its 
neighboring nodes j met by an edge [i, j ]  having a minus end at node i and let 
S = N - U. For k E U we construct a partial solution xu as follows: 

1 if k = i or [ i ,  k ]  is a (-, +) edge. 
0 or [ i ,  k]  is a (-, -) edge. xk = [ 

xi = 1 k 
Fig. 4. Construction 1. 

Proposition 2. Let G be a bigraph and let i E N, T, R, S and U be defined as in 
Construction 0 and Construction 1, respectively. 

(i) If x" is a 0-1 solution for the subgraph G R ,  then x = (x', x") is a 0-1 solution 
for G. 

(ii) If xs is a 0-1 solution for the subgraph Gs, then x = (xu, x") is a 0-1 solution 
for G. 

Proof. We prove part (i) of the proposition; the proof of part (ii) is similar. By 
construction X' is a 0-1 solution for GT. Hence it suffices to show that the 
inequalities corresponding to edges e = [i, k] with j E T and k E R are satisfied 
by X' and, more precisely, that they are rendered superfluous by the choice of 
x'. We consider the four cases that are possible and show that only two of 
them can occur in the bigraph G: 

Case 1. xi = 0 and edge e has a plus end at j ;  
Case 2. xi = 1 and edge e has a plus end at j ;  
Case 3. xi = 0 and edge e has a minus end at j; 
Case 4. xj = 1 and edge e has a minus end at 1. 
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In Case 2 the corresponding inequality is either xi - xk 2 0 or xi + xk a 1. With 
xi fixed to the value 1, the inequality is satisfied and reduces to xk G 1 or xk 2 0. 
Thus in Case 2 the assertion follows. In Case 3 the assertion follows by an 
analogous argument. 

Suppose now Case 1 occurs. Node j cannot be equal to the node i chosen in 
Construction 0 because otherwise k E T holds. Since j E T, j #  i and xi = 0 
hold, the edge [i, j ]  is a (+, -) edge. Since.the edge e = b, k ]  has a plus end at j 
and since G is transitively closed, it follows that the edge e* = [i, k ]  is in G and 
that it has a plus end at node i. Hence, k E T follows, contradicting k E R = 

N -  T. Thus, Case 1 cannot occur. By analogous reasoning, Case 4 cannot 
occur. Hence, we are either in Case 2 or 3 and taking any 0-1 solution xR for 
GR yields a 0-1 solution for G when combined with xT. Proposition 2 follows. 

We remark that this proposition is true only because G is transitively closed, 
which means intuitively, that the implications of setting xi = 0 (or 1) have 
already been propagated through the graph, see [7] .  

Proposition 2 does not assure that there is a 0-1 solution for G because there 
may be no 0-1 solution for GR. However, the existence of a 0-1 solution’for a 
bigraph G is easily proven from Proposition 2 by induction. In fact, more is 
true. 

Proposition 3. Let G be a bigraph and k E N be any node of G. Then there exist 
0-1 solutions xo and x’ for G such that x9 = x i  for alt j #  k,  x i  = 0 and x i  = 1 
hold. 

Proof. Let W be the set of nodes of G which are not connected to node k by 
an edge of G. We apply, e.g., Construction 0 to any node i E  W and continue 
to do so until we are left with a subgraph G’ with node set N’ such that k E N’ 
and every node of G‘ is linked to the node k by some edge of G’. If i E N‘, 
i f  k,  is linked to node k by an edge having a plus end at node i we set xi = 1 
and use Construction 1. It follows that node k is in the set S that results and 
thus remains unfixed. If i E N’, i# k ,  is linked to node k by an edge having a 
minus end at node i we set xi = 0 and use Construction 0. It follows that node k 
is in the set R that results and thus remains unfixed. In either case we can 
apply Construction 0 or 1 again and repeat until node k is an isolated 
node. Thus xk can be assigned arbitrarily the value 0 or 1 and Proposition 3 
follows. 

Proposition 4. Let G be a bigraph and let i f  j be any two nodes of G. For any 
assignment of 0-1 values to xi and x, which is not excluded by an edge of G (if 
present) there exists a 0-1 solution for G. 
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Proof. Consider first the case where there is no edge [ i ,  j ]  in G. Then, we prove 
the proposition by first applying Construction 0 or 1, as required, for node i 
and following with Construction 0 or 1, again as required, for node j ,  which will 
be in GR or Gs, as the case may be. Since there is no edge [ i ,  j ] ,  Construction 0 
(or 1) for node i will leave node j in GR (or Gs) so that either construction can 
then be applied to node j .  

To prove the proposition, in general, requires considering several cases. We 
consider the case of a (+, +) edge e = [ i ,  j ]  and leave the other cases to the 
reader. The values excluded by a (+, +) edge for [ i ,  j ]  are x, = 0 and x, = 0 since 
the corresponding inequality is x, + x, == 1. 

Thus, we need to show that all three of x, = 0 and x, = 1, x, = 1 and x, = 0, 
x, = 1 and x, = 1 can occur in 0-1 solutions for G. If Construction 0 is applied 
to node i, then a 0-1 solution for G having x, = 0 and x, = 1 will be produced. 
Applying Construction 1 to node i leaves node j in GS so that either x, = 0 or 
x, = 1 is possible in a 0-1 solution for Gs. Using Proposition 2, there are 0-1 
solutions for G with x, = 1 and x, equal to either 0 or 1, completing the proof. 

Proposition 4 shows that the transitive closure of G gives all of the possible 
implications on pairs of variables taking on 0-1 values. This result is even 
stronger than saying that there are no new inequalities on pairs of variables 
which can be derived as non-negative combinations of the existing inequalities. 

Theorem 5. The convex hull of 0-1 solutions for a bigraph G is a full- 
dimensional polytope in R". 

The proof of Theorem 5 follows directly from Proposition 3. 

4. Clique facets 

A clique in a graph is a maximal, completely connected subgraph of the 
graph. Thus, the set S of nodes of the clique has the property that for any pair 
of nodes in S, there is an edge of G meeting that pair of nodes; and adjoining 
another node of G to  S would cause that completely connected property to no 
longer hold. 

Let G be a bigraph with node set N and let Gs be a completely connected 
subgraph of G with node set S. Define S+ c S (S- c S, respectively) the subset 
of nodes of Gs which are met by an edge of Gs having a plus end (a minus end 
respectively). Clearly, S = S+ U S- holds, but it is possible that S ,  f l  S- f 0. We 
call Gs (or simply, S )  a biclique in G if: 

(i) Gs is completely connected; 
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(ii) S+ n S- = 0 holds; 
(iii) Gs is a maximal subgraph of G with respect to  the requirements (i) and 

(ii). 
For the bigraph shown in Fig. 5, the nodes 1, 2, 3 form a biclique with 
S+ = {1,3} and S- = {2}. Although nodes 1, 2, 3, 4 form a clique, they do not 
form a biclique because node 4 is met by both plus ends and minus ends of 
edges connecting node 4 to nodes 1, 2, 3. Similarly, nodes 1, 2, 3, 5 form a 
clique but not a biclique because now node 2 is met by both plus ends and 
minus ends of edges connecting it to nodes 1, 3, 5. Nodes 1,2,  3, 6 do not form 
a biclique because they are not completely connected. Thus, nodes 1, 2, 3 are 
maximal with respect to the required property and do form a biclique. 

A biclique of G with node set S = S+ U S- is called a strong biclique of G if 
there does not exist a node k &E S with edges [ k ,  i ]  for all i f S in G such that 
the edge [ k ,  i ]  has a plus end meeting i if i E S+ and a minus end meeting i if 
i E S- .  In Fig. 5, nodes 1, 2, 3 do not form a strong biclique because of node 4. 
The strong bicliques in the graph shown in Fig. 5 are {1,3,4}, {1,3,6}, {2,4}, 
and {2,5}. 

v 
Fig. 5. 

For a bigraph G and a biclique of G with nodes S = S+ US-, define the 
corresponding clique inequality to be the inequality 

Proposition 6. Every 0-1 solution for a bigraph G satisfies the clique inequalities 
of G. 

Proof. The clique inequality for S = S+ U S- can be written as 

c (l-Xj)+ 2 X j S l .  
jES+ j € X  

In order to violate it, there must be one of the following possibilities: 
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(i) x i = l a n d x j = l f o r i E S - a n d j E S - ;  
(ii) x i = l a n d x j = O f o r i E S - a n d j E S + ;  
(iii) xi = 0 and xj = 0 for i E S+ and j E S,. 

Each of these three possibilities is explicitly excluded by an edge of G, as 
illustrated in Fig. 6. 

Proposition 7. For a bigraph G and a biclique with node set S = S+ U S- of G, if 
T is a subset of S, then the inequality 

where T+ = T n S+ and T- = T n S-,  is satisfied by every 0-1 solution for G. 
However, this inequality for T is implied by the clique inequality corresponding to 
S and the linear inequalities 0 S xi G 1, for all j E N. 

Proof. The fact that every 0-1 solution satisfies this inequality corresponding 
to T has the same proof as for Proposition 6. 

The second assertion is shown by adding the inequalities 

c x j -  2 xj=++/-l, 
j€S+ j€S- 

-~ja-l ,  j E S + - T + ,  

xjaO, j € S - -  T- ,  

to derive the inequality corresponding to  T. 

Proposition 8. If a biclique S of a bigraph G is not a strong biclique, then there 
exist two bicliques Cl f S and C2 f S such that the clique constraint correspond- 
ing to S is implied by the two clique inequalities corresponding to Cl and C,. 
Thus, the clique constraint for S is implied by the system of strong biclique 
inequalities. 
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Proof. Suppose the biclique S with nodes S = S+ US- is not strong, i.e., there 
exists k Sr S such that the edge of [ k ,  i ]  is in G for every i € S and has a plus 
end (a minus end, respectively) at the node i when i € S +  ( i €  S-).  By the 
rnaximality of S, the node k must have some plus ends and some minus ends 
meeting k for edges [ k ,  i ] ,  i E S. Define 

T+ = { i  E S I edge [ k ,  i] has a plus end meeting k }  , 

T- = { i  E S I edge [ k ,  i ]  has a minus end meeting k }  . 

It is clear that C, = { k }  U T+ and C, = { k }  U T- are bicliques with 

CI = [ ( k )  U (S+ n T+)] U [S- n T+j = C: U Ci , 

Cz= [S+  fl T-] U [{k}U (S-  n T-)] = C; u Ci , 

being partitions of C1 and Cz so that their clique inequalities are 

Adding these two inequalities gives 

because x k  appears with a + 1 and a - 1 in the two inequalities. Hence, the first 
assertion is proven. 

To prove that the system of strong biclique inequalities suffices, let P denote 
the polytope defined by all clique constraints and the constraints 0 S xj S 1 ,  
j E N. By Theorem 5, P has dimension n because'P contains the convex hull of 
0-1 solutions. Consequently, every facet of P has dimension n - 1 .  Let ax 2 a. 
be an inequality corresponding to a biclique which is not strong. By the first 
part of the proof, there exist two clique inequalities cx 3 co and dx 2 do such 
that a = c i- d and a. = co+ do. Hence, ax = a. if and only if cx = co and 
dx = do. Furthermore, the 2 x n matrix with rows c and d has rank 2. It follows 
that ax = a0 defines a face of P of dimension at most n - 2. The second 
assertion of the proposition is, thus, proven. 

Propositions 6, 7 and 8 prove the following result. 

Theorem 9. For a bigraph G the set of 0-1 solutions to the inequality system 
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OSxj=z l ,  j E N ,  

2 xi-  C x j s I T + l - l  f o r a l l T C C a n d f o r a f l C ,  
C a biclique in G j€T+ j E T -  
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(4: 1) 

are exactly the 0-1 solutions for G. Furthermore, the inequality system 

O S x j S 1 ,  j E N ,  

2 x, - 
(4.2) 

has the same (real) solutions x E R" as the (in general, considerably larger) system 
(4.1). 

xj 2 IC+l- 1 for all strong bicliques C in G 
] € C +  j € C -  

Proof. By Propositions 6 and 7 we have that every 0-1 solution for G satisfies 
(4.1). On the other hand, since every edge of G is contained in some biclique of 
G it follows by the second part of Proposition 7 that every 0-1 solution to (4.1) 
is a 0-1 solution for G. Again by Proposition 7 it follows that in the inequality 
system (4.1) we can restrict ourselves to considering bicliques only without 
changing the real solution space. By Proposition 8, if a biclique C is not a 
strong biclique, then the resulting inequality is implied by the clique in- 
equalities associated with the strong bicliques. Thus, Theorem 9 follows. 

When the bigraph G has only (-, -) edges the original inequalities are all of 
the type -xi - xj a -1, the strong bicliques are cliques in the usual meaning 
(and vice versa), and the form of the clique inequality system is of the form 
related to graphs. With respect to graphs it is known [5,10] that all clique 
inequalities define facets of the associated 0-1 polytope. 

For general bigraphs, we can ask the question whether any strong biclique 
inequality can be omitted without changing the soiution set in R". The next 
theorem answers the question in the negative. 

Theorem 10. The strong biclique inequalities are facets of the convex hull of 0-1 
solutions for the bigraph G. 

Proof. The proof follows the lines of the proof for undirected graphs [lo] but is 
more difficult. 

We must show, by Theorem 5, that there exist n affinely independent 0-1 
solution vectors satisfying the strong biclique inequality with equality. Let 
C = C+ U C- be the node set of a strong biclique and let c1 = lC+l, c2 = IC-I and 
c = ICI. Assume without loss of generality that C =  (1,. . . , c} .  Construct c1 
affinely independent 0-1 solutions for G by setting xi = 0 for exactly one i E C+ 
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at a time using Construction 0. By Proposition 3 such a 0-1 solution exists. 
Construct c2 affinely independent 0-1 solutions for G by setting xi = 1 for 
exactly one i E C- at a time using Construction 1 and invoking Proposition 3. 
The resulting c 0-1 solutions for G satisfy the clique inequality with equality 
and are affinely independent among themselves as follows from the con- 
struction of the c X c matrix on the first c columns corresponding to  the nodes 
in C. 

To complete the proof we construct 2(n - c )  0-1 solutions for G satisfying 
the inequality with equality as follows: Since C is a strong biclique for each 
node k 6 C there exist at least one node i E C such that either i E C+ and 
there is no edge [i, k] with a plus end at i, or i E C- and there is no edge [i, k] 
with a minus end at node i. In the former case, set xi = 0 and use Construction 0; in 
the latter case, set xi = 1 and use Construction 1. In either case, the construction 
fixes all xi with j E C so that the clique inequality is satisfied with equality and so 
that the node k satisfies k E R in Construction 0 or k E S in Construction 1. 

By Proposition 1, the resulting subgraph GR (Gs, respectively) is a bigraph 
and we can apply Proposition 3 to GR (Gs, respectively). Combining the 
statements it follows that for each k Sr C there exist two solutions xo and x 1  
each satisfying the clique inequality with equality and such that xy = xf for all 
j #  k, x i  = 0 and x :  = 1 hold. We list the 2(n - c )  0-1 solutions for G thus 
obtained pairwise and observe that by elementary row operation we obtain a 
(n - c) X (n  - c )  identity matrix in columns c + 1, . . . , n. Consequently, by 
construction, we have n affinely independent 0-1 solutions to G satisfying the 
clique inequality with equality and thus Theorem 10 follows. 

We note that-like in the case of set-packing polyhedra, see [lo, 11,13]-it is 
natural to look for other facet-defining structures in a bigraph G-generalizing 
the notion of odd cycles, webs, etc. Another avenue for research is a general- 
ization of the 'lifting procedure' for facets to the case of bigraphs. These 
possibilities are at present left for future research. 

5. Biperfect graphs 

In this section, we define the notion of biperfect graphs, give some examples 
and simple results, and make several conjectures. The principai conjecture is 
that the class of biperfect graphs is really the same as the class of perfect 
graphs. 

For a given bigraph G define its clique matrix M to be the matrix whose 
rows consist of the coefficient of the strong biclique inequalities. Define the 
clique polytope of G to be the set of x E W" satisfying 0 1 and satisfying x 
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the clique inequalities for strong bicliques of G. We are interested in the 
question of when every vertex of the clique polytope is a 0-1 vector. 

Another way to view the clique inequalities is to start with an inequality 
system of the form 

O = S X j S l ,  j =  1 ,...)It, 

2 aijxj 2 p i  - 1, 
n 

i = 1,. . . , r n ,  
i = l  

where every a, is 0, 1 or -1 and p, is equal to the number of +l’s among 
a,l, . . . , a,,,. When all a, are 0 and -1, we have a set packing problem, and we 
wish to generalize the clique approach and perfect graph framework [5] for that 
problem. Given an inequality system with 0, 1, -1 coefficients we can form a 
bidirected graph G by making a biclique among the nodes N = {1,2, . . . , n}  for 
each row of A = (al,). That is, put in G an edge b, k] of type (al,, a&) whenever 
there is a row i with a,# 0 and a&# 0. Then the 0-1 solutions for this 
bidirected graph G are the same as the 0-1 solutions for the original system. 
The particular right-hand side, pI - 1, required in the original system is critical 
here. The original inequality system cannot have a polytope with only 0-1 
vertices unless every strong biclique inequality is among the rows of A, that is, 
unless the clique matrix M of G is included as a submatrix of A. In general, 
that inclusion is not sufficient to assure 0-1 vertices, but the clique matrix M 
does give a smaller polytope of solutions, or a tighter linear programming 
relaxation, than the original system of linear inequalities. 

We could thus define biperfect graphs in terms of biperfect matrices which 
yield polytopes having 0-1 extreme points only but we instead follow the 
classical approach for perfect graphs [5]. 

First, let us discuss what it means to bidirect an undirected graph Go. An 
undirected graph has no sign, + or -, assigned to the ends of edges. To bidirect 
Go means to assign a plus or minus to each end of each edge, giving edges 
which may be of type (+, +), (+, -), (-, +) or (-, -). To bidirect Go to form a 
bigraph G means to bidirect Go to give a bigraph G, that is, to give a bidirected 
graph which is simple (which is sure if Go is simple) and which is equal to its 
transitive closure. The latter condition is rather stringent since, for example, we 
can only bidirect a graph Go to a bigraph G having only (+, -) or (-, +) edges 
if Go is a comparability graph [6]. Any undirected graph Go can, however, 
always be given some bidirection just by making every end a plus end or by 
making every end a minus end. Then, the resulting bidirected graph G is a 
bigraph provided only that Go was simple. We allow other bidirections, one 
could say, in between these two extreme cases. 

Given a bigraph G, we consider optimization problems of the form 
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x j = O o r l ,  j=1, . . . ,  n ,  

x xj - 

x xj - 2 xj = z 

xj 2 (S+I - 1, for all strong bicliques S = S,  U S- , 
j€S+ j € S -  

(minimize), 
j € Z +  j€Z-  

where Z+ and 2- are disjoint subsets'of N. In other words, we consider 
optimizing 0-1 solutions for G with objective functions z = Z cjxj having cj = 0, 
+1, or -1. Then, 

and Zo, Z+, 2- form a partition of the nodes. 
The linear programming relaxation replaces xj = 0 or 1 by 0 6 xj s 1. We 

form the dual linear program and consider the optimization problem of finding 
integer answers to it. This dual problem has a variable rS for each strong 
biclique and a variable Sj for each node. The constraints are 

rs 3 0 and integer for all strong bicliques S ,  

S j 3 0 ,  j = 1 ,  . . . ,  n ,  

The summations over S are sums over all strong bicliques S = S+ US-. In 
general, the objective u of the dual problem satisfies u s z for t the objective 
of the original problem for G. We say a bigraph G has the (strong) max-min 
properfy if these two objectives are equal, vide Fulkerson [5 ] .  

Define an undirected graph Go to be biperfect if every bigraph G formed by 
bidirecting Go satisfies the max-min property. 

A biperfect graph is obviously perfect because one way of directing an 
undirected graph is to make all ends be minus ends, and then the max-min 
property becomes the famous relation (maximum number of independent 
nodes) = (minimum number of cliques needed to cover all nodes) [2]. 

We conjecture that a graph is biperfect if and only if it is perfect. Some 
reasons for thinking that the conjecture may be true will be given. 

Proposition 11. Bipartite graphs are biperfect. 
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Proof. A bipartite graph has no triangles so it has no cliques other than the 
edges themselves. For a bipartite graph Go, the dual linear program for some 
bidirection of Go is 

re 2 0  and integer, 

Si 3 0 ,  

for all edges e ,  

for all nodes i ,  

\ 0, i E Z o ,  
C re- C r e - S i ~  I, i E Z + ,  

-1, i E Z - ,  

r e -  c re-2 ~i = o (maximize). 
1 e meets i 

with a - end 
e meets i 

with a + end 

e has two e has two i = l  
+ ends - ends 

A linear program of this type has integer answers to both its primal and 
dual whenever there does not exist any odd circuit [4], where here an odd 
circuit means a circuit with an odd number of edges having either two plus 
ends or two minus ends. We can obviously bidirect a bipartite graph with a 
circuit to have an odd circuit just by making all ends plus ends except one 
(cf. Fig. 7). 

Fig. 7. 

However, doing so causes a triangle to be formed in the transitive closure so 
that the resulting bidirected graph could not be transitively closed since we 
started with a bipartite graph, which has no triangles. 

In general, any bidirection of a bipartite graph in order to be transitively 
closed will have to make both ends meeting a node in any circuit either both 
plus or both minus ends. Then, the resulting circuit will not be an odd circuit as 
can be seen by a simple parity argument. Therefore, any bipartite graph is 
biperfect . 

This proof suggest the next proposition. First, define an odd-dihole to be a 
hole (i.e., a circuit with no chords) having an odd number of edges with either 
both plus ends or both minus ends. An odd hole in an undirected graph is a 
hole with an odd number of edges. Any bidirected graph with an odd-dihole 
does not satisfy the max-min property. 
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Proposition 12. A n  undirected graph Go with an odd hole has an odd-dihole in 
every bigraph G formed by bidirecting GO. Conversely, if a bigraph G has an 
odd-dihole, then the undirected graph GO formed by just dropping the + or - sign 
on each end of edges has an odd hole. 

The proof is essentially that already given in the proof of Proposition 11. 
What Proposition 12 says is that if a graph is not biperfect because some 
bigraph formed from it had an odd-dihole, then the original graph was not 
perfect because it had an odd hole. However, it says something in the other 
direction as well, namely, if a graph is not perfect because it has an odd hole, 
then every bigraph formed from it will not have the max-min property because 
of an odd-dihole. 

We conjecture a stronger version of the previous conjecture: if some bigraph 
G formed from Go has the max-min property, then GO is biperfect. That is, all 
bigraphs formed from GO have the max-min property or none does. 

A n  interesting example is given by comparability graphs. A comparability 
graph is an undirected graph such that directions can be assigned to each edge 
so that the resulting directed graph is acyclic and transitively closed. The 
ordering then given by i > j if an edge has a plus end meeting i and a minus 
end meeting j is a partial order. Such graphs (the original undirected versions) 
are known to be perfect. The strong max-min property for such graphs says 
that the maximal number of pair-wise incomparable elements in a partial order 
is equal to the minimum number of chains (linearly ordered subsets) covering 
all elements. Although a comparability graph may have several partial orders 
which can be formed by directing the edges, the incomparable elements and 
the chains are the same in all such partial orders. 

We do not know if comparability graphs are biperfect. We conjecture that 
they are. However, one way of bidirecting the edges (other than making all plus 
ends) that works is to direct the edges so as to give a partial order. The 
max-min property holds because the resulting matrix is totally unimodular, 
being a network flow matrix. The max-min property has an interesting state- 
ment here. First, define a node with a +1 cost coefficient to be a source and a 
node with a -1 cost coefficient to be a sink. Define an upper dominated set to 
be a set S of nodes such that if j E S and i > j  then i E S. The primal problem 
is to find an upper dominated set with the largest surplus of sinks minus 
sources. The dual problem amounts to finding pairings of sources to sinks by 
directed edges so that each source is paired to only one sink and the fewest 
number of sinks is left unpaired. The max-min property is easy to show from 
linear programming duality and the total unimodularity of the coefficient matrix. 

If perfect graphs are biperfect it suffices to show the max-min property for 
the directed version of the problem. The reason that this could not be used for 
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graphs other than comparability graphs is that only comparability graphs give a 
directed version which is simple and transitively closed. 
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In the ‘polymatroidal’ network flow model, capacity constraints are imposed by p l y -  
matroid rank functions on the sets of arcs directed into and out of each node. It is shown 
that a variety of matroid optimization problems can be easily formulated and solved in terms 
of this model. Among these problems are (po1y)matroid intersection, matroid partitioning, 
problems of gammoids and linking systems, and problems formulated by Iri, Krogdahl, and 
Fujishige. It is shown that simple proofs of known min-max theorems for these problems 
are easily obtained as corollaries of the max-flow min-cut theorem for polymatroidal 
network flows, previously proved by the authors. 

1. Introduction 

In the ‘classical’ network flow model, flows are constrained by the capacities 
of individual arcs. In the ‘polymatroidal’ network flow model, flows are 
constrained by the capacities of sets of arcs, where these capacities are imposed 
by polymatroid rank functions on the sets of arcs directed into and out of each 
node. Yet, as the authors have shown in another paper [lo] the essential 
features of the classical model are retained; the augmenting path theorem, the 
integral flow theorem, and the max-flow min-cut theorem all yield to straight- 
forward generalization. Moreover, a maximal integral flow can be computed 
efficiently, provided that there is a ‘feasibility’ oracle available for each capacity 
function. 

We believe that the polymatroidal network flow model provides a satisfying 
generalization and unification of both network flow theory and much of the 
theory of (po1y)matroid optimization. In this paper we demonstrate the use- 
fulness of the model by providing network flow formulations of @oly)matroid 

* This research was supported by National Science Foundation Grant MCS 78-20054 
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intersection, matroid partitioning, problems of gammoids and linking systems, 
and problems formulated by Iri, Krogdahl and Fujishige. In fact, virtually every 
known problem in (po1y)matroid optimization known to the authors can be 
easily formulated in terms of their network flow model, with the conspicuous 
exception of the polymatroid matching problem, solved by Lovasz for the case 
of linearly represented polymatroids [ 111. (Polymatroid matching cannot be 
formulated as a polymatroidal network flow problem, just as (nonbipartite) 
graphic matching cannot be formulated as an ordinary network flow problem.) 

We assert that, when the maximal flow algorithm described in [lo] is applied 
to each of the networks described in this paper, it either specializes to a known 
algorithm or is competitive with special algorithms which have been developed 
for the problems in question. We shall not elaborate on this point, but instead 
emphasize the ease with which min-max theorems can be proved, as corollaries 
of the general max-flow min-cut theorem proved in [lo]. 

Remark. The polymatroidal network flow model described in this paper was 
formulated independently by Hassin [7], who considered a more general model 
in which costs are associated with flows in individual arcs and in which 
supermodular set functions impose lower bounds on flows through subsets of 
arcs. In [7] Hassin proved a (circulation) version of the max-flow min-cut 
theorem and also a more general version of the integrality theorem stated here. 
(These theorems require that the submodular upper bounds on flow and the 
supermodular lower bounds satisfy certain conditions.) He also developed 
algorithms for finding optimal flows, but gave no complexity estimates. 

2. The polymatroidal network flow model 

A polymatroid ( E , p )  is defined by a finite set of elements E and a rank 
function p : 2E + R+ U {w} satisfying the following properties: 

Inequality (2.2) states that the rank function is monotone and (2.3) asserts that 
it is submodular. If also p is integer-valued and p( {e } )  = 0 or 1 for all e E E, 
then the polymatroid is a matroid. If (E, p )  is matroid and I E is such that 
111 = p(1),  then I is an independent set. 

A polymatroidaf flow network is a directed multigraph with a source s, a sink t 
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and two capacity functions a] and fi, for each node j .  Each function aI (p,) 
satisfies properties (2.1)-(2.3) with respect to the set of arcs A, (B,) directed out 
from (into) node j .  Thus (A,, a,) and (B,, fi,) are polymatroids. (Comment: We 
permit multiple arcs from one node to another. Hence A, and Bl may be 
arbitrarily large finite sets.) 

A flow in the network is an assignment of real numbers to the arcs of the 
network. Thus a flow is given by a function f : E -+ R, where E is the set of 
arcs. Such a function can be extended to subsets of arcs in a natural way, i.e., 

(We continue to write f ( e )  instead of the more cumbersome f ( {e} ) . )  
A flow is said to be feasible if 

(2.5) 

(2.6a) 

f ( X )  s p j ( X )  for all j and X C B j ,  (2.6b) 

f(e) 3 0 for all arcs e . (2.7) 

Eq. (2.5) imposes the customary flow conservation law at each node other than 
the source and sink. Inequalities (2.6a) and (2.6b) assert that capacity con- 
straints are satisfied on sets of arcs, and (2.7) simply demands that the flow 
through each arc be nonnegative. Our objective is to find a feasible flow which 
has maximum value, i.e., one which maximizes 

Comment. It is possible to generalize the polymatroidal network flow model to 
provide for costs on  arc flows and lower bounds on arc flows as imposed by 
supermodular set functions. However these generalizations are unnecessary for 
our present purposes. 

3. Integrality and max-flow min-cut theorems 

We now state two theorems proved in [lo]. Strictly speaking, the statements 
of these theorems should allow for the possibility of the nonexistence of a 
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maximal flow (which occurs if the maximum flow value is unbounded). 
However, we ignore this possibility, since it does not occur in any of the 
problems considered here. 

Integrality Theorem. If all capacity functions are integer-valued, then there exists 
a maximal flow which is integral. 

Ad arc-partitioned cut (S, T, L, U )  is defined by a partition of the nodes into 
two sets S and T, with s E S and t E T, and by a partition of the forward arcs 
across the cut into two sets L and U. The capacity of an arc partitioned cut is 
defined as 

~ ( s ,  T, L, u) = 2 ai(u n A ~ )  + p j ( ~  n B ~ ) .  
iES j €  T 

As in the case of ordinary flow networks, the value v of any feasible flow f is 
equal to the net flow across any cut, i.e., 

where B is the set of backward arcs, and clearly 

v s c(S ,  T, L, u) . 

Max-Flow Min-Cut Theorem. The maximum value of a flow is equal to the 
minimum capacity of an arc-partitioned cut. 

