

Digitized by the Internet Archive

in 2019 with funding from

Kahle/Austin Foundation

https://archive.org/details/cforcprogrammersOOOOpohl

Programmers

Third Edition

Programmers

Third Edition

Ira Pohl
University of California, Santa Cruz

A
▼ ▼
ADDISON-WESLEY

An Imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts • Harlow, England • Menlo Park,
California • Berkeley, California • Don Mills, Ontario
Sydney • Bonn • Amsterdam • Tokyo • Mexico City

W '7G,7

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison Wesley Longman, Inc. was aware of a trademark claim, the
designations have been printed in initial capital letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for
special sales. For more information, please contact:

Corporate, Government, and Special Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867
(718) 944-3700

Library of Congress Cataloging-in-Publication Data

Pohl, Ira
C++ for C Programmers / Ira Pohl.-3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-39519-3
1. C++ (Computer program language) I. Title.

QA76.73.C153P654 1999
005.13'3-dc21 98-37980

CIP

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

ISBN 0-201-39519-3
Text printed on recycled and acid-free paper
123456789 10-MA—0201009998
First printing, November 1998

To Laura and her mother

Preface xvii

Chapter 1 An Overview of C++ and Object-Oriented Programming 1
1.1 Object-Oriented Programming.2
1.2 Why Learn C++?.3
1.3 C as a Starting Point.4
1.4 Classes and Abstract Data Types.6
1.5 Constructors and Destructors.9
1.6 Overloading.10

Dissection of the operator+() Function.11
1.7 Inheritance.12
1.8 Moving from C++to Java.14

Dissection of the improved Program.15
1.9 Benefits of Object-Oriented Programming.16

1.10 Pragmatics.17
Summary.18
Review Questions.19
Exercises.19

Chapter 2 Native Types and Statements 23
2.1 Program Elements.24

2.1.1 Comments.24
2.1.2 Keywords.25
2.1.3 Identifiers.25
2.1.4 Literals.26
2.1.5 Operators and Punctuators.28

2.2 Input/Output.29
2.3 Program Structure.30
2.4 Simple Types.32

2.4.1 Initialization.33
2.5 The Traditional Conversions.34
2.6 Enumeration Types.38

2.6.1 typedef Declarations.39
2.7 Expressions.39

viii ▼ Contents

2.8 Statements.43
2.8.1 Assignment and Expressions.44
2.8.2 The Compound Statement.45
2.8.3 The i f and i f-el se Statements.45
2.8.4 The whi le Statement.46
2.8.5 The for Statement.47
2.8.6 The do Statement.49
2.8.7 The break and conti nue Statements.49
2.8.8 The switch Statement.51
2.8.9 The goto Statement.52

2.9 Pragmatics.53
2.10 Moving from C++to Java.55

Dissection of the Moon Program.56
Summary.57
Review Questions.59
Exercises.60

Chapter 3 Functions, Pointers, and Arrays 65
3.1 Functions.65

3.1.1 Function Invocation.66
3.2 Function Definition.66
3.3 The return Statement.68
3.4 Function Prototypes.68

3.4.1 Recursion.69
3.5 Default Arguments.70
3.6 Functions as Arguments.71
3.7 Overloading Functions.72
3.8 Inlining.73
3.9 Scope and Storage Class.74

3.9.1 The Storage Class auto.76
3.9.2 The Storage Class extern.76
3.9.3 The Storage Class regi ster.78
3.9.4 The Storage Class static.78
3.9.5 linkage Mysteries.80

3.10 Namespaces.80
3.11 Pointer Types.82

3.11.1 Addressing and Dereferencing.83
3.11.2 Pointer-Based Call-by-Reference.83
Dissection of the order() Function.84

3.12 Reference Declarations and Call-by-Reference.85
3.13 The Uses of void.87

▼ Contents IX

3.14 Arrays and Pointers. 89
3.14.1 Subscripting.90
3.14.2 Initialization.90

3.15 The Relationship Between Arrays and Pointers.91
3.16 Passing Arrays to Functions.92
3.17 The char* String: A Kernel Language ADT.93
3.18 Multidimensional Arrays.95
3.19 Assertions and Program Correctness.96
3.20 Free-Store Operators new and delete.97

Dissection of the dynarray Program.99
3.21 Pragmatics.100

3.21.1 Vector Instead of Array.100
3.21.2 String Instead of char*.101

3.22 Moving from C++to Java.102
Dissection of the SumArray Program.103
Summary.104
Review Questions.106
Exercises.107

Chapter 4 Classes 115
4.1 The Aggregate Type struct and class.115
4.2 Structure Pointer Operator.117
4.3 Member Functions.118
4.4 Access: Private and Public.120
4.5 Classes.121
4.6 Class Scope.122

4.6.1 Scope Resolution Operator.122
4.6.2 Nested Classes.124

4.7 An Example: Flushing.12 5
4.8 stati c and const Members.128

Dissection of the salary Program.131
4.8.1 Mutable Members.132

4.9 The thi s Pointer.133
4.10 Unions.134
4.11 Bit Fields.135
4.12 A Container Class Example: ch_stack.136
4.13 Pragmatics.138
4.14 Moving from C++to Java.139

Summary.141
Review Questions.142
Exercises.143

x ▼ Contents

Chapter 5 Constructors and Destructors 149
5.1 Classes with Constructors.150

5.1.1 The Default Constructor.151
5.1.2 Constructor Initializer.152
5.1.3 Constructors as Conversions.152
5.1.4 Improving the point Class.153

5.2 Constructing a Dynamically Sized Stack.154
5.2.1 The Copy Constructor.156

5.3 Classes with Destructors.157
5.4 An Example: Dynamically Allocated Strings.158

Dissection of the my_stri ng Class.160
5.5 The Class dbl_vect.163

5.5.1 dbl_vect as a Linear Vector Type.165
5.6 Members That Are Class Types.166
5.7 Example: A Singly Linked List.168

Dissection of the print() and release() Lunctions . . .170
5.8 Two-Dimensional Arrays.173
5.9 Polynomials as a Linked List.174

5.10 Strings Using Reference Semantics.181
5.11 No Constructor, Copy Constructor, and Other Mysteries 183

5.11.1 Destructor Details.184
5.12 Pragmatics.185
5.13 Moving from C++to Java.186

Summary.187
Review Questions ..188
Exercises.189

Chapter 6 Operator Overloading and Conversions 195
6.1 ADT Conversions.196
6.2 Overloading and Lunction Selection.197

Dissection of the rational Program.199
6.3 friend functions.200
6.4 Overloading Operators.203
6.5 Unary Operator Overloading.204
6.6 Binary Operator Overloading.207
6.7 Overloading Assignment and Subscripting Operators.209

Dissection of dbl_vect:: operator=() function211
6.8 Polynomial: Type and Language Expectations.213
6.9 Overloading I/O Operators « and ».215

6.10 Overloading Operator () for Indexing.216
Dissection of the Class mat ri x.218

6.11 Overloading the Pointer Operator ->.219

▼ Contents xi

6.12 Overloading new and delete.220
6.13 Pragmatics.223

6.13.1 Signature Matching.224
6.14 Moving from C++to Java.226

Summary.228
Review Questions.229
Exercises.230

Chapter 7 Templates, Generic Programming, and STL 239
7.1 Template Class stack.240
7.2 Function Templates.242

7.2.1 Signature Matching and Overloading.244
7.3 Class Templates.245

7.3.1 Friends.246
7.3.2 Static Members.246
7.3.3 Class Template Arguments.246
7.3.4 Default Template Arguments.247
7.3.5 Member Templates.248

7.4 Parameterizing the Class vector.248
7.5 STL.252

7.5.1 STL Example Code.252
7.6 Containers.254

7.6.1 Sequence Containers.255
Dissection of the stLvectProgram.256
7.6.2 Associative Containers.257
7.6.3 Container Adapters.257

7.7 Iterators.258
7.7.1 The istream_iterator and ostream_iterator . .259
7.7.2 Iterator Adapters.260

7.8 Algorithms.261
7.8.1 Sorting Algorithms.261
7.8.2 Nonmutating Sequence Algorithms.262
7.8.3 Mutating Sequence Algorithms.263
7.8.4 Numerical Algorithms.264

7.9 Numerical Integration Made Easy.264
7.10 Pragmatics. 266
7.11 Moving from C++ to Java.267

Summary.268
Review Questions.269
Exercises.269

xii ▼ Contents

Chapter 8 Inheritance 273
8.1 A Derived Class.274
8.2 Typing Conversions and Visibility.276
8.3 Virtual Functions.279
8.4 Abstract Base Classes.283
8.5 Templates and Inheritance.289
8.6 Multiple Inheritance.290
8.7 Inheritance and Design.293

8.7.1 Subtyping Form.294
8.7.2 Code Reuse.295

8.8 Runtime Type Identification.295
8.9 Pragmatics.297

8.10 Moving from C++to Java.298
Summary.301
Review Questions.302
Exercises.303

Chapter 9 Exceptions 307
9.1 Using the assert Library.307
9.2 C++Exceptions.308
9.3 Throwing Exceptions.309

9.3.1 Rethrown Exceptions.311
9.3.2 Exception Expressions.312

9.4 Try Blocks.313
9.5 Handlers.314
9.6 Exception Specification.315
9.7 terminate() and unexpectedf).315
9.8 Example Exception Code.316
9.9 Standard Exceptions and Their Uses.318

9.10 Pragmatics.320
9.11 Moving from C++to Java.321

Summary.323
Review Questions.324
Exercises.325

Chapter 10 OOP Using C++ 327
10.1 OOP Language Requirements.327

10.1.1 ADTs: Encapsulation and Data Hiding.328
10.1.2 Reuse and Inheritance.329
10.1.3 Polymorphism.330

10.2 OOP: The Dominant Programming Methodology.331
10.3 Designing with OOP in Mind.332
10.4 Class-Responsibility-Collaborator.333
10.5 Design Patterns.334

▼ Contents xiii

10.6 Moving from C++to Java.336
Summary.338
Review Questions.340
Exercises.341

Appendix A ASCII Character Codes 343

Appendix B Operator Precedence and Associativity 34S

Appendix C Language Guide 347
C.l Program Structure.347
C.2 Lexical Elements.348

C.2.1 Comments.349
C.2.2 Identifiers.349
C.2.3 Keywords.350

C.3 Constants.350
C.4 Declarations and Scope Rules.354
C.5 Namespaces.356
C.6 Linkage Rules.357
C.7 Types.359
C.8 Conversion Rules and Casts.361
C.9 Expressions and Operators.364

C.9.1 sizeof Expressions.365
C.9.2 Autoincrement and Autodecrement Expressions . . .365
C.9.3 Arithmetic Expressions.366
C.9.4 Relational, Equality, and Logical Expressions366
C.9.5 Assignment Expressions.368
C.9.6 Comma Expressions.369
C.9.7 Conditional Expressions.369
C.9.8 Bit-Manipulation Expressions.370
C.9.9 Address and Indirection Expressions.370

C.9.10 new and delete Expressions.371
C.9.11 Other Expressions.373

C.10 Statements.374
C.l0.1 Expression Statements.376
C.10.2 The Compound Statement.376
C.10.3 The i f and i f-el se Statements.376
C.l0.4 The while Statement.377
C.10.5 The for Statement.377
C.10.6 The do Statement.378
C.10.7 The break and continue Statements.379
C.10.8 The switch Statement.379
C.10.9 The goto Statement.380

C.10.10 The return Statement.381
C.l0.11 The Declaration Statement.381

XIV Contents ▼

C.ll Functions.382
C.ll.l Prototypes.383
C.11.2 Call-by-Reference.383
C.ll.3 Inline Functions.384
C.11.4 Default Arguments.384
C.11.5 Overloading.384
C.11.6 Type-Safe Linkage for Fmictions.386

C.12 Classes.387
C.12.1 Constructors and Destructors.387
C.12.2 Member Functions.389
C.12.3 Friend Functions.389
C.12.4 The thi s Pointer.390
C.12.5 Operator Overloading.390
C.12.6 stati c and const Member Functions.392
C.12.7 Mutable.392

C.13 Inheritance.393
C.13.1 Multiple Inheritance.395
C.13.2 Constructor Invocation.396
C.13.3 Abstract Base Classes.396
C.13.4 Pointer to Class Member.396
C.13.5 Runtime Type Identification.398
C.13.6 Virtual Functions.399

C.14 Templates.400
C.14.1 Template Parameters.402
C.14.2 Function Template.403
C.14.3 Friends.404
C.14.4 Static Members.404
C.14.5 Specialization.404

C.15 Exceptions.405
C.15.1 Throwing Exceptions.406
C.15.2 Try Blocks.407
C.15.3 Handlers.408
C.15.4 Exception Specification.408
C.15.5 termi nate() and unexpected().409
C.15.6 Standard Library Exceptions.409

C.16 Caution and Compatibility.409
C.16.1 Nested Class Declarations.410
C.16.2 Type Compatibilities.410
C.16.3 Miscellaneous.410

C.17 New Features in C++.411

▼ Contents xv

Appendix D Input/Output 413
D.l The Output Class ost ream.413
D.2 Formatted Output and iomanip.414
D.3 User-Defined Types: Output.418
D.4 The Input Class i stream.420
D.5 Files.422
D.6 Using Strings as Streams.425
D.7 The Functions and Macros in ctype.426
D.8 Using Stream States.427
D. 9 Mixing I/O Libraries.429

Appendix E STL and String Libraries 431
E. l Containers.431

E.1.1 Sequence Containers.433
E.l.2 Associative Containers.434
E.1.3 Container Adapters.436

E.2 Iterators.437
E.2.1 Iterator Categories.437
E.2.2 Iterator Adapters.438

E.3 Algorithms.440
E.3.1 Sorting Algorithms.440
E.3.2 Nonmutating Sequence Algorithms.442
E.3.3 Mutating Sequence Algorithms.444
E.3.4 Numerical Algorithms.446

E.4 Functions.448
E.4.1 Function Adapters.450

E.5 Allocators.451
E.6 String Library.452

E.6.1 Constructors.454
E.6.2 Member Functions.454
E.6.3 Global Operators.459

References 461

Index 463

.

The book uses an evolutionary teaching process, with C as a starting point and C++
as a destination. It can also be used by those already familiar with other similar pro¬
gramming languages, such as Pascal, PL/1, or BASIC. The reader can stop and use
the language facilities at various points in the text.

This book will get the C programmer up and running in C++ in the shortest pos¬
sible time. The teaching-by-equivalency method used enables the C programmer to
immediately convert existing code to C++. Working code is emphasized. A program
particularly illustrative of the chapter’s themes is analyzed by dissection, which is
similar to a structured walk-through of the code. Dissection explains to the reader
newly encountered programming elements and idioms.

C is a general-purpose programming language that was originally designed by
Dennis Ritchie of Bell Laboratories and implemented there on a PDP-11 in 1972. C
was first used as the systems language for the UNIX operating system. Ken Thomp¬
son, the developer of UNIX, had been using both an assembler and a language
named B to produce initial versions of UNIX in 1970.

C++, invented at Bell Labs by Bjarne Stroustrup in the mid-1980s, is a powerful
modern successor language to C. C++ adds to C the concept of class, a mechanism
for providing user-defined types, also called abstract data types. C++ supports
object-oriented programming by these means and by providing inheritance and run¬
time type binding. C++ is increasingly the choice of scientists and engineers in
developing scientific software.

This book, intended for use in a first course in C++ programming, can be used
as a supplementary text in an advanced programming, data structures, software
methodology, comparative language, or other course in which the instructor wants
C++ to be the language of choice. Each chapter presents a number of carefully
explained programs.

All of the major pieces of code were tested. A consistent and proper coding
style is adopted from the beginning and is one chosen by professionals in the C++
community. The code is available at the Addison Wesley Longman Web site
(www.awl.com/cseng/titles/0-201-39519-3/).

For the programmer who wants C experience, this book could be used in con¬
junction with A Book on C, 4th ed., by A1 Kelley and Ira Pohl (Addison-Wesley, 1998).
As a package, the two books offer a unique, integrated treatment of the C and C++
programming languages and their use.

XV111 t Preface

This book incorporates a number of important features.

■ An evolutionary approach. The C programmer can immediately benefit
from programming in C++. Chapter 1, “An Overview of C++ and Object-
Oriented Programming,” provides an introduction to the use of C++ as an
object-oriented programming language. Chapter 2, “Native Types and State¬
ments,” reviews the kernel language, which is mostly C with some improve¬
ments. Chapter 3, “Functions, Pointers, and Arrays,” continues with
similarities between functions and complex data types. The middle chapters
show how to use classes, which are the basis for abstract data types and
object-oriented programming (OOP). The later chapters give advanced
details of the use of inheritance, templates, and exceptions. At any point in
the text, the programmer can stop and use the new material.

■ Teaching by example. The book is a tutorial that stresses examples of
working code. Right from the start, the student is introduced to full working
programs. An interactive environment is assumed. Exercises are integrated
with the examples to encourage experimentation. Excessive detail is avoided
in explaining the larger elements of writing working code. Each chapter has
several important example programs. Major elements of these programs are
explained by dissection.

■ Data structures in C++. The text emphasizes many of the standard data
structures from computer science. Stacks, safe arrays, dynamically allocated
multidimensional arrays, lists, trees, and strings are all implemented. Exer¬
cises extend the student’s understanding of how to implement and use
these structures. Implementation is consistent with an abstract data type
approach to software.

■ Object-oriented programming. The reader is led gradually to the object-
oriented style. Chapter 1, “An Overview of C++ and Object-Oriented
Programming,” discusses how the C programmer can benefit in important
ways from a switch to C++ and object-oriented programming. Object-
oriented concepts are defined, and the way in which these concepts are
supported by C++ is introduced. Chapter 4, “Classes,” introduces classes,
which are the basic mechanism for producing modular programs and
implementing abstract data types. Class variables are the objects being
manipulated. Chapter 8, “Inheritance,” develops inheritance and virtual
functions, two key elements in this paradigm. Chapter 10, “OOP Using C++,”
discusses OOP programming philosophy. This book develops in the
programmer an appreciation of this point of view.

t Preface xix

C equivalence. Where appropriate, C++ code is given with equivalent C
code. This gives the experienced C programmer immediate access to idio¬
matic C++ code.

New Java equivalence. At the end of each chapter is a discussion of how
the C++ programmer can very naturally and easily begin programming in
Java, a language of interest for work on the Internet. The Java programming
language borrows ideas from C++ and is designed to run in a machine- and
system-independent manner. This makes it suitable for Internet work, such
as writing applets for Web pages that are used by browsers. Because Java is
an extension of C++, it is readily learned by the C++ programmer.

ANSI C++ language and iostream. For an existing, widely used language,
C++ continues to change at a rapid pace. This book is based on the most
recent standard: the ANSI C++ Committee language documents. A succinct
informal language reference is provided in Appendix C, “Language Guide.”
Use of the iostream library is featured in Appendix D, “Input/Output,” and
STL is featured in Appendix E, “STL and String Libraries.”

Standard template library (STL). STL is explained and used in Chapter 7,
“Templates, Generic Programming, and STL,” and in Appendix E, “STL and
String Libraries.” Many of the data structure examples foreshadow its expla¬
nation and use. There is a strong emphasis on the template mechanism
required for STL and the iterator idiom that STL exploits.

Industry- and course-tested. This book is the basis of many on-site profes¬
sional training courses given by the author, who has used its contents to
train professionals and students in various forums since 1986. The various
changes are course-tested and reflect the author’s considerable teaching
and consulting experience. The text is the basis for Web-based training in
C++ available from

www. digitalth ink. com

Exercises. The exercises test and often advance the student’s knowledge of
the language. Many are intended to be done interactively while reading the
text, encouraging self-paced instruction.

XX t Preface

■ Web site. The examples both within the book and at Addison-Wesley’s Web
site are intended to exhibit good programming style. The Addison-Wesley
Web site for this book contains the programs in the book, as well as adjunct
programs that illustrate points made in the book or flesh out short pieces of
programs. The programs available at the Web site are introduced by
their .cpp or .h names and can be obtained by referencing

www.awl.com/cseng/titles/0-201 -39519-3/

My special thanks go to my wife, Debra Dolsberry, who encouraged me through¬
out this project. She acted as book designer and technical editor for this edition. She
developed appropriate formats and style sheets in FrameMaker 5.5 and guided the
transition process from my other books on C++. She also implemented and tested
all major pieces of code.

This book was developed with the support of my editor, J. Carter Shanklin, and
editorial assistant, Angela Buenning.

Ira Pohl
University of California, Santa Cruz

r 1

Overview of C++
and Object-Oriented
Programming

This chapter gives a brief overview of C++ and provides an introduction to its use as
an object-oriented programming language (OOP). Like the rest of the book, it
assumes a knowledge of C. The chapter presents a series of programs of increasing
complexity and carefully explains the elements of each; program examples in the
later sections illustrate some of the concepts of object-oriented programming. This
approach should give students or professional C programmers a sense of how C++
works. As an overview, this chapter makes use of advanced material that can be
skimmed or skipped by readers who wish to begin with the elementary concepts
found in the next chapter.

Each feature of C++ is explained briefly. The examples in this chapter give read¬
ers simple, immediate, hands-on experience with key features of the C++ language.
The chapter introduces stream I/O, operator and function overloading, classes, con¬
structors, destructors, and inheritance to give programmers the flavor of writing
C++. Mastery of individual topics requires a thorough reading of the later chapters.

Object-oriented programming is today’s programming methodology of choice.
OOP is the product of 30 years of programming practice and experience, going back
to Simula 67 and continuing with SmallTalk and, more recently, Eiffel, Java, and
C++. The OOP programming style captures the behavior of the real world in a way
that hides detailed implementation. When successful, OOP allows the problem
solver to think in terms of the problem domain.

C++ was created by Bjarne Stroustrup in the mid-1980s. Stroustrup had two
main goals: (1) to make C++ compatible with ordinary C and (2) to extend C with
OOP constructs based on the class construct of Simula 67. C, developed by Dennis
Ritchie in the early 1970s as a system-implementation language to build UNIX, grad¬
ually gained popularity not only as a system-implementation language, but also as a
general-purpose language.

C programmers can readily use structured programming methodology, which
involves writing large programs as a series of procedure calls on properly struc¬
tured data. C has a limited form of data abstraction. The C struct declaration
allows programmers to declare user-defined aggregates with understandable

2 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

names. As a powerful extension of these concepts, the C++ class declaration pro¬
vides strong typing, data hiding, and code reuse through inheritance. Also, C++
allows programming teams to program in the large, using the techniques of file
encapsulation, function encapsulation, and class encapsulation. As a consequence,
C++ can be used to teach modular-programming habits within the object-oriented

paradigm.

1.1 Object-Oriented Programming

Object-oriented programming is a data-centered view of programming in that data
and behavior are strongly linked. Data and behavior are conceived of as classes
whose instances are objects. For example, a polynomial can have a range of legal
values that can be affected by such operations as addition and multiplication.

OOP views computation as simulating behavior. What is simulated are objects
represented by a computational abstraction. Suppose that we wish to improve our
poker play; to do so, we must better understand the odds of obtaining various
poker hands. We need to simulate card shuffling and must have appropriate ways to
speak about cards and suits. Publicly, we use the suit names: spades, hearts, dia¬
monds, and clubs. Privately, these suits are internally represented as integers. This
internal choice is hidden and consequently should not affect our computation. Just
as decks of cards can have many physical compositions and still properly behave as

cards, so too can computational card decks.
We will be using the terms abstract data type (ADT) and object-oriented pro¬

gramming (OOP) to refer to a powerful new programming approach. An ADT is a
user-defined extension to the existing types available in the language. An ADT con¬
sists of a set of values and a collection of operations that can act on those values.
For example, C++ does not have a native complex number type but instead uses the
class construct to define such a type in the complex library. Objects are class vari¬
ables. Object-oriented programming allows ADTs to be easily created and used. OOP
uses the mechanism of inheritance to conveniently derive a new type from an exist¬
ing user-defined type. This mechanism is akin to biological taxonomies. For exam¬
ple, both rodents and cats are mammals; if the category mammal is an encoding of
the information and behavior true for all objects in this class, creating the catego¬
ries cat and rodent from the category mammal is an enormous saving.

In OOP, objects are responsible for their behavior. For example, polynomial
objects, complex number objects, integer objects, and floating-point number
objects can all be added. Each type has code for executing addition. The compiler
provides the right code for integers and floating-point numbers. The polynomial
ADT has a function defining addition specific to its implementation. The ADT pro¬
vider should include code for any behavior the object can be commonly expected to

1.2 ▼ Why Learn C++? 3

understand. Making an object responsible for its behavior eases the coding task for
the user of that object.

Consider a class of objects called shapes. If we want a shape to draw on a
screen, we need to know where the shape is to be centered and how to draw. Some
shapes, such as polygons, are relatively easy to draw. A general shape-drawing rou¬
tine can be very expensive, requiring storage for a large number of individual
boundary points. Avoiding this in the polygon case is clearly beneficial. If the indi-
\idual shape object knows best how to draw itself, the programmer using such
shapes needs only to invoke the object’s drawing function.

The new class construct in C++ provides the encapsulation mechanism to imple¬
ment ADTs. Encapsulation includes both the internal implementation details of a
specific type and the externally available operations and functions that can act on
objects of that type. The implementation details can be made inaccessible to code
that uses the type. For example, a stack might be implemented as a fixed-length
array, whereas the publicly available operations would include push and pop.
Changing the internal implementation to a linked list should not affect how push
and pop are used externally. Code that uses the ADT is called client code for the
ADT. The implementation of a stack is hidden from its clients. The details of how to
provide data hiding in classes are introduced here and are developed thoroughly in
Chapter 4, “Classes,” and in Chapter 8, “Inheritance.”

1.2 Why Learn C++?

C++ supports the object-oriented programming style, a major advance over the
structured programming style supported by such languages as C, Pascal, and
FORTRAN. A chief cost is the increased complexity of the C++ language, however.
C++ is a more complex language but better suited to developing large software
projects.

C is a procedural, imperative language that has a small set of built-in types and
limited forms of type extensibility. These types are well suited to system
programming. For many problem domains, however, C’s usefulness is hampered by
its lack of type extensibility. C++ remedies these limitations by allowing arbitrary
user-defined types. The increased complexity of C++ is one of its biggest drawbacks.
Although this increase reflects the large number of necessary new ideas, it makes
mastery more difficult. To overcome this problem, this book approaches the
learning process by gradually transforming the C programmer into a practiced C++
programmer.

4 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

1.3 C as a Starting Point

C is the kernel language that C++ was built on. Indeed, most C programs are correct
C++ programs as is; in some sense, the C programmer is therefore already a C++

programmer.
C++ is a marriage of the low level and the high level. C was designed to be a

systems-implementation language, one close to the machine. C++ adds object-
oriented features that are designed to allow a programmer to create or to import a
library appropriate to the problem domain. The user can write code at the level
appropriate to the problem while maintaining contact with the machine-level imple¬

mentation details.
The following C program uses a function to perform simple output:

In file hello.c

/* Hello World in C
* by Charles Codeman
*/ ‘

#include <stdio.h>

void pr_message(char* message)

{
printf("%s\n", message);

}

int main()
{

pr_message("Hello world!");
}

Here is the equivalent C++ program:

In file hellol.cpp

//Hello world in C++
// by Olivia Programmer

#include <iostream>
#include <string>
using namespace std;

//IO library
//string type

1.3 t C as a Starting Point 5

inline void pr_message(string s = "Hello world!")
{ cout « s « endl; }

int main()

{
pr_message();

}

When executed, this program prints the following message:

Hello world!

A C++ program is a collection of declarations and functions that begin executing
with the function mai n(). The C++ program is compiled after the preprocessor exe¬
cutes #-designated directives. The preprocessor precedes the phase during which
the compiler translates the resulting program into machine code. The #include
directive found in the example program hellol.cpp imports any needed files, usually
library definitions. In this case, the I/O library for a typical compiler system is found
in the file iostream. The string type is found in the standard library defined in the
file string. On new C++ systems, these files are wrapped in namespace std. The
using declaration allows such names to be used without std: : prepended to each
name. The include files could also have been coded without namespace and usi ng,
as follows:

#include <iostream.h> //IO library
#include <string.h> //C++ string type

This text will use the namespace convention for include files. In most instances, the
inclusion of the header files will not be shown in program code.

The // symbol is used as a rest-of-line comment symbol. Also, the program text
can be placed in any position on the page, with white space between tokens being
ignored. White space, comments, and indentation of text are all used to create a
humanly readable, well-documented program but do not affect program semantics.

An efficiency concern for the C++ programmer is that the inline modifier of
the function pr_message() is used to tell the compiler to compile this function
without resort to function call and return instructions, if possible. As written, the
pr_message() function had a string parameter s, whose default value was
“Hello worl d! ”. This means that when passed an empty or a void parameter list,
pr_message("Hello world!") is executed.

The identifier cout is defined in iostream as the standard output stream con¬
nected by most C++ systems to the screen for output. The identifier endl is a stan¬
dard manipulator that flushes the output buffer, printing everything to that point

6 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

while going to a new line. The operator << is the put to output operator, which

writes out what comes after it to cout.
A function in C++ has a return type that can be voi d, indicating that no value is

to be returned, as is the case with pr_tnessage(). The special function main()
returns an integer value to the runtime system, which in the implicit case found

here, is 0, meaning that termination was normal.
Consider the following variation to mai n():

In file hello2.cpp

int main()

{
pr_message();
pr_message("Laura Pohl");
pr_message("It is dinner time.");

}

The program, when executed, prints the following message:

Hello world!
Laura Pohl
It is dinner time.

1.4 Classes and Abstract Data Types

OOP is a balanced approach to writing software. Data and behavior are packaged
together. This encapsulation creates user-defined types, which extend and interact
with the native types of the language. Type extensibility is the ability to add to the
language user-defined types that are as easy to use as native types.

An abstract data type, such as a complex number, is a description of the ideal
public behavior of the type. The user of a complex number knows that operations,
such as add or print, result in certain public behaviors. Operations add and print are
called methods. A concrete implementation of the ADT also has implementation lim¬
its; for example, complex numbers are limited in precision. These limits affect pub¬
lic behavior. Also, internal, or private, details of the implementation do not directly
affect the user’s understanding. For example, a complex number is frequently
implemented as a set of two floating-point variables; their names should be of no
direct consequence to the user.

Encapsulation is the ability to hide internal detail while providing a public inter¬
face to a user-defined type. C++ uses declarations class and struct in conjunction

1.4 T Classes and Abstract Data Types 7

with the access keywords private, protected, and public to provide encapsula¬
tion. C does not have access modifiers, but its struct is the basis for the class
extensions in C++.

OOP terminology is strongly influenced by SmallTalk programming. The
SmallTalk designers wanted programmers to break with their past habits and to
embrace a new programming methodology. They invented such terms as message

and method to replace the traditional terms function invocation and member
function.

Public members are available to any function within the scope of the class
declaration. Public members provide the type’s interface. Private members are
available for use only by other member functions of the class. Privacy allows the
implementation of a class type to be hidden, which prevents unanticipated
modifications to the data structure. Restricted access, or data hiding, is a feature of
object-oriented programming.

Let us write a class called complex that will implement a restricted form of com¬
plex number.

In file complexl.cpp

//An elementary implementation of type complex

class complex {

Public: //universal access to interface
void re_assign(double r) { real = r; }
void im_assign(double im) { imaginary = im; }
void print() const

{ cout « "(" « real «
« imaginary « "i)" « endl; }

friend complex operator+(complex, complex);

private: //restricted access to implementation
double real, imaginary;

};

The hidden representation is two variables of type doubl e.
The declaration of member functions allows the ADT to have particular func¬

tions act on its private representation. For example, the member function pri nt()
outputs a complex number as a comma-separated pair of doubles. The imaginary
part of the number has the suffix iTThe member function re_assign() stores the
real part of a complex number into the hidden variable real, and the member func¬
tion im_assi gn() stores the imaginary part of a complex number into the hidden
variable imagi nary. Member functions, such as pri nt(), that do not modify mem¬
ber variables’ values are declared const. The friend function operator+O decla¬
ration will be used later to implement the definition of the addition of two complex

8 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

numbers (see Section 1.6, “Overloading,” on page 11). The friend designation
means that the function, although not a member of class compl ex, has access to all

of its members.
We can now use the data type compl ex as if it were a basic type of the language.

Code that uses this type is its client. The client can use only the public members to

act on variables of type compl ex.

In file complexl.cpp

//Test of the class complex

int main()

{
complex x, y, z;

x.re_assign(9.5);
x. im_assign(-4.5);
y. re_assign(4.2);
y.im_assign(6.0);
z = x + y;
x. printO ;
y. printO ;
z. printO;

}

Variables x, y, and z are of type complex. The member functions are called
using the dot, or structure member, operator. As is seen from their definitions,
these member functions act on the hidden private-member fields of the named vari¬
ables. The output of this example program is

(9.5,-4.5i)
(4.2,6i)
(13.7, 1.5i)

1.5 ▼ Constructors and Destructors 9

1.5 Constructors and Destructors

In OOP terminology, a variable is called an object. A constructor is a member func¬
tion that initializes an object of its class. In many cases, this involves dynamic stor¬
age allocation. Constructors are invoked whenever an object of a particular class is
created. A destructor is a member function that finalizes a variable of its class. As
we shall see later, in many cases this involves dynamic storage deallocation. If you
are not familiar with these concepts, you may want to skip this material for now and
wait until the later chapters, where they are explained in detail.

Let’s change our compl ex example by adding a constructor to initialize its value.
We will also add a destructor to provide debugging output when a compl ex object is
destroyed.

In file complex2.cpp

class complex {
public:

//constructor

complex(double r=0, double im=0): real(r), imaginary(im) { }
//destructor

~complex() { cout « "destructor called on print(); }

};

A constructor’s name is the same as the class name and is invoked when declar¬
ing variables, as in

complex x(5.5, 1.0), y;

Here, the variables are declared and initialized: x. real is initialized as 5.5 and
x. imaginary as 1.0; y. real is initialized as 0 and y. imaginary as 0. These are the
default values of the arguments passed to the constructor.

A destructor is written as a member function whose name is the class name pre¬
ceded by the tilde symbol ~. The destructor written in complex is used for debug¬
ging. The destructor calls print() to write out the value of the complex object
being destroyed. For example, if x is not changed during execution, the destructor
prints the following on exit from x’s scope:

destructor called on (5.5,li)

10 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

1.6 Overloading

Overloading is the practice of giving several meanings to an operator or a function.
The meaning selected depends on the types of arguments used by the operator or
the function. Let us overload the function pri nt() in the previous example. This

will be a second definition of the pri nt () function.

In file complexl.cpp

class complex {
public: //universal access

void print(string var_name) const
{ cout « var_name « " = print(); }

}

This version of pri nt () takes a single argument of type st ri ng and is used to print

the complex number’s variable name and value.

complex x(l.5,2);
x.print("x"); //print: x = (1.5,2i)
x.printO; //print: (1.5,2i)

It is possible to overload most of the C++ operators. For example, we will over¬
load + to mean complex addition. To do this, we need two keywords: friend and
operator. The keyword operator precedes the operator token and replaces what
would otherwise be a function name in a function declaration. The keyword fri end
gives a function access to the private members of a class variable. A fri end func¬
tion is not a member of the class but has the privileges of a member function in the

class in which it is declared.

1.6 ▼ Overloading 11

In file complex3.cpp

complex operator+(complex x, complex y)
{

complex t;

t.real = x.real + y.real;
t.imaginary = x.imaginary + y.imaginary;
return t;

int main()

{
complex x(9.5, -4.5), y(4.2,6.0), z;

z = x + y;
x. print("x")
y. print("y")
z. print ("z")

Dissection of the operator+C) Function

■ complex operator+(complex x, complex y)

The + is overloaded. Both of its arguments are of type complex. The return type is
complex, as expected.

■ complex t;

The function needs to return a value of type complex. This local variable is initial¬
ized to (0,0i) by the constructor.

■ t.real = x.real + y.real;
t.imaginary = x.imaginary + y.imaginary;
return t;

The definition adds both the real and the imaginary parts of the complex numbers
and returns them as the compl ex variable t.

12 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

1.7 Inheritance

A singular concept in OOP is the promotion of code reuse through the inheritance

mechanism. A new class is derived from an existing, or base, class. The derived class

reuses the base-class members and can add to or alter them.
Many types are variants of one another, and it is frequently tedious and error

prone to develop new code for each. A derived class inherits the description of the
base class, thus avoiding redevelopment and testing of the existing code. The inher¬
itance relationship is hierarchical. Hierarchy is a method for coping with complex¬

ity, imposing classifications on objects.
For example, the periodic table of elements has elements that are gases. These

have properties that are shared by all elements in that classification. The inert gases
are an important subclassification. The hierarchy is that an inert gas, such as argon,
is a gas, which in turn is an element. The hierarchy provides a convenient way to
understand the behavior of inert gases. We know that they are composed of protons
and electrons, as this is shared description with all elements. We know that the inert
gases are in a gaseous state at room temperature, as this behavior is shared with all
gases. We know they do not combine in ordinary chemical reactions with other ele¬

ments, as this is shared behavior of all inert gases.
As another example, consider designing a database for a college. The registrar

must track various types of students. The base class must capture a description of
student. Two main categories of student are graduate and undergraduate.

OOP Design Methodology

1. Decide on an appropriate set of types.

2. Design their relatedness into the code, using inheritance.

An example of deriving a class follows.

In file studentl.cpp

enum support { ta, ra, fellowship, other };
enum year { fresh, soph, junior, senior, grad };

1.7 t Inheritance 13

class student {
public:

student(char* nm, int id, double g, year x);
void print() const;

private:
int student_id;
double gpa;
year y;
char name[30];

};

class grad_student : public student {
public:

grad_student(char* nm, int id, double g,
year x, support t, char* d, char* th);

void print() const;
private:

support s;
char dept [10];
char thesis[80];

};

In this example, grad_student is the derived class, and student is the base class.
The use of the keyword publ i c following the colon in the derived-class header
means that the public members of student are to be inherited as public members
of grad_student. Private members of the base class cannot be accessed in the
derived class. Public inheritance also means that the derived class grad_student is
a subtype of student.

An inheritance structure provides a design for the overall system. For example,
a database containing all of the people at a college could be derived from the base
class person. The student base class could be used to derive law students as a fur¬
ther significant category of objects. Similarly, person could be the base class for a
variety of employee categories. The hierarchical inheritance structure is illustrated
in the following diagram.

14 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

Inheritance Structure

1.8 Moving from C++ to Java

This section introduces Java I/O and classes, as well as Java’s use as an object-
oriented programming language. Mastery of the individual Java topics requires a
thorough reading of a companion book such as The Java Programming Language
by Arnold and Gosling.

Object-oriented programming is implemented by the class construct. The
cl ass construct in Java is based on the cl ass construct in C++. The later examples
in this book illustrate how Java implements OOP concepts, such as data hiding,
ADTs, inheritance, and type hierarchies. Java, designed to be used on the World
Wide Web, has special libraries for graphics and communication across the Net. Java
is designed to run in a machine- and system-independent manner. This means that
the Java program will execute with the same results on a PC running Windows 95 or
on a workstation running Sun Solaris. Java does this by defining its semantics com¬
pletely in terms of a virtual machine. The job for a system that wants to run Java is
to port the virtual machine. This is a trade-off between portability and efficiency.
Additional overhead in a machine running a simulator of a different architecture is

1.8 ▼ Moving from C++to Java 15

inevitable. Some of this inefficiency can be overcome by the use of just-in-time com¬
pilers or native code written in C. On many platforms, it is also possible to use a
direct-to-native code compiler for maximum runtime efficiency.

Programs must communicate to be useful. Our first example is a program that
prints on the screen the phrase “Java is an improved C.”

In file Improved.java

// A first Java program illustrating output.
// Title: Improved
// Author: Jack Appleteer

class Improved {
public static void main (String[] args)

{
System.out.println("Java is an improved C.");

}
}

The program prints the following on the screen:

Java is an improved C.

This program is compiled using the command javac Improved.java,, resulting in
the creation of a code file named Improved.class. This file can be run by using the
command java Improved.

♦♦♦♦♦♦♦♦♦♦♦♦
Dissection of the improved Program

■ //A first Java program illustrating output.

The double slash // is the new symbol for a comment. The comment runs to the
end of the line. The old C bracketing comment symbols /* */ are still available for
multiline comments. Java also provides /** */ bracketing comment symbols for a
document comment. The program javadoc takes these document comments and
generates an HTML file.

16 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

■ class Improved {

Java programs are classes. A cl ass has syntactic form that is derived from the C
struct, which is not in Java. In Java, class identifier names, such as Improved, are
by convention capitalized. Data and code are placed within classes.

■ public static void main (Stringf] args)

A class executed as a program starts by calling the member function mai n(). In this
case, main() is a member of Improved. In Java, command line arguments are
passed in an array of Stri ngs. In C, we need an argc variable to tell the program
the number of command line arguments. In Java, this array length is found by using

args .length.

■ System.out.println("Java is an improved C.");

This statement prints to the screen. The System.out object uses the member func¬
tion pri ntl n() to print. The function prints the string and adds a new line, which
moves the screen cursor to the next line. Unlike printfO in C, pri ntl n() does
not use format controls.

In Java, all functions are contained in classes. In this case, the function mai n()
is a member of class Improved. A member function is called a method.

1.9 Benefits of Object-Oriented Programming

The central element of OOP is the encapsulation of an appropriate set of data types
and their operations. The class construct, with its member functions and data mem¬
bers, provides an appropriate coding tool. Class variables are the objects to be
manipulated.

Classes also provide data hiding. Access privileges can be managed and limited
to whatever group of functions needs access to implementation details. This pro¬
motes modularity and robustness.

Another important concept in OOP is the promotion of code reuse through the
inheritance mechanism, which derives a new class from an existing, or base, class.
The base class can be added to or altered to create the derived class. In this way, a
hierarchy of related data types can be created that share code.

1.10 ▼ Pragmatics 17

The OOP programming task is frequently more difficult than normal procedural
programming as found in C. At least one extra design step is needed before one gets
to the coding of algorithms. This step involves the design of types that are appropri¬
ate for the problem at hand. Frequently, one is solving the problem more generally
than is strictly necessary. The belief is that this extra step will pay dividends in sev¬
eral ways. The solution will be more encapsulated and thus more robust and easier
to maintain and change. It will also be more reusable. For example, where the code
needs a stack, that stack is easily borrowed from existing code. In an ordinary pro¬
cedural language, such a data structure is frequently “wired into” the algorithm and
cannot be exported.

OOP is many things to many people. Attempts at defining it are reminiscent of
the blind sages’ attempts at describing the elephant. I will offer one more definition,
an equation.

OOP = type-extensibility + polymorphism

1.10 Pragmatics

C++ compilers for ANSI C++ as described in this book are still incomplete. Make
sure you know what the vendors support, especially when it comes to recent
changes in the use of namespaces, exception handling, templates, and libraries,
especially the Standard Template Library, or STL.

Revisiting our first example, we can make it compatible with pre-namespace and
string library compilers by using char* for our strings and ordinary .h header files
for including our libraries.

In file hello2.cpp

//Hello world in C++ by Older Fogie

#include <iostream.h>

inline void pr_message(char* s = "Hello world!")
{ cout « s « endl;}

int main()

{
pr_message();
return 0;

}

18 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

This version of the program should run correctly with any available compiler. Notice
that we explicitly return 0, as we would in a C program. ANSI C++ allows this to be
implicit, the style we will use throughout the book.

Summary

1. Object-oriented programming is a data-centered view of programming, meaning
that data and behavior are strongly linked. Data and behavior are conceived of
as classes whose instances are objects.

2. An abstract data type (ADT) is a user-defined extension to the existing types
available in the language. An ADT consists of a set of values and a collection of
operations that can act on those values. For example, C++ does not have a native
complex number type but uses the class construct to define such a type in the
complex library. Objects are class variables.

3. C++ supports the object-oriented programming style. This is a major advance
over the structured programming style supported by such languages as C,
Pascal, and FORTRAN. C is a procedural, imperative language with a small set of
built-in types and limited forms of type extensibility. These types are well suited
to system programming. However, for many problem domains, C’s usefulness is
hampered by its lack of type extensibility.

4. C is the kernel language of C++. C++ is a marriage of C and object-oriented fea¬
tures that are designed to allow a programmer to create or to import a library
appropriate to the problem domain. The user can write code at the level appro¬
priate to the problem while maintaining contact with the machine-level imple¬
mentation details.

5. Encapsulation is the ability to hide internal detail while providing a public inter¬
face to a user-defined type. C++ uses the declarations cl ass and struct in con¬
junction with the access keywords private, protected, and public to provide
encapsulation. C does not have access modifiers, but its struct is the basis for
the class extensions in C++.

6. In OOP terminology, a variable is called an object. A constructor is a member
function that initializes an object of its class. In many cases, this involves
dynamic storage allocation. Constructors are invoked whenever an object of a
particular class is created. A destructor is a member function that finalizes a
variable of its class.

▼ Review Questions 19

7. A singular concept in OOP is the promotion of code reuse through the inherit¬
ance mechanism. A new class is derived from an existing, or base, class. The
derived class reuses the base-class members and can add to or alter them. The
inheritance relationship is hierarchical. Hierarchy, a method for coping with
complexity, imposes classifications on objects.

8. Java is an OOP language that also derives from C and C++. It is relatively easy to
convert C++ programs to Java. Java is more portable but runs slower than C or
C++. Java was developed at a time when the Internet started to flourish and has
many features tailored to use on the Internet.

Review Questions

1. Name three object-oriented programming languages.

2. The I/O library in C++ is used by including_.

3. The rest-of-line comment symbol is_.

4. The C++ class is an extension of the C_.

5. C was originally a SIL (systems-implementation language) used to write

6. What does the construct inline do?

7. C++was created by_in the mid-1980s.

8. Access keywords are_,_, and_.

Exercises

1. Using stream I/O, write on the screen the words

she sells seashells by the seashore

(a) all on one line, (b) on three lines, (c) inside a box.

