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The book uses an evolutionary teaching process, with C as a starting point and C++ 
as a destination. It can also be used by those already familiar with other similar pro¬ 
gramming languages, such as Pascal, PL/1, or BASIC. The reader can stop and use 
the language facilities at various points in the text. 

This book will get the C programmer up and running in C++ in the shortest pos¬ 
sible time. The teaching-by-equivalency method used enables the C programmer to 
immediately convert existing code to C++. Working code is emphasized. A program 
particularly illustrative of the chapter’s themes is analyzed by dissection, which is 
similar to a structured walk-through of the code. Dissection explains to the reader 
newly encountered programming elements and idioms. 

C is a general-purpose programming language that was originally designed by 
Dennis Ritchie of Bell Laboratories and implemented there on a PDP-11 in 1972. C 
was first used as the systems language for the UNIX operating system. Ken Thomp¬ 
son, the developer of UNIX, had been using both an assembler and a language 
named B to produce initial versions of UNIX in 1970. 

C++, invented at Bell Labs by Bjarne Stroustrup in the mid-1980s, is a powerful 
modern successor language to C. C++ adds to C the concept of class, a mechanism 
for providing user-defined types, also called abstract data types. C++ supports 
object-oriented programming by these means and by providing inheritance and run¬ 
time type binding. C++ is increasingly the choice of scientists and engineers in 
developing scientific software. 

This book, intended for use in a first course in C++ programming, can be used 
as a supplementary text in an advanced programming, data structures, software 
methodology, comparative language, or other course in which the instructor wants 
C++ to be the language of choice. Each chapter presents a number of carefully 
explained programs. 

All of the major pieces of code were tested. A consistent and proper coding 
style is adopted from the beginning and is one chosen by professionals in the C++ 
community. The code is available at the Addison Wesley Longman Web site 
(www.awl.com/cseng/titles/0-201-39519-3/). 

For the programmer who wants C experience, this book could be used in con¬ 
junction with A Book on C, 4th ed., by A1 Kelley and Ira Pohl (Addison-Wesley, 1998). 
As a package, the two books offer a unique, integrated treatment of the C and C++ 
programming languages and their use. 
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This book incorporates a number of important features. 

■ An evolutionary approach. The C programmer can immediately benefit 
from programming in C++. Chapter 1, “An Overview of C++ and Object- 
Oriented Programming,” provides an introduction to the use of C++ as an 
object-oriented programming language. Chapter 2, “Native Types and State¬ 
ments,” reviews the kernel language, which is mostly C with some improve¬ 
ments. Chapter 3, “Functions, Pointers, and Arrays,” continues with 
similarities between functions and complex data types. The middle chapters 
show how to use classes, which are the basis for abstract data types and 
object-oriented programming (OOP). The later chapters give advanced 
details of the use of inheritance, templates, and exceptions. At any point in 
the text, the programmer can stop and use the new material. 

■ Teaching by example. The book is a tutorial that stresses examples of 
working code. Right from the start, the student is introduced to full working 
programs. An interactive environment is assumed. Exercises are integrated 
with the examples to encourage experimentation. Excessive detail is avoided 
in explaining the larger elements of writing working code. Each chapter has 
several important example programs. Major elements of these programs are 
explained by dissection. 

■ Data structures in C++. The text emphasizes many of the standard data 
structures from computer science. Stacks, safe arrays, dynamically allocated 
multidimensional arrays, lists, trees, and strings are all implemented. Exer¬ 
cises extend the student’s understanding of how to implement and use 
these structures. Implementation is consistent with an abstract data type 
approach to software. 

■ Object-oriented programming. The reader is led gradually to the object- 
oriented style. Chapter 1, “An Overview of C++ and Object-Oriented 
Programming,” discusses how the C programmer can benefit in important 
ways from a switch to C++ and object-oriented programming. Object- 
oriented concepts are defined, and the way in which these concepts are 
supported by C++ is introduced. Chapter 4, “Classes,” introduces classes, 
which are the basic mechanism for producing modular programs and 
implementing abstract data types. Class variables are the objects being 
manipulated. Chapter 8, “Inheritance,” develops inheritance and virtual 
functions, two key elements in this paradigm. Chapter 10, “OOP Using C++,” 
discusses OOP programming philosophy. This book develops in the 
programmer an appreciation of this point of view. 
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C equivalence. Where appropriate, C++ code is given with equivalent C 
code. This gives the experienced C programmer immediate access to idio¬ 
matic C++ code. 

New Java equivalence. At the end of each chapter is a discussion of how 
the C++ programmer can very naturally and easily begin programming in 
Java, a language of interest for work on the Internet. The Java programming 
language borrows ideas from C++ and is designed to run in a machine- and 
system-independent manner. This makes it suitable for Internet work, such 
as writing applets for Web pages that are used by browsers. Because Java is 
an extension of C++, it is readily learned by the C++ programmer. 

ANSI C++ language and iostream. For an existing, widely used language, 
C++ continues to change at a rapid pace. This book is based on the most 
recent standard: the ANSI C++ Committee language documents. A succinct 
informal language reference is provided in Appendix C, “Language Guide.” 
Use of the iostream library is featured in Appendix D, “Input/Output,” and 
STL is featured in Appendix E, “STL and String Libraries.” 

Standard template library (STL). STL is explained and used in Chapter 7, 
“Templates, Generic Programming, and STL,” and in Appendix E, “STL and 
String Libraries.” Many of the data structure examples foreshadow its expla¬ 
nation and use. There is a strong emphasis on the template mechanism 
required for STL and the iterator idiom that STL exploits. 

Industry- and course-tested. This book is the basis of many on-site profes¬ 
sional training courses given by the author, who has used its contents to 
train professionals and students in various forums since 1986. The various 
changes are course-tested and reflect the author’s considerable teaching 
and consulting experience. The text is the basis for Web-based training in 
C++ available from 

www. digitalth ink. com 

Exercises. The exercises test and often advance the student’s knowledge of 
the language. Many are intended to be done interactively while reading the 
text, encouraging self-paced instruction. 
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■ Web site. The examples both within the book and at Addison-Wesley’s Web 
site are intended to exhibit good programming style. The Addison-Wesley 
Web site for this book contains the programs in the book, as well as adjunct 
programs that illustrate points made in the book or flesh out short pieces of 
programs. The programs available at the Web site are introduced by 
their .cpp or .h names and can be obtained by referencing 

www.awl.com/cseng/titles/0-201 -39519-3/ 

My special thanks go to my wife, Debra Dolsberry, who encouraged me through¬ 
out this project. She acted as book designer and technical editor for this edition. She 
developed appropriate formats and style sheets in FrameMaker 5.5 and guided the 
transition process from my other books on C++. She also implemented and tested 
all major pieces of code. 

This book was developed with the support of my editor, J. Carter Shanklin, and 
editorial assistant, Angela Buenning. 

Ira Pohl 
University of California, Santa Cruz 
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Overview of C++ 
and Object-Oriented 
Programming 

This chapter gives a brief overview of C++ and provides an introduction to its use as 
an object-oriented programming language (OOP). Like the rest of the book, it 
assumes a knowledge of C. The chapter presents a series of programs of increasing 
complexity and carefully explains the elements of each; program examples in the 
later sections illustrate some of the concepts of object-oriented programming. This 
approach should give students or professional C programmers a sense of how C++ 
works. As an overview, this chapter makes use of advanced material that can be 
skimmed or skipped by readers who wish to begin with the elementary concepts 
found in the next chapter. 

Each feature of C++ is explained briefly. The examples in this chapter give read¬ 
ers simple, immediate, hands-on experience with key features of the C++ language. 
The chapter introduces stream I/O, operator and function overloading, classes, con¬ 
structors, destructors, and inheritance to give programmers the flavor of writing 
C++. Mastery of individual topics requires a thorough reading of the later chapters. 

Object-oriented programming is today’s programming methodology of choice. 
OOP is the product of 30 years of programming practice and experience, going back 
to Simula 67 and continuing with SmallTalk and, more recently, Eiffel, Java, and 
C++. The OOP programming style captures the behavior of the real world in a way 
that hides detailed implementation. When successful, OOP allows the problem 
solver to think in terms of the problem domain. 

C++ was created by Bjarne Stroustrup in the mid-1980s. Stroustrup had two 
main goals: (1) to make C++ compatible with ordinary C and (2) to extend C with 
OOP constructs based on the class construct of Simula 67. C, developed by Dennis 
Ritchie in the early 1970s as a system-implementation language to build UNIX, grad¬ 
ually gained popularity not only as a system-implementation language, but also as a 
general-purpose language. 

C programmers can readily use structured programming methodology, which 
involves writing large programs as a series of procedure calls on properly struc¬ 
tured data. C has a limited form of data abstraction. The C struct declaration 
allows programmers to declare user-defined aggregates with understandable 
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names. As a powerful extension of these concepts, the C++ class declaration pro¬ 
vides strong typing, data hiding, and code reuse through inheritance. Also, C++ 
allows programming teams to program in the large, using the techniques of file 
encapsulation, function encapsulation, and class encapsulation. As a consequence, 
C++ can be used to teach modular-programming habits within the object-oriented 

paradigm. 

1.1 Object-Oriented Programming 

Object-oriented programming is a data-centered view of programming in that data 
and behavior are strongly linked. Data and behavior are conceived of as classes 
whose instances are objects. For example, a polynomial can have a range of legal 
values that can be affected by such operations as addition and multiplication. 

OOP views computation as simulating behavior. What is simulated are objects 
represented by a computational abstraction. Suppose that we wish to improve our 
poker play; to do so, we must better understand the odds of obtaining various 
poker hands. We need to simulate card shuffling and must have appropriate ways to 
speak about cards and suits. Publicly, we use the suit names: spades, hearts, dia¬ 
monds, and clubs. Privately, these suits are internally represented as integers. This 
internal choice is hidden and consequently should not affect our computation. Just 
as decks of cards can have many physical compositions and still properly behave as 

cards, so too can computational card decks. 
We will be using the terms abstract data type (ADT) and object-oriented pro¬ 

gramming (OOP) to refer to a powerful new programming approach. An ADT is a 
user-defined extension to the existing types available in the language. An ADT con¬ 
sists of a set of values and a collection of operations that can act on those values. 
For example, C++ does not have a native complex number type but instead uses the 
class construct to define such a type in the complex library. Objects are class vari¬ 
ables. Object-oriented programming allows ADTs to be easily created and used. OOP 
uses the mechanism of inheritance to conveniently derive a new type from an exist¬ 
ing user-defined type. This mechanism is akin to biological taxonomies. For exam¬ 
ple, both rodents and cats are mammals; if the category mammal is an encoding of 
the information and behavior true for all objects in this class, creating the catego¬ 
ries cat and rodent from the category mammal is an enormous saving. 

In OOP, objects are responsible for their behavior. For example, polynomial 
objects, complex number objects, integer objects, and floating-point number 
objects can all be added. Each type has code for executing addition. The compiler 
provides the right code for integers and floating-point numbers. The polynomial 
ADT has a function defining addition specific to its implementation. The ADT pro¬ 
vider should include code for any behavior the object can be commonly expected to 
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understand. Making an object responsible for its behavior eases the coding task for 
the user of that object. 

Consider a class of objects called shapes. If we want a shape to draw on a 
screen, we need to know where the shape is to be centered and how to draw. Some 
shapes, such as polygons, are relatively easy to draw. A general shape-drawing rou¬ 
tine can be very expensive, requiring storage for a large number of individual 
boundary points. Avoiding this in the polygon case is clearly beneficial. If the indi- 
\idual shape object knows best how to draw itself, the programmer using such 
shapes needs only to invoke the object’s drawing function. 

The new class construct in C++ provides the encapsulation mechanism to imple¬ 
ment ADTs. Encapsulation includes both the internal implementation details of a 
specific type and the externally available operations and functions that can act on 
objects of that type. The implementation details can be made inaccessible to code 
that uses the type. For example, a stack might be implemented as a fixed-length 
array, whereas the publicly available operations would include push and pop. 
Changing the internal implementation to a linked list should not affect how push 
and pop are used externally. Code that uses the ADT is called client code for the 
ADT. The implementation of a stack is hidden from its clients. The details of how to 
provide data hiding in classes are introduced here and are developed thoroughly in 
Chapter 4, “Classes,” and in Chapter 8, “Inheritance.” 

1.2 Why Learn C++? 

C++ supports the object-oriented programming style, a major advance over the 
structured programming style supported by such languages as C, Pascal, and 
FORTRAN. A chief cost is the increased complexity of the C++ language, however. 
C++ is a more complex language but better suited to developing large software 
projects. 

C is a procedural, imperative language that has a small set of built-in types and 
limited forms of type extensibility. These types are well suited to system 
programming. For many problem domains, however, C’s usefulness is hampered by 
its lack of type extensibility. C++ remedies these limitations by allowing arbitrary 
user-defined types. The increased complexity of C++ is one of its biggest drawbacks. 
Although this increase reflects the large number of necessary new ideas, it makes 
mastery more difficult. To overcome this problem, this book approaches the 
learning process by gradually transforming the C programmer into a practiced C++ 
programmer. 
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1.3 C as a Starting Point 

C is the kernel language that C++ was built on. Indeed, most C programs are correct 
C++ programs as is; in some sense, the C programmer is therefore already a C++ 

programmer. 
C++ is a marriage of the low level and the high level. C was designed to be a 

systems-implementation language, one close to the machine. C++ adds object- 
oriented features that are designed to allow a programmer to create or to import a 
library appropriate to the problem domain. The user can write code at the level 
appropriate to the problem while maintaining contact with the machine-level imple¬ 

mentation details. 
The following C program uses a function to perform simple output: 

In file hello.c 

/* Hello World in C 
* by Charles Codeman 
*/ ‘ 

#include <stdio.h> 

void pr_message(char* message) 

{ 
printf("%s\n", message); 

} 

int main() 
{ 

pr_message("Hello world!"); 
} 

Here is the equivalent C++ program: 

In file hellol.cpp 

//Hello world in C++ 
// by Olivia Programmer 

#include <iostream> 
#include <string> 
using namespace std; 

//IO library 
//string type 
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inline void pr_message(string s = "Hello world!") 
{ cout « s « endl; } 

int main() 

{ 
pr_message(); 

} 

When executed, this program prints the following message: 

Hello world! 

A C++ program is a collection of declarations and functions that begin executing 
with the function mai n(). The C++ program is compiled after the preprocessor exe¬ 
cutes #-designated directives. The preprocessor precedes the phase during which 
the compiler translates the resulting program into machine code. The #include 
directive found in the example program hellol.cpp imports any needed files, usually 
library definitions. In this case, the I/O library for a typical compiler system is found 
in the file iostream. The string type is found in the standard library defined in the 
file string. On new C++ systems, these files are wrapped in namespace std. The 
using declaration allows such names to be used without std: : prepended to each 
name. The include files could also have been coded without namespace and usi ng, 
as follows: 

#include <iostream.h> //IO library 
#include <string.h> //C++ string type 

This text will use the namespace convention for include files. In most instances, the 
inclusion of the header files will not be shown in program code. 

The // symbol is used as a rest-of-line comment symbol. Also, the program text 
can be placed in any position on the page, with white space between tokens being 
ignored. White space, comments, and indentation of text are all used to create a 
humanly readable, well-documented program but do not affect program semantics. 

An efficiency concern for the C++ programmer is that the inline modifier of 
the function pr_message() is used to tell the compiler to compile this function 
without resort to function call and return instructions, if possible. As written, the 
pr_message() function had a string parameter s, whose default value was 
“Hello worl d! ”. This means that when passed an empty or a void parameter list, 
pr_message("Hello world!") is executed. 

The identifier cout is defined in iostream as the standard output stream con¬ 
nected by most C++ systems to the screen for output. The identifier endl is a stan¬ 
dard manipulator that flushes the output buffer, printing everything to that point 
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while going to a new line. The operator << is the put to output operator, which 

writes out what comes after it to cout. 
A function in C++ has a return type that can be voi d, indicating that no value is 

to be returned, as is the case with pr_tnessage(). The special function main() 
returns an integer value to the runtime system, which in the implicit case found 

here, is 0, meaning that termination was normal. 
Consider the following variation to mai n(): 

In file hello2.cpp 

int main() 

{ 
pr_message(); 
pr_message("Laura Pohl"); 
pr_message("It is dinner time."); 

} 

The program, when executed, prints the following message: 

Hello world! 
Laura Pohl 
It is dinner time. 

1.4 Classes and Abstract Data Types 

OOP is a balanced approach to writing software. Data and behavior are packaged 
together. This encapsulation creates user-defined types, which extend and interact 
with the native types of the language. Type extensibility is the ability to add to the 
language user-defined types that are as easy to use as native types. 

An abstract data type, such as a complex number, is a description of the ideal 
public behavior of the type. The user of a complex number knows that operations, 
such as add or print, result in certain public behaviors. Operations add and print are 
called methods. A concrete implementation of the ADT also has implementation lim¬ 
its; for example, complex numbers are limited in precision. These limits affect pub¬ 
lic behavior. Also, internal, or private, details of the implementation do not directly 
affect the user’s understanding. For example, a complex number is frequently 
implemented as a set of two floating-point variables; their names should be of no 
direct consequence to the user. 

Encapsulation is the ability to hide internal detail while providing a public inter¬ 
face to a user-defined type. C++ uses declarations class and struct in conjunction 



1.4 T Classes and Abstract Data Types 7 

with the access keywords private, protected, and public to provide encapsula¬ 
tion. C does not have access modifiers, but its struct is the basis for the class 
extensions in C++. 

OOP terminology is strongly influenced by SmallTalk programming. The 
SmallTalk designers wanted programmers to break with their past habits and to 
embrace a new programming methodology. They invented such terms as message 

and method to replace the traditional terms function invocation and member 
function. 

Public members are available to any function within the scope of the class 
declaration. Public members provide the type’s interface. Private members are 
available for use only by other member functions of the class. Privacy allows the 
implementation of a class type to be hidden, which prevents unanticipated 
modifications to the data structure. Restricted access, or data hiding, is a feature of 
object-oriented programming. 

Let us write a class called complex that will implement a restricted form of com¬ 
plex number. 

In file complexl.cpp 

//An elementary implementation of type complex 

class complex { 

Public: //universal access to interface 
void re_assign(double r) { real = r; } 
void im_assign(double im) { imaginary = im; } 
void print() const 

{ cout « "(" « real « 
« imaginary « "i)" « endl; } 

friend complex operator+(complex, complex); 

private: //restricted access to implementation 
double real, imaginary; 

}; 

The hidden representation is two variables of type doubl e. 
The declaration of member functions allows the ADT to have particular func¬ 

tions act on its private representation. For example, the member function pri nt() 
outputs a complex number as a comma-separated pair of doubles. The imaginary 
part of the number has the suffix iTThe member function re_assign() stores the 
real part of a complex number into the hidden variable real, and the member func¬ 
tion im_assi gn() stores the imaginary part of a complex number into the hidden 
variable imagi nary. Member functions, such as pri nt(), that do not modify mem¬ 
ber variables’ values are declared const. The friend function operator+O decla¬ 
ration will be used later to implement the definition of the addition of two complex 
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numbers (see Section 1.6, “Overloading,” on page 11). The friend designation 
means that the function, although not a member of class compl ex, has access to all 

of its members. 
We can now use the data type compl ex as if it were a basic type of the language. 

Code that uses this type is its client. The client can use only the public members to 

act on variables of type compl ex. 

In file complexl.cpp 

//Test of the class complex 

int main() 

{ 
complex x, y, z; 

x.re_assign(9.5); 
x. im_assign(-4.5); 
y. re_assign(4.2); 
y.im_assign(6.0); 
z = x + y; 
x. printO ; 
y. printO ; 
z. printO; 

} 

Variables x, y, and z are of type complex. The member functions are called 
using the dot, or structure member, operator. As is seen from their definitions, 
these member functions act on the hidden private-member fields of the named vari¬ 
ables. The output of this example program is 

(9.5,-4.5i) 
(4.2,6i) 
(13.7, 1.5i) 



1.5 ▼ Constructors and Destructors 9 

1.5 Constructors and Destructors 

In OOP terminology, a variable is called an object. A constructor is a member func¬ 
tion that initializes an object of its class. In many cases, this involves dynamic stor¬ 
age allocation. Constructors are invoked whenever an object of a particular class is 
created. A destructor is a member function that finalizes a variable of its class. As 
we shall see later, in many cases this involves dynamic storage deallocation. If you 
are not familiar with these concepts, you may want to skip this material for now and 
wait until the later chapters, where they are explained in detail. 

Let’s change our compl ex example by adding a constructor to initialize its value. 
We will also add a destructor to provide debugging output when a compl ex object is 
destroyed. 

In file complex2.cpp 

class complex { 
public: 

//constructor 

complex(double r=0, double im=0): real(r), imaginary(im) { } 
//destructor 

~complex() { cout « "destructor called on print(); } 

}; 

A constructor’s name is the same as the class name and is invoked when declar¬ 
ing variables, as in 

complex x(5.5, 1.0), y; 

Here, the variables are declared and initialized: x. real is initialized as 5.5 and 
x. imaginary as 1.0; y. real is initialized as 0 and y. imaginary as 0. These are the 
default values of the arguments passed to the constructor. 

A destructor is written as a member function whose name is the class name pre¬ 
ceded by the tilde symbol ~. The destructor written in complex is used for debug¬ 
ging. The destructor calls print() to write out the value of the complex object 
being destroyed. For example, if x is not changed during execution, the destructor 
prints the following on exit from x’s scope: 

destructor called on (5.5,li) 
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1.6 Overloading 

Overloading is the practice of giving several meanings to an operator or a function. 
The meaning selected depends on the types of arguments used by the operator or 
the function. Let us overload the function pri nt() in the previous example. This 

will be a second definition of the pri nt () function. 

In file complexl.cpp 

class complex { 
public: //universal access 

void print(string var_name) const 
{ cout « var_name « " = print(); } 

} 

This version of pri nt () takes a single argument of type st ri ng and is used to print 

the complex number’s variable name and value. 

complex x(l.5,2); 
x.print("x"); //print: x = (1.5,2i) 
x.printO; //print: (1.5,2i) 

It is possible to overload most of the C++ operators. For example, we will over¬ 
load + to mean complex addition. To do this, we need two keywords: friend and 
operator. The keyword operator precedes the operator token and replaces what 
would otherwise be a function name in a function declaration. The keyword fri end 
gives a function access to the private members of a class variable. A fri end func¬ 
tion is not a member of the class but has the privileges of a member function in the 

class in which it is declared. 
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In file complex3.cpp 

complex operator+(complex x, complex y) 
{ 

complex t; 

t.real = x.real + y.real; 
t.imaginary = x.imaginary + y.imaginary; 
return t; 

int main() 

{ 
complex x(9.5, -4.5), y(4.2,6.0), z; 

z = x + y; 
x. print("x") 
y. print("y") 
z. print ("z") 

Dissection of the operator+C) Function 

■ complex operator+(complex x, complex y) 

The + is overloaded. Both of its arguments are of type complex. The return type is 
complex, as expected. 

■ complex t; 

The function needs to return a value of type complex. This local variable is initial¬ 
ized to (0,0i) by the constructor. 

■ t.real = x.real + y.real; 
t.imaginary = x.imaginary + y.imaginary; 
return t; 

The definition adds both the real and the imaginary parts of the complex numbers 
and returns them as the compl ex variable t. 
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1.7 Inheritance 

A singular concept in OOP is the promotion of code reuse through the inheritance 

mechanism. A new class is derived from an existing, or base, class. The derived class 

reuses the base-class members and can add to or alter them. 
Many types are variants of one another, and it is frequently tedious and error 

prone to develop new code for each. A derived class inherits the description of the 
base class, thus avoiding redevelopment and testing of the existing code. The inher¬ 
itance relationship is hierarchical. Hierarchy is a method for coping with complex¬ 

ity, imposing classifications on objects. 
For example, the periodic table of elements has elements that are gases. These 

have properties that are shared by all elements in that classification. The inert gases 
are an important subclassification. The hierarchy is that an inert gas, such as argon, 
is a gas, which in turn is an element. The hierarchy provides a convenient way to 
understand the behavior of inert gases. We know that they are composed of protons 
and electrons, as this is shared description with all elements. We know that the inert 
gases are in a gaseous state at room temperature, as this behavior is shared with all 
gases. We know they do not combine in ordinary chemical reactions with other ele¬ 

ments, as this is shared behavior of all inert gases. 
As another example, consider designing a database for a college. The registrar 

must track various types of students. The base class must capture a description of 
student. Two main categories of student are graduate and undergraduate. 

OOP Design Methodology 

1. Decide on an appropriate set of types. 

2. Design their relatedness into the code, using inheritance. 

An example of deriving a class follows. 

In file studentl.cpp 

enum support { ta, ra, fellowship, other }; 
enum year { fresh, soph, junior, senior, grad }; 
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class student { 
public: 

student(char* nm, int id, double g, year x); 
void print() const; 

private: 
int student_id; 
double gpa; 
year y; 
char name[30]; 

}; 

class grad_student : public student { 
public: 

grad_student(char* nm, int id, double g, 
year x, support t, char* d, char* th); 

void print() const; 
private: 

support s; 
char dept [10]; 
char thesis[80]; 

}; 

In this example, grad_student is the derived class, and student is the base class. 
The use of the keyword publ i c following the colon in the derived-class header 
means that the public members of student are to be inherited as public members 
of grad_student. Private members of the base class cannot be accessed in the 
derived class. Public inheritance also means that the derived class grad_student is 
a subtype of student. 

An inheritance structure provides a design for the overall system. For example, 
a database containing all of the people at a college could be derived from the base 
class person. The student base class could be used to derive law students as a fur¬ 
ther significant category of objects. Similarly, person could be the base class for a 
variety of employee categories. The hierarchical inheritance structure is illustrated 
in the following diagram. 
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Inheritance Structure 

1.8 Moving from C++ to Java 

This section introduces Java I/O and classes, as well as Java’s use as an object- 
oriented programming language. Mastery of the individual Java topics requires a 
thorough reading of a companion book such as The Java Programming Language 
by Arnold and Gosling. 

Object-oriented programming is implemented by the class construct. The 
cl ass construct in Java is based on the cl ass construct in C++. The later examples 
in this book illustrate how Java implements OOP concepts, such as data hiding, 
ADTs, inheritance, and type hierarchies. Java, designed to be used on the World 
Wide Web, has special libraries for graphics and communication across the Net. Java 
is designed to run in a machine- and system-independent manner. This means that 
the Java program will execute with the same results on a PC running Windows 95 or 
on a workstation running Sun Solaris. Java does this by defining its semantics com¬ 
pletely in terms of a virtual machine. The job for a system that wants to run Java is 
to port the virtual machine. This is a trade-off between portability and efficiency. 
Additional overhead in a machine running a simulator of a different architecture is 
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inevitable. Some of this inefficiency can be overcome by the use of just-in-time com¬ 
pilers or native code written in C. On many platforms, it is also possible to use a 
direct-to-native code compiler for maximum runtime efficiency. 

Programs must communicate to be useful. Our first example is a program that 
prints on the screen the phrase “Java is an improved C.” 

In file Improved.java 

// A first Java program illustrating output. 
// Title: Improved 
// Author: Jack Appleteer 

class Improved { 
public static void main (String[] args) 

{ 
System.out.println("Java is an improved C."); 

} 
} 

The program prints the following on the screen: 

Java is an improved C. 

This program is compiled using the command javac Improved.java,, resulting in 
the creation of a code file named Improved.class. This file can be run by using the 
command java Improved. 

♦♦♦♦♦♦♦♦♦♦♦♦ 
Dissection of the improved Program 

■ //A first Java program illustrating output. 

The double slash // is the new symbol for a comment. The comment runs to the 
end of the line. The old C bracketing comment symbols /* */ are still available for 
multiline comments. Java also provides /** */ bracketing comment symbols for a 
document comment. The program javadoc takes these document comments and 
generates an HTML file. 
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■ class Improved { 

Java programs are classes. A cl ass has syntactic form that is derived from the C 
struct, which is not in Java. In Java, class identifier names, such as Improved, are 
by convention capitalized. Data and code are placed within classes. 

■ public static void main (Stringf] args) 

A class executed as a program starts by calling the member function mai n(). In this 
case, main() is a member of Improved. In Java, command line arguments are 
passed in an array of Stri ngs. In C, we need an argc variable to tell the program 
the number of command line arguments. In Java, this array length is found by using 

args .length. 

■ System.out.println("Java is an improved C."); 

This statement prints to the screen. The System.out object uses the member func¬ 
tion pri ntl n() to print. The function prints the string and adds a new line, which 
moves the screen cursor to the next line. Unlike printfO in C, pri ntl n() does 
not use format controls. 

In Java, all functions are contained in classes. In this case, the function mai n() 
is a member of class Improved. A member function is called a method. 

1.9 Benefits of Object-Oriented Programming 

The central element of OOP is the encapsulation of an appropriate set of data types 
and their operations. The class construct, with its member functions and data mem¬ 
bers, provides an appropriate coding tool. Class variables are the objects to be 
manipulated. 

Classes also provide data hiding. Access privileges can be managed and limited 
to whatever group of functions needs access to implementation details. This pro¬ 
motes modularity and robustness. 

Another important concept in OOP is the promotion of code reuse through the 
inheritance mechanism, which derives a new class from an existing, or base, class. 
The base class can be added to or altered to create the derived class. In this way, a 
hierarchy of related data types can be created that share code. 
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The OOP programming task is frequently more difficult than normal procedural 
programming as found in C. At least one extra design step is needed before one gets 
to the coding of algorithms. This step involves the design of types that are appropri¬ 
ate for the problem at hand. Frequently, one is solving the problem more generally 
than is strictly necessary. The belief is that this extra step will pay dividends in sev¬ 
eral ways. The solution will be more encapsulated and thus more robust and easier 
to maintain and change. It will also be more reusable. For example, where the code 
needs a stack, that stack is easily borrowed from existing code. In an ordinary pro¬ 
cedural language, such a data structure is frequently “wired into” the algorithm and 
cannot be exported. 

OOP is many things to many people. Attempts at defining it are reminiscent of 
the blind sages’ attempts at describing the elephant. I will offer one more definition, 
an equation. 

OOP = type-extensibility + polymorphism 

1.10 Pragmatics 

C++ compilers for ANSI C++ as described in this book are still incomplete. Make 
sure you know what the vendors support, especially when it comes to recent 
changes in the use of namespaces, exception handling, templates, and libraries, 
especially the Standard Template Library, or STL. 

Revisiting our first example, we can make it compatible with pre-namespace and 
string library compilers by using char* for our strings and ordinary .h header files 
for including our libraries. 

In file hello2.cpp 

//Hello world in C++ by Older Fogie 

#include <iostream.h> 

inline void pr_message(char* s = "Hello world!") 
{ cout « s « endl;} 

int main() 

{ 
pr_message(); 
return 0; 

} 
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This version of the program should run correctly with any available compiler. Notice 
that we explicitly return 0, as we would in a C program. ANSI C++ allows this to be 
implicit, the style we will use throughout the book. 

Summary 

1. Object-oriented programming is a data-centered view of programming, meaning 
that data and behavior are strongly linked. Data and behavior are conceived of 
as classes whose instances are objects. 

2. An abstract data type (ADT) is a user-defined extension to the existing types 
available in the language. An ADT consists of a set of values and a collection of 
operations that can act on those values. For example, C++ does not have a native 
complex number type but uses the class construct to define such a type in the 
complex library. Objects are class variables. 

3. C++ supports the object-oriented programming style. This is a major advance 
over the structured programming style supported by such languages as C, 
Pascal, and FORTRAN. C is a procedural, imperative language with a small set of 
built-in types and limited forms of type extensibility. These types are well suited 
to system programming. However, for many problem domains, C’s usefulness is 
hampered by its lack of type extensibility. 

4. C is the kernel language of C++. C++ is a marriage of C and object-oriented fea¬ 
tures that are designed to allow a programmer to create or to import a library 
appropriate to the problem domain. The user can write code at the level appro¬ 
priate to the problem while maintaining contact with the machine-level imple¬ 
mentation details. 

5. Encapsulation is the ability to hide internal detail while providing a public inter¬ 
face to a user-defined type. C++ uses the declarations cl ass and struct in con¬ 
junction with the access keywords private, protected, and public to provide 
encapsulation. C does not have access modifiers, but its struct is the basis for 
the class extensions in C++. 

6. In OOP terminology, a variable is called an object. A constructor is a member 
function that initializes an object of its class. In many cases, this involves 
dynamic storage allocation. Constructors are invoked whenever an object of a 
particular class is created. A destructor is a member function that finalizes a 
variable of its class. 
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7. A singular concept in OOP is the promotion of code reuse through the inherit¬ 
ance mechanism. A new class is derived from an existing, or base, class. The 
derived class reuses the base-class members and can add to or alter them. The 
inheritance relationship is hierarchical. Hierarchy, a method for coping with 
complexity, imposes classifications on objects. 

8. Java is an OOP language that also derives from C and C++. It is relatively easy to 
convert C++ programs to Java. Java is more portable but runs slower than C or 
C++. Java was developed at a time when the Internet started to flourish and has 
many features tailored to use on the Internet. 

Review Questions 

1. Name three object-oriented programming languages. 

2. The I/O library in C++ is used by including_. 

3. The rest-of-line comment symbol is_. 

4. The C++ class is an extension of the C_. 

5. C was originally a SIL (systems-implementation language) used to write 

6. What does the construct inline do? 

7. C++was created by_in the mid-1980s. 

8. Access keywords are_,_, and_. 

Exercises 

1. Using stream I/O, write on the screen the words 

she sells seashells by the seashore 

(a) all on one line, (b) on three lines, (c) inside a box. 
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2. Take a working program, omit each line in turn, and run the program through 
the compiler. Record the error message caused by each deletion. For example, 
use the following code: 

#include <iostream> 
using namespace std; 

mai n() 

{ 
int m, n, k; 

cout « "\nEnter two integers:"; 
ci n » m » n; 
k = i m + n; 
cout « "\nTheir sum is "« k « 

} 

3. Write a program that converts distances measured in yards to distances mea¬ 
sured in meters. The relationship is 1 meter equals 1.0936 yards. Write the pro¬ 
gram to use ci n to read in distances. The program should be a loop that does 
this calculation until it receives 0 or a negative number for input. In the previ¬ 
ous exercise, we used cin and the overloaded operator >>, which together 
replace scanf() in C. For example, cin >> v is the C++ equivalent to 
scanf ("%fype" , &v). See Section D.4, “The Input Class i stream,” on page 420, 
for more information on input in C++. 

4. Write a program that interactively asks for your name and age and responds 
with 

Hello name, next year you will be next_age. 

where next_age is age + 1. 

5. Write a program that prints out a table of squares, square roots, and cubes. Use 
either tabbing or strings of blanks to get a neatly aligned table. 

i i * i square root i * i * i 

1 1 1.00000 1 
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6. Write a class person that contains basic information, such as name, birthdate, 
and address. Derive class student from class person. (See Section 1.7, 
“Inheritance,” on page 12.) 

/. (S. damage) The following three programs behave differently. We start with 

//Function declarations at file scope 

int f(int): 

double f(double); //overloads f(int) double add f() 

return(f(l) + f(1.0)); //f(int) + f(double) 
} 

We place one function declaration internally. 

//Function declaration at local scope 

int f(int); 
double add f() 

{ 
double f(double) ; //hides f(int) 
return(f(l) + f(1.0)); //f(double) + f(double) 

} 

Now we place the other function declaration internally. 

double f(double); 
double add f() 

{ 
i nt f (i nt) ; 
return(f(l) + f(1.0)); //What is called here? 

} 

Write some test programs that clearly show the different behaviors. 
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Chapter 2 

Native Types 
and Statements 

This chapter, together with Chapter 3, “Functions, Pointers, and Arrays,” will pro¬ 
vide an introduction to programming in C++ using its native types and its nonOOP 
features. Since C++ is based on the C language, much of this material is a review of 
C. A native type is one provided by the language directly. In C++, this includes the 
simple types, such as character types, integer types, floating-point types, and the 
boolean type, as well as derived types, such as array types, pointer types, and struc¬ 
ture types, which are aggregates of the simple types. This chapter focuses on the 
native simple data types and statements. 

The intent of this chapter, Chapter 3, “Functions, Pointers, and Arrays,” and 
parts of Chapter 4, “Classes,” is to enable programmers to program in that subset of 
C++ that approximates a traditional imperative language, such as C, Pascal, or 
FORTRAN. This subset is what we are calling the kernel language. The improve¬ 
ments to C in the kernel language of C++ are useful enough to prefer C++ over C, 
even for traditional programming. These enhancements lead to C++ as a better C, 
independent of the more extensive additional object-oriented features. These chap¬ 
ters also contain examples that will be used throughout the book. 

An important feature of OOP is type extensibility, or the ability within the pro¬ 
gramming language to develop new types suitable to a problem domain. For this 
extensibility to work properly, the new type should work like the native types of the 
kernel language. Object-oriented design of user-defined types should mimic the 
look and feel of the native types. 

For the experienced C programmer, most of this chapter’s material should be 
skimmed and read mainly with an eye for differences between C and C++. These dif¬ 
ferences will be listed in the chapter summary, which the experienced C program¬ 
mer can use to determine what to selectively read about. For a programmer coming 
from another language, such as Java or Pascal, or for some C programmers needing 
a review of C material, this chapter and the next two succinctly review the C++ ker¬ 
nel language. 
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2.1 Program Elements 

A program is composed of elements called tokens, which are collections of charac¬ 
ters that form the basic vocabulary the compiler recognizes. The C++ character set 
includes the following: 

abcdefghi jklmnopqrstuvwxyz 
ABCDEFCHIJKLHNOPQRSTUVWXYZ 
0123456789 
+ = — -()*&%$#! | <> . , ; :"'/?{} ~ \ [ ] A 
white space and nonprinting characters, such as newline, tab, and blank 

In C++, tokens can be interspersed with white space and with comment text that is 
inserted for readability and documentation. There are five kinds of tokens: key¬ 
words, identifiers, literals, operators, and punctuators. See Section C.2, “Lexical Ele¬ 
ments,” on page 348. 

C++ distinguishes between upper- and lowercase. As we shall see, C++ uses low¬ 
ercase in its keyword list. 

2.1.1 Comments 

C++ has a single-line comment, written as // rest of line. This convention has been 
adopted in many C compilers as well. 

//C++ for C Programmers - Example 2 
#include <vector> //vector is in STL 

As in C, a multiline comment is written as /* possibly multiline comment- /. 
Everything between /* and */ is a comment. Comments do not nest. 

/* Multiline Comments are Frequently Introductory 
Programmer: Laura Pohl 
Date: January 1, 1989 
Version: DJD v4.2 

*/ 
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2.1.2 Keywords 

Keywords in C++ are explicitly reserved words that have a strict meaning and may 
not be used in any other way. They include words used for type declarations, such 
as i nt, char, and float; words used for statement syntax, such as do, for, and if; 
and words used for access control, such as public, protected, and private. The 
following table shows the keywords in use in most current C++ systems. Keywords 
that did not exist in C are bolded. 

Keywords 

asm el se operator throw 

auto enum private true 

bool explicit protected try 

break extern public typedef 

case fal se register typeid 

catch f 1 oat reinterpret_cast typename 

char for return uni on 

class friend short unsigned 

const goto signed using 

const_cast if sizeof virtual 

continue iniine static voi d 

default int static_cast volati1e 

delete long struct wchar_t 

do mutable switch whi 1 e 

double namespace tempi ate 

dynamic_cast new this 

2.1.3 Identifiers 

As in C, an identifier in C++ is a sequence of letters, digits, and underscores. An 
identifier cannot begin with a digit. Uppercase and lowercase letters are treated as 
distinct. It is bad practice and confusing to use identifiers that are distinguished 
only by case differences. Although in principle, identifiers can be arbitrarily long, 
many systems will distinguish only up to the first 31 characters. Some examples of 

identifiers are as follow: 
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n 
count 
buff_size 
buffSize 
q2345 
cout 
_foo 

//typically an integer variable 
//meaningful as documentation 
//C++ style - underscore separates words 
//lava style - capital separates words 
//obscure 
//used in the standard library iostream 
//avoid underscore as a first letter 

The following are not identifiers: 

for 

3q 
-count 
too_bad 
_Sysfoo 

//keyword 
//cannot start with digit 
//do not mistake - for _ 
//double underscore is for system use 
//underscore capital is for system use 

2.1.4 Literals 

Literals are constant values, such as 1 or 3.14159. There are literals for each C++ 
data type. String literals are also allowed. Some examples of literals follow. 

5 //an integer literal 
5u //u or U specifies unsigned 
5L //I or L specifies long 
05 //an integer literal written as octal 
0x5 //an integer literal written as hexadecimal 
true //a bool literal 
5.0 //a floating-point literal treated as double 
5.0F //f or F float - typically single precision 
5.0L //I or L specifies long double 
'5' //a character literal - ASCII value 53 
'A' //letter capital A - ASCII value 65 
'a' //letter small a - ASCII value 97 
'\0' //the null character - terminates strings 
'\t' //the character printing a tab space 
'\n' //the character printing a new line 
"5" //the string consisting of the character '5' 
"a string with newline\n" 

5555555555555555 //integer too large on most machines 

String literals are stored as a series of characters terminated with the null 
character, whose value is 0. String literals are static char[] constants. Special 
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characters can be represented inside strings by escaping them with the backslash 
character \. 

"a" //two bytes storing 'a' '\0' 
"a\tb\n" //five bytes 'a' '\t' ’b' '\n' '\0' 
"1 \\" //four bytes '1' ' ' '\\' '\0’ 

//two bytes "" '\0' 

When printed, these strings would produce effects required by the special charac¬ 
ters. Thus, the second string prints an a followed by a number of white-space char¬ 
acters as determined by the tab setting, then a b followed by a newline character. 

String literals that are separated only by white space are implicitly concatenated 
into a single string. 

"This is a single string, " 
"since it is separated only " 
"by white space." 

The character literals are usually given as symbol. Some nonprinting and special 
characters require an escape sequence. 

Character Constants 

'\a' alert 

'\\' backslash 

' \b' backspace 

' \r' carriage return 
f ii i double quote 

'\f' formfeed 

'\t' tab 

' \n' newline 

' \0' null character 

'V' single quote 

'\v' vertical tab 

'\101' octal 101 in ASCII ‘A’ 

'\x041' hexadecimal ASCII ‘A’ 

L' 00' wchar_t constant 
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Floating-point literals can be specified either with or without signed integer 
exponents. 

0.1234567 
3.14f 1.234F 
0.123456789L 
3. 3.0 0.3E1 
300e-2 

//double constant - the default 
//float constant - smallest fp type 
//long double - either 1 or L 
//all express double 3.0 
//also 3.0 

2.1.5 Operators and Punctuators 

C++, like C, allows operators, punctuators, and white space to separate language ele¬ 
ments. C++ gives special meaning to many characters and character sequences. 
Examples of C++ operators include: 

+ - * / % //arithmetic operators 
-> ->* //pointer & pointer-to-member operators 
&& 11 //logical operators 
= += *= //assignment operators 
I 1 //scope resolution operator 
new delete //free-store operators 

Operators are used in expressions and are meaningful when given appropriate 
arguments. C++ has many operators (see Appendix B, “Operator Precedence and 
Associativity”). Certain symbols stand for different operators, depending on con¬ 
text; for instance, can be either unary or binary minus. C operators are all avail¬ 
able in C++, but C++ has operators that are not found in C, such as the scope 
resolution operator : :. 

Punctuators include parentheses, braces, commas, and colons and are used to 
structure elements of a program. For example, the following are punctuators in C++: 

foo(a, 7, b + 8) //comma-separated argument list 
{ a = b; c = d; } //{ starts statement list or block 
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2.2 Input/Output 

C++ input/output is not directly part of the language but rather is added as a set of 
types and routines found in a standard library. The C++ standard I/O library is 
iostream or iostream.h. The file name without the .h extension is the official ANSI 
standard name and is used with the namespace std. The ANSI C standard library 
stdio.h or cstdio is also in widespread use. The ANSI standard libraries that are C 
libraries are officially c followed by their names without a .h extension. We will use 
iostream because we are illustrating current practice. (We leave to Appendix D, 
“Input/Output,” a more complete description of this and other I/O issues.) This sec¬ 
tion is introductory, intended to give the bare minimum of detail to get the reader 
up and running. 

The iostream library overloads the two bit-shift operators. 

//"put to" output stream, normally left shift 
//"get from" input stream, normally right shift 

This library also declares three standard streams: 

//standard out 
//standard in 
//standard error 

cout 
ci n 
cerr 

Their use in conjunction with values and variables is analogous to assignment. C++ 
can use existing C library functions, such as printf() and scanf(), but the 
iostream library is type safe and easier to use. It is type safe because in the expres¬ 
sion cout « x, the type of the variable x determines how it is to be printed. 
Therefore, one cannot make the annoying formatting mismatch errors found in C, 
where with pri ntf (“%format” , x), the expression value x can be printed incor¬ 
rectly when the format is mismatched. 

In file io.cpp 

cout « "\nEnter a double: 
cin » x; 
cout « "\nEnter a positive integer: 
ci n » i ; 
if (i < 1) 

cerr « "error i = " « i « endl; 
cout « "i * x = " « i * x; 
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The first output statement in the preceding code places a string on the screen. 
The second statement expects the double variable x to get a value converted from 
string input typed at the keyboard. The string represents a value that is either a 
double or assignment convertible to a double. Other typed input will fail. Notice 
how the last two statements allow multiple assignments to their output streams and 
are executed left to right. For example, if i had received a value of -1, the error mes¬ 
sage on the screen would be 

error i = -1 

The end! is a specially recognized identifier, called a manipulator, that flushes the 
cerr output stream and adds a newline character. The last statement prints the 
string i * x = , followed by the double value of the expression i * x. 

2.3 Program Structure 

A program in C++ is a collection of functions and declarations. The language is 
block structured, and variables declared within blocks are allocated automatically 
on block entry. Unless otherwise specified, parameters are call-by-value. The follow¬ 
ing C++ program computes the greatest common divisor of two integers: 

In file gcd.cpp 

//GCD greatest common devisor program. 
#include <iostream> 
using namespace std; 

int gcd(int m, int n) 

{ 
int r; 

while (n != 0) { 
r = m % n; 
m = n; 
n = r; 

} 
return m; 

} 

//function definition 
//block 
//declaration of remainder 

//not equal 
//modulus operator 
//assignment 

//end while loop 
//exit gcd with value m 
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int main() 

{ 
int x, y, g; 

cout « "\nPROGRAM Gcd C++"; 
do { 

cout « "\nEnter two integers: 
cin » x » y; 
if (x * y == 0) 

throw new exception(); 
cout « "\nGCD(" « x « ", " « y « ") = " 

« (g = gcd(x, y)) « endl ; 
} whi 1 e (x ! = y) ; 

} 

As you can see, C++ is very terse. C++ compilers can compile multifile programs. 
Large C++ programs are prepared as separate files. Each file is conceptually a mod¬ 
ule that contains related program declarations and definitions. On many systems, 
C++ source files have the suffix either .c or .cpp. The GNU C++ translator command 
is g++. So, 

g++ modulel.c module2.c my_main.c 

is the UNIX C++ compile command g++, acting on the three files modulel.c, 
module2.c, and my_main.c. If compilation shows no errors, an executable a.out is 
produced. 

Some minor differences from C are easily seen in this C++ version of the great¬ 
est common divisor program. 

Some Differences Between C++ and C 

■ The C++ comment symbols are either // or /* */ . 

■ C++ uses iostream for input/output. 

■ C++ uses namespace std to avoid name collisions among global variables. 

■ The function mai n (), used as the starting point for the program’s execution, 
obeys the C++ rules for function declaration. It is ANSI C++ for mai n() to 
implicitly return the integer value 0, indicating that the program completed 
normally. Other return values would indicate an error condition. 

■ C++ has exceptions. Here, it used a throw for termination on finding errors. 
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2.4 Simple Types 

The simple native types in C++ are bool, int, double, char, and wchar_t. These 
types have a set of values and representation that is tied to the underlying machine 
architecture on which the compiler is running. Both the bool and the wchar_t types 
are new to C++. The bool type provides a native boolean type, and wchar_t pro¬ 
vides a wide character type, used for representing character sets requiring more 
than the standard 255 characters. On older C++ systems, as in C, there is no native 
boolean type. They use the value zero to mean false and nonzero values to mean 

true. 
The compl ex number type in C++ is provided by including the library complex 

This library provides the normative type compl ex, which can be used with the vari¬ 
ous ordinary arithmetic operators and mixed in expression with other arithmetic 

types. 
C++ simple types can often be modified by the keywords short, long, si gned, 

and unsigned to yield further simple types. The following table lists these types 
shortest to longest. Length here refers to the number of bytes used to store the 
type. The bolded types are not available in C. 

Fundamental Data Types 

bool 

char signed char unsigned char 

wchar_t 

short i nt long 

unsigned short unsigned unsigned long 

float double long double 

This list runs from the conceptually shortest type, bool, to the conceptually longest 
type, long doubl e. A requirement is that each longer type be at least as long as its 
predecessor type. On most machines, a bool or a char is stored in a single byte. On 
many PCs, short and int are stored in 2 bytes, whereas long, float, and double 
are each stored in 4 bytes. The wchar_t, or wide character type, can represent dis¬ 
tinct codes for any element of the largest extended character set in any language’s 
alphabet, such as Katakana used in Japanese. A wchar_t type is the same size as an 
int type. 

C++ also has the si zeof operator, which is used to determine the number of 
bytes a particular object or type requires for storage. 
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//determine how many bytes it takes to store type long 
cout « sizeof(int) « " <= " « sizeof(long) « endl; 

The range of integral values representable on your system is defined in the stan¬ 
dard header file limits. Some examples from our system are 

#define CHAR_BIT 8 
#define SCHAR_MIN (-128) 
#define SCHAR_MAX 127 
#define UCHAR_MAX 255 
#define INT_MAX 2147483647 
#define INT_MIN (-2147483648) 
#define UINT_MAX 4294967295U 

//bits per char 
//signed char minimum 
//signed char maximum 
//unsigned char maximum 
//int maximum 
//int minimum 
//unsigned int maximum 

The range of floating-point values representable on your system is defined in 
the standard header file float. Some examples from our system are 

#define FLT_EPSILON ((float)l.19209290e-07) 
#define FLT_MIN ((float)l.17549435e-38) 
#define FLT_MAX ((float)3.40282347e+38) 
#define DBL_EPSILON 2.2204460492503131e-16 
#define DBL_MIN 2.2250738585072014e-308 
#define DBL_MAX 1.7976931348623157e+308 

//single 
//float min 
//float max 
//double 
//double min 
//double max 

On newer systems, the file limits contains the template numeri c_l imi ts, which 
allows, for example, 

numeric_limits<type>::max() //maximum value for type 

2.4.1 Initialization 

A variable declaration associates a type with the variable name. A declaration of a 
variable constitutes a definition, if storage is allocated for it. Informally, we think of 
the definition as creating the object. 

A definition can also initialize the value of the variable. Syntactically, initializa¬ 
tion is expressed by following the identifier name with an initializer. For simple 
variables, this is usually 

type id = expression 
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Some examples of definitions are 

{ 
i nt i = 5 ; 
char cl, c2 = 'B'; 
double x = 0.777, y = x + i; 

//i is initialized to 5 
//cl is uninitialized 

cout « x « '\t' « y; 
cout « c2; 
cout « cl; 

//print 0.777 5.777 
//print ' B' 
//system dependent 

} 

Initialization can involve an arbitrary expression, provided that all of the vari¬ 
ables and functions used in the expression are defined. In the preceding example, y 
is initialized in terms of the just-defined x. The uninitialized variable cl cannot be 
relied on to have any particular value associated with it. Using it in the computation 
before a well-defined value is assigned to it is a mistake. As a rule of thumb, when 
there is a choice, it is preferable to initialize a variable than to define it as uninitial¬ 
ized and to subsequently assign it a value. Initialization makes the code more read¬ 
able, less error prone, and more efficient. 

Note that C++ declarations are themselves statements and can occur intermixed 
with executable statements. This differs from C, in which declarations are either in 
global scope or at the head of a block. In the previous code, we could have placed 
the char declarations after the first cout statement without affecting the output. 

cout « x « '\t' « y; //print 0.777 5.777 
char cl, c2 = 'B'; //declaration statement 
cout « c2; //print ’B' 

2.5 The Traditional Conversions 

The expression x + y has both a value and a type. For example, if x and y are both 
variables of type i nt, x + y is also an i nt. However, if x and y are of different 
types, x + y is a mixed expression. Suppose that x is a short and y an i nt. The 
value of x is converted, or coerced, to an i nt, and the expression x + y has type 
i nt. The value of x as stored in memory is unchanged. It is only a temporary copy 
of x that is converted during the computation of the value of the expression. Now 
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suppose that both x and y are of type short. Even though x + y is not a mixed 
expression, automatic conversions again take place; both x and y are promoted to 
i nt, and the expression is of type i nt. The general rules are straightforward. 

Automatic Expression Conversions 

1. Any bool, char, short, or enum is promoted to int. Integral values unrepre¬ 
sentable as int are promoted to unsigned. 

2. If, after the first step, the expression is of mixed type, the following applies, 
according to the hierarchy of types: 

int < unsigned < long < unsigned long 
< float < double < long double 

The operand of the lower type is promoted to that of the higher type, and the 
value of the expression has that type. 

To illustrate implicit conversion, we make the following declarations and list a 
variety of mixed expressions along with their corresponding types: 

Declarations 

char c; long lg; double d; 

short s; float f; unsigned u; int i; 

Expression Type Expression Type 

c - s / i i nt u * 3 - i unsigned 

u * 3.0 - i double f * 3 - i float 

n
 

+
 

i-
1 

i nt 3 * s * lg long 

C + 1.0 double d + s double 

An automatic conversion can occur with an assignment. For example, d = i 
causes the value of i, which is an i nt, to be converted to a doubl e and then 
assigned to d; doubl e is the type of the expression as a whole. A promotion, or wid¬ 
ening, such as d = i, will usually be well behaved, but a demotion, or narrowing, 
such as i = d, can lose information. Here, the fractional part of d will be discarded. 

In addition to implicit conversions, which can occur across assignments and in 
mixed expressions, there are explicit conversions, called casts. If i is an i nt, 

static_cast<double>(i) 
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will cast the value of i so that the expression has type doubl e. The variable i itself 
remains unchanged. The static_cast is available for a conversion that is well 
defined, portable, and invertible. This makes it a safe cast, namely, one with predict¬ 
able and portable behavior. Some more examples are 

static_cast<char>('A' + 1.0) 
x = static_cast<double>(static_cast<int>(y) + 1) 

Casts that are representation or system dependent use rei nterpret_cast. 

i = reinterpret_cast<int>(&x) //system dependent 

These casts are undesirable and generally should be avoided. They are considered 
unsafe. 

Two other special casts exist in C++: const_cast and dynami c_cast. A useful 
discussion of dynami c_cast requires understanding inheritance (see Section 8.8, 
“Runtime Type Identification,” on page 295). The const modifier means that a vari¬ 
able’s value is nonmodifiable. Very occasionally, it is convenient to remove this 
restriction. Doing so is known as casting away constness and is accomplished with 
the const_cast, as in 

foo(const_cast<int>(c_var)); //used to invoke foo 

Older C++ systems allow an unrestricted form of cast with the following forms: 

(type) expression or type(expressiori) 

Some examples are 

y = i / double(7); //would do division in double 
ptr = (char*)(i + 88); //C style int to pointer value 

The C cast notation (type) is considered obsolete and will not be used in the text. 
The older casts do not differentiate among relatively safe casts, such as 
stati c_cast, and system-dependent unsafe casts, such as rei nterpret_cast. 
The newer casts also are self-documenting; for example, a const_cast suggests its 
intent through its name. 

The next program converts miles to kilometers. Miles will be kept as an integer 
value, and kilometers will be computed in floating point. 
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In file mi_to_k.cpp 

//Miles are converted to kilometers 

const double m_to_k = 1.609; //conversion constant 

inline double mi_to_km(int miles) 
{ 

return miles * m_to_k; 
} 

int main() 

{ 
int miles; 
double kilometers; 

do { 

cout « "\nEnter distance in miles: "; 
cin » miles; 
kilometers = mi_to_km(mi 1 es); 
cout « "\nThis is approximately " « 

static_cast<int>(ki1ometers) « "km." « endl ; 
} while (miles > 0); 

} 

This program consists of two functions, each of which has its own local scope in 
which variables are declared. Each variable has a type. The variable m_to_k is initial¬ 
ized to the value 1.609, and the const modifier ensures that this value is nonmodi- 
fiable. This is good programming practice in that the identifier is mnemonic and 
provides useful documentation. Notice that such a const variable must be initial¬ 
ized on definition. Where the inline keyword modifies a function definition, it sug¬ 
gests to the compiler that when invoked, the code defining it avoid function call by 
being compiled inline. 

The expression miles * m_to_k is widened to a double. Conceptually, the 
integer valued miles is a narrower type than a double. The input statement 
cin » miles expects keyboard input in the form of a string convertible to an inte¬ 
ger. For example, the input 5.45 will be converted and assigned to mi les as the inte¬ 
ger value 5. 

The safe cast static_cast<int>(ki 1 ometers) truncates the double value to 
an int value. Without this explicit cast, the variable kilometers would have 
printed as a double. 
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2.6 Enumeration Types 

The keyword enum is used to declare a distinct integer type with a set of named inte¬ 
ger constants called enumerators. Consider the declaration 

enum suit { clubs, diamonds, hearts, spades }; 

This declaration creates an integer type with the four suit names as named integer 
constants. The enumerators are the identifiers clubs, diamonds, hearts, and 
spades, whose values are 0, 1, 2, and 3, respectively. These values are assigned by 
default, with the first enumerator being given the constant integer value 0. Each 
subsequent member of the list is one more than its left neighbor. In C++, the identi¬ 
fier sui t is now its own unique type, distinct from other integer types. This identi¬ 

fier is called tag name. 
Enumerators can be defined and initialized to arbitrary integer constants. 

enum ages { laura = 7, ira, harold = 59, phi lip = harold + 7 }; 

The enumerators can be initialized to constant expressions. Note that the default 
rule applies when there is no explicit initializer; therefore, in the example, i ra is 8. 

The tag name and the enumerators must be distinct identifiers within scope. 
The values of enumerators need not be distinct. Enumerations can be implicitly con¬ 
verted to ordinary integer types but not vice versa. 

In file enum_tst.cpp 

enum signal { off, on } a = on; //a initialized to on 
enum answer { no, yes, maybe = -1 } b; 
enum neg { no, off} c; //illegal no and off redeclared 
int i, j = on; //legal on is converted to 1 

a = off; //legal 
i = a; //legal i becomes 1 
b = a; //illegal two distinct types 
b = static_cast<answer>(a); //legal explicit cast 
b = (a ? no : yes); //legal enumerators type answers 
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Enumerators can be declared anonymously, without a tag name. Some examples 
are 

enum { LB = 0, UB = 99 }; 
enum { lazy, hazy, crazy } why; 

The first declaration is a common means of declaring mnemonic integer constants. 
The second declares a variable why of enumerated type, with lazy, hazy, and crazy 
as its allowable values. 

2.6.1 typedef Declarations 

Synonyms for type declarations can be provided with typedef declarations. 

typedef int miles; 
typedef char* cstring; 
typedef void* gen_ptr; 
typedef point* pPoint; 

//miles a 
//pointer 
//generic 
//pointer 

synonym for int 
to char 
pointer type 
to point 

Besides providing a form of documentation, typedef declarations reduce compli¬ 
cated declarations to simple identifiers. In C, we would use a typedef such as 

typedef enum suit suit; 

to avoid the further need to use the keyword enum in subsequent declarations. This 
is unneeded in C++. Consequently, the use of typdef to provide synonyms for types 
is rarely used in C++. 

2.7 Expressions 

C++ has a few more operators and expression forms than does C (see Appendix B, 
“Operator Precedence and Associativity”). In C++, for example, scope resolution : : 
is an operator. The following is legal C++: 

a = ::b ; //: :b means global b 

Arithmetic expressions in C++ are consistent with C practice. For example, in 
both C++ and C, the results of an operator such as the division operator /, depend 
on its argument types. 
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a = 3 / 2; //evaluates to integer value 1; 
a = 3 / 2.0; //evaluates to double value 1.5 

C++ systems use the bool values true and fal se to direct the flow of control in 
the various statement types. These values are equivalent to the nonzero and zero 
values used in C. The following table contains the C++ operators that are most often 

used to affect flow of control. 

C++ Relational, Equality, and Logical Operators 

Relational operators less than < 

greater than > 

less than or equal to <= 

greater than or equal to >= 

Equality operators equal == 

not equal ! = 

Logical operators (unary) negation i 

logical and && 

logical or 1 1 

Just as with other operators, the relational, equality, and logical operators have 
rules of precedence and associativity that determine precisely how expressions 
involving them are evaluated (see Appendix B, “Operator Precedence and Associativ¬ 
ity”). The negation operator ! is unary. .All of the other relational, equality, and logi¬ 
cal operators are binary, operate on expressions, and yield the bool value, either 
fal se or true. This replaces the earlier C convention of treating zero as false and 
nonzero as true when no bool type existed in the language. Where a boolean value 
is expected, an arithmetic expression is automatically converted, following this con¬ 
vention of treating zero as false and nonzero as true. This means that older code 

still works correctly. 
One pitfall in C++ is that the equality operator and the assignment operator are 

visually similar. The expression a == b is a test for equality, whereas a = b is an 
assignment expression. One of the more common C++ programming mistakes is to 

code something like 

if (i = 1) 
//do something 
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intending 

if (i == l) 

//do something 

The first if statement assigns 1 to i and evaluates to 1, so it is always true This 
error can be very difficult to find. 

The logical operators !, &&, and | |, when applied to expressions, yield the bool 
\alue true or fal se. Logical negation can be applied to an arbitrary expression If 
an expression has value fal se, its negation will yield true. 

The precedence of && is higher than | |, but both operators are of lower prece¬ 
dence than all unary, arithmetic, and relational operators. Their associativity is left 
to right. 

In the evaluation of expressions that are the operands of && and | |, the evalua¬ 
tion process stops as soon as the outcome true or false is known. This is called 
short-circuit evaluation. For example, suppose that exprl and expr2 are expressions 
and that exprl has value fal se. 

exprl && expr2 

The expression expr2 will not be evaluated, because the value of the logical expres¬ 
sion is already determined to be false. Similarly, if exprl is true, then expr2 in 

exprl || expr2 

will not be evaluated, because the value of the logical expression is already deter¬ 
mined to be 1. 

The following table shows some examples in C++. 

Declarations and Initialization 

int a = 1, b = 2, c = 0; 

C++ Parenthesized 
Equivalent 

Value 

a + 5 && b ((a + 5) && b) true 

!(a < b) && c ((! (a < b)) && c) fal se 

/-N
 

&>
 II II cr
 

n
 

((a — b) | | c) fal se 
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Of all the operators in C++, the comma has the lowest precedence It is a binary 
operator with expressions as operands. In a comma expression of the torm 

exprl , expr2 

exprl is evaluated first, then expr2. The comma expression as a whole has the value 

and type of its right operand. For example, in 

sum =0, i =1 

if i has been declared an i nt, this comma expression has value 1 and type i nt. 
The comma operator typically is used in the control expression part of an itera¬ 

tive statement, when more than one action is required. The comma operator associ¬ 

ates from left to right. ml 
The conditional operator ?: is unusual in that it is a ternary operator. Thus, it 

takes as operands three expressions. 

exprl ? expr2 : expr3 

In this construct, exprl is evaluated first. If it is true, then expr2 is evaluated and 
that is the value of the conditional expression as a whole. If exprl is f al se, exprJ is 
evaluated, and that is the value of the conditional expression as a whole. 

The following example uses a conditional operator to assign the smaller oi two 

values to the variable x: 

x = (y < z) ? y : z; 

The parentheses are not necessary, because the conditional operator has prece¬ 
dence over the assignment operator. However, parentheses are good style because 

they make clear what is being tested for. 
The type of the conditional expression 

exprl ? expr2 : expr3 

is determined by expr2 and expr3. If they are different types, the usual conversion 
rules apply. The conditional expression’s type cannot depend on which of the two 
expressions expr2 or expr3 is evaluated. The conditional operator ? . associates 

right to left. 
C++ provides bit-manipulation operators, which operate on the machine-depen¬ 

dent bit representation of integral operands. For example, the operand ~ changes an 
integral operand bit representation into its one’s complement. These operators can 
be ignored by programmers not interested in manipulating the underlying bit repre¬ 

sentation of integral values. 
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Bitwise 
Operators Meaning 

~ unary one’s complement 

« left shift 

» right shift 

& and 

A exclusive or 

1 or 

In C++, we overload the shift operators to perform I/O. 

C++ considers function call () and indexing or subscripting [] to be operators. 
C++ also has an address & operation and an indirection *, or dereferencing, opera¬ 
tion. The address operator is a unary operator that yields the address, or location 
where an object is stored. The indirection operator is a unary operator that is 
applied to a pointer that retrieves the value from the location being pointed at. This 
operation is also known as dereferencing (see Section 3.11.1, “Addressing and 
Dereferencing,” on page 83). 

C++ also has a si zeof operator, which is used to determine the number of bytes 
a particular object or type requires for storage. This operator is important for 
obtaining an appropriate amount of storage for dynamically allocated objects. 

2.8 Statements 

C++ uses the semicolon as a statement terminator. C++ has a large variety of state¬ 
ment types, including an expression statement. For example, the assignment state¬ 
ment in C++ is syntactically an assignment expression followed by a semicolon. C++ 
and C both have assignment statements, procedure statements, transfer statements, 
conditional statements, selection statements, and iterative statements. A key differ¬ 
ence is that C++ treats declarations as statements, allowing them to be most any¬ 
where in blocks, but C allows declarations only at the head of blocks, before 
executable statements. In C++, declarations can also occur in the initializer part of 
the for loop. (Much of this material is review and may be skipped by the practiced C 
programmer.) 
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2.8.1 Assignment and Expressions 

In C++, assignment occurs as part of an assignment expression, which can occur in 

several forms. 

a = b + 1; 

This expression evaluates the right-hand side of the assignment and converts it to a 
S?ue SmpaUble with the variable on the left-hand side. This value is assigned w 
the left-hand side. The left-hand side must be an lvalue, a location m memory wher 

a value can be stored or retrieved. Simple variables are lvalues. 
C++ allows multiple assignment in a single statement. 

a = b + (c = 3) ; 

C++ provides assignment operators that combine an assignment and some other 

operator. 

a += b; is equivalent to a = a + b; 

a *= a + b; is equivalent to a = a " (a + b) , 

C++ also provides autoincrement (++) and autodecrement (--) operators in both 
prefix and postfix form. In prefix form, the autoincrement operator adds 1 to the 
value stored at the lvalue it acts on. Similarly, the autodecrement operator subtracts 

1 from the value stored at the lvalue it acts on. 

++i ; is equivalent to i = i + 1; 
--x; is equivalent to x = x - 1; 

The postfix form behaves differently from the prefix form, changing the 

affected lvalue after the rest of the expression is evaluated. 

j 
j 
i 

++i ; 
i++; 
++i + i++; 

is equivalent to i=i+l;]=i; 
is equivalent to j=i;i=i+l; 
//awful practice is system dependent 

Note: These are not exact equivalencies. The compound assignment operators evalu¬ 
ate their left-hand side expressions once. Therefore, for complicated expressions 

with side effects, results of the two forms can be different. 
The null statement is written as a single semicolon and causes no action to take 

place. A null statement is usually used where a statement is required syntactically 
but no action is desired. This situation sometimes occurs in statements that affect 

the flow of control. 
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2.8.2 The Compound Statement 

A compound statement in C++ is a series of statements surrounded by braces 
{ and }. The chief use of the compound statement is to group statements into an 
executable unit. The body of a C++ function, for example, is always a compound 
statement. In C, when declarations come at the beginning of a compound statement, 
the statement is called a block. This rule is relaxed in C++, and declaration state¬ 
ments ma> occur throughout the statement list. Wherever it is possible to place a 
statement, it is also possible to place a compound statement. 

2.8.3 The if and if-else Statements 

The general form of an i f statement is 

if (condition) 
statement 

If condition is true, then statement is executed; otherwise, statement is skipped. 
After the i f statement has been executed, control passes to the next statement. A 
condition is an expression or a declaration with initialization that selects flow of 
control. 

In file if_test.cpp 

if (temperature >= 32) 
cout « "Above Freezing!\n"; 

cout « "Fahrenheit is " « temperature « endl; 

Above Freezing! is printed only when temperature is greater than or equal to 32. 
The second statement is always executed. The expression in an i f statement is usu¬ 
ally a relational, equality, or logical expression. 

In file if_test.cpp 

if (grade > 70 && grade < 80) { 
cout « " you passed 
letter_gr = 'C'; 

} 

The difference from C is subtle. In C++, condition evaluates as a bool, but otherwise, 
the i f statement behaves the same way. 
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Closely related to the i f statement is the i f-el se statement, which has the 

general form 

if (condition) 
statementl 

el se 
statement 2 

If condition is true, then statementl is executed and statement2 is skipped, if condi¬ 
tion is false, then statementl is skipped and statement2 is executed. After the 
if-el se statement has been executed, control passes to the next statement. Con¬ 

sider the following code. 

In file if_test.cpp 

if (x < y) 
min = x; 

el se 
min = y; 

cout « "min = " « min; 

If x < y is true, then mi n will be assigned the value of x; if x < y is false, mi n will 

be assigned the value of y. After the i f-el se statement is executed, mi n is printed. 

2.8.4 The while Statement 

The general form of a whi 1 e statement is 

while (condition) 
statement 

First, condition is evaluated. If it is true, statement is executed, and control passes 
back to the beginning of the whi 1 e loop. The effect of this is that the body of the 
while loop, namely, statement, is executed repeatedly until condition is fal se. At 
that point, control passes to the next statement. The effect of this is that statement 

can be executed zero or more times. 
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An example of a whi 1 e statement follows. 

In file while_t.cpp 

while (i <= 10) { 
sum += i; 
++i ; 

} 

Assume initially that the value of i is 1, and that the value of sum is 0. The while 
loop increments the value of sum by the current value of i and then increments i by 
1. After the body of the loop has been executed 10 times, the value of i is 11, and 
the value of the condition i <= 10 is false. Thus, the body of the loop is not exe¬ 
cuted, and control passes to the next statement. When the whi le loop is exited, the 
value of sum is 55. 

2.8.5 The for Statement 

Consider the general form of a for statement: 

for (for-init-statement; condition; expression) 
statement 

next statement 

Using the whi 1 e in C++, this becomes 

for-init-statement; 
while (condition) { 

statement 
expression; 

} 
next statement 

These two forms are equivalent, provided that condition is nonempty and a 
continue statement is not in the body of the for loop. 

From our understanding of the while statement, we can deduce the semantics 
of the for statement. First, the for-init-statement is evaluated and is used to initial¬ 
ize a variable used in the loop. Then condition is evaluated. If it is true, statement is 
executed, expression is evaluated, and control passes back to the beginning of the 
for loop again, except that evaluation of for-init-statement is skipped. This iteration 
continues until condition is f al se, at which point control passes to next statement. 

The for-init-statement can be an expression statement or a simple declaration. If 
it is a declaration, the declared variable has the scope of the for statement. 
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The fo r statement is an iterative statement typically used with a variable that is 
incremented or decremented. As an example, the following code uses a for state¬ 

ment to sum the integers from 1 to 10: 

In file for_test.cpp 

sum = 0; 
for (i =1; i <=10; ++i) 

sum += i; 

Any or all of the expressions in a for statement can be missing, but the two 
semicolons must remain. If for-init-statement is missing, no initialization step is per¬ 
formed as part of the for loop. If expression is missing, no incrementation step is 
performed as part of the for loop. If condition is missing, no testing step is per¬ 
formed as part of the for loop. The special rule for when condition is missing is that 

the test is always true. Thus, the for loop in the code 

for (i = 1, sum = 0 ; ; ++i ) 
sum += i; 

is an infinite loop. 
The for statement is one common case in which a local declaration is used to 

provide the loop control variable, as in 

for (int i =0; i < N; ++i) 
sum += a[i]; //sum array a[0] + ... + a[N - 1] 

The semantics are that the i nt variable i is local to the given loop. This form of 
local declaration is not possible in C but it can be simulated as follows: 

{ 
int i; /*local to block*/ 
for (i =0; i <N; ++i) 

sum += a[i ]; 

} 
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2.8.6 The do Statement 

The do statement can be considered a variant of the while statement However 
instead of making its test at the top of the loop, the do statement makes it at the 
bottom. An example is the following: 

do { 
sum += i; 
ci n » i ; 

} while (i > 0); 

Consider a construction of the form 

do 

statement 
while (condition); 
next statement 

First, statement is executed, and then condition is evaluated. If it is true, control 
passes back to the beginning of the do statement, and the process repeats itself. 
W hen the value of condition is fal se, control passes to next statement. As an exam¬ 
ple, suppose that we want to read in an integer and want to insist that it be positive. 
The following code will accomplish this: 

In file do.test.cpp 

do { 

cout « "\nEnter a positive integer: 
cin » n; 

} while (n <= 0); 

The user will be prompted for a positive integer. A negative or zero value will cause 
the loop to be executed again, asking for another value. Control will exit the loop 
only after a positive integer has been entered. 

2.8.7 The break and continue Statements 

In C++, the break and conti nue statements are used to interrupt ordinary iterative 
flow of control in loops. In addition, the break statement is used within a switch 
statement, which can select among several cases. To interrupt the normal flow of 
control within a loop, the programmer can use the two special statements 

break; and continue; 



50 Chapter 2 y Native Types and Statements 

The break statement, in addition to its use in loops, can be used in a swi tch state¬ 
ment, causing an exit from the innermost enclosing loop or switch statement. 

The following example illustrates the use of a break statement. A test for a neg¬ 
ative value is made. If the test is true, the break statement causes the for loop to 
be exited. Program control jumps to the statement immediately following the loop. 

In file for_test.cpp 

for (i =0; i <10; ++i) { 
cin » x; 
if (x < 0.0) { 

cout « "All done" « endl; 
break; //exit loop if value is negative 

} 
cout « sqrt(x) « endl; 

} 

//break jumps to here 

This is a typical use of a break statement. When a special condition is met, an 

appropriate action is taken and the loop is exited. 
The continue statement causes the current iteration of a loop to stop and 

causes the next iteration of the loop to begin immediately. The following code pro¬ 

cesses all characters except digits. 

In file for_test.cpp 

for (i =0; i < MAX; ++i) { 
cin.get(c); 
if (isdigit(c)) 

continue; 
. //process other characters 

//continue jumps to here 

} 

When the conti nue statement is executed, control jumps to just before the closing 
brace, causing the loop to begin execution at the top again. Notice that the 
conti nue statement ends the current iteration, whereas a break statement would 

end the loop. 
A break statement can occur only inside the body of a for, while, do, or 

switch statement. The continue statement can occur only inside the body of a 

for, while, or do statement. 
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2.8.8 The switch Statement 

The switch statement is a multiway conditional statement generalizing the 
i f-el se statement. The general form of the swi tch statement is given by 

switch (condition) 
statement 

where statement is typically a compound statement containing case labels and 
optionally a defaul t label. Typically, a swi tch is composed of many cases, and the 
condition in parentheses following the keyword swi tch determines which, if any, of 
the cases are executed. 

The following switch statement counts the number of test scores by category. 

In file switch_t.cpp 

switch (score) { 
case 9: case 10: 

++a_grades; break; 
case 8: 

++b_grades; break; 
case 7: 

++c_grades; break; 
default: 

++fai1s; 

} 

A case label is of the form 

case constant integral expression: 

In a swi tch statement, each case label must be unique. Typically, the action taken 
after each case label ends with a break statement. If there is no break statement, 
execution “falls through” to the next statement in the succeeding case or defaul t. 

If no case label is selected, control passes to the default label, if there is one. 
No defaul t label is required, but including one is good practice. If no case label is 
selected and if there is no default label, the swi tch statement is exited. The key¬ 
words case and default cannot occur outside a swi tch. To detect errors, program¬ 
mers frequently include a default even when all of the expected cases have been 
accounted for. 
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The Effect of a switch Statement 

1. Evaluate the integral expression in the parentheses following switch. 

2. Execute the case label having a constant value that matches the value of the 
expression found in step 1. If no match is found, execute the defaul t label. If 

there is no defaul t label, terminate the swi tch. 

3. Terminate the switch when a break statement is encountered or by “falling 

off the end.” 

2.8.9 The goto Statement 

The goto statement, the most primitive method of interrupting ordinary control 
flow, is an unconditional branch to an arbitrary labeled statement in the function. 
The goto statement is considered a harmful construct in most accounts of modern 
programming methodology. Thus, the statement can undermine all of the useful 
structure provided by other flow-of-control mechanisms (for, while, do, if, and 

swi tch). 
A label is an identifier. By executing a goto statement of the form 

goto label-, 

control is unconditionally transferred to a labeled statement. An example is 

In file goto_tst.cpp 

if (d == 0.0) 
goto error; 

el se 
ratio = n / d; 

error: cerr « "ERROR: division by zero" « endl ; 

Both the goto statement and its corresponding labeled statement must be in the 
body of the same function. In general, goto should be avoided. 
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2.9 Pragmatics 

C++ has greatly improved on C’s primitive form of cast. In general, it is best to avoid 
explicit casting, also known as coercion, or conversion. Type logic is a safety check 
that the compiler can perform statically to detect coding mistakes. However, if you 
must cast, try to stay with the most benign form of conversion, static_cast<>. A 
true conversion is performed that will be portable. At the other end of the spectrum 
is rei nterpret_cast<>, with nonportable system-dependent effects. This cast 
should be avoided. 

C++ has changed C’s rules on where declarations can occur. The for loop is one 
place where local declarations are idiomatically used. Because these rules have 
changed in C++ since its introduction in 1985, many books, text, and legacy code 
are wrong and must be updated to conform to ANSI rules. It is perfectly acceptable 
to declare simple variables at the head of a block, most likely the beginning of a 
function definition. Following this advice yields code that works in both C and C++. 
For example, let us write an iterative version of the Fibonacci function this way. 

In file fibonal.c 

//Fibonacci series compatible with C 

unsigned fibonacci(unsigned n) 

unsigned i, sum = 

for ' (i = 0; i < n 
sum = f0 + fl; 
f0 = fi; 
fl = sum; 

} 
if (n > 1) 

return sum; 
el se 

return n; 

0, f0 = 0, fl = 1; 

- l; ++i){ 

Using the fact that declarations are allowed in the for-init-statement gives us 
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In file fibona2.c 
t 

//Idiomatically correct C++ 
//Fibonacci series incompatible with C 
//This code follows the rule of smallest enclosing scope 

unsigned fibonacci(unsigned n) 

{ 
unsigned sum = 0; 
for (unsigned i = 0, f0 = 0, fl = 1; i < n - 1; ++i){ 

sum = f0 + fl; 
f0 = fl; 
fl = sum; 

} 
if (n > 1) 

return sum; 
el se 

return n; 

Notice what happens if we make the following coding error: 

In file fibona3.c 

//ERROR because of scopes 

unsigned fibonacci(unsigned n) 

{ 
unsigned sum; 

for(unsigned i = 0, f0 = 0, fl = 1, sum = 0; i < n - 1; ++i){ 
sum = f0 + fl; 
f0 = fl; 
fl = sum; 

} 
if (n > 1) 

return sum; 
el se 

return n; 
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In this last piece of code, an error was introduced by initializing sum in the for loop. 
The program compiles and runs but with system-dependent results because there 
are two sum variables in fi bonacci (). 

2.10 Moving from C++ to Java 

The primitive types in a Java program can be boolean, char, byte, short, i nt, 
long, float, and double. These types are always identically defined regardless of 
machine or system they run on. For example, the i nt type is always a signed 32-bit 
integer, unlike in C, where this can vary from system to system. The bool ean type is 
not an arithmetic type and cannot be used in mixed arithmetical expressions. The 
char type uses 16-bit Unicode values. The byte, short, i nt, and 1 ong are all 
signed integer types, with length in bits of 8, 16, 32, and 64, respectively. Unlike in 
C++, unsigned types are not provided. The floating types comply with IEEE754 stan¬ 
dards and are float, a 32-bit size, and double, a 64-bit size. The nonprimitive 
types are class and array types, and variables of these types take references as their 
values. 

Java has the same basic set of operators as C++, with a few exceptions. For 
example, Java does not have the comma operator, scope resolution operator, or 
delete operator. Java added two operators: the instanceof and »> operators. 

The flow of control statements—i f, i f-el se, whi le, for, and swi tch—avail¬ 
able to C++ are also available in Java. Although goto is a reserved word in Java, the 
goto statement was not implemented. However, Java extended the break and 
conti nue statements so that they can use labels. 

We will write a program, Moon, to convert to kilometers the distance in miles 
from Earth to the moon. In miles this distance is, on average, 238,857 miles. This 
number is an integer. To convert miles to kilometers, we multiply by the conversion 
factor 1.609, a real number. 

Our conversion program will use variables capable of storing integer values and 
real values. The variables in the following program will be declared inmai n(). Java 
cannot have variables declared as extern (in other words, as global or file scope 

variables). 
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In file Moon.java 

// The distance to the moon converted to kilometers 

public class Moon { 
public static void main(String[] s) { 

int moon = 238857; 
int moon_kilo; 

System.out.println("Earth to moon = " + moon + " mi."); 
moon_kilo = (int)(moon * 1.609); 
System.out.println("Kilometers = " + moon_kilo +" km."); 

} 
} 

The output of the program is 

Earth to moon = 238857 mi. 
Kilometers = 384320 km. 

Dissection of the Moon Program 

■ int moon = 238857; 

Variables of type i nt are signed 32-bit integers. They can be initialized as in C. 

■ System.out.println("Earth to moon = " + moon + " mi."); 

The pri ntl n() method can discriminate among a variety of simple values without 
needing additional formatting information. Here, the value of moon will be printed 
as an integer. The symbol + represents string concatenation. Using “plus” 
pri ntl n() can print a list of arguments. What is happening is that each argument 
is converted from its specific type to an output string that is concatenated together 
and printed along with a newline character. 