4. (Po1y)matroid intersection 

The (unweighted) matroid intersection problem is as follows: Given two 
matroids (E, pl )  and (E, p2), find a largest set I C E such that I is independent 
in each of the matroids. 

This problem can be formulated and solved as a flow problem as shown in 
Fig. 1. There are two nodes, s and t, and each arc from s to t corresponds to an 
element ei E E. The two capacity functions are determined by the two matroid 

4 p2 

Fig. 1.  Network for poly(matroid) intersection. 
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rank functions: a, = pl, PI = p2. Since these capacity functions are integer- 
valued, there exists a maximal flow which is integral. Any such integral 
maximal flow corresponds to a solution to the matroid intersection problem. 

Any partitioned cut (S, T, L, U )  must have S = is), T = { f }  and is thus 
determined simply by a partition of E into two subsets L and U = E - L. The 
duality theorem for this problem thus follows as an immediate corollary of the 
max-flow min-cut theorem. 

Matroid Intersection Duality Theorem. maxlIl = minLCE(PI(E - L) + p2(L)} . 

In the polymatroid intersection problem, the capacity functions are simply the 
rank functions of the two polymatroids, and the duality theorem generalizes in 
an obvious way. 

5. Matroid partitioning 

A general version of the matroid partitioning problem is as follows: Given k 
matroids Mj = (E, pi), j = 1, . . . , k, find a largest set I C E such that I can be 
partitioned into k sets 4 ,  . . . , Ik, where 4 is independent in (E, pi). 

A flow network for this problem is shown in Fig. 2. There is a node for each 
element ei E E, i = 1 , .  . . , n, and a node for each matroid Mj plus a source s 
and a sink t. There is an arc (ei, Mj)  for each ei and M,. The flow into each node 
Mj is constrained by the capacity function pi = pi. Each arc (s, ei) has unit 
capacity; for convenience we assume that these unit capacities are imposed by 
the capacity function a,, where a, (X)  = (XI, for all X C A,. There are no other 
capacity constraints. 

It follows from the integrality theorem that there exists a maximal flow which 
corresponds to an optima1 solution to  the partitioning problem. In order to 
determine an optimal dual solution we reason as follows. A n  arc-partitioned 
cut with finite capacity 
subset of nodes ei in S; 

must have all nodes Mj in T. Let us denote by A the 
the nodes in E - A are in T. For given S and T, L and 

Fig. 2. Network for matroid partitioning. 
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U must be chosen as follows, in order for the arc-partitioned cut to have finite 
capacity : 

L = { ( e ,  M,)  I ei E A} , U = {(s, ei)  1 ei E E - A} , 

as shown in Fig. 3. Thus the minimum capacity of an arc-partitioned cut is 

min [ ( E  - A1 + 2 p j ( A ) )  . 
i AGE 

This capacity is strictly less than [El if and only if 

IAl > 2 pj(A> 2 

for some A C E. We have thus proved the following well-known result. 

Fig. 3. Cut in proof of the matroid partitioning duality theorem. 

Matroid Partitioning Duality Theorem (Edmonds and Fulkerson [2]). Let I be a 
feasible solution to the matroid partitioning problem, Then 

IE - A1 + 2 pj(A)) . 
j 

AGE 

Moreover, E is a feasible solution if and only if  

IAl 2 pj(A) 3 

i 

for all A C E. 

6. A problem of Krogdahl 

The unweighted version of a problem considered by Krogdahl [9] and 
Schrijver [13] is as follows: Given k matroids Mj = (E, pi), j = 1, . . . k, and 1 
matroids M i =  (E, p;)7 j = 1,. . . , 1, find a largest set I such that I can be 
partitioned into k subsets I l , .  . . , Ik, where 4 is independent in Mi, and I can 
aIso be partitioned into I subsets If, .  . . , I;, where I ;  is independent in MI. 
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It is well known that a set I can be so partitioned if and only if I is 
independent in both M and M’, where M (M‘) is the sum of matroids 
MI,. . . , Mk ( M i , .  . . , M;, respectively). Thus this is actually a matroid inter- 
section problem in which independence in each of the matroids M, M’ can be 
determined by solving a matroid partitioning problem. Hence it is not surpris- 
ing that the flow network for this problem, as shown in Fig. 4, is much like two 
networks for the matroid partitioning problem joined together. Each element ej 
is represented by two nodes, ei and el, and an arc (ei, e;), as shown in the center 
of the network. Each arc (ei, ei) has unit capacity and we assume this capacity is 
imposed by a capacity function at the tail of the arc. 

Fig. 4. Network for Krogdahl’s problem. 

In order for an arc-partitioned cut to have finite capacity, all of the nodes 
MI,. . . , Mk must be in S and all of the nodes M i , .  . . , M ;  must be in T. Thus 
we need only consider how the nodes e l , .  . . ,en, e; ,  . . . , e; are assigned to S 
and T: 

(i) If e: E S, then each of the arcs (e:, M:)  must be in L. (There are no 
capacity constraints at the tails of these arcs.) 

(ii) If el E T, then each of the arcs (M,, e l )  must be in U. (There are no 
capacity constraints at  the heads of these arcs.) 

(iii) If el E S, e: E T, then the arc (el, e:)  must be in U, and its contribution to 
the capacity of the arc-partitioned cut is unity, independent of the other arcs in 
the cut. 

It follows that there exists an arc-partitioned cut (S, T, L, U) of minimum 
capacity in which, for no arc (el, e;), the case holds that e, E T, e: E S. If this 
were so, either el could be moved to S or e; could be moved to T without 
increasing the capacity. (Either the new L or the new,U would be a proper 
subset of the old.) We thus see that an arc-partitioned cut simply partitions the 
arcs (ez, e:)  into three classes: A’, A, and E - (A U A’), corresponding to the 
cases e;  E S, el f T and el E S, e: E T, indicated above, and as shown in Fig. 5. 

By reasoning similar to that in the previous section, we now have the 
following result. 

Theorem 6.1. Let I be a feasible solution to the problem of Krogdahl. Then 
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S 

Fig. 5. Cut in proof of Theorem 6.1. 

IE - ( A  U A‘)( + c pi(A) + 2 p;(A’)] 
i i A,A‘CE 

Moreover, E is a feasible solution if and only if  for all A, A‘ C E, 

A special case of interest is that of finding a largest common partial 
transversal of two families of subsets of E ,  8 = (El, E,, . . . , Ek), and 8’ = 

(E;, . . ~, Ei). Here let 

1 i f X G E i ,  
p j ( x )  = { 0 otherwise, 

and define p J  similarly. Then the appropriate duality theorem follows. 
As another special case, let 1 = 1 and k be arbitrary. Then the problem 

becomes that of finding a largest set I;, such that Ii is independent in M i  and 
I; is partitionable into subsets 4, . . . , I,, where 4 is independent in Mj. Since 

p;(E - A )  IE - (A  U A’)( + p;(A’) , 

we have 
max/I;( = min {pXE - A )  + 2 pj(A)) . 

i ACE 

If p ; ( X )  = 1x1, for all X C E, then this result further specializes to the 
Edmonds-Fulkerson theorem. 

7. A problem of Fujishige 

Fujishige [S]  has formulated and solved the following problem: Let G = 
V of sources and sinks, (V, E) be a digraph with two disjoint sets Ifl, V, 
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respectively. Let ( V1, PI) and (V,, p2) be polymatroids, and let each arc (i, j )  E E 
be assigned a capacity ciP The problem is to find a maximum value flow from 
the sources in Vl to the sinks in V2 subject to the constraints that the net flows 
out of the source nodes in V1 and the net flows into the sink nodes in V2 are 
feasible with respect to the polymatroids (VI, PI), (V2, p2), and all arc capacity 
constraints are respected. 

This problem can easily be formulated as a polymatroidal network flow 
problem by adding a dummy source s and a dummy sink t, as shown in Fig. 6. 

Fig. 6. Network for a problem of Fujishige. 

There is an arc (s, i )  to each node i in Vl and we let a, = pl. Similarly, there is 
an arc (j, t) from each node j in V2 to  f and we let pt = p2. We impose capacity 
constraints on the arcs (i ,  j )  in G by letting 

An arc-partitioned cut for this network is indicated in Fig. 7. The forward 
arcs across this cut are of three kinds: 

(i) Arcs of the form (s, i )  where i E Vl n T. All such arcs are in U, if the cut 
is to have finite capacity, and their contribution to  the capacity of the cut is 

(ii) Arcs of the form (j, t), where j E V2 n S. All such arcs are in L, if the cut 
is to have finite capacity, and their contribution to the capacity of the cut is 

p l v 1  n T ) .  

P2( v2 n S). 

Fig. 7. Cut in proof of Theorem 7.1 
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(iii) Each arc e = ( i ,  j )  of G, such that i E S, j E T. The total contribution of 
these arcs to the capacity of the cut is 

independent of the contributions of the arcs considered in (i) and (ii) above. 
We thus have the following duality result. 

Theorem 7.1 (Fujishige [4]). Let v be the maximum feasible flow value. Then 

p 1 ( v l n S ) + p 2 ( v 2 n ~ ) +  C cij 
iES,jET 

where the minimum is  taken over all partitions S, T of V. 

8. Gammoids and linking systems 

Problems involving gammoids and linking systems are easily formulated as 
network flow problems. One such problem considered by Brualdi [l] and 
Schrijver [13] is as follows: Let G = (V, E) be a digraph, Vl, V2 be disjoint 
subsets of V, and Ml = (Vl, p l ) ,  M2 = (V2, pz) be matroids. Find a pair of 
subsets I1 C Vl, I,  C V,, such that k = (Il( = (Iz( is as large as possible, lj is 
independent in Mj, j = 1,2, and there are k node-disjoint paths linking Il to 12. 

This problem is clearly very much like that of Fujishige, except that, instead 
of arc capacities, there are node capacities (i.e., there may be at most one unit 
of flow through each node i E V). In order to impose these constraints, we set 

a l ( X )  = 1 (0 f X C Ai) 

for each node i E V. The following result is now easy to obtain, by the same 
reasoning as in the previous section. 

Theorem 8.1 (Brualdi [l]). The maximum of k = (Ill = (Iz( is equal to 

min{pl(Vl- 11) + p 2 ( ~ 2  - 1 2 )  + IXl), 
where X C_ V intersects each path from Il to 12. 

9. Independent assignments 

The unweighted version of the ‘independent assignment’ problem considered 
by Iri and Tomizawa [S] is as follows: Given a bipartite graph G = (Vl, V2; E) 
and two matroids Ml = (Vl, p l ) ,  M2 = (V,, p2), find a matching in G such that 
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the vertices I ,  C Vl, I2 C V2 covered by the matching are independent in M I  
and M2. 

This problem, which can also be formulated as a matroid intersection 
problem, is clearly a special case of the problem of Fujishige, where V =  
Vl U V2, and cjj = 00 for each arc ( i , j )  E E, i E VI,  j E V,. In order for an 
arc-partitioned cut (S, T, L, V) to have finite capacity, there can be no arcs 
( i t  j )  such that i E S, j E T. Thus the vertices Vi U V;, where V;  = T n V,, 
V; = S n V,, must provide a covering of the arcs of G. Define the rank of such 
a covering V;  U V; as p l ( V ; ) +  p2(V;). We then have the following result. 

Theorem 9.1. The maximum size of an ‘independent assignment’ is equal to the 
minimum rank of a covering of edges by vertices. 

The well-known Konig-Egervary theorem is clearly a corollary, for the case 
that (V,, pi), j = 1,2, are free matroids, i.e., p , ( X )  = 1x1, for all X C V,. 

10. The Rado-Hall problem 

Let M = (E, p )  be a matroid and let ‘8‘ = (El,. . . , Ek) be a family of subsets 
of E (with repetitions allowed). The problem is to find a largest partial 
transversal which is independent in M. 

This is a matroid intersection problem, in which the two matroids are M and 
the transversal matroid induced by 8. The problem can also be viewed as a 
special case of the independent assignment problem in which the graph 
G = (Vl, V2; A) and the two matroids Ml = (Vl, pl), M 2  = (V2, p2) are as fol- 
lows: Vl = E, V2 = %, ( i ,  j )  E A if and only if e, E Ej, p1 = p, p2( V;) = I Vil for all 
ViC V,. It is now easy to obtain the following result. 

Rado-Hall Theorem (Rado [12]). The size of a largest independent partial 
transversal is 

min {I% - 8’1 + p(E’)}  , 
8’LX 

where 

E’=  u Ej 
E,E%’ 

Moreover, there exists an independent transversal if  and only if the union of any 
k sets in 8 has matroid rank at least k. 

Since this theorem specializes to the well-known Hall theorem in the case 
that A4 is a free matroid, it is known as the Rado-Hall theorem. 
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11. Concluding remarks 

We believe that the formulations given in this paper demonstrate the 
usefulness of the polymatroidal network flow model. It should be emphasized 
that other models, e.g., those of Fujishige [5] and Edmonds and Giles [3], are 
equivalent in the sense that any problem which can be formulated and solved 
in terms of one model can be formulated and solved in terms of one of the 
others. (We assert, but do not prove here, that the Edmonds-Giles model can 
be reformulated in terms of the polymatroidal network flow model, with costs 
on the arcs.) We believe that the advantage of our model is that it permits 
problem formulations to be particularly simple and transparent. For example, 
although one can, in principle, reformulate the matroid partition problem as a 
matroid intersection problem, it seems simpler and more direct to formulate it 
directly in terms of the network given in Section 5. 

References 

[l]  R.A. Brualdi, Menger’s theorem and matroids, J. London Math. SOC. 4 (1971) 46-50. 
[2] J. Edmonds and D.R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. 

[3] J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Ann. 

[4] S. Fujishige, An algorithm for finding an optimal independent linkage, J. Oper. Res. SOC. 

[5] S. Fujishige, Algorithms for solving the independent flow problems, J. Oper. Res. SOC. Japan 

[6] A. Frank, An algorithm for submodular functions on graphs, preprint, 1981. 
[7] R. Hassin, On network flows, Ph.D. dissertation, Yale University, 1978. 
[8] M. In and N. Tomizawa, A n  algorithm for finding an optimal independent assignment, J. 

[9] S. Krogdahl, A combinatorial proof for a weighted matroid intersection algorithm, Univ. of 

[lo] E.L. Lawler and C.U. Martel, Computing maximal ‘polymatroidal’ network flows, Math. 

[I11 L. Lovasz, The matroid matching problem, in: Algebraic Methods in Graph Theory, Colloq. 

[12] R. Rado, A theorem on independence relations, Quart. J. Math. (Oxford) 13 (1942) 8 H 9 .  
[13] A. Schrijver, Matroids and linking systems, Math. Centrum Tract 88, Math. Centrum, 

[14] P. Schonsleben, Ganzzahlige Polymatroid-Intersektions-Algorithmen, Thesis, ETH Zurich, 

[15] U. Zimmermann, Minimization of some nonlinear functions over polymatroidal flows, pre- 

Standards B69 (1%5) 147-153. 

Discrete Math. 1 (1977) 185-204. 

Japan 20 (1977) 59-75. 

21 (1978) 189-204. 

Oper. Res. Soc. Japan 19 (1976) 32-57. 

Tromsb, Comp. Sci. Rept. 17, Tromsb, 1976. 

Oper. Res., to appear. 

Math. Soc. JBnos Bolyai 25 (1978) 495-517. 

Amsterdam, 1978. 

1980 (in German). 

print, 1981. 



Annals of Discrete Mathematics 16 (1982) 201-211 
@ North-Holland Publishing Company 

TWO LINES LEAST SQUARES 

A.K. LENSTRA and J.K. LENSTRA 
Mathematical Centre, Amsterdam, The Netherlands 

A.H.G.RINNOOYKAN 
Econometric Institute, Erasmus University, Rotterdam, The Netherlands 

T.J. WANSBEEK 
Netherlands Central Bureau of Statistics, Voorburg, The Netherlands 

It is well known that the standard single line least squares problem for n points in the 
plane is solvable in linear time. We consider two generalizations of this problem, in which 
two lines have to be constructed in such a way that, after a certain assignment of each point 
to one of the lines, the sum of squared vertical distances is minimal. Polynomial time 
algorithms for the solution of these problems are presented. 

1. Introduction 

Given a set P = {(x,, y,)  1 xi, y, E R, j = 1, . . . , n}  of n points in the plane, the 
single line least squares (1LLS) problem is to find a line 

l ( x )  = ax + b 

such that 

is minimized. As is well known, the solution is given by 

n C X Y  -C.CY 
P P P  a =  

P P 

P 

and the line 1 can thus be determined in O(n)  time. 
In this paper we shall study two variations on this problem, in which two lines 
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have to be constructed in such a way that, after a certain assignment of each 
point to one of the lines, the sum of the squared vertical distances is minimal. 

The first and most obvious variation, the two lines least squares (2LLS) 
problem, is to find a set Q C P and two lines 

such that 

is minimized (cf. Fig. 1). 

\ -  0 

z 

Fig. 1. 2LLS. 

Another variation, the bent line least squares (BLLS) problem, is to find a 
breakpoint x *  and a bent line 

a l ( x - x * ) + b  ( x ~ x * ) ,  
l * ( x ) =  [ u ~ ( x - x * ) + ~  ( x > x * )  

such that 

is minimized (cf. Fig. 2). Note that the bent line I *  is continuous in the 
breakpoint x *. 

These types of problems may well arise in many situations in applied 
statistics, e.g., biometrics and econometrics. If the observations belong to either 
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X *  

Fig. 2. BLLS 

of two regression regimes, with little or no classifying information being 
available, a two lines or bent line model may be more appropriate than the 
single line one. 

The 2LLS problem occurs for example in the case of markets in dis- 
equilibrium, where data are available on prices and supply or demand, while it 
is not known whether each particular observation is generated by the supply 
curve or by the demand curve. This probIem was considered by Fair and Jaffee 
[3], who suggested to obtain a solution by exhaustive search over all sets 
Q C  P; this approach requires exponential time. In Section 2 we develop a 
polynomial algorithm to minimize (1) in O(n3)  time. 

The BLLS problem arises when, in the above situation, the observations 
correspond to the minimum of supply and demand. This is an example of a 
class of problems where the regression parameters may change as an in- 
dependent variable increases. In this area an extensive literature has appeared; 
see [13] for a bibliography. The seminal paper on the BLLS problem is by 
Hudson [lo], who also considered several generalizations involving multiple 
breakpoints. In Section 3 we use his results to minimize (2) in O(nlog n)  time. 

Finally, in Section 4 we comment on the statistical properties of our 
estimators, on related previous work, and on possible extensions of our 
algorithms. 

2. The two lines least squares problem 

To solve the 2LLS problem, we start by observing two obvious properties of 
an optimal solution. First, the lines I ,  and l2 are the ordinary lLLS solutions for 
the sets Q and a respectively. Secondly, the set Q P evidently satisfies 
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The partition of P into Q and 0, given the lines Z1 and Z2, is therefore 
characterized by the set Qo C R2 of points for which equality holds in (3): 

Thus, the set Qo consists of two lines: the vertical line through the x-coordinate 
xo of the intersection of Zl and Z2, and the median lo of l1 and Z2. Under the 
assumption that al s a2, the set Q can now be rewritten as 

(cf. Fig. 3). 
We conclude that we may restrict our attention to feasible solutions for 

which the partition of P into Q and 0 is defined by a value xo and a line lo as 
in (4), and that a solution that is optimal with respect to such a partition is 
given by the lLLS solutions for Q and 0. (Note, however, that solutions 
satisfying (4) do not necessarily satisfy (3).)  It follows that the 2LLS problem 
can be solved by generating all partitions of the above type, by solving two 

Fig. 3.  The sets Qo (the heavy lines) and Q (the open points). 



Two lines least squares 205 

lLLS problems for each of them, and by selecting a solution for which the 
optimality criterion has minimal value. 

What is the total number of different partitions of P of the type charac- 
terized by (4) ? We may assume (if necessary, after a small perturbation) that 
no two points from P have the same x-coordinate and that no three points 
from P lie on the same line. First, it is clear that P can be separated into two 
subsets by a vertical line in n different ways, corresponding to the choices 
xo = xi ( j  = 1 , .  . . n). Secondly, we claim that there is a one-to-one cor- 
respondence between separations of P by an arbitrary line and pairs of points 
from P, where the latter can be chosen in +n(n - 1) different ways. It follows 
that we have to consider no more than +n2(n - 1) different partitions of P. 

To see why the above claim is true, consider a separation of P into Q and a 
by an arbitrary line 1. Let C(Q)  and C(Q) denote the convex hulls of Q and a 
respectively. Since I also separates C(Q)  and C(G), there exists a unique line lo 
such that 

(a) y 3 Zo(x) for all points (x, y)  in one of the convex hulls, say C(Q), 
(b) y lo(.) for all points (x, y)  in the other convex h u l  C(Q), 
(c) there are two points p‘ = (x’, y’) E C(Q)  and jj‘ = ( Z f ,  y‘) E C ( 0 )  with 

x r  > 2’ such that y’ = Zo(xf) and 1’ = lo(%’) 
(cf. Fig. 4); lo is obtained from I by turning I counterclockwise until 1 is tangent 

to both C(Q) and C(Q). Moreover, the assumption that no three pointsfrom P lie 
on the same line implies that pi E Q and p‘ E Q. 

This establishes one part of the correspondence. Conversely, consider two 
points p” = (x”, y”) E P and p“ = (X”, y”) E P with xff  > 2. Let I. denote the line 
through p“ and jj“. A separation of P into Q and Q is now obtained by 
defining 

Fig. 4. 
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with respect to this separation, lo satisfies the conditions (a), (b) and (c) with 

If we start from a separation of P by an arbitrary line, apply the first 
transformation to find a pair of points and next apply the second trans- 
formation to this pair, we obtain the same separation once again. Thus, the 
correspondence is one-to-one, as claimed. 

p' = p" and jj' = jj". 

Our 2LLS algorithm can now be described as follows. 
First, we renumber the points from P according to increasing x-coordinate in 

O(n1og n )  time. 
Secondly, we consider all pairs of points {(XI', y"), (X", y")} with x"> XI' in 

succession. For each such pair, we start by determining the sets Q and 0 as in 
(5),  calculating the partial sums 

and solving the lLLS problem for Q and 0;  next, for j = 1,. . . , n - 1, we 
repeat this procedure for the partition induced by the vertical separation 
corresponding to xo = xj. The sets Q and Q and the partial sums can be 
determined according to (5) and (6) in O(n) time, and they can be adjusted for 
each successive value of xo in constant time. Given the partial sums (6), each 
lLLS problem is solvable in constant time. It follows that this step requires 
O(n) time for each pair of points, and O(n3) time overall. 

Finally, we select the solution for which the optimality criterion achieves its 
minimal value. The entire procedure requires O(n3) time. 

There are various ways in which the implementation of this algorithm can be 
improved that do not, however, reduce the running time by more than a 
constant factor. We note that, in general, it is impossible to generate all pairs of 
points from P in such a way that the partial sums (6) for a given separation can 
be derived from those for the preceding separation by interchanging a single 
point. 

3. The bent line least squares problem 

To solve the BLLS problem, we first renumber the points from P according 
to nondecreasing x-coordinate in O(n1og n )  time. We now reformulate the 
problem as follows: determine an index k E (1, . . . , n - 1) and two lines 

I , (x )  = alx + 6, , I&) = a2x + b 2 ,  

subject to a constraint on  the x-coordinate of their intersection: 
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(7) 

b l =  b2 i f a l = a 2 ,  

such that 

is minimized. Since the breakpoint x *  has to be located in one of the intervals 
[ X k ,  xk+l], both formulations are clearly equivalent. 

We shall show how, after an O(n) initialization, the determination of l1 and l2 
for any given value of k can be carried out in constant time. To select the 
optimal value of k, this has to be done for k = 1,. . . , n - 1, and the entire 
procedure requires O(n1og n) time, as announced. Note that, apart from sorting 
the set P, our BLLS algorithm requires linear time off-line, whereas the 1LLS 
problem is solvable in linear time on-line. 

We start by calculating the partial sums 

for k = 1,. . . , n in O(n) time. Next, for a given value of k, we solve the 
ordinary lLLS problem for {(x,, y , ) l j  = 1,. . . , k} and for {(x,, y , ) J j  = k + 1, 
. . . , n} to  find two lines l i  and 15 respectively; in view of the availability of 
the partial sums (8), this requires constant time. 

In the x-coordinate of the intersection of 1; and 1;  lies in [xk, & + l ]  or if 1; = l;, 
the pair (li, 1;) defines a feasible and optimal solution with respect to the given 
value of k ,  and we are finished. 

If this is not the case, we claim that the optimal pair of lines has its 
intersection on either xk or xk+l, i.e., one of the inequalities in (7) has to be 
satisfied as an equality (cf. [lo]). To see why, compare the infeasible pair ( l i ,  I ; )  
to  any feasible solution (Il, 12) for which both inequalities in (7) are strictly 
satisfied. Suppose that 1;  # l2 and that these lines intersect in a point p (cf. Fig. 
5). Then any line 1;’ through p whose direction is between the directions of 1; 
and l2 yields an improvement over 12, since the 1LLS optimality criterion is 
quadratic and convex in the parameters a and b of a line a x  + b and since 1; is 
closer than l2 to the optimal line 1;.  If moreover the x-coordinate of the 
intersection of 1,  and 1;’ lies in [ x k ,  & + I ] ,  the pair ( 1 1 ,  1;) defines a feasible 
solution that is better than ( I , ,  12), and the latter solution cannot be optimal. 
The argument is easily extended to the case that I ;  and l2 are parallel. 
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. 

I I 
‘ k  ‘ k t l  

Fig. 5. 

k k k 
U ,  C (xi - x * ) ~ +  b 2 (xi - x * ) =  ( x j - x * ) y j ,  

j =  1 j =  I j =  1 

* 2 + b  2 ( x j - X * ) =  2 ( X j - X * ) y j ,  
j = k + l  j=k+l 

a2 i: ( x j - x  
j = k + t  

C (xi - x *) + ~2 9 (xj - x *) + bn = 
j = 1  j=k+l j = 1  

k n 

y j .  

All we have to do in this case, therefore, is to determine two optimal bent 
lines 1* with fixed breakpoints x *  5 xk and x *  = xk+l respectively and to select 
whichever of the two is best. The determination of I* for a given value of x *  
can be carried out in constant time, as follows. Starting from (2), we rewrite the 
optimality criterion as 

k n 

C (a l (x j  - x*)  + b - y,)’ + C ( u ~ ( x ,  - x*)  + b - yj)’ 
j = 1  j=ktl  

Taking first derivatives with respect to the parameters ul, u2 and b, we obtain 
the following linear equations: 

Given the partial sums (8), this system is solvable in constant time to yield the 
required values of ul ,  u2 and b. 

It is again an easy matter to conceive of various improvements in the 
implementation of this algorithm, when the above system has to be solved O(n) 
times with only slight intermediate changes in the coefficients (cf. [lo]). The 
worst case running time, however, will be affected by no more than a constant 
factor as a result. 
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4. Concluding remarks 

The 2LLS and BLLS problems have so far been taken to be purely 
deterministic problems. Keeping in line with regression analysis tradition, we 
now assume that the parameters to be determined (0, al, a2, b,, b2 in 2LLS, 
x * ,  al, az, b in BLLS) have true but unknown values that are to be estimated 
and raise the question what the statistical properties are of the outcomes of the 
minimization problems. With respect to the stochastic nature of the data 
generating process, we make the simple assumption that the x, are non- 
stochastic and that the observations (x,, y,) satisfying the unknown linear 
relations are subject to vertical disturbances which are drawn from a normal 
distribution with zero expectation and constant variance. Under this inter- 
pretation, our least squares estimators are also maximum likelihood estimators. 

The estimators in the 2LLS problem do probably not have any other 
desirable statistical properties. The following simple example shows that they 
are not in general consistent (which is not to say that consistent 2LLS 
estimators do not exist). Suppose that the true model is given by 

y t = l + u ,  y 2 = - 1 + u ,  

where u has a standard normal distribution with expectation 0, variance 1 and 
density function 4, i.e., al = a2 = 0, bl = 1, b2 = -1. Suppose further that the 
independent variable x assumes at least three equidistant values, and that, 
when n goes to infinity, either regime accounts for half of the data with an 
equal number of data for each value of x. Then it is easy to see that the 
estimators hl,  hz, bl, & of al, a2, bl, bZ satisfy 

plim dl = al , 

plim ciz = a2 , 

plim 6, = bl + c , 

plim b2 = b2 - c , 

where 
r m  

c = I (2u - 2)4(u) d u  = 0.167 
1 

In this situation, the estimators of bl and b2 are bounded away from the true 
values, due to persistent misclassification. (The assertion by Fair and Jaffee [3, 
p. 5001 as to the consistency of the 2LLS estimators is incorrect. They neglect 
the implicit presence of dummy variables assigning observations to regimes. 
The fact that the number of such variables goes to infinity with n invalidates 
standard maximum likelihood theory.) 

Statistical properties of the estimators in the BLLS problem follow from 
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results due to Feder [4], who considered the case of multiple breakpoints and a 
more general functional specification for the regression segments. As the finite 
sample distribution of the estimators is intractable, he concentrated on their 
asymptotic distribution. His results imply that, if al # a2, the estimators of x*, 
al, a2, b are consistent and have a certain multinormal asymptotic distribution 
[4, pp. 71, 771. Feder and Sylwester [5] already established the asymptotic 
normality of the estimator of x*. Hinkley [9] showed that the asymptotic 
distribution is not a good approximation of the small sample distribution and 
presented an alternative that performs better in small samples. 

Due to its combinatorial nature and the statistical intractability of its 
estimators, the 2LLS problem has not spawned much research. Mustonen [12] 
and Hermann [S] considered the multidimensional case, in which two hyper- 
planes [8] or, more generally, two functions of a given form [12] have to be 
constructed. In view of the nonlinearity of the optimality criterion, they 
suggested to obtain an approximate solution by iterative numerical methods. 
We conjecture that our combinatorial approach can be extended to yield an 
optimal solution in polynomial time, as long as the dimension and the number 
of hyperplanes are constants. However, this generalization is likely to be 
extremely intricate. 