20 Chapter 1 ▼ An Overview of C++ and Object-Oriented Programming

2. Take a working program, omit each line in turn, and run the program through
the compiler. Record the error message caused by each deletion. For example,
use the following code:

#include <iostream>
using namespace std;

mai n()

{
int m, n, k;

cout « "\nEnter two integers:";
ci n » m » n;
k = i m + n;
cout « "\nTheir sum is "« k «

}

3. Write a program that converts distances measured in yards to distances mea¬
sured in meters. The relationship is 1 meter equals 1.0936 yards. Write the pro¬
gram to use ci n to read in distances. The program should be a loop that does
this calculation until it receives 0 or a negative number for input. In the previ¬
ous exercise, we used cin and the overloaded operator >>, which together
replace scanf() in C. For example, cin >> v is the C++ equivalent to
scanf ("%fype" , &v). See Section D.4, “The Input Class i stream,” on page 420,
for more information on input in C++.

4. Write a program that interactively asks for your name and age and responds
with

Hello name, next year you will be next_age.

where next_age is age + 1.

5. Write a program that prints out a table of squares, square roots, and cubes. Use
either tabbing or strings of blanks to get a neatly aligned table.

i i * i square root i * i * i

1 1 1.00000 1

▼ Exercises 21

6. Write a class person that contains basic information, such as name, birthdate,
and address. Derive class student from class person. (See Section 1.7,
“Inheritance,” on page 12.)

/. (S. damage) The following three programs behave differently. We start with

//Function declarations at file scope

int f(int):

double f(double); //overloads f(int) double add f()

return(f(l) + f(1.0)); //f(int) + f(double)
}

We place one function declaration internally.

//Function declaration at local scope

int f(int);
double add f()

{
double f(double) ; //hides f(int)
return(f(l) + f(1.0)); //f(double) + f(double)

}

Now we place the other function declaration internally.

double f(double);
double add f()

{
i nt f (i nt) ;
return(f(l) + f(1.0)); //What is called here?

}

Write some test programs that clearly show the different behaviors.

.

*

'

Chapter 2

Native Types
and Statements

This chapter, together with Chapter 3, “Functions, Pointers, and Arrays,” will pro¬
vide an introduction to programming in C++ using its native types and its nonOOP
features. Since C++ is based on the C language, much of this material is a review of
C. A native type is one provided by the language directly. In C++, this includes the
simple types, such as character types, integer types, floating-point types, and the
boolean type, as well as derived types, such as array types, pointer types, and struc¬
ture types, which are aggregates of the simple types. This chapter focuses on the
native simple data types and statements.

The intent of this chapter, Chapter 3, “Functions, Pointers, and Arrays,” and
parts of Chapter 4, “Classes,” is to enable programmers to program in that subset of
C++ that approximates a traditional imperative language, such as C, Pascal, or
FORTRAN. This subset is what we are calling the kernel language. The improve¬
ments to C in the kernel language of C++ are useful enough to prefer C++ over C,
even for traditional programming. These enhancements lead to C++ as a better C,
independent of the more extensive additional object-oriented features. These chap¬
ters also contain examples that will be used throughout the book.

An important feature of OOP is type extensibility, or the ability within the pro¬
gramming language to develop new types suitable to a problem domain. For this
extensibility to work properly, the new type should work like the native types of the
kernel language. Object-oriented design of user-defined types should mimic the
look and feel of the native types.

For the experienced C programmer, most of this chapter’s material should be
skimmed and read mainly with an eye for differences between C and C++. These dif¬
ferences will be listed in the chapter summary, which the experienced C program¬
mer can use to determine what to selectively read about. For a programmer coming
from another language, such as Java or Pascal, or for some C programmers needing
a review of C material, this chapter and the next two succinctly review the C++ ker¬
nel language.

24 Chapter 2 ▼ Native Types and Statements

2.1 Program Elements

A program is composed of elements called tokens, which are collections of charac¬
ters that form the basic vocabulary the compiler recognizes. The C++ character set
includes the following:

abcdefghi jklmnopqrstuvwxyz
ABCDEFCHIJKLHNOPQRSTUVWXYZ
0123456789
+ = — -()*&%$#! | <> . , ; :"'/?{} ~ \ [] A
white space and nonprinting characters, such as newline, tab, and blank

In C++, tokens can be interspersed with white space and with comment text that is
inserted for readability and documentation. There are five kinds of tokens: key¬
words, identifiers, literals, operators, and punctuators. See Section C.2, “Lexical Ele¬
ments,” on page 348.

C++ distinguishes between upper- and lowercase. As we shall see, C++ uses low¬
ercase in its keyword list.

2.1.1 Comments

C++ has a single-line comment, written as // rest of line. This convention has been
adopted in many C compilers as well.

//C++ for C Programmers - Example 2
#include <vector> //vector is in STL

As in C, a multiline comment is written as /* possibly multiline comment- /.
Everything between /* and */ is a comment. Comments do not nest.

/* Multiline Comments are Frequently Introductory
Programmer: Laura Pohl
Date: January 1, 1989
Version: DJD v4.2

*/

2.1 ▼ Program Elements 25

2.1.2 Keywords

Keywords in C++ are explicitly reserved words that have a strict meaning and may
not be used in any other way. They include words used for type declarations, such
as i nt, char, and float; words used for statement syntax, such as do, for, and if;
and words used for access control, such as public, protected, and private. The
following table shows the keywords in use in most current C++ systems. Keywords
that did not exist in C are bolded.

Keywords

asm el se operator throw

auto enum private true

bool explicit protected try

break extern public typedef

case fal se register typeid

catch f 1 oat reinterpret_cast typename

char for return uni on

class friend short unsigned

const goto signed using

const_cast if sizeof virtual

continue iniine static voi d

default int static_cast volati1e

delete long struct wchar_t

do mutable switch whi 1 e

double namespace tempi ate

dynamic_cast new this

2.1.3 Identifiers

As in C, an identifier in C++ is a sequence of letters, digits, and underscores. An
identifier cannot begin with a digit. Uppercase and lowercase letters are treated as
distinct. It is bad practice and confusing to use identifiers that are distinguished
only by case differences. Although in principle, identifiers can be arbitrarily long,
many systems will distinguish only up to the first 31 characters. Some examples of

identifiers are as follow:

26 Chapter 2 ▼ Native Types and Statements

n
count
buff_size
buffSize
q2345
cout
_foo

//typically an integer variable
//meaningful as documentation
//C++ style - underscore separates words
//lava style - capital separates words
//obscure
//used in the standard library iostream
//avoid underscore as a first letter

The following are not identifiers:

for

3q
-count
too_bad
_Sysfoo

//keyword
//cannot start with digit
//do not mistake - for _
//double underscore is for system use
//underscore capital is for system use

2.1.4 Literals

Literals are constant values, such as 1 or 3.14159. There are literals for each C++
data type. String literals are also allowed. Some examples of literals follow.

5 //an integer literal
5u //u or U specifies unsigned
5L //I or L specifies long
05 //an integer literal written as octal
0x5 //an integer literal written as hexadecimal
true //a bool literal
5.0 //a floating-point literal treated as double
5.0F //f or F float - typically single precision
5.0L //I or L specifies long double
'5' //a character literal - ASCII value 53
'A' //letter capital A - ASCII value 65
'a' //letter small a - ASCII value 97
'\0' //the null character - terminates strings
'\t' //the character printing a tab space
'\n' //the character printing a new line
"5" //the string consisting of the character '5'
"a string with newline\n"

5555555555555555 //integer too large on most machines

String literals are stored as a series of characters terminated with the null
character, whose value is 0. String literals are static char[] constants. Special

2.1 ▼ Program Elements 27

characters can be represented inside strings by escaping them with the backslash
character \.

"a" //two bytes storing 'a' '\0'
"a\tb\n" //five bytes 'a' '\t' ’b' '\n' '\0'
"1 \\" //four bytes '1' ' ' '\\' '\0’

//two bytes "" '\0'

When printed, these strings would produce effects required by the special charac¬
ters. Thus, the second string prints an a followed by a number of white-space char¬
acters as determined by the tab setting, then a b followed by a newline character.

String literals that are separated only by white space are implicitly concatenated
into a single string.

"This is a single string, "
"since it is separated only "
"by white space."

The character literals are usually given as symbol. Some nonprinting and special
characters require an escape sequence.

Character Constants

'\a' alert

'\\' backslash

' \b' backspace

' \r' carriage return
f ii i double quote

'\f' formfeed

'\t' tab

' \n' newline

' \0' null character

'V' single quote

'\v' vertical tab

'\101' octal 101 in ASCII ‘A’

'\x041' hexadecimal ASCII ‘A’

L' 00' wchar_t constant

28 Chapter 2 ▼ Native Types and Statements

Floating-point literals can be specified either with or without signed integer
exponents.

0.1234567
3.14f 1.234F
0.123456789L
3. 3.0 0.3E1
300e-2

//double constant - the default
//float constant - smallest fp type
//long double - either 1 or L
//all express double 3.0
//also 3.0

2.1.5 Operators and Punctuators

C++, like C, allows operators, punctuators, and white space to separate language ele¬
ments. C++ gives special meaning to many characters and character sequences.
Examples of C++ operators include:

+ - * / % //arithmetic operators
-> ->* //pointer & pointer-to-member operators
&& 11 //logical operators
= += *= //assignment operators
I 1 //scope resolution operator
new delete //free-store operators

Operators are used in expressions and are meaningful when given appropriate
arguments. C++ has many operators (see Appendix B, “Operator Precedence and
Associativity”). Certain symbols stand for different operators, depending on con¬
text; for instance, can be either unary or binary minus. C operators are all avail¬
able in C++, but C++ has operators that are not found in C, such as the scope
resolution operator : :.

Punctuators include parentheses, braces, commas, and colons and are used to
structure elements of a program. For example, the following are punctuators in C++:

foo(a, 7, b + 8) //comma-separated argument list
{ a = b; c = d; } //{ starts statement list or block

2.2 ▼ Input/Output 29

2.2 Input/Output

C++ input/output is not directly part of the language but rather is added as a set of
types and routines found in a standard library. The C++ standard I/O library is
iostream or iostream.h. The file name without the .h extension is the official ANSI
standard name and is used with the namespace std. The ANSI C standard library
stdio.h or cstdio is also in widespread use. The ANSI standard libraries that are C
libraries are officially c followed by their names without a .h extension. We will use
iostream because we are illustrating current practice. (We leave to Appendix D,
“Input/Output,” a more complete description of this and other I/O issues.) This sec¬
tion is introductory, intended to give the bare minimum of detail to get the reader
up and running.

The iostream library overloads the two bit-shift operators.

//"put to" output stream, normally left shift
//"get from" input stream, normally right shift

This library also declares three standard streams:

//standard out
//standard in
//standard error

cout
ci n
cerr

Their use in conjunction with values and variables is analogous to assignment. C++
can use existing C library functions, such as printf() and scanf(), but the
iostream library is type safe and easier to use. It is type safe because in the expres¬
sion cout « x, the type of the variable x determines how it is to be printed.
Therefore, one cannot make the annoying formatting mismatch errors found in C,
where with pri ntf (“%format” , x), the expression value x can be printed incor¬
rectly when the format is mismatched.

In file io.cpp

cout « "\nEnter a double:
cin » x;
cout « "\nEnter a positive integer:
ci n » i ;
if (i < 1)

cerr « "error i = " « i « endl;
cout « "i * x = " « i * x;

30 Chapter 2 t Native Types and Statements

The first output statement in the preceding code places a string on the screen.
The second statement expects the double variable x to get a value converted from
string input typed at the keyboard. The string represents a value that is either a
double or assignment convertible to a double. Other typed input will fail. Notice
how the last two statements allow multiple assignments to their output streams and
are executed left to right. For example, if i had received a value of -1, the error mes¬
sage on the screen would be

error i = -1

The end! is a specially recognized identifier, called a manipulator, that flushes the
cerr output stream and adds a newline character. The last statement prints the
string i * x = , followed by the double value of the expression i * x.

2.3 Program Structure

A program in C++ is a collection of functions and declarations. The language is
block structured, and variables declared within blocks are allocated automatically
on block entry. Unless otherwise specified, parameters are call-by-value. The follow¬
ing C++ program computes the greatest common divisor of two integers:

In file gcd.cpp

//GCD greatest common devisor program.
#include <iostream>
using namespace std;

int gcd(int m, int n)

{
int r;

while (n != 0) {
r = m % n;
m = n;
n = r;

}
return m;

}

//function definition
//block
//declaration of remainder

//not equal
//modulus operator
//assignment

//end while loop
//exit gcd with value m

2.3 ▼ Program Structure 31

int main()

{
int x, y, g;

cout « "\nPROGRAM Gcd C++";
do {

cout « "\nEnter two integers:
cin » x » y;
if (x * y == 0)

throw new exception();
cout « "\nGCD(" « x « ", " « y « ") = "

« (g = gcd(x, y)) « endl ;
} whi 1 e (x ! = y) ;

}

As you can see, C++ is very terse. C++ compilers can compile multifile programs.
Large C++ programs are prepared as separate files. Each file is conceptually a mod¬
ule that contains related program declarations and definitions. On many systems,
C++ source files have the suffix either .c or .cpp. The GNU C++ translator command
is g++. So,

g++ modulel.c module2.c my_main.c

is the UNIX C++ compile command g++, acting on the three files modulel.c,
module2.c, and my_main.c. If compilation shows no errors, an executable a.out is
produced.

Some minor differences from C are easily seen in this C++ version of the great¬
est common divisor program.

Some Differences Between C++ and C

■ The C++ comment symbols are either // or /* */ .

■ C++ uses iostream for input/output.

■ C++ uses namespace std to avoid name collisions among global variables.

■ The function mai n (), used as the starting point for the program’s execution,
obeys the C++ rules for function declaration. It is ANSI C++ for mai n() to
implicitly return the integer value 0, indicating that the program completed
normally. Other return values would indicate an error condition.

■ C++ has exceptions. Here, it used a throw for termination on finding errors.

32 Chapter 2 ▼ Native Types and Statements

2.4 Simple Types

The simple native types in C++ are bool, int, double, char, and wchar_t. These
types have a set of values and representation that is tied to the underlying machine
architecture on which the compiler is running. Both the bool and the wchar_t types
are new to C++. The bool type provides a native boolean type, and wchar_t pro¬
vides a wide character type, used for representing character sets requiring more
than the standard 255 characters. On older C++ systems, as in C, there is no native
boolean type. They use the value zero to mean false and nonzero values to mean

true.
The compl ex number type in C++ is provided by including the library complex

This library provides the normative type compl ex, which can be used with the vari¬
ous ordinary arithmetic operators and mixed in expression with other arithmetic

types.
C++ simple types can often be modified by the keywords short, long, si gned,

and unsigned to yield further simple types. The following table lists these types
shortest to longest. Length here refers to the number of bytes used to store the
type. The bolded types are not available in C.

Fundamental Data Types

bool

char signed char unsigned char

wchar_t

short i nt long

unsigned short unsigned unsigned long

float double long double

This list runs from the conceptually shortest type, bool, to the conceptually longest
type, long doubl e. A requirement is that each longer type be at least as long as its
predecessor type. On most machines, a bool or a char is stored in a single byte. On
many PCs, short and int are stored in 2 bytes, whereas long, float, and double
are each stored in 4 bytes. The wchar_t, or wide character type, can represent dis¬
tinct codes for any element of the largest extended character set in any language’s
alphabet, such as Katakana used in Japanese. A wchar_t type is the same size as an
int type.

C++ also has the si zeof operator, which is used to determine the number of
bytes a particular object or type requires for storage.

2.4 ▼ Simple Types 33

//determine how many bytes it takes to store type long
cout « sizeof(int) « " <= " « sizeof(long) « endl;

The range of integral values representable on your system is defined in the stan¬
dard header file limits. Some examples from our system are

#define CHAR_BIT 8
#define SCHAR_MIN (-128)
#define SCHAR_MAX 127
#define UCHAR_MAX 255
#define INT_MAX 2147483647
#define INT_MIN (-2147483648)
#define UINT_MAX 4294967295U

//bits per char
//signed char minimum
//signed char maximum
//unsigned char maximum
//int maximum
//int minimum
//unsigned int maximum

The range of floating-point values representable on your system is defined in
the standard header file float. Some examples from our system are

#define FLT_EPSILON ((float)l.19209290e-07)
#define FLT_MIN ((float)l.17549435e-38)
#define FLT_MAX ((float)3.40282347e+38)
#define DBL_EPSILON 2.2204460492503131e-16
#define DBL_MIN 2.2250738585072014e-308
#define DBL_MAX 1.7976931348623157e+308

//single
//float min
//float max
//double
//double min
//double max

On newer systems, the file limits contains the template numeri c_l imi ts, which
allows, for example,

numeric_limits<type>::max() //maximum value for type

2.4.1 Initialization

A variable declaration associates a type with the variable name. A declaration of a
variable constitutes a definition, if storage is allocated for it. Informally, we think of
the definition as creating the object.

A definition can also initialize the value of the variable. Syntactically, initializa¬
tion is expressed by following the identifier name with an initializer. For simple
variables, this is usually

type id = expression

34 Chapter 2 ▼ Native Types and Statements

Some examples of definitions are

{
i nt i = 5 ;
char cl, c2 = 'B';
double x = 0.777, y = x + i;

//i is initialized to 5
//cl is uninitialized

cout « x « '\t' « y;
cout « c2;
cout « cl;

//print 0.777 5.777
//print ' B'
//system dependent

}

Initialization can involve an arbitrary expression, provided that all of the vari¬
ables and functions used in the expression are defined. In the preceding example, y
is initialized in terms of the just-defined x. The uninitialized variable cl cannot be
relied on to have any particular value associated with it. Using it in the computation
before a well-defined value is assigned to it is a mistake. As a rule of thumb, when
there is a choice, it is preferable to initialize a variable than to define it as uninitial¬
ized and to subsequently assign it a value. Initialization makes the code more read¬
able, less error prone, and more efficient.

Note that C++ declarations are themselves statements and can occur intermixed
with executable statements. This differs from C, in which declarations are either in
global scope or at the head of a block. In the previous code, we could have placed
the char declarations after the first cout statement without affecting the output.

cout « x « '\t' « y; //print 0.777 5.777
char cl, c2 = 'B'; //declaration statement
cout « c2; //print ’B'

2.5 The Traditional Conversions

The expression x + y has both a value and a type. For example, if x and y are both
variables of type i nt, x + y is also an i nt. However, if x and y are of different
types, x + y is a mixed expression. Suppose that x is a short and y an i nt. The
value of x is converted, or coerced, to an i nt, and the expression x + y has type
i nt. The value of x as stored in memory is unchanged. It is only a temporary copy
of x that is converted during the computation of the value of the expression. Now

2.5 ▼ The Traditional Conversions 35

suppose that both x and y are of type short. Even though x + y is not a mixed
expression, automatic conversions again take place; both x and y are promoted to
i nt, and the expression is of type i nt. The general rules are straightforward.

Automatic Expression Conversions

1. Any bool, char, short, or enum is promoted to int. Integral values unrepre¬
sentable as int are promoted to unsigned.

2. If, after the first step, the expression is of mixed type, the following applies,
according to the hierarchy of types:

int < unsigned < long < unsigned long
< float < double < long double

The operand of the lower type is promoted to that of the higher type, and the
value of the expression has that type.

To illustrate implicit conversion, we make the following declarations and list a
variety of mixed expressions along with their corresponding types:

Declarations

char c; long lg; double d;

short s; float f; unsigned u; int i;

Expression Type Expression Type

c - s / i i nt u * 3 - i unsigned

u * 3.0 - i double f * 3 - i float

n

+

i-
1

i nt 3 * s * lg long

C + 1.0 double d + s double

An automatic conversion can occur with an assignment. For example, d = i
causes the value of i, which is an i nt, to be converted to a doubl e and then
assigned to d; doubl e is the type of the expression as a whole. A promotion, or wid¬
ening, such as d = i, will usually be well behaved, but a demotion, or narrowing,
such as i = d, can lose information. Here, the fractional part of d will be discarded.

In addition to implicit conversions, which can occur across assignments and in
mixed expressions, there are explicit conversions, called casts. If i is an i nt,

static_cast<double>(i)

36 Chapter 2 ▼ Native Types and Statements

will cast the value of i so that the expression has type doubl e. The variable i itself
remains unchanged. The static_cast is available for a conversion that is well
defined, portable, and invertible. This makes it a safe cast, namely, one with predict¬
able and portable behavior. Some more examples are

static_cast<char>('A' + 1.0)
x = static_cast<double>(static_cast<int>(y) + 1)

Casts that are representation or system dependent use rei nterpret_cast.

i = reinterpret_cast<int>(&x) //system dependent

These casts are undesirable and generally should be avoided. They are considered
unsafe.

Two other special casts exist in C++: const_cast and dynami c_cast. A useful
discussion of dynami c_cast requires understanding inheritance (see Section 8.8,
“Runtime Type Identification,” on page 295). The const modifier means that a vari¬
able’s value is nonmodifiable. Very occasionally, it is convenient to remove this
restriction. Doing so is known as casting away constness and is accomplished with
the const_cast, as in

foo(const_cast<int>(c_var)); //used to invoke foo

Older C++ systems allow an unrestricted form of cast with the following forms:

(type) expression or type(expressiori)

Some examples are

y = i / double(7); //would do division in double
ptr = (char*)(i + 88); //C style int to pointer value

The C cast notation (type) is considered obsolete and will not be used in the text.
The older casts do not differentiate among relatively safe casts, such as
stati c_cast, and system-dependent unsafe casts, such as rei nterpret_cast.
The newer casts also are self-documenting; for example, a const_cast suggests its
intent through its name.

The next program converts miles to kilometers. Miles will be kept as an integer
value, and kilometers will be computed in floating point.

2.5 ▼ The Traditional Conversions 37

In file mi_to_k.cpp

//Miles are converted to kilometers

const double m_to_k = 1.609; //conversion constant

inline double mi_to_km(int miles)
{

return miles * m_to_k;
}

int main()

{
int miles;
double kilometers;

do {

cout « "\nEnter distance in miles: ";
cin » miles;
kilometers = mi_to_km(mi 1 es);
cout « "\nThis is approximately " «

static_cast<int>(ki1ometers) « "km." « endl ;
} while (miles > 0);

}

This program consists of two functions, each of which has its own local scope in
which variables are declared. Each variable has a type. The variable m_to_k is initial¬
ized to the value 1.609, and the const modifier ensures that this value is nonmodi-
fiable. This is good programming practice in that the identifier is mnemonic and
provides useful documentation. Notice that such a const variable must be initial¬
ized on definition. Where the inline keyword modifies a function definition, it sug¬
gests to the compiler that when invoked, the code defining it avoid function call by
being compiled inline.

The expression miles * m_to_k is widened to a double. Conceptually, the
integer valued miles is a narrower type than a double. The input statement
cin » miles expects keyboard input in the form of a string convertible to an inte¬
ger. For example, the input 5.45 will be converted and assigned to mi les as the inte¬
ger value 5.

The safe cast static_cast<int>(ki 1 ometers) truncates the double value to
an int value. Without this explicit cast, the variable kilometers would have
printed as a double.

38 Chapter 2 ▼ Native Types and Statements

2.6 Enumeration Types

The keyword enum is used to declare a distinct integer type with a set of named inte¬
ger constants called enumerators. Consider the declaration

enum suit { clubs, diamonds, hearts, spades };

This declaration creates an integer type with the four suit names as named integer
constants. The enumerators are the identifiers clubs, diamonds, hearts, and
spades, whose values are 0, 1, 2, and 3, respectively. These values are assigned by
default, with the first enumerator being given the constant integer value 0. Each
subsequent member of the list is one more than its left neighbor. In C++, the identi¬
fier sui t is now its own unique type, distinct from other integer types. This identi¬

fier is called tag name.
Enumerators can be defined and initialized to arbitrary integer constants.

enum ages { laura = 7, ira, harold = 59, phi lip = harold + 7 };

The enumerators can be initialized to constant expressions. Note that the default
rule applies when there is no explicit initializer; therefore, in the example, i ra is 8.

The tag name and the enumerators must be distinct identifiers within scope.
The values of enumerators need not be distinct. Enumerations can be implicitly con¬
verted to ordinary integer types but not vice versa.

In file enum_tst.cpp

enum signal { off, on } a = on; //a initialized to on
enum answer { no, yes, maybe = -1 } b;
enum neg { no, off} c; //illegal no and off redeclared
int i, j = on; //legal on is converted to 1

a = off; //legal
i = a; //legal i becomes 1
b = a; //illegal two distinct types
b = static_cast<answer>(a); //legal explicit cast
b = (a ? no : yes); //legal enumerators type answers

2.7 ▼ Expressions 39

Enumerators can be declared anonymously, without a tag name. Some examples
are

enum { LB = 0, UB = 99 };
enum { lazy, hazy, crazy } why;

The first declaration is a common means of declaring mnemonic integer constants.
The second declares a variable why of enumerated type, with lazy, hazy, and crazy
as its allowable values.

2.6.1 typedef Declarations

Synonyms for type declarations can be provided with typedef declarations.

typedef int miles;
typedef char* cstring;
typedef void* gen_ptr;
typedef point* pPoint;

//miles a
//pointer
//generic
//pointer

synonym for int
to char
pointer type
to point

Besides providing a form of documentation, typedef declarations reduce compli¬
cated declarations to simple identifiers. In C, we would use a typedef such as

typedef enum suit suit;

to avoid the further need to use the keyword enum in subsequent declarations. This
is unneeded in C++. Consequently, the use of typdef to provide synonyms for types
is rarely used in C++.

2.7 Expressions

C++ has a few more operators and expression forms than does C (see Appendix B,
“Operator Precedence and Associativity”). In C++, for example, scope resolution : :
is an operator. The following is legal C++:

a = ::b ; //: :b means global b

Arithmetic expressions in C++ are consistent with C practice. For example, in
both C++ and C, the results of an operator such as the division operator /, depend
on its argument types.

40 Chapter 2 ▼ Native Types and Statements

a = 3 / 2; //evaluates to integer value 1;
a = 3 / 2.0; //evaluates to double value 1.5

C++ systems use the bool values true and fal se to direct the flow of control in
the various statement types. These values are equivalent to the nonzero and zero
values used in C. The following table contains the C++ operators that are most often

used to affect flow of control.

C++ Relational, Equality, and Logical Operators

Relational operators less than <

greater than >

less than or equal to <=

greater than or equal to >=

Equality operators equal ==

not equal ! =

Logical operators (unary) negation i

logical and &&

logical or 1 1

Just as with other operators, the relational, equality, and logical operators have
rules of precedence and associativity that determine precisely how expressions
involving them are evaluated (see Appendix B, “Operator Precedence and Associativ¬
ity”). The negation operator ! is unary. .All of the other relational, equality, and logi¬
cal operators are binary, operate on expressions, and yield the bool value, either
fal se or true. This replaces the earlier C convention of treating zero as false and
nonzero as true when no bool type existed in the language. Where a boolean value
is expected, an arithmetic expression is automatically converted, following this con¬
vention of treating zero as false and nonzero as true. This means that older code

still works correctly.
One pitfall in C++ is that the equality operator and the assignment operator are

visually similar. The expression a == b is a test for equality, whereas a = b is an
assignment expression. One of the more common C++ programming mistakes is to

code something like

if (i = 1)
//do something

2.7 t Expressions 41

intending

if (i == l)

//do something

The first if statement assigns 1 to i and evaluates to 1, so it is always true This
error can be very difficult to find.

The logical operators !, &&, and | |, when applied to expressions, yield the bool
\alue true or fal se. Logical negation can be applied to an arbitrary expression If
an expression has value fal se, its negation will yield true.

The precedence of && is higher than | |, but both operators are of lower prece¬
dence than all unary, arithmetic, and relational operators. Their associativity is left
to right.

In the evaluation of expressions that are the operands of && and | |, the evalua¬
tion process stops as soon as the outcome true or false is known. This is called
short-circuit evaluation. For example, suppose that exprl and expr2 are expressions
and that exprl has value fal se.

exprl && expr2

The expression expr2 will not be evaluated, because the value of the logical expres¬
sion is already determined to be false. Similarly, if exprl is true, then expr2 in

exprl || expr2

will not be evaluated, because the value of the logical expression is already deter¬
mined to be 1.

The following table shows some examples in C++.

Declarations and Initialization

int a = 1, b = 2, c = 0;

C++ Parenthesized
Equivalent

Value

a + 5 && b ((a + 5) && b) true

!(a < b) && c ((! (a < b)) && c) fal se

/-N

&>
 II II cr

n

((a — b) | | c) fal se

42 Chapter 2 ▼ Native Types and Statements

Of all the operators in C++, the comma has the lowest precedence It is a binary
operator with expressions as operands. In a comma expression of the torm

exprl , expr2

exprl is evaluated first, then expr2. The comma expression as a whole has the value

and type of its right operand. For example, in

sum =0, i =1

if i has been declared an i nt, this comma expression has value 1 and type i nt.
The comma operator typically is used in the control expression part of an itera¬

tive statement, when more than one action is required. The comma operator associ¬

ates from left to right. ml
The conditional operator ?: is unusual in that it is a ternary operator. Thus, it

takes as operands three expressions.

exprl ? expr2 : expr3

In this construct, exprl is evaluated first. If it is true, then expr2 is evaluated and
that is the value of the conditional expression as a whole. If exprl is f al se, exprJ is
evaluated, and that is the value of the conditional expression as a whole.

The following example uses a conditional operator to assign the smaller oi two

values to the variable x:

x = (y < z) ? y : z;

The parentheses are not necessary, because the conditional operator has prece¬
dence over the assignment operator. However, parentheses are good style because

they make clear what is being tested for.
The type of the conditional expression

exprl ? expr2 : expr3

is determined by expr2 and expr3. If they are different types, the usual conversion
rules apply. The conditional expression’s type cannot depend on which of the two
expressions expr2 or expr3 is evaluated. The conditional operator ? . associates

right to left.
C++ provides bit-manipulation operators, which operate on the machine-depen¬

dent bit representation of integral operands. For example, the operand ~ changes an
integral operand bit representation into its one’s complement. These operators can
be ignored by programmers not interested in manipulating the underlying bit repre¬

sentation of integral values.

2.8 ▼ Statements 43

Bitwise
Operators Meaning

~ unary one’s complement

« left shift

» right shift

& and

A exclusive or

1 or

In C++, we overload the shift operators to perform I/O.

C++ considers function call () and indexing or subscripting [] to be operators.
C++ also has an address & operation and an indirection *, or dereferencing, opera¬
tion. The address operator is a unary operator that yields the address, or location
where an object is stored. The indirection operator is a unary operator that is
applied to a pointer that retrieves the value from the location being pointed at. This
operation is also known as dereferencing (see Section 3.11.1, “Addressing and
Dereferencing,” on page 83).

C++ also has a si zeof operator, which is used to determine the number of bytes
a particular object or type requires for storage. This operator is important for
obtaining an appropriate amount of storage for dynamically allocated objects.

2.8 Statements

C++ uses the semicolon as a statement terminator. C++ has a large variety of state¬
ment types, including an expression statement. For example, the assignment state¬
ment in C++ is syntactically an assignment expression followed by a semicolon. C++
and C both have assignment statements, procedure statements, transfer statements,
conditional statements, selection statements, and iterative statements. A key differ¬
ence is that C++ treats declarations as statements, allowing them to be most any¬
where in blocks, but C allows declarations only at the head of blocks, before
executable statements. In C++, declarations can also occur in the initializer part of
the for loop. (Much of this material is review and may be skipped by the practiced C
programmer.)

44 Chapter 2 ▼ Native Types and Statements

2.8.1 Assignment and Expressions

In C++, assignment occurs as part of an assignment expression, which can occur in

several forms.

a = b + 1;

This expression evaluates the right-hand side of the assignment and converts it to a
S?ue SmpaUble with the variable on the left-hand side. This value is assigned w
the left-hand side. The left-hand side must be an lvalue, a location m memory wher

a value can be stored or retrieved. Simple variables are lvalues.
C++ allows multiple assignment in a single statement.

a = b + (c = 3) ;

C++ provides assignment operators that combine an assignment and some other

operator.

a += b; is equivalent to a = a + b;

a *= a + b; is equivalent to a = a " (a + b) ,

C++ also provides autoincrement (++) and autodecrement (--) operators in both
prefix and postfix form. In prefix form, the autoincrement operator adds 1 to the
value stored at the lvalue it acts on. Similarly, the autodecrement operator subtracts

1 from the value stored at the lvalue it acts on.

++i ; is equivalent to i = i + 1;
--x; is equivalent to x = x - 1;

The postfix form behaves differently from the prefix form, changing the

affected lvalue after the rest of the expression is evaluated.

j
j
i

++i ;
i++;
++i + i++;

is equivalent to i=i+l;]=i;
is equivalent to j=i;i=i+l;
//awful practice is system dependent

Note: These are not exact equivalencies. The compound assignment operators evalu¬
ate their left-hand side expressions once. Therefore, for complicated expressions

with side effects, results of the two forms can be different.
The null statement is written as a single semicolon and causes no action to take

place. A null statement is usually used where a statement is required syntactically
but no action is desired. This situation sometimes occurs in statements that affect

the flow of control.

2.8 ▼ Statements 45

2.8.2 The Compound Statement

A compound statement in C++ is a series of statements surrounded by braces
{ and }. The chief use of the compound statement is to group statements into an
executable unit. The body of a C++ function, for example, is always a compound
statement. In C, when declarations come at the beginning of a compound statement,
the statement is called a block. This rule is relaxed in C++, and declaration state¬
ments ma> occur throughout the statement list. Wherever it is possible to place a
statement, it is also possible to place a compound statement.

2.8.3 The if and if-else Statements

The general form of an i f statement is

if (condition)
statement

If condition is true, then statement is executed; otherwise, statement is skipped.
After the i f statement has been executed, control passes to the next statement. A
condition is an expression or a declaration with initialization that selects flow of
control.

In file if_test.cpp

if (temperature >= 32)
cout « "Above Freezing!\n";

cout « "Fahrenheit is " « temperature « endl;

Above Freezing! is printed only when temperature is greater than or equal to 32.
The second statement is always executed. The expression in an i f statement is usu¬
ally a relational, equality, or logical expression.

In file if_test.cpp

if (grade > 70 && grade < 80) {
cout « " you passed
letter_gr = 'C';

}

The difference from C is subtle. In C++, condition evaluates as a bool, but otherwise,
the i f statement behaves the same way.

46 Chapter 2 ▼ Native Types and Statements

Closely related to the i f statement is the i f-el se statement, which has the

general form

if (condition)
statementl

el se
statement 2

If condition is true, then statementl is executed and statement2 is skipped, if condi¬
tion is false, then statementl is skipped and statement2 is executed. After the
if-el se statement has been executed, control passes to the next statement. Con¬

sider the following code.

In file if_test.cpp

if (x < y)
min = x;

el se
min = y;

cout « "min = " « min;

If x < y is true, then mi n will be assigned the value of x; if x < y is false, mi n will

be assigned the value of y. After the i f-el se statement is executed, mi n is printed.

2.8.4 The while Statement

The general form of a whi 1 e statement is

while (condition)
statement

First, condition is evaluated. If it is true, statement is executed, and control passes
back to the beginning of the whi 1 e loop. The effect of this is that the body of the
while loop, namely, statement, is executed repeatedly until condition is fal se. At
that point, control passes to the next statement. The effect of this is that statement

can be executed zero or more times.

2.8 ▼ Statements 47

An example of a whi 1 e statement follows.

In file while_t.cpp

while (i <= 10) {
sum += i;
++i ;

}

Assume initially that the value of i is 1, and that the value of sum is 0. The while
loop increments the value of sum by the current value of i and then increments i by
1. After the body of the loop has been executed 10 times, the value of i is 11, and
the value of the condition i <= 10 is false. Thus, the body of the loop is not exe¬
cuted, and control passes to the next statement. When the whi le loop is exited, the
value of sum is 55.

2.8.5 The for Statement

Consider the general form of a for statement:

for (for-init-statement; condition; expression)
statement

next statement

Using the whi 1 e in C++, this becomes

for-init-statement;
while (condition) {

statement
expression;

}
next statement

These two forms are equivalent, provided that condition is nonempty and a
continue statement is not in the body of the for loop.

From our understanding of the while statement, we can deduce the semantics
of the for statement. First, the for-init-statement is evaluated and is used to initial¬
ize a variable used in the loop. Then condition is evaluated. If it is true, statement is
executed, expression is evaluated, and control passes back to the beginning of the
for loop again, except that evaluation of for-init-statement is skipped. This iteration
continues until condition is f al se, at which point control passes to next statement.

The for-init-statement can be an expression statement or a simple declaration. If
it is a declaration, the declared variable has the scope of the for statement.

48 Chapter 2 ▼ Native Types and Statements

The fo r statement is an iterative statement typically used with a variable that is
incremented or decremented. As an example, the following code uses a for state¬

ment to sum the integers from 1 to 10:

In file for_test.cpp

sum = 0;
for (i =1; i <=10; ++i)

sum += i;

Any or all of the expressions in a for statement can be missing, but the two
semicolons must remain. If for-init-statement is missing, no initialization step is per¬
formed as part of the for loop. If expression is missing, no incrementation step is
performed as part of the for loop. If condition is missing, no testing step is per¬
formed as part of the for loop. The special rule for when condition is missing is that

the test is always true. Thus, the for loop in the code

for (i = 1, sum = 0 ; ; ++i)
sum += i;

is an infinite loop.
The for statement is one common case in which a local declaration is used to

provide the loop control variable, as in

for (int i =0; i < N; ++i)
sum += a[i]; //sum array a[0] + ... + a[N - 1]

The semantics are that the i nt variable i is local to the given loop. This form of
local declaration is not possible in C but it can be simulated as follows:

{
int i; /*local to block*/
for (i =0; i <N; ++i)

sum += a[i];

}

2.8 ▼ Statements 49

2.8.6 The do Statement

The do statement can be considered a variant of the while statement However
instead of making its test at the top of the loop, the do statement makes it at the
bottom. An example is the following:

do {
sum += i;
ci n » i ;

} while (i > 0);

Consider a construction of the form

do

statement
while (condition);
next statement

First, statement is executed, and then condition is evaluated. If it is true, control
passes back to the beginning of the do statement, and the process repeats itself.
W hen the value of condition is fal se, control passes to next statement. As an exam¬
ple, suppose that we want to read in an integer and want to insist that it be positive.
The following code will accomplish this:

In file do.test.cpp

do {

cout « "\nEnter a positive integer:
cin » n;

} while (n <= 0);

The user will be prompted for a positive integer. A negative or zero value will cause
the loop to be executed again, asking for another value. Control will exit the loop
only after a positive integer has been entered.

2.8.7 The break and continue Statements

In C++, the break and conti nue statements are used to interrupt ordinary iterative
flow of control in loops. In addition, the break statement is used within a switch
statement, which can select among several cases. To interrupt the normal flow of
control within a loop, the programmer can use the two special statements

break; and continue;

50 Chapter 2 y Native Types and Statements

The break statement, in addition to its use in loops, can be used in a swi tch state¬
ment, causing an exit from the innermost enclosing loop or switch statement.

The following example illustrates the use of a break statement. A test for a neg¬
ative value is made. If the test is true, the break statement causes the for loop to
be exited. Program control jumps to the statement immediately following the loop.

In file for_test.cpp

for (i =0; i <10; ++i) {
cin » x;
if (x < 0.0) {

cout « "All done" « endl;
break; //exit loop if value is negative

}
cout « sqrt(x) « endl;

}

//break jumps to here

This is a typical use of a break statement. When a special condition is met, an

appropriate action is taken and the loop is exited.
The continue statement causes the current iteration of a loop to stop and

causes the next iteration of the loop to begin immediately. The following code pro¬

cesses all characters except digits.

In file for_test.cpp

for (i =0; i < MAX; ++i) {
cin.get(c);
if (isdigit(c))

continue;
. //process other characters

//continue jumps to here

}

When the conti nue statement is executed, control jumps to just before the closing
brace, causing the loop to begin execution at the top again. Notice that the
conti nue statement ends the current iteration, whereas a break statement would

end the loop.
A break statement can occur only inside the body of a for, while, do, or

switch statement. The continue statement can occur only inside the body of a

for, while, or do statement.

2.8 ▼ Statements 51

2.8.8 The switch Statement

The switch statement is a multiway conditional statement generalizing the
i f-el se statement. The general form of the swi tch statement is given by

switch (condition)
statement

where statement is typically a compound statement containing case labels and
optionally a defaul t label. Typically, a swi tch is composed of many cases, and the
condition in parentheses following the keyword swi tch determines which, if any, of
the cases are executed.

The following switch statement counts the number of test scores by category.

In file switch_t.cpp

switch (score) {
case 9: case 10:

++a_grades; break;
case 8:

++b_grades; break;
case 7:

++c_grades; break;
default:

++fai1s;

}

A case label is of the form

case constant integral expression:

In a swi tch statement, each case label must be unique. Typically, the action taken
after each case label ends with a break statement. If there is no break statement,
execution “falls through” to the next statement in the succeeding case or defaul t.

If no case label is selected, control passes to the default label, if there is one.
No defaul t label is required, but including one is good practice. If no case label is
selected and if there is no default label, the swi tch statement is exited. The key¬
words case and default cannot occur outside a swi tch. To detect errors, program¬
mers frequently include a default even when all of the expected cases have been
accounted for.

52 Chapter 2 ▼ Native Types and Statements

The Effect of a switch Statement

1. Evaluate the integral expression in the parentheses following switch.

2. Execute the case label having a constant value that matches the value of the
expression found in step 1. If no match is found, execute the defaul t label. If

there is no defaul t label, terminate the swi tch.

3. Terminate the switch when a break statement is encountered or by “falling

off the end.”

2.8.9 The goto Statement

The goto statement, the most primitive method of interrupting ordinary control
flow, is an unconditional branch to an arbitrary labeled statement in the function.
The goto statement is considered a harmful construct in most accounts of modern
programming methodology. Thus, the statement can undermine all of the useful
structure provided by other flow-of-control mechanisms (for, while, do, if, and

swi tch).
A label is an identifier. By executing a goto statement of the form

goto label-,

control is unconditionally transferred to a labeled statement. An example is

In file goto_tst.cpp

if (d == 0.0)
goto error;

el se
ratio = n / d;

error: cerr « "ERROR: division by zero" « endl ;

Both the goto statement and its corresponding labeled statement must be in the
body of the same function. In general, goto should be avoided.

2.9 ▼ Pragmatics S3

2.9 Pragmatics

C++ has greatly improved on C’s primitive form of cast. In general, it is best to avoid
explicit casting, also known as coercion, or conversion. Type logic is a safety check
that the compiler can perform statically to detect coding mistakes. However, if you
must cast, try to stay with the most benign form of conversion, static_cast<>. A
true conversion is performed that will be portable. At the other end of the spectrum
is rei nterpret_cast<>, with nonportable system-dependent effects. This cast
should be avoided.

C++ has changed C’s rules on where declarations can occur. The for loop is one
place where local declarations are idiomatically used. Because these rules have
changed in C++ since its introduction in 1985, many books, text, and legacy code
are wrong and must be updated to conform to ANSI rules. It is perfectly acceptable
to declare simple variables at the head of a block, most likely the beginning of a
function definition. Following this advice yields code that works in both C and C++.
For example, let us write an iterative version of the Fibonacci function this way.

In file fibonal.c

//Fibonacci series compatible with C

unsigned fibonacci(unsigned n)

unsigned i, sum =

for ' (i = 0; i < n
sum = f0 + fl;
f0 = fi;
fl = sum;

}
if (n > 1)

return sum;
el se

return n;

0, f0 = 0, fl = 1;

- l; ++i){

Using the fact that declarations are allowed in the for-init-statement gives us

54 Chapter 2 t Native Types and Statements

In file fibona2.c
t

//Idiomatically correct C++
//Fibonacci series incompatible with C
//This code follows the rule of smallest enclosing scope

unsigned fibonacci(unsigned n)

{
unsigned sum = 0;
for (unsigned i = 0, f0 = 0, fl = 1; i < n - 1; ++i){

sum = f0 + fl;
f0 = fl;
fl = sum;

}
if (n > 1)

return sum;
el se

return n;

Notice what happens if we make the following coding error:

In file fibona3.c

//ERROR because of scopes

unsigned fibonacci(unsigned n)

{
unsigned sum;

for(unsigned i = 0, f0 = 0, fl = 1, sum = 0; i < n - 1; ++i){
sum = f0 + fl;
f0 = fl;
fl = sum;

}
if (n > 1)

return sum;
el se

return n;

2.10 ▼ Moving from C++to Java 55

In this last piece of code, an error was introduced by initializing sum in the for loop.
The program compiles and runs but with system-dependent results because there
are two sum variables in fi bonacci ().

2.10 Moving from C++ to Java

The primitive types in a Java program can be boolean, char, byte, short, i nt,
long, float, and double. These types are always identically defined regardless of
machine or system they run on. For example, the i nt type is always a signed 32-bit
integer, unlike in C, where this can vary from system to system. The bool ean type is
not an arithmetic type and cannot be used in mixed arithmetical expressions. The
char type uses 16-bit Unicode values. The byte, short, i nt, and 1 ong are all
signed integer types, with length in bits of 8, 16, 32, and 64, respectively. Unlike in
C++, unsigned types are not provided. The floating types comply with IEEE754 stan¬
dards and are float, a 32-bit size, and double, a 64-bit size. The nonprimitive
types are class and array types, and variables of these types take references as their
values.