■ moon_kilo = (int)(moon * 1.609); 

The mixed expression moon * 1.609 is a doubl e and must be explicitly converted 
to i nt. Java cast operators are notationally the same as in C, namely, (type). 
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Note that narrowing conversions that are implicit in C++ are not done in Java. 
Java in this regard is more type safe than C++. Also in Java all the primitive types 
are implementation independent. So numerically, a Java program gets the same 
answer regardless of the system it is running on. C++ continues C’s tradition of hav¬ 
ing implementation-dependent choices of primitive types, so as to optimize perfor¬ 
mance on a given machine. 

Summary 

This summary emphasizes in order of appearance changes and differences from C 
in the C++ language. 

1. C++ comments include the //rest of line comment while retaining the multiline 
bracketed comments of C /* comment here */. 

2. C++ has many new tokens not found in C. In the keyword list in Section 2.1.2, 
“Keywords,” on page 25, new keywords, such as bool, static_cast, vi rtual, 
and private are bolded to distinguish them from preexisting C keywords. New 
operators exist in C++, such as the free store operators new and delete and the 
scope resolution operator: :. 

3. C++ has the new native types bool and wchar_t and literals appropriate to each 
type. 

4. The new ANSI header file names, such as iostream, are embedded in the 
namespace std. In these cases, the construct using namespace std; allows 
access to the names in this library without the need for scope-resolved names, 
such as std: : cout. 

5. At the conclusion of the execution of main() there is an implicit return 0. 
Thus, it is proper C++ style to omit writing this explicitly, as is required by C. 

6. C++ relies on an external standard library to provide input/output. The informa¬ 
tion the program needs to use this library resides in the iostream.h or the 
iostream file. This library is type safe and requires no formatting specifications, 
as found in C’s use of pri ntf and scanf. In C++, a typical output expression is 

cout « expression! « expression2 « endl ; 
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7. In addition to implicit conversions, which can occur across assignments and in 
mixed expressions, there are explicit conversions, called casts. New keywords 
introduced in C++ for casts are stati c_cast, rei nterpret_cast, const_cast, 
and dynamic_cast. Old-style C casts (type) should be avoided. 

8. The keyword enum is used to declare a distinct integer type with a set of named 
integer constants, called enumerators. In C++, the enumerator tag name is auto¬ 

matically a user-defined type. 

9. Both C++ and C have assignment, procedure, transfer, conditional, selections, 
and iterative statements. Two important differences are: (1) C++ uses bool 
expressions to control flow-of-control statements; and (2) C++ allows declara¬ 
tions as statements instead of just being at the head of blocks or global. 

10. The general form of a for statement is different from that in C. 

for (for-init-statement; condition; expression) 
statement 

next statement 

First, the for-init-statement is evaluated and is used to initialize a variable used 
in the loop. Then condition is evaluated. It is of type bool. If it is t rue, statement 
is executed, expression is evaluated, and control passes back to the beginning of 
the for loop again, except that evaluation of for-init-statement is skipped. This 
iteration continues until condition is f al se, whereupon control passes to next 
statement. The for-init-statement can be an expression statement or a simple 
declaration. Where it is a declaration, the declared variable has the scope of the 
for statement. 

for (int i = 0; i < N; ++i) 
sum += a[i]; //sum array a[0] + ... + a[N - 1] 

The semantics are that the int variable i is local to the given loop. This form of 
local declaration is not possible in C. 
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Review Questions 

1. A type in C++ that C does not have is_. 

2. Three keywords in C++ that are not in C are_,_, and_. 
Describe their use as far as you currently understand it. 

3. What token does the new comment style in C++ involve? Why should it be used? 

4. What two literal values does the bool type have? Can they be assigned to int 
variables? With what result? 

5. What is the distinction between static_cast<> and reinterpret_cast<>? 
Which is the more dangerous? Why? 

6. C++ uses the semicolon as a statement_. 

7. The general form of a for statement is 

for (for-init-statement, condition, expression) 
statement 

There are two important differences between the C++ for and the C for. What 
are they? Explain with an example. 

8. The goto should_be used. 

9. What happens when the condition part of the for statement is omitted? 

10. The Java output library function works by converting its arguments to concate¬ 
nated strings, as in 

System.out.println("Earth to moon = " + moon + " mi."); 

Explain what happens in this statement. 
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Exercises 

1. Rewrite the gcd() function from Section 2.3, “Program Structure,” on page 30, 
with a for loop replacing the while loop. 

2. Rewrite the gcd program from Section 2.3, “Program Structure,” on page 31, to 
read a value for how_many greatest common divisors will be computed. The vari¬ 
able how_many will be used to exit the for loop. 

3. On most systems, input can be redirected from a file. Assume that the gcd pro¬ 
gram has been compiled into an executable file called gcd. The command 

gcd < gcd. dat 

will take its input from the file gcd.dat and will write the answers to the screen. 
Test this with a file containing 

4 4 6 6 21 8 20 15 20 

On most systems, output can also be redirected to a file. The command 

gcd > gcd. a ns 

will place its output in the file gcd.ans, taking its input from the keyboard. Enter 
the same data as previously and check the file gcd.ans to see that it has the four 
correct answers. The two redirections can be combined as follows: 

gcd < gcd.dat > gcd.ans 

This will take its input from the file gcd.dat and will place its output in the file 
gcd.ans. Test this on your system. 
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4. Short-circuit evaluation is an important feature. The following code illustrates 
its importance in a typical situation: 

//Compute the roots of: a*x*x + b*x + c 

cin » a » b » c; 
discr = b * b - 4 * a * c; 

if ((discr > 0) && (sq_disc = sqrt(discr))) { 
rootl = (-b + sq_disc) / (2 * a); 
root2 = (-b - sq_disc) / (2 * a); 

} 
else if (discr < 0) { //complex roots 

} 
el se 

rootl = root2 = -b / (2 * a); 

The sqrt() function would fail on negative values, and short-circuit evaluation 
protects the program from this error. Complete this program by having it com¬ 
pute roots and print them out for the following values: 

a = 1.0, b = 4.0, c = 3.0 
a = 1.0, b = 2.0, c = 1.0 
a = 1.0, b = 1.0, c = 1.0 

5. Use the complex library to provide the C++ complex number type, and rewrite 
the previous root-finding program to print out roots as complex numbers when 
appropriate. Compare this to a C implementation. In ANSI C++, use#include 
<complex>. In the main program, declare such variables as 

complex<double> rootl, root2; //complex is a template type 

6. What will the following program print? 

//What is printed? 

int main() 

{ 
char c = 'A'; 
int i =3, j = 1, k = -2, m = 0; 
bool p = false, q = true; 
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cout « c « " is integer val ue " « int(c) 

« " and !'A' is" « !c « endl; 

cout « "i = " « i « ", ! i = " « !i « endl; 

cout « "! ! i = " « ! ! i « " , ! m = " « ! m 

« endl ; 
cout « "P = " « P « ", q = " « q « endl; 

cout « " ! p = " « ! ! p « ", ! q = " « !q « endl; 

cout « "Ki + j) 1 1 | m = A
 

A
 

/•~
S 

(i + j) II m) 
« endl ; 

cout « "q II (j / m) = " « (q II (j / m)) 
« endl ; 

cout « "(j / m) | | q = " « ((j / m) | | q) 
« endl ; 

} 

7. The C++ switch statement allows two or more cases to be executed for the 
same value by allowing the code to “fall through.” 

switch (i) { 
case 0: case 1: 

++hopeless; // fall through 
case 2: case 3: 

++weak; 
case 4: case 5: 

++fails; break; 
case 6: case 7: 

++c_grades; break; 
case 8: 

++b_grades; break; 
case 9: 

++a_grades; break; 
default: 

cout « "incorrect grade " « i « endl; 

} 

Hand simulate this statement for i equals 1. Write the equivalent if-else 
statement. 
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8. Use si zeof to determine the number of bytes each of the following requires on 
your loca system: bool, char, short, int, long, float, double, and long 
doub I e. Also do this for the enumerated types 

enum bounds { lb = -1, ub = 511 }; 

enum suit { clubs, diamonds, hearts, spades }; 

9. Write a program to convert from Celsius to Fahrenheit. The program should use 
mteger values and print integer values that are rounded. Recall that zero Celsius 
is 32 degrees Fahrenheit and that each degree Celsius is 1.8 degrees Fahrenheit. 

10. Write a program that prints whether water at a given Fahrenheit temperature 
would be solid, liquid, or gas. In the computation, use an enumerated type: 

enum state { solid = STMP, liquid = LTMP, gas = GTMP }; 

11. Write a program that accepts either Celsius or Fahrenheit and produces the 
other value as output. For example, input 0C, output 32F; input 212F, output 

12. Simplify the following code: 

for (sum =i =0, j = 2, k = i + j; i <10 || k < 15; 
++i, ++j, ++k) 

sum += (i < j)? k : i; 

Remember that comma expressions are sequences of left-to-right evaluations, 
with each comma-separated subexpression evaluated in strict order. 

13. In the C world, more flexible file I/O is available by using the FILE declaration 
and file operations found in stdio. The C++ community uses fstKBuin, as dis¬ 
cussed in Appendix D, “Input/Output.” Familiarize yourself with this library. 
Convert the program in exercise 3 on page 60, to use fstreams. The program 
should get its arguments from the command line, as in 

gcd gcd.dat gcd.ans 
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14. The following code prints 100 random number?: 

int mainO 

{ 
int how_many = 100; 

cout « "Print " « how_many 
« " random integers.\n"; 

for (int i = 0; i < how_many; ++i) 
cout « rand() « '\t'; 

} 

Add code that determines average, maximum, and minimum values generated. 
Note that the rand() function is found in stdlib library. 

15. Alter the previous program to ask the user how many numbers should be gener¬ 
ated. Have this be an outer loop. Exit this program when the user answers with 

zero or a negative number. 

16. The constant RAND_MAX is the largest integer that rand() generates. Use 
RANDJMAX/2 to decide whether a random number is to be heads or tails. Gener¬ 
ate 1,000 randomly generated heads and tails. Print out the ratio of heads to 
tails. Is this a reasonable test to see whether rand() works correctly? Print out 
the size of the longest number of heads thrown in a row. 

17. The conditions in selection and iterative statements can be declaration state¬ 
ments, such as if (bool d = test()) . . . . , where scope is restricted to the 
statement. Write a program that tests whether your compiler conforms to this 
latest ANSI rule change. 

18. Rewrite f i bonacci () found in Section 2.9, “Pragmatics,” on page 54, as a recur¬ 
sive function. Test it against the iterative form to see which is faster. Useful tim¬ 
ing functions can be found in time library. 

19. (Java) Rewrite the convert from Celsius to Fahrenheit program in exercise 9 on 
page 63, in Java. 

20. (Java) Rewrite the C++ Fibonacci program in Section 2.9, “Pragmatics,” on page 
54, in Java. Have it print out the first forty Fibonacci numbers. Investigate the 
for loop scope rules in Java. 



pter 3 

ctions, Pointers, 
and Arrays 

This chapter continues the discussion of the C++ kernel language, focusing on func¬ 
tions, pointers, and arrays. The experienced C programmer can read the chapter 
quickly, with an eye for differences and extensions to C. These differences will again 
be stressed in the summary section for easy reference. 

In C++, a primary unit for structuring a program is the function. Aggregate data 
in C++ are either arrays or structures. In both cases, a pointer type is used as a 
mechanism for accessing such data. 

3.1 Functions 

A problem in C++ or C can be decomposed into subproblems, each of which can be 
either coded directly or further decomposed. This is the method of stepwise refine¬ 
ment. The function construct in C++ is used to write code for these directly solvable 
subproblems. These functions are combined into other functions and are ultimately 
used in mai n() to solve the original problem. 

The function mechanism is provided in C++ to perform distinct programming 
tasks. Some functions, such as strcpyO and rand(), are provided by libraries; oth¬ 
ers can be written by the programmer. New to C++ are default arguments, function 
overloading, and inlining of functions. The use of an empty parameter list also dif¬ 
fers between C and C++. 
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3.1.1 Function Invocation 

A C++ program is made up of one or more functions, one of which is mai n(). Pro¬ 
gram execution always begins with mai n(). When program control encounters a 
function name, the function is called, or invoked. This means that program control 
passes to the function. After the function does its work, program control is passed 
back to the calling environment, which then continues with its work. As a simple 
example, consider the following program, echo, which uses the string library and 

echoes an input word: 

In file echol.cpp 

//Echo a message 

void echo(string message) 

{ 
cout « message « endl ; 

} 

int main() 

{ 
string word; 

cout « "Enter your word: 
cin » word; //reads to white space 
echo(word); 

} 

3.2 Function Definition 

The C++ code that describes what a function does is called the function definition. 
Its form is 

function header 

{ 
statements 

} 

Everything before the first brace comprises the header of the function definition, 
and everything between the braces comprises the body of the function definition. 
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The function header is 

type name(parameter-declaration-list) 

The type specification which precedes the function name is the return type and 
determines the type of the value that the function returns, if any. 

In the function definition for echo() in the echo program, the parameter list 
has one parameter. The body of the function consists of a block. Since the function 
does not return a value, the return type of the function is voi d. 

Parameters are syntactically identifiers, and they can be used within the body of 
the function. The parameters in a function definition are called formal parameters 
to emphasize their role as placeholders for the values that are passed to the func¬ 
tion when it is called. When the function is invoked, the value of the argument cor¬ 
responding to a formal parameter is used within the body of the executing function. 
As in C, such parameters are call-by-value. 

C and C++ functions have a number of differences which we will point out as we 
explain various features of using functions. One difference is that a C++ block need 
not have declarations at the head of the block. So in the echo program, mai n() 
could have been written as 

In file echo2.cpp 

int main() 

{ 
cout « "Enter your word: 
string word; //place declaration near its use 
cin » word; 
echo(word); 

} 

In ANSI C++, the empty parameter list is always equivalent to using void. Thus, 
mai n() is equivalent to mai n(voi d). The function mai n() implicitly returns the 
integer value 0 if no explicit return expression statement is executed. 
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3.3 The return Statement 

The return statement is unchanged from its C use. When a return statement is 
executed, program control is immediately passed back to the calling environment. 
In addition, if an expression follows the keyword return, the value of the expres¬ 
sion is returned to the calling environment as well. This value must be assignment 
convertible to the return type of the function definition header. 

A return statement has one of the following two forms: 

return; 
return expression; 

Some examples are 

return; 
return 3; 
return (a + b) ; 

Using parentheses in the return expression is optional, a stylistic device that some 
programmers use to enhance readability. 

3.4 Function Prototypes 

The syntax of functions in C++ is type safe where the types of parameters are listed 
inside the header parentheses. By explicitly listing the type and number of argu¬ 
ments, strong type-checking and assignment-compatible conversions are possible. 

A function can be declared before it is defined. It can be defined later in the file 
or can come from a library or a user-specified file. Such a declaration is called a 
function prototype and has the following general form: 

type name(argument-declaration-list); 

The argument-declaration-list is typically a comma-separated list of types. If a func¬ 
tion has no parameters, the preferred style for such an empty parameter list is 
function_nameQ. The function’s argument list can include the argument identifiers. 
This information allows the compiler to enforce type compatibility. Arguments are 
converted to these types as if they were following rules of assignment. 
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The use of the empty parameter list differs from that in traditional C, in which 
an empty parameter list can indicate an unknown number of arguments. Frequently, 
C programmers indicate an empty parameter list by using function_name(voi d). In 
C++, the empty parameter list is the same as the use of void. 

In Section 3.1.1, Function Invocation,” on page 66, we used in the echol.cpp 
program the function echo(). Its prototype in mai n() would be 

void echo(string); 

Both the fimction return type and the argument-list types are explicitly mentioned. 
The definition of echo() that occurs in the file must match this declaration. The 
function prototype can also include the identifier names of the arguments. In the 
case of echo(), this w^ould be 

void echo(string message); 

C++ uses the ellipsis symbol ( . . . ) for an argument list that is unspecified. The 
stdio function pri ntf () is declared as the prototype. 

int printf(const char* cntrl_str, ...); 

Such a function can be invoked on an arbitrary list of parameters. This practice 
should be avoided because of loss of type safety. 

3.4.1 Recursion 

As in C, C++ has recursion. A recursive function calls itself as part of its definition. 
A simple recursive function has two main parts: the base-case part, where it com¬ 
putes a value and terminates, and the recursive part, where it calls itself. Recursion 
corresponds to mathematical induction in describing how functions such as facto¬ 
rial are proved correct. 

In file factor.cpp 

//Recursive factoriai function 

long factorial(int n) 

{ 
if (n <= 1) 

return 1; 
el se 

return n * factorial(n - 1); 

} 



70 Chapter 3 ▼ Functions, Pointers, and Arrays 

Notice how the recursive call is with the expression n - 1. This guarantees that the 
function factori al () will terminate. Each recursion will reduce the called expres¬ 
sion by 1 until the termination condition n <= 1 is true. In running this computa¬ 
tion, be aware that for relatively small values of n (such as 13), the computation will 

fail because of integer overflow. 
A pseudocode prescription for writing a simple recursion is 

//base-case part 

if (base-case condition) 
return base-case computed value-, 

//general case as a recursion 

el se 
return recursively computed expression; 

3.5 Default Arguments 

A formal parameter can be given a default argument, usually a constant that occurs 
frequently when the function is called. Use of a default argument saves writing this 
default value at each invocation. The ability to provide default values to arguments 
does not exist in C. The following recursive function illustrates the point. 

In file powers.cpp 

int sqr_or_power(int n, int k = 2) //k=2 is default 

{ 
assert(k > 1); //note asserts are as in C 

if (k == 2) 
return (n * n); 

el se 
return (sqr_or_power(n, k - 1) * n); 

} 

We assume that most of time the function is used to return the value of n squared. 
The assert is discussed later in this chapter. 

sqr_or_power(i + 5) 
sqr_or_power(i + 5, 3) 

//computes (i + 5) * (i + 5) 
//computes (i + 5) cubed 
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Only trailing parameters of a function can have default values. This rule allows 
the compiler to know which arguments are defaulted when the function is called 
with fewer than its complete set of arguments. The rule substitutes for the leftmost 
arguments with the explicit arguments and then uses defaults for any of the 
remaining contiguous unspecified arguments. Some examples are 

void foo(int i, int j = 7); //legal 
void goo(int i = 3, int j); //illegal 
void hoo(int i, int j = 3, int k = 7); //legal 
void moo(int i = 1, int j = 2, int k = 3); //legal 
void noo(int i, int j = 2, int k); //illegal 

3.6 Functions as Arguments 

Functions in C++ can be thought of as the addresses of the compiled code residing 
in memory. Functions are therefore a form of pointer (see Section 3.11, “Pointer 
Types,” on page 82) and can be passed as a pointer-value argument into another 
function. Using this idea, we write code that will print n values of a function, start¬ 
ing at an initial value using a specific increment. This form of plotting function can 
be useful to generate a function map that later will be used to find properties of the 
function, such as a root of the function. 

In file root.cpp 

double f(double x) 

{ 
return (x*x + 1.0/x); 

} 

void plot(double fcn(double), double x0, double incr, int n) 

{ 
for (int i = 0; i < n; ++i){ 

cout « " x :" « x0 
« " f(x) : " « fcn(x0) « endl; 

x0 += incr; 

} 
} 
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int main() 

{ 
cout « "mapping function x*x + 1.0/x " « endl; 

piot(f, 0.01, 0.01, 100); 

} 

Notice that the first argument to plot() is a function of a specific type. Functions 
as arguments are strongly typed. In this case, plot() will take only a function 

returning doubl e of one argument that is doubl e. 

3.7 Overloading Functions 

Function overloading is a feature not available in C but is a feature in C++. The usual 
reason for picking a function name is to indicate the function’s chief purpose. Read¬ 
able programs generally have a diverse and literate choice of identifiers. Sometimes, 
different functions are used for the same purpose. For example, consider a function 
that averages the values in an array of doubl e versus one that averages the values 
in an array of int (see Section 3.14, “Arrays and Pointers,” on page 89). Both are 
conveniently named avg_arr(), as in the following example. 

Overloading refers to using the same name for multiple meanings of an opera¬ 
tor or a function. The meaning selected depends on the types of the arguments used 
by the operator or function. Here, we restrict our discussion to function overloading 
and leave operator overloading to Chapter 6, “Operator Overloading and Conver¬ 
sions,” as the operator overloading is used chiefly in the context of classes. In the 
following code, we overload avg_arr(): 

In file avg_arr.cpp 

//Average the values in an array 

double avg_ari "(const int a[] , int size) 

{ 
int sum = 0; 

for (int i = 0; i < size; ++i) 
sum += a[i]; //performs int arithmetic 

return static_cast<double>(sum) / size; 
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double avg_arr(const double a[], int size) 
{ 

double sum = 0.0; 

for (int i = 0; i < size; ++i) 

sum += a[i]; //performs double arithmetic 
return (sum / size); 

} 

The following code shows how avg_arr() Is invoked: 

int main() 

{ 
int w[5] = { 1, 2, 3, 4, 5 }; //initialization 
double x[5] = { 1.1, 2.2, 3.3, 4.4, 5.5 }; 

cout « avg_arr(w, 5) « " int average" « endl; 
cout « avg_arr(x, 5) « " double average" « endl; 

} 

The compiler chooses the function with matching types and arguments. The sig¬ 
nature-matching algorithm gives the rules for performing this (see Section 6.2, 
“Overloading and Function Selection,” on page 197). By signature, we mean the list 
of types that are used in the function declaration. 

3.8 Inlining 

C++ provides the keyword inline to preface a function declaration when the pro¬ 
grammer intends the code replacing the function call to be inline. 

In file inline.cpp 

inline double cube(double x) 

{ 
return (x * x * x); 

} 

The compiler parses this function, providing semantics that are equivalent to a non¬ 
inline version. The compiler limits prevent complicated functions, such as recursive 
functions, from being inlined. 
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Macro expansion is a scheme for placing code inline that would normally use a 
function call. The #defi ne preprocessor directive supports general macro substitu¬ 

tion, as in the following: 

#define SQR(X) ((X) * (X)) 
#define CUBE(X) (SQR(X)*(X)) 
#define ABS(X) (((X) < 0)? -(X) : X) 

y = SQR(t + 8) - CUBE(t - 8); 
cout « sqrt(ABSCy)); 

The preprocessor expands the macros and passes on the resulting text to the com¬ 

piler. So the preceding is equivalent to 

y = ((t+8) * (t+8)) - CCCCt-8)) * (t-8)) * (t-8)); 

cout « sqrt((((y) < 0)? -(y) : y)); 

One reason for all the parentheses is to avoid precedence mistakes, as would occur 

in the following: 

#define SQR(X) X * X 

y = SQR(t + 8); //expands to t + 8 * t + 8 

Macro expansion provides no type safety as is given by the C++ parameter-pass¬ 
ing mechanism. Since the macro argument has no type, no assignment type conver¬ 
sions are applied to it, as they would be in a function. Although careful definition 
and use of macros can avoid such mistakes, C++ programmers avoid macro defini¬ 
tions by using inlining for purposes of code efficiency. 

3.9 Scope and Storage Class 

The kernel language has two principal forms of scope: file scope and local scope. 
Local scope is scoped to a block. Compound statements that include declarations 
are blocks. Function bodies are examples of blocks. They contain a set of declara¬ 
tions that include their parameters. File scope has names that are external (global). 
There is also block scope, which is discussed in the next section. Class scope rules 
are discussed in Section 4.6, “Class Scope,” on page 122. 
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The basic rule of scoping is that identifiers are accessible only within the block 
in which they are declared. Thus, they are unknown outside the boundaries of that 
block. A simple example follows. 

In file scope_t.cpp 

{ 
int a = 2; 
cout « a « endl; 

{ 
int a = 7; 
cout « a « endl; 

} 
cout « ++a « endl; 

//outer block a 
//prints 2 
//enter inner block 
//inner block a 
//prints 7 
//exit inner block 
//3 is printed 

Each block introduces its own nomenclature. An outer block name is valid 
unless an inner block redefines it. If redefined, the outer block name is hidden, or 
masked, from the inner block. Inner blocks may be nested to arbitrary depths that 
are determined by system limitations. 

In C++, declarations can be internal to a block. In C, all block-scope declarations 
occur at the head of the block. An example shows this. 

In file array_mx.cpp 

//C++ but not C 

int max(int c[], int size) 

{ 
cout « "array size is " « size « endl; 

int comp = c[0]; 
for (int i =1; i < size; ++i) 

if Cc[i] > comp) 
comp = c [i ] ; 

return comp; 

//declare comp 
//declare i 

In C++, the scope of an identifier begins at the end of its declaration and continues 
to the end of its innermost enclosing block. 

Even though C++ does not require that declarations be placed at the head of 
blocks, it is frequently good practice to do so. Since blocks are often small, this 
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practice provides a good documentation style for commenting on their associated 

use. . . 
Placing declarations within blocks allows a computed or input value to initialize 

a variable. Especially for large blocks, it is best to place declarations as close as pos¬ 

sible to where they are used. 

3.9.1 The Storage Class auto 

Every variable and function in C++ kernel language has two attributes, type and stor¬ 
age class. The four storage classes are automatic, external, register, and static, with 

corresponding keywords 

auto extern register static 

Variables declared within function bodies are by default automatic, making 
automatic the most common of the four storage classes. If a compound statement 
contains variable declarations, these variables can be acted on within the scope of 
the enclosing compound statement. Recall that a compound statement with declara¬ 

tions is a block. 
Declarations of variables within blocks are implicitly of storage class automatic. 

The keyword auto can be used to explicitly specify the storage class. An example is 

auto int a, b, c; 
auto float f = 7.78; 

Because the storage class is automatic by default, the keyword auto is seldom 
used. As in C, blocks are a principal mechanism for the allocation and deallocation 

of storage. 

3.9.2 The Storage Class extern 

One method of transmitting information across blocks and functions is to use exter¬ 
nal variables. When a variable is declared outside a function at the file level, storage 
is permanently assigned to it, and its storage class keyword is extern. A declaration 
for an external variable can look just like a declaration for a variable that occurs 
inside a function or a block. Such a variable is considered to be global to all func¬ 
tions declared after it. On block exit or function exit, the external variable remains 
in existence. Such variables cannot have automatic or register storage class. The 
keyword static can be used. (See Section 3.9.4, “The Storage Class static,” on 

page 78.) 
The keyword extern is used to tell the compiler, “Look for it elsewhere, either 

in this file or in some other file.” Thus, two files can be compiled separately. The use 
of extern in the second file tells the compiler that the variable will be defined else- 
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where, either in this file or in another one. The ability to compile files separately is 
important for writing large programs. 

Since external variables exist throughout the execution life of the program, they 
can be used to transmit values across functions. They may, however, be hidden if 
the identifier is redefined. Another way to conceive of external variables is as being 
declared in a block that encompasses the whole file. 

Information can be passed into a function two ways: by external variables and 
by the parameter mechanism. The parameter mechanism is the preferred method, 
although there are exceptions. This tends to improve the modularity of the code 
and reduces the possibility of undesirable side effects. 

Here is a simple example of using external declarations for a program that sits 
in two separate files. 

In file circle3.cpp 

const double pi = 3.14159; 
double circle(double radius) 
{ 

return (pi * radius * radius); 
} 

In file cir.main.cpp 

double circle(double); //functions are of extern scope 

int main() 

{ 
double x; 

cout « circle(x) « " is area of circle of radius " 
« x « endl; 

} 

With the GNU system, this is compiled as g++ circle.c main.c. 
The const modifier causes pi to have local file scope, so pi cannot be directly 

imported into another file. When such a definition is required elsewhere, it must be 
modified explicitly with the keyword extern. 
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3.9.3 The Storage Class register 

The storage class regi ster tells the compiler that the associated variables should 
be stored in high-speed memory registers, provided it is physically and semantically 
possible to do. Since resource limitations and semantic constraints sometimes make 
this impossible, the storage class register defaults to automatic whenever the 
compiler cannot allocate an appropriate physical register. When speed is of concern, 
the programmer may choose a few variables that are most frequently accessed and 
declare them to be of storage class regi ster. Common candidates for such treat¬ 
ment include loop variables and function parameters. Here is an example. 

{ 
for (register i = 0; i < LIMIT; ++i) { 

} 
} 

The declaration regi ster i ; is equivalent to regi ster i nt i If a storage class 
is specified in a declaration and the type is absent, the type is i nt by default. 

The storage class regi ster is of limited usefulness. It is taken only as advice to 
the compiler. Furthermore, contemporary optimizing compilers are often more 
astute than the programmer. 

3.9.4 The Storage Class static 

Static declarations have two important and distinct uses. The more elementary use 
is to allow a local variable to retain its previous value when the block is reentered. 
By contrast, ordinary automatic variables lose their value on block exit and must be 
reinitialized. The second, more subtle use is in connection with external declara¬ 
tions and will be discussed in the next section. 

As an example of the value-retention use of stati c, we will write a function 
that maintains a count of the number of times it is called. 

In file stat_tst.cpp 

int f() 
{ 

static int called = 0; 

++called; 

return called; 
} 
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The first time the function is invoked, the variable cal led is initialized to 0. On 
function exit, the value of called is preserved in memory. When the function is 
invoked again, cal 1 ed is not reinitialized; instead, it retains its value from the previ¬ 
ous time the function was called. 

In its second, more subtle use, stati c provides a privacy mechanism that is 
very important for program modularity. By privacy, we mean visibility, or scope, 
restrictions on otherwise accessible variables or functions. 

This use restricts the scope of the function. Static functions are visible only 
within the file in which they are defined. Unlike ordinary functions, which can be 
accessed from other files, a static function is available throughout its own file but in 
no other. Again, this facility is useful in developing private modules of function def¬ 
initions. Note that in C++ systems with namespaces, this mechanism should be 
replaced by anonymous namespaces (see Section 3.10, “Namespaces,” on page 80). 

//C scheme of file privacy using static extern 
//C++ should replace this with anonymous namespaces 

static int goo(int a) 

{ 

} 

int foo(int a) 

{ 

b = goo(a); 
//goo() is available here but not in other files 

} 

In C++, the system initializes to 0 both external variables and static variables 
that are not explicitly initialized by the programmer. Such variables include arrays, 
strings, pointers, structures, and unions. For arrays and strings, this means that 
each element is initialized to 0; for structures and unions, it means that each mem¬ 
ber is initialized to 0. In contrast, automatic and register variables usually are not 
initialized by the system. This means that they can start with “garbage” values. 
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3.9.5 Linkage Mysteries 

Multifile programs require proper linkage. C++ requires some special rules to avoid 
hidden inconsistencies. As already indicated, a name declared at file scope as explic¬ 
itly stati c is local and is hidden from other files. This form of linkage is called 
internal linkage. By default, const and typedef declarations have internal linkage. 
A const variable that is at file scope but is not static can be given external linkage 
by declaring it extern. Finally, linkage to C code is possible using the form 

extern "C" { code or included file } 

Linkage to languages other than C is system dependent. For example, some sys¬ 
tems might allow "Pascal ". (See Section C.11.6, “Type-Safe Linkage for Functions,” 

on page 386.) 
It is the coder’s responsibility to make sure that all names referring to the iden¬ 

tical construct are consistent. It is beyond the scope of this text to discuss all of the 
nuances of linkage. 

Tips for Avoiding Linkage Problems 

■ Use header files for function prototypes, class definitions, constants, type- 
defs, templates, inline functions, and named namespaces. 

■ Use these header files with an # i f def  filename as a guard against multi¬ 
ple inclusion. 

■ Think in terms of the one-definition rule (ODR) which states that classes, enu¬ 
merations, templates, and so forth, must be defined exactly once in the pro¬ 
gram. 

■ As a heuristic, envision “writing” the code into one monolithic file and “see¬ 
ing” whether this causes conflicts. 

3.10 Namespaces 

C++ inherited C’s single global namespace. Programs written by two or more parties 
can have inadvertent name clashes when combined. C++ encourages multivendor 
library use. This motivates the addition of a namespace scope to ANSI C++. 
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namespace LMPinc { 
class puzzles { . }; 
class toys { . }; 

} 

The namespace identifier can be used as part of a scope-resolved identifier, 
which has the form 

namespace_id: :id 

A usi ng declaration lets a client have access to all names from that namespace, 

using namespace LMPinc; 
toys top; //LMPinc::toys 

Namespaces can also nest. 

In file namespac.cpp 

namespace LMPincf 
int n; 
namespace LMPdolls { //inner namespace 

int sq(){ return n * n; } //LMPinc::n 
void pr_my_logo(); 

} 
void LMPdol1s::p r_my_logo() 

{ cout « "Dolls by Laura" « endl; } 

} 

As mentioned in Section 3.9.4, “The Storage Class static,” on page 79, 
namespaces can be used to provide a unique scope that replaces static global decla¬ 
rations. This is done by an anonymous namespace definition, as in 

namespace { int count = 0; } //count is unique here 
//count is available in the rest of the file 
void chg_cnt(int i) { count = i; } 

Library headers conforming to ANSI C++ will no longer use the .h suffix. Files 
such as iostream and complex will be declared with the namespace std. Vendors no 
doubt will continue shipping old-style headers, such as iostream.h or complex.h as 
well, so that old code can run without change. 
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3.11 Pointer Types 

C++ pointers, used to reference variables and machine addresses, are intimately tied 
to array and string processing. C++ arrays can be considered a special form of 
pointer associated with a contiguous piece of memory for storing a series of indexi¬ 
ble values. 

Pointers are used in programs to access memory and to manipulate addresses. 
If v is a variable, &v is the address, or location in memory, of its stored value. The 
address operator & is unary and has the same precedence and right-to-left associa¬ 
tivity as the other unary operators. Pointer variables can be declared in programs 
and then used to take addresses as values. The following declares p to be of type 
“pointer to i nt”: 

int* p; 

The legal range of values for any pointer always includes the special address 0, 
as well as a set of positive integers that are interpreted as machine addresses on a 
particular system. Some examples of assignment to the pointer p are 

//the address of object i 
//a special sentinel value 
//absolute address 

p = &i; 
p = 0; 
p = static_cast<int*>(1507); 

In the first example, we think of p as “referring to i,” “pointing to i,” or “con¬ 
taining the address of i.” The compiler decides what address to assign the variable 
i. This will vary from machine to machine and may even differ for various execu¬ 
tions on the same machine. The second example is the assignment of the special 
value 0 to the pointer p. This value is typically used to indicate a special condition. 
For example, a pointer value of 0 is returned by a call to the operator new when free 
storage is exhausted. That pointer value is also used to indicate the end of a 
dynamic data structure, such as a tree or a list. In the third example, the cast is nec¬ 
essary to avoid a type error, and an actual memory address is used. 
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3.11.1 Addressing and Dereferencing 

As in C, dereferencing, or indirection, operator * is unary and has the same prece¬ 
dence and right-to-left associativity as the other unary operators. If p is a pointer, 
*p is the value of the variable that p points to. The direct value of p is a memory 
location, whereas *p is the indirect value of p, namely, the value at the memory loca¬ 
tion stored in p. In a certain sense, * is the inverse operator to &. Here is code show¬ 
ing some of these relationships. 

int i = 5, j; 
int* p = &i; //pointer init to address of i 

cout « *p « " = i stored at " « p « endl ; 
j = p; //illegal pointer not convertible to integer 
j = *p + 1; //legal 
p = &j; //p points to j 

3.11.2 Pointer-Based Call-by-Reference 

The addresses of variables can be used as arguments to functions so that the stored 
values of the variables can be modified in the calling environment to simulate call- 
by-reference. Experienced C programmers should skip this discussion and go to the 
next section to read about an equivalent C++ technique for call-by-reference param¬ 
eters. In pointer-based call-by-reference, pointers must be used in the parameter list 
in the function definition. Then, when the function is called, addresses of variables 
must be passed as arguments. For example, let us code a function order () that 
exchanges two values if the first value is greater than the second. 

In file orderl.cpp 

//Pointer-based cal 1-by-reference 

void order(int*, int*); 

int main() 

{ 
int i = 7, j = 3; 

cout « i « '\t' « j « endl; 111 3 is printed 

order(&i, 
cout « i 

&j); 
« '\t' « j « endl ; //3 7 is printed 

} 
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void order(int* p, int* q) 
t 

{ 
int temp; 

if (*p > *q) { 
temp = *p; 
*p = *q; 
*q = temp; 

} 
} 

Most of the work of this program is carried out by the function call to orderC). 
Notice that the addresses of i and j are passed as arguments. As we shall see, this 
allows the function call to change the values of i and j in the calling environment. 

♦♦♦♦♦♦♦♦♦♦♦♦ 
Dissection of the order() Function 

■ void order(int* p, int* q) 

{ 
int temp; 

The parameters p and q are both of type pointer to i nt. The variable temp is local to 
this function and is of type i nt. 

■ if (*p > *q) { 
temp = *p; 

*P = *q; 
*q = temp; 

} 

If the value of what is pointed to by p is greater than the value of what is pointed to 
by q, the following is done. First, temp is assigned the value of what is pointed to by 
p; second, what is pointed to by p is assigned the value of what is pointed to by q; 
and third, what is pointed to by q is assigned the value of temp. This interchanges in 
the calling environment the stored values of whatever p and q are pointing to. 

The rules for using pointer arguments to achieve call-by-reference can be sum¬ 
marized as follows: 
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Call-by-Reference Using Pointers 

1. Declare a pointer parameter in the function header. 

2. Use the dereferenced pointer in the function body. 

3. Pass an address as an argument when the function is called. 

3.12 Reference Declarations and Call-by-Reference 

Reference declarations, a C++ feature not available in C, declare the identifier to be 
an alternative name, or alias, for an object specified in an initialization of the refer¬ 
ence. Reference declarations allow a simpler form of call-by-reference parameters. 
Some examples are 

i nt n; 
int& nn = n - //nn is alternative name for n 
double a[10]; 
double& last = a[9]; //last is an alias for a[9] 

Declarations of references that are definitions must be initialized and are usu¬ 
ally initialized to simple variables. The initializer is an lvalue expression, which 
gives the variable’s location in memory. In these examples, the names n and nn are 
aliases for each other; that is, they refer to the same object. Modifying nn is equiva¬ 
lent to modifying n and vice versa. The name last is an alternative to the single 
array element a [9]. These names, once initialized, cannot be changed. 

When a variable i is declared, it has an address and memory associated with it. 
When a pointer variable p is declared and initialized to &i, it has an identity sepa¬ 
rate from i. The pointer p has memory associated with it that is initialized to the 
address of i. When a reference variable r is declared and initialized to i, it is identi¬ 
cal to i. It does not have an identity separate from the other names for the same 

object. 
The following definitions are used to demonstrate the use of pointers, derefer¬ 

encing, and aliasing. The definitions assume that memory at location 1004 is used 
for integer variable a and that memory at 1008 is used for pointer variable p. 

int a = 5; //declaration of a 

int* p = &a; //p points to a 

int& ref_a = a; //alias for a 

*P = 7; //*p is lvalue of a, so a is assigned 7 

a = *p + 1; //rvalue 7 added to 1 and a assigned 8 
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Pointer Declarations 

Notice in the figure of pointer declarations that any change to the value of a is 
equivalent to changing ref_a. Such a change affects the dereferenced value of p. 
The pointer p can be assigned another address and lose its association with a. How¬ 
ever, a and ref_a are aliases and within scope must refer to the same object. These 
declarations can be used for call-by-reference arguments, which allows C++ to have 
call-by-reference arguments directly. 

The function order() using this mechanism is recoded as follows: 

In file order2.cpp 

void order(int& p, int& q) 

{ 
int temp; 

if (P > q) { 
temp = p; 

p = q; 
q = temp; 

} 
} 

The function would be prototyped and invoked in mai n () as follows: 
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void order(int& p, int& q); 

int main() 

{ 
int i, j; 

order(i, j); 

} 

If i and j are int variables, then order(i , j) will use the reference to i and the 
reference to j to exchange, if necessary, their two values. In traditional C, this oper¬ 
ation must be accomplished by using pointers and dereferencing. 

When function arguments are to remain unmodified, it can be efficient and 
correct to pass them const call-by-reference. This is the case for types that are 
structures. 

struct large_size { 
int mem[N]; 

}; 

void print(const large_size& s) 

{ 
//since s will not be modified 
//avoid call-by-value copying 

} 

3.13 The Uses of void 

The keyword voi d is used to declare the generic pointer type—pointer to voi d. The 
keyword voi d is also used as the return type of a function not returning a value. In 
programming, such a function is sometimes called a pure procedure. In addition, 
voi d can be used in a cast to indicate that a value is unneeded. 

Most interesting is the use of void* as a generic pointer type. A pointer 
declared as type pointer to voi d, as in voi d* gp, may be assigned a pointer value of 
any underlying base type but may not be dereferenced. Dereferencing is the opera¬ 
tion * acting on a pointer value to obtain what is pointed at. It would not make 
sense to dereference a pointer to a voi d value. 
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void* gp; 
int* ip; 
char* cp; 

gp = ip; 
ip = reinterpret_cast<int*> gp; 
cp = ip; 

*ip = 15; 
*ip = *gp; 

//generic pointer 
//int pointer 
//char pointer 

//legal conversion 
//legal conversion 
//illegal conversion 

dereference of pointer to int 
generic pointer dereference 

//legal 
//illegal 

A key use for this type is as a formal parameter. For example, the library func¬ 
tion memcpyO is declared in cstring. 

void* memcpy(void* si, void* s2, size_t n); 

On older C++ systems or on C systems, this is string.h. This function copies n char¬ 
acters from the object based at s2 into the object based at si. The function works 
with any two pointer types as arguments. The type si ze_t is defined in cstddef and 
is often a synonym for unsigned int. 

A further use of void given as the parameter list in a function declaration 
means that the function takes no arguments. Thus, i nt foo() is equivalent in C++ 
to int foo(void). 

A voi d cast can inform the compiler that the expression’s computed value is to 
be discarded. 

In file voidcast.cpp 

//Simple use of a void cast 

int foo(int i) 

{ 
cout « "i is " « i « endl; 
return i ; 

} 

int main() 

{ 
int k = 5; 

static_cast<void>(foo(k)); //remove return value 

} 
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This use is a matter of taste, as most compilers will issue a warning only if the 
return value from a nonvoid function is not being used or tested for. 

3.14 Arrays and Pointers 

An array is a data type used to represent a large number of homogeneous values. 
The array is sequential storage. The elements of an array are randomly accessible 
through the use of subscripts. Arrays of all types are possible, including arrays of 
arrays. A typical array declaration allocates memory starting from a base address. 
An array name is, in effect, a pointer constant to this base address. In C++, only one¬ 
dimensional arrays are provided, with the first element always indexed as element 

zero. 
To illustrate some of these ideas, let us write a small program that fills an array, 

prints out values, and sums the elements of the array. 

In file sum_arrl.cpp 

//Simple array processing 

const int SIZE = 5; 

int main() 

{ 
int a[SIZE]; 
int i, sum = 0; 

//get space for a[0], ,a[4] 

for (i =0; i < SIZE; ++i) { 

a[i ] = i * i ; 
cout « "a[" « i « "] = " « a[i] « 
sum += a[i ] ; 

} 
cout « "\nsum = " « sum « endl; 

The output of this program is 

a[0] = 0 a[l] = 1 
sum = 30 

a[2] = 4 a[3] = 9 a[4] = 16 
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The preceding array requires enough memory to.store five integer values. Thus, if 
a[0] is stored at location 1000, the remaining array elements on a system needing 4 
bytes for an i nt are successively stored at locations 1004, 1008, 1012, and 1016. It 
is considered good programming practice to define the size of an array as a sym¬ 
bolic constant. Since much of the code may depend on this value, it is convenient to 
be able to change a single #def i ne line to process various size arrays. Notice how 
the various parts of the f o r statement are neatly tailored to provide a terse notation 
for dealing with array computations. 

3.14.1 Subscripting 

Assume that a declaration has the form 

int i, a [size]; 

We can write a [ i ] to access an element of the array. More generally, we may write 
a [expr], where expr is an integral expression, to access an element of the array. We 
call expr a subscript, or index, of a. The value of a C++ subscript should lie in the 
range 0 to size - 1. An array subscript value outside this range often causes a run¬ 
time error. When this happens, the condition is called “overrunning the bounds of 
the array,” or “subscript out of bounds.” It is a common programming error. The 
effect of the error in a C++ program is system dependent and can be quite confus¬ 
ing. One frequent result is that the value of an unrelated variable will be returned or 
modified. Thus, the programmer must ensure that all subscripts stay within 
bounds. 

3.14.2 Initialization 

Arrays can be initialized by a comma-separated list of expressions enclosed in 
braces. 

int array[4] = { 9, 8, 7 }; //a[0]=9, a[l]=8, a[2]=7 

When the list of initializers is shorter than the size of the array, the remaining ele¬ 
ments are initialized to 0. If uninitialized, external and static arrays are automati¬ 
cally initialized to 0. This is not so for automatic arrays, which start with undefined 
values. 

An array declared with an explicit initializer list and no size expression is given 
the size of the number of initializers. The following two arrays are equivalent: 

char laura[] = { 'V, 'm', ' p' }; 
char laura[3] = { 'V, 'm' , 'p' }; 
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3.15 The Relationship Between Arrays and Pointers 

An array name by itself is an address, or pointer value, and pointers and arrays are 
almost identical in terms of how they are used to access memory. However, there 
are subtle and important differences. A pointer is a variable that takes addresses as 
values. An array name is a particular fixed address that can be thought of as a con¬ 
stant pointer. When an array is declared, the compiler must allocate a base address 
and a sufficient amount of storage to contain all of the elements of the array. The 
base address of the array is the initial location in memory where the array is stored; 
it is the address of the first element (index 0) of the array. Suppose that we write the 
declaration 

const int N = 100; 

int a[N], *p; 

and the system causes memory bytes 300, 304, 308, . . . , 696 to be the addresses of 
a[0], a[l], a[2], . . . , a[99], respectively, with location 300 being the base 
address of a. We are assuming that each byte is addressable and that 4 bytes are 
used to store an int. The two statements p = a; and p = &a[0] ; are equivalent 

and would assign 300 to p. 
Pointer arithmetic provides an alternative to array indexing. The two statements 

p = a + 1; and p = &a[l]; are equivalent and would assign 304 to p. Assuming 
that the elements of a have been assigned values, we can use the following code to 

sum the array: 

In file sum_arr2.cpp 

sum = 0; 
for (p = a; p < &a[N]; ++p) 

sum += *p; 

is equivalent to 

sum = 0; 
for (i =0; i <N; ++i) 

sum += a[i ] ; 

In this loop, the pointer variable p is initialized to the base address of the array a. 
Then the successive values of p are equivalent to &a[0], &a[l], . . . , &a[N-l]. In 
general, if i is a variable of type i nt, p + i is the i th offset from the address p. In a 
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similar manner, a + i is the i th offset from the base address of the array a. Here is 
another way to sum the array. 

sum = 0; 
for (i = 0; i < N; ++i) 

sum += *(a + i); 

Just as the expression *(a + i) is equivalent to a[i], the expression *(p + i) is 
equivalent to p [ i ]. 

In many ways, arrays and pointers can be treated alike but there is one essential 
difference. Because the array a is a constant pointer and not a variable and we can¬ 
not change the address of a, expressions such as the following are illegal. 

a = p ++a a += 2 

3.16 Passing Arrays to Functions 

In a function definition, a formal parameter that is declared as an array is a pointer. 
When an array is being passed, its base address is passed call-by-value. The array 
elements themselves are not copied. As a notational convenience, the compiler 
allows array bracket notation to be used in declaring pointers as parameters. This 
notation reminds the programmer and other readers of the code that the function 
should be called with an array. To illustrate this, we write a function that sums the 
elements of an array of type i nt. 

In file sum_arr3.cpp 

int sum(int a[] , int n) //n is the size of a[] 

{ 
int i, s = 0; 

for (i =0; i < n; ++i) 
s += a[i]; 

return s; 

} 

As part of the header of a function definition, the declaration int a[] is equivalent 
to i nt *a. In other contexts, the two are not equivalent. 
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Suppose that v has been declared to be an array with 100 elements of type i nt. 
After the elements have been assigned values, we can use the functionsum() to add 
various elements of v. The following table illustrates some of the possibilities. 

Summing Elements of an Array 

Invocation What Gets Computed and Returned 

sum(v, 100) v[0] + v[l] + . . . + v[99] 

sum(v, 88) v[0] + v[l] + . . . + v[87] 

sum(v + 7, k) v[7] + v[8] + . . . + v[k+6] 

The last function call again illustrates the use of pointer arithmetic. The base 
address of v is offset by 7, and sum() initializes the local pointer variable a to this 
address. This causes all address calculations inside the function call to be similarly 
offset. 

In C++, a function with a formal array parameter can be called with an array 
argument of any size, provided the array has the right base type. 

3.17 The char* String: A Kernel Language ADT 

The C and C++ communities have “agreed” to treat the type char* as a form of 
string type. The understanding is that such strings will be terminated by the char 
value 0, and that the cstring (or string.h on older systems) package of functions will 
be called on this abstraction. In ANSI C++, the library string provides as a template 
class a standardized string type that is preferred to this use of char*. The language 
partly supports this abstraction by defining string literals as being null terminated. 
A char* or char [] can be initialized with a literal string. Note that the terminating 
0 is part of the initializer list. 

char* s = "c++"; // s[0] = 'c\ s[l] = ' + ', 
// s[2] = ' + ', s[3] = '0'; 

The cstring package contains more than 20 functions. 



94 Chapter 3 ▼ Functions, Pointers, and Arrays 

Some Functions in the cstring Library 

■ size_t strlen(const char* s); 
Computes the string length. The number of characters before 0 is returned. 

■ char* strcpy(char* si, const char* s2); 
Copies the string s2 into si. The value of si is returned. 

■ int strcmp(const char* si, const char* s2); 
Returns an integer that reflects the lexicographic comparison of si and s2. 
When the strings are the same, 0 is returned. When si is less than s2, a nega¬ 
tive integer is returned. When s2 is less than si, a positive integer is 

returned. 

By adhering to these conventions, the programmer can reuse a lot of string 
code. The library routines ensure that portable, readily understood code is available. 

In file str_func.cpp 

//string function implementations 

size_t strlen(const char* s) 

{ 
int i ; 
for (i = 0; s[i]; ++i) 

return i; 

} 

int strcmp(const char* si, const char* s2) 

{ 
i nt i ; 
for (i=0; sl[i] 

1 

return (sl[i] - 

} 

char* strcpy(char* 

{ 
for (int i = 0; 

1 

return si; 

|| s2[i] || Cs1[i]!=s2[i]); 

s2 [i ]) ; 

si, const char* s2) 

si [i ] = s2[i]; ++i) 

} 

++i) 
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Notice how these functions use the convention that a string is null terminated 
to end their major loops. The function strcpyO terminates when s2 [i] == 0. It is 
also good practice to place the const keyword in front of those strings whose con¬ 
tents will not be modified. 

3.18 Multidimensional Arrays 

C++ allows arrays of any type, including arrays of arrays. With two bracket pairs, we 
obtain a two-dimensional array. This idea can be iterated to obtain arrays of higher 
dimension. With each bracket pair, we add another array dimension. 

Declarations of Arrays 

i nt a[100]; a one-dimensional array 

int b[3] [5] ; a two-dimensional array 

int c[7][9] [2] ; a three-dimensional array 

A k-dimensional array has a size for each of its k dimensions. If we let s, represent 
the size of its zth dimension, the declaration of the array will allocate space for 
s1xs2x...xs(, elements. In the preceding table, b has 3x5 elements, and c has 
7x9x2 elements. Starting at the base address of the array, all of the array ele¬ 
ments are stored contiguously in memory, row by row. 

Initialization of multidimensional arrays can be a brace-enclosed list of initializ¬ 
ers, where each row is initialized from a brace-enclosed list. 

int a[2][3] = { {1, 2, 3,}, {4, 5, 6} } ; 
//same as {1, 2, 3, 4, 5, 6} 

char name[3][9] = { "laura", "michelle", "pohl"}; 
//pad with '\01 

This last example has name[] [] representing three strings, each storing nine char 
values. So, name[0][0] is ' 1 ', name[0][l] is 'a', name[0][2] is ' u ', 
name[0] [3] is' r', name[0] [4] is 'a', name[0] [5] is '\0', name[0] [6] is ' \0', 
name[0] [7] is '\0', and name[0] [8] is '\0' . 
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3.19 Assertions and Program Correctness 

An assertion is a program check for correctness that, if violated, forces an error exit. 
One point of view is that an assertion is a contractual guarantee among the provider 
of a piece of code, the code’s manufacturer, and the code’s client or user. In this 
model, the client needs to guarantee that the conditions for applying the code exist, 
and the manufacturer needs to guarantee that the code will work correctly under 
these provisions. In this methodology, assertions provide various guarantees. 

Program correctness can be viewed in part as a proof that the computation ter¬ 
minated with correct output dependent on correct input. The user of the computa¬ 
tion has the responsibility of providing correct input. This is a precondition. The 
computation, if successful, satisfies a postcondition. Such assertions can be moni¬ 
tored at runtime to provide very useful diagnostics. Indeed, the discipline of think¬ 
ing out appropriate assertions frequently allows the programmer to avoid bugs and 
pitfalls. 

In the C++ community, there is an increasing emphasis on the use of assertions. 
The standard library assert provides the macro assert and is invoked as though its 
function signature were 

void assert (expression); 

If the expression evaluates as f al se, execution is aborted with diagnostic output. 
The assertions are discarded if the macro NDEBUG is defined. 

The following program provides assertions to demonstrate this technique. The 
program examines a slice of an array for its minimum element and places that min¬ 
imum element in the first examined array position. 

In file order3.cpp 

//Finding a minimum element in an array slice 

void order(int& p, int& q) 

{ 
int temp = p; 

if (p > q) { 

p = q; 
q = temp; 

} 
} 
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int place_min(int a[], 
{ 

int i, min; 
assert(size >= 0); 

for (i = lb; i < lb 
order(a[lb], a[i 

return a[lb] ; 
} 

int main() 

{ 
int a[9] = { 6, -9, 99, 3, -14, 9, -33, 8, 11}; 

cout « "Minimum = " « place_min(a, 3, 2) « endl; 
assert(a[2]<=a[3] && a[2]<=a[4]); //postcondition 

} 

The precondition assertion in pi ace_mi n() guarantees that a nonnegative number 
of elements will be searched. The postcondition in mai n() checks that the mini¬ 
mum element was found and placed in the correct position. 

int size, int lb = 0) 

//precondition 

+ size; ++i) 

+ 1]); 

3.20 Free-Store Operators new and delete 

The unary operators new and del ete are available to manipulate free store. They are 
more convenient than and replace the C standard library functions mallocO, 
callocC), and free() in most applications. Free store is a system-provided mem¬ 
ory pool for objects whose lifetime is directly managed by the programmer. The 
programmer creates an object using new, and destroys the object using delete. 
This is important for dynamic data structures, such as lists and trees. 

In C++, the operator new is typically used in the following forms: 

new type-name 
new type-name initializer 
new type-name[expression] 

In each case, there are at least two effects. First, an appropriate amount of store is 
allocated from free store to contain the named type. Second, the base address of the 
object is returned as the value of the new expression. 
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The operator new can either throw a bad^alloc exception or return the 
value 0, when memory is unavailable. (See Section 9.9, “Standard Exceptions and 

Their Uses,” on page 318.) 
The following example uses new: 

int* p, *q; 
p = new int(5); 
q = new i nt [10] ; 

//allocation and initialization 
//gets q[0] to q[9] with q = &q[0] 

In this code, the pointer to i nt variable p is assigned the address of the store 
obtained in allocating an object of type i nt. The location pointed at by p is initial¬ 
ized to the value 5. This use is not usual for a simple type, such as i nt, in that it is 
far more convenient and natural to automatically allocate an integer variable on the 
stack or globally. Usually, an array of elements is allocated to the pointer q. 

The operator delete destroys an object created by new, in effect returning its 
allocated storage to free store for reuse. The operator delete is used in the follow¬ 

ing forms: 

delete expression 
delete [ ] expression 

The first form is used when the corresponding new expression has not allocated an 
array. The second form has empty brackets, indicating that the original allocation 
was an array of objects. The operator del ete does not return a value. Equivalently, 
one can say that its return type is void. The following example uses these con¬ 

structs to dynamically allocate an array. 

In file dynarray.cpp 

//Use of new to dynamically allocate an array 
//assumes older-style return of 0 for allocation error 

int main() 

{ 
int* data; 
int size; 

cout « "\nEnter array size: "; 
cin » size; 
assert(size > 0); 
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data = new int[size]; 
assert(data != 0); 

//allocate an array of ints 
//data != 0 allocation succeeds 

for (int j = 0; j < size; ++j) 
cout « (data[j] = j) « '\t'; 

cout « "\n\n"; 
deleted data; //deallocate an array 

} 

Dissection of the dynarray Program 

■ int* data; 
int size; 

cout « "\nEnter array size: "; 
cin » size; 
assert(size > 0); 

data = new int[size]; //allocate an array of ints 
assert(data != 0); //data != 0 allocation succeeds 

The pointer variable data is used as the base address of a dynamically allocated 
array whose number of elements is the value of si ze. The user is prompted for the 
integer valued size. The new operator is used to allocate storage from free store 
capable of storing an object of type i nt [si ze]. On a system on which integers take 
2 bytes, this would allocate 2 x si ze bytes. At this point, data is assigned the base 
address of this store. The second assert guarantees that allocation succeeded. In 
newer C++ systems, if the new operator fails, it can throw an exception of type 
bad_alloc, automatically aborting the program. 

■ for (int j =0; j < size; ++j) 
cout « (data[j] = j) « '\t'; 

This statement initializes the values of the data array and prints them. 

■ deleted data; //deallocate an array 

The operator delete returns the storage associated with the pointer variable data 
to free store. This can be done only with objects allocated by new. The bracket form 
is used because the corresponding allocation was of an array. 
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This introductory discussion of the free-store operators treats the basic cases. 
The free-store operators are addressed in greater detail in Chapter 5, “Constructors 

and Destructors.” 

3.21 Pragmatics 

It is becoming a standard practice to use C++ libraries for accessing both char- 
arrays and general arrays instead of coding the array functions directly. Here, we 
discuss two such libraries: one for vectors and one for string processing. 

3.21.1 Vector Instead of Array 

The standard C++ library contains the template for the vector data structure. We 
will discuss this in detail later (see Section 7.4, “Parameterizing the Class vector,” 
on page 249). In almost all cases, the vector is an improvement over the simple C++ 
array but can be used essentially as an array. We recommend that the vector be used 
in place of arrays for most programming. For example, the function in Section 3.16, 
“Passing Arrays to Functions,” on page 92, for summing an array uses 
int sum(int a[] , int n). We can trivially change this to use vector as follows: 

int sum(vector<int> a, int n) 

{ 
int i, s = 0; 

for (i =0; i < n; ++i) 
s += a[i] ; 

return s; 

} 

Notice that the only change was to transform the array declaration to a vector decla¬ 
ration. Without investigating the details of template syntax, we can use a simple 
rule: 

Type 7c/[] is replaced by vector<Type> id 

If the declaration requires an array size, we can extend the rule as follows: 

Type 7d[s7'ze] is replaced by vector<Type> id(size) 
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One improvement for vector is that it knows the number of elements associ¬ 
ated with it. The expression id. si ze() gives the current number of elements con¬ 
tained in the vector. Using this information improves the sum() function by making 
it simpler and by avoiding errors that come about in C and C++ when the wrong size 
is passed as a parameter. This prevents out-of-range errors that are the bane of C 
array programming. 

In file sum_arr4.cpp 

//sum written to use a.size() in place of N 

int sum(vector<int> a) 

{ 
int i, s = 0; 

for (i =0; i < a.sizeO; ++i) 
s += a[i]; 

return s; 

} 

3.21.2 String Instead of char* 

In C++, the standard library provides both cstring and string. Both libraries can be 
used for string processing, and they can be used jointly. However, C++ style is to 
prefer the use of the stri ng type, which is more robust and has a more extensive 
interface. In certain cases, it is both more efficient and elegant. For a more extended 
discussion of stri ng, see Section 5.4, “An Example: Dynamically Allocated Strings,” 
on page 159, and Section 5.10, “Strings Using Reference Semantics,” on page 181. 

The following simple program uses stri ng. The program is easy to understand 
and is easy to use because the operator + provides concatenation. 

In file stringl.cpp 

//Print strings with line numbers 

void pr_line_number(string& line) 

{ 
static int In = 0; 

ln++; //start the line numbers at 1 
cout « "line " « In « + line + "\n"; 

} 
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int main() 

{ 
string si, s2; 

cin » si » si; 
pr_line_number(sl); 
pr_line_number(s2); 
cout « endl; 

3.22 Moving from C++ to Java 

Java does not have pointers but instead has nonprimitive variables that are refer¬ 
ences. Java avoids much of the direct programmer management of memory that 
causes so many bugs in C and C++. Java does have arrays, which are reference types. 
Java does not have functions that are outside the scope of a class. Java’s term for 
functions is methods to indicate that all functions are members of a class. The clos¬ 
est construct to an ordinary C or C++ function is a static method. Java can overload 
methods but does not allow default arguments or inlining. 

The following program initializes an array, prints its values, and computes its 
sum and average value: 

In file SumArray.java 

class SumArray { 
public static void main(String[] args) 

{ 
int[] data = {1, 2, 3, 4, 5, 6, 7}; 
int sum = 0; 
double average; 

for (int i =0; i < 7; ++i) { 
sum = sum + datafi]; 
System.out.print(data[i] + ", "); 

} 
average = sum / 7.0; 
System.out.println("\n\n sum = " + sum 

+ " average = " + average); 

} 
} 
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Dissection of the SumArray Program 

■ int[] data = {1, 2, 3, 4, 5, 6, 7}; 

The variable data is declared to refer to an array of integers. It is allocated seven 
integer elements, which are initialized to the values 1 through 7. 

■ for (int i = 0; i < 7; ++i) { 

The fo r statement declares the local variable i to be used as an index or a subscript 
variable. This for statement is the most common array code idiom. The initial sub¬ 
script for array objects in Java is 0, so the subscript variable is usually initialized to 
0. The array length is 7, so the terminating condition is usually i < 7 so that the 
array index will stop at 7 - 1. The last part of the for statement header is the auto¬ 
increment of the index variable, so that each array element gets processed in turn. 

■ sum = sum + data[i]; 
System.out.print(data[i] + ", "); 

} 

The element data[i ] is selected by computing the index value. A common error 
that results in an exception is for this to be out of range. These subscripted or 
indexed elements can be used as simple variables of type i nt. In this code, each ele¬ 
ment’s integer value is added to the variable sum. Then, in turn, each element’s 
value is printed. 

Note: In this example, mai n() is stati c. The Java stati c method more or less cor¬ 
responds to an ordinary C function. 
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Summary 

This summary emphasizes, in order of appearance, changes and differences from C 

in the C++ language. 

1. In ANSI C++, the empty parameter list is always equivalent to using voi d, and so 
mai n() is equivalent to mai n(voi d). The function mai n() implicitly returns the 
integer value 0 if no explicit return expression statement is executed. 

2. A formal parameter can be given a default argument, usually a constant that 
occurs frequently when the function is called. Use of a default argument saves 
writing this default value at each invocation. The following function header 

shows the syntax: 

int sqr_or_power(int n, int k = 2); //k=2 is default 

3. Overloading refers to using the same name for multiple meanings of an opera¬ 
tor or a function. The meaning selected depends on the types of the arguments 
used by the operator or function. In the following code, we overload avg_arr (): 

//Average the values in an array 

double avg_arr(const int a[], int size); 
double avg_arr(const double a[], int size);{ 

4. Reference declarations allow an object to be given an alias, or alternative name. 
These declarations can be used for call-by-reference arguments. For example, 
the function order(), using this mechanism, is declared as 

void order(int &p, int &q); 

5. C++ provides the keyword inline to preface a function declaration when the 
programmer intends the code replacing the function call to be inline. In most 
cases, this should be used in place of #def i ne macros. 

6. C++ inherited C’s single global namespace. Programs written by various parties 
can inadvertently have name clashes when combined. C++ adds namespace 
scope, as in 
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namespace StellarSoft { 
class S_widget { . }; 
int update{ . }; 

} 

The namespace identifier can be used as part of a scope-resolved identifier. This 
has the form ' 

namespaceJd.\id 

There is also a using declaration, which lets a client have access to all names 
from that namespace. 

using namespace StellarSoft; 

S_widget w; //Stel1arSoft::S_widget 

Namespaces can be used to provide a unique scope that replaces static global 
declarations. 

7. The declaration void* is a generic pointer type. A pointer declared as type 
pointer to voi d, as in voi d* gp, can be assigned a pointer value of any underly¬ 
ing base type, but it may not be dereferenced. Unlike in C, a generic pointer may 
not be assigned to a nonvoid pointer type without an explicit cast. In this 
regard, C++ is again more type safe than C is. 

8. The C and C++ communities have “agreed” to treat the type char* as a form of 
string type. The understanding is that these strings will be terminated by the 
char value 0, and that the cstring (or string.h on older systems) package of func¬ 
tions will be called on this abstraction. In ANSI C++, the library string provides 
as a template class a standardized string type that is preferred to this use of 
char*. 

9. The unary operators new and del ete are available to manipulate free store. Free 
store is a system-provided memory pool for objects whose lifetime is directly 
managed by the programmer. The programmer creates an object by using new 
and destroys the object by using delete. This is important for dynamic data 
structures, such as lists and trees. 

10. The standard library contains the template for the vector data structure. In 
almost all cases, the vector is an improvement over the simple C++ array but 
can be used essentially as an array. We recommend that it be used in place of 
arrays for most programming. 
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Review Questions 

1. If not explicitly returned, the value_is returned by mai n (). 

2. Replace #define ABS(X) ((X <0) ? -X: X) by an inline function. 

3. Discuss the difference between using the macro ABS(f (y)) and the equivalent 
inline call. Assume that f (y) calls a nontrivial function. 

4. What is wrong with overloading int foo(); and void foo() ; in the same 
scope? Note that the only difference in their declarations is the return types. 

5. The C++ STL vector can be used to replace_in C and C++ programs. 

6. In C, control of an i f statement depends on whether an i f statement expres¬ 
sion is zero or nonzero. In C++, this condition is type_. 

7. In C, the function st rl en () is found in_; in C++, it is found in_. 
Can you think of a reason for this difference? 

8. The _ exception is thrown when_ fails to properly allocate 
memory. 

9. The operator_is used in place of the cstdlib function free() to return 
memory to free store. 

10. In C, call-by-reference requires the use of pointers, but in C++,_may be 
used as well. 
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Exercises 

1. Pointers to char strings are by convention terminated with the value 0. The fol¬ 
lowing function implements a string-equality test. Note its use of pointer arith¬ 
metic. The construct *sl++ means “dereference the pointer si, and after using 
this value in the expression, add 1 to its pointer value.” 

bool streq(const char* si, const char* s2) 
{ 

while ( *sl != 0 && *s2 != 0) 
if ( *sl++ != *s2++) 

return false; 
return (*sl == *s2); 

} 

Write and test a function 

bool strneq(const char* si, const char* s2, int n); 

that returns true if the first n characters of the two strings are the same and 
that otherwise returns false. 

2. Reimplement the preceding functions using array notation. 

bool streq(char sl[], char s2[]); 

3. The standard header file cstring contains the prototypes for a number of useful 
string functions found in the standard library. Among them is: 

size_t strlen(const char* s); 

This returns the length of a string. The text in Section 3.17, “The char* String: A 
Kernel Language ADT,” on page 94, gave a terse definition of this function; here 
is another way to code it: 



108 Chapter 3 y Functions, Pointers, and Arrays 

//iterative string length 
size_t strlen(const char *s) 

{ 
size_t len = 0; 

• 

while (*s != ’\0') { 
++len; 
++s; 

} 
return len; 

//string terminator 
//increment length 
//advance pointer 

} 

This algorithm marches the pointer s down the string, looking for the termina¬ 
tion character. External to the function, the pointer value has not been changed, 
because it is call-by-value. Write a recursive version of this function. 

4. The greatest common divisor of two integers is recursively defined in 

pseudocode as follows: 

GCD(m,n) is: 
if m mod n equals 0 then n; 
else GCD(n, m mod n); 

Recall that the modulo operator in C++ is %. Code this routine in C++. 

5. We wish to count the number of recursive function calls by gcd (). It is generally 
bad practice to use globals inside functions. In C++, we can use a local stati c 
variable instead of a global. Complete and test the following C++ gcd() 

function: 

int gcd(int m, int n) 

{ 
static int fcn_calls = 1; //happens once 
int r; //remainder 

fcn_cal1s++; 

} 
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6. The following C program uses traditional C function syntax: 

/* Compute a table of cubes. */ 

#define N 15 
#define MAX 3.5 

int main() 
{ 

int i ; 
double x, cube(); 

printf("\n\nINTEGERS\n"); 
for (i =1; i <= N; ++i) 

printf("cube(%d) =%d\n", i, cube(i)); 
printf("\n\nREALS\n"); 
for (x = 1; x <= MAX; x += 0.3) 

printf("cube(%f) = %f\n", x, cube(x)); 

} 

double cube(x) 
double x; 

{ 
return (x * x * x); 

} 

The program gives the wrong answers for the integer arguments because inte¬ 
ger arguments are passed as if their bit representation were double. It is unac¬ 
ceptable as C++ code. Recode, as a proper function prototype, and run, using a 
C++ compiler. C++ compilers enforce type compatibility on function argument 
values. Therefore, the integer values are properly promoted to doubl e values. 
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7. Predict what the following program prints: 
i 

int foo(int n) 

{ 
static int count = 0; 

++count; 
if ( n <= 1) { 

cout « " count = " « count « endl; 

return n; 

} 
el se 

foo(n / 3); 

} 

int main() 

{ 
foo(21) ; 
foo(27); 
foo(243); 

} 

8. The stati c storage class is useful in multifile compilation. Predict what the fol¬ 

lowing program prints: 

// file A.c 

static int foo(int i) 

{ 
return (i * 3); 

} 

int goo(int i) 

{ 
return (i * foo(i)); 

} 

// file B.c 

int foo(int i) 

{ 
return (i * 5); 

} 
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int goo(int i); //imported from file A.c 

int main() 

{ 
cout « "foo(5) = " « foo(5) « endl; 
cout « "goo(5) = " « goo(5) « endl; 

} 

The program is compiled as follows: g++ A.c B.c. File-scope functions are by 
default extern. The foo() in file A.c is private to that file, but goo() is not. 
Thus, redefining foo() in file B.c does not cause an error. Try this again, this 
time dropping stati c, to see what error message your compiler gives. Then try 
a third time, making goo() i nl i ne in A.c, to see what error message your com¬ 
piler gives. Recode these files, using anonymous namespaces to replace the 
static extern declarations. 

9. C++ provides a method to pass command-line arguments into the function 
mai n(). The following code prints its command-line arguments: 

//Print command-line arguments rightmost first 

int main(int argc, char **argv) 

{ 
for (--argc; argc >= 0; --argc) 

cout « argv[argc] « endl; 

} 

Compile this into an executable called echo. Run it with the following command¬ 
line arguments: 

echo a man a plan a canal panama 

The argument argc is passed the number of command-line arguments. Each 
argument is a string placed in the two-dimensional array argv. 

10. Modify the previous program to print the command-line arguments from left to 
right and to number each of them. 

11. One advantage of C++ over traditional languages is type extensibility. Using the 
complex library, you can import a complex number type that can be mixed and 
matched with the native arithmetic types. Overload and test 

complex<double> avg_arr(const complex<double> a[], int size) 
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12. Redo the previous exercise and use vector<complex<double> > a as the argu¬ 
ment. Overload and test, using the fact that vectors maintain their own size: 

complex<double> avg_arr(const vector< complex<double> > a) 

13. The problem with using void* is that it cannot be dereferenced. Thus, to per¬ 
form useful work on a generic pointer, one must cast it to a standard working 
type, such as a char*. Write and test 

void* memcpy(void* si, const void* s2, unsigned n) 

{ 
char* from = s2, *to = si; //uses char type 

} 

14. Write a program that performs string reversal. Assume that si ends up with the 
reverse of the string s2 and that si points at enough store that is adequate for 
reversal. (See Section 3.17, “The char* String: A Kernel Language ADT,” on page 
94, for some examples of string-handling functions.) 

char* strrev(char* si, const char* s2); 

15. Write a program that performs string reversal, using storage allocated with new. 
Assume that si ends up with the reverse of the string s2, and use new to allo¬ 
cate si of length strlen(s2) + 1, which is adequate store for si. 

char* strrev(char*& si, const char* s2); 

16. Write a program that allocates a one-dimensional array from free store, using 
user-provided lower and upper bounds. The program should check that the 
upper bound exceeds the lower bound. If that is not the case, perform an error 
exit, using the assert library, as follows: 

//input lower bound and upper bound 

assert(ub - 1b > 0); 

The size of this array will be (upper bound - lower bound + 1) elements. Given a 
standard C++ array of this many elements, write a function that uses the stan¬ 
dard array to initialize the dynamic array. Test this by writing out in a nicely for¬ 
matted style both arrays before and after initialization. 
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17. Write a function 

double findmin(double fcn(double), double x0, 
double xl, double incr, double& xmin) 

that returns the value at fen (xmin), where xmin is the minimum value of 
fcn(x) in the interval (x0, xl), evaluated at increments of incr. 

18. Rewrite the function findmin() so that the range (0, 1.0) and the increment 
0.00001 is used by default, unless explicitly passed in. Note that to do this, the 
preceding function arguments should be used but in a different order. Why? 

19. Write a function 

double plot(double y[], double fcn(double), double x0, 
double xl, double incr) 

that computes y [i ] = fcn(x-j), where x^ is in the interval (x0, xl), evaluated 
at increments of i ncr. Use the defaults (0, 1.0) and an increment of 0.001, with 
y expected to have 1,000 elements. 

20. Redo the previous exercise to use vector<double> y. 

21. Write a function findzero() that finds xzero, the value closest to zero in a 
specified interval. The function should have the same arguments as fi ndmi n(). 
Again write it to have standard default values for its parameters. 

22. Modify the dynamic array program in Section 3.20, “Free-Store Operators new 
and del ete,” on page 98, so that it is initialized by pseudorandom numbers in 
the range (0, RAND_MAX). For 5,000 such random numbers, find their average 
value. See whether, while using the operator new, you can do this problem for 
50,000, 500,000, 5,000,000, . . ., until you find a value on your system that 
causes new to fail. If you rewrote this code to use ordinary stack-allocated 
arrays, at what size on your system will it fail to allocate the array? Also try the 
same problem, using vector<i nt>, and see how large a problem can be run. 
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23. Write a function i ndex (BMI) to compute body mass as follows: 

BMI = (weight in kilograms) / (height in meters)2 

If the BMI is over 25, you are considered overweight; if it is over 40, you are con¬ 
sidered obese. Test the program on data taken from at least five individuals, 
printing out for each name a weight, height, BMI, and BMI category of normal, 

overweight, or obese. 

24. (Java) Recode the BMI program in Java. Use Java arrays to store values for each 

individual. 
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sses 

This chapter introduces the reader to structures and classes. The original name 
given by Stroustrup to his language was “C with classes.” A class is an extension of 
the idea of struct found in C. A class packages a data type with its associated func¬ 
tions and operators. User-defined data types, such as stacks, complex numbers, and 
card decks are examples of classes. In C++, structures may have member functions 
and also may have parts of their descriptions hidden. Both of these extensions will 
be described here. 

C++ classes bundle data declarations with function declarations, thereby cou¬ 
pling data with behavior. The class description also has access modifiers that allow 
data hiding. Access that is public is available to any part of the code. Access that is 
private is restricted principally to use by the class code itself. 

Allowing private and public visibility for members gives the programmer control 
over what parts of the data structure are modifiable. The private parts are hidden 
from client code, and the public parts are available. It is possible to change the hid¬ 
den representation, but not to change the public access or functionality. If this is 
done properly, client code need not change when the hidden representation is mod¬ 
ified. A large part of the OOP design process involves thinking up the appropriate 
ADTs for a problem. Good ADTs not only model key features of the problem but 
also are frequently reusable in other code. 

4.1 The Aggregate Type struct and class 

The structure type allows the programmer to aggregate components into a single 
named variable. A structure has components, called members, that are individually 
named. Since the members of a structure can be of various types, the programmer 
can create aggregates that are suitable for describing complicated data. 

As a simple example, let us define a structure that will describe a point. We can 
declare the structure type as follows: 

struct point { 
double x, y; 

} 
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In c++, the structure name, or tag name, is a type. In the preceding declaration, 
struct is a keyword, poi nt is the structure tag name, and the variables x and y are 
members of the structure. The declaration point can be thought of as a blueprint; it 
creates the type poi nt, but no instances are allocated. The declaration 

point pt; 

allocates storage for the variable pt. To access the members of pt, we use the struc¬ 
ture member operator, represented by a period, or dot. It is a construct of the form 

structure_variable. member_name 

and is used as a variable in the same way that a simple variable or an element of an 
array is used. Suppose that we want to assign to pt the value (-1, +0.5). To do this, 

we can write 

pt.x = -1; 
pt.y = 0.5; 

The member name must be unique within the specified structure. Since the 
member must always be prefaced or accessed through a unique structure variable 
identifier, there is no confusion between two members that have the same name in 

different structures. An example is 

struct fruit { 
char name[15]; 
int calories; 

}; 

struct vegetable { 
char name[15]; 
int calories; 

}; 

fruit a; //struct fruit a; in C 
vegetable b; //struct vegetable b; in C 

Having made these declarations, we can access a.calories and b.calories with¬ 

out ambiguity. 
In general, a structure is declared with the keyword struct, followed by an 

identifier (tag name), followed by a brace-enclosed list of member declarations. The 
tag name is optional but should be expressive of the ADT concept being modeled. 
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When the tag name is not present, the structure declaration is anonymous and can 
be used only to declare variables of that type immediately, as in 

struct { 
int a, b, c; 

} triples [2] = { {3, 3, 6}, {4, 5, 5} }; 

4.2 Structure Pointer Operator 

We have already seen the use of the member operator in accessing members. Now 
we introduce the structure pointer operator ->, which provides access to the mem¬ 
bers of a structure via a pointer. This operator is typed on the keyboard as a minus 
sign followed by a greater-than sign. If a pointer variable is assigned the address of 
a structure, a member of the structure can be accessed by a construct of the form 

pointer_to_structure -> member_name 

An equivalent construct is given by 

(*pointer_to-Structure) . member_name 

The operators -> and ., along with () and [], have the highest precedence, and 
they associate left to right. In complicated situations, the two accessing modes can 
be combined. The following table illustrates their use. 

Declarations and Assignments 

point w, *p = &w; 

poi nt v[5]; 
w.x = 1; 

w.y = 4; 
v [0] = w; 

Expression Equivalent Expression Value 

w.x p -> X 1 

w.y p -> y 4 

v[0].x v -> X 1 

(*p) -y p -> y 4 
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4.3 Member Functions 

The concept of struct or cl ass is augmented in C++ to allow functions to be mem¬ 
bers. The function declaration is included in the structure declaration and is 
invoked by using access methods for structure members. The idea is that the func¬ 
tionality required by the structure or class should be directly included in the 
struct declaration. This construct improves the encapsulation of the ADT poi nt 
operations by packaging it directly with its data representation. Let us add a print¬ 
ing operation and an initializing operation to the ADT poi nt. 

In file pointl.cpp 

struct point { 
double x, y; 
void print() { cout « "(" « x « « y « } 
void init(double u, double v) { x = u; y = v; } 

}; 

The member functions are written in much the same way that other functions are. 
One difference is that they can use the data member names directly. Thus, the mem¬ 
ber functions in poi nt use x and y in an unqualified manner. When invoked on a 
particular object of type poi nt, they act on the specified member in that object. 

Let us use these member functions in an example. 

int main() 

{ 
point wl, w2; 

wl.init(0, 0.5); 
w2.init(-0.5, 1.5); 
cout « "\npoint wl = "; 
wl.print() ; 
cout « "\npoint w2 = "; 
w2 .print() ; 

} 

This prints 

point wl = (0,0.5) 
point w2 = (-0.5,1.5) 
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Member functions that are defined within the struct are implicitly inline. As a rule, 
only short, heavily used member functions should be defined within the struct, as 
in the example just given. To define a member function outside the struct, the 
scope resolution operator is used (see Section 4.6, “Class Scope,” on page 122). Let 
us illustrate this by adding a member function, point: :plus(). We write it out 
fully, using the scope resolution operator. In this case, the function is not implicitly 
inline. 

In file pointl.cpp 

struct point { 

void plus(point c); //function prototype 

}; 

void point::plus(point c) //definition not inline 

{ 
//offset the existing point by point c 

x += c.x; 

y += c.y; 

} 

Member functions within the same struct can be overloaded. Consider adding 
to the data type point a print operation that has a string parameter printed as the 
name of the point. The print operation could be added as the following function 
prototype within the struct: 

In file point l.cpp 

struct point { 

void print(string name); 

}; 

void point::print(string name) 

{ 
cout « name « " (" « x « 

} 

ii \ ii . 

« y « ) ; 

The definition that is invoked depends on the arguments to print(): 
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//invokes standard print 
//invokes print with name 

wl. pri nt(); 
wl.print("point w = "); 

A member function is conceptually part of the type. The inline specification 
can be used explicitly, with member functions defined at file scope, which avoids 
having to clutter the class definition with function bodies. The grouping of opera¬ 
tions with data emphasizes their “objectness.” Objects have a description and 
behavior. Think of an object as a noun and its behavior as the verbs that are most 
often associated with that noun. OOP is a data-centered design approach. 

4.4 Access: Private and Public 

In C++, structures have public and private members. Inside a struct or a cl ass, the 
use of the keyword pri vate followed by a colon restricts the access to the members 
that follow this construct. The private members can be used by only a few catego¬ 
ries of functions, those whose privileges include access to these members. These 
functions include the member functions of the structure. Other categories of func¬ 
tions that have access will be discussed later. 