Another reason for the relative neglect of the 2LLS problem is that, as far as 
disequilibrium econometrics is concerned, economic theory can be invoked to 
further model the regime choice mechanism. Fair and Jaffee [3] made several 
additional assumptions, the simplest one being that a price increase points to 
an excess demand regime and a price fall to an excess supply regime. A huge 
literature has developed in this direction (e.g. [7, 2]), a common trait being the 
use of nonlinear rather than combinatorial optimization methods. Estimators 
with favorable asymptotic properties have been derived (e.g. [ 111). 

It has been mentioned that the BLLS problem in which multiple breakpoints 
are allowed has been considered by Hudson [lo]. In contrast to his analytical 
approach, Bellman and Roth [1] proposed a dynamic programming recursion to 
obtain a solution which is approximate in the sense that the breakpoints are to 
be chosen on a grid. The running time of their method depends heavily on the 
grid width; it is linear in the number of breakpoints, but only pseudo- 
polynomial [6] in the data (x,, y,). For the many variations on and extensions of 
the BLLS problem, the reader is again referred to the bibliography in [13]. 

The purpose of this paper has been to analyze the computational complexity 
of two combinatorial optimization problems arising in statistical analysis. Other 
results of a similar nature can be found in the work of Shamos [14]. These 
examples should serve to demonstrate the potential value of research in this 
interface area. 
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0. Introduction 

The problem of computing the independence number of a graph is NP- 
complete; the matching number, on the other hand is computable in poly- 
nomial time. This difference in their computational complexity implies that, to 
attack these two problems, different strategies have to  be applied. The match- 
ing problem may serve as a prototype of handling ‘easy’, i.e., polynomially 
solvable problems: find a good characterization, then a polynomial algorithm, 
describe the facets of associated polyhedra etc. None of these lines of attack 
holds out promises of success in the case of the independence number problem. 
So what scheme should one follow in the study of an NP-complete problem like 
independence number ? Discouraged by the fact of NP-completeness, one 
might answer (or at least feel) that this problem is mathematically intractable 
and so one should not waste time on it. Others, who play down the relevance 
of polynomiality in algorithms, might say that all there is to do is to improve 
the (more or less trivial) exponential algorithms by heuristics, programming, 
‘data handling tricks, etc. These two extremes meet in the opinion that no 
further attempts to ‘grip the essence’ of the problem are needed. 

In this paper we discuss an idea which might suggest some non-trivial 
approaches to NP-complete problems. Whether the sporadic phenomena col- 
lected here will ever fall into a pattern, and whether from this a unified 
approach to NP-complete problems can be learned, is be.yond the guessing of 
this author. 

Let a(G) denote the independence number of the graph G. If a(G)  cannot 
be calculated efficiently, a next step is to ask for sharp bounds on it. There is a 
very significant difference between upper and lower bounds: A lower bound 
means to prove the existence of an independent set of some size, which is 
usually proved by more-or-less constructive methods (heuristics, random 
choice, etc.). On the other hand, an upper bound means the non-existence of 
an independent set of larger size-in this respect it is ‘destructive’. Is there any 
practical value then in finding upper bounds ? Potential applications of upper 
bounds are the following: 
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- In a branch-and-bound procedure, sharp upper bounds may cut down the size 
of the search tree considerably. (Question: is there any example in the case of 
an ‘easy’ problem where a polynomial-bounded algorithm is obtained by 
pruning a search tree with the help of an upper bound? Such an example 
might shed some light on the hitherto somewhat mysterious phenomenon 
that well-characterized problems tend- to be polynomially solvable.) 

- Given a reasonable upper bound, we may consider the class of those graphs 
for which this upper bound is attained, and then restrict the independence 
number problem to this class. There is a good chance that it is easier to solve 
that problem for this particular class of graphs, and such graphs may well be 
very interesting. 

- Deriving sharper and sharper upper bounds, more and more insight could be 
gained into the nature of independence number (a procedure vaguely 
reminescent of the expansion of a function into, say, a Fourier series). 
We shall survey some methods to obtain upper bounds on the independence 

number a(G)  of a graph. We have left the precise notion of ‘upper bound’ 
open. The most natural choice, of course, is to look for a positive integer 
valued function cp defined on graphs, such that a(G)  s p(G) for every graph G 
and cp is polynomially computable. Sometimes we shall have to settle for less, 
e.g., the function cp should be such that cp(G) s k is an NP-property of the pair 
(G, k ) .  Putting things even more general, we shall be interested in methods 
which enable us to exhibit the relation cp(G)S k for reasonably many pairs 
(G, k ) .  

Let us remark that some of these results are easier to state in terms of 
7(G) = 1 V(G)I - a(G), the point-covering number of G. Also note that if L(G) 
denotes the line-graph of G, then a(L(G)) is the matching number of G, and so 
it is well-behaved. To what class of graphs generalizing line-graphs the success- 
ful theory of matchings can be extended is the motivation of some important 
current research [14,16]. 

Finally, let us point out that complexity considerations concerning the 
independence number problem motivate, and may even initiate, research in 
fields like algebraic geometry, linear algebra and algebraic topology. Although 
these connections are in a very embryonic state, any link between graph theory 
(or combinatorial optimization) and these deep, classical fields of mathematics 
is, I feel, of particular interest. 

1. Eigenvalues 

We describe very briefly an upper bound on a which was discovered in 
connection with a problem of Shannon in coding theory. 
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denote the set of n x n 
symmetric matrices A = (ui,) such that an, = 1 if i = i, or i and j are non- 
adjacent. Let A (A) denote the largest eigenvalue of A. Define 

Bounding the independence number of a graph 

Let G be a graph on V(G)  = {I, . . . , n }  and let 

6(G) = min{A (A): A E d} . 

Since every A E .# contains a symmetric a(G)  X a(G)  submatrix J of all l’s, it 
follows that 

A ( A ) a A ( J ) =  a ( G ) ,  

and so 6(G)> a(G). What is important about 6 is that it is polynomially 
computable. (More precisely, for every E > 0 a rational approximation of 6(G) 
with error less than E can be computed in time polynomial in /log E (  and n. 
Note that 6 may be irrational !) The idea of computing 6(G) is that A ( A )  is a 
convex function of A on the affine subspace .#, and it can be minimized using 
the methods of Shor [ 171 and Yudin and Nemirovskii [ 181 (see also [4]). 

As remarked before, this function 6 gives rise to a class of graphs for which 
a is efficiently computable, namely the class of graphs with a(G) = 6(G). This 
class is, however, rather ugly: it is in NP but it is also NP-complete. A nicer 
subclass is the class of perfect graphs. For perfect graphs the only known 
polynomial algorithm to compute a(G) is through computing 6(G) (see [4]). 

It was also remarked that if a polynomially computable upper bound is 
found, then this can be used to prune branch and bound search trees. 
Experience shows that the use of 6 does prune the search for maximum 
independent set considerably [3] ,  but no theoretical results have been obtained 
so far concerning the size of the ‘pruned’ tree. 

2. Algebraic geometry 

The section title is perhaps somewhat immodest, but .the flavor of the result 
of Li and Li [9], which is the starting point of our discussion, is indeed algebraic 
geometry. 

Let G be a simple graph on V ( G )  = { 1, . . . , n},  and let us consider n 
variables xl, . . . , x,,. Form the polynomial 

f (G;xl , .  . . , x,)= n ~(xi -xj ) .  
i ,  j E E ( G )  ! 

(This polynomial depends o n  the labelling of the points, but only up to its sign, 
which shall play n o  role.) Note the following simple fact. 
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Lemma 2.1. a ( G ) S  k iff, identifying k + 1 variables in f (G; x1, . . . , x,) in all 
possible ways, we always obtain the zero polynomial. 

Let X ;  C C" denote the set of those vectors which have at least k + 1 equal 
coordinates, and let I ;  denote the ideai of those polynomials in C[xl, . . . , xn]  
which vanish for every vector in X ; .  Thus a(G)S k iff f(G; xl,. . . , x,)E I ; .  
To make use of this observation one needs a description of I ;  which will 
enable us to exhibit 'easily' that a polynomial is in I ; .  A natural approach is to 
find generators for I ; ,  and this was indeed accomplished by Li and Li [9]. Let 
X ;  denote the set of those graphs on ( 1 , .  . . , n }  which are unions of k disjoint 
complete graphs. Let 2; denote the subset of Xi consisting of those graphs 
where the sizes of the components are as equal as possible (i.e., every graph in 
2; consist of n - k Ln/k] copies of a complete fnlkl -graph and k rn/kl - n 
copies of a complete [n/k]-graph. Note that all members of 2; are isomor- 
phic, but we are considering labelled graphs !) 

Theorem 2.2. I t  is generated by the polynomials f ( H ;  xl, . . . , x n )  ( H  E 2;). 

Corollary 2.3. A graph G satisfies a (G)  < k iff there exist polynomials 
gH(xl ,  . . . , x,) (H E 2%';) such that 

Of course, Theorem 2.2 and Corollary 2.3 remain true if 2; is replaced by 
X; ,  and the main difficulty lies in proving these weaker conclusions. 

Let us remark that if (xl,. . . , x,) E C" and f ( H ;  xl, . . ~, x,) = 0 for every 
H E  %;, then an easy argument shows that (xl, . . . , x,) E X ; .  Hence, by the 
Nullstellensatz of Hilbert, there exist a natural number p > 0 and polynomials 
g H ( x l , .  . . , x,) such that 

The main contents of Theorem 2.2 is that p = 1. This is somewhat reminiscent 
of the situation in integer linear programming, where a minimax formula for a 
linear relation follows in generality by the Duality Theorem, and one has to 
work hard and use special features of the problem to show that the denomina- 
tors of the optimal solution of the linear program are 1's. 

Why is this an upper bound on a(G)  ? In the general sense mentioned in the 
introduction, a(G)  s k can be proved by exhibiting polynomials gw (H E X i )  
such that 
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There are, however, three problems which arise here: 
(1) The cardinality of $?f is exponential in n ;  SO (R1) can be written down in 

polynomial time only if all but a polynomial number of the g H  are 0. 
(2) It might happen that although (RI) has only a polynomial number of 

terms, the coefficients g H  cannot be written down in polynomial space. 
(3) Even if (R,) is written down, there may not be any procedure to verify it 

in polynomial time. 
Of these, the first problem is really serious and it limits the applicability of 

(R1) to prove a(G)  == k to special classes of graphs. (Question: can one prove 
that there exist graphs G for which every equation of type (R,) has exponen- 
tially many terms on the right-hand side ?) 

Objection (2) can be eliminated. I have proved that in (R1) the coefficients g H  

themselves may be chosen in the form ~ ( G H ;  x l ,  . . . , x,,) with some graphs G H .  

Thus the following theorem may be formulated. 

Theorem 2.4. A graph G has a (G)  s k if and only if there exist graphs 
G,, . . . , Gm on V(G)  such that each Gi can be partitioned into k cliques and 

Finally, objection (3) is only moderately serious. 
Of course, we cannot simply expand all polynomials occurring and then see if 

all terms cancel (as we learn at school), since the expansion of just 
f ( G ;  x l , .  . . , x,,) contains exponentially many terms. But we may, say, generate 
values for xl, . . . , x,, at random, substitute, and see if the two sides are equal. If 
they are not, then, of course, we know that (R,) does not hold. If they are, then 
the probability that (R1) is not an identity is negligible, but we have hit a choice 
of variables for which the two sides are equal. So the verification of (RI) can be 
carried out at least in a 'random polynomial' framework. The problem of 
verifying a polynomial identity in deterministic polynomial time is an outstand- 
ing problem in the complexity theory of algebra. It may well be, however, that 
special identities like (R2) can be verified easier. 

Kleitman and the present author observed that a 'dual' version of the 
theorem of Li-Li is also true (in fact, it is easier to prove). Let Y ;  C C" denote 
the set of those vectors which have at most k distinct entries, and let J f  denote 
the ideal of those polynomials which vanish for every vector in Y f .  
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Lemma 2.5. A graph G has chromatic number S k if f ( G ;  xI, . . . , x,) E J ; .  

The less trivial part is the following. Let 2’; denote the set of those graphs 
o n  (1, . . . , n }  whose edges form a complete k-graph (and which have, there- 
fore, n - k isolated points). 

Theorem 2.6. The polynomials f ( L ;  xi, . . . , x,) ( L  E 2‘;) generate the ideal J ; .  

Corollary 2.7. A graph G satisfies x (G)  Z k iff there exist polynomials 
gL(xI ,  . . . , x,) ( L  E 3;) such that 

Again, the following sharper version is true. 

Theorem 2.8. A graph G satisfies x(G) 
V(  G),  each containing a complete k -graph, such that 

k iff there exist graphs GI, . . . , G,,, on 

In this last form this result is reminiscent of a well-known result of Haj6s [6], 
which also yields a ‘pseudo-good’ characterization of graphs with chromatic 
number 3 k. Define 3 operations on the set of graphs: 
(a) add new points and/or lines, 
(p) identify two non-adjacent points, 
(y)  take two graphs GI, G2, delete two edges xlyl  E E(G, )  and x2y2 E E(G2),  

identify x1 with x2 and join y 1  to y2  by a new edge. 

Theorem 2.9. A graph G has x (G)a  k iff it can be constructed from complete 
k-graphs by the repeated application of steps (a) ,  (p)  and ( y ) .  

Again, the relation x ( G )  2 k can be proved for a graph G by carrying out 
the construction explicitly. Just how short this proof is, depends on the graph 
G. Perfect graphs can be obtained in one step. Are there other interesting 
classes for which the construction is short ? So far, Hajos’ theorem was studied 
for its possible applications to planarity; its algorithmic complexity aspects are 
an unexplored territory (cf. Fig. 1). 

To this approach to chromatic number the same remarks apply as to the 
Li-Li theorem on independence number. 

Li and Li point out that by looking at the degrees-of the polynomials, one 



Bounding the independence number of a graph 219 

sees immediately that if a ( G )  s k ,  then 

IE(G)I = degf(G; x1,. . . ,  degf(H;  x1 , .  . . , x,), 

where H E X;. This result is just Turan’s theorem (for the complement of G). 
They also obtain generalizations of Turan’s theorem this way, but we cannot go 
into the details of this. 

The idea of using the degree of a polynomial to obtain combinatorial 
estimations also occurs in a paper by Brouwer and Schrijver [ 2 ] ,  where they use 
it to calculate T ( H )  for the hypergraph H formed by the lines of an affine plane 
over a finite field. 

Let us conclude this section with the remark that Hilbert’s Nullstellensatz 
may well be a source of other interesting ‘good’ or ‘pseudo-good’ charac- 
terizations in combinatorics. More generally, the duality between ‘syntax’ and 
‘semantics’ comes up here (in the Nullstellensatz, the solvability of a system of 
algebraic equations-a ‘semantical’ problem-is characterized in terms of the 
non-expressability of 1 as an element of the ideal generated by the left-hand 
side-a syntactical property). So, e.g. Godel’s Completeness Theorem could be 
viewed as a ‘pseudo-good’ characterization of the consistency of a system of 
axioms: if it is inconsistent, we can exhibit this by deriving a contradiction, if it 
is consistent, we can exhibit a model. Of course, no polynomiality (or even 
finiteness) of these procedures is claimed. Whether polynomiality enters the 
picture in any reasonable way is not known. 

3. Matroids 

These results (see [lo]) are best discussed in terms of the point-covering 
number 7(G). Let us assume that a matroid (V(G), r )  is introduced on V(G). 
Then we may generalize the problem of determining T(G)  to determining 
T(G, r),  the minimum rank of a point-cover. In  the special case where (V(G), r )  
is the free matroid, we have r(G, r )  = 7(G). 
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The gain in introducing this matroid structure on V(G)  is that we have more 
freedom in applying some reduction procedures. Let u E V(G), r (u )  = 1 and 
assume that u is in the flat spanned by its neighbours. Delete v from the graph 
and contract v in the matroid. Then the resulting graph G’ and matroid 
(V(G’), r’) satisfy 

T(G’, r’) = T(G, r ) -  1 . (1) 

If v E  V(G)  has rank r ( u ) = O ,  then for the graph G‘ and rank function r’ 
obtained similarly as above we have 

T(G’, r‘) = T(G, r )  . (2) 

If E V(G)  is a coloop in the matroid, then let (V(G), r”) be a new matroid 
which is obtained by deleting u, place a ‘general’ point on the flat spanned by 
its neighbours, and finally label this new point v. 

Then 

T( G, r”) = r (G, r )  . (3) 

If (V(G), r’) is any weak map of the matroid (V(G), r) (i.e., r ‘ s  r), then 
trivially 

T(G, r’) S T(G, r )  . (4) 

Now these reductions enable us to prove the relation T ( G ) ~  k for quite a 
few graphs. (It is not clear which are interesting classes for which this can be 
accomplished.) Fig. 2 shows how to exhibit, using reductions (l)-(4) that the 
graph G has r (G)>6.  

Fig. 2. Proving that the graph G has T(G) 3 6 by the method of matroids. For brevity, (1) followed 
by (3) is depicted as one step, (1,3). 
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So far, the main application of this method has been to develop a 
classification theory for 7-critical graphs (LOV~SZ [ 111). In the algorithmic 
context, an important problem which arises is handling the matroids. A natural 
approach is to restrict oneself to real representable matroids, and then handle 
them as real matrices. There are, however, many problems in connection with 
this, for example, how to construct a representation of a principal extension 
from a representation of the matroid? We cannot go into the complicated 
problems arising here. 

4. Topology 

The present author [12j proved the following lower bound on the chromatic 
number x(G)  of a graph. Let us define the neighbourhood complex X ( G )  of a 
graph G as the simplicia1 complex whose vertices are the points of G and 
whose simplices are those subsets of V(G) which have a neighbour in common. 
Let us recall that a topological space T is called k-connected if for every 
O ~ r c  k, every continuous map of the r-sphere S' into T extends to a 
continuous map of the (r + 1)-ball B'+l with boundary S' into T. Thus 0- 
connected means arcwise connected, 1-connected means arcwise connected and 
simply connected (trivial fundamental group) etc. 

Theorem 4.1. If X(G) is k-connected, then x(G) Z= k + 3. 

This theorem has been used to prove a conjecture of Kneser concerning the 
chromatic number of certain graphs. Its proof depends on the Borsuk-Ulam 
theorem on antipodal mappings of the sphere. 

Schrijver and the present author have found the following lower bound on 
T(G) of a somewhat similar character. Let G be a graph and define a simplicial 
complex &(G) whose vertices are those subsets X of V(G) for which both X 
and V(G)  - X span at least one line. Let the simplices of &(G) be those sets 
of such subsets which are totally ordered with respect to inclusion. 

Theorem 4.2. If &(G) is k-connected, then 7(G) 3 k + 3. 

This result generalizes to hypergraphs without any essential change. Its proof 
depends on the Borsuk-Ulam theorem again. 

The algorithmic aspects of these topological results are very much un- 
explored. It is likely that the k-connectivity of X ( G )  is an NP-property for 
every fixed k, since it means that the k-skeleton is contractible to a single point 
within the ( k  + 1)-skeleton, and probably this contraction can be described in 
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polynomial time. I could not, however, work out a rigorous proof. The 
situation is even more complicated with Jtl(G), since this has exponentially 
many vertices. But we may replace A(G) by any simplicia1 complex which is 
homotopically equivalent. Is there such a complex which has only ~V(G)~a"s* 
vertices ? Is there one which can be constructed from G in polynomial time ? 
Probably these questions may be answered in the affirmative using some 
methods like the (homotopical) Crosscut Theorem of Mather [I31 or other 
related results on topological spaces associated with posets, lattices, etc. (we 
also refer to [15] and [l]). 

Conclusion. We have surveyed some methods to obtain upper bounds on a(G)  
(or, equivalently, lower bounds on T(G)), which use non-trivial tools from 
other parts of mathematics. We tried to show that complexity considerations in 
connection with these methods raise some interesting questions in other fields 
of mathematics. 

Our selection has clearly not been representative for all approaches. We 
have to call the reader's attention to the work of, among others, Hammer and 
Simeone (71, Hansen [S] and Haemers [5],  but we cannot discuss their approach 
in detail. 
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We consider the tasks (A) of minimizing a regular performance measure subject to 
resource constraints, and (B) of minimizing costs for resource requirements subject to a 
fixed completion time for arbitrary project networks with resource requirements. For these 
tasks we investigate those problems in which the optimum value is determined by the same 
partial order on the set of activities for all possible variations of the objective function 
(problems with a singular solution). It is shown that these problems constitute a large class 
of scheduling problems which can be recognized and solved in polynomial time. Further- 
more, we give a complete characterization of all problems having a singular solution which is 
based on comparability graph recognition and forbidden substructures. 

1. Introduction 

We consider the tasks (A) of minimizing regular measures of performance 
subject to  resource constraints, and (B) of minimizing costs for resource 
requirements subject to a fixed completion time in project networks with 
resource requirements. 

Such a network is given by a partial order O0 (representing the technological 
precedence constraints) on a set A = { a l , .  . . , a,} of activities, a vector of 
activity durations x = (xl, . . . , x,), resource requirements c', i E I := (1, . . . , rn} 
( c ' (a )  denotes the amount of resource i E I  required by a), and a regular 
measure of performance K (i.e., K is a non-decreasing real-valued function of 
the completion times of all activities). In (A) we assume that the available 
amount of resource i E I is limited by a constant C,, whereas in (B) the joint 
purchase of (C,),Er units causes costs k( (C , ) iEI )  and K must respect a given limit 
to- 

Following the approach in [16,18,20], the solutions to problems of type (A) 
or (B) may be represented by partial orders 0 extending 0 0  and fulfilling 
certain feasibility conditions (cf. Section 2). 

This paper deals with problems with a singular solution, i.e., problems for 

*This paper was supported by the Minister fur Wissenschaft und Forschung des Landes 
Nordrhein- Westfalen . 
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which the optimum is already determined by a single feasible partial order 0 
for all choices of K (from a fixed class) and x in (A) and k, c l , .  . . , c m  in (B). 

Problems with a singular solution are shown to constitute a class of poly- 
nomially solvable problems which contains problems of arbitrary size and 
whose cardinality-at least for task (A)-is larger than that of some of the 
common classes of job-scheduling problems (cf. Section 3). 

Because of these properties, problems with a singular solution have practical 
importance as test examples for (heuristic) algorithms for arbitrary scheduling 
problems in the sense that they form a class of easily constructable and solvable 
problems on which a ‘good’ algorithm should not perform too badly. 

The main interest in these problems is, however, theoretical and concerns 
their algorithmic and structural characterization, which reveals strong con- 
nections with comparability graph recognition and properties based on forbid- 
den substructures. The results also demonstrate considerable symmetry lags 
between the at first sight rather closely related tasks (A) and (B) (cf. also [16]). 

The results for (A) are presented in Section 3. Some of them, viz. that, for 
K = max, problems with a singular solution can be recognized and solved in 
polynomial time and that each extension of O0 can occur as the singular 
solution of an appropriately formulated problem, were obtained by Rader- 
macher in a more general context which will be published separately [20]. We 
shall give proofs for these results only as far as our approach differs from that 
in [20] and as far as proof methods are essential for the results on (B). 

Sections 4 and 5 deal with singular solutions for (B). In Section 4, the 
measure of performance K is arbitrary. Again-and this is the most important 
feature in common with (Atp rob lems  with a singular solution can be recog- 
nized and solved in polynomial time. Contrary to  (A), however, only those 
partial orders which are induced by a schedule may occur as a singular solution 
over O0. 

For the case that K = max (project duration), which is treated in Section 5, 
only sufficient conditions for 0 to be a singular solution over 00 can be given if 
O0 is arbitrary. 

If Oo is degenerate (i.e., a S @,,/3$ a = p),  we obtain a complete charac- 
terization of all singular solutions over OO in terms of forbidden suborders. As 
a consequence, only special series-parallel partial orders occur as a singular 
solution. 

2. Basic concepts 

A project network with resource requirement consists of 

of the project which have to be carried out without interruption. 
- a set A = {a l , .  . . , a,} of the project’s activities. They form the smallest units 
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- a vector of activity durations x = (XI, . . . , X n )  E R ?, where x, = x ( a f )  > 0 
denotes the duration of activity a, (j = 1, . . . , n) .  

- a  partial order 0 0  on A which describes the technological precedence con- 
straints between the activities (i.e., a S e o P  means that a must be finished 
before P can be started). 

- finitely many resources i E I : = (1, . . . , m }  and associated vectors of resource 
requirements cl, . . . , cm E (N U {O})"', where c; = c'fa,)  denotes the amount of 
resource i E I required by activity a,. This amount is assumed to be constant 
for the full duration of a,. 

Since activities have to be carried out without interruption, each possible 
performance of the project is completely described by a schedule T = 

(T(al) ,  . . . , T(an))  2 0 which gives the starting times of all activities. 
Performance control is done by so-called regular measures of performance (cf. 

[S, 22]), i.e., non-decreasing functions K : R + R1 which assign to  each schedule T 
performance costs K(T) = ~ ( t l ,  . . . , tn) E R' resulting from the completion times 
t, = T(a,)+ x ( a , )  (j = 1, . . . , n )  of the activities af with regard to T. 

The most important measures of performance in the paper will be of the 
form K(tl, . . . , tn) = max{tl, . . . , t,}, i.e., maximum completion time or project 
duration, or the form K = f 0 max, where f : R1 + R is non-decreasing. 

For each schedule T, let C,(T) denote the maximum amount of 
resource i required while the project is performed according to T, i.e. 
C,(T) := max{C.T(u)~t<T(a)+*(a) c ' ( a )  I t 301 .  

We then consider two problems, cf. [16,20]. 

Problem A (the problem of scarce resources). The available amount of each 
resource i E I is limited by a constant C, E N with c i ( a )  C, for all a E A. 
Minimize K(T)  subject to  all schedules T for which C,(T) C, ( i  = 1, . . . , m ) .  

Problem B (the problem of scarce time). Resources are available time-in- 
dependently at costs k(Cl,. . . , C,) for a joint purchase (CI, . . . , C,) of C, 
units of resource i, i ~ l .  The measure of performance may not, however, 
exceed a given limit to. Minimize the costs k(Cl(T),  . . . , C,(T)) of resource 
requirements subject to all schedules T for which K(T) S to. 

Instead of the above standard representation of these problems by means of 
feasible schedules we shall use a representation based on 'feasible' partial 
orders on A. This approach, which has also been applied in the disjunctive 
graph concept in job shop scheduling [l, 8,9], allows a clear distinction to be 
made between feasibility domain and objective function. 

The basic idea is that a schedule T (and, more generally, any function 
T : A + R &-) together with a duration vector x induces a partial order O(T,  x) 
on A by putting (observe that x ( a ) > O  for all a )  
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0(T, x) is said to be induced by T and x. 
If T is a schedule for 0 and x (i.e., a < e p 3  T(a)  + x ( a ) S  T(p)) ,  then 

0(T, x) is obviously an extension of 0, i.e., 0 ( T ,  x )  2 0 (meaning that a G e p  

implies a s e(r  x )  p) .  
Given a partial order 0 on A, let u ( 0 )  be the set of all anti-chains 

(independent sets) of 0. Then &(w)  := max{ZaEu w ( a )  1 U E ~(0)) denotes 
the maximum weight of an anti-chain of 0 with regard to a weight vector 
w = ( W h ) ,  . . . ,  w(a,)). 

Proposition 2.1 [1 ,  181. Let T be a schedule for 00 and x. Then C,(T) = 

+B(rx)(ci)  ( i  = 1, . . . , m ) ,  i.e., the amount of resource i required if the project is 
scheduled with regard to T equals the maximum weight of an anti-chain of the 
induced partial order with regard to the weight vector ci. 

In contrast to graphs, where the corresponding problem is NP-complete, we 
can here compute &(w)  in polynomial bounded time by flow methods. 

Proposition 2.2 [7, lo]. Let 0 be a partial order on A. Let G = (V, E )  be the 
directed graph with vertex set V =  A U {s, t}  (s, t g! A)  and edge set E = 

{(a, p )  1 a < ep}  u {s} x A U A x {t}. Then &(w) equals the minimum flow 
value in G when the nodes have lower capacities ~ ( a )  and edge capacities are 
infinite. 

A s  a consequence, & ( W )  can be computed in O(n3) time by standard flow 
methods [13]. (A representation of +(w)  as a maximum flow value is given in 
[S]. It is, however, not polynomial in the input data.) 

Given 0 and x, let ESe[x] denote the earliest start schedule, i.e., the 
(componentwise) least schedule for 0 and x. It may be computed iteratively in 
O(n2) time according to 

0, a minimal in 0, 

[ E S e [ x ] ( p )  + ~ ( p ) ] ,  otherwise. 

Thus, ESe[x]  T for all schedules T for 0, x. Since performance measures are 
non-decreasing, we also obtain K (0, x) : = K (ESe[x] )  S K ( T )  for all schedules T 
for 0 and x. 

This observation, together with Proposition 2.1, gives the desired represen- 
tation of Problems A and B, cf. [16, 18,201: 
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The partial orders from OA or OB are called feasible for (A) or (B). 
The feasibility domains OA and OB are finite and convex (i.e., if 8 c 8, 

and if 01, 0, are feasible, then 0 is feasible as well) subsets of the semi-lattice 
O(O0) of all extensions of O0 ordered with regard to  inclusion. Since the 
objective functions 0 + ~ ( 0 ,  x) for (A) and 0 + k(&(c'), . . . , 4e(cm)) for (B) 
are non-decreasing and non-increasing on O(O0), respectively, the optimum is 
already attained by the minimal feasible partial orders in (A) and the maximal 
feasible partial orders in (B). 

Of special interest are minimal or least dominating sets of feasible partial 
orders, i.e., minimal or least subsets 0 of OA or OB which already determine the 
optimum for a fixed class of performance measures K and all possible choices 
of x in (A) and for all possible choices of k and cl,. . . , cm in (B). 

For general results on dominating sets (and also for algorithmic methods 
based on this approach) cf. [18,20] for (A) and [16] for (B). 

In this paper we will concentrate on problems with a singular solution, i.e., 
problems for which the dominating sets are singletons. For these problems, the 
optimum is already determined by a single feasible partial order 0 for all 
choices of K (from a fixed class) and x in (A) and k, c' ,  . . . , cm in (B). 