Java has the same basic set of operators as C++, with a few exceptions. For
example, Java does not have the comma operator, scope resolution operator, or
delete operator. Java added two operators: the instanceof and »> operators.

The flow of control statements—i f, i f-el se, whi le, for, and swi tch—avail¬
able to C++ are also available in Java. Although goto is a reserved word in Java, the
goto statement was not implemented. However, Java extended the break and
conti nue statements so that they can use labels.

We will write a program, Moon, to convert to kilometers the distance in miles
from Earth to the moon. In miles this distance is, on average, 238,857 miles. This
number is an integer. To convert miles to kilometers, we multiply by the conversion
factor 1.609, a real number.

Our conversion program will use variables capable of storing integer values and
real values. The variables in the following program will be declared inmai n(). Java
cannot have variables declared as extern (in other words, as global or file scope

variables).

56 Chapter 2 y Native Types and Statements

In file Moon.java

// The distance to the moon converted to kilometers

public class Moon {
public static void main(String[] s) {

int moon = 238857;
int moon_kilo;

System.out.println("Earth to moon = " + moon + " mi.");
moon_kilo = (int)(moon * 1.609);
System.out.println("Kilometers = " + moon_kilo +" km.");

}
}

The output of the program is

Earth to moon = 238857 mi.
Kilometers = 384320 km.

Dissection of the Moon Program

■ int moon = 238857;

Variables of type i nt are signed 32-bit integers. They can be initialized as in C.

■ System.out.println("Earth to moon = " + moon + " mi.");

The pri ntl n() method can discriminate among a variety of simple values without
needing additional formatting information. Here, the value of moon will be printed
as an integer. The symbol + represents string concatenation. Using “plus”
pri ntl n() can print a list of arguments. What is happening is that each argument
is converted from its specific type to an output string that is concatenated together
and printed along with a newline character.

■ moon_kilo = (int)(moon * 1.609);

The mixed expression moon * 1.609 is a doubl e and must be explicitly converted
to i nt. Java cast operators are notationally the same as in C, namely, (type).

t Summary 57

Note that narrowing conversions that are implicit in C++ are not done in Java.
Java in this regard is more type safe than C++. Also in Java all the primitive types
are implementation independent. So numerically, a Java program gets the same
answer regardless of the system it is running on. C++ continues C’s tradition of hav¬
ing implementation-dependent choices of primitive types, so as to optimize perfor¬
mance on a given machine.

Summary

This summary emphasizes in order of appearance changes and differences from C
in the C++ language.

1. C++ comments include the //rest of line comment while retaining the multiline
bracketed comments of C /* comment here */.

2. C++ has many new tokens not found in C. In the keyword list in Section 2.1.2,
“Keywords,” on page 25, new keywords, such as bool, static_cast, vi rtual,
and private are bolded to distinguish them from preexisting C keywords. New
operators exist in C++, such as the free store operators new and delete and the
scope resolution operator: :.

3. C++ has the new native types bool and wchar_t and literals appropriate to each
type.

4. The new ANSI header file names, such as iostream, are embedded in the
namespace std. In these cases, the construct using namespace std; allows
access to the names in this library without the need for scope-resolved names,
such as std: : cout.

5. At the conclusion of the execution of main() there is an implicit return 0.
Thus, it is proper C++ style to omit writing this explicitly, as is required by C.

6. C++ relies on an external standard library to provide input/output. The informa¬
tion the program needs to use this library resides in the iostream.h or the
iostream file. This library is type safe and requires no formatting specifications,
as found in C’s use of pri ntf and scanf. In C++, a typical output expression is

cout « expression! « expression2 « endl ;

58 Chapter 2 ▼ Native Types and Statements

7. In addition to implicit conversions, which can occur across assignments and in
mixed expressions, there are explicit conversions, called casts. New keywords
introduced in C++ for casts are stati c_cast, rei nterpret_cast, const_cast,
and dynamic_cast. Old-style C casts (type) should be avoided.

8. The keyword enum is used to declare a distinct integer type with a set of named
integer constants, called enumerators. In C++, the enumerator tag name is auto¬

matically a user-defined type.

9. Both C++ and C have assignment, procedure, transfer, conditional, selections,
and iterative statements. Two important differences are: (1) C++ uses bool
expressions to control flow-of-control statements; and (2) C++ allows declara¬
tions as statements instead of just being at the head of blocks or global.

10. The general form of a for statement is different from that in C.

for (for-init-statement; condition; expression)
statement

next statement

First, the for-init-statement is evaluated and is used to initialize a variable used
in the loop. Then condition is evaluated. It is of type bool. If it is t rue, statement
is executed, expression is evaluated, and control passes back to the beginning of
the for loop again, except that evaluation of for-init-statement is skipped. This
iteration continues until condition is f al se, whereupon control passes to next
statement. The for-init-statement can be an expression statement or a simple
declaration. Where it is a declaration, the declared variable has the scope of the
for statement.

for (int i = 0; i < N; ++i)
sum += a[i]; //sum array a[0] + ... + a[N - 1]

The semantics are that the int variable i is local to the given loop. This form of
local declaration is not possible in C.

▼ Review Questions 59

Review Questions

1. A type in C++ that C does not have is_.

2. Three keywords in C++ that are not in C are_,_, and_.
Describe their use as far as you currently understand it.

3. What token does the new comment style in C++ involve? Why should it be used?

4. What two literal values does the bool type have? Can they be assigned to int
variables? With what result?

5. What is the distinction between static_cast<> and reinterpret_cast<>?
Which is the more dangerous? Why?

6. C++ uses the semicolon as a statement_.

7. The general form of a for statement is

for (for-init-statement, condition, expression)
statement

There are two important differences between the C++ for and the C for. What
are they? Explain with an example.

8. The goto should_be used.

9. What happens when the condition part of the for statement is omitted?

10. The Java output library function works by converting its arguments to concate¬
nated strings, as in

System.out.println("Earth to moon = " + moon + " mi.");

Explain what happens in this statement.

60 Chapter 2 ▼ Native Types and Statements

Exercises

1. Rewrite the gcd() function from Section 2.3, “Program Structure,” on page 30,
with a for loop replacing the while loop.

2. Rewrite the gcd program from Section 2.3, “Program Structure,” on page 31, to
read a value for how_many greatest common divisors will be computed. The vari¬
able how_many will be used to exit the for loop.

3. On most systems, input can be redirected from a file. Assume that the gcd pro¬
gram has been compiled into an executable file called gcd. The command

gcd < gcd. dat

will take its input from the file gcd.dat and will write the answers to the screen.
Test this with a file containing

4 4 6 6 21 8 20 15 20

On most systems, output can also be redirected to a file. The command

gcd > gcd. a ns

will place its output in the file gcd.ans, taking its input from the keyboard. Enter
the same data as previously and check the file gcd.ans to see that it has the four
correct answers. The two redirections can be combined as follows:

gcd < gcd.dat > gcd.ans

This will take its input from the file gcd.dat and will place its output in the file
gcd.ans. Test this on your system.

▼ Exercises 61

4. Short-circuit evaluation is an important feature. The following code illustrates
its importance in a typical situation:

//Compute the roots of: a*x*x + b*x + c

cin » a » b » c;
discr = b * b - 4 * a * c;

if ((discr > 0) && (sq_disc = sqrt(discr))) {
rootl = (-b + sq_disc) / (2 * a);
root2 = (-b - sq_disc) / (2 * a);

}
else if (discr < 0) { //complex roots

}
el se

rootl = root2 = -b / (2 * a);

The sqrt() function would fail on negative values, and short-circuit evaluation
protects the program from this error. Complete this program by having it com¬
pute roots and print them out for the following values:

a = 1.0, b = 4.0, c = 3.0
a = 1.0, b = 2.0, c = 1.0
a = 1.0, b = 1.0, c = 1.0

5. Use the complex library to provide the C++ complex number type, and rewrite
the previous root-finding program to print out roots as complex numbers when
appropriate. Compare this to a C implementation. In ANSI C++, use#include
<complex>. In the main program, declare such variables as

complex<double> rootl, root2; //complex is a template type

6. What will the following program print?

//What is printed?

int main()

{
char c = 'A';
int i =3, j = 1, k = -2, m = 0;
bool p = false, q = true;

62 Chapter 2 ▼ Native Types and Statements

cout « c « " is integer val ue " « int(c)

« " and !'A' is" « !c « endl;

cout « "i = " « i « ", ! i = " « !i « endl;

cout « "! ! i = " « ! ! i « " , ! m = " « ! m

« endl ;
cout « "P = " « P « ", q = " « q « endl;

cout « " ! p = " « ! ! p « ", ! q = " « !q « endl;

cout « "Ki + j) 1 1 | m = A

A

/•~
S

(i + j) II m)
« endl ;

cout « "q II (j / m) = " « (q II (j / m))
« endl ;

cout « "(j / m) | | q = " « ((j / m) | | q)
« endl ;

}

7. The C++ switch statement allows two or more cases to be executed for the
same value by allowing the code to “fall through.”

switch (i) {
case 0: case 1:

++hopeless; // fall through
case 2: case 3:

++weak;
case 4: case 5:

++fails; break;
case 6: case 7:

++c_grades; break;
case 8:

++b_grades; break;
case 9:

++a_grades; break;
default:

cout « "incorrect grade " « i « endl;

}

Hand simulate this statement for i equals 1. Write the equivalent if-else
statement.

▼ Exercises 63

8. Use si zeof to determine the number of bytes each of the following requires on
your loca system: bool, char, short, int, long, float, double, and long
doub I e. Also do this for the enumerated types

enum bounds { lb = -1, ub = 511 };

enum suit { clubs, diamonds, hearts, spades };

9. Write a program to convert from Celsius to Fahrenheit. The program should use
mteger values and print integer values that are rounded. Recall that zero Celsius
is 32 degrees Fahrenheit and that each degree Celsius is 1.8 degrees Fahrenheit.

10. Write a program that prints whether water at a given Fahrenheit temperature
would be solid, liquid, or gas. In the computation, use an enumerated type:

enum state { solid = STMP, liquid = LTMP, gas = GTMP };

11. Write a program that accepts either Celsius or Fahrenheit and produces the
other value as output. For example, input 0C, output 32F; input 212F, output

12. Simplify the following code:

for (sum =i =0, j = 2, k = i + j; i <10 || k < 15;
++i, ++j, ++k)

sum += (i < j)? k : i;

Remember that comma expressions are sequences of left-to-right evaluations,
with each comma-separated subexpression evaluated in strict order.

13. In the C world, more flexible file I/O is available by using the FILE declaration
and file operations found in stdio. The C++ community uses fstKBuin, as dis¬
cussed in Appendix D, “Input/Output.” Familiarize yourself with this library.
Convert the program in exercise 3 on page 60, to use fstreams. The program
should get its arguments from the command line, as in

gcd gcd.dat gcd.ans

64 Chapter 2 ▼ Native Types and Statements

14. The following code prints 100 random number?:

int mainO

{
int how_many = 100;

cout « "Print " « how_many
« " random integers.\n";

for (int i = 0; i < how_many; ++i)
cout « rand() « '\t';

}

Add code that determines average, maximum, and minimum values generated.
Note that the rand() function is found in stdlib library.

15. Alter the previous program to ask the user how many numbers should be gener¬
ated. Have this be an outer loop. Exit this program when the user answers with

zero or a negative number.

16. The constant RAND_MAX is the largest integer that rand() generates. Use
RANDJMAX/2 to decide whether a random number is to be heads or tails. Gener¬
ate 1,000 randomly generated heads and tails. Print out the ratio of heads to
tails. Is this a reasonable test to see whether rand() works correctly? Print out
the size of the longest number of heads thrown in a row.

17. The conditions in selection and iterative statements can be declaration state¬
ments, such as if (bool d = test()) , where scope is restricted to the
statement. Write a program that tests whether your compiler conforms to this
latest ANSI rule change.

18. Rewrite f i bonacci () found in Section 2.9, “Pragmatics,” on page 54, as a recur¬
sive function. Test it against the iterative form to see which is faster. Useful tim¬
ing functions can be found in time library.

19. (Java) Rewrite the convert from Celsius to Fahrenheit program in exercise 9 on
page 63, in Java.

20. (Java) Rewrite the C++ Fibonacci program in Section 2.9, “Pragmatics,” on page
54, in Java. Have it print out the first forty Fibonacci numbers. Investigate the
for loop scope rules in Java.

pter 3

ctions, Pointers,
and Arrays

This chapter continues the discussion of the C++ kernel language, focusing on func¬
tions, pointers, and arrays. The experienced C programmer can read the chapter
quickly, with an eye for differences and extensions to C. These differences will again
be stressed in the summary section for easy reference.

In C++, a primary unit for structuring a program is the function. Aggregate data
in C++ are either arrays or structures. In both cases, a pointer type is used as a
mechanism for accessing such data.

3.1 Functions

A problem in C++ or C can be decomposed into subproblems, each of which can be
either coded directly or further decomposed. This is the method of stepwise refine¬
ment. The function construct in C++ is used to write code for these directly solvable
subproblems. These functions are combined into other functions and are ultimately
used in mai n() to solve the original problem.

The function mechanism is provided in C++ to perform distinct programming
tasks. Some functions, such as strcpyO and rand(), are provided by libraries; oth¬
ers can be written by the programmer. New to C++ are default arguments, function
overloading, and inlining of functions. The use of an empty parameter list also dif¬
fers between C and C++.

66 Chapter 3 ▼ Functions, Pointers, and Arrays

3.1.1 Function Invocation

A C++ program is made up of one or more functions, one of which is mai n(). Pro¬
gram execution always begins with mai n(). When program control encounters a
function name, the function is called, or invoked. This means that program control
passes to the function. After the function does its work, program control is passed
back to the calling environment, which then continues with its work. As a simple
example, consider the following program, echo, which uses the string library and

echoes an input word:

In file echol.cpp

//Echo a message

void echo(string message)

{
cout « message « endl ;

}

int main()

{
string word;

cout « "Enter your word:
cin » word; //reads to white space
echo(word);

}

3.2 Function Definition

The C++ code that describes what a function does is called the function definition.
Its form is

function header

{
statements

}

Everything before the first brace comprises the header of the function definition,
and everything between the braces comprises the body of the function definition.

3.2 r Function Definition 67

The function header is

type name(parameter-declaration-list)

The type specification which precedes the function name is the return type and
determines the type of the value that the function returns, if any.

In the function definition for echo() in the echo program, the parameter list
has one parameter. The body of the function consists of a block. Since the function
does not return a value, the return type of the function is voi d.

Parameters are syntactically identifiers, and they can be used within the body of
the function. The parameters in a function definition are called formal parameters
to emphasize their role as placeholders for the values that are passed to the func¬
tion when it is called. When the function is invoked, the value of the argument cor¬
responding to a formal parameter is used within the body of the executing function.
As in C, such parameters are call-by-value.

C and C++ functions have a number of differences which we will point out as we
explain various features of using functions. One difference is that a C++ block need
not have declarations at the head of the block. So in the echo program, mai n()
could have been written as

In file echo2.cpp

int main()

{
cout « "Enter your word:
string word; //place declaration near its use
cin » word;
echo(word);

}

In ANSI C++, the empty parameter list is always equivalent to using void. Thus,
mai n() is equivalent to mai n(voi d). The function mai n() implicitly returns the
integer value 0 if no explicit return expression statement is executed.

68 Chapter 3 ▼ Functions, Pointers, and Arrays

3.3 The return Statement

The return statement is unchanged from its C use. When a return statement is
executed, program control is immediately passed back to the calling environment.
In addition, if an expression follows the keyword return, the value of the expres¬
sion is returned to the calling environment as well. This value must be assignment
convertible to the return type of the function definition header.

A return statement has one of the following two forms:

return;
return expression;

Some examples are

return;
return 3;
return (a + b) ;

Using parentheses in the return expression is optional, a stylistic device that some
programmers use to enhance readability.

3.4 Function Prototypes

The syntax of functions in C++ is type safe where the types of parameters are listed
inside the header parentheses. By explicitly listing the type and number of argu¬
ments, strong type-checking and assignment-compatible conversions are possible.

A function can be declared before it is defined. It can be defined later in the file
or can come from a library or a user-specified file. Such a declaration is called a
function prototype and has the following general form:

type name(argument-declaration-list);

The argument-declaration-list is typically a comma-separated list of types. If a func¬
tion has no parameters, the preferred style for such an empty parameter list is
function_nameQ. The function’s argument list can include the argument identifiers.
This information allows the compiler to enforce type compatibility. Arguments are
converted to these types as if they were following rules of assignment.

3.4 ▼ Function Prototypes 69

The use of the empty parameter list differs from that in traditional C, in which
an empty parameter list can indicate an unknown number of arguments. Frequently,
C programmers indicate an empty parameter list by using function_name(voi d). In
C++, the empty parameter list is the same as the use of void.

In Section 3.1.1, Function Invocation,” on page 66, we used in the echol.cpp
program the function echo(). Its prototype in mai n() would be

void echo(string);

Both the fimction return type and the argument-list types are explicitly mentioned.
The definition of echo() that occurs in the file must match this declaration. The
function prototype can also include the identifier names of the arguments. In the
case of echo(), this w^ould be

void echo(string message);

C++ uses the ellipsis symbol (. . .) for an argument list that is unspecified. The
stdio function pri ntf () is declared as the prototype.

int printf(const char* cntrl_str, ...);

Such a function can be invoked on an arbitrary list of parameters. This practice
should be avoided because of loss of type safety.

3.4.1 Recursion

As in C, C++ has recursion. A recursive function calls itself as part of its definition.
A simple recursive function has two main parts: the base-case part, where it com¬
putes a value and terminates, and the recursive part, where it calls itself. Recursion
corresponds to mathematical induction in describing how functions such as facto¬
rial are proved correct.

In file factor.cpp

//Recursive factoriai function

long factorial(int n)

{
if (n <= 1)

return 1;
el se

return n * factorial(n - 1);

}

70 Chapter 3 ▼ Functions, Pointers, and Arrays

Notice how the recursive call is with the expression n - 1. This guarantees that the
function factori al () will terminate. Each recursion will reduce the called expres¬
sion by 1 until the termination condition n <= 1 is true. In running this computa¬
tion, be aware that for relatively small values of n (such as 13), the computation will

fail because of integer overflow.
A pseudocode prescription for writing a simple recursion is

//base-case part

if (base-case condition)
return base-case computed value-,

//general case as a recursion

el se
return recursively computed expression;

3.5 Default Arguments

A formal parameter can be given a default argument, usually a constant that occurs
frequently when the function is called. Use of a default argument saves writing this
default value at each invocation. The ability to provide default values to arguments
does not exist in C. The following recursive function illustrates the point.

In file powers.cpp

int sqr_or_power(int n, int k = 2) //k=2 is default

{
assert(k > 1); //note asserts are as in C

if (k == 2)
return (n * n);

el se
return (sqr_or_power(n, k - 1) * n);

}

We assume that most of time the function is used to return the value of n squared.
The assert is discussed later in this chapter.

sqr_or_power(i + 5)
sqr_or_power(i + 5, 3)

//computes (i + 5) * (i + 5)
//computes (i + 5) cubed

3.6 ▼ Functions as Arguments 71

Only trailing parameters of a function can have default values. This rule allows
the compiler to know which arguments are defaulted when the function is called
with fewer than its complete set of arguments. The rule substitutes for the leftmost
arguments with the explicit arguments and then uses defaults for any of the
remaining contiguous unspecified arguments. Some examples are

void foo(int i, int j = 7); //legal
void goo(int i = 3, int j); //illegal
void hoo(int i, int j = 3, int k = 7); //legal
void moo(int i = 1, int j = 2, int k = 3); //legal
void noo(int i, int j = 2, int k); //illegal

3.6 Functions as Arguments

Functions in C++ can be thought of as the addresses of the compiled code residing
in memory. Functions are therefore a form of pointer (see Section 3.11, “Pointer
Types,” on page 82) and can be passed as a pointer-value argument into another
function. Using this idea, we write code that will print n values of a function, start¬
ing at an initial value using a specific increment. This form of plotting function can
be useful to generate a function map that later will be used to find properties of the
function, such as a root of the function.

In file root.cpp

double f(double x)

{
return (x*x + 1.0/x);

}

void plot(double fcn(double), double x0, double incr, int n)

{
for (int i = 0; i < n; ++i){

cout « " x :" « x0
« " f(x) : " « fcn(x0) « endl;

x0 += incr;

}
}

72 Chapter 3 ▼ Functions, Pointers, and Arrays

int main()

{
cout « "mapping function x*x + 1.0/x " « endl;

piot(f, 0.01, 0.01, 100);

}

Notice that the first argument to plot() is a function of a specific type. Functions
as arguments are strongly typed. In this case, plot() will take only a function

returning doubl e of one argument that is doubl e.

3.7 Overloading Functions

Function overloading is a feature not available in C but is a feature in C++. The usual
reason for picking a function name is to indicate the function’s chief purpose. Read¬
able programs generally have a diverse and literate choice of identifiers. Sometimes,
different functions are used for the same purpose. For example, consider a function
that averages the values in an array of doubl e versus one that averages the values
in an array of int (see Section 3.14, “Arrays and Pointers,” on page 89). Both are
conveniently named avg_arr(), as in the following example.

Overloading refers to using the same name for multiple meanings of an opera¬
tor or a function. The meaning selected depends on the types of the arguments used
by the operator or function. Here, we restrict our discussion to function overloading
and leave operator overloading to Chapter 6, “Operator Overloading and Conver¬
sions,” as the operator overloading is used chiefly in the context of classes. In the
following code, we overload avg_arr():

In file avg_arr.cpp

//Average the values in an array

double avg_ari "(const int a[] , int size)

{
int sum = 0;

for (int i = 0; i < size; ++i)
sum += a[i]; //performs int arithmetic

return static_cast<double>(sum) / size;

3.8 ▼ Inlining 73

double avg_arr(const double a[], int size)
{

double sum = 0.0;

for (int i = 0; i < size; ++i)

sum += a[i]; //performs double arithmetic
return (sum / size);

}

The following code shows how avg_arr() Is invoked:

int main()

{
int w[5] = { 1, 2, 3, 4, 5 }; //initialization
double x[5] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

cout « avg_arr(w, 5) « " int average" « endl;
cout « avg_arr(x, 5) « " double average" « endl;

}

The compiler chooses the function with matching types and arguments. The sig¬
nature-matching algorithm gives the rules for performing this (see Section 6.2,
“Overloading and Function Selection,” on page 197). By signature, we mean the list
of types that are used in the function declaration.

3.8 Inlining

C++ provides the keyword inline to preface a function declaration when the pro¬
grammer intends the code replacing the function call to be inline.

In file inline.cpp

inline double cube(double x)

{
return (x * x * x);

}

The compiler parses this function, providing semantics that are equivalent to a non¬
inline version. The compiler limits prevent complicated functions, such as recursive
functions, from being inlined.

74 Chapter 3 ▼ Functions, Pointers, and Arrays

Macro expansion is a scheme for placing code inline that would normally use a
function call. The #defi ne preprocessor directive supports general macro substitu¬

tion, as in the following:

#define SQR(X) ((X) * (X))
#define CUBE(X) (SQR(X)*(X))
#define ABS(X) (((X) < 0)? -(X) : X)

y = SQR(t + 8) - CUBE(t - 8);
cout « sqrt(ABSCy));

The preprocessor expands the macros and passes on the resulting text to the com¬

piler. So the preceding is equivalent to

y = ((t+8) * (t+8)) - CCCCt-8)) * (t-8)) * (t-8));

cout « sqrt((((y) < 0)? -(y) : y));

One reason for all the parentheses is to avoid precedence mistakes, as would occur

in the following:

#define SQR(X) X * X

y = SQR(t + 8); //expands to t + 8 * t + 8

Macro expansion provides no type safety as is given by the C++ parameter-pass¬
ing mechanism. Since the macro argument has no type, no assignment type conver¬
sions are applied to it, as they would be in a function. Although careful definition
and use of macros can avoid such mistakes, C++ programmers avoid macro defini¬
tions by using inlining for purposes of code efficiency.

3.9 Scope and Storage Class

The kernel language has two principal forms of scope: file scope and local scope.
Local scope is scoped to a block. Compound statements that include declarations
are blocks. Function bodies are examples of blocks. They contain a set of declara¬
tions that include their parameters. File scope has names that are external (global).
There is also block scope, which is discussed in the next section. Class scope rules
are discussed in Section 4.6, “Class Scope,” on page 122.

3.9 ▼ Scope and Storage Class 75

The basic rule of scoping is that identifiers are accessible only within the block
in which they are declared. Thus, they are unknown outside the boundaries of that
block. A simple example follows.

In file scope_t.cpp

{
int a = 2;
cout « a « endl;

{
int a = 7;
cout « a « endl;

}
cout « ++a « endl;

//outer block a
//prints 2
//enter inner block
//inner block a
//prints 7
//exit inner block
//3 is printed

Each block introduces its own nomenclature. An outer block name is valid
unless an inner block redefines it. If redefined, the outer block name is hidden, or
masked, from the inner block. Inner blocks may be nested to arbitrary depths that
are determined by system limitations.

In C++, declarations can be internal to a block. In C, all block-scope declarations
occur at the head of the block. An example shows this.

In file array_mx.cpp

//C++ but not C

int max(int c[], int size)

{
cout « "array size is " « size « endl;

int comp = c[0];
for (int i =1; i < size; ++i)

if Cc[i] > comp)
comp = c [i] ;

return comp;

//declare comp
//declare i

In C++, the scope of an identifier begins at the end of its declaration and continues
to the end of its innermost enclosing block.

Even though C++ does not require that declarations be placed at the head of
blocks, it is frequently good practice to do so. Since blocks are often small, this

76 Chapter 3 ▼ Functions, Pointers, and Arrays

practice provides a good documentation style for commenting on their associated

use. . .
Placing declarations within blocks allows a computed or input value to initialize

a variable. Especially for large blocks, it is best to place declarations as close as pos¬

sible to where they are used.

3.9.1 The Storage Class auto

Every variable and function in C++ kernel language has two attributes, type and stor¬
age class. The four storage classes are automatic, external, register, and static, with

corresponding keywords

auto extern register static

Variables declared within function bodies are by default automatic, making
automatic the most common of the four storage classes. If a compound statement
contains variable declarations, these variables can be acted on within the scope of
the enclosing compound statement. Recall that a compound statement with declara¬

tions is a block.
Declarations of variables within blocks are implicitly of storage class automatic.

The keyword auto can be used to explicitly specify the storage class. An example is

auto int a, b, c;
auto float f = 7.78;

Because the storage class is automatic by default, the keyword auto is seldom
used. As in C, blocks are a principal mechanism for the allocation and deallocation

of storage.

3.9.2 The Storage Class extern

One method of transmitting information across blocks and functions is to use exter¬
nal variables. When a variable is declared outside a function at the file level, storage
is permanently assigned to it, and its storage class keyword is extern. A declaration
for an external variable can look just like a declaration for a variable that occurs
inside a function or a block. Such a variable is considered to be global to all func¬
tions declared after it. On block exit or function exit, the external variable remains
in existence. Such variables cannot have automatic or register storage class. The
keyword static can be used. (See Section 3.9.4, “The Storage Class static,” on

page 78.)
The keyword extern is used to tell the compiler, “Look for it elsewhere, either

in this file or in some other file.” Thus, two files can be compiled separately. The use
of extern in the second file tells the compiler that the variable will be defined else-

3.9 ▼ Scope and Storage Class 77

where, either in this file or in another one. The ability to compile files separately is
important for writing large programs.

Since external variables exist throughout the execution life of the program, they
can be used to transmit values across functions. They may, however, be hidden if
the identifier is redefined. Another way to conceive of external variables is as being
declared in a block that encompasses the whole file.

Information can be passed into a function two ways: by external variables and
by the parameter mechanism. The parameter mechanism is the preferred method,
although there are exceptions. This tends to improve the modularity of the code
and reduces the possibility of undesirable side effects.

Here is a simple example of using external declarations for a program that sits
in two separate files.

In file circle3.cpp

const double pi = 3.14159;
double circle(double radius)
{

return (pi * radius * radius);
}

In file cir.main.cpp

double circle(double); //functions are of extern scope

int main()

{
double x;

cout « circle(x) « " is area of circle of radius "
« x « endl;

}

With the GNU system, this is compiled as g++ circle.c main.c.
The const modifier causes pi to have local file scope, so pi cannot be directly

imported into another file. When such a definition is required elsewhere, it must be
modified explicitly with the keyword extern.

78 Chapter 3 t Functions, Pointers, and Arrays

3.9.3 The Storage Class register

The storage class regi ster tells the compiler that the associated variables should
be stored in high-speed memory registers, provided it is physically and semantically
possible to do. Since resource limitations and semantic constraints sometimes make
this impossible, the storage class register defaults to automatic whenever the
compiler cannot allocate an appropriate physical register. When speed is of concern,
the programmer may choose a few variables that are most frequently accessed and
declare them to be of storage class regi ster. Common candidates for such treat¬
ment include loop variables and function parameters. Here is an example.

{
for (register i = 0; i < LIMIT; ++i) {

}
}

The declaration regi ster i ; is equivalent to regi ster i nt i If a storage class
is specified in a declaration and the type is absent, the type is i nt by default.

The storage class regi ster is of limited usefulness. It is taken only as advice to
the compiler. Furthermore, contemporary optimizing compilers are often more
astute than the programmer.

3.9.4 The Storage Class static

Static declarations have two important and distinct uses. The more elementary use
is to allow a local variable to retain its previous value when the block is reentered.
By contrast, ordinary automatic variables lose their value on block exit and must be
reinitialized. The second, more subtle use is in connection with external declara¬
tions and will be discussed in the next section.

As an example of the value-retention use of stati c, we will write a function
that maintains a count of the number of times it is called.

In file stat_tst.cpp

int f()
{

static int called = 0;

++called;

return called;
}

3.9 ▼ Scope and Storage Class 79

The first time the function is invoked, the variable cal led is initialized to 0. On
function exit, the value of called is preserved in memory. When the function is
invoked again, cal 1 ed is not reinitialized; instead, it retains its value from the previ¬
ous time the function was called.

In its second, more subtle use, stati c provides a privacy mechanism that is
very important for program modularity. By privacy, we mean visibility, or scope,
restrictions on otherwise accessible variables or functions.

This use restricts the scope of the function. Static functions are visible only
within the file in which they are defined. Unlike ordinary functions, which can be
accessed from other files, a static function is available throughout its own file but in
no other. Again, this facility is useful in developing private modules of function def¬
initions. Note that in C++ systems with namespaces, this mechanism should be
replaced by anonymous namespaces (see Section 3.10, “Namespaces,” on page 80).

//C scheme of file privacy using static extern
//C++ should replace this with anonymous namespaces

static int goo(int a)

{

}

int foo(int a)

{

b = goo(a);
//goo() is available here but not in other files

}

In C++, the system initializes to 0 both external variables and static variables
that are not explicitly initialized by the programmer. Such variables include arrays,
strings, pointers, structures, and unions. For arrays and strings, this means that
each element is initialized to 0; for structures and unions, it means that each mem¬
ber is initialized to 0. In contrast, automatic and register variables usually are not
initialized by the system. This means that they can start with “garbage” values.

80 Chapter 3 ▼ Functions, Pointers, and Arrays

3.9.5 Linkage Mysteries

Multifile programs require proper linkage. C++ requires some special rules to avoid
hidden inconsistencies. As already indicated, a name declared at file scope as explic¬
itly stati c is local and is hidden from other files. This form of linkage is called
internal linkage. By default, const and typedef declarations have internal linkage.
A const variable that is at file scope but is not static can be given external linkage
by declaring it extern. Finally, linkage to C code is possible using the form

extern "C" { code or included file }

Linkage to languages other than C is system dependent. For example, some sys¬
tems might allow "Pascal ". (See Section C.11.6, “Type-Safe Linkage for Functions,”

on page 386.)
It is the coder’s responsibility to make sure that all names referring to the iden¬

tical construct are consistent. It is beyond the scope of this text to discuss all of the
nuances of linkage.

Tips for Avoiding Linkage Problems

■ Use header files for function prototypes, class definitions, constants, type-
defs, templates, inline functions, and named namespaces.

■ Use these header files with an # i f def filename as a guard against multi¬
ple inclusion.

■ Think in terms of the one-definition rule (ODR) which states that classes, enu¬
merations, templates, and so forth, must be defined exactly once in the pro¬
gram.

■ As a heuristic, envision “writing” the code into one monolithic file and “see¬
ing” whether this causes conflicts.

3.10 Namespaces

C++ inherited C’s single global namespace. Programs written by two or more parties
can have inadvertent name clashes when combined. C++ encourages multivendor
library use. This motivates the addition of a namespace scope to ANSI C++.

3.10 ▼ Namespaces 81

namespace LMPinc {
class puzzles { . };
class toys { . };

}

The namespace identifier can be used as part of a scope-resolved identifier,
which has the form

namespace_id: :id

A usi ng declaration lets a client have access to all names from that namespace,

using namespace LMPinc;
toys top; //LMPinc::toys

Namespaces can also nest.

In file namespac.cpp

namespace LMPincf
int n;
namespace LMPdolls { //inner namespace

int sq(){ return n * n; } //LMPinc::n
void pr_my_logo();

}
void LMPdol1s::p r_my_logo()

{ cout « "Dolls by Laura" « endl; }

}

As mentioned in Section 3.9.4, “The Storage Class static,” on page 79,
namespaces can be used to provide a unique scope that replaces static global decla¬
rations. This is done by an anonymous namespace definition, as in

namespace { int count = 0; } //count is unique here
//count is available in the rest of the file
void chg_cnt(int i) { count = i; }

Library headers conforming to ANSI C++ will no longer use the .h suffix. Files
such as iostream and complex will be declared with the namespace std. Vendors no
doubt will continue shipping old-style headers, such as iostream.h or complex.h as
well, so that old code can run without change.

82 Chapter 3 ▼ Functions, Pointers, and Arrays

3.11 Pointer Types

C++ pointers, used to reference variables and machine addresses, are intimately tied
to array and string processing. C++ arrays can be considered a special form of
pointer associated with a contiguous piece of memory for storing a series of indexi¬
ble values.

Pointers are used in programs to access memory and to manipulate addresses.
If v is a variable, &v is the address, or location in memory, of its stored value. The
address operator & is unary and has the same precedence and right-to-left associa¬
tivity as the other unary operators. Pointer variables can be declared in programs
and then used to take addresses as values. The following declares p to be of type
“pointer to i nt”:

int* p;

The legal range of values for any pointer always includes the special address 0,
as well as a set of positive integers that are interpreted as machine addresses on a
particular system. Some examples of assignment to the pointer p are

//the address of object i
//a special sentinel value
//absolute address

p = &i;
p = 0;
p = static_cast<int*>(1507);

In the first example, we think of p as “referring to i,” “pointing to i,” or “con¬
taining the address of i.” The compiler decides what address to assign the variable
i. This will vary from machine to machine and may even differ for various execu¬
tions on the same machine. The second example is the assignment of the special
value 0 to the pointer p. This value is typically used to indicate a special condition.
For example, a pointer value of 0 is returned by a call to the operator new when free
storage is exhausted. That pointer value is also used to indicate the end of a
dynamic data structure, such as a tree or a list. In the third example, the cast is nec¬
essary to avoid a type error, and an actual memory address is used.

3.11 ▼ Pointer Types 83

3.11.1 Addressing and Dereferencing

As in C, dereferencing, or indirection, operator * is unary and has the same prece¬
dence and right-to-left associativity as the other unary operators. If p is a pointer,
*p is the value of the variable that p points to. The direct value of p is a memory
location, whereas *p is the indirect value of p, namely, the value at the memory loca¬
tion stored in p. In a certain sense, * is the inverse operator to &. Here is code show¬
ing some of these relationships.

int i = 5, j;
int* p = &i; //pointer init to address of i

cout « *p « " = i stored at " « p « endl ;
j = p; //illegal pointer not convertible to integer
j = *p + 1; //legal
p = &j; //p points to j

3.11.2 Pointer-Based Call-by-Reference

The addresses of variables can be used as arguments to functions so that the stored
values of the variables can be modified in the calling environment to simulate call-
by-reference. Experienced C programmers should skip this discussion and go to the
next section to read about an equivalent C++ technique for call-by-reference param¬
eters. In pointer-based call-by-reference, pointers must be used in the parameter list
in the function definition. Then, when the function is called, addresses of variables
must be passed as arguments. For example, let us code a function order () that
exchanges two values if the first value is greater than the second.

In file orderl.cpp

//Pointer-based cal 1-by-reference

void order(int*, int*);

int main()

{
int i = 7, j = 3;

cout « i « '\t' « j « endl; 111 3 is printed

order(&i,
cout « i

&j);
« '\t' « j « endl ; //3 7 is printed

}

84 Chapter 3 ▼ Functions, Pointers, and Arrays

void order(int* p, int* q)
t

{
int temp;

if (*p > *q) {
temp = *p;
*p = *q;
*q = temp;

}
}

Most of the work of this program is carried out by the function call to orderC).
Notice that the addresses of i and j are passed as arguments. As we shall see, this
allows the function call to change the values of i and j in the calling environment.

♦♦♦♦♦♦♦♦♦♦♦♦
Dissection of the order() Function

■ void order(int* p, int* q)

{
int temp;

The parameters p and q are both of type pointer to i nt. The variable temp is local to
this function and is of type i nt.

■ if (*p > *q) {
temp = *p;

*P = *q;
*q = temp;

}

If the value of what is pointed to by p is greater than the value of what is pointed to
by q, the following is done. First, temp is assigned the value of what is pointed to by
p; second, what is pointed to by p is assigned the value of what is pointed to by q;
and third, what is pointed to by q is assigned the value of temp. This interchanges in
the calling environment the stored values of whatever p and q are pointing to.

The rules for using pointer arguments to achieve call-by-reference can be sum¬
marized as follows:

3.12 ▼ Reference Declarations and Call-by-Reference 85

Call-by-Reference Using Pointers

1. Declare a pointer parameter in the function header.

2. Use the dereferenced pointer in the function body.

3. Pass an address as an argument when the function is called.

3.12 Reference Declarations and Call-by-Reference

Reference declarations, a C++ feature not available in C, declare the identifier to be
an alternative name, or alias, for an object specified in an initialization of the refer¬
ence. Reference declarations allow a simpler form of call-by-reference parameters.
Some examples are

i nt n;
int& nn = n - //nn is alternative name for n
double a[10];
double& last = a[9]; //last is an alias for a[9]

Declarations of references that are definitions must be initialized and are usu¬
ally initialized to simple variables. The initializer is an lvalue expression, which
gives the variable’s location in memory. In these examples, the names n and nn are
aliases for each other; that is, they refer to the same object. Modifying nn is equiva¬
lent to modifying n and vice versa. The name last is an alternative to the single
array element a [9]. These names, once initialized, cannot be changed.

When a variable i is declared, it has an address and memory associated with it.
When a pointer variable p is declared and initialized to &i, it has an identity sepa¬
rate from i. The pointer p has memory associated with it that is initialized to the
address of i. When a reference variable r is declared and initialized to i, it is identi¬
cal to i. It does not have an identity separate from the other names for the same

object.
The following definitions are used to demonstrate the use of pointers, derefer¬

encing, and aliasing. The definitions assume that memory at location 1004 is used
for integer variable a and that memory at 1008 is used for pointer variable p.

int a = 5; //declaration of a

int* p = &a; //p points to a

int& ref_a = a; //alias for a

*P = 7; //*p is lvalue of a, so a is assigned 7

a = *p + 1; //rvalue 7 added to 1 and a assigned 8

86 Chapter 3 ▼ Functions, Pointers, and Arrays

Pointer Declarations

Notice in the figure of pointer declarations that any change to the value of a is
equivalent to changing ref_a. Such a change affects the dereferenced value of p.
The pointer p can be assigned another address and lose its association with a. How¬
ever, a and ref_a are aliases and within scope must refer to the same object. These
declarations can be used for call-by-reference arguments, which allows C++ to have
call-by-reference arguments directly.

The function order() using this mechanism is recoded as follows:

In file order2.cpp

void order(int& p, int& q)

{
int temp;

if (P > q) {
temp = p;

p = q;
q = temp;

}
}

The function would be prototyped and invoked in mai n () as follows:

3.13 t The Uses of void 87

void order(int& p, int& q);

int main()

{
int i, j;

order(i, j);

}

If i and j are int variables, then order(i , j) will use the reference to i and the
reference to j to exchange, if necessary, their two values. In traditional C, this oper¬
ation must be accomplished by using pointers and dereferencing.

When function arguments are to remain unmodified, it can be efficient and
correct to pass them const call-by-reference. This is the case for types that are
structures.

struct large_size {
int mem[N];

};

void print(const large_size& s)

{
//since s will not be modified
//avoid call-by-value copying

}

3.13 The Uses of void

The keyword voi d is used to declare the generic pointer type—pointer to voi d. The
keyword voi d is also used as the return type of a function not returning a value. In
programming, such a function is sometimes called a pure procedure. In addition,
voi d can be used in a cast to indicate that a value is unneeded.

Most interesting is the use of void* as a generic pointer type. A pointer
declared as type pointer to voi d, as in voi d* gp, may be assigned a pointer value of
any underlying base type but may not be dereferenced. Dereferencing is the opera¬
tion * acting on a pointer value to obtain what is pointed at. It would not make
sense to dereference a pointer to a voi d value.

88 Chapter 3 ▼ Functions, Pointers, and Arrays

void* gp;
int* ip;
char* cp;

gp = ip;
ip = reinterpret_cast<int*> gp;
cp = ip;

*ip = 15;
*ip = *gp;

//generic pointer
//int pointer
//char pointer

//legal conversion
//legal conversion
//illegal conversion

dereference of pointer to int
generic pointer dereference

//legal
//illegal

A key use for this type is as a formal parameter. For example, the library func¬
tion memcpyO is declared in cstring.

void* memcpy(void* si, void* s2, size_t n);

On older C++ systems or on C systems, this is string.h. This function copies n char¬
acters from the object based at s2 into the object based at si. The function works
with any two pointer types as arguments. The type si ze_t is defined in cstddef and
is often a synonym for unsigned int.

A further use of void given as the parameter list in a function declaration
means that the function takes no arguments. Thus, i nt foo() is equivalent in C++
to int foo(void).

A voi d cast can inform the compiler that the expression’s computed value is to
be discarded.

In file voidcast.cpp

//Simple use of a void cast

int foo(int i)

{
cout « "i is " « i « endl;
return i ;

}

int main()

{
int k = 5;

static_cast<void>(foo(k)); //remove return value

}

3.14 ▼ Arrays and Pointers 89

This use is a matter of taste, as most compilers will issue a warning only if the
return value from a nonvoid function is not being used or tested for.

3.14 Arrays and Pointers

An array is a data type used to represent a large number of homogeneous values.
The array is sequential storage. The elements of an array are randomly accessible
through the use of subscripts. Arrays of all types are possible, including arrays of
arrays. A typical array declaration allocates memory starting from a base address.
An array name is, in effect, a pointer constant to this base address. In C++, only one¬
dimensional arrays are provided, with the first element always indexed as element

zero.
To illustrate some of these ideas, let us write a small program that fills an array,

prints out values, and sums the elements of the array.

In file sum_arrl.cpp

//Simple array processing

const int SIZE = 5;

int main()

{
int a[SIZE];
int i, sum = 0;

//get space for a[0], ,a[4]

for (i =0; i < SIZE; ++i) {

a[i] = i * i ;
cout « "a[" « i « "] = " « a[i] «
sum += a[i] ;

}
cout « "\nsum = " « sum « endl;

The output of this program is

a[0] = 0 a[l] = 1
sum = 30

a[2] = 4 a[3] = 9 a[4] = 16

90 Chapter 3 t Functions, Pointers, and Arrays

The preceding array requires enough memory to.store five integer values. Thus, if
a[0] is stored at location 1000, the remaining array elements on a system needing 4
bytes for an i nt are successively stored at locations 1004, 1008, 1012, and 1016. It
is considered good programming practice to define the size of an array as a sym¬
bolic constant. Since much of the code may depend on this value, it is convenient to
be able to change a single #def i ne line to process various size arrays. Notice how
the various parts of the f o r statement are neatly tailored to provide a terse notation
for dealing with array computations.

3.14.1 Subscripting

Assume that a declaration has the form

int i, a [size];

We can write a [i] to access an element of the array. More generally, we may write
a [expr], where expr is an integral expression, to access an element of the array. We
call expr a subscript, or index, of a. The value of a C++ subscript should lie in the
range 0 to size - 1. An array subscript value outside this range often causes a run¬
time error. When this happens, the condition is called “overrunning the bounds of
the array,” or “subscript out of bounds.” It is a common programming error. The
effect of the error in a C++ program is system dependent and can be quite confus¬
ing. One frequent result is that the value of an unrelated variable will be returned or
modified. Thus, the programmer must ensure that all subscripts stay within
bounds.

3.14.2 Initialization

Arrays can be initialized by a comma-separated list of expressions enclosed in
braces.

int array[4] = { 9, 8, 7 }; //a[0]=9, a[l]=8, a[2]=7

When the list of initializers is shorter than the size of the array, the remaining ele¬
ments are initialized to 0. If uninitialized, external and static arrays are automati¬
cally initialized to 0. This is not so for automatic arrays, which start with undefined
values.