We modify our example of point to hide its data representation, as follows: 

In file point2.cpp 

struct point { 
public: 

void print(){ cout « "(" « x « « y « 
void init (double u, double v) {x = u; y = v; } 
void pius(point c); 

private: 
double x, y; 

}; 

An attempt by a nonmember function to access the now private members will result 
in a syntax error. 

void foo(point w) 

{ 

cout « " x coordinate = " « w.x ; //syntax error 

} 
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Hiding data is an important component of OOP. It allows for more easily 
debugged and maintained code, because errors and modifications are localized. Cli¬ 
ent programs need be aware only of the type’s interface specification. 

4.5 Classes 

Classes in C++ are introduced by the keyword class. A form of struct, classes 
have a default privacy specification of private. Thus, struct and class can be 
used interchangeably, with the appropriate access specifications. In the following 

example, we modify poi nt to use cl ass: 

In file point3.cpp 

class point { 
double x, y; //implicitly private 

public: 
void print() { cout « "(" « x « « y « 
void init(double u, double v) { x = u; y = v; } 

void plus(point c); 

}; 

} 

Contemporary C++ style is to use access specifiers explicitly rather than to rely 
on defaults. The use of implicit features is labor saving but error prone. Therefore, 

it is better style to declare poi nt as follows: 

In file point4.cpp 

//place public members first 
II N II 

« y « ) 
y = v; } 

class point { 
public: 

void print() { cout « "(" « x « 
void init(double u, double v) { x = u; 

void plus(point c); 
private: 

double x, y; 

}; 

When access keywords are used, struct and cl ass are interchangeable. Stylish 
cally, professional C++ programmers use class in preference to struct unless the 

struct has only public data members. 



122 Chapter 4 ▼ Classes 

As a second example, let us write an ADT for complex numbers, which many sci¬ 
entific computations require. Let us recode complex numbers from Section 1.4, 
“Classes and Abstract Data Types,” on page 7. 

In file complex4.cpp 

class complex { 
public: //need to know style - our preference 

void assign(double r, double i) { real = r; imag = i; } 
void printO { cout « real « " + " « imag « "i } 

private: 
double real, imag; 

}; 

This text uses access keywords explicitly and places public members first and 
private members last. In this “need-to-know” style, everyone needs to know the pub¬ 
lic interface, but only the class provider needs to know the private implementation 
details. 

The presence of member functions within the class shows the clear relationship 
of the data type compl ex and its associated operations assi gn () and pri nt (). 
There is also less likelihood of a misuse of the representation, since the implemen¬ 
tation details real and imag are private. An attempt to directly alter these members 
would result in the syntactic error access violation, so a client of this version of 
compl ex must use member functions that properly act on complex variables. 

4.6 Class Scope 

Class adds new scope rules to those of the kernel language. (See Section 3.9, “Scope 
and Storage Class,” on page 74.) One point of classes is to provide an encapsulation 
technique. Conceptually, it makes sense that all names declared within a class be 
treated within their own scope as distinct from external names, function names, and 
other class names. This creates a need for the scope resolution operator. 

4.6.1 Scope Resolution Operator 

The scope resolution operator, the highest-precedence operator in the language, 
comes in two forms: 

::i //unary operator - refers to external scope 
foo_bar::i //binary operator - refers to class scope 
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Its unary form is used to uncover or to access a name that has external scope and 
has been hidden by local or class scope. 

In file how_manyl.cpp 

int count = 0; //global count 

void how_many(double w[], double x, int& count) 

{ 
for (int i = 0; i < N; ++i) 

count += (w[i] == x); //local count 
++ ::count; //global count tracks calls 

} 

To understand this program fragment, change the parameter i nt& count to int& 
cnt. Now there is no need for the scope resolution operator, as the two identifiers 

are distinct. 

In file how_many2.cpp 

int count = 0; //global count 

void how_many(double w[], double x, int& cnt) 

{ 
for (int i = 0; i < N; ++i) 

cnt += (w[i] == x); 
++count; //global count tracks calls 

} 

Binary scope resolution is used to clarify names that are reused within classes: 

class widgets { public: void f(); }; 
class gizmos { public: void f(); }; 

void f() { . } //ordinary external f 
void widgets::f() { . } //f scoped to widgets 
void gizmos::f() { . > //* scoped to gizmos 

One way to think about the scope resolution operator is to view it as providing a 
path to the identifier. If there is no scope modifier, normal scope rules apply. Con¬ 

tinuing with the previous example: 



124 Chapter 4 ▼ Classes 

widgets w; 
gizmos g; 

g-f(); 
w.f() ; 
g.gizmos::f(); //legal but redundant 
g.widgets::f(); //illegal; widgets::f() cannot act on a gizmo 

4.6.2 Nested Classes 

Like blocks and namespaces, classes are scopes and can nest. Nesting allows local 
hiding of names and local allocation of resources. This is often desirable when a 
class is needed as part of the implementation of a larger construct. The following 
nested classes illustrate current C++ rules. 

In file nested.cpp 

char c; 

class X { 
public: 

char c; 
class Y { 
public: 

void foo(char e) { X t; ::c = t.X::c = c = e; } 
private: 

char c; //X::Y::c 

}; 
}; 

//external scope ::c 

//outer class declaration X:: 

//X::c 
//inner class declaration X::Y:: 

In class Y, the member function foo(), when using : : c, references the global vari¬ 
able c; when using X: : c, it references the outer class variable; when using c, it refer¬ 
ences the inner class variable X: : Y: : c. All three variables named c are accessible by 
using the scope resolution operator. 

Furthermore, purely locally scoped classes can be created within blocks. Their 
definitions are unavailable outside their local block context. 

void foo() 

{ 
class local { . } x; 

} 

local y; //i1 legal:local is scoped within foo() 
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Notice that C++ allows you to nest function definitions by using class nesting, which 
is a restricted form of function nesting. The member functions must be defined 
inside the local class and cannot be referred to outside this scope. As in C, ordinary 
nested functions are not possible. 

4.7 An Example: Flushing 

We want to estimate the probability of being dealt a flush in poker. A flush occurs 
when at least five cards are of the same suit. We simulate shuffling cards by using a 
random-number generator. This is a form of Monte Carlo calculation. The program 
uses classes to represent the necessary data types and functionality. 

In file poker.cpp 

//A poker calculation on flushing 

enum suit { clubs, diamonds, hearts, spades }; 

class pips { 
public: 

void assign(int n) { p = n % 13 + 1; } 
int getpipO { return p; } 
void printO { cout « p; } 

private: 
int p; 

}; 

class card { 
public: 

suit s; 
pips p; 
void assign(int n) 

{ cd = n; s = static_cast<suit>(n/13); p.assign(n); } 
void pr_card(); 

private: 
int cd; 

}; 
//a cd is from 0 to 51 
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class deck { 
public: 

void init_deck(); 
void shuffleO; 
void deal(int, int, card*); 
void pr_deck(); 

private: 
card d [52]; 

}; 

The clustering of member functions and the data members they act on improves 
modularity. Behavior and description are logically grouped together. Each level of 
declaration hides the complexity of the previous level. 

void deck::init_deck() 

{ 
for (int i = 0; i < 52; ++i) 

d[i] .assign(i) ; 

} 

void deck: :shuffleO 

{ 
for (int i = 0; i < 52; ++i) { 

int k = i + (rand() % (52 - i)); 
card t = d[i]; //swap cards 
d[i] = d[k]; 
d[k] = t; 

} 
} 

void deck::deal(int n, int pos, card* hand) 

{ 
for (int i = pos; i < pos + n; ++i) 

hand[i - pos] = d[i]; 

} 

The init_deck() function calls card: :assign() to map the integers into card 
values. The shuffleO function uses the library-supplied pseudo-random-number 
generator rand() in stdlib to exchange two cards for every deck position. The 
deal () function takes cards in sequence from deck and arranges them into hands. 
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int main() 

{ 
card one_hand[9]; //max hand is 9 cards 
deck dk; 
int i, j , k, fcnt = 0, sval[4]; 
int ndeal, nc, nhand; 

cards in a hand (5-9):"; 

9); 

do { 
cout « "\nEnter no. 
cin » nc; 

} while (nc <5 || nc > 
nhand = 52 / nc; 
cout « "\nEnter no. of hands to deal: "; 
ci n » ndeal ; 
srand(time(NULL)); //seed rand() from time() 
dk.init_deck(); 
for (k = 0; k < ndeal; k += nhand) { 

if ((nhand + k) > ndeal) 
nhand = ndeal - k; 

dk. shuffl e() ; 
for (i =0; i < nc * nhand; i 

for (j =0; j <4; ++j) 
sval [j] = 0; 

dk.deal(nc, i, one_hand); 
for (j =0; j < nc; ++j) 

sval[one_hand[j].s]++; 
for (j =0; j <4; ++j) 

if (sval[j] >= 5) 
fcnt++; 

+= nc) { 
//zero suit counts 

//deal next hand 

//increment suit count 

//5 or more is flush 

} 
} 
cout « "\n\nln " « ndeal « " "; 
cout « nc « "-card hands there were 
cout « fcnt « " flushes\n "; 

} 
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4.8 static and const Members 

C++ allows both static and constant members. Using the modifier stati c in declar¬ 
ing a data member means that the data member is independent of any given class 
variable. The data member is part of the class but separate from any single class 
object. Nonstatic data members are created for each instance of the class. Using 
static data allows class data not specific to any instance to be scoped to the class 
but still require only one object for its storage. Without static data members, data 
required by all instances of a class would have to be global, thereby decoupling the 
relationship between the data and the class. 

Since a static member is independent of a particular instance, it can be accessed 

in the form 

class-name : : identifier 

Note the use of the scope resolution operator. A static member of a global class 
must be explicitly declared and defined in file scope. For example, if we want a 
counter to keep track of how many points are declared at any time, we can add to 
class poi nt as follows: 

class point { 
public: 

static int how_many; //declaration 

}; 

int point::how_many = 0; //initialization 

++point::how_many; //use independent of any instance 

The static member poi nt: : how_many needs a definition separate from an ordi¬ 
nary poi nt variable, since it exists independent from these variables. The static 
member can be used with scope resolution, since it exists independent of poi nt 
objects. Syntactically, a stati c member function has the modifier stati c precede 
the return type inside the class declaration. The preferred style for accessing static 
members is to use scope resolution. Pointer and dot operator access are misleading 
and give no indication that the member is static. A definition outside the class must 
not have this modifier. 



4.8 ▼ stati c and const Members 129 

class foo { 

static int foo_fcn(); //static goes first 

}; 

int foo::foo_fcn() //no static keyword here 
{ /* definition */ } 

A data member declared with the const modifier cannot be modified after ini¬ 
tialization. To use const properly, you need to understand constructors (see Chap¬ 
ter 5, “Constructors and Destructors”). Syntactically, a const member function has 
the modifier const follow the argument list inside the class declaration. A defini¬ 
tion outside the class must also have this modifier. 

class foo { 

int foo_fcn() const; 

}; 

int foo::foo_fcn() const //const keyword needed 
{ /* definition */ } 

The const and stati c member function implementation can be understood in 
terms of thi s pointer access. An ordinary member function invoked as 

x.mem(i , j , k) ; 

has an explicit argument list i, j, k and an implicit argument list that includes the 
members of x. The implicit arguments can be thought of as a list of arguments 
accessible through the thi s pointer. In contrast, a stati c member function does 
not get the implicit arguments. A const member function cannot modify its implicit 
arguments. Writing out const member functions and parameter declarations is 
called const-correctness and is an important aid in writing code. In effect, it is an 
assertion that the compiler should check that an object will not have its values mod¬ 
ified. Const-correctness can also allow the compiler to apply some special optimiza¬ 
tions, such as placing a const object in read-only memory. 
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The following example illustrates these differences. 

In file salary.cpp 

//Calculate salary using static members 

class salary { 
public: 

void init(int b) { b_sal = b; your_bonus = 0; } 
void calc_bonus(double perc) { your_bonus = b_sal * perc; } 
static void reset_al1(int p) { all_bonus = p; } 
int comp_tot() const 

{ return (b_sal + your_bonus + all_bonus); } 

private: 
int b_sal; 
int your_bonus; 
static int all_bonus; //declaration 

//declaration and definition 
int salary::all_bonus = 100; 

int main() 

{ 
salary wl, w2; 

wl.init(1000); 
w2 . init(2000); 
wl.calc_bonus(0.2); 
w2.calc_bonus(0.15); 
salary::reset_all(400); 
cout « " wl " « wl.comp_tot() « " w2 " 

« w2.comp_tot() « endl; 



4.8 ▼ stati c and const Members 131 

Dissection of the salary Program 

■ class salary { 

private: 
int 
int 
static int 

}; 

There are three private data members. The stati c member al l_bonus requires a 
file-scope declaration and can exist independent of any specific variables of type 
sal ary being declared. 

■ void init(int b) { b_sal = b; your_bonus = 0; } 

This assigns the value of b to the member b_sal. This member function initializes 
the base salary. The variable your_bonus is also initialized. Although our small 
example did not require this, it is a good habit to initialize all member variables. As 
we will see in Chapter 5, “Constructors and Destructors,” special functions called 
constructors are used when initialization and object creation are needed. 

■ static void reset_al1(int p) { all_bonus = p; } 

The modifier static must come before the function return type. 

■ int comp_tot() const 

{ return (b_sal + your_bonus + all_bonus); } 

The const modifier comes between the end of the argument list and the beginning 
of the code body. This modifier indicates that no data member will have its value 
changed. Thus, it makes the code more robust. In effect, the self-referential pointer 
is passed as const salary* const this. 

■ salary::reset_al1(400); 

A stati c member function can be invoked by using the scope resolution operator. 
The member function could also have been invoked as wl. reset_al 1 (400) but 
this is misleading, since there is nothing special about the class variable wl. 

b_sal; 
your_bonus; 

all_bonus; //declaration 
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Note: The stati c keyword is used only in the class definition and must be omit 

ted when the data or function member is defined outside the class. 
Newly allowed in C++ is stati c const initialization within a class declaration. 

class ch_stack { 

private: . . 
static const int max_len = 10000; //initializer 

}; 

const ch_stack::int max_len; //declaration required 

4.8.1 Mutable Members 

The keyword mutable allows data members of class variables that have been 
declared const to remain modifiable. This reduces the need to cast away constness 

using const_cast<>. The keyword is used as follows. 

In file mutable.cpp 

//class with mutable members 

class person { 
public: 

person(const char* pname, int page, unsigned long ssno); 

void bday() { ++age; } 

private: 
const char* name; 
mutable int age; //always modifiable 

unsigned long soc_sec; 

}; 

const person ira("ira pohl", 38, 1110111); 

ira.bdayQ; //okay, ira.age is mutable 



4.9 ▼ The thi s Pointer 133 

4.9 The this Pointer 

The keyword this denotes an implicitly declared self-referential pointer that can be 
used only in a nonstatic member function. In a static member function, the implicit 
arguments are not available. A simple illustration of the pointer’s use follows. 

In file point5.cpp 

//The this pointer 

class point { 
public: 

voi d 
voi d 
voi d 
poi nt 

//place public members first 
print() { cout « "(" « x « « y « 
init(double u, double v) { x = u; y = v; } 
pius(point c) ; 
inverse() { x = -x; y = -y; return (*this) 

point* where_am_I() { return this; } 
private: 

double x, y; 

}; 

int main() 

{ 
point a, b; 

a. init(l.5, -2.5); 
a. printO ; 
cout « "\na is at " « a.where_am_I() « endl; 
b = a.inverse(); 
b. print (); 
cout « "\nb is at " « b.where_am_I() « endl; 

The output on our system is 

(1.5,-2.5) 
a is at 0x0064fdd4 
(-1.5,2.5) 
b is at 0x0064fdc4 
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Note that machine addresses are displayed in hexadecimal and are system depen¬ 
dent. In this case, the two addresses differ by 0 x 10, or 16 bytes, the size of the two 
doubles required to represent a point. 

The member function i nverseO uses the implicitly provided pointer trn s to 
return the newly inverted value of a. The member function where_am_I returns the 
address of the given object. The thi s keyword provides for a built-in self-referential 
pointer, as if poi nt implicitly declared the private member poi nt* const thi s. 

4.10 Unions 

A union is a derived type whose syntax is the same as for structures except that the 
keyword union replaces struct. The member declarations share storage, and their 
values will be overlaid. Therefore, a union allows its value to be interpreted as a set 

of types that correspond to the member declarations. 
A union initializer is a brace-enclosed value for its first member. Consider the 

following declaration. 

In file union.cpp 

union int_dbl { 
i nt i; 
double x; 

} n = { 0 }; //i member is init to zero 

The variable n can be used as either an integer type or a double type: 

n.i = 7; //int value 7 is stored in n 

cout « n.i « " is integer. 
cout « n.x « " is double - machine dependent."; 
n.x = 7.0; //double value 7.0 is stored in n 

This example also illustrates why unions can be dangerous and are often system 
dependent. On some systems, it is possible that not all bit patterns are legal values 
for the overlaid types. In that case, a legal value with one type might, when accessed 
as the other type, lead to an exception. 
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A union can be anonymous, as in the following code: 

In file weekend.cpp 

enum week { sun, mon, tues, weds, thurs, fri, sat }; 

static union { 
i nt i ; 
week w; 

}; 

i = 5; 

if (w == sat || w == sun) 
cout « " It's the weekend! 

The anonymous union allows the individual member identifiers to be used as vari¬ 
ables. The member names must be unique within scope, and no variables of the 
anonymous type can be declared. Note that an anonymous union declared in file 
scope must be static. 

4.11 Bit Fields 

A member that is an integral type can consist of a specified number of bits. Such a 
member is called a bit field, and the number of associated bits is called its width. 
The width is specified by a nonnegative constant integral expression following a 
colon. 

struct pcard { //packed representation of card 
unsigned s : 2; 
unsigned p : 4; 

>; 

The compiler will attempt to pack the bit fields sequentially within memory but 
it is at liberty to skip to a next byte or word for purposes of alignment. Arrays of bit 
fields are not allowed. Also, the address operator & cannot be applied to bit fields. 

Bit fields are used to address information conveniently in packed form. On 
many machines, words are 32 bits, and bit operation can be performed in parallel. 
In this case, bit manipulation is an implementation technique for sets that contain 
up to 32 elements, as shown next. 
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In file set.cpp 

struct word { 
unsigned w0:l,wl:l,w2:l, w3:l, w4:l, w5:l, w6:l, w7.1, 

w8:1, w9:l,wl0:l,wll:1, wl2:l, wl3:l, wl4:l, wl5:l, 

wl6:1,wl7:1,wl8:1,wl9:1, w20:l, w21:l, w22:l, w23:l, 

w24:1,w25:1,w26:1,w27:1, w28:l, w29:l, w30:l, w31:l; 

}; 

We can overlay word and unsigned within a union to create a data structure for 

manipulating bits. 

union set { 
word m; 
unsigned u; 

int main() 

{ 
set x, y; 

x. u = 0x0fl00fl0; 
y. u = 0x01ala0al; 
x.u = x.u | y.u; //set union 
cout « "element 9 =" 

« C(x.m.w9)? "true" : "false") « endl; 

The set operation union is performed as a word-parallel operation on most 

systems. 

4.12 A Container Class Example: ch_stack 

A container is a data structure whose main purpose is to store and retrieve a large 
number of values. In the kernel language, an array acts as such a structure. In this 
section, we develop code that is used to store character values in a stack, which is a 
last-in-first-out (UFO) container, using ch_stack to store characters. 
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In file ch_stacl.h 

class ch_stack { 
public: 

void reset() { top = EMPTY; } 
void push(char c) { top++; s[top] = c; } 
char pop() { return s[top--]; } 
char top_of() const { return s[top]; } 
bool empty() const { return (top == EMPTY);} 
bool fullC) const { return (top == FULL); } 

private: 

enum { max_len = 100, EMPTY = -1, FULL = max_len-l }; 
char s[max_len]; 
int top; 

}; 

The basic operations on a stack are push and pop. The push operation places a 
value on the top of the stack, and the pop operation removes the value at the top of 
the stack. We use a fixed-length char array to implement the stack. Later, we will 
talk about other, more flexible implementations. 

We now write mai n() to test the same operations. 

In file ch_stacl.cpp 

//Reverse a string with a ch_stack 

int main() 

{ 
ch_stack s; 
char str[40] = { "My name is Don Knuth!" }; 
int i = 0; 

cout « str « endl; 

s.resetO; //s.top = EMPTY; would be illegal 
while (str[i] && !s.full()) 

s.push(str [i++]); 
while (Is.emptyO) //print the reverse 

cout « s.pop(); 
cout « endl; 

} 
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The output from this version of the test program is 

My name is Don Knuth! 
!htunK noD si eman yM 

As the comment in mai n() states, access to the hidden variable top is con¬ 
trolled. The variable can be changed by the member function reset () but cannot be 
accessed directly. Also, notice how the variable s is passed to each member func 

tion, using the structure member operator form. 
The ch_stack class has a private part that contains its data description and a 

public part that contains member functions to implement ch_stack operations. It 
is useful to think of the private part as restricted to the implementor’s use and the 
public part as an interface specification that clients may use. The implementor 
could change the private part without affecting the correctness of a client’s use of 

the ch_stack type. 

4.13 Pragmatics 

The access order for classes has traditionally been private first, as in 

class ch_stack { 
private: 

i nt top; 
enum { max_len = 100, EMPTY = -1, FULL = max_ .1 en-1 

char s[max_len]; 

public: 
void resetO { top = EMPTY; } 
void push(char c) { top++; s[top] = c; } 
char pop() { return s[top--]; } 
char top_of() const { return s[top]; } 

bool emptyO const { return (top == EMPTY); } 
bool full() const { return (top == FULL); } 

}; 

The reason is that, in the original form of C++, the access keywords pri vate and 
protected did not exist. By default, member access for class was private; there¬ 
fore, the private members had to come first. 

The style of public first is becoming the norm. It follows the rule that the widest 
audience needs to see the public members. More specialized information is placed 
later in the class declaration. 
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Data members should in general be private. This is an important coding heuris¬ 
tic. Generally, data are part of an implementation choice and should be accessed 
through public member functions. Such member functions are called accessor func¬ 
tions when they do not change, or mutate, the data. This is not necessarily ineffi¬ 
cient, because simple accessor member functions can be inline. In the class 
ch_stack, the member functions top_of(), emptyO, and full () are all inline 
accessor functions. Accessor functions should be declared const. The member 
function reset () is a mutator. It allows a constrained action on the hidden variable 
top. Notice how much safer such a design is. If top were directly accessible, it 
would be easy for it to be inappropriately changed. 

In OOP design, the public members are usually functions and are thought of as 
the type’s interface. These are the actions, or behaviors, publicly expected of an 
object. If we think of the object type as a noun, the behaviors are verbs. In the 
implementation, data members are generally placed in private access. This is a key 
data-hiding principle, namely, that implementation is kept inside a black box that 
cannot be directly exploited by the object’s user. 

4.14 Moving from C++ to Java 

Java classes are based on the C++ aggregate type class. A class provides the 
means for implementing a user-defined data type and associated functions. There¬ 
fore, a class can be used to implement an ADT. Unlike in C++, however, functions, 
or methods as they are called in Java, cannot exist outside a class construct. Let us 
write a cl ass called Person that will be used to store information about people. 

In file Personl.java 

// An elementary implementation of type Person 
class Person { 

private String name; 
private int age; 
private char gender; //male == 'M' , female == 'F' 
public void assignName(String nm) { name = nm; } 
public void assignAge(int a) { age = a; } 
public void assignGender(char b) { gender = b; } 
public String toString( 

return (name + " age is " + age + 
" sex is " + gender ); 

} 
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As with C++ classes, Java has the two important additions to the structure concept 
of traditional C. First, Java has members called class methods that are functions, 
such as assignAgeO. Second, Java has both public and private members. The key- 
word publ i c indicates the visibility of the members that follow it. Without this key¬ 
word the members are private to the class. Private members are available for use 
only by other member functions of the class. Public members are available any¬ 
where the class is available. Privacy allows part of the implementation of a class 
type to be “hidden” and prevents unanticipated modifications to the data structure. 
Restricted access, or data hiding, is a feature of object-oriented programming. 

The declaration of methods inside a class allows the ADT to have actions, or 
behaviors, that can act on its private representation. For example, the member func¬ 
tion toString() has access to private members and gives Person a strmg represen¬ 
tation used in output. This method is common to many class types. 

We can now use this data type Person as if it were a basic type of the language. 
Other code that uses this type is a client. The client can use only the public members 

to act on variables of type Person. 

//PersonTest.java uses Person 

public class PersonTest { 
public static void main (Stringf] args ) 

System.out.println("Person test:"); 
Person pi = new PersonO; //create a Person object 

pi.assignAge(20); 
pl.assignName("Alan Turing"); 
pl.assignGender(‘M’); 
System.out.printIn(pi.toString()) ; 

} 
} 

The output of this example program is 

Person test: 
Alan Turing age is 20 sex is M 

Notice the use of new PersonO to create an instance of Person. The new oper¬ 
ator goes off to the heap, as it does in C++, and obtains memory for creating an 
instance of object Person. The value of pi is a reference to this object. In effect, this 

is the address of the object. 
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Summary 

1. The original name Stroustrup gave to his language was “C with classes.” A class 
is an extension of the idea of structure in traditional C. A class is a way of imple¬ 
menting a data type and associated functions and operators, the mechanism in 
C++ for implementing ADTs, such as complex numbers and stacks. 

2. The structure type allows the programmer to aggregate components into a sin¬ 
gle named variable. A structure has components, called members, that are indi¬ 
vidually named. Critical to processing structures is the accessing of their 
members. This is done with either the member operator . or the structure 
pointer operator -> . These operators, along with () and [], have the second- 
highest precedence. Highest precedence belongs to scope resolution, : :. 

3. The concept of structure or class is augmented in C++ to allow functions to be 
members. The function declaration is included in the structure declaration and 
is invoked by using access methods for structure members. The idea is that the 
functionality required by the struct data type should be directly included in 
the struct declaration. 

4. Member functions that are defined within the structure or class are implicitly 
inline. As a rule, only short, heavily used member functions should be defined 
within the structure. To define a member function outside the structure, the 
scope resolution operator is used. 

5. The scope resolution operator allows member functions of various structure 
types to have the same names. In this case, which member function is invoked 
depends on the type of object it acts on. Member functions within the same 

struct can be overloaded. 

6. Structures have public and private members that provide data hiding. Inside a 
structure or class, the keyword private followed by a colon restricts the access 
of the members that follow it. The private members are used by only a few cate¬ 
gories of functions, whose privileges include access to these members. These 
functions include the member functions of the class. 

7. Classes in C++ are a form of struct whose default access specification is pri¬ 
vate. Thus, struct and class can be used interchangeably, with the appropri¬ 

ate access specification. 



142 Chapter 4 ▼ Classes 

8 Data members can be declared with the storage class modifier static. A data 
member that is declared stati c is shared by all variables of that class and is 
stored in one place only. Therefore, the data member can be accessed in the 

form 

class-name : : identifier 

9. Classes can be nested. The inner class is inside the scope of the outer class. This 

is not in accordance with C semantics. 

Review Questions 

1. In C++, the structure name, or_, is a type. 

2. Member functions that are defined within cl ass are implicitly-■ 

3. A function invocation wl. pri nt() ; means that print is a-function. 

4. A private member (can or cannot)_be used by a member function of that 

class. 

5. The keyword_allows data members of class variables that have been 
declared const to remain modifiable. This reduces the need to cast away const- 

ness using_<>. 

6. The static modifier used in declaring a data member means that the data 

member is_. 

7. The preferred style is to have members of_access first and members of 
_access declared last in a class declaration. 

8. A stack is a LIFO container. A container is a data structure whose main purpose 

is_. 

9. LIFO means_. 
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Exercises 

1. Design a C++ structure to store a dairy product name, portion weight, calories, 
protein, fat, and carbohydrates. Twenty-five grams of American cheese have 375 
calories, 5 grams of protein, 8 grams of fat, and 0 carbohydrates. Show how to 
assign these values to the member variables of your structure. Write a function 
that, given a variable of type struct dai ry and a weight in grams (portion size), 
returns the number of calories for that weight. 

2. Write a struct poi nt that has three coordinates x, y, and z. How can you access 
the individual members? 

3. Use the struct card defined in the poker program in Section 4.7, “An Example: 
Flushing,” on page 125, to write a hand-sorting routine. In card games, most 
players keep their cards sorted by pip value. The routine will place aces first, 
kings next, and so forth, down to twos. A hand will be five cards. 

4. The following declarations do not compile correctly. Explain what is wrong. 

struct brother { 
char 
int 
struct sister 

} a; 

struct sister { 
char 
int 
struct brothe 

} a; 

5. In this exercise, use the class ch_stack, defined in Section 4.12, “A Container 
Class Example: ch_stack,” on page 137. Write the function 

void reverse(char sl[], char s2[]); 

The strings si and s2 must be the same size. String s2 should become a 
reversed copy of string si. Internal to reverse, use a ch_stack to perform the 

reversal. 

name[20]; 
age; 
sib; 

name[20]; 
age; 
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6. Rewrite the functions push() and pop() discussed in Section 4.12, “A Container 
Class Example: ch_stack,” on page 137, to test that push() is not acting on a 
full ch_stack and that pop() is not acting on an empty ch_stack. If either con¬ 
dition is detected, print an error message, using cerr, and use exit(l) (in 
stdlib) to abort the program. Contrast this to an approach using asserts. 

7. Write reverse() as a member function for type ch_stack, discussed in Section 
4.12, “A Container Class Example: ch_stack,” on page 137. Test it by printing 
normally and reversing the string 

Gottfried Leibniz wrote Toward a Universal Characteristic 

8. For the ch_stack type in Section 4.4, “Access: Private and Public,” on page 120, 
write as member functions 

//push n chars from si onto the ch_stack 

void pushm(int n, const char sl[]); 

//pop n chars from ch_stack into char string 
void popm(int n, char sl[]); 

Hint: Be sure to put a terminator character into the string before outputting it. 

9. Explain the difference in meaning between the structure 

struct a { 
int i, j, k; 

}; 

and the class 

class a { 
int i, j , k; 

}; 

Explain why the class declaration is not useful. How can you use the keyword 
public to change the class declaration into a declaration equivalent to 
struct a? 
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10. Recode as a class the data type deque, which is a double-ended queue that 
allows push and pop at both ends. 

class deque { 
public: 

void resetO { top = bottom = max_len / 2; top--; } 

private: 
char s[max_len]; 
int bottom, top; 

}; 

Declare and implement push_t, pop_t, push_b, pop_b, out_stack, top_of, 
bottom_of, empty, and full. The function push_t() stands for push on top 
and pop_t() for pop on top; push_b() stands for push on bottom and pop_b() 
for pop on bottom. The out_stack() function should output the stack from 
bottom to top. An empty stack is denoted by having the top fall below the bot¬ 
tom. Test each function. 

11. Extend the data type deque by adding a member function relocate(). If the 
deque is full, relocate() is called, and the contents of the deque are moved to 
balance empty storage around the center max_l en/2 of array s. Its function dec¬ 
laration header is 

//returns true if it succeeds, false if it fails 

bool deque::relocate() 

12. Write a function that swaps the contents of two strings. If you pushed a string 
of characters onto a ch_stack and popped them into a second string, they 
would come out reversed. In a swap of two strings, we want the original order¬ 
ing. Use a deque to do the swap. The strings will be stored in character arrays of 
the same length, but the strings themselves may be of differing lengths. The 
function prototype is 

void swap(char sl[], char s2 []); 

13. Write the member functions 

void pips: :print() ; 
void card::pr_card(); 
void deck::pr_deck(); 
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and add them to the poker program found in Section 4.7, “An Example: Flush¬ 
ing,” on page 125. Let pr_deck() use pr_card() and pr_card() use print(). 

Print the deck after it is initialized. 

14. Write a function pr_hand() that prints out card hands. Add it to the poker pro¬ 

gram, and use it to print out each flush. 

15. In Section 4.7, “An Example: Flushing,” on page 125, main() detects flushes. 

Write a function 

bool isflush(const card hand[], int nc); 

that returns true if a hand is a flush. 

16. Write a function 

bool isstraight(const card hand[], nc); 

that returns true if a hand is a straight. A straight is five cards that have 
sequential pip values. The lowest straight is ace, two, three, four, five, and the 
highest straight is ten, jack, queen, king, ace. Run experiments to estimate the 
probability that dealt cards will be a straight, and compare the results of five- 
card hands with results of seven-card hands. Hint: You may want to set up an 
array of 15 integers to correspond to counters for each pip value. Be sure that a 
pip value of 1 (corresponding to ace) is also counted as the high card corre¬ 
sponding to a pip value of 14. 

17. Use the previous exercises to determine the probability that a poker hand will 
be a straight flush. This is the rarest poker hand and has the highest value. Note 
that, in a hand of more than five cards, it is not sufficient to merely check for 
the presence of both a straight and a flush to determine that the hand is a 
straight flush. 
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18. Change the suit declaration from an enumerated type to a class as follows: 

enum suit_val { clubs, diamonds, hearts, spades }; 

class suit { 
public: 

void assign(int n) { s = n / IB; } 
int getsuitO const { return s; } 
void print() const; 

private: 
suit_val s; 

}; 

We add the member function getsuitO to access the hidden integer value of a 
suit variable. Now recode all references to suit throughout the program. 

19. Change class ch_stack to i nt_stack by substituting type i nt for type char in 
the class definition as appropriate. Later, we will see how to use templates to 
automate this process. 

20. (Java) Recode point in Section 4.9, “The this Pointer,” on page 133, as a Java 
class. 

21. (Java) Recode and test ch_stack in Section 4.12, “A Container Class Example: 
ch_stack,” on page 137, as a Java class. Add a method reverseO that does the 
same basic operation as the code in main() in Section 4.12, “A Container Class 
Example: ch_stack,” on page 137 and test it. 

22. (Java to C++) Recode the Java program PersonTest.java in Section 4.14, “Moving 
from C++ to Java,” on page 139, to run as C++. 
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Constructors 
and Destructors 

r 5 

An object requires memory and an initial value, which C++ provides through decla¬ 
rations that are definitions. Variables are objects. For example, in 

void foo() 

{ 
int n = 5; 
double z[10] = { 0.0 }; 
struct gizmo { int i, j; }w= { 3, 4 }; 

} 

all of the objects are created at block entry when foo() is invoked. A typical imple¬ 
mentation uses a runtime system stack. Thus, the i nt object n on a system with 4- 
byte integers gets this allocated off the stack and initialized to the value 5. The 
gi zmo object w requires 8 bytes to represent its two integer members. The array 
of double object z requires 10 times sizeof (double) to store its elements. In each 
case, the system provides for the construction and initialization of these objects. On 

exit from foo(), deallocation occurs automatically. 
In creating complicated aggregates, the user will expect similar management of 

a class-defined object. The class needs a mechanism to specify object creation and 
destruction so that a client can use objects like native types. 

A constructor is a member function whose name is the same as the class name; 
it constructs values of the class type. This process involves initializing data mem¬ 
bers and, frequently, allocating free store by using new. A destructor is a member 
function whose name is the class name preceded by the tilde character ~. A destruc¬ 
tor’s usual purpose is to finalize objects of the class type, typically by using delete 

to deallocate store assigned the object. 
Constructors, the more complicated of these two specially named member func¬ 

tions, can be overloaded and can take arguments, whereas destructors can do nei¬ 
ther. A constructor is invoked when its associated type is used in a definition, when 
call-by-value is used to pass a value to a function, or when the return value of a 
function must create a value of associated type. Destructors are invoked implicitly 
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when an object goes out of scope. Constructors and destructors do not have return 
types and cannot use return expression statements. 

5.1 Classes with Constructors 

The simplest use of a constructor is for initialization. In this and later sections, we 
will develop some examples that use constructors to initialize the values of the data 
members of the class. Our first example is an implementation of a data type 
mod_i nt to store numbers that are computed with a modulus. 

In file modulo.cpp 

//Modulo numbers and constructor initialization 

class mod_int { 
public: 

mod_int(int i); //constructor declaration 
void assign(int i) { v = i % modulus; } 
void printO const { cout « v « '\t' ; } 
const static int modulus; 

private: 
int v; 

//constructor definition 
mod_int::mod_int(int i) { v = i % modulus; } 
const int mod_int::modulus = 60; 

The integer v is restricted in value to 0, 1, 2, ... , modul us - 1. It is the program¬ 
mer’s responsibility to enforce this restriction by having all member functions guar¬ 
antee this behavior. 

The member function mod_i nt: : mod_i nt (i nt) is a constructor. It does not 
have a return type. This constructor is invoked when objects of type mod_i nt are 
declared. It is a function of one argument. When invoked, the constructor requires 
an expression that is assignment compatible with its i nt parameter. It then creates 
and initializes the declared variable. 

Some examples of declarations using this type are 

mod_int a(0); 
mod_int b(61); 

//a.v = 0; 
//b.v = 1; 
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but not 

mod_int a; //illegal:no parameter list 

Since this class has only the one constructor of argument list i nt, a mod_i nt decla¬ 
ration must have an integral expression passed as an initializing value. Not allowing 
a mod_i nt variable to be declared without an initializing expression prevents run¬ 
time errors due to uninitialized variables. 

5.1.1 The Default Constructor 

A constructor requiring no arguments is called the default constructor. It can be a 
constructor with an empty argument list or one whose arguments all have default 
values. It has the special purpose of initializing arrays of objects of its class. 

It is often convenient to overload the constructor with several function declara¬ 
tions. In the preceding example, it could be desirable to have the default value of v 

be 0. If the default constructor 

mod_int() { v = 0; } 

is added as a member function of mod_i nt, the following declarations are possible: 

mod_int si, s2; //both init private member v to 0 
mod_int d[5]; //arrays are properly initialized 

In both of these declarations, the empty parameter-list constructor is invoked. 
If a class does not have a constructor, the system provides a default construc¬ 

tor. If a class has constructors but not a default constructor, array allocation causes 

a syntactic error. 
In our mod_i nt example, the following constructor could serve as both a general 

initializer and a default constructor: 

inline mod_int::mod_int(int i = 0) 
{ v = i % modulus; } 
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5.1.2 Constructor Initializer 

A special syntax is used for initializing subelements of objects with constructors. 
Constructor initializers for structure and class members can be specified in a 
comma-separated list that follows the constructor parameter list and that precedes 
the code body. The previous example can be recoded as 

//Default constructor for mod_int 
mod_int::mod_int(int i = 0) : v(i % modulus){} 

Notice that initialization replaces assignment. The individual members must be ini- 

tializable as 

member-name (expression list) 

It is not always possible to assign values to members in the body of the constructor. 
An initializer list is required when a nonstatic member is either a const or a refer¬ 

ence type. 

5.1.3 Constructors as Conversions 

Constructors of a single parameter are used automatically for conversion unless 
declared with the keyword expl i ci t. For example, T1: :T1(T2) provides code that 
can be used to convert a T2 object to a T1 object. Consider the following class, 
whose purpose is to print invisible characters with their ASCII designation; for 
example, the code 07 (octal) is al arm or bel. 

In file printabl.cpp 

//ASCII printable characters 

class pr_char { 
public: 

pr_char(int i = 0) : c(i % 128) { } 
void printO const { cout « rep[c]; } 

private: 
i nt c; 
static const char* rep[128]; 

}; 

const char* pr_char::rep[128] = { "nul", "soh", "stx", 
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int main() 

{ 
pr_char c; 

for (int i = 0; i < 128; ++i) { 
c = i; //or: c = static_cast<pr_char>(i) ; 
c.printO ; 
cout « endl; 

} 
} 

The constructor creates an automatic conversion from integers to pr_char. 
Notice that c = i implies this conversion. It is also possible to explicitly use a cast. 
Conversions are covered in detail in Section 6.1, “ADT Conversions,” on page 196. 
One reason OOP has implicit conversions for ADTs is that it is desirable for them to 
have the look and feel of the native types. 

5.1.4 Improving the point Class 

The class point from Section 4.5, “Classes,” on page 121, is readily improved by 
adding constructors. Notice that the class contains the member function 
poi nt: : i ni t (), which is similar to a constructor. 

In file point5.cpp 

class point { 
public: 

pointO { x = 0; y = 0; } 
point(double u) { x = u; y = 0;} 
point(double u, double v) { x = u; y = 
void printO { cout « "(" « x « 
void init(double u, double v) { x = u; 
void plus(point c); 

//default 
//double to point 

v; } 
« y « } 
y = v; } 

private: 
double x, y; 

}; 

Many scientific problems require producing a table of points or a graph by using 
a function. For example, a parabola can be coded as 

double parabola(double x, double p) { return(x * x) / p; } 



154 Chapter 5 t Constructors and Destructors 

Let us use this function to produce a table of points that graphs the parabola from 0 

to 2 in increments of 0.1. 

In file parabola.cpp 

void graph(double a, double b, double incr, 
double f(double, double), double p, point gr[]) 

{ 
double x = a; 
for (int i = 0; x <= b; ++i, x += incr) 

gr[i] .init(x, f(x, p)) ; 

} 

int main() 

{ 
point g[1000]; //uses the default constructor 

graph(0, 2, 0.1, parabola, 5, g ); 

5.2 Constructing a Dynamically Sized Stack 

A constructor can also be used to allocate space from free store. We shall modify 
the ch_stack type from Section 4.12, “A Container Class Example: ch_stack,” on 
page 137, so that its maximum length is initialized by a constructor. 

The design of the object ch_stack includes hidden implementation detail. Data 
members are placed in the private access region of class ch_stack. The public 
interface provides clients with the expected stack abstraction. These are all public 
member functions, such as push() and pop(). Some of these functions are accessor 
functions that do not change the stack object, such as top_of () and empty (). It is 
usual to make these const member functions. Some of these functions are mutator 
functions that do change the ch_stack object, such as push() and pop(). The con¬ 
structor member functions have the job of creating and initializing ch_stack 
objects. 
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In file ch_stac2.h 

class ch_stack { 
public: 
//the public interface for the ch_stack 

explicit ch_stack(int size): max_len( size), top(EMPTY) 
{ assert(size >0); s = new char[size]; assert(s != 0); } 

void reset() { top = EMPTY; } 
void push(char c) { s[++top]= c; } 
char pop() { return s[top--]; } 
char top_of() const { return s[top]; } 
bool empty() const { return (top == EMPTY); } 
bool full() const { return (top == max_len - 1); } 

private: 
enum { EMPTY = -1 }; 
char* s; //changed from s[max_len] 

int max_len; 
int top; 

}; 

In the preceding code and in the rest of this chapter, we use assertions to test 
whether a pointer value is 0. This is done after calling new and indicates that new 
has failed. In ANSI C++ compiler, this will be an alternative to the bad_al loc excep¬ 

tion being thrown. 
Now a client using ch_stack can decide on the size requirement. An example of 

a ch_stack declaration invoking this constructor is 

ch_stack data(1000); //allocate 1000 elements 
ch.stack more_data(2 * n); //allocate 2 * n elements 

Two additional constructors would be a default constructor to allocate a spe¬ 
cific-length ch_stack and a two-parameter constructor whose second parameter 
would be a char* to initialize the ch_stack. The two constructors could be written 

as follows: 

//default constructor for ch_stack 
ch_stack::ch_stack():max_len(100),top(EMPTY) 

{ 
s = new char[100]; 
assert(s != 0); 

} 
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//copy a char* string into the ch_stack 
ch_stack::ch_stack(int size, const char str[]): 

max_len(size) 

{ 
i nt i ; 
assert(size > 0); 
s = new char[size]; 
assert(s != 0); 
for (i =0; i < max_len && str[i] != 0; ++i) 

s [i] = str [i ]; 
top = —i; 

} 

The corresponding function prototypes would be included as members of the 
class ch_stack. These constructors are used in the following: 

ch_stack data; //creates s[100] 
ch_stack d[N]; //creates N 100 element ch_stacks 
ch_stack w(4, "ABCD"); //w.s[0]='A'...w.s[3]='D' 

5.2.1 The Copy Constructor 

Suppose that we wish to examine our stack and to count the number of occurrences 
of a given character. We can repeatedly pop the stack, testing each element in turn, 
until the stack is empty. But what if we want to preserve the contents of the stack? 
Call-by-value parameters accomplish this. 

In file ch_stac2.cpp 

//count the number of c’s found in s 
int cnt_char(char c, ch_stack s) 

{ 
int count = 0; 

while (Is.emptyO) //done when empty 
count += (c == s.popO); //found a c 

return count; 

} 

The semantics of call-by-value require that a local copy of the argument type be 
created and initialized from the value of the expression passed as the actual argu¬ 
ment. This requires a copy constructor. The compiler provides a copy constructor 
whose signature is 
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ch_stack::ch_stack(const ch_stack&); 

The compiler copies by memberwise initialization. This may not work in all circum¬ 
stances, such as for complicated aggregates with members that are themselves 
pointers. In many cases, the pointer is the address of an object that is deleted when 
it goes out of scope. However, the act of duplicating the pointer value but not the 
object pointed at can lead to anomalous code. This deletion affects other instances 
that still expect the object to exist. It is appropriate for the class to explicitly define 
its own copy constructor. 

In file ch_stac4.h 

//Copy constructor for ch_stack of characters 

ch_stack::ch_stack(const ch_stack& str): 
max_len(str.max_len), top(str.top) 

{ 
s = new char[str.max_len]; 
assert(s != 0); 
memcpy(s, str.s, max_len); 

} 

The stdlib routine memcpyO copies max_len characters from the base address 
str.s into memory, starting at base address s. This is called a deep copy. The char¬ 
acter arrays are distinct because they refer to different memory locations. If, 
instead, the body of this routine were 

s = str.s; 

this would be a shallow copy, with the ch_stack variables sharing the same repre¬ 
sentation. Any change to one variable would change the other. 

5.3 Classes with Destructors 

A destructor is a member function whose name is the class name preceded by a 
tilde. Destructors are almost always called implicitly, usually at the exit of the block 
in which the object was declared. They are also invoked when a del ete operator is 
called on a pointer to an object having a destructor or where they are needed to 

destroy a subobject of an object being deleted. 
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Let us augment our ch_stack example with a destructor. 

In file ch_stac2.h 

//ch_stack implementation with constructors and destructor 

class ch_stack { 
public: 

ch_stack(); //default constructor 
explicit ch_stack(int size) : max_len(size), top(EMPTY) 

{ assert(size >0); s = new char[size]; assert(s != 0); } 
ch_stack(const stack& str); //copy constructor 
ch_stack(int size, const char str[]); 
~ch_stack() { delete []s; } //destructor 

vate: 
enum { EMPTY = -1 
char* s; 
int max_len; 
int top; 

The addition of the destructor allows the class to return unneeded heap-allocated 
memory during program execution. All of the public member functions perform in 
exactly the same manner as before. However, the destructor will be implicitly 
invoked on block and function exit to clean up storage no longer accessible. This is 
good programming practice and allows programs to execute using less memory. 

5.4 An Example: Dynamically Allocated Strings 

C++ lacks a native string type. The standard library provides a string template class 
which is increasingly the normally used string type. An older style of string repre¬ 
sentation is as pointer to char. An important drawback of this representation the 
end-of-string is denoted by the null character \0. This convention is that many basic 
string manipulations are proportional to string length. This use is reflected by the 
library string.h (or cstring in modern C++). In that library, the standard function 
i nt st ri en (const char*) is used to compute the length of the character array 
delimited by the null character. In modern C++, the standard library string provides 
a string type that stores string length as part of its hidden implementation 
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In this section, we develop some of the ways in which such a type can be imple¬ 
mented. We want our type to be dynamically allocated and able to represent arbi¬ 
trary-length strings. A variety of constructors will be coded to initialize and to 
allocate strings, and a set of operations on strings will be coded as member func¬ 
tions. The implementation will use the string library functions to manipulate the 
underlying pointer representation of strings. 

In file string2.cpp 

//An implementation of dynamically allocated strings 

class my_string { 
public: 

my_string() : len(0) 
{ s = new char[1];assertfs != 0); s[0] = 0; } 

my_stringfconst my_string& str); //copy constructor 
my_string(const char* p); //conversion constructor 

~my_string() { delete []s; } 
void assign(const my_string& str); 
void print() const { cout « s « endl; } 
void concatfconst my_string& a,const my_string& b); 

private: 
char* s; 
int len; 

}; 

my_string::my_string(const char* p) 

{ 
len = strlen(p) ; 
s = new char[len + 1]; 
assert(s != 0); 
strcpy(s, p); 

} 

my_string::my_stringCconst my_string& str) : len(str.len) 

{ 
s = new char[len + 1]; 
assertfs != 0); 
strcpyfs, str.s); 
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void my_string::assign(const my_string& str) 
{ 

if (this == &str) //a = a; do nothing 
return; 

delete []s; 
len = str.len; 
s = new char[len + 1]; 
assert(s != 0); 
strcpy(s, str.s); 

} 

void my_string::concat(const my_string& a, const my_string& b) 

char* temp = new char[a.len + b.len + 1]; 

len = a.len + b.len; 
strcpy(temp, a.s); 
strcat(temp, b.s); 
delete []s; 
s = new char[len + 1]; 
assert(s != 0); 
strcpy(s, temp); 

} 

This type allows you to declare my_st ri ngs, assign by copying one my_st ri ng 
to another, print a my_stri ng, and concatenate two my_stri ngs. The hidden repre¬ 
sentation is pointer to char, and it has a variable len in which to store the current 
my_stri ng length. 

Dissection of the my_string Class 

■ my_string() : len(0) 

{ s = new char[1]; assert(s != 0); s[0] = 0; } 
my_string(const my_string& str); //copy constructor 
my_string(const char* p); //conversion constructor 

The class has three overloaded constructors. The first is the default constructor 
needed when declaring an array of my_st ri ngs. The second is the copy constructor.’ 
The third has a pointer to char argument that can be used to convert the char* rep¬ 
resentation of strings to our my_stri ng type. The class uses two library functions: 
str len and strcpy. We allocate one additional character to store the end-of-string 



5.4 ▼ An Example: Dynamically Allocated Strings 161 

character \0, although this character is not counted by strlen. The copy construc¬ 
tor will be explained later. 

■ ~my_string() { delete []s; } 

The destructor automatically returns memory allocated to my_stri ngs back to free 
store for reuse. The empty bracket-pair form of delete is used because array allo¬ 
cation was used. The operator delete[] knows the amount of memory associated 
with the pointer s. 

■ my_string::my_string(const my_string& str) : len(str.len) 

{ 
s = new charflen + 1]; 
assert(s != 0); 
strcpy(s, str.s); 

} 

This form of copy constructor is used to copy one my_stri ng into another. 

Copy Constructor Use for my_string 

1. A my_stri ng is initialized by another my_stri ng. 

2. A my_stri ng is passed as an argument in a function. 

3. A my_stri ng is returned as the value of a function. 

In C++, if this constructor is not present explicitly, the compiler creates one that 
uses member-by-member initialization. 

■ void my_string::assign(const my_string& str) 

{ 
if (this == &str) //a = a; do nothing 

return; 
delete []s; len = str.Ten; 
s = new char [len + 1]; 
assert(s != 0); 
strcpy(s, str.s); 

} 

The assignment semantics are based on deep-copy semantics, whereby the entire 
aggregate must be replicated and the data values copied into its representation. The 
copying requires a check against copying over the same my_st ri ng. This is the case 
with a = a. If we had not tested for this case and had performed deletion on the 
left-hand argument, the value of a would have disappeared. Each time the value of a 
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my_stri ng is copied, the value is physically recopied using strcpy(). This is in dis¬ 
tinction to a later implementation that will show how to use shallow-copy seman¬ 
tics, which sets a pointer to an existing value without replicating the aggregate. As 
we shall see, this can be very efficient. 

■ void my_string::concat(const my_string& a, const my_string& b) 

char temp[a.1en + b.len + 1]; 

1en = a.1en + b.len; 
strcpy(temp, a.s); 
strcat(temp, b.s); 
delete []s; 
s = new char[len + 1]; 
assert(s != 0); 
strcpy(s, temp); 

} 

This is a form of concatenation. Neither my_stri ng argument is modified. The 
implicit argument, whose hidden member variables are s and len, is modified to 
represent the my_stri ng a followed by the my_stri ng b. Note that in this member 
function, the use of 1 en, a. 1 en, and b.len is possible. Member functions have 
access not only to the private members of the implicit argument but also to the pri¬ 
vate representation of any of the arguments of type my_stri ng. 

The following code tests class my_stri ng by concatenating several my_stri ngs 

In file string2.cpp 

int main() 

{ 
char* str = "The wheel that squeaks the loudest\n"; 

my_string a(str), b, author("Josh Billings\n"), both, quote; 

b.assign("Is the one that gets the grease\n"); 
both.concat(a, b); 
quote.concat(both, author); 
quote.print(); 
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The printout from this program is 

The wheel that squeaks the loudest 
Is the one that gets the grease 
Josh Billings 

We deliberately used a variety of declarations to show how various constructors 
would be called. The my_stri ng variables b, both, and quote all use the default 
constructor. The declaration for author uses the constructor whose argument type 
is char*. The concatenation takes place in two steps. First, my_stri ngs a and b are 
concatenated into both. Next, my_strings both and author are concatenated into 
quote. Finally, the quotation is printed out. 

The constructor my_stri ng: : my_stri ng (const char*) is invoked to create 
and to initialize objects a and author. This constructor is also called implicitly as a 
conversion operation when invoking my_stri ng: :assign() on the literal "Is the 
one that gets the grease\n". 

5.5 The Class dbl_vect 

The one-dimensional array in C++ is a very useful and efficient aggregate type. In 
many ways, it is the prototypical container: easy to use and highly efficient. How¬ 
ever, it is error prone. A common mistake is to access elements that are out of 
bounds. In C++, this problem can be controlled by defining an analogous container 
type in which bounds can be tested. This type can also be used as a mathematical 
vector type. 

In file dbl_vectl.h 

//Implementation of a safe array type dbl_vect 
class dbl_vect { 
public: 

explicit dbl_vect(int n = 10); 
~dbl_vect() { delete []p; } 
double& element(int i); //access p[i] 
int ub() const { return (size - 1); } //upper bound 
void printO const; 

private: 
double* p; 
int size; 

}; 
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dbl_vect::dbl_vect(int n) : size(n) 

{ 
assert(n > 0); 
p = new double[size]; 
assert(p != 0); 

} 

double& dbl_vect::element(int i) 

{ 
assert (i >= 0 && i < size); 
return p[i]; 

} 

The constructor dbl_vect: : dbl_vect(i nt n) allows the user to build dynam¬ 
ically allocated arrays. Such arrays are much more flexible than those in such lan¬ 
guages as FORTRAN, Pascal, and C, in which array sizes must be constant 
expressions. The constructor also initializes the variable size, whose value is the 
number of elements in the array. Note that this one-argument constructor is 
declared explicit because it is not intended as an implicit conversion from int to 
dbl_vect. 

The pri nt() function outputs tab-separated elements of the vector. 

void dbl_vect::print()const 
{ 

cout « " vector of size " « size « endl; 
for (int i = 0; i <size; ++i) 

cout « p[i] « "\t"; 

} 

Access to individual elements is through the safe-indexing member fimction 

double& dbl_vect::element(int i) 

An index that is outside the expected array range 0 through ub will cause an asser¬ 
tion failure. This safe-indexing member function returns a reference to i nt that is 
the address of p [i ] and that can be used as the left operand of an assignment, or 
lvalue. The technique is often used in C++ and is an efficient mechanism for operat¬ 
ing on complicated types. 
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As an example, the declarations 

dbl_vect a(10), b(5) ; 

construct arrays of 10 and 5 integers, respectively. Individual elements can be 
accessed by the member function element, which checks whether the index is out 

of range. The statements 

a. element(l) = 5; 
b. element(l) = a.element(l) + 7; 
cout « a.element(l) - 2; 

are all legal. In effect, we have a safe dynamic array type. 
Classes with default constructors use them to initialize a derived array type. For 

example, the declaration 

dbl_vect a[5]; 

uses the default constructor to create an array a of five objects, each of which is a 
size 10 dbl_vect. The ith element’s address in the jth array would be given by 

a[j] .element(i). 
Chapter 9, “Exceptions,” discusses how exceptions can be used to check on 

error conditions. With this more powerful methodology, 

assert(n > 0); 

is replaced by 

if (n < 1) 
throw(vect_allocation_error(n)); 

5.5.1 dbl_vect as a Linear Vector Type 

The basic type in linear algebra is the vector, which allows a description of many sci¬ 
entific and engineering problems. To use dbl_vect effectively as a linear vector, we 
need to add mathematical operations, such as vector addition, vector subti action, 
and vector scalar product. We can do this as a set of functions that use 
dbl_vect: :element(), but this does not allow efficient access to the underlying 
representation. Including these operations as part of the class dbl_vect supports 
an efficient implementation and appropriate encapsulation. We display the 

dot_prod() function, leaving the others as exercises. 
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In file dbl_vectl.h 

double dbl_vect::dot_prod(const dbl_vect& v) const 
{ 

assert(size == v.size); 
double sum = 0.0; 

for (int i =0; i < size; ++i) 
sum += p[i] * v.p[i]; 

return sum; 

} 

In file dbLvectl.cpp 

int main() 

{ 
dbl_vect c(6); 
for (int i =0; i <= c.ub(); ++i) 

c.element(i) = i + 0.1; 
c.print() ; 

cout « " dot product = " « c.dot_prod(c) « endl; 
} 

5.6 Members That Are Class Types 

In this section, the type dbl_vect is used as a member of the class pai r_vect. In 
OOP methodology, this is known as the has-a relationship. Complicated objects can 
be designed from simpler ones by incorporating them with the has-a relationship. 
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In file pairvect.cpp 

#include "dbl_vectl.h" 

class pair_vect { 
public: 

pai r_vect(int i) : a(i), b(i), size(i) { } 
double& first_element(int i); 
double& second_element(int i); 
int ub()const { return size -1; } 

private: 
dbl_vect a, b; //pair_vect has a dbl_vect 
int size; 

double& pair_vect::first_element(int i) 
{ return a.element(i); } 

double& pair_vect::second_element(int i) 
{ return b.element(i);} 

Notice that the pai r_vect constructor is a series of initializers. The initializers 
of the dbl_vect members a and b invoke dbl_vect: : dbl_vect (i nt). Let us use 
this data type to build a table of age and weight relationships. 

int main() 

{ 
int i; 
pair_vect age_weight(5); //age and weight 

cout « "table of age, weight\n"; 
for (i =0; i <= age_weight.ub(); ++i) { 

age_weight.first_element(i) = 21 + i; 
age_weight.second_element(i) = 155 + i; 
cout « age_weight.first_element(i) « 

« age_weight.second_element(i) « endl ; 

} 
} 
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5.7 Example: A Singly Linked List 

In this section, we develop a singly linked list data type, the prototype of many use¬ 
ful dynamic ADTs called self-referential structures. These data types have pointer 
members that refer to objects of their own type and are the basis of many useful 
container classes. The following declaration implements such a type: 

In file slist.cpp 

struct slistelem { 
char data; 
slistelem* next; 

}; 

class slist { 
public: 

slist() : h(0) { } 
~slist() { releaseO; } 
void prepend(char c); 
void del(); 
slistelem* first() const 
void print() const; 
void releaseO; 

private: 
slistelem* h; 

}; 

//a singly linked list 

//0 denotes empty slist 

//adds to front of slist 

{ return h; } 

//head of slist 

Singly Linked List 

List Operations 

1. prepend: adds to front of list 

2. fi rst: returns first element 

3. pri nt: prints list contents 

4. del: deletes first element 

5. release: destroys list 
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The link member next points to the next si i stel em in the list. In this example, 
data is a simple variable, but it could be replaced by a complicated type capable of 
storing a range of information. The constructor initializes the head of si i st pointer 
h to the value 0, which is called the null-pointer constant and can be assigned to any 
pointer type. In linked lists, this constant typically denotes the empty list or end-of- 
list value. The member function prepend() builds the list structure as follows: 

void siist::prepend(char c) 

{ 
slistelem* temp = new slistelem; //create element 
assert(temp != 0); 
temp -> next = h; //link to slist 
temp -> data = c; 
h = temp; //update head of slist 

} 

A list element is allocated from free store, and its data member is initialized 
from the single argument c. Its link member next is set to the old list head. The 
head pointer h is updated to point at this element as the new first element of the 
list. 

The member function del () has the inverse role. 

void slist::del() 

{ 
slistelem* temp = h; 

h = h -> next; //presumes a nonempty slist 
delete temp; 

} 

This function returns the first element of the list to free store by using the delete 
operator on the head of si i st pointer h. The new head-of-list is the value of the 
next member. This function can be modified to work on the empty list without 
aborting (see exercise 16 on page 193). 

Much of list processing consists of repetitively chaining down the list until the 
null-pointer value is found. The following two functions use this technique: 
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In file slist.cpp 
i 

void slist::print() const //object is unchanged 
{ 

slistelem* temp = h; 

while (temp != 0) { //detect end of slist 
cout « temp -> data « " -> 
temp = temp -> next; 

} 
cout « "\n###" « endl; 

} 

//elements returned to free store 

void siist::release() 

{ 
while (h != 0) 

del(); 

} 

Dissection of the printO and releaseO Functions 

■ void siist::print() const //object is unchanged 

slistelem* temp = h; 

An auxiliary pointer temp will be used to chain down the list. The pointer is initial¬ 
ized to the address of the si i st head h. The pointer h cannot be used, because its 
value would be lost, in effect destroying access to the list. 

■ while (temp ! = 0) { //detect end of list 
cout « temp -> data « " -> 
temp = temp -> next; 

} 

The value 0 is guaranteed to represent the end-of-list value, because the constructor 
^1 i ■ • si i st () initialized it as such and the si i st: : prepend() function main¬ 
tains it as the end-of-list pointer value. Notice that the internals of this loop could 
be changed to process the entire list in another manner. 
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■ void siist::release() 

The rel ease function is used to return all list elements to free store and marches 
down the list, doing so. 

■ while (h != 0) 

del(); 

Each element of the list must be returned to free store in sequence. This is done for 
a single element by si i st: : del (), which manipulates the hidden pointer h. Since 
we are destroying the list, it is unnecessary to preserve the original value of pointer 
h. This function’s chief use is as the body of the destructor slist: :~slist(). We 
could not use a destructor written 

slist::~slist() 

{ 
delete h; 

} 

because it deletes only the first element in the list. 

The following code demonstrates the use of this type. The destructor has been 
modified to print a message. 

In file slist.cpp 

siist:: ~slist() 

{ 
cout « "destructor invoked" « endl; 

releaseO ; 

} 
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int main() 

{ 
slist* p; 

{ 
slist w; 

w.prepend('A'); 
w.prepend('B'); 
w. pri nt() ; 
w.del(); 
w.print(); 
p = &w; 
p -> print(); 
cout « "exiting inner block" « endl; 

} 
//p -> print(); gives system-dependent behavior 
cout « "exiting outer block" « endl; 

} 

Notice that mai n() contains an inner block, which is included to test that the 
destructor is invoked on block exit, returning storage associated withw to free 
store. The output of this program is 

B -> A -> 
### 

A -> 
### 

A -> 
### 

exiting inner block 
destructor invoked 
exiting outer block 

The first pri nt() call prints the two-element slist, which stores B and A. After 
a del operation is performed, the list contains one element, which stores A. The 
outer block pointer to si i st p is assigned the address of the si i st variable w. 
When the list is accessed through p in the inner block, it prints A. This output shows 
that the destructor works at block exit on the variable w. 

The commented-out invocation of si i st: : pri nt() is system dependent. It is a 
runtime error to dereference p here, because the address it refers to may have been 
overwritten at block exit by the deletion routine. 
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5.8 Two-Dimensional Arrays 

Standard C does not have authentic multidimensional arrays. Instead, the program¬ 
mer must be careful to map such an abstract data structure into a pointer to pointer 
to base type. In C++, the programmer can implement flexible, safe, dynamic multidi¬ 
mensional arrays. We shall demonstrate this by implementing a two-dimensional 

array type mat ri x. Notice its similarity to the class dbl_vect. 

In file matrixl.cpp 

//A two-dimensional safe array type matrix 

class matrix { 
public: 

matrix(int dl, int d2); 
-matrix() ; 
int ubl() const { return(sl - 1); } 
int ub2() const { return(s2 - 1); } 
double& element(int i, int j); 

private: 
double** p; 
int si, s2; 

The type matrix has a size for each dimension and a corresponding public upper 
bound. The hidden representation uses the pointer to pointer to double type. This 
will store the base address of an array of pointers to double, which in turn store a 

base address for each row of the matri x type. 

matrix::matrix(int dl, int d2) : sl(dl), s2(d2) 

{ 
assert(dl > 0 && d2 > 0); 
p = new double*[si]; 

assert(p != 0); 
for (int i = 0; i < si; ++i){ 

p[i] = new double[s2]; 

assert(p[i] != 0); 

} 
} 
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matrix: :~matrix() 

{ 
for (int i =0; i <= ubl(); ++i) 

delete []p[i]; 
delete []p; 

} 

The constructor allocates an array of pointers to double. The number of ele¬ 
ments in this array is the value of si. Next, the constructor iteratively allocates an 
array of double pointed at by each element p[i]. Therefore, there is space for 
si x s2 doubles allocated from free store; additionally, the space for si pointers 
is allocated from free store. The destructor deallocates store in reverse order. This 
scheme generalizes to higher dimensions. 

Obtaining the lvalue of an element in this two-dimensional array requires two 
index arguments, as follows: 

double& matrix::element(int i, int j) 
{ 

assert(i >= 0 && i <= ubl() && j >= 0 && j <= ub2()); 
return p[i] [j] ; 

} 

Both are tested to see that they are in range. This is a generalization of the one- 
index case. 

5.9 Polynomials as a Linked List 

A polynomial is sparse when it has relatively' few nonzero coefficients in compari¬ 
son to its degree. The degree of the polynomial is simply the highest exponent of a 
nonzero term. For example, the degree-1,000 polynomial P(x) = x 1000 + x 1 + 1 has 
only three nonzero terms. When large sparse polynomials are being manipulated, it 
is often efficient to base the representation on a linked list. In such a representa¬ 
tion, each list element contains a nonzero term of the polynomial. 

The next routine manipulates such polynomials and does polynomial addition 
allowing only one term per exponent. The list is sorted with terms in descending 
order of their exponents. 
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In file polyl.cpp 

//A polynomial represented as a singly linked list 

struct term { 
int exponent; 
double coefficient; 
term* next; 
term(int e, double c, term* n = 0) 

: exponent(e), coefficient(c), next(n) { } 

void printO 
{ cout « coefficient « "xa" « exponent « " "; } 

}; 

class polynomial { 
public: 

polynomial() : h(0), degree(0) { } 
polynomial (const polynomial p) ; 
polynomial (int size, double coef [] , int expon[]); 
~polynomial() { releaseO; } 
void printO const; 
void pius(polynomial a, polynomial b); 

vate: 
term* h; 
i nt degree; 

//add term to front voi d prepend(term* t); 

voi d add_term(term*& a, term*& b); 

voi d release(); //garbage collect 

voi d rest_of(term* rest); //add remaining terms 

voi d reverseQ ; //reverse terms 

}; 

In this representation, a polynomial is coded as a list of terms where each term is a 
coefficient-exponent pair. A polynomial’s terms will be listed in decreasing order by 
exponent. This canonical form makes addition and other operations simpler. A poly¬ 
nomial will be empty, initialized using the copy constructor, or constructed from a 
pair of arrays that contains a properly ordered sequence of coefficient-exponent 

pairs. 
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Several important auxiliary member functions manipulate the underlying list 
representation. The prepend() function links a term to the head of the list. The 
reverse() function reverses a list in place. The add_term() function is used by 
pi us() to add a next term and to properly advance pointers within the two polyno¬ 
mials being added. 

inline void polynomial::prepend(term* t) 
{ t -> next = h; h = t; } 

void polynomial::reverseC) //in place 
{ 

term* pred, *succ, *elem; 

if (h && (succ = h -> next)) { 
pred = 0; 
elem = h; 
while (succ) { 

elem -> next = pred; 
pred = elem; 
elem = succ; 
succ = succ -> next; 

} 
h = elem; 
h -> next = pred; 

} 
} 

The following figure shows a graphic representation of both the prepend and 
reverse operations. 
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pred elem succ 

Prepend and Reverse Operations 
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The constructors build an explicit list for each polynomial. It would be incorrect 
to rely on the compiler-generated default copy constructor. 

//assumes ordering is correct exponfi] < expon[i+l] 

polynomial::polynomial(int size, double coef[], int exponf]) 

term* temp = new term(expon[0], coef[0]); 
assert(temp != 0); 

h = 0; 

prepend(temp); //create initial term 
for (int i =1; i < size; ++i) { 

assert(expon[i - 1] < exponfi]); 
temp = new term(expon[i], coeffi]); 
assert(temp != 0); 

prepend(temp); //add term 

degree = h -> exponent; 

polynomial::polynomial(const polynomials, p) : degree(p.degree) 

term* elem = p.h, *temp; 

h = 0; 

while (elem) { //term-by-term copying 
temp = new term(elem -> exponent, elem -> coefficient)- 
assert(temp != 0); 
prepend(temp); 
elem = elem -> next; 

} 
reverseQ; 

The next set of functions implements a merge-sort polynomial addition. 
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void polynomial::add_term(term*& a, term*& b) 

{ 
term* c; 

if (a -> exponent > b -> exponent) { //add a 
c = new term(a -> exponent, a -> coefficient) ; 

assert(c != 0); 
a = a -> next; 
prepend(c); 

} 
else if (a -> exponent < b -> exponent)! //add b 

c = new term(b -> exponent, b -> coefficient); 

assert(c != 0); 
b = b -> next; 
prepend(c); 

^e]se { //check on cancellation 

if (a -> coefficient + b -> coefficient != 0) { 
c = new term( a -> exponent, 

a -> coefficient + b -> coefficient); 

assert(c != 0); 
prepend(c); 

} 
a = a -> next; 
b = b -> next; 

} 
} 

This code merges the terms at the head of the two lists. The exponents can be of the 
same or different values. If the exponents are of different values, the larger term is 
the result, and only its list pointer is advanced. If the exponents are the same, both 
list pointers are advanced. Cancellation occurs when both exponents are the same 
and their coefficients sum to 0; no term is produced. Otherwise, zero terms might 
proliferate, thus defeating our attempt at an efficient representation of a sparse 

polynomial. 
When one list of terms is exhausted by the merge, the terms from the remaining 

list are added to the front of the list by rest_of (). 
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void polynomial::rest_of(term* rest) 
{ 

term* temp; 

while (rest) { 
temp = new term(rest -> exponent, rest -> coefficient); 
assert(temp != 0); 
prepend(temp); 
rest = rest -> next; 

} 
} 

//c.plus(a,b) means c = a + b; 

void polynomial::plus(polynomial a, polynomial b) 
{ 

term* aterm = a.h, *bterm = b.h; 

release(); //garbage collect c, assumes not a or b 
h = 0; 

while (aterm && bterm) //merge step 
add_term(aterm, bterm); 

if (aterm) 
rest_of(aterm); 

else if (bterm) 
rest_of(bterm); 

reverse(); 
degree = ((h) ? h -> exponent: 0); 

} 

The function polynomial : : plus() uses add_term() and rest_of () to put the 
terms in the reverse order to the expected representation and uses reverse() to 
correct this. The print() and release() functions for polynomial are needed to 
test this code (see exercise 20 on page 194). 
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5.10 Strings Using Reference Semantics 

Allocation at runtime of large aggregates can readily exhaust memory resources. 
The list example in Section 5.7, “Example: A Singly Linked List,” on page 169, shows 
one scheme for handling this; the system reclaims memory by traversing each list 
and disposing of each element. This model of reclamation is a form of garbage col¬ 
lection. In such languages as LISP and SmallTalk, the system itself is responsible for 
this reclamation. Such systems periodically invoke a garbage collector to identify all 
cells that are currently accessible and to reclaim those that are inaccessible. Most 
such schemes require traversal and marking of cells accessible from pointers with a 

computationally expensive procedure. 
A disposal scheme that avoids this is reference counting, whereby each dynami¬ 

cally allocated object tracks its active references. When an object is created, its ret- 
erence count is set to 1. Every time the object is newly referenced, the reference 
count is incremented; every time it loses a reference, the count is decremente . 
When the reference count becomes 0, the object’s memory is disposed of. 

The following example creates a my_stri ng class that has reference semantics 
for copying. The class uses both the string and the assert libraries. This class has 
shallow-copy semantics because pointer assignment replaces copying. The tec - 
niques illustrated are common for this type of aggregate. We use the class str obj 
to create object values. The type str_obj is a required implementation detail for 
my_stri ng. The detail could not be directly placed in my_st n ng without destroy¬ 
ing the potential many-to-one relationship between objects of type my_stri ng and 
referenced values of type str_obj. The values of my.string are m the class 
str_obj, which is an auxiliary class for my_string’s use only. The publicly used 
class my_stri ng handles the str_obj instances and is called a handler class. 

In file string2.cpp 

//Reference counted my_strings 

class str_obj { 
public: 

int len, ref_cnt; 

c h 3. n ^ s; 
str_obj() : len(0), ref_cnt(l) 

{ s = new char[1]; assert(s != 0); s[0] - 
str_obj(const char* p) : ref_cnt(l) 

{ len = strlen(p) ; s = new charflen + 1] ; 

assert(s != 0); strcpy(s, p); } 

~str_obj() { delete []s; } 

}; 

0; } 
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The str_obj declares objects that are used by my_st ri ng. We will explain later 
how these can be made private and accessed using the f ri end mechanism (see Sec¬ 
tion 6.3, Friend Functions, on page 200). Notice how the str_obj class is used for 
construction and destruction of objects using free store. On construction of a 
str_obj, the ref_cnt variable is initialized to 1. 

class my_string { 
public: 

my_string() { st = new str_obj; assert(st != 0);} 
my_string(const char* p) 

{ st = new str_obj(p); assert(st != 0);} 
my_string(const my_string& str) 

{ st = str.st; st -> ref_cnt++; } 
~my_string(); 

void assign(const my_string& str); 
void print() const { cout « st -> s; } 

private: 
str_obj * st; 

}; 

The client will use objects of type my_stri ng. These objects are implemented as 
pointers st to values of type str_obj. Notice how the copy constructor for this 
class uses reference semantics to produce a copy. 

The semantics of assign() show some of the subtleties of using reference 
counting. 

void my_string::assign(const my_string& str) 

if (str.st != st) { 

if (--st -> ref_cnt == 0) 
delete st; 

st = str.st; 
st -> ref_cnt++; 

} 
} 

e assignment occurs if the my_stri ng is not being assigned its same value. The 
assignment causes the assigned variable to lose its previous value. This is equiva¬ 
lent to decrementing the reference count of the pointed-at str_obj value When- 
ever an object s reference count is decremented, it gets tested for deletion 

™ °f thlS °Ver n°rmal c°PyinS is clear. A very large aggregate is 
opied by reference, using a few operations and a small amount of storage for the 
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reference counter. Also, each possible change to a pointer adds a reference-count 
operation. The destructor must also test the reference count before deletion. 

my_string:: ~my_string() 

{ 
if (--st -> ref_cnt == 0) 

delete st; 

} 

5.11 No Constructor, Copy Constructor, and 

Other Mysteries 

Object creation for native types is usually the task of the compiler. The writer of a 
class wishes to achieve the same ease of use for the class. Let us reexamine some 

issues in simple terms. 
Does every class need an explicitly defined constructor? Of course not. If no 

constructor is written by the programmer, the compiler provides a default construc¬ 

tor, if needed. 

In file tracking.cpp 

//personal data tracking 

struct pers_data { 
i nt age; //in years 

i nt weight; //in kilograms 

i nt height; //in centimeters 

char name[20]; //last name 

}; 

void print(pers_data d) 

{ . „ 
cout « d.name « " ns « d.age 

« " years old\n"; 
cout « "weight : " « d.weight « "kg, height : 

« d.height « "cm.” « endl; 
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int mainO 

{ 
pers_data laura = { 3, 14, 88, "POHL" }; 

//construction off the stack 

print(laura); //calls copy constructor 

What if we use constructors and allow the copy constructor to be provided by 
the compiler? Recall that this means that the copy constructor does member-by¬ 
member copy, which can result in the wrong semantics—namely, shallow-copy 
semantics in which no new value is created; instead, a pointer variable is assigned 
the address of the existing value. 

Take the case of reference semantics, whereby a copy implies that the reference 
counter is incremented. This would not happen with the compiler-provided copy 
constructor. Thus, objects copied in this manner would be undercounted and pre¬ 
maturely returned to free store. As a rule of thumb, the class provider should 
explicitly write out the copy constructor unless it is self-evident that memberwise 
copy is safe. Always be cautious if the aggregate has any pointer-based members 

Are there special rules for unions? Yes. This should not be surprising, since 
unions are a technique for having various objects share space. Unions cannot have 
members that have constructors or destructors; nor can they have static data 
members. Anonymous unions can have only public data members, and a global 
anonymous union must be declared stati c. 

5.11.1 Destructor Details 

A destructor is implicitly invoked when an object goes out of scope. Common 
include block exit and function exit. 

cases 

mY—string sub_str(char c, my_string b) 

my_string temp; 

return temp; 
} 

In sub_str(), we have b, a call-by-value argument of type my_string Therefore 
the copy constructor is invoked to create a local copy when the function is invoked’ 
Correspondingly, a destructor is called on function exit. A local my st ri ng variable 
temp, is constructed on block entry to this function and therefore must have its 
destructor invoked on block exit. Finally, the return argument must be constructed 
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and passed back into the calling environment. The corresponding destructor will be 
invoked, depending on the scope of the object to which it is assigned. 

It is possible to explicitly call a destructor. 

p = new my_string("I don’t need you long"); 
//invokes my_string::my_string(const char*); 

p -> ~my_string(); //or p -> my_string::~my_string() 
. //but delete p is strongly preferred 

5.12 Pragmatics 

In constructors, initialization is preferred to assignment. For example, 

ch_stack::ch_stack(int size) 
{ s = new charfsize]; assert(s != 0); 

max_len = size; top = EMPTY; } 

is better written as 

ch_stack::ch_stack(int size) : max_len(size), top(EMPTY) 

{ s = new char[size]; assert(s != 0); } 

As mentioned, data members that are reference declarations or const declarations 
must be initialized. Also, the compiler is often more efficient about initialization. 

In classes that use new to construct objects, a copy constructor should be explic¬ 
itly provided. The default compiler-provided copy constructor usually has the 
wrong semantics for such an object. Usual practice is to provide a default and a 
copy constructor with any class that uses pointers in its implementation. As we 
shall see in Section 6.7, “Overloading Assignment and Subscripting Operators, on 
page 209, such classes should have their own explicit definition of operator-(). 
This ensures that copying and assignment will be done safely. 

In cases where constructors of one argument are not intended as conversions, 
C++ has the recently added keyword expl i ci t to disable its conversion semantics. 

class ch_stack { 

public: 
explicit ch_stack(int n); //not used for conversion 
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5.13 Moving from C++to Java 

Like a C++ constructor, a Java constructor is a function whose job is to initialize an 
object of its class. Constructors are invoked after the instance variables of a newly 
created class object have been assigned default initial values and any explicit initial¬ 
izers are called. Constructors are frequently overloaded. 

In both C++ and Java, the term overloading refers to the practice of giving sev¬ 
eral meanings to a method. The meaning selected depends on the types of the argu¬ 
ments passed to the method, called the method’s signature. 

A constructor is a member function whose name is the same as the class name. 
The constructor is not a method and does not have a return type. Let us change our 
Person example in Section 4.14, “Moving from C++ to Java,” on page 139, to have 
constructors initialize the name-instance variable. 

In file Person2.Java 

//constructor to be placed in Person 

public PersonO {name = "Unknown";} 
public Person(String nm) { name =nm;} 
public PersonCString nm, int a, char b) 

{ name =nm; age =a; gender = b;} 

These constructors would be invoked when new gets used to associate a created 
instance with the appropriate type reference variable. For example, 

pi = new PersonO; 
pi = new Person("Laura Pohl"); 
pi = new Person("Laura Pohl" 9, 'F'); 

//creates 
//creates 
//creates 

"unknown 0 M 
Laura Pohl 0 M 
Laura Pohl 9 F 

The overloaded constructor is selected by the set of arguments that matches the 
constructor s parameter list. 

iPrJ^St™Ctl°*1S d°ne automatically by the system, using automatic garbage col- 
, Thlf^ dlf[ers from C++, m which the programmer must provide the destruc¬ 

tor. When the object can no longer be referenced-for example, when the existing 
reference is given a new object—the now inaccessible object is called garbage Peri¬ 
odically, the system sweeps through memory and retrieves these “dead” objects, 

le programmer need not be concerned with such apparent memory leaks. 
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Summary 

1. A constructor, a member function whose name is the class name, constructs 
objects of its class type. This process may involve initializing data members and 
allocating free store, using the operator new. A constructor is invoked when its 

associated type is used in a definition. 

TYPE_foo y(3); //invoke TYPE_foo::TYPE_foo(int) 
extern TYPE_foo x; //declaration but not definition 

Again, not all declarations are definitions. In those cases, no constructor is 

invoked. 

2. A destructor is a member function whose name is the class name preceded by 
the tilde character Its usual purpose is to destroy values of the class type, typ 

ically by using delete. 

3. A constructor requiring no arguments is called the default constructor. It can be 
a constructor with an empty argument list or one whose arguments all have 
default values. It has the special purpose of initializing arrays of objects of its 

class. 

4. A copy constructor of the form 

type: : type(const type& x) 

is used to copy one type value into another when 

■ A type variable is initialized by a type value. 

■ A type value is passed as an argument in a function. 

■ A type value is returned from a function. 

If the copy constructor is not present, the compiler provides one that does 

member-by-member initialization of value. 

3 A class having members whose type requires a constructor uses initializers, a 
comma-separated list of constructor calls following a colon. The constructor is 
invoked by using the member name followed by an argument list in parenthe¬ 
ses. The initialization is in the order of the declaration of the members. 
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6. An efficient disposal scheme for large aggregates is reference counting. Here, 
each dynamically allocated object tracks its active references. When an object is 
created, its reference count is set to 1. Every time the object is newly referenced, 
its reference count is incremented. Every time the object loses a reference, its 
count is decremented. When the reference count becomes 0, the object’s mem¬ 
ory is disposed of. 

7. Constructors of a single parameter are automatically conversion functions. 
They convert from the parameter type to the class type. For example, 
my_type: : my_type(i nt) ; is a conversion from int to my_type. This property 
can be disallowed by declaring the constructor explicit. 