3. Singular solutions for (A) 

Let 00 and (c', C,)IEz be fixed. An anti-chain U E ~ ( 0 0 )  is called adaptive if 
there exists a feasible partial order 0 with U E u ( 0 ) .  NOW to each UEu(@o) 
with I U l a  2 there obviously exists an extension 0, of 00 such that U is the 
only non-singleton anti-chain of 0,. Thus U E U ( @ ~ )  is adaptive iff 
X l r E U  c ' ( a ) ~  C, for all i E I.' 

Let X = {NI, . . . , N,} denote the system of c-minimal non-adaptive anti- 
chains of O0. It then follows easily that a partial order @ 2 O0 is feasible iff 0 
introduces a precedence constraint a, S e p ,  on each set 4 E X. 

Call two problems given by O0, (c', C,),,, and 06, ((c')', C,),W nof essentially 
distinct w.r.t. a class X of performance measures if the optima coincide for all 
possible choices of K E X and x. 

It is shown in [20] that if X contains K = max and @o= 06, then the two 
problems are essentially distinct iff they have distinct systems .N. 

So the problems with a singular solution over a fixed technological partial 

' Note the difference with the analogous notion for (B) in Section 4. 
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order O0 may be classified according to their system N .  It turns out that only 
very special systems N occur, which correspond to certain comparability graphs 
(cf. [7])  containing the comparability graph G(Oo) of O0 as a subgraph. 

Theorem 3.1. Let the problem given by 00, (c i ,  C,)i,I have a singular solution for 
a class of peflormance measures containing K = max. Then there exists a 
uniquely determined Comparability graph‘ G such that 

(i) G has a transitive orientation extending 0,; 
(ii) X consists of all edges {a, p }  of G which do not belong to G(Oo). 

Proof. Let 0 be a singular solution of the problem. Then u ( 0 ) >  ~(0’) for 
each feasible partial order 0’. Otherwise there would exist an anti-chain 
{PI, p2} E u(@’)\u(@), which means that 0 would not be an optimal solution for 
K = max and x defined by 

1 with I <- a = P I ,  p2 
I ,  otherwise 214 ’ 

x ( a )  = 

since K ( @ ’ ,  x) < 2 c ~ ( 0 ,  x) . 
Thus each {a, p}  E u(O0)\u(0) is non-adaptive and a member of X. As 0 is 

feasible, each N, EX contains a pair {a, p}  E u(O0)\u(0). Since the N, are 
minimal non-adaptive, we obtain that X = {{a, p }  E tt(00) 1 a <&}. 

The comparability graph G of 0 obviously fulfils (i) and (ii). It is also 
unique, since any other comparability graph G‘ fulfilling (i) and (ii) is the 
comparability graph of a feasible poset 0’. Then u(0’)C u ( 0 )  and (ii) yield 
u(0’)= u(0) ,  i.e., G = G’. 0 

Thus each singular solution 0 of the problem must be a transitive 
orientation of G which extends 0,. In general, there are several such orien- 
tations, say 01, . . . , 0,. The question whether one (or more specific, which) of 
them is a singular solution depends on the class of performance measures 
considered. 

For instance, if we take performance measures of the form 

no singular solution will exist, since by varying K appropriately we can obtain 
for each set {a, p }  E X that a c p is preferred to p s a and vice-versa. 

The opposite case, when each Oj, j = 1, . . . , r is a singular solution, occurs if 
the performance measures are invariant with regard to all partial orders having 
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the same comparability graph (i.e., G(@I)= G(@z)+ K ( @ ,  x) = K(&,  x) for all 
x>- 

The most important invariant performance measure is K = max. In this case 
we have the well-known equality (cf. [ I l l )  

where c ( 0 )  denotes the system of totally ordered subsets (chains) of 0. A,(x)  
can be computed in O(n2)  time using standard critical path methods. 

Furthermore, ~(0') = ~ ( 0 2 )  iff G(01) = G(02), which proves that K = max 
and performance measures of the form K = f 0 max are invariant. Lemma 3.2 
shows that these are the only invariant performance measures. 

Lemma 3.2. Let K be invariant w.r.t. partial orders having the same com- 
parability graph. Then K = f 0 max, where f : R'-+ R' is non-decreasing. 

Proof. All linear orders on A have the same comparability graph. Put x =  
(d,  0, . . . , 0) (zero durations are allowed here for simplicity's sake). Then the 
earliest completion time vectors t = ( t l ,  . . . , t,) of the linear orders on A w.r.t. 
x are given by all non-zero extreme points of the cube [0, d]". Thus K is 
constant on all faces of [O, d]" not containing 0. This means that K ( t ) =  
f(max{tl, . . . , tn>) = f(d). 0 

Theorem 3.3. For K = f 0 max, each extension 0 of O0 can be the singular 
solution of a problem over O0. The number of essentially distinct problems over 00 
with a singular solution equals the number of comparability graphs G which have 
a transitive orientation extending O0. 

Proof. Theorem 3.1 and the fact [18] that each system {Nl,. . . , Ns} of non- 
singleton anti-chains of O0 is the system X for appropriately defined 
(ci> G)ieI.  

Between these two extremes, viz. tardiness costs and invariant performance 
measures, there are performance measures which distinguish between all 
possible orientations O1,. . . , 0, of G. To them belong all performance 
measures of the form K = K~ + K ~ ,  where K *  is invariant and KZ(tl, . . . , t,,) = f ( $ ) ,  
j E (1, . . . , n},  f : R'+ W' non-decreasing. 

As a consequence of Theorem 3.1, problems with a singular solution can for 
the case K = max be recognized and solved in O(II1 - n3) time by the following 
algorithm, which makes use of the O(n3)-algorithm of Golumbic [7] for 
comparability graph recognition and orientation. 
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(Q2) I 

Algorithm 3.4. Let 00, (ci, C,)iEI and K = max be given. 
Step 1. Compute all pairs {a, p)  E (Oo) which are non-adaptive, i.e., for 

which c ' ( a ) +  c ' @ )  > C, for some i E I. 
Step 2. Add all non-adaptive pairs {a, p)  as edges to the comparability graph 

G(Oo) of Oo. Try to extend the given transitive orientation Oo of G(Oo) to a 
transitive orientation of the new graph by Golumbic's algorithm [7]. If no such 
orientation exists, the problem does '(because of Theorem 3.1) not have a 
singular solution. Terminate. Otherwise go to Step 3. 

Step 3. Test whether the orientation 0 found in Step 2 is feasible by testing 
de(c') < C,, i = 1, .  . . , rn. This can be done by the flow methods described in 
Proposition 2.2 in O(lIl . n') time. If 0 is feasible, then it is a singular solution 
of the problem because of Theorem 3.1. Go to Step 4. Otherwise the problem 
has no singular solution. Terminate. 

Step 4. Compute K(O, x )  = & ( x ) ,  which is the optimum value. 

ci(a)  = 1 3  c j ( a )  = 0 for all j E I, j #  i and all IY 

(several resource types, each activity requires only one resource 
type and at most one unit of it; contains the unrelated machine 

. problems in the sense of [9,14]). 



Scheduling problems with a singular solution 233 

Table 1 
The numbers Ql(n), Qz(n), S(n) ,  P ( n )  for n = 1,. . . , 10 
(numbers given in exponential representation denote lower bounds) 

n 1 2 3 4  5 6 7 8 9 10 

Q ( n )  1 2 3 18 50 130 322 770 1794 4098 
Q2(n) 1 2 6 21 85 395 2051 11690 72458 484 559 
S ( n )  1 2 8 64 1012 30 164 1527346 119369968 2.38X 108 4 . 7 6 ~  108 
P ( n )  1 2 9 114 6894 7785062 3.44X 10'' 1.18X l@' 8.51X lo" 7 . 2 4 ~  1075 

From [17] and Theorem 3.3 we obtain the following bounds for the number 
S ( n )  of essentially distinct problems with a singular solution over the 
degenerate partial order O0 on n activities: 

Clearly, Ql(n)/S(n)  = lim Q2(n)/S(n)  = 0, i.e., within the class of all 
essentially distinct scheduling problems, conditions Q1 and Q, turn out to be 
much more restrictive than that of having a singular solution, although, of 
course, with regard to the number P ( n )  of all essentially distinct problems, also 
lim S(n)/P(n)  = 0 (cf. also Table 1). 

4. Singular solutions for (B), general case 

In order to accentuate the difference with (A), we shall proceed parallel to 
Section 2 as far as possible. Of course, all notions such as feasible, adaptive, 
etc. are now to be interpreted in the context of (B). 

Let O0, K ,  x and to be fixed. A subset B of A is called adaptive if there exists 
a feasible partial order 0 such that B E c ( 0 ) .  Let X = {Nl ,  . . . , N,} denote the 
system of C-minimal non-adaptive subsets from A. Then, for each feasible partial 
order 0 2 O0, 2 (0) contains a pair {a,, 0,) from each & E X, i.e., &E c (0) for 
all j = 1, . . . , r. (The converse holds if K = max.) 

Different to  (A), however, there is no way to construct X directly (i.e., without 
knowing all feasible partial orders) from O0, K ,  x and to, even in the case K = max 
(cf. [16]). 

Theorem 4.1. Let the problem given by O0, K ,  x and to have a singular solution. 
Then there is a uniquely determined Comparability graph G such that 

(i) G has a transitive orientation extending 0 0 ;  

(ii) X consists of all pairs {a, p }  which are not an edge of G. 

Proof. Let 0 be a singular solution of the problem. Then c(@)> c(@') for 
each feasible partial order 0'. Otherwise there would exist a chain {PI, &} E 
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c(O')\ c ( 0 ) ,  which means that 0 would not be an optimal solution for 

since k(+e,(c')) = 1, k(+e(c'))  = 2. 

c (0) and u(0).' 0 
The rest of the proof is similar to that of Theorem 3.1, with reversed roles of 

Since G(01) = G(0,) iff ~(0,) = u(02), the objective function 
0 + k(&(c'), . . . , #e(cm))  is invariant with regard to  posets 01, . . . , 0, having 
the same comparability graph, so that (contrary to (A)) no restriction with 
regard to the objective function has to be made in order to make one of the 0j 
a singular solution. 

The main difference to (A) is that not all partial orders 0 2 O0 occur as a 
singular solution, but only those which are induced by a schedule (cf. Section 

This is due to the fact that, if 0 is feasible for 00, K ,  x and to (i.e., BOG 0 
and ~(0, x)<  to), then 0* := @(ESe[x], x)  is also feasible and 0 0*. 
Now if 0'5 0*, it is easy to  construct k, c*,  . . . , cm such that 
k(+e*(C'), . . . , &*(cm))  < k(&(c', . . . , +e,(cm)).  So we obtain the following 
lemma. 

2). 

Lemma 4.2. Let 0 2 O0 be a singular solution for 0 0 ,  K ,  x and to. Then 
0 = O(ESe[x], x) and X = {{a, p }  1 a #  p, {a, p }  E ~(0)). 

The following lemma shows that any schedule-induced partial order can 
already be induced in such a way that certain additional properties hold. 

Lemma 4.3. Let 0 be induced by T and x. Then there exists a duration vector z 
such that 

(i) 0 is induced by ESe[z] and Z, 

(ii) each activity a is critical with regard to 0 and z, i.e., its prolongation 
enlarges the project duration &(z) .  

Proof. z may be constructed as follows: Put 

T ( a ) +  x ( a ) ,  a minimal in 0, 
Y : = { T (  a )  + ~ ( a )  - max [ T(P)  + x(P)], otherwise, 

B <em 

*For the case K = max, there are many symmetries between (A) and (B), which lead to duality 
relations between them by means of conjugation of partial orders in the sense of [6] (cf. [16]). 
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Ae ( x )  - ESe  [Y ] (a) ,  

min E S e [ y ] ( P ) -  E S e [ y ] ( a ) ,  otherwise. 
a maximal in 0, 

<eS 

z := 

Obviously y is defined in such a way that, for all a, x ( a )  s y ( a ) ,  E S , [ y ] ( a ) <  
T(a)  and E S , [ y ] ( a ) +  y ( a )  = T(a)+ x ( a ) .  Then 0 C @ ( E S e [ y ] ,  y ) = :  @*. If 
a < e+, then i.e., 
a < @p. Thus 0 = @*. In constructing z from y ,  each activity duration is 
prolonged so as to satisfy the equation E S e [ y ] ( a ) +  t ( a )  = min,,,, E S e [ y ] ( P ) .  
Thus, the rest of Lemma 4.3 is obvious. 

T ( a )  + x ( a )  = E S e [ y ] ( a )  + y ( a )  S E S e [ y ] ( P )  S T(P), 

I7 

Theorem 4.4. Let 0 2 O0 be schedule-induced. Then there exist K ,  x ,  to such that 
0 is a singular solution for 0 0 ,  x and to. 

Proof. Let x be the duration vector z from Lemma 4.3, to := 1 and 

0, 
1, otherwise. 

4 S E S e [ x ] ( a j )  + x ( a j )  for all j ,  
K ( f 1 ,  . . . , f a )  := 

Then obviously only the sets from c(0) are adaptive, i.e. X fulfils the 
conditions in Theorem 3.1. 0 

It should be noted that only an asymptotically vanishing proportion of partial 
orders on n elements is schedule-induced. This follows from the fact that 
schedule-induced partial orders can be characterized by forbidden suborders 
[21] .  Since (as in the theory of properties of almost all graphs [ 2 ] )  almost all 
partial orders contain any specified partial order as a suborder [4], almost no 
partial order is schedule-induced. 

This means that, asymptotically, only a vanishing fraction of partial orders 
may occur as a singular solution for a problem of type (B), whereas for task 
(A), all partial orders may occur. 

The following algorithm permits recognition and solution of problems with a 
singular solution in polynomial time, provided that the computation of K is 
possible in polynomial time. 

Algorithm 4.5. Let 0 0 ,  K ,  x and to be given. 
Step 1. Compute all pairs {a, p}  Eu(Oo) which are adaptive. To this end, let 

O,, denote the extension of Oo obtained by introducing the relation a S p, i.e., 
by adding all pairs y < 6 with y seO a and p Se0 6. Then {a, p }  is adaptive iff 
~ ( @ ~ ~ , x ) ~ t o  or ~ ( @ , , x ) < t O .  

Step 2. Add all adaptive pairs {a, p }  as edges to the comparability graph 
G(@o) of 00. Try to extend the orientation Oo of G(Oo) to a transitive 
orientation 0 of the new graph by Golumbic’s algorithm. If n o  such orientation 
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exists, the problem does not have a singular solution. Terminate. Otherwise go 
to Step 3. 

Step 3. If ~ ( 0 ,  x) > to, 0 is not feasible and there exists no singular solution. 
Terminate. Otherwise go to Step 4. 

Step 4. 0 is a singular solution of the problem. The objective value 
k ( 4 @ ( c 1 ) ,  . . . , &(c'")) is computed by the flow methods described in Pro- 
position 2.2. 

5. Singular solutions for (B), case K = max 

If K is restricted to the case K = max, Theorem 4.4 remains valid for the case that 
x is the vector z from Lemma 4.3, to = &(x) and ES%[x] = ESe[x], but not in 
general. 

Example 5.1. Let 0 be the partial order on A = (1, . . . ,6)  given by the arrow 
diagram (cf. [l l])  in Fig. 1. 

Then x = (2,5,7, 1,2,5) is a duration vector in the sense of Lemma 4.3. Let 
K := max and t o : =  A , ( x ) =  11. Then ESe*[x] = ESe[x] for all 0* such that 
0, C 0* C 0 (cf. Fig. 1 for 0,). Thus 0 is a singular solution for each such 0*. 
0 is also a singular solution for all 5 partial orders Oo which result from 0 by 
deleting a pair a s p, where p covers a, although ESeo[x] f ESe[x] is possible. 
0 is, however, no longer a singular solution if 1 S eo3 and 1 S eo4 are deleted 
simultaneously. 

The general problem for K = max, viz. to give a characterization of all 
singular solutions for arbitrary Oo, is still unsolved. We shall give a solution for 
the case that Oo is degenerate (i.e., a ~ e p  implies (Y = p).  In this case, a subset 
B of A is adaptive for Oo, x and to iff ZaEB x ( a )  S to. 

Call a partial order 0 on A series-parallel if it is built up recursively as 
follows: 

(1) The partial orders on two points are series-parallel. 

~ 

Fig. 1. The partial orders of Example 5.1. 
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8 

6 

Fig. 2. A series-parallel partial order and its composition tree. 

(2) If 0 1  on A1 and O2 on A2 with Al n A2 = 0 are series-parallel, then 
O s =  O1 U 0 2  U (A, x A2) on Al U A2 and O p =  O1 U O2 on Al U A2, too. 0' 
and Op are said to be built up from O1 and O2 by series composition and parallel 
composition, respectively. O1 and O2 are called series blocks of Os and parallel 
blocks of 0'. 

A series-parallel partial order 0 on A can be fully described by a rooted 
tree, the composition tree B(0). 

The root of B(O) is A. Each node B of B(O) is a subset of A. If IBIS2, 
then B is assigned the label P or S depending on whether the suborder 0 I B of 
0 induced by B is built up by parallel or series composition in the sense of (2). 
The blocks of the finest partition of 0 I B into parallel or series blocks are the 
successor nodes of the node B (cf. Fig. 2). 

B(O) is a special form of the composition tree for arbitrary partial orders (cf. 
[3]). A slightly different definition of composition tree for series-parallel partial 
orders has also been given in [23]. 

Another characterization has been obtained by forbidden suborders [11, 
Theorem 18.61 and [23]: 0 is series-parallel iff it does not contain a suborder 
isomorphic to O2 in Fig. 3. 

Because of this forbidden suborder, again (as for schedule-induced orders) 
almost no partial order will be series-parallel. This also follows from the results 
obtained in [15]. 

Fig. 3. The partial orders of Theorem 5.2. 
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Theorem 5.2. Let O0 be degenerate and K = max. Then the following statements 
are equivalent. 

(1) 0 is a singular solution of a problem ouer 0 0  for K = max. 
(2) 0 does not contain any of the partial orders of Fig. 3 as a suborder. 
(3)  0 is series-parallel and each node of B(0) has at most one non-singleton 

successor. 

Proof. ( 1 ) j  (2) Assume that 0 contains el, 02, or 03 from Fig. 3 as a 
suborder. Then, by Theorem 4.1, {1,2} and {3,4} belong to N .  Since 00 is 
degenerate, xl + xz > to and x3 + x4 > to. On the other hand, (1,3} and {2,4} are 
adaptive, which yields x1 + x3 S to < x1 + x2 and x2 + x4 S to < x3 + x4, i.e., x3 < x2 
and xz < x3, a contradiction. 

( 2 ) j  (3) Since 0 does not contain 02, 0 is series-parallel because of the 
above characterization. Since it does not contain and 0 3 ,  a node with the 
label P or S can at most have one non-singleton successor. 

( 3 ) j  (1) We show by induction on the depth of B(0) that there exist x and to 
such that x ( a ) +  x(p) > to for all {a, p }  EII (0) and AelB(x) = to for all series 
blocks B of 0. This is trivial for depth 1. So let one of the successors 
B1,. . . , B, of A be non-singleton, say Bl. Then (B21 = = lBml = 1, and by 
the inductive hypothesis there exist x* and t$  for 0 ] B ,  with the above 
properties. Then x and to are given by 

if a E B1, 

otherwise, 
to : = tg if A is labeled with P 

and 
m * x * ( a )  if a E B1 

otherwise with S. 
to := mt$+ ( m  - 1) if A is labeled 

x ( a )  := 

Thus (1) follows from Theorem 4.1 and the fact that a set B' is adaptive iff 
C & B ' X ( ( Y )  S to. 0 

For 0 from Fig. 2, we would obtain x = (6,2,2,2, 1,7) and to = 7. 
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We study the rank over GF2 of the set of incidence vectors of the perfect matchings of a 
graph, and in particular, the relationship between this value and the number of steps in an ear 
decomposition of the graph. We show that if a graph has an ear decomposition which is 
sufficiently simple, the GFz -rank will be one greater than the number of steps in the ear 
decomposition. We also give examples which show that this relationship does not remain true in 
general. 

We show that for a special class of 3-connected planar bicritical graphs, the so-called 
Halin graphs, there does exist such a simple ear decomposition and so the GIF*'-rank of the 
incidence vectors of the perfect matchings can be easily calculated. 

1. Introduction 

Let G = (V, E) be a graph, where V is the set of vertices and E is the set of 
edges. For convenience we will assume that G is simple, i.e., without loops or 
multiple edges. In general we adopt the terminology of Berge [l]. A perfect 
matching or 1-factor of G is a subset M of E such that every vertex v E V is 
incident with exactly one element of M. 

We can associate with every subset X of E a (0, 1)-vector X = (xc: e E E)E 
WIEI such that e E E if and only if x, = 1. Such a vector is called the incidence 
(or representative) vector of X. 

Let P be the set of the incidence vectors of all perfect matchings of G and 
let K be any field. We define the K-rank of the perfect matchings of G, 
denoted by rk(G), to be the maximum number of K-linearly independent 
elements of P, where, of course 0 and 1 are taken as the additive and 
multiplicative identities respectively of K. 

* Research supported by Deutscher Akademischer Austauschdienst (DAAD) and Sonder- 
forschungsbereich 21 (DFG), when on leave at Universitat Bonn, Institut fur Operations Research. 

** Supprted by the Universitat Bonn, Sonderforschungsbereich 21 (DFG), Institut fur Operations 
Research. On leave from Department of Computer Science, The University of Calgary, Canada. 
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The case K = R or equivalently K = Q was studied in [8].  Sometimes rR(G) 
gives a good lower bound on the number @(G) of perfect matchings. Here we 
concentrate on the case K = GF2, the field with 0 and 1 as its only elements. 
Note that we always have rGfZ(G) 6 rR(G) s @(G). 

A main interest in the latter case lies in the possible relation between this 
GIF2-rank and the ear decomposition theory of Lovasz [5] (see also [6] )  for 
connected graphs such that every edge belongs to a perfect matching. 

In Section 2 we describe the ear decomposition and several of its properties. 
In Section 3 we present a class of graphs for which the ear decomposition gives 
the GFz-rank and then in Section 4 we see how this gives us the K-rank (for 
K =  GIF2 or R) of Halin graphs. The last part, Section 5, will concern various 
related topics. 

We conclude this section with some notation and definitions. 
Any edge e E E which belongs to no perfect matching can be deleted from G 

without affecting the rank of the perfect matchings. Similarly, if an edge e 
joining verices u and u belongs to every perfect matching, then we can delete 
e, u, u and all edges incident with u or u without changing the rank. (These 
operations may result in a reduced graph G‘ = (V’, E’), having E‘ = 0. If 
V’ # 0, then G has no perfect matching so rK(G’) = rK(G) = 0. If V’ = 0, then G 
has exactly one perfect matching, and since M = 0 is a perfect matching of G’, 
we have rK(G’) = rK(G) = 1.) 

Any edge e E E which belongs to some but not all perfect matchings is called 
useful. We say that G is a U-graph if every edge is useful. (This is closely 
related to Lovasz’s definition [5] of an elementary graph-a graph for which 
the useful edges form a connected spanning subgraph.) 

Henceforth, we only consider connected U-graphs. For a nonconnected 
U-graph G having components GI, G2, .  . . , Gp, the results can be applied to 
each component and then rK(G) = Ef=l rK(Gi) - p.  

Also G will usually be explicitly assigned a particular perfect matching Mo 
which we will call the reference perfect matching. An alternating cycle in G 
(relative to Mo) is an even elementary cycle such that the edges alternately 
belong and do not belong to Mo. An alternating path is a simple path whose 
edges alternately belong and do not belong to Mo. An augmenting path 
between a and b is an alternating path of length 2r + 1 ( r  3 0) linking a and b 
such that the 2nd, 4th, . . . ,2rth edges are in Mo; a decrementing path between 
a and b is defined in the same way but with the lrst, 3rd, . . . , (2r + 1)th edge in 
Mo. Note that since Mo is a perfect matching, our definition of an augmenting 
path is slightly different from the standard one which requires a and b not to 
be incident with elements of Mo. 

Note that if G is a U-graph and Mo is a perfect matching of G, then every 
edge belongs to an alternating cycle. Moreover, a connected U-graph can have 
n o  cutnode. 
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2. Structural properties of U-graphs and the ear decomposition 

Throughout this section, G = (V, E) will be a connected U-graph and Mo 
will be a perfect matching of G. Matching labeling is the following process, 
which iteratively labels the vertices after one (or more) has been assigned an 
initial label, and continued until no further operations can be performed: 
-If j does not have a label ‘+’, but is joined by an edge of Mo to a node i 

- If j does not have a label ‘-’, but is joined by an edge of E - Mo to a node i 

(Note that every labeled node has a natural predecessor, the node that caused 
it to receive a label.) 
-As soon as a vertex gets both labels ‘+’ and ‘-’, traceback the two paths of 

predecessors which led to that double labeling to the first common vertex u. The 
two paths then form an odd cycle which is shrunk to a single vertex, called a 
pseudo-vertex; give this vertex the label ‘+’. The old predecessor of u is taken to 
be the predecessor of the pseudo-vertex. Moreover, every vertex of G contained 
in the pseudo-vertex is given the single label ‘+’. 
Suppose we initialize by labeling a vertex u with ‘-’. It is shown in [S] that, 

when we start with a U-graph, in the resulting graph G*, every vertex gets a 
label and the label does not depend on the choice of Mo or the order of the 
labeling. This induces a labeling of the vertices of G which can be considered 
as a function A, : V + { + ,  -}. 

During the labeling process starting from a vertex u, a vertex first receives a 
label when an alternating path from u, whose first edge is in Mo, is discovered. 
Thus for a U-graph there is an alternating path starting with an edge of Mo, 
from u to every other vertex. Moreover, a vertex receives the label ‘+’ when a 
decrementing path is discovered. (The reader is encouraged to verify these 
assertions for labelings involving pseudo-nodes !) This matching labeling 
process is basically the tree growing process of Edmonds’ matching algorithm 

with label ‘-’, then label j with ‘+’. 

with label ‘+’, then label j with ‘-’. 

121. 
Now consider the following two relations: 

u - w 
u = w 

if and only if A,w = ‘-’ (=A,v) , 

if and only if there is no decrementing path (relative 
to Mo) between and w .  

Proposition 2.1. Relations ‘-’ and ‘=’ are the same equivalence relation. 

Proof. First we show that ‘=’ is an equivalence relation by showing that 
transitivity is satisfied. If u, u, w E V and u = w, then there exists a decrement- 
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ing path from u to w. Since there exists an alternating path from v to w, which 
starts with an edge of Mo, we can construct a decrementing path from v to one 
of u or w, so u+ v or V Z  w and we are done. 

If there exists a decrementing path from u to v,  then a labeling starting with 
u labeled ‘-’ which follows this path gives v the label ‘+’, so u 4  v. If no such 
path exists, then at the end of the labeling y must have the label ‘-’, so u - v. 
Thus the relations ‘-’ and ‘=’ are identical. 0 

The classes of these relations are called the M-classes of G. 
It is an easy consequence of Berge’s alternating path theorem (see [l)) that the 

following relation: 

u = v if and only if G - u - v has no perfect matching 

gives the same classes as ‘=’. A consequence is that the M-classes do not 
depend on the matching Mo chosen. 

Another characterization of the M-classes [4, 51 is given by the following 
statement: 

S C V is a M-class if and only if G - S consists of IS1 critical 
components. 

A critical graph is a graph with an odd number of vertices such that the 
deletion of any one leaves a graph containing a perfect matching. 

A graph such that every M-class contains a single vertex is said to be 
bicritical. These graphs have the property that deleting any pair of vertices 
yields a graph which still has a perfect matching. 

An ear is a path containing an odd number of edges. It may simply consist of 
a path of length one, that is, two nodes joined by an edge. We say that 
G = (V, E) is obtained from G = (q  8) by an 1-ear addition if G is obtained 
from G by joining two vertices of 
vertices belong to (see Fig. l(a)). 

by an ear, such that only the two end 

(a) 

Fig. I .  (a) 1-ear addition; (b) 2-ear addition. 
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Similarly, we say that G = (V, E )  is obtained from 6- = (c &) by a 2-ear 
addition if G is obtained from G by adding two vertex-disjoint ears, which join 
disjoint pairs of vertices (Fig. l(b)) of and for which only these end vertices 
belong to v. 

Note that two consecutive 1-ear additions need not in general give a 2-ear 
addition. 

2.1. The ear decomposition of U-graphs 

An ear decomposition of a U-graph G is a sequence Go, GI, . . . , G, = G of 
graphs such that 

(i) GO consists of two vertices joined by an edge, 
(ii) GI,  G2, .  . . , G, are U-graphs, 
(iii) for i = 1,2, . . . , t, GI is obtained from G,-l by either an 1-ear addition or 

a 2-ear addition. In the latter case adding only one of the two ears would not 
yield a U-graph. 

It is a consequence of results of LOV~SZ [5] and LOV~SZ and Plummer [6] that 
such a decomposition exists. The total number of ears used in the construction 
of G is equal to v(G), the cyclomatic number of G. However, the value r, the 
number of steps of the ear decomposition will depend upon the number of 
times these ears are added in sets of two. We will now give an algorithmic 
construction of such a decomposition. 

Let G be a U-graph and Mo a perfect matching of G. Let Go be the graph 
induced by any edge of Mo. Suppose, for i 2 0, we have built Go, GI,.  . . , G, 
satisfying (ii) and (iii) and perfectly matched by the matching induced by Mo. If 
GI = G, then let t 2 i and terminate. If not, let J be the set of all edges of 
E(G)-E(G,) which are incident with one or two vertices of GI. Give each 
edge in J a weight equal to the number of incident vertices of G,, that is, 1 or 2 
depending if the edge is in the coboundary of V(G,) or not. Give each edge not 
in J a weight of 0. Find a perfect matching &fl+l of G for which the sum of the 
weights is minimum, but positive. (Such a perfect matching exists, because G is 
a U-graph so every edge of J belongs to a perfect matching. A way to find it is 
given later.) It follows from a nontrivial theorem of Lovhsz and Plummer [6, 
Theorem 5.41 that the weight of will be either two or  four. The symmetric 
difference Mo A a,+l consists of alternating cycles, only one of which, say r,+i, 
meets edges of J. Set GI+, = GI u is a U-graph and (ii) is 
satisfied. The portion of not in GI defines one or two ears depending on the 
weight of The second part of (iii) follows from the minimality of ~ , + i .  