An array declared with an explicit initializer list and no size expression is given
the size of the number of initializers. The following two arrays are equivalent:

char laura[] = { 'V, 'm', ' p' };
char laura[3] = { 'V, 'm' , 'p' };

3.15 ▼ The Relationship Between Arrays and Pointers 91

3.15 The Relationship Between Arrays and Pointers

An array name by itself is an address, or pointer value, and pointers and arrays are
almost identical in terms of how they are used to access memory. However, there
are subtle and important differences. A pointer is a variable that takes addresses as
values. An array name is a particular fixed address that can be thought of as a con¬
stant pointer. When an array is declared, the compiler must allocate a base address
and a sufficient amount of storage to contain all of the elements of the array. The
base address of the array is the initial location in memory where the array is stored;
it is the address of the first element (index 0) of the array. Suppose that we write the
declaration

const int N = 100;

int a[N], *p;

and the system causes memory bytes 300, 304, 308, . . . , 696 to be the addresses of
a[0], a[l], a[2], . . . , a[99], respectively, with location 300 being the base
address of a. We are assuming that each byte is addressable and that 4 bytes are
used to store an int. The two statements p = a; and p = &a[0] ; are equivalent

and would assign 300 to p.
Pointer arithmetic provides an alternative to array indexing. The two statements

p = a + 1; and p = &a[l]; are equivalent and would assign 304 to p. Assuming
that the elements of a have been assigned values, we can use the following code to

sum the array:

In file sum_arr2.cpp

sum = 0;
for (p = a; p < &a[N]; ++p)

sum += *p;

is equivalent to

sum = 0;
for (i =0; i <N; ++i)

sum += a[i] ;

In this loop, the pointer variable p is initialized to the base address of the array a.
Then the successive values of p are equivalent to &a[0], &a[l], . . . , &a[N-l]. In
general, if i is a variable of type i nt, p + i is the i th offset from the address p. In a

92 Chapter 3 ▼ Functions, Pointers, and Arrays

similar manner, a + i is the i th offset from the base address of the array a. Here is
another way to sum the array.

sum = 0;
for (i = 0; i < N; ++i)

sum += *(a + i);

Just as the expression *(a + i) is equivalent to a[i], the expression *(p + i) is
equivalent to p [i].

In many ways, arrays and pointers can be treated alike but there is one essential
difference. Because the array a is a constant pointer and not a variable and we can¬
not change the address of a, expressions such as the following are illegal.

a = p ++a a += 2

3.16 Passing Arrays to Functions

In a function definition, a formal parameter that is declared as an array is a pointer.
When an array is being passed, its base address is passed call-by-value. The array
elements themselves are not copied. As a notational convenience, the compiler
allows array bracket notation to be used in declaring pointers as parameters. This
notation reminds the programmer and other readers of the code that the function
should be called with an array. To illustrate this, we write a function that sums the
elements of an array of type i nt.

In file sum_arr3.cpp

int sum(int a[] , int n) //n is the size of a[]

{
int i, s = 0;

for (i =0; i < n; ++i)
s += a[i];

return s;

}

As part of the header of a function definition, the declaration int a[] is equivalent
to i nt *a. In other contexts, the two are not equivalent.

3.1 / t The char* String: A Kernel Language ADT 93

Suppose that v has been declared to be an array with 100 elements of type i nt.
After the elements have been assigned values, we can use the functionsum() to add
various elements of v. The following table illustrates some of the possibilities.

Summing Elements of an Array

Invocation What Gets Computed and Returned

sum(v, 100) v[0] + v[l] + . . . + v[99]

sum(v, 88) v[0] + v[l] + . . . + v[87]

sum(v + 7, k) v[7] + v[8] + . . . + v[k+6]

The last function call again illustrates the use of pointer arithmetic. The base
address of v is offset by 7, and sum() initializes the local pointer variable a to this
address. This causes all address calculations inside the function call to be similarly
offset.

In C++, a function with a formal array parameter can be called with an array
argument of any size, provided the array has the right base type.

3.17 The char* String: A Kernel Language ADT

The C and C++ communities have “agreed” to treat the type char* as a form of
string type. The understanding is that such strings will be terminated by the char
value 0, and that the cstring (or string.h on older systems) package of functions will
be called on this abstraction. In ANSI C++, the library string provides as a template
class a standardized string type that is preferred to this use of char*. The language
partly supports this abstraction by defining string literals as being null terminated.
A char* or char [] can be initialized with a literal string. Note that the terminating
0 is part of the initializer list.

char* s = "c++"; // s[0] = 'c\ s[l] = ' + ',
// s[2] = ' + ', s[3] = '0';

The cstring package contains more than 20 functions.

94 Chapter 3 ▼ Functions, Pointers, and Arrays

Some Functions in the cstring Library

■ size_t strlen(const char* s);
Computes the string length. The number of characters before 0 is returned.

■ char* strcpy(char* si, const char* s2);
Copies the string s2 into si. The value of si is returned.

■ int strcmp(const char* si, const char* s2);
Returns an integer that reflects the lexicographic comparison of si and s2.
When the strings are the same, 0 is returned. When si is less than s2, a nega¬
tive integer is returned. When s2 is less than si, a positive integer is

returned.

By adhering to these conventions, the programmer can reuse a lot of string
code. The library routines ensure that portable, readily understood code is available.

In file str_func.cpp

//string function implementations

size_t strlen(const char* s)

{
int i ;
for (i = 0; s[i]; ++i)

return i;

}

int strcmp(const char* si, const char* s2)

{
i nt i ;
for (i=0; sl[i]

1

return (sl[i] -

}

char* strcpy(char*

{
for (int i = 0;

1

return si;

|| s2[i] || Cs1[i]!=s2[i]);

s2 [i]) ;

si, const char* s2)

si [i] = s2[i]; ++i)

}

++i)

3.18 ▼ Multidimensional Arrays 95

Notice how these functions use the convention that a string is null terminated
to end their major loops. The function strcpyO terminates when s2 [i] == 0. It is
also good practice to place the const keyword in front of those strings whose con¬
tents will not be modified.

3.18 Multidimensional Arrays

C++ allows arrays of any type, including arrays of arrays. With two bracket pairs, we
obtain a two-dimensional array. This idea can be iterated to obtain arrays of higher
dimension. With each bracket pair, we add another array dimension.

Declarations of Arrays

i nt a[100]; a one-dimensional array

int b[3] [5] ; a two-dimensional array

int c[7][9] [2] ; a three-dimensional array

A k-dimensional array has a size for each of its k dimensions. If we let s, represent
the size of its zth dimension, the declaration of the array will allocate space for
s1xs2x...xs(, elements. In the preceding table, b has 3x5 elements, and c has
7x9x2 elements. Starting at the base address of the array, all of the array ele¬
ments are stored contiguously in memory, row by row.

Initialization of multidimensional arrays can be a brace-enclosed list of initializ¬
ers, where each row is initialized from a brace-enclosed list.

int a[2][3] = { {1, 2, 3,}, {4, 5, 6} } ;
//same as {1, 2, 3, 4, 5, 6}

char name[3][9] = { "laura", "michelle", "pohl"};
//pad with '\01

This last example has name[] [] representing three strings, each storing nine char
values. So, name[0][0] is ' 1 ', name[0][l] is 'a', name[0][2] is ' u ',
name[0] [3] is' r', name[0] [4] is 'a', name[0] [5] is '\0', name[0] [6] is ' \0',
name[0] [7] is '\0', and name[0] [8] is '\0' .

96 Chapter 3 ▼ Functions, Pointers, and Arrays

3.19 Assertions and Program Correctness

An assertion is a program check for correctness that, if violated, forces an error exit.
One point of view is that an assertion is a contractual guarantee among the provider
of a piece of code, the code’s manufacturer, and the code’s client or user. In this
model, the client needs to guarantee that the conditions for applying the code exist,
and the manufacturer needs to guarantee that the code will work correctly under
these provisions. In this methodology, assertions provide various guarantees.

Program correctness can be viewed in part as a proof that the computation ter¬
minated with correct output dependent on correct input. The user of the computa¬
tion has the responsibility of providing correct input. This is a precondition. The
computation, if successful, satisfies a postcondition. Such assertions can be moni¬
tored at runtime to provide very useful diagnostics. Indeed, the discipline of think¬
ing out appropriate assertions frequently allows the programmer to avoid bugs and
pitfalls.

In the C++ community, there is an increasing emphasis on the use of assertions.
The standard library assert provides the macro assert and is invoked as though its
function signature were

void assert (expression);

If the expression evaluates as f al se, execution is aborted with diagnostic output.
The assertions are discarded if the macro NDEBUG is defined.

The following program provides assertions to demonstrate this technique. The
program examines a slice of an array for its minimum element and places that min¬
imum element in the first examined array position.

In file order3.cpp

//Finding a minimum element in an array slice

void order(int& p, int& q)

{
int temp = p;

if (p > q) {

p = q;
q = temp;

}
}

3.20 ▼ Free-Store Operators new and delete 97

int place_min(int a[],
{

int i, min;
assert(size >= 0);

for (i = lb; i < lb
order(a[lb], a[i

return a[lb] ;
}

int main()

{
int a[9] = { 6, -9, 99, 3, -14, 9, -33, 8, 11};

cout « "Minimum = " « place_min(a, 3, 2) « endl;
assert(a[2]<=a[3] && a[2]<=a[4]); //postcondition

}

The precondition assertion in pi ace_mi n() guarantees that a nonnegative number
of elements will be searched. The postcondition in mai n() checks that the mini¬
mum element was found and placed in the correct position.

int size, int lb = 0)

//precondition

+ size; ++i)

+ 1]);

3.20 Free-Store Operators new and delete

The unary operators new and del ete are available to manipulate free store. They are
more convenient than and replace the C standard library functions mallocO,
callocC), and free() in most applications. Free store is a system-provided mem¬
ory pool for objects whose lifetime is directly managed by the programmer. The
programmer creates an object using new, and destroys the object using delete.
This is important for dynamic data structures, such as lists and trees.

In C++, the operator new is typically used in the following forms:

new type-name
new type-name initializer
new type-name[expression]

In each case, there are at least two effects. First, an appropriate amount of store is
allocated from free store to contain the named type. Second, the base address of the
object is returned as the value of the new expression.

98 Chapter 3 y Functions, Pointers, and Arrays

The operator new can either throw a bad^alloc exception or return the
value 0, when memory is unavailable. (See Section 9.9, “Standard Exceptions and

Their Uses,” on page 318.)
The following example uses new:

int* p, *q;
p = new int(5);
q = new i nt [10] ;

//allocation and initialization
//gets q[0] to q[9] with q = &q[0]

In this code, the pointer to i nt variable p is assigned the address of the store
obtained in allocating an object of type i nt. The location pointed at by p is initial¬
ized to the value 5. This use is not usual for a simple type, such as i nt, in that it is
far more convenient and natural to automatically allocate an integer variable on the
stack or globally. Usually, an array of elements is allocated to the pointer q.

The operator delete destroys an object created by new, in effect returning its
allocated storage to free store for reuse. The operator delete is used in the follow¬

ing forms:

delete expression
delete [] expression

The first form is used when the corresponding new expression has not allocated an
array. The second form has empty brackets, indicating that the original allocation
was an array of objects. The operator del ete does not return a value. Equivalently,
one can say that its return type is void. The following example uses these con¬

structs to dynamically allocate an array.

In file dynarray.cpp

//Use of new to dynamically allocate an array
//assumes older-style return of 0 for allocation error

int main()

{
int* data;
int size;

cout « "\nEnter array size: ";
cin » size;
assert(size > 0);

3.20 ▼ Free-Store Operators new and delete 99

data = new int[size];
assert(data != 0);

//allocate an array of ints
//data != 0 allocation succeeds

for (int j = 0; j < size; ++j)
cout « (data[j] = j) « '\t';

cout « "\n\n";
deleted data; //deallocate an array

}

Dissection of the dynarray Program

■ int* data;
int size;

cout « "\nEnter array size: ";
cin » size;
assert(size > 0);

data = new int[size]; //allocate an array of ints
assert(data != 0); //data != 0 allocation succeeds

The pointer variable data is used as the base address of a dynamically allocated
array whose number of elements is the value of si ze. The user is prompted for the
integer valued size. The new operator is used to allocate storage from free store
capable of storing an object of type i nt [si ze]. On a system on which integers take
2 bytes, this would allocate 2 x si ze bytes. At this point, data is assigned the base
address of this store. The second assert guarantees that allocation succeeded. In
newer C++ systems, if the new operator fails, it can throw an exception of type
bad_alloc, automatically aborting the program.

■ for (int j =0; j < size; ++j)
cout « (data[j] = j) « '\t';

This statement initializes the values of the data array and prints them.

■ deleted data; //deallocate an array

The operator delete returns the storage associated with the pointer variable data
to free store. This can be done only with objects allocated by new. The bracket form
is used because the corresponding allocation was of an array.

100 Chapter 3 ▼ Functions, Pointers, and Arrays

This introductory discussion of the free-store operators treats the basic cases.
The free-store operators are addressed in greater detail in Chapter 5, “Constructors

and Destructors.”

3.21 Pragmatics

It is becoming a standard practice to use C++ libraries for accessing both char-
arrays and general arrays instead of coding the array functions directly. Here, we
discuss two such libraries: one for vectors and one for string processing.

3.21.1 Vector Instead of Array

The standard C++ library contains the template for the vector data structure. We
will discuss this in detail later (see Section 7.4, “Parameterizing the Class vector,”
on page 249). In almost all cases, the vector is an improvement over the simple C++
array but can be used essentially as an array. We recommend that the vector be used
in place of arrays for most programming. For example, the function in Section 3.16,
“Passing Arrays to Functions,” on page 92, for summing an array uses
int sum(int a[] , int n). We can trivially change this to use vector as follows:

int sum(vector<int> a, int n)

{
int i, s = 0;

for (i =0; i < n; ++i)
s += a[i] ;

return s;

}

Notice that the only change was to transform the array declaration to a vector decla¬
ration. Without investigating the details of template syntax, we can use a simple
rule:

Type 7c/[] is replaced by vector<Type> id

If the declaration requires an array size, we can extend the rule as follows:

Type 7d[s7'ze] is replaced by vector<Type> id(size)

3.21 r Pragmatics 101

One improvement for vector is that it knows the number of elements associ¬
ated with it. The expression id. si ze() gives the current number of elements con¬
tained in the vector. Using this information improves the sum() function by making
it simpler and by avoiding errors that come about in C and C++ when the wrong size
is passed as a parameter. This prevents out-of-range errors that are the bane of C
array programming.

In file sum_arr4.cpp

//sum written to use a.size() in place of N

int sum(vector<int> a)

{
int i, s = 0;

for (i =0; i < a.sizeO; ++i)
s += a[i];

return s;

}

3.21.2 String Instead of char*

In C++, the standard library provides both cstring and string. Both libraries can be
used for string processing, and they can be used jointly. However, C++ style is to
prefer the use of the stri ng type, which is more robust and has a more extensive
interface. In certain cases, it is both more efficient and elegant. For a more extended
discussion of stri ng, see Section 5.4, “An Example: Dynamically Allocated Strings,”
on page 159, and Section 5.10, “Strings Using Reference Semantics,” on page 181.

The following simple program uses stri ng. The program is easy to understand
and is easy to use because the operator + provides concatenation.

In file stringl.cpp

//Print strings with line numbers

void pr_line_number(string& line)

{
static int In = 0;

ln++; //start the line numbers at 1
cout « "line " « In « + line + "\n";

}

102 Chapter 3 ▼ Functions, Pointers, and Arrays

int main()

{
string si, s2;

cin » si » si;
pr_line_number(sl);
pr_line_number(s2);
cout « endl;

3.22 Moving from C++ to Java

Java does not have pointers but instead has nonprimitive variables that are refer¬
ences. Java avoids much of the direct programmer management of memory that
causes so many bugs in C and C++. Java does have arrays, which are reference types.
Java does not have functions that are outside the scope of a class. Java’s term for
functions is methods to indicate that all functions are members of a class. The clos¬
est construct to an ordinary C or C++ function is a static method. Java can overload
methods but does not allow default arguments or inlining.

The following program initializes an array, prints its values, and computes its
sum and average value:

In file SumArray.java

class SumArray {
public static void main(String[] args)

{
int[] data = {1, 2, 3, 4, 5, 6, 7};
int sum = 0;
double average;

for (int i =0; i < 7; ++i) {
sum = sum + datafi];
System.out.print(data[i] + ", ");

}
average = sum / 7.0;
System.out.println("\n\n sum = " + sum

+ " average = " + average);

}
}

3.22 ▼ Moving from C++to Java 103

Dissection of the SumArray Program

■ int[] data = {1, 2, 3, 4, 5, 6, 7};

The variable data is declared to refer to an array of integers. It is allocated seven
integer elements, which are initialized to the values 1 through 7.

■ for (int i = 0; i < 7; ++i) {

The fo r statement declares the local variable i to be used as an index or a subscript
variable. This for statement is the most common array code idiom. The initial sub¬
script for array objects in Java is 0, so the subscript variable is usually initialized to
0. The array length is 7, so the terminating condition is usually i < 7 so that the
array index will stop at 7 - 1. The last part of the for statement header is the auto¬
increment of the index variable, so that each array element gets processed in turn.

■ sum = sum + data[i];
System.out.print(data[i] + ", ");

}

The element data[i] is selected by computing the index value. A common error
that results in an exception is for this to be out of range. These subscripted or
indexed elements can be used as simple variables of type i nt. In this code, each ele¬
ment’s integer value is added to the variable sum. Then, in turn, each element’s
value is printed.

Note: In this example, mai n() is stati c. The Java stati c method more or less cor¬
responds to an ordinary C function.

104 Chapter 3 ▼ Functions, Pointers, and Arrays

Summary

This summary emphasizes, in order of appearance, changes and differences from C

in the C++ language.

1. In ANSI C++, the empty parameter list is always equivalent to using voi d, and so
mai n() is equivalent to mai n(voi d). The function mai n() implicitly returns the
integer value 0 if no explicit return expression statement is executed.

2. A formal parameter can be given a default argument, usually a constant that
occurs frequently when the function is called. Use of a default argument saves
writing this default value at each invocation. The following function header

shows the syntax:

int sqr_or_power(int n, int k = 2); //k=2 is default

3. Overloading refers to using the same name for multiple meanings of an opera¬
tor or a function. The meaning selected depends on the types of the arguments
used by the operator or function. In the following code, we overload avg_arr ():

//Average the values in an array

double avg_arr(const int a[], int size);
double avg_arr(const double a[], int size);{

4. Reference declarations allow an object to be given an alias, or alternative name.
These declarations can be used for call-by-reference arguments. For example,
the function order(), using this mechanism, is declared as

void order(int &p, int &q);

5. C++ provides the keyword inline to preface a function declaration when the
programmer intends the code replacing the function call to be inline. In most
cases, this should be used in place of #def i ne macros.

6. C++ inherited C’s single global namespace. Programs written by various parties
can inadvertently have name clashes when combined. C++ adds namespace
scope, as in

▼ Summary 105

namespace StellarSoft {
class S_widget { . };
int update{ . };

}

The namespace identifier can be used as part of a scope-resolved identifier. This
has the form '

namespaceJd.\id

There is also a using declaration, which lets a client have access to all names
from that namespace.

using namespace StellarSoft;

S_widget w; //Stel1arSoft::S_widget

Namespaces can be used to provide a unique scope that replaces static global
declarations.

7. The declaration void* is a generic pointer type. A pointer declared as type
pointer to voi d, as in voi d* gp, can be assigned a pointer value of any underly¬
ing base type, but it may not be dereferenced. Unlike in C, a generic pointer may
not be assigned to a nonvoid pointer type without an explicit cast. In this
regard, C++ is again more type safe than C is.

8. The C and C++ communities have “agreed” to treat the type char* as a form of
string type. The understanding is that these strings will be terminated by the
char value 0, and that the cstring (or string.h on older systems) package of func¬
tions will be called on this abstraction. In ANSI C++, the library string provides
as a template class a standardized string type that is preferred to this use of
char*.

9. The unary operators new and del ete are available to manipulate free store. Free
store is a system-provided memory pool for objects whose lifetime is directly
managed by the programmer. The programmer creates an object by using new
and destroys the object by using delete. This is important for dynamic data
structures, such as lists and trees.

10. The standard library contains the template for the vector data structure. In
almost all cases, the vector is an improvement over the simple C++ array but
can be used essentially as an array. We recommend that it be used in place of
arrays for most programming.

106 Chapter 3 ▼ Functions, Pointers, and Arrays

Review Questions

1. If not explicitly returned, the value_is returned by mai n ().

2. Replace #define ABS(X) ((X <0) ? -X: X) by an inline function.

3. Discuss the difference between using the macro ABS(f (y)) and the equivalent
inline call. Assume that f (y) calls a nontrivial function.

4. What is wrong with overloading int foo(); and void foo() ; in the same
scope? Note that the only difference in their declarations is the return types.

5. The C++ STL vector can be used to replace_in C and C++ programs.

6. In C, control of an i f statement depends on whether an i f statement expres¬
sion is zero or nonzero. In C++, this condition is type_.

7. In C, the function st rl en () is found in_; in C++, it is found in_.
Can you think of a reason for this difference?

8. The _ exception is thrown when_ fails to properly allocate
memory.

9. The operator_is used in place of the cstdlib function free() to return
memory to free store.

10. In C, call-by-reference requires the use of pointers, but in C++,_may be
used as well.

▼ Exercises 107

Exercises

1. Pointers to char strings are by convention terminated with the value 0. The fol¬
lowing function implements a string-equality test. Note its use of pointer arith¬
metic. The construct *sl++ means “dereference the pointer si, and after using
this value in the expression, add 1 to its pointer value.”

bool streq(const char* si, const char* s2)
{

while (*sl != 0 && *s2 != 0)
if (*sl++ != *s2++)

return false;
return (*sl == *s2);

}

Write and test a function

bool strneq(const char* si, const char* s2, int n);

that returns true if the first n characters of the two strings are the same and
that otherwise returns false.

2. Reimplement the preceding functions using array notation.

bool streq(char sl[], char s2[]);

3. The standard header file cstring contains the prototypes for a number of useful
string functions found in the standard library. Among them is:

size_t strlen(const char* s);

This returns the length of a string. The text in Section 3.17, “The char* String: A
Kernel Language ADT,” on page 94, gave a terse definition of this function; here
is another way to code it:

108 Chapter 3 y Functions, Pointers, and Arrays

//iterative string length
size_t strlen(const char *s)

{
size_t len = 0;

•

while (*s != ’\0') {
++len;
++s;

}
return len;

//string terminator
//increment length
//advance pointer

}

This algorithm marches the pointer s down the string, looking for the termina¬
tion character. External to the function, the pointer value has not been changed,
because it is call-by-value. Write a recursive version of this function.

4. The greatest common divisor of two integers is recursively defined in

pseudocode as follows:

GCD(m,n) is:
if m mod n equals 0 then n;
else GCD(n, m mod n);

Recall that the modulo operator in C++ is %. Code this routine in C++.

5. We wish to count the number of recursive function calls by gcd (). It is generally
bad practice to use globals inside functions. In C++, we can use a local stati c
variable instead of a global. Complete and test the following C++ gcd()

function:

int gcd(int m, int n)

{
static int fcn_calls = 1; //happens once
int r; //remainder

fcn_cal1s++;

}

t Exercises 109

6. The following C program uses traditional C function syntax:

/* Compute a table of cubes. */

#define N 15
#define MAX 3.5

int main()
{

int i ;
double x, cube();

printf("\n\nINTEGERS\n");
for (i =1; i <= N; ++i)

printf("cube(%d) =%d\n", i, cube(i));
printf("\n\nREALS\n");
for (x = 1; x <= MAX; x += 0.3)

printf("cube(%f) = %f\n", x, cube(x));

}

double cube(x)
double x;

{
return (x * x * x);

}

The program gives the wrong answers for the integer arguments because inte¬
ger arguments are passed as if their bit representation were double. It is unac¬
ceptable as C++ code. Recode, as a proper function prototype, and run, using a
C++ compiler. C++ compilers enforce type compatibility on function argument
values. Therefore, the integer values are properly promoted to doubl e values.

110 Chapter 3 ▼ Functions, Pointers, and Arrays

7. Predict what the following program prints:
i

int foo(int n)

{
static int count = 0;

++count;
if (n <= 1) {

cout « " count = " « count « endl;

return n;

}
el se

foo(n / 3);

}

int main()

{
foo(21) ;
foo(27);
foo(243);

}

8. The stati c storage class is useful in multifile compilation. Predict what the fol¬

lowing program prints:

// file A.c

static int foo(int i)

{
return (i * 3);

}

int goo(int i)

{
return (i * foo(i));

}

// file B.c

int foo(int i)

{
return (i * 5);

}

▼ Exercises 111

int goo(int i); //imported from file A.c

int main()

{
cout « "foo(5) = " « foo(5) « endl;
cout « "goo(5) = " « goo(5) « endl;

}

The program is compiled as follows: g++ A.c B.c. File-scope functions are by
default extern. The foo() in file A.c is private to that file, but goo() is not.
Thus, redefining foo() in file B.c does not cause an error. Try this again, this
time dropping stati c, to see what error message your compiler gives. Then try
a third time, making goo() i nl i ne in A.c, to see what error message your com¬
piler gives. Recode these files, using anonymous namespaces to replace the
static extern declarations.

9. C++ provides a method to pass command-line arguments into the function
mai n(). The following code prints its command-line arguments:

//Print command-line arguments rightmost first

int main(int argc, char **argv)

{
for (--argc; argc >= 0; --argc)

cout « argv[argc] « endl;

}

Compile this into an executable called echo. Run it with the following command¬
line arguments:

echo a man a plan a canal panama

The argument argc is passed the number of command-line arguments. Each
argument is a string placed in the two-dimensional array argv.

10. Modify the previous program to print the command-line arguments from left to
right and to number each of them.

11. One advantage of C++ over traditional languages is type extensibility. Using the
complex library, you can import a complex number type that can be mixed and
matched with the native arithmetic types. Overload and test

complex<double> avg_arr(const complex<double> a[], int size)

112 Chapter 3 ▼ Functions, Pointers, and Arrays

12. Redo the previous exercise and use vector<complex<double> > a as the argu¬
ment. Overload and test, using the fact that vectors maintain their own size:

complex<double> avg_arr(const vector< complex<double> > a)

13. The problem with using void* is that it cannot be dereferenced. Thus, to per¬
form useful work on a generic pointer, one must cast it to a standard working
type, such as a char*. Write and test

void* memcpy(void* si, const void* s2, unsigned n)

{
char* from = s2, *to = si; //uses char type

}

14. Write a program that performs string reversal. Assume that si ends up with the
reverse of the string s2 and that si points at enough store that is adequate for
reversal. (See Section 3.17, “The char* String: A Kernel Language ADT,” on page
94, for some examples of string-handling functions.)

char* strrev(char* si, const char* s2);

15. Write a program that performs string reversal, using storage allocated with new.
Assume that si ends up with the reverse of the string s2, and use new to allo¬
cate si of length strlen(s2) + 1, which is adequate store for si.

char* strrev(char*& si, const char* s2);

16. Write a program that allocates a one-dimensional array from free store, using
user-provided lower and upper bounds. The program should check that the
upper bound exceeds the lower bound. If that is not the case, perform an error
exit, using the assert library, as follows:

//input lower bound and upper bound

assert(ub - 1b > 0);

The size of this array will be (upper bound - lower bound + 1) elements. Given a
standard C++ array of this many elements, write a function that uses the stan¬
dard array to initialize the dynamic array. Test this by writing out in a nicely for¬
matted style both arrays before and after initialization.

▼ Exercises 113

17. Write a function

double findmin(double fcn(double), double x0,
double xl, double incr, double& xmin)

that returns the value at fen (xmin), where xmin is the minimum value of
fcn(x) in the interval (x0, xl), evaluated at increments of incr.

18. Rewrite the function findmin() so that the range (0, 1.0) and the increment
0.00001 is used by default, unless explicitly passed in. Note that to do this, the
preceding function arguments should be used but in a different order. Why?

19. Write a function

double plot(double y[], double fcn(double), double x0,
double xl, double incr)

that computes y [i] = fcn(x-j), where x^ is in the interval (x0, xl), evaluated
at increments of i ncr. Use the defaults (0, 1.0) and an increment of 0.001, with
y expected to have 1,000 elements.

20. Redo the previous exercise to use vector<double> y.

21. Write a function findzero() that finds xzero, the value closest to zero in a
specified interval. The function should have the same arguments as fi ndmi n().
Again write it to have standard default values for its parameters.

22. Modify the dynamic array program in Section 3.20, “Free-Store Operators new
and del ete,” on page 98, so that it is initialized by pseudorandom numbers in
the range (0, RAND_MAX). For 5,000 such random numbers, find their average
value. See whether, while using the operator new, you can do this problem for
50,000, 500,000, 5,000,000, . . ., until you find a value on your system that
causes new to fail. If you rewrote this code to use ordinary stack-allocated
arrays, at what size on your system will it fail to allocate the array? Also try the
same problem, using vector<i nt>, and see how large a problem can be run.

114 Chapter 3 y Functions, Pointers, and Arrays

23. Write a function i ndex (BMI) to compute body mass as follows:

BMI = (weight in kilograms) / (height in meters)2

If the BMI is over 25, you are considered overweight; if it is over 40, you are con¬
sidered obese. Test the program on data taken from at least five individuals,
printing out for each name a weight, height, BMI, and BMI category of normal,

overweight, or obese.

24. (Java) Recode the BMI program in Java. Use Java arrays to store values for each

individual.

pter 4

sses

This chapter introduces the reader to structures and classes. The original name
given by Stroustrup to his language was “C with classes.” A class is an extension of
the idea of struct found in C. A class packages a data type with its associated func¬
tions and operators. User-defined data types, such as stacks, complex numbers, and
card decks are examples of classes. In C++, structures may have member functions
and also may have parts of their descriptions hidden. Both of these extensions will
be described here.

C++ classes bundle data declarations with function declarations, thereby cou¬
pling data with behavior. The class description also has access modifiers that allow
data hiding. Access that is public is available to any part of the code. Access that is
private is restricted principally to use by the class code itself.

Allowing private and public visibility for members gives the programmer control
over what parts of the data structure are modifiable. The private parts are hidden
from client code, and the public parts are available. It is possible to change the hid¬
den representation, but not to change the public access or functionality. If this is
done properly, client code need not change when the hidden representation is mod¬
ified. A large part of the OOP design process involves thinking up the appropriate
ADTs for a problem. Good ADTs not only model key features of the problem but
also are frequently reusable in other code.

4.1 The Aggregate Type struct and class

The structure type allows the programmer to aggregate components into a single
named variable. A structure has components, called members, that are individually
named. Since the members of a structure can be of various types, the programmer
can create aggregates that are suitable for describing complicated data.

As a simple example, let us define a structure that will describe a point. We can
declare the structure type as follows:

struct point {
double x, y;

}

116 Chapter 4 ▼ Classes

In c++, the structure name, or tag name, is a type. In the preceding declaration,
struct is a keyword, poi nt is the structure tag name, and the variables x and y are
members of the structure. The declaration point can be thought of as a blueprint; it
creates the type poi nt, but no instances are allocated. The declaration

point pt;

allocates storage for the variable pt. To access the members of pt, we use the struc¬
ture member operator, represented by a period, or dot. It is a construct of the form

structure_variable. member_name

and is used as a variable in the same way that a simple variable or an element of an
array is used. Suppose that we want to assign to pt the value (-1, +0.5). To do this,

we can write

pt.x = -1;
pt.y = 0.5;

The member name must be unique within the specified structure. Since the
member must always be prefaced or accessed through a unique structure variable
identifier, there is no confusion between two members that have the same name in

different structures. An example is

struct fruit {
char name[15];
int calories;

};

struct vegetable {
char name[15];
int calories;

};

fruit a; //struct fruit a; in C
vegetable b; //struct vegetable b; in C

Having made these declarations, we can access a.calories and b.calories with¬

out ambiguity.
In general, a structure is declared with the keyword struct, followed by an

identifier (tag name), followed by a brace-enclosed list of member declarations. The
tag name is optional but should be expressive of the ADT concept being modeled.

4.2 ▼ Structure Pointer Operator 117

When the tag name is not present, the structure declaration is anonymous and can
be used only to declare variables of that type immediately, as in

struct {
int a, b, c;

} triples [2] = { {3, 3, 6}, {4, 5, 5} };

4.2 Structure Pointer Operator

We have already seen the use of the member operator in accessing members. Now
we introduce the structure pointer operator ->, which provides access to the mem¬
bers of a structure via a pointer. This operator is typed on the keyboard as a minus
sign followed by a greater-than sign. If a pointer variable is assigned the address of
a structure, a member of the structure can be accessed by a construct of the form

pointer_to_structure -> member_name

An equivalent construct is given by

(*pointer_to-Structure) . member_name

The operators -> and ., along with () and [], have the highest precedence, and
they associate left to right. In complicated situations, the two accessing modes can
be combined. The following table illustrates their use.

Declarations and Assignments

point w, *p = &w;

poi nt v[5];
w.x = 1;

w.y = 4;
v [0] = w;

Expression Equivalent Expression Value

w.x p -> X 1

w.y p -> y 4

v[0].x v -> X 1

(*p) -y p -> y 4

118 Chapter 4 ▼ Classes

4.3 Member Functions

The concept of struct or cl ass is augmented in C++ to allow functions to be mem¬
bers. The function declaration is included in the structure declaration and is
invoked by using access methods for structure members. The idea is that the func¬
tionality required by the structure or class should be directly included in the
struct declaration. This construct improves the encapsulation of the ADT poi nt
operations by packaging it directly with its data representation. Let us add a print¬
ing operation and an initializing operation to the ADT poi nt.

In file pointl.cpp

struct point {
double x, y;
void print() { cout « "(" « x « « y « }
void init(double u, double v) { x = u; y = v; }

};

The member functions are written in much the same way that other functions are.
One difference is that they can use the data member names directly. Thus, the mem¬
ber functions in poi nt use x and y in an unqualified manner. When invoked on a
particular object of type poi nt, they act on the specified member in that object.

Let us use these member functions in an example.

int main()

{
point wl, w2;

wl.init(0, 0.5);
w2.init(-0.5, 1.5);
cout « "\npoint wl = ";
wl.print() ;
cout « "\npoint w2 = ";
w2 .print() ;

}

This prints

point wl = (0,0.5)
point w2 = (-0.5,1.5)

4.3 ▼ Member Functions 119

Member functions that are defined within the struct are implicitly inline. As a rule,
only short, heavily used member functions should be defined within the struct, as
in the example just given. To define a member function outside the struct, the
scope resolution operator is used (see Section 4.6, “Class Scope,” on page 122). Let
us illustrate this by adding a member function, point: :plus(). We write it out
fully, using the scope resolution operator. In this case, the function is not implicitly
inline.

In file pointl.cpp

struct point {

void plus(point c); //function prototype

};

void point::plus(point c) //definition not inline

{
//offset the existing point by point c

x += c.x;

y += c.y;

}

Member functions within the same struct can be overloaded. Consider adding
to the data type point a print operation that has a string parameter printed as the
name of the point. The print operation could be added as the following function
prototype within the struct:

In file point l.cpp

struct point {

void print(string name);

};

void point::print(string name)

{
cout « name « " (" « x «

}

ii \ ii .

« y «) ;

The definition that is invoked depends on the arguments to print():

120 Chapter 4 ▼ Classes

//invokes standard print
//invokes print with name

wl. pri nt();
wl.print("point w = ");

A member function is conceptually part of the type. The inline specification
can be used explicitly, with member functions defined at file scope, which avoids
having to clutter the class definition with function bodies. The grouping of opera¬
tions with data emphasizes their “objectness.” Objects have a description and
behavior. Think of an object as a noun and its behavior as the verbs that are most
often associated with that noun. OOP is a data-centered design approach.

4.4 Access: Private and Public

In C++, structures have public and private members. Inside a struct or a cl ass, the
use of the keyword pri vate followed by a colon restricts the access to the members
that follow this construct. The private members can be used by only a few catego¬
ries of functions, those whose privileges include access to these members. These
functions include the member functions of the structure. Other categories of func¬
tions that have access will be discussed later.

We modify our example of point to hide its data representation, as follows:

In file point2.cpp

struct point {
public:

void print(){ cout « "(" « x « « y «
void init (double u, double v) {x = u; y = v; }
void pius(point c);

private:
double x, y;

};

An attempt by a nonmember function to access the now private members will result
in a syntax error.

void foo(point w)

{

cout « " x coordinate = " « w.x ; //syntax error

}

4.5 ▼ Classes 121

Hiding data is an important component of OOP. It allows for more easily
debugged and maintained code, because errors and modifications are localized. Cli¬
ent programs need be aware only of the type’s interface specification.

4.5 Classes

Classes in C++ are introduced by the keyword class. A form of struct, classes
have a default privacy specification of private. Thus, struct and class can be
used interchangeably, with the appropriate access specifications. In the following

example, we modify poi nt to use cl ass:

In file point3.cpp

class point {
double x, y; //implicitly private

public:
void print() { cout « "(" « x « « y «
void init(double u, double v) { x = u; y = v; }

void plus(point c);

};

}

Contemporary C++ style is to use access specifiers explicitly rather than to rely
on defaults. The use of implicit features is labor saving but error prone. Therefore,

it is better style to declare poi nt as follows:

In file point4.cpp

//place public members first
II N II

« y «)
y = v; }

class point {
public:

void print() { cout « "(" « x «
void init(double u, double v) { x = u;

void plus(point c);
private:

double x, y;

};

When access keywords are used, struct and cl ass are interchangeable. Stylish
cally, professional C++ programmers use class in preference to struct unless the

struct has only public data members.

122 Chapter 4 ▼ Classes

As a second example, let us write an ADT for complex numbers, which many sci¬
entific computations require. Let us recode complex numbers from Section 1.4,
“Classes and Abstract Data Types,” on page 7.

In file complex4.cpp

class complex {
public: //need to know style - our preference

void assign(double r, double i) { real = r; imag = i; }
void printO { cout « real « " + " « imag « "i }

private:
double real, imag;

};

This text uses access keywords explicitly and places public members first and
private members last. In this “need-to-know” style, everyone needs to know the pub¬
lic interface, but only the class provider needs to know the private implementation
details.

The presence of member functions within the class shows the clear relationship
of the data type compl ex and its associated operations assi gn () and pri nt ().
There is also less likelihood of a misuse of the representation, since the implemen¬
tation details real and imag are private. An attempt to directly alter these members
would result in the syntactic error access violation, so a client of this version of
compl ex must use member functions that properly act on complex variables.

4.6 Class Scope

Class adds new scope rules to those of the kernel language. (See Section 3.9, “Scope
and Storage Class,” on page 74.) One point of classes is to provide an encapsulation
technique. Conceptually, it makes sense that all names declared within a class be
treated within their own scope as distinct from external names, function names, and
other class names. This creates a need for the scope resolution operator.

4.6.1 Scope Resolution Operator

The scope resolution operator, the highest-precedence operator in the language,
comes in two forms:

::i //unary operator - refers to external scope
foo_bar::i //binary operator - refers to class scope

4.6 ▼ Class Scope 123

Its unary form is used to uncover or to access a name that has external scope and
has been hidden by local or class scope.

In file how_manyl.cpp

int count = 0; //global count

void how_many(double w[], double x, int& count)

{
for (int i = 0; i < N; ++i)

count += (w[i] == x); //local count
++ ::count; //global count tracks calls

}

To understand this program fragment, change the parameter i nt& count to int&
cnt. Now there is no need for the scope resolution operator, as the two identifiers

are distinct.

In file how_many2.cpp

int count = 0; //global count

void how_many(double w[], double x, int& cnt)

{
for (int i = 0; i < N; ++i)

cnt += (w[i] == x);
++count; //global count tracks calls

}

Binary scope resolution is used to clarify names that are reused within classes:

class widgets { public: void f(); };
class gizmos { public: void f(); };

void f() { . } //ordinary external f
void widgets::f() { . } //f scoped to widgets
void gizmos::f() { . > //* scoped to gizmos

One way to think about the scope resolution operator is to view it as providing a
path to the identifier. If there is no scope modifier, normal scope rules apply. Con¬

tinuing with the previous example:

124 Chapter 4 ▼ Classes

widgets w;
gizmos g;

g-f();
w.f() ;
g.gizmos::f(); //legal but redundant
g.widgets::f(); //illegal; widgets::f() cannot act on a gizmo

4.6.2 Nested Classes

Like blocks and namespaces, classes are scopes and can nest. Nesting allows local
hiding of names and local allocation of resources. This is often desirable when a
class is needed as part of the implementation of a larger construct. The following
nested classes illustrate current C++ rules.

In file nested.cpp

char c;

class X {
public:

char c;
class Y {
public:

void foo(char e) { X t; ::c = t.X::c = c = e; }
private:

char c; //X::Y::c

};
};

//external scope ::c

//outer class declaration X::

//X::c
//inner class declaration X::Y::

In class Y, the member function foo(), when using : : c, references the global vari¬
able c; when using X: : c, it references the outer class variable; when using c, it refer¬
ences the inner class variable X: : Y: : c. All three variables named c are accessible by
using the scope resolution operator.

Furthermore, purely locally scoped classes can be created within blocks. Their
definitions are unavailable outside their local block context.

void foo()

{
class local { . } x;

}

local y; //i1 legal:local is scoped within foo()

4.7 ▼ An Example: Flushing 125

Notice that C++ allows you to nest function definitions by using class nesting, which
is a restricted form of function nesting. The member functions must be defined
inside the local class and cannot be referred to outside this scope. As in C, ordinary
nested functions are not possible.

4.7 An Example: Flushing

We want to estimate the probability of being dealt a flush in poker. A flush occurs
when at least five cards are of the same suit. We simulate shuffling cards by using a
random-number generator. This is a form of Monte Carlo calculation. The program
uses classes to represent the necessary data types and functionality.

In file poker.cpp

//A poker calculation on flushing

enum suit { clubs, diamonds, hearts, spades };

class pips {
public:

void assign(int n) { p = n % 13 + 1; }
int getpipO { return p; }
void printO { cout « p; }

private:
int p;

};

class card {
public:

suit s;
pips p;
void assign(int n)

{ cd = n; s = static_cast<suit>(n/13); p.assign(n); }
void pr_card();

private:
int cd;

};
//a cd is from 0 to 51

126 Chapter 4 t Classes

class deck {
public:

void init_deck();
void shuffleO;
void deal(int, int, card*);
void pr_deck();

private:
card d [52];

};

The clustering of member functions and the data members they act on improves
modularity. Behavior and description are logically grouped together. Each level of
declaration hides the complexity of the previous level.

void deck::init_deck()

{
for (int i = 0; i < 52; ++i)

d[i] .assign(i) ;

}

void deck: :shuffleO

{
for (int i = 0; i < 52; ++i) {

int k = i + (rand() % (52 - i));
card t = d[i]; //swap cards
d[i] = d[k];
d[k] = t;

}
}

void deck::deal(int n, int pos, card* hand)

{
for (int i = pos; i < pos + n; ++i)

hand[i - pos] = d[i];

}

The init_deck() function calls card: :assign() to map the integers into card
values. The shuffleO function uses the library-supplied pseudo-random-number
generator rand() in stdlib to exchange two cards for every deck position. The
deal () function takes cards in sequence from deck and arranges them into hands.

4.7 ▼ An Example: Flushing 127

int main()

{
card one_hand[9]; //max hand is 9 cards
deck dk;
int i, j , k, fcnt = 0, sval[4];
int ndeal, nc, nhand;

cards in a hand (5-9):";

9);

do {
cout « "\nEnter no.
cin » nc;

} while (nc <5 || nc >
nhand = 52 / nc;
cout « "\nEnter no. of hands to deal: ";
ci n » ndeal ;
srand(time(NULL)); //seed rand() from time()
dk.init_deck();
for (k = 0; k < ndeal; k += nhand) {

if ((nhand + k) > ndeal)
nhand = ndeal - k;

dk. shuffl e() ;
for (i =0; i < nc * nhand; i

for (j =0; j <4; ++j)
sval [j] = 0;

dk.deal(nc, i, one_hand);
for (j =0; j < nc; ++j)

sval[one_hand[j].s]++;
for (j =0; j <4; ++j)

if (sval[j] >= 5)
fcnt++;

+= nc) {
//zero suit counts

//deal next hand

//increment suit count

//5 or more is flush

}
}
cout « "\n\nln " « ndeal « " ";
cout « nc « "-card hands there were
cout « fcnt « " flushes\n ";

}

128 Chapter 4 ▼ Classes

4.8 static and const Members

C++ allows both static and constant members. Using the modifier stati c in declar¬
ing a data member means that the data member is independent of any given class
variable. The data member is part of the class but separate from any single class
object. Nonstatic data members are created for each instance of the class. Using
static data allows class data not specific to any instance to be scoped to the class
but still require only one object for its storage. Without static data members, data
required by all instances of a class would have to be global, thereby decoupling the
relationship between the data and the class.

Since a static member is independent of a particular instance, it can be accessed

in the form

class-name : : identifier

Note the use of the scope resolution operator. A static member of a global class
must be explicitly declared and defined in file scope. For example, if we want a
counter to keep track of how many points are declared at any time, we can add to
class poi nt as follows:

class point {
public:

static int how_many; //declaration

};

int point::how_many = 0; //initialization

++point::how_many; //use independent of any instance

The static member poi nt: : how_many needs a definition separate from an ordi¬
nary poi nt variable, since it exists independent from these variables. The static
member can be used with scope resolution, since it exists independent of poi nt
objects. Syntactically, a stati c member function has the modifier stati c precede
the return type inside the class declaration. The preferred style for accessing static
members is to use scope resolution. Pointer and dot operator access are misleading
and give no indication that the member is static. A definition outside the class must
not have this modifier.