Review Questions 

1. The default constructor requires_arguments. 

2. If a class does not have an explicit copy constructor, it is provided by the 

3. A constructor is used for_. 

4. A destructor is used for_. 

5. Constructor initializers for class members can be specified in a comma-sepa¬ 
rated list after the punctuation character_. 

6. Constructor initializers are needed when a member was declared 

7. A conversion constructor is one whose signature has_. 

8. A linked list data type is an example of a_class. 

9. A linked list has pointer members that refer to objects of their own type This is 
called a_. 

10. Shallow-copy semantics means that copying is performed by_ 
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Exercises 

1. Discuss why constructors are almost always public member functions. What 

goes wrong if they are private? 

2. Write a member function for the class mod_i nt: 

void add(int i); //add i to v modulo 60 

The function should add the number i to the current value of v while retaining 

the modulo 60 feature of v. 

3. Run the following program and explain its behavior. Placing debugging informa¬ 
tion inside constructors and destructors is a very useful step in developing effi¬ 

cient and correct classes. 

//Constructors and destructors invoked 

class A { 
public: 

A(int n) : xx(n) 
{ cout « "A(int " « n « ") called" « endl;} 

A(double y) : xx(y +0.5) 
{ cout « "A(f1 " « y « ") called" « endl; } 

~A() . „ , 
{ cout << "~A() with A::xx — << xx « endl , } 

private: 
int xx; 

}; 
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int main() 

{ 
cout « "enter main\n"; 
int x = 14; 
float y = 17.3; 

A z(ll), zzCll.5), zzz(0); 

cout « "\nOBJECT ALLOCATION LAY0UT\n"; 
cout « "\nx is at " « &x; 
cout « "\ny is at " « &y; 
cout « "\nz is at " « &z; 
cout « "\nzz is at " « &zz; 
cout « "\nzzz is at " « &zzz; 
cout « "\n_\n". 
zzz = A(x); zzz = A(y); 
cout « "exit main" « endl; 

} 

Add a default constructor for class A: 

A::A() : xx(0) { cout « "A() called" « endl; } 

Now modify the program by declaring an array of type A: 

A d[5]; //declares array of 5 elements of type A 

Assign the values 0, 1, 2, 3, and 4 to the data member xx of each d [i ]. Run the 
program and explain its behavior. 

4. Using the ch_stack type discussed in Section 5.2, “Constructing a Dynamically 
Sized Stack, on page 15 5, add a default constructor to allocate ach_stack of 
100 elements. Write a program that swaps the contents of two ch_stacks, using 
an array of ch_stacks to accomplish the job. The ch_stacks will be the first 
two stacks m the array. One method would be to use four ch_stacks: st [0] 

and st [3], Push the contents of st[l] into st [2], of st[0] into 
st[3] of st[3] into st [ 1 ], and of st[2] into st[0]. To verify that the con¬ 
tents ot the ch_stacks are in the same order, implement a print() function 
that outputs all elements in the ch.stack. Can this be done with only three 
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5. Add a constructor to the type ch_stack with the following prototype: 

ch_stack::ch_stack(const char* c) ; 
//initialize from char array 

When does this provide a conversion? Is this desirable? How can the conversion 

be avoided? 

6. Using the my_string type discussed in Section 5.4, “An Example: Dynamically 
Allocated Strings,” on page 159, code the following member functions: 

//strcmp is negative if s < si, 

// i s 0 i f s == si, 

// and i s positive if s > si 

// where s is the implicit argument 

int my_string::strcmpCconst my_string& si); 

//strrev reverses the my_string 
void my_string::strrev(); 

//print overloaded to print the first n characters 
void my_string::print(int n); 

7. Write a function that swaps two my_strings. Use it and my_string: :strcmp 
from the previous exercise to write a program that will sort an array of 

my_stri ngs. 

8. Using the dbl_vect type in Section 5.5, “The Class dbl_vect,” on page 163, 

code the following member functions: 

//adds all the element values and returns their sum 

double dbl_vect::sumelem(); 

//prints all the elements 
void dbl_vect: : print() ; 

//adds two vectors into a third v(implicit) = vl+v2 
void dbl_vect::add(const dbl_vect& vl, const dbl_vect& v2); 

//adds two vectors and returns v(implicit) + vl 
dbl_vect dbl_vect::add(const dbl_vect& vl); 
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9. Write a further constructor for dbl_vect that accepts an i nt array and its size 
and that constructs a dbl_vect with these initial values: 

dbl_vect::dbl_vect(const dbl_vect* d, int sz); 

10. Try to benchmark the speed differences between safe arrays, as represented by 
class dbl_vect, and ordinary integer arrays. Repeatedly run an element summa¬ 
tion routine, using int a[10000], and one using the dbl_vect a(10000). 
Time your trials. Useful timing functions can be found in the time library. 

11. Using the class dbl_vect in Section 5.5, “The Class dbl.vect,” on page 163, 
define the class multi_v as follows: 

class multi_v { 
public: 

multi_v(int i) : a(i), b(i), c(i), size(i) {} 
void assign(int ind, int i, int j, int k); 
void retrieve(int ind, int& i, 

int& j, int& k) const; 
void print(int ind) const; 
int ub() const { return (size - 1); } 

private: 
dbl_vect a, b, c; 
int size; 

}; 

Write and test code for the member functions assign(), retrieve(), and 
pri nt (). The function assign () should assign i, j, and k to a [ind], b[ind], 
and c[ind], respectively. The function retrieve() does the inverse of 
assign(). The function print() should print the three values a [ind] b [i ndl 
and c[ind], 

12. Use the si i st type discussed in Section 5.7, “Example: A Singly Linked List,” on 
page 168, to code the following member functions: 

//slist constructor whose initializer is a char* string 
slist::slist(const char* c); 

//length returns the length of the slist 
int slist::length(); 

//return number of elements whose data value is c 
int siist::count_c(char c); 
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13. Write a member function append () that will add a list to the end of the implicit 

list argument; then clear the appended si i st by zeroing the head: 

void siist::append(slist& e); 

14. Write a member function copyO that will copy a list: 

//the implicit argument ends up a copy of e 
void siist::copy(const slist& e); 

Be sure to destroy the implicit list before you do the copy. You want a special 

test to avoid the list’s copying to itself. 

15. Use the si i st type in Section 5.7, “Example: A Singly Linked List,” on page 168, 

and add the equivalent member functions that give you stack functions: 

reset push pop top_of empty 

Using one data structure as the implementation for another data structure is 

known as adapting it. This idea is used extensively by the standard template 

library. 

16. As written, slist: :del () expects a nonempty list. What goes wrong if it is 

passed an empty list? See the effect on your system. Modify this routine to test 

for this condition and continue. Note that this can be tested as an assertion but 

will then abort on the empty list. 

17. Add a constructor to sli stelem and use it to simplify the coding of the mem¬ 

ber function slist:: prepend(char c). 

18. Modify the matrix class to have a constructor that performs a transpose (see 

Section 5.8, “Two-Dimensional Arrays,” on page 173). The second argument of 

the constructor will be an enumerated type that indicates what transformation 

should be made on the array. 

enum transform { transpose, negative, upper }; 

matrix::matrix(const matrix& a, transform t) 

//transpose base [ i][j] = a.base[j][i] 

//negative base[i][j] = -a.basefi] [j] 
//upper basefi][j] = a.basefi][j] i <= j else 0 

} 
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19. Write a member function that will return the eigen values of a mat ri x. 
» 

20. Complete the polynomial package by writing the code for the routines 

void pol ynomi al::release() and void polynomial : :print(), which are 

not found in the text. (See Section 5.9, “Polynomials as a Linked List,” on page 
175.) 

21. Write code for the polynomial addition routine void polynomial : :plus(). 
(See Section 5.9, “Polynomials as a Linked List,” on page 180.) 

22. Rewrite the function from the preceding exercise void polynomial : :plus(), 
so that c. pi us (c, c) works correctly. 

23. Make the constructor for pol ynomi al more robust. Assume that the coefficient- 

exponent pairs are not necessarily in sorted order, and take this into account 

when writing the constructor. (See Section 5.9, “Polynomials as a Linked List,” 
on page 178.) 

24. Improve the reference-counted form of class my_string by asserting in appro¬ 

priate member functions that ref_cnt is not negative. Why would you want to 

do this? (See Section 5.10, “Strings Using Reference Semantics,” on page 181.) 

25. (Java) Recode mod_i nt in Section 5.1, “Classes with Constructors,” on page 150, 
as a Java class. 

26. (Java) Recode ch_stack in Section 5.2, “Constructing a Dynamically Sized 
Stack,” on page 155, as a Java class. 

27. (Java: Project) Recode pol ynomi al in Section 5.9, “Polynomials as a Linked List,” 

on page 175, as a Java class. Evaluate the C++ and Java implementations as to 
simplicity and efficiency. 
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erator Overloading 
and Conversions 

Polymorphism is a means of giving different meanings to the same function name or 

operator, dependent on context. The appropriate meaning is selected on the basis of 

the type of data being processed. Object orientation takes advantage of polymor¬ 

phism by linking behavior to the object’s type. Operators, such as + and <<, have 

distinct meanings overloaded by operand type. For example, the expression 

cout « x is by convention expected to display an appropriate representation of x, 

depending on the type of object x. 
Conversion is the explicit or implicit change of value between types. Conver¬ 

sions provide a form of polymorphism. Overloading of functions gives the same 

function name different meanings. The name has several interpretations that 

depend on function selection. This is called ad hoc polymorphism. This chapter dis¬ 

cusses overloading, especially operator overloading, and conversions of data types. 

Operators are overloaded and selected based on the signature-matching algo¬ 

rithm. Overloading operators gives them new meanings. For example, the meaning 

of the expression a + b differs, depending on the types of the variables a and b. 

Overloading the operator + for user-defined types allows them to be used in addi¬ 

tion expressions in much the same way native types would be used. The expression 

a + b could mean string concatenation, complex-number addition, or integer addi¬ 

tion, depending on whether the variables were the ADT complex, the ADT 

my_stri ng, or the native type i nt. Mixed-type expressions are also made possible 

by defining conversion functions. This chapter also discusses friend functions and 

their importance to operator overloading. 
One principle of OOP is that user-defined types must enjoy the same privileges 

as native types. Where C++ adds the complex number type, the programmer expects 

the convenience of using it without regard to a native/nonnative distinction. Opera¬ 

tor overloading and user-defined conversions let us use complex numbers in much 

the same way as we can use i nt or doubl e. 
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6.1 ADT Conversions 

Explicit type conversion of an expression is necessary when either the implicit con¬ 

versions are not desired or the expression will not otherwise be legal. One aim of 

OOP using C++ is the integration of user-defined ADTs and built-in types. To 

achieve this, there is a mechanism for having a member function provide an explicit 
conversion. 

Section 5.1.3, “Constructors as Conversions,” on page 152, discusses a construc¬ 

tor of one argument as being a de facto type conversion from the argument’s type 
to the constructor’s class type. For example, 

point::point(double u); 

is automatically a type conversion from double to poi nt unless it is disabled by 

declaring such a conversion constructor with the modifier expl i ci t. The conver¬ 

sion is available both explicitly and implicitly. Explicitly, it is used as a conversion 
operation in either cast or functional form. Thus, 

point s; 
double d = 3.5; 

s = static_cast<point>(d); 

and 

s - d; //implicit invocation of conversion 

both work. 

These are conversions from an already defined type to a user-defined type. 
However, it is not possible for the user to add a constructor to a built-in type such 

as i nt or doubl e. A conversion function for a user-defined type can be created by 

defining a special conversion function inside the class. The general form of such a 
member function is 

operator type() { . } 

Such a member function must be nonstatic, cannot have parameters, and does not 

have a declared return type. It must return an expression of the designated type. 

In the poi nt example, one may want a conversion from poi nt to doubl e. This 
can be done for the poi nt class, as follows. 
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In file point6.cpp 

point::operator double() //use distance from origin 

{ 
return sqrt(x * x + y * y); 

} 

Notice that we used a commonly accepted conversion that is by no means unique. 

Another possibility would have been to return the x value only. Unless there is uni¬ 

versal agreement on a conversion, it is best to omit such functions, as they can 

readily lead to unintended results. 

6.2 Overloading and Function Selection 

Overloaded functions tire an important addition in C++. The overloaded meaning is 

selected by matching the argument list of the function call to the argument list of 

the function declaration. When an overloaded function is invoked, the compiler 

must have a selection algorithm with which to pick the appropriate function. The 

algorithm that accomplishes this depends on what type conversions are available. A 

best match must be unique, must be best on at least one argument, and must be as 

good as any other match on all other arguments. The following list shows the 

matching algorithm for each argument. 

Overloaded Function Selection Algorithm 

1. Use an exact match if found. 

2. Try standard type promotions. 

3. Try standard type conversions. 

4. Try user-defined conversions. 

5. Use a match to ellipsis if found. 

Standard promotions—conversions from float to double and from bool, char, 
short, or enum to int—are better than other standard conversions. Standard con¬ 

versions also include pointer conversions. 
An exact match is clearly best. Casts can be used to force such a match. The 

compiler will complain about ambiguous situations. Thus, it is poor practice to rely 

on subtle type distinctions and implicit conversions that obscure the overloaded 

function. When in doubt, use explicit conversions to provide an exact match. 
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Let us write an overloaded function g reate r() and follow our algorithm for 

various invocations. In this example, the user type rational is available. 

In file rational.cpp 

//Overloading functions 

class rational { 

public: 

rational(int n = 0) : a(n),q(l){} 

rational (int i, int j) : a(i), q(j){} 

rational(double r) : q(BIG), a(r * BIG){} 

void print() const { cout « a « " / " « q ; } 

operator double() { return static_cast<double>(a)/q; } 
private: 

long a, q; 

enum { BIG = 100 }; 

}; 

inline int greater(int i, int j) 
{ return ( i > j ? i : j); } 

inline double greater(double x, double y) 
{ return ( x > y ? x : y); } 

inline rational greater(rational w, rational z) 
{ return (w>z?w:z);} 

int main() 

{ 
int i = 10, j = 5; 
float x = 7.0; 
double y = 14.5; 
rational w(10), z(3.5), zmax; 

cout « "\ngreater(" « i « ", " « j « ") = " 
« greater(i, j); 

cout « "\ngreater(" « x « ", " « y « ") = " 
« greater(x, y); 

cout « "\ngreater(" « i « ; 
z.printO ; 

cout « ") = " « greater(static_cast<rational>(i), z); 
zmax = greater(w, z); 
cout « "\ngreater("; 
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w. pri nt() ; 
cout « ", 
z. pri nt () ; 
cout « ") = 
zmax. pri nt() ; 

The output from this program is 

greater(10, 5) = 10 
greater(7, 14.5) = 14.5 
greater(10, 350 / 100) = 10 
greater(10 / 1, 350 / 100) =10/1 

A variety of conversion rules, both implicit and explicit, are being applied. We 

explain these in the following dissection of the rational program. 

Dissection of the rational Program 

■ rational(doubl e r) : q(BIG), a(r * BIG){} 

This constructor converts from double to rational. 

■ operator doubleO { return static_cast<double>(a)/q; } 

This member function converts from rational to double. 

■ inline int greaterfint i, int j) 
{ return ( i > j ? i : j); } 

inline double greater(double x, double y) 
{ return (x>y?x:y);} 

inline rational greater(rational w, rational z) 
{ return ( w > z ? w : z); } 

Three distinct functions are overloaded. The most interesting has rational type 

for its argument list variables and its return type. The conversion member function 

operator doubleO is required to evaluate w > z. Later, we shall show howto 

overload operator>() to take rational types directly. 
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■ cout « 
« 

cout « 
« 

"\ngreater(" « 
greater(i, j); 
"\ngreater(" « 
greater(x, y); 

i « 

x « 

ii 

ii 

« j « ") 

« y « ") 

The first statement selects the first definition of greate r() because of the exact- 

match rule. The second statement selects the second definition of g reate r() 
because of the use of a standard widening conversion float to double. The value 

of variable x is widened to doubl e. 

■ « greater(static_cast<rational>(i), z); 

The second definition of greate r() is selected because of the exact-match rule. 

The explicit conversion of i to a rati onal is necessary to avoid ambiguity. 

■ zmax = greater(w, z); 

This is an exact match for the third definition. 

See exercise 3 on page 230 for more on the rational program. 

6.3 Friend Functions 

The keyword friend is a function specifier, giving a nonmember function access to 

the hidden members of the class and providing a method of escaping the data hid¬ 

ing restrictions of C++. However, we must have a good reason for escaping these 
restrictions, as they are important to reliable programming. 

One reason for using friend functions is that some functions need privileged 

access to more than one class. A second reason is that friend functions pass all of 

their arguments through the argument list, and each argument value is subject to 

assignment-compatible conversions. Conversions would apply to a class variable 

passed explicitly and would be especially useful in cases of operator overloading, as 
seen in the next section. 

A friend function must be declared inside the class declaration to which it is a 

friend. The function is prefaced by the keyword f ri end and can appear in any part 

of the class without affecting its meaning. The preferred style is to place the f ri end 
declaration in the public part of the class. Since access has no effect on friend dec¬ 

larations, they are conceptually public. Member functions of one class can be friend 
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functions of another class. In this case, they are written in the friend’s class, using 

the scope resolution operator to qualify its function name. In order to specify that 

all member functions of one class are friend functions of a second class, write 

friend class class-name. 
The following declarations illustrate the syntax. 

void alice() 

{ 
//use some private stuff from tweedledee 

cout « "Have some more tea.\n"; 

} 

class tweedledee { 

friend void alice(); //friend function 
int cheshireQ; //member function 

}; 

class tweedledum { 

friend int tweedledee::cheshi re(); 

}; 

class tweedledumber { 

friend class tweedledee; 

}; 

//all member functions of 
//tweedledee have access 

The global function al i ce() is given access to all members of tweedl edee. The 

member function tweedl edee : : cheshi re () is given access to all members of 

tweedledum. The member functions of tweedledee are given access to all members 

of tweedledumber. 
Consider the classes matrix (see Section 5.8, “Two-Dimensional Arrays,” on 

page 173) and dbl_vect (see Section 5.5, “The Class dbl_vect,” on page 163). A 

function multiplying a vector by a matrix as represented by these two classes could 

be written efficiently if it had access to the private members of both classes. The 

function would be a friend function of both classes. In our discussion, safe access 

was provided to the elements of dbl_vect and matri x with the member function 

el ement (). One could write a multiply function using el ement () without requiring 
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friend status. However, the price in function-call overhead and array-bounds 

checking would make such a matrix multiply unnecessarily inefficient. 

In file matrix2.cpp 

class matrix; //forward reference 

class dbl_vect { 
public: 

friend dbl_vect mpy(const dbl_vect& v, const matrix& m); 

private: 
double* p; 
int size; 

}; 

class matrix { 
public: 

friend dbl_vect mpy(const dbl_vect& v, const matrix& m); 

private: 
double** p; 
int si, s2; 

}; 

//use privileged access to p in both classes 
dbl_vect mpy(const dbl_vect& v, const matrix& m) 

{ 
assert(v.size == m.sl); //check sizes 

dbl_vect ans(m.s2); 
int i, j; 

for (i = 0; i <= m.ub2(); ++i) { 
ans.pfi] = 0; 
for (j = 0; j <= m.ubl(); ++j) 

ans. p[i ] += v.p[j] * m.p[j][i]; 

} 
return ans; 
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A minor point is that a forward declaration of the class matri x is necessary. The 
reason is that the function mpy() must appear in both classes, using each class as 
an argument type. 

The OOP paradigm is that objects (in C++, class variables) should be accessed 
through their public members. Only member functions should have access to the 
hidden implementation of the ADT. This is a neat, orderly design principle. The 
friend function, however, straddles this boundary. The friend function has access to 
private members but is not itself a member function. The friend function can be 
used to pro\lde quick fixes to code that needs access to the implementation details 
of a class. But the mechanism is easily abused. 

6.4 Overloading Operators 

The keyword operator is used to define a type-conversion member function, as 
well as to overload the built-in C++ operators. Just as a function name, such as 
pri nt (), can be given a variety of meanings, depending on its arguments, so can an 
operator, such as +, be given additional meanings. Overloading operators allows 
infix expressions of both ADTs and built-in types to be written. In many instances, 
this important notational convenience leads to shorter, more readable programs. 

Unary and binary operators can be overloaded as nonstatic member functions. 
Implicitly, they are acting on a class value. Most unary operators can be overloaded 
as ordinary functions, taking a single argument of class or reference to class type. 
Most binary operators can be overloaded as ordinary functions, taking one or both 
arguments of class or reference to class type. The operators =, (), [], and -> must 
be overloaded with a nonstatic member function. 

class foo { 
public: 

foo operator-(); 
foo operator-(int); 
foo operator-(foo); 

}; 

foo operator-(int, foo); //binary minus int-foo 
foo operator-(int, foo*); //i1 legal:need foo or foo& 

//overload unary minus 
//binary minus foo-int 
//binary minus foo-foo 

The previous section’s mpy() function could have been written as 

dbl_vect operator*(const dbl_vect& v, const matrix& m) 
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If this had been done, if r and s were dbl_vect, and if t were a mat ri x, the natural¬ 
looking infix expression 

r = s * t; 

would invoke the multiply function, replacing the functional notation 

r = mpy(s, t); 

Although meanings can be added to operators, their associativity and prece¬ 
dence remain the same. For example, the multiplication operator will remain of 
higher precedence than the addition operator. The operator precedence table for 
C++ is included in Appendix B, “Operator Precedence and Associativity.” Almost all 
operators can be overloaded. The exceptions are the member operator ., the mem¬ 
ber object selector operator. *, the ternary conditional expression operator ? :, the 
sizeof operator, and the scope resolution operator : (See Section C.12.5, “Opera¬ 
tor Overloading,” on page 390.) 

Available operators include all of the arithmetic, logical, comparison, equality, 
assignment, and bit operators. Furthermore, the autoincrement and autodecrement 
operators, ++ and —, can have distinct prefix and postfix meanings. (See exercise 24 
on page 236.) The subscript or index operator [] and the function call () can also 
be overloaded. The structure pointer operator -> and the member pointer selector 
operator ->* can be overloaded. (See exercise 25 on page 236.) It is also possible to 
overload new and delete. The assignment, function call, subscripting, and class 
pointer operators can be overloaded only by nonstatic member functions. 

6.5 Unary Operator Overloading 

To continue the discussion of operator overloading, we demonstrate how to over¬ 
load unary operators, such as !, ++, ~, and []. For this purpose, we develop the 
class clock, which can be used to store time as days, hours, minutes, and seconds. 
We shall develop familiar operations on cl ock. 
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In file clock.cpp 

class clock { 
public: 

clock(unsigned long i); //construct & conversion 
void print() const; //formatted printout 
void tick(); //add one second 
clock operator++() { tick(); return *this; } 

private: 
unsigned long tot_secs, secs, mins, hours, days; 

}; 

This class overloads the prefix autoincrement operator; the class is a member 
function and can be invoked on its implicit single argument. The member function 
tick adds one second to the implicit argument of the overloaded ++ operator. 

inline clock::clock(unsigned long i) 

{ 
tot_secs = i; 
secs = tot_secs % 60; 
mins = (tot_secs / 60) % 60; 
hours = (tot_secs / 3600) % 24; 
days = tot_secs / 86400; 

} 

void clock::tick() 

{ 
clock temp = clock(++tot_secs); 

secs = temp.secs; 
mins = temp.mi ns; 
hours = temp.hours; 
days = temp.days; 

} 

The constructor performs the usual conversions from tot_secs to days, hours, 
minutes, and seconds. For example, a day has 86,400 seconds; therefore, integer 
division by this constant gives the whole number of days. The member function 
tick() constructs clock temp, which adds 1 second to the total time. The con¬ 
structor acts as a conversion function that properly updates the time. 

The overloaded operator++() also updates the implicit clock variable and 
returns the updated value as well. It could have been coded in the same way as 

ti ck(), except that the statement 
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return temp; 

would be added. 
Adding the following code, we can test our functions: 

void clock::print() const 

{ 
cout « days « " d « hours « " h 

« mins « " m « secs « " s" « endl; 

} 

//Clock and overloaded operators 

int main() 

{ 
clock tl(59), t2(172799); //172799 = 2 days-1 sec 

cout « "initial times are" « endl; 
tl.printO ; 
t2.print() ; 
++tl; ++t2; 
cout « "after one second times are" « endl; 
tl.printO ; 
t2.printO ; 

} 

The output is 

initial times are 
0 d :0h :0m :59s 
1 d :23 h :59 m :59 s 
after one second times are 
0 d :0h :1m :0s 
2 d :0 h :0 m :0 s 

It is also possible to overload prefix ++, using an ordinary function. 

clock operator++(clock& cl) 

{ 
cl . ti ckO ; 
return cl; 

} 
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Notice that the clock variable must advance by 1 second; we use call-by-reference. 
The decision to choose between a member function representation and a non¬ 

member function typically depends on whether implicit conversion operations are 
available and desirable. Explicit argument passing allows the argument to be auto¬ 
matically coerced, if necessary and possible. When overloaded as a member func¬ 
tion, +C is equivalent to c. operator++(). When overloaded as a nonmember 
function, ++c is equivalent to operator++(c). 

6.6 Binary Operator Overloading 

We continue with our clock example and show how to overload binary operators. 
The same principles hold: When a binary operator is overloaded using a member 
function, it has as its first argument the implicitly passed class variable and as its 
second argument the lone argument-list parameter. Friend functions and ordinary 
functions have both arguments specified in the parameter list. Of course, ordinary 
functions cannot access private members. 

Let us create an operation for type clock that will add two values. 

In file clock.cpp 

class clock { 

friend clock operator+(clock cl, clock c2); 

}; 

clock operator+(clock cl, clock c2) 

{ 
return (cl.tot_secs + c2.tot_secs); 

} 

The integer expression is implicitly converted to a clock by the conversion con¬ 
structor clock: :clock(unsigned long). Both clock values are passed as func¬ 
tion arguments, and both are candidates for assignment conversions. Because 
operator+O is a symmetric binary operator, the arguments should be treated iden¬ 
tically. Thus, it is normal for symmetric binary operators to be overloaded by friend 
functions. 

In contrast, let us overload binary minus with a member function. 
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class clock { 

clock operator-(clock c); 

}; 

clock clock::operator-(clock c) 

{ 
return (tot_secs - c.tot_secs); 

} 

Remember that there is an implicit first argument. This takes some getting used to. 
It would have been better to use a friend function for binary minus, because of the 
symmetric treatment of the arguments. 

We shall define a multiplication operation as a binary operation, with one argu¬ 
ment an unsigned long and the second a clock variable. The operation will 
require the use of a friend function. It cannot be done with a member function 
because, as already stated, member functions have as their implicit first argument 
the this pointer. 

clock operator*(unsigned long m, clock c) 

{ 
return (m * c.tot_secs); 

} 

This requirement forces the multiplication to have a fixed ordering that is type 
dependent. In order to avoid this, it is common practice to write a second over¬ 
loaded function. 

clock operator*(clock c, unsigned long m) 
{ 

return (m * c.tot_secs); 

} 

The second function is defined in terms of the first, as follows: 

clock operator*(clock c, unsigned long m) 
{ 

return (m * c); 

} 

Defining the second implementation in terms of the first implementation reduces 
code redundancy and maintains consistency. 
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6.7 Overloading Assignment and 
Subscripting Operators 

The assigmnent operator for a class type is by default generated by the compiler to 
have member-by-member assignment. This is fine for many user-defined types, 
such as rational or point. For types, such as my_string and dbl_vect, that need 
deep copying, this is incorrect. As a rule of thumb, any time a class needs an explicit 
copy constructor defined, it also needs an assignment operator defined. As we have 
seen with copy constructors, this is usually the case when the object allocates its 
own memory. 

The subscripting operator is usually overloaded where a class type represents 
an aggregate for which indexing is appropriate. The index operation is expected to 
return a reference to an element contained within the aggregate. Overloading 
assignment and subscripting share several characteristics. Both must be done as 
nonstatic member functions, and both usually involve a reference return type. 

We shall reimplement the class dbl_vect, extending its functionality by apply¬ 
ing operator overloading. (See Section 5.5, “The Class dbl_vect,” on page 163.) The 
reimplemented class will have several improvements to make it both safer and more 
useful. A constructor that converts an ordinary integer array to a safe array will be 
added, allowing us to develop code using safe arrays and to later run the same code 
efficiently on ordinary arrays. The public data member ub has been changed to a 
member function, which prevents a user from inadvertently introducing a program 
error by modifying the member. Finally, the subscript operator is overloaded and 
replaces the member function element. 
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In file dbl_vect2.h 

//A safe array type dbl_vect with [] overloaded 

class dbl_vect { 
public: 

//constructors and destructor 
explicit dbl_vect(int n = 10); 
dbl_vect(const dbl_vect& v); 
dbl_vect(const double a[], int n); //initialize by array 
~dbl_vect() { delete []p; } 
//other member functions 
int ub()const { return (size-1); } //upper bound 
double& operator[](int i) ; //range checked 
dbl_vect& operator=(const dbl_vect& v); //assignment 

private: 
double* p; //base pointer 
int size; //number of elements 

dbl_vect::dbl_vect(int n) : size(n) 

{ 
assert(n > 0); 
p = new double[size]; 
assert(p != 0); 

dbl_vect::dbl_vect(const double a[], int n) : size(n) 

{ 
assert(n > 0); 
p = new double[size]; 
assert(p != 0); 
for (int i = 0; i < size; ++i) 

p[i] = a[i]; 
} 

dbl_vect::dbl_vect(const dbl_vect& v) : size(v.size) 
{ 

p = new double [size]; 
assert(p != 0); 
for (int i = 0; i < size; ++i) 

p[i] = v. p[i ]; 
} 
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double& dbl_vect::operator[](int i) 
{ 

assert(i >= 0 && i < size); 
return p[i]; 

} 

An overloaded subscript operator can have any return type and any argument list 
type. However, it is good style to maintain the consistency between a user-defined 
meaning and standard usage. Thus, the most common function prototype is 

element-type& operatorf] (integral type) ; 

Such functions can be used on either side of an assignment. 
It is also convenient to be able to assign one array to another. The user can spec¬ 

ify the behavior of assignment by overloading it. It is good style to be consistent 
with standard usage. The following member function overloads assignment for 
class db1_vect: 

dbl_vect& db1_vect::operator=(const dbl_vect& v) 

{ 
if (this != &v) { //do nothing if assigned to self 

assert(v.size == size); 
for (int i =0; i < size; ++i) 

P [i ] = v. p[i ]; 

} 
return *this; 

} 

Dissection of dbl_vect: :operator=() Function 

■ dbl_vect& dbl_vect::operator=(const dbl_vect& v) 

The operator=() function returns reference to dbl_vect and has one explicit 
argument of type reference to dbl_vect. The first argument of the assignment 
operator is the implicit argument. If the function had been written to return voi d, it 
would not have allowed multiple assignment. 

■ if (this != &v) { 

Don’t do anything if assignment is to the current variable. 
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■ assert(v.size == size); 

This is a guarantee that the sizes are compatible. 

■ for (int i = 0; i < size; ++i) 
P[i3 = v. p[i] ; 

return *this; 

The explicit argument v. p[] will be the right-hand side of the assignment; the 
implicit argument p[] will be the left-hand side. The self-referential pointer is 
dereferenced and passed back as the value of the expression. This allows multiple 
assignment with right-to-left associativity to be defined. 

Expressions of type dbl_vect can be evaluated by overloading in appropriate 
ways the various arithmetic operators. As an example, let us overload binary + to 
mean element-by-element addition of two dbl_vect variables. 

dbl_vect dbl_vect::operator+(const dbl_vect& v) 

{ 
assert(size == v.size); 
dbl_vect sum(size); 
for (int i =0; i < size; ++i) 

sum.pfi] = p[i ] + v. p[i ]; 
return sum; 

} 

The following expressions are now meaningful with the class dbl_vect: 

a = b; //a, b are type dbl_vect 
a = b = c; //a, b, c are type dbl_vect 
a = dbl_vect(data, DSIZE); //convert array datafDSIZE] 
a = b + a; //assignment and addition 
a = b + (c = a) + d; //complicated expression 

The class dbl_vect is a full-fledged ADT, behaving and appearing in client code 
much as any built-in type behaves and appears. 

Notice that overloading both the assignment and plus operators does not imply 
that operator+= is overloaded. Indeed, it is the class designer’s responsibility to 
make sure that the various operators have consistent semantics. It is customary to 
overload related sets of operators consistently. 
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6.8 Polynomial: Type and Language Expectations 

A type’s behavior is dictated largely by expectations found in the community that 
uses it. So how a polynomial behaves is determined by the mathematical commu¬ 
nity’s definitions. In writing a polynomial type, one expects that the basic mathe¬ 
matical operations, such as +, -, *, and /, are available and work appropriately. 
Furthermore, one expects that assignment operators, equality operators, and incre¬ 
ment and decrement operators provided are consistent with the C++ community’s 
expectations. A class provides a public interface that is easy to use insofar as it 
meets both expectations. Operators for which there is no normal expectation should 
not be overloaded. 

A more realistic polynomial class based on the representation in Section 5.9, 
“Polynomials as a Linked List,” on page 175, could have the following declaration: 

In file poly2.cpp 

//Polynomials with overloaded arithmetic operators 

class polynomial { 
public: 

polynomial () ; 
polynomial (const polynomial p) ; 
polynomial(int size, double coef[], int exponf]); 
~polynomial () { releaseO; } 
void printO const; 
double operatorO (double x) const; //evaluate P(x) 
polynomial operator=(const polynomials a); 
friend polynomial operator+(const polynomial a, 

const polynomials b); 
friend polynomials operator-(const polynomials a, 

const polynomials b); 
friend polynomials operator*(const polynomials a, 

const polynomials b); 
friend polynomials operator/(const polynomials a, 

const polynomials b); 
friend polynomials operator-(const polynomials a); 
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friend polynomial operator+=(polynomial& a, 
const polynomial b) ; 

friend bool operator==(const polynomial& a, 
const polynomial b) ; 

friend bool operator! =(const polynomial a, 
const polynomial b) ; 

private: 
term* h; 
int degree; 
void prepend(term* t); 
voi d add_term(term- ~S a, 
voi d releaseO ; 
voi d rest_of(term* rest) 
voi d reverseQ ; 

b); 

The basic mathematical operations should work, and the basic relationships among 
C++ operators should hold. It would be very undesirable to have operator=(), 
operator+O, and operator+=() all defined and not have a = a + b give the 
same result as a += b. 

The code for overloading operator= is as follows: 

In file poly2.cpp 

polynomials polynomial::operator=(const polynomials a) 

if (h != a.h) { //avoid a = a case 

releaseO; //garbage collect old value 
polynomial* temp = new polynomial(a); 
h = temp -> h; 
degree = temp -> degree; 

} 
return *this; 

} 

The implementation of the other operators is left as an exercise (see exercise 28 on 
page 237). 
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6.9 Overloading I/O Operators « and » 

In keeping with the spirit of OOP, it is important to overload « to output user- 
defined types, as well as native types. The operator << has two arguments—an 
ostream& and the ADT—and must produce an ostream&. Whenever overloading « 
or », you want to use a reference to a stream and return a reference to a stream, 
because you do not want to copy a stream object. Let us write these functions for 
the type rational: 

In file rational.cpp 

class rational { 
public: 

friend ostream& 
operator«(ostream& out, rational x); 

friend istream& 
operator»(istream& in, rational& x) 

private: 
long a, q; 

}; 

ostream& operator«(ostream& out, rational x) 

{ 
return (out « x.a « " / " « x.q « '\t'); 

} 

When the operator » is overloaded to produce input to a user-defined type, its typ¬ 

ical form is 

istream& operator»(istream& p, user-defined type& x) 

If the function needs access to private members of x, it must be made a friend 
of its class. A key point is to make x a reference parameter so that its value can be 
modified. To do this for rational would require placing a friend declaration for 
this operator in the class rational and providing its function definition. 

istream& operator»(istream& in, rational& x) 

{ 
return (in » x.a » x.q); 

} 
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6.10 Overloading Operator () for Indexing 

A matrix type that provides dynamically allocated two-dimensional arrays can be 
designed with the function call operator overloaded to provide element selection. 
This is a good example of a container class that is useful with both scientific and 
nonscientific computation. 

The function call operator () can be overloaded as a nonstatic member function 
with respect to various signatures. It is frequently used to provide an iterator opera¬ 
tion (see exercise 12 on page 232 through exercise 14 on page 233) or an operation 
requiring multiple indices. 

In file matrix3.cpp 

//dynamic matrix type 

class matrix { 
public: 

matrix(int c, int r); 
~matrix() ; 

int ubl() const { return(c_size - 1); } 
int ub2() const { return(r_size -1); } 
double& operator()(int i, int j); 
matrixS operator=(const matrixS m); 
matrixS operator+=(matrix& m); 

private: 
int c_size, r_size; 
double **p; 

}; 

matrix:: matrix(int c, int r):c_size(c), r_size(r) 

p = new double*[c]; 
assert(p != 0); 
for (int i =0; i < C; ++i){ 

P[i] = new double[r]; 
assert(p[i] != 0); 

} 
} 
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matrix:: ~matrix() 

{ 
for (int i =0; i < c_size; ++i) 

delete [] p[i]; 
delete [] p; 

} 

inline double& matrix::operator()(int i, int j) 

{ 
assert( i >= 0 && i < c_size && 

j >= 0 && j < r_size); 
return p[i] [j]; 

} 

matrix& matrix::operator=(const matrix& m) 

{ 
assert(m.c_size == c_size && m.r_size == r_size); 

int i, j; 

for (i =0; i < c_size; ++i) 
for (j = 0; j < r_size; ++j) 

p[i] [j] = m. p[i] [j]; 
return *this; 

} 

matrix& matrix::operator+=(matrix& m) 

{ 
assert(m.c_size == c_size && m.r_size == r_size); 

int i, j; 

for (i =0; i < c_size; ++i) 
for (j =0; j < r_size; ++j) 

p[i] [j] += m.p[i] [j]; 
return *this; 
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Dissection of the Class matrix 

■ inline double& matrix::operator()(int i, int j) 

{ 
assert( i >= 0 && i < c_size && 

j >= 0 && j < r_size); 
return p[i] [j]; 

} 

This member function gives a convenient multiple-argument notation for element 
access. This results in client code using expressions of the form m(i , j) to access 
explicit matrix elements. Notice how matrix indices are bounds tested through an 
assertion. 

■ matrix& matrix:roperator+=(matrix& m) 
{ 

assert(m.c_size == c_size && m.r_size == r_size); 

The assertion macro is used with a testable precondition for arguments needed by 
this member function. The matrix being assigned to must be the same size as the 
matrix expression being computed. The code replaces an if-else statement that 
would perform an error exit. Compare this to the code written for class dbl_vect 
(see Section 5.5, “The Class dbl_vect,” on page 163). 

■ for (i = 0; i < c_size; ++i) 
for (j = 0; j < r_size; ++j) 
P[i] [j] += m.p[i] [j]; 

This inner loop is efficient and transparent. Elementwise addition is being accom¬ 
plished without overhead. 

■ return *this; 

The return type is a reference to matri x. Dereferencing the thi s pointer causes the 
lvalue of the matrix object to be returned. This is the usual trick that allows multi¬ 
ple assignment to occur. 

This code is expanded in exercise 30 on page 238. 
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6.11 Overloading the Pointer Operator -> 

The structure pointer operator -> is overloaded as a nonstatic class member func¬ 
tion. The overloaded structure pointer operator is a unary operator on its left oper¬ 
and. The argument must be either a class object or a reference of this type. The 
function can return a pointer to a class object, an object of a class for which 
operator -> is defined, or a reference to a class for which operator -> is defined. 

In the following example, we overload the structure pointer operator inside the 
class t_ptr. Objects of type t_ptr act as controlled-access pointers to objects of 
type tri pi e. 

In file triple.cpp 

// Overloading the structure pointer operator 

class triple { 
public: 

triple(int a, int b, int c) { i = a; j = b; k = c; } 
void print() { cout « "\ni = " « i « ", j = 

« j « ", k = " « k; } 

private: 
int i, j, k; 

}; 

triple unauthor(0, 0, 0); 

class t_ptr { 
public: 

t_ptr(bool f, triple* p) { access = f; ptr = p; } 
triple* operator ->() ; 

private: 
bool access; 
triple* ptr; 
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triple* t_ptr::operator->() 
{ 

if (access) 
return ptr; 

else { 

cout « "\nunauthorized access"; 
return &unauthor; 

} 
} 

The variable t_pt r:: access is tested by the overloaded operator ->. If it is 
true, access is granted. The following code illustrates this: 

int main() 

{ 
triple a(l, 2, 3), b(4, 5, 6); 
t-Ptr ta(false, &a), tb(true, &b); 

ta -> print(); //access denied 
tb -> printQ; //access granted 

6.12 Overloading new and delete 

Most classes involve free-store memory allocation and deallocation. Sometimes 
more sophisticated use of memory than is provided by simple calls to operators new 
and delete is needed for efficiency or robustness. 

Operator new has the general form 

■ : opt new placementopt type initializer^ 

Some examples are 

::new char[10]; //insist on global new 
new(buff) X(a); //call with buff using X::X(a) 

Up to now, we have been using the global operator new() to allocate free store 
The system provides a sizeof (type) argument to this function implicitly Its func¬ 
tion prototype is 
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void* operator new(size_t size); 

The operators new and delete can be overloaded. This feature provides a simple 
mechanism for user-defined manipulation of free store. For example, traditional C 
programming uses malloc() to access free store and to return avoid* pointer to 
the allocated memory. In this scheme, memory is deallocated by the stdlib function 
f ree(). We use operator overloading of new and delete to allow an X object to use 
C’s traditional free-store management. 

class X { 
public: 

void* operator new(size_t size) { return (malloc(size)); } 
void operator delete(void* ptr) { free(ptr); } 
X(unsigned size) { new(size); } 
~X() { delete(this) ; } 

}; 

In this example, the class X has provided overloaded forms of new() and delete(). 
When a class overloads operator new(), the global operator is still accessible 

using the scope resolution operator : :. 
One reason to overload these operators is to give them additional semantics, 

such as providing diagnostic information or being more fault tolerant. Also, the 
class can have a more efficient memory-allocation scheme than that provided by the 

system. 
The placement syntax provides a comma-separated argument list used to select 

an overloaded operator new() with a matching signature. These additional argu¬ 
ments are often used to place the constructed object at a particular address. This 

form of operator new uses the new library. 

In file over_new.cpp 

//Placement syntax and new overloaded 

char* bufl = new char[1000]; 
char* buf2 = new char[1000]; 

class object { 
public: 

private: 

}; 

//in place of free store 
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int main() 

{ 
object *p = new(bufl) object; //allocate at bufl 
object *q = new(buf2) object; //allocate at buf2 

} 

Placement syntax allows the user to have an arbitrary signature for the overloaded 
new operator. This signature—which is distinct from the initializer arguments—calls 
to new use to select an appropriate constructor. 

The del ete operator comes in two flavors. It can have as signatures 

void operator delete(void* p); 
void operator delete(void* p, size_t); 

The first signature makes no provision for the number of bytes to be returned by 
delete; in this case, the programmer provides code that supplies this value. The 
second signature includes a size_t argument passed to the delete invocation. 
This argument is provided by the compiler as the size of the object pointed at by p. 
Only one form of del ete can be provided as a static member function in each class. 

The new library has the function pointer _new_handl er (), which calls the error 
handler for operator new(). If memory is exhausted, the function pointer 
_new_handler is used to call a default system routine. The user can specify an 
explicit out-of-free-store routine, which can replace the default function by using 
set_new_handl er(). The exit() function is provided in the stdliblibrary. 

In file new_hdlr.cpp 

//Simple fault tolerance using _new_handler 

void heap_exhausted() //user-defined error handling 
{ 

cerr « "HEAP EXHAUSTED" « endl; 
exit(l); 

} 

int main() 

{ 
set_new_handler(heap_exhausted); 
. //memory exhaustion is like heap_exhausted() 
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These class new() and delete() member functions are always implicitly static. 
The new() is invoked before the object exists and therefore cannot have a thi s yet. 
The delete() is called by the destructor, so the object is already destroyed. 

6.13 Pragmatics 

Explicitly casting arguments can be both an aid to documentation and a useful way 
to avoid poorly understood conversion sequences. It is not an admission of igno¬ 
rance to cast or to parenthesize arguments or expressions that otherwise could be 
converted or evaluated properly. 

Operator overloading is easily misused. Do not overload operators when doing 
so can lead to misinterpretation. The domain of use should have a widely used nota¬ 
tion that conforms to your overloading. Also, overload related operators in a man¬ 
ner consistent with C++ community expectations. For example, the relational 
operators <, >, <=, and >= should all be meaningful and provide expected inverse 
behaviors. 

Generally speaking, overload symmetric binary operators, such as +, *, ==, ! =, 
and &&, with friend functions. Both arguments are then passed as ordinary parame¬ 
ters, which subjects them to the same rules of parameter passing. Recall that using 
a member function to provide overloading for symmetric binary operators causes 
the first argument to be passed via the thi s pointer. 

Any time a class uses new to construct objects, it should provide an explicitly 
overloaded operator=(). This advice is analogous to our rule that such a class pro¬ 
vide an explicit copy constructor. (See Section 5.2.1, “The Copy Constructor,” on 
page 156.) The compiler-provided default assignment operator semantics would in 
most cases result in spurious behavior. This leads to a suggested normal form for 
classes with heap-managed memory. 

//Normal form for heap-managed classes illustrated 

class dbl_vect { 
public: 

dbl_vect(); //default constructor 
dbl_vect(const dbl_vect&); //copy constructor 

dbl_vect& operator=(const dbl_vect&); //returns lvalue 
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This normal-form rule also applies to reference-counted classes, such as the 
my_stri ng type. (See Section 5.4, “An Example: Dynamically Allocated Strings,” on 
page 159.) The operator=() returns a reference to allow assignment to work effi¬ 
ciently. This requires lvalue semantics. 

6.13.1 Signature Matching 

Rules for signature matching are given in simplified form in Section 6.2, “Overload¬ 
ing and Function Selection,” on page 197. A further clarification of these rules with 
examples is given here. 

For a given argument, a best match is always an exact match. An exact match 
also includes trivial conversions. These are shown in the following table for type T: 

Trivial Conversions 

From To 

T* const T* 

T* volatile T* 

The use of vol ati 1 e is specialized. It means that a variable can be modified 
external to the program code. So, a variable representation of an address that gets 
data from an external device, such as a real-time clock, would be vol ati 1 e. Also, 
vol ati 1 e is used to suppress compiler optimizations that involve such variables. 

These additional modifiers can be used in overloading resolution. Thus, 

void print(int i); 
void print(const int& i); 

can be unambiguously overloaded. 

It is important to remember that user-defined conversions include constructors 
of a single argument. These constructors can be implicitly called to perform conver¬ 
sions from the argument type to their class type. This can happen for assignment 
conversions, as in the argument-matching algorithm. The following example is mod¬ 
ified from the one in Section 6.5, “Unary Operator Overloading,” on page 205: 
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In file clock.cpp 

//modify clock program 

class clock { 
public: 

clock(unsigned long i); 
void printO const; 

tick() ; 

operator++() { this 
reset(const clock& c); 

voi d 
cl ock 
voi d 

private: 
unsigned long 

}; 

//construct & conversion 
//formatted printout 
//add one second 
-> tick(); return *this; } 

tot_secs, secs, mins, hours, days; 

void clock::reset(const clock& c) 

{ 
tot_secs = c.tot_secs; 
secs = c.secs; 
mins = c.mins; 
hours = c.hours; 
days = c.days; 

} 

int main() 

{ 
clock cl(900), c2(400); 

cl.reset(c2); 
c2.reset(100); 

} 

The call to reset (100) involves an argument match between i nt and clock that is 
a user-defined conversion invoking the constructor clock(unsigned). Where these 
conversions are unintended, a new keyword expl i ci t can be used in declaring the 
constructor to disable its use as an implicit conversion. 
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6.14 Moving from C++ to Java 

Unlike C++, Java does not have operator overloading. Also, Java uses garbage collec¬ 
tion instead of explicit deallocation. Java’s use of new is similar to that in C++ but 
does not allow for overloading of the new operator. In general, this simplifies and 
restricts what the Java programmer can do and needs to worry about. Java allows 
ordinary casts but does not allow nonportable casts. 

Java will perform an automatic conversion only if the conversion does not result 
in any information loss. The exception is that some numeric conversions from inte¬ 
ger types to floating-point types can result in loss of precision, but the most signifi¬ 
cant digits of the result will be unchanged. For example, the following will result in 
an automatic conversion when n is assigned to f: 

int n = 2; 
float f; 

f = n; 

Trying to assign f to n would require a cast, 

n = (int)f; 

In this case, the floating-point value stored in f will be rounded toward zero, and 
the resulting value will be stored in n. 

A widening primitive conversion is a conversion from one primitive type to 
another that loses at most some precision but otherwise does not lose information. 
The following are the Java widening primitive conversions: 

From To 

byte short, int, long, float, or double 

short i nt, 1 ong, f 1 oat, or doubl e 

char i nt, 1 ong, f 1 oat, or doubl e 

int long, float, or double 

1 ong float or double 

fl oat double 

Widening primitive conversions are also applied automatically in assignment state¬ 
ments, as shown in the preceding example and in method invocations. 
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A narrowing primitive conversion, between primitive numeric types, may result 
in significant information loss. The following are narrowing primitive conversions: 

From To 

byte char 

short byte or char 

char byte or short 

int byte, short, or char 

long byte, short, char, or i nt 

fl oat byte, short, char, int, or long 

double byte, short, char, int, long, or float 

The only automatic narrowing primitive conversions are in assignment statements 
when the expression is a constant of type i nt; the variable is type byte, char, or 
short; and the value of the expression is representable by the type of the variable. 
Because the expression is a constant, it is possible to determine at compile time 
whether the conversion is legal. 

Other than for assignment of constant expressions as just described, narrowing 
primitive conversions result only from an explicit cast. If the cast is between two 
integral types, the most significant bits are simply discarded in order to fit into the 
resulting format. Here is an example that shows how a narrowing conversion can 
cause a change of sign: 

int i =127, j = 128; 
System.out.println((byte)i); 
System.out.println((byte)j) ; 

The output is 

127 
-128 

The largest positive value that can be stored in a byte is 127. Attempting to force a 
narrowing conversion on a value greater than 127 will result in the loss of signifi¬ 
cant information. In this case, the sign is reversed. 

String conversion is used inprintln(): 

System.out.println("x = " + x); 
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where x is a numeric primitive type variable. String conversion occurs when exactly 
one operand of the operator + is a string. In this case, the nonstring operand is con¬ 
verted to a string. For the primitive types, the result of string conversion is a 
value of type Stri ng that represents the primitive value. For example, the result of 
doing a string conversion on the int value 12S is the String "123". 

Summary 

1. Overloading operators gives them new meanings. For example, the meaning of 
the expression a + b depends on the types of the variables a and b. The expres¬ 
sion could mean string concatenation, complex number addition, or integer 
addition, depending on whether the variables were the ADT my_string, the 
ADT compl ex, or the built-in type i nt, respectively. 

2. A nonexplicit constructor of one argument is de facto a type conversion from 
the argument’s type to the constructor’s class type. A conversion from a user- 
specified type to a built-in type can be made by defining a special conversion 
function. The general form of such a member function is 

operator typeO { . } 

These conversions occur implicitly in assignment expressions, arguments to 
functions, and values returned from functions. 

3. The overloaded meaning is selected by matching the argument list of the func¬ 
tion call to the argument list of the function declaration. A best match must be 
unique. It must be best on at least one argument and must be as good as any 
other match on all other arguments. 

4. The keyword friend is a function specifier that allows a nonmember function 
access to the nonpublic members of the class of which it is a friend. 

5. The keyword operator is also used to overload the built-in C++ operators. Just 
as a function name, such as pri nt(), can be given a variety of meanings that 
depend on its arguments, so can an operator, such as +, be given additional 
meanings. Overloading operators allows infix expressions of both user and 
built-in types to be written. Operator precedence and associativity remain fixed. 

6. Operator overloading typically uses either member functions or friend func¬ 
tions, because both have privileged access. When a unary operator is overloaded 
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using a member function, it has an empty argument list because the single oper¬ 
ator argument is the implicit argument. When a binary operator is overloaded 
using a member function, it has as its first argument the implicitly passed class 
variable and as its second argument the lone argument-list parameter. 

7. An overloaded subscript operator can have any return type and any argument- 
list type. However, it is good style to maintain the consistency between a user- 
defined meaning and standard usage. Thus, a common frmction prototype is 

element-type& operator [] (integral type) ; 

This is an lvalue that can be used on either side of an assignment. 

Review Questions 

1. What is the signature in the following declaration: void f(int x, double y);? 

2. How can you disable a conversion constructor? 

3. How many arguments can a user-defined conversion have? 

4. Outline the signature-matching algorithm. 

5. Explain how cout « x uses overloading and why this was important. 

6. The keyword friend is a function specifier. It gives a nonmember function 

7. One reason for using friend functions is_. 

8. Binary operators, such as +, should be overloaded by _ functions 

because_. 

9. When a pointer operator is overloaded, it must be a_function. 

10. Some operators can be overloaded only as nonstatic member functions. Name 

three such operators. 
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Exercises 

1. The following table contains a variety of mixed-type expressions. Fill in both the 
type the expression is converted to and its value when well defined. 

Declarations and Initializations 

int i = 3, *p = &i; 
char c = 'b'; 
f 1 oat x = 2.14, *q = &x; 

Expression Type Value 

i + c 

x + i 

P + i 

p == & i 

* P - * q 

static_cast<int>(x + i) 

2. For the type rational in Section 6.2, “Overloading and Function Selection,” on 
page 198, explain why the conversions of integer 7 and double 7.0 lead to differ¬ 
ent internal representations. 

3. The following line of code is from the rational program in Section 6.2, “Over¬ 
loading and Function Selection,” on page 198. 

cout « ") = " « greater(static_cast<rational>(i), z) ; 

If that line is replaced by 

cout « ") = " « greater(i, z); 

what goes wrong? 

4. Write a rati onal constructor that, given two integers as dividend and quotient, 
uses a greatest common divisor algorithm to reduce the internal representation 
to its smallest a and q value. (See Section 6.2, “Overloading and Function Selec¬ 
tion,” on page 198.) 
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5. Overload the equality and comparison operators for rational. Notice that two 
rationals are equal in the form given by the previous exercise if and only if 
their dividends and quotients are equal. (See Section 6.2, “Overloading and 
Function Selection,” on page 198.) 

6. Write a function that adds a dbl_vect v to a matrix m. The prototype to be 
added to class matri x and class dbl_vect is 

friend dbl_vect add(const dbl_vect& v, matrix& m); 

The dbl_vect v will be added element-by-element to each row of m. (See Section 
6.3, “Friend Functions,” on page 202.) 

7. Define class compl ex as 

class complex { 
public: 

complex(double r) { real = r; imag = 0; } 
void assign(double r, double i) 

{ real = r; imag = i ; } 
void print() 

{ cout « real « " + " « imag « "i } 
operator doubleO 

{ return (sqrt(real * real + imag * imag));} 
private: 

double real, imag; 

}; 

We wish to augment the class by overloading a variety of operators. For exam¬ 
ple, the member function pri nt() could be replaced by creating the friend 
function operator«(): 

ostream& operator«(ostream& out, complex x) 

{ 
out << x.real << " + " « x.imag « "i "; 
return out; 

} 

Also, code and test a unary minus operator. It should return a complex whose 

value in each part is negated. 
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8. For the type complex, write the binary operator functions add, multiply, and 
subtract. Each should return complex. Write each as a friend function. Why not 
write them as member functions? 

9. Write two friend functions: 

friend complex operator+Ccomplex, double); 
friend complex operator+(double, complex); 

In the absence of a conversion from type doubl e to type compl ex, both types 
are needed to allow completely mixed expressions of complex and double. 
Explain why writing one with an i nt parameter is unnecessary when these 
friend functions are available. 

10. Overload assignment for complex: 

complex complex::operator=(complex c) { return c; } 

If this definition were omitted, would this be equivalent to the default assign¬ 
ment that the compiler generates? In the presence of the conversion operator 
for converting complex to double, what is the effect of assigning a complex to 
a doubl e? Try to overload assignment with a friend function in class compl ex. 

friend double operator=(double d, complex c); 
//assign d = real_part(c) 

Why won’t this work? 

11. Program a class vec_compl ex that is a safe array type whose element values are 
compl ex. Overload operators + and * to mean, respectively, element-by-element 
complex addition and dot-product of two complex vectors. For added effi¬ 
ciency, you can make the class vec_compl ex a friend of class compl ex. 

12. The following member function is a form of iterator: 

double& dbl_vect::iterate() 

{ 
static int i = 0; 
i = i % size; 
return p[i++]; 

} 
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It is called an iterator because it returns each element value of a dbl_vect in 
sequence. Use this iterator to write a print function that is not a member func¬ 
tion and that writes out all element values of a given dbl_vect. Modify class 
dbl_vect given in Section 6.7, “Overloading Assignment and Subscripting Oper¬ 
ators,” on page 210. 

13. The previous exercise has a serious limitation. By providing an iterator that is 
contained in the class, it does not allow the element sequencing to depend on 
the individual dbl_vect variable. Thus, if a and b are both dbl_vect variables, 
the first call of a. i terateO will get the first element of a, and a subsequent 
call of b. i terate() will get the second element of b. Therefore, we shall define 
a new class dbl_vect_i terator, as follows: 

class dbl_vect_iterator { 
public: 

dbl_vect_iterator(dbl_vect& v) : p(&v), position(0) { } 
double& iterateO const; 

private: 
dbl_vect *p; 
int position; 

}; 

This class must be a friend of dbl_vect. Write the code for iterate. Then, for 
each declaration of a dbl_vect, there will be a corresponding declaration of its 
iterator. For example, 

dbl_vect a(5), b(10); 
dbl_vect_iterator it_a(a), it_b(b); 

Use this to write a function that finds the maximum element value in a 
dbl_vect. 

14. Define a new class matrix_iterator as an iterator class that sequences 
through all elements of a matrix. (See Section 6.10, “Overloading Operator () 
for Indexing,” on page 216.) Use the new class to find the maximum element in a 
matri x. 

15. Redo the my_string ADT by using operator overloading. (See Section 5.4, “An 
Example: Dynamically Allocated Strings,” on page 159.) The member function 
assign() should be changed to become operators The member function 
concatO should be changed to become operator+. Also, overload operator [] 
to return the ith character in the my_stri ng. If there is no such character, the 

value -1 is to be returned. 
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16. Explain why friendship to str_obj was required when overloading « to act on 
objects of type my_string. (See Section 5.10, “Strings Using Reference Seman¬ 
tics,” on page 181.) Rewrite my_st ri ng by adding a conversion member func¬ 
tion operator char*(). This now allows << to output objects of type 
my_stri ng. Discuss this solution. 

17. What goes wrong with the following client code when the overloaded definition 
of operator=() is omitted from my_stri ng? (See Section 5.10, “Strings Using 
Reference Semantics,” on page 181.) 

//Swapping my_strings that are reference counted 

class my_string { 

}; 

void swap(my_string x, my_string y) 

{ 
my_string temp; 

temp = x; 

x = y; 
y = temp; 

int main() 

{ 
my_string b("do not try me "), c(" try me"); 

cout « b « c « endl; 
swap(b, c); 
cout « b « c « endl; 
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18. We can develop our my_stri ng class with a substring operation by overloading 
function call. The notation is my_stri ng(from, to), where from is the begin¬ 
ning of the substring and to is the end. 

my_string my_string::operator()(int from, int to) 
{ 

my_string temp(to - from + 1); 

for (int i = from; i < to + 1; ++i) 
temp.st -> s[i - from] = st -> s[i]; 

temp.st[to - from + 1] =0; 
return temp; 

} 

Use this substring operation to search a string for a given character sequence 
and to return true if the subsequence is found. 

19. Rewrite the substring function, using a char* constructor. Is this better or 
worse? If you have a profiler, run this example with both forms of substring cre¬ 
ation on the following client code: 

int main() 

{ 
my_string large("A verbose phrase to search"); 

for (i =0; i < MANY; +-(-i) 
count += (1arge(i, i + 3) == "ver"); 

> 

For this exercise, code ope rato r== () to work on my_st ri ngs. 

20. Write the function 

void reverse(double data[], int size); 
//data[size] will be reversed 
//internally declare a stack of generic pointers 
//push values onto stack, pop them back into data[] 

21. Use a stack to write out subsequences in increasing order by value. In the 
sequence (7, 9, 3, 2, 6, 8, 9, 2), the subsequences are (7, 9), (3), (2, 6, 8, 9), (2). Use 
a stack to store increasing values. Pop the stack when a next sequence value is 
no longer increasing. Keep in mind that the stack pops values in reverse order. 
Redo this exercise, using a queue, thus avoiding this reversal problem. 
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22. For the stack of generic pointers, add the constructor 

stack::stack(int size, generic_ptr[]); 

23. Redo the list ADT by using operator overloading. (See Section 5.7, “Example: A 
Singly Linked List,” on page 168.) The member function prepend() should 
change to operator+O, and del () should change to operator--!). Also, 
overload operator [] () to return the ith element in the list. 

24. The postfix operators ++ and — can be overloaded distinct from their prefix 
meanings. Postfix can be distinguished by defining the postfix overloaded func¬ 
tion as having a single unused integer argument, as in 

class T { 
public: 

//postfix invoked as t.operator++(0); 
void operator++(int); 
void operator--(int); 

There will be no implied semantic relationship between the postfix and prefix 
forms. Add postfix decrement and increment to class clock in Section 6.5, 
“Unary Operator Overloading,” on page 205. Have them subtract a second and 
add a second, respectively. Write these operators to use an integer argument n 
that will be subtracted or added as an additional argument. 

clock c(60); 

C++; 

c—; 
c.operator++(5); 
c.operator--(5); 

//adds a second 
//subtracts a second 
//adds 1+5 seconds 
//subtracts 6 seconds 

25. The operator -> is overloadable provided it is a nonstatic member function 
returning either a pointer to a class object or an object of a class for which 
operator-> is defined. Such an overloaded structure pointer operator is called 
a smart-pointer operator. It usually returns an ordinary pointer after doing some 
initial computation. One use could be as an iterator function. 

dbl_vect* dbl_vect::operator->(); 
//maintain an internal i 
//increment and return &p[++i] 
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Modify class dbl_vect in Section 6.7, “Overloading Assignment and Subscript¬ 
ing Operators,” on page 210, to code and test this idea. 

26. (Difficult) It is a better idea to make a smart-pointer class. 

class dbl_vect { 
public: 

friend class smart_ptr_dbl_vect; //add to dbl_vect 

}; 

class smart_ptr_dbl_vect { 
public: 

smart_ptr_dbl_vect(const dbl_vect& v); 
smart_ptr_dbl_vectS operator->(); 

private: 
int* ptr; 
int position; 

smart_ptr_dbl_vect:: 
smart_ptr_dbl_vect(const dbl_vect& v) : 

position(0), ptr(v.p) { } 
smart_ptr_dbl_vect& smart_ptr_dbl_vect::operator->() 

{ 
//write this code to access and test that 
//p[position] is not out of range 

} 

Modify class dbl_vect in Section 6.7, “Overloading Assignment and Subscript¬ 
ing Operators,” on page 210, to test this idea. 

27. Take the polynomial : :plus() member function found in Section 5.9, “Polyno¬ 
mials as a Linked List,” on page 180, and convert that member function to code 
for overloading operator+. 

polynomial operator+(const polynomials, const polynomials) 

This should be a friend of the class polynomial. 

28. (Project) Write code to implement a polynomial multiplication operator. The 
code can repeatedly call the polynomial addition routine. Did you make sure 
that intermediate results would be properly garbage collected? Write a full- 
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blown polynomial package that is consistent with community expectations. You 
could include differentiation and integration of polynomials as well. 

29. Use a conditional compilation flag NDEBUG to signal the compiler whether to 
include assertions. This simple mechanism allows both safe and unsafe classes 
to be compiled from the same source code. Run an application, such as a large 
matrix addition, with both forms of code, and measure the runtime overhead 
required by the assertion statements. 

30. Write a matrix_i terator class with the same interface as dbl_vect_i terator 
from exercise 13 on page 233. The class should contain the member functions 
successorO, predecessorO, reset(), and item(). If you want, you can 
extend this with member functions i nt row() and i nt col umn (). (See Section 
6.3, “Friend Functions,” on page 202, for class matrix.) 

31. Rewrite the matri x class to have row and column indices that go from 1 instead 
of 0. 

32. (Project) Write code that fleshes out the rational type of Section 6.9, “Over¬ 
loading I/O Operators « and »,” on page 215. Have the code work appropri¬ 
ately for all major operators. Allow it to properly mix with other number types, 
including integers, floats, and complex numbers. There are several ways to 
improve the rational implementation. You can try to improve the precision of 
going from double to rational. Also, many algorithms are more convenient 
when the rational is in a canonical form in which the quotient and divisor are 
relatively prime. This can be accomplished by adding a greatest common divi¬ 
sion algorithm to reduce the representation to the canonical form. 

33. (Java) Rewrite in Java the class rati onal in Section 6.2, “Overloading and Func¬ 
tion Selection,” on page 198.You must substitute ordinary methods for any 
operator overloading. 



Chapter 7 

Templates, Generic 
Programming, and STL 

C++ uses the keyword template to provide parametric polymorphism, which allows 
the same code to be used with respect to various types, where the type is a parame¬ 
ter of the code body. This is a form of generic programming. Many of the classes 
used in the text so far contained data of a particular type, although the data have 
been processed in the same way regardless of type. Using templates to define 
classes and functions allows us to reuse code in a simple, type-safe manner that lets 
the compiler automate the process of type instantiation, or when a type replaces a 
type parameter that appeared in the template code. 

Polymorphic Genie: Capable of Assuming Various Forms 
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7.1 Template Class stack 

We shall modify the ch_stack type from Section 5.2.1, “The Copy Constructor,” on 
page 157, to have a parameterized type. 

In file stack_tl.cpp 

//template stack implementation 

template <class TYPE> 
class stack { 
public: 

explicit stack(int size = 100) 
: max_len(size), top(EMPTY),s(new TYPE[size]) 

{ assert(s != 0); } 
~stack() { delete []s; } 
void reset() { top = EMPTY; } 
void push(TYPE c) { s[++top] = c; } 
TYPE pop() { return s[top--]; } 
TYPE top_ofOconst { return s[top]; } 
bool emptyOconst { return top == EMPTY;} 
bool full Oconst { return top == max_len - 1;} 

private: 
enum { EMPTY = -1 }; 
TYPE* s; 
int max_len; 
int top; 

}; 

The syntax of the class declaration is prefaced by 

template cclass identifier 

This identifier is a template argument that essentially stands for an arbitrary type. 
Throughout the class definition, the template argument can be used as a type name. 
This argument is instantiated in the declarations. A template declaration usually 
has global or namespace scope, can be a member of a class, or can be declared 
within another template class. An example of a stack declaration using this is 
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stack<char> stk_ch; 
stack<char*> stk_str(200); 
stackccomplex> stk_cmplx(500); 

//100 char stack 
//200 char* stack 
//500 complex stack 

This mechanism saves us rewriting class declarations where the only variation 
would be the type declarations, providing a type-safe, efficient, and convenient way 
to reuse code. 

When a template class is used, the code must always use the angle brackets as 
part of the declaration. 

In file stack_tl.cpp 

//Reversing an array of char* represented strings 

void reverse(char* str[], int n) 

{ 
stack<char*> stk(n); 
inti; 

for (i =0; i < n; ++i) 
stk.push(str[i]); 

for (i = 0; i < n; ++i) 
str[i] = stk.popQ ; 

} 

//Initializing stack of complex numbers from an array 

void init(complex c[], stack<complex>& stk, int n) 

{ 
for (int i = 0; i < n; ++i) 

stk.push(c[i]); 

} 

Member functions, when declared and defined inside the class, are, as usual, inline. 
When defining them externally, you must use the full angle bracket declaration. So, 
when defined outside the template class, 

TYPE top_of() const { return s[top]; } 

would be written as 

tempiatecclass TYPE> TYPE stack<TYPE>::top_of() const 
{ return s[top]; } 
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Yes, this is ugly and takes some getting used to, but the compiler otherwise would 
not know that TYPE was a template argument. As another example, we write the file 
scope definition of the destructor for tempi ateccl ass TYPE> stack. 

tempiatecclass TYPE> stack<TYPE>::~stack() 
{ delete []s; } 

A C++ programmer would use the STL class std: : stack. The code presented in 
this section will allow you to better appreciate the container classes provided by the 
standard library. 

7.2 Function Templates 

Many functions have the same code body, regardless of type; for example, initializ¬ 
ing the contents of one array from another of the same type uses the same code 
body. The essential code is 

for (i =0; i < n; ++i) 

a[i] = b[i]; 

Most C programmers automate this with a simple macro. 

#define COPY(A, B, N) \ 
{ int i; for(i = 0; i < (N); ++i) (A) [i] = (B)[i]; } 

Programming that works regardless of type is a form of generic programming. 
Using def i ne macros can often work but is not type safe. Another problem with 
def i ne macros is that they can lead to repeated evaluation of a single parameter 
(see exercise 3 on page 270). A user could readily mix types among which conver¬ 
sions were inappropriate. C++ programmers can make use of various forms of con¬ 
version and overloading to achieve similar effects. However, in the absence of 
appropriate conversions and signatures, no action would be taken. Templates pro¬ 
vide a further generic programming mechanism for this. 
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In file copyl.cpp 

tempiatecclass TYPE> 
void copy(TYPE a[], TYPE b[], int n) 

{ 
for (int i = 0; i < n; ++i) 

a[i ] = b[i ] ; 
} 

The invocation of copy() with specific arguments causes the compiler to gener¬ 
ate the function based on those arguments. If it cannot, a compile-time error 
results. What are the effects of the following calls? 

In file copyl.cpp 

double f1[50], f2[50] 
char cl[25], c2[50] 
int i1[75], i2[75] 
char* ptrl, *ptr2; 
copy(fl, f2, 50); 
copyCcl, c2, 10); 
copy(il, i2 , 40); 
copy(ptrl, ptr2, 100); 
copy(il, f2, 50); 
copy(ptrl, f2, 50); 

The last two invocations of copyO fail to compile because their types cannot be 
matched to the template type. This is called a unification error. The types of the 
arguments do not conform to the template. How the compiler generates this match¬ 
ing is discussed in the next section. If we were to cast f 2 as 

copy(il, static_cast<int* >(f2), 50); 

compilation would occur. However, the result would be an inappropriate form of 
copying. Instead, we need to have a generic copying procedure that accepts two dis¬ 
tinct class type arguments. 
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In file copy2.cpp 

templatecclass Tl, class T2> 
void copy(Tl a[], T2 b[], int n) 

{ 
for (int i =0; i < n; ++i) 

a[i] = b [i ]; 

} 

This form has an element-by-element conversion. This is usually the appropriate 
and safer conversion. 

7.2.1 Signature Matching and Overloading 

A generic routine often cannot work for special cases. The following form of swap¬ 
ping template works on basic types. 

In file swap.cpp 

//generic swap 

template cclass T> 
void swap(T& x, T& y) 

{ 
T temp; 

temp = x; 

x = y; 
y = temp; 

} 

A function template is used to construct an appropriate function for any invocation 
that matches its arguments unambiguously: 

int i , j; 
char strl[100], str2[100], ch; 
complex cl, c2; 

swap(i, j); //i j int - okay 
swap(cl, c2); //cl, c2 complex - okay 
swap(str1[50], str2[33]); //both char variables - okay 
swap(i, ch); //i int ch char - illegal 
swap(strl, str2); //illegal 
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In the last case, st rl and str2 are array names. They are pointer values that cannot 

be modified. 
To have swap() work for strings represented as character arrays, we write the 

following special case: 

void swapCchar* si, char* s2) 

{ 
int max_len; 

max_len = (strlen(sl) >= strlen(s2)) ? 
strlen(sl) : strlen(s2); 

char* temp = new char[max_len + 1]; 

strcpyCtemp, si); 
strcpy(sl, s2); 
strcpy(s2, temp); 
delete []temp; 

} 

With this specialized case added, an exact match of this nontemplate version to the 
signature of a swap() invocation takes precedence over the exact match found by a 

template substitution. 

Overloaded Function-Selection Algorithm 

1. Exact match with some trivial conversions on nontemplate functions 

2. Exact match using function templates 

3. Ordinary argument resolution on nontemplate functions 

7.3 Class Templates 

In the stack<T> example given in Section 7.1, Template Class stack, on page 240, 
we have an ordinary case of class parameterization. In this section, we wish to dis¬ 

cuss various special features of parameterizing classes. 
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7.3.1 Friends 

Template classes can contain friends. A friend function that does not use a template 
specification is universally a friend of all instantiations of the template class. A 
friend function that incorporates template arguments is specifically a friend of its 
instantiated class. 

template cclass T> 
class matrix { 
public: 

friend void foo_bar(); //universal 
friend vect<T> product(vect<T> v); //instantiated 

}; 

7.3.2 Static Members 

Static members are not universal but are specific to each instantiation. 

template cclass T> 
class foo { 
public: 

static int count; 

}; 

foo<int> a; 
foo<double> b; 

The static variables fooci nt>: : count and foocdoubl e>: : count are distinct 

7.3.3 Class Template Arguments 

Both classes and functions can have several class template arguments. Let us write a 
function that will convert one type of value to a second type, provided the first type 
is at least as wide as the second type. 
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In file coerce.cpp 

template cclass Tl, class T2> 
bool coerce(T1& x, T2 y) 

{ 
if (sizeof(x) < sizeof(y)) 

return false; 
x = static_cast<Tl>(y); 
return true; 

} 

This template function has two possibly distinct types as template arguments. 
Other template arguments include constant expressions, function names, and 

character strings. 

In file array.tm.cpp 

template cclass T, int n> 
class assign_array { 
public: 

T a[n]; 

}; 

assign_array<double,50> x, y; 

x = y; //should work efficiently 

The benefits of this parameterization include allocation off the stack, as opposed to 
allocation from free store. On many systems, the former is the more efficient 
regime. The type is bound to the particular integer constant; thus, operations 
involving compatible-length arrays are type safe and are checked at compile time. 

7.3.4 Default Template Arguments 

In the standard library, the class complex is now a template class. The normal 
instantiation would be to doubl e, as in compl excdoubl e> x, y, z[10]. A tem¬ 
plate provider can decide that this is such a common case that it can be provided as 

a default. 
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tempiatecclass T = double> 
class complex{ 

private: 
T real, imaginary; 

} 

7.3.5 Member Templates 

Members may themselves be templates inside the template class. This feature of the 
ANSI standard has yet to be implemented on many compilers. 

template cclass Tl> 
class foo { 
public: 

//class member template 
template cclass T2> 
class fooprime { 

//can use T1 and T2 in fooprime 
}; 
//can only use T1 in foo 

}; 

foocint>::fooprime<char> a; 

There can also be function member templates. Check your local compiler documen¬ 
tation to see whether these constructs are available. 

7.4 Parameterizing the Class vector 

The class dbl_vect from Section 5.5.1, “dbl_vect as a Unear Vector Type,” on page 
166, is a natural candidate for parameterization. It is a form of container class It 
improves on the primitive container that is the array. The defects of the array are 
ound in C and C++: Namely, it is easy to have out-of-bounds errors resulting in dif¬ 

ficult to find runtime bugs. We will parameterize the class, renaming it vector in 
anticipation of discussing and understanding the STL class std: : vector The new 
class is used m conjunction with iterators and algorithms. An iterator is a pointer or 
a pointer-like variable used for traversing and accessing container elements. 
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In file vect_it.h 

//Template-based vector type 

//create a size n array 
//copy vector 
//copy an array 

template <class T> 
class vector { 
public: 

typedef T* iterator; 
explicit vector(int n = 100); 
vector(const vector<T>& v); 
vector(const T a[], int n); 
~vector() { delete []p; } 
iterator begin(){ return p;} 
iterator end(){ return p + size;} 
T& operator[](int i); //range-checked element 
vector<T>& operator=(const vector<T>& v); 

private: 
T* p; //base pointer 
int size; //number of elements 

}; 

Basically, everywhere the previous dbl_vect class used double as the value to be 
stored in individual elements, the tempi ate definition uses T. Thus, the declaration 

of the private base pointer p is now of type T. 
The definition of member functions in file scope includes the scope-resolved 

label classname<T>. The following constructors for vector<T> use T as the type 

specification to new: 

template cclass T> 
vector<T>::vector(int n = 100): size(n) 

{ 
assert(n > 0); 
p = new Tfsize]; 
assert(p != 0); 

} 

This is the default constructor, because of the default argument of 100. We use the 
keyword expl i ci t to disallow its use as a conversion from i nt to vector. Asser¬ 
tions are used to guarantee that the constructor performs its contractual obliga¬ 

tions when given appropriate input. 
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template <class T> 
vector<T>::vector(const T a[], int n) 
{ 

assert(n > 0); 
size = n; 
p = new T[size]; 
assert(p != 0); 
for (int i =0; i < size; ++i) 

p[i] = a[i]; 
} 

This constructor converts an ordinary array to a vector. The copy constructor 
defines a deep copy of the vector v. 

template <class T> 

vector<T>::vector(const vector<T>& v) 
{ 

size = v.size; 
p = new T[size]; 
assert(p != 0); 
for (int i =0; i < size; ++i) 

p[i] = v.p[i]; 
} 

The following code defines vector indexing by overloading the bracket operator. 
The return type for the bracket operator is reference to T, as this is an alias for the 
item stored in the container. Using this return type allows the bracket operator to 
access the item in the container as an lvalue. 

template <class T> T& vector<T>::operator[](int i) 

assert (i >= 0 && i < size ); 
return p[i]; 

} 

Notice that we can test to make sure that the array bounds are not exceeded. 
With operatorf] overloaded, we can access vectors as if they were native C++ 
arrays. We also need to provide an overloaded assignment operator (see exercise 7 
on page 270). 
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template eclass T> 
vector<T>& vector<T>::operator=(const vector<T>& v) 

{ 
assert(v.size == size); 
for (int i = 0; i < size; ++i) 

p[i] = v.p[i]; 
return *this; 

} 

Client code is almost as simple as with nonparameterized declarations. To use 
these declarations, you simply add within angle brackets the specific type that 
instantiates the template. These types can be native types, such as i nt in the exam¬ 
ple, or user-defined types. The following code uses these templates. 

In file vect_it.cpp 

int main() 

{ 
vector<double> v(5); 
vector<double>::iterator p ; 

int i = 0; 

for (p = v.begin() ; p != v.endO; ++P) 

*p = 1.5 + i++; 

do { 

—p; 
cout « *p « " , "; 

} while (p ! = v.beginO); 
cout « endl; 

} 

The output from this program is 

5.5, 4.5, 3.5, 2.5, 1.5, 

The values are in reverse order to how they are stored. This is a consequence of iter¬ 

ating back from the iterator value v. end(). 
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7.5 STL 

The standard template library (STL) is the C++ library providing generic program¬ 
ming for many standard data structures and algorithms. The STL provides three 
components—containers, iterators, and algorithms—that support a standard for 
generic programming. 

The library is built using templates and is highly orthogonal in design. Compo¬ 
nents can be used with one another on native and user-provided types through 
proper instantiation of the various elements of the STL. The following sections serve 
only as an overview and brief introduction to STL, which is large and complicated. 
Many newer systems have important further extensions to the STL. 

7.5.1 STL Example Code 

One of the most effective uses of the STL is to replace the use of ordinary C++ 
arrays with STL vectors. The STL vector type has many important advantages over 
the array, such as dynamic expansion, thus avoiding overflow. Further, it can be 
readily navigated with both iterators and indices, and has a rich interface of built-in 
operations. 

In file stl_vecl.cpp 

//Simple STL vector program 
#include <iostream> 
#include <vector> 
using namespace std; 

int main () 

{ 
vectorcint> v(100); //100 is the vector's size 

for (int i =0; i <100; -j++) 
v[i] = i ; 

for (vector<int>::iterator p = v.begin(); p != v.end(); p++) 
cout « *p « ’\t'; ’ w J 

} 

The STL container vector is used in place of an ordinary i nt array The first 
for-statement is written in exactly the same manner as a C++ loop on ordinary data 
The second for-statement is written using the iterator p. An iterator behaves as a 
pointer. STL provides the member functions begin() and end() as initial and 



7.5 ▼ STL 253 

terminal position values for the container. Note that end() returns the iterator 
position (or address) one past the last element of the container. Thus, end() is a 
guard location, or value signaling that you are finished traversing the container. 

The next example uses the list container, an iterator, and the generic algorithm 
accumulateO in our first example program using STL. The list and numeric librar¬ 
ies are required. 

In file stLcont.cpp 

//Using the list container 

void print( list<double> &lst) 
{ //using an iterator to traverse 1st 

1ist<double>::iterator p; 

for (p = Ist.beginO; p !=lst.end(); ++p) 
cout « *p « '\t'; 

cout « endl; 

} 

int main() 

{ 
double w[4] = { 0.9, 0.8, 88, -99.99 }; 
list<double> z; 
for (int i = 0; i < 4; ++i) 

z.push_front(w[i]); 
print(z) ; 
z.sortO ; 
print(z) ; 
cout « "sum is " 

« accumulate^.begin(), z.end(), 0.0) « endl; 

} 

In this example, a list container is instantiated to hold doubles. An array of 
doubles is pushed into the list. The print() function uses an iterator to print each 
element of the list in turn. Notice again that iterators work like pointers. Both the 
list and the vector have the standard begin() and end() member functions for 
starting and ending locations of the container. Also, the list interface includes a sta¬ 
ble sorting algorithm, the sort() member function. The accumulate() function is 
a generic function in the numeric package that uses 0.0 as an initial value and com¬ 
putes the sum of the list container elements by going from the starting location 

z. begi n () to the ending guard location z. end (). 
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Notice that print() itself could be parameterized and made a generic algo¬ 
rithm. Try to do this in a most general way (see exercise 13 on page 272). 