Finally, is perfectly matched by Mo and we can repeat the process until G 
is obtained. 

The matching A?fl+l can be found as follows. Delete individually each edge 1 

Then 
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of J, together with its two end points and find a minimum weight perfect 
matching M ( j )  in the resulting graph. Let be a member of { M ( j ) U  
{ j }  I j E J }  for which the weight is minimum. 

If the ear decomposition Go, GI, .  . . , G, is given, then the matching Mo 
which induces perfect matchings on every Gi, i = 0,.  . . , t is uniquely deter- 
mined. However, it appears to be quite difficult to obtain the ear decom- 
position without having Mo at hand to  guide the selection of ears. For example 
consider the graph of Fig. 2. Suppose we choose Go to be the graph induced by 
the edge joining nodes 3 and 4. Choosing the ear induced by the nodes (3,2,5,4) 
leads us to GI which is a U-graph (a 4-cycle), but there is no ear decomposition 
of G that contains GI. 

Fig. 2. 

We now relate the ear decomposition to the M-classes. When one ear is 
added to Gi, it links two vertices of Gj of different classes. In fact, joining any 
two vertices of different M-classes of a U-graph G by an ear yields another 
U-graph. When a 2-ear addition is performed then each ear joins a pair of 
vertices and each pair belongs to  a different class. Moreover, there exist 
between the two vertices of the first class and those of the second class two 
disjoint decrementing paths. 

In summary, an 1-ear addition can be performed if and only if the resulting 
graph has an alternating cycle containing the ear. A 2-ear addition can be 
performed if and only if the resulting graph has an alternating cycle containing 
both ears, but no such cycle containing only one. 

For k = 1, . . . , t let Tk ={rl, r,, . . . , Tk} where the ri’s are the alternating 
cycles defined in the algorithm. Let Mi = MoA ri for all i = 1, . . . , t, and 
A k  E {Mo, MI, . . . , Mk}. We now extend each %k to a cycle basis %Ik of Gk. Let 
931 = {rl} and %Ik = U {rk} if Gk was obtained from G k - l  by adding one 
ear, %k = %k-l U {rk, C,} if Gk was obtained from Gk-l by a 2-ear addition, 
where c, is a cycle which completes a k - 1  U {rk} to a cycle basis. Note that c, 
will always contain exactly one of the two ears added at that step. 



Ear decompositions of elementary graphs 

Theorem 2.2. Let GO, GI , .  . . , G, be an ear decomposition of G. Then the 
following four properties are equivalent, where all spaces are taken over GF2, 
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(1) The set A, forms a basis of the peflect matchings of G. 
(2) V, is a basis of the space generated by the alternating cycles of G. 
(3) In any basis o f  cycles of G not more than t can be alternating cycles. 
(4) rGFZ(G) = t + 1. 

Proof. Clearly A, is a linearly independent set of t + 1 perfect matchings of G 
and hence (1) and (4) are equivalent. Similarly, '%, is a linearly independent set 
of t alternating cycles of G and hence (2) and (3) are equivalent. Now we show 
that (1) and (2) are equivalent, which completes the proof. 

Let r be an alternating cycle of G and let M = r A  Mo. By (1) there exist 
ao, . . . , a, E GF2, not all equal to zero, such that 

(Recall that M denotes the incidence vector of M.) Note that ai = 1 
because, if not, the subgraph induced by the symmetric difference of the Mi for 
which ai = 1 would have even degree. 

Since Mi = MO A fi  we have 

f 

M + r = ai(Mo + fj) where we take TO = 0. 
i = O  

This gives 

Since a; = 1 we get 

r 2 airi + r = o , 
i = l  

so r is generated by gt. 
Conversely suppose V, is a basis of the alternating cycles and let M be any 

perfect matching of G. Let r = M O A  M. Then r is the union of disjoint 
alternating cycles so there exist al, az, . . . , a, not all zero such that 

f 

r = 2 a i f i ,  
i = l  
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I 

M~ + r = M~ + 2 airi . 
i = l  

f 

M = 2 ai(Mo+ ri) (again, setting To = 0),  
i = O  

hence 
I 

M = 2 aiMi, 
i=O 

which shows that At is a basis of the perfect matchings. 0 

The question which naturally arises now is whether or not every ear 
decomposition of G = (V, E )  satisfies (1) to (4). If such were the case, then the 
following would also hold: 

(5) Given a U-graph G = (V, E) ,  the number of times a 2-ear addition is 
performed is the same in any ear decomposition of G. 

This is because, as noted earlier, the cyclomatic number of Gi, denoted by 
v(Gi), is one or two larger than that of Gi-l, depending on whether an 1-ear or a 
2-ear addition was performed. Trivially v(Go) = 0 and t equals, therefore, u(G) 
minus the number of times a 2-ear addition was performed. If (4) is valid for 
every ear decomposition, then t is independent of the decomposition, which 
implies that the number of times 2-ear additions are performed is also in- 
dependent of the decomposition. 

We will now show that these properties need not be true in all cases. 
Curiously enough, however they do hold for a great many graphs, including the 
Petersen graph ! In the next part we will show that if a graph G has a 
‘sufficiently simple’ ear decomposition, then we will have rGFZ(G) = t + 1. This 
will then partially answer a question first posed by L O V ~ S Z  who asked whether 
or not (4) and (5)  were always satisfied. 

First the reader can convince himself that there is only one ear decom- 
position of the Petersen graph (up to isomorphism). Necessarily GI is an 
8-cycle, G2 is obtained by a 2-ear addition giving a spanning subgraph of 
Petersen, G3 is obtained by another 2-ear addition and finally G4 = Petersen is 
obtained by adding the last missing edge. So (5)  is valid in the case of the 
Petersen graph. Now the Petersen graph is bicritical so we can continue to build 
Klo, the complete graph on  10 vertices, by 1-ear additions. Thus we obtain an 
ear decomposition of Klo that has two 2-ear additions. 

But KIO has an ear decomposition With a single 2-ear addition. To find such a 
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decomposition proceed as follows: First perform 1-ear additions until K5.5, the 
complete bipartite graph with 5 vertices on each side, is constructed. Then 
perform a 2-ear addition, adding an edge between the members of two pairs of 
vertices on opposite sides of Ks.5. The resulting graph is bicritical. Then Klo can 
be obtained performing only 1-ear additions. So K,,, shows US that not every 
ear decomposition satisfies (1) to (5). In fact the Petersen graph with any edge 
added to it is also a counterexample. 

In general, ear decompositions seem to allow a large amount of variation in 
the steps performed. In particular, examples can be found which show that the 
number of 2-ear additions may depend on 
- the choice of GI (see Petersen graph plus 1 edge), 
- the choice of the two ears, when more than one 2-ear addition is possible, 
- the decision to perform a 2-ear addition while there is still an 1-ear addition 
possible. 
This motivates the definition of an optimum ear decomposition of G as any 

ear decomposition of G with the minimum number of 2-ear additions, or 
equivalently with the highest number of steps. We now make the following 
conjecture. 

Conjecture 2.3. The GIFz-rank of the perfect matchings of a connected U-graph is 
one greater than the number of steps of an optimum ear decomposition of G. 

3. Optimum ear decompositions 

In this section we show that all ear decompositions which are sufficiently 
simple are, in fact, optimum. 

Theorem 3.1. Let G be a U-graph for which there exists an ear decomposition 
such that 

(i) at most two 2-ear additions are performed, 
(ii) if two 2-ear additions are performed, then the second such addition is the 

last step of the construction of G. 
Let t be the number of steps in the ear decomposition. Then (1)  to (4) hold, and in 
particular, rGF2(G) = t + 1. 

Proof. If no 2-ear additions are performed, then t = v(G) so (3) holds trivially. 
So suppose that at least one 2-ear addition is performed. 

If a 2-ear addition has been performed, then necessarily the graph is 
nonbipartite. Any cycle basis of a nonbipartite graph must contain at least one 
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odd cycle. Thus if only one 2-ear addition has been performed, t = v (G) -  1 so 
again (3) holds trivially. 

Suppose we now perform a second 2-ear addition. The alternating cycle r, 
contains both ears. If an alternating cycle r is not a linear combination of 
alternating cycles of it must contain both ears of the last step. For if it 
contained none of these ears, it would be contained in GI-,, which we just saw is 
impossible. If it contains only one ear, then the 2-ear addition was not 
allowable, since an 1-ear addition was possible. So rAr, is a linear combination 
of cycles of 3,-]. By parity, the coefficient of C1 in that combination is zero, so 
r is a linear combination of alternating cycles, which contradicts our choice of 
F. Hence, again (3) is satisfied. 

Corollary 3.2. A n y  ear decomposition satisfying the conditions of Theorem 3.1 is 
an optimum ear decomposition. 

In Fig. 3 an example, which is obtained from the Petersen graph by moving 
one edge, shows that if an single 1-ear addition is performed after the second 2-ear 
addition, then this ear decomposition may not be optimum. The graph G of Fig. 3 
has at least two ear decompositions. One starts with a hamiltonian cycle of G and 
uses a single 2-ear addition and so is optimum. The second starts with an 8-cycle 
and uses two 2-ear additions and ends with a single 1-ear addition after the last 
2-ear addition. 

Fig. 3. 

Corollary 3.3. If G has an ear decomposition with a single 2-ear addition, then 
~ G F z ( ~ )  = rR(G) = v(G) .  

Proof. We always have rGF2(G)SrR(G). Since G must be nonbipartite, 
rR(G)S v(G). This follows either from Theorem 4.5 presented in the next 
section, or simply from the observation that the degree constraints for a 
connected nonbipartite graph form a linearly independent set of ] equations 
satisfied by all perfect matchings of G. 
The corollary now follows from Theorem 3.1. 0 
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Recall that if G is a bipartite U-graph, then every ear decomposition 
requires no 2-ear addition and rR(G) = rGF2(G) = v(G)+ 1. 

4. Matching rank of Halin graphs 

A graph G is a Halin graph if it can be constructed as follows: 
Let T be a tree having at least four vertices in which each nonleaf has degree 

at least three. Embed T in the plane and construct a cycle C passing through 
all leaves of T in such a way that G = T U C remains planar (see [3, 7, 91). 
Note that Halin graphs can never have loops or multiple edges. 

Now let G = T U C be a Halin graph. We will always let T* denote the tree 
obtained by deleting (or pruning) all leaves of T. Thus T* is never empty, it 
always contains at least one node. If it contains exactly one node, which must 
be adjacent to every node of C, then G is a wheel (see Fig. 6). 

A leaf of T* can only be adjacent to one node not in C. Moreover, the 
adjacent nodes of C must form a consecutive segment of C. For any leaf v of 
T * ,  we define the fan centered at v to be the subraph of G induced by v and 
the adjacent nodes on C. For example, in Fig. 4, u1, u2, u3 are the nodes of a 
fan centered at u1 and vl ,  v2, v3, v4, are the nodes of a fan centered at u1. Note 
that w does not appear in a fan because w is not a leaf of T*.  

"3 

Fig. 4. 

Proposition 4.1. A Halin graph G contains at least two fans unless G is a 
wheel. 

Proof. If T* consists of a single node, then H is a wheel. Otherwise, T* 
contains at least two leaves and hence G contains two fans. 0 

It follows from Propositon 4.1 that every Halin graph contains a triangle and 
hence is nonbipartite. Moreover, it is shown in [7],  that these graphs are 
bicritical when the number of vertices is even, which implies that they are 
U-graphs. 

We now state the main theorem of this section. 
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Theorem 4.2. If G is a Halin graph with an even number of vertices, then there 
exists an ear decomposition requiring only one 2-ear addition. Hence r m 2 ( G )  = 

rR(G) = v(G).  

Proof. We are going to construct such a decomposition. Again, T* is the 
subtree of T obtained by pruning all leaves. Let M* be a maximum matching 
of T* which saturates all nonleaves of T * .  It can be seen that one leaf of T* 
must be saturated, unless E(T*)  = 0, in which case G is a wheel. 

Let C* be the subgraph of G obtained by deleting all nodes of T* which are 
matched by M*. Thus, C* consists of C, together with those fans whose centers 
are not adjacent to an edge of M*. It is easily verified that C* has a 
hamiltonian cycle C'. If we add every second edge of C' to M*,  we obtain a 
perfect matching Mo of G. Moreover C' is an alternating cycle with respect to 
Mo (see Fig. 5). 

C *  

Fig. 5. 

We are now going to describe an ear decomposition such that GI is the graph 

Case 1. G is a wheel, that is, E ( T * )  = 0, (see Fig. 6). 
induced by C', that is rl = C'. 

+ @- + 

- + 
Fig. 6. 
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Mo contains one radial edge and all the others are on C. Moreover, C* = G 
and C' is a hamiltonian cycle of G. Label the vertices with '+' and '-' 
alternately around C'. Suppose the center gets the label '-'. We can add every 
radial edge with ends of opposite label by 1-ear additions. Then there is only 
one edge with both ends labeled '+' (necessarily on C). Put in that edge 
together with any radial edge not yet in (which must have both ends labeled 
'-'). This is a 2-ear addition. Now because of the uniqueness of the edge with 
both ends labeled '+', every other edge not yet added can be added with a 
1-ear addition, which proves Theorem 4.2 for wheels. 

Case 2. G is not a wheel, so E(T*)  # 0 and there is a leaf a of T* which is 
saturated by M * .  Let Pa be a maximal alternating path of T* containing a. Let 
b be the other end of Pa. Then a is the center of a fan A and b is the center of 
another fan B. Now GI is the graph induced by r1= C' and so is bipartite; 
label alternately with '+' and '-' around C'. This gives the two M-classes 
which in turn give the bipartition of G1. Since a was matched by an edge of T*,  
a is not in V(G,), and so is unlabeled, but is adjacent to vertices labeled '+' 
and others labeled '-'. (Every fan has labels of both kinds.) 

Consider now the two following subcases. 
Case 2a. b is unlabeled, so b !Z V(C') (see Fig. 7). 

-9 

b- 
Fig. 7. 

Choose any vertex x of the fan A and any vertex y of the fan B of opposite 
labels. Then the path E' consisting of Pa and edges linking x and a on one side, 
b and y on the other side is a valid ear. (It links nodes of different M-classes.) 
Let G2 be the graph obtained by adding 

Let 5 be a neighboring vertex of x o n  C' and o n  fan A, and let 9 be similarly 
defined for y in fan B. Instead of it would have been possible to add the ear 
el  consisting of Pa together with the edges between 2 and a and between b and 
9. (Again, it links node of different M-cfasses.) This shows that these two edges 
belong to some alternating cycle of G2, and each by itself does not complete an 
alternating cycle so the addition of those two edges is a valid 2-ear addition 
which leads to G3. 

to G1. 



254 D.J. Naddef, W.R. Pulleyblank 

Case 2b. b is labeled, that is, b E V(C'). 
Without loss of generality we suppose b is labeled '+'. (See Fig. 8 where C' 

traverses the fan B in the following order: bl, bZ, b, bs, b4.) 

-9 

Fig. 8 ,  

Choose in fan A any vertex x of label '-' (the opposite of that of b). Then 
the path E~ consisting of Pa together with the edge between a and x is a valid 
1-ear addition. Let G2 be the graph obtained. 

Choose any vertex i of fan A adjacent to x and on C, let el be the edge 
joining a and i. Let e2 be the unique edge of the fan B which is on C but not 
on C'. (It has both ends labeled '-' in our case.) As a consequence of the 
following property, (6), we can add el and e2 as a valid 2-ear addition, giving 
the graph G3. 

Consider the following subgraph of G consisting of the graph induced by two 
consecutive radial edges of a fan, the edges of C joining their endpoints on C, 
and the edges of the coboundary of this triangle (see Fig. 9). The reader can 
easily verify the following property (see Fig. lO(a), (b) and (c)). 

Fig. 9. 

(6) Let A4 be any matching saturating the three nodes of the triangle. An 
alternating path arriving at the center of the fan can continue as an alternating 
path either clockwise or anticlockwise on C'. 
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Fig. 10. 

This motivates the following definition: A switch is any fan such that three 
edges of it forming a triangle are already present in the current graph Gk of the 
ear decomposition. In particular if every edge of a fan is in Gk, then it is a 
switch. 

It is easy to see that, once G3 is constructed, every edge of the fans A and B 
can be added by a sequence of 1-ear additions. 

Let f denote the number of fans of G, or equivalently, the number of leaves 
of T * .  The next portion of the ear construction will consist of f -  2 repetitions 
of the following sequence of 1-ear additions. First an alternating path is added 
linking a vertex of the portion of T* already added to a vertex of a previously 
unadded fan. Then the remaining edges of this fan are added one after the 
other. We adopt the following notation. For 2 < i < J  Gb will denote the graph 
obtained after i complete fans have been added to the constructed graph. Thus, 
in particular, we now denote the graph constructed at this point by Gg. Our 
complete ear decomposition, therefore, will be denoted by (GI, G2, G3, . . . , G;, 
G:, . . . , Ga, G:, . . . , Gh,. . .). 

We will let T$ denote the portion of T* which exists in Gb. Our construction 
will ensure that Gb for i 2 2 will have the following properties: 

(7) T :  is connected. 
(8) For any leaf v of T* which belongs to T:, the entire fan centered at u is 

in Gb. 
(9) For any nonleaf v of T* which belongs to T:  there is an alternating path 

contained in T:  linking v to a switch and starting with a matching edge. 
Clearly (7)-(9) are satisfied for GZ. We now describe the sequence of steps 

that will obtain Gb" from Gb for 2 s i <f and which we will see preserves these 
properties. Then we will describe a sequence of 1-ear additions to complete G6 
to G. 

If there is a part of T* not in Gb, then there is an edge e E E ( T * ) -  E(T:),  
which is incident to a vertex of T:.  Let I7, be a maximal alternating path 
contained in T* - T:  starting with e. One end vertex w of I7, is the center of a 
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fan W. Let E, -n, if w is on  C', and let E, -Il, plus any edge of the fan W 
incident with w, if w is not on C'. 

We are going to show that E, is a valid ear. That is, adding e, to  Gb will give 
us a U-graph, which we will denote by G ; .  By (9), the vertex x of e belonging 
to T: is linked to a fan by an alternating path Il: starting with a matching 
edge. Because T* is a tree, Il, and Il: are disjoint, hence so too are e, and n:. 
If E, is forced on C' in one direction, by (9) the fan at the end of n,* is a switch 
and so can send E, + n,* in the opposite direction so we get an alternating cycle 
containing E,, so E, is a valid ear. 

Now the fan W can be entered entirely by a sequence of 1-ear additions 
giving Gf for j > 1 until the last such edge is added which gives Gb". Clearly 
(7)--(9) are still satisfied. 

If Gh # G, then the edges of G not in Gh join nonleaves of T* to vertices of 
C. (See Fig. 11, in this case G', is everything except edges g to 1.) Let Z be such 
an edge, 

Fig. 11. 

The path consisting of E and its two adjacent vertices is forced on C' in a 
certain direction, and by (9), is linked on the other side to a fan which is a 
switch. So E belongs to an alternating cycle and hence is a valid ear. Therefore, 
every edge of T not yet added can be added by an 1-ear addition. This 
completes the proof, the equalities of Theorem 4.2 being a consequence of 
Corollary 3.3 of Theorem 3.1. 

For a Halin graph G = T U C, the cyclomatic number equals 1 V(C)l so we 
have the following corollary. 

Corollary 4.3. If G = T u C is a Halin graph with an even number of nodes, 
then rGF2(G)  = rR(G) = v(G) = I V(C)l. 

The result that rR(G) = 1 V(C)l was first proved in [9], using a very different 
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approach. The idea of this proof was to use the polyhedral properties of 
dimension, a characterization of a minimal linear system necessary to define 
the convex hull of the incidence vectors of perfect matchings of a graph and the 
following result. We say that S C  V is a tight set if G ( S )  (the subgraph of G 
induced by S) is critical, and every perfect matching of G contains exactly one 
edge of S ( S ) ,  the coboundary of S. A tight set is trivial if S ( S )  = S(i)  for some 
node i E  V. 

Theorem 4.4 [9, Theorem 2.81. A Halin graph with an even number of nodes has 
no nontrivial tight set. 

We now show how this can be derived from Theorem 4.2 and a result in [8] 
on rR(G). 

We say that a family Y of subsets of V(G) is nested if for any S, T E 9, 
either S f l  T = 0 or S 2 T or T C S. If Y is a nested family of subsets of V ( G ) ,  
then we define G X Y to be the graph obtained from G by contracting each of 
the (necessarily disjoint) maximal members of Y to form a new vertex. For any 
T E Y we let Y[T] = (S E Y: SP T}. We say that a nested family Y has the 
odd cycle property if G(T)  X Y[T] is nonbipartite for every T E 9. 

Now for any graph G, we let Y(G) denote the set of S C V such that S is a 
tight set and 1.91 > 1. Note that if G is bipartite, then it contains no critical 
subgraphs, and hence Y(G)  = 0. Conversely, it can be shown (see [8]) that a 
nonbipartite U-graph contains a tight set S with 1.51 > 1. Finally, note that 
Y(G)  may contain some trivial tight sets. For any vertex t~ such that G -  v is 
critical, V -  (u }  is a trivia1 tight set belonging to 9(G). 

Theorem 4.5 [8, Theorem 131. Let G be a connected nonbipartite U-graph. Let Y 
be a nested subfamily of Y (G)  having the odd cycle property and which is 
maximal by inclusion. Then 

(If G is not connected, then the ‘2’ in the formula for rR(G) should be replaced 
with ‘p  + 1’ where p is the number of components.) 

Now we show why Theorem 4.2 and Theorem 4.5 imply Theorem 4.4. 
Let G be a Halin graph and let Y be as in Theorem 4.5. Theorems 4.2 and 

4.5 imply 19’1 = 1. Let Y= { S } .  Suppose S is nontrivial. Let G = G x S, the 
graph obtained by shrinking S, and let T be the node of G representing S. It is 
easy to see that G is a U-graph. If G is nonbipartite, then, as we noted, there 
is a set s of vertices of G which is tight in G (1$*3). If T E  3, then let 
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S' = 3 U S - {T} and if T 3, then let S' = 3. Then S' is tight in G, distinct from 
S and either contains S or disjoint from S. Hence {S,  S'} is a nested subfamily 
of T(G) having the odd cycle property, which contradicts the maximality of 9'. 
Therefore G is bipartite and has the same number of vertices on each side. 
Since we assume S to  be nontrivial, this number is at least two. Let u and v be 
two vertices of G belonging to the side that does not contain T. Then it is easily 
seen that G - u - v has no  perfect matching which contradicts the fact that a 
Halin graph is bicritical. 

5. Some questions about GF2-rank and ear decompositions 

A main question which arises concerning the GF2-rank of matchings is how 
large the difference can be between the R-rank and the GF2 -rank. Of course if 
we do not restrict ourselves to connected graphs, the difference can be as large 
as we want. 

Question 1. Is it true that for connected U-graphs, the difference is at most 
one ? (Note that of necessity, a connected U-graph is nonseparable.) 

A related question is how many 2-ear additions will be performed in a 
optimum ear decomposition ? If we do not restrict ourselves to 3-connected 
U-graphs we can build examples where the number of those additions is any 
desired number. The example shown in Fig. 12, where there are k triangles, 
requires k 2-ear additions. However it contains a great many vertex cutsets 
each of cardinality two. 

Fig. 12. 

Question 2. Let G be a 3-connected U-graph. Is it true that an optimum ear 
decomposition of G requires at most two 2-ear additions ? 

Question 2'. If the answer to Question 2 is negative, is it true when G is 
moreover bicritical ? 
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A positive answer to Question 2’, together with Theorem 4.5, the fact that 
rGF2(G) s rR(G) and a result of LovaSz-Pulleyblank which states that 3-con- 
nected bicritical graphs have n o  nontrivial tight set, would give a positive 
answer to Question 1 for those graphs. 

A question related to the preceding one is the following. 

Question 3. Can we characterize those graphs which have a good ear decom- 
position with only one 2-ear addition, two 2-ear additions, etc. ? 

An answer to the twice 2-ear case cannot be excluding homeomorphic 
subgraphs of Petersen because we saw that the graph consisting of Petersen 
with an extra edge only requires one 2-ear addition. 

Edmonds and Lovasz (see [S]) developed a polynomial algorithm which finds 
a R-basis of the set of all perfect matchings of a graph. This, of course, 
determines the R -rank. We ask ourselves the following question. 

Question 4. Does there exist a polynomial algorithm to find a GF2-basis of the 
set of all perfect matchings of a graph ? 

Question 4’. Does there exist a polynomial algorithm to compute the GF2-rank 
of a graph ? 

Note that it is possible for the answer to Question 4‘ to be ‘yes’, while the 

If we translate the Edmonds-Lovasz procedure from R to GF2, then we can 
answer to Question 4 is ‘no’. 

see that Question 4 is equivalent to the following. 

Question 5. Does there exist a polynomial procedure for finding, if one exists, a 
perfect matching of G = (V, E) which contains an odd number of edges from a 
specified subset E of E ? 
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Amsterdam. Holland 

We prove the following. Let D = (V, A )  and D' = (V, A') be directed graphs, both with 
vertex set V,  where D' is acyclic such that each pair of source and sink of D' is connected by 
a directed path in D'. Suppose that each nonempty proper subset of V which is not entered 
by any arrow of D', is entered by at least k arrows of D. Then A can be split into classes 
Al, . . . , A k  such that the directed graph (V, A' U A,) is strongly connected, for each i. 

This theorem contains as special cases Menger's theorem, Gupta's theorem, Edmonds' 
branching theorem, a 'bi-branching theorem', a special case of a conjecture of Edmonds and 
Giles, and a theorem of Frank. The proof yields a polynomial algorithm for finding the 
splitting as required. 

Besides, a slight extension of the Lucchesi-Younger theorem is given. 

0. Introduction 

Let D = (V, A) and D' = (V, A') be directed graphs, both with vertex set V. 
Call a subset A" of A a strong connector Cfor D') if the directed graph 
(V, A' U A") is strongly connected. If V' is a nonempty proper subset of V such 
that no arrow of D' enters V', the set of arrows of D entering V' is called a 
strong cut (induced by 0'). 

We prove the following theorem. 

If D' is acyclic and each pair of source and sink of D' is 
connected by a directedpath in D', then the maximum number of 
pairwise disjoint strong connectors for D' is equal to the 
minimum size of a strong cut induced by D'. . 

This min-max relation has the following corollaries. 
(i) Menger's theorem [19]. Let r and s be two vertices of the directed graph 

D = (V, A). If no set with less than k arrows intersects each directed path from 
r to s, then there are k pairwise arrow-disjoint such paths. This follows from 
(0.1) by taking A' = {(v, w )  1 v = s or w = r}. A subset A" of A is a strong 
connector for D' = (V, A') if and only if A" contains a path from r to s. 

(0.1) 

* Research supported by the Netherlands Organization for the Advancement of Pure Research 
(Z.W.O.). 
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(ii) Guptu’s theorem [ll]. Let G = (V, E )  be a bipartite graph of minimum 
degree k. Then E contains k pairwise disjoint subsets, each covering V. For, if 
V’ and V” are the two colour classes of G, let D arise from G by orienting all 
edges of G from V” to V’, and let A’ = {(u’, v” )  I u ’ E  V’, u” E V”}. Now a 
subset A” of A is a strong connector for D‘ if and only if A“ covers V. 

(iii) Edmonds’ brunching theorem [2]. Let D = (V, A) be a directed graph, 
and let r be a vertex of D. If each nonempty subset of V\{r} is entered by at 
least k arrows of 0, then A contains k pairwise disjoint r-branchings. Here an 
r-branching is a set A” of arrows such that each vertex of D is reachable by a 
directed path from r in A’. The result follows from (0.1) by taking A’= 
{(v, r) I u E V\{r}}. Then A” is an r-branching if and only if A” is a strong 
connector for D’. 

(iv) A bi-brunching theorem. Let D’ = (V, A) be a directed graph, and let V 
be split into classes V’ and V”. Suppose each nonempty subset of V’ is entered 
by at least k arrows, and each nonempty subset of V” is left by at least k 
arrows. Then A contains k pairwise disjoint bi-branchings. Here a subset A” of 
A is called a bi-brunching (with respect to the splitting V’, V”) if each vertex in 
V‘ is the end point of some directed path in A” starting in V”, and each vertex 
in V” is the starting point of some directed path in A“ ending in V‘. So for 
Vf‘= {r} we obtain r-branchings. The result follows from (0.1) by taking 
A’ = {(u’, u”) I u’ E V’, u” E V”}. Then A’’ is a bi-branching if and only if A” is a 
strong connector for D’. 

(v) A special case of a conjecture of Edmonds and Giles [3]. Let D‘ = (V, A’) 
be a directed graph, and let C be a subset of A’ such that each directed cut of 
D‘ contains at least k arrows of C. (A directed cut is the set of arrows entering 
some nonempty proper subset V’ of V, provided that no arrow leaves V’.) 
Edmonds and Giles conjectured that C can be split into k classes Cl, . . . , Ck 
such that each Cj intersects each directed cut (i-e., such that contracting the 
arrows in Ci makes D‘ strongly connected). Although the general conjecture 
appeared to be not true (cf. [20]), in the special case that D’ is acyclic and each 
pair of source and sink of D‘ is connected by a directed path, the conjecture 
follows from (0.1) by taking A to be the collection of arrows in C with reversed 
orientation. Then a subset of A is a strong connector for D’ if and only if the 
corresponding subset of C intersects each directed cut of D’. (This special case 
of the conjecture was announced independently by D.H. Younger.) 

(vi) A theorem of Frank [5]. Let D = (V, A) be a directed graph, let r be a 
vertex of D, and let 9 be a collection of subsets of V\{r} closed under taking 
unions and intersections. Suppose that each nonempty set in 9 is entered by at 
least k arrows in D. Then A can be split into classes A,, . . . , At such that each 
nonempty set in 9 is entered by at least one arrow in each of the Ai. This 
follows from (0.1) by taking A‘ to be the set of all pairs (u, w )  which do not 
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enter any set in 9. (Possibly D’ is made acyclic by contracting strong com- 
ponents.) Actually, Frank proved the more general result where it suffices to 
require 9 to be closed under taking unions and intersections of intersecting sets 
in 9. 