4.8 ▼ stati c and const Members 129

class foo {

static int foo_fcn(); //static goes first

};

int foo::foo_fcn() //no static keyword here
{ /* definition */ }

A data member declared with the const modifier cannot be modified after ini¬
tialization. To use const properly, you need to understand constructors (see Chap¬
ter 5, “Constructors and Destructors”). Syntactically, a const member function has
the modifier const follow the argument list inside the class declaration. A defini¬
tion outside the class must also have this modifier.

class foo {

int foo_fcn() const;

};

int foo::foo_fcn() const //const keyword needed
{ /* definition */ }

The const and stati c member function implementation can be understood in
terms of thi s pointer access. An ordinary member function invoked as

x.mem(i , j , k) ;

has an explicit argument list i, j, k and an implicit argument list that includes the
members of x. The implicit arguments can be thought of as a list of arguments
accessible through the thi s pointer. In contrast, a stati c member function does
not get the implicit arguments. A const member function cannot modify its implicit
arguments. Writing out const member functions and parameter declarations is
called const-correctness and is an important aid in writing code. In effect, it is an
assertion that the compiler should check that an object will not have its values mod¬
ified. Const-correctness can also allow the compiler to apply some special optimiza¬
tions, such as placing a const object in read-only memory.

130 Chapter 4 ▼ Classes

The following example illustrates these differences.

In file salary.cpp

//Calculate salary using static members

class salary {
public:

void init(int b) { b_sal = b; your_bonus = 0; }
void calc_bonus(double perc) { your_bonus = b_sal * perc; }
static void reset_al1(int p) { all_bonus = p; }
int comp_tot() const

{ return (b_sal + your_bonus + all_bonus); }

private:
int b_sal;
int your_bonus;
static int all_bonus; //declaration

//declaration and definition
int salary::all_bonus = 100;

int main()

{
salary wl, w2;

wl.init(1000);
w2 . init(2000);
wl.calc_bonus(0.2);
w2.calc_bonus(0.15);
salary::reset_all(400);
cout « " wl " « wl.comp_tot() « " w2 "

« w2.comp_tot() « endl;

4.8 ▼ stati c and const Members 131

Dissection of the salary Program

■ class salary {

private:
int
int
static int

};

There are three private data members. The stati c member al l_bonus requires a
file-scope declaration and can exist independent of any specific variables of type
sal ary being declared.

■ void init(int b) { b_sal = b; your_bonus = 0; }

This assigns the value of b to the member b_sal. This member function initializes
the base salary. The variable your_bonus is also initialized. Although our small
example did not require this, it is a good habit to initialize all member variables. As
we will see in Chapter 5, “Constructors and Destructors,” special functions called
constructors are used when initialization and object creation are needed.

■ static void reset_al1(int p) { all_bonus = p; }

The modifier static must come before the function return type.

■ int comp_tot() const

{ return (b_sal + your_bonus + all_bonus); }

The const modifier comes between the end of the argument list and the beginning
of the code body. This modifier indicates that no data member will have its value
changed. Thus, it makes the code more robust. In effect, the self-referential pointer
is passed as const salary* const this.

■ salary::reset_al1(400);

A stati c member function can be invoked by using the scope resolution operator.
The member function could also have been invoked as wl. reset_al 1 (400) but
this is misleading, since there is nothing special about the class variable wl.

b_sal;
your_bonus;

all_bonus; //declaration

132 Chapter 4 ▼ Classes

Note: The stati c keyword is used only in the class definition and must be omit

ted when the data or function member is defined outside the class.
Newly allowed in C++ is stati c const initialization within a class declaration.

class ch_stack {

private: . .
static const int max_len = 10000; //initializer

};

const ch_stack::int max_len; //declaration required

4.8.1 Mutable Members

The keyword mutable allows data members of class variables that have been
declared const to remain modifiable. This reduces the need to cast away constness

using const_cast<>. The keyword is used as follows.

In file mutable.cpp

//class with mutable members

class person {
public:

person(const char* pname, int page, unsigned long ssno);

void bday() { ++age; }

private:
const char* name;
mutable int age; //always modifiable

unsigned long soc_sec;

};

const person ira("ira pohl", 38, 1110111);

ira.bdayQ; //okay, ira.age is mutable

4.9 ▼ The thi s Pointer 133

4.9 The this Pointer

The keyword this denotes an implicitly declared self-referential pointer that can be
used only in a nonstatic member function. In a static member function, the implicit
arguments are not available. A simple illustration of the pointer’s use follows.

In file point5.cpp

//The this pointer

class point {
public:

voi d
voi d
voi d
poi nt

//place public members first
print() { cout « "(" « x « « y «
init(double u, double v) { x = u; y = v; }
pius(point c) ;
inverse() { x = -x; y = -y; return (*this)

point* where_am_I() { return this; }
private:

double x, y;

};

int main()

{
point a, b;

a. init(l.5, -2.5);
a. printO ;
cout « "\na is at " « a.where_am_I() « endl;
b = a.inverse();
b. print ();
cout « "\nb is at " « b.where_am_I() « endl;

The output on our system is

(1.5,-2.5)
a is at 0x0064fdd4
(-1.5,2.5)
b is at 0x0064fdc4

134 Chapter 4 ▼ Classes

Note that machine addresses are displayed in hexadecimal and are system depen¬
dent. In this case, the two addresses differ by 0 x 10, or 16 bytes, the size of the two
doubles required to represent a point.

The member function i nverseO uses the implicitly provided pointer trn s to
return the newly inverted value of a. The member function where_am_I returns the
address of the given object. The thi s keyword provides for a built-in self-referential
pointer, as if poi nt implicitly declared the private member poi nt* const thi s.

4.10 Unions

A union is a derived type whose syntax is the same as for structures except that the
keyword union replaces struct. The member declarations share storage, and their
values will be overlaid. Therefore, a union allows its value to be interpreted as a set

of types that correspond to the member declarations.
A union initializer is a brace-enclosed value for its first member. Consider the

following declaration.

In file union.cpp

union int_dbl {
i nt i;
double x;

} n = { 0 }; //i member is init to zero

The variable n can be used as either an integer type or a double type:

n.i = 7; //int value 7 is stored in n

cout « n.i « " is integer.
cout « n.x « " is double - machine dependent.";
n.x = 7.0; //double value 7.0 is stored in n

This example also illustrates why unions can be dangerous and are often system
dependent. On some systems, it is possible that not all bit patterns are legal values
for the overlaid types. In that case, a legal value with one type might, when accessed
as the other type, lead to an exception.

4.11 ▼ Bit Fields 135

A union can be anonymous, as in the following code:

In file weekend.cpp

enum week { sun, mon, tues, weds, thurs, fri, sat };

static union {
i nt i ;
week w;

};

i = 5;

if (w == sat || w == sun)
cout « " It's the weekend!

The anonymous union allows the individual member identifiers to be used as vari¬
ables. The member names must be unique within scope, and no variables of the
anonymous type can be declared. Note that an anonymous union declared in file
scope must be static.

4.11 Bit Fields

A member that is an integral type can consist of a specified number of bits. Such a
member is called a bit field, and the number of associated bits is called its width.
The width is specified by a nonnegative constant integral expression following a
colon.

struct pcard { //packed representation of card
unsigned s : 2;
unsigned p : 4;

>;

The compiler will attempt to pack the bit fields sequentially within memory but
it is at liberty to skip to a next byte or word for purposes of alignment. Arrays of bit
fields are not allowed. Also, the address operator & cannot be applied to bit fields.

Bit fields are used to address information conveniently in packed form. On
many machines, words are 32 bits, and bit operation can be performed in parallel.
In this case, bit manipulation is an implementation technique for sets that contain
up to 32 elements, as shown next.

136 Chapter 4 ▼ Classes

In file set.cpp

struct word {
unsigned w0:l,wl:l,w2:l, w3:l, w4:l, w5:l, w6:l, w7.1,

w8:1, w9:l,wl0:l,wll:1, wl2:l, wl3:l, wl4:l, wl5:l,

wl6:1,wl7:1,wl8:1,wl9:1, w20:l, w21:l, w22:l, w23:l,

w24:1,w25:1,w26:1,w27:1, w28:l, w29:l, w30:l, w31:l;

};

We can overlay word and unsigned within a union to create a data structure for

manipulating bits.

union set {
word m;
unsigned u;

int main()

{
set x, y;

x. u = 0x0fl00fl0;
y. u = 0x01ala0al;
x.u = x.u | y.u; //set union
cout « "element 9 ="

« C(x.m.w9)? "true" : "false") « endl;

The set operation union is performed as a word-parallel operation on most

systems.

4.12 A Container Class Example: ch_stack

A container is a data structure whose main purpose is to store and retrieve a large
number of values. In the kernel language, an array acts as such a structure. In this
section, we develop code that is used to store character values in a stack, which is a
last-in-first-out (UFO) container, using ch_stack to store characters.

4.12 t A Container Class Example: ch_stack 137

In file ch_stacl.h

class ch_stack {
public:

void reset() { top = EMPTY; }
void push(char c) { top++; s[top] = c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const { return (top == EMPTY);}
bool fullC) const { return (top == FULL); }

private:

enum { max_len = 100, EMPTY = -1, FULL = max_len-l };
char s[max_len];
int top;

};

The basic operations on a stack are push and pop. The push operation places a
value on the top of the stack, and the pop operation removes the value at the top of
the stack. We use a fixed-length char array to implement the stack. Later, we will
talk about other, more flexible implementations.

We now write mai n() to test the same operations.

In file ch_stacl.cpp

//Reverse a string with a ch_stack

int main()

{
ch_stack s;
char str[40] = { "My name is Don Knuth!" };
int i = 0;

cout « str « endl;

s.resetO; //s.top = EMPTY; would be illegal
while (str[i] && !s.full())

s.push(str [i++]);
while (Is.emptyO) //print the reverse

cout « s.pop();
cout « endl;

}

138 Chapter 4 t Classes

The output from this version of the test program is

My name is Don Knuth!
!htunK noD si eman yM

As the comment in mai n() states, access to the hidden variable top is con¬
trolled. The variable can be changed by the member function reset () but cannot be
accessed directly. Also, notice how the variable s is passed to each member func

tion, using the structure member operator form.
The ch_stack class has a private part that contains its data description and a

public part that contains member functions to implement ch_stack operations. It
is useful to think of the private part as restricted to the implementor’s use and the
public part as an interface specification that clients may use. The implementor
could change the private part without affecting the correctness of a client’s use of

the ch_stack type.

4.13 Pragmatics

The access order for classes has traditionally been private first, as in

class ch_stack {
private:

i nt top;
enum { max_len = 100, EMPTY = -1, FULL = max_ .1 en-1

char s[max_len];

public:
void resetO { top = EMPTY; }
void push(char c) { top++; s[top] = c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }

bool emptyO const { return (top == EMPTY); }
bool full() const { return (top == FULL); }

};

The reason is that, in the original form of C++, the access keywords pri vate and
protected did not exist. By default, member access for class was private; there¬
fore, the private members had to come first.

The style of public first is becoming the norm. It follows the rule that the widest
audience needs to see the public members. More specialized information is placed
later in the class declaration.

4.14 ▼ Moving from C++ to Java 139

Data members should in general be private. This is an important coding heuris¬
tic. Generally, data are part of an implementation choice and should be accessed
through public member functions. Such member functions are called accessor func¬
tions when they do not change, or mutate, the data. This is not necessarily ineffi¬
cient, because simple accessor member functions can be inline. In the class
ch_stack, the member functions top_of(), emptyO, and full () are all inline
accessor functions. Accessor functions should be declared const. The member
function reset () is a mutator. It allows a constrained action on the hidden variable
top. Notice how much safer such a design is. If top were directly accessible, it
would be easy for it to be inappropriately changed.

In OOP design, the public members are usually functions and are thought of as
the type’s interface. These are the actions, or behaviors, publicly expected of an
object. If we think of the object type as a noun, the behaviors are verbs. In the
implementation, data members are generally placed in private access. This is a key
data-hiding principle, namely, that implementation is kept inside a black box that
cannot be directly exploited by the object’s user.

4.14 Moving from C++ to Java

Java classes are based on the C++ aggregate type class. A class provides the
means for implementing a user-defined data type and associated functions. There¬
fore, a class can be used to implement an ADT. Unlike in C++, however, functions,
or methods as they are called in Java, cannot exist outside a class construct. Let us
write a cl ass called Person that will be used to store information about people.

In file Personl.java

// An elementary implementation of type Person
class Person {

private String name;
private int age;
private char gender; //male == 'M' , female == 'F'
public void assignName(String nm) { name = nm; }
public void assignAge(int a) { age = a; }
public void assignGender(char b) { gender = b; }
public String toString(

return (name + " age is " + age +
" sex is " + gender);

}

140 Chapter 4 ▼ Classes

As with C++ classes, Java has the two important additions to the structure concept
of traditional C. First, Java has members called class methods that are functions,
such as assignAgeO. Second, Java has both public and private members. The key-
word publ i c indicates the visibility of the members that follow it. Without this key¬
word the members are private to the class. Private members are available for use
only by other member functions of the class. Public members are available any¬
where the class is available. Privacy allows part of the implementation of a class
type to be “hidden” and prevents unanticipated modifications to the data structure.
Restricted access, or data hiding, is a feature of object-oriented programming.

The declaration of methods inside a class allows the ADT to have actions, or
behaviors, that can act on its private representation. For example, the member func¬
tion toString() has access to private members and gives Person a strmg represen¬
tation used in output. This method is common to many class types.

We can now use this data type Person as if it were a basic type of the language.
Other code that uses this type is a client. The client can use only the public members

to act on variables of type Person.

//PersonTest.java uses Person

public class PersonTest {
public static void main (Stringf] args)

System.out.println("Person test:");
Person pi = new PersonO; //create a Person object

pi.assignAge(20);
pl.assignName("Alan Turing");
pl.assignGender(‘M’);
System.out.printIn(pi.toString()) ;

}
}

The output of this example program is

Person test:
Alan Turing age is 20 sex is M

Notice the use of new PersonO to create an instance of Person. The new oper¬
ator goes off to the heap, as it does in C++, and obtains memory for creating an
instance of object Person. The value of pi is a reference to this object. In effect, this

is the address of the object.

▼ Summary 141

Summary

1. The original name Stroustrup gave to his language was “C with classes.” A class
is an extension of the idea of structure in traditional C. A class is a way of imple¬
menting a data type and associated functions and operators, the mechanism in
C++ for implementing ADTs, such as complex numbers and stacks.

2. The structure type allows the programmer to aggregate components into a sin¬
gle named variable. A structure has components, called members, that are indi¬
vidually named. Critical to processing structures is the accessing of their
members. This is done with either the member operator . or the structure
pointer operator -> . These operators, along with () and [], have the second-
highest precedence. Highest precedence belongs to scope resolution, : :.

3. The concept of structure or class is augmented in C++ to allow functions to be
members. The function declaration is included in the structure declaration and
is invoked by using access methods for structure members. The idea is that the
functionality required by the struct data type should be directly included in
the struct declaration.

4. Member functions that are defined within the structure or class are implicitly
inline. As a rule, only short, heavily used member functions should be defined
within the structure. To define a member function outside the structure, the
scope resolution operator is used.

5. The scope resolution operator allows member functions of various structure
types to have the same names. In this case, which member function is invoked
depends on the type of object it acts on. Member functions within the same

struct can be overloaded.

6. Structures have public and private members that provide data hiding. Inside a
structure or class, the keyword private followed by a colon restricts the access
of the members that follow it. The private members are used by only a few cate¬
gories of functions, whose privileges include access to these members. These
functions include the member functions of the class.

7. Classes in C++ are a form of struct whose default access specification is pri¬
vate. Thus, struct and class can be used interchangeably, with the appropri¬

ate access specification.

142 Chapter 4 ▼ Classes

8 Data members can be declared with the storage class modifier static. A data
member that is declared stati c is shared by all variables of that class and is
stored in one place only. Therefore, the data member can be accessed in the

form

class-name : : identifier

9. Classes can be nested. The inner class is inside the scope of the outer class. This

is not in accordance with C semantics.

Review Questions

1. In C++, the structure name, or_, is a type.

2. Member functions that are defined within cl ass are implicitly-■

3. A function invocation wl. pri nt() ; means that print is a-function.

4. A private member (can or cannot)_be used by a member function of that

class.

5. The keyword_allows data members of class variables that have been
declared const to remain modifiable. This reduces the need to cast away const-

ness using_<>.

6. The static modifier used in declaring a data member means that the data

member is_.

7. The preferred style is to have members of_access first and members of
_access declared last in a class declaration.

8. A stack is a LIFO container. A container is a data structure whose main purpose

is_.

9. LIFO means_.

▼ Exercises 143

Exercises

1. Design a C++ structure to store a dairy product name, portion weight, calories,
protein, fat, and carbohydrates. Twenty-five grams of American cheese have 375
calories, 5 grams of protein, 8 grams of fat, and 0 carbohydrates. Show how to
assign these values to the member variables of your structure. Write a function
that, given a variable of type struct dai ry and a weight in grams (portion size),
returns the number of calories for that weight.

2. Write a struct poi nt that has three coordinates x, y, and z. How can you access
the individual members?

3. Use the struct card defined in the poker program in Section 4.7, “An Example:
Flushing,” on page 125, to write a hand-sorting routine. In card games, most
players keep their cards sorted by pip value. The routine will place aces first,
kings next, and so forth, down to twos. A hand will be five cards.

4. The following declarations do not compile correctly. Explain what is wrong.

struct brother {
char
int
struct sister

} a;

struct sister {
char
int
struct brothe

} a;

5. In this exercise, use the class ch_stack, defined in Section 4.12, “A Container
Class Example: ch_stack,” on page 137. Write the function

void reverse(char sl[], char s2[]);

The strings si and s2 must be the same size. String s2 should become a
reversed copy of string si. Internal to reverse, use a ch_stack to perform the

reversal.

name[20];
age;
sib;

name[20];
age;

144 Chapter 4 ▼ Classes

6. Rewrite the functions push() and pop() discussed in Section 4.12, “A Container
Class Example: ch_stack,” on page 137, to test that push() is not acting on a
full ch_stack and that pop() is not acting on an empty ch_stack. If either con¬
dition is detected, print an error message, using cerr, and use exit(l) (in
stdlib) to abort the program. Contrast this to an approach using asserts.

7. Write reverse() as a member function for type ch_stack, discussed in Section
4.12, “A Container Class Example: ch_stack,” on page 137. Test it by printing
normally and reversing the string

Gottfried Leibniz wrote Toward a Universal Characteristic

8. For the ch_stack type in Section 4.4, “Access: Private and Public,” on page 120,
write as member functions

//push n chars from si onto the ch_stack

void pushm(int n, const char sl[]);

//pop n chars from ch_stack into char string
void popm(int n, char sl[]);

Hint: Be sure to put a terminator character into the string before outputting it.

9. Explain the difference in meaning between the structure

struct a {
int i, j, k;

};

and the class

class a {
int i, j , k;

};

Explain why the class declaration is not useful. How can you use the keyword
public to change the class declaration into a declaration equivalent to
struct a?

▼ Exercises 145

10. Recode as a class the data type deque, which is a double-ended queue that
allows push and pop at both ends.

class deque {
public:

void resetO { top = bottom = max_len / 2; top--; }

private:
char s[max_len];
int bottom, top;

};

Declare and implement push_t, pop_t, push_b, pop_b, out_stack, top_of,
bottom_of, empty, and full. The function push_t() stands for push on top
and pop_t() for pop on top; push_b() stands for push on bottom and pop_b()
for pop on bottom. The out_stack() function should output the stack from
bottom to top. An empty stack is denoted by having the top fall below the bot¬
tom. Test each function.

11. Extend the data type deque by adding a member function relocate(). If the
deque is full, relocate() is called, and the contents of the deque are moved to
balance empty storage around the center max_l en/2 of array s. Its function dec¬
laration header is

//returns true if it succeeds, false if it fails

bool deque::relocate()

12. Write a function that swaps the contents of two strings. If you pushed a string
of characters onto a ch_stack and popped them into a second string, they
would come out reversed. In a swap of two strings, we want the original order¬
ing. Use a deque to do the swap. The strings will be stored in character arrays of
the same length, but the strings themselves may be of differing lengths. The
function prototype is

void swap(char sl[], char s2 []);

13. Write the member functions

void pips: :print() ;
void card::pr_card();
void deck::pr_deck();

146 Chapter 4 ▼ Classes

and add them to the poker program found in Section 4.7, “An Example: Flush¬
ing,” on page 125. Let pr_deck() use pr_card() and pr_card() use print().

Print the deck after it is initialized.

14. Write a function pr_hand() that prints out card hands. Add it to the poker pro¬

gram, and use it to print out each flush.

15. In Section 4.7, “An Example: Flushing,” on page 125, main() detects flushes.

Write a function

bool isflush(const card hand[], int nc);

that returns true if a hand is a flush.

16. Write a function

bool isstraight(const card hand[], nc);

that returns true if a hand is a straight. A straight is five cards that have
sequential pip values. The lowest straight is ace, two, three, four, five, and the
highest straight is ten, jack, queen, king, ace. Run experiments to estimate the
probability that dealt cards will be a straight, and compare the results of five-
card hands with results of seven-card hands. Hint: You may want to set up an
array of 15 integers to correspond to counters for each pip value. Be sure that a
pip value of 1 (corresponding to ace) is also counted as the high card corre¬
sponding to a pip value of 14.

17. Use the previous exercises to determine the probability that a poker hand will
be a straight flush. This is the rarest poker hand and has the highest value. Note
that, in a hand of more than five cards, it is not sufficient to merely check for
the presence of both a straight and a flush to determine that the hand is a
straight flush.

▼ Exercises 147

18. Change the suit declaration from an enumerated type to a class as follows:

enum suit_val { clubs, diamonds, hearts, spades };

class suit {
public:

void assign(int n) { s = n / IB; }
int getsuitO const { return s; }
void print() const;

private:
suit_val s;

};

We add the member function getsuitO to access the hidden integer value of a
suit variable. Now recode all references to suit throughout the program.

19. Change class ch_stack to i nt_stack by substituting type i nt for type char in
the class definition as appropriate. Later, we will see how to use templates to
automate this process.

20. (Java) Recode point in Section 4.9, “The this Pointer,” on page 133, as a Java
class.

21. (Java) Recode and test ch_stack in Section 4.12, “A Container Class Example:
ch_stack,” on page 137, as a Java class. Add a method reverseO that does the
same basic operation as the code in main() in Section 4.12, “A Container Class
Example: ch_stack,” on page 137 and test it.

22. (Java to C++) Recode the Java program PersonTest.java in Section 4.14, “Moving
from C++ to Java,” on page 139, to run as C++.

,

Constructors
and Destructors

r 5

An object requires memory and an initial value, which C++ provides through decla¬
rations that are definitions. Variables are objects. For example, in

void foo()

{
int n = 5;
double z[10] = { 0.0 };
struct gizmo { int i, j; }w= { 3, 4 };

}

all of the objects are created at block entry when foo() is invoked. A typical imple¬
mentation uses a runtime system stack. Thus, the i nt object n on a system with 4-
byte integers gets this allocated off the stack and initialized to the value 5. The
gi zmo object w requires 8 bytes to represent its two integer members. The array
of double object z requires 10 times sizeof (double) to store its elements. In each
case, the system provides for the construction and initialization of these objects. On

exit from foo(), deallocation occurs automatically.
In creating complicated aggregates, the user will expect similar management of

a class-defined object. The class needs a mechanism to specify object creation and
destruction so that a client can use objects like native types.

A constructor is a member function whose name is the same as the class name;
it constructs values of the class type. This process involves initializing data mem¬
bers and, frequently, allocating free store by using new. A destructor is a member
function whose name is the class name preceded by the tilde character ~. A destruc¬
tor’s usual purpose is to finalize objects of the class type, typically by using delete

to deallocate store assigned the object.
Constructors, the more complicated of these two specially named member func¬

tions, can be overloaded and can take arguments, whereas destructors can do nei¬
ther. A constructor is invoked when its associated type is used in a definition, when
call-by-value is used to pass a value to a function, or when the return value of a
function must create a value of associated type. Destructors are invoked implicitly

150 Chapter 5 ▼ Constructors and Destructors

when an object goes out of scope. Constructors and destructors do not have return
types and cannot use return expression statements.

5.1 Classes with Constructors

The simplest use of a constructor is for initialization. In this and later sections, we
will develop some examples that use constructors to initialize the values of the data
members of the class. Our first example is an implementation of a data type
mod_i nt to store numbers that are computed with a modulus.

In file modulo.cpp

//Modulo numbers and constructor initialization

class mod_int {
public:

mod_int(int i); //constructor declaration
void assign(int i) { v = i % modulus; }
void printO const { cout « v « '\t' ; }
const static int modulus;

private:
int v;

//constructor definition
mod_int::mod_int(int i) { v = i % modulus; }
const int mod_int::modulus = 60;

The integer v is restricted in value to 0, 1, 2, ... , modul us - 1. It is the program¬
mer’s responsibility to enforce this restriction by having all member functions guar¬
antee this behavior.

The member function mod_i nt: : mod_i nt (i nt) is a constructor. It does not
have a return type. This constructor is invoked when objects of type mod_i nt are
declared. It is a function of one argument. When invoked, the constructor requires
an expression that is assignment compatible with its i nt parameter. It then creates
and initializes the declared variable.

Some examples of declarations using this type are

mod_int a(0);
mod_int b(61);

//a.v = 0;
//b.v = 1;

5.1 ▼ Classes with Constructors 151

but not

mod_int a; //illegal:no parameter list

Since this class has only the one constructor of argument list i nt, a mod_i nt decla¬
ration must have an integral expression passed as an initializing value. Not allowing
a mod_i nt variable to be declared without an initializing expression prevents run¬
time errors due to uninitialized variables.

5.1.1 The Default Constructor

A constructor requiring no arguments is called the default constructor. It can be a
constructor with an empty argument list or one whose arguments all have default
values. It has the special purpose of initializing arrays of objects of its class.

It is often convenient to overload the constructor with several function declara¬
tions. In the preceding example, it could be desirable to have the default value of v

be 0. If the default constructor

mod_int() { v = 0; }

is added as a member function of mod_i nt, the following declarations are possible:

mod_int si, s2; //both init private member v to 0
mod_int d[5]; //arrays are properly initialized

In both of these declarations, the empty parameter-list constructor is invoked.
If a class does not have a constructor, the system provides a default construc¬

tor. If a class has constructors but not a default constructor, array allocation causes

a syntactic error.
In our mod_i nt example, the following constructor could serve as both a general

initializer and a default constructor:

inline mod_int::mod_int(int i = 0)
{ v = i % modulus; }

152 Chapter 5 ▼ Constructors and Destructors

5.1.2 Constructor Initializer

A special syntax is used for initializing subelements of objects with constructors.
Constructor initializers for structure and class members can be specified in a
comma-separated list that follows the constructor parameter list and that precedes
the code body. The previous example can be recoded as

//Default constructor for mod_int
mod_int::mod_int(int i = 0) : v(i % modulus){}

Notice that initialization replaces assignment. The individual members must be ini-

tializable as

member-name (expression list)

It is not always possible to assign values to members in the body of the constructor.
An initializer list is required when a nonstatic member is either a const or a refer¬

ence type.

5.1.3 Constructors as Conversions

Constructors of a single parameter are used automatically for conversion unless
declared with the keyword expl i ci t. For example, T1: :T1(T2) provides code that
can be used to convert a T2 object to a T1 object. Consider the following class,
whose purpose is to print invisible characters with their ASCII designation; for
example, the code 07 (octal) is al arm or bel.

In file printabl.cpp

//ASCII printable characters

class pr_char {
public:

pr_char(int i = 0) : c(i % 128) { }
void printO const { cout « rep[c]; }

private:
i nt c;
static const char* rep[128];

};

const char* pr_char::rep[128] = { "nul", "soh", "stx",

5.1 ▼ Classes with Constructors 153

int main()

{
pr_char c;

for (int i = 0; i < 128; ++i) {
c = i; //or: c = static_cast<pr_char>(i) ;
c.printO ;
cout « endl;

}
}

The constructor creates an automatic conversion from integers to pr_char.
Notice that c = i implies this conversion. It is also possible to explicitly use a cast.
Conversions are covered in detail in Section 6.1, “ADT Conversions,” on page 196.
One reason OOP has implicit conversions for ADTs is that it is desirable for them to
have the look and feel of the native types.

5.1.4 Improving the point Class

The class point from Section 4.5, “Classes,” on page 121, is readily improved by
adding constructors. Notice that the class contains the member function
poi nt: : i ni t (), which is similar to a constructor.

In file point5.cpp

class point {
public:

pointO { x = 0; y = 0; }
point(double u) { x = u; y = 0;}
point(double u, double v) { x = u; y =
void printO { cout « "(" « x «
void init(double u, double v) { x = u;
void plus(point c);

//default
//double to point

v; }
« y « }
y = v; }

private:
double x, y;

};

Many scientific problems require producing a table of points or a graph by using
a function. For example, a parabola can be coded as

double parabola(double x, double p) { return(x * x) / p; }

154 Chapter 5 t Constructors and Destructors

Let us use this function to produce a table of points that graphs the parabola from 0

to 2 in increments of 0.1.

In file parabola.cpp

void graph(double a, double b, double incr,
double f(double, double), double p, point gr[])

{
double x = a;
for (int i = 0; x <= b; ++i, x += incr)

gr[i] .init(x, f(x, p)) ;

}

int main()

{
point g[1000]; //uses the default constructor

graph(0, 2, 0.1, parabola, 5, g);

5.2 Constructing a Dynamically Sized Stack

A constructor can also be used to allocate space from free store. We shall modify
the ch_stack type from Section 4.12, “A Container Class Example: ch_stack,” on
page 137, so that its maximum length is initialized by a constructor.

The design of the object ch_stack includes hidden implementation detail. Data
members are placed in the private access region of class ch_stack. The public
interface provides clients with the expected stack abstraction. These are all public
member functions, such as push() and pop(). Some of these functions are accessor
functions that do not change the stack object, such as top_of () and empty (). It is
usual to make these const member functions. Some of these functions are mutator
functions that do change the ch_stack object, such as push() and pop(). The con¬
structor member functions have the job of creating and initializing ch_stack
objects.

5.2 ▼ Constructing a Dynamically Sized Stack 155

In file ch_stac2.h

class ch_stack {
public:
//the public interface for the ch_stack

explicit ch_stack(int size): max_len(size), top(EMPTY)
{ assert(size >0); s = new char[size]; assert(s != 0); }

void reset() { top = EMPTY; }
void push(char c) { s[++top]= c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const { return (top == EMPTY); }
bool full() const { return (top == max_len - 1); }

private:
enum { EMPTY = -1 };
char* s; //changed from s[max_len]

int max_len;
int top;

};

In the preceding code and in the rest of this chapter, we use assertions to test
whether a pointer value is 0. This is done after calling new and indicates that new
has failed. In ANSI C++ compiler, this will be an alternative to the bad_al loc excep¬

tion being thrown.
Now a client using ch_stack can decide on the size requirement. An example of

a ch_stack declaration invoking this constructor is

ch_stack data(1000); //allocate 1000 elements
ch.stack more_data(2 * n); //allocate 2 * n elements

Two additional constructors would be a default constructor to allocate a spe¬
cific-length ch_stack and a two-parameter constructor whose second parameter
would be a char* to initialize the ch_stack. The two constructors could be written

as follows:

//default constructor for ch_stack
ch_stack::ch_stack():max_len(100),top(EMPTY)

{
s = new char[100];
assert(s != 0);

}

156 Chapter 5 ▼ Constructors and Destructors

//copy a char* string into the ch_stack
ch_stack::ch_stack(int size, const char str[]):

max_len(size)

{
i nt i ;
assert(size > 0);
s = new char[size];
assert(s != 0);
for (i =0; i < max_len && str[i] != 0; ++i)

s [i] = str [i];
top = —i;

}

The corresponding function prototypes would be included as members of the
class ch_stack. These constructors are used in the following:

ch_stack data; //creates s[100]
ch_stack d[N]; //creates N 100 element ch_stacks
ch_stack w(4, "ABCD"); //w.s[0]='A'...w.s[3]='D'

5.2.1 The Copy Constructor

Suppose that we wish to examine our stack and to count the number of occurrences
of a given character. We can repeatedly pop the stack, testing each element in turn,
until the stack is empty. But what if we want to preserve the contents of the stack?
Call-by-value parameters accomplish this.

In file ch_stac2.cpp

//count the number of c’s found in s
int cnt_char(char c, ch_stack s)

{
int count = 0;

while (Is.emptyO) //done when empty
count += (c == s.popO); //found a c

return count;

}

The semantics of call-by-value require that a local copy of the argument type be
created and initialized from the value of the expression passed as the actual argu¬
ment. This requires a copy constructor. The compiler provides a copy constructor
whose signature is

5.3 ▼ Classes with Destructors 157

ch_stack::ch_stack(const ch_stack&);

The compiler copies by memberwise initialization. This may not work in all circum¬
stances, such as for complicated aggregates with members that are themselves
pointers. In many cases, the pointer is the address of an object that is deleted when
it goes out of scope. However, the act of duplicating the pointer value but not the
object pointed at can lead to anomalous code. This deletion affects other instances
that still expect the object to exist. It is appropriate for the class to explicitly define
its own copy constructor.

In file ch_stac4.h

//Copy constructor for ch_stack of characters

ch_stack::ch_stack(const ch_stack& str):
max_len(str.max_len), top(str.top)

{
s = new char[str.max_len];
assert(s != 0);
memcpy(s, str.s, max_len);

}

The stdlib routine memcpyO copies max_len characters from the base address
str.s into memory, starting at base address s. This is called a deep copy. The char¬
acter arrays are distinct because they refer to different memory locations. If,
instead, the body of this routine were

s = str.s;

this would be a shallow copy, with the ch_stack variables sharing the same repre¬
sentation. Any change to one variable would change the other.

5.3 Classes with Destructors

A destructor is a member function whose name is the class name preceded by a
tilde. Destructors are almost always called implicitly, usually at the exit of the block
in which the object was declared. They are also invoked when a del ete operator is
called on a pointer to an object having a destructor or where they are needed to

destroy a subobject of an object being deleted.

158 Chapter 5 t Constructors and Destructors

Let us augment our ch_stack example with a destructor.

In file ch_stac2.h

//ch_stack implementation with constructors and destructor

class ch_stack {
public:

ch_stack(); //default constructor
explicit ch_stack(int size) : max_len(size), top(EMPTY)

{ assert(size >0); s = new char[size]; assert(s != 0); }
ch_stack(const stack& str); //copy constructor
ch_stack(int size, const char str[]);
~ch_stack() { delete []s; } //destructor

vate:
enum { EMPTY = -1
char* s;
int max_len;
int top;

The addition of the destructor allows the class to return unneeded heap-allocated
memory during program execution. All of the public member functions perform in
exactly the same manner as before. However, the destructor will be implicitly
invoked on block and function exit to clean up storage no longer accessible. This is
good programming practice and allows programs to execute using less memory.

5.4 An Example: Dynamically Allocated Strings

C++ lacks a native string type. The standard library provides a string template class
which is increasingly the normally used string type. An older style of string repre¬
sentation is as pointer to char. An important drawback of this representation the
end-of-string is denoted by the null character \0. This convention is that many basic
string manipulations are proportional to string length. This use is reflected by the
library string.h (or cstring in modern C++). In that library, the standard function
i nt st ri en (const char*) is used to compute the length of the character array
delimited by the null character. In modern C++, the standard library string provides
a string type that stores string length as part of its hidden implementation

5.4 ▼ An Example: Dynamically Allocated Strings 159

In this section, we develop some of the ways in which such a type can be imple¬
mented. We want our type to be dynamically allocated and able to represent arbi¬
trary-length strings. A variety of constructors will be coded to initialize and to
allocate strings, and a set of operations on strings will be coded as member func¬
tions. The implementation will use the string library functions to manipulate the
underlying pointer representation of strings.

In file string2.cpp

//An implementation of dynamically allocated strings

class my_string {
public:

my_string() : len(0)
{ s = new char[1];assertfs != 0); s[0] = 0; }

my_stringfconst my_string& str); //copy constructor
my_string(const char* p); //conversion constructor

~my_string() { delete []s; }
void assign(const my_string& str);
void print() const { cout « s « endl; }
void concatfconst my_string& a,const my_string& b);

private:
char* s;
int len;

};

my_string::my_string(const char* p)

{
len = strlen(p) ;
s = new char[len + 1];
assert(s != 0);
strcpy(s, p);

}

my_string::my_stringCconst my_string& str) : len(str.len)

{
s = new char[len + 1];
assertfs != 0);
strcpyfs, str.s);

160 Chapter 5 ▼ Constructors and Destructors

void my_string::assign(const my_string& str)
{

if (this == &str) //a = a; do nothing
return;

delete []s;
len = str.len;
s = new char[len + 1];
assert(s != 0);
strcpy(s, str.s);

}

void my_string::concat(const my_string& a, const my_string& b)

char* temp = new char[a.len + b.len + 1];

len = a.len + b.len;
strcpy(temp, a.s);
strcat(temp, b.s);
delete []s;
s = new char[len + 1];
assert(s != 0);
strcpy(s, temp);

}

This type allows you to declare my_st ri ngs, assign by copying one my_st ri ng
to another, print a my_stri ng, and concatenate two my_stri ngs. The hidden repre¬
sentation is pointer to char, and it has a variable len in which to store the current
my_stri ng length.

Dissection of the my_string Class

■ my_string() : len(0)

{ s = new char[1]; assert(s != 0); s[0] = 0; }
my_string(const my_string& str); //copy constructor
my_string(const char* p); //conversion constructor

The class has three overloaded constructors. The first is the default constructor
needed when declaring an array of my_st ri ngs. The second is the copy constructor.’
The third has a pointer to char argument that can be used to convert the char* rep¬
resentation of strings to our my_stri ng type. The class uses two library functions:
str len and strcpy. We allocate one additional character to store the end-of-string

5.4 ▼ An Example: Dynamically Allocated Strings 161

character \0, although this character is not counted by strlen. The copy construc¬
tor will be explained later.

■ ~my_string() { delete []s; }

The destructor automatically returns memory allocated to my_stri ngs back to free
store for reuse. The empty bracket-pair form of delete is used because array allo¬
cation was used. The operator delete[] knows the amount of memory associated
with the pointer s.

■ my_string::my_string(const my_string& str) : len(str.len)

{
s = new charflen + 1];
assert(s != 0);
strcpy(s, str.s);

}

This form of copy constructor is used to copy one my_stri ng into another.

Copy Constructor Use for my_string

1. A my_stri ng is initialized by another my_stri ng.

2. A my_stri ng is passed as an argument in a function.

3. A my_stri ng is returned as the value of a function.

In C++, if this constructor is not present explicitly, the compiler creates one that
uses member-by-member initialization.

■ void my_string::assign(const my_string& str)

{
if (this == &str) //a = a; do nothing

return;
delete []s; len = str.Ten;
s = new char [len + 1];
assert(s != 0);
strcpy(s, str.s);

}

The assignment semantics are based on deep-copy semantics, whereby the entire
aggregate must be replicated and the data values copied into its representation. The
copying requires a check against copying over the same my_st ri ng. This is the case
with a = a. If we had not tested for this case and had performed deletion on the
left-hand argument, the value of a would have disappeared. Each time the value of a

162 Chapter 5 ▼ Constructors and Destructors

my_stri ng is copied, the value is physically recopied using strcpy(). This is in dis¬
tinction to a later implementation that will show how to use shallow-copy seman¬
tics, which sets a pointer to an existing value without replicating the aggregate. As
we shall see, this can be very efficient.

■ void my_string::concat(const my_string& a, const my_string& b)

char temp[a.1en + b.len + 1];

1en = a.1en + b.len;
strcpy(temp, a.s);
strcat(temp, b.s);
delete []s;
s = new char[len + 1];
assert(s != 0);
strcpy(s, temp);

}

This is a form of concatenation. Neither my_stri ng argument is modified. The
implicit argument, whose hidden member variables are s and len, is modified to
represent the my_stri ng a followed by the my_stri ng b. Note that in this member
function, the use of 1 en, a. 1 en, and b.len is possible. Member functions have
access not only to the private members of the implicit argument but also to the pri¬
vate representation of any of the arguments of type my_stri ng.

The following code tests class my_stri ng by concatenating several my_stri ngs

In file string2.cpp

int main()

{
char* str = "The wheel that squeaks the loudest\n";

my_string a(str), b, author("Josh Billings\n"), both, quote;

b.assign("Is the one that gets the grease\n");
both.concat(a, b);
quote.concat(both, author);
quote.print();

5.5 ▼ The Class dbl_vect 163

The printout from this program is

The wheel that squeaks the loudest
Is the one that gets the grease
Josh Billings

We deliberately used a variety of declarations to show how various constructors
would be called. The my_stri ng variables b, both, and quote all use the default
constructor. The declaration for author uses the constructor whose argument type
is char*. The concatenation takes place in two steps. First, my_stri ngs a and b are
concatenated into both. Next, my_strings both and author are concatenated into
quote. Finally, the quotation is printed out.

The constructor my_stri ng: : my_stri ng (const char*) is invoked to create
and to initialize objects a and author. This constructor is also called implicitly as a
conversion operation when invoking my_stri ng: :assign() on the literal "Is the
one that gets the grease\n".

5.5 The Class dbl_vect

The one-dimensional array in C++ is a very useful and efficient aggregate type. In
many ways, it is the prototypical container: easy to use and highly efficient. How¬
ever, it is error prone. A common mistake is to access elements that are out of
bounds. In C++, this problem can be controlled by defining an analogous container
type in which bounds can be tested. This type can also be used as a mathematical
vector type.

In file dbl_vectl.h

//Implementation of a safe array type dbl_vect
class dbl_vect {
public:

explicit dbl_vect(int n = 10);
~dbl_vect() { delete []p; }
double& element(int i); //access p[i]
int ub() const { return (size - 1); } //upper bound
void printO const;

private:
double* p;
int size;

};

164 Chapter 5 y Constructors and Destructors

dbl_vect::dbl_vect(int n) : size(n)

{
assert(n > 0);
p = new double[size];
assert(p != 0);

}

double& dbl_vect::element(int i)

{
assert (i >= 0 && i < size);
return p[i];

}

The constructor dbl_vect: : dbl_vect(i nt n) allows the user to build dynam¬
ically allocated arrays. Such arrays are much more flexible than those in such lan¬
guages as FORTRAN, Pascal, and C, in which array sizes must be constant
expressions. The constructor also initializes the variable size, whose value is the
number of elements in the array. Note that this one-argument constructor is
declared explicit because it is not intended as an implicit conversion from int to
dbl_vect.

The pri nt() function outputs tab-separated elements of the vector.

void dbl_vect::print()const
{

cout « " vector of size " « size « endl;
for (int i = 0; i <size; ++i)

cout « p[i] « "\t";

}

Access to individual elements is through the safe-indexing member fimction

double& dbl_vect::element(int i)

An index that is outside the expected array range 0 through ub will cause an asser¬
tion failure. This safe-indexing member function returns a reference to i nt that is
the address of p [i] and that can be used as the left operand of an assignment, or
lvalue. The technique is often used in C++ and is an efficient mechanism for operat¬
ing on complicated types.

5.5 ▼ The Class dbl_vect 165

As an example, the declarations

dbl_vect a(10), b(5) ;

construct arrays of 10 and 5 integers, respectively. Individual elements can be
accessed by the member function element, which checks whether the index is out

of range. The statements

a. element(l) = 5;
b. element(l) = a.element(l) + 7;
cout « a.element(l) - 2;

are all legal. In effect, we have a safe dynamic array type.
Classes with default constructors use them to initialize a derived array type. For

example, the declaration

dbl_vect a[5];

uses the default constructor to create an array a of five objects, each of which is a
size 10 dbl_vect. The ith element’s address in the jth array would be given by

a[j] .element(i).
Chapter 9, “Exceptions,” discusses how exceptions can be used to check on

error conditions. With this more powerful methodology,

assert(n > 0);

is replaced by

if (n < 1)
throw(vect_allocation_error(n));

5.5.1 dbl_vect as a Linear Vector Type

The basic type in linear algebra is the vector, which allows a description of many sci¬
entific and engineering problems. To use dbl_vect effectively as a linear vector, we
need to add mathematical operations, such as vector addition, vector subti action,
and vector scalar product. We can do this as a set of functions that use
dbl_vect: :element(), but this does not allow efficient access to the underlying
representation. Including these operations as part of the class dbl_vect supports
an efficient implementation and appropriate encapsulation. We display the

dot_prod() function, leaving the others as exercises.

166 Chapter 5 ▼ Constructors and Destructors

In file dbl_vectl.h

double dbl_vect::dot_prod(const dbl_vect& v) const
{

assert(size == v.size);
double sum = 0.0;

for (int i =0; i < size; ++i)
sum += p[i] * v.p[i];

return sum;

}

In file dbLvectl.cpp

int main()

{
dbl_vect c(6);
for (int i =0; i <= c.ub(); ++i)

c.element(i) = i + 0.1;
c.print() ;

cout « " dot product = " « c.dot_prod(c) « endl;
}

5.6 Members That Are Class Types

In this section, the type dbl_vect is used as a member of the class pai r_vect. In
OOP methodology, this is known as the has-a relationship. Complicated objects can
be designed from simpler ones by incorporating them with the has-a relationship.