7.6 Containers 

Containers come in two major families: sequence and associative. Sequence contain¬ 
ers (vectors, lists, and deques) are ordered by having a sequence of elements. Asso¬ 
ciative containers (sets, multisets, maps, and multimaps) have keys for looking up 
elements. The map container is a basic associative array and requires that a compar¬ 
ison operation on the stored elements be defined. The two varieties of container 
share a similar interface. 

STL Typical Container Interfaces 

■ Constructors, including default and copy constructors 

■ Element access 

■ Element insertion 

■ Element deletion 

■ Destructor 

■ Iterators 

Containers are traversed using iterators, pointer-like objects that are available 
as templates and optimized for use with STL containers. 

In file stl_deq.cpp 

//A typical container algorithm 

double sum(deque<double> &dq) 
{ 

deque<double>::iterator p; 
double s = 0.0; 

for (p=dq.begin(); p != dq.end(); ++p) 
s += *p ; 

return s; 

} 
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The deque (double-ended queue) container is traversed using a i terator. The itera¬ 
tor p is dereferenced to obtain each stored value in turn. This algorithm will work 
with sequence containers and with all types that have ope rator+=() defined. Con¬ 
tainers allow equality and comparison operators. They also have an extensive list of 
standard data and function members. (See Section E.l, “Containers,” on page 431.) 

7.6.1 Sequence Containers 

Sequence containers (vector, list, and deque) have a sequence of accessible ele¬ 
ments. In many cases, the C++ array type can also be treated as a sequence con¬ 
tainer. The deque and vector libraries are used. 

In file stl_vec2.cpp 

//Sequence Containers - insert a vector into a deque 

int main() 

{ 
int data[5] = { 6, 8, 7, 6, 5 }; 
vectorcint> v(5, 6); //5 element vector 
deque<int> d(data, data + 5); 
deque<int>::iterator p; 
cout « "\nDeque values" « endl; 
for (p = d.begin(); p != d.end(); ++p) 

cout « *p « '\t'; //print:6 8765 
cout « endl; 
d. i nsert (d. begi n() , v.begin(), v.endO); 
for (p = d.beginO; p != d.end(); p++) 
cout « *p « '\t'; //print:6 666668765 

} 

The five-element vector v is initialized with the value 6. The deque d is initialized 
with values taken from the data array. The i nsert () member function places the v 
values in the specified range v. begi n() to v .end(), at the location d. begi n(). 
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♦♦♦♦♦♦♦♦♦♦♦♦ 
Dissection of the stLvect Program 

■ int data[5] = { 6, 8, 7, 6, 5 }; 
vector<int> v(5, 6); //5 element vector 
deque<int> d(data, data + 5); 
deque<int>: iterator p; 

The vector v initializes a five-element int container to value 6. The deque d uses the 
iterator values data and data + 5 to initialize a five-element double-ended queue 
container. This is one of the standard container class constructors. Notice how it 
uses an iterator range to pass in arguments for the constructor. Many of the STL 
functions use iterator ranges as arguments. Ordinary array pointers can be used as 
iterators. The iterator p is declared but is not initialized. 

■ for (p = d.beginO; p != d.end(); ++p) 
cout « *p « '\t'; //print:6 8765 

This is a standard traversal idiom when using containers and iterators. Notice that 
d. end() is used to terminate the loop, because it is in effect the end-of-container 
iterator value. Also notice that the ++ autoincrement has pointer semantics advanc¬ 
ing the iterator to the next container position. Dereferencing also works analogously 
to pointer semantics. 

■ d.inserted.begin(), v.beginC), v.endO); 

The insertO member function places the range of iterator values v. begin () up to 
but not including v. end() at the position d. begi n(). The insert() member func¬ 
tion is very typical of member functions in STL, using the first iterator value as an 
insertion point and an iterator range for the values to be inserted. 

■ for (p = d.beginO; P != d.end(); ++p) 
cout « *p « '\t'; //print:6 666668765 

As a consequence of inserting five new elements of value 6 at the front of the deque 
d, the output of the traversal loop for d is now the 10 elements, as shown in the 
comment. 

Some sequence container member functions are given in Section E.1.1, “Sequence 
Containers,” on page 433. 
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7.6.2 Associative Containers 

The associative containers (set, map, multiset, and multimap) have key-based acces¬ 
sible elements and an ordering relation Compare, which is the comparison object for 
the associative container. The map and string libraries are required. 

In file stl_age.cpp 

//Associative Containers - looking up ages 

int main() 

{ 
map<string, int, less<string> > name_age; 

name_age["Pohl,Laura"] = 7; 
name_age["Dolsberry,Betty"] = 39; 
name_age["Pohl,Tanya"] = 14; 
cout « "Laura is " « name_age["Pohl,Laura"] 

« " years old." « endl; 

} 

The map name_age is an associative array where the key is a stri ng type and the 
Compare object is less<stri ng>. 

The associative containers have several standard constructors for initialization. 
What distinguishes these constructors from sequence container constructors is the 
use of a comparison object. The insertions work when no element of the same key is 
already present. Some member functions are listed in Section E.1.1, “Sequence Con¬ 

tainers,” on page 434. 

7.6.3 Container Adapters 

Container adapter classes modify existing containers to produce various public 
behaviors based on an existing implementation. Three provided container adapters 
are stack, queue, and priority_queue. 

The stack can be adapted from vector, 1 i st, and deque and needs an imple¬ 
mentation that supports back, push_back, and pop_back operations. The queue 
can be adapted from 1 i st or deque and needs an implementation that supports 
empty, si ze, front, back, push_back, and pop_front operations. This is a first-in- 

first-out data structure 
We adapt the stack from an underlying vector implementation. Notice that the 

STL ADTs replace our individually designed implementations of these types. The 

stack, vector, and string libraries are required. 
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In file stl_stak.cpp 

//Adapt a stack from a vector 

int main() 

{ 
stack<string, vector<string> > str_stack; 
string quote[3] = 

{ "The wheel that squeaks the loudest\n", 
"Is the one that gets the grease\n", 
"Josh Billings\n" }; 

for (int i =0; i < 3; ++i) 
str_stack.push(quote[i]) ; 

while (! str_stack.emptyO) { 
cout « str_stack.top(); 
str_stack.pop() ; 

} 
} 

Container adapter functions are given in Section E.1.3, “Container Adapters,” on 
page 436. 

7.7 Iterators 

Navigation over containers is by iterator. Iterators can be thought of as an enhanced 
pointer type, templates that are instantiated according to the container class type 
they iterate over. There are five iterator types: input, output, forward, bidirectional, 
and random access. Not all iterator types may be available for a given container 
class. For example, random-access iterators are available for vectors but not for 
maps. 

Input iterators support equality operations, dereferencing, and autoincrement. 
An iterator that satisfies these conditions can be used for one-pass algorithms that 
read values of a data structure in one direction. A special case of the input iterator 
is the i stream_i terator. 

Output iterators support dereferencing restricted to the left-hand side of 
assignment and autoincrement. An iterator that satisfies these conditions can be 
used for one-pass algorithms that write values to a data structure in one direction. 
A special case of the output iterator is the ostream_i terator. 
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Forward iterators support all input/output iterator operations, as well as unre¬ 
stricted use of assignment. This allows position within a data structure to be 
retained from pass to pass. Therefore, general one-directional multipass algorithms 
can be written with forward iterators. 

Bidirectional iterators support all forward iterator operations, as well as both 
autoincrement and autodecrement. Therefore, general bidirectional multipass algo¬ 
rithms can be written with bidirectional iterators. 

Random-access iterators support all bidirectional iterator operations, as well as 
address arithmetic operations, such as indexing. Also, random-access iterators sup¬ 
port comparison operations. Therefore, algorithms, such as qui cksort, that require 
efficient random access in linear time can be written with these iterators. 

Container classes and algorithms dictate the category of iterator available or 
needed, so vector containers allow random-access iterators, but li sts do not. 
Sorting generally requires a random-access iterator, but finding requires only an 
input iterator. 

7.7.1 The istream_iterator and ostream_i terator 

An i stream_i terator is derived from an input iterator to work specifically with 
reading from streams. An ostream_i terator is derived from an output iterator to 
work specifically with writing to streams. We will write a program that prompts for 
five numbers, reads them, and computes their sum, where I/O uses these iterators. 
The template for i stream_i terator is instantiated with a <type, distance>. This 
distance is usually specified by pt rdi ff_t. As defined in cstddef or stddef, it is an 
integer type representing the difference between two pointer values. Both vector 
and iterator libraries are needed. 

In file stLio.cpp 

//Use of istream_iterator and ostream_iterator 

int main() 

{ 
vectorcint> d(5); 
int i, sum ; 
istream_iterator<int, ptrdiff_t> in(cin); 
ostream_iterator<int> out(cout, "\t"); 
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cout « "enter 5 numbers" 
sum = d[0] = *in; 
for (i = 1; i < 5; ++i) { 

« end!; 
//input first value 

d[i] = *++in; //input consecutive values 

sum += d[i]; 

} 
for (i =0; i < 5; ++i) 

•'out = d[i] ; 
cout « " sum = " « sum 

//output consecutive values 
« sum « endl; 

} 

The i stream_i terator i n is instantiated with type int and parameter 
ptrdi ff_t. The ptrdi ff_t is a distance type that the iterator uses to advance in 
getting a next element. In the preceding declaration, i n is constructed with the 
input stream ci n. The autoincrement operator advances i n and reads a next value 
of type i nt from the designated input stream. The ostream_i terator out is con¬ 
structed with the output stream cout and the char* delimiter "\t". Thus, the tab 
character will be issued to the stream cout after each i nt value is written. In this 
program, the iterator out, when it is dereferenced, writes the assigned i nt value to 
cout. 

7.7.2 Iterator Adapters 

Iterators can be adapted to provide backward traversal and traversal with insertion. 
Reverse iterators reverse the order of iteration; with insert iterators, insertion takes 
place instead of the normal overwriting mode. The following example uses a reverse 
iterator to traverse a sequence. The vector library is required. 

In file stl Jadp.cpp 

//Use of the reverse iterator 

template cclass ForwIter> 
void print(Forwlter first, Forwlter last, const char* title) 
{ 

cout « title « endl; 
while ( first != last) 

cout « *first++ « '\t'; 
cout « endl; 

} 
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int main() 

{ 
int data[3] = { 9, 10, 11}; 
vector<int> d(data, data + 3); 
vector<int>::reverse_iterator p = d.rbegin(); 

print(d.begin(), d.end(), "Original"); 
print(p, d.rend(), "Reverse"); 

} 

This program uses a reverse iterator to change the direction in which the pri nt() 
function prints the elements of vector d. 

Other algorithms in the iterator library are discussed in Section E.2.2, “Iterator 
Adapters,” on page 438. 

7.8 Algorithms 

The STL algorithms library contains the following four categories. 

Categories of STL Algorithms Library 

■ Sorting algorithms 

■ Nonmutating sequence algorithms 

■ Mutating sequence algorithms 

■ Numerical algorithms 

These algorithms generally use iterators to access containers instantiated on a given 
type. The resulting code can be competitive in efficiency with special-purpose 

codes. 

7.8.1 Sorting Algorithms 

Sorting algorithms include general sorting, merges, lexicographic comparison, per¬ 
mutation, binary search, and similar operations. These algorithms have versions 
that use either operator<() or a Compare object and often require random-access 

iterators. 
The following program uses the quicksort function sort() from the STL algo¬ 

rithm library to sort over elements d to e. 
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In file stl_sort.cpp 

//Using sort() from STL 
const int N = 5; 

int main() 

{ 
int d [N], i, *e = d + N; 

for (i =0; i < N; ++i) 
d[i] = rand(); 

sort(d, e); 
for (i =0; i < N; ++i) 

cout « d[i] « '\t'; 

} 

This is a straightforward use of the library sort algorithm operating on the built-in 
array d []. Ordinary pointer values can be used as iterators. Some algorithm proto¬ 
types are found in Section E.3.1, “Sorting Algorithms,” on page 440. 

7.8.2 Nonmutating Sequence Algorithms 

Nonmutating algorithms do not modify the contents of the containers they work on. 
A typical operation is searching a container for a particular element and returning 
its position. 

In the following program, the nonmutating library function fi nd() in the algo¬ 
rithm library is used to locate the element t. 

In file stLfind.cpp 

//Use of the find function 

int main() 

{ 
string words[5] = { 
string* where; 

where = find(words, 
cout « *++where « 
sort(words, words + 
where = find(words, 
cout « *++where « 

"my", "hop", "mop", 

words + 5, "hop"); 
endl; 

5); 
words + 5, "hop"); 
endl; 

"hope", "cope"}; 

//mop 

//hope 
} 
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This program uses fi nd() to look for the position of the word hop. We print the 
word following hop before and after sorting the array words []. Some mutating 
function algorithm prototypes are given in Section E.3.2, “Nonmutating Sequence 
Algorithms,” on page 442. 

7.8.3 Mutating Sequence Algorithms 

Mutating algorithms can modify the contents of the containers they work on. A typ¬ 
ical operation is reversing the contents of a container. 

In the following program, the mutating library functions reverse() and 
copy() are used. The vector, string, and algorithm libraries are required. 

In file stl_revr.cpp 

//Use of mutating copy and reverse 

int mainQ 

{ 
string first_names[5] = {"laura", "ira", 

"buzz", "debra", "twinkle"}; 
string 1ast_names[5] = {"pohl", "pohl", 

"dolsberry", "dolsberry", "star"}; 
vector<string> names(first_names, first_names + 5); 
vector<string> names2(10); 
vector<string>::iterator p; 

copy(last_names, last_names + 5, names2.begin()); 
copy(names.begin(), names.end(), names2.begin()+5); 
reverse(names2.begin(), names2.end()); 
for (p = names2.begin(); p != names2.end(); ++p) 

cout « *p «'\t'; 

} 

The first invocation of the mutating function copy() places last_names in the con¬ 
tainer vector names2. The second call to copyO copies in the fi rst_names that 
had been used in the construction of the vector names. The function reverseO 
reverses all the elements, which are then printed out. Some algorithms are given in 
Section E.3.3, “Mutating Sequence Algorithms,” on page 444. 
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7.8.4 Numerical Algorithms 

Numerical algorithms include sums, inner product, and adjacent difference. In the 
following program, the function accumulate() from the numeric library performs 
a vector summation, and i nner_product() performs a vector inner product. 

In file stLnumr.cpp 

//Vector accumulation and inner product 

int main() 

{ 
double vl[3] = { 1.0, 2.5, 4.6 }, 

v2[3] = { 1.0, 2.0, -3.5 }; 
double sum, inner_p; 

sum = accumulate(vl, vl + 3, 0.0); 
inner_p = inner_product(vl, vl + 3, v2, 0.0); 
cout « "sum = " « sum 

« ".product = " « inner_p « endl; 
} 

These functions behave as expected on numerical types, where + and * are defined. 
The accumulate algorithm has the starting and ending positions and, as a third 
argument, the initial value, normally 0.0, to start accumulating the sum with. Some 
library prototypes for numerical algorithms are given in Section E.3.4, “Numerical 
Algorithms,” on page 446. 

7.9 Numerical Integration Made Easy 

STL provides the basic computations for many more sophisticated algorithms. By 
using STL, programmers can easily implement them. We will use numerical integra¬ 
tion as an example. The idea is to generate a series of points, using a generator. A 
generator is a class that defines the function by overloading operator(), the func¬ 
tion call operator. The STL algorithm 

generate(iterator b, iterator e, generator g) 

is used to produce a vector of values in the range (0, 1) for the function. The algo¬ 
rithm, numeric, and vector libraries are all required. 
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In file stl_intl.cpp 

//Simple integration routine for x*x over (0, 1) 
//The function is represented in class gen 

class gen { //generator for function to be integrated 
public: 

gen(double x_zero, double increment) : x(x_zero), 
incr(increment) { } 
double operator()() { x += incr; return x*x; } 

private: 
double x, incr; 

}; 

double integrate( gen g, int n) //integrate on (0,1) 
{ 

vector<double> fx(n); 

generate(fx.begin(),fx.end(), g ); 
return(accumulate(fx.begin(), fx.end(), 0.0) / n ); 

} 

int main() 

{ 
const int n = 10000; 

gen g(0.0, 1.0/n); 
cout « "integration program x**2" « endl; 
cout « integrate(g, n) « endl; 

} 

We approximate the area under the curve by a sequence of rectangles whose 
height is the value of the function and whose width is the increment. An increment 
gives us two choices for a height. We could improve the numerical accuracy of inte¬ 
gration by bounding the area between rectangles based on the smaller heights and 
one based on the larger heights. 
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In file stl_int2.cpp 

double integrate( gen g, int n, double& diff) 

{ 
vector<double> fx(n), sm(n), lg(n); 
double s, 1; 

generate(fx.begin(),fx.end(), g ); 
for (int i = 0; i < n - 1; ++i) 

if (fx[i] > fx[i + 1]) { 
sm[i] = fx[i + 1]; lg[i] = fx[i] ; 

} 
else { 

sm[i] = fx[i] ; lg[i] = fx[i + 1]; 

} 
s = accumulate(sm.begin() , sm.endO, 0.0)/n ; 
1 = accumulate(lg.begin(), lg.end(), 0.0)/n ; 
diff = 1 - s; 
return ( s + 1 ) / 2; 

} 

The preceding code produces a more reliable estimate, with an error estimate calcu¬ 
lated in di ff. The estimate can be further improved by being adaptive, as discussed 
in the exercises (see exercise 17 on page 272). 

7.10 Pragmatics 

Many current C++ template implementations make a distinction between template 
parameters for functions and those for classes. Functions allow only class argu¬ 
ments, which must occur in the template function as part of the type description of 
at least one of the function parameters. 

The following is okay: 

template cclass TYPE> 
void maxelement(TYPE a[], TYPE& max, int size); 

template <class TYPE> 
int find(TYPE* data); 
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The following was previously illegal but is now legal according to the proposed ANSI 
standard: 

template <class TYPE> 
TYPE convert(int i) { TYPE temp(i); return temp; } 

In the ANSI standard, the function is invoked as follows: 

convert<double>(i + j); //newly allowed explicit 
//function instantiation 

Since it was previously illegal, the function instantiation may not work on many 
current systems. The restriction exists because current compilers must use the 
arguments at function invocation to deduce which functions will be created. A 
workaround is possible by creating a class whose sole member is a parameterized 
static function, as follows: 

template <class TYPE> //other arguments are possible 
class convert_it { 

static TYPE convert(int i) 
{ TYPE temp(i); return temp; } 

}; 

7.11 Moving from C++to Java 

Unlike C++, Java does not have templates. Instead, each class in Java can be viewed 
as an extension of the superclass Object. This is done implicitly. The Object super¬ 
class provides for a type of generic programming and achieves some of the ideas of 
polymorphism accomplished by the use of templates in C++. 

JGL (Java generic library) corresponds roughly to STL (standard template library) 
for C++. The use of Object in writing generic code is based on inheritance and is 
discussed in Section 8.10, “Moving from C++ to Java,” on page 298. 
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Summary 

1. C++ uses templates to provide parametric polymorphism. The same code is 
used with different types, where the type is a parameter of the code body. 

2. Both classes and functions can have several class template arguments. In addi¬ 
tion to class template arguments, class template definitions can include con¬ 
stant expressions, function names, and character strings as template 
arguments. A common case is to have an i nt argument that parameterizes a 
size characteristic. 

3. A nontemplate, specialized version of a function may be needed when the 
generic routine will not work. When multiple functions are available, an algo¬ 
rithm determines which to use. 

4. The standard template library (STL) is the C++ library that provides generic pro¬ 
gramming for many standard data structures and algorithms. 

5. Containers come in two major families: sequence and associative. Sequence con¬ 
tainers (vectors, lists, and deques) are ordered by having a sequence of ele¬ 
ments. Associative containers (sets, multisets, maps, and multimaps) have keys 
for looking up elements. 

6. Container adapter classes modify existing containers to produce different pub¬ 
lic behaviors, based on an existing implementation. Three provided container 
adapters are stack, queue, and priority_queue. 

7. Iterators can be thought of as an enhanced pointer type. The five iterator types 
are input, output, forward, bidirectional, and random access. Not all iterator 
types may be available for a given container class. For example, random-access 
iterators are available for vectors but not for maps. 

8. The STL algorithms library contains the following four categories: sorting algo¬ 
rithms, nonmutating sequence algorithms, mutating sequence algorithms, and 
numerical algorithms. These algorithms generally use iterators to access con¬ 
tainers instantiated on a given type. The resulting code can be competitive in 
efficiency with special-purpose codes. 
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Review Questions 

1. In C, one can use voi d* to write generic code, such as memcpy (). In C++, writing 
generic code uses the keyword_. 

2. Rewrite as a template function the macro 

#define SQ(A) ((A) * (A)) 

Mention a reason why this is preferable. 

3. The three components of STL are_,_, and_. 

4. An iterator is like a_type in the kernel language. 

5. The member_is used as a guard for determining the last position in a 

container. 

6. Name two STL sequence container classes. 

7. Name two STL associative container classes. 

8. Can STL be used with ordinary array types? Explain. 

9. True or false: A template argument can be only a type. 

10. A nonmutating STL algorithm, such as fi nd(), has the property-. 

Exercises 

1. Rewrite stack<T> in Section 7.1, “Template Class stack,” on page 240, to 
accept an integer value for the default size of the stack. Now client code can use 

such declarations as 

stack<int, 100> si, s2; 
stack<char, 5000> scl, sc2, sc3; 

Discuss the pros and cons of this additional parameterization. 
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2. Define a template for fixed-length stacks that allocates a compile-time- 
determined size array to store the stacked values. 

3. The code 

#define CUBE(X) ((X)*(X)*(X)) 

behaves differently from the code 

tempiate<class T> T cube (T x){ return x * x * x;} 

Explain the difference when cube(sqrt (7)) is invoked. When would the two 
coding schemes give different results? 

4. Write a generic cycl e() function with the following definition, and test it: 

tempiatecclass TYPE> 
void cycle(TYPE& a, TYPE& b, TYPE& c) 
{ 
// replace a's value by b's and b's by c's 
// and c's by a's 

} 

5. Write a generic function that, given an arbitrary array and its size, rotates its 
values with 

a[l] = a[0] , a[2] = a[l], ., 
a[size - 1] = a[size - 2], a[0] = a[size - 1] 

6. Write the member function template 

<class T> void vector<T>::print() 

This function prints the entire vector range. 

7. Rewrite the overloaded assignment operator to be more general: 

template cclass T> 

vector<T>& vector<T>::operator=(const vector<T>& v) 
//allow different size vectors to be assigned 
//must delete and reallocate storage for left-hand 
//argument and avoid in a = a 
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8. Write a generic function that requires swapping of two vector<T>s of different 
types. (See Section 7.4, “Parameterizing the Class vector,” on page 249.) 
Assume that both array types have elements that are assignment convertible. 

9. Using vector<T> and its associated iterator class, code a generic vector internal 
sorting routine of your choice, but not quicksort (see Section 7.4, “Parameteriz¬ 
ing the Class vector,” on page 249). Compare its running time with the STL sort 
routine for vectors of 100, 1,000, and 10,000 elements. 

10. (Project) Create a parametric string type. The basic type is to act as a container 
class that contains a cl ass T object. In the prototype case, the object is a char. 
The normal end-of-string sentinel will be 0. The standard behavior should 
model the functions found in the string library. The class definition could 
parameterize the sentinel as well. Such a type exists in the standard library 

string. 

11. Sorting functions are natural candidates for parameterization. The following is 

a generic bubble sort: 

template <class T> 
void bubble(T d[], int how_many) 

{ 
T temp; 

for (int i =0; i < how_many - 2; ++i) 
for (int j= 0; j < how_many - 1 - i; ++j) 

if (d[j] < d[j+l]) { 
temp = d[j]; 
d[j ]= d[j + 1]; 
d [j+l] = temp; 

} 
} 

What happens if this is instantiated with a class in which operator<() is not 

defined? 

12. Using a random-number generator, generate 10,000 integers between 0 and 
9,999. Place them in a list<int> container. (See Section 7.5.1, STL Example 
Code,” on page 253.) Compute and print the median value. What did you expect? 
Compute the frequencies of each value; in other words, howT many 0s were gen¬ 
erated, how many Is were generated, and so forth. Print the value with the 
greatest frequency. Use a vector<int> to store the frequencies. 
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13. Recode pri nt(const list<double> &lst) to be a template function that is as 
general as possible. (See Section 7.5.1, “STL Example Code,” on page 253.) 

14. For 1 i st<T>, write the member function 

iterator 1ist<T>::insert(iterator w_it, T v); 

which inserts v before w_i t and returns an iterator pointing at the inserted ele¬ 
ment. (See Section 7.5.1, “STL Example Code,” on page 253.) 

15. For 1 i st<T>, write the member function 

void list<T>::erase(iterator w_it); 

which erases the element pointed at by w_it. (See Section 7.5.1, “STL Example 
Code,” on page 253.) 

16. Write an algorithm to find the second-largest element stored in an arbitrary con¬ 
tainer class. Use STL containers vector<T>, 1 i st<T>, and set<T> to test that it 
works regardless of the container. Write the algorithm, assuming that a forward 
iterator is available and comparison is understood. 

17. We wish to perform simple numerical integration using STL containers and algo¬ 
rithms. Write a function that, given 

double f(double x); 

generates a vector of doubles from a to b, with an interval of s. Then accumu¬ 
late the values s times f (x) over this interval. (See Section 7.9, “Numerical Inte¬ 
gration Made Easy,” on page 264.) 



Inheritance is the powerful code-reuse mechanism of deriving a new class from an 
old one. That is, the existing class can be added to or altered to create the derived 
class. Through inheritance, a hierarchy of related types that share code and inter¬ 
faces can be created. 

Many useful types are variants of one another, and it is frequently tedious to 
produce the same code for each. A derived class inherits the description of the base 
class, which can then be altered by adding members, modifying existing member 
functions, and modifying access privileges. The usefulness of this concept can be 
seen by examining how taxonomic classification compactly summarizes large bod¬ 
ies of knowledge. For example, knowing the concept “mammal” and knowing that 
an elephant and mouse are both mammals allows our descriptions of them to be 
considerably more succinct than they would be otherwise. The root concept con¬ 
tains the information that mammals are warm-blooded, higher vertebrates, and that 
they nourish their young through mammary glands. This information is inherited by 
the concept of both “mouse” and “elephant,” but it is expressed only once: in the 
root concept. In C++ terms, both elephant and mouse are derived from the base 

class mammal. 
C++ supports virtual member functions-, functions declared in the base class and 

redefined in a derived class. A class hierarchy that is defined by public inheritance 
creates a related set of user types, all of whose objects may be pointed at by a base- 
class pointer. By accessing the virtual function through this pointer, C++ selects the 
appropriate function definition at runtime. The object being pointed at must carry 
around type information so that this distinction can be made dynamically, a feature 
typical of OOP code. Each object “knows” how it is to be acted on. This is a form of 
polymorphism called pure polymorphism. 

Inheritance should be designed into software to maximize reuse and to allow a 
natural modeling of the problem domain. With inheritance, the key elements of the 

OOP design methodology are as follows: 

OOP Design Methodology 

1. Decide on an appropriate set of types. 

2. Design in their relatedness, and use inheritance to share code. 

3. Use virtual functions to process related objects polymorphically. 
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8.1 A Derived Class 

A class can be derived from an existing class by using the form 

class class-name : (publ ic | protected | pri va.te)optbase-name 

member declarations 

}; 

As usual, the keyword class can be replaced by the keyword struct, with the 
implication that members are by default publ i c. One aspect of the derived class is 
the visibility of its inherited members. The keywords public, protected, and 
private are used after the colon to specify how the base-class members are to be 
accessible to the derived class. This will be discussed in a later section. 

The keyword protected is introduced to allow data hiding for members that 
must be available in derived classes but that otherwise act like private members. It 
is an intermediate form of access between public and private. 

Consider developing a class to represent students at a college or university. 

In file student2.h 

class student { 
public: 

enum year { fresh, soph, junior, senior, grad }; 
student(char* nm, int id, double g, year x); 
void printO const; 

protected: 
int student_id; 
double gpa; 
year y; 
char name[30]; 

}; 

We could write a program that lets the registrar track such students. Although the 
information stored in student variables is adequate for undergraduates, it omits 
crucial information needed to track graduate students. Such additional information 
might include their means of support, their department affiliations, and their thesis 
topics. Inheritance lets us derive a suitable grad_student class from the student 
base class as follows: 
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In file student2.h 

class grad_student : public student { 
public: 

enum support { ta, ra, fellowship, other }; 
grad_student(char* nm, int id, double g, year x, 

support t, char* d, char* th); 
void print() const; 

protected: 
support s; 
char dept[10]; 
char thesis[80]; 

In this example, gracLstudent is the derived class, and student is the base class. 

The use of the keyword publ i c following the colon in the derived-class header 

means that the protected and public members of student are to be inherited as 

protected and public members of grad_student. Private members are inaccessible. 

Public inheritance also means that the derived class grad_student is a subtype of 

student. Thus, a graduate student is a student, but a student does not have to be a 

graduate student. This subtyping relationship is called the is-a relationship, or inter¬ 
face inheritance. 

A derived class is a modification of the base class, inheriting the public and 

protected members of the base class. Only constructors, destructors, and member 

function operator=() cannot be inherited. Thus, in the example of grad_student, 
the student members student_id, gpa, name, y, and print() are inherited. 

Frequently, a derived class adds new members to the existing class members. This is 

the case with grad_student, which has three new data members and a redefined 

member function print(), which is overridden. The function definitions of 

student: : pri nt () and grad_student: : pri nt() appear in the next section. 

Implementation of the member function of the derived class is different from that 

of the base class. This is different from overloading, in which the same function 

name can have different meanings for each unique signature. 

Benefits of Using a Derived Class 

■ Code is reused: grad_student uses existing, tested code from student. 

■ The hierarchy reflects a relationship found in the problem domain. When 

speaking of students, the special grouping “graduate student” is an out¬ 

growth of the real world and its treatment of this group. 

■ Various polymorphic mechanisms will allow client code to treat 

grad_student as a subtype of student, simplifying client code while grant¬ 

ing it the benefits of maintaining these distinctions among subtypes. 
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8.2 Typing Conversions and Visibility 

A publicly derived class is a subtype of its base class. This means that a variable of 

the derived class can in many ways be treated as if it were the base-class type. A 

pointer whose type is pointer to base class can point to objects that have the 

derived-class type. Public derivation is far more important than private or protected 

derivation. As such, it should be considered the normal form of inheritance. 

We shall examine our example of student and grad_student. Let us first 
examine the base- and derived-class constructors. 

In file student2.h 

student::student(char* nm, int id, double g, 
year x):student_id(id), gpa(g), y(x) 

{ 
strcpy(name, nm); 

} 

The constructor for the base class does a series of simple initializations. The con¬ 
structor then calls strcpyO to copy over the student’s name. 

grad_student::grad_student (char* nm, int id, double g, year 
x, support t, char* d, 

char* th):student(nm, id, g, x), s(t) 
{ 

strcpy(dept, d) ; 
strcpy(thesis, th); 

} 

Notice that the constructor for student is invoked as part of the initializer list. This 

is usual, and, logically, the base-class object needs to be constructed before the 
object can be completed. 

The grad_student is a publicly derived type whose base class is student. In 

the class student, the members student_id and gpa are protected. This makes 
them visible to the derived class but otherwise treated as private. 

Because grad_student is a subtype of student, a reference to the derived-class 

grad_student may be implicitly converted to a reference to the public base-class 
student. For example, 



8.2 ▼ Typing Conversions and Visibility 277 

grad_student gs("Morris Pohl", 200, 3.2564, grad, ta, 
"Pharmacy", "Retail Pharmacies"); 

student& rs = gs; 

In this case, the variable rs is a reference to student. The base class of 

grad_student is student. Therefore, this reference conversion is appropriate. 

The pri nt() member functions are implemented as follows: 

In file student2.h 

void student::print() const 

{ 
cout « name « " , " « student_id 

« " , " « y « " , " « gpa « endl; 

} 

void grad_student::print() const 

{ 
student::print(); //base class info is printed 
cout « dept « " , " « s « '\n' 

« thesis « endl ; 

} 

For grad_student: : pri nt () to invoke student: : pri nt (), the scope-resolved 

identifier student: : pri nt () must be used. Otherwise, there will be an infinite loop 

caused by a recursive call to grad_student: : pri nt(). To see which versions of 

these functions get called and to demonstrate some of the conversion relationships 

between base and publicly derived classes, we write a simple test. 

In file student2.cpp 

//Test pointer conversion rules 

#include "student2.h" //include relevant declarations 

int main() 

{ student s("Mae Pohl", 100, 3.425, student::fresh), *ps 
grad_student gs(”Morris Pohl", 200, 3.2564, 

student::grad, grad_student::ta, "Pharmacy", 

"Retail Pharmacies"), *pgs; 

= &s; 
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ps -> print(); 
ps = pgs = &gs; 
Pgs -> print(); 
ps ->print(); 

//grad_student: .-print 
//student::print 

//student::pri nt 

} 

This function declares both class variables and pointers to them. The conversion 
rule is that a pointer to a publicly derived class may be converted implicitly to a 
pointer to its base class. In our example, the pointer variable ps can point at objects 
of both classes, but the pointer variable pgs can point only at objects of type 
grad_student. 

We wish to study how various pointer assignments affect the invocation of a 
version of pri nt(). The first instance of the statement 

ps -> print() ; 

invokes student: : pri nt(), which is pointing at the variable s of type student. 
The multiple assignment statement 

ps = pgs = &gs; 

has both pointers pointing at an object of type grad_student. The assignment to 
ps involves an implicit conversion. The statement 

pgs -> print(); //grad_student::print 

invokes the grad_student: : pri nt () function. The variable pgs is of type pointer 
to grad_student and, when invoked with an object of this type, selects a member 
function from this class. 

The second instance of the statement 

ps -> print() ; 

invokes student: :print(). That this pointer is pointing at a grad_student vari¬ 
able gs is not relevant. In the next section, we explain how to use vi rtual member 
functions to make function invocation a runtime property, depending on what is 
being pointed at. 
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8.3 Virtual Functions 

Overloaded member functions are invoked by a type-matching algorithm that 
includes having the implicit argument matched to an object of that class type. All 
this is known at compile time, and it allows the compiler to select the appropriate 
member directly. As will become apparent, it would be nice to dynamically select at 
runtime the appropriate member function from among base- and derived-class 
functions. The keyword vi rtual, a function specifier that provides such a mecha¬ 
nism, may be used only to modify member function declarations. The combination 
of virtual functions and public inheritance will be our most general and flexible way 
to build a piece of software. This is a form of pure polymorphism. 

An ordinary virtual function must be executable code. When invoked, its seman¬ 
tics are the same as those of other functions. In a derived class, it can be overridden, 
and the function prototype of the derived function must have a matching signature 
and return type. The selection of which function definition to invoke for a virtual 
function is dynamic. In the typical case, a base class has a virtual function, and 
derived classes have their versions of this function. A pointer to base class can 
point at either a base-class object or a derived-class object. The member function 
selected will depend on the class of the object being pointed at, not on the pointer 
type. In the absence of a derived type member, the base-class virtual function is 

used by default. 
Note the difference in selection of the appropriate overridden virtual function 

from an overloaded member function. The overloaded member function is selected 
at compile time, based on its signature, and it can have distinct return types. A vir¬ 
tual function is selected at runtime, based on the object’s type, which is passed to it 
as its thi s pointer argument. Also, once it is declared vi rtual, this property is car¬ 
ried along to all redefinitions in derived classes. It is unnecessary in the derived 

class to use the function modifier vi rtual. 
Consider the following example. 

In file virt_sel.cpp 

//virtual function selection 

class B { 
public: 

i nt i ; 
virtual void print_i() const 

{ cout « i « " inside B" « endl; } 

}; 
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class D : public B { 
public: 

//virtual as well 
void print_i() const 

{ cout « i « " inside D" « end!; } 
}; 

int main() 
{ 

B b; 
B* pb = &b; //points at a B object 
D f; 

f .i = 1 + (b.i = 1) ; 
pb -> print_i(); //call B::print_i() 
pb = &f; //points at a D object 
pb -> print_i(); //call D::print_i() 

The output of this program is 

1 inside B 
2 inside D 

Compare this behavior to the program student, shown in Section 8.2, “Typing Con¬ 
versions and Visibility,” on page 277. There, the selection of print () is based on 
the pointer type, known at compile time. Here, pri nt_i () is selected on the basis 
of what is being pointed at. In this case, a different version of pri nt_i () is exe¬ 
cuted. In OOP terminology, the object is sent the message pri nt_i (), and it selects 
its own version of the corresponding method. Thus, the pointer’s base type is not 
the determining method (function) selection. Different class objects are processed 
by different functions, determined at runtime. Facilities that allow the implementa¬ 
tion of ADTs, inheritance, and the ability to process objects dynamically are the 
essentials of OOP. 

Virtual functions and member function overloading cause confusion Consider 
the following. 
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In file virt_err.cpp 

class B { 
public: 

virtual void foo(int); 
virtual void foo(double); 

}; 

class D : public B { 
public: 

void foo(int); 

}; 

int main() 

{ 
D d; 
B b, *pb = &d; 

b.foo(9); 
b.foo(9.5) ; 
d.foo(9); 
d.foo(9.5) ; 
pb -> foo(9); 
pb -> foo(9.5); 

//selects 
//selects 
//selects 
//selects 
//selects 
//selects 

B::foo(int); 
B::foo(double) ; 
D::foo(int) ; 
D::foo(int); 
D::foo(int); 
B::foo(double); 

The base-class member function B: :foo(int) is overridden, and the base-class 
member function B: :foo(double) is hidden in the derived class. In the statement 
d. foo(9.5), the doubl e value 9.5 is converted to the integer value 9. We could have 
used d.B: : foo(double) to call the hidden member function. 

The declaration of an identifier in a scope hides all declarations of that identi¬ 
fier in outer scopes. A base class is an outer scope of any class derived from it. This 
rule is independent of whether the names are declared vi rtual. Access restrictions 
(private, protected) are orthogonal to function selection. If the selected function 

is inaccessible, that is a compile-time error. 
Only nonstatic member functions can be virtual. The virtual characteristic is 

inherited. Thus, the derived-class function is automatically virtual, and the presence 
of the vi rtual keyword is usually a matter of taste. Constructors cannot be virtual, 
but destructors can be. As a rule of thumb, any class having virtual functions 

should have a virtual destructor. 
Virtual functions allow runtime decisions. Consider a computer-aided design 

application in which the area of the shapes in a design has to be computed. The var¬ 
ious shapes will be derived from the shape base class. 
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In file shapel.cpp 

class shape { 
public: 

virtual double area() const { return 0; } 
//virtual double area is default behavior 

protected: 
double x, y; 

class rectangle : public shape { 
public: 

double area() const { return (height * width); } 
private: 

double height, width; 
}; 

class circle : public shape { 
public: 

double area() const 
{ return (PI * radius * radius);} 

private: 
double radius; 

}; 

In such a class hierarchy, the derived classes correspond to important, well-under¬ 
stood types of shapes. The system is readily expanded by deriving further classes. 
The area calculation is a local responsibility of a derived class. 

Client code that uses the polymorphic area calculation looks like this: 

shape* p[N]; 

for (i =0; i < N; ++i) 

tot_area += p[i] -> area() ; 

A major advantage here is that the client code will not need to change if new shapes 
are added to the system. Change is managed locally and propagated automatically 
by the polymorphic character of the client code. 
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8.4 Abstract Base Classes 

A type hierarchy usually has its base class contain a number of virtual functions. 
They provide for dynamic typing. In the base class, virtual functions are often 
dummy functions and have an empty body. In the derived classes, however, virtual 
functions will be given specific meanings. In C++, the pure virtual function is intro¬ 
duced for this purpose. A pure virtual fmiction is one whose body is normally unde¬ 
fined. Notationally, such a function is declared inside the class, as follows: 

virtual function prototype = 0; 

The pure virtual function is used to defer the implementation decision of the func¬ 
tion. In OOP terminology, it is called a deferred method. 

A class that has at least one pure virtual function is an abstract class. In a type 
hierarchy, it is useful for the base class to be an abstract class. This base class has 
the basic common properties of its derived classes but cannot itself be used to 
declare objects. Instead, it is used to declare pointers that can access subtype 

objects derived from the abstract class. 
We will explain this concept while developing a primitive form of ecological sim¬ 

ulation. OOP was originally developed as a simulation methodology using Simula 
67. Hence, many of its ideas are easily understood as an attempt to model a particu¬ 

lar reality. 
The world in our example will have various forms of life interacting, which will 

inherit the interface of an abstract base class called 1 ivi ng. Each position in a grid 
defined to be the world can either have a life-form or be empty. We shall have foxes 
as an archetypal predator, with rabbits as prey. The rabbits will eat grass. Each of 
these life-forms will live, reproduce, and die each iteration of the simulation. 

In file predator.cpp 

//Predator-Prey simulation using class living 

const int N = 40; //size of square board 
enum state { EMPTY , GRASS , RABBIT , FOX, STATES }, 
const int DRAB = 3, DFOX = 6, CYCLES = 5; 

class living; 
typedef living* world[N][N]; 

//forward declaration 
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class living { //what lives in world 
public: 

virtual state who() = 0; 
virtual living* next(world w) 

//state identification 

protected: 
int row, column; 
void sums(world w,int sm[]); 

//location 

}; 

void living::sums(world w, int sm[]) 
{ 

int i, j; 

sm[EMPTY] = sm[GRASS] = sm[RABBIT] = sm[FOX] = 0; 
for (i = -1; i <= l; ++i) 

for ( j = -1; j <= 1; ++j) 

sm[w[row + i] [column + j] -> who()]++; 

There are two pure virtual functions and one ordinary member function, sums(). 
Virtual functions incur a small added runtime cost over normal member functions. 
Therefore, we use virtual functions only when necessary to our implementations. 
Our simulation will have rules for deciding who goes on living, based on the popula¬ 
tions in the neighborhood of a given square. These populations are computed by 
sums(). (This is akin to Conway’s “Game of Life” simulation.) 

The inheritance hierarchy will be one level deep. 

//currently only predator class 

class fox : public living { 
public: 

fox(int r, int c, int a = 0) : age(a) 
{ row = r; column = c; } 

state who() { return FOX; } //deferred method for foxes 
living* next(world w); 

protected: 

int age, //used to decide on dying 
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//currently only prey class 

class rabbit : public living { 
public: 

rabbit(int r, int c, int a = 0) : age(a) 
{ row = r; column = c; } 

state who() { return RABBIT; } 
living* next(world w); 

protected: 
int age; 

}; 

//currently only plant life 

class grass : public living { 

public: 
grass(int r, int c) { row = r; column = c; } 
state who() { return GRASS; } 
living* next (wo rid w) ; 

//nothing lives here 

class empty : public living { 

public: 
empty(int r, int c) { row = r; column = c; } 
state who() { return EMPTY; } 
living* next(world w); 

Notice that the design allows other forms of predator, prey, and plant life to be 
developed, using a further level of inheritance. The characteristics of how each life- 

form behaves are captured in its version of next(). 
Grass can be eaten by rabbits. If there is more grass than the rabbits in the 

neighborhood can eat, the grass remains; otherwise, it is eaten up. (Feel free to sub¬ 

stitute your own rules, as these are highly limited and artilicial.) 
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living* grass::next(world w) 
{ 

int sum[STATES]; 

sums(w, sum); 

if (sum[GRASS] > sum[RABBIT]) //eat grass 
return (new grass(row, column)); 

el se 

return (new empty(row, column)); 

Rabbits die of old age if they exceed a defined limit DRAB; they are eaten if there 
are an appropriate number of foxes in the neighborhood. 

living* rabbit::next(world w) 
{ 

int sum[STATES]; 

sums(w, sum); 

if (sum[FOX] >= sum[RABBIT] ) //eat rabbits 
return (new empty(row, column)); 

else if (age > DRAB) //rabbit is too old 
return (new empty(row, column)); 

el se 

return (new rabbit(row, column, age + 1)); 

Foxes die of overcrowding or old age. 

living* fox::next(world w) 
{ 

int sum[STATES]; 

sums(w, sum); 

if (sum[FOX] > 5) //too many foxes 
return (new empty(row, column)); 

else if (age > DFOX) //fox is too old 
return (new empty(row, column)); 

el se 

return (new fox(row, column, age + 1)); 

Empty squares are competed for by the various life-forms. 
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living* empty::next(world w) //how to fill an empty square 

{ 
int sum[STATES]; 
sums(w, sum); 
if (sum[F0X] > 1) 

return (new fox(row, column)); 
else if (sum[RABBIT] > 1) 

return (new rabbit(row, column)); 
else if (sum[GRASS]) 

return (new grass(row, column)); 

el se 
return (new empty(row, column)); 

} 

The rules in the various versions of next () determine a possibly complex set of 
interactions. Of course, to make the simulation more interesting, other behaviors, 
such as sexual reproduction, whereby the animals have gender and can mate, could 

be simulated. 
The array type world is a container for the life-forms. The container will have 

the responsibility of creating its current pattern. The container needs to have own¬ 
ership of the living objects so as to allocate new ones and to delete old ones. 

//world is all empty 

void init(world w) 

{ 
int i, j; 

for (i = 0; i < N; ++i) 
for (j = 0; j < N; ++j) 

w[i] [j] = new empty(i , j) ; 

} 

//new world w_new is computed from old world w_old 

void update(world w_new, world w_old) 

{ 
int i, j; 

for (i = i; i < N - 1; ++i) //borders are taboo 

for (j = 1; j < N - 1; ++j) 
w_new[i] [j] = w_old[i] [j] -> next(w_old); 

} 
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//clean world up 

void dele(world w) 

{ 
int i, j; 

for (i = 1; i < N - 1; ++i) 
for (j = 1; j < N - 1; ++j) 

delete(w[i][j]); 
} 

The simulation will have odd and even worlds, which alternate as the basis for 
the next cycle’s calculations. 

int main() 
{ 

world odd, even; 
int i ; 

init (odd); init(even); 

eden(even); //generate initial world 
pr_state(even); //print Garden of Eden state 

for (i = 0; i < CYCLES; ++i) { //simulation 
if (i % 2) { 

update(even, odd); 
pr_state(even); 
dele(odd); 

} 
else { 

update(odd, even); 
pr_state(odd); 
dele(even); 

} 
} 

} 

We leave as exercises the writing of pr_state() and eden() (see exercise 8 on page 
305). 
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8.5 Templates and Inheritance 

Templates and inheritance are jointly an extremely powerful reuse technique. 
Parameterized types can be reused through inheritance. Such use parallels that of 
inheritance in deriving ordinary classes. Templates and inheritance are both mecha¬ 
nisms for code reuse, and both can involve polymorphism. They are distinct fea¬ 
tures of C++ and, as such, combine in various forms. A template class can derive 
from an ordinary class, an ordinary class can derive from an instantiated template 
class, and a template class can derive from a template class. Each of these possibili¬ 

ties leads to different relationships. 
In some situations, templates lead to unacceptable cost in the size of the object 

module. Each instantiated template class requires its own compiled object module. 
This can be remedied by using a template to inherit the base class. 

The derivation of a class from an instantiated template class is basically no dif¬ 
ferent from ordinary inheritance. In the following example, we reuse stack<char> 

as a base class for a safe character stack. 

In file stack_t2.cpp 

//safe character stack 

class safe_char_stack : public stack<char> { 

public: 
// test push and pop 
void push(char c) 

{ assert (!ful1()); stack<char>::push(c); } 

char pop() 
{ assert (iemptyO); return (stack<char>: : popO) ; } 

}; 

The instantiated class stack<char> is generated and reused by safe_char_stack. 
This example can be usefully generalized to a template class. 
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In file stack_t3.cpp 

//parameterized safe stack 

template cclass TYPE> 
class safe_stack : public stack<TYPE> { 
public: 

void push(TYPE c) 
{ assert (!ful1()); stack<TYPE>::push(c); } 

TYPE pop() 
{ assert (!empty()); return (stack<TYPE>::pop()); } 

}; 

It is important to notice the linkage between the base class and the derived class. 
Both require the same instantiated type. Each pair of base and derived classes is 
independent of all other pairs. 

8.6 Multiple Inheritance 

The examples in the text thus far require only single inheritance; that is, they 
require that a class be derived from a single base class. This feature can lead to a 
chain of derivations wherein class B is derived from class A, class C is derived from 
class B, . . ., and class N is derived from class M. In effect, N ends up being based on 
A, B, . .. , M. This chain must not be circular, however; a class cannot have itself as 
an ancestor. 

Multiple inheritance allows a derived class to be derived from more than one 
base class. The syntax of class headers is extended to allow a list of base classes and 
their privacy designations. For example, 

class student { 

}; 

class worker { 

}; 

class student_worker: public student, public worker { 
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In this example, the derived class student_worker publicly inherits the members 
of both base classes. This parental relationship is described by the inheritance 
directed acyclic graph (DAG). The DAG is a graph structure whose nodes are classes 
and whose directed edges point from base to derived class. To be legal, a DAG can¬ 
not be circular; thus, no class may, through its inheritance chain, inherit from itself. 

When identically named members are derived from different classes, ambigu¬ 
ities may arise. These derivations are allowed, provided the user does not make an 
ambiguous reference to such a member. For example, 

class worker { 
public: 

const int soc_sec; 
const char* name; 

>; 

class student { 
public: 

const char* name; 

}; 

class student_worker: public student, public 
public: 

void print() { cout « "ssn: " « soc_sec 
cout « name; . } 

worker { 

« "\n" ; 
//error 

}; 

In the body of student_worker: : pri nt (), the reference to soc_sec is fine, but the 
reference to name is inherently ambiguous. The problem can be resolved by prop¬ 
erly qualifying name, using the scope resolution operator. 

With multiple inheritance, two base classes can be derived from a common 
ancestor. If both base classes are used in the ordinary way by their derived class, it 
will have two subobjects of the common ancestor. If this duplication is not desir¬ 
able, it can be eliminated, using virtual inheritance. An example is 

class student: virtual public person { 
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class worker: virtual public person { 

}; 

class student_worker: public student, public worker { 

}; 

Multiple Inheritance 

Without the use of vi rtual in this example, class student_worker would have 
objects of class student: :person and cl ass worker: :person. The order of 
execution for initializing constructors in base and member constructors is given in 
the following list. 

Constructor Execution Order 

1. Base classes initialized in declaration order 

2. Members initialized in declaration order 

3. The body of the constructor 

Virtual base classes are constructed before any of their derived classes and 
before any nonvirtual base classes. Construction order depends on their DAG. It is a 
depth-first, left-to-right order. Destructors are invoked in the reverse order of con¬ 
structors. These rules, although complicated, are intuitive. 

On many systems, a concrete example of multiple inheritance can be found in 
the iostream library. This library contains the class iostream, which can be derived 
from i stream and ostream. However, it is an interesting comment on multiple 
inheritance that more recent implementations have gone back to single-inheritance 
designs. 



8.7 ▼ Inheritance and Design 293 

8.7 Inheritance and Design 

At one level, inheritance is a code-sharing technique. At another level, it reflects an 
understanding of the problem and relationships between parts of the problem 
space. Much of public inheritance is the expression of an is-a relationship between 
the base and derived classes. The rectangle is a shape. This is the conceptual under¬ 
pinning for making shape a superclass and allowing the behavior described by its 
public member functions to be interpretable on objects within its type hierarchy. In 
other words, subclasses derived from the superclass share its interface. 

A design cannot be specified in a completely optimal way. Design involves 
trade-offs between the various objectives one wishes to achieve. For example, gener¬ 
ality is frequently at odds with efficiency. Using a class hierarchy that expresses is-a 
relationships increases our effort to understand how to compartmentalize coding 
relationships and potentially introduces coding inefficiencies by having various lay¬ 
ers of access to the (hidden) state description of an object. However, a reasonable 
is-a decomposition can simplify the overall coding process. For example, a shape¬ 
drawing package need not anticipate shapes that might be added in the future. 
Through inheritance, the class developer imports the base-class “shape” interface 
and provides code that implements operations, such as “draw.” What is primitive or 
shared remains unchanged. Also unchanged is the client’s use of the package. 

An undue amount of decomposition imposes its own complexity and ends up 
being self-defeating. There is a granularity decision, whereby highly specialized 
classes do not provide enough benefit and are better folded into a larger concept. 

Single inheritance (SI) conforms to a hierarchical decomposition of the key 
objects in the domain of discourse. Multiple inheritance (MI) is more troubling as a 
modeling or problem-solving concept. In MI, the new object is composed of several 
preexisting objects and is usefully thought of as a form of each. The term mixin is 
used to mean a class composed using MI, with each base class orthogonal. Much of 
the time, there is an alternative has-a formulation. For example, is a vampire bat a 
mammal that happens to fly, a flying machine that happens to be a mammal, or 
both a flying machine and a mammal? Depending on what code is available, devel¬ 
oping a proper class for vampire bat might involve an MI derivation or an SI with 

appropriate has-a members. 
MI presents problems for the type theorist: student might be derived from per¬ 

son, and employee might be derived from person. But what about a student- 
employee? Generally, types are best understood as SI chains. 

None of this diminishes the attraction of MI as a code-reuse technique. It is 
clearly a powerful generalization of SI. As such, it probably fits in with the style of 
some programmers. Just as some programmers prefer iteration to recursion, some 

prefer SI and aggregation to MI and composition. 
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8.7.1 Subtyping Form 

ADTs are successful insofar as they behave like native types. Native types, such as 
the integer types in C, act as a subtype hierarchy. This is a useful model for publicly 
derived type hierarchies and promotes ease of use through polymorphism. Here is a 
recipe for building such a type hierarchy. The base class is made abstract and is 
used for interface inheritance. The derived classes will implement this interface 
concretely. 

class Abstract_Base { 
public: 

//interface - largely virtual 
Abstract_Base(); //default constructor 
Abstract_Base(const Abstract_Base&); //copy constructor 
virtual ~Abstract_Base() = 0; //pure virtual 

protected: 
//used in place of private because of inheritance 

private: 

//often empty - else it constrains future designs 

}; 

class Derived: virtual public Abstract_Base { 
public: 

//Concrete instance 

DerivedO; //default constructor 
Derived(const Derived&); //copy constructor 
-DerivedO; //destructor 
Derived& operator=(const Derived&); //assignment 

protected: 

//used in place of private if inheritance expected 

private: 

//used for implementation details 
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It is usual to leave the base class of the hierarchy abstract, yielding the most 
flexible design. Generally, no concrete implementation is developed at this point. By 
using pure virtual functions, we are precluded from declaring objects of this type. 
Notice that the ~Abstract_Base() function is pure. This level of the design focuses 
on public interface. These are the operations expected of any subtype in the hierar¬ 
chy. In general, basic constructors are expected and may not be virtual. Also, most 
useful aggregates require an explicit definition of assignment that differs from 
default assignment semantics. The destructor is virtual because response must be 
at runtime and is dependent on the object’s size, which can vary across the hierar¬ 
chy. Finally, virtual public inheritance ensures that in MI schemes, we will not have 
multiple copies of the abstract base class. 

8.7.2 Code Reuse 

Private inheritance does not have a subtype, or is-a relationship. In private inheri¬ 
tance, we reuse a base class for its code. We will call private derivation a like-a rela¬ 
tionship, or implementation inheritance, as opposed to interface inheritance. The 
like-a relationship comes in handy when diagramming the class relationships in a 
complicated software system. Because private and protected inheritance do not cre¬ 
ate type hierarchies, they have more limited utility than does public inheritance. In a 
first pass in understanding these concepts, nonpublic inheritance can be skipped. 

Code reuse is often all you want from inheritance. The template methodology is 
simpler and more runtime efficient; it is simpler because instantiation requires only 
a single type placed in the template declaration. In inheritance, we need to derive 
the whole interface, substituting appropriate types. It is more runtime efficient 
because it often avoids indirection. Inheritance allows special cases to be developed 
for each type, if necessary; it does not lead to large object-code modules. Remem¬ 
ber, each template instantiation is compiled to object code. 

8.8 Runtime Type Identification 

Runtime type identification (RTTI) provides a mechanism for safely determining the 
type pointed at by a base-class pointer at runtime. This mechanism involves 
dynami c_cast, an operator on a base-class pointer; typeid, an operator for deter¬ 
mining the type of an object; and type_i nfo, a structure providing runtime infor¬ 
mation for the associated type. The dynami c_cast operator has the form 

dynamic_cast< type >( v ) 
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where type must be a pointer or reference to a class type and v must be a corre¬ 
sponding pointer value or reference value. 

This cast, used with classes having virtual functions, is implemented as follows: 

class Base { virtual void foo(); . }; 
class Derived : public Base { . }; 

void fcn(Base* ptr) 

{ 
Derived* dptr = dynamic_cast<Derived*>(ptr); 

} 

In this example, the cast converts the pointer value ptr to a Derived*. If the con¬ 
version is inappropriate, a value of 0, the NULL pointer, is returned. This is called a 
downcast. Dynamic casts also work with reference types. 

The operator typeid() can be applied to a typename or to an expression to 
determine the exact type of the argument. The operator returns a reference to the 
class type_i nfo, which is supplied by the system and is defined in the header file 
typeinfo (some compilers use type_info). The class type_i nfo provides both a 
name() member function that returns a string that is the type name and overloaded 
equality operators. Remember to check the local implementation for the complete 
interface of this class. 

In file typeid.cpp 

Base* bptr; 

//print the type name of what bptr currently points at 
cout « typeid(bptr).name() « endl; 

if (typeid(bptr) == typeid(Derived)) { 
//do something appropriate for Derived 

} 

Bad dynamic casts and typei d operations can be made to throw the exceptions 
bad_cast and bad_typeid, so the user can choose between dealing with the NULL 
pointer or catching an exception. (See Section 9.9, “Standard Exceptions and Their 
Uses,” on page 318.) 
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8.9 Pragmatics 

A difficulty in learning C++ is the many distinctions and rules pertaining to the use 
of functions. We have now described most of the extensions and shall mention 
some of the distinctions. 

Function Use in C++ 

■ A virtual function and its derived instances having the same signature must 
have the same return type, with some minor exceptions. The virtual function 
redefinition is called overriding. Notice that nonvirtual member functions 
with the same signature can have different return types in derived classes. 
(See exercise 6 on page 304.) 

■ All member functions except constructors and overloaded new and del ete 
can be virtual. 

■ Constructors, destructors, overloaded operator^ and friends are not inher¬ 

ited. 

■ The operators =, (), [], and -> can be overloaded only with nonstatic mem¬ 
ber functions. Conversion functions that are operator typeO must also be 
done only with nonstatic member functions. Overloading operators new and 
delete can be done only with static member functions. Other overloadable 
operators can be done with friend, member, or ordinary functions. 

■ A union may have constructors and destructors but not virtual functions. It 
can neither serve as a base class nor have a base class. Members of a union 
cannot require constructors or destructors. 

■ Access modification is possible, but using it with public inheritance destroys 
the subtype relationship. Access modification cannot broaden visibility. For 

example, 
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In file acc_mod.cpp 

//Access modification 

class B { 
public: 

int k; 
protected: 

int j, n; 
private: 

i nt i; 

}; 

class D : public B { 
public: 

int m; 
B::n; //illegal protected access can't be 

private: 

B::j; //otherwise default is protected 
}; 

broadened 

8.10 Moving from C++ to Java 

Like C++, Java has the inheritance mechanism, which extends a new class from an 
existing one, although Java does not have multiple inheritance and uses different 
terminology with respect to inheritance. The Java base class is called the superclass. 
The extended class adds to or alters the inherited superclass methods. This is used 
to share interface and to create a hierarchy of related types. 

Consider designing a data base for a college. The registrar must track various 
types of students. The superclass we start with will be Personl. This class will be 
identical to Person in Section 5.13, “Moving from C++ to Java,” on page 186, except 
that the private instance variables will be changed to have access protected. This 
access allows their use in the subclass but otherwise acts like private. 

Here is an example of deriving a class: 
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// Note Personl is Person with private instance variables 
// made protected 

class Student extends Personl { 
private String college; 
private byte year; //I = fr, 2 = so, S = jr, 4 = sr 
private double gpa; //0.0 to 4.0 
public void assignCollege(String nm) { college = nm; } 
public void assignYear(byte a) { year = a; } 
public void assignGpa(double g) { gpa = g; } 
public String toStringO 

{ return (super.toStri ng() + " College is " + college); } 
public StudentO 

{super.assignName("Unknown"); college = "Unknown";} 
public Student(String nm) 

{ super(nm); college = "Unknown"; } 
public Student(String nm, int a, char b) 

{ name =nm; age =a; gender = b; } 

In this example, Student is the subclass, and Personl is the superclass. Notice the 
use of the keyword super, which provides a means of accessing the instance vari¬ 
ables or methods found in the superclass. 

The inheritance structure provides a design for the overall system. The super¬ 
class Personl leads to a design whereby the subclass Student is derived from it. 
Other subclasses, such as CradStudent or Employee, could be added to this inher¬ 
itance hierarchy. 

In Java, polymorphism comes from both method overloading and method over¬ 
riding. Overriding occurs when a method is redefined in the subclass. The 
toStri ng() method is in Personl and is redefined in Student extended from 

Personl. 

//Overriding the printNameO method 
class Personl { 

protected String name; 
protected int age; 
protected char gender; //male == 'M' , female == 'F' 

public toStringO { 
return(name + " age is " + age + 

" sex is " + (gender == 'F' ? "F": "M") ); 

} 
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class Student extends Personl { 
private String college; 
private byte year; 
private double gpa; //0.0 to 4.0 
public toStringO 

{ return(super.toString() + " College is " + college); } 

}; 

The overridden method toStri ng() has the same name and signature in both the 
superclass Personl and the subclass Student. Which one gets selected depends on 
what is being referenced at runtime. For example, 

//StudentTest.java use Personl 

public class StudentTest { 
public static void main (String[] args ) 

{ 
Personl ql; 
ql = new Student(); 
ql.assignName("Charies Babbage"); 
System.out.println(ql.toString()); 
ql = new Personl(); 
ql.assignName("Charles Babbage"); 
System.out.println(ql.toString()); 

} 
} 

The variable ql can refer to either Personl object or the subtype Student object. 
At runtime, the correct toStringO will be selected. The assignName() method is 
known at compile time, since it is the superclass Personl method. 
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Summary 

1. Inheritance is the mechanism of deriving a new class from old ones. That is, the 
existing classes can be added to or altered to create the derived class. Through 
inheritance, a hierarchy of related, code-sharing ADTs can be created. 

2. A class can be derived from an existing class, using the form 

class class-name : (publ i c | protected | private) optbase-name 

{ 
member declarations 

}; 

As usual, the keyword cl ass can be replaced by the keyword struct, with the 
usual implication that members are by default publ i c. 

3. The keywords publ i c, private, and protected are available as visibility modi¬ 
fiers for class members. A public member is visible throughout its scope. A pri¬ 
vate member is visible to other member functions within its own class and to 
friend functions. A protected member is visible to other member functions 
within its class, within friend functions, and within any class immediately 
derived from it. These visibility modifiers can be used within a class declaration 

in any order and with any frequency. 

4. The derived class has its own constructors, which will invoke the base-class con¬ 
structor. A special syntax is used to pass arguments from the derived-class con¬ 
structor back to the base-class constructor: 

function header : base-classname (argument list) 

5. A publicly derived class is a subtype of its base class. A variable of the derived 
class can in many ways be treated as if it were the base-class type. A pointer 
whose type is pointer to base class can point to objects of the publicly derived 

class type. 

6. A reference to the derived class may be implicitly converted to a reference to 
the public base class. It is possible to declare a reference to a base class and to 
initialize it to a reference to an object of the publicly derived class. 

7. The keyword vi rtual is a function specifier that provides a mechanism to 
dynamically select at runtime the appropriate member function from among 
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base- and derived-class functions. This specifier may be used only to modify 
member function declarations. This is called overriding. This ability to dynami¬ 
cally select a routine appropriate to an object’s type is a form of polymorphism. 

8. Inheritance provides for code reuse. The derived class inherits the base-class 
code and typically modifies and extends the base class. Public inheritance also 
creates a type hierarchy, allowing further generality by providing additional 
implicit type conversions. Also, at a runtime cost, it allows for runtime selection 
of overridden virtual functions. Facilities that allow the implementation of 
ADTs, inheritance, and the ability to process objects dynamically are the essen¬ 
tials of OOP. 

9. A pure virtual function is a virtual member function whose body is normally 
undefined. Notationally, a pure virtual function is declared inside the class, as 
follows: 

vi rtual function prototype = 0; 

The pure virtual function is used to defer the implementation decision of the 
function. In OOP terminology, it is called a deferred method. A class that has at 
least one pure virtual function is an abstract class. It is useful for the base class 
in a type hierarchy to be an abstract class. As such, the base class would define 
the interface for its derived classes but cannot itself be used to declare objects. 

Review Questions 

1. In cl ass X : Y { . . . }, X is a_class and Y is a_class. 

2. True or false: If D inherits from B privately, D is a subtype of B. 

3. The term overriding refers to_functions. 

4. An abstract base class contains a_. 

5. The sub typing relationship is called the_. 

6. True or false: Template classes cannot be base classes. 
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7. What is wrong with the following? 

class A:B{...}; class class C:A{...}; 

8. In multiple inheritance, why is virtual inheritance used? 

9. The class type_i nfo provides a name() member function that_• 

10. True or false: Constructors, destructors, overloaded operator^ and friends are 
not inherited. 

Exercises 

1. For student and grad_student code, input member functions that read input 
for each data member in their classes. (See Section 8.1, “A Derived Class,” on 
page 275.) Use student: : read to implement grad_student: : read. 

2. Pointer conversions, scope resolution, and explicit casting create a wide selec¬ 
tion of possibilities. Using main(), discussed in Section 8.2, “Typing Conver¬ 
sions and Visibility,” on page 277, which of the following work, and what is 

printed? 

reinterpret_cast<grad_student *>(ps) -> print(); 

dynamic_cast<student *>(pgs) -> printO; 
pgs -> student:: printO ; 
ps -> grad_student: :printO ; 

Print out and explain the results. 

3. Modify class D in Section 8.3, “Virtual Functions,” on page 280, to be 

class D2 : private B { 

public: 
//access modification 

void print_i() 

cout « i « " inside D2 and B::i is 
« B::i « endl; 

} 
}; 
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What is changed in the output from that program? 

4. Derive an integer vector class from the STL class vector<int> that has 1 as 
its first index value and n as its last index value. 

int_vector x(n); //vector whose range is 1 to n 

5. Generalize the previous exercise by deriving a template class that creates the 
index range 1 to n. 

vec_l<double> x(n); //vector whose range is 1 to n 

6. For the following program, explain when both overriding and overloading take 
place. 

class B { 
public: 

BCint j = 0) : i(j) {} 
virtual void print() const 

{ cout « " i = " « i « endl; } 
void print(char *s) const 

{ cout « s « i « endl; } 
private: 

int i ; 

}; 

class D : public B { 
public: 

D(int j = 0) : B(5), i(j) {} 
void print() const 

{ cout « " i = " « i « endl; } 
int print(char *s) const 

{ cout « s « i « endl; 
private: 

int i; 

}; 

return i; } 
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int main() 

{ 
B bl, b2(10), *pb; 
D dl, d2(10), *pd = &d2; 

bl.printO; b2.print(); dl.print(); d2.print(); 
bl.print("bl.i = "); b2.print("b2.i = "); 
dl.print("dl.i = "); d2.print("d2.i = "); 
pb = pd; 
pb -> print(); pb -> print("d2.i = "); 
pd -> printQ; pd -> print("d2.i = "); 

7. Define a base class person that will contain universal information, including 
name, address, birth date, and gender. Derive from this class the following 
classes: 

class student : virtual public person { 
// . relevant additional state and behavior 

}; 

class worker : virtual public person { 
// . relevant additional state and behavior 

}; 

class student_worker : public student,public worker { 

// . 
}; 

Write a program that reads a file of information and creates a list of persons. 
Process the list to create, in sorted order by last name, a list of all people, a list 
of people who are students, a list of people who are employees, and a list of 
people who are student-employees. On your system, can you easily produce a 
list in sorted order of all students who are not employees? 

8. (Project) Design and implement a graphical user interface (GUI) for the predator- 
prey simulation. It is beyond the scope of this book to describe various available 
GUI toolkits. The Interviews package works on top of X and is written in C++. 
The program should draw each iteration of the simulation on the screen. You 
should be able to directly input a “Garden of Eden” starting position. (See Sec¬ 
tion 8.4, “Abstract Base Classes,” on page 283, for the game-of-life simulation.) 
You should also be able to provide other settings for the simulation, such as the 
size of the simulation. Can you allow the user to define other life-forms and 
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their rules for existing, eating, and reproducing? Make the graphical interface as 
elegant as possible. The user should be able to position it on the screen, resize 
it, and select icons for the various available life-forms. 

9. (Java) Add GraduateStudent to the Java class hierarchy in Section 8.10, “Mov¬ 
ing from C++ to Java,” on page 300. Note how Java uses capitalization instead of 
an underscore to separate words in an identifier. This is stylistic. C++ derives its 
heritage directly from C and adopted C style. Java has a SmallTalk influence and 
has styles adopted from that culture. 

10. (Java) Develop the Java version of the shape hierarchy in Section 8.3, “Virtual 
Functions,” on page 282. 

11. (Java) Develop the predator-prey simulation in Java, using the awt library to 
provide a graphical interface. (See Section 8.4, “Abstract Base Classes,” on page 
283 for the predator-prey C++ simulation.) This is one area that Java excels in. 
Section 10.6, “Moving from C++ to Java,” on page 336, has some discussion of 
Java awt. 
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eptions 

This chapter describes exception handling in C++. Exceptions are generally unex¬ 
pected error conditions. Normally, these conditions terminate the user program 
with a system-provided error message. An example is floating-point divide-by-zero. 
Usually, the system aborts the running program. C++ allows the programmer to 
attempt to recover from these conditions and to continue program execution. 

Assertions are program checks that force error exits when correctness is vio¬ 
lated. One point of view is that an exception is based on a breakdown of a contrac¬ 
tual guarantee among the provider of a code, the code’s manufacturer, and the 
code’s client. (See Section 10.1.1, “ADTs: Encapsulation and Data Hiding,” on page 
328.) In this model, the client needs to guarantee that the conditions for applying 
the code exist, and the manufacturer needs to guarantee that the code will work cor¬ 
rectly under these conditions. In this methodology, assertions provide the various 

guarantees. 

9.1 Using the assert Library 

Program correctness can be viewed in part as a proof that the computation termi¬ 
nated with correct output, dependent on correct input. The user of the computation 
had the responsibility of providing correct input. This was a precondition. The com¬ 
putation, if successful, satisfied a postcondition. Providing a fully formal proof of 
correctness is an ideal but is not usually done. Nevertheless, such assertions can be 
monitored at runtime to provide very useful diagnostics. Indeed, the discipline of 
thinking out appropriate assertions frequently causes the programmer to avoid 

bugs and pitfalls. 
The C and C++ communities are increasingly emphasizing the use of assertions. 

The standard library assert provides a macro, assert, which is invoked as though 

its function signature were 

void assert(bool expression)] 

If the expression evaluates as fal se, execution is aborted with diagnostic output. 

The assertions are discarded if the macro NDEBUG is defined. 
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Consider allocation to our safe array type dbl_vect in Section 5.5, “The Class 
db1_vect,” on page 163. 

dbl_vect::dbl_vect(int n) : size(n) 
{ 

assert(n > 0); 
p = new intfsize]; 
assert(p != 0); 

} 

The use of assertions replaces the ad hoc use of conditional tests with a more uni¬ 
form methodology. This is better practice. The downside is that the assertion meth¬ 
odology does not allow a retry or other repair strategy to continue program 
execution. Also, assertions do not allow a customized error message, although it 
would be easy to add this capability. 

It is possible to make this scheme slightly more sophisticated by providing vari¬ 
ous testing levels, as are found in the Borland C++ checks library. Under this pack¬ 
age, the flag _DEBUG can be set to 

_DEBUG 0 no testing 
_DEBUG 1 PRECONDITION tests only 
_DEBUG 2 CHECK tests also 

The idea is that once the library functions are thought to be correct, the level of 
checking is reduced to testing preconditions only. Once the client code is debugged, 
all testing can be suspended. 

9.2 C++ Exceptions 

C++ introduces a context-sensitive exception-handling mechanism. It is not 
intended to handle the asynchronous exceptions defined in signal, such as S IGF PE, 
which indicates a floating-point exception. The context for handling an exception is 
a try block. Handlers are declared at the end of a try block, using the keyword 
catch. 

C++ code can raise an exception in a try block by using the throw expression. 
The exception is handled by invoking an appropriate handler selected from a list 
found at the end of the handler’s try block. An example of this follows. 
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In file dbl_vect4.cpp 

dbl_vect::dbl_vect(int n): size(n) 

{ 
if (n < 1) //l) //precondition assertion 

throw (n); 
p = new int [n]; 
if (p == 0) //postcondition assertion 

throw ("FREE STORE EXHAUSTED"); 

} 

void g(int n) 

{ 
try { 

dbl_vect a(n), b(n); 

} 
catch(int n) {.} //catches incorrect size 
catch(const char* error) {.} //catches no free store 

} 

The first throw() has an integer argument and matches the catch(i nt n) signa¬ 
ture. This handler is expected to perform an appropriate action where an incorrect 
array size has been passed as an argument to the constructor. For example, an error 
message and abort are normal. The second throw() has a pointer to character argu¬ 
ment and matches the catch (const char* error) signature. 

9.3 Throwing Exceptions 

Syntactically, throw expressions come in two forms: 

throw expression 
throw 

The throw expression raises an exception. The innermost try block in which an 
exception is raised is used to select the catch statement that processes the excep 
tion. The throw with no argument can be used inside a catch to rethrow the current 
exception. This throw is typically used when you want a second handler called from 

the first handler to further process the exception. 
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The expression thrown is a static temporary object that persists until exception 
handling is exited. The expression is caught by a handler that may use this value, as 
follows: 

In file throwl.cpp 

void foo() 

{ 
int i; 

//will illustrate how an exception is thrown 
i = -15; 
throw i; 

} 

int main() 

{ 
try { 

foo() ; 

} 
catch (int n) 

{ cerr « "exception caught\n " « n « endl ; } 
} 

The integer value thrown by throw i persists until the handler with the integer sig¬ 
nature catch(int n) exits. This value is available for use within the handler as its 
argument. 

When a nested function throws an exception, the process stack is “unwound” 
until an exception handler is found. This means that block exit from each termi¬ 
nated local process causes automatic objects to be destroyed. 

In file throw2.cpp 

void fooO 

{ 

} 

int i, j; 

throw i; 
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void call_foo() 

{ 
i nt k; 

foo(); 

} 

int main() 

{ 
try { 

call_foo(); //foo exits with i and j destroyed 

} 
catch (int n) { . } 

} 

9.3.1 Rethrown Exceptions 

Using throw without an expression rethrows a caught exception. The catch that 
rethrows the exception cannot complete the handling of the existing exception. This 
catch passes control to the nearest surrounding try block, where a handler capable 
of catching the still existing exception is invoked. The exception expression exists 
until all handling is completed. Control resumes after the outermost try block that 

last handled the rethrown expression. 
An example of rethrowing of an exception follows. 

void foo() 

{ 
try { 

throw i; 

} 
catch(int n) 

{ 
if ( i > 0) //handle 

return; 

} 
else { //handle 

throw; //rethrown 

} 
} 

for positive values here 

i <= 0 partially 
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Assuming that the thrown expression was of integer type, the rethrown exception is 
the same persistent integer object that is handled by the nearest handler suitable 
for that type. 

9.3.2 Exception Expressions 

Conceptually, the thrown expression “passes” information to the handlers. Fre¬ 
quently, the handlers will not need this information. For example, a handler that 
prints a message and aborts needs no information from its environment. However, 
the user might want additional information printed so that it can be used to select 
or to help decide the handler’s action. In this case, it is appropriate to package the 
information as an object. 

class dbl_vect_error { 
private: 

enum error { bounds, 
int ub, index, size; 

public: 

dbl_vect_error(error, 
dbl_vect_error(error, 

}; 

Now, throwing an expression using an object of type dbl_vect_error can be more 
informative to a handler than just throwing expressions of simple types. 

heap, other } e_type; 

int, int); //out of bounds 
int); //out of memory 

throw dbl_vect_error(bounds, i, ub); 
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9.4 Try Blocks 

Syntactically, a try block has the form 

try 
compound statement 
handler list 

The try block is the context for deciding which handlers are invoked on a raised 
exception. The order in which handlers are defined determines the order in which a 
handler for a raised exception of matching type will be tried. 

try { 

throw ("SOS"); 

io_condition eof (argvfi]) ; 

throw (eof); 

} 

catch(const char*) {.} 
catch(io_condition& x) {.} 

Conditions Under Which Throw Expression Matches the Catch Handler Type 

■ An exact match 

■ A derived type of the public base-class handler type 

■ A thrown object type that is convertible to a pointer type that is the catch 

argument 

It is an error to list handlers in an order that prevents them from being called. For 

example, 

catch(void*) //any char* would match 

catch(char*) 
catch(BaseTypeError&) 
catch(DerivedTypeError&) 

//always on DerivedTypeError 
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A try block can be nested. If no matching handler is available in the immediate try 
block, a handler is selected from its immediately surrounding try block. If no 
handler that matches can be found, a default behavior is used. This is by default 
terminateQ (see Section 9.7, “termi nateQ and unexpectedQ,” on page 315). 

9.5 Handlers 

Syntactically, a handler has the form 

catch (formal argument) 
compound statement 

The catch looks like a function declaration of one argument without a return type. 

In file catch.cpp 

catch(char* message) 
{ 

cerr « message « endl; 
exit(l); 

} 

catch( ... ) //default action to be taken 
{ 

cerr « "THAT'S ALL FOLKS." « endl; 
abort(); 

} 

An ellipsis signature matching any argument type is allowed. Also, the formal argu¬ 
ment can be an abstract declaration. In other words, it can have type information 
without a variable name. 

The handler is invoked by an appropriate throw expression. At that point the 
try block is exited. The system calls clean-up functions that include destructors for 
any objects that were local to the try block. A partially constructed object will have 
destructors invoked on any parts of it that are constructed subobjects The program 
resumes at the statement after the try block. 
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9.6 Exception Specification 

Syntactically, an exception specification is part of a function declaration or a func¬ 

tion definition and has the form 

function header throw ftypelist) 

The type list is the list of types that a throw expression within the function can have. 
The function definition and the function declaration must write out the exception 

specification identically. 
If the list is empty, the compiler may assume that no throw will be executed by 

the function, either directly or indirectly. 

void foo() throw(int, over_flow); 
void noex(int i) throw(); 

If an exception specification is left off, the assumption is that an arbitrary exception 
can be thrown by such a function. Violations of these specifications are runtime 

errors and are caught by the function unexpected(). 

9.7 terminateO and unexpected) 

The system-provided function termi nate() is called when no handler has been 
provided to deal with an exception. The abort () function, called by default, imme¬ 
diately terminates the program, returning control to the operating system. Another 
action can be specified by using set_termi nate() to provide a handler. These dec¬ 

larations are found in the except library. 
The system-provided handler unexpectedO is called when a function throws 

an exception that was not in its exception-specification list. By default, the 
terminateO function is called; otherwise, a set.unexpectedO can be used to 

provide a handler. 
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9.8 Example Exception Code 

In this section, we discuss some examples of exception code and their effects. Let us 
return to catching a size error in our dbl_vect constructor from Section 6.7, “Over¬ 
loading Assignment and Subscripting Operators,” on page 210. 

In file dbl_vect4.cpp 

dbl_vect::dbl_vect(int n): size(n) 
{ 

if (n < 1) //precondition assertion 
throw (n); 

p = new int [n]; 

if (p == 0) //postcondition assertion 
throw ("FREE STORE EXHAUSTED"); 

} 

void g(int m) 

{ 
try { 

dbl_vect a(m); 

//retry g with 
//legal size 

catch(const char* error) 
{ 

cerr « error « endl; 
abort(); 

} 
} 

catch(int n) 
{ 

cerr « "SIZE ERROR 
9(10); 

} 

« n « endl; 
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The handler has replaced an illegal value with a default legal value. This may be rea¬ 
sonable in a system’s debugging phase, when many routines are being integrated 
and tested. The system attempts to provide further diagnostics. It is analogous to a 
compiler’s attempt to continue to parse an incorrect program after a syntax error. 
Frequently, the compiler provides additional error messages that prove useful. 

The preceding constructor checks that only one variable has a legal value. It 
looks artificial in that it replaces code that could directly replace the illegal value 
with a default by throwing an exception and allowing the handler to repair the 
value. Elowever, in this form, the separation of what is an error and how it is han¬ 
dled is clear. It is a clear methodology for developing fault-tolerant code. 

More generally, one could have an object’s constructor look like the following: 

Object: : Object (arguments) 

{ ' 

if (illegal argumentl ) 
throw expressionl; 

if (illegal argument2 ) 
throw expression2; 

//attempt to construct 

} 

The Object constructor now provides a set of thrown expressions for an illegal 
state. The try block can now use the information to repair or to abort incorrect code. 

try { 

//. fault-tolerant code 

} 
catch {declaration!) { /* 
catch (declaration) { /* 

fixup this case */ } 
fixup this case */ } 

catch (declarationK) { 
//correct or repaired - 

/* fixup this 
state values 

case */ } 
are now legal 

When many distinct error conditions are useful for the state of a given object, a 
class hierarchy can be used to create a selection of related types to be used as throw 

expressions. 
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Object_Error { 
public: 

Obj ect_Er r or (arguments) ; //capture useful info 
members that contain throwm expression state 
virtual void repair() 

{ cerr « "Repair failed in Object " « endl; 
abort(): } 

}; 

Object_Error_Sl : public Object_Error { 
public: 

Object_Error_Sl(arguments) ; 
added members that contain thrown expression state 
void repairQ; //override to provide repair 

. //other derived error classes as needed 

These hierarchies allow an appropriately ordered set of catches to handle excep¬ 
tions in a logical sequence. Recall that a base-class type should come after a 
derived-class type in the list of catch declarations. 