Remark. The condition of D’ being acyclic is not essential. Requiring D’ to 
satisfy the conditions after contracting its strong components is sufficient. 
Actually, it is not difficult to see that (0.1) is equivalent to: let D = (V, A) be a 
directed graph, and let 9 be a collection of subsets of V closed under taking 
unions and intersections, such that no VI, V2, V3 in m(0, v) have Vl V, n 
V, = 0 and Vl U V, U V3 = V. If each set in W(0, V} is entered by at least k 
arrows of 0, then A contains k pairwise disjoint sets Al, . . . , Ak such that each 
set in m(0, V} is entered by an arrow in each Ai. 

The corollaries (i)-(vi) are not independent; one easily derives the following 
implications: (iv) 3 ( 5 )  3 (i), (vi) 3 (iii), (iv) 3 (ii), and (v) 3 (ii). In fact, our 
proof essentially shows some more implications. 

In Section 1 we first give, for the sake of completeness, a proof of Edmonds’ 
branching theorem (iii), by slightly adapting the proof of Lovasz [ 161. Second, 
in Section 2, we prove the following general theorem on pairs of submodular 
functions. (A function f defined on the subsets of a set X is called submodular 
if f (X’)  + f ( X “ )  3 f (X’  fl X ” )  + f (XI U X”)  for all subsets X‘ and X” of X.) 

Let fl and fi be integral submodular set-functions on a set X ,  
such thatf,(X’) 2 max(lX’1, k }  for each nonempty subsetX’ of X ,  
and i = 1,2. Then X can be split into classes XI, . . . , Xk such 
thatfi(X’) 2 X;=l max{lX’ n TI, 1)foreach nonemptysubsetx’ 
o f X  and i = 1,2.  

(0.2) 

Actually, this is a theorem on the splitting of vectors in polymatroids (cf. [I] 
and the remark in Section 2). It generalizes the edge-colouring theorems of 
Konig [13] and Gupta 1111 in a similar way as Edmonds’ matroid intersection 
theorem [l] generalizes the Konig-Egervary theorem [4,14] on matchings in 
bipartite graphs. 

Third, in Section 3, we show that (0.2) allows us to glue branchings together 
to form bi-branchings, and thus to extend (iii) to (iv). In Section 4 we deduce, 
with some induction arguments, (v) from (iv). Finally, in Section 5,  we apply a 
direct construction to obtain the general Theorem (0.1) from (v). Note that, by 
replacing arrows by parallel arrows, one easily obtains a ‘weighted’ version Of 

In Section 6 we use this last ‘direct construction’ also to observe that the 
(0.1). 

following can be derived from the Lucchesi-Younger theorem [MI. 
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Let D = (V, A)  and D’ = (V, A‘) be directed graphs, such that 
for any arrow (v, w )  of D there are vertices v’ and w‘ in V, and 
directedpaths in D’ from v to u‘, from w‘ to v‘, and from w‘ to w 
(cf. Fig. 1, where the wriggled lines stand for directed paths in 
0’). Let 1 : A += Z + be some ‘length’ function. Then the mini- 
mum length of a strong connectorforD‘ is equal to the maximum 
number of strong cuts induced by D’ such that no arrow a is in 
more than l ( a )  of these strong cuts. 

(0.3) 

V‘ a:! Fig. 1. 

If A is the collection of reversed arrows of D‘, the assumption is obviously 
satisfied and assertion (0.3) is just the Lucchesi-Younger theorem. If D’ is as in 
(i), (ii), (iii) and (iv) above, we obtain, successively, an (easy) theorem of 
Fulkerson [7], Konig’s theorem on minimum coverings in a bipartite graph [15], 
Fulkerson’s branching theorem [9], and another ‘bi-branching theorem’: if the 
vertex set V of the directed graph D = (V, A)  is split into classes V’ and V”, 
and if c : A-Z, is some capacity function, then the minimum capacity of a 
bi-branching is equal to the maximum number of nonempty proper subsets 
V,, . . . , V, of V such that V, C V’ or V’C V,  for each i, and no arrow a of D 
enters more than c ( a )  of the V,. 

The conditions for D and D’ given in (0.3) are less restrictive than those 
given in (0.1). In fact, for acyclic D‘, there is a directed path between each pair 
of source and sink, if and only if each pair (v ,  w )  of vertices of D‘ is connected 
by a path of the form of the wriggled lines in Fig. 1. In (0.1) we may not relax 
the conditions on D’ to those given in (0.3), as is shown by the counterexample 
to the conjecture of Edmonds and Giles (cf. (iv) above). Moreover, if D =  
(V, A) and D’ = (V, A’) are as in Fig. 2, where light and heavy lines represent 
the arrows of D and D’, respectively, then any strong connector for D‘ has 
cardinality at least 3, whereas any strong cut induced by D‘ contains at least 2 

2 Fig. 2. 
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arrows of D. Since [A] = 5, it is not sufficient to require in (0.1) or (0.3) D’ to be 
weakly connected. 

In Section 7 we discuss some generalizations of the results, in terms of sub- 
and supermodular functions defined on directed graphs, following the lines set 
out by Edmonds and Giles [3] and Frank [5]. In fact, we give a generalization 
of (0.3) which slightly extends the theorem of Frank. We also comment on 
similar extensions of (0.1) and (0.2). 

Finally, in Section 8, we formulate the results in terms of polyhedra and 
linear programming, and this yields, by the ellipsoid method as described in 
[lo], the polynomial solvability of most of the problems. Besides, our proof of 
(0.1) and (0.2) above will be polynomially constructive (using the fact that the 
minimum value of a submodular set-function can be found in polynomial time 
[lo]), yielding a polynomial algorithm for optimum packing of strong con- 
nectors. 

Some terminology. Above we gave already the, rather standard, definitions of 
submodular function, r-branching and directed cut, and we introduced the notion 
of bi-branching. A function g is supermodular if -g is submodular. We shall 
sometimes use the easy observation that if f is a submodular, and g is a 
supermodular set-function on X with g(X’) s f (X’ )  for all X’ C X, then the 
collection of sets X‘ with g ( X ) = f ( X ’ )  is closed under taking unions and 
intersections. 

The indegree (outdegree, respectively) of a set V‘ of vertices of a directed 
graph D = (V, A) is the number of arrows of D entering V‘ (leaving V’, 
respectively), and is denoted by dA( V )  (dA( V’), respectively). 

If c is a rational-valued function defined on a set X,  and X’ is a subset of X, 
then, by definition, 

c(X‘):= c c(x) .  
XEX‘ 

If c is called a capacity function, then c(X’) is the capacity of X’. 
We note that directed graphs may have multiple arrows, but that we often 

speak of ‘the arrow (0, w)’, where ‘an arrow from 0 to w’ would be formally 
more correct. 

1. Edmonds’ branching theorem 

We first give, for the sake of completeness, a proof of a theorem of Edmonds 
[2], by adapting the method of Lovasz [16]. By Edmonds’ branching theorem 
usually is understood the case where Vl = * * - = V, = {r}. 
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Theorem 1. Let D = ( V ,  A)  be a directed graph, and let V1, . . . , v k  be subsets of 
V. Suppose d A ( V r )  3 h(V ' )  for each nonempty subset V' of V, where h(V ' )  
denotes the number of i with V' n V, = 0. Then A can be split into classes 
Al, . . . , Ak such that for each i and each v in V there is a directed path in Ai 
starting in V,. and ending in v. 

Proof. By induction on Xf=l )v\V,I;the case Vl = . . . = V, = V being trivial. 
Denote by 

the number of i = 1, . . . , t with V' n Xi = 0. 

with 
Suppose that Vl # V (say), and consider the collection 9 of subsets V' of V 

Note that here the inequality 3 always holds, and that (1.2) implies that 
V'n Vl # 0. Since the left-hand side of (1.2) is a submodular, and the right- 
hand side is a supermodular function, the collection 9 is closed under unions 
and intersections. Moreover, V E 9, so there exists a minimal set V' in 9 with 
V'g V1. AS 

there is an arrow a = (v, w )  from V' n Vl to Vr\Vl. We show that 

for each nonempty subset V" of V. By induction this implies the theorem, as 
we can split A\{a} into classes as required with respect to Vl U {w} ,  V2, . . . , v k ,  

and hence, by adding the arrow a to the first class, we obtain a splitting of A as 
required for Vl, . . . , v k .  

To show (1.4), suppose V" # 0 violates (1.4). Since 

we know that a enters V", that w E V", and that 
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So V"is inS,andhence V'nV' ' isin9.Since V ' n V ' ' g V 1 a s w E V ' n V " ,  
and since V' n V" # V' as u fZ V", this contradicts the minimality of V'. 0 

2. Pairs of submodular functions 

In order to glue branchings together to obtain bi-branchings, we prove a 
theorem on submodular functions, which has as direct corollaries the theorems 
of Konig [13] and Gupta [ll] on edge-colourings of bipartite graphs. Also the 
more general theorem of De Werra [21] may be derived: if (V, E) is a bipartite 
graph and k is a natural number, then E can be split into classes El,. . . , Ek 
such that each vertex v is covered by min{d(v),k} of the Ei, where d ( v )  
denotes the degree of v. 

Theorem 2. Let f l  and f z  be integral submodular set-functions on a set X, such 
that 

for each nonempty subset X' of X, and i = 1,2. Then X can be partitioned into 
classes X l ,  . . . , xk such that 

for each nonempty subset X' of X, and i = 1,2. 

Proof. (i) We first prove the theorem for k = 2. Let Yl, . . . , Y, be the minimal 
nonempty subsets of X with f l ( Y , )  = [TI. So the Yl, . . . , Y, are pairwise 
disjoint, since the collection of sets X' with f l ( X )  = 1x1 is closed under taking 
unions and intersections. Moreover, I Y,I 5 2 for each j ,  since f i ( X ) 3  2 for all 
nonempty sets X' .  

Similarly, let Zl, . . . , 2, be the minimal nonempty subsets of X with f 2 ( 5 )  = 

141. Again, Zl, . . . , Z, are pairwise disjoint and contain at least two elements. 
Hence X can be partitioned into classes Xl ,X2  such that both XI and X2 

intersect each of Yl, . . . , Y,, Zl, . . . ,Z, .  We prove that (2.2) is satisfied for this 
choice of Xl and Xz. Let X' be a nonempty subset of X.  If Xl n X Z 0 # x2 n 
X',  then (2.2) follows from (2.1). So we may suppose that Xz fl X = 8. Then X 
does not contain any of the Yl,  . . . , Y,, Z1,. . . , Z ,  implying that fl(X'>>lx'l 
and fz(X')  > IX'I, which proves (2.2). 

(ii) In order to prove the theorem for arbitrary k >2, let X I , .  . . , Xk be 
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pairwise disjoint subsets of X such that (2.2) holds and such that (Xl U . . . U 
x k l  is as large as possible. If Xl U * * U Xk = X we are finished, so suppose 
that x E X\(Xl U . . U xk). Consider the collection 9 of all subsets X’ of X 
with x E X’ and 

k 
f1(X) = C max{lX, n Ti, I). 

j=l 

Suppose 9 Z  0. Since 9 is closed under unions and intersections (as the left- 
and right-hand sides of (2.3) are submodular and supermodular, respectively), 
there is a unique maximal element Y in 9. If Y intersects each of the Xi then 

contradicting (2.1). So without loss of generality we may assume that Y n Xl = 

0. This implies that, 

k 

if x E X’ and X‘ n XI # B, then fl(X’) > x max{lT n XI, 1) . (2.5) 
j= 1 

Obviously, this is also true if 9= 0. 
Similarly, there exists an index j such that 

k 

if x E X’ and X’ f l & #  B, then f2(X’) > max{& n XI, 1) . (2.6) 
j= 1 

If j = 1 one easily checks that replacing Xl by Xl U { x }  does not violate (2.2), 
contradicting the maximality of Xl U . * . U xk. So suppose j f 1, say j = 2. 

Now (2.5) and (2.6) imply 

k 
f,(X’) 2 max{)(Xl U X, U { x ) )  n X’I, 2) + max{& n X’I, 1) (2.7) 

j=3  

for each nonempty subset X‘ of X, and i = 1,2. Define 

k 

fW> = min A(X‘ u x”)- 2 max{lXj n ~ ” 1 ,  I} 
X C X \ ( X ,  UX$..tX)) i=3  

for subsets X’ of XlUX2U{x), and i = 1,2. The functions f; and f; are 
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submodular again, and from (2.7) we know that 

for each nonempty subset X‘ of X, and i = 1,2. Hence, by part (i) above, we 
can split XI U X2 U {x) into classes Xi and Xi such that 

(2.10) 

for each nonempty subset X’ of XI UX2U{x), and i = 1,2. Hence, by 
definition (2.8) of the f : ,  the sets Xi, Xi ,  Xi = X3, . . . , X; = x k  form a collec- 
tion of pairwise disjoint sets satisfying 

(2.11) 

for each nonempty subset X’ of X, contradicting the maximality of 
x , u  . . .  ux,. 0 

In fact, Theorem 2 may be considered as a theorem on the splitting of 
vectors in polymatroids (cf. [l]), since it can be extended easily to: let f l  and f2 
be integral submodular set-functions on a set X, and let b : X + Z + be such that 
fi(X’) 3 max{b(X’), k} for each nonempty subset X’ of X, and i = 1,2. Then 
there exist bl, . . . , bk : X-+ Z + such that b = bl + * . . + b k  and fi(X‘)> 
Ef=, max{bj(X’), 1) for each nonempty subset X‘ of X, and i = 1,2. 

3. A bi-branching theorem 

Combination of Theorem 1 and Theorem 2 gives a theorem on bi-branch- 
ings. 

Theorem 3. Let D = (V, A) be a directed graph, and let V be split into classes vi 
and V2, such that any nonempty subset of Vl (of V2, respectively) is entered 
(left, respectively) by at least k arrows of D. Then A can be split into k 
bi- branchings. 

Proof. Let X be the set of arrows from V2 to  Vl, and define the set-functions fi 

and f2 on X by 
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fl(X’) = min{dA( V;) I V; C Vl, and each arrow in X ’  ends in V;} , 
f2(X’) = min{dA( V;) I V; C V2, and each arrow in X’  starts in V2,  

(3.1) 

for X ’ C  X. It is easy to check that f i  is submodular, and that fi(X’)2 
max{lX’I, k}, for each nonempty subset X of X, and i = 1,2. Hence, by 
Theorem 2, we can split X into classes Xl, . . . , x k  such that 

for each nonempty subset X’  of X, and i = 1,2. Let y (Zj, respectively) be the 
set of heads (tails, respectively) of arrows occurring in Xb Consider any 
nonempty subset V; of Vl, and let Xo be the set of arrows in X with head in 
V;. If Xo f 0, by (3.2) 

In particular, 

where h(V;) is the number of j with Y,  n Vi = 0. Hence, as d,(Vi) = lXol, it 
follows that 

dA’( v;) 3 h (Vi) , (3.5) 

where A‘ is the set of arrows contained in V,. As (3.5) is true also if Xo = 0, 
(3.5) is true for each nonempty subset V; of Vl, and hence, by Theorem 1 we 
can split A’ into classes A;, . . . ,A; such that if Vi is a nonempty subset of 
Vl\Y,, then at least one arrow in A; enters V;, for j = 1, . . . , k. 

Similarly, one can split the arrows contained in V2 into k classes A;, . . . , A: 
such that if V; is a nonempty subset of V2\Zj then at least one arrow in A” 
leaves V;, for j = 1, . . . , k. 

It follows that A; U XI U AY, . . . , A; U x k  U A! yields a splitting as 
required. 0 

4. A special case of a conjecture of b o n d s  and Giles 

Theorem 3 is used to  show the following theorem, which proves a special 
case of a conjecture of Edmonds and Giles [3], announced independently by 
D.H. Younger. 
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Theorem 4. Let D = (V, A)  be an acyclic directed graph, such that any pair of 
source and sink is connected by a directed path, and let C be a subset of A such 
that each directed cut of D intersects C in at least k arrows. Then C can be split 
into classes C,, . . . , C, such that each class C, intersects each directed cut. 

Proof. We prove the theorem by induction on I + ICI. Suppose the assertion 
does not hold for D and C, and suppose this counterexample has been chosen 
with I Vl + ICl as small as possible. 

Call a subset V' of V a kernel for D if 0 # V' # V and dA(V') = 0. We may 
assume without loss of generality that if there is a directed path in D from u to 
w, then (u, w) E A, as the adding of such arrows does not change the collection 
of kernels. So we may think of D as just a partially ordered set. 

(i) If V' is a kernel with dc(  V') = k, then 1 V'( = 1 or 1 v\ V'l = 1, i.e., directed 
cuts intersecting C in exactly k arrows are determined by sources and sinks, For 
suppose V' is a kernel with dc(  V') = k and I V'I 3 2 and I WV'lz 2. Let C' be 
the set of arrows in C with head in V', and let C" be the set of arrows in C 
with tail in WV'. Contracting WV" to one point yields a smaller directed 
graph D' = (V', A'), with C' C A' and each directed cut of D' intersecting C' in 
at least k arrows. Hence, by induction, C' can be split into classes C;, . . . , C; 
such that each directed cut of D' intersects each C:. Similarly, by contracting 
V', thus obtaining the directed graph D", the projection C'' of C can be split 
into classes C;, . . . , C$ such that each directed cut of D" intersects each Ci. So 
each C: and each C',! contain exactly one of the arrows in C from WV' to V', 
and we may assume that C: n Cy # 0 if and only if i = j .  Therefore, the sets 
C; U Ci, . . . , C; U Ci partition C, and for any kernel V" of D with V" C V' or 
V' C V" or V' n V" = 0 or V' U V" = V there is an arrow in C: U cl; entering 
V", for each i. To prove that this is true for each kernel of 0, let V" be a 
kernel with 

dc;uq( V") = 0 (4.1) 

for a certain i. So V n V" # 0 and V' u V" # V, and hence V' fl V" and 
V' U V" are kernels of D again. Also 

dc;uc,( V' n V') + d,;,c.;( V' U V") dZiUq( V') + dZ;,c:( V'') . (4.2) 

Since dZiuq( V') = 1, at least one of the two left terms is 0. But V' n V'' C V'c 
V' U V", and hence both left terms are nonzero. 

(ii) If a = (u, w )  belongs to C, then v is a source of D or w is a sink of D. For 
suppose not. Then, by (i), a is not in any directed cut intersecting C in 
exactly k arrows. So removing a from C, by induction, C\{a} can be split into k 
coverings for the directed cuts. Hence also C can be split in such a way. 
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(iii) If a = (v, w )  and a’ = (u’,  w ’ )  belong to C, and (u ’ ,  w )  belongs to A, then 
v‘ is a source or w is a sink of D. For suppose v ’  is not a source and w is not a 
sink. By (ii) this implies that u is a source and w’ is a sink, and hence 
a”=  (0, w ’ )  belongs to A. Since a f a’ (as u is a source and u’ not), the set 
C‘ = (C\{a, a’})  U {a”}  is smaller than C. Moreover, dcf(  V )  2 k for each kernel 
V’ of D, as the number of arrows in C‘ meeting any source or sink is the same 
as that for C, and, in general, 

So, by induction, C‘ can be split into classes C;, . . . , Ci such that dZ;(V’)Z 1 
for each kernel V’ and each i .  Assuming a ” €  C;, we can replace C; by 
(C;\{a’’}) U {a, a’}, and this yields, by (4.3), a splitting of C as required. 

(iv) There exists a kernel V’ for D, containing all sinks but no sources, such 
that if  (u, w )  E C enters V’, then v is a source and w is a sink. For let V’ consist 
of all sinks, together with all vertices u for which there is an arrow (v, w )  in C 
with v not a source, and (u, u ) E  A. One easily checks that V’ is a kernel 
containing ail sinks but no sources. Moreover, suppose (t, u )  E C enters V’. If u 
is a sink and t is no source, then t E V’, contradicting that (t, u )  enters V’. If f 

is a source and u is not a sink, then, by definition of V’, there is an arrow (v, w )  
in C with u not a source, and (v, u )  E A. But this contradicts (iii). Hence t is a 
source and u is a sink. 

(v) Let V’ be as in (iv), and let V” = WV’.  Let D‘ = (V, A’) be the directed 
graph arising from D by replacing any arrow (v, w )  of D by k parallel arrows 
from w to v. One easily checks that 

for each nonempty proper subset W of V .  So, by Theorem 3, the set A‘UC 
can be split into k bi-branchings with respect to the splitting V’, V”. Let 
C,, . . . , C, be the intersections of these bi-branchings with C. Hence 

for each nonempty proper subset W of V with W C  V’ or V’C W, and 
j = 1, . . . , k.  We show that each ci intersects each directed cut, which finishes 
our proof. 

Let W be a kernel for 0, and let j = 1,. . . , k.  We prove that at least one 
arrow in c. enters W. Note that if W contains any source, it contains all sinks. 

First suppose that W contains no sources of D. By (4.5), 
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Since W n V’ again is a kernel of D, we have d2(W fl V’) = 0, and hence there 
is an arrow in C, entering W n V’. Since, by (iv), each arrow in C entering V‘ 
starts in a source, and since W does not contain any source, this arrow enters 
W also. 

Second, if W contains every sink of D, by symmetric arguments (now 
considering W U V’) again at least one arrow of c. enters W. 0 

Remark. There is another special case in which the conjecture of Edmonds 
and Giles is true, namely if D arises from a directed tree T, with vertex set V, 
by taking the transitive closure (i.e., A = ((0, w) I there is a directed path in T 
from u to w}. This can be shown using the total unimodularity of matrices 
involved. One may ask for a common generalization of this special case and 
Theorem 4 above. 

5. An extension of Theorem 4 

We now extend Theorem 4, thus obtaining a common generalization of the 
Theorems 3 and 4 (cf. Section 0), by the following observation. 

Observation. Let D = (V, A) and D‘ = (V, A’) be directed graphs. Let a = 

(u, w) be an arrow of D such that there exist vertices u’ and w’, and directed 
paths in D’ from u to u’, from w’ to u‘, and from w’ to w (cf. Fig. 3, where 
wriggled lines represent directed paths in D’). The vertices u, u’,  w’, w need 
not to be distinct. 

Fig. 3. 

NOW let u” and w” be two new vertices, let Vo = V U’{u‘’, w“}, a” = (u”, w”), 
A0 = (A\{a})U {a”), and Ah = A‘ U {(v, u”), (u”, u’), (w”, u”), (w’, w”), (w”, w)) ,  
Do = (VO, Ao), 0 6  = (Vo, Ah) (cf. Fig. 4, where heavy and light lines stand for 
arrows of Do and Dh, respectively). Then one easily checks that, for each subset 
A” of A, A” is a strong connector for D’, if and only if A; is a strong connector 
for 0 6 ,  where A; = A” if a Sr A”, and A; = (A”\{a}) u {a”} if a E A”. Hence the 
hypergraphs of strong connectors for the two cases are isomorphic. Therefore, 
also the hypergraphs of minimal strong cuts are isomorphic (as these are the 
‘blockers’ of the first ones). 
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Fig. 4. 

This gives us the invariance of certain min-max relations under these 
transformations. We shall apply this observation to derive the following 
theorem from Theorem 4, and Theorem 6 from the Lucchesi-Younger 
theorem. 

Theorem 5. Let D‘ = (V ,  A’) be an acyclic directed graph, such that each pair of 
source and sink is connected by a directed path. Let D = (V, A)  be a directed 
graph. Then the maximum number of painvise disjoint strong connectors for D’ is 
equal to the minimum size of a strong cut induced by D’. 

Proof. We may suppose that D’ is transitive, i.e., that if (u, v )  and (v ,  w )  are in 
A’, then also (u, w )  is in A’. We prove the theorem by induction on the number 
of arrows a = (v, w) in A with (w, v )  not in A’. If this number is 0, the theorem 
is equivalent to Theorem 4. 

So suppose a = (v, w )  E A and (w, 0) $Z A’. Let v’ be a sink of D’ with 
(v, v ’ )  E A’, and let w’ be a source of D‘ with (w’, w )  E A’. By assumption 
(w’, v ’ )  E A’, and hence we may make digraphs Do and Dh as in the Obser- 
vation above. Since strong connectors, and strong cuts, determine isomorphic 
hypergraphs in the two cases, the conditions of the theorem hold also for Do 
and DA. Since the number of arrows in Do which do not occur in reversed 
direction in Dh, is one less than for D and D’, we can split A. as required, and 
hence, since the hypergraphs are isomorphic, we can split A as required. 0 

One easily derives the following weighted version. 

Corollary 5a. Let D’ = (V, A’) be an acyclic directed graph, such that each pair 
of source and sink is connected by a directed path. Let D = (V, A)  be a directed 
graph, and let c A+Z+ be a capacity function. Suppose that the minimum 
capacity of a strong cut induced by D’ is at least k. Then there are k strong 
connectors for D‘ such that no arrow a is in more than c(a)  of these strong 
connectors. 

Proof. Replace each arrow a of D by c(a)  parallel arrows, and apply Theorem 
5. 0 
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6. A similar extension of the Lucchesi-Younger theorem 

We can apply the Observation of Section 5 also to obtain a somewhat more 
general form of the Lucchesi-Younger theorem [18] (cf. [16]). The Lucchesi- 
Younger theorem says that the minimum size of a set of arrows in a directed 
graph D = (V, A) intersecting each directed cut, is equal to the maximum 
number of pairwise disjoint directed cuts. It is easy to derive, by replacing 
arrows by directed paths, from this a weighted version: given a length function 
1 : A + Z +, the minimum length of a set of arrows intersecting all directed cuts, 
is equal to the maximum number of directed cuts such that n o  arrow a is in 
more than l (a)  of these directed cuts. 

n e  more general theorem is as follows. 

Theorem 6. Let D = (V, A) and D’ = (V, A’) be directed graphs, such that for 
each arrow a = (v, w )  of D there are vertices v’ and w’ and directed paths in D’ 
from v to v’, from w’ to v’ ,  and from w’ to w. Let 1 : A + Z + be a length function. 
Then the minimum length of a strong connector for D‘ is equal to the maximum 
number of strong cuts induced by D‘ such that no arrow a is in more than l (a)  of 
these strong cuts. 

Proof. The proof is similar to that of Theorem 5. 0 

A direct corollary is another ‘bi-branching theorem’. 

Corollary 6a. Let D = (V, A )  be a directed graph, and let V be split into classes 
V’ and V’. Let 1 :*A + Z + be a length function such that each bi-branching has 
length at least k. Then there are nonempty proper subsets Vl, . . . Vk of V such 
that V ,  C V’ or V‘ C V,  for each i, and no arrow a enters more than l (a)  of the 
V,.. 

Proof. Apply Theorem 6, with A’ = { (v ’ ,  0”) I u’ E V’, v”E V’}. 0 

Direct consequences to Corollary 6a are Fulkerson’s branching theorem [91 
and Konig’s theorem 1151 on minimal coverings in bipartite graphs. Note that, 
conversely, the cardinality version of CorolIary 6a (i-e., 1 = 1) can be derived 
easily from Konig’s theorem. 

7. Sub- and supermodular functions on directed graphs 

Edmonds and Giles [3] gave a common generalization of the Lucchesi- 
Younger theorem [18] (cf. Section 6) and Edmonds’ matroid intersection 
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theorem [l], by considering submodular functions defined on the vertex set of a 
directed graph. In fact, also the extension of the Lucchesi-Younger theorem 
given above (Theorem 6) may be included in such a framework-see Theorem 
7 below. 

Note that a collection 9 of subsets of a set V, containing 0 and V, is closed 
under unions and intersections, if and only if there is a directed graph 
D’ = (V, A’) such that 9 = { V’ C V I d i , (  V’) = 0). The following theorem 
extends Theorem 6 above and another theorem of Frank [5]. 

Theorem 7. Let 9 be a collection of subsets of V and let f be an integral function 
defined on 9, such that if Vl, V 2 E  9 and Vl n V2,# 0, Vl U V2 # V, then 
V1n V 2 € 9 ,  V 1 U  V 2 E 9 a n d  f(Wl V,)+f(VIU V , ) a f ( V l ) + f ( V 2 ) .  Letfur- 
thermore a directed graph D = (V, A)  be given such that if Vl, V,, V3 E 9 with 
Vl n V2 n V3 = 0 and Vl U V2 U V, = V, then no arrow of D enters both Vl and 
V,. Let 1 : A -+ E ,  be a length function. Then the minimum length of a set 
A” C A such that each V‘ E a{@, v) is entered by at least f (  V’) arrows in A”, is 
equal to the maximum value of 

where VI ,  . . . , V k  are sets in 9\{0, V}  such that each arrow a of D enters at most 
l (a)  of the v.. 

me theorem asserts that both sides of a certain linear programming duality 
equation are achieved by integral solutions--cf. Section 8.) 

Theorem 7 can be proved with the standard methods (using cross-free 
collections, tree-representations, total dual integrality), as described by 
Edmonds and Giles [3]. 

Note that the condition given in the second sentence of Theorem 7 is just the 
analogue of the condition given in the first sentence of Theorem 6. In order to 
obtain a similar generalization of Theorem 5, one easily checks that a collection 
9, closed under unions and intersections, is the collection of sets V’ with 
d i , (V’ )  = 0 for some digraph D’ = (V, A’) with the property that, after con- 
tracting the strong components of D’, each pair of source and sink is connected 
by a directed path, if and only if there are no sets V,, V,, V 3  in a@, V }  with 
V1n V2n V3=0 and V I U  V,U V,= V. 

Now the following possible generalization of Theorem 5 is not true: let 9 be 
a collection of subsets of V with the properties described in the previous 
paragraph, let f be a supermodular function on 9, and let D = (V, A )  be a 
directed graph, such that each set V’ in a{@, is entered by at least f(V’) 
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arrows of D. Suppose f = f l + f i ,  where f1 and fz are nonnegative integral 
supermodular functions on 9. Then A can be split into classes Al and A2 such 
that each set V’ in R{0, V) is entered by at least J ( V )  arrows in Ai, for 
i = 1,2.  A counterexample to this is given by taking D as in Fig. 5, 9 being the 
collection of all subsets of V\{r} ,  and f = f~ + f2, where, for V’ in 9, fl(Vf) = 1, 
f2( Vf) = 1 if s E V’, and f2( V’) = 0 if s !Z V’. 