5.6 ▼ Members That Are Class Types 167

In file pairvect.cpp

#include "dbl_vectl.h"

class pair_vect {
public:

pai r_vect(int i) : a(i), b(i), size(i) { }
double& first_element(int i);
double& second_element(int i);
int ub()const { return size -1; }

private:
dbl_vect a, b; //pair_vect has a dbl_vect
int size;

double& pair_vect::first_element(int i)
{ return a.element(i); }

double& pair_vect::second_element(int i)
{ return b.element(i);}

Notice that the pai r_vect constructor is a series of initializers. The initializers
of the dbl_vect members a and b invoke dbl_vect: : dbl_vect (i nt). Let us use
this data type to build a table of age and weight relationships.

int main()

{
int i;
pair_vect age_weight(5); //age and weight

cout « "table of age, weight\n";
for (i =0; i <= age_weight.ub(); ++i) {

age_weight.first_element(i) = 21 + i;
age_weight.second_element(i) = 155 + i;
cout « age_weight.first_element(i) «

« age_weight.second_element(i) « endl ;

}
}

168 Chapter 5 ▼ Constructors and Destructors

5.7 Example: A Singly Linked List

In this section, we develop a singly linked list data type, the prototype of many use¬
ful dynamic ADTs called self-referential structures. These data types have pointer
members that refer to objects of their own type and are the basis of many useful
container classes. The following declaration implements such a type:

In file slist.cpp

struct slistelem {
char data;
slistelem* next;

};

class slist {
public:

slist() : h(0) { }
~slist() { releaseO; }
void prepend(char c);
void del();
slistelem* first() const
void print() const;
void releaseO;

private:
slistelem* h;

};

//a singly linked list

//0 denotes empty slist

//adds to front of slist

{ return h; }

//head of slist

Singly Linked List

List Operations

1. prepend: adds to front of list

2. fi rst: returns first element

3. pri nt: prints list contents

4. del: deletes first element

5. release: destroys list

5.7 ▼ Example: A Singly Linked List 169

The link member next points to the next si i stel em in the list. In this example,
data is a simple variable, but it could be replaced by a complicated type capable of
storing a range of information. The constructor initializes the head of si i st pointer
h to the value 0, which is called the null-pointer constant and can be assigned to any
pointer type. In linked lists, this constant typically denotes the empty list or end-of-
list value. The member function prepend() builds the list structure as follows:

void siist::prepend(char c)

{
slistelem* temp = new slistelem; //create element
assert(temp != 0);
temp -> next = h; //link to slist
temp -> data = c;
h = temp; //update head of slist

}

A list element is allocated from free store, and its data member is initialized
from the single argument c. Its link member next is set to the old list head. The
head pointer h is updated to point at this element as the new first element of the
list.

The member function del () has the inverse role.

void slist::del()

{
slistelem* temp = h;

h = h -> next; //presumes a nonempty slist
delete temp;

}

This function returns the first element of the list to free store by using the delete
operator on the head of si i st pointer h. The new head-of-list is the value of the
next member. This function can be modified to work on the empty list without
aborting (see exercise 16 on page 193).

Much of list processing consists of repetitively chaining down the list until the
null-pointer value is found. The following two functions use this technique:

170 Chapter 5 t Constructors and Destructors

In file slist.cpp
i

void slist::print() const //object is unchanged
{

slistelem* temp = h;

while (temp != 0) { //detect end of slist
cout « temp -> data « " ->
temp = temp -> next;

}
cout « "\n###" « endl;

}

//elements returned to free store

void siist::release()

{
while (h != 0)

del();

}

Dissection of the printO and releaseO Functions

■ void siist::print() const //object is unchanged

slistelem* temp = h;

An auxiliary pointer temp will be used to chain down the list. The pointer is initial¬
ized to the address of the si i st head h. The pointer h cannot be used, because its
value would be lost, in effect destroying access to the list.

■ while (temp ! = 0) { //detect end of list
cout « temp -> data « " ->
temp = temp -> next;

}

The value 0 is guaranteed to represent the end-of-list value, because the constructor
^1 i ■ • si i st () initialized it as such and the si i st: : prepend() function main¬
tains it as the end-of-list pointer value. Notice that the internals of this loop could
be changed to process the entire list in another manner.

5.7 t Example: A Singly Linked List 171

■ void siist::release()

The rel ease function is used to return all list elements to free store and marches
down the list, doing so.

■ while (h != 0)

del();

Each element of the list must be returned to free store in sequence. This is done for
a single element by si i st: : del (), which manipulates the hidden pointer h. Since
we are destroying the list, it is unnecessary to preserve the original value of pointer
h. This function’s chief use is as the body of the destructor slist: :~slist(). We
could not use a destructor written

slist::~slist()

{
delete h;

}

because it deletes only the first element in the list.

The following code demonstrates the use of this type. The destructor has been
modified to print a message.

In file slist.cpp

siist:: ~slist()

{
cout « "destructor invoked" « endl;

releaseO ;

}

172 Chapter 5 ▼ Constructors and Destructors

int main()

{
slist* p;

{
slist w;

w.prepend('A');
w.prepend('B');
w. pri nt() ;
w.del();
w.print();
p = &w;
p -> print();
cout « "exiting inner block" « endl;

}
//p -> print(); gives system-dependent behavior
cout « "exiting outer block" « endl;

}

Notice that mai n() contains an inner block, which is included to test that the
destructor is invoked on block exit, returning storage associated withw to free
store. The output of this program is

B -> A ->

A ->

A ->

exiting inner block
destructor invoked
exiting outer block

The first pri nt() call prints the two-element slist, which stores B and A. After
a del operation is performed, the list contains one element, which stores A. The
outer block pointer to si i st p is assigned the address of the si i st variable w.
When the list is accessed through p in the inner block, it prints A. This output shows
that the destructor works at block exit on the variable w.

The commented-out invocation of si i st: : pri nt() is system dependent. It is a
runtime error to dereference p here, because the address it refers to may have been
overwritten at block exit by the deletion routine.

5.8 t Two-Dimensional Arrays 173

5.8 Two-Dimensional Arrays

Standard C does not have authentic multidimensional arrays. Instead, the program¬
mer must be careful to map such an abstract data structure into a pointer to pointer
to base type. In C++, the programmer can implement flexible, safe, dynamic multidi¬
mensional arrays. We shall demonstrate this by implementing a two-dimensional

array type mat ri x. Notice its similarity to the class dbl_vect.

In file matrixl.cpp

//A two-dimensional safe array type matrix

class matrix {
public:

matrix(int dl, int d2);
-matrix() ;
int ubl() const { return(sl - 1); }
int ub2() const { return(s2 - 1); }
double& element(int i, int j);

private:
double** p;
int si, s2;

The type matrix has a size for each dimension and a corresponding public upper
bound. The hidden representation uses the pointer to pointer to double type. This
will store the base address of an array of pointers to double, which in turn store a

base address for each row of the matri x type.

matrix::matrix(int dl, int d2) : sl(dl), s2(d2)

{
assert(dl > 0 && d2 > 0);
p = new double*[si];

assert(p != 0);
for (int i = 0; i < si; ++i){

p[i] = new double[s2];

assert(p[i] != 0);

}
}

174 Chapter 5 ▼ Constructors and Destructors

matrix: :~matrix()

{
for (int i =0; i <= ubl(); ++i)

delete []p[i];
delete []p;

}

The constructor allocates an array of pointers to double. The number of ele¬
ments in this array is the value of si. Next, the constructor iteratively allocates an
array of double pointed at by each element p[i]. Therefore, there is space for
si x s2 doubles allocated from free store; additionally, the space for si pointers
is allocated from free store. The destructor deallocates store in reverse order. This
scheme generalizes to higher dimensions.

Obtaining the lvalue of an element in this two-dimensional array requires two
index arguments, as follows:

double& matrix::element(int i, int j)
{

assert(i >= 0 && i <= ubl() && j >= 0 && j <= ub2());
return p[i] [j] ;

}

Both are tested to see that they are in range. This is a generalization of the one-
index case.

5.9 Polynomials as a Linked List

A polynomial is sparse when it has relatively' few nonzero coefficients in compari¬
son to its degree. The degree of the polynomial is simply the highest exponent of a
nonzero term. For example, the degree-1,000 polynomial P(x) = x 1000 + x 1 + 1 has
only three nonzero terms. When large sparse polynomials are being manipulated, it
is often efficient to base the representation on a linked list. In such a representa¬
tion, each list element contains a nonzero term of the polynomial.

The next routine manipulates such polynomials and does polynomial addition
allowing only one term per exponent. The list is sorted with terms in descending
order of their exponents.

5.9 t Polynomials as a Linked List 175

In file polyl.cpp

//A polynomial represented as a singly linked list

struct term {
int exponent;
double coefficient;
term* next;
term(int e, double c, term* n = 0)

: exponent(e), coefficient(c), next(n) { }

void printO
{ cout « coefficient « "xa" « exponent « " "; }

};

class polynomial {
public:

polynomial() : h(0), degree(0) { }
polynomial (const polynomial p) ;
polynomial (int size, double coef [] , int expon[]);
~polynomial() { releaseO; }
void printO const;
void pius(polynomial a, polynomial b);

vate:
term* h;
i nt degree;

//add term to front voi d prepend(term* t);

voi d add_term(term*& a, term*& b);

voi d release(); //garbage collect

voi d rest_of(term* rest); //add remaining terms

voi d reverseQ ; //reverse terms

};

In this representation, a polynomial is coded as a list of terms where each term is a
coefficient-exponent pair. A polynomial’s terms will be listed in decreasing order by
exponent. This canonical form makes addition and other operations simpler. A poly¬
nomial will be empty, initialized using the copy constructor, or constructed from a
pair of arrays that contains a properly ordered sequence of coefficient-exponent

pairs.

176 Chapter 5 ▼ Constructors and Destructors

Several important auxiliary member functions manipulate the underlying list
representation. The prepend() function links a term to the head of the list. The
reverse() function reverses a list in place. The add_term() function is used by
pi us() to add a next term and to properly advance pointers within the two polyno¬
mials being added.

inline void polynomial::prepend(term* t)
{ t -> next = h; h = t; }

void polynomial::reverseC) //in place
{

term* pred, *succ, *elem;

if (h && (succ = h -> next)) {
pred = 0;
elem = h;
while (succ) {

elem -> next = pred;
pred = elem;
elem = succ;
succ = succ -> next;

}
h = elem;
h -> next = pred;

}
}

The following figure shows a graphic representation of both the prepend and
reverse operations.

5.9 ▼ Polynomials as a Linked List 177

prependO

Before

After

reverseO

Before

pred elem succ

Prepend and Reverse Operations

178 Chapter 5 ▼ Constructors and Destructors

The constructors build an explicit list for each polynomial. It would be incorrect
to rely on the compiler-generated default copy constructor.

//assumes ordering is correct exponfi] < expon[i+l]

polynomial::polynomial(int size, double coef[], int exponf])

term* temp = new term(expon[0], coef[0]);
assert(temp != 0);

h = 0;

prepend(temp); //create initial term
for (int i =1; i < size; ++i) {

assert(expon[i - 1] < exponfi]);
temp = new term(expon[i], coeffi]);
assert(temp != 0);

prepend(temp); //add term

degree = h -> exponent;

polynomial::polynomial(const polynomials, p) : degree(p.degree)

term* elem = p.h, *temp;

h = 0;

while (elem) { //term-by-term copying
temp = new term(elem -> exponent, elem -> coefficient)-
assert(temp != 0);
prepend(temp);
elem = elem -> next;

}
reverseQ;

The next set of functions implements a merge-sort polynomial addition.

5.9 ▼ Polynomials as a Linked List 179

void polynomial::add_term(term*& a, term*& b)

{
term* c;

if (a -> exponent > b -> exponent) { //add a
c = new term(a -> exponent, a -> coefficient) ;

assert(c != 0);
a = a -> next;
prepend(c);

}
else if (a -> exponent < b -> exponent)! //add b

c = new term(b -> exponent, b -> coefficient);

assert(c != 0);
b = b -> next;
prepend(c);

^e]se { //check on cancellation

if (a -> coefficient + b -> coefficient != 0) {
c = new term(a -> exponent,

a -> coefficient + b -> coefficient);

assert(c != 0);
prepend(c);

}
a = a -> next;
b = b -> next;

}
}

This code merges the terms at the head of the two lists. The exponents can be of the
same or different values. If the exponents are of different values, the larger term is
the result, and only its list pointer is advanced. If the exponents are the same, both
list pointers are advanced. Cancellation occurs when both exponents are the same
and their coefficients sum to 0; no term is produced. Otherwise, zero terms might
proliferate, thus defeating our attempt at an efficient representation of a sparse

polynomial.
When one list of terms is exhausted by the merge, the terms from the remaining

list are added to the front of the list by rest_of ().

180 Chapter 5 t Constructors and Destructors

void polynomial::rest_of(term* rest)
{

term* temp;

while (rest) {
temp = new term(rest -> exponent, rest -> coefficient);
assert(temp != 0);
prepend(temp);
rest = rest -> next;

}
}

//c.plus(a,b) means c = a + b;

void polynomial::plus(polynomial a, polynomial b)
{

term* aterm = a.h, *bterm = b.h;

release(); //garbage collect c, assumes not a or b
h = 0;

while (aterm && bterm) //merge step
add_term(aterm, bterm);

if (aterm)
rest_of(aterm);

else if (bterm)
rest_of(bterm);

reverse();
degree = ((h) ? h -> exponent: 0);

}

The function polynomial : : plus() uses add_term() and rest_of () to put the
terms in the reverse order to the expected representation and uses reverse() to
correct this. The print() and release() functions for polynomial are needed to
test this code (see exercise 20 on page 194).

5.10 ▼ Strings Using Reference Semantics 181

5.10 Strings Using Reference Semantics

Allocation at runtime of large aggregates can readily exhaust memory resources.
The list example in Section 5.7, “Example: A Singly Linked List,” on page 169, shows
one scheme for handling this; the system reclaims memory by traversing each list
and disposing of each element. This model of reclamation is a form of garbage col¬
lection. In such languages as LISP and SmallTalk, the system itself is responsible for
this reclamation. Such systems periodically invoke a garbage collector to identify all
cells that are currently accessible and to reclaim those that are inaccessible. Most
such schemes require traversal and marking of cells accessible from pointers with a

computationally expensive procedure.
A disposal scheme that avoids this is reference counting, whereby each dynami¬

cally allocated object tracks its active references. When an object is created, its ret-
erence count is set to 1. Every time the object is newly referenced, the reference
count is incremented; every time it loses a reference, the count is decremente .
When the reference count becomes 0, the object’s memory is disposed of.

The following example creates a my_stri ng class that has reference semantics
for copying. The class uses both the string and the assert libraries. This class has
shallow-copy semantics because pointer assignment replaces copying. The tec -
niques illustrated are common for this type of aggregate. We use the class str obj
to create object values. The type str_obj is a required implementation detail for
my_stri ng. The detail could not be directly placed in my_st n ng without destroy¬
ing the potential many-to-one relationship between objects of type my_stri ng and
referenced values of type str_obj. The values of my.string are m the class
str_obj, which is an auxiliary class for my_string’s use only. The publicly used
class my_stri ng handles the str_obj instances and is called a handler class.

In file string2.cpp

//Reference counted my_strings

class str_obj {
public:

int len, ref_cnt;

c h 3. n ^ s;
str_obj() : len(0), ref_cnt(l)

{ s = new char[1]; assert(s != 0); s[0] -
str_obj(const char* p) : ref_cnt(l)

{ len = strlen(p) ; s = new charflen + 1] ;

assert(s != 0); strcpy(s, p); }

~str_obj() { delete []s; }

};

0; }

Chapter 5 ▼ Constructors and Destructors

The str_obj declares objects that are used by my_st ri ng. We will explain later
how these can be made private and accessed using the f ri end mechanism (see Sec¬
tion 6.3, Friend Functions, on page 200). Notice how the str_obj class is used for
construction and destruction of objects using free store. On construction of a
str_obj, the ref_cnt variable is initialized to 1.

class my_string {
public:

my_string() { st = new str_obj; assert(st != 0);}
my_string(const char* p)

{ st = new str_obj(p); assert(st != 0);}
my_string(const my_string& str)

{ st = str.st; st -> ref_cnt++; }
~my_string();

void assign(const my_string& str);
void print() const { cout « st -> s; }

private:
str_obj * st;

};

The client will use objects of type my_stri ng. These objects are implemented as
pointers st to values of type str_obj. Notice how the copy constructor for this
class uses reference semantics to produce a copy.

The semantics of assign() show some of the subtleties of using reference
counting.

void my_string::assign(const my_string& str)

if (str.st != st) {

if (--st -> ref_cnt == 0)
delete st;

st = str.st;
st -> ref_cnt++;

}
}

e assignment occurs if the my_stri ng is not being assigned its same value. The
assignment causes the assigned variable to lose its previous value. This is equiva¬
lent to decrementing the reference count of the pointed-at str_obj value When-
ever an object s reference count is decremented, it gets tested for deletion

™ °f thlS °Ver n°rmal c°PyinS is clear. A very large aggregate is
opied by reference, using a few operations and a small amount of storage for the

5.11 ▼ No Constructor, Copy Constructor, and Other Mysteries 183

reference counter. Also, each possible change to a pointer adds a reference-count
operation. The destructor must also test the reference count before deletion.

my_string:: ~my_string()

{
if (--st -> ref_cnt == 0)

delete st;

}

5.11 No Constructor, Copy Constructor, and

Other Mysteries

Object creation for native types is usually the task of the compiler. The writer of a
class wishes to achieve the same ease of use for the class. Let us reexamine some

issues in simple terms.
Does every class need an explicitly defined constructor? Of course not. If no

constructor is written by the programmer, the compiler provides a default construc¬

tor, if needed.

In file tracking.cpp

//personal data tracking

struct pers_data {
i nt age; //in years

i nt weight; //in kilograms

i nt height; //in centimeters

char name[20]; //last name

};

void print(pers_data d)

{ . „
cout « d.name « " ns « d.age

« " years old\n";
cout « "weight : " « d.weight « "kg, height :

« d.height « "cm.” « endl;

Chapter 5 ▼ Constructors and Destructors

int mainO

{
pers_data laura = { 3, 14, 88, "POHL" };

//construction off the stack

print(laura); //calls copy constructor

What if we use constructors and allow the copy constructor to be provided by
the compiler? Recall that this means that the copy constructor does member-by¬
member copy, which can result in the wrong semantics—namely, shallow-copy
semantics in which no new value is created; instead, a pointer variable is assigned
the address of the existing value.

Take the case of reference semantics, whereby a copy implies that the reference
counter is incremented. This would not happen with the compiler-provided copy
constructor. Thus, objects copied in this manner would be undercounted and pre¬
maturely returned to free store. As a rule of thumb, the class provider should
explicitly write out the copy constructor unless it is self-evident that memberwise
copy is safe. Always be cautious if the aggregate has any pointer-based members

Are there special rules for unions? Yes. This should not be surprising, since
unions are a technique for having various objects share space. Unions cannot have
members that have constructors or destructors; nor can they have static data
members. Anonymous unions can have only public data members, and a global
anonymous union must be declared stati c.

5.11.1 Destructor Details

A destructor is implicitly invoked when an object goes out of scope. Common
include block exit and function exit.

cases

mY—string sub_str(char c, my_string b)

my_string temp;

return temp;
}

In sub_str(), we have b, a call-by-value argument of type my_string Therefore
the copy constructor is invoked to create a local copy when the function is invoked’
Correspondingly, a destructor is called on function exit. A local my st ri ng variable
temp, is constructed on block entry to this function and therefore must have its
destructor invoked on block exit. Finally, the return argument must be constructed

5.12 ▼ Pragmatics 185

and passed back into the calling environment. The corresponding destructor will be
invoked, depending on the scope of the object to which it is assigned.

It is possible to explicitly call a destructor.

p = new my_string("I don’t need you long");
//invokes my_string::my_string(const char*);

p -> ~my_string(); //or p -> my_string::~my_string()
. //but delete p is strongly preferred

5.12 Pragmatics

In constructors, initialization is preferred to assignment. For example,

ch_stack::ch_stack(int size)
{ s = new charfsize]; assert(s != 0);

max_len = size; top = EMPTY; }

is better written as

ch_stack::ch_stack(int size) : max_len(size), top(EMPTY)

{ s = new char[size]; assert(s != 0); }

As mentioned, data members that are reference declarations or const declarations
must be initialized. Also, the compiler is often more efficient about initialization.

In classes that use new to construct objects, a copy constructor should be explic¬
itly provided. The default compiler-provided copy constructor usually has the
wrong semantics for such an object. Usual practice is to provide a default and a
copy constructor with any class that uses pointers in its implementation. As we
shall see in Section 6.7, “Overloading Assignment and Subscripting Operators, on
page 209, such classes should have their own explicit definition of operator-().
This ensures that copying and assignment will be done safely.

In cases where constructors of one argument are not intended as conversions,
C++ has the recently added keyword expl i ci t to disable its conversion semantics.

class ch_stack {

public:
explicit ch_stack(int n); //not used for conversion

Chapter 5 ▼ Constructors and Destructors

5.13 Moving from C++to Java

Like a C++ constructor, a Java constructor is a function whose job is to initialize an
object of its class. Constructors are invoked after the instance variables of a newly
created class object have been assigned default initial values and any explicit initial¬
izers are called. Constructors are frequently overloaded.

In both C++ and Java, the term overloading refers to the practice of giving sev¬
eral meanings to a method. The meaning selected depends on the types of the argu¬
ments passed to the method, called the method’s signature.

A constructor is a member function whose name is the same as the class name.
The constructor is not a method and does not have a return type. Let us change our
Person example in Section 4.14, “Moving from C++ to Java,” on page 139, to have
constructors initialize the name-instance variable.

In file Person2.Java

//constructor to be placed in Person

public PersonO {name = "Unknown";}
public Person(String nm) { name =nm;}
public PersonCString nm, int a, char b)

{ name =nm; age =a; gender = b;}

These constructors would be invoked when new gets used to associate a created
instance with the appropriate type reference variable. For example,

pi = new PersonO;
pi = new Person("Laura Pohl");
pi = new Person("Laura Pohl" 9, 'F');

//creates
//creates
//creates

"unknown 0 M
Laura Pohl 0 M
Laura Pohl 9 F

The overloaded constructor is selected by the set of arguments that matches the
constructor s parameter list.

iPrJ^St™Ctl°*1S d°ne automatically by the system, using automatic garbage col-
, Thlf^ dlf[ers from C++, m which the programmer must provide the destruc¬

tor. When the object can no longer be referenced-for example, when the existing
reference is given a new object—the now inaccessible object is called garbage Peri¬
odically, the system sweeps through memory and retrieves these “dead” objects,

le programmer need not be concerned with such apparent memory leaks.

r Summary 187

Summary

1. A constructor, a member function whose name is the class name, constructs
objects of its class type. This process may involve initializing data members and
allocating free store, using the operator new. A constructor is invoked when its

associated type is used in a definition.

TYPE_foo y(3); //invoke TYPE_foo::TYPE_foo(int)
extern TYPE_foo x; //declaration but not definition

Again, not all declarations are definitions. In those cases, no constructor is

invoked.

2. A destructor is a member function whose name is the class name preceded by
the tilde character Its usual purpose is to destroy values of the class type, typ

ically by using delete.

3. A constructor requiring no arguments is called the default constructor. It can be
a constructor with an empty argument list or one whose arguments all have
default values. It has the special purpose of initializing arrays of objects of its

class.

4. A copy constructor of the form

type: : type(const type& x)

is used to copy one type value into another when

■ A type variable is initialized by a type value.

■ A type value is passed as an argument in a function.

■ A type value is returned from a function.

If the copy constructor is not present, the compiler provides one that does

member-by-member initialization of value.

3 A class having members whose type requires a constructor uses initializers, a
comma-separated list of constructor calls following a colon. The constructor is
invoked by using the member name followed by an argument list in parenthe¬
ses. The initialization is in the order of the declaration of the members.

188 Chapter 5 t Constructors and Destructors

6. An efficient disposal scheme for large aggregates is reference counting. Here,
each dynamically allocated object tracks its active references. When an object is
created, its reference count is set to 1. Every time the object is newly referenced,
its reference count is incremented. Every time the object loses a reference, its
count is decremented. When the reference count becomes 0, the object’s mem¬
ory is disposed of.

7. Constructors of a single parameter are automatically conversion functions.
They convert from the parameter type to the class type. For example,
my_type: : my_type(i nt) ; is a conversion from int to my_type. This property
can be disallowed by declaring the constructor explicit.

Review Questions

1. The default constructor requires_arguments.

2. If a class does not have an explicit copy constructor, it is provided by the

3. A constructor is used for_.

4. A destructor is used for_.

5. Constructor initializers for class members can be specified in a comma-sepa¬
rated list after the punctuation character_.

6. Constructor initializers are needed when a member was declared

7. A conversion constructor is one whose signature has_.

8. A linked list data type is an example of a_class.

9. A linked list has pointer members that refer to objects of their own type This is
called a_.

10. Shallow-copy semantics means that copying is performed by_

t Exercises 189

Exercises

1. Discuss why constructors are almost always public member functions. What

goes wrong if they are private?

2. Write a member function for the class mod_i nt:

void add(int i); //add i to v modulo 60

The function should add the number i to the current value of v while retaining

the modulo 60 feature of v.

3. Run the following program and explain its behavior. Placing debugging informa¬
tion inside constructors and destructors is a very useful step in developing effi¬

cient and correct classes.

//Constructors and destructors invoked

class A {
public:

A(int n) : xx(n)
{ cout « "A(int " « n « ") called" « endl;}

A(double y) : xx(y +0.5)
{ cout « "A(f1 " « y « ") called" « endl; }

~A() . „ ,
{ cout << "~A() with A::xx — << xx « endl , }

private:
int xx;

};

190 Chapter 5 ▼ Constructors and Destructors

int main()

{
cout « "enter main\n";
int x = 14;
float y = 17.3;

A z(ll), zzCll.5), zzz(0);

cout « "\nOBJECT ALLOCATION LAY0UT\n";
cout « "\nx is at " « &x;
cout « "\ny is at " « &y;
cout « "\nz is at " « &z;
cout « "\nzz is at " « &zz;
cout « "\nzzz is at " « &zzz;
cout « "\n_\n".
zzz = A(x); zzz = A(y);
cout « "exit main" « endl;

}

Add a default constructor for class A:

A::A() : xx(0) { cout « "A() called" « endl; }

Now modify the program by declaring an array of type A:

A d[5]; //declares array of 5 elements of type A

Assign the values 0, 1, 2, 3, and 4 to the data member xx of each d [i]. Run the
program and explain its behavior.

4. Using the ch_stack type discussed in Section 5.2, “Constructing a Dynamically
Sized Stack, on page 15 5, add a default constructor to allocate ach_stack of
100 elements. Write a program that swaps the contents of two ch_stacks, using
an array of ch_stacks to accomplish the job. The ch_stacks will be the first
two stacks m the array. One method would be to use four ch_stacks: st [0]

and st [3], Push the contents of st[l] into st [2], of st[0] into
st[3] of st[3] into st [1], and of st[2] into st[0]. To verify that the con¬
tents ot the ch_stacks are in the same order, implement a print() function
that outputs all elements in the ch.stack. Can this be done with only three

t Exercises 191

5. Add a constructor to the type ch_stack with the following prototype:

ch_stack::ch_stack(const char* c) ;
//initialize from char array

When does this provide a conversion? Is this desirable? How can the conversion

be avoided?

6. Using the my_string type discussed in Section 5.4, “An Example: Dynamically
Allocated Strings,” on page 159, code the following member functions:

//strcmp is negative if s < si,

// i s 0 i f s == si,

// and i s positive if s > si

// where s is the implicit argument

int my_string::strcmpCconst my_string& si);

//strrev reverses the my_string
void my_string::strrev();

//print overloaded to print the first n characters
void my_string::print(int n);

7. Write a function that swaps two my_strings. Use it and my_string: :strcmp
from the previous exercise to write a program that will sort an array of

my_stri ngs.

8. Using the dbl_vect type in Section 5.5, “The Class dbl_vect,” on page 163,

code the following member functions:

//adds all the element values and returns their sum

double dbl_vect::sumelem();

//prints all the elements
void dbl_vect: : print() ;

//adds two vectors into a third v(implicit) = vl+v2
void dbl_vect::add(const dbl_vect& vl, const dbl_vect& v2);

//adds two vectors and returns v(implicit) + vl
dbl_vect dbl_vect::add(const dbl_vect& vl);

192 Chapter 5 ▼ Constructors and Destructors

9. Write a further constructor for dbl_vect that accepts an i nt array and its size
and that constructs a dbl_vect with these initial values:

dbl_vect::dbl_vect(const dbl_vect* d, int sz);

10. Try to benchmark the speed differences between safe arrays, as represented by
class dbl_vect, and ordinary integer arrays. Repeatedly run an element summa¬
tion routine, using int a[10000], and one using the dbl_vect a(10000).
Time your trials. Useful timing functions can be found in the time library.

11. Using the class dbl_vect in Section 5.5, “The Class dbl.vect,” on page 163,
define the class multi_v as follows:

class multi_v {
public:

multi_v(int i) : a(i), b(i), c(i), size(i) {}
void assign(int ind, int i, int j, int k);
void retrieve(int ind, int& i,

int& j, int& k) const;
void print(int ind) const;
int ub() const { return (size - 1); }

private:
dbl_vect a, b, c;
int size;

};

Write and test code for the member functions assign(), retrieve(), and
pri nt (). The function assign () should assign i, j, and k to a [ind], b[ind],
and c[ind], respectively. The function retrieve() does the inverse of
assign(). The function print() should print the three values a [ind] b [i ndl
and c[ind],

12. Use the si i st type discussed in Section 5.7, “Example: A Singly Linked List,” on
page 168, to code the following member functions:

//slist constructor whose initializer is a char* string
slist::slist(const char* c);

//length returns the length of the slist
int slist::length();

//return number of elements whose data value is c
int siist::count_c(char c);

t Exercises 193

13. Write a member function append () that will add a list to the end of the implicit

list argument; then clear the appended si i st by zeroing the head:

void siist::append(slist& e);

14. Write a member function copyO that will copy a list:

//the implicit argument ends up a copy of e
void siist::copy(const slist& e);

Be sure to destroy the implicit list before you do the copy. You want a special

test to avoid the list’s copying to itself.

15. Use the si i st type in Section 5.7, “Example: A Singly Linked List,” on page 168,

and add the equivalent member functions that give you stack functions:

reset push pop top_of empty

Using one data structure as the implementation for another data structure is

known as adapting it. This idea is used extensively by the standard template

library.

16. As written, slist: :del () expects a nonempty list. What goes wrong if it is

passed an empty list? See the effect on your system. Modify this routine to test

for this condition and continue. Note that this can be tested as an assertion but

will then abort on the empty list.

17. Add a constructor to sli stelem and use it to simplify the coding of the mem¬

ber function slist:: prepend(char c).

18. Modify the matrix class to have a constructor that performs a transpose (see

Section 5.8, “Two-Dimensional Arrays,” on page 173). The second argument of

the constructor will be an enumerated type that indicates what transformation

should be made on the array.

enum transform { transpose, negative, upper };

matrix::matrix(const matrix& a, transform t)

//transpose base [i][j] = a.base[j][i]

//negative base[i][j] = -a.basefi] [j]
//upper basefi][j] = a.basefi][j] i <= j else 0

}

194 Chapter 5 ▼ Constructors and Destructors

19. Write a member function that will return the eigen values of a mat ri x.
»

20. Complete the polynomial package by writing the code for the routines

void pol ynomi al::release() and void polynomial : :print(), which are

not found in the text. (See Section 5.9, “Polynomials as a Linked List,” on page
175.)

21. Write code for the polynomial addition routine void polynomial : :plus().
(See Section 5.9, “Polynomials as a Linked List,” on page 180.)

22. Rewrite the function from the preceding exercise void polynomial : :plus(),
so that c. pi us (c, c) works correctly.

23. Make the constructor for pol ynomi al more robust. Assume that the coefficient-

exponent pairs are not necessarily in sorted order, and take this into account

when writing the constructor. (See Section 5.9, “Polynomials as a Linked List,”
on page 178.)

24. Improve the reference-counted form of class my_string by asserting in appro¬

priate member functions that ref_cnt is not negative. Why would you want to

do this? (See Section 5.10, “Strings Using Reference Semantics,” on page 181.)

25. (Java) Recode mod_i nt in Section 5.1, “Classes with Constructors,” on page 150,
as a Java class.

26. (Java) Recode ch_stack in Section 5.2, “Constructing a Dynamically Sized
Stack,” on page 155, as a Java class.

27. (Java: Project) Recode pol ynomi al in Section 5.9, “Polynomials as a Linked List,”

on page 175, as a Java class. Evaluate the C++ and Java implementations as to
simplicity and efficiency.

pter 6

erator Overloading
and Conversions

Polymorphism is a means of giving different meanings to the same function name or

operator, dependent on context. The appropriate meaning is selected on the basis of

the type of data being processed. Object orientation takes advantage of polymor¬

phism by linking behavior to the object’s type. Operators, such as + and <<, have

distinct meanings overloaded by operand type. For example, the expression

cout « x is by convention expected to display an appropriate representation of x,

depending on the type of object x.
Conversion is the explicit or implicit change of value between types. Conver¬

sions provide a form of polymorphism. Overloading of functions gives the same

function name different meanings. The name has several interpretations that

depend on function selection. This is called ad hoc polymorphism. This chapter dis¬

cusses overloading, especially operator overloading, and conversions of data types.

Operators are overloaded and selected based on the signature-matching algo¬

rithm. Overloading operators gives them new meanings. For example, the meaning

of the expression a + b differs, depending on the types of the variables a and b.

Overloading the operator + for user-defined types allows them to be used in addi¬

tion expressions in much the same way native types would be used. The expression

a + b could mean string concatenation, complex-number addition, or integer addi¬

tion, depending on whether the variables were the ADT complex, the ADT

my_stri ng, or the native type i nt. Mixed-type expressions are also made possible

by defining conversion functions. This chapter also discusses friend functions and

their importance to operator overloading.
One principle of OOP is that user-defined types must enjoy the same privileges

as native types. Where C++ adds the complex number type, the programmer expects

the convenience of using it without regard to a native/nonnative distinction. Opera¬

tor overloading and user-defined conversions let us use complex numbers in much

the same way as we can use i nt or doubl e.

196 Chapter 6 t Operator Overloading and Conversions

6.1 ADT Conversions

Explicit type conversion of an expression is necessary when either the implicit con¬

versions are not desired or the expression will not otherwise be legal. One aim of

OOP using C++ is the integration of user-defined ADTs and built-in types. To

achieve this, there is a mechanism for having a member function provide an explicit
conversion.

Section 5.1.3, “Constructors as Conversions,” on page 152, discusses a construc¬

tor of one argument as being a de facto type conversion from the argument’s type
to the constructor’s class type. For example,

point::point(double u);

is automatically a type conversion from double to poi nt unless it is disabled by

declaring such a conversion constructor with the modifier expl i ci t. The conver¬

sion is available both explicitly and implicitly. Explicitly, it is used as a conversion
operation in either cast or functional form. Thus,

point s;
double d = 3.5;

s = static_cast<point>(d);

and

s - d; //implicit invocation of conversion

both work.

These are conversions from an already defined type to a user-defined type.
However, it is not possible for the user to add a constructor to a built-in type such

as i nt or doubl e. A conversion function for a user-defined type can be created by

defining a special conversion function inside the class. The general form of such a
member function is

operator type() { . }

Such a member function must be nonstatic, cannot have parameters, and does not

have a declared return type. It must return an expression of the designated type.

In the poi nt example, one may want a conversion from poi nt to doubl e. This
can be done for the poi nt class, as follows.

6.2 ▼ Overloading and Function Selection 197

In file point6.cpp

point::operator double() //use distance from origin

{
return sqrt(x * x + y * y);

}

Notice that we used a commonly accepted conversion that is by no means unique.

Another possibility would have been to return the x value only. Unless there is uni¬

versal agreement on a conversion, it is best to omit such functions, as they can

readily lead to unintended results.

6.2 Overloading and Function Selection

Overloaded functions tire an important addition in C++. The overloaded meaning is

selected by matching the argument list of the function call to the argument list of

the function declaration. When an overloaded function is invoked, the compiler

must have a selection algorithm with which to pick the appropriate function. The

algorithm that accomplishes this depends on what type conversions are available. A

best match must be unique, must be best on at least one argument, and must be as

good as any other match on all other arguments. The following list shows the

matching algorithm for each argument.

Overloaded Function Selection Algorithm

1. Use an exact match if found.

2. Try standard type promotions.

3. Try standard type conversions.

4. Try user-defined conversions.

5. Use a match to ellipsis if found.

Standard promotions—conversions from float to double and from bool, char,
short, or enum to int—are better than other standard conversions. Standard con¬

versions also include pointer conversions.
An exact match is clearly best. Casts can be used to force such a match. The

compiler will complain about ambiguous situations. Thus, it is poor practice to rely

on subtle type distinctions and implicit conversions that obscure the overloaded

function. When in doubt, use explicit conversions to provide an exact match.

198 Chapter 6 ▼ Operator Overloading and Conversions

Let us write an overloaded function g reate r() and follow our algorithm for

various invocations. In this example, the user type rational is available.

In file rational.cpp

//Overloading functions

class rational {

public:

rational(int n = 0) : a(n),q(l){}

rational (int i, int j) : a(i), q(j){}

rational(double r) : q(BIG), a(r * BIG){}

void print() const { cout « a « " / " « q ; }

operator double() { return static_cast<double>(a)/q; }
private:

long a, q;

enum { BIG = 100 };

};

inline int greater(int i, int j)
{ return (i > j ? i : j); }

inline double greater(double x, double y)
{ return (x > y ? x : y); }

inline rational greater(rational w, rational z)
{ return (w>z?w:z);}

int main()

{
int i = 10, j = 5;
float x = 7.0;
double y = 14.5;
rational w(10), z(3.5), zmax;

cout « "\ngreater(" « i « ", " « j « ") = "
« greater(i, j);

cout « "\ngreater(" « x « ", " « y « ") = "
« greater(x, y);

cout « "\ngreater(" « i « ;
z.printO ;

cout « ") = " « greater(static_cast<rational>(i), z);
zmax = greater(w, z);
cout « "\ngreater(";

6.2 ▼ Overloading and Function Selection 199

w. pri nt() ;
cout « ",
z. pri nt () ;
cout « ") =
zmax. pri nt() ;

The output from this program is

greater(10, 5) = 10
greater(7, 14.5) = 14.5
greater(10, 350 / 100) = 10
greater(10 / 1, 350 / 100) =10/1

A variety of conversion rules, both implicit and explicit, are being applied. We

explain these in the following dissection of the rational program.

Dissection of the rational Program

■ rational(doubl e r) : q(BIG), a(r * BIG){}

This constructor converts from double to rational.

■ operator doubleO { return static_cast<double>(a)/q; }

This member function converts from rational to double.

■ inline int greaterfint i, int j)
{ return (i > j ? i : j); }

inline double greater(double x, double y)
{ return (x>y?x:y);}

inline rational greater(rational w, rational z)
{ return (w > z ? w : z); }

Three distinct functions are overloaded. The most interesting has rational type

for its argument list variables and its return type. The conversion member function

operator doubleO is required to evaluate w > z. Later, we shall show howto

overload operator>() to take rational types directly.

200 Chapter 6 ▼ Operator Overloading and Conversions

■ cout «
«

cout «
«

"\ngreater(" «
greater(i, j);
"\ngreater(" «
greater(x, y);

i «

x «

ii

ii

« j « ")

« y « ")

The first statement selects the first definition of greate r() because of the exact-

match rule. The second statement selects the second definition of g reate r()
because of the use of a standard widening conversion float to double. The value

of variable x is widened to doubl e.

■ « greater(static_cast<rational>(i), z);

The second definition of greate r() is selected because of the exact-match rule.

The explicit conversion of i to a rati onal is necessary to avoid ambiguity.

■ zmax = greater(w, z);

This is an exact match for the third definition.

See exercise 3 on page 230 for more on the rational program.

6.3 Friend Functions

The keyword friend is a function specifier, giving a nonmember function access to

the hidden members of the class and providing a method of escaping the data hid¬

ing restrictions of C++. However, we must have a good reason for escaping these
restrictions, as they are important to reliable programming.

One reason for using friend functions is that some functions need privileged

access to more than one class. A second reason is that friend functions pass all of

their arguments through the argument list, and each argument value is subject to

assignment-compatible conversions. Conversions would apply to a class variable

passed explicitly and would be especially useful in cases of operator overloading, as
seen in the next section.

A friend function must be declared inside the class declaration to which it is a

friend. The function is prefaced by the keyword f ri end and can appear in any part

of the class without affecting its meaning. The preferred style is to place the f ri end
declaration in the public part of the class. Since access has no effect on friend dec¬

larations, they are conceptually public. Member functions of one class can be friend

6.3 ▼ Friend Functions 201

functions of another class. In this case, they are written in the friend’s class, using

the scope resolution operator to qualify its function name. In order to specify that

all member functions of one class are friend functions of a second class, write

friend class class-name.
The following declarations illustrate the syntax.

void alice()

{
//use some private stuff from tweedledee

cout « "Have some more tea.\n";

}

class tweedledee {

friend void alice(); //friend function
int cheshireQ; //member function

};

class tweedledum {

friend int tweedledee::cheshi re();

};

class tweedledumber {

friend class tweedledee;

};

//all member functions of
//tweedledee have access

The global function al i ce() is given access to all members of tweedl edee. The

member function tweedl edee : : cheshi re () is given access to all members of

tweedledum. The member functions of tweedledee are given access to all members

of tweedledumber.
Consider the classes matrix (see Section 5.8, “Two-Dimensional Arrays,” on

page 173) and dbl_vect (see Section 5.5, “The Class dbl_vect,” on page 163). A

function multiplying a vector by a matrix as represented by these two classes could

be written efficiently if it had access to the private members of both classes. The

function would be a friend function of both classes. In our discussion, safe access

was provided to the elements of dbl_vect and matri x with the member function

el ement (). One could write a multiply function using el ement () without requiring

202 Chapter 6 ▼ Operator Overloading and Conversions

friend status. However, the price in function-call overhead and array-bounds

checking would make such a matrix multiply unnecessarily inefficient.

In file matrix2.cpp

class matrix; //forward reference

class dbl_vect {
public:

friend dbl_vect mpy(const dbl_vect& v, const matrix& m);

private:
double* p;
int size;

};

class matrix {
public:

friend dbl_vect mpy(const dbl_vect& v, const matrix& m);

private:
double** p;
int si, s2;

};

//use privileged access to p in both classes
dbl_vect mpy(const dbl_vect& v, const matrix& m)

{
assert(v.size == m.sl); //check sizes

dbl_vect ans(m.s2);
int i, j;

for (i = 0; i <= m.ub2(); ++i) {
ans.pfi] = 0;
for (j = 0; j <= m.ubl(); ++j)

ans. p[i] += v.p[j] * m.p[j][i];

}
return ans;

6.4 ▼ Overloading Operators 203

A minor point is that a forward declaration of the class matri x is necessary. The
reason is that the function mpy() must appear in both classes, using each class as
an argument type.

The OOP paradigm is that objects (in C++, class variables) should be accessed
through their public members. Only member functions should have access to the
hidden implementation of the ADT. This is a neat, orderly design principle. The
friend function, however, straddles this boundary. The friend function has access to
private members but is not itself a member function. The friend function can be
used to pro\lde quick fixes to code that needs access to the implementation details
of a class. But the mechanism is easily abused.

6.4 Overloading Operators

The keyword operator is used to define a type-conversion member function, as
well as to overload the built-in C++ operators. Just as a function name, such as
pri nt (), can be given a variety of meanings, depending on its arguments, so can an
operator, such as +, be given additional meanings. Overloading operators allows
infix expressions of both ADTs and built-in types to be written. In many instances,
this important notational convenience leads to shorter, more readable programs.

Unary and binary operators can be overloaded as nonstatic member functions.
Implicitly, they are acting on a class value. Most unary operators can be overloaded
as ordinary functions, taking a single argument of class or reference to class type.
Most binary operators can be overloaded as ordinary functions, taking one or both
arguments of class or reference to class type. The operators =, (), [], and -> must
be overloaded with a nonstatic member function.

class foo {
public:

foo operator-();
foo operator-(int);
foo operator-(foo);

};

foo operator-(int, foo); //binary minus int-foo
foo operator-(int, foo*); //i1 legal:need foo or foo&

//overload unary minus
//binary minus foo-int
//binary minus foo-foo

The previous section’s mpy() function could have been written as

dbl_vect operator*(const dbl_vect& v, const matrix& m)

204 Chapter 6 y Operator Overloading and Conversions

If this had been done, if r and s were dbl_vect, and if t were a mat ri x, the natural¬
looking infix expression

r = s * t;

would invoke the multiply function, replacing the functional notation

r = mpy(s, t);

Although meanings can be added to operators, their associativity and prece¬
dence remain the same. For example, the multiplication operator will remain of
higher precedence than the addition operator. The operator precedence table for
C++ is included in Appendix B, “Operator Precedence and Associativity.” Almost all
operators can be overloaded. The exceptions are the member operator ., the mem¬
ber object selector operator. *, the ternary conditional expression operator ? :, the
sizeof operator, and the scope resolution operator : (See Section C.12.5, “Opera¬
tor Overloading,” on page 390.)

Available operators include all of the arithmetic, logical, comparison, equality,
assignment, and bit operators. Furthermore, the autoincrement and autodecrement
operators, ++ and —, can have distinct prefix and postfix meanings. (See exercise 24
on page 236.) The subscript or index operator [] and the function call () can also
be overloaded. The structure pointer operator -> and the member pointer selector
operator ->* can be overloaded. (See exercise 25 on page 236.) It is also possible to
overload new and delete. The assignment, function call, subscripting, and class
pointer operators can be overloaded only by nonstatic member functions.

6.5 Unary Operator Overloading

To continue the discussion of operator overloading, we demonstrate how to over¬
load unary operators, such as !, ++, ~, and []. For this purpose, we develop the
class clock, which can be used to store time as days, hours, minutes, and seconds.
We shall develop familiar operations on cl ock.