9.9 Standard Exceptions and Their Uses 

C++ compilers and library vendors provide standard exceptions. For example, the 
exception type bad_al loc is thrown by the ANSII compiler if the new operator fails 
to return with storage from free store. The bad_al loc exception is in the except 
library. 

Here is a program that lets you test this behavior on the Borland compiler. 
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In file except.cpp 

int main() 

{ 
int *p, n; 

try { 
while (true) { 

cout « "enter allocation request:" « endl; 
cin » n; 
p = new int [n] ; 

} 
} 
catch(bad_alloc x ) { cout « "bad_alloc caught" « endl; } 
catch(...) { cout « "default catch" « endl; } 

} 

This program loops until it is interrupted by an exception. On our system, a request 
for 1 billion integers will invoke the bad_alloc handler. In some systems, the 
exception class xal 1 oc is provided for this purpose. 

A frequent use of standard exceptions is in testing casts. The standard excep¬ 
tion bad_cast is declared in file exception. The following program uses the typeinfo 
and stdexception libraries. The program also uses RTTI, as well as the bad_cast 

exception. 

In file bad_cast.cpp 

class A { 
public: 

virtual void foo() { cout « "in A" « endl; } 

}; 

class B: public A { 
public: 

void foo() { cout « "in B" « endl; } 

}; 
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int main() 

{ 
try { 

A a, *pa; B b, *pb; 
pa = &b; 
pb = dynamic_cast<B*>(pa); //succeeds 
pb -> foo(); 
pa = &a; 

pb = dynamic_cast<B*>(pa); //fails 
pb -> foo(); 

} 
catch(bad_cast) { cout « "dynamic_cast failed" « endl; } 

} 

In systems that do not throw these exceptions, the pointer should be tested with an 
assertion to see that it is not converted to 0. 

The standard library exceptions are derived from the base-class exception. 
Two derived classes are logic_error and runtime_error. Logic-error types 
include bad_cast, out_of_range, and bad_typeid, which are intended to be 
thrown as indicated by their names. The runtime error types include range_error, 
ove rf 1 ow_er ror, and bad_al 1 oc. 

The base class defines a virtual function. 

virtual const char* exception::what() const throw(); 

This member function should be defined in each derived class to give more helpful 
messages. The empty throw-specification list indicates that the function should not 
itself throw an exception. 

9.10 Pragmatics 

Paradoxically, error recovery is concerned chiefly with writing correct programs. 
Exception handling is about error recovery. Exception handling is also a transfer-of- 
control mechanism. The client/manufacturer model gives the manufacturer the 
responsibility of making software that produces correct output, given acceptable 
input. The question for the manufacturer is how much error detection and, conceiv¬ 
ably, correction should be built in. The client is often better served by fault-detect¬ 
ing libraries, which can be used in deciding whether to attempt to continue the 
computation. 
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Error recovery is based on the transfer of control. Undisciplined transfer of con¬ 
trol leads to chaos. In error recovery, one assumes that an exceptional condition has 
corrupted the computation, making it dangerous to continue. It is analogous to driv¬ 
ing a car after realizing that the steering mechanism is damaged. Useful exception 
handling is the disciplined recovery when damage occurs. 

In most cases, programming that raises exceptions should print a diagnostic 
message and gracefully terminate. Special forms of processing, such as real-time 
processing and fault-tolerant computing, require that the system not go down. In 
these cases, heroic attempts at repair are legitimate. 

What can be agreed on is that classes can usefully be provided with error condi¬ 
tions. In many of these conditions, the object has member values in illegal states— 
values it is not allowed to have. The system raises an exception for these cases, with 
the default action being program termination. This is analogous to the native types 
raising system-defined exceptions, such as SIGFPE. 

But what kind of intervention is reasonable to keep the program running? And 
where should the flow of control be returned? C++ uses a termination model that 
forces the current try block to terminate. Under this regime, one will either retry the 
code or ignore or substitute a default result and continue. Retrying the code seems 
most likely to give a correct result. 

Code is usually too thinly commented. It is difficult to imagine the program that 
would be too rich in assertions. Assertions and simple throws and catches that ter¬ 
minate the computation are parallel techniques. A well-thought-out set of error con¬ 
ditions detectable by the user of an ADT is an important part of a good design. An 
overreliance on exception handling in normal programming, beyond error detection 
and termination, is a sign that a program was ill-conceived, with too many holes, in 
its original form. 

9.11 Moving from C++ to Java 

Java has an exception-handling mechanism that is integral to the language and is 
heavily used for error detection at runtime. The mechanism is similar to the one 
found in C++. An exception is thrown by a method when it detects an error condi¬ 
tion. The exception will be handled by invoking an appropriate handler selected 
from a list of handlers, or catches. These explicit catches occur at the end of an 
enclosing try block. An uncaught exception is handled by a default Java handler 
that issues a message and terminates the program. An exception is itself an object, 
which must be derived from the superclass Throwable. 

As a simple example of all this, we will add an exception NoSuchNameExcepti on 
to our Personl example class in Section 8.10, “Moving from C++ to Java,” on page 

300. 
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class NoSuchNameException extends Exception { 
public String str() { return name; } 
public String name; 
NoSuchNameException(String p) { name = p; } 

The purpose of this exception is to report an incorrect or improperly formed name. 
In many cases, exceptions act as assertions would in the C language. These excep¬ 
tions determine whether an illegal action has occurred and report it. We now modify 
the Person code to take advantage of the exception. 

In file Person2.java 

//Person2.class: Person with exceptions added 

class Person2 { 
private String name; 
public Person2(String p)throws NoSuchNameException{ 

if (p == "") 
throw new NoSuchNameException(p); 

name = p; } 
public String toString(){ return name;} 
public static void main(String[] args) 

throws NoSuchNameException 

{ 
try{ 

Person2 p = new Person2("ira pohl"); 
System.out.println("PERSONS"); 
System.out.println(p.toString()); 
p = new Person2(""); 

} 
catch(NoSuchNameException t) 

{ System.out.printlnC" exception with name " + t.str()); } 
fi nal ly 

{ System.out.println("finally clause"); } 
}; 

The throw() has a NoSuchNameException argument and matches the catch() sig¬ 
nature. This handler is expected to perform an appropriate action where an incor¬ 
rect name has been passed as an argument to the Person2 constructor. As in this 
example, an error message and abort are normal. The f i nal 1 y clause shown here is 
code that is done regardless of how the try block terminates. 
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Summary 

1. Exceptions are generally unexpected error conditions. Normally, these condi¬ 
tions terminate the user program with a system-provided error message. An 
example is floating-point divide-by-zero. 

2. The standard library assert provides the macro 

assertOxpression) ; 

If the expression evaluates as false, execution is aborted with diagnostic out¬ 
put. The assertions are discarded if the macro NDEBUG is defined. 

3. The signal library provides a standard mechanism for handling system-defined 
exceptions in a straightforward manner. Some examples are 

#define SIGINT 2 /^interrupt signal */ 
#define SIGFPE 8 /*floating-point exception */ 
#define SIGABRT 22 /*abort signal */ 

The system can raise these exceptions. On many systems, for example, pressing 
control-C on the keyboard generates an interrupt. The normal action is to kill 
the current user process. These exceptions can be handled by use of the 
si gnal () function, which associates a handler function with a signal. 

4. C++ code can raise an exception by using the throw expression. The exception is 
handled by invoking an appropriate handler selected from a list of handlers 
found at the end of the handler’s try block. 

5. Syntactically, throws come in two forms: 

throw 
throw expression 

The throw expression raises an exception in a try block. The throw with no argu¬ 
ment may be used in a catch to rethrow the current exception. 
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6. Syntactically, a try block has the form 

try 
compound statement 
handler list 

The try block is the context for deciding which handlers are invoked on a raised 
exception. The order in which handlers are defined determines the order in 
which a handler for a raised exception of matching type is tried. 

7. Syntactically, a handler has the form 

catch (formal argument) 
compound statement 

The catch looks like a function declaration of one argument without a return 
type. 

8. Syntactically, an exception specification is part of a function declaration and 
has the form 

function header throw (type list) 

The type list is the list of types that a throw expression within the function can 
have. If the list is empty, the compiler may assume that no throw will be exe¬ 
cuted by the function, either directly or indirectly. 

9. The system-provided handler termi nate() is called when no other handler has 
been provided to deal with an exception. The system-provided handler 
unexpected () is called when a function throws an exception that was not in its 
exception-specification list. By default, termi nate() calls the abort() 
function. The default unexpectedQ behavior is to call termi nateQ. 

Review Questions 

1. True or false: In C++, new cannot throw an exception. 

2. Asynchronous exceptions, such as SIGFPE, are defined in _ 

3. The context for handling an exception is a_block. 
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4. The system-provided handler_is called when a function throws an 
exception that was not in its exception-specification list. 

5. A standard exception class is_and is used for_. 

6. The system-provided handler_is called when no other handler has 
been provided to deal with an exception. 

7. Handlers are declared at the end of a try block, using the keyword_. 

8. The_is the list of types a throw expression can have. 

9. Name three standard exceptions provided by C++ compilers and libraries. 

10. What two actions should most handlers perform? 

Exercises 

1. The following bubble sort does not work correctly: 

//Incorrect bubble sort 

void swap(int a, int b) 

{ 
int temp = a; 

a = b; 
b = temp; 

} 

void bubble(int a[], int size) 

{ 
int i, j; 

for (i =0; i != size; ++i) 
for (j = i ; j != size; ++j) 

if Ca[j] < a [j +1]) 
swap (a[j], a[j + 1]); 

} 
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int main() 

{ 
int t[10] = { 9, 4, 6, 4, 5, 9, -3, 1, 0, 12}; 

bubble(t, 10); 
for (int i =0; i <10; ++i) 

cout « t[i] « '\t' ; 
cout « "\nsorted? " « end); 

} 

Place assertions in this code to test that it is working properly. Use this tech¬ 
nique to write a correct program. 

2. Use templates to write a generic version of the correct bubble sort, complete 
with assertions. Use a random-number generator to generate test data. On what 
types can this be made to work generically? 

3. Code the member function dbl_vect: :operator[] (int) to throw an out-of- 
range exception if an incorrect index is used. (See Section 6.7, “Overloading 
Assignment and Subscripting Operators,” on page 211.) Also, code a reasonable 
catch that prints out the incorrect value and terminates. To test the code, exe¬ 
cute a try block in which the exception occurs. Write a catch that would allow 
user intervention at the keyboard to produce a correct index and to continue or 
to retry the computation. Can this be done in a reasonable manner? 

4. Recode the ch_stack class to throw exceptions for as many conditions as you 
think are reasonable. (See Section 5.2, “Constructing a Dynamically Sized Stack,” 
on page 155.) Use an enumerated type to list the conditions. 

enum stack_error { overflow, underflow, . }; 

Write a catch that will use a swi tch statement to select an appropriate message 
and to terminate the computation. 

5. Write a stack_error class that replaces the enumerated type of the previous 
exercise. Make this a base class for a series of derived classes that encapsulates 
each specific exception condition. The catches should be able to use overridden 
virtual functions to process the various thrown exceptions. 

6. (Java) Recode in Java the ch_stack class, complete with exceptions. Java 
already throws exceptions if new fails to allocate storage, and Java automatically 
throws a range-error exception when an index is out of range. 
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Using C++ 

C++ is a hybrid language. The kernel language developed from C is classically used 
as a system-implementation language. As such, C++ is suitable for writing very effi¬ 
cient code. The class-based additions to the language support the full range of OOP 
requirements. Therefore, C++ is suitable for writing reusable libraries, and it sup¬ 
ports a polymorphic coding style. 

Object-oriented programming (OOP) and C++ were embraced by the industry 
very quickly. C++, as a hybrid OOP language, allows a multiparadigmatic approach 
to coding. The traditional advantages of C as an efficient, powerful programmer’s 
language are not lost. The key new ingredients in C++ are inheritance and polymor¬ 
phism, that is, its capability to assume many forms. 

10.1 OOP Language Requirements 

OOP Language Characteristics 

■ Encapsulation with data hiding: the ability to distinguish an object’s internal 
state and behavior from its external state and behavior 

■ Type extensibility: the ability to add user-defined types to augment the native 

types 

■ Inheritance: the ability to create new types by importing or reusing the 
description of existing types 

■ Polymorphism with dynamic binding: the ability of objects to be responsible 
for interpreting function invocation 

These features cannot substitute for programmer discipline and community- 
observed convention, but they can be used to promote such behavior. 

Typical procedural languages, such as FORTRAN, Pascal, and C, have limited 
forms of type extensibility and encapsulation. These languages have pointer and 
record types that provide these features. C also has a scheme of file-oriented 
privacy, in its stati c file-scope declarations. Such languages as Modula-2 and Ada 
have more complete forms of encapsulation, namely, module and package, 
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respectively. These languages readily allow users to build ADTs and provide 
significant library support for many application areas. A language such as pure LISP 
supports dynamic binding. The elements in OOP have been available in various 
languages for at least 25 years. 

LISP, Simula, and SmallTalk have long been in widespread use in both the aca¬ 
demic and research communities. These languages are in many ways more elegant 
than C and C++. However, not until OOP elements were added to C was there any 
significant movement to using OOP in industry. Indeed, the late 1980s saw a band¬ 
wagon effect in adopting C++ that cut across companies, product lines, and applica¬ 
tion areas; industry needed to couple OOP with the ability to program effectively at 
a low level. 

Also crucial was the ease of migration from C to C++. PL/1, by contrast, is 
rooted in FORTRAN and COBOL; Ada is rooted in Pascal. But C++ had C as a nearly 
proper subset. As such, the installed base of C code need not be abandoned. These 
other languages required a nontrivial conversion process to modify existing code 
from their ancestor languages. 

The conventional academic wisdom is that excessive concern with efficiency is 
detrimental to good coding practices. This concern misses the obvious, namely, that 
product competition is based on performance. Consequently, industry values low- 
level technology. In this environment, C++ is a very effective tool. 

10.1.1 ADTs: Encapsulation and Data Hiding 

To fully appreciate the OOP paradigm, we must view the overall coding process as 
an exercise in shared and distributed responsibilities. This text has used the terms 
client to mean a user of a class and manufacturer to mean the provider of the class. 

A client of a class expects an approximation to an abstraction. A stack, to be 
useful, has to be of reasonable size. A complex number must be of reasonable preci¬ 
sion. A deck of cards must be shufflable, with random outcome in dealing hands. 
The internals of how these behaviors are computed is not a direct concern of the cli¬ 
ent. The client is concerned with cost, effectiveness, and ease of operation, not with 
implementation. This is the black box principle, and it has two components. 

Black Box for the Client 

■ Simple to use, easy to understand, and familiar 

■ In a component relationship within the system 

■ Cheap, efficient, and powerful 
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Black Box for the Manufacturer 

■ Easy to reuse and modify and difficult to misuse and reproduce 

■ Profitable to produce with a large client base 

■ Cheap, efficient, and powerful 

The manufacturer competes for clients by implementing an ADT product that is 
reasonably priced and efficient. It is in the manufacturer’s interest to hide details of 
an implementation. This simplifies what the manufacturer needs to explain to the 
client, and it frees the manufacturer to allow internal repairs or improvements that 
do not affect the client’s use. It restrains the client from dangerous or inadvertent 
tampering with the product. 

A data-hiding scheme that restricts access of implementation detail to manufac¬ 
turers guarantees client conformance to the ADT abstraction. The private parts are 
hidden from client code, and the public parts are available. It is possible to change 
the hidden representation without changing the public access or functionality. If 
done properly, client code need not change when the hidden representation is mod¬ 
ified. The two keys to fulfilling these conditions are inheritance and polymorphism. 

10.1.2 Reuse and Inheritance 

Library creation and reuse are crucial indicators of successful language strategies. 
Inheritance, or deriving a new class from an old one, is used for code sharing and 
reuse, as well as for developing type hierarchies. Inheritance can be used to create a 
hierarchy of related ADTs that share both code and a common interface, a feature 
critical to the ability to reuse code. 

Inheritance influences overall software design by providing a framework that 
captures conceptual elements that become the focus for system building and reuse. 
For example, Interviews is a C++ package that supports building graphical user 
interfaces for interactive, text, and graphics objects. These categories are readily 
composed to produce various applications, such as a CAD system, a browser, or a 
WYSIWYG editor. 

OOP Design Methodology 

1. Decide on an appropriate set of ADTs. 

2. Design in their relatedness, and use inheritance to share code and interface. 

3. Use virtual functions to process related objects dynamically. 

Inheritance also facilitates the black box principle and is an important 
mechanism for suppressing detail. It is hierarchical, and each level provides 
functionality to the next level that is built on it. In retrospect, structured 
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programming methodology, with its process-centered view, relied on stepwise 
refinement to nest routines but did not adequately appreciate the need for a 
corresponding view of data. 

10.1.3 Polymorphism 

Polymorphism is the genie in OOP, taking instruction from a client and properly 
interpreting its wishes. A polymorphic function has many forms. Following Cardelli 
and Wegner, we make the following distinctions: 

Types of Polymorphism 

1. Coercion (ad hoc polymorphism): A function or operator works on several 
types by converting their values to the expected type. An example in ANSI C 
is assignment conversions of arithmetic types on function call. 

a / b //divide determined by native coercions 

2. Overloading (ad hoc polymorphism): A function is called, based on its signa¬ 
ture, defined as the list of argument types in its parameter list. The C integer- 
divide operator and float-divide operator are distinguished, based on their 
argument list. 

cout « a //function overloading 

3. Inclusion (pure polymorphism): A type is a subtype of another type. Func¬ 
tions available for the base type will work on the subtype. Such a function can 
have various implementations that are invoked by a runtime determination of 
subtype. 

p -> draw() //virtual function call 

4. Parametric polymorphism (pure polymorphism): The type is left unspecified 
and is later instantiated. Manipulation of generic pointers and templates pro¬ 
vides this in C++. 

stack <window*> win[40] 

Polymorphism localizes responsibility for behavior. The client code frequently 
requires no revision when additional functionality is added to the system through 
manufacturer-provided code additions. 

Polymorphism directly contributes to the black box principle. The virtual func¬ 
tions specified for the base class are the interface used by the client throughout. 
The client knows that an overridden member function takes responsibility for a spe¬ 
cific implementation of a given action relevant to the object. The client need not 
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know different routines for each calculation or different forms of specification. 
These details are suppressed. 

10.2 OOP: The Dominant Programming Methodology 

OOP using C++ gained dazzling acceptance in industry from 1986 on, despite 
acknowledged flaws and unfamiliarity with OOP strategies. The reason for this is 
that C++ brought OOP technology to industry in an acceptable way. C++ is based on 
an existing, widely used successful language. C++ allows tight, efficient, portable 
code to be written. Type safety is retained, and type extensibility is general. C++ 
coexists with standard languages and does not require special system resources. 

C was designed as a system-implementation language and as such allows coding 
that is readily translated to efficiently use machine resources. Software products 
gain competitive advantage from such efficiency. Hence, despite complaints that 
traditional C was not a safe or robust language to code in, C grew in its range of 
application. The C community, by convention and discipline, used structured pro¬ 
gramming and ADT extensions. OOP made inroads into this professional commu¬ 
nity only when it was wed to C within a conceptual framework that maintained its 
traditional point of view and advantages. Key to the bandwagon move to C++ has 
been the understanding that inheritance and polymorphism gain additional impor¬ 
tant advantages over traditional coding practice. 

Polymorphism in C++ allows a client to use an ADT as a black box. Success in 
OOP is characterized by the extent to which a user-defined type can be made indis¬ 
tinguishable from a native type. Polymorphism allows coercions to be specified that 
integrate the ADT with the native types. Objects from subtype hierarchies respond 
dynamically to function invocation, the messaging principle in OOP. Polymorphism 
also simplifies client protocols, and name proliferation is controlled by function 
and operator overloading. The availability of all four forms of polymorphism 
encourages the programmer to design with encapsulation and data hiding in mind. 
OOP is many things to many people. Attempts to define it are like the blind men’s 
attempts to describe an elephant. Recall the equation describing object-orientation: 
OOP = type-extensibility + polymorphism. 

In many languages and systems, the cost of detail suppression was runtime 
inefficiency or undue rigidity in the interface. C++ has a range of choices that allow 
both efficiency and flexibility. Also, the success of C++ was a precondition for the 
introduction of Java in 1995. Together, C++ and Java have established OOP as the 
dominant contemporary programming methodology. 
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10.3 Designing with OOP in Mind 

Most programming should involve the use of existing designs. For example, the 
mathematical and scientific communities have standard definitions of complex 
numbers, rationals, matrices, and polynomials. Each of these can be readily coded 
as an ADT. The expected public behavior of these types is widely agreed on. 

The programming community has widespread experience with standard con¬ 
tainer classes. Reasonable agreement exists as to the behavior of stack, associative 
array, binary tree, and queue. Also, the programming community has many exam¬ 
ples of specialized programming language oriented to a particular domain. For 
example, SNOBOL and its successor language ICON have powerful string-processing 
features that can be captured as ADTs in C++. 

OOP attempts to emphasize reuse, which is possible on several scales. The 
grandest scale is the development of libraries that are effective for an entire prob¬ 
lem domain. The upside is that reuse contributes in the long run to more easily 
maintained code. The downside is that a particular application does not need costly 
library development. 

OOP requires programmer sophistication. More sophisticated programmers are 
better programmers. The downside is high training cost and the potential misuse of 
sophisticated tools. 

OOP makes client code simpler and more readily extensible. Polymorphism can 
be used to incorporate local changes into a large-scale system without global modi¬ 
fication. The downside can be runtime overhead. 

C++ provides programming encapsulations through classes, inheritance, and 
templates. Encapsulations hide and localize. As systems get bigger and more com¬ 
plex, there is an increasing need for such encapsulations. Simple block structure 
and functional encapsulation of such languages as Pascal are not enough. The 
1970s taught us the need for the module as a programming unit. The 1980s taught 
us that modules need to have a logical coherence supported in the language and 
that they must be derivable from one another. When supported by a programming 
language, encapsulations and relationships lead to increased programmer disci¬ 
pline. The art of programming is to blend rigor and discipline with creativity. 

Occam’s Razor is a useful design principle: Entities should not be multiplied 
beyond necessity—or beyond completeness, invertibility, orthogonality, consis¬ 
tency, simplicity, efficiency, or expressiveness. Such ideals can be in conflict and 
frequently involve trade-offs in arriving at a design. 

Invertibility means that the program should have member functions that are 
inverses. In the mathematical types, addition and subtraction are inverses. In a text 
editor, add and delete are inverses. Some commands, such as negation, are their 
own inverses. The importance of invertibility in a nonmathematical context can be 



10.4 t Class-Responsibility-Collaborator 333 

seen by the brilliant success of the undo command in text editing and the recover 
commands in file maintenance. 

Completeness is best seen in Boolean algebra, in which the nand operation suf¬ 
fices to generate all possible Boolean expressions. But Boolean algebra is usually 
taught with negation, conjunction, and disjunction as the basic operations. Com¬ 
pleteness by itself is not enough to judge a design by. A large set of operators is fre¬ 

quently more expressive. 
Orthogonality means that each element of a design should integrate and work 

with all other elements without overlapping or being redundant. For example, on a 
system that manipulates shapes, one should have a horizontal move, a vertical 
move, and a rotate operation. In effect, these operations would be adequate to posi¬ 
tion the shape at any point on the screen. 

Hierarchy is captured through inheritance. Designs should be hierarchical. It is 
a reflection of two principles—decomposition and localization. Both principles are 
methods of suppressing detail, a key idea in coping with complexity. However, there 
is a scale problem in such a design. How much detail is enough to make a concept 
useful as its own class? It is important to avoid a proliferation of specialized con¬ 
cepts. Too much detail renders the class design difficult to master. 

10.4 Class-Responsibility-Collaborator 

Designs can be aided by a diagramming process. Several object-oriented design 
(OOD) notations exist, and a number have been incorporated in CASE (computer- 
assisted software engineering) tools. The most comprehensive of these are based on 
the Universal Modeling Language (UML) pioneered by Rational Software. This section 
describes a useful, related low-tech scheme: the Class-Responsibility-Collaborator 

(CRC) notecard scheme. 
A responsibility is an obligation the class must keep. For example, complex 

number objects must provide an implementation of complex arithmetic. A collabo¬ 
rator is another object that cooperates with this object to provide an overall set of 
behaviors. For example, integers and reals collaborate with complex numbers to 
provide a comprehensive set of mathematical behaviors. 

A CRC notecard is used to design a given class. The responsibilities of the class 
and the collaborators for that class are initially described. The back of the card is 
used to describe implementation detail. The front of the card corresponds to public 

behavior. 
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card front 

classname: stack collaborators: 
none 

responsibilities 
push 
pop 

empty 

public 

card back 

state/description 

top 

base_pointer 

CRC Card 

As the design process proceeds, the cards are rewritten and refined. They become 
more detailed and closer to a set of member function headers. The back of the card 
can be used to show implementation details, including is-a, like-a, and has-a 
relationships. 

The attractiveness of this scheme is its flexibility. In effect, it represents a 
pseudocode refinement process that can reflect local tastes. The number of revi¬ 
sions and the level of detail and rigor are a matter of taste. 

10.5 Design Patterns 

Reuse is a primary theme m modern programming. In early times, reuse was limited 
to simple libraries of functions, such as the math functions found in math h or the 
string functions in string.h. In OOP, the class or template becomes a key construct 
for reuse. Classes and templates encapsulate code that conforms to certain designs 
Thus, the iterator classes of STL are a design pattern. Recently, the concept of 
design pattern has proved very popular in defining medium-scale reuse A design 
pattern has four elements. 8 
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Elements of a Design Pattern 

1. The pattern terminology: for example, iterator 

2. The problem and conditions: for example, visitation over a container 

3. The solution: for example, pointer-like objects with a common interface 

4. The evaluation: for example, the trade-off between defining an iterator on a 
vector or using a native array 

A design pattern is an abstraction that suggests a useful solution to a particular 
programming problem. Often, reuse is inexpensive, as with STL container and itera¬ 
tor design patterns that require only instantiation. Sometimes, reuse is expensive, 
such as inventing a balanced-tree class with an interface conforming to STL 

sequence containers. 

Design Patterns in This Text 

1. Iterator, such as vector: : iterator; organizes visitation on a container 

2. Composite, such as class gracLstudent; composes complex objects out of 

simpler ones 

3. Template method, such as the quicksortO template 

OOP has stimulated reuse of design patterns. A design pattern is a software solution 
in search of a problem. Consider how the iterator logic of STL decouples visitation 
of container elements from specific details of the container. This idea is indepen¬ 
dent of computer language and is useful in C++, Java, and SmallTalk coding 
projects. This idea can be summarized as the iterator pattern. 

The name is of great importance, as it increases the programmer’s technical 
vocabulary. A name should be memorable and illuminate a key characteristic of the 
method. The problem identifies circumstances under which the pattern provides a 
solution. The solution shows how the pattern solves the problem. The consequences 
are a discussion of the cost-benefit trade-off in using the pattern. 

When the pattern is discussed in a specific language context, it is often called a 
programming idiom. This is also sometimes used for smaller coding ideas. For 
example, in C++ or C, EOF is frequently used as a guard value to terminate file 

processing. 
When the pattern is used in a wider context to provide a library of routines and 

components, it is called a framework. The STL can be considered a framework that 
makes heavy use of the iterator and template patterns, among others. In Java, the 
Java Foundation Classes, also known as Swing, support window development. They 
are implemented with the model-view-controller pattern. 
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10.6 Moving from C++ to Java 

Java shares with C++ the use of classes and inheritance to build software in an 
object-oriented manner. Also, both languages use data hiding and have methods 
that are bundled within the class. 

Unlike C++, Java does not allow for conventional programming. Everything is 
encapsulated in a class. This forces the programmer to think and to design every¬ 
thing as an object. The downside is that conventional C code is not as readily 
adapted to Java as it is to C++. Java avoids most of the memory-pointer errors that 
are common to C and C++. Address arithmetic and manipulation are done by the 
compiler and the system, not the programmer. Therefore, the Java programmer 
writes safer code. Also, memory reclamation is automatically done by the Java gar¬ 
bage collector. 

Another important concept in OOP is the promotion of code reuse through the 
inheritance mechanism. In Java, this is the mechanism of extending a new class, 
called a subclass, from an existing one, called the superclass. Methods in the 
extended class override the superclass methods. The method selection occurs at 
runtime and is a highly flexible polymorphic style of coding. 

Java, in a strict sense, is completely portable across all platforms that support 
it. Java is compiled to byte code that is run on the Java virtual machine. This is typi¬ 
cally an interpreter—code that understands the Java byte code instructions. Such 
code is much slower than native code on most systems. The trade-off here is univer¬ 
sally consistent behavior versus loss of efficiency. 

Java has extensively developed libraries for performing Web-based program¬ 
ming. Java also has the ability to write graphical user interfaces that are used inter¬ 
actively. Its thread package has secure Web communication features that let the 
coder write distributed applications. 

Java is far simpler than C++ in the core language and its features. In some ways, 
this is deceptive in that much of the complexity is in its libraries. Java is far safer 
because of very strict typing, avoidance of pointer arithmetic, and well-integrated 
exception handling. It is system independent in its behavior, so one size fits all. This 
combination of object orientation, simplicity, universality, and Web-sensitive librar¬ 
ies make it the language of the moment. 

Java programs are classes. A class has syntactic form that is derived from the 
C struct, which is not in Java. Data and functions are placed within classes When a 
class is executed as a program, it starts by calling the member function mai n (). 

Java is known for providing applets on Web pages. A browser is used to display 
and to execute the applet. Typically, the applet provides a graphical user interface 
to the code. The following piece of code is an applet for computing the greatest 
common devisor for two numbers: 
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In file wgcd.java 

//GCD applet implementations 

import java.applet.*; //gets the applet superclass 
import java.awt.*; //abstract windowing toolkit 
import java.io.*; 

//derived from the class Applet 

public class wgcd extends Applet { 
int x, y, z, r; 
TextField a = new TextField(10); 
TextField b = new TextField(10); 
TextField c = new TextField(10); 
Label 11 = new Label("Valuel: "); 
Label 12 = new Label("Value2: "); 
Button gcd = new Button(" GCD: "); 

//draws the screen layout such as the TextFields 

public void init() { 
setLayout(new FlowLayoutO) ; 
c.setEditable(false); 
add(ll); add(a); 
add(l2) ; add(b); 
add(gcd); add(c); 

} 

//computes the greatest common divisor 

public int gcd(int m, int n) { 
while (n !=0) { 

r = m % n; 
m = n; 
n = r; 

} 
return m; 

} 

//input box 
//input box 
//output box 



338 Chapter 10 t OOP Using C++ 

//looks for screen events to interact with 

public boolean action(Event e, Object o) { 
if (" GCD: ".equals(o)) { //press button 

x = Integer.parselnt(a.getTextO) ; 
y = Integer.parselnt(b.getTextO) ; 
z = gcd(x,y); 

//place answer in output TextField 
c.setText(Integer.toString(z)); 

} 
return true; 

} 
}; 

The code uses the graphics library awt and the applet class to draw an interac¬ 
tive interface that can be executed either by a special program called the applet- 
viewer or by a Java-aware browser, such as Microsoft Explorer or Netscape 
Navigator. Unlike ordinary Java programs, this program does not use a mai n () 
method to initiate the computation. Instead, the init() method draws the screen. 
Further computation is event driven and is processed by the action() method. The 
user terminates the applet by clicking on the Quit command in the applet pull-down 
menu. 

Summary 

1. Object-oriented programming (OOP) and C++ were embraced by industry very 
quickly. As a hybrid OOP language, C++ allows a multiparadigmatic approach to 
coding. The traditional advantages of C as an efficient, powerful programmer’s 
language are not lost. The key new ingredient is polymorphism, or the ability to 
assume many forms. 

2. Existing languages and methodology supported much of the OOP methodology 
by combining language features with programmer discipline. It is possible to 
create and to use ADTs in a non-OOP language. Three examples in the C commu¬ 
nity are string, boolean, and file, which are pseudotypes in that they do not 
enjoy the same privileges as true types. What is gained by looking at these 
examples is a better understanding of the limits of extensibility in non-OOP. 

3. A black box for the client should be simple to use, easy to understand, and 
familiar; cheap, efficient, and powerful; and in a component relationship within 



▼ Summary 339 

the system. A black box for the manufacturer should be easy to reuse and mod¬ 
ify and difficult to misuse and reproduce; cheap, efficient, and powerful; and 
profitable to produce for a large client base. In brief, the OOP design methodol¬ 
ogy involves deciding on an appropriate set of ADTs, designing in their related¬ 
ness and using inheritance to share code and interface, and using virtual 
functions to process related objects dynamically. 

4. Polymorphism directly contributes to the black box principle. The virtual func¬ 
tions specified for the base class are the interface used by the client throughout. 
The client knows that an overridden member function takes responsibility for a 
specific implementation of a given action relevant to the object. 

5. As a hybrid OOP language, C++ can cause the programmer a dialectical tension 
headache. The penchant of C programmers to focus on efficiency and imple¬ 
mentation conflicts with the penchant of objectivists to focus on elegance, 
abstraction, and generality. The two demands on the coding process are recon¬ 
cilable but require a measure of coordination and respect for the process. 

6. OOP is many things to many people. In many languages and systems, the cost of 
detail suppression was runtime inefficiency or undue rigidity in the interface. 
C++ has a range of choices that allow both efficiency and flexibility. 

7. Occam’s Razor, a useful design principle, states that entities should not be mul¬ 
tiplied beyond necessity—or beyond completeness, invertibility, orthogonality, 
consistency, simplicity, efficiency, or expressiveness. These principles can be in 
conflict and frequently involve trade-offs in arriving at a design. 

8. The Class-Responsibility-Collaborator (CRC) notecard scheme is used in OOD. A 
responsibility is an obligation the class must keep. A collaborator is another 
object that cooperates with this object to provide an overall set of behaviors. 
The responsibilities of the class and the collaborators for that class are initially 
described. The back of the card is used to describe implementation detail. The 
front of the card corresponds to public behavior. 

9. OOP has stimulated reuse of design patterns. A design pattern is a software 
solution in search of a problem. Consider how the iterator logic of STL decou¬ 
ples visitation of container elements from specific details of the container. This 
idea can be summarized as the iterator pattern. The name is of great impor¬ 
tance, as it increases the programmer’s technical vocabulary. The name should 
be clever and should illuminate a key characteristic of the method. The problem 
identifies circumstances under which the pattern provides a solution. The solu¬ 
tion shows how the pattern solves the problem. The consequences are a discus¬ 

sion of the cost-benefit trade-off in using the pattern. 



340 Chapter 10 ▼ OOP Using C++ 

Review Questions 

1. Name three typical characteristics of an object-oriented programming language. 

2. True or false: Conventional academic wisdom is that excessive concern with effi¬ 
ciency is detrimental to good coding practices. 

3. Through_, a hierarchy of related ADTs can be created that share code 
and a common interface. 

4. Name three properties of a black box for the client. 

5. Name three properties of a black box for the manufacturer. 

6. _ methodology has a process-centered view and relies on stepwise 
refinement to nest routines but does not adequately appreciate the need for a 
corresponding view of data. 

7. _is the genie in OOP, taking instruction from a client and properly inter¬ 
preting its wishes. 

8. Give an example of ad hoc polymorphism. 

9. Describe at least two separate concepts for the keyword vi rtual as used in 
C++. Does this cause conceptual confusion? 

10. The package string is a pseudotype. It uses traditional C technology and pro¬ 
grammer discipline to provide the ADT string. Why is it preferable to provide 
the standard library class stri ng? 
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Exercises 

1. Consider the following three ways to provide a Boolean type: 

//Traditional C using the preprocessor 

#define TRUE 1 
#define FALSE 0 
#define Boolean int 

//ANSI C and C++ using enumerated types 
enum Boolean { false, true }; 

//C++ as a class 
class Boolean { 

public: 
//various member functions 
//including overloading ! && | 

}; 

Discuss the advantages and disadvantages of each style. Keep in mind scope, 
naming, and conversion problems. In what ways is it desirable for C++ to now 

have a native type bool? 

2. C++ originally allowed the this pointer to be modifiable. One use was to have 
user-controlled storage management by assigning directly to the thi s pointer. 
The assignment of 0 meant that the associated memory could be returned to 
free store. Discuss why this is a bad idea. Write a program with an assignment 
of thi s = 0. What error message does your compiler give you? Can you get 
around this with a cast? Would this be a good idea? 

3. The rules for deciding which definition of an overloaded function to invoke 
have changed since the first version of C++. One reason for this is to reduce the 
number of ambiguities. A criticism is that the rules allow matching through con¬ 
versions that may be unintended by the programmer. This can cause difficult- 
to-detect runtime bugs. One strategy is to have the compiler issue a diagnostic 
warning in such cases; another is to use casting defensively to inform the com¬ 
piler of the intended choice. Discuss these alternatives after investigating how 

the rules have changed. 
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4. (Java) Java and C++ have different casting rules. Investigate the differences. C++ 
allows a wider range of casting opportunities. Is this desirable? 

5. List three things that you would drop from the C++ language. Argue why each 
would not be missed. For example, it is possible to have protected inheritance, 
although it was never discussed in this text. Should it be in the language for 
completeness’ sake? Can you write code that uses protected inheritance that 
demonstrates that it is a critical feature of language as opposed to an 
extravagance? 

6. (Java) Using awt, write a Java program that is a basic desktop calculator. Have 
buttons that indicate a series of operations, such as +, *, sqrt, and reciprocal; 
data fields to enter arguments; and a result field. If you have access to JFC 
(Swing), you use it. Document your design with CRC cards. 
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Character Codes 

American Standard Code for Information Interchange 

0 1 2 3 4 5 6 7 8 9 

0 nul soh stx etx eot enq ack bel bs ht 

1 nl vt np cr so si die del dc2 dc3 

2 dc4 nak syn etb can em sub esc fs gs 

3 rs us sp i u # $ % & 

4 ( ) * + j - / 0 1 

5 2 3 4 5 6 7 8 9 j 

6 < = > ? @ A B C D E 

7 F G H 1 J K L M N 0 

8 P Q R S T U V W X Y 

9 Z 1 \ ] A - 
( a b c 

10 d e f g h i j k 1 m 

11 n 0 P q r s t u V w 

12 X y z { 1 } ~ del 

Some Observations 

■ Character codes 0 through 31 and 127 are nonprinting. 

■ Character code 32 prints a single space. 

■ Character codes for digits 0 through SI are contiguous. 

■ Character codes for letters A through Z are contiguous. 

■ Character codes for letters a through z are contiguous. 

■ The difference between an uppercase letter and the corresponding lowercase 

letter is 32. 
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The meanings for some of the abbreviations follow: 

■ bel—audible bell 

■ bs—backspace 

■ cr—carriage return 

■ esc—escape 

■ ht—horizontal tab 

■ nl—newline 

■ nul—null 

“ vt—vertical tab 



Appendix B 
Operator Precedence 
and Associativity 

Operators Associativity 

:: (global scope) 
:: (class scope) 

left to right 

() [] -> . (postfix)++ (postfix) — left to right 

++(prefix) --(prefix) ! ~ sizeof (type} & (address) 
+ (unary) -(unary) * (indirection) delete new 

right to left 

. * ->* left to right 

* / % left to right 

+ left to right 

« » left to right 

<<=>>= left to right 

! = left to right 

& left to right 

A left to right 

1 left to right 

&& left to right 

II left to right 

?; right to left 

= += -= *= /= %= »= «= &= A= | = right to left 

, (comma operator) left to right 

In case of doubt, use parentheses. 
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ix C 
guage Guide 

This concise guide to C++ summarizes many of the key language elements that are 
not found in older procedural languages, such as Pascal and C. This appendix is 

intended as a convenient guide to the language. 

C.l Program Structure 

A program in C++ is a collection of functions and declarations, which may be 
declared in different files. Program execution begins with the function mai n(). 

//The computation of circumference and area of circles. 

// Title: circles 

// by 
// Geometries Inc. 
// Version 2.2 

#include <iostream> 
using namespace std; 

const double pi = B.14159; //pi accurate to six places 

inline double circum(double rad){ return (pi * 2 * rad); } 
inline double area(double rad){ return (pi * rad * rad); } 

int main() 

{ 
double r; 
cout « "\nEnter radius: ; 
while (cin»r&&r>0.0){ 

cout « "\nArea is " « area(r); 
cout « "\nCircumference is " « circum(r) « endl ; 

cout « "\nEnter radius > 0.0: "; 

> 
} 
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C++ Program Organization 

■ C++ relies on an external standard library to provide input and output (I/O). 
The information the program needs to use this library resides in iostream. 

" C++ uses a preprocessor to handle a set of directives, such as the include 

directive, to convert the program from its preprocessing form to pure C++ 
syntax. Directives start with the symbol #. 

A C++ program consists of declarations that may be in various files. Each 
function is on the external, or global, level and may not be declared in a 
nested manner. The files act as modules and may be compiled separately. 

The function main() is the starting point for program execution. This func¬ 
tion obeys the C++ rules for function declaration. Normally, mai n() implicitly 
returns the integer value 0, indicating normal program completion. Other val¬ 
ues need to be returned explicitly and indicate an error condition. 

C.2 Lexical Elements 

A C++ program is a sequence of characters that are collected into tokens, which 
comprise the basic vocabulary of the language. The six categories of tokens are key¬ 
words, identifiers, constants, string constants, operators, and punctuators. 

The following characters can be used to construct tokens: 

abcdefghi j kl mnopq rstuvwxyz 

ABCDEFGHIJ KLMNOPQRSTUVWXYZ 
0123456789 
+ - “/=(){}[]<> ' " ! # ~ % A & _ ; ; f 7 \ | 

White space characters, such as blank and tab 

In producing tokens, the compiler selects the longest string of characters that con¬ 
stitutes a token. 
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C.2.1 Comments 

C++ has a rest-of-line comment symbol //. The C-style comment pairs /* */ are 
also available. Connnents do not nest. Some examples of comments follow: 

//OOP Using C++: Addison-Wesley Program GCD 

const int N = 200; //N is number of trials 

/* ***** * 
Programmer: Laura M. Pohl 

Compiler: Borland 5.0 

Modifications: 5-2-96 Stack Overflow 
* * * * * * * * / 

Except for lengthy multiline comments, the rest-of-line comment should be used. 
This style is easier to use and is less error prone. 

C.2.2 Identifiers 

An identifier can be one character or more. The first character must be a letter or 
underscore. Subsequent characters can be letters, digits, or underscores. Although 
in principle, identifiers can be arbitrarily long, many systems distinguish only up to 
the first 31 characters. Identifiers that contain a double underscore or that begin 
with an underscore followed by an uppercase letter are reserved for system use. 

Identifier Examples Comments 

multiword vector flag_x normal style 

q213 sb3 abxlw opaque 

speed Speed speedy distinct but confusing 

Sysl _Adri ver _C_ reserved for system use 

9i11egal wrong-2 i1$form illegal 

typeid thi s register keywords can’t be used 
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C.2.3 Keywords 

Keywords are explicitly reserved identifiers that have a strict meaning in C++. They 
cannot be redefined or used in other contexts. Some other keywords are specific to 
implementations, such as near and far in Borland C++. The following keywords are 
in use in most current C++ systems. 

Keywords 

asm el se operator throw 

auto enum private true 

bool explicit protected try 

break extern public typedef 

case fal se register typeid 

catch float reinterpret_cast typename 

char for return uni on 

class friend short unsigned 

const goto signed usi ng 

const_cast if sizeof virtual 

continue inline static voi d 

default int static_cast volati1e 

delete long struct wchar_t 

do mutable switch while 

double namespace tempi ate 

dynamic cast new thi s 

C.3 Constants 

C++ has constants for each basic type. These include integer, floating-point and 
character constants. String constants are character sequences surrounded by’dou- 
ble quotes. There is one universal pointer constant, namely 0. 
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Constants Examples Comments 

156 0156 0x156 integer: dec, oct, hex 

1561 156u integer: long, unsigned 

'A' 'a' '7' '\t' character: A, a, 7, tab 

3.14f 3.1415 3.14159L floating-point constants 

"A string." string constant 

true false bool constants 

The suffixes u or U, 1 or L, and f or F are used to indicate unsigned, long, and 
float, respectively. The unsigned constants are positive numbers. The long con¬ 
stants have greater range than normal. The float constants are usually less precise 
than ordinary double constants. 

The character constants are usually given in single quotes: for example, 's'. 
Some nonprinting and special characters require an escape sequence. 

Character Constants 

' \a' alert 

'\V backslash 

' \b' backspace 

' \r' carriage return 
i \^n i double quote 

'\f' formfeed 

'\t' tab 

' \n' newline 

' \0' null character 

'V single quote 

'\v' vertical tab 

'\101' octal 101 in ASCII ‘A’ 

'\x041' hexadecimal ASCII ‘A’ 

L'oop' wchar_t constant 
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Floating-point constants can be specified with or without signed integer exponents. 

Floating-Point Constants Examples Comments 

3.14f 1.234F narrow f 1 oat constants 

0.123456 .123456 double constants 

0.12345678L 0.123456781 long double constants 

3. 3.0 0.3E1 all express double 3.0 

300e-2 . 03e2 30e-l also 3.0 

A string constant is a contiguous array of characters. String constants are consid¬ 
ered stati c char [] constants. String constants that are separated only by white 
space are implicitly concatenated into a single string. A backslash character at the 
end of the line indicates string continuation. A backslash preceding a double quote 
makes the double quote part of the string. The compiler places a null character at 
the end of a complete string as a sentinel, or termination, character. 

String Constants Examples Comments 
ii n 

empty string is ‘ \0 ’ 

"OOP 4ME" ‘0’ ‘0’ ‘P’ ‘ ’ ‘4’ ‘M’ ‘E’ ‘\0’ 

"my Y'quote \" is escaped" \" used for embedding " 

"a multiline string \ 
is also possible" 

\ at end of line indicates 
string continuation 

"This is a single string, " 
"since it is only separated " 
"by whitespace." 

implicitly concatenated 

Enumerations define a collection of named constants called enumerators. The 
constants are a list of identifiers that are implicitly consecutive integer values, start¬ 
ing with 0. They can be either anonymous or distinct types. 
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Enumeration Constants Comments 

enum { off, on }; off == 0, on == 1 

enum color { red, blue, white, green }; color is a type 

enum { BOTTOM = 50, TOP = 100, OVER }; OVER == 101 

enum grades { F = 59, D = 60, C = 70, 
B = 80, A = 90 }; 

all initialized 

Enumeration constants are promoted to type i nt in expressions. 
The keyword const is used to declare that an object’s value is constant 

throughout its scope. 

Using the const Keyword Comments 

const int N = 100; N can’t change 

double w[N]; [uses constant expressions] 

const int bus_stops[5] = 
{ 23, 44, 57, 59, 83 }; 

element values, bus_stops [i ], 
are constant 

C++ uses a preprocessor to handle a set of directives, such as the i ncl ude directive, 
to convert the program from its preprocessing form to pure C++ syntax. These 
directives are introduced by the symbol #. 

The use of const differs from the use of #def i ne, as in 

#define N 100 

In the case of the const i nt N declaration, N is a nonmodifiable lvalue of type i nt. 
In the case of the def i ne macro, N is a constant. Also, the macro replacement of N 
occurs as a preprocessor substitution without regard to other scope rules. 
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C.4 Declarations and Scope Rules 

Declarations associate meaning with a given identifier. The syntax of C++ declara¬ 
tions is highly complex, incorporating many disparate, context-dependent elements. 
A declaration provides an identifier with a type, a storage class, and a scope. (See 
Section 2.4.1, “Initialization,” on page 33.) A simple declaration is often a definition 
as well. For a simple variable, this means that the object is created and, possibly, ini¬ 
tialized. For a function, it means that the function body—that is, the brace-enclosed 
statements the function executes—are written out. 

const int n = 17; 
int sqrt(double); 
void foo() 

{ 
int i = 5; 

} 

//n is declared and defined 
//sqrt is declared not defined 
//foo is declared and defined 

//i is defined and initialized 
//i is automatic and local to foo 

Complex declarations, such as those for classes, functions, and templates, are 
described in separate sections of this appendix. 

The typedef mechanism can be used to create a synonym for the type it 
defines. 

Typedefs Examples Comments 

typedef int BOOLEAN; used prior to bool type 

typedef char* c string; c stri ng pointer to char 

typedef void (*ptr_f)(); pointer to voi d fcn() 

C++ has file scope, function scope, block scope, class scope, function prototype 
scope, and namespace scope. File scope, also known as global scope, extends from 
the point of declaration in a file to the end of that file. Function prototype scope, 
the scope of identifiers in the function prototype argument list, extends to the end 
of the declaration. Blocks nest in a conventional way, and functions cannot be 
declared inside other functions or blocks. 

Declarations can occur almost anywhere in a block. A declaration can also be an 
initializer in a for statement. For a code example, see file for_test.cvp in Section 
2.8.5, “The for Statement,” on page 48. 
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Selection statements, such as the if or switch statement, cannot merely con¬ 
trol a declaration. In general, jumps and selections cannot bypass an initialization. 
This is not true in C. 

if (flag) 
int j=6; //illegal 

el se 

j = 19; 

if (flag) { 
int j = 6; //legal within block 
cout « j; 

} 

C++ has a scope resolution operator : :. When used in the form : : variable, it 
allows access to the named global variable. Other uses of this notation are impor¬ 
tant for classes and namespaces. Class member identifiers are local to that class. 
The scope resolution operator can be used to resolve ambiguities. When used in the 
form class-name : : variable, it accesses the named variable from that class. 

class A { 
public: 

static void foo(); 

}; 

class B { 
public: 

void foo() { A :: foo(); . } 

}; 

A hidden external name can be accessed by using the scope resolution operator. 

i; //external i 

foo(int i) //parameter i 

= ::i; //parameter i is assigned external i 

} 

Classes can be nested. C++ rules scope the inner class within the outer class. 
This is a source of confusion, since the rules have changed and differ from C rules. 
For a code example, see file nested.cpp in Section 4.6.2, “Nested Classes,” on page 

124. 

int 
voi d 

{ 
i 
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Enumerations declared inside a class give the enumerator’s class scope, as in 

class foo { 
public: 

enum button { off, on } flag; 

}; 

int main() 

{ 
foo c; 

c.flag = foo::off; 

} 

C.5 Namespaces 

C++ traditionally had a single, global namespace. Since inadvertent name clashes 
may occur when programs written by different people are combined, and since C++ 
encourages multivendor library use, namespace scope was added. 

In file iostream 

//encapsulating a file in namespace std 

namespace std { //turn iostream.h into iostream 
#include <iostream.h> 

} 
//fully scoped resolved name would be 
std::cout « "hello world" « std::endl; 

//add your corporate name to your code 

namespace LMPinc { //LMP toy company software 
class puzzles { . }; 
class toys { . }; 

} 
//fully scoped resolved name would now be 
LMPinc::puzzles x, y, z; 
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In effect, encapsulated declarations are given a qualified name. The usi ng declara¬ 
tion allows these names to be used without the namespace identifier. 

using namespace std; 
using namespace LMPinc; 
toys top; //LMPinc::toys 

The namespace declaration, like the class declaration, can be used as part of a scope 
resolved identifier. 

Namespaces can nest. For a code example, see file namespac.cpp in Section 
3.10, “Namespaces,” on page 81. Namespaces can be used to provide a unique scope 
similar in effect to the use of static global declarations. This is done with an 
unnamed namespace definition. 

namespace { int count = 0; } //count is unique here 
//count is available in the rest of the file 
void chg_cnt(int i) { count = i; } 

The new ANSTconforming library headers will no longer use the .h suffix. Files, 
such as iostream or complex will be declared with the namespace std. Vendors will 
no doubt continue shipping old-style headers, such as iostream.h or complex.h as 
well, so that old code can run without change. 

Most C++ programs will now begin with i ncl udes of standard library headers 
followed by a using declaration. 

#include <iostream> //std::cout is fully qualified name 
#include <vector> //STL vector templates 
#include <cstddef> //Old C libraries 
using namespace std; 

C.6 Linkage Rules 

Modern systems are built around multifile inclusion, compilation, and linkage. For 
C++, it is necessary to understand how multifile programs are combined. Linking 
separate modules requires resolving external references. The key rule is that exter¬ 
nal nonstatic variables must be defined in only one place. Use of the keyword 
extern, together with an initializer, constitutes defining a variable. Using the key¬ 
word extern without an initializer constitutes a declaration but not a definition. If 
the keyword extern is omitted, the resulting declaration is a definition, with or 
without an initializer. The following example, in which these files would all be 
linked, illustrates these rules: 
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In file progl.cpp 

char c; //definition of c 

In file prog2.cpp 

extern char c; //declaration of c 

In file prog3.cpp 

extern int n = 5; 

In file prog4.cpp 

char c; 
extern float n; 
extern int k; 

//definition of n 

//i11egal 
//illegal 
//i11egal 

second definition 
type mismatch 
no definition 

Constant definitions and inline definitions at file scope are local to that file; in other 
words, they are implicitly static. Constant definitions can be explicitly declared 
extern. It is usual to place them in a header file to be included with any code that 
needs them. 

A typedef declaration is local to its file. An enumeration constant declaration 
has linkage internal to its file. Enumerators and typedefs that are needed in a mul¬ 
tifile program should be placed in a header file. Enumerators defined within a class 
are local to that class, and access to them requires the scope resolution operator. 

Typically, declarations are placed in header files and are used in code files. 

//LMPstack.h 

#ifndef LMP_stack //avoid reinclusion 
#define LMP_stack 
namespace LMP { 
class stack { . }; 

} 
#endif 

//LMPstack.cpp 

#include <LMPstack.h> //include file above as source 
using namespace LMP; 
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C.7 Types 

The fundamental types in C++ are integral and floating-point types. The char type 
is the shortest integral type. The long double is the longest floating-point type. 

The following table lists these types from shortest to longest. Reading across 
the table, the leftmost, topmost element is shortest, and the rightmost, bottommost 
element is longest. 

Fundamental Data Types 

bool 

char signed char unsigned char 

wchar_t 

short int long 

unsigned short unsigned unsigned long 

float double long double 

Two of these data types, bool and wchar_t, were added by the ANSI committee. 
The type wchar_t is intended for character sets that require characters not rep¬ 

resentable by char, such as the Japanese Kana alphabet. Literals of this type are 
wide character constants. This type is an integral type and in mixed expression fol¬ 
lows the same rules for integral promotion. 

The type bool is a break with C tradition. Over the years, many schemes have 
been used to achieve a Boolean type, and the new bool type removes these inconsis¬ 
tencies in practice. It is also an integral type. It becomes the type returned by rela¬ 
tional, logical, and equality expressions. The bool constants true and false are 
promotable to 1 and 0, respectively. Nonzero values are assignment convertible to 
true, and 0 is assignment convertible to false. It is anticipated that as compiler 
vendors add this type, they will provide switches or options that allow the old prac¬ 

tice of not using bool. 
Types can be derived from the basic types. A simple derived type is the enumer¬ 

ation type. The derived types allow pointer types, array types, and structure types. 
A generic pointer type void* is allowed. Both anonymous unions and anonymous 
enumerations are allowed, and there is also a reference type. An anonymous union 
can have only nonstatic public data members. A file scope anonymous union has to 
be declared static. The class and struct types are structure types. Union, enu¬ 

meration, and structure names are type names. 
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Types Comments 

void* gen ptr; a generic pointer 

int i, &ref i = i; ref_i is an alias for i 

enum button { off, on }; enumeration 

button flag; button is now a type name 

wchar_t w = L'yz'; new wide character type 

bool mine = false, yours = true; 
bool* p = &my_turn; 

new boolean type 

button set[10]; array 

class card { 
public: 

suit s; 
pips p; 
void pr_card(); 

private: 
int cd; 

}; 

user-defined type 

public data member 

member function 

private data member 

suit card::* ptr_s = &card::s; pointer to member 

There are five storage class keywords, as shown in the following table: 

Storage Class Keywords 

auto local to blocks and implicit 

register optimization advice and automatic 

extern global scope 

static within blocks, value retained 

typedef creates synonyms for types 

The keyword auto can be used within blocks, but it is redundant and is normally 
omitted. Automatic variables are created at block entry and are destroyed at block 
exit. The keyword regi ster can be used within blocks and for function parameters. 
It advises the compiler that for optimization purposes, the program wants a vari¬ 
able to reside in a high-speed register. The behavior of register variables is semanti¬ 
cally equivalent to that of automatic variables. 
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The keyword extern can be used within blocks and at file scope. This keyword 
indicates that a variable is linked in from elsewhere. The keyword stati c can be 
used within blocks and at file scope. Inside a block, extern indicates that a vari¬ 
able’s value is retained after block exit. At file scope, it indicates that declarations 
have internal linkage. 

There are two special type-specifier keywords. 

const //nonmodifiable 
volatile //suppresses compiler optimization 

The keyword const is used to indicate that a variable or a function parameter has a 
nonmodifiable value. The keyword volatile implies that an agent undetectable to 
the compiler can change the variable’s value; therefore, the compiler cannot readily 
perform optimizations on code accessing this variable. Variables getting values 
from external agents would be vol ati 1 e. 

volatile const gmt; //expect external time signal 

C.8 Conversion Rules and Casts 

C++ has both explicit conversions, called casts, and implicit conversions. The 
implicit conversions can occur in expressions, as well as in passing in arguments 
and returning expressions from functions. Many conversions are implicit, which 
makes C++ convenient but potentially dangerous for the novice. Implicit conver¬ 
sions can induce runtime bugs that are difficult to detect. 

The general rules are straightforward. 

Automatic Expression Conversion 

1. Any char, wchar_t, short, bool, or enum is promoted to an int. Integral 
types unrepresentable as i nt are promoted to unsigned. 

2. If, after the first step, the expression is of mixed type, then, according to the 

hierarchy of types, 

int < unsigned < long < unsigned long 
< float < double < long double 

the operand of lower type is promoted to that of the higher type, and the 
value of the expression has that type. Note that if long cannot contain all the 
values of unsigned, unsigned is promoted to unsigned long. 
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The new type bool is an integral type, with the bool constant true promoted to 1, 
and the bool constant fal se promoted to 0. 

Implicit pointer conversions also occur in C++. Any pointer type can be con¬ 
verted to the generic pointer of type voi d*. However, unlike in ANSI C, a generic 
pointer is not assignment compatible with an arbitrary pointer type. This means 
that C++ requires that generic pointers be cast to an explicit type for assignment to 
a nongeneric pointer variable. 

char* mem; 
void* gen_p; 

gen_p = mem; 
mem = (char*)gen_p; 
mem = static_cast<char*>(gen_p); 
mem = gen_p; 

//C and C++ 
//C and (obsolete) C++ 

/ / C++ 
//legal C and illegal C++ 

The name of an array is a pointer to its base element. The null-pointer constant 
can be converted to any pointer type. 

char* p = 0; //p is a null pointer 
int* x = p; //illegal need static_cast 
int* y = 0; //legal 

A pointer to a class can be converted to a pointer to a publicly derived base class. 
This also applies to references. 

In addition to implicit conversions, which can occur across assignments and in 
mixed expressions, there are explicit conversions, or casts. If i is an i nt, the expres¬ 
sion stati c_cast<double>(i) will cast the value of i so that the expression has 
type doubl e. The variable i itself remains unchanged. The stati c_cast is available 
for a conversion that is portable, well defined, and invertible. Some more examples 
are 

static_cast<char>('A' + 1.0) 
x = static_cast<double>(static_cast<int>(y) + 1) 

Casts that are representation or system dependent use rei nterpret_cast. 

int i = reinterpret_cast<int>(&x) //system dependent 

System-dependent casts are undesirable and generally should be avoided. 
Two other special casts exist in C++: const_cast and dynami c_cast. A useful 

discussion of dynami c_cast requires understanding inheritance (see Section 
C.13.5, “Runtime Type Identification,” on page 398). The const modifier means that 
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a variable’s value is nonmodifiable. Very occasionally, it is convenient to remove 
this restriction. Known as casting away constness, this is done with the 
const_cast, as in 

foo(const_cast<int>(c_var)); //used to invoke foo 

Older C++ systems allow the following unrestricted forms of cast: 

(type) expression or type (expression) 

Some examples are 

y = i/double(7); //would do division in double 
ptr = (char*)(i + 88); //int to pointer value 

These older forms are considered obsolete and are not used in this text, but many 
older compilers and older source code still use them. The older casts do not differ¬ 
entiate among relatively safe casts, such as static_cast, and system-dependent 
unsafe casts, such as rei nterpret_cast. The newer casts are self-documenting as 
well; for example, a const_cast suggests its intent through its name. 

enum peer { king, prince, earl } a; 
enum animal { horse, frog, snake } b; 

a = static_cast<peer>(frog); 

These new casts are safer and can replace all existing cast expressions. Still, 
casting should be avoided, as turning a frog into a pri nee is rarely a good idea. 

Casts Comments 

x = float(i) ; C++ functional notation 

x = (float) i; C cast notation 

x = static_cast<float>(i); ANSI C++ 

static_cast<char>('A' + 1.0) ANSI C++ 

i = reinterpret_cast<int>(&x) ANSI C++ system dependent 

foo(const_cast<int>(c_var)); 
used to invoke foo() while casting 
away constness 
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A constructor of one argument is a de facto type conversion from the argu¬ 
ment’s type to the constructor’s class type unless preceded by the keyword 
explicit. (See Section 5.1.3, “Constructors as Conversions,” on page 152.) Consider 
the following example of a my_stri ng constructor: 

my_string::my_string(const char* p) 

{ 
len = strlen(p); 
s = new char[len + 1]; 
assert (s != 0); 
strcpy(s, p); 

} 

This is automatically a type transfer from char* to my_stri ng. These conversions 
are from an already defined type to a user-defined type. However, it is not possible 
for the user to add a constructor to a built-in type—for example, to i nt or to 
double. In the my_string example, you may also want a conversion from 
my_string to char*. You can do this by defining a special conversion function 
inside the my_string class, as follows. 

operator char*() { return s; } //char* s is a member 

The general form of such a member function is 

operator typeO {.} 

These conversions occur implicitly in assignment expressions and in argument and 
return conversions from functions. Hidden temporaries can be created by the com¬ 
piler to perform these operations and can affect execution speeds. 

In systems implementing the bool type, implicit conversion to bool is required 
for expressions controlling the if or the while statement and for the first operand 
of the ternary ?: operator. The obvious conversion of 0 to fal se and nonzero to 
true occurs. 

C.9 Expressions and Operators 

C++ is an operator-rich, expression-oriented language. The operators have 17 prece¬ 
dence levels. Operators can also have side effects. See Appendix B, “Operator Prece¬ 
dence and Associativity,” on page 345 for the complete table of operator precedence 
and associativity. 
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C.9.1 sizeof Expressions 

The si zeof operator can be applied to an expression or a parenthesized type name. 
This operator gives the size in bytes of the type to which it is applied. Its results are 
system dependent. 

Declarations 

int a, b[10] ; 

Expression 
Value on gnu C++ Running 

on a DECstation 

sizeof(a) 4 

si zeof(b) 40 the array storage 

sizeofCb[1]) 4 

sizeof(5) 4 

sizeof(5.5L) 8 

C.9.2 Autoincrement and Autodecrement Expressions 

C++ provides autoincrement (++) and autodecrement (--) operators in both prefix 
and postfix form. The postfix form behaves differently from the prefix form by 
changing the affected lvalue after the rest of the expression is evaluated. 

Autoincrement and 
Autodecrement Equivalent Expression 

j = ++i; i = i + 1; j = i; 

i_
i. ii _!
. 

+ + j = i; i = i + 1; 

j = —i; i = i - 1; j = i; 

j = i —; j = i; i = i - 1; 
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C.9.3 Arithmetic Expressions 

Arithmetic expressions are consistent with expected practice. The following exam¬ 
ples are grouped by precedence, highest first. 

Arithmetic Expressions Comments 

-i +w unary minus unary plus 

a * b a / b i % 5 multiply divide modulus 

a + b a - b binary addition subtraction 

a = 3 / 2.0; a is assigned 1.5 

a = 3 / 2; a is assigned 1 

The modulus operator % is the remainder from the division of the first argument by 
the second argument. The operator may be used only with integer types. Arithmetic 
expressions depend on the conversion rules given earlier. (See Section 5.1.3, “Con¬ 
structors as Conversions,” on page 152.) In the preceding table, see how the result 
of the division operator / depends on its argument types. 

C.9.4 Relational, Equality, and Logical Expressions 

This discussion is based on ANSI C++ adopting a bool type with constants fal se 
and true. Prior to the introduction of the bool type, the values 0 and nonzero were 
thought of as false and true and were used to affect the flow of control in various 
statement types. The following table contains the C++ operators that are most often 
used to affect flow of control. 

Relational, Equality, and Logical Operators 

Relational operators less than < 

greater than > 

less than or equal to <= 

greater than or equal to >= 

Equality operators equal == 

not equal 1 = 

Logical operators (unary) negation i 

logical and && 

logical or II 
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The negation operator ! is unary. All of the other relational, equality, and logical 
operators are binary. They operate on expressions and yield either true or fal se. 
Logical negation can be applied to an arbitrary expression, which is then converted 
to bool. When negation is applied to a true value, it results in fal se; when nega¬ 
tion is applied to a fal se value, it results in true. 

In the evaluation of expressions that are the operands of && and | |, the evalua¬ 
tion process stops as soon as the outcome true or fal se is known. This is called 
short-circuit evaluation. For example, suppose that exprl and expr2 are expressions. 
If exprl has fal se value, expr2 in 

exprl && expr2 

will not be evaluated, because the value of the logical expression is already deter¬ 
mined to be false. Similarly, if exprl has true value, expr2in 

exprl || expr2 

will not be evaluated, because the value of the logical expression is already deter¬ 

mined to be true. 
On systems that do not implement the bool type, these expressions will evalu¬ 

ate to 1 and 0 instead of true and false. 

Declarations and Initialization 

int a = -5, b=3, c=0; 

Expression Equivalent Value 

a + 5 && b ((a + 5) && b) false or 0 

! (a < b) && c ((! (a < b)) && c) false or 0 

111 (a != 7) dll (a != 7)) true or 1 

Note that the last expression always short-circuits to value true. 
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C.9.5 Assignment Expressions 

In C++, assignment occurs as part of an assignment expression. The effect is to eval¬ 
uate the right-hand side of the assignment and to convert it to a value compatible 
with the variable on the left-hand side. Assignment conversions occur implicitly and 
include narrowing conversions; simple variables are lvalues. 

C++ allows multiple assignments in a single statement. Thus, 

a = b + (c = 3) ; is equivalent to c = 3; a = b + c; 

C++ provides assignment operators that combine an assignment and some other 
operator. 

a op= b; is equivalent to a = a op b 

Declarations and Initialization 

int a, i, *p = &i; 
double w, *q = &w; 

Assignment Expressions Comments 

a = i +1; assigns (i + 1) to a 

i = w; legal w value converted to i nt 

*q = i; legal integer value promoted to doubl e 

*q = *p; legal 

q = p; illegal conversion between pointer types 

q = (double*)p; legal 

a *= a + b; equivalent to a = a * (a + b) ; 

-Q II + equivalent to a = a + b; 
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C.9.6 Comma Expressions 

The comma operator has the lowest precedence. It is a binary operator with expres¬ 
sions as operands. In a comma expression of the form 

exprl, expr2 

exprl is evaluated first, then expr2. The comma expression as a whole has the value 
and type of its right operand. The comma operator is a control point. Therefore, 
each expression in the comma-separated list is evaluated completely before the next 
expression to its right. An example is 

sum =0, i = 1 

If i has been declared an i nt, this comma expression has value 1 and type i nt. The 
comma operator associates from left to right. 

C.9.7 Conditional Expressions 

The conditional operator ?: is unusual in that it is a ternary operator. It takes as 
operands three expressions. In a construct such as 

exprl ? expr2 : expr3 

exprl is evaluated first. If it is true, expr2 is evaluated, and its value is the value of 
the conditional expression as a whole. If exprl is f al se, expr3 is evaluated, and its 
value is the value of the conditional expression as a whole. The following example 
uses a conditional operator to assign the smaller of two values to the variable x: 

x = (y < z) ? y : z; 

The parentheses are not necessary, because the conditional operator has prece¬ 
dence over the assignment operator. However, using parentheses is good style 

because they clarify what is being tested for. 
The type of the conditional expression 

exprl ? expr2 : expr3 

is determined by expr2 and expr3. If they are different types, the usual conversion 
rules apply. The conditional expression’s type cannot depend on which of the two 
expressions is evaluated. The conditional operator ?: associates right to left. 
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C.9.8 Bit-Manipulation Expressions 

C++ provides bit-manipulation operators. They operate on the machine-dependent 
bit representation of integral operands. It is customary that the shift operators be 
overloaded to perform I/O. 

Bitwise 
Operators Meaning 

~ unary one’s complement 

« left shift 

» right shift 

& and 

A exclusive or 

1 or 

C.9.9 Address and Indirection Expressions 

The address operator & is a unary operator that yields the address, or location, 
where an object is stored. The indirection operator * is a unary operator that is 
applied to a value of type pointer. It retrieves the value from the location being 
pointed at. This is also known as dereferencing. 

Declarations and Initialization 

int a = 5; //declaration of a 
int* p = &a; //p points to a 
int& ref_a = a //alias for a 

Expression Value 

*P = 7; lvalue in effect a is assigned 7 

a = *p + 1; rvalue 7 added to 1 and a assigned 8 



C.9 t Expressions and Operators 371 

C.9.10 new and del ete Expressions 

The unary operators new and del ete are available to manipulate free store, which is 
a system-provided memory pool for objects whose lifetime is directly managed by 
the programmer. Using new creates an object and using del ete destroys it. 

The new operator is used in the following simple forms: 

new type-name initializeropt 
new type-name[integer expression] 

The first form allocates an object of the specified type from free store. An initializ¬ 
ing expression, if present, performs the initialization. The second form allocates an 
array of objects of the specified type from free store. A default initializer must be 
available for these objects. 

The new Operator Comments 

new int allocates an i nt 

new char[100] allocates an array of 100 i nts 

new int(99) allocates an i nt initialized to 99 

new char('c') allocates a char initialized to c 

new int[n][4] allocates an array of pointers to i nt 

In each case, there are at least two effects. First, an appropriate amount of store is 
allocated from free storage to contain the named type. Second, the base address of 
the object is returned as the value of the new expression. If new fails, either the null- 
pointer value 0 is returned, or the exception bad_al loc is thrown (see Section 9.9, 
“Standard Exceptions and Their Uses,” on page 318). It is good practice to test for 

failure. 
An initializer is a parenthesized list of arguments. For a simple type, such as an 

i nt, it would be a single expression. It cannot be used to initialize arrays, but it can 
be an argument list to an appropriate constructor. If the type being allocated has a 
constructor, the allocated object will be initialized. 

The operator delete is used in the following forms: 

delete expression 
delete [ ] expression 

In both forms, the expression is typically a pointer variable used in a previous new 
expression. The second form is used when returning storage that was allocated as 
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an array type. The brackets indicate that a destructor should be called for each ele¬ 
ment of the array. The operator delete returns a value of type void. 

The delete Operator Comments 

delete ptr deletes the pointer to an object 

delete p[i] deletes object p[i ] 

delete [] p deletes each object of type p 

The operator delete destroys an object created by new, in effect returning its allo¬ 
cated storage to free store for reuse. If the type being deleted has a destructor, it 
will be called. There are no guarantees on what values will appear in objects allo¬ 
cated from free store. The programmer is responsible for properly initializing such 
objects. For a code example, see file dynarray.cpp in Section 3.20, “Free-Store 
Operators new and delete,” on page 98. 

Placement Syntax and Overloading 

The operator new has the general form 

'•'■opt new placementopt type-name initializer opt 

The global operator new() is typically used to allocate free store. The system pro¬ 
vides a si zeof (type) argument to this function implicitly. Its function prototype is 

void* operator new(size_t size); 

The operator new can be overloaded at the global level by adding parameters 
and calling it, using placement syntax. THe operator can be overloaded and used to 
override the global versions at the class level. But when allocating an array of 
objects, only the default global void* operator new(size_t size) will be called 

The del ete operator also can be overloaded. The global version is 

void operator delete(void* ptr) 

A class-specific version can be declared as either of the following: 

void operator delete(void* ptr) 

void operator delete(void* ptr, size_t size) 
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However, only one of these forms can be used by any one class. When deallocat¬ 
ing an array of objects, the global version will be called. This feature provides a sim¬ 
ple mechanism for user-defined manipulation of free store. For example, 

class X { 

public: 
void* operator new(size_t size) 

{ return (malloc(size)); } 
void operator delete(void* ptr) { free(ptr); } 
X(unsigned size) { new(size); } 
~X() { delete(this) ; } 

}; 

In this example, the class X provides overloaded forms of new() and delete(). 
When a class overloads operator new(), the global operator is still accessible, 
using the scope resolution operator : :. Note that the stddef library is required for 
size_t type, and mal 1 oc() is in the stdlib library. 

The placement syntax provides for a comma-separated argument list that is 
used to select an overloaded operator new() with a matching signature. These 
additional arguments are often used to place the constructed object at a particular 
address. One form of this can be found in the new library. 

Class new() and deleteO member functions are always static. For a code 
example, see file over_new.cpp in Section 6.12, “Overloading new and delete,” on 

page 221. 

Error Conditions 

In the absence of implemented exception handling, new returns a 0 value, indicating 
an allocation failure. The standard library new has the function 
set_new_handler(), which installs the function to be called when new fails. Calling 
this with value 0 means that a version of new that does not throw exceptions will be 
used. Otherwise, a bad_al 1 oc exception will be thrown. The implementation of new 

can be system dependent. 

C.9.11 Other Expressions 

C++ considers function call () and indexing or subscripting [] to be operators. They 
have the same precedence as the member and structure pointer operators. 

a[j + 6] 
sqrt(z + 15.5); 

//means *(a + j + 6) 
//returns a double 
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lhe global scope resolution operator is of highest precedence. The class scope reso¬ 
lution operator is used with a class name to qualify a local-to-class identifier. 

::1 //access global i 
A::foo() //invoke member fooQ defined in A 

C.10 Statements 

C++ has a large variety of statement types and uses the semicolon as a statement 
terminator. Braces are used to enclose multiple statements and to treat them as a 
single unit. Statements are control points. Before a new statement is executed, the 
actions of the previous statements must be completed. Inside statements, the com¬ 
piler has some liberty to pick which parts of subexpressions are evaluated first. 

a = f (i) ; 

a += g(j); 
a = f(i) + g(j); 

//call f() 
//call g() 
//compiler 

and assign to a 
and add to a 
decides calling order 

C++ is a block-structured language in which declarations are often at the head 
of blocks. Unlike in C, declarations are statements and can be intermixed with other 
statements. Structured programming principles should still be followed when writ¬ 
ing C++ code. Namely, the goto should be avoided, and care should be taken that 
the program’s flow of control is easy to follow. 

Because C++ has many possible side effects in expressions, care should be 
exercised in avoiding system-dependent effects. For example, the side effect 
operators autoincrement and autodecrement should be used sparingly in 
expressions where order-of-evaluation and possible compiler optimizations can 
lead to system dependencies. 

In many cases, C++ statements are overly unrestrictive, and good programming 
discipline is reqmred to avoid error-prone constructions. For example, 

for (double x = 0.1; !(x y); x += 0.1) 

is problematic because machine accuracy and round-off problems will 
cause a failure in the terminating condition. 

in most cases 
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The following table gives a summary of general C++ statements. 

Statement C++ Comments 

empty J 

expression i = i + k; assignment may use conversions 

compound { . 
} 

used for function definitions and 
structuring; same as block 

goto goto 11; avoid 

if if (p == 0) 
cerr « "new error"; 

one-branch conditional 

if-else if (x == y) 
cout « "same\n"; 

el se 
cout « "unequal\n"; 

two-branch conditional 

for for (i =0; i < n; ++i) 
a[i] = b[i] + c[i]; 

declarations allowed in the first 
component 

while while (x != y) zero or more iterations 

do-whi1e do 
y = y - 1; 

whi 1 e (y >= 0) ; 

one or more iterations 

switch switch (s) { 
case 1: ++i; break; 
case 2: —i; break; 

default: ++j; 

}; 

use break to avoid fall-through 
semantics and default as a last 

label 

break break; used in swi tch and iteration 

continue continue; used in iterations 

declaration int i = 7; in a block, file, or namespace 

try block 
try { . } 

see Section 9.4, “Try Blocks,” on 

page 313 

labeled error: cerr « "ERROR”; target of goto 

return return x * x * x; try for one return per function 
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C.10.1 Expression Statements 

In C++, assignment occurs as part of an assignment expression. There is no assign¬ 
ment statement, since it is a form of expression statement. 

a = b + 1; 

++i ; 
a + b; 

//assign (b + 1) to a 
//an expression statement 
//also a statement - but seemingly useless 

C++ allows multiple assignments in a single statement. 

a = b = c + 3; is equivalent to b = c + 3;a = b; 

C.10.2 The Compound Statement 

A compound statement in C++ is a series of statements surrounded by braces { }. 
The chief use of the compound statement is to group statements into an executable 
unit. The body of a C++ function is always a compound statement. In C, when decla¬ 
rations come at the beginning of a compound statement, the statement is called a 
block. This rule is relaxed in C++, and declaration statements may occur throughout 
the statement list. Wherever it is possible to place a statement, it is also possible to 
place a compound statement. 

C.10.3 The i f and i f-el se Statements 

The general form of an i f statement is 

if (condition) 
statement 

If condition is true, statement is executed; otherwise, it is skipped After the if 
statement has been executed, control passes to the next statement. A condition is 
an expression or a declaration with initialization that selects flow of control For a 
code example, see file if_test.cpp in Section 2.8.3, “The i f and if-else State¬ 
ments,” on page 45. 

The if-else statement has the general form 

if (condition) 
statementl 

el se 

statement2 
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If condition is true, statementl is executed, and statement2 is skipped; if condition 
is false, statementl is skipped, and statement2 is executed. After the if-else 
statement has been executed, control passes to the next statement. Note that an 
else statement associates with its nearest if; this rule prevents the ambiguity of a 
dangling else. For a code example, see file if_test.cpp in Section 2.8.3, “The if and 

i f-el se Statements,” on page 46. 

C.10.4 The while Statement 

The general form of a whi 1 e statement is 

while (condition) 
statement 

First, condition is evaluated. If it is true, statement is executed, and control passes 
back to the beginning of the while loop. The effect of this is that the body of the 
while loop, namely, statement, is executed repeatedly until condition is false. At 
that point, control passes to the next statement. The effect of this is that statement 
can be executed zero or more times. For a code example, see file while_t.cpp in Sec¬ 

tion 2.8.4, “The while Statement,” on page 47. 

C.10.5 The for Statement 

The general form of a for statement is 

for (for-init-statement; condition; expression) 

statement 
next statement 

First the for-init-statement is evaluated and is used to initialize a variable in the 
loop.’ Then condition is evaluated. If it is true, statement is executed, expression is 
evaluated, and control passes back to the beginning of the for loop, except that 
evaluation of for-init-statement is skipped. This iteration continues until condition is 

fal se, at which point control passes to next statement. 
The for-init-statement can be an expression statement or a simple declaration. 

Where it is a declaration, the declared variable has the scope of the for statement. 
Note that this scope rule has changed from the previous rule, which gave such dec¬ 
larations scope outside the enclosing for statement. 

The for statement is iterative and is typically used with a variable that is incre¬ 
mented or decremented. For a code example, see file for_test.cpp in Section 2.8.5, 

“The for Statement,” on page 48. 
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The comma expressions can be used to initialize more than one variable. 

for (factorial = n, i = n - 1; i >= 1; --i) 
factorial *= i; 

Any or all of the expressions in a for statement can be missing, but the two semico¬ 
lons must remain. If for-init-statement is missing, no initialization step is performed 
as part of the for loop. If expression is missing, no incrementation step is per¬ 
formed as part of the for loop. If condition is missing, no testing step is performed 
as part of the for loop. The special rule for when condition is missing is that the test 
is always true. Thus, the for loop in the code 

for (i = 1, sum = 0 ; ; sum += i++) 
cout « sum « endl; 

is an infinite loop. 

The for statement is one common case in which a local declaration is used to 
provide the loop control variable, as in 

for (int i =0; i < N; ++i) 
sum += a[i]; //sum array a[0] + ... + a[N - 1] 

The semantics are that the int variable i is local to the given loop. In earlier C++ 
systems, it was considered declared within the surrounding block. This can be con¬ 
fusing, and so it is reasonable to declare all automatic program variables at the 
heads of blocks. 

C.10.6 The do Statement 

The general form of a do statement is 

do 
statement 

while (condition); 
next statement 

First, statement is executed and then condition is evaluated. If it is true control 
passes back to the beginning of the do statement, and the process repeats itself. 

en the value of condition is f al se, control passes to next statement. For a code 
example, see file do_test.cpp in Section 2.8.6, “The do Statement,” on page 49. 
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C.10.7 The break and continue Statements 

To interrupt the normal flow of control within a loop, the programmer can use the 
two special statements break and conti nue.The break statement, in addition to its 
use in loops, can be used in a switch statement. It causes an exit from the inner¬ 

most enclosing loop or switch statement. 
The following example illustrates the use of a break statement. A test for a neg¬ 

ative value is made; if it is true, the break statement causes the for loop to be 
exited. Program control jumps to the statement immediately following the loop. For 
a code example, see file for_test.cpp in Section 2.8.7, The break and continue 

Statements,” on page 50. 
The conti nue statement causes the current iteration of a loop to stop and the 

next iteration of the loop to begin immediately. For a code example, see file 
for_test.cpp in Section 2.8.7, “The break and conti nue Statements,” on page 50. 

A break statement can occur only inside the body of a for, while, do, or 
swi tch statement. The continue statement can occur only inside the body of a 

for, whi 1 e, or do statement. 

C.10.8 The switch Statement 

The switch statement is a multiway conditional statement generalizing the 

i f-el se statement. Its general form is 

switch (condition) 
statement 

where statement is typically a compound statement containing case labels and 
optionally a defaul t label. Typically, a swi tch is composed of many cases, and the 
condition in parentheses following the keyword switch determines which, if any, ol 

the cases are executed. 
A case label is of the form 

case constant integral expression: 

In a swi tch statement, all case labels must be unique. 
If no case label is selected, control passes to the default label, if there is one. 