Fig. 5. 

The following generalization of Theorem 2 and Theorem 5 might be true. 

Let 9 be a collection of subsets of a set V, closed under unions 
and intersections, such that for no Vl, V2, V, in W{0, v) both 
V1 fl V2 fl V, = 0 and Vl U V2 U V, = V. Let f be a submodular 
function on 9 such that f( V’) 3 k for each V’ in W{0, V). Let 
D = (V,A) be a directed graph such that d i ( V ’ ) S  
f(V’) for each V’ in m(0, V’}. Then A can be split into 
classes A l , .  . . , Ak such that for each V’ in W{0, V) one 
has XfZ1 max{di,( Vf), 1) sf( V’). 

(7.2) 

By taking f (  V’) = d;( V’) Theorem 5 follows. By taking A to be a collection of 
disjoint arrows, with set V’ of heads, and 9 to be the collection of all V” with 
V” C V‘ or V’ C V”, Theorem 2 follows. 

The question remains whether both the generalizations of Edmonds-ales 
type, and assertions of the type of Theorem 2 and problem (7.2) above, fit into 
one framework. Also at another point submodular functions, or rather 
matroids, appear, namely at Fulkerson’s branching theorem. This theorem may 
be interpreted as a min-max relation for the minimum weight of a common 
base of two matroids (cf. [l]). One may ask whether the more general 
bi-branching theorem (Corollary 6a), or even Theorem 6, can be formulated in 
such a way. 

8. Polyhedral representations and polynomial algorithms 

As usual with min-max relations, Theorems 5 and 6 above allow a poly- 
hedral formulation, or, equivalently, a formulation in terms of linear pro- 
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gramming. By the ellipsoid method as described in [lo] this often yields the 
existence of polynomial algorithms. 

Let D and D‘ be as in Theorem 6, and let c : A+Z+.  Consider the linear 
programming problem of finding 

min 2 c(u)x(u)  
a€A 

where x : A -+ Q+ such that 

O S x ( u ) s l  if uEA, 

2 x ( u )  3 1 if A” is a strong cut ,  
aEA‘ 

where we mean a ‘strong cut’ to be induced by D’. By the Duality Theorem of 
linear programming, (8.1) is equal to 

where, for each strong cut A”, y(A”) is a rational number such that 

y(A”) 3 0 , 

2 y(A”)S c ( u ) ,  if u E A. 

if A“ is a strong cut, 
(8.4) 

A”3a 

Now, Theorem 6 asserts that (8.1) and (8.3) are attained by integral functions x 
and y. So the system of linear inequalities (8.2) is totally dual integral (cf. [3]) ,  
and a function x satisfies (8.2) if and only if x is a convex linear combination of 
incidence vectors of strong connectors for D‘. 

If, moreover, D’ is acyclic and each pair of source and sink of D’ is 
connected by a directed path, we obtain similar conclusions if we exchange the 
terms ‘strong cut’ and ‘strong connector’, as follows from Corollary 5a. Note 
that in the latter case, by the theory of blocking polyhedra of Fulkerson [8], if 
D and D’ satisfy the weaker conditions of Theorem 6 only, (8.1) is attained by 
an integral vector x (i.e., by the incidence vector of some strong cut). 

Therefore, by the ellipsoid method there exists a polynomial algorithm for 
finding minimum length strong connectors, if and only if there exists a 
polynomial algorithm for finding minimum capacitated strong cuts. However, 
the existence of the latter algorithm follows easily from the Ford-Fulkerson 
min-cut algorithm (by giving the arrows of D’ sufficiently large capacity), and 
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hence minimum length strong connectors can be found in polynomial time. 
Also a maximum packing of strong cuts (i.e., an integer solution for (8.3)) can 
be found in polynomial time, by applying the usual techniques of making cuts 
cross-free (cf. [ 101). Clearly, minimum length strong connectors and maximum 
packings of strong cuts can be found also by adapting (e.g., by the Observation 
of Section 5) the existing polynomial algorithms for the Lucchesi-Younger 
theorem [6,12, 171. 

It remains to show that the splitting of A as described in Theorem 5 and 
Corollary 5a can be found efficiently. However, our proof above yields a 
polynomial algorithm. Indeed, the proof of Theorem 5 reduces this theorem to 
Theorem 3. Since this reduction can be carried out in polynomial time, we need 
to show that a splitting into bi-branchings can be found efficiently. But the 
splitting into bi-branchings is obtained by first splitting the ‘crossing arrows’ 
(from V, to Vl), which splitting can be found by Theorem 2. After that this 
splitting is extended to a splitting into bi-branchings by Theorem 1. Now to 
derive polynomial algorithms from the proofs of Theorem 1 and Theorem 2, 
one needs only a method to find one, or all, minimal nonempty subsets V’ with 
f (  V‘) = h(  V’), where f is submodular and h is supermodular, with h Sf. But 
this can be reduced easily to the problem of finding a set minimizing a 
submodular set-function, and this can be solved in polynomial time [lo]. 

Also the splitting described in Corollary 5a, i.e., an integral solution y for 
(8.3), with strong connectors instead of strong cuts, can be found in time 
polynomially bounded by the size of the problem. Note that this size is 

Min-max relations for directed graphs 

so, to obtain a good algorithm, we cannot just replace each arrow a by c(a)  
parallel arrows. However, by the ellipsoid method a fractional solution y of 
(8.3) (again with ‘strong connector’ instead of ‘strong cut’), can be obtained in 
polynomial time, such that the number of strong connectors A” with Y(A”) > 0 
is at most /A(. Now let 

where the sum ranges over strong connectors A”, and where 11 denotes lower 
integer part. Since cf (a)  S (A1 we can replace each arrow a by cr(a)  parallel 
arrows, and then find in this new directed graph as many as possible pairwise 
disjoint strong connectors, by the method described above for Theorem 5, i.e., 
we find integers yr(A”)==O for each strong connector A”. One easily checks 
that Ly(A”)J + y’(A”) is an integer solution for (8.3). 
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THE BANDWIDTH PROBLEM: 
CRITICAL SUBGRAPHS AND THE 
SOLUTION FOR CATERPILLARS 

Maciej M. SYSLO and Jerzy ZAK 

Institute of Computer Science, University of Wrociaw, 50384 Wrociaw, Poland 

This paper contains the solution of the bandwidth problem for caterpillars. The method 
applied makes use of some lower bounds to the bandwidth of a graph in terms of subgraphs 
and their sizes and diameters. We introduce also several types of critical subgraphs related 
to the bandwidth problem and describe some of their properties. 

1. Introduction 

Suppose G is a graph without loops and multiple edges with vertex set V(G) 
and edge set E(G).  Let n(G) denote the number of vertices of a graph G. 
Although some results of this paper can be easily generalized for some infinite 
denumerable graphs, all graphs are assumed to be finite. 

A labeling n- is a one-to-one mapping from V(G) to the positive integers N. 
The bandwidth of T is defined to be 

B,(G) = max{lT(u) - T ( u ) ~ :  {u,  U }  E E(G)} 

We shall call T ( U )  a vertex label and I T ( u )  - m(v)l for {u, v }  E E(G), an edge 
label. 

The bandwidth of a graph G is defined to be 

B(G)  = min{B,(G): T is a labeling of G} . 

Papadimitriou [4] proved that the problem of determining the bandwidth of 
a graph is NP-complete, and Garey et al. (31 showed that it remains NP- 
complete even when restricted to trees with maximum degree 3. 

In Section 2 we discuss some new notions related to some subgraphs of a 
graph which play an important role in determining the bandwidth and, in 
Section 3, the bandwidth of an arbitrary caterpillar is evaluated. 

The reader interested in other results on the bandwidth problem is referred 
to a survey paper [2 ] .  

28 1 
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2. Critical subgraphs 

It is obvious that B(G)  3 B(G') for every subgraph G' of G. Moreover, for 
many graphs G there exists a proper subgraph G' of G such that B ( G ) =  
B(G'), therefore some edges of G are immaterial for the value of the 
bandwidth of G. A subgraph GB of G is said to be a bandwidth-critical 
subgraph of G if B(G)  = B(GB) and'B(GB)> B ( G )  for every proper subgraph 
G' Of GB. 

Observation 2.1. Every graph G has a bandwidth-critical subgraph. 

Proof. Let G' denote a subgraph of G with the minimum number of edges 
such that B(G)  = B(G'), that is B(G) > B(G'-  e) for every edge e E E(G'). 
Hence, B(G') > B(G") for every proper subgraph G" of G'. Therefore G' is a 
bandwidth-critical subgraph of G. 0 

In fact, we proved that if G' is a bandwidth-critical subgraph of G, then 
B(G') > B(G'- e )  for every edge e of G'; such a graph G' is called B-critical. 
Therefore, a bandwidth-critical subgraph of a graph is B-critical. 

It is unlikely that finding the bandwidth of a B-critical graph is an easier 
problem than that of finding the bandwidth of any graph and a characterization 
of such graphs seems to be also a difficult problem. 

There are many lower bounds for the bandwidth of a graph (see [2]). Let 
A(G) denote a lower bound to B(G). Evidently we have 

B(G) a max{A(G'): G' is a subgraph of G) 

Similarly to B-critical graphs we may also define graphs which are critical 
with respect to  a lower bound. A graph G is A-critical if A(G) > A(G - e )  for 
every edge e E E(G).  We have the following simple relation between B- and 
A-critical graphs. 

Observation 2.2. Let B(G) = A(G'), where A is a lower bound to B and 
G' G. If G is B-critical, then G' = G and G is also A-critical. 

This observation says that every B-critical graph for which there exists a 
lower bound A that determines its bandwidth is also A-critical. 

Let us focus now our attention on the following lower bound for the 
bandwidth introduced by Chvatal (see [2]), which appears to be very useful in 
determining the bandwidth of many classes of trees (see Section 3) 
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where d(G)  is the diameter of G and [a1 is the smallest integer not smaller 
than a. 

Let for a given graph G, Gb denote a subgraph of G with the minimum 
number of edges and such that b(Gb) = max{b(G'): G' is a subgraph of G}. 
Evidently, Gb is b-critical, that is b(Gb) > b(Gb - e) for every edge e E E(Gb). 

2 for every 
subgraph G' of G. It is easy to check that G is B-critical and Gb is isomorphic 
to K1,3, therefore B(G) > b(G') for every subgraph G' of G. It is an easy task 
to generalize the graph G to  an infinite family of graphs {H,}ra2 such that 
H2 = G, b(Hi) = i and B(H,) 3 i + 1 for i 3 2. 

It is interesting that all b-critical subgraphs of connected graphs are trees. 

Fig. 1 shows a graph G for which B(G) = 3 (why ?) and B(G') 

G 

Fig. 1. 

Observation 2.3. A b-critical subgraph of a connected graph is a tree. 

Proof. Let G be a connected graph and G' denote its b-critical subgraph. 
Evidently, G' is connected. Let p be a path in G' of length d(G'). The path p 
can be augmented to a spanning tree T of G' for which obviously b(T)= 
b(G'). Therefore, if G' is not a tree, it is not b-critical. 

The last observation provides another motivation for our interest in the Class 
of trees, which are the graphs that produce the best lower bound of the form 
(1). By this observation, one can write 

B(G)  3 max{b(T): T c G and T is a tree}. 
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This relation between the bandwidth of G and its bound b can also be read 
as a weakness of b for arbitrary graphs. 

Properties of critical graphs arising in the study of the bandwidth problem 
will be discussed in another paper (see [6] and also [2]). In Section 3 we present 
a new class of trees for which the bound b determines their bandwidth and 
gives rise to an efficient algorithm for its finding. 

3. The bandwidth of caterpillars 

The purpose of this section is to add one more subclass of trees to those for 
which the bandwidth problem can be easily solved. In [5] we solved the 
bandwidth problem for ordered caterpillars and in the sequel we show how to 
calculate the bandwidth of any caterpillar. Recently, we improved this result by 
providing a polynomial time algorithm for finding the bandwidth of a cater- 
pillar with hairs of length 1 and 2 (see [l]). 

A tree T is a caterpillar if removing all pendant vertices of T results in a 
path p ( T ) .  Notice that p ( T )  consists exactly of non-pendant vertices of T. A 
caterpilIar T is ordered if the vertices of p ( T )  are ordered by non-increasing 
degree. Assume that p ( T )  = (wl ,  w 2 , .  . . , w,) and let Zj ( i  sj) denote the 
subgraph of T consisting of wi, w ~ + ~ ,  . . . , wj-l ,  wj and of all their neighbours. 

We proved in [5] that if T is an ordered caterpillar, then B(T)=  
maxlsism b(Tl , i )  and the optimal labeling of T can be foundsin O ( n ( T ) )  time. 

A similar result will now be proved for an arbitrary caterpillar. 

Theorem 3.1. If T is a caterpillar with m non-pendant vertices, then 

B(T)  = max b ( Z j ) .  
l S i , j S m  

Proof. Let E, denote the set of pendant vertices adjacent to w,, T, be the subgraph 
induced by w, and its neighbours, and let b = maxl,,,l,m b(T,]) .  

We shall prove that for every caterpillar the following algorithm produces a 
labeling T of bandwidth b, which will complete the proof of the theorem. 

Algorithm 3.2 
Step 1. Let wo be one of the vertices in E l .  Set ~ ( w o )  = 1. 
Step 2. For i = 1,2 , .  . . , rn perform: 

max T ( v ) +  lEil + 1 
U€V(T,_,)  

(i) Set r ( w i )  = min 
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(ii) Label the vertices of Ei using first IEi( unused integers from interval 
[I, n(7-11. 

We show now that 7r is a labeling of V(T)  and satisfies I.r(u) - .r(v)l s b for 
every { u, v }  E E( T) .  

(a) Every label from interval [ l ,  n (T) ]  is used exactly once. To prove this 
fact, we show that . r (w i )> . r (u )  for every u E  V ( T - l ) - { w i } ,  i = 1 , 2 , .  . . , rn. 
This is obvious if r ( w i )  is determined by (i2). If 7r(wi) = T ( W ~ - ~ ) +  b, then it 
follows from the inequality ~ ( 0 ) -  T ( W , . - ~ ) <  b for every u E Ej-l which is 
proved in (c). 

(b) It follows from (i) that 

0 < 7r(wi) - ~ ( w ~ - ~ )  S b for i = 1,2, . . . , rn. 

(c) Since the vertices are labeled in the stars ordered as Tl,  T2, .  . . , T,, it 
remains to prove that for every i = 1 ,2 ,  . . . , rn - 1 

for every u E Ej+l, that is - b < T ( V )  - 7r(wi+1) -== b. 

every v E Ei+l. Therefore, by (b), we have 
To show the former inequality, note that, by Algorithm 3.2, ~ ( v )  > 7r(wi) for 

To show the latter inequality, assume that there exist u EEi+l such that 
r ( u )  - T ( W ~ + ~ )  2 b. By Algorithm 3.2 we have . r ( ~ ; + ~ )  = 7r(wi) + b since if 7r(wi+1) 
is determined by (i2), then ~ ( u )  < T ( W ~ + ~ )  for every u E Ei+l. Let j be the smallest 
index such that T ( W ~ + ~ ) -  .r(w,) = b holds for 1 = j ,  j + 1, . . . , i - 1, i. Therefore, 
.r(wj) is determined by (i2) and hence the number of vertices in Tli is equal to  

Assume that n ( w j )  = k + 1 ,  then 7r(wjrl) = k + 1 + b, . . . , r(wi+l)  = k + 1 + 

By the theorem assumption we have 

T ( W j )  + 1. 

(j - 1 + 1)b. 

Hence, the number of all vertices in Tl,i+l is 

< k + 2 + b(j - i + 2) + 1 - 2 = k + b(j - i + 2)  + 1 



286 M.M. Syslo, J. Zak 

Since the maximum label for vertices in Ei+l is at most n ( T l , i + l ) -  1 we obtain 

T(IJ)- .rr(wi+1)S k + b ( j -  i + 2)- ( k  + 1 + (j- i + 1)b) = b - 1 < b ,  

what leads us to a contradiction with the assumption that there exist v E Ei+l 
such that ~ ( v )  - T ( W ~ + ~ )  2 b. 

Therefore, we showed that the labeling T of T is of bandwidth b. Since 
b GB(T),  we obtain B(T)  = b. 

Corollary 3.3. There is an O(n2)  algorithm for finding the bandwidth of a 
caterpillar T with n vertices, which also produces a labeling achieving this 
bandwidth. 

Proof. Clearly, the bound b can be calculated in O(n2) time and the algorithm 
works in time proportional to n, so the total time used is O(n2).  0 

Example 3.4. For a caterpillar shown in Fig. 2 we have B ( T )  = b(Tl,5) = 4. The 
labeling indicated in Fig. 2 has been obtained by Algorithm 3.2 and is therefore 
optimal. 

2 ii 7 8 10 12 13 15 17 20 21 

Fig. 2. 
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We show the equivalence of some combinatonal models which generalize group-valued 
polymatroid intersections as well as group-valued network flows. We develop a negative 
circuit method for the minimization of certain nonlinear functions on such combinatonal 
structures. The method is an application of a general strategy proposed for minimizing 
certain nonlinear functions on a subset of R" where R is a totally ordered ring. 

1. Introduction 

We consider the minimization of certain functions f : D + T where D C R", 
R is a totally ordered ring and T is a totally ordered set. We denote the set of 
feasible solutions by P. For solving 

we develop a strategy which basically coincides with the primal simplex method 
of linear programming if we assume that R = R, that f :  R" + W is linear, 
and that P is a polytope. On the other hand, our aim is to apply the strategy 
when the feasible solutions are generalizations of polymatroid intersections and 
network flows. 

For real-valued linear objective functions c f  : R"  -+ R)  such problems are 
discussed in several papers. Edmonds [ 11 introduced the polymatroid inter- 
section problem; its capacitated version and further generalizations are dis- 
cussed in [2, 81. Martel [16] and Lawler [14] develop polymatroidal flows 
generalizing polymatroid intersections and network flows. They mention a 
thesis of Hassin [lo] on the same problem. Recently, Lawler and Martel [is] 
developed an augmenting path method for the determination of maximal 
polymatroidal flows which needs no more than O(n3) augmentations (R = R). 
Fujishige [7] describes independent flows which also generalize polymatroid 
intersections as well as network flows. That paper is related to previous work in 
[5, 6, 11, 121. Fujishige [7] proposes two methods for solving the minimum 
cost-maximum independent flow problem (f : R" + R linear in a totally 
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ordered ring R): an augmenting path method and a primal negative circuit 
method. These methods are finite if R = Z. An augmenting path method for 
the solution of the polymatroid intersection problem together with complexity 
bounds is developed by Schonsleben [17] (R = Z).  

Recently, Frank [this volume, pp. 97-1201 developed an appealing primaldual 
method for soiving the apparently more general combinatorial optimization 
problem introduced in [2]. For linearbbjective functions (R = Z )  that method is 
quasipolynomial, in general, and polynomial, if 0 s x s 1. 

On the other side, network flows with values in more general totally ordered 
algebraic structures are discussed by Hamacher [9]. A general account of 
optimization in algebraic structures is provided in [18]. In Section 2 we show. 
that polymatroid intersections with capacities, independent flows and poly- 
matroidal flows are equivalent combinatorial structures. The mutual reductions 
are of linear complexity, Since Fujishige [7] admitted group-valued vectors we 
can derive group-valued counterparts of Edmonds (integral) polymatroid in- 
tersection theorem. In Section 3 we develop a general strategy for the solution 
of (1.1) which is based on the assumption of the validity of a local optimality 
criterium in certain cones. We discuss necessary and sufficient conditions. In 
part, similar conditions are discussed in [4]. For example, linear functions and 
certain quotient functions satisfy these conditions. We apply the method to 
maximum matchings and independent flows. In particular, we develop a 
negative circuit method for the determination of maximum independent flows 
with minimum objective function value. 

2. Polymatroids and flows 

Polymatroids were introduced by Edmonds [ 11. The following definition 
generalizes this concept in a certain algebraic sense and is drawn from [7]. 

Let E be a nonempty, finite set and let (R, +, S )  be a totally ordered, 
commutative group with neutral element 0. For example, R may be the 
additive group of real numbers, rational numbers or integers endowed with the 
usual order relation. Further examples can be found in [17]. The set of all 
nonnegative elements in the group is denoted by R,, i.e., R+ := {a I 0 S a}. Let 
a E R and m EN. Then we denote a +  a + .  . - + a  (m times) by m * a or ma. 
For x E R E  we define 

x(A):= 2 x(e) 
e E A  

for all A C E; in particular x ( 0 )  := 0. 
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A function p : 2E --f R+ is called p-function if it satisfies 

P ( 0 )  = 0 9 (2.1) 

(2.2) 

(2.3) 

A C B 3 p ( A )  C p ( B )  

p ( A  U B )  + p ( A  n B )  

(Isotonicity) , 

p ( A )  + p ( B )  (Submodularity) 

for all A, B C E. If p is a p-function, then P = P (E, p )  is called a polyrnamid 
with ground set E and ground set rank function p. A vector x E Rf is called 
independent (with respect to P) if 

for all A C E. The set of all independent vectors is denoted by P. In particular, 
if R is the additive group of real numbers, then P is a polytope in Rf. In the 
general case, P is a subset of R? which is the intersection of a finite number of 
'half-spaces' of R E  (cf. (2.4)). Such algebraic approaches are proposed for many 
combinatorial optimization problems; a general discussion can be found in [18]. 

For two polymatroids P l(E, pl)  and P 2(E, p2), a vector x E P1 fl P2 is called a 
(polymatroid) intersection. We admit additional upper bounds on intersections. 
Let c E Rf+ (R++ := R+\{O}). Then x is called feasible if x =s c. The set of all 
feasible intersections x with x ( E )  = a for fixed a E R+ is denoted by P ( a ) ,  i.e., 

P ( a )  := { X  E R f  I x E P1 n P2, x C, x ( E )  = a}. (2.5) 

The cardinality (El of E is called the size of P ( a ) .  
It is well known that polymatroids generalize matroids (cf. 111). A common 

generalization of matroids and flows is developed in a series of papers by In 
and Tomizawa [12], Fujishige [5, 61 and Iri [11]. The general algebraic case is 
considered by Fujishige [7]. He introduces independent flows in the following 
way. 

Let G = G(V, A, Vl, Vz) be a finite digraph with vertex set V, arc set A and 
VI, V, C V. Further, capacities c E R f +  and two polymatroids P ,( V,, Pi), i = 
1,2, are given. The set of all arcs into (out of) a subset V' C V is denoted by 
o-(V') (w+(V')). x E R$ is called a flow in G if the conservation law 

x ( w - ( v ) )  = x ( w + ( v ) )  (2.6) 

holds for all ZI E v\( Vl U V2). Then we define s E R "1 and t E R v2 by 
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for all u E V , ,  w E V,. A flow x is called independent (with respect to P and 
Pz) if s E P 1  and t E  Pz. If x is an independent flow, then s 3 0  and t 3 0 .  
Therefore V1 ( V2) is called the set of the sources (sinks) of G. A flow x is called 
feasible if x s c. 

Due to (2.6) a flow x satisfies s (V, )=  t(V2). We call 1x1 := s(V,)  the flow 
value of x. The set of all feasible independent flows of flow value a for fixed 
a E R, is denoted by G(a),  i.e., 

G(a)  = {x E R f  I x feasible, independent flow; 1x1 = a}. (2.8) 

The pair (I VI, /A[) is called the size of G(a).  

matroid intersections. 

A := {(e,  e') I e E E }  (cf. Fig. 1). 

The following reduction shows that independent flows generalize poly- 

Let E'= {el l  e E E }  denote a copy of the ground set E and let 

E E' - 
o----------.o 

A 
6-----4 
Fig. 1. P ( a ) - G ( a ) .  

We define capacities C E R$+ by E(e, e') := c ( e )  for all e E E. The polyma- 
troid P2 is redefined as a polymatroid P 2  on E' with ground set rank function p2:  

for all U' E'. Then a feasible independent flow 1 in G(E U E', A, E, E')  with 
capacities E and polymatroids PI, P2 uniquely corresponds to a feasible 
polymatroid intersection x E P, n P2. Here, 1(e, el) = x(e )  for all e E E and 
111 = x(E).  We remark that the described reduction is linear in the size (El of 
P ( a ) ,  since the size of the generated independent flow problem is (2(E(, (El). 

Another common generalization of matroids and flows is considered by 
Martel [16] and by Lawler [14]. They introduce polymatroidal flows in the 
following way. Let N = N(V, A )  be a digraph with vertex set V, containing a 
source s and a sink t, and with arc set A. We assume that w-(s)  = w + ( t )  = 0.  
Then, x E R? is called a flow if (2.6) is satisfied for all u E v\{s, t}. Therefore, a 
flow x satisfies x ( w + ( s ) )  = x ( w - ( t ) )  = : 1x1. That value 1x1 is called the flow value 
of x. 

Now, for all vertices j E V, two polymatroids P l j ( w + ( j ) ,  aj) and F'z,(w-(j), pi) 
are given. A flow x is called polymatroidal if the restrictions of x to w + ( j )  and 
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w - (  j) are independent in the polymatroids P l j  and P 2, for all j E V, i.e., if 

xlo+o,EP1j ,  x lo-o ,EP2j ,  

for all j E V. In addition to the concept in [14, 161 we admit capacities c E Rf+. 
Then, a flow x is called feasible if x zs c. The set of all feasible polymatroidal 
flows of value a (a E R+)  is denoted by N ( a ) ,  i.e., 

N ( a )  := {x E R? I x feasible polymatroidal flow, 1x1 = a}. (2.9) 

We call (IVl, IAI) the size of N ( a ) .  
We show that independent flows may be reduced to polymatroidal flows. We 

adjoin a new source s, a new sink t and the arc sets {s} x V,, V, x {t} to  the 
underlying digraph G (cf. Fig. 2). In this way we get the digraph N =  
N (  V u {s, t}, A*) with A* = A U ({s} X VI) U ( V2 X {t}) .  All new arcs have 
capacity a (w.1.o.g. a: > 0). We define two polymatroids P Is(w+(s) ,  as) and 
P *t(w-(t),  PO by 

for all X C w+(s)  and for all Y C w-( t ) .  Further polymatroids are not neces- 
sary. For sake of completeness, let D E R+ be an upper bound on the value of 
the total amount of flow entering or leaving a vertex in G, for example, 
D = C n E A  c (a ) .  Then all polymatroids are defined with ground set rank func- 
tion 

for all su 

0 i f X = 0  
:= { D  otherwise, 

subsets X of the considered ground set. 
G(V,A I  

y vtnv2 t------ 

ibsel ts x 

@= 

the considered ground set. 
G(V,A I  

vt v2 

(2.10) 

'Fig. 2. G(cr)-N(cr). 

Now, a feasible independent flow x E G(a)  induces a feasible polymatroidal 
flow 2 E N ( a ) ,  where 

i ( s ,  u ) : =  s (u )  = x(w+(u) ) -  x ( w - ( u ) ) ,  

q w ,  t ) : =  t ( w )  = x ( w - ( w ) ) -  x(w+(w))  
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for all u E V,, w E V,. Clearly, the restriction x of a feasible polymatroidal 
flow f E N ( a )  to A is a feasible independent flow x E G(a).  We remark that 
this reduction is linear in the size of G(a); in fact, the size of the generated 
problem N ( a )  is (I VI + 2, /A(  + I V,l+ I V21). 

The above reductions are rather straightforward; a more surprising result is 
contained in the following theorem. 

Theorem 2.1. Let a E R,. Then 
(1) P ( a )  can be reduced to some G(a),  
(2) G(a) can be reduced to some N ( a ) ,  
(3)  N ( a )  can be reduced to some P ( a  + H )  

where H E  R, is suficiently large. In fact, H 
of vertices in N and D is the sum of all capacities on N. 

( n  - 2) . D where n is the number 

Proof. We have already described the reductions of P ( a )  to G ( a )  and of G(a)  
to N ( a ) .  Therefore it suffices to describe a reduction of N ( a )  to some 
P(a  + H )  which is linear in the size of N ( a ) .  

Let D := XaEA c ( a )  and let 

d, := min(aj(o+(j)), P j ( w - ( j ) ) ,  D )  (2.11) 

f o r j E  V, :=  V\{s , t } .  Let H : = Z , d , .  
In the first step we reduce N ( a )  to a bipartite transportation problem with 

additional polymatroidal constraints. This step is inspired by a well-known 
transformation of the classical transshipment problem to the transportation 
problem (cf. [13]). We split every vertex j E Vo into two vertices u, and w,. The 
new bipartite digraph T = (V, W, A’) has vertex sets U = {u, 1 j E V, U {s}} and 
W = {w, I j E V, U { t } } .  The new arc set A’ = A1 U A2 consists of 
A1 := {(u,, w , ) ~  I j E Vo}, and of all arcs of the form 

(ui, wj)k, k = 1,2, . . . , kjj ,  (2.12) 

if the original digraph N contained the arcs 

( i , j ) k ,  k = 1, 2 , .  . . , k i j ,  

for i E Vo U {s}, j E V, U { t }  (cf. Fig. 3). 
We assign capacity D to all arcs in A,. The capacity of an arc (ui, wj)k E A2 is 

the same as the capacity of its corresponding arc (i ,  j ) k  E A. The polymatroids 
P v  ( j #  t )  and P Z j  ( j #  s) for j E V lead to the following corresponding 
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Fig. 3. N ( a ) -  T. Wavy arcs (EAI )  are not present in the original ,digraph N. 

polymatroids. For X C A', let .% C A denote the set of all arcs in A corresponding 
to X\A1, i.e., 

Let j E Vo and X C w+(uj) .  We define 

min(d,, a,@)) if (uj, e X ,  
otherwise. 