6.5 ▼ Unary Operator Overloading 205

In file clock.cpp

class clock {
public:

clock(unsigned long i); //construct & conversion
void print() const; //formatted printout
void tick(); //add one second
clock operator++() { tick(); return *this; }

private:
unsigned long tot_secs, secs, mins, hours, days;

};

This class overloads the prefix autoincrement operator; the class is a member
function and can be invoked on its implicit single argument. The member function
tick adds one second to the implicit argument of the overloaded ++ operator.

inline clock::clock(unsigned long i)

{
tot_secs = i;
secs = tot_secs % 60;
mins = (tot_secs / 60) % 60;
hours = (tot_secs / 3600) % 24;
days = tot_secs / 86400;

}

void clock::tick()

{
clock temp = clock(++tot_secs);

secs = temp.secs;
mins = temp.mi ns;
hours = temp.hours;
days = temp.days;

}

The constructor performs the usual conversions from tot_secs to days, hours,
minutes, and seconds. For example, a day has 86,400 seconds; therefore, integer
division by this constant gives the whole number of days. The member function
tick() constructs clock temp, which adds 1 second to the total time. The con¬
structor acts as a conversion function that properly updates the time.

The overloaded operator++() also updates the implicit clock variable and
returns the updated value as well. It could have been coded in the same way as

ti ck(), except that the statement

206 Chapter 6 ▼ Operator Overloading and Conversions

return temp;

would be added.
Adding the following code, we can test our functions:

void clock::print() const

{
cout « days « " d « hours « " h

« mins « " m « secs « " s" « endl;

}

//Clock and overloaded operators

int main()

{
clock tl(59), t2(172799); //172799 = 2 days-1 sec

cout « "initial times are" « endl;
tl.printO ;
t2.print() ;
++tl; ++t2;
cout « "after one second times are" « endl;
tl.printO ;
t2.printO ;

}

The output is

initial times are
0 d :0h :0m :59s
1 d :23 h :59 m :59 s
after one second times are
0 d :0h :1m :0s
2 d :0 h :0 m :0 s

It is also possible to overload prefix ++, using an ordinary function.

clock operator++(clock& cl)

{
cl . ti ckO ;
return cl;

}

6.6 ▼ Binary Operator Overloading 207

Notice that the clock variable must advance by 1 second; we use call-by-reference.
The decision to choose between a member function representation and a non¬

member function typically depends on whether implicit conversion operations are
available and desirable. Explicit argument passing allows the argument to be auto¬
matically coerced, if necessary and possible. When overloaded as a member func¬
tion, +C is equivalent to c. operator++(). When overloaded as a nonmember
function, ++c is equivalent to operator++(c).

6.6 Binary Operator Overloading

We continue with our clock example and show how to overload binary operators.
The same principles hold: When a binary operator is overloaded using a member
function, it has as its first argument the implicitly passed class variable and as its
second argument the lone argument-list parameter. Friend functions and ordinary
functions have both arguments specified in the parameter list. Of course, ordinary
functions cannot access private members.

Let us create an operation for type clock that will add two values.

In file clock.cpp

class clock {

friend clock operator+(clock cl, clock c2);

};

clock operator+(clock cl, clock c2)

{
return (cl.tot_secs + c2.tot_secs);

}

The integer expression is implicitly converted to a clock by the conversion con¬
structor clock: :clock(unsigned long). Both clock values are passed as func¬
tion arguments, and both are candidates for assignment conversions. Because
operator+O is a symmetric binary operator, the arguments should be treated iden¬
tically. Thus, it is normal for symmetric binary operators to be overloaded by friend
functions.

In contrast, let us overload binary minus with a member function.

208 Chapter 6 ▼ Operator Overloading and Conversions

class clock {

clock operator-(clock c);

};

clock clock::operator-(clock c)

{
return (tot_secs - c.tot_secs);

}

Remember that there is an implicit first argument. This takes some getting used to.
It would have been better to use a friend function for binary minus, because of the
symmetric treatment of the arguments.

We shall define a multiplication operation as a binary operation, with one argu¬
ment an unsigned long and the second a clock variable. The operation will
require the use of a friend function. It cannot be done with a member function
because, as already stated, member functions have as their implicit first argument
the this pointer.

clock operator*(unsigned long m, clock c)

{
return (m * c.tot_secs);

}

This requirement forces the multiplication to have a fixed ordering that is type
dependent. In order to avoid this, it is common practice to write a second over¬
loaded function.

clock operator*(clock c, unsigned long m)
{

return (m * c.tot_secs);

}

The second function is defined in terms of the first, as follows:

clock operator*(clock c, unsigned long m)
{

return (m * c);

}

Defining the second implementation in terms of the first implementation reduces
code redundancy and maintains consistency.

6.7 ▼ Overloading Assignment and Subscripting Operators 209

6.7 Overloading Assignment and
Subscripting Operators

The assigmnent operator for a class type is by default generated by the compiler to
have member-by-member assignment. This is fine for many user-defined types,
such as rational or point. For types, such as my_string and dbl_vect, that need
deep copying, this is incorrect. As a rule of thumb, any time a class needs an explicit
copy constructor defined, it also needs an assignment operator defined. As we have
seen with copy constructors, this is usually the case when the object allocates its
own memory.

The subscripting operator is usually overloaded where a class type represents
an aggregate for which indexing is appropriate. The index operation is expected to
return a reference to an element contained within the aggregate. Overloading
assignment and subscripting share several characteristics. Both must be done as
nonstatic member functions, and both usually involve a reference return type.

We shall reimplement the class dbl_vect, extending its functionality by apply¬
ing operator overloading. (See Section 5.5, “The Class dbl_vect,” on page 163.) The
reimplemented class will have several improvements to make it both safer and more
useful. A constructor that converts an ordinary integer array to a safe array will be
added, allowing us to develop code using safe arrays and to later run the same code
efficiently on ordinary arrays. The public data member ub has been changed to a
member function, which prevents a user from inadvertently introducing a program
error by modifying the member. Finally, the subscript operator is overloaded and
replaces the member function element.

210 Chapter 6 ▼ Operator Overloading and Conversions

In file dbl_vect2.h

//A safe array type dbl_vect with [] overloaded

class dbl_vect {
public:

//constructors and destructor
explicit dbl_vect(int n = 10);
dbl_vect(const dbl_vect& v);
dbl_vect(const double a[], int n); //initialize by array
~dbl_vect() { delete []p; }
//other member functions
int ub()const { return (size-1); } //upper bound
double& operator[](int i) ; //range checked
dbl_vect& operator=(const dbl_vect& v); //assignment

private:
double* p; //base pointer
int size; //number of elements

dbl_vect::dbl_vect(int n) : size(n)

{
assert(n > 0);
p = new double[size];
assert(p != 0);

dbl_vect::dbl_vect(const double a[], int n) : size(n)

{
assert(n > 0);
p = new double[size];
assert(p != 0);
for (int i = 0; i < size; ++i)

p[i] = a[i];
}

dbl_vect::dbl_vect(const dbl_vect& v) : size(v.size)
{

p = new double [size];
assert(p != 0);
for (int i = 0; i < size; ++i)

p[i] = v. p[i];
}

6.7 ▼ Overloading Assignment and Subscripting Operators 211

double& dbl_vect::operator[](int i)
{

assert(i >= 0 && i < size);
return p[i];

}

An overloaded subscript operator can have any return type and any argument list
type. However, it is good style to maintain the consistency between a user-defined
meaning and standard usage. Thus, the most common function prototype is

element-type& operatorf] (integral type) ;

Such functions can be used on either side of an assignment.
It is also convenient to be able to assign one array to another. The user can spec¬

ify the behavior of assignment by overloading it. It is good style to be consistent
with standard usage. The following member function overloads assignment for
class db1_vect:

dbl_vect& db1_vect::operator=(const dbl_vect& v)

{
if (this != &v) { //do nothing if assigned to self

assert(v.size == size);
for (int i =0; i < size; ++i)

P [i] = v. p[i];

}
return *this;

}

Dissection of dbl_vect: :operator=() Function

■ dbl_vect& dbl_vect::operator=(const dbl_vect& v)

The operator=() function returns reference to dbl_vect and has one explicit
argument of type reference to dbl_vect. The first argument of the assignment
operator is the implicit argument. If the function had been written to return voi d, it
would not have allowed multiple assignment.

■ if (this != &v) {

Don’t do anything if assignment is to the current variable.

212 Chapter 6 ▼ Operator Overloading and Conversions

■ assert(v.size == size);

This is a guarantee that the sizes are compatible.

■ for (int i = 0; i < size; ++i)
P[i3 = v. p[i] ;

return *this;

The explicit argument v. p[] will be the right-hand side of the assignment; the
implicit argument p[] will be the left-hand side. The self-referential pointer is
dereferenced and passed back as the value of the expression. This allows multiple
assignment with right-to-left associativity to be defined.

Expressions of type dbl_vect can be evaluated by overloading in appropriate
ways the various arithmetic operators. As an example, let us overload binary + to
mean element-by-element addition of two dbl_vect variables.

dbl_vect dbl_vect::operator+(const dbl_vect& v)

{
assert(size == v.size);
dbl_vect sum(size);
for (int i =0; i < size; ++i)

sum.pfi] = p[i] + v. p[i];
return sum;

}

The following expressions are now meaningful with the class dbl_vect:

a = b; //a, b are type dbl_vect
a = b = c; //a, b, c are type dbl_vect
a = dbl_vect(data, DSIZE); //convert array datafDSIZE]
a = b + a; //assignment and addition
a = b + (c = a) + d; //complicated expression

The class dbl_vect is a full-fledged ADT, behaving and appearing in client code
much as any built-in type behaves and appears.

Notice that overloading both the assignment and plus operators does not imply
that operator+= is overloaded. Indeed, it is the class designer’s responsibility to
make sure that the various operators have consistent semantics. It is customary to
overload related sets of operators consistently.

6.8 ▼ Polynomial: Type and Language Expectations 213

6.8 Polynomial: Type and Language Expectations

A type’s behavior is dictated largely by expectations found in the community that
uses it. So how a polynomial behaves is determined by the mathematical commu¬
nity’s definitions. In writing a polynomial type, one expects that the basic mathe¬
matical operations, such as +, -, *, and /, are available and work appropriately.
Furthermore, one expects that assignment operators, equality operators, and incre¬
ment and decrement operators provided are consistent with the C++ community’s
expectations. A class provides a public interface that is easy to use insofar as it
meets both expectations. Operators for which there is no normal expectation should
not be overloaded.

A more realistic polynomial class based on the representation in Section 5.9,
“Polynomials as a Linked List,” on page 175, could have the following declaration:

In file poly2.cpp

//Polynomials with overloaded arithmetic operators

class polynomial {
public:

polynomial () ;
polynomial (const polynomial p) ;
polynomial(int size, double coef[], int exponf]);
~polynomial () { releaseO; }
void printO const;
double operatorO (double x) const; //evaluate P(x)
polynomial operator=(const polynomials a);
friend polynomial operator+(const polynomial a,

const polynomials b);
friend polynomials operator-(const polynomials a,

const polynomials b);
friend polynomials operator*(const polynomials a,

const polynomials b);
friend polynomials operator/(const polynomials a,

const polynomials b);
friend polynomials operator-(const polynomials a);

214 Chapter 6 ▼ Operator Overloading and Conversions

friend polynomial operator+=(polynomial& a,
const polynomial b) ;

friend bool operator==(const polynomial& a,
const polynomial b) ;

friend bool operator! =(const polynomial a,
const polynomial b) ;

private:
term* h;
int degree;
void prepend(term* t);
voi d add_term(term- ~S a,
voi d releaseO ;
voi d rest_of(term* rest)
voi d reverseQ ;

b);

The basic mathematical operations should work, and the basic relationships among
C++ operators should hold. It would be very undesirable to have operator=(),
operator+O, and operator+=() all defined and not have a = a + b give the
same result as a += b.

The code for overloading operator= is as follows:

In file poly2.cpp

polynomials polynomial::operator=(const polynomials a)

if (h != a.h) { //avoid a = a case

releaseO; //garbage collect old value
polynomial* temp = new polynomial(a);
h = temp -> h;
degree = temp -> degree;

}
return *this;

}

The implementation of the other operators is left as an exercise (see exercise 28 on
page 237).

6.9 ▼ Overloading I/O Operators « and » 215

6.9 Overloading I/O Operators « and »

In keeping with the spirit of OOP, it is important to overload « to output user-
defined types, as well as native types. The operator << has two arguments—an
ostream& and the ADT—and must produce an ostream&. Whenever overloading «
or », you want to use a reference to a stream and return a reference to a stream,
because you do not want to copy a stream object. Let us write these functions for
the type rational:

In file rational.cpp

class rational {
public:

friend ostream&
operator«(ostream& out, rational x);

friend istream&
operator»(istream& in, rational& x)

private:
long a, q;

};

ostream& operator«(ostream& out, rational x)

{
return (out « x.a « " / " « x.q « '\t');

}

When the operator » is overloaded to produce input to a user-defined type, its typ¬

ical form is

istream& operator»(istream& p, user-defined type& x)

If the function needs access to private members of x, it must be made a friend
of its class. A key point is to make x a reference parameter so that its value can be
modified. To do this for rational would require placing a friend declaration for
this operator in the class rational and providing its function definition.

istream& operator»(istream& in, rational& x)

{
return (in » x.a » x.q);

}

216 Chapter 6 ▼ Operator Overloading and Conversions

6.10 Overloading Operator () for Indexing

A matrix type that provides dynamically allocated two-dimensional arrays can be
designed with the function call operator overloaded to provide element selection.
This is a good example of a container class that is useful with both scientific and
nonscientific computation.

The function call operator () can be overloaded as a nonstatic member function
with respect to various signatures. It is frequently used to provide an iterator opera¬
tion (see exercise 12 on page 232 through exercise 14 on page 233) or an operation
requiring multiple indices.

In file matrix3.cpp

//dynamic matrix type

class matrix {
public:

matrix(int c, int r);
~matrix() ;

int ubl() const { return(c_size - 1); }
int ub2() const { return(r_size -1); }
double& operator()(int i, int j);
matrixS operator=(const matrixS m);
matrixS operator+=(matrix& m);

private:
int c_size, r_size;
double **p;

};

matrix:: matrix(int c, int r):c_size(c), r_size(r)

p = new double*[c];
assert(p != 0);
for (int i =0; i < C; ++i){

P[i] = new double[r];
assert(p[i] != 0);

}
}

6.10 ▼ Overloading Operator () for Indexing 217

matrix:: ~matrix()

{
for (int i =0; i < c_size; ++i)

delete [] p[i];
delete [] p;

}

inline double& matrix::operator()(int i, int j)

{
assert(i >= 0 && i < c_size &&

j >= 0 && j < r_size);
return p[i] [j];

}

matrix& matrix::operator=(const matrix& m)

{
assert(m.c_size == c_size && m.r_size == r_size);

int i, j;

for (i =0; i < c_size; ++i)
for (j = 0; j < r_size; ++j)

p[i] [j] = m. p[i] [j];
return *this;

}

matrix& matrix::operator+=(matrix& m)

{
assert(m.c_size == c_size && m.r_size == r_size);

int i, j;

for (i =0; i < c_size; ++i)
for (j =0; j < r_size; ++j)

p[i] [j] += m.p[i] [j];
return *this;

218 Chapter 6 t Operator Overloading and Conversions

Dissection of the Class matrix

■ inline double& matrix::operator()(int i, int j)

{
assert(i >= 0 && i < c_size &&

j >= 0 && j < r_size);
return p[i] [j];

}

This member function gives a convenient multiple-argument notation for element
access. This results in client code using expressions of the form m(i , j) to access
explicit matrix elements. Notice how matrix indices are bounds tested through an
assertion.

■ matrix& matrix:roperator+=(matrix& m)
{

assert(m.c_size == c_size && m.r_size == r_size);

The assertion macro is used with a testable precondition for arguments needed by
this member function. The matrix being assigned to must be the same size as the
matrix expression being computed. The code replaces an if-else statement that
would perform an error exit. Compare this to the code written for class dbl_vect
(see Section 5.5, “The Class dbl_vect,” on page 163).

■ for (i = 0; i < c_size; ++i)
for (j = 0; j < r_size; ++j)
P[i] [j] += m.p[i] [j];

This inner loop is efficient and transparent. Elementwise addition is being accom¬
plished without overhead.

■ return *this;

The return type is a reference to matri x. Dereferencing the thi s pointer causes the
lvalue of the matrix object to be returned. This is the usual trick that allows multi¬
ple assignment to occur.

This code is expanded in exercise 30 on page 238.

6.11 ▼ Overloading the Pointer Operator -> 219

6.11 Overloading the Pointer Operator ->

The structure pointer operator -> is overloaded as a nonstatic class member func¬
tion. The overloaded structure pointer operator is a unary operator on its left oper¬
and. The argument must be either a class object or a reference of this type. The
function can return a pointer to a class object, an object of a class for which
operator -> is defined, or a reference to a class for which operator -> is defined.

In the following example, we overload the structure pointer operator inside the
class t_ptr. Objects of type t_ptr act as controlled-access pointers to objects of
type tri pi e.

In file triple.cpp

// Overloading the structure pointer operator

class triple {
public:

triple(int a, int b, int c) { i = a; j = b; k = c; }
void print() { cout « "\ni = " « i « ", j =

« j « ", k = " « k; }

private:
int i, j, k;

};

triple unauthor(0, 0, 0);

class t_ptr {
public:

t_ptr(bool f, triple* p) { access = f; ptr = p; }
triple* operator ->() ;

private:
bool access;
triple* ptr;

Chapter 6 y Operator Overloading and Conversions

triple* t_ptr::operator->()
{

if (access)
return ptr;

else {

cout « "\nunauthorized access";
return &unauthor;

}
}

The variable t_pt r:: access is tested by the overloaded operator ->. If it is
true, access is granted. The following code illustrates this:

int main()

{
triple a(l, 2, 3), b(4, 5, 6);
t-Ptr ta(false, &a), tb(true, &b);

ta -> print(); //access denied
tb -> printQ; //access granted

6.12 Overloading new and delete

Most classes involve free-store memory allocation and deallocation. Sometimes
more sophisticated use of memory than is provided by simple calls to operators new
and delete is needed for efficiency or robustness.

Operator new has the general form

■ : opt new placementopt type initializer^

Some examples are

::new char[10]; //insist on global new
new(buff) X(a); //call with buff using X::X(a)

Up to now, we have been using the global operator new() to allocate free store
The system provides a sizeof (type) argument to this function implicitly Its func¬
tion prototype is

6.12 ▼ Overloading new and del ete 221

void* operator new(size_t size);

The operators new and delete can be overloaded. This feature provides a simple
mechanism for user-defined manipulation of free store. For example, traditional C
programming uses malloc() to access free store and to return avoid* pointer to
the allocated memory. In this scheme, memory is deallocated by the stdlib function
f ree(). We use operator overloading of new and delete to allow an X object to use
C’s traditional free-store management.

class X {
public:

void* operator new(size_t size) { return (malloc(size)); }
void operator delete(void* ptr) { free(ptr); }
X(unsigned size) { new(size); }
~X() { delete(this) ; }

};

In this example, the class X has provided overloaded forms of new() and delete().
When a class overloads operator new(), the global operator is still accessible

using the scope resolution operator : :.
One reason to overload these operators is to give them additional semantics,

such as providing diagnostic information or being more fault tolerant. Also, the
class can have a more efficient memory-allocation scheme than that provided by the

system.
The placement syntax provides a comma-separated argument list used to select

an overloaded operator new() with a matching signature. These additional argu¬
ments are often used to place the constructed object at a particular address. This

form of operator new uses the new library.

In file over_new.cpp

//Placement syntax and new overloaded

char* bufl = new char[1000];
char* buf2 = new char[1000];

class object {
public:

private:

};

//in place of free store

222 Chapter 6 ▼ Operator Overloading and Conversions

int main()

{
object *p = new(bufl) object; //allocate at bufl
object *q = new(buf2) object; //allocate at buf2

}

Placement syntax allows the user to have an arbitrary signature for the overloaded
new operator. This signature—which is distinct from the initializer arguments—calls
to new use to select an appropriate constructor.

The del ete operator comes in two flavors. It can have as signatures

void operator delete(void* p);
void operator delete(void* p, size_t);

The first signature makes no provision for the number of bytes to be returned by
delete; in this case, the programmer provides code that supplies this value. The
second signature includes a size_t argument passed to the delete invocation.
This argument is provided by the compiler as the size of the object pointed at by p.
Only one form of del ete can be provided as a static member function in each class.

The new library has the function pointer _new_handl er (), which calls the error
handler for operator new(). If memory is exhausted, the function pointer
_new_handler is used to call a default system routine. The user can specify an
explicit out-of-free-store routine, which can replace the default function by using
set_new_handl er(). The exit() function is provided in the stdliblibrary.

In file new_hdlr.cpp

//Simple fault tolerance using _new_handler

void heap_exhausted() //user-defined error handling
{

cerr « "HEAP EXHAUSTED" « endl;
exit(l);

}

int main()

{
set_new_handler(heap_exhausted);
. //memory exhaustion is like heap_exhausted()

6.13 t Pragmatics 223

These class new() and delete() member functions are always implicitly static.
The new() is invoked before the object exists and therefore cannot have a thi s yet.
The delete() is called by the destructor, so the object is already destroyed.

6.13 Pragmatics

Explicitly casting arguments can be both an aid to documentation and a useful way
to avoid poorly understood conversion sequences. It is not an admission of igno¬
rance to cast or to parenthesize arguments or expressions that otherwise could be
converted or evaluated properly.

Operator overloading is easily misused. Do not overload operators when doing
so can lead to misinterpretation. The domain of use should have a widely used nota¬
tion that conforms to your overloading. Also, overload related operators in a man¬
ner consistent with C++ community expectations. For example, the relational
operators <, >, <=, and >= should all be meaningful and provide expected inverse
behaviors.

Generally speaking, overload symmetric binary operators, such as +, *, ==, ! =,
and &&, with friend functions. Both arguments are then passed as ordinary parame¬
ters, which subjects them to the same rules of parameter passing. Recall that using
a member function to provide overloading for symmetric binary operators causes
the first argument to be passed via the thi s pointer.

Any time a class uses new to construct objects, it should provide an explicitly
overloaded operator=(). This advice is analogous to our rule that such a class pro¬
vide an explicit copy constructor. (See Section 5.2.1, “The Copy Constructor,” on
page 156.) The compiler-provided default assignment operator semantics would in
most cases result in spurious behavior. This leads to a suggested normal form for
classes with heap-managed memory.

//Normal form for heap-managed classes illustrated

class dbl_vect {
public:

dbl_vect(); //default constructor
dbl_vect(const dbl_vect&); //copy constructor

dbl_vect& operator=(const dbl_vect&); //returns lvalue

224 Chapter 6 ▼ Operator Overloading and Conversions

This normal-form rule also applies to reference-counted classes, such as the
my_stri ng type. (See Section 5.4, “An Example: Dynamically Allocated Strings,” on
page 159.) The operator=() returns a reference to allow assignment to work effi¬
ciently. This requires lvalue semantics.

6.13.1 Signature Matching

Rules for signature matching are given in simplified form in Section 6.2, “Overload¬
ing and Function Selection,” on page 197. A further clarification of these rules with
examples is given here.

For a given argument, a best match is always an exact match. An exact match
also includes trivial conversions. These are shown in the following table for type T:

Trivial Conversions

From To

T* const T*

T* volatile T*

The use of vol ati 1 e is specialized. It means that a variable can be modified
external to the program code. So, a variable representation of an address that gets
data from an external device, such as a real-time clock, would be vol ati 1 e. Also,
vol ati 1 e is used to suppress compiler optimizations that involve such variables.

These additional modifiers can be used in overloading resolution. Thus,

void print(int i);
void print(const int& i);

can be unambiguously overloaded.

It is important to remember that user-defined conversions include constructors
of a single argument. These constructors can be implicitly called to perform conver¬
sions from the argument type to their class type. This can happen for assignment
conversions, as in the argument-matching algorithm. The following example is mod¬
ified from the one in Section 6.5, “Unary Operator Overloading,” on page 205:

6.13 ▼ Pragmatics 225

In file clock.cpp

//modify clock program

class clock {
public:

clock(unsigned long i);
void printO const;

tick() ;

operator++() { this
reset(const clock& c);

voi d
cl ock
voi d

private:
unsigned long

};

//construct & conversion
//formatted printout
//add one second
-> tick(); return *this; }

tot_secs, secs, mins, hours, days;

void clock::reset(const clock& c)

{
tot_secs = c.tot_secs;
secs = c.secs;
mins = c.mins;
hours = c.hours;
days = c.days;

}

int main()

{
clock cl(900), c2(400);

cl.reset(c2);
c2.reset(100);

}

The call to reset (100) involves an argument match between i nt and clock that is
a user-defined conversion invoking the constructor clock(unsigned). Where these
conversions are unintended, a new keyword expl i ci t can be used in declaring the
constructor to disable its use as an implicit conversion.

226 Chapter 6 ▼ Operator Overloading and Conversions

6.14 Moving from C++ to Java

Unlike C++, Java does not have operator overloading. Also, Java uses garbage collec¬
tion instead of explicit deallocation. Java’s use of new is similar to that in C++ but
does not allow for overloading of the new operator. In general, this simplifies and
restricts what the Java programmer can do and needs to worry about. Java allows
ordinary casts but does not allow nonportable casts.

Java will perform an automatic conversion only if the conversion does not result
in any information loss. The exception is that some numeric conversions from inte¬
ger types to floating-point types can result in loss of precision, but the most signifi¬
cant digits of the result will be unchanged. For example, the following will result in
an automatic conversion when n is assigned to f:

int n = 2;
float f;

f = n;

Trying to assign f to n would require a cast,

n = (int)f;

In this case, the floating-point value stored in f will be rounded toward zero, and
the resulting value will be stored in n.

A widening primitive conversion is a conversion from one primitive type to
another that loses at most some precision but otherwise does not lose information.
The following are the Java widening primitive conversions:

From To

byte short, int, long, float, or double

short i nt, 1 ong, f 1 oat, or doubl e

char i nt, 1 ong, f 1 oat, or doubl e

int long, float, or double

1 ong float or double

fl oat double

Widening primitive conversions are also applied automatically in assignment state¬
ments, as shown in the preceding example and in method invocations.

6.14 r Moving from C++ to Java 227

A narrowing primitive conversion, between primitive numeric types, may result
in significant information loss. The following are narrowing primitive conversions:

From To

byte char

short byte or char

char byte or short

int byte, short, or char

long byte, short, char, or i nt

fl oat byte, short, char, int, or long

double byte, short, char, int, long, or float

The only automatic narrowing primitive conversions are in assignment statements
when the expression is a constant of type i nt; the variable is type byte, char, or
short; and the value of the expression is representable by the type of the variable.
Because the expression is a constant, it is possible to determine at compile time
whether the conversion is legal.

Other than for assignment of constant expressions as just described, narrowing
primitive conversions result only from an explicit cast. If the cast is between two
integral types, the most significant bits are simply discarded in order to fit into the
resulting format. Here is an example that shows how a narrowing conversion can
cause a change of sign:

int i =127, j = 128;
System.out.println((byte)i);
System.out.println((byte)j) ;

The output is

127
-128

The largest positive value that can be stored in a byte is 127. Attempting to force a
narrowing conversion on a value greater than 127 will result in the loss of signifi¬
cant information. In this case, the sign is reversed.

String conversion is used inprintln():

System.out.println("x = " + x);

228 Chapter 6 ▼ Operator Overloading and Conversions

where x is a numeric primitive type variable. String conversion occurs when exactly
one operand of the operator + is a string. In this case, the nonstring operand is con¬
verted to a string. For the primitive types, the result of string conversion is a
value of type Stri ng that represents the primitive value. For example, the result of
doing a string conversion on the int value 12S is the String "123".

Summary

1. Overloading operators gives them new meanings. For example, the meaning of
the expression a + b depends on the types of the variables a and b. The expres¬
sion could mean string concatenation, complex number addition, or integer
addition, depending on whether the variables were the ADT my_string, the
ADT compl ex, or the built-in type i nt, respectively.

2. A nonexplicit constructor of one argument is de facto a type conversion from
the argument’s type to the constructor’s class type. A conversion from a user-
specified type to a built-in type can be made by defining a special conversion
function. The general form of such a member function is

operator typeO { . }

These conversions occur implicitly in assignment expressions, arguments to
functions, and values returned from functions.

3. The overloaded meaning is selected by matching the argument list of the func¬
tion call to the argument list of the function declaration. A best match must be
unique. It must be best on at least one argument and must be as good as any
other match on all other arguments.

4. The keyword friend is a function specifier that allows a nonmember function
access to the nonpublic members of the class of which it is a friend.

5. The keyword operator is also used to overload the built-in C++ operators. Just
as a function name, such as pri nt(), can be given a variety of meanings that
depend on its arguments, so can an operator, such as +, be given additional
meanings. Overloading operators allows infix expressions of both user and
built-in types to be written. Operator precedence and associativity remain fixed.

6. Operator overloading typically uses either member functions or friend func¬
tions, because both have privileged access. When a unary operator is overloaded

▼ Review Questions 229

using a member function, it has an empty argument list because the single oper¬
ator argument is the implicit argument. When a binary operator is overloaded
using a member function, it has as its first argument the implicitly passed class
variable and as its second argument the lone argument-list parameter.

7. An overloaded subscript operator can have any return type and any argument-
list type. However, it is good style to maintain the consistency between a user-
defined meaning and standard usage. Thus, a common frmction prototype is

element-type& operator [] (integral type) ;

This is an lvalue that can be used on either side of an assignment.

Review Questions

1. What is the signature in the following declaration: void f(int x, double y);?

2. How can you disable a conversion constructor?

3. How many arguments can a user-defined conversion have?

4. Outline the signature-matching algorithm.

5. Explain how cout « x uses overloading and why this was important.

6. The keyword friend is a function specifier. It gives a nonmember function

7. One reason for using friend functions is_.

8. Binary operators, such as +, should be overloaded by _ functions

because_.

9. When a pointer operator is overloaded, it must be a_function.

10. Some operators can be overloaded only as nonstatic member functions. Name

three such operators.

230 Chapter 6 ▼ Operator Overloading and Conversions

Exercises

1. The following table contains a variety of mixed-type expressions. Fill in both the
type the expression is converted to and its value when well defined.

Declarations and Initializations

int i = 3, *p = &i;
char c = 'b';
f 1 oat x = 2.14, *q = &x;

Expression Type Value

i + c

x + i

P + i

p == & i

* P - * q

static_cast<int>(x + i)

2. For the type rational in Section 6.2, “Overloading and Function Selection,” on
page 198, explain why the conversions of integer 7 and double 7.0 lead to differ¬
ent internal representations.

3. The following line of code is from the rational program in Section 6.2, “Over¬
loading and Function Selection,” on page 198.

cout « ") = " « greater(static_cast<rational>(i), z) ;

If that line is replaced by

cout « ") = " « greater(i, z);

what goes wrong?

4. Write a rati onal constructor that, given two integers as dividend and quotient,
uses a greatest common divisor algorithm to reduce the internal representation
to its smallest a and q value. (See Section 6.2, “Overloading and Function Selec¬
tion,” on page 198.)

▼ Exercises 231

5. Overload the equality and comparison operators for rational. Notice that two
rationals are equal in the form given by the previous exercise if and only if
their dividends and quotients are equal. (See Section 6.2, “Overloading and
Function Selection,” on page 198.)

6. Write a function that adds a dbl_vect v to a matrix m. The prototype to be
added to class matri x and class dbl_vect is

friend dbl_vect add(const dbl_vect& v, matrix& m);

The dbl_vect v will be added element-by-element to each row of m. (See Section
6.3, “Friend Functions,” on page 202.)

7. Define class compl ex as

class complex {
public:

complex(double r) { real = r; imag = 0; }
void assign(double r, double i)

{ real = r; imag = i ; }
void print()

{ cout « real « " + " « imag « "i }
operator doubleO

{ return (sqrt(real * real + imag * imag));}
private:

double real, imag;

};

We wish to augment the class by overloading a variety of operators. For exam¬
ple, the member function pri nt() could be replaced by creating the friend
function operator«():

ostream& operator«(ostream& out, complex x)

{
out << x.real << " + " « x.imag « "i ";
return out;

}

Also, code and test a unary minus operator. It should return a complex whose

value in each part is negated.

232 Chapter 6 ▼ Operator Overloading and Conversions

8. For the type complex, write the binary operator functions add, multiply, and
subtract. Each should return complex. Write each as a friend function. Why not
write them as member functions?

9. Write two friend functions:

friend complex operator+Ccomplex, double);
friend complex operator+(double, complex);

In the absence of a conversion from type doubl e to type compl ex, both types
are needed to allow completely mixed expressions of complex and double.
Explain why writing one with an i nt parameter is unnecessary when these
friend functions are available.

10. Overload assignment for complex:

complex complex::operator=(complex c) { return c; }

If this definition were omitted, would this be equivalent to the default assign¬
ment that the compiler generates? In the presence of the conversion operator
for converting complex to double, what is the effect of assigning a complex to
a doubl e? Try to overload assignment with a friend function in class compl ex.

friend double operator=(double d, complex c);
//assign d = real_part(c)

Why won’t this work?

11. Program a class vec_compl ex that is a safe array type whose element values are
compl ex. Overload operators + and * to mean, respectively, element-by-element
complex addition and dot-product of two complex vectors. For added effi¬
ciency, you can make the class vec_compl ex a friend of class compl ex.

12. The following member function is a form of iterator:

double& dbl_vect::iterate()

{
static int i = 0;
i = i % size;
return p[i++];

}

▼ Exercises 233

It is called an iterator because it returns each element value of a dbl_vect in
sequence. Use this iterator to write a print function that is not a member func¬
tion and that writes out all element values of a given dbl_vect. Modify class
dbl_vect given in Section 6.7, “Overloading Assignment and Subscripting Oper¬
ators,” on page 210.

13. The previous exercise has a serious limitation. By providing an iterator that is
contained in the class, it does not allow the element sequencing to depend on
the individual dbl_vect variable. Thus, if a and b are both dbl_vect variables,
the first call of a. i terateO will get the first element of a, and a subsequent
call of b. i terate() will get the second element of b. Therefore, we shall define
a new class dbl_vect_i terator, as follows:

class dbl_vect_iterator {
public:

dbl_vect_iterator(dbl_vect& v) : p(&v), position(0) { }
double& iterateO const;

private:
dbl_vect *p;
int position;

};

This class must be a friend of dbl_vect. Write the code for iterate. Then, for
each declaration of a dbl_vect, there will be a corresponding declaration of its
iterator. For example,

dbl_vect a(5), b(10);
dbl_vect_iterator it_a(a), it_b(b);

Use this to write a function that finds the maximum element value in a
dbl_vect.

14. Define a new class matrix_iterator as an iterator class that sequences
through all elements of a matrix. (See Section 6.10, “Overloading Operator ()
for Indexing,” on page 216.) Use the new class to find the maximum element in a
matri x.

15. Redo the my_string ADT by using operator overloading. (See Section 5.4, “An
Example: Dynamically Allocated Strings,” on page 159.) The member function
assign() should be changed to become operators The member function
concatO should be changed to become operator+. Also, overload operator []
to return the ith character in the my_stri ng. If there is no such character, the

value -1 is to be returned.

234 Chapter 6 ▼ Operator Overloading and Conversions

16. Explain why friendship to str_obj was required when overloading « to act on
objects of type my_string. (See Section 5.10, “Strings Using Reference Seman¬
tics,” on page 181.) Rewrite my_st ri ng by adding a conversion member func¬
tion operator char*(). This now allows << to output objects of type
my_stri ng. Discuss this solution.

17. What goes wrong with the following client code when the overloaded definition
of operator=() is omitted from my_stri ng? (See Section 5.10, “Strings Using
Reference Semantics,” on page 181.)

//Swapping my_strings that are reference counted

class my_string {

};

void swap(my_string x, my_string y)

{
my_string temp;

temp = x;

x = y;
y = temp;

int main()

{
my_string b("do not try me "), c(" try me");

cout « b « c « endl;
swap(b, c);
cout « b « c « endl;

▼ Exercises 235

18. We can develop our my_stri ng class with a substring operation by overloading
function call. The notation is my_stri ng(from, to), where from is the begin¬
ning of the substring and to is the end.

my_string my_string::operator()(int from, int to)
{

my_string temp(to - from + 1);

for (int i = from; i < to + 1; ++i)
temp.st -> s[i - from] = st -> s[i];

temp.st[to - from + 1] =0;
return temp;

}

Use this substring operation to search a string for a given character sequence
and to return true if the subsequence is found.

19. Rewrite the substring function, using a char* constructor. Is this better or
worse? If you have a profiler, run this example with both forms of substring cre¬
ation on the following client code:

int main()

{
my_string large("A verbose phrase to search");

for (i =0; i < MANY; +-(-i)
count += (1arge(i, i + 3) == "ver");

>

For this exercise, code ope rato r== () to work on my_st ri ngs.

20. Write the function

void reverse(double data[], int size);
//data[size] will be reversed
//internally declare a stack of generic pointers
//push values onto stack, pop them back into data[]

21. Use a stack to write out subsequences in increasing order by value. In the
sequence (7, 9, 3, 2, 6, 8, 9, 2), the subsequences are (7, 9), (3), (2, 6, 8, 9), (2). Use
a stack to store increasing values. Pop the stack when a next sequence value is
no longer increasing. Keep in mind that the stack pops values in reverse order.
Redo this exercise, using a queue, thus avoiding this reversal problem.

236 Chapter 6 ▼ Operator Overloading and Conversions

22. For the stack of generic pointers, add the constructor

stack::stack(int size, generic_ptr[]);

23. Redo the list ADT by using operator overloading. (See Section 5.7, “Example: A
Singly Linked List,” on page 168.) The member function prepend() should
change to operator+O, and del () should change to operator--!). Also,
overload operator [] () to return the ith element in the list.

24. The postfix operators ++ and — can be overloaded distinct from their prefix
meanings. Postfix can be distinguished by defining the postfix overloaded func¬
tion as having a single unused integer argument, as in

class T {
public:

//postfix invoked as t.operator++(0);
void operator++(int);
void operator--(int);

There will be no implied semantic relationship between the postfix and prefix
forms. Add postfix decrement and increment to class clock in Section 6.5,
“Unary Operator Overloading,” on page 205. Have them subtract a second and
add a second, respectively. Write these operators to use an integer argument n
that will be subtracted or added as an additional argument.

clock c(60);

C++;

c—;
c.operator++(5);
c.operator--(5);

//adds a second
//subtracts a second
//adds 1+5 seconds
//subtracts 6 seconds

25. The operator -> is overloadable provided it is a nonstatic member function
returning either a pointer to a class object or an object of a class for which
operator-> is defined. Such an overloaded structure pointer operator is called
a smart-pointer operator. It usually returns an ordinary pointer after doing some
initial computation. One use could be as an iterator function.

dbl_vect* dbl_vect::operator->();
//maintain an internal i
//increment and return &p[++i]

▼ Exercises 237

Modify class dbl_vect in Section 6.7, “Overloading Assignment and Subscript¬
ing Operators,” on page 210, to code and test this idea.

26. (Difficult) It is a better idea to make a smart-pointer class.

class dbl_vect {
public:

friend class smart_ptr_dbl_vect; //add to dbl_vect

};

class smart_ptr_dbl_vect {
public:

smart_ptr_dbl_vect(const dbl_vect& v);
smart_ptr_dbl_vectS operator->();

private:
int* ptr;
int position;

smart_ptr_dbl_vect::
smart_ptr_dbl_vect(const dbl_vect& v) :

position(0), ptr(v.p) { }
smart_ptr_dbl_vect& smart_ptr_dbl_vect::operator->()

{
//write this code to access and test that
//p[position] is not out of range

}

Modify class dbl_vect in Section 6.7, “Overloading Assignment and Subscript¬
ing Operators,” on page 210, to test this idea.

27. Take the polynomial : :plus() member function found in Section 5.9, “Polyno¬
mials as a Linked List,” on page 180, and convert that member function to code
for overloading operator+.

polynomial operator+(const polynomials, const polynomials)

This should be a friend of the class polynomial.

28. (Project) Write code to implement a polynomial multiplication operator. The
code can repeatedly call the polynomial addition routine. Did you make sure
that intermediate results would be properly garbage collected? Write a full-

238 Chapter 6 ▼ Operator Overloading and Conversions

blown polynomial package that is consistent with community expectations. You
could include differentiation and integration of polynomials as well.

29. Use a conditional compilation flag NDEBUG to signal the compiler whether to
include assertions. This simple mechanism allows both safe and unsafe classes
to be compiled from the same source code. Run an application, such as a large
matrix addition, with both forms of code, and measure the runtime overhead
required by the assertion statements.

30. Write a matrix_i terator class with the same interface as dbl_vect_i terator
from exercise 13 on page 233. The class should contain the member functions
successorO, predecessorO, reset(), and item(). If you want, you can
extend this with member functions i nt row() and i nt col umn (). (See Section
6.3, “Friend Functions,” on page 202, for class matrix.)

31. Rewrite the matri x class to have row and column indices that go from 1 instead
of 0.

32. (Project) Write code that fleshes out the rational type of Section 6.9, “Over¬
loading I/O Operators « and »,” on page 215. Have the code work appropri¬
ately for all major operators. Allow it to properly mix with other number types,
including integers, floats, and complex numbers. There are several ways to
improve the rational implementation. You can try to improve the precision of
going from double to rational. Also, many algorithms are more convenient
when the rational is in a canonical form in which the quotient and divisor are
relatively prime. This can be accomplished by adding a greatest common divi¬
sion algorithm to reduce the representation to the canonical form.

33. (Java) Rewrite in Java the class rati onal in Section 6.2, “Overloading and Func¬
tion Selection,” on page 198.You must substitute ordinary methods for any
operator overloading.

Chapter 7

Templates, Generic
Programming, and STL

C++ uses the keyword template to provide parametric polymorphism, which allows
the same code to be used with respect to various types, where the type is a parame¬
ter of the code body. This is a form of generic programming. Many of the classes
used in the text so far contained data of a particular type, although the data have
been processed in the same way regardless of type. Using templates to define
classes and functions allows us to reuse code in a simple, type-safe manner that lets
the compiler automate the process of type instantiation, or when a type replaces a
type parameter that appeared in the template code.

Polymorphic Genie: Capable of Assuming Various Forms

240 Chapter 7 ▼ Templates, Generic Programming, and STL

7.1 Template Class stack

We shall modify the ch_stack type from Section 5.2.1, “The Copy Constructor,” on
page 157, to have a parameterized type.

In file stack_tl.cpp

//template stack implementation

template <class TYPE>
class stack {
public:

explicit stack(int size = 100)
: max_len(size), top(EMPTY),s(new TYPE[size])

{ assert(s != 0); }
~stack() { delete []s; }
void reset() { top = EMPTY; }
void push(TYPE c) { s[++top] = c; }
TYPE pop() { return s[top--]; }
TYPE top_ofOconst { return s[top]; }
bool emptyOconst { return top == EMPTY;}
bool full Oconst { return top == max_len - 1;}

private:
enum { EMPTY = -1 };
TYPE* s;
int max_len;
int top;

};

The syntax of the class declaration is prefaced by

template cclass identifier

This identifier is a template argument that essentially stands for an arbitrary type.
Throughout the class definition, the template argument can be used as a type name.
This argument is instantiated in the declarations. A template declaration usually
has global or namespace scope, can be a member of a class, or can be declared
within another template class. An example of a stack declaration using this is

7.1 t Template Class stack 241

stack<char> stk_ch;
stack<char*> stk_str(200);
stackccomplex> stk_cmplx(500);

//100 char stack
//200 char* stack
//500 complex stack

This mechanism saves us rewriting class declarations where the only variation
would be the type declarations, providing a type-safe, efficient, and convenient way
to reuse code.

When a template class is used, the code must always use the angle brackets as
part of the declaration.

In file stack_tl.cpp

//Reversing an array of char* represented strings

void reverse(char* str[], int n)

{
stack<char*> stk(n);
inti;

for (i =0; i < n; ++i)
stk.push(str[i]);

for (i = 0; i < n; ++i)
str[i] = stk.popQ ;

}

//Initializing stack of complex numbers from an array

void init(complex c[], stack<complex>& stk, int n)

{
for (int i = 0; i < n; ++i)

stk.push(c[i]);

}

Member functions, when declared and defined inside the class, are, as usual, inline.
When defining them externally, you must use the full angle bracket declaration. So,
when defined outside the template class,

TYPE top_of() const { return s[top]; }

would be written as

tempiatecclass TYPE> TYPE stack<TYPE>::top_of() const
{ return s[top]; }

242 Chapter 7 ▼ Templates, Generic Programming, and STL

Yes, this is ugly and takes some getting used to, but the compiler otherwise would
not know that TYPE was a template argument. As another example, we write the file
scope definition of the destructor for tempi ateccl ass TYPE> stack.

tempiatecclass TYPE> stack<TYPE>::~stack()
{ delete []s; }

A C++ programmer would use the STL class std: : stack. The code presented in
this section will allow you to better appreciate the container classes provided by the
standard library.

7.2 Function Templates

Many functions have the same code body, regardless of type; for example, initializ¬
ing the contents of one array from another of the same type uses the same code
body. The essential code is

for (i =0; i < n; ++i)

a[i] = b[i];

Most C programmers automate this with a simple macro.

#define COPY(A, B, N) \
{ int i; for(i = 0; i < (N); ++i) (A) [i] = (B)[i]; }

Programming that works regardless of type is a form of generic programming.
Using def i ne macros can often work but is not type safe. Another problem with
def i ne macros is that they can lead to repeated evaluation of a single parameter
(see exercise 3 on page 270). A user could readily mix types among which conver¬
sions were inappropriate. C++ programmers can make use of various forms of con¬
version and overloading to achieve similar effects. However, in the absence of
appropriate conversions and signatures, no action would be taken. Templates pro¬
vide a further generic programming mechanism for this.