No defaul t label is required. If no case label is selected and if there is no defaul t 
label the switch statement is exited. The keywords case and default canno 
occur outside a switch. For a code example, see file switch_t.cpp m Section 2.8.8, 

“The switch Statement,” on page 51. 
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The Effect of a switch Statement 

1. Evaluate the integral expression in the parentheses following switch. 

2. Execute the case label having a constant value that matches that of the 
expression found in step 1. If no match is found, execute the defaul t label; if 
there is no default label, terminate the switch. 

3. Terminate the switch when a break statement is encountered or by “falling 
off the end.” 

A switch cannot bypass initialization of a variable unless the entire scope of 
the variable is bypassed. 

switch (k) { 
case 1: 

int very_bad = 3; break; 

Case 2: //illegal: bypasses init of very_bad 

switch (k) { 
case 1: 

{ 
int d 

} 
case 2: 

} 

= 3; break; 

//legal: bypasses scope of d 

C.10.9 The goto Statement 

The goto statement is an unconditional branch to an arbitrary labeled statement in 

—r—a “—in——^ 
A label is an identifier. By executing a goto statement of the form 

goto label] 

tTm/onpageC5°2de eXamP'e' “* a°to-tstc™ in Section 2.8.9, “The goto Sta”' 

varil9e°iS°bC^edbyPaSS initialiZa,ion of a liable unless the entire scope of the 



C.10 ▼ Statements 381 

if (i < j) 
goto max; //illegal: bypasses init 

int crazy = 5; 

max: 

C.10.10 The return Statement 

The return statement is used for two purposes. When it is executed, program con¬ 
trol is immediately passed back to the calling environment. In addition, if an expres¬ 
sion follows the keyword return, the value of the expression is returned to the 
calling environment as well. This value must be assignment convertible to the 
return type of the function-definition header. 

A return statement has one of the following two forms: 

return; 
return expression, 

Some examples are 

return; 
return 3; 
return (a + b) ; 

C.10.11 The Declaration Statement 

The declaration statement can be placed nearly anywhere in a block. This lifts the C 
restriction that variable declarations are placed at the head of a block before execut¬ 
able statements. A declaration statement has the form 

type variable-name; 

Normal block-structure rules apply to a variable so declared. Two examples are 

for (int i = 0; i < N; ++i) { //typical for loop 
a[i] = b[i] * c[i] ; 
int k = a[i ] ; //k local - possibly inefficient 

} 

C++ imposes natural restrictions on transferring into blocks passed where declara¬ 
tions occur. These are disallowed, as are declarations that would occur in only one 

branch of a conditional statement. 
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C.ll Functions 

Special features include the use of function prototypes, overloading, default argu¬ 
ments, and the effects of the keywords i nl i ne, f ri end, and vi rtual. This section 
restricts its discussion to basic functions, overloading, call-by-value, default argu¬ 
ments, and inlining. Member functions are discussed in Section C.12.2, “Member 
Functions,” on page 389; friend functions in Section C.12.3, “Friend Functions,” on 
page 389; and virtual functions in Section C.13.6, “Virtual Functions,” on page 399. 
Generic functions are discussed throughout Appendix E, “STL and String Libraries.” 

In C++, function parameters are call-by-value unless they are declared as refer¬ 
ence types. 

Function 
Declaration 

C++ Comments 

function double cube(double x) 
{ 

return x * x * x; 
} 

parameters are call-by-value; 
return expression must be 
assignment compatible with 
return type 

pure 
procedure 

void pr_int_sq(int i) 
{ 

cout « i*i « end!; 
} 

voi d return type denotes a 
pure procedure 

empty 
argument 
list 

void pr_hi() 

{ 
cout « "HI" « endl; 

} 

can also be voi d pr_hi (voi d) 

reference 
argument 

voi d 
swap(int& i, int& j) 
{ 

i nt t = i ; 

i = j; j = t; 
} 

if invoked as swap(r, s), 
r and s exchange values 

variable i nt 

scanf(const char*,...); 
matches any number of 
arguments 
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Function 
Declaration 

C4-+ Comments 

inline inline cube(int x); inline code 

default 
argument 

i nt 
power(int x, int n = 2); 

power(4) yields 16 
power(4, 3) yields 64 

overload 
double 
power(double x, int n); 

signature is double, int 

C.ll.l Prototypes 

In C++, the prototype form is 

type name(argument-declaration-lisf) ; 

Examples are 

double sqrt(double x); //in math.h 
double stats(const double data[], int size, 

double& max, double& min ); 
void print(const char* s); 
int printf(char* format, ...); //in stdio.h 

Prototypes make C++ functions type safe. When functions are called, the arguments 
are assignment converted to the formal arguments type. With the preceding sqrt() 
prototype definition, invoking sqrt() guarantees that, if feasible, an argument will 
be converted to type double. When variable-length argument lists are needed, the 

ellipsis symbol ... is used. 

C. 11.2 Call-by-Reference 

Reference declarations allow C++ to have call-by-reference arguments. Let us use 
this mechanism to write a function, g reate r(), that exchanges two values if the 

first is greater than the second. 

int greater(int& a, int& b) 

Now, if i and j are i nt variables, 

greater(i , j) 
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will use the references to i and j to exchange, if necessary, their two values. In tra¬ 
ditional C, this operation must be accomplished by using pointers and dereferenc¬ 
ing. For a code example, see file orderl.cpp in Section 3.11.2, “Pointer-Based Call- 
by-Reference,” on page 83. 

C.11.3 Inline Functions 

The keyword inline suggests to the compiler that the function be converted to 
inline code. This keyword is used for the sake of efficiency, generally with short 
functions. It is implicit for member functions that are defined within their classes. A 
compiler can ignore this directive for a variety of reasons, including that the func¬ 
tion is too long. In such cases, the inline function is compiled as an ordinary func¬ 
tion. An example is 

inline float circum(float rad) { return (pi * 2 * rad); } 

Inline functions have internal linkage. 

C. 11.4 Default Arguments 

A formal parameter can be given a default argument but only with contiguous for¬ 
mal parameters that are rightmost in the parameter list. A default value is usually 
an appropriate constant that occurs frequently when the function is called. The fol¬ 
lowing function illustrates this point. 

r_sqrd = pow(r); //return r*r 
r_5th = pow(r, 5); //return r*r*r*r*r 

For a code example, see file powers.cpp in Section 3.5, “Default Arguments ” on 
page 70. 

C.11.5 Overloading 

Overloading is using the same name for multiple meanings of an operator or a func¬ 
tion. The meaning selected depends on the types of the arguments used by the 
operator or function. 

Consider a function that averages the values in an array of doubl e versus one 
that averages the values in an array of i nt. Both are conveniently named avq_arr 
as shown in the following program. 

double avg_arr(const int a[], int size) 
double avg_arr(const double a[], int size) 
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The function argument type list is called its signature. The return type is not a part 
of the signature, but the order of the arguments is crucial. For a code example, see 
file avg_arr.cpp in Section 3.7, “Overloading Functions,” on page 72. 

Consider the following overloaded declarations: 

void print(int i = 0); 
void print(int i, double x); 
void print(double y, int i); 

//signature is int 
//int, double 
//double,int 

When the pri nt() function is invoked, the compiler matches the actual arguments 
to the various signatures and picks the best match. In general, there are three possi¬ 
bilities: a best match, an ambiguous match, and no match. Without a best match, the 
compiler issues an appropriate syntax error. 

//converts and matches int 
//no match, wrong type 
//ambiguous 
//matches int, double 
//matches int by default 

printC A') ; 
pri nt (str []) ; 
print(15, 9); 
print(15, 9.0); 
printQ ; 

The signature-matching algorithm has two parts. The first part determines a best 
match for each argument, and the second sees whether one function is a uniquely 
best match in each argument. This uniquely best match is defined as being a best 
match on at least one argument and a “tied-for-best” match on all other arguments. 

For a given argument, a best match is always an exact match. An exact match 
also includes an argument with an outermost const or vol ati 1 e. Thus, 

void print (int i); 
void print(const int& i); 

is a redefinition error. 
Whichever overloaded function is to be invoked, the invocation argument list 

must be matched to the declaration parameter list according to the function-selec¬ 

tion algorithm. 
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Overloaded Function Selection Algorithm 

1. Use an exact match if found. 

2. Try standard type promotions. 

3. Try standard type conversions. 

4. Try user-defined conversions. 

5. Use a match-to-ellipsis, if found. 

Standard promotions are better than other standard conversions. These are conver¬ 
sions from float to double and from char, short, or enum to int. Standard con¬ 
versions also include pointer conversions. 

An exact match is clearly best. Casts can be used to force such a match. The 
compiler will complain about ambiguous situations. 

C.11.6 Type-Safe Linkage for Functions 

Linkage rules for non-C++ functions can be specified by using a linkage specifica¬ 
tion. Some examples are 

extern "C" atoi(const char* nptr); //C linkage 

extern "C" { //C linkage all functions 
#include <stdio.h> 

} 

This specification is at file scope, with C and C++ always supported. It is system 
dependent if type-safe linkage for other languages is provided. Of a set of 
overloaded functions with the same number, one at most can be declared to have 
other than C++ linkage. Class member functions cannot be declared with a linkage 
specification. 
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C.12 Classes 

Classes are forms of heterogeneous aggregate types and allow data hiding, inheri¬ 
tance, and member functions as a mechanism to provide user-defined types. An 
example is 

//An implementation of a safe array type dbl_vect 

class dbl_vect { 
public: 

explicit dbl_vect(int n = 10); 
dbl_vect(const dbl_vect& v); 
dbl_vect(const double a[], int n) ; 
~dbl_vect() { delete [] p; } 
int ub() const; 
int& operator[](int i) const; 
dbl_vect& operator=(const dbl_vect& v); 
friend ostream& operator«(ostream& out, 

private: 
double *p; 
int size; 

//default constructor 
//copy constructor 
//init by array 
//destructor 
//upper bound 
//indexing 

//assignment 
const dbl_vect& v) 

//base pointer 
//number of elements 

}; 

The keywords public, private, and protected indicate the access of members 
that follow. The default for cl ass is pri vate; for struct, publ i c. In the preceding 
example, the data members p and size are private. This makes them accessible 
solely to member functions of the same class. For a code example, see file 
ch_stacl.h in Section 4.12, “A Container Class Example: ch_stack,” on page 137. 

C.12.1 Constructors and Destructors 

A constructor, a member function whose name is the same as the class name, con¬ 
structs objects of the class type. This involves initialization of data members and 
also frequently involves free-store allocation using new. If a class has a constructor 
with a void argument list, or a list whose arguments all have defaults, the class can 
be a base type of an array declaration, where initialization is not explicit. Such a 

constructor is called the default constructor. 

dbl_vect::dbl_vect() { . } //default constructor 

dbl_vect::dbl_vect(int i = 0) { } //default constructor 
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A destructor is a member function whose name is the class name preceded by the 
tilde character ~. Its usual purpose is to destroy values of the class type. This is typ¬ 
ically accomplished by using del ete. 

A constructor of the form 

type::fype(const type& x) 

is used to copy one type value into another, according to whether a type variable is 
initialized by a type value, a type value is passed as an argument in a function, or a 
type value is returned from a function. This is called the copy constructor; if not 
explicitly implemented, it is compiler generated. The default is member-by-member 
initialization of value. 

Classes with default constructors can have a derived array type. For example, 
the dbl_vect a[5] declaration uses the empty argument constructor to create an 
array a of five objects, each of which is a size iO dbl_vect. 

A special syntax exists for initializing subelements of objects with constructors. 
Initializers for structure and class members can be specified in a comma-separated 
list that follows the constructor parameter list and precedes the code body. An ini¬ 
tializer’s form is 

member name (expression list) 

For example, 

foo: :foo(int* t):i(7), x(9.8), z(t) //initializer list 
{ //other executable follows here . } 

When members are themselves classes with constructors, the expression list is 
matched to the appropriate constructor signature to invoke the correct overloaded 
constructor. It is not always possible to assign values to members in the body of the 
constructor. An initializer list is required when a nonstatic member is either a 
const or a reference. In the class dbl_vect example in the next section, the con¬ 
structors use an initializer for the member dbl_vect: : size. 

Constructors cannot be virtual, although destructors can. Neither is inherited. 
Constructors of a single parameter are automatically conversion functions. Con¬ 

sider the following class, whose purpose is to print nonvisible characters with their 
ASCII designations, for example, the code 07 (octal) is alarm or bel. The automatic 
creation of a conversion constructor from a single-parameter constructor can be 
disabled by using the keyword expl i ci t to preface a single-argument constructor. 
For a code example, see file string2.cpp in Section 5.10, “Strings Using Reference 
Semantics,” on page 181. 
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C.12.2 Member Functions 

Member functions are functions declared within a class. As a consequence, they 
have access to private, protected, and public members of that class. If defined 
inside the class, they are treated as inline functions and are also treated, when nec¬ 
essary, as overloaded functions. In the class dbl_vect, the member function 

int ub() const { return (size - 1); } //upper bound 

is defined. In this example, the member function ub is i nl i ne, and it has access to 
the private member size. 

Member functions are invoked normally by use of the . or -> operators, as in 

dbl_vect a(20), b; //invoke appropriate constructor 
dbl_vect* ptr_v = &b; 
int uba = a.ub(); //invoke member ub 
ubb = ptr_v -> ub(); //invoke member ub 

Overloaded operator member functions, a special case of member functions, are 
discussed in Section C.11.5, “Overloading,” on page 384. 

C.12.3 Friend Functions 

The keyword friend, a function specifier, allows a nonmember function access to 
the hidden members of the class of which it is a friend. A friend function must be 
declared inside the class declaration of which it is a friend. It is prefaced by the key¬ 
word friend and can appear anywhere in the class. Member functions of one class 
can be friend functions of another class. In this case, the member function is 
declared in the friend’s class, using the scope resolution operator to qualify its func¬ 
tion name. If all member functions of one class are friend functions of a second 
class, this can be specified by writing f ri end cl ass classname. 

The following declarations are typical: 

class tweedledum { 

friend int tweedledee::cheshi re(); 

}; 

class node { 

friend class tree; 
//tree member functions have access to node 
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class complex { 

friend complex operator+(complex); 
}; 

C.12.4 The this Pointer 

The keyword this denotes an implicitly declared self-referential pointer that can be 
used only in a nonstatic member function. The this keyword provides for a built-in, 
self-referential pointer. It is as if clock implicitly declared the private member 
clock" const this. Early C++ systems allowed memory management for objects 
to be controlled by assignment to the thi s pointer. Such code is obsolete because 
the thi s pointer is nonmodifiable. For a code example, see file clock.cpp in Section 
6.5, “Unary Operator Overloading,” on page 205. 

C.12.5 Operator Overloading 

Operator overloading is a special case of function overloading. The keyword 
operator is used. Just as a function, such as print(), can be given a variety of 
meanings, depending on its arguments, so can an operator, such as +, be given 
additional meanings. This allows infix expressions of both user and built-in types to 
be written. The precedence and associativity remain fixed. 

Operator overloading typically uses either member or friend functions, because 
both have privileged access. Overloading a unary operator using a member function 
has an empty argument list, because the single-operator argument is the implicit 
argument. For binary operators, member function operator overloading has, as its 
fust argument, the imphcitly passed class variable and, as its second argument, the 
lone argument-list parameter. Friend functions and ordinary functions have both 
arguments specified in the parameter list. 

We expand the dbl_vect class from Section 6.7, “Overloading Assignment and 
Subscripting Operators,” on page 210, to have overloaded operators for addition 
assignment, subscripting, and output. 
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//Implementation of a safe array type dbl_vect 

class dbl_vect { 
public: 

int& operator[](int i) const; 
dbl_vect& operator=(const dbl_vect& v); 
friend dbl_vect operator+(const dbl_vect&, const dbl_vect&); 
friend ostream& operator«(ostream& , const dbl_vect&) 

private: 

double *p; //base pointer 
int size; //number of elements 

This class overloads the assignment and subscript operators as member functions. 
The overloaded operator<<() (put to) is made a friend of dbl_vect so that it 
may access the private members of dbl_vect. The overloaded operato r«() 
should always return type ostream so that multiple put to operations may be exe¬ 
cuted in a single expression. The overloaded binary plus operator is a friend so that 
conversion operations can be applied to both arguments. Note that the overloaded 
assignment operator checks for assignment to itself. For a code example, see file 
dbl_vect2.h in Section 6.7, “Overloading Assignment and Subscripting Operators,” 
on page 210. 

The ternary conditional operator ?:, the scope resolution operator : :, and the 
two member operators . and . * cannot be overloaded. 

Overloaded postfix autoincrement and autodecrement can be distinguished by 
defining the postfix overloaded function as having a single unused integer argu¬ 
ment, as in 

class T { 
public: 

//postfix ++ invoked as t.operator++(0); 
void operator++(int); 
void operator--(int); 

}; 

There is no implied semantic relationship between the postfix and prefix forms. 
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C.12.6 static and const Member Functions 

An ordinary member function invoked as 

object.mem(i, j, k); 

has an explicit argument list i, j, k and an implicit argument list that contains the 
members of object. The implicit arguments can be thought of as a list of argu¬ 
ments accessible through the this pointer. In contrast, a static member function 
cannot access any of the members using the thi s pointer. A const member func¬ 
tion cannot modify its implicit arguments. 

class X{ 
public: 

void print() const { cout « "i = " « i « endl; } 
static void change_x_score(int i){ x_score = i; } 

private: 
static int x_score; 
i nt i ; 

}; 

A const member function, such as pri nt(), is not allowed to modify member vari¬ 
ables of its class, such as i. A static member function, such as change_x_score(), 
is not given access to the nonstatic data members, such as i. 

For a code example, see file salary.cpp in Section 4.8, “stati c and const Mem¬ 
bers,” on page 130. 

C.12.7 Mutable 

The keyword mutable allows data members of class variables that have been 
declared const to remain modifiable. This reduces the need to cast away constness. 
This relatively new feature is not implemented on all C++ compilers. For a code 
example, see file mutable.cpp in Section 4.8.1, “Mutable Members,” on page 132. 
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C.13 Inheritance 

Inheritance is the mechanism of deriving a new class from an old one. The existing 
class, called a base class, can be added to or altered to create a new derived class. A 
class can be derived from an existing class by using the form 

class class-name: (pub! i c | protected | pri vate)opf base-name 

{ 
member declarations 

}; 

As usual, the keyword class can be replaced by the keyword struct, with the 
implication that members are by default public. The keywords public, private, 
and protected are available as access modifiers for class members. A public mem¬ 
ber is accessible throughout its scope. A private member is accessible to other mem¬ 
ber functions within its own class. A protected member is accessible to other 
member functions within its class and any class immediately derived from it. These 
access modifiers can be used within a class declaration in any order and with any 
frequency. 

A derived class must have a constructor if its base class lacks a default con¬ 
structor. Where the base class has constructors requiring arguments, the derived 
class explicitly invokes the base-class constructor in its initializing list. The form of 
such a constructor is 

class-name(arg-list) : base-nameopt (base-class-arg-list) 

{ 

}; 

The base-class-arg-list is used when invoking the appropriate base-class constructor 
and is executed before the body of the derived-class constructor is executed. 

A publicly derived class is a subtype of its base class. A variable of the derived 
class can in many ways be treated as if it were the base-class type. A pointer whose 
type is pointer to base class can point to objects having the publicly derived class 
type. A reference to the derived class, when meaningful, may be implicitly converted 
to a reference to the public base class. It is possible to declare a reference to a base 
class and to initialize it to an object of the publicly derived class. 

In the following example, the db1_vect class from Section 6.7, “Overloading 
Assignment and Subscripting Operators,” on page 210, is used as the base class. 
The only modification to the base class is to make the private members protected. 
The following dbl_vect_bnd class is the derived class: 
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class dbl_vect_bnd : public dbl_vect { 
public: 

dbl_vect_bnd(int =0, int = 9); //default 10 array 
dbl_vect_bnd(const dbl_vect_bnd& v); //copy constructor 
dbl_vect_bnd(const dbl_vect& v); //conversion 

constructor 
dbl_vect_bnd(const double a[], int ne, int lb = 0); 
double& operator[](int) const; 
int ub() const { return (u_bnd); } 
int 1b() const { return (l_bnd); } 
dbl_vect_bnd& operator=(const dbl_vect_bnd& v); 

private: 
int l_bnd, u_bnd; 

}; 

//default constructor 
dbl_vect_bnd::dbl_vect_bnd(int lb, int ub) : 

dbl_vect(ub - lb + 1), l_bnd(lb), u_bnd(ub) { } 

//conversion constructor 
dbl_vect_bnd::dbl_vect_bnd(const dbl_vect& v) : 

dbl_vect(v), l_bnd(0), u_bnd(size - 1) { } 

//copy constructor 
dbl_vect_bnd::dbl_vect_bnd(const dbl_vect_bnd& v) : 

dbl_vect(v), l_bnd(v.l_bnd), u_bnd(v.u_bnd) { } 

dbl_vect_bnd::dbl_vect_bnd(const double a[], int n, int lb) : 
dbl_vect(a, n), l_bnd(lb), u_bnd(lb + n) { } 

In this example, the constructors for the derived class invoke a constructor in the 
base class, with the argument list following the colon. 
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C.13.1 Multiple Inheritance 

Multiple inheritance allows a class to be derived from more than one base class. The 
syntax of class headers is extended to allow a list of base classes and their privacy 
designation. An example is 

class shape { 
//class for shape interface 

}; 

class tview { 
//class implementing text view 

}; 

class tshape:public shape, private tview { 
//adapter of text view to shape view 

}; 

In this example, the derived class tshape publicly inherits the shape base class, an 
interface, and privately inherits tvi ew, an implementation of text vi ew. This pat¬ 
tern of class design is called the adapter pattern. It uses multiple inheritance to 
combine an interface with an implementation; this technique is also known as using 
a mixin class. 

In general, the parental relationship between classes is described by the inheri¬ 
tance directed acyclic graph (DAG). The DAG is a graph structure whose nodes are 
classes and whose directed edges point from base to derived class. 

In deriving an identically named member from different classes, ambiguities 
may arise. These derivations are allowed, provided that the user does not make an 
ambiguous reference to such a member. 

With multiple inheritance, two base classes can be derived from a common 
ancestor. If both base classes are used in the ordinary way by their derived class, 
that class will have two subobjects of the common ancestor. This duplication can be 
eliminated by using virtual inheritance. For a code example, see file shapel.cpp in 
Section 8.3, “Virtual Functions,” on page 282. 
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C.13.2 Constructor Invocation 

The order of execution for initializing constructors in base and member construc¬ 
tors is as follows: Base classes are initialized in declaration order; members are ini¬ 
tialized in declaration order. Virtual base classes are constructed before any of then 
derived classes and before any nonvirtual base classes. Their construction order 
depends on their DAGs. It is a depth-first, left-to-right order. Destructors are 
invoked in the reverse order of the constructors. 

C.13.3 Abstract Base Classes 

A pure virtual function is a virtual member function whose body is normally un¬ 
defined. Notationally, it is declared inside the class as follows: 

virtual function prototype = 0; 

A class that has at least one pure virtual function is an abstract base class. Variables 
of an abstract base class cannot exist, but pointers of such a class can be defined 
and used polymorphically. For a code example, see file predator.cpp in Section 8.4, 
“Abstract Base Classes,” on page 283. 

A pure virtual destructor must have a definition. 

C.13.4 Pointer to Class Member 

A pointer to class member is distinct from a pointer to class. A pointer to class 
member’s type is T: : *, where Tis the class name. C++ has two operators that act to 
dereference a pointer to class member. The two pointer-to-member operators are . * 
and ->*. Think of obj. *ptr_mem and pointer->*ptr_mem as first accessing the 
object and then accessing and dereferencing the member that is specified. 

The following code shows how to use these operators. 
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In file showhide.cpp 

//Pointer to class member 

class X { 
public: 

int visible; 
void printO 

{ cout « "\nhide = " « hide 
« " visible = " « visible; } 

void resetC) { visible = hide; } 
void set(int i) { hide = i; } 

private: 
int hide; 

}; 

typedef void (X::*pfcn)(); 

int main() 

{ 
X a, b, *pb = &b; 
int X::*pXint = &X::visible; 
pfcn pF = &X::print; 

a. set(8); a.resetC); 
b. set(4) ; b.resetO; 
a.printO; 
a.*pXint += 1; 
a.printO ; 
cout « "\nb.visible = " « pb ->*pXint; 

(b. *pF) () ; 
pF = &X::reset; 
(a.*pF)(); 
a.printO ; 
cout « endl; 
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The output is as follows: 

hide = 8 visible = 8 
hide = 8 visible = 9 
b.visible = 4 
hide = 4 visible = 4 
hide = 8 visible = 8 

The typedef voi d (X: : *pfcn) () ; statement says that pfcn is a pointer to class X 
member whose base type is a function with no arguments that returns voi d. Mem¬ 
ber functions X: :print andX: : reset match this type. 

The declaration 

int X::*pXint = &X::visible; 

declares pXi nt to be a pointer to class X member whose base type is i nt. It is initial¬ 
led by pfcn pF = &X: :print to point at the member X: : visible. The pointer pF 
is initialized to point at the member functionX: : pri nt. Given the pointer assign¬ 
ments in the program, the following equivalencies hold: 

a.*pXint += 1 
pb ->*pXint 
b ■ *PF() 
(a.*pF)() 

is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 

++a.visible 
pb -> visible 
b. pri nt() 
a. resetQ. 

Consider the memory layout for representing an object. The object has a base 
address, and the various nonstatic members are offset relative to this base address 
In effect, a pointer to class member is used as an offset and is not a true pointer- a 
true pointer has general memory addresses as values. A static member is not offset 
and, as such, a pointer to a static member is a true address. 

C.13.5 Runtime Type Identification 

Runtime type identification (RTTI) provides a mechanism for safely determining the 
type pointed at by a base-class pointer at runtime. RTTI involves dynami c_cast an 
operator on a base-class pointer; typei d, an operator for determining the type of an 

atedtyp^1^ tyPe-1nf0, 3 structure Providing runtime information for theassoci- 

The dynami c_cast operator has the form 

dynami c_cast< type >( v) 
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where type must be a pointer or a reference to a class type and v must be a corre¬ 
sponding pointer value or reference value. This operator is used with inherited 

classes having virtual functions, as follows. 

class Base { . }; 
class Derived : Base { . }; 

void fcn(Base* ptr) 

{ 
Derived* bptr = dynamic_cast<Derived*>(ptr) ; 

} 

In this example, the cast converts the pointer value ptr to a Derived*. If the con¬ 
version is inappropriate, a value of 0 is returned or a bad_cast exception is thrown. 
Dynamic casts also work with reference types. Conceptually, the derived type object 
has a subobject that corresponds to the base type. The conversion replaces the 
derived-type pointer value or reference with an appropriate base-type pointer value 

or reference. 
The operator typeidO can be applied to a typename or to an expression to 

determine the exact type of the argument. The operator returns a reference to the 
cl ass type_i nfo, which is supplied by the system and is defined in the header file 
typeinfo or typeinfo.h. The class type_i nfo provides both a name() member func¬ 
tion returning a string that is the type name and overloaded equality operators. 
Remember to check the local implementation for the complete class interface. Bad 
dynamic casts and typeid operations can be made to throw the exceptions 
bad_cast and bad_typeid, so the user can choose between dealing with the NULL 
pointer and catching an exception. For a code example, see file typeid.cpp in Sec¬ 

tion 8.8, “Runtime Type Identification,” on page 296. 

C.13.6 Virtual Functions 

The keyword vi rtual is a function specifier that provides a mechanism for select¬ 
ing, at runtime, the appropriate member function from among base- and derived- 
class functions. It may be used only to modify member function declarations. A vir¬ 
tual function must be executable code. When invoked, its semantics are the same as 
those of other functions. In a derived class, it can be overridden. The selection of 
which function to invoke from among a group of overridden virtual functions is 
dynamic. In the typical case, a base class has a virtual function and derived classes 
have their versions of this function. A pointer to a base-class type can point at 
either a base-class object or a derived-class object. The member function to be 
invoked is selected at runtime and corresponds to the object’s type, not the 
pointer’s. In the absence of a derived type member, the base-class virtual function is 
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used by default. For a code example, see file shapel.cpp in Section 8.3, “Virtual 
Functions,” on page 282. 

One reason C++ is so complex is that it has many types of functions and many 
rule variations that apply to them. At this point, with inheritance and the introduc¬ 
tion of virtual functions, we have seen most varieties of functions. There are also 
those functions that are generated by template syntax, as well as catch () handlers 
that are function-like and that are part of the exception mechanism. It is useful to 
summarize characteristics and rules applying to most of these by category. For 
example, inlined functions can be member or nonmember functions and can have or 
not have return types. Inlining forces local linkage. 

Function Characteristics 

Function 
Category Member Virtual 

Return 
Type Special 

constructor yes no no not inherited; default 
destructor yes yes no not inherited; default 
assignment yes yes yes not inherited 
-> □ 0 yes yes yes 
operator maybe yes yes 
conversion yes yes no no arguments 
new static no voi d* 
delete static no voi d* 
inline maybe yes maybe local linkage 
catch no no no one argument 
friend friend no yes not inherited 

C.14 Templates 

The keyword template is used to implement parameterized types. Rather than 
repeatedly recoding for each type, the template feature allows instantiation to gen¬ 
erate code automatically for each type. 8 
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template cclass T> //parameterize T 
class stack { 
public: 

stack() ; 
explicit stack(int s) ; 
T& pop(); 
void push(T); 

private: 
T* item; 
int top; 
int size; 

}; 

typedef stack<string> str_stack; 
str_stack s(100); //explicit string stack variable 

For a code example, see file stack_tl.cpp in Section 7.1, “Template Class stack,” on 

page 240. 
A template declaration has the form 

template < template arguments > declaration 

and a template argument can be 

class identifier 
argument declaration 

The class identifier arguments are instantiated with a type. Other argument decla¬ 
rations are instantiated with constant expressions of a nonfloating type and can be 
a function or an address of an object with external linkage, as shown in the follow¬ 

ing code: 

tempiate<class T, int n > 
class array_n { 

private: 
T items[n]; //n explicitly instantiated 

}; 

array_n<complex, 1000> w; //w is an array of complex 
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Member function syntax, when external to the class definition, is as follows: 

template <class T> 
T& stack<T>::pop() 
{ 

return(item[top--]); 
} 

The classname used by the scope resolution operator includes the template argu¬ 
ments, and the member function declaration requires the template declaration as a 
preface to the function declaration. 

C.14.1 Template Parameters 

The preceding template can be rewritten with default parameters for both the i nt 
argument and the type. For example, 1 

tempiate<class T = int, int n = 100> 
class array_n { 

}; 

The default parameters can be instantiated when declaring variables or can be omit¬ 
ted, in which case the defaults will be used. 

Templates can use the keyword typename in place of class. For example, 

tempiate<typename T = double, double* ptr_dbl> 

This allows the template code to use a pointer to a double argument. Ordinary 
floating-point arguments are not allowed; only pointer and reference to floating¬ 
point arguments are allowed. 

A template argument can also be a template parameter. For example, 

tempiatectypename Tl, templatecclass T2> class T3> 

This allows very sophisticated metatemplates-templates instantiated with tern- 
plates—to be coded. Libraries, such as STL, can use such features. 



C.14 ▼ Templates 403 

C.14.2 Function Template 

Until 1995, compilers allowed ordinary functions to be parameterized, using a 
restricted form of template syntax. Only class identifier instantiation is allowed. It 
must occur inside the function argument list. 

//generic swap 

template eclass T> 
void swap(T& x, T& y) 

{ 
T temp; 

temp = x; 
x = y; 
y = temp; 

} 

//ANSI C++ but unavailable in many current compilers 

template eclass T, int n> 

T foo() 

{ 
T tempfn]; 

} 

fooechar, 20>Q; //use char, 20 and call foo 

A function template is used to construct an appropriate function for any invoca¬ 
tion that matches its arguments unambiguously. 

//i j int - okay 
//cl, c2 complex - okay 
//i int ch char - illegal 

swap(i, j); 
swap(cl, c2); 
swap(i, ch); 

The overloading function-selection algorithm is as follows: exact match with trivial 
conversions allowed on a nontemplate function, exact match using a function tem¬ 
plate, and ordinary argument resolution on a nontemplate function. In the previous 
example an ordinary function declaration voi d swap (char, char) would have 
been invoked on swap(i , ch). For a code example, see file swap.cpp in Section 
7.2.1, “Signature Matching and Overloading,” on page 244. 
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C.14.3 Friends 

Template classes can contain friends. A friend function that does not use a template 
specification is universally a friend of all instantiations of the template class. A 
friend function that incorporates template arguments is a friend only of its instanti¬ 
ated class. 

template <class T> 
class matrix { 
private: 

friend void foo_bar(); 

friend dbl_vect<T> product(dbl_vect<T> v); 
//universal 
//instantiated 

}; 

C.14.4 Static Members 

Static members are not universal but are specific to each instantiation. 

template <class T> 
class foo { 
public: 

static int count; 

}; 

foo<int> a, b; 
foo<double> c; 

The static variables foo<i nt>: : count and foo<doubl e>: : count are distinct The 
variables amount and b.count reference foo<int>: icount, but c.count refer- 
ences foo<doubl e>: : count. It is preferable to use the form foo<type> ■ • count 
which makes it clear that the variable referenced is the static variable. 

C.14.5 Specialization 

When the template code is unsatisfactory for a particular argument type it can be 
specialized. A template function overloaded by an ordinary function of’the same 
type that is, one whose list of arguments and return type conform to the template 
declaration—is a specialization of the template. When the specialization matches 
the call, it, rather than code generated from the template, is called. 
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void maxelement<char*>(char*a[],char* &max,int size); 
//specialized using strcmpO to return max string 

This would be a specialization of the previously declared template for 
tempi ate<cl ass T>maxelement(). Class specializations are also possible, as in 

class stack<foobar_obj> { /*specialize for foobar_obj */ }; 

For a code example, see file swap.cpp in Section 7.2.1, “Signature Matching and 

Overloading,” on page 244. 

C.15 Exceptions 

Classically, an exception is an unexpected condition that the program encounters 
and cannot cope with. An example is floating-point divide-by-zero. Usually, the sys¬ 

tem aborts the running program. 
C++ code is allowed to directly raise an exception in a try block by using the 

throw expression. The exception will be handled by invoking an appropriate handler 
selected from a list of handlers found in the handler’s try block. A simple example 

of this follows: 

dbl_vect::dbl_vect(i nt n) 
{ //fault tolerant constructor 

try { 
if (n < 1) 

throw (n); 
p = new double [n] ; 

if (p == 0) 
throw ("FREE STORE EXHAUSTED"); 

} 
catch (int n) { . } //catches an incorrect size 

catch (const char* error) { . } 
//catches free-store exhaustion 

} 

Note that new in this example is the traditional new returning 0 for an allocation 
error. C++ systems using exceptions within new can throw an xal 1 oc or bad_al 1 oc 
exception on failure. This replaces new returning 0 on failure to allocate. The older- 
style error handling can be retained by using set_new_handl er (0). For a code 
example see file dbl vect4.cpp in Section 9.2, “C++ Exceptions,” on page 309. 
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C.15.1 Throwing Exceptions 

Syntactically, throw expressions come in two forms: 

throw 
throw expression 

The throw expression raises an exception in a try block. The innermost try block is 
used to select the catch statement that processes the exception. The throw expres¬ 
sion with no argument rethrows the current exception and is typically used when 
one wants a second handler called from the first handler to further process the 
exception. 

The expression thrown is a static temporary object that persists until exception 
handling is exited. The expression is caught by a handler that may use this value. An 
uncaught expression terminates the program. 

void foo() 
{ 

int i; 

//will illustrate how an exception is thrown 
i = -15; 
throw i; 

} 

int main() 

{ 
try { 

foo() ; 
} 
catch(int n) 

{ cerr « "exception caught\n " « n « endl; } 

The integer value thrown by throw i persists until the handler with integer signa- 
ure catchO nt n) exits. This value is available for use within the handler as its 

hon^Tn pa^To16 GXample’ 866 ffle throwLcPP m Section 9.3, “Throwing Excep- 
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An example of rethrowing an exception follows: 

catch(int n) 

{ 

throw; //rethrown 

} 

Assuming that the thrown expression was of integer type, the rethrown exception is 
the same persistent integer object that is handled by the nearest handler suitable 

for that type. 

C.15.2 Try Blocks 

Syntactically, a try block has the form 

try 
compound statement 
handler list 

The try block is the context for deciding which handlers are invoked on a raised 
exception. The order in which handlers are defined is important, as it determines 
the order in which a handler for a raised exception of matching type will be tried. 

try { 

throw ("SOS"); 

io_condition eof(argvfi]); 

throw (eof); 

} 

catch (const char*) { . } 
catch (io_condition& x) { . } 

Recall that a throw expression matches the catch if it is an exact match, a derived 
type of the public base-class handler type, or a thrown object type that is convert¬ 

ible to a pointer type that is the catch argument. 
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It is an error to list handlers in an order that prevents them from being called 
For example, 

catch (void-') //any char* would match 
catch(char*) 

catch(BaseTypeError&) //always for DerivedTypeError 
catch(DerivedTypeError&) 

C.15.3 Handlers 

Syntactically, a handler has the form 

catch (formal argument) 
compound statement 

The catch looks like a function declaration of one argument without a return type, 

catch (const char* message) 

cerr « message « endl; 
exit(l); 

An ellipses signature that matches any argument is allowed. Also, the formal argu¬ 
ment can be an abstract declaration, meaning that it can have type information 

XrsTon page 314name' ^ ^ 6Xample’ 866 file catchcpp in Section 9'5’ “Han‘ 

C. 15.4 Exception Specification 

Syntacticany, an exception specification is part of a function declaration and has the 

function header throw {type list) 

have^hefnn°f.typeS that a throw exPression within the function can 

cation iden" “ declaration must ou, the exception specifi- 

the Son! dtSSly/Sec”/ ” “th'be eXe™ted 

void foo() throw(int, over_flow); 
void noex(int i) throwQ ; 
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If an exception specification is left off, the assumption is that an arbitrary exception 
can be thrown by such a function. Violations of these specifications are runtime 
errors. They are caught by the function unexpected(). 

C.15.5 terminateO and unexpected() 

The system-provided function termi nate() is called when no handler has been 
provided to deal with an exception. The abort () function, called by default, imme¬ 
diately terminates the program, returning control to the operating system. Other 
action can be specified by using set_termi nate() to provide a handler. These dec¬ 

larations are found in the except library. 
The system-provided handler unexpected () is called when a function throws 

an exception that was not in its exception-specification list. By default, the 
termi nate() function is called. Otherwise, set_unexpected() can be used to 

provide a handler. 

C.15.6 Standard Library Exceptions 

The standard library exceptions are derived from the base-class except! on. Two of 
the derived classes are logic_error and runtime_error. The logic-error types 
include bad_cast, out_of_range, and bad_typeid, which are intended to be 
thrown as indicated by their names. The runtime error types include range_error, 

overflow_error, and bad_alloc. 
The base class defines a virtual function 

virtual const char* exception::what() const throw(); 

This member function is intended to return a meaningful diagnostic message and 
should be defined in each derived class to give more helpful messages. The empty 
throw-specification list indicates that the function itself should not throw an 

exception. 

C.16 Caution and Compatibility 

C++ is not completely upward compatible with C. In most cases of ordinary use, C++ 
is a superset of C. Also, C++ is not a completely stable language design. It is in the 
process of being standardized. The following sections note problematic features of 

the language. 
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C.16.1 Nested Class Declarations 

The original scoping of nested classes was based on C rules. In effect, nesting was 
cosmetic, with the inner class globally visible. In C++, the inner class is local to the 
outer class enclosing it. Accessing such an inner class could require multiple uses of 
the scope resolution operator. 

1nt outer::inner::foo(double w) //f00 is nested 

It is also possible to have classes nested inside functions. 

C.16.2 Type Compatibilities 

!he8follo»inCg+l+istS m°re Str°ngly tyPed ANSI C iS' S°me differences Siven in 

Type Differences for ANSI C 

Enumerations are distinct types, and enumerators are not explicitly i nt This 
means that enumerations must be cast when making assignments from inte- 
ger types or other enumerations. Enumerations are promotable to integer. 
(See Section 2.6, Enumeration Types,” on page 38.) 

Any P01nter type can be converted to a generic pointer of type void* How¬ 
ever, unlike in ANSI C, a generic pointer in C++ is not assignment compatible 
with an arbitrary pointer type. This means that C++ requires that generic 
p inters be cast to an explicit type for assignment to a nongeneric pointer 
variable. (See Section 3.13, “The Uses of void,” on page 87.) 

A character constant in C++ is a char, but in ANSI C it is an int. The char 
ype is distinct from both signed char and unsigned char. Functions may 

not co“e ^ °n 'he diStinCti°nS' and P°intOTS to thr“ ^ 

C.16.3 Miscellaneous 

ANST°cdhvifhpnCtiT S7ntaX’ in Whkh the argument list is left blank, is replaced in 
SI C by the explicit argument voi d. The signature foo() in C is considered enniv 

mem fetthe °f dUPSeS and ‘n C++ iS equivalent1 to th^emp^^gu- 

In early C++ systems, the this pointer could be modified and used to allocatn 

can con^ 
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C++ allows declarations to be intermixed with executable statements. ANSI C 
allows declarations to be at the heads of blocks or in file scope only. However, in 
C++, goto, iteration, and selection statements are not allowed to bypass initializa¬ 

tion of variables. This rule differs from ANSI C. 
In C++, a global data object must have exactly one definition. Other declarations 

must use the keyword extern. ANSI C allows multiple declarations without the key¬ 

word extern. 

C.l 7 New Features in C++ 

Most compilers have complete implementations of templates and exceptions. The 
behavior of new with exceptions implemented is to throw a bad_al loc exception. 
(See Section 9.9, “Standard Exceptions and Their Uses,” on page 318.) 

Mechanisms that dynamically determine object type have entered the language. 
This is called runtime type identification (RTTI). The new operator typeidO 
applies to either a typename or an expression and dynami c_cast<type>(pointer), 
whose effect is either to return 0 if the cast fails or to perform the cast. With excep¬ 
tions in use, the standard library bad_cast exception is thrown when a conversion 
fails. In general, such casts will be allowed in polymorphic class hierarchies. (See 
Section C.13.5, “Runtime Type Identification,” on page 398.) 

The cast conversion operators static_cast and rei nterpret_cast are also 

added. (See Section 2.5, “The Traditional Conversions,” on page 34.) 
Single-argument constructors may be prohibited from being conversion con¬ 

structors with the use of the keyword expl i ci t. (See Section 5.1.3, “Constructors as 

Conversions,” on page 152.) 
The keyword mutable allows data members of class variables that have been 

declared const to remain modifiable. (See Section 4.8.1, “Mutable Members,” on 

page 132.) 
Two new types, bool and wchar_t, were added to the simple types. (See Section 

2.4, “Simple Types,” on page 32.) 
The existence of libraries that can lead to name clashes motivated the addition 

of a namespace scope. (See Section 3.10, “Namespaces,” on page 80.) The standard 
library is encapsulated in the namespace std. This library includes the standard 

container classes, iterators, and algorithms of the STL. 
See system manuals for a detailed description of what is implemented. 
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endix D 

This appendix describes input/output in C++, using iostream and its associated 
libraries. The software for C++ includes a standard library that contains functions 
commonly used by the C++ community. The standard input/output library for C, 
described by the header stdio.h, is still available in C++. However, C++ introduces 
iostream, which implements its own collection of input/output functions. The 
header stream was used on systems before release 2.0 and is still available under 

many C++ systems. 
The stream I/O is described as a set of classes in iostream. These classes over¬ 

load the put to and get from operators « and ». Streams can be associated with 
files, and examples of file processing using streams are discussed in this section. A 
lot of file processing requires character-handling macros, which are found in ctype. 

These are also discussed here. 
In OOP, objects should know how to print themselves, and in this text we have 

frequently made pri nt() a member function of a class. Notationally, it is also use¬ 
ful to overload « for user-defined ADTs. In this section, we develop output func¬ 
tions for the types card and deck to illustrate these techniques. 

D.l The Output Class ost ream 

Output is inserted into an object of type ostream, declared in the header file 
iostream. An operator « is overloaded in this class to perform output conversions 
from standard types. The overloaded left-shift operator is called the insertion, or 
put to operator. The operator is left associative and returns a value of type 
ostream&. The standard output ostream corresponding to stdout is cout, and the 
standard output ostream corresponding to stderr is cerr. 

The effect of executing a simple output statement, such as 

cout « "x = " << x << '\n'; 

is to print to the screen a string of four characters, followed by an appropriate rep¬ 
resentation for the output of x, followed by a new line. The representation depends 

on which overloaded version of « is invoked. 
The class ostream contains public members, such as 
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ostream& operator«(int i); 
ostream& operator«(long i); 
ostream& operator«(double x) ; 
ostream& operator«(char c); 
ostream& operator<<(const char* s); 
ostream& put(char c) ; 

ostream& write(const char* p, int n); 
ostream& flush(); 

The member function put() outputs the character representation of c. The member 
function wri te () outputs the string of length n pointed at by p. The member func¬ 
tion flush() forces the stream to be written. Since these are member functions 
they can be used as follows: 

cout.put('A'); //output A 

char* str = "ABCDEFGHI"; 
cout.write(str + 2, 3); 
cout.flush(); 

//output CDE 
//write buffered stream 

D.2 Formatted Output and iomanip 

The put to operator « produces by default the minimum number of characters 
needed to represent the output. As a consequence, output can be confusing, as seen 
m the following example: 

int i =8, j = 9; 

cout « i « j ; 
cout « i « " 
cout « "i= " « « i « 1= " « j; //best: i= 8 j= 9 

//confused: prints 89 
//better: prints 8 9 

x = 1; 
cout « "x = " « x « endl; 
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This immediately prints the line 

x = 1 

Another manipulator, fl ush, flushes the ostream, as in 

cout « "x = " « x « flush; 

This has almost the same effect as the previous example but does not advance to a 
new line. 

The manipulators dec, hex, and oct can be used to change integer bases. The 
default is base 10. The conversion base remains set until it is explicitly changed. 

In file manip.cpp 

//Using different bases in integer I/O 

int main() 

{ 
int i = 10, j = 16, k = 24; 
cout « i « '\t1 « j « '\t' « k « endl ; 
cout « oct « i « '\t' « j « '\t' « k « endl; 
cout « hex « i « '\t' « j « '\t' « k « endl; 
cout « "Enter 3 integers, e.g. 11 11 12a" « endl; 
cin » i » hex » j » k; 
cout « dec « i « '\t' « j « '\t' « k « endl; 

} 

The resulting output is 

10 16 24 
12 20 30 
a 10 18 
Enter 3 integers, e.g. 11 11 12a 
11 17 298 

The reason that the final line of output is 11 followed by 17 followed by 298 is that 
the second 11 in the input was interpreted as hexadecimal, which is 16 + 1, and the 
third input was hexadecimal 12a, which is decimal 298. 

The preceding manipulators are found in iostream. Other manipulators are 
found in iomanip. For example, setw(i nt wi dth) is a manipulator that changes the 
default field width for the next formatted I/O operation to the value of its argument. 
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This value reverts to the default. The following table briefly lists the standard 
manipulators, the function of each, and the location where each is defined. 

I/O Manipulators 

Manipulator Function File 
end! outputs newline and flush iostream 
ends outputs null in string io stream 
fl ush flushes the output iostream 
dec uses decimal iostream 
hex uses hexadecimal iostream 
oct uses octal iostream 
ws skips white space on input iostream 
skipws skips white space iostream 
noskipws do not skip white space iostream 
boolalpha prints “true” and “false” iostream 
nobool alpha prints “1” and “0” iostream 
fixed prints 123.45 iostream 
scientific print 1.2345 e+02 iostream 
1 eft fill characters to the right of value iostream 
right fill characters to the left of value iostream 
internal fill characters between sign and value iostream 
setw(int) sets field width iomanip 
setfi11(int) sets fill character iomanip 
setbase(int) sets base format iomanip 
setprecision(int) sets floating-point precision iomanip 
setiosflags(long) sets format bits iomanip 
resetiosflags(long) resets format bits iomanip 

A further example will demonstrate the use of setw setf i 11 
manipulators. and setprecision 
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//Display use of formatting manipulators. 

#include <iostream.h> 
#include <iomanip.h> 

const long double pi = 3.14159265358979323846L;//pi to 21 places 

inline long double area(long double rad) 
{ return (pi * rad * rad); } 

int main() 

{ 
long double r; 

cout « "\nEnter radius: 
cin » r; 
cout « "\nArea is " « setw(20) « area(r); 
cout « "\nArea is " « setw(20) 

« setprecision(10) « area(r); 
cout « "\nArea is " « area(r); 
cout « "\nArea is " « setprecision(20) « area(r) « endl; 
cout « setfi11('*'); 
cout « setprecision(4) « setw(20) « r « endl; 

} 

The output from this program when 1.0 is entered for r is 

Enter radius: 
Area is 3.14159 
Area is 3.141592654 
Area is 3.141592654 
Area is 3.141592653589793116 
*******************]_ 

As expected, the setpreci si on() yields a different number of decimal digits of 
floating-point precision. Be careful not to exceed the meaningful precision of the 
result. The fill character by default is blank, and here in the last line of output, 1 i t 
was changed to the “star.” The output widths are adjusted per each output value. 
Otherwise, the default width is the exact number of characters needed to display a 

result. 
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D.3 User-Defined Types: Output 

User-defined types have typically been printed by creating a member function 
print(). Let us use the types card and deck as an example of a simple user- 
defined type. We write out a set of output routines for displaying cards. 

In file pr_cardl.cpp 

//card output 

char 

char 

pips_symbol[14] = { 'A', '2', '3', 
'5', '6', '7', '8', '9', 'T', 'J', 'Q' 

suit_symbol [4] ={ 'c\ 'd\ 'h\ 's' }; 

'4', 

, 'K' }; 

enum suit { clubs, diamonds, hearts, spades }; 

class pips { 
public: 

void assign(int n) {p=n%13+l; } 
void print() { cout « pips_symbol[p]; } 

private: 
int p; 

class card { 
public: 

suit s; 

Pi ps p; 
void assign(int n) 

{ cd = n; s = suit(n / 13); p.assign(n); } 
void pr_card() 

{ p.printO; cout « suit_symbol [s] « " 
private: 

int cd; //a cd is from 0 to 51 
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class deck { 
public: 

void init_deck(); 
void shuffleO; 
void deal(int, int, card*); 
void pr_deck(); 

private: 
card d[52] ; 

}; 

void deck::pr_deck() 

{ 
for (int i =0; i < 52; ++i) { 

if (i % 13 == 0) //13 cards to a line 
cout « endl; 

d [i ] . pr_card() ; 

} 
} 

Each card will be printed out in two characters. If d is a variable of type deck, then 
d. pr_deck() will print out the entire deck, 13 cards to a line. 

In keeping with the spirit of OOP, it would also be nice to overload « to accom¬ 
plish the same aim. The operator « has two arguments—an ostream& and the 
ADT—and it must produce an ostream&. You want to use a reference to a stream 
and to return a reference to a stream, whenever overloading « or », because you 
do not want to copy a stream object. Let us write these functions for the types card 

and deck. 

In file pr_card2.cpp 

ostream& operator«(ostream& out, pips x) 

{ 
return (out « pips_symbol[x.p]); 

} 

ostream& operator«(ostream& out, card cd) 

{ 
return (out « cd.p « suit_symbol[cd.s] « " " ); 

} 
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ostreamS operator«(ostream& out, deck x) 
{ 

for (int i = 0; i < 52; ++i) { 

if (i % 13 == 0) //13 cards to a line 
out « endl; 

out « x.d[i] ; 
} 
return out; 

} 

The functions that operate on pi ps and deck need to be friends of the correspond¬ 
ing class, because they access private members. 

D.4 The Input Class istream 

An operator » is overloaded in i stream to perform input conversions to standard 
types. The overloaded right-shift operator is called the extraction, or get from, oper¬ 
ator. The standard input i stream corresponding to stdi n is ci n. 

The effect of executing a simple input statement, such as 

ci n » x » i ; 

is to read from standard input, normally the keyboard, a value for x and then a 
value for i. White space is ignored. 

The class i stream contains public members, such as 

istream& operator»(intS i); 
istream& operator»(longS i); 
istream& operator»(double& x) ; 
istreams operator»(charS c) ; 
istreamS operator»(char* s) ; 
istream& get(char& c); 

istream& get(char* s, int n, char c = '\n'); 
istream& getline(char* s, int n, char c = '\n')- 
istreams read(char* s, int n); 
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The member function get(char& c) inputs the character representation to c, 
including white space characters. The member function get (char* s, int n, int 
c = ' \n ' ) inputs into the string pointed at by s at most n - 1 characters, up to the 
specified delimiter character c or an end-of-file (EOF). A terminating 0 is placed in 
the output string. The optionally specified default character acts as a terminator but 
is not placed in the output string. If not specified, the input is read up to the next 
newline. The member function getl i ne() works like get (char*, int, char = 
' \n ' ), except that it discards rather than keeps the delimiter character in the desig¬ 
nated i stream. The member function read(char* s, int n) inputs into the 
string pointed at by s at most n characters. It sets the fai 1 bi t if an end-of-file is 
encountered before n characters are read. (See Section D.8, “Using Stream States,” 
on page 427.) In systems that have implemented ANSI standard exceptions, the 
i os_base: : fai lure may be thrown. 

cin.get(c); //one character 
cin.get(s, 40); //length 40 or terminated by '\n' 
cin.get(s, 10, '*'); //length 10 or terminated by * 
cin.getline(s , 40); //same as get but '\n' discarded 

Other useful member functions are 

int gcountO; //number of recently extracted chars 
istream& ignore(int n=l, int delimiter=EOF); //skips 
int peek(); //get next character without extraction 
istream& putback(char c); //puts back character 

When overloading the » operator to produce input to a user-defined type, the 
typical form is 

istream& operator»(istream& p, user-defined-type& x) 

If the function needs access to private members of x, it must be made a friend of 
class x. A major point is to make x a reference parameter so that its value can be 
modified. 
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D.5 Files 

C systems have stdin, stdout, and stderr as standard files. In addition, systems 
may define other standard files, such as stdprn and stdaux. Abstractly, a file may 
be thought of as a stream of characters that are processed sequentially. 

Standard Files 

C C++ Name Connected to 
stdi n ci n standard input file keyboard 
stdout cout standard output file screen 
stderr cerr standard error file screen 
stdprn cprn standard printer file printer 
stdaux caux standard auxiliary file auxiliary port 

The C++ stream input/output ties the first three of these standard files to ci n, 
cout, and cerr, respectively. Typically, C++ ties cprn and caux to their correspond¬ 
ing standard files, stdprn and stdaux. There is also clog, which is a buffered ver¬ 
sion of cerr. Other files can be opened or created by the programmer. We will show 
how to do this in the context of writing a program that double spaces an existing 
file into an existing or new file. The file names will be specified on the command 
line and passed into argv. 

File I/O is handled by including fstream, which contains the classes of stream 
and i fstream for output and input file-stream creation and manipulation. To prop¬ 
erly open and manage an i fstream or of stream related to a system file, you must 
first declare it with an appropriate constructor. 

ifstream(); 

ifstream(const char*, int = ios::in, 

int prot = fi1ebuf::openprot); 
ofstreamO ; 

ofstream(const char*, int = ios::out, 

int prot = filebuf::openprot); 

The constructor of no arguments creates a variable that will later be associated with 
an input file The constructor of three arguments takes as its first argument the 
named file. The second argument specifies the file mode. The third argument is for 
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The arguments for file mode are defined as enumerators in class ios, as shown 
in the following table. 

File Modes 

Argument Mode 

ios::in input mode 

ios::app append mode 

ios::out output mode 

ios::ate open and seek to end of file 

ios::nocreate open but do not create mode 

ios::trunc discard contents and open 

ios::noreplace if file exists, open fails 

Thus, the default for an i f stream is input mode, and the default for an of stream is 
output mode. If file opening fails, the stream is put into a bad state. The mode can 
be tested with the !operator. In libraries built with exceptions, the fai lure excep¬ 
tion can be thrown. 

Other important member functions found in fstream include 

//opens ifstream file 
void open(const char*, int = ios::in, 

int prot = filebuf::openprot); 

//opens ofstream file 
void open(const char*, int = ios::out, 

int prot = filebuf::openprot); 

void close() ; 

These functions can be used to open and close appropriate files. If you create a file 
stream with the default constructor, you would normally use open() to associate it 
with a file. You could then use closeO to close the file and to open another file, 
using the same stream. Additional member functions in other I/O classes allow for a 
full range of file manipulation. The following program uses both the fstream and 
the stdlib libraries. 
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In file dbl.sp.cpp 

//A program to double space a file. 
//Usage: executable fl f2 
//fl must be present and readable 
//f2 must be writable if it exists 

void double_space(ifstream& f, ofstream& t) 
{ 

char c; 

while (f.get(c)) { 
t.put(c); 
if (c == '\n') 

t.put(c); 
} 

} 

int main(int argc, char** argv) 
{ 

if (argc != 3) { 
cout « "\nUsage: " « argv[0] 

« " infile outfile" « endl; 
exit(l) ; 

} 

ifstream f_in(argv[l]); 
ofstream f_out(argv[2]); 

if (!f_in) { 

cerr « "cannot open " « argv[l] « endl; 
exit(l); 

} 
if (!f_out) { 

cerr « "cannot open " « argv[2] « endl; 
exit(l) ; 

} 
double_space(f_in, f_out); 
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D.6 Using Strings as Streams 

The class strstream allows char* strings to be treated as iostreams. When using 
st rst reams, the strstream library must be included. Newer libraries provide both 
i stri ngstream and ostri ngstream, which support in-memory I/O, using the stan¬ 
dard library type stri ng. Check your system to determine which of these libraries 
is available. 

The i strstream is used when input is from a string rather than from a stream. 
The overloaded » get from operator may be used with i strstream variables. The 
forms for declaring an i strstream variable are 

istrstream name (char* s) ; 
istrstream name (char* s, int n) ; 

where s is a string to use as input, n is the optional length of the input buffer, and 
name is used instead of ci n. If n is not specified, the string must be terminated with 
a 0. The end-of-string sentinel is treated as an EOF. An example follows. 

In file str_strm.cpp 

char name[15]; 
int total; 
char* scores[4] = { "Dave 2","Ida 5","Jim 4","Ira 8" }; 

istrstream ist(scores[3]); //ist uses scores[3] 
ist » name » total; //name: Ira , total = 8 

The ost rst ream declarations have the following forms: 

ostrstreamO; 
ostrstream nnme(char* s, int n, int mode = ios::out); 

where s is pointer to buf to receive string, n is the optional size of buffer, and mode 
specifies whether the data are to be put into an empty buffer (i os: : out) or 
appended to the existing null-terminated string in the buffer (ios: :app or 
ios: :ate). If no size is specified, the buffer is dynamically allocated. The 
ostrstream variable may use the overloaded put to operator « to build the string. 
The use of ostrstream is particularly useful when you want to construct a single 
string from information kept in a variety of variables. This technique is used in 
exception handling to build a single string variable to be used as an argument in a 
throwQ. Our vect example, in Section 9.8, “Example Exception Code,” on page 316, 
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uses this technique. In the following example, note that ost2 must contain an 
existing null-terminated string in order for the append to work correctly. 

strstream ostl; 
strstream ost2 (charbuf, 1000, ios::app); 

ostl « name « " " « score « endl; 
ost2 « address « ci ty « endl « ends; 

D.7 The Functions and Macros in ctype 

The system provides a standard header file, ctype or cctype, which contains a set of 
functions used to test characters and a set of functions used to convert characters. 
These functions may be implemented as macros or as inline functions. This is men¬ 
tioned here because of its usefulness in C++ input/output. Those functions that 
only test a character return an i nt value. The argument is type i nt. 

ctype Function Nonzero (true) Is Returned if c Is 

isalpha(c) a letter 

isupper(c) an uppercase letter 

islower(c) a lowercase letter 

isdigit(c) a digit 

isxdigit(c) a hexadecimal digit 

isspace(c) a white space character 

isalnum(c) a letter or digit 

ispunct(c) a punctuation character 

isgraph(c) a printing character, except space 

isprint(c) a printable character 

iscntrl (c) a control character 

isascii(c) an ASCII code 

Other functions provide for the appropriate conversion of a character value. 
Note that these functions do not change the value of c stored in memory. 
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ctype Conversion Function Effect 

toupper(c) changes c from lowercase to uppercase 

tolower(c) changes c from uppercase to lowercase 

toascii(c) changes c to ASCII code 

The ASCII code functions are usual on ASCII systems. 

D.8 Using Stream States 

Each stream has an associated state that can be tested. The states on existing sys¬ 
tems are 

enum io_state { goodbit, eofbit, fail bit, badbit }; 

ANSI systems propose the type i os_base: : i ostate to be a bitmask type defining 
these values. When the nongood values are set by an I/O operation, ANSI systems 
can throw the I/O standard exception ios_base: : failure. Associated with this 
exception is a member function what () returning a char* message that gives a rea¬ 
son for the failure. 

The values for a particular stream can be tested by using the public member 
functions in the following table. 

Stream State Function What It Returns 

int good(); nonzero if not EOF or other error bit set 

int eof(); nonzero if istream eofbi t set 

int fai1 () ; nonzero if fai 1 bi t, badbi t set 

i nt bad(); nonzero if badbit set 

int rdstateO; returns error state 

void clear(int i = 0) ; resets error state 

int operator!(); return true if fai 1 bit or badbi t set 

operator void*() const; return fai se if fai 1 bi t or badbi t set 
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Testing for a stream’s being in a nongood state can protect a program from hanging 

up. A stream state ot good means that the previous input/output operation worked 

and that the next operation should also. A stream state of EOF means that the previ¬ 

ous input operation returned an end-of-file condition. A stream state of fai 1 means 

that the previous input/output operation failed but that the stream will be usable 

once the error bit is cleared. A stream state of bad means that the previous input/ 

output operation is invalid but that the stream may be usable once the error condi¬ 
tion is corrected. 

It is also possible to directly test a stream. It is nonzero if it is in either a good 
or EOF state. 

if (cout « x ) //output succeeded 

el se 

. //output failed 

The following program counts the number of words coming from the standard 

input. Normally, this would be redirected to use an existing file. The program illus¬ 
trates ideas discussed in this and the previous two sections. 

In file word_cnt.cpp 

//The word_cnt program for counting words 
//Usage: executable < file 

int found_next_word(); 

int main() 

{ 
int word_cnt = 0; 

while (found_next_word()) 
++word_cnt; 

cout « "word count is " « word_cnt « endl; 
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int found_next_word() 

{ 
char c; 
int word_sz = 0; 

cin » c; 
while (!cin.eof() && !isspace(c)) { 

++word_sz; 
cin.get(c) ; 

} 
return word_sz; 

} 

A nonwhite space character is received from the input stream and is assigned to c. 
The while loop calls the isspaceO function in the ctype library to test that adja¬ 
cent characters are not white space. The loop terminates when either an end-of-file 
character or a white space character is found. The word size is returned as 0 when 
the only nonwhite space character found is the end-of-file. One last point: The loop 
cannot be rewritten as 

while (!cin.eof() && !isspace(c)) { 
++word_sz; 
cin » c; 

} 

because this would skip white space. 

D.9 Mixing I/O Libraries 

Throughout this text, iostream has been used. It is perfectly reasonable to want to 
continue using stdio. This is the standard in the C community, and it is well under¬ 
stood. Its disadvantage is that it is not type safe. Functions such as pri ntf () use 
unchecked variable-length argument lists. Stream I/O requires, as arguments to its 
functions and overloaded operators, assignment-compatible types. You might also 
want to mix both forms of I/O. Synchronization problems can occur because the 
two libraries use different buffering strategies. This can be avoided by calling 

ios::sync_with_stdio(); 

The following program coordinates the two libraries. 
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In file mix_io.cpp 

4 

//The mix_io program with syncronized I/O 

unsigned long fact(int n) 
{ 

unsigned long f = 1; 

for (int i =2; i <= n; ++i) 
f *= i; 

return f; 
} 

int main() 

{ 
int n; 

ios::sync_with_stdio(); 

do { 

cout « "\nEnter n positive or 0 to halt: "■ 
scanf("%d", &n); 

printf("\n fact(%d) =%ld", n, fact(n)); 
} while (n > 0); 

cout « "\nend of session" « endl ■ 
} 

Note that for integer values greater than 12, the results will overflow. It is safe 
mix stdio and iostream, provided they are not mixed on the same file. 

to 



Appendix E 
STL and String Libraries 

The C++ standard template library (STL) provides generic programming for many 
standard data structures and algorithms. The STL provides containers, iterators, 
and algorithms that support a standard for generic programming. This appendix 
presents a brief description, emphasizing these three components. 

The library is built using templates and is highly orthogonal in design. Compo¬ 
nents can be used with one another on native and user-provided types through 
proper instantiation of the various elements of the STL. Different header files are 
required, depending on the system. Examples here conform to the ANSI standard 
and are encapsulated in namespace std. For a code example, see file stLcont.cpp in 
Section 7.5.1, “STL Example Code,” on page 253. 

E.l Containers 

Containers may be either sequence or associative. Sequence containers (vectors, 
lists, and deques) are ordered by having a sequence of elements. Associative con¬ 
tainers (sets, multisets, maps, and multimaps) have keys for looking up elements. 
The map container is a basic associative array and requires that a comparison oper¬ 
ation on the stored elements be defined. All varieties of containers share a similar 

interface. 

STL Typical Container Interfaces 

■ Constructors, including default and copy constructors 

■ Element access 

■ Element insertion 

■ Element deletion 

■ Destructor 

Iterators 
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Containers are traversed by using iterators. These pointer-like objects are available 
as templates and are optimized for use with STL containers. Lor a code example, see 
file stLdeq.cpp in Section 7.6, “Containers,” on page 254. 

Container classes are designated as CAN in the following table. 

All container classes have these definitions available, for example, the vector 
container class vector<char>: :value_type means that a character value is 
stored in the vector container. Such a container could be traversed with a 
vector<char>: :iterator. 

Containers allow both equality and comparison operators. These operators are 
as follows: 

>= < > <= 
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Containers also have an extensive list of standard member functions. 

STL Container Members 

CAN::CAN() default constructor 

CAN::CAN(c) copy constructor 

c.begin() beginning location of CAN c 

c.end() ending location of CAN c 

c. rbegin() beginning for a reverse iterator 

c. rend() ending for a reverse iterator 

c. si ze() number of elements in CAN 

c.max size() largest possible size 

c.emptyO true if the CAN is empty 

c.swap(d) swap two CANs 

E.1.1 Sequence Containers 

The sequence containers (vector, list, and deque) have a sequence of accessible ele¬ 
ments. In many cases, the C++ array type can also be treated as a sequence con¬ 
tainer. For a code example, see file stl_vec2.cpp in Section 7.6.1, “Sequence 
Containers,” on page 255. 

Sequence classes are designated as SEQ in the following table; these are in addi¬ 
tion to the already described CAN interface. 

STL Sequence Members 

SEQ::SEQ(n, v) n elements of value v 

SEQ::SEQ(b_it, e_it) starts at b i t and goes to e i t - 1 

c.insert(w_it, v) inserts v before w_i t 

c.insert(w_it, v, n) inserts n copies of v before w i t 

c.insert(w_it, b_it, e_it) inserts b_i t to e_i t before w_i t 

c.erase(w_it) erases the element at w_i t 

c.erase(b_it, e_it) erases b_i t to e_i t 
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Some examples of using these members follow: 
4 

double w[6] = { 1.1, 1.2, 2.2, 2.3, 3.3, 4.4 }; 
vector<double> v(15, 1.5); //15 elements of value 1.5 
deque<double> d(w +2, w + 6); //use 2.2 to 4.4 
d.erase(d.begin() + 2); //erase 3rd element 
v.insert(v.begin() +1, w[3]); //insert w[3] 

E.1.2 Associative Containers 

The associative containers (set, map, multiset, and multimap) have key-based acces¬ 
sible elements. These containers have an ordering relation, Compare, which is the 
comparison object for the associative container, for a code example, see file 
stLage.cpp in Section 7.6.2, “Associative Containers,” on page 257. 

Associative classes are designated as ASSOC in the following table; these are in 
addition to the already described CAN interface. 

STL Associative Definitions 

ASSOC::key type the retrieval key type 

ASSOC::key compare the comparison object type 

ASSOC::value_compare the type for comparing ASSOC: : val ue_type 

The associative containers have several standard constructors for initialization. 

STL Associative Constructors 

ASSOC() default constructor using Compare 
ASSOC(cmp) constructor using emp as the comparison object 
ASS0C(b_it, e_it) uses element range b_i t to e_i t using Compare 
ASSOC(b_it, e_it, emp) uses element range b_i t to e_i t and emp as the 

comparison object 

What distinguishes associative constructors from sequence container 
tors is the use of a comparison object. 

construe- 
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STL Insert and Erase Member Functions 

c. insert(t) inserts t if no existing element has the same key as 
t; returns pai r citerator, bool> with bool 
being true if t was not present 

c. insert(w_it, t) inserts t with w_i t as a starting position for the 
search; fails on sets and maps if key value is 
already present; returns position of insertion 

c.insert(b_it, e_it) inserts the elements in this range 

c.erase(k) erases elements whose key value is k, returning the 
number of erased elements 

c.erase(w it) erases the pointed-to element 

c.erase(b_it, e_it) erases the range of elements 

The insertion works when no element of the same key is already present. 

STL Member Functions 

c.find(k) returns iterator to element having the 
given key k; otherwise, ends 

c.count(k) returns the number of elements with k 

c.lower_bound(k) returns iterator to first element having 
value greater than or equal to k 

c.upper_bound(k) returns iterator to first element having 
value greater than k 

c.equal_range(k) returns an iterator pair for 1 ower_bound 
and upper_bound 

Here are some examples of using these members. 

int m[4] ={1,2, 3,4}; 
setcint, less<int> > s; 
set<int, 1esscint> > t(m, 

s. insert (3) ; 
t. insert(3); 
s. erase(2); 
t. erase(4); 

//set of ints ordered on less 
m +4); //use 1, 2, 3, 4 
//place 3 in set s 
//no insertion as 3 is in set 
//s had no such element 
//t now contains 1, 2, 3 

t 
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E.1.3 Container Adapters 

Container adapter classes modify existing containers to produce different public 
behaviors based on an existing implementation. Three provided container adapters 
are stack, queue, and priority_queue. 

The stack, which can be adapted from vector, 1 ist, and deque, needs an 
implementation that supports back, push_back, and pop_back operations. This is a 
last-in-first-out data structure. 

STL Adapted stack Functions 

void push(const value type& v) places v on the stack 
void pop() removes the top element of the stack 
value type& top() const returns the top element of the stack 
bool empty() const returns true if the stack is empty 
size type size() const returns the number of elements in the stack 
operator== and operator< equality and lexicographically less than 

The queue can be adapted from 1 i st or deque. It needs an implementation that 
supports empty, size, front, back, push_back, and pop_front operations. This is 
a lirst-m-first-out data structure. 

STL Adapted queue Functions 

void push(const value type& v) places v on the end of the queue 
void pop() removes the front element of the queue 
value type& front() const returns the front element of the queue 
value type& back() const returns the back element of the queue 
bool empty() const returns true if the queue is empty 
size type size() const returns the number of elements in the queue 
operator== and operator< equality and lexicographically less than 

The priori ty_queue, which can be adapted from vector or deque needs an 
implementation that supports empty. size, front, push.back, and pop back ope” 

, A pnori tyqueue also needs a comparison object for its instantiation The 

pno":Vuee geS' dement 35 defi"ed bY ‘he -lationsWp fonhe 
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STL Adapted priority_queue Functions 

void push(const value type& v) places v in the priori ty queue 

void pop() removes top element of the priori ty queue 

value type& top() const returns top element of the pri ori ty_queue 

bool emptyO const checks for pri ori ty_queue empty 

size_type sizeQ const shows number of elements in the 
priority_queue 

We adapt the stack from an underlying vector implementation. Notice how 
the STL ADTs replace our individually designed implementations of these types. For 
a code example, see file stl_stak.cpp in Section 7.6.3, “Container Adapters,’ on page 

258. 

E.2 Iterators 

Navigation over containers is by iterator. Iterators can be thought of as an enhanced 
pointer type. They are templates that are instantiated as to the container class type 
over which they iterate. There are five iterator types: input, output, forward, bidirec¬ 
tional, and random access. Not all iterator types may be available for a given con¬ 
tainer class. For example, random-access iterators are available for vectors but not 

for maps. 
The input and output iterators have the fewest requirements and can be used 

for input and output. These iterators have special implementations, called 
i stream_i terator and ostream_i terator, for these purposes. A forward iterator 
can do everything an input/output iterator can do and can additionally save a posi¬ 
tion within a container. A bidirectional iterator can go both forward and backward. 
A random-access iterator is the most powerful and can access any element in a suit¬ 
able container, such as a vector, in constant time. For a code example, see file 
stLio.cpp in Section 7.7.1, “The istream_i terator and ostream_i terator,” on 

page 259. 

E.2.1 Iterator Categories 

Input iterators support equality operations, dereferencing, and autoincrement. An 
iterator that satisfies these conditions can be used for one-pass algorithms that 
read values of a data structure in one direction. A special case of the input iterator 
is the istream_i terator, which is derived from an i nput_i terator to work 
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specifically with reading from streams. The template for i st ream_i terator is 
instantiated with a <type, distance>. This distance is usually specified by 
ptrdiff_t. As defined in cstddef or stddef, it is an integer type representing the 
difference between two pointer values. For a code example, see file stLio.cpp in 
Section 7.7.1, “The istream_i terator and ostream_i terator,” on page 259. 

Output iterators support dereferencing restricted to the left-hand side of 
assignment and autoincrement. An iterator that satisfies these conditions can be 
used for one-pass algorithms that write values to a data structure in one direction. 
A special case of the output iterator is the ostream_i terator, which is derived 
from an output_iterator to work specifically with writing to streams. The 
ostream_i terator can be constructed with a char* delimiter, in this case “\t”. 
Thus, the tab character will be issued to the stream cout after each int value is 
written. In this program, the iterator out, when it is dereferenced, writes the 
assigned i nt value to cout. For a code example, see file stLio.cpp in Section 7.7.1, 
The i stream_i terator and ostream_i terator,” on page 259. 

Forward iterators support all input/output iterator operations and additionally 
support unrestricted use of assignment. This allows position within a data structure 
to be retained from pass to pass. Therefore, general one-directional multipass algo¬ 
rithms can be written with forward iterators. 

Bidirectional iterators support all forward iterator operations, as well as both 
autoincrement and autodecrement. Therefore, general bidirectional multipass algo¬ 
rithms can be written with bidirectional iterators. 

Random-access iterators support all bidirectional iterator operations and also 
address arithmetic operations, such as indexing. In addition, random-access itera¬ 
tors support comparison operations. Therefore, algorithms that require efficient 
random access m linear time, such as quicksort, can be written with these iterators 

Container classes and algorithms dictate the category of iterator available or 
needed, so vector containers allow random-access iterators, but lists do not 

topSttJator Y 16(1111168 9 rand0m‘access iterator’ but finding requires only an 

E.2.2 Iterator Adapters 

Iterators can be adapted to provide backward traversal and traversal with insertion 
For a code example, see file stLio.cpp in Section 7.7.1, “The istream iterator and 
ostream_iterator,” on page 259. terator and 

STL Iterator Adapters 

Reverse iterators—reverse the order of iteration. 

" mode. lterators_insertion takes Pla« ‘"stead of the normal overwriting 
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Some adapters and their purpose as found in this library are as follows. 

tempiate<class Bidilter, 

class T, class Ref = T&, 

class Distance = ptrdiff_t> 

cl ass reverse_bidirectional_iterator; 

This reverses the normal direction of iteration. Use rbeginO and rend() for 

range. 

tempiate<class RandAccIter, 

class T, class Ref = T&, 

class Distance = ptrdiff_t> 

class reverse_iterator; 

This reverses the normal direction of iteration. Use rbeginO and rend() for 

range. 

template eclass Can> 
class insert_iterator; 

template <class Can, class Iter> 

insert_iterator<Can> 

inserter(Can& c, Iter p); 

The insert iterator inserts instead of overwrites. The insertion into c is at posi¬ 

tion p. 

template <class Can> 
class front_insert_iterator; 

template <class Can> 
front_insert_iterator<Can> 

front_inserter(Can& c); 

Front insertion occurs at the front of the container and requires the member 

push_f ront(). 

template eclass Can> 
class back_insert_iterator; 

template eclass Can> 
back_insert_iteratoreCan> 

back_inserter(Can& c); 

Back insertion occurs at the back of the container and requires a push_back() 

member. 
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E.3 Algorithms 

The STL algorithms library contains the following four categories: sorting algo¬ 
rithms, nonmutatmg sequence algorithms, mutating sequence algorithms, and 
numerical algorithms. These algorithms generally use iterators to access containers 
instantiated on a given type. The resulting code can be competitive in efficiency 
with special-purpose codes. y 

E.3.1 Sorting Algorithms 

Sortmg algorithms include general sorting, merges, lexicographic comparison, per- 
mutation binary search, and selected similar operations. These algorithms have ver- 

ns that use either operator<() or a Compare object. They often require random- 
access iterators. Section 7.8.1, “Sorting Algorithms,” on page 262. 

Some library prototypes for sorting algorithms follow. 

" tempiate<class RandAco 

void sort(RandAcc b, RandAcc e); 

pS a qmcksort algorithm over the elements in the range b to e. The iterator 
type RandAcc must be a random-access iterator. 

■ tempiate<cl ass RandAco 

void stable_sort(RandAcc b, RandAcc e); 

This is a stable sorting algorithm over the elements in the range b to e In a sta- 
b e sort, equal elements remain in their relative same positions. 

" tempi ate<class RandAco 

void partial_sort(RandAcc b, RandAcc m, RandAcc e); 

This is a partial sorting algorithm over the elements in the range b to e The 
range b to m is filled with elements sorted up to position m. 

template<class Inputlter, class RandAco 

void partial_sort_copy(InputIter b, Inputlter e, 

RandAcc result_b, RandAcc result_e); 

This is a partial sorting algorithm over the elements in the ranee h m 0 ri 

ments sorted are taken from the input iterator range ^ me copfed to the r n 
dom-access iterator range. The smaller of the two ranges is used 
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■ tempiate<class RandAco 
void nth_element(RandAcc b, RandAcc nth, RandAcc e); 

The nth element is placed in sorted order, with the rest of the elements parti¬ 
tioned by it. For example, if the fifth position is chosen, the four smallest ele¬ 
ments are placed to the left of it. The remaining elements are placed to the right 
of it and will be greater than it. 

■ tempiate<class Inputlterl, class Inputlter2, class OutputIter> 
Outputlter merge(lnputlterl bl, Inputlterl el, Inputlter2 b2, 

Inputlter2 e2, Outputlter result_b); 

The elements in the range bl to el and b2 to e2 are merged to the starting posi¬ 
tion resul t_b. 

■ tempiatecclass Bidilter> 
void inplace_merge(BidiIter b, Bidilter m, Bidilter e); 

The elements in the range b to m and m to e are merged in place. 

The following table briefly lists other algorithms and their purposes as found in 
this library. 

STL Sort-Related Library Functions 

binary search(b, e, t) true if t is found in b to e 

lower_bound(b, e, t) the first position for placing t while 
maintaining sorted order 

upper_bound(b, e, t) the last position for placing t while 
maintaining sorted order 

equal_range(b, e, t) returns an iterator pair for the range 
where t can be placed maintaining 
sorted order 

push_heap(b, e) places the location’s e element into an 
already existing heap 

pop_heap(b, e) swaps the location’s e element with its b 
element and reheaps 

sort heap(b, e) performs a sort on the heap 

make heap(b, e) creates a heap 

next_permutation(b, e) produces the next permutation 

prev_permutation(b, e) produces the previous permutation 
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STL Sort-Related Library Functions 

1exicographical_compare 
(bl, el, b2, e2) 

returns true if sequence 1 is lexico¬ 
graphically less than sequence 2 

min(t1, t2) returns the minimum of tl and t2 that 
are call-by-reference arguments 

max(tl, t2) returns the maximum 
min_element(b, e) returns the position of the minimum 
max_element(b, e) returns the position of the maximum 
includes(bl, el, b2, e2) returns true if the second sequence is a 

subset of the first sequence 
set_umon (bl, el, b2, 

e2, r) 
returns the union as an output iterator r 

set_intersection (bl, el, 

b2, e2, r) 
returns the set intersection as an output 
iterator r 

set_difference (bl, el, b2, 
e2, r) 

returns the set difference as an output 
iterator r 

set_symmetric_difference 
(bl, el, b2, e2, r) 

returns the set symmetric difference as 
an output iterator r 

fohreexamplelthmS ^ ^ USeS 3 Compare object rePlacing operator<(); 

tempiate<class RandAcc, class Compare> 
void sort(RandAcc b, RandAcc e, Compare comp); 

This is a quicksort algorithm over the elements in the range b to 
tor ordering. e, using comp 

E.3.2 Nonmutating Sequence Algorithms 

Nonmutating algorithms do not modify the contents of the containers they work on 
typical operation is searching a container for a particular element and returning 

l s position. Lor a code example, see file stLfind.cpp in Section 7.8 2 “Nonmutatins 
Sequence Algorithms, on page 262. ’ rimumtmg 

The library prototypes for some nonmutating algorithms are as follows: 

■ tempiatecclass Inputlter, class T> 

Inputlter find(lnputlter b, Inputlter e, const T& t)); 

This finds the position of t in the range b to e. 
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■ tempiate<class Inputlter, class Predicate> 
Inputlter find(lnputlter b, Inputlter e, Predicate p)); 

This finds the position of the first element that makes the predicate true in the 
range b to e; otherwise, the position e is returned. 

■ tempiatecclass Inputlter, class Function> 
void for_each(InputIter b, Inputlter e, Function f)); 

This applies the function f to each value found in the range b to e. 

The following table briefly lists other algorithms and their purposes as found in 

this library. 