Then P lui = P luj(w+(uj), a&) is a polymatroid. For X w+(us), we define 

Then Plus = P1u,(w+(us), a:,) is a polymatroid. 
Similarly, let wj E W and Y C w-(wj) .  Then 

min(dj, Pj(r)) if (uj, wj)o E Y ,  
P k j ( y )  := [ d, otherwise, 

(2.13) 

(2.14) 

defines a polymatroid P,, = Pzwj(w-(wj) ,  p;,). For Y c w-(w,)  we define 

Then P2wr(w-(wf),  p;,) is a polymatroid. 
A flow x E N ( a )  uniquely corresponds to a transportation flow X' of maxi- 

mum flow value x'(A') = (Y + H in T where the vertices in U and v act as 
multiple sources and sinks. For given x E N ( a )  we define x' by 

i f k > O ,  
XI((&, W j ) k )  : = { ;?$)+(i)) otherwise 

for all arcs in A'. Due to the conservation law 
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x ( o + ( i ) )  = x ( o - ( i ) )  

for all i E Vo. Therefore, x’ satisfies all constraints and has maximum flow value 
x’(A’) = a + H. Vice versa, let x’ be a transportation flow of value a + H. Due 
to the polymatroidal constraints we find 

x’(o+(u~))  = x’(o- (w~))  = di,  

X ’ ( W + ( U S ) )  = x’(0-(w,))  = LY 

for all i E Vo. Therefore, 

for all arcs in A defines a feasible, polymatroidal flow of value a in N. 
In the second step of our reduction we observe that a transportation flow 

x’ E R$’ can be interpreted as an intersection of two polymatroids defined on 
A’ as their common ground set, and vice versa. Let X X ’ .  We define 

(2.15) 

(2.16) 

Then Pk(A’, pk),  k = 1,2, are polymatroids. Clearly, x’ is a feasible, poly- 
matroidal transportation flow of maximum flow value x’(A’) = LY + H iff x’ is a 
feasible intersection of P and P 2  of maximum component sum a + H. 

Therefore, a complete reduction of N ( a )  to  P(LY + H) is found which is 
linear in the size of N(a) .  In fact, the size of the generated problem is 
IA’I = (A1 + I Vol. 0 

Theorem 2.1 shows that polymatroid intersections, independent flows and 
polymatroidal flows define equivalent combinatorial structures which can be 
reduced to each other by the described transformations. P ( a )  or the cor- 
responding bipartite version of G(a) seem to be the simpler representations of 
that structure. Nevertheless, it might be interesting to see how well-known 
results are reflected by the different choices of the representation. 

Theorem 2.2 (Fujishige [7]). Let F denote the set of all feasible, independent 
flows in G = G(V, A, V1, V2). Then 

(1) there exists f E F such that 
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(2) If1 = mi&( Vl\ U )  + c ( A  fl (U X ( v\ U)) )  + PZ( V2 n U )  I U G V. 

We remark that, in the particular case R = Z,  the existence of an integer 
valued feasible, independent flow is claimed implicitly. Let S, T C V with 
S U T = V, S n T = 0. Then (S,  T) is called a partition of V. 

An equivalent formulation of Theorem 2.2 is the following theorem. 

Theorem 2.3. Let a E R+. Then G(a)  # 0 if and only if 

p t ( v l n  T)+c(An(sx ~ ) ) + ~ ~ ( v ~ n s ) a ( ~  

for all partitions (S ,  T )  of V. 

The equivalent theorem in terms of P ( a )  can be derived from inspection of 
Fig. 1 which shows the digraph G(a) corresponding to  a given P(a).  

Theorem 2.4. Let a E R,. Then P(a)  f 0 if and only if 

PlW) + C(E\(X u Y ) )  + P Z ( Y )  f f  

for all X, Y C E with X n Y = 0. 

Proof. Let G = G(E UE’ ,  A , E ,  E’) be the digraph in Fig. 1. Then, by 
Theorem 2.3, G(a) # 0 if and only if 

pl(E fl T ) +  E(A fl ( S  x T))+  p2(E’ f l  S ) a  a 

for all partitions (S, T) of E u E‘. The claimed result follows from Fig. 4. 

Theorem 2.4 implies polymatroid intersection theorems from Edmonds [ 11, 
Giles [S] and others. We emphasize that the case R = Z describes the case Of 

integral polymatroids. 

j E n S  1 
Fig. 4. Theorem 2.3 3 Theorem 2.4. 
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Analyzing the reduction in Theorem 2.1 we find the following equivalent 

We call a partition (S ,  T )  of V a cut of N = N (  V, A) if s E S and t E T. 
theorem in terms of N ( a ) .  

Theorem 2.5. Let a E R + .  Then N ( a )  # 0 if and only i f  

2 aU(u n w + ( ~ ) ) +  2 p , ( ~  n L ( u ) ) +  C [ ( A  n s x T)\(u u L)]  3 (Y 

V E S  V E T  

for all cuts (S, T )  and for all disjoint U, L C A n S x T. 

Proof. In the final step of Theorem 2.1 we obtain two polymatroids Pk(A', pk), 

k = 1,2. We identify Al with Vo and A2 with A (A' = Al  U A2) and we denote 
V, U A by E. In particular, we get polymatroids P pl ) ,  P2(E, p2) and capacities 
c* E RF+. Theorem 2.4 shows that N ( a )  f 0 if and only if 

Pl(X) + PdY) + c*(E\(X u Y)) 3 a + 2 a, 
j E  Vo 

for all X, Y C E with X n Y = 0. 
For x C E let Xo := X n Vo and X ;  := X n w'(v) for all u E V. Replacing d,, 

j E Vo, by a sufficiently large constant d, the definition of p1 (cf. (2.13) and (2.15)) 
leads to 

A X )  = 1x01 . d + 2 a,(X:)+ min(as(Xf), a). 
u EX0 

The similar expression for p2 (cf. (2.14) and (2.16)) is 

for Y C E. The capacities are 

with XA = X f l  A, YA = Y n A and the capacity function c of N(V, A). 

that (S,  T )  is a cut for 
It suffices to consider X, Y such that X o  U Yo = Vo; since Xo rl Yo = 0 we find 

S : = (Vo\Xo) U {s} , T : = ( Vo\ Yo) U {t} 



Minimization of some nonlinear functions 297 

Since Xo n Yo = 0, the d-terms cancel on both sides of the inequalities. The 
validity of the inequality is not changed if we replace the minima 
min(as(X:), a), min(Pr( Y;), a )  by as(X:) ,  &(X;) .  Therefore N ( a )  # 0 if and 
only if 

for all cuts (S,  T )  and for all X ,  Y C A. The choice of X and Y can be 
restricted in the following way. If an arc from A\Sx T does not belong to 
X U  Y, then it can be added to X or Y without enlarging the sets X i ,  Y; .  
Further, if such an arc belongs to some X :  then it may be shifted to Y without 
enlarging the set Y;, and vice versa. Such changes will not increase the left 
hand side of the considered inequality. Thus, the arcs of A \ ( S x  T )  can be 
excluded from the considered inequalities. The relevant part of X ,  Y is called 
u. L. D 

In particular, Theorem 2.5 shows the existence of an integral feasible 
polymatroidal flow of maximum value in the case R = Z . The three theorems 
have the following corollary which describes the case without active capacities. 

If (S,  T )  is a cut in N = N ( V ,  A )  and (V, L)  is a partition of A n ( S  x T ) ,  
then (S,  T, U, L)  is called an arc-partitioned cut of N (cf. [15]). 

Corollary 2.6. Let cy E R+. 72en 
(1) P, := {x E RY I x intersection in PI n P2, x(E) = a }  f 0 iff 

for all X C E, 
(2) G, := {x E Re 1 x independent flow in G, 1x1 = a} f 0 iff 

for all partitions (S ,  T )  of V with A n ( S  x T )  = 0, 
(3) N, := {x E R? I x polymatroidal flow in N, 1x1 = a} f 0 iff 

2 ( Y , ( U I I W + ( V ) ) +  2 p u ( ~ n ~ - ( ~ , ) ) ~ ~  
UES uE T 

for all arc-partitioned cuts ( S ,  T, U, L). 

In particular, Corollary 2.6(3) implies the max-flow min-cut theorems in [ 141 
(R = Z ,  Q)  and, recently, in [15] ( R  = R). 
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For the determination of an intersection with maximum component sum am= 
Schonsleben [17] develops a polynomially bounded augmenting path 
method (R = Z , without capacities). He provides a complexity bound 
O(min(n3, K )  . Z  * nz(log K + n)) K := min{k E N I PI n P2 C 
[0, kIE}, and where the complexity of an independence oracle in PI and Pz is Z. 
Clearly, using the previously described reductions, this method can be trans- 
formed to a polynomially bounded ‘augmenting path method for the deter- 
mination of independent network flows/polymatroidal network flows of maxi- 
mum flow value amax. If a,, is known, the method can directly be applied to 
the respectively derived intersection problem (a = a,,). Otherwise, we have to 
take care of the fact that the rank functions of that intersection problem (cf. 
(2.15) and (2.16)) depend on a. A simple approach consists in a combination of 
the augmenting path method yith binary search for amax. 

Recently, Lawler and Martel [15] derived an augmenting path method for 
the determination of polymatroidal network flows of maximum flow value 
(R E (Z , Q, W], without capacities). They show that no more than O(n3) 
augmentations are required and discuss detailed complexity bounds with res- 
pect to certain oracles used within each augmentation. Clearly, using the 
respective reductions, that method applies to intersections/independent 
flows. 

Recently, Frank [3] developed an appealing primal-dual method for solving 
a weighted combinatorial optimization problem introduced in [2]. In particular, 
that problem generalizes intersections, independent network flows and poly- 
matroidal network flows. Therefore Frank’s method applies to the deter- 
mination of ‘maximum’ intersections/independent network flows/polymatroidal 
network flows (R = Z). The method is quasipolynomial, in general, and poly- 
nomial, if 0 

Fujishige [7] develops an augmenting path method for the determination of 
independent flows of minimum weight in totally ordered, commutative rings, 
which, in particular, is applicable to the determination of independent flows of 
maximum flow value. Then, the method is valid in the general case of totally 
ordered, commutative groups (R, +, s) but finite termination is assured only if 
R E {Z , Q}. Fujishige [7] uses a certain auxiliary graph generalizing the border- 
graph of Krogdahl (cf. [13]) as well as the usual incremental graph in flow 
theory. That graph is a basic tool for the further development of a primal 
solution method for the minimization of linear objective functions in the case 
of totally ordered, commutative rings. We will generalize that method in 
Section 3 for certain nonlinear objective functions. 

Before describing the auxiliary graph we need some preliminaries from 
polymatroid theory. Let P (E, p )  denote a polymatroid. The saturation function 
sat : P + 2E is defined by 

where n = /El, 

x < 1. 
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sat(x):= {i E E 1 x + E ' G P  V E  >O} 

for x E P (E' E R f  is defined by E :  := E ;  E ;  := 0 for all j #  i). We remark that 
i E sat(x) iff x(A) = p(A) for some A C E with i E A. Let 

c+(x, i) := max{E I x + E' E P} = min(p(A) - x(A) I i E A} 
& 30  ACE 

denote the (unsaturated) gap in the ith component of x. Clearly, c+(x, i ) > O ,  
and i $Z sat(x) iff c+(x, i ) > O .  The dependence function dep : P x E + 2E is 
defined by depfx, i) = 0, if i sat(x), and by 

dep(x, i) := { j  E sat(x) 1 3~ > 0: x + s i  - E~ E P }  , 

if i E sat(x). Let 

c'(x, i , j ) = m a x { ~  I X + E ' - E ' E ~ } ,  
&a0 

for x E P and j E dep(x, i)\{i}. With 

y : = m i n b  (A) - x (A) I i E A, j 6 A} 
A C E  

we find 

0 < c'(x, i, j )  = min{y, x(j)} . 

In view of Theorem 2.1 it suffices to consider the auxiliary graph for the 
bipartite digraph G(E U E', A, E, E') corresponding to polymatroid inter- 
sections (cf. Fig. 1). We remind that a capacity function c E R f +  and two 
polymatroids P *(E, pl)  and Pz(E', p2) are given. Let x be a feasible in- 
dependent flow in G. s, t are defined by s ( i )  = x(i, i') = t(i') for all e € E. Then 
the auxiliary digraph G,( V U (a, T} ,  A) contains six disjoint arcs sets (cf. Fig. 5). 

E E' 

U 

Fig. 5. Circuit in auxiliary graph G,. Wavy arcs are not from A. Signs indicate increase (+) and 
decrease (-) in (x. s, t )  due to a flow on the circuit. 
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The first two sets are drawn from the incremental graph in flow theory: 

F := {(i, i f )  1 x ( i ,  i ’ )  < c(i ,  i’)} ‘forward arcs’ , 

B := {(i’, i )  1 x ( i ,  i’) > 0} ‘backward arcs’ . 

Secondly, two sets generalize the dependence graph of matroids for the 
polymatroid P ](E, pl):  

D1 := { ( j ,  i) I i E satl(s), j E depl(s, i)\{i}l, 

s1 := {(a, i) I i E E\satl(s)} u {(i, a) I s ( i )  > 0) 

Thirdly, a similar dependence graph is defined for P2(E’, p2) with reversed arc 
directions: 

D2 := {(i‘, j ’ )  I i’ E sat2(t), j ’  E dep2(s, i’)\{i’}} , 

S2 := {(i’, T) 1 i‘ E E’\sat2(t)} U {(T, i‘) I t(i‘) > 0) 

We assign a positive capacity C‘ to  all arcs in A: 

t( i ,  i’) : = c(i, i’) - x( i ,  i’) , 

Z(i’, i) := x ( i ,  i’) , 

E ( j ,  i) :=c;(s, i , j ) ,  

C(a,  i) := c:(s, i), 

C‘(i, v) := s ( i ) ,  

C‘(i’, j ‘ ) : =  c;(t, i’, j ’ ) ,  

Z(i’ ,  T):= c;(t ,  i’), 

E(T, i’) := r ( i ’ ) ,  

A flow Ax in the network G, with source a and sink r is called F-B-feasible if 
Ax(i, if)  G E( i ,  i’) for all (i, i’) E F and A x ( i ’ ,  i) =s C‘(i’, i) for all (if, i) E B. An 
F-B-feasible flow Ax defines a feasible flow 2 in G by 

2(i, i’) := (x @Ax)(i, i f )  := x ( i ,  i’)+ Ax(i, i’)- Ax( i ’ ,  i )  

for all i E E  (we interpret Ax by 0 if an arc does not occur in G,). The 
following theorem is implicitly proved in [7].  
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Theorem 2.7. Let i E G(P), x E G ( a )  with p 3 a. Then there exists an F-B- 
feasible flow A x  in G, of flow value p - CY such that 2 = x @ A x .  

From usual flow theory we know that a flow can be decomposed in path flows 
and circuitflows, i.e., in flows which have a positive constant value on the arcs 
of a fixed direct path from source to sink (or of a fixed directed circuit), and 
which have value 0 on all other arcs in the network. Applied to A x  in Theorem 
2.7 this shows A x  = A x ,  + Axc where A x ,  is the sum of certain path flows and 
Ax,  is the sum of certain circuit flows. In particular, A x ,  has flow value p - a 
and, if p = CY, then A x  = Axc .  

On the other hand, different from usual flow theory it may happen that 
x @ A x  is not an independent flow in G even if A x  is a feasible flow in G,. For 
feasible path (circuit) flows A x  Fujishige [7j describes a sufficient criterion for 
the independence of x @ Ax.  

It suffices to consider path (circuit) flows A x  with the following property (cf. 
Fig. 5): 

(2.17) 

If A x  does not satisfy (2.17), then it is easy to construct a path (circuit) flow Ax' 
satisfying (2.17) such that x @ A x  = x @ A x ' .  This construction consists in the 
introduction of some shortcutting arcs from D,, S, (i = 1,2) which circumvent 
the unnecessary vertices. 

Thus, the arcs of the path (circuit) which belong to D1 or Dz have painvise 
disjoint end-vertices. These arcsets are denoted by A l  and Az.  We define 
digraphs G,(A,, A,) where the arcset A, consists in all arcs [ ( i ,  j ) ,  (k ,  r ) ]  such 
that (i, r )  E 0, ( p  = 1,2). If A x  satisfies (2.17) and neither GI' nor GZ does 
contain a directed circuit, then A x  is called admissible. 

The following result is drawn from Fujishige [7]. 

Any vertex ( f c r ,  7 )  of the path (circuit) is incident to  an arc 
of the path which belongs to F and B.  

Theorem 2.8. Let x E G ( c Y )  and let A x  be an admissibie, feasible path (circuit) 
flow in G, with flow value 6 (clearly, 6 = 0 in case of a circuit). Then 
x @ A x E  G(a+6).  

Theorems 2.7 and 2.8 directly lead to an augmenting path method for the 
construction of an independent flow of maximum flow value. If x E G(a)  is 
known but CY is not maximal, then there exists a directed path from cr to  T in 
G,. We choose a path of shortest length and push as much flow through this 
path as possible without violation of feasibility; the resulting flow A x  is 
admissible (no shortcuts possible). The procedure is finite, at least if R = Z or 
R = Q .  
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3. Minimization of objective functions 

In this section (R, +, * , S )  is a totally ordered, commutative ring with zero 0 
and unity 1. Thus, in particular, (R, +, S )  is a totally ordered, commutative 
group as in Section 2. We discuss the minimization of an objective function 
f : D+ T where D C R" and where (T, s) is a totally ordered set. We use the 
same notation 'S' for the order relations 'in R and T but from the context it 
will always be clear which is meant specifically. A typical example is a linear 
function f ( x )  = cTx with c E R" and R = T E {Z, Q, W}. The set of feasible 
solutions is denoted by P (CD). Thus, the minimization problem reads 

min(f(x) 1 x E P }  . (3.1) 

The strategy developed for solving (3.1) may be modified for maximization 
problems in a straightforward way. 

Let x,  y E R". Then 

[x, y ]  := (X -k A ( y  - X) 1 0 S A s 1, h E R }  . 

Let S C R". Then S is called convex with respect to R, if [x, y ]  C S for all 
x , y E S .  For x E R "  we define S - x : = { y - x ( y E S } .  The convex cone 
generated b y  S with respect to R consists in all nonnegative, finite linear 
combinations of the elements in S, i.e., 

hixi I x i  E S, Ai E R,; m E N 
i = l  

We will only consider functions satisfying the following property. 

Property 3.1. L e t  x E D and S C D. I f f ( x )  s f ( y )  f o r  all y E S, then f ( x )  G f ( y )  
for all y E [x + coneR(S - x)] n D. 

Property 3.1 enables the use of local optimality criteria in order to prove 
global optimality in certain cones. Therefore the following procedure is pro- 
posed for solving (3.1): 

General strategy for solving (3.1) (P' C P) 
Step 1. Find x E P'. 
Step 2. If x is locally optimal (in Q = Q(x)) stop. 
Step 3. Otherwise find y E Q(x)  with f ( y )  < f ( x ) ;  x : = y and g o  to 

Step 2. 
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Clearly, the strategy is valid if we can find sets Q(x) (for x E P') such that 

Q(x) C P' and P C x + coneR(Q(x) - x) (3.2) 
for all x E P'. Finiteness of the strategy will follow from trivial arguments for 
the considered problems (e.g. P' finite). 

For example, let R = W and let P be a polytope. Then, linear functions 
satisfy Property 3.1 (D = W.). For a vertex x E P, the set Q(x) of all vertices of 
P adjacent to  x satisfies (3.2). The general strategy is a rough description of the 
primal simplex method. We observe that an arbitrary function satisfying 
Property 3.1 will attain its minimum over a polytope at a vertex of the polytope 
(P' 1 set of all vertices). 

A necessary condition for Property 3.1 is 

f ( x ) ~ f ( r ) , f ( x ) ~ f ( z )  3 f(x)-'f(x+(y -x)+(z- - ) )  (3.3) 

f o r a l l x , ~ ,  z ~ D w i t h y + z - x ~ D . L e t  R = Z . T h e n , i f D = Z f l , ( 3 . 3 ) a n d  
Property 3.1 are equivalent. In the case D 5 Z", (3.3) does not necessarily 
imply Property 3.1. Another necessary condition for Property 3.1 is 

f(x)<f(y) I$ f (x)<f(x + A(Y - X I )  (3.4) 
for all x, y E 0, A E R, with x + A(y - x ) E  D. For fields R (3.3) and (3.4) are 
often sufficient. 

Theorem 3.2. Let R be a field and let D C R" be a convex set. Iff : D + T 
satisfies (3.3) and (3.4), then f has Property 3.1. 

Proof. Let y', y2, . . . , y" E S C D. Due to convexity 

for all A E RT, Z Ai < 1. Therefore, by induction, (3.3) and (3.4) lead to  
f (x)Sf(y) .  Let y ( p ) ~ D  for P E R T  and let y : = 2 p i > 1 .  Then 
f(y((1ly) * p ) )  3 f(x). Now x + y ( y ( ( l / y )  * p ) -  X) = Y(P). Thus, (3.4) implies 
f(x> f (Y  (P 1). 

We remark that in Archimedean fields, i.e., if R is a subfield of the real 
numbers, (3.4) in Theorem 3.2 may be weakened to quasiconcavity, i.e., 

f (x)s . f (y)  3 f (x )S f (z )  vz E [x, y1 (3.4)' 

for all x, y E D. 
In the case R = Z, a result similar to Theorem 3.2 is not known. Even if 

D = D' nzfl where D' is a set convex with respect to W, counterexamples 
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show that (3.3) does not imply Property 3.1, in general (only for IS1 = 2 the 
implication holds). 

The following functions satisfy (3.3) and (3.4). 
Linear functions: f : W" -+ W, defined by f ( x )  = crx + a with c E R", a E W. 
Linear quotient functions: f : D -+ W defined by 

with c, d E R", a, /3 E R and with D := {x E W" I dTx + /3 > O}. 
Time-cost objective functions: f : W ?+= R2 with f ( x )  = ( d ( x ) ,  c ( x ) )  defined by 

d ( x )  = max{d, 1 x, > 0) , c ( x )  = 2 x, 
d,=d(x) 

for d E R". Here, R2 is totally ordered with respect to the usual lexicographic 
order relation. We remark that d : R;+W does not satisfy (3.3), in general. 

Multicriteria functions: f : W" += R", if f, : W" +- W (1 s i s m )  satisfies (3.3) 
and (3.4) in a stronger version, i.e., when one strict inequality in the assumption 
implies a strict inequality, respectively. Again, R " is lexicographically ordered. 

We observe that the above described objective functions attain their mini- 
mum over a given polytope P at a vertex of P. An optimum solution can be 
obtained using the proposed general strategy. 

If the set P of all feasible solutions is of combinatorial structure then this 
structure might be helpful in the development of a procedure from the 
proposed general strategy. In the following we discuss matching problems and 
independent network flows. We will always assume that f has Property 3.1. 

At first, let P denote the set of all 0-1 incidence vectors of the maximum 
matchings in an undirected graph G = G( V, E )  (M C E is a matching if all its 
edges have mutually different end vertices). Let M C E be a matching of 
maximum cardinality in G ((MI = m).  A cycle C in G whose arcs alternately 
belong to and not to M is called an alternating cycle. We denote the set of all 
alternating cycles by c. If C 6 c, then the symmetric difference M @ C is again a 
maximum matching in G. It is well-known that any maximum matching can be 
obtained in the form 

M 0 (Cl u c, u . . . u C,) (3.5) 

where C1, C2, . . . , C, are mutually disjoint alternating cycles (kE N). Let x ( M )  
denote the incidence vector of a maximum matching M. We define 

Q ( x ( M ) ) : =  ( x ( M 0 C ) I  CE 0 
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We observe Q(x(M))  C P and, due to (329, we get P x + cone,(Q(x)- x) for 
all x EP. Therefore, we may apply the proposed general strategy. We call. 
C E 6; negative if 

This notation is motivated by the case of linear functions where 
f(x(M @ C)) - f (x (M))  is the usual weight (negative !) of the considered cycle. 
The proposed general strategy mainly consists in the detection of negative 
alternating cycles. It is valid and finite. Since P C Z" we are only interested in 
the restriction of f to Z". It suffices that f l D n z n  satisfies Property 3.1. In 
particular, we get a primal solution method for the above mentioned quotient 
functions. Then, it suffices to determine negative alternating cycles in G with 
respect to arc-weights of the form c ( e ) - f ( M )  * d ( e ) ,  if e E  M, resp. - c ( e ) +  
f ( M )  * d ( e ) ,  if e E M. 

Secondly, let G = G(E U E', A, E, E') denote the bipartite digraph cor- 
responding to polymatroid intersections (cf. Fig. 1). The results of Section 2 
imply that the minimization of a function on (general) independent flows and 
polymatroidal flows can be reduced to a minimization problem on independent 
flows in G. Thus, let P denote the set of all feasible, independent flows in G 
which have maximum flow value, i.e., P = G(a). We will show validity of the 
proposed general strategy under a mild additional assumption. If f ( P )  is finite, 
then finiteness is a consequence of validity; otherwise finiteness is not known. 
We assume that the domain D of the objective function f contains all vectors 
x E R f  with x S c. 

For x E P the auxiliary digraph G, is discussed at the end of Section 2. We 
define 

Q(x) : = {x 0 Ax 1 Ax F-B-feasible circuit flow in Gx} . 

Theorem 2.7 and the subsequent remarks imply 

P C x + conez (Q(x) - x) . 

Unfortunately, Q(x) is not necessarily a subset of P. Therefore a direct 
application of the general strategy may lead into troubles. We may detect 
y E Q(x) with f ( y ) < f ( x )  but y 6Z P. Therefore, we have to show that, if x is 
not locally optimal (in Q(x)), then there exists y ' E  Q(x) with f ( y ' ) < f ( x )  and 

Let 6;; denote the set of all circuits in G, on which an F-B-feasible circuit 
flow exists. For CE 6; a circuit flow on C with value A E R ,  on all arcs of C is 

y ' E  P. 
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denoted by Ax(C, A). We call CE ex negative if 

for some 0 < p s 6(C)  where 

0 < 6(C) := min{C(a) I a E C )  

is the minimum of the arc capacities C (cf. Section 2) of the arcs of C. 
Unfortunately, negativity of C is dependent on p, in general. There, we assume 
that f satisfies the reverse implication in (3.4), too, i.e., 

for all x, y E D. If R is a field then (3.6) is implied by (3.4). For linear objective 
functions it suffices to assume the validity of the cancellation rule (pa = 
pp 3 (Y = p )  for all a, p, p E R with 0 < p. Then 

for all 0 < A provided that C is a negative circuit. 
Clearly, if G, contains a negative circuit C E  ex, then it contains a negative 

circuit C E ex of shortest length. For a proof of the following theorem we need 
the validity of a strengthened form of Property 3.1. 

Property 3.1’. Let x E D and S C D. I f f ( x )  < f ( y )  for all y E S, then f ( x )  s f ( z )  
for all z E D with r .  z E x + coneR(S - x) for some r E Z +. 

If R is a field then Property 3.1’ is implied by Property 3.1. 

Theorem 3.3. Let f satisfy Property 3.1’ and (3.6). Let x E P (= G((Y), a 
maximum) and let C E 6; be a negative circuit of shortest length. Then A x ( C ,  A )  
is admissible ( A  E R++). 

Proof. Admissibility is a property of the considered circuit C. We use the 
denotations introduced in the definition of admissibility (cf. Theorem 2.8) with 
respect to G,. We remark that C satisfies (2.17). We prove that GI does not 
contain a directed circuit. For G2 an analogue argument can be given. 

We  suppose that GI contains a circuit F. Each arc {(i, j ) ,  (k, r)] of that circuit 
F corresponds to  an arc ( i ,  r )  E D1 (wavy arcs in the example in Fig. 6). For each 
such arc we find a subpath of C completing a new directed circuit. These 
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- :2 arc in G, 

-4 :; vertex in GI 
arc of C in 0, 

--- + 2 subppoth of C 

Fig. 6. Simple example for a circuit F in GI. Each forward and backward arc in C is covered once 
by the new circuits. 

directed circuits C,, C,, . . . , Ck E ex cover each forward and backward arc in C 
the same number of times, say r times. Therefore 

i= I 

for all p E R,. Obviously, the length of each Ci is strictly smaller than the 
length of C. Therefore, none of the circuits C, is negative. Thus, Property 3.1' 
and (3.6) lead to the contradiction that C is not negative. 0 

Theorem 2.3 shows that, if x is not locally optimal then we can construct a 
negative circuit which yields admissible circuit flows. Once a negative circuit is 
found this construction proceeds by using (shortcutting) arcs in D1 or D2 in 
order to find negative circuits of less length. Then, we achieve feasibility by 
choosing 0 < A < S(C). Now Theorems 2.8 and 3.3 imply the following result. 

Theorem 3.4. Let f satisfy (3.6) and Properfy 3.1'. Then x E G(a) is a minimum 
solution iff ex does not contain a negative circuit. 

Theorem 3.4 provides a local characterization of global optimality. There- 
fore, the following variant of the general strategy is valid. 

Negative Circuit Method 3.5. 
Step 1. Find x E G(a).  
Step 2. If ex does not contain a negative circuit, stop. 
Step 3. Otherwise find a negative circuit CE ex and its minimum arc 

capacity 6(C); x := x @ (Ax(C, 6)) and go to  Step 2. 

We observe that the Negative Circuit Method is finite if R = Z . In the general 
case, finiteness is not assured. We remark that a similar statement was already 
necessary in [7] for the special case of a linear function f : R" + R. Fujishige 
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[7] develops two solution methods: an augmenting path method and a Negative 
Circuit Method. The latter method coincides with the Negative Circuit Method 
3.5 iff is linear. For the case of uncapacitated polymatroid intersections, R = Z 
and linear objective functions f : Z + R the minimization problem is pre- 
viously solved in Schonsleben [ 171, too. He provides a nonpolynomial complexity 
bound (in the denotation of Section 2: O(031(.(Z+ n*))). 

Recently, Frank [3] developed an elegant method using vertex-potentials in 
the case of linear objective functions f : Z -+ Z but for an even more general 
combinatorial structure introduced by Edmonds and Giles [2]. The method is 
quasi-polynomial and, if 0 S x S 1, polynomial. 

4. Concluding remark 

After submitting this paper, we learnt about the papers of Lawler and Martel 
[15] as well as Frank [3]. Frank’s discussion of the weighted combinatorial 
optimization problem of Edmonds and Giles [2] leads us to the question whether 
an approach, as given here, can be extended to that structure. The positive answer 
including a negative circuit method will be discussed in a forthcoming paper. 
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