STL Nonmutating Sequence Library Functions 

next permutation(b, e) produces next permutation 

prev_permutation(b, e) produces previous permutation 

count(b, e, t, n) returns to n the count of elements equal to t 

count_if(b, e, p, n) returns to n the count of elements that make 
predicate p true 

adjacent_find(b, e) returns the first position of adjacent elements 
that are equal; otherwise, returns e 

adjacent_find(b, e, binp) returns the first position of adjacent elements 
satisfying the binary predicate bi np; otherwise, 

returns e 

mismatch(bl, el, b2) returns an iterator pair indicating the positions 
where elements do not match from the given 
sequences, starting with bl and b2 

mismatch (bl, el, b2, binp) as above, with a binary predicate bi np used 
instead of equality 

equal(bl, el, b2) returns true if the indicated sequences match; 
otherwise, returns fal se 

equal(bl, el, b2, binp) as above, with a binary predicate bi np used 

instead of equality 

search(bl, el, b2, e2) returns an iterator where the second sequence 
is contained in the first, if it is not el 

search (bl, el, b2, e2, binp) as above, with a binary predicate bi np used 
instead of equality 
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E.3.3 Mutating Sequence Algorithms 

Mutating algorithms can modify the contents of the containers they work on. A typ¬ 
ical operation is reversing the contents of a container, for a code example, see file 
stLrevr.cpp in Section 7.8.3, “Mutating Sequence Algorithms,” on page 263. 

The library prototypes for some mutating algorithms follow. 

tempiatecclass Inputlter, class OutputIter> 

Outputlter copy(InputIter bl, Inputlter el, Outputlter b2); 

This is a copying algorithm over the elements bl to el. The copy is placed start¬ 
ing at b2. The position returned is the end of the copy. 

template<class Bidilterl, class Bidilter2> 
Bidilter2 copy_backward(BidiIterl bl, Bidilterl el, 

Bidilter2 b2); 

This is a copying algorithm over the elements bl to el. The copy is placed start¬ 
ing at b2. The copying runs backward from el into b2, which are also going 
backward. The position returned is b2 - (el - bl). 

■ tempiate<class Bidilter> 
void reverse(BidiIter b, Bidilter e) ; 

This reverses in place the elements b to e. 

templatecclass Bidilter, class OutputIter> 
Outputlter reverse_copy(BidiIter bl, Bidilter el, 

Outputlter b2); 

This is a reverse copying algorithm over the elements bl to el. The codv in 

reverse is placed starting at b2. The copying runs backward from el into b2 
which are also going backward. The position returned is b2 + (el - bl) 

tempi ateccl ass Forwlteo 

Forwardlter unique(ForwIter b, Forwlter e); 

The adjacent elements in the range b to e are erased. The position returned is 
the end of the resulting range. 8 

template<class Forwlter, class BinaryPred> 

Forwardlter unique(ForwIter b, Forwlter e, BinaryPred bp); 

The adjacent elements in the 
erased. The position returned 

range b to e with binary predicate bp satisfied 
is the end of the resulting range. 

are 
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■ tempiatecclass Inputlter, class OutputIter> 
Outputlter unique_copy(InputIter bl, Inputlter el, 

Outputlter b2); 

tempiatecclass Inputlter, class Outputlter, class BinaryPred> 
Outputlter unique_copy(InputIter bl, Inputlter el, 

Outputlter b2, BinaryPred bp); 

The results are copied to b2, with the original range unchanged. 

The remaining library functions are described in the following table. 

STL Mutating Sequence Library Functions 

swap(tl, t2) swaps tl and t2 

iter swap(bl, b2) swaps pointed-to locations 

swap_range(bl, el, b2) swaps elements from bl to el with 
those starting at b2; returns 
b2 + (el - bl) 

transform(bl, el, b2, op) uses the unary operator op to trans¬ 
form the sequence bl to el, placing 
it at b2; returns the end of 
the output location 

transform(bl, el, b2, b3, bop) uses the binary operator bop on the 
two sequences starting with bl and 
b2 to produce the sequence b3; 
returns the end of the output 
location 

replace(b, e, tl, t2) replaces in the range b to e the 
value tl by t2 

replace_if(b, e, p, t2) replaces in the range b to e the 
elements satisfying the predicate p 
by t2 

replace_copy(bl, el, b2, tl, t2) copies and replaces into b2 the 
range bl to el, with the value tl 
replacing t2 

replace_copy_if(bl, el, b2, p, t2) copies and replaces into b2 the 
range bl to el, with the elements 
satisfying the predicate p replacing 
t2 

remove(b, e, t) removes elements of value t 
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STL Mutating Sequence Library Functions 

remove_if, remove_copy, 
remove copy if 

similar to replace family except 
that values are removed 

fillCb, e, t) assigns t to the range b to e 
fill n(b, n, t) assigns n ts starting at b 
generated, e, gen) assigns to the range b to e by 

calling generator gen 
generate_n(b, n, gen) assigns n values starting at b using 

gen 
rotate(b, m, e) rotates leftward the elements of the 

range b to e; element in position i 
ends up in position (i + n - m)%n, 
where n is the size of the range, m is 
the midposition, and b is the first 
position 

rotate_copy(bl, m, el, b2) as above, but copied to b2 with the 
original unchanged 

random_shuffle(b, e) shuffles the elements 
random_shuffle(b, e, rand) shuffles the elements, using the 

supplied random-number 
generator rand 

partition(b, e, p) partitions the range b to e to have 
all elements satisfying predicate p 
placed before those that do not 
satisfy p 

stable_partition(b, e, p) as above, but preserving relative 
order 

E.3.4 Numerical Algorithms 

Numerical algorithms include sums, inner product, and adjacent difference for 
code example, see file stLnumr.cpp in Section 7.8.4, “Numerical Algorithms,” 
page 264. ’ 

The library prototypes for numerical algorithms follow. 

a 
on 
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■ tempiate<class Inputlter, class T> 
T accumulate(lnputlter b, Inputlter e, T t); 

This is a standard accumulation algorithm whose sum is initially t. The succes¬ 
sive elements from the range b to e are added to this sum. 

■ tempiatecclass Inputlter, class T, class BinOp> 
T accumulate(lnputlter b, Inputlter e, T t, BinOp bop); 

This is an accumulation algorithm whose sum is initially t. The successive ele¬ 
ments from the range b to e are summed with sum = bop(sum, element). 

The following table briefly lists other algorithms and their purposes as found in 
this library. 

STL Numerical Library Functions 

inner_product(bl, el, b2, t) returns the inner product from the 
two ranges starting with bl and b2; 
this product is initialized to t, 
which is usually 0 

inner_product(bl,el,b2,t,bopl,bop2) returns a generalized inner product, 
using bopl to sum and bop2 to 
multiply 

partial_sum(bl, el, b2) starting at b2, produces a sequence 
that is the partial sum of terms 
from the range bl to el 

partial sum(bl, el, b2, bop) as above, using bop for summation 

adjacent_difference(bl, el, b2) starting at b2, produces a sequence 
that is the adjacent difference of 
terms from the range bl to el 

adjacent_difference(bl, el, b2, bop) as above, using bop for difference 
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E.4 Functions 

It is useful to have function objects to further leverage the STL. Lor example, many 
of the previous numerical functions had a built-in meaning using + or * but also had 
a form in which user-provided binary operators could be passed in as arguments. 
Defined function objects can be either found in function or built, function objects 
are classes that have operator() defined. These are inlined and are compiled to 
produce efficient object code. 

In file stl_fucn.cpp 

//Using a function object minus<int>. 
#include <iostream> 
#include <numeric> 
using namespace std; 

int main() 

{ 
double vl[3] = { 1.0, 2.5, 4.6 }, 

sum = accumulate(vl, vl + 3, 0.0, 
cout « "sum = " « sum « endl; 

sum; 

minus<int>()) ; 
//sum = -7 

Accumulation is done by using integer minus for the binary operation over the array 
vl []. Therefore, the double values are truncated, with the result being -7. 

There are three defined function object classes. 

STL Defined Function Object Classes 

■ Arithmetic objects 

■ Comparison objects 

■ Logical objects 

The following tables briefly list algorithms and their 
library. purposes as found in this 
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STL Arithmetic Objects 

template <class T> struct plus<T> adds two operands of type T 

template <class T> struct minus<T> subtracts two operands of type T 

template <class T> struct times<T> multiplies two operands of type T 

template <class T> struct divides<T> divides two operands of type T 

template cclass T> struct modulus<T> modulus for two operands of type T 

template cclass T> struct negate<T> unary minus for one argument of type T 

Arithmetic objects are often used in numerical algorithms, such as accumul ate(). 

STL Comparison Objects 

template cclass T> 

struct equal_tocT> 

equality of two operands of type T 

template cclass T> 

struct not_equal_tocT> 

inequality of two operands of type T 

template cclass T> 

struct greatercT> 

comparison by the greater (>) of two 
operands of type T 

template cclass T> 
struct lesscT> 

comparison by the lesser (c) of two oper¬ 
ands of type T 

template cclass T> 

struct greater equalcT> 

comparison by the greater or equal (>=) 
of two operands of type T 

template cclass T> 

struct less_equalcT> 

comparison by the lesser or equal (c=) of 
two operands of type T 

The comparison objects are frequently used with sorting algorithms, such as 

mergeQ. 

STL Logical Objects 

template cclass T> struct 

logical andcT> 

performs logical and (&&) on two 
operands of type T 

template cclass T> 

struct logical orcT> 

performs logical or (| I) on two operands 
of type T 

template cclass T> 

struct 1ogical_notcT> 

performs logical negation (!) on a single 
argument of type T 
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E.4.1 Function Adapters 

Lunction adapters allow for the creation of function objects using adaption. In the 
following example, binder function bi nd2nd transforms an initial sequence of val¬ 
ues to these values doubled. 

In file stLadap.cpp 

//Use of the function adapter bind2nd. 
#include <iostream> 
#include <algorithm> 
#include <functional> 
#include <string> 
using namespace std; 

template <class Forwlteo 

void print(ForwIter first, Forwlter last, const char* title) 
{ 

cout « title « endl; 
while (first != last) 

cout « *first++ « '\t' ; 
cout « endl; 

} 

int main() 

{ 
int data[3] = { 9, 10, 11}; 

print(data, data + 3, "Original values"); 
transform(data, data + 3, data, 

bind2nd(times<int>(), 2)); 
print(data, data + 3, "New values"); 

STL Function Adapters 

■ Negators for negating predicate objects 

■ Binders for binding a function argument 

■ Adapters for pointer to a function 

The following table briefly lists algorithms and their purposes as found in this 
library. 
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STL Function Adapters 

tempiate<class Pred> 
unary_negate<Pred> 
notl(const Pred& p) 

returns ! p, where p is a unary predicate 

tempiatecclass Pred> 
binary_negate<Pred> 
not2(const Pred& p) 

returns ! p, where p is a binary predicate 

template<class Op, class T> 
binderlst<Op>bindlst 

(const 0p& op,const T& t) 

the binary op has a first argument bound 
to t; a function object is returned 

tempiatecclass Op, class T> 
binder2nd<0p>bind2nd 

(const 0p& op,const T& t) 

the binary op has a second argument 
bound to t; a function object is returned 

tempiate<class Arg,class T> 
ptr fun(T (*f)(Arg)) 

constructs a 
pointer to unary function<Arg, T> 

tempiate<class Argl, 
class Arg2, class T> 

ptr_fun(T (*f)(Argl, Arg2)) 

constructs a 
pointer_to_binary_function<Arg,T> 

E.5 Allocators 

Allocator objects manage memory for containers. These allocators allow implemen¬ 
tations to be tailored to local system conditions while maintaining a portable inter¬ 
face for the container class. Allocator definitions include val ue_type, reference, 
size_type, pointer, and di fference_type. 

The following table briefly lists allocator member functions and their purposes 
as found in this library. 
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STL Allocator Members 

allocator(); constructor and destructor for 
~al1ocator(); allocators 

pointer address(reference r); returns the address of r 

pointer allocate(size_type n); allocates memory for n objects 
of size type from free store 

void deal locate(pointer p); deallocates memory associated 
with p 

size_type max_size(); returns the largest value for 
di fference_type; in effect, the 
largest number of element 
allocatable to a container 
— 

Check your vendor’s product for specific system-dependent implementations. 

E.6 String Library 

C++ provides a string type by including the standard header file string. It is the 
instantiation of a template class basi c_stri ng<T> with char. The string type pro¬ 
vides member functions and operators that perform string manipulations, such as 
concatenation, assignment, or replacement. An example of a program using the 
string type for simple string manipulation follows. 

In file stringt.cpp 

//String class to rewrite a sentence 

int main() 

{ 
string sentence, words[10]; 
int pos = 0, old_pos = 0, nwords, i = 0; 

sentence = "Eskimos have 23 ways to 
sentence += "describe snow"; 
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while (pos < sentence.si ze()) { 
pos = sentence.find(' olcLpos); 

words[i++].assign(sentence, old_pos, pos - old_pos); 
cout « words[i - 1] « endl; //print words 
old_pos = pos + 1; 

} 
nwords = i; 
sentence = "C++ programmers 
for (i = 1; i < nwords -1; ++i) 

sentence += words[i] + ' 
sentence += "windows"; 
cout « sentence « endl; 

} 

The stri ng type is used to capture each word from an initial sentence in which the 
words are separated by the space character. The position of the space characters is 
computed by the fi nd() member function. Then, the assign() member function is 
used to select a substring from sentence. Finally, a new sentence is constructed, 
using the overloaded assignment, operator+=(), and operator+O functions to 
perform assignments and concatenations. 

The representation for a string of characters follows. It is usual to have the 
instantiation basi c_st ri ng<wchar_t> for a wide string type wst ri ng. Other 
instantiations are possible as well. 

String Private Data Members 

char* ptr for pointing at the initial character 

size_t len for the length of the string 

size_t res for the currently allocated size or, for an 
unallocated string, its maximum size 

This implementation provides an explicit variable to track the string length; thus, 
string length can be looked up in constant time, which is efficient for many string 
computations. 
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E.6.1 Constructors 

Strings have six public constructors, which makes it easy to declare and initialize 
strings from a wide range of parameters. 

String Constructor Members 

stri ng() default; creates an empty string 

string(const char* p) conversion constructor from a 
pointer to char 

string(InputIterator b, 
Inputlterator e) 

constructor from the Inputltera¬ 
tor range from b to e 

string(const string& str, 
size_t pos = 0, size_t n = npos) 

copy constructor; npos is usually 
-1 and indicates that no memory 
was allocated 

string(const char* p, size_t n) copy n characters, where p is the 
base address 

string(size_t n, char c) construct a string of n cs 

These constructors make it quite easy to use the string type initialized from char* 
pointers, which is the traditional C method for working with strings. Also, many 
computations are readily handled as a vector of characters. This is also facilitated 
by the stri ng interface. 

E.6.2 Member Functions 

Strings have some members that overload operators, as described in the next table. 

String Overloaded Operator Members 

string& operator=(const string^ s) assignment operator 

string^ operator=(const char* p) assigns achar*toa string 
string& operator=(const char c) assigns a char c to a string 

string& operator+=(const string&s) appends string s 

string& operator+=(const char* p) appends a char* to a string 
string& operator+=(const char c) appends acharctoa string 
char operator[](size_t pos) const returns the character at pos 
char& operator[](size_t pos) returns the reference to the 

character at pos 
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The extensive set of public member functions lets you manipulate strings. In 
many cases, these functions are overloaded to work with stri ng, char*, and char. 
A description of append () follows. 

■ string& append(const string& s, size_t pos = 0, size_t n=npos); 

Appends n characters, starting at pos from s to the implicit string object, 

//example si "I am " s2 "7 years old" 
si.append(s2); // si " I am 7 years old" 
s2.append(sl,0,4); //s2 "7 years old I am" 

■ string& append(const char* p, size_t n); 
strings append(const char* p); 
strings append(size_t n, char c) ; 

In each case, a stri ng object is constructed using the constructor of the same 
signature and appended to the implicit stri ng object. 

■ strings assign(const strings s, size_t pos = 0, size_t n=npos); 

Assigns n characters, starting at pos from s to the implicit string object. 

//example si " I am " s2 "7 years old" 
si.assign(s2); // si "7 years old" 

The following signatures with the expected semantics are also overloaded: 

strings assign(const char* p, size_t n); 
strings assign(const char* p); 
strings assign(size_t n, char c); 
strings assign(InputIterator b, Inputlterator e) ; 

■ strings insert(size_t posl, const strings str, size_t pos2 = 0, 
size_t n = npos); 

The i nsert () function is an overloaded set of definitions that insert a string of 
characters at a specified position. This function inserts n characters taken from 
str, starting with pos2, into the implicit string at position posl. 

//example si " I am " s2 " 7 years old" 
sl.insert(2,s2); // si "I 7 years old am" 

The following signatures with the expected semantics are also overloaded: 
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string& insert(size_t pos,const char* p, size_t n); 
string& insert(size_t pos, const char* p); 
string& insert(size_t pos, size_t n, char c); 
iterator insert(iterator p, char c); 
iterator insert(iterator p, size_t n, char c); 
void insert(iterator p, Inputlterator b, Inputlterator e); 

The inverse function is remove (). 

■ strings remove(size_t pos = 0, size_t n = npos); 

An n number of characters are removed from the implicit string at position pos. 

The following table briefly describes further public string member functions. 

String Members 

strings replace(posl, nl, str, 
pos2 =0, n2 = npos) 

replaces at post for nl characters, 
the substring in str at pos2 of n2 
characters 

strings replace(pos,n,p,n2); 
strings replace(pos,n,p); 
strings replace(pos,n,c); 

replaces n characters at pos, using 
a char* p of n2 characters, or a 
char* p until null, or a character c 

size t length() const; returns the string length 
const char* c_str() const; converts stri ng to traditional char* 

representation 
const char* data() const; returns the base address of the 

string representation 
void resize(n, c) ; 
void resize(n); 

resizes the string to length n; the 
padding character c is used in the 
first function, and the eos() 
character is used in the second 

void reserve(size_t res_arg); 
size t reserve() const; 

allocates memory for string; returns 
the size of the allocation 

size t copy(p, n, pos = 0) const; the implicit string starting at pos 
is copied into the char* p for 
n characters 

string substr(pos = 0, npos)const; a substring of n characters of the 
implicit string is returned 
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You can lexicographically compare two strings by using compare (), a family of 
overloaded member functions. 

■ int compare(const string& str, size_t pos = 0, 
size_t n = npos) const; 

Compares the implicit string starting at pos for n characters with str. Returns 0 
if the strings are equal; otherwise, returns a positive or a negative integer value 
indicating that the implicit string is greater or less than str lexicographically. 
The following signatures with the expected semantics are also overloaded: 

int compare(const char* p,size_t pos, size_t n) const; 
int compare(const char* p, size_t pos = 0) const; 

Each signature specifies how the explicit string is constructed and then com¬ 
pared to the implicit string. 

The final set of member functions perform a find operation. One group is dis¬ 
cussed here; a table summarizes the rest of this group of member functions. 

■ size_t find(const string& str, size_t pos = 0) const; 

The string str is searched for in the implicit string starting at pos. If it is found, 
the position it is found at is returned; otherwise, npos is returned, indicating 
failure. 

The following signatures with the expected semantics are also overloaded: 

size_t find(const char* p, size_t pos, size_t n)const; 
size_t find(const char* p, size_t pos= 0) const; 
size_t find(char c, size_t pos = 0) const; 

Each signature specifies how the explicit string is constructed and then 
searched for in the implicit string. Further functions for finding strings and 
characters are briefly described in the following table. 
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String Find Members 

size_t rfind(str, pos=npos) const; like find() but scans the string 
size_t rfind(p, pos, n) const; backward for a first match 
size_t rfind(p, pos=npos) const; 
size t rfind(c, pos=npos) const; 

size t find first of 
searches for the first character 

V —1 1 > (Jt/O KJ J V_VJII^Lj 

size t find first of of any character in the specified 

(p, pos, n) const; pattern: str, char- p, or char c 

size_t find_first_of 
(p, pos = 0) const; 

size_t find_first_of 
(c,pos = 0) const; 

size_t find_last_of searches backward for the first 
(str, pos = npos) const; character of any character in the 

size_t find_last_of specified pattern: str, char* p, 
(p, pos, n) const; or char c 

size_t find_last_of 
(p, pos= npos) const; 

size_t find_last_of 
(c,pos = npos) const; 

size_t find_first_not_of searches for the first character 
(str, pos = 0) const; that does not match any 

size_t find_first_not_of character in the specified pat- 
(p, pos, n) const; tern: str, char* p, or char c 

size_t find_first_not_of 
(p, pos = 0) const; 

size_t find_first_not_of 
(c,pos = 0) const; 

size_t find_last_not_of searches backward for the first 
(str, pos = npos) const; character that does not match 

size_t find_last_not_of any character in the specified 
(p, pos, n) const; pattern: str, char* p, 

size_t find_last_not_of or char c 
(p, pos= npos) const; 

size_t find_last_not_of 
(c,pos = npos) const; 
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E.6.3 Global Operators 

The string package contains operator overloadings that provide input/output, con¬ 
catenation, and comparison operators. These are intuitively understandable and are 
briefly described in the following table. 

String Overloaded Global Operators 

ostream& operator«(ostream& o, 
const string& s); 

output operator 

istream& operator»(istream& in, 
string& s); 

input operator 

string operator+(const string& si, 
const string& s2); 

concatenates si and s2 

bool operator==(const string& si, 
const string& s2); 

true if string si and s2 
are lexicographically equal 

A
 

A
 ii V
 

V
 II II as expected 

The comparison operators and the concatenation ope rator+() are also over¬ 
loaded with the following four signatures: 

bool operator==(const char'- p, const string& s); 
bool operator==(char c, const string& s); 
bool operator==(const string& s, const char* p); 
bool operator==(const string& s, char c); 

In effect, a comparison or concatenation of any kind can occur between string and a 
second argument that is a string, a character, or a character pointer. 
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AB^file program, 110 
abort(), 315, 409 
abstract base class, 283, 

294, 396 
abstract class, 283 

abstract data type, 2, 6, 
328-329 

abstraction, 328 
acc_mod program, 298 
access keywords 

private, 120-121, 138, 
274, 387, 393 

protected, 138, 274, 
387, 393 

public, 120, 138, 
274-275, 387, 393 

accessor function, 139, 
154 

accumulateO (STL), 253, 
264, 447 

ad hoc polymorphism, 
195, 330 

Ada, 327-328 
adapter (STL) 

container, 257 
iterator, 260, 438 

adapter pattern, 395 
add_term(), 179 
address &, 43, 82, 135, 370 
addressO (STL), 452 
adjacent_di fferenceO 

(STL), 447 
adjacent_fi nd() (STL), 

443 
ADT, 2, 6, 328-329 

complex, 7-11 
point, 118 
polynomial, 213 
string, 93, 158 
student, 12 
template stack, 240 
template vector, 248 
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alert \a, 27, 351 
algorithm (STL), 252, 261, 

431, 440 
mutating sequence, 263 
nonmutating sequence, 

262 
numerical, 264 
sort, 261, 441 

algorithm library, 261-264 
alias, 85 
allocateO (STL), 452 
allocator object (STL), 451 
ancestor, 291 
and (bitwise) <&, 43, 370 
and (logical) &&, 40, 

366-367 
anonymous enumeration, 

39 
anonymous namespace, 81 
anonymous structure, 117 
anonymous union, 135, 

184, 359 
ANSI C++, xix 
append(), 455 
appletviewer (Java), 338 
argument, 68 

default, 70, 384 
explicit, 129 
implicit, 129, 208 
return, 348 
template, 246, 401 

arithmetic expression, 39, 
366 

array, 65, 82, 89, 164 
bounds, 163 
dynamic, 165 
element, 90 
index, 164 
initialization, 90, 95 
multidimensional, 95, 

173 
passing to function, 92 
pointer to, 91 
subscript, 90 
summation, 93 
two-dimensional, 173 

array_mx program, 75 
array_tm program, 247 
assert library, 96,112,181, 

307 
assertion, 96, 307-308 
assignO, 160, 182, 455 
assignment, 368, 376 

multiple, 30, 212, 218, 
368 

pointer, 278 
assignment =, 40, 44 
assignment-compatible 

conversion, 68 
associative container (STL), 

431, 434 
associativity, 40, 204, 345 
auto, 76, 360 
autodecrement 44, 

204, 365, 391 
autoincrement ++, 44, 

204-206, 365, 391 
Automatic Expression 

Conversion, 361 
automatic variables, 76 
avg_arr program, 72 
avg_arr(), 72-73 

B 
\b backspace, 27, 351 
back() (STL), 436 
back_inserter() (STL), 

439 
backslash \, 27, 351 
backspace \b, 27, 351 
bad(), 427 
bad_al loc(), 319, 373, 

411 
bad_cast, 296, 319, 399 
bad_cast program, 319 
baa_typei d, 296, 399 
bandwagon effect, 328, 

331 
base class, 12, 273 

begin() (STL), 433 
Bidi Iter() (STL), 444 
bidirectional iterator (STL), 

437-438 
binary operator overload- 

big, 207 
binary_search() (STL), 

441 
bindlstO (STL), 451 
bind2nd() (STL), 450-451 
bit field, 135 
bit manipulation, 42, 370 
Bitwise Operators, 43, 370 
black box principle, 139, 

328-330 
block, 45, 74-76 

exit, 157, 184, 310 
scope, 75, 354 
structure, 30, 374 

bool, 32, 40, 359, 362, 
366-367 

braces {}, 45 
break, 49, 375, 379-380 
bubble program, 325 
built-in type, 364, 390 

c 
C, 327-328 
C++ and C Differences, 31 
C++ Relational, Equality, 

and Logical Operators, 
40 

c_str(),456 
call-by-reference, 83, 85, 

383 
call-by-value, 30, 156, 382 
carriage return \r, 27, 351 
CASE, 333 
case, 51, 375, 379-380 
cast, 35, 153, 223, 361-363 

conversion operator, 
411 

down, 296 
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casts 
const_cast, 132, 

362-363 
dynamic_cast, 362, 

398, 411 
mutable, 132, 392, 411 
reinterpret_cast, 

362-363 
static_cast, 362-363 
typei d, 295-296, 

398-399, 411 
catch, 308-309, 313-314, 

400, 408 
catch handler, 314, 408 
catch program, 314 
caux, 422 
cctype library, 426 
cerr, 29, 422 
ch_stack program, 137, 

155-158 
char, 32, 359, 410 
character constant, 351 
Character Literals, 27, 351 
checks library, 308 
cin, 29, 420, 422 
ci rcle(), 77 
class, 6,115,121,274,387, 

401 
abstract, 283 
base, 12, 273, 393, 395 
container, 332, 438 
data member, 139 
derived, 12, 275, 393, 

395 
global, 128 
handler, 181 
hierarchy, 12, 17, 282, 

333 
initialization, 9, 

150-151 
iterator (STL), 334 
mixin, 395 
nested, 124, 355, 410 
scope, 122, 354 
template, 245 
virtual base, 292, 396 

class (Java), 14, 16, 139 

classes (Java) 
Improved, 15 
Moon, 56 
NoSuchNameExcep- 

ti on, 322 
Person, 139 
Personl, 299 
Person2,322 
PersonTest,140 
Student, 299-300 
StudentTest, 300 
wgcd, 337 

clear(),427 
client, 3, 8, 307, 320, 328 
client (Java), 140 
clock program, 205, 207, 

225 
clog, 422 
close(), 423 
cnt_char(), 156 
COBOL, 328 
code reuse, 12 
coerce program, 247 
coerceO, 247 
coercion, 34, 330 
comma ,, 42 
comma expression, 369 
command program, 111 
comment (Java) //, 15 
comment //, 5, 24, 349 
comment pair /* */. 5, 24, 

349 
compare object (STL), 440 
compareO, 457 
comparison object (STL), 

257, 434, 436, 449 
comparison operator 

(STL), 432 
compatibility, 409 
compiler, 411 
complement ~, 43 
completeness, 333 
complex library, 2, 32, 81 
complex program, 9-11, 

122 
complexity, 3 

compound statement, 45, 
376 

concatO, 160 
conditional expression ?:, 

42, 204, 369 
const, 128-129, 353, 

361-362, 392 
const-correctness, 129 
const_cast, 132, 362-363 
constant, 26 

character, 351 
enumeration, 352, 358 
floating-point, 351-352 
long, 351 
string, 352 
unsigned, 351 

constructor, 9, 149-150, 
276, 387-388 

conversion, 152, 185, 
364, 388 

copy, 156, 161, 183, 
185, 388 

default, 151, 387 
explicit, 152, 164, 

185, 249, 388 
initialization, 185, 396 
initializer, 152, 388 
invocation, 396 
order, 292 

constructor (Java), 186 
container (STL), 252-255, 

431-432 
adapter, 257, 436 
associative, 254, 257 
deque, 254-255, 257 
list, 254-255, 257 
map, 254, 257 
members, 433 
multimap, 254, 257 
multiset, 254, 257 
priority_queue, 257 
queue, 257 
sequence, 254-255 
set, 254, 257 
stack, 257 
vector, 254-255, 257 

container class, 332, 438 
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continue, 49, 375, 379 
conversion, 195, 276 

ADT, 196 
assignment-compati¬ 

ble, 68 
cast operators, 411 
constructor, 152, 185, 

364, 388 
explicit, 35, 196, 

361-362 
function, 152 
implicit, 35, 153, 

361-362 
narrowing, 35 
rules, 366 
traditional, 34 
trivial, 224 
widening, 35 

convert(), 267 
Conway’s “Game of Life”, 

284 
copy constructor, 156, 

161, 183, 185, 388 
copy program, 243-244 
copy(), 243-244, 263, 456 
copy() (STL), 263, 444 
copy_backward() (STL), 

444 
count() (STL), 435, 443 
count_if () (STL), 443 
cout, 29, 422 
cprn, 422 
CRC notecard, 333 
cstddef library, 259, 438 
cstdio library, 29 
cstring library, 88, 93-94, 

107, 158 
ctype library, 413,426-427, 

429 
cubes program, 109 

D 
DAG, 291, 395 
dangling else, 377 
data hiding, 7, 16, 121, 

139, 329 

data hiding (Java), 140 
data member, 387 
data(), 456 
dbLsp program, 424 
dbLvect program, 163, 

210, 309, 316 
deal(), 126 
deal 1 ocate() (STL), 452 
deallocation, 9 
dec, 416 
declaration, 25, 33, 348 

global, 357 
statement, 354, 381, 

411 
template, 401 

declarations, 34 
const, 128-129, 353, 

361-362, 392 
typedef, 39, 354, 358, 

360 
volatile, 224, 361 

deep copy semantics, 161 
default, 51, 375, 379-380 
default argument, 70, 384 
default constructor, 151, 

387 
deferred method, 283 
definition, 33 
del(),169 
dele(), 288 
delete, 97, 157, 222, 

371-372 
demotion, 35 
deque (STL), 431, 433, 436 
deque library, 255 
dereferencing or indirec¬ 

tion *, 43, 83, 87, 370 
derived class, 12, 275 
deriving, 23, 273, 393 
design, 293, 332 
design pattern, 334-335 
destructor, 9, 149, 157, 

184, 387-388 
directed acyclic graph 

(DAG), 291, 395 
directive, 348, 353 

dissections 
dynarray, 99 
improved, 15 
matrix, 218 
moon, 56 
my_stri ng, 160 
operator+(), 11 
operator=(), 211 
order(), 84 
print() and 

releaseO, 170 
rational, 199 
salary, 131 
stLvect, 256 

do, 49, 375, 378 
do_ test program, 49 
double, 32, 359 
double quote \", 27, 351 
double underscore, 349 
double_space(), 424 
downcast, 296 
dynamic data structure, 82 
dynamic storage alloca¬ 

tion, 9 
dynami c_cast, 295, 362, 

398, 411 
dynarray program, 98 

E 
echo program, 66-67 
Eiffel, 1 
element of array, 90 
elementO, 174 
ellipsis, 314, 408 
else, 46, 375-376 
empty parameter list, 68 
empty() (STL), 433, 

436-437 
encapsulation, 3, 6, 16, 

122, 331 
end() (STL), 256, 433 
end-of-string sentinel \0, 

26, 158 
endl, 30, 416 
ends, 416 
enum, 38, 353 
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enum_tst program, 38 
enumeration, 38, 356, 410 

anonymous, 39 
constant, 352, 358 
type, 38 

EOF, 421, 427-428 
eofC), 427 
equal ==, 40, 366 
equal () (STL), 443 
equal_range() (STL), 

435, 441 
equality operator (STL), 

432 
equality operators, 40, 367 
eraseO (STL), 433, 435 
error condition, 307 
except library, 315, 318, 

409 
except program, 319 
exception, 296, 307, 399 

handler, 314, 405, 408 
specification, 315, 408 

exception library, 319 
exceptions 

catch, 308-309, 
313- 314, 400, 408 

throw, 308-309, 
314- 315, 406, 408 

try, 311, 313-314, 375, 
407 

exclusive or (bitwise) a, 43, 
370 

explicit, 152, 164, 185, 
249, 388 

explicit argument, 129 
explicit conversion, 35, 

196, 362 
expression, 39 

address, 370 
arithmetic, 39, 366 
assignment, 44, 368, 

376 
bit manipulation, 42, 

370 
comma, 369 
conversion, 34 
equality, 40, 366-367 

evaluation, 367 
indirection, 370 
infix, 203 
logical, 366 
mixed, 34 
relational, 366 
statement, 376 
throw, 406 

extensibility, 6, 23, 331 
extern, 76, 357-358, 

360-361, 411 
extraction, 420 

F 
\f formfeed, 27, 351 
f(), 78 
fact(), 430 
factorial program, 69 
fail (), 427 
false, 40, 359, 366-367 
fault-tolerant, 321 
file, 422 
file modes, 423 
file scope, 74, 80,128, 354, 

386 
fill () (STL), 446 
finalization, 9 
findO, 453, 457 
findO (STL), 262, 435, 

442-443 
fincLfirst_not_of(), 

458 
find_first_of(),458 
find_last_not_of(), 

458 
f i nd_l ast_of (), 458 
first_element(),167 
float, 32, 359 
float library, 33 
floating-point constant, 

351-352 
flow of control, 366 
flush, 416 
flushO, 414 
for, 47, 375, 377-378 
for_each() (STL), 443 

for_test program, 48, 50 
formal parameter, 67, 88 
formfeed \f, 27, 351 
forward iterator (STL), 

437-438 
found_next_word(), 429 
free store, 97, 154, 220, 

371-372 
friend, 200, 207-208, 246, 

389, 404 
frontO (STL), 436 
front_inserter() (STL), 

439 
fstream library, 422-423 
function, 65, 348 

accessor, 139, 154 
adapter (STL), 450-451 
argument, 68 
call (), 43, 216, 373 
call-by-reference, 83, 

85, 383 
call-by-value, 30, 156, 

382 
characteristics, 400 
const member, 128 
conversion, 152 
declaration, 382 
default argument, 70, 

384 
definition, 66 
exit, 158, 184 
friend, 200, 207-208, 

246, 389, 404 
header, 66-67 
i nl i ne, 37, 73, 

119-120, 384 
invocation, 66 
Java, 16 
member, 10, 115, 119, 

364, 389 
member (Java), 140 
mutator, 139, 154 
nested, 310 
object (STL), 448 
overloading, 72, 244, 

279-280, 384, 410 
overridden, 399 
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function (continued) 
overridden virtual, 279 
override (Java), 299 
parameter, 67-68, 88 
passing array to, 92 
prototype, 68, 354, 383 
pure virtual, 283, 396 
scope, 354 
selection, 197 
signature, 385 
signature matching, 73, 

224, 244, 385 
static member, 128, 246 
STL, 448 
syntax, 410 
template, 242, 403 
vi rtual, 279, 395-396, 

399 
function library (STL), 448 
Function Use in C++, 297 
functions 

abort(), 315, 409 
adcLtermO, 179 
appendf),455 
assign(), 160, 182, 

455 
avg_arr(), 72-73 
bad(), 427 
bad_al loc(), 319, 373, 

411 
c_str(),456 
ci rcle(), 77 
clear(), 427 
close(),423 
cnt_char(),156 
coerce(), 247 
compare(),457 
concat(), 160 
convert(), 267 
copy(), 243-244, 263, 

456 
data(), 456 
deal (), 126 
del(), 169 
deleO, 288 
double_space(),424 
elementO, 174 

eof (), 427 
f(), 78 
fact(),430 
fail(), 427 
find(), 453, 457 
find_first_not_of() 

, 458 
find_fi rst_of (), 458 
find_last_not_of(), 

458 
find_last_of O, 458 
first_element(), 167 
flush(), 414 
found_next_word(), 

429 
gcd(), 30, 108 
get(), 421 
getlineO, 421 
good(), 427 
heap_exhausted(), 

222 
how_manyO, 123 
init(), 241, 287 
init_deck(), 126 
i nsertO, 455 
isalnum(), 426 
i salphaO, 426 
isascii (), 426 
i scntrl (), 426 
isdigitO, 426 
isgraphO, 426 
i slower(), 426 
isprintO, 426 
ispunct(),426 
i sspaceO, 426 
isupperO, 426 
isxdigitO, 426 
lengthO, 456 
main(), 31, 66, 348 
max(), 75 

maxelementO, 266, 
405 

memcpyO, 112 
mpy(), 202 
nameO, 399 
nextO, 286-287 
open(),423 

operator double(), 
197 

operator new(), 373 
operatorO, 217, 235 
operator'" O, 208 
operator+(), 11, 207, 

212, 453 
operator++(), 206 
operator+=(), 217, 

453 
operator->(),220 
operator«(), 215, 

391, 419-420 
operator=(), 211,214, 

217, 223, 251 
operator [] (), 211, 

250 
operator-O, 208 
order(), 84, 86, 96 
place_min(), 97 
plot(), 71 
plus(), 119, 180 
pr_deck(),419 
prepend(),169 
printO, 10, 87, 170, 

253, 260, 277, 450 
printfO, 69 
printlnO (Java), 16 
put(), 414 
rdstateO, 427 
read(), 421 
release(), 170 
replaceO, 456 
reserveO, 456 
reset(), 225 
resetiosflagsO, 416 
resize(), 456 
rest_of(), 180 
reverseO, 176, 241 
rfind(), 458 
ringO, 66 
second_element(), 

167 
set_new_handler() 

373,405 
set_terminate(),315, 

409 
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set_unexpected(), 
315, 409 

setbaseO, 416 
setfi 11(),416 
setiosflagsO, 416 
setprecision(), 416 
setw(), 415-416 
shuffleO, 126 
sqr_or_power(), 70 
strcmpO, 94 
strcpyO, 94, 162 
streqO, 107 
strlenO, 94, 108 
sub_str(), 184 
substr(), 456 
sumO, 92, 100-101, 254 
sums(),284 
swap(), 234, 244-245, 

403 
terminateO, 314-315, 

409 
throw(), 425 
toascii(),427 
tolower(), 427 
toupperO, 427 
unexpectedO, 315, 

409 
updateO, 287 
wri te(), 414 

Fundamental Data Types, 
32, 359 

G 
garbage collection, 181 
gcd program, 30 
gcdO, 30, 108 
generateO (STL), 446 
generate_n() (STL), 446 
generic pointer, 87, 359, 

362, 410 
generic programming, 239, 

244 
get from », 29, 215, 

420 
getO, 421 
getline(),421 

global, 76 
class, 128 
data object, 411 
declaration, 357 
function, 348 
scope, 354 

good(), 427 
goto, 52, 374-375, 380, 

411 
goto_tst program, 52 
greater than >, 40, 366 
greater than or equal >=, 

40, 366 

H 
handler, 308, 314, 400, 

405, 408 
class, 181 

handler (Java), 321 
has-a relationship, 166, 

334 
heap_exhausted(), 222 
hello program, 4, 6-7 
hex, 416 
hidden member, 200 
hierarchy, 12, 17, 333 
how_many program, 123 
how_many(), 123 

I 
I/O library, 29, 413 
I/O manipulators, 416 
ICON, 332 
identifier, 25, 349-350 
if, 45, 355, 375-376 
if-else, 45, 376-377 
if Jest program, 45-46 
ifstream, 423 
implementation inheri¬ 

tance, 295 
implicit argument, 129, 

208 
implicit conversion, 35, 

153, 362 
improved, 15 

Improved class (Java), 15 
includes() (STL), 442 
inclusion, 330 
indexing or subscripting 

[], 43, 90, 373 
infix expression, 203 
inheritance, 12, 16, 329 

implementation, 295 
interface, 275 
multiple, 290, 293, 395 
public, 13 
single, 293 
structure, 14 
template, 289 
virtual, 291 

init(), 241, 287 
init_deck(), 126 
initialization, 33, 79, 90, 

387 
array, 90 
arrays, 95 
class, 9, 150-151 
constructor, 185, 396 
memberwise, 157 

initializer list, 152, 388 
inline, 37, 73, 119-120, 

384 
inline program, 73 
i nner_product() (STL), 

264, 447 
i nplace_merge() (STL), 

441 
input, 29, 413 

iterator (STL), 258, 437 
insert(),455 
insertO (STL), 433, 435 
i nserter () (STL), 439 
insertion, 413 
instantiation, 239, 246, 

404 
int, 32, 359 
interface, 139 
interface inheritance, 275 
Interviews, 329 
invertibility, 332 
io program, 29 
iomanip library, 414-416 
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iostream library, 5, 29, 81, 
292, 348,413-416,429 

is-a relationship, 275, 293 
isalnum(), 426 
isalpha(), 426 
isascii(), 426 
iscntrl(),426 
isdigit(), 426 
isgraph(),426 
islower(), 426 
isprintO, 426 
ispunctO, 426 
isspace(), 426 
istream, 420 
isupper(),426 
isxdigit(), 426 
i ter_swap() (STL), 445 
iterator, 411 
iterator (STL), 252-253, 

258, 431, 437-438 
adapter, 260, 438 
bidirectional, 258-259 
class, 334 
forward, 258-259 
input, 258 
istream, 259-260 
ostream, 259-260 
output, 258 
random access, 258-259 

iterator library (STL), 259, 
261 

J 
Java, 1 

appletviewer, 338 
constructor, 186 
method, 16, 140 
override, 299 
polymorphism, 299 

K 
Kelley, A., xvii 
kernel language, 23, 65 
key-based element (STL), 

257 

keywords, 25, 350 
auto, 76, 360 
bool, 32, 40, 359, 362, 

366-367 
break, 49, 375, 379-380 
case, 51, 375, 379-380 
catch, 308-309, 

313-314, 400, 408 
char, 32, 359, 410 
class, 115, 121, 274, 

387, 401 
const, 128-129, 353, 

361- 362, 392 
const_cast, 132, 

362- 363 
continue, 49, 375, 379 
default, 51, 375, 

379-380 
delete, 97, 157, 222, 

371-372 
do, 49, 375, 378 
double, 32, 359 
dynami c_cast, 295, 

362, 398, 411 
else, 46, 375-376 
enum, 38, 353 
explicit, 152, 164, 

185, 249, 388 
extern, 76, 357-358, 

360-361, 411 
false, 40, 359, 366-367 
float, 32, 359 
for, 47, 375, 377-378 
friend, 200, 207-208, 

246, 389, 404 
goto, 52, 374-375, 380, 

411 
if, 45, 355, 375-376 
if-else, 45, 376-377 
inline, 37, 73, 

119-120, 384 
int, 32, 359 
long, 32, 359 
long double, 359 
mutable, 132, 392, 411 
namespace, 5, 29, 

79-81, 356 

new, 97, 185, 220, 
371-373 

operator, 10, 203 
private, 120-121, 138, 

274, 387, 393 
protected, 138, 274, 

387, 393 
public, 120, 138, 

274-275, 387, 393 
regi ster, 78, 360 
reinterpret_cast, 

362-363 
return, 68, 375, 381 
short, 32, 359 
signed, 32 
signed char, 410 
sizeof, 32,43, 204, 365 
static, 78, 128, 132, 

360, 392, 404 
static_cast, 362-363 
struct, 115-116, 387 
switch, 51, 355, 375, 

379-380 
template, 239-240, 400 
this, 129, 133, 390, 

392, 410 
throw, 308-309, 

314-315, 406, 408 
true, 40, 359, 366-367 
try, 311, 313-314, 375, 

407 
typedef, 39, 354, 358, 

360 
typeid, 295-296, 

398-399, 411 
union, 134, 136, 184 
unsigned, 32, 359 
unsigned char, 32 
using, 5, 81, 357 
virtual, 279, 395-396, 

399 
void, 87, 382, 410 
void*, 87, 359, 362, 410 
volatile, 224, 361 
wchar_t, 32, 359 
while, 46-47, 375, 377 
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keywords (Java) 
class, 14, 16, 139 

L 
label, 52, 380 
left shift «, 43, 370 
length(),456 
less than <, 40, 366 
less than or equal <=, 40, 

366 
1exicographical_compa 

re() (STL), 442 
libraries 

algorithm, 261-264 
assert, 96, 112, 181, 307 
cctype, 426 
checks, 308 
complex, 2, 32, 81 
cstddef, 259, 438 
cstdio, 29 
cstring, 88, 93-94, 107, 

158 
ctype, 413, 426, 429 
degue, 255 
except, 315, 318, 409 
exception, 319 
float, 33 
f,stream, 422-423 
function (STL), 448 
iomanip, 414-416 
iostream, 5, 29, 81, 292, 

348, 413-416, 429 
iterator (STL), 259, 261 
limits, 33 
list, 253 
map, 257 
math, 334 
new, 221-222, 373 
numeric (STL), 253, 264, 

446 
signal, 308 
stack, 257 
stddef, 88, 259, 373,438 
stdexception, 319 
stdio, 29, 63, 69, 413, 

429 

std lib, 126, 157, 
221-222, 373, 423 

stream, 413 
string, 5, 66, 88, 93, 

158-159, 181, 257, 
263, 271, 334 

strstream, 425 
time, 192 
typejnfo, 296, 399 
typeinfo, 319 
vector, 255, 257, 

259-260, 263-264 
library mixing, 429 
like-a relationship, 295 
limits library, 33 
linkage, 80, 386 
linked list, 174 
LISP, 181, 328 
list (STL), 431, 433, 436 
list library, 253 
List Operations, 168 
literal, 26 
local scope, 37, 74 
location, 82 
logical operators, 40-41, 

366 
long, 32, 359 
long constant, 351 
long double, 359 
loop, 50 
lower_bound() (STL), 

435, 441 
lvalue, 44, 164, 174, 224, 

353, 368 

M 
m_to_k program, 37 
machine addresses, 82 
macro expansion, 74 
main(), 31, 66, 348 
make_heap() (STL), 441 
manip program, 415 
manipulator, 5, 30, 414 
manufacturer, 96, 307, 

320, 328 
map (STL), 431, 434 

map library, 257 
math library, 334 
matrix program, 173, 202, 

216 
max(), 75 
max() (STL), 442 
max_el ement() (STL), 442 
max_size() (STL), 433, 

452 
maxelementO, 266, 405 
member, 166 

data, 387 
function, 10, 115, 119, 

364, 389 
hidden, 200 

member function (Java), 
140 

member object selector 
204, 396 

member operator ., 8,117, 
204 

memberwise copy, 184 
memberwise initializa¬ 

tion, 157 
memcpyO, 112 
memory location, 82 
memory management 

delete, 97, 157, 222, 
371-372 

new, 97, 185, 220, 
371-373 

memory register, 78 
merge() (STL), 441 
merge-sort, 178 
message, 7, 280 
method, 6-7, 16, 280 
method (Java), 140 
Ml, 293 
tnin() (STL), 442 
mi n_element() (STL), 442 
mismatchO (S TL), 443 
mix Jo program, 430 
mixed expression, 34 
mixin class, 395 
mixing libraries, 429 
Modula-2, 327 
modulo program, 150 
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modulus %, 366 
Monte Carlo calculation, 

125 
moon, 56 
Moon class (Java), 56 
mpyO, 202 
multidimensional array, 

95, 173 
multifile program, 357-358 
multiline comment, 349 
multimap (STL), 431, 434 
multiple assignment, 30, 

212, 218, 368 
multiple inheritance, 290, 

293, 395 
multiset (STL), 431, 434 
mutable, 132, 392, 

411 
mutable program, 132 
mutator function, 139, 

154 

N 
name(), 399 
namespac program, 81 
namespace 

anonymous, 81 
scope, 80, 240, 354 

namespace, 5, 29, 79-81, 
356 

narrowing, 35 
native type, 23, 153, 195 
need to know style, 122 
negation !, 40, 366 
nested class, 124, 355, 410 
nested function, 310 
nested program, 124 
new, 97, 185, 220, 371-373 
new library, 221-222, 373 
new_hdlr program, 222 
next(), 286-287 
next_permutation() 

(STL), 441, 443 
nonmutating algorithm 

(STL), 442 

NoSuchNameException 
class (Java), 322 

not equal !=, 40, 366 
notl() (STL), 451 
not2() (STL), 451 
nth_el ement() (STL), 441 
null character \0, 26, 158 
null pointer 0, 169 
null statement, 44 
numeric library (STL), 253, 

264, 446 

o 
object, 2, 9, 16, 120, 139, 

149 
object-oriented program¬ 

ming, 1-2, 16, 327 
Occam’s Razor, 332 
oct, 416 
ofstream, 423 
one-dimensional array, 

163 
OOP, 1-2, 16, 327 
OOP Characteristics, 327 
OOP Design Methodology, 

12, 273, 329 
openO, 423 
operator, 28, 364 

assignment overload¬ 
ing, 209 

associativity, 40, 204, 
345 

binary overloading, 207 
bit manipulation, 42, 

370 
bit shift, 29 
equality, 40, 366-367 
logical, 40-41, 366 
overloading, 195, 203, 

223, 390 
precedence, 40, 204, 

345 
relational, 40, 366 
subscript overloading, 

209 
unary overloading, 204 

operator, 10, 203 
operator doubleO, 197 
operator new(), 373 
Operator Precedence and 

Associativity, 345 
operatorO, 217, 235 
operator*(), 208 
operator+O, 11, 207, 

212, 453 
operator+() dissection, 

11 

operator++0, 206 
operator+=0, 217, 453 
operator->(),220 
operator«0, 215, 391, 

419-420 
operator=(), 211, 214, 

217, 223, 251 
operator [] (), 211, 250 
operator-(), 208 
operators 

address &, 43, 82, 135, 
370 

and (bitwise) &, 43, 370 
and (logical) &&, 40, 

366-367 
assignment =, 40, 44 
autodecrement 44, 

204, 365, 391 
autoincrement ++, 44, 

204-206, 365, 391 ’ 
comma ,, 42 
complement ~, 43 
conditional expression 

?:, 42, 204, 369 
delete, 97, 157, 222, 

371-372 
dereferencing or indi¬ 

rection *, 43, 83, 87, 
370 

equal ==, 40, 366 
exclusive or (bitwise) a 

43, 370 
function call (), 43 

216, 373 
get from », 29, 215, 

420 
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greater than >, 40, 366 
greater than or equal 

>=, 40, 366 
indexing or subscript¬ 

ing [], 43, 90, 373 
left shift «, 43, 370 
less than <, 40, 366 
less than or equal <=, 

40, 366 
member ., 8, 117, 204 
member object selector 

204, 396 
modulus %, 366 
mutable, 132, 392, 411 
negation !, 40, 366 
new, 97, 185, 220, 

371-373 
not equal !=, 40, 366 
or (bitwise) |, 43, 370 
or (logical) | |, 40, 

366-367 
pointer to member ->*, 

396 
put to «, 29, 215, 

413-414, 419 
right shift », 43, 370 
scope resolution ::, 

122, 204, 355, 410 
si zeof, 32, 43, 204, 365 
smart pointer ->, 236 
structure pointer ->, 

117, 219 
typei d, 295-296, 

398-399, 411 
unary one’s comple¬ 

ment a, 370 
or (bitwise) |, 43, 370 
or (logical) I 1,40, 366-367 
order program, 83, 86, 96 
orderO, 84, 86, 96 
orthogonality, 266, 333 
ostream, 413 
OstreamJterator (STL), 

438 
out of bounds, 163 
out of free store, 222 

output, 29, 413 
iterator (STL), 258, 

437-438 
user-defined, 418 

over_new program, 221 
Overloaded Function 

Selection Algorithm, 
245, 386 

overloading, 10, 330 
assignment, 209, 211 
constructor, 151 
function, 72, 244, 

279-280, 384, 410 
I/O operators, 215 
indexing, 216 
new, 372 
new and delete, 220 
operator, 195, 203, 223, 

390 
operator, 10, 203 
subscript, 209, 211 
template function, 404 

override, 275, 279, 399 

P 
pain^e cT program, 167 
parameter, 68 

formal, 67, 88 
tempi ate, 266 

parametric polymorphism, 
239-240, 330, 400 

partial_sort() (STL), 
440 

parti al_sort_copy() 
(STL), 440 

partial_sum() (STL), 447 
parti ti on () (STL), 446 
Pascal, 328, 332 
person, 139 
Person class (Java), 139 
Personl class (Java), 299 
Person2 class (Java), 322 
PersonTest class (Java), 

140 
place_mi n(), 97 
placement, 221 

plot(), 71 
plus(), 119, 180 
Pohl, I., xvii 
point program, 118-121, 

133, 153 
pointer, 65, 82, 89, 278 

arithmetic, 91 
array, 91 
assignment, 278 
declarations, 86 
generic, 87, 359, 362, 

410 
null 0, 169 
self-referential, 133, 

390 
this, 129, 133, 390, 

392, 410 
to class member, 396 
type, 65 
universal constant, 350 

pointer to member ->*, 
396 

poker program, 125 
poly program, 175, 

213-214 
Polymorphic Genie, 239 
polymorphism, 289, 294, 

330-331 
ad hoc, 195, 330 
parametric, 239, 330 
pure, 273, 279, 330 
types, 330 

polymorphism (Java), 299 
Polynomial Prepend 

Figure, 177 
popO (STL), 436-437 
pop_heap() (STL), 441 
postcondition, 96, 307 
postfix, 44, 365 
powers program, 70 
pr_card program, 418-419 
pr_deck(), 419 
precedence, 40, 204, 345 
precondition, 96, 307 
predator program, 283 
prefix, 44, 365 
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Prepend and Reverse Oper¬ 
ations Figure, 177 

prependO, 169 
preprocessor, 348, 353 
prev_permutation() 

(STL), 441, 443 
PrintO, 10, 87, 170, 253, 

260, 277, 450 
printable program, 152 
printf(), 69 
print!n() (Java), 16 
priority,queue (STL), 436 
private, 120-121, 138, 

274, 387, 393 
prog program, 358 
program 

correctness, 96, 307 
organization, 348 
structure, 30 

programs 
AB_file, 110 
acc_mod, 298 
array_mx, 75 
arrayJm, 247 
avg_arr, 72 
bad_cast, 319 
bubble, 325 
catch, 314 
ch_stack, 137, 155-158 
clock, 205, 207, 225 
coerce, 247 
command, 111 
complex, 9-11, 122 
copy, 243-244 
cubes, 109 
dbLsp, 424 
dbLvect, 163, 210, 309, 

316 
do_test, 49 
dynarray, 98 
echo, 66-67 
enum_tst, 38 
except, 319 
factorial, 69 
for^test, 48, 50 
gcd, 30 

goto^tst, 52 
hello, 4, 6-7 
how_many, 123 
if-test, 45-46 
inline, 73 
io, 29 
m_to_k, 37 
manip, 415 
matrix, 173, 202, 216 
mix_io, 430 
modulo, 150 
multifile, 357-358 
mutable, 132 
namespac, 81 
nested, 124 
new_hdlr, 222 
order, 83, 86, 96 
over_new, 221 
pairvect, 167 
point, 118-121, 133, 153 
poker, 125 
poly, 175, 213-214 
powers, 70 
pr_card, 418-419 
predator, 283 
print abl, 152 
prog, 358 
rational, 198, 215 
root, 71 
salary, 130 
scope_t, 75 
set, 136 
shape, 282 
showhide, 397 
slist, 168, 170-171 
stack_t, 240-241, 

289-290 
stat_count, 110 
statist, 78 
stLadap, 450 
stLage, 257 
stLcont, 253 
stLdeq, 254 
stLfind, 262 
stLfucn, 448 
stljadp, 260 

stLio, 259 
stLlist, 253 
stLnumr, 264 
stLrevr, 263 
stLsort, 262 
stLstak, 258, 437 
stLvect, 252, 255 
str_strm, 425 
strfunc, 94 
string, 101, 159, 162, 

181, 452 
student, 12, 274-277 
sum_arr, 89, 91-92, 101 
SumArray (Java), 102 
swap, 244 
switch_t, 51 
throw, 310 
tracking, 183 
triple, 219 
typeid, 296 
union, 134 
vectjt, 249, 251 
virLerr, 281 
virt_sel, 279 
voidcast, 88 
weekend, 135 
while_t, 47 
word_cnt, 428 

promotion, 35 
protected, 138, 274, 387, 

393 
prototype, 383 
ptr_fun() (STL), 451 

public, 120,138,274-275, 
387, 393 

public inheritance, 13 
punctuator, 28 
pure polymorphism, 273, 

279, 330 
pure virtual function, 283, 

396 
push() (STL), 436-437 
push_heap() (STL), 441 
put to «, 29, 215, 

413-414, 419 
putQ, 414 
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Q 
queue (STL), 436 

R 
\r carriage return, 27, 351 
random-access iterator 

(STL), 437-438 
random_shuffle() (STL), 

446 
rational program, 198, 215 
rbegi n() (STL), 433 
rdstateO, 427 
read(), 421 
reference 

counting, 181 
declaration, 85 
semantics, 181 
type, 382 
variable, 82 

register, 78, 360 
reinterpret_cast, 

362-363 
relational expression, 366 
relational operators, 40 
Relational, Equality, and 

Logical Operators, 366 
released), 170 
remove() (STL), 445 
remove_copy () (STL), 446 
remove_copy_i f () (STL), 

446 
remove_if() (STL), 446 
rendO (STL), 433 
replaceO, 456 
replaceO (STL), 445 
repl ace_copy() (STL), 

445 
repl ace_copy_if() 

(STL) 445 
replacelif () (STL), 445 
reserveO, 456 
resetO, 225 
resetiosflagsO, 416 
resized), 456 
rest_of(), 180 
rethrow, 309, 311, 407 

return, 68, 375, 381 
return argument, 348 
return type, 67 
reuse, 289, 329, 332 
reverseO, 176, 241 
reversed) (STL), 263 
reverse_copy() (STL), 

444 
rfind(),458 
right shift », 43, 370 
ri ng(), 66 
Ritchie, D., xvii, 1 
roof program, 71 
rotated) (STL), 446 
rotate_copyd) (STL), 446 
runtime type identification 

(RTTI), 295, 319, 398, 
411 

s 
safe dynamic array, 165 
salary program, 130 
scope, 38, 74, 79, 81, 354, 

357 
block, 75, 354 
class, 122, 354 
file, 74, 80, 128, 354, 

386 
function, 354 
global, 354 
local, 37, 74 
namespace, 80, 240, 

354 
scope resolution ::, 122, 

204, 355, 410 
scopej program, 75 
searchd) (STL), 443 
second_elementd), 167 
selection statement, 411 
self-referential pointer, 

133, 390 
self-referential structure, 

168 
semicolon terminator, 43 
sequence algorithm (STL), 

444 

sequence container (STL), 
431, 433 

set program, 136 
set_differenced) (STL), 

442 
set_intersectiond) 

(STL), 442 
set_new_handlerd), 373, 

405 
set_symmetric_ 

differenced) (STL), 
442 

set_terminated), 315, 
409 

set_unexpectedd), 315, 
409 

set_uniond) (STL), 442 
setbased),416 
setfi lid), 416 
setiosflagsd), 416 
setprecisiond), 416 
setwd), 415-416 
shallow copy, 157, 162, 

184 
shape program, 282 
short, 32, 359 
short-circuit evaluation, 

41, 367 
showhide program, 397 
shuffled),126 
SI, 293 
side effect, 44, 374 
signal library, 308 
signature matching, 73, 

224, 244, 385 
signed, 32 
signed char, 410 
simple data type, 32 
simple derived type, 359 
Simula 67, 1, 283, 328 
single inheritance, 293 
single quote \ \ 27, 351 
Singly Linked List Figure, 

168 
sized) (STL), 433, 436-437 
sizeof, 32, 43, 204, 365 
slist program, 168,170-171 
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SmallTalk, 1, 7, 181, 328 
smart pointer ->, 236 
SNOBOL, 332 
sort() (STL), 253, 261, 

440, 442 
sort_heap() (STL), 441 
sorting algorithm (STL), 

440 
special character, 351 
sqr_or_power(), 70 
stable_partition() 

(STL), 446 
stable_sort() (STL), 440 
stack (STL), 436 
stack library, 257 
stack_t program, 240-241, 

289-290 
Standard Files, 422 
stat_count program, 110 
stat_tst program, 78 
statement, 43 

compound, 45, 376 
declaration, 354, 381, 

411 
expression, 39, 376 
labeled, 52, 380 
null, 44 
return, 381 
selection, 411 
terminator ;, 43, 374 

statements 
break, 49, 375, 379-380 
case, 51, 375, 379-380 
continue, 49, 375, 379 
default, 51, 375, 

379-380 
do, 49, 375, 378 
else, 46, 375-376 
for, 47, 375, 377-378 
goto, 52, 374-375, 380, 

411 
if, 45, 355, 375-376 
if-else, 45, 376-377 
return, 68, 375, 381 
switch, 51, 355, 375, 

379-380 
while, 46-47, 375, 377 

static, 78, 128, 132, 360, 
392, 404 

static member, 128, 246 
stati c_cast, 362-363 
stddeflibrary, 88, 259, 373, 

438 
stdexception library, 319 
stdio library, 29, 63, 69, 

413, 429 
stdlib library, 126, 157, 

221-222, 373,423 
stepwise refinement, 65 
STL, 239, 252 

adapted priority_queue, 
437 

adapted queue, 436 
adapted stack, 436 
algorithm, 252, 261, 

431, 440 
allocator object, 451 
arithmetic object, 449 
associative constructor, 

434 
associative container, 

254, 257,431,434 
associative definition, 

434 
bidirectional iterator, 

258-259 
comparison object, 257, 

434, 436, 449 
comparison operator, 

432 

container, 252,254-255, 
431 

container adapter, 257 
436 

container definition, 
432 

container interface, 
254, 431 

container member, 433 
deque, 254-255, 257, 

431, 433, 436 
equality operator, 432 
forward iterator, 

258-259 

function, 448 
function adapter, 

450-451 
function object, 448 
input iterator, 258 
insert and erase, 435 
istreamjterator, 

259-260 
iterator, 252-253, 258, 

431, 437-438 
adapter, 260, 438 
bidirectional, 

437-438 
forward, 437-438 
input, 437 
output, 437-438 
random-access, 

437-438 
key, 257 
list, 253-255, 257, 431, 

433, 436 
logical objects, 449 
map, 254, 257, 431, 434 
member functions, 435 
multimap, 254, 257, 

431, 434 
multiset, 254, 257, 431, 

434 
mutating sequence 

algorithm, 263, 
444-445 

nonmutating algo¬ 
rithm, 442 

nonmutating sequence 
algorithm, 262, 443 

numerical algorithm, 
264, 447 

ostreamjterator, 
259-260, 438 

output iterator, 258 
priority_queue, 257, 

436 
queue, 257, 436 
random access iterator 

258-259 
reverse_bidirectional_ 

iterator, 439 
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reverse_iterator, 439 
sequence container, 

254-255, 431 
sequence member, 433 
set, 254, 257 
sort algorithm, 261, 441 
sorting algorithm, 440 
stack, 257, 436 
vector, 254-255, 257, 

431, 436 
STL Defined Function 

Object Classes, 448 
STL functions 

accumulate(), 253, 
264, 447 

addressO, 452 
adjacent_difference 

(),44/ 
adjacent_find(), 443 
allocate(), 452 
back(), 436 
back_inserter(), 439 
begin(), 433 
BidiIter(),444 
binary_search(), 441 
bi ndlstO, 451 
bi nd2nd(), 450-451 
copy(), 263, 444 
copy_backward(), 444 
count(), 435, 443 
count_if(), 443 
deal locateO, 452 
emptyO, 433, 436-437 
end(), 256, 433 
equal(), 443 
equal_range(), 435, 

441 
eraseO, 433, 435 
fill 0,446 
find(), 262, 435, 

442-443 
for_each(), 443 
front(), 436 
front_inserter(), 

439 
generateO, 446 
generate_n(), 446 

includesO, 442 
inner_product(),264, 

447 
inplace_merge(),441 
insertO, 433, 435 
inserter(), 439 
iter_swap(), 445 
1exicographi cal_ 

compareO, 442 
lower_bound(), 435, 

441 
make_heapO, 441 
max(),442 
max_element(),442 
max_size(), 433, 452 
merge(), 441 
mi n(), 442 
min_element 0,442 
mismatch(), 443 
next_permutation(), 

441,443 
notl(), 451 
not2(), 451 
nth_element(), 441 
partial_sort(), 440 
partial_sort_copy(), 

440 
partial_sum(), 447 
partition(), 446 
pop(), 436-437 
pop_heap(), 441 
prev_permutation(), 

441, 443 
ptr_fun(), 451 
push(), 436-437 
push_heap(), 441 
random_shuffle(), 

446 
rbegin(),433 
removeO, 445 
remove_copyO, 946 
remove_copy_if(), 

446 
removeO f (), 446 
rend(), 433 
replaceO, 445 
replace_copy(),445 

replace_copy_if0, 
445 

replace_if(), 445 
reverseO, 263 
reverse_copy(), 444 
rotateO, 446 
rotate_copy(), 446 
searchf), 443 
set_difference(), 

442 
set_i ntersectionO, 

442 
set_symmetric_ 

differenceO, 442 
set_union(), 442 
sizeO, 433, 436-437 
sortO, 253, 261, 440, 

442 
sort_heap(), 441 
stable_partition(), 

446 
stable_sort(), 440 
swap(), 433, 445 
swap_range(),445 
topO, 436-437 
transformO, 445 
unique(),444 
unique_copy(), 445 
upper_bound(), 435, 

441 
stLadap program, 450 
stLage program, 257 
stLcont program, 253 
stLdeq program, 254 
stLfind program, 262 
stl_fucn program, 448 
slLiadp program, 260 
stLio program, 259 
stljist program, 253 
stLnumr program, 264 
stLrevr program, 263 
stLsort program, 262 
stl_stak program, 258, 

437 
stLvect program, 252, 

255 
storage class, 74, 360 
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storage types 
auto, 76, 360 
extern, 76, 357-358, 

360-361, 411 
regi ster, 78, 360 
static, 78, 128, 132, 

360, 392, 404 
str_func program, 94 
str_strm program, 425 
strcmpO, 94 
strcpyO, 94, 162 
stream library, 413 
stream states, 427 
streams 

caux, 422 
cerr, 29, 422 
cin, 29, 420, 422 
clog, 422 
cout, 29, 413, 

422 
cprn, 422 

streq(), 107 
string, 82, 452 

ADT, 93, 158 
constant, 352 
constructor, 454 
data member, 453 
find member, 458 
global operator, 459 
literal, 26-27 
member function, 454, 

456 
overloaded operator, 

454 
overloaded operators, 

459 
reference semantics, 

181 
type, 158 

string library, 5, 66, 88, 93, 
158-159, 181, 257, 
263, 271, 334 

string program, 101, 159, 
162, 181, 452 

strlen(), 94, 108 
Stroustrup, B„ xvii, 1,115 
strstream library, 425 
struct, 115-116, 387 
structure 

anonymous, 117 
block, 30 
member, 115 
program, 30 

structure pointer ->, 117, 
219 

Student class (Java), 299 
student program, 12, 

274-277 
Student<id> class 

(Java), 300 
StudentTest class (Java), 

300 
style 

need to know, 122 
polymorphic, 327 

sub_str(), 184 
substr(),456 
subtype, 276, 294, 393 
sum(), 92, 100-101, 254 
sum_arr program, 89, 

91-92, 101 
SumArray Java program, 

102 
sums(),284 
swap program, 244 
swap(), 234, 244-245, 403 
swap() (STL), 433, 445 
swap_range() (STL), 445 
switch, 51, 355, 375, 

379-380 
switch effects, 380 
switchj program, 51 
symbol, 28 
symbolic constant, 90 

T 
tag name, 38, 116 
template, 239, 289 

argument, 246, 401 
declaration, 401 
function, 242, 403 
library (STL), 239, 252 
methodology, 295 
parameter, 266 
specialization, 404 

template, 239-240, 400 
terminateO, 314-315, 

409 
terminator statement, 43, 

374 
this, 129, 133, 390, 392, 

410 
Thompson, K., xvii 
throw, 308-309, 314-315, 

406, 408 
throw expression, 309, 406 
Throw Expression Match, 

313 
throw program, 310 
throw(), 425 
tick(), 205 
time library, 192 
toascii(), 427 
tokens, 24, 348 
tolower(), 427 
top() (STL), 436-437 
toupper(), 427 
tracking program, 183 
traditional conversion, 34 
transformO (STL), 445 
triple program, 219 
trivial conversion, 224 
true, 40, 359, 366-367 
try, 311, 313-314, 375, 

407 
try block, 313 
two-dimensional array 

173 
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type, 37 
built-in, 364, 390 
checking, 68 
compatibility, 410 
declaration, 25, 348 
derived, 359 
enumeration, 38, 410 
examples, 360 
extensibility, 6, 23, 331 
generic pointer, 87, 359, 

362, 410 
instantiation, 239, 246, 

404 
native, 6, 23, 153, 195 
pointer, 65 
reference, 382 
return, 67 
safety, 74, 331, 383 
simple, 32 
string, 82, 158, 452 
tag name, 38, 116 
user-defined, 195, 387, 

418 
Type Differences for ANSI 

C, 410 
typejd program, 296 
typejnfo library, 296, 399 
typedef, 39,354,358,360 
typeid, 295-296, 398-399, 

411 
typeinfo library, 319 
types 

bool, 32, 40, 359, 362, 
366-367 

char, 32, 359,410 
class, 115, 121, 274, 

387, 401 
class (Java), 14,16,139 
double, 32, 359 
enum, 38, 353 
float, 32, 359 
i nt, 32, 359 
long, 32, 359 
long double, 359 

short, 32, 359 
si gned, 32 
si gned char, 410 
struct, 115-116, 387 
template, 239-240, 400 
union, 134, 136, 184 
unsigned, 32, 359 
unsigned char, 32 
void, 87, 382, 410 
voi d*, 87, 359, 362, 410 
wchar_t, 32, 359 

u 
unary one’s complement a, 

370 
unary operator overload¬ 

ing, 204 
unconditional branch, 52 
underscore, 349 
unexpectedO, 315, 409 
union 

anonymous, 135, 184, 
359 

initializer, 134 
member, 134 

union, 134, 136, 184 
union program, 134 
uniqueO (STL), 444 
unique_copy() (STL), 

445 
universal pointer constant, 

350 
UNIX, xvii, 1 
unsi gned, 32, 359 
unsigned char, 32 
unsigned constant, 351 
updateO, 287 
upper_bound() (STL), 

435, 441 
user-defined output, 418 
user-defined type, 195, 

387, 418 
usi ng, 5, 81, 357 

V 
\v vertical tab, 27, 351 
variable, 354 

global, 76 
reference, 82 

vect_it program, 249, 251 
vector (STL), 431, 436 
vector library, 255, 257, 

259-260, 263-264 
vertical tab \v, 27, 351 
virt_sel program, 279, 281 
virtual 

base class, 292, 396 
inheritance, 291 

vi rtual, 279, 395-396, 
399 

visibility, 79, 115, 276 
void, 87, 382,410 
void*, 87, 359, 362, 

410 
voidcast program, 88 
volati le, 224, 361 

w 
wchar_t, 32, 359 
website, xx 
weekend program, 135 
wgcd class (Java), 337 
while, 46-47, 375, 

377 
wh ilej program, 47 
white space, 27-28, 352 
widening, 35 
width of bit field, 135 
word_cnt program, 428 
write(), 414 
ws, 416 

z 
zero, 26, 158 
zero null pointer, 169 
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C Interfaces and Implementations 
Techniques for Creating Reusable Software 

David R. Hanson 

Every programmer and software project manager must master the art of creating 
reusable software modules, which are the building blocks of large, reliable 
applications. Unlike some modem object-oriented languages, C provides little 
linguistic support or motivation for creating reusable application programming 
interfaces (APIs). While most C programmers use APIs and the libraries that 
implement them in almost every application they write, relatively few program¬ 
mers create and disseminate new, widely applicable APIs. C Interfaces and 
Implementations shows how to create reusable APIs using interface-based design, 
a language-independent methodology that separates interfaces from their 
implementations. This methodology is explained by example. The author 
describes in detail twenty-four interfaces and their implementations, providing 
the reader with a thorough understanding of this design approach. 

544 pages • Paperback • ISBN 0-201-49841-3 

http: / / www.awl.com/cseng / titles /0-201-49841-3 / 

A Retargetable C Compiler 
Design and Implementation 

Christopher W. Fraser and David R. Hanson 

This book examines the design and implementation of lcc, a production-quality, 
retargetable compiler for the ANSI C programming language designed at 
AT&T Bell Laboratories and Princeton University. The authors' innovative 
approach—a "literate program" that intermingles the text with the source 
code—gives a detailed tour of the code that explains the implementation and 
design decisions reflected in the software. And while most books describe toy 
compilers or focus on isolated pieces of code, the authors provide the entire 
source code for a real compiler, which is available via ftp. Structured as a self- 
study guide that describes the real-world tradeoffs encountered in building a 
production-quality compiler, this book is useful to individuals who work in 
application areas applying or creating language-based tools and techniques. 

592 pages • Hardcover • ISBN 0-8053-1670-1 

http://www.awl.com/cseng/titles/0-8053-1670-1/ 

Programming 

C Programming FAQs 
Frequently Asked Questions 

Steve Summit 

Steve Summit furnishes you with answers to some of the most frequently 
asked questions in C. Extensively revised from his popular FAQ list on the 
Internet, more than 400 questions are answered to illustrate key points and 
to provide practical guidelines for programmers. C Programming FAQs is a 
welcomed reference for all C programmers, providing accurate answers, 
insightful explanations, and clarification of fine points, along with numerous 
code examples. 

432 pages • Paperback • ISBN 0-201-84519-9 

http://www.awl.com/cseng/titles/0-201-84519-9/ 



C BY DISSECTION 
THE ESSENTIALS OF C PROGRAMMING 
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AL KELLEY AND IRA POHL THIRD EDITION 

C By Dissection, Third Edition 
The Essentials ofC Programming 

A1 Kelley and Ira Pohl 

This significantly revised edition has been carefully designed to meet 

the needs of readers new to C. The reader moves easily through the 

fundamentals of C and on to its latest applications by means of a time- 

tested explanatory tool called dissection, first developed by the authors in 

1984. Dissection, a pedagogical method similar to a structured step-by-step 

walk-through, explains new programming elements and idioms as they 

are encountered in working code. Right from the start, the authors 

introduce the reader to complete programs, and at an early point in 

the text the reader learns to write functions, an important feature of 

structured programming. 

720 pages • Paperback • ISBN 0-8053-3149-2 

http://www.awl.com/cseng/titles/0-8053-3149-2/ 

A BUSINESS APPROACH 

JIM SEARING 

C for COBOL Programmers 
A Business Approach 

Jim Gearing 

Written by an experienced business data systems designer and 

programmer, this new tutorial provides an ideal introduction to C 

for the COBOL programmer who wants to become proficient in the 

powerful C language. Featuring side-by-side comparisons of the 

syntax and constructs of the two languages, Cfor COBOL Programmers 

uses the reader's knowledge of COBOL to build a framework for 

learning C quickly and easily. The book introduces coded examples 

in C early, and in the context of a business environment. A complete 

chapter is devoted to explaining the important differences between 

COBOL and C for data handling and I/O, while another chapter 

focuses on C programming standards as applied to business data 

processing. A valuable appendix cross-references COBOL commands 

to C commands, operators, and functions. 

544 pages • Paperback • ISBN 0-8053-1660-4 

http: / / www.awl.com / cseng / titles / 0-8053-1660-4 / 

C++ FOR FORTRAN 
PROGRAMMERS 

IRA POHL. 

C++ For Fortran Programmers 
Ira Pohl 

Using your existing knowledge of Fortran, C++for Fortran Programmers 

gets you up and running with C++ quickly. By showing how individual 

elements of a Fortran program compare and translate into C++, this book 

helps you make a smooth transition to C++ and object-oriented concepts. 

Best-selling author and C++ authority Ira Pohl uses his trademark 

dissection technique to illustrate the underlying structure of programs 

and to help you understand design trade-offs. Scientific and engineering 
coding examples are featured throughout the text. 

560 pages • Paperback • ISBN 0-201-92483-8 

http://www.awl.com/cseng/titles/0-201-92483-8/ 



COVERS ANSI/ISO DRAFT STANDARD 

++DISTILLED 

C++ Distilled 
A Concise ANSI/ISO Reference and Style Guide 
Ira Pohl 

In C++ Distilled, veteran teacher and programmer Dr. Ira Pohl condenses 

700 pages of proposed ANSI standard into a concise road map to C++. 

Selecting the most important and commonly used language elements. Dr. 

Pohl provides syntax, semantics, and examples, as well as style tips that he 

has distilled from more than two decades of experience. C++ Distilled is a 

handy reference to the most recent additions to the language, many of 

which have yet to be covered in existing C++ books. All source code from 

the book is available via the World Wide Web. 

224 pages • Paperback • ISBN 0-201-69587-1 

http://www.awl.com/cseng/titles/0-201-69587-1 / 

Object-Oriented Programming Using C++, 

Second Edition 
Ira Pohl 

Object-Oriented Programming Using C++, Second Edition provides the 

experienced programmer with a clear and thorough introduction to the 

object-oriented paradigm using ANSI C++. Each chapter introduces you 

to specific C++ language features that support object-oriented programming 

concepts, including the most recent additions to the language such as STL, 

namespaces, RTTI, and the bool type. The book illustrates concepts by 

example, providing full working programs right from the start. All source 

code from the book is available via the World Wide Web. 

576 pages • Paperback • ISBN 0-201-89550-1 

http://www.awl.com/cseng/titles/0-201-89550-1/ 

A Book on C, Fourth Edition 
Programming in C 

A1 Kelley and Ira Pohl 

Now in its fourth edition, A Book on C retains the features that have made 

it a proven, best-selling tutorial and reference on the ANSI C programming 

language. This new edition includes new and updated programming 

examples and dissections (the authors' trademark technique!), multifile 

programming. Abstract Data Types, updated material on transitioning to 

C++, and new coverage on transitioning from C to Java. References to key 

programming functions and C features are provided in convenient tables. 

Beginners and professional programmers alike will benefit from the 

numerous examples and extensive exercises developed to guide readers 

through each concept. 

752 pages • Paperback • ISBN 0-201-18399-4 

http://www.awl.com/cseng/titles/0-201-18399-4/ 
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Howto 
7. Visit our Web site 
http://www.awl.com/cseng 

When you think you've read enough, there's always more content for you at 

Addison-Wesley's web site. Our web site contains a directory of complete 

product information including: 

• Chapters 

• Exclusive author interviews 

• Links to authors'pages 

• Tables of contents 

• Source code 

You can also discover what tradeshows and conferences Addison-Wesley will 

be attending, read what others are saying about our titles, and find out where 

and when you can meet our authors and have them sign your book. 

3. Contact with Us via Email 
cepubprof@awl.com 

Ask general questions about our books. 

Sign up for our electronic mailing lists. 

Submit corrections for our web site. 

bexpress@awl.com 

Request an Addison-Wesley catalog. 

Get answers to questions regarding 

your order or our products. 

innovations@awl.com 

Request a current Innovations Newsletter. 

webmaster@awl.com 

Send comments about our web site. 

cepubeditors@awl.com 

Submit a book proposal. 

Send errata for an Addison-Wesley book. 

cepubpublicity@awl.com 

Request a review copy for a member of the media 

interested in reviewing new Addison-Wesley titles. 

Addison Wesley Longman 
Computer and Engineering Publishing Group 

One Jacob Way, Reading, Massachusetts 01867 USA 

TEL 781-944-3700 • FAX 781-942-3076 

We encourage you to patronize the many fine retailers 

who stock Addison-Wesley titles. Visit our online directory 

to find stores near you or visit our online store: 

http://store.awl.com/ or call 800-824-7799. 

Interact 
with Us 

2. Subscribe to Our Email Mailing Lists 
Subscribe to our electronic mailing lists and be the first to know 

when new books are publishing. Here's how it works: Sign up for our 

electronic mailing at http://www.awl.com/cseng/mailinglists.html. 

Just select the subject areas that interest you and you will receive 

notification via email when we publish a book in that area. 
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C++/Programming Languages 

C~ FOR C PROGRAMMERS 
THIRD EDITION 

IRA F» O H l_ 

Extensively revised and updated, this proven book by noted C++/C expert Ira Pohl 
is written specifically for C programmers who are transitioning to C++. C++ for C 
Programmers, Third Edition, takes an evolutionary teaching approach, using C 
as a starting point and C++ as a destination. This edition reflects the new ANSI C++ 
Standard, and covers the latest language features—including detailed discussions 
of templates, STL, and exception handling. Each chapter contains a brief examination 
of Java that compares and contrasts it with C++, providing the C programmer with a 
more complete understanding of both C and C++ and their relationship to Java. 

Highlights of C++ for C Programmers, Third Edition, include: 

• A smooth transition to C++ and object-oriented programming for programmers 
already familiar with C 

• Extensive exercises and frequent language comparisons to teach concepts quickly 
and to introduce the language’s powerful object-oriented features 

• Pohl’s trademark “dissection” code presentation technique, which illustrates the 
underlying structure of programs and makes design tradeoffs understandable 

A companion Web site, including source code, is located at: 
http://www.awl.com/cseng/titles/0-201 -39519-3/ 

Ira Pohl is a professor of computer and information sciences at the University of 
California, Santa Cruz. He has thirty years of experience as a software methodologist 
and is an internationally recognized authority on C++/C programming. Pohl is also 
a frequent consultant for organizations such as Apple, DEC, and NTU (National 
Technological University), and is the author of eight books on C++, C, and Java 
programming. 

Cover illustration by Malcolm Piers, The Image Bank 
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