7.2 ▼ Function Templates 243

In file copyl.cpp

tempiatecclass TYPE>
void copy(TYPE a[], TYPE b[], int n)

{
for (int i = 0; i < n; ++i)

a[i] = b[i] ;
}

The invocation of copy() with specific arguments causes the compiler to gener¬
ate the function based on those arguments. If it cannot, a compile-time error
results. What are the effects of the following calls?

In file copyl.cpp

double f1[50], f2[50]
char cl[25], c2[50]
int i1[75], i2[75]
char* ptrl, *ptr2;
copy(fl, f2, 50);
copyCcl, c2, 10);
copy(il, i2 , 40);
copy(ptrl, ptr2, 100);
copy(il, f2, 50);
copy(ptrl, f2, 50);

The last two invocations of copyO fail to compile because their types cannot be
matched to the template type. This is called a unification error. The types of the
arguments do not conform to the template. How the compiler generates this match¬
ing is discussed in the next section. If we were to cast f 2 as

copy(il, static_cast<int* >(f2), 50);

compilation would occur. However, the result would be an inappropriate form of
copying. Instead, we need to have a generic copying procedure that accepts two dis¬
tinct class type arguments.

244 Chapter 7 ▼ Templates, Generic Programming, and STL

In file copy2.cpp

templatecclass Tl, class T2>
void copy(Tl a[], T2 b[], int n)

{
for (int i =0; i < n; ++i)

a[i] = b [i];

}

This form has an element-by-element conversion. This is usually the appropriate
and safer conversion.

7.2.1 Signature Matching and Overloading

A generic routine often cannot work for special cases. The following form of swap¬
ping template works on basic types.

In file swap.cpp

//generic swap

template cclass T>
void swap(T& x, T& y)

{
T temp;

temp = x;

x = y;
y = temp;

}

A function template is used to construct an appropriate function for any invocation
that matches its arguments unambiguously:

int i , j;
char strl[100], str2[100], ch;
complex cl, c2;

swap(i, j); //i j int - okay
swap(cl, c2); //cl, c2 complex - okay
swap(str1[50], str2[33]); //both char variables - okay
swap(i, ch); //i int ch char - illegal
swap(strl, str2); //illegal

7.3 ▼ Class Templates 245

In the last case, st rl and str2 are array names. They are pointer values that cannot

be modified.
To have swap() work for strings represented as character arrays, we write the

following special case:

void swapCchar* si, char* s2)

{
int max_len;

max_len = (strlen(sl) >= strlen(s2)) ?
strlen(sl) : strlen(s2);

char* temp = new char[max_len + 1];

strcpyCtemp, si);
strcpy(sl, s2);
strcpy(s2, temp);
delete []temp;

}

With this specialized case added, an exact match of this nontemplate version to the
signature of a swap() invocation takes precedence over the exact match found by a

template substitution.

Overloaded Function-Selection Algorithm

1. Exact match with some trivial conversions on nontemplate functions

2. Exact match using function templates

3. Ordinary argument resolution on nontemplate functions

7.3 Class Templates

In the stack<T> example given in Section 7.1, Template Class stack, on page 240,
we have an ordinary case of class parameterization. In this section, we wish to dis¬

cuss various special features of parameterizing classes.

246 Chapter 7 ▼ Templates, Generic Programming, and STL

7.3.1 Friends

Template classes can contain friends. A friend function that does not use a template
specification is universally a friend of all instantiations of the template class. A
friend function that incorporates template arguments is specifically a friend of its
instantiated class.

template cclass T>
class matrix {
public:

friend void foo_bar(); //universal
friend vect<T> product(vect<T> v); //instantiated

};

7.3.2 Static Members

Static members are not universal but are specific to each instantiation.

template cclass T>
class foo {
public:

static int count;

};

foo<int> a;
foo<double> b;

The static variables fooci nt>: : count and foocdoubl e>: : count are distinct

7.3.3 Class Template Arguments

Both classes and functions can have several class template arguments. Let us write a
function that will convert one type of value to a second type, provided the first type
is at least as wide as the second type.

7.3 ▼ Class Templates 247

In file coerce.cpp

template cclass Tl, class T2>
bool coerce(T1& x, T2 y)

{
if (sizeof(x) < sizeof(y))

return false;
x = static_cast<Tl>(y);
return true;

}

This template function has two possibly distinct types as template arguments.
Other template arguments include constant expressions, function names, and

character strings.

In file array.tm.cpp

template cclass T, int n>
class assign_array {
public:

T a[n];

};

assign_array<double,50> x, y;

x = y; //should work efficiently

The benefits of this parameterization include allocation off the stack, as opposed to
allocation from free store. On many systems, the former is the more efficient
regime. The type is bound to the particular integer constant; thus, operations
involving compatible-length arrays are type safe and are checked at compile time.

7.3.4 Default Template Arguments

In the standard library, the class complex is now a template class. The normal
instantiation would be to doubl e, as in compl excdoubl e> x, y, z[10]. A tem¬
plate provider can decide that this is such a common case that it can be provided as

a default.

Chapter 7 ▼ Templates, Generic Programming, and STL

tempiatecclass T = double>
class complex{

private:
T real, imaginary;

}

7.3.5 Member Templates

Members may themselves be templates inside the template class. This feature of the
ANSI standard has yet to be implemented on many compilers.

template cclass Tl>
class foo {
public:

//class member template
template cclass T2>
class fooprime {

//can use T1 and T2 in fooprime
};
//can only use T1 in foo

};

foocint>::fooprime<char> a;

There can also be function member templates. Check your local compiler documen¬
tation to see whether these constructs are available.

7.4 Parameterizing the Class vector

The class dbl_vect from Section 5.5.1, “dbl_vect as a Unear Vector Type,” on page
166, is a natural candidate for parameterization. It is a form of container class It
improves on the primitive container that is the array. The defects of the array are
ound in C and C++: Namely, it is easy to have out-of-bounds errors resulting in dif¬

ficult to find runtime bugs. We will parameterize the class, renaming it vector in
anticipation of discussing and understanding the STL class std: : vector The new
class is used m conjunction with iterators and algorithms. An iterator is a pointer or
a pointer-like variable used for traversing and accessing container elements.

7.4 ▼ Parameterizing the Class vector 249

In file vect_it.h

//Template-based vector type

//create a size n array
//copy vector
//copy an array

template <class T>
class vector {
public:

typedef T* iterator;
explicit vector(int n = 100);
vector(const vector<T>& v);
vector(const T a[], int n);
~vector() { delete []p; }
iterator begin(){ return p;}
iterator end(){ return p + size;}
T& operator[](int i); //range-checked element
vector<T>& operator=(const vector<T>& v);

private:
T* p; //base pointer
int size; //number of elements

};

Basically, everywhere the previous dbl_vect class used double as the value to be
stored in individual elements, the tempi ate definition uses T. Thus, the declaration

of the private base pointer p is now of type T.
The definition of member functions in file scope includes the scope-resolved

label classname<T>. The following constructors for vector<T> use T as the type

specification to new:

template cclass T>
vector<T>::vector(int n = 100): size(n)

{
assert(n > 0);
p = new Tfsize];
assert(p != 0);

}

This is the default constructor, because of the default argument of 100. We use the
keyword expl i ci t to disallow its use as a conversion from i nt to vector. Asser¬
tions are used to guarantee that the constructor performs its contractual obliga¬

tions when given appropriate input.

250 Chapter 7 ▼ Templates, Generic Programming, and STL

template <class T>
vector<T>::vector(const T a[], int n)
{

assert(n > 0);
size = n;
p = new T[size];
assert(p != 0);
for (int i =0; i < size; ++i)

p[i] = a[i];
}

This constructor converts an ordinary array to a vector. The copy constructor
defines a deep copy of the vector v.

template <class T>

vector<T>::vector(const vector<T>& v)
{

size = v.size;
p = new T[size];
assert(p != 0);
for (int i =0; i < size; ++i)

p[i] = v.p[i];
}

The following code defines vector indexing by overloading the bracket operator.
The return type for the bracket operator is reference to T, as this is an alias for the
item stored in the container. Using this return type allows the bracket operator to
access the item in the container as an lvalue.

template <class T> T& vector<T>::operator[](int i)

assert (i >= 0 && i < size);
return p[i];

}

Notice that we can test to make sure that the array bounds are not exceeded.
With operatorf] overloaded, we can access vectors as if they were native C++
arrays. We also need to provide an overloaded assignment operator (see exercise 7
on page 270).

7.4 ▼ Parameterizing the Class vector 251

template eclass T>
vector<T>& vector<T>::operator=(const vector<T>& v)

{
assert(v.size == size);
for (int i = 0; i < size; ++i)

p[i] = v.p[i];
return *this;

}

Client code is almost as simple as with nonparameterized declarations. To use
these declarations, you simply add within angle brackets the specific type that
instantiates the template. These types can be native types, such as i nt in the exam¬
ple, or user-defined types. The following code uses these templates.

In file vect_it.cpp

int main()

{
vector<double> v(5);
vector<double>::iterator p ;

int i = 0;

for (p = v.begin() ; p != v.endO; ++P)

*p = 1.5 + i++;

do {

—p;
cout « *p « " , ";

} while (p ! = v.beginO);
cout « endl;

}

The output from this program is

5.5, 4.5, 3.5, 2.5, 1.5,

The values are in reverse order to how they are stored. This is a consequence of iter¬

ating back from the iterator value v. end().

Chapter 7 t Templates, Generic Programming, and STL

7.5 STL

The standard template library (STL) is the C++ library providing generic program¬
ming for many standard data structures and algorithms. The STL provides three
components—containers, iterators, and algorithms—that support a standard for
generic programming.

The library is built using templates and is highly orthogonal in design. Compo¬
nents can be used with one another on native and user-provided types through
proper instantiation of the various elements of the STL. The following sections serve
only as an overview and brief introduction to STL, which is large and complicated.
Many newer systems have important further extensions to the STL.

7.5.1 STL Example Code

One of the most effective uses of the STL is to replace the use of ordinary C++
arrays with STL vectors. The STL vector type has many important advantages over
the array, such as dynamic expansion, thus avoiding overflow. Further, it can be
readily navigated with both iterators and indices, and has a rich interface of built-in
operations.

In file stl_vecl.cpp

//Simple STL vector program
#include <iostream>
#include <vector>
using namespace std;

int main ()

{
vectorcint> v(100); //100 is the vector's size

for (int i =0; i <100; -j++)
v[i] = i ;

for (vector<int>::iterator p = v.begin(); p != v.end(); p++)
cout « *p « ’\t'; ’ w J

}

The STL container vector is used in place of an ordinary i nt array The first
for-statement is written in exactly the same manner as a C++ loop on ordinary data
The second for-statement is written using the iterator p. An iterator behaves as a
pointer. STL provides the member functions begin() and end() as initial and

7.5 ▼ STL 253

terminal position values for the container. Note that end() returns the iterator
position (or address) one past the last element of the container. Thus, end() is a
guard location, or value signaling that you are finished traversing the container.

The next example uses the list container, an iterator, and the generic algorithm
accumulateO in our first example program using STL. The list and numeric librar¬
ies are required.

In file stLcont.cpp

//Using the list container

void print(list<double> &lst)
{ //using an iterator to traverse 1st

1ist<double>::iterator p;

for (p = Ist.beginO; p !=lst.end(); ++p)
cout « *p « '\t';

cout « endl;

}

int main()

{
double w[4] = { 0.9, 0.8, 88, -99.99 };
list<double> z;
for (int i = 0; i < 4; ++i)

z.push_front(w[i]);
print(z) ;
z.sortO ;
print(z) ;
cout « "sum is "

« accumulate^.begin(), z.end(), 0.0) « endl;

}

In this example, a list container is instantiated to hold doubles. An array of
doubles is pushed into the list. The print() function uses an iterator to print each
element of the list in turn. Notice again that iterators work like pointers. Both the
list and the vector have the standard begin() and end() member functions for
starting and ending locations of the container. Also, the list interface includes a sta¬
ble sorting algorithm, the sort() member function. The accumulate() function is
a generic function in the numeric package that uses 0.0 as an initial value and com¬
putes the sum of the list container elements by going from the starting location

z. begi n () to the ending guard location z. end ().

254 Chapter 7 y Templates, Generic Programming, and STL

Notice that print() itself could be parameterized and made a generic algo¬
rithm. Try to do this in a most general way (see exercise 13 on page 272).

7.6 Containers

Containers come in two major families: sequence and associative. Sequence contain¬
ers (vectors, lists, and deques) are ordered by having a sequence of elements. Asso¬
ciative containers (sets, multisets, maps, and multimaps) have keys for looking up
elements. The map container is a basic associative array and requires that a compar¬
ison operation on the stored elements be defined. The two varieties of container
share a similar interface.

STL Typical Container Interfaces

■ Constructors, including default and copy constructors

■ Element access

■ Element insertion

■ Element deletion

■ Destructor

■ Iterators

Containers are traversed using iterators, pointer-like objects that are available
as templates and optimized for use with STL containers.

In file stl_deq.cpp

//A typical container algorithm

double sum(deque<double> &dq)
{

deque<double>::iterator p;
double s = 0.0;

for (p=dq.begin(); p != dq.end(); ++p)
s += *p ;

return s;

}

7.6 ▼ Containers 255

The deque (double-ended queue) container is traversed using a i terator. The itera¬
tor p is dereferenced to obtain each stored value in turn. This algorithm will work
with sequence containers and with all types that have ope rator+=() defined. Con¬
tainers allow equality and comparison operators. They also have an extensive list of
standard data and function members. (See Section E.l, “Containers,” on page 431.)

7.6.1 Sequence Containers

Sequence containers (vector, list, and deque) have a sequence of accessible ele¬
ments. In many cases, the C++ array type can also be treated as a sequence con¬
tainer. The deque and vector libraries are used.

In file stl_vec2.cpp

//Sequence Containers - insert a vector into a deque

int main()

{
int data[5] = { 6, 8, 7, 6, 5 };
vectorcint> v(5, 6); //5 element vector
deque<int> d(data, data + 5);
deque<int>::iterator p;
cout « "\nDeque values" « endl;
for (p = d.begin(); p != d.end(); ++p)

cout « *p « '\t'; //print:6 8765
cout « endl;
d. i nsert (d. begi n() , v.begin(), v.endO);
for (p = d.beginO; p != d.end(); p++)
cout « *p « '\t'; //print:6 666668765

}

The five-element vector v is initialized with the value 6. The deque d is initialized
with values taken from the data array. The i nsert () member function places the v
values in the specified range v. begi n() to v .end(), at the location d. begi n().

256 Chapter 7 ▼ Templates, Generic Programming, and STL

♦♦♦♦♦♦♦♦♦♦♦♦
Dissection of the stLvect Program

■ int data[5] = { 6, 8, 7, 6, 5 };
vector<int> v(5, 6); //5 element vector
deque<int> d(data, data + 5);
deque<int>: iterator p;

The vector v initializes a five-element int container to value 6. The deque d uses the
iterator values data and data + 5 to initialize a five-element double-ended queue
container. This is one of the standard container class constructors. Notice how it
uses an iterator range to pass in arguments for the constructor. Many of the STL
functions use iterator ranges as arguments. Ordinary array pointers can be used as
iterators. The iterator p is declared but is not initialized.

■ for (p = d.beginO; p != d.end(); ++p)
cout « *p « '\t'; //print:6 8765

This is a standard traversal idiom when using containers and iterators. Notice that
d. end() is used to terminate the loop, because it is in effect the end-of-container
iterator value. Also notice that the ++ autoincrement has pointer semantics advanc¬
ing the iterator to the next container position. Dereferencing also works analogously
to pointer semantics.

■ d.inserted.begin(), v.beginC), v.endO);

The insertO member function places the range of iterator values v. begin () up to
but not including v. end() at the position d. begi n(). The insert() member func¬
tion is very typical of member functions in STL, using the first iterator value as an
insertion point and an iterator range for the values to be inserted.

■ for (p = d.beginO; P != d.end(); ++p)
cout « *p « '\t'; //print:6 666668765

As a consequence of inserting five new elements of value 6 at the front of the deque
d, the output of the traversal loop for d is now the 10 elements, as shown in the
comment.

Some sequence container member functions are given in Section E.1.1, “Sequence
Containers,” on page 433.

7.6 ▼ Containers 257

7.6.2 Associative Containers

The associative containers (set, map, multiset, and multimap) have key-based acces¬
sible elements and an ordering relation Compare, which is the comparison object for
the associative container. The map and string libraries are required.

In file stl_age.cpp

//Associative Containers - looking up ages

int main()

{
map<string, int, less<string> > name_age;

name_age["Pohl,Laura"] = 7;
name_age["Dolsberry,Betty"] = 39;
name_age["Pohl,Tanya"] = 14;
cout « "Laura is " « name_age["Pohl,Laura"]

« " years old." « endl;

}

The map name_age is an associative array where the key is a stri ng type and the
Compare object is less<stri ng>.

The associative containers have several standard constructors for initialization.
What distinguishes these constructors from sequence container constructors is the
use of a comparison object. The insertions work when no element of the same key is
already present. Some member functions are listed in Section E.1.1, “Sequence Con¬

tainers,” on page 434.

7.6.3 Container Adapters

Container adapter classes modify existing containers to produce various public
behaviors based on an existing implementation. Three provided container adapters
are stack, queue, and priority_queue.

The stack can be adapted from vector, 1 i st, and deque and needs an imple¬
mentation that supports back, push_back, and pop_back operations. The queue
can be adapted from 1 i st or deque and needs an implementation that supports
empty, si ze, front, back, push_back, and pop_front operations. This is a first-in-

first-out data structure
We adapt the stack from an underlying vector implementation. Notice that the

STL ADTs replace our individually designed implementations of these types. The

stack, vector, and string libraries are required.

258 Chapter 7 ▼ Templates, Generic Programming, and STL

In file stl_stak.cpp

//Adapt a stack from a vector

int main()

{
stack<string, vector<string> > str_stack;
string quote[3] =

{ "The wheel that squeaks the loudest\n",
"Is the one that gets the grease\n",
"Josh Billings\n" };

for (int i =0; i < 3; ++i)
str_stack.push(quote[i]) ;

while (! str_stack.emptyO) {
cout « str_stack.top();
str_stack.pop() ;

}
}

Container adapter functions are given in Section E.1.3, “Container Adapters,” on
page 436.

7.7 Iterators

Navigation over containers is by iterator. Iterators can be thought of as an enhanced
pointer type, templates that are instantiated according to the container class type
they iterate over. There are five iterator types: input, output, forward, bidirectional,
and random access. Not all iterator types may be available for a given container
class. For example, random-access iterators are available for vectors but not for
maps.

Input iterators support equality operations, dereferencing, and autoincrement.
An iterator that satisfies these conditions can be used for one-pass algorithms that
read values of a data structure in one direction. A special case of the input iterator
is the i stream_i terator.

Output iterators support dereferencing restricted to the left-hand side of
assignment and autoincrement. An iterator that satisfies these conditions can be
used for one-pass algorithms that write values to a data structure in one direction.
A special case of the output iterator is the ostream_i terator.

7.7 ▼ Iterators 259

Forward iterators support all input/output iterator operations, as well as unre¬
stricted use of assignment. This allows position within a data structure to be
retained from pass to pass. Therefore, general one-directional multipass algorithms
can be written with forward iterators.

Bidirectional iterators support all forward iterator operations, as well as both
autoincrement and autodecrement. Therefore, general bidirectional multipass algo¬
rithms can be written with bidirectional iterators.

Random-access iterators support all bidirectional iterator operations, as well as
address arithmetic operations, such as indexing. Also, random-access iterators sup¬
port comparison operations. Therefore, algorithms, such as qui cksort, that require
efficient random access in linear time can be written with these iterators.

Container classes and algorithms dictate the category of iterator available or
needed, so vector containers allow random-access iterators, but li sts do not.
Sorting generally requires a random-access iterator, but finding requires only an
input iterator.

7.7.1 The istream_iterator and ostream_i terator

An i stream_i terator is derived from an input iterator to work specifically with
reading from streams. An ostream_i terator is derived from an output iterator to
work specifically with writing to streams. We will write a program that prompts for
five numbers, reads them, and computes their sum, where I/O uses these iterators.
The template for i stream_i terator is instantiated with a <type, distance>. This
distance is usually specified by pt rdi ff_t. As defined in cstddef or stddef, it is an
integer type representing the difference between two pointer values. Both vector
and iterator libraries are needed.

In file stLio.cpp

//Use of istream_iterator and ostream_iterator

int main()

{
vectorcint> d(5);
int i, sum ;
istream_iterator<int, ptrdiff_t> in(cin);
ostream_iterator<int> out(cout, "\t");

260 Chapter 7 ▼ Templates, Generic Programming, and STL

cout « "enter 5 numbers"
sum = d[0] = *in;
for (i = 1; i < 5; ++i) {

« end!;
//input first value

d[i] = *++in; //input consecutive values

sum += d[i];

}
for (i =0; i < 5; ++i)

•'out = d[i] ;
cout « " sum = " « sum

//output consecutive values
« sum « endl;

}

The i stream_i terator i n is instantiated with type int and parameter
ptrdi ff_t. The ptrdi ff_t is a distance type that the iterator uses to advance in
getting a next element. In the preceding declaration, i n is constructed with the
input stream ci n. The autoincrement operator advances i n and reads a next value
of type i nt from the designated input stream. The ostream_i terator out is con¬
structed with the output stream cout and the char* delimiter "\t". Thus, the tab
character will be issued to the stream cout after each i nt value is written. In this
program, the iterator out, when it is dereferenced, writes the assigned i nt value to
cout.

7.7.2 Iterator Adapters

Iterators can be adapted to provide backward traversal and traversal with insertion.
Reverse iterators reverse the order of iteration; with insert iterators, insertion takes
place instead of the normal overwriting mode. The following example uses a reverse
iterator to traverse a sequence. The vector library is required.

In file stl Jadp.cpp

//Use of the reverse iterator

template cclass ForwIter>
void print(Forwlter first, Forwlter last, const char* title)
{

cout « title « endl;
while (first != last)

cout « *first++ « '\t';
cout « endl;

}

7.8 ▼ Algorithms 261

int main()

{
int data[3] = { 9, 10, 11};
vector<int> d(data, data + 3);
vector<int>::reverse_iterator p = d.rbegin();

print(d.begin(), d.end(), "Original");
print(p, d.rend(), "Reverse");

}

This program uses a reverse iterator to change the direction in which the pri nt()
function prints the elements of vector d.

Other algorithms in the iterator library are discussed in Section E.2.2, “Iterator
Adapters,” on page 438.

7.8 Algorithms

The STL algorithms library contains the following four categories.

Categories of STL Algorithms Library

■ Sorting algorithms

■ Nonmutating sequence algorithms

■ Mutating sequence algorithms

■ Numerical algorithms

These algorithms generally use iterators to access containers instantiated on a given
type. The resulting code can be competitive in efficiency with special-purpose

codes.

7.8.1 Sorting Algorithms

Sorting algorithms include general sorting, merges, lexicographic comparison, per¬
mutation, binary search, and similar operations. These algorithms have versions
that use either operator<() or a Compare object and often require random-access

iterators.
The following program uses the quicksort function sort() from the STL algo¬

rithm library to sort over elements d to e.

262 Chapter 7 ▼ Templates, Generic Programming, and STL

In file stl_sort.cpp

//Using sort() from STL
const int N = 5;

int main()

{
int d [N], i, *e = d + N;

for (i =0; i < N; ++i)
d[i] = rand();

sort(d, e);
for (i =0; i < N; ++i)

cout « d[i] « '\t';

}

This is a straightforward use of the library sort algorithm operating on the built-in
array d []. Ordinary pointer values can be used as iterators. Some algorithm proto¬
types are found in Section E.3.1, “Sorting Algorithms,” on page 440.

7.8.2 Nonmutating Sequence Algorithms

Nonmutating algorithms do not modify the contents of the containers they work on.
A typical operation is searching a container for a particular element and returning
its position.

In the following program, the nonmutating library function fi nd() in the algo¬
rithm library is used to locate the element t.

In file stLfind.cpp

//Use of the find function

int main()

{
string words[5] = {
string* where;

where = find(words,
cout « *++where «
sort(words, words +
where = find(words,
cout « *++where «

"my", "hop", "mop",

words + 5, "hop");
endl;

5);
words + 5, "hop");
endl;

"hope", "cope"};

//mop

//hope
}

7.8 ▼ Algorithms 263

This program uses fi nd() to look for the position of the word hop. We print the
word following hop before and after sorting the array words []. Some mutating
function algorithm prototypes are given in Section E.3.2, “Nonmutating Sequence
Algorithms,” on page 442.

7.8.3 Mutating Sequence Algorithms

Mutating algorithms can modify the contents of the containers they work on. A typ¬
ical operation is reversing the contents of a container.

In the following program, the mutating library functions reverse() and
copy() are used. The vector, string, and algorithm libraries are required.

In file stl_revr.cpp

//Use of mutating copy and reverse

int mainQ

{
string first_names[5] = {"laura", "ira",

"buzz", "debra", "twinkle"};
string 1ast_names[5] = {"pohl", "pohl",

"dolsberry", "dolsberry", "star"};
vector<string> names(first_names, first_names + 5);
vector<string> names2(10);
vector<string>::iterator p;

copy(last_names, last_names + 5, names2.begin());
copy(names.begin(), names.end(), names2.begin()+5);
reverse(names2.begin(), names2.end());
for (p = names2.begin(); p != names2.end(); ++p)

cout « *p «'\t';

}

The first invocation of the mutating function copy() places last_names in the con¬
tainer vector names2. The second call to copyO copies in the fi rst_names that
had been used in the construction of the vector names. The function reverseO
reverses all the elements, which are then printed out. Some algorithms are given in
Section E.3.3, “Mutating Sequence Algorithms,” on page 444.

264 Chapter 7 ▼ Templates, Generic Programming, and STL

7.8.4 Numerical Algorithms

Numerical algorithms include sums, inner product, and adjacent difference. In the
following program, the function accumulate() from the numeric library performs
a vector summation, and i nner_product() performs a vector inner product.

In file stLnumr.cpp

//Vector accumulation and inner product

int main()

{
double vl[3] = { 1.0, 2.5, 4.6 },

v2[3] = { 1.0, 2.0, -3.5 };
double sum, inner_p;

sum = accumulate(vl, vl + 3, 0.0);
inner_p = inner_product(vl, vl + 3, v2, 0.0);
cout « "sum = " « sum

« ".product = " « inner_p « endl;
}

These functions behave as expected on numerical types, where + and * are defined.
The accumulate algorithm has the starting and ending positions and, as a third
argument, the initial value, normally 0.0, to start accumulating the sum with. Some
library prototypes for numerical algorithms are given in Section E.3.4, “Numerical
Algorithms,” on page 446.

7.9 Numerical Integration Made Easy

STL provides the basic computations for many more sophisticated algorithms. By
using STL, programmers can easily implement them. We will use numerical integra¬
tion as an example. The idea is to generate a series of points, using a generator. A
generator is a class that defines the function by overloading operator(), the func¬
tion call operator. The STL algorithm

generate(iterator b, iterator e, generator g)

is used to produce a vector of values in the range (0, 1) for the function. The algo¬
rithm, numeric, and vector libraries are all required.

7.9 ▼ Numerical Integration Made Easy 265

In file stl_intl.cpp

//Simple integration routine for x*x over (0, 1)
//The function is represented in class gen

class gen { //generator for function to be integrated
public:

gen(double x_zero, double increment) : x(x_zero),
incr(increment) { }
double operator()() { x += incr; return x*x; }

private:
double x, incr;

};

double integrate(gen g, int n) //integrate on (0,1)
{

vector<double> fx(n);

generate(fx.begin(),fx.end(), g);
return(accumulate(fx.begin(), fx.end(), 0.0) / n);

}

int main()

{
const int n = 10000;

gen g(0.0, 1.0/n);
cout « "integration program x**2" « endl;
cout « integrate(g, n) « endl;

}

We approximate the area under the curve by a sequence of rectangles whose
height is the value of the function and whose width is the increment. An increment
gives us two choices for a height. We could improve the numerical accuracy of inte¬
gration by bounding the area between rectangles based on the smaller heights and
one based on the larger heights.

266 Chapter 7 ▼ Templates, Generic Programming, and STL

In file stl_int2.cpp

double integrate(gen g, int n, double& diff)

{
vector<double> fx(n), sm(n), lg(n);
double s, 1;

generate(fx.begin(),fx.end(), g);
for (int i = 0; i < n - 1; ++i)

if (fx[i] > fx[i + 1]) {
sm[i] = fx[i + 1]; lg[i] = fx[i] ;

}
else {

sm[i] = fx[i] ; lg[i] = fx[i + 1];

}
s = accumulate(sm.begin() , sm.endO, 0.0)/n ;
1 = accumulate(lg.begin(), lg.end(), 0.0)/n ;
diff = 1 - s;
return (s + 1) / 2;

}

The preceding code produces a more reliable estimate, with an error estimate calcu¬
lated in di ff. The estimate can be further improved by being adaptive, as discussed
in the exercises (see exercise 17 on page 272).

7.10 Pragmatics

Many current C++ template implementations make a distinction between template
parameters for functions and those for classes. Functions allow only class argu¬
ments, which must occur in the template function as part of the type description of
at least one of the function parameters.

The following is okay:

template cclass TYPE>
void maxelement(TYPE a[], TYPE& max, int size);

template <class TYPE>
int find(TYPE* data);

7.11 ▼ Moving from C++ to Java 267

The following was previously illegal but is now legal according to the proposed ANSI
standard:

template <class TYPE>
TYPE convert(int i) { TYPE temp(i); return temp; }

In the ANSI standard, the function is invoked as follows:

convert<double>(i + j); //newly allowed explicit
//function instantiation

Since it was previously illegal, the function instantiation may not work on many
current systems. The restriction exists because current compilers must use the
arguments at function invocation to deduce which functions will be created. A
workaround is possible by creating a class whose sole member is a parameterized
static function, as follows:

template <class TYPE> //other arguments are possible
class convert_it {

static TYPE convert(int i)
{ TYPE temp(i); return temp; }

};

7.11 Moving from C++to Java

Unlike C++, Java does not have templates. Instead, each class in Java can be viewed
as an extension of the superclass Object. This is done implicitly. The Object super¬
class provides for a type of generic programming and achieves some of the ideas of
polymorphism accomplished by the use of templates in C++.

JGL (Java generic library) corresponds roughly to STL (standard template library)
for C++. The use of Object in writing generic code is based on inheritance and is
discussed in Section 8.10, “Moving from C++ to Java,” on page 298.

268 Chapter 7 ▼ Templates, Generic Programming, and STL

Summary

1. C++ uses templates to provide parametric polymorphism. The same code is
used with different types, where the type is a parameter of the code body.

2. Both classes and functions can have several class template arguments. In addi¬
tion to class template arguments, class template definitions can include con¬
stant expressions, function names, and character strings as template
arguments. A common case is to have an i nt argument that parameterizes a
size characteristic.

3. A nontemplate, specialized version of a function may be needed when the
generic routine will not work. When multiple functions are available, an algo¬
rithm determines which to use.

4. The standard template library (STL) is the C++ library that provides generic pro¬
gramming for many standard data structures and algorithms.

5. Containers come in two major families: sequence and associative. Sequence con¬
tainers (vectors, lists, and deques) are ordered by having a sequence of ele¬
ments. Associative containers (sets, multisets, maps, and multimaps) have keys
for looking up elements.

6. Container adapter classes modify existing containers to produce different pub¬
lic behaviors, based on an existing implementation. Three provided container
adapters are stack, queue, and priority_queue.

7. Iterators can be thought of as an enhanced pointer type. The five iterator types
are input, output, forward, bidirectional, and random access. Not all iterator
types may be available for a given container class. For example, random-access
iterators are available for vectors but not for maps.

8. The STL algorithms library contains the following four categories: sorting algo¬
rithms, nonmutating sequence algorithms, mutating sequence algorithms, and
numerical algorithms. These algorithms generally use iterators to access con¬
tainers instantiated on a given type. The resulting code can be competitive in
efficiency with special-purpose codes.

▼ Review Questions 269

Review Questions

1. In C, one can use voi d* to write generic code, such as memcpy (). In C++, writing
generic code uses the keyword_.

2. Rewrite as a template function the macro

#define SQ(A) ((A) * (A))

Mention a reason why this is preferable.

3. The three components of STL are_,_, and_.

4. An iterator is like a_type in the kernel language.

5. The member_is used as a guard for determining the last position in a

container.

6. Name two STL sequence container classes.

7. Name two STL associative container classes.

8. Can STL be used with ordinary array types? Explain.

9. True or false: A template argument can be only a type.

10. A nonmutating STL algorithm, such as fi nd(), has the property-.

Exercises

1. Rewrite stack<T> in Section 7.1, “Template Class stack,” on page 240, to
accept an integer value for the default size of the stack. Now client code can use

such declarations as

stack<int, 100> si, s2;
stack<char, 5000> scl, sc2, sc3;

Discuss the pros and cons of this additional parameterization.

270 Chapter 7 r Templates, Generic Programming, and STL

2. Define a template for fixed-length stacks that allocates a compile-time-
determined size array to store the stacked values.

3. The code

#define CUBE(X) ((X)*(X)*(X))

behaves differently from the code

tempiate<class T> T cube (T x){ return x * x * x;}

Explain the difference when cube(sqrt (7)) is invoked. When would the two
coding schemes give different results?

4. Write a generic cycl e() function with the following definition, and test it:

tempiatecclass TYPE>
void cycle(TYPE& a, TYPE& b, TYPE& c)
{
// replace a's value by b's and b's by c's
// and c's by a's

}

5. Write a generic function that, given an arbitrary array and its size, rotates its
values with

a[l] = a[0] , a[2] = a[l], .,
a[size - 1] = a[size - 2], a[0] = a[size - 1]

6. Write the member function template

<class T> void vector<T>::print()

This function prints the entire vector range.

7. Rewrite the overloaded assignment operator to be more general:

template cclass T>

vector<T>& vector<T>::operator=(const vector<T>& v)
//allow different size vectors to be assigned
//must delete and reallocate storage for left-hand
//argument and avoid in a = a

t Exercises 271

8. Write a generic function that requires swapping of two vector<T>s of different
types. (See Section 7.4, “Parameterizing the Class vector,” on page 249.)
Assume that both array types have elements that are assignment convertible.

9. Using vector<T> and its associated iterator class, code a generic vector internal
sorting routine of your choice, but not quicksort (see Section 7.4, “Parameteriz¬
ing the Class vector,” on page 249). Compare its running time with the STL sort
routine for vectors of 100, 1,000, and 10,000 elements.

10. (Project) Create a parametric string type. The basic type is to act as a container
class that contains a cl ass T object. In the prototype case, the object is a char.
The normal end-of-string sentinel will be 0. The standard behavior should
model the functions found in the string library. The class definition could
parameterize the sentinel as well. Such a type exists in the standard library

string.

11. Sorting functions are natural candidates for parameterization. The following is

a generic bubble sort:

template <class T>
void bubble(T d[], int how_many)

{
T temp;

for (int i =0; i < how_many - 2; ++i)
for (int j= 0; j < how_many - 1 - i; ++j)

if (d[j] < d[j+l]) {
temp = d[j];
d[j]= d[j + 1];
d [j+l] = temp;

}
}

What happens if this is instantiated with a class in which operator<() is not

defined?

12. Using a random-number generator, generate 10,000 integers between 0 and
9,999. Place them in a list<int> container. (See Section 7.5.1, STL Example
Code,” on page 253.) Compute and print the median value. What did you expect?
Compute the frequencies of each value; in other words, howT many 0s were gen¬
erated, how many Is were generated, and so forth. Print the value with the
greatest frequency. Use a vector<int> to store the frequencies.

272 Chapter 7 y Templates, Generic Programming, and STL

13. Recode pri nt(const list<double> &lst) to be a template function that is as
general as possible. (See Section 7.5.1, “STL Example Code,” on page 253.)

14. For 1 i st<T>, write the member function

iterator 1ist<T>::insert(iterator w_it, T v);

which inserts v before w_i t and returns an iterator pointing at the inserted ele¬
ment. (See Section 7.5.1, “STL Example Code,” on page 253.)

15. For 1 i st<T>, write the member function

void list<T>::erase(iterator w_it);

which erases the element pointed at by w_it. (See Section 7.5.1, “STL Example
Code,” on page 253.)

16. Write an algorithm to find the second-largest element stored in an arbitrary con¬
tainer class. Use STL containers vector<T>, 1 i st<T>, and set<T> to test that it
works regardless of the container. Write the algorithm, assuming that a forward
iterator is available and comparison is understood.

17. We wish to perform simple numerical integration using STL containers and algo¬
rithms. Write a function that, given

double f(double x);

generates a vector of doubles from a to b, with an interval of s. Then accumu¬
late the values s times f (x) over this interval. (See Section 7.9, “Numerical Inte¬
gration Made Easy,” on page 264.)

Inheritance is the powerful code-reuse mechanism of deriving a new class from an
old one. That is, the existing class can be added to or altered to create the derived
class. Through inheritance, a hierarchy of related types that share code and inter¬
faces can be created.

Many useful types are variants of one another, and it is frequently tedious to
produce the same code for each. A derived class inherits the description of the base
class, which can then be altered by adding members, modifying existing member
functions, and modifying access privileges. The usefulness of this concept can be
seen by examining how taxonomic classification compactly summarizes large bod¬
ies of knowledge. For example, knowing the concept “mammal” and knowing that
an elephant and mouse are both mammals allows our descriptions of them to be
considerably more succinct than they would be otherwise. The root concept con¬
tains the information that mammals are warm-blooded, higher vertebrates, and that
they nourish their young through mammary glands. This information is inherited by
the concept of both “mouse” and “elephant,” but it is expressed only once: in the
root concept. In C++ terms, both elephant and mouse are derived from the base

class mammal.
C++ supports virtual member functions-, functions declared in the base class and

redefined in a derived class. A class hierarchy that is defined by public inheritance
creates a related set of user types, all of whose objects may be pointed at by a base-
class pointer. By accessing the virtual function through this pointer, C++ selects the
appropriate function definition at runtime. The object being pointed at must carry
around type information so that this distinction can be made dynamically, a feature
typical of OOP code. Each object “knows” how it is to be acted on. This is a form of
polymorphism called pure polymorphism.

Inheritance should be designed into software to maximize reuse and to allow a
natural modeling of the problem domain. With inheritance, the key elements of the

OOP design methodology are as follows:

OOP Design Methodology

1. Decide on an appropriate set of types.

2. Design in their relatedness, and use inheritance to share code.

3. Use virtual functions to process related objects polymorphically.

274 Chapter 8 ▼ Inheritance

8.1 A Derived Class

A class can be derived from an existing class by using the form

class class-name : (publ ic | protected | pri va.te)optbase-name

member declarations

};

As usual, the keyword class can be replaced by the keyword struct, with the
implication that members are by default publ i c. One aspect of the derived class is
the visibility of its inherited members. The keywords public, protected, and
private are used after the colon to specify how the base-class members are to be
accessible to the derived class. This will be discussed in a later section.

The keyword protected is introduced to allow data hiding for members that
must be available in derived classes but that otherwise act like private members. It
is an intermediate form of access between public and private.

Consider developing a class to represent students at a college or university.

In file student2.h

class student {
public:

enum year { fresh, soph, junior, senior, grad };
student(char* nm, int id, double g, year x);
void printO const;

protected:
int student_id;
double gpa;
year y;
char name[30];

};

We could write a program that lets the registrar track such students. Although the
information stored in student variables is adequate for undergraduates, it omits
crucial information needed to track graduate students. Such additional information
might include their means of support, their department affiliations, and their thesis
topics. Inheritance lets us derive a suitable grad_student class from the student
base class as follows:

8.1 ▼ A Derived Class 275

In file student2.h

class grad_student : public student {
public:

enum support { ta, ra, fellowship, other };
grad_student(char* nm, int id, double g, year x,

support t, char* d, char* th);
void print() const;

protected:
support s;
char dept[10];
char thesis[80];

In this example, gracLstudent is the derived class, and student is the base class.

The use of the keyword publ i c following the colon in the derived-class header

means that the protected and public members of student are to be inherited as

protected and public members of grad_student. Private members are inaccessible.

Public inheritance also means that the derived class grad_student is a subtype of

student. Thus, a graduate student is a student, but a student does not have to be a

graduate student. This subtyping relationship is called the is-a relationship, or inter¬
face inheritance.

A derived class is a modification of the base class, inheriting the public and

protected members of the base class. Only constructors, destructors, and member

function operator=() cannot be inherited. Thus, in the example of grad_student,
the student members student_id, gpa, name, y, and print() are inherited.

Frequently, a derived class adds new members to the existing class members. This is

the case with grad_student, which has three new data members and a redefined

member function print(), which is overridden. The function definitions of

student: : pri nt () and grad_student: : pri nt() appear in the next section.

Implementation of the member function of the derived class is different from that

of the base class. This is different from overloading, in which the same function

name can have different meanings for each unique signature.

Benefits of Using a Derived Class

■ Code is reused: grad_student uses existing, tested code from student.

■ The hierarchy reflects a relationship found in the problem domain. When

speaking of students, the special grouping “graduate student” is an out¬

growth of the real world and its treatment of this group.

■ Various polymorphic mechanisms will allow client code to treat

grad_student as a subtype of student, simplifying client code while grant¬

ing it the benefits of maintaining these distinctions among subtypes.

276 Chapter 8 ▼ Inheritance

8.2 Typing Conversions and Visibility

A publicly derived class is a subtype of its base class. This means that a variable of

the derived class can in many ways be treated as if it were the base-class type. A

pointer whose type is pointer to base class can point to objects that have the

derived-class type. Public derivation is far more important than private or protected

derivation. As such, it should be considered the normal form of inheritance.

We shall examine our example of student and grad_student. Let us first
examine the base- and derived-class constructors.

In file student2.h

student::student(char* nm, int id, double g,
year x):student_id(id), gpa(g), y(x)

{
strcpy(name, nm);

}

The constructor for the base class does a series of simple initializations. The con¬
structor then calls strcpyO to copy over the student’s name.

grad_student::grad_student (char* nm, int id, double g, year
x, support t, char* d,

char* th):student(nm, id, g, x), s(t)
{

strcpy(dept, d) ;
strcpy(thesis, th);

}

Notice that the constructor for student is invoked as part of the initializer list. This

is usual, and, logically, the base-class object needs to be constructed before the
object can be completed.

The grad_student is a publicly derived type whose base class is student. In

the class student, the members student_id and gpa are protected. This makes
them visible to the derived class but otherwise treated as private.

Because grad_student is a subtype of student, a reference to the derived-class

grad_student may be implicitly converted to a reference to the public base-class
student. For example,

8.2 ▼ Typing Conversions and Visibility 277

grad_student gs("Morris Pohl", 200, 3.2564, grad, ta,
"Pharmacy", "Retail Pharmacies");

student& rs = gs;

In this case, the variable rs is a reference to student. The base class of

grad_student is student. Therefore, this reference conversion is appropriate.

The pri nt() member functions are implemented as follows:

In file student2.h

void student::print() const

{
cout « name « " , " « student_id

« " , " « y « " , " « gpa « endl;

}

void grad_student::print() const

{
student::print(); //base class info is printed
cout « dept « " , " « s « '\n'

« thesis « endl ;

}

For grad_student: : pri nt () to invoke student: : pri nt (), the scope-resolved

identifier student: : pri nt () must be used. Otherwise, there will be an infinite loop

caused by a recursive call to grad_student: : pri nt(). To see which versions of

these functions get called and to demonstrate some of the conversion relationships

between base and publicly derived classes, we write a simple test.

In file student2.cpp

//Test pointer conversion rules

#include "student2.h" //include relevant declarations

int main()

{ student s("Mae Pohl", 100, 3.425, student::fresh), *ps
grad_student gs(”Morris Pohl", 200, 3.2564,

student::grad, grad_student::ta, "Pharmacy",

"Retail Pharmacies"), *pgs;

= &s;

278 Chapter 8 ▼ Inheritance

ps -> print();
ps = pgs = &gs;
Pgs -> print();
ps ->print();

//grad_student: .-print
//student::print

//student::pri nt

}

This function declares both class variables and pointers to them. The conversion
rule is that a pointer to a publicly derived class may be converted implicitly to a
pointer to its base class. In our example, the pointer variable ps can point at objects
of both classes, but the pointer variable pgs can point only at objects of type
grad_student.

We wish to study how various pointer assignments affect the invocation of a
version of pri nt(). The first instance of the statement

ps -> print() ;

invokes student: : pri nt(), which is pointing at the variable s of type student.
The multiple assignment statement

ps = pgs = &gs;

has both pointers pointing at an object of type grad_student. The assignment to
ps involves an implicit conversion. The statement

pgs -> print(); //grad_student::print

invokes the grad_student: : pri nt () function. The variable pgs is of type pointer
to grad_student and, when invoked with an object of this type, selects a member
function from this class.

The second instance of the statement

ps -> print() ;

invokes student: :print(). That this pointer is pointing at a grad_student vari¬
able gs is not relevant. In the next section, we explain how to use vi rtual member
functions to make function invocation a runtime property, depending on what is
being pointed at.

8.3 ▼ Virtual Functions 279

8.3 Virtual Functions

Overloaded member functions are invoked by a type-matching algorithm that
includes having the implicit argument matched to an object of that class type. All
this is known at compile time, and it allows the compiler to select the appropriate
member directly. As will become apparent, it would be nice to dynamically select at
runtime the appropriate member function from among base- and derived-class
functions. The keyword vi rtual, a function specifier that provides such a mecha¬
nism, may be used only to modify member function declarations. The combination
of virtual functions and public inheritance will be our most general and flexible way
to build a piece of software. This is a form of pure polymorphism.

An ordinary virtual function must be executable code. When invoked, its seman¬
tics are the same as those of other functions. In a derived class, it can be overridden,
and the function prototype of the derived function must have a matching signature
and return type. The selection of which function definition to invoke for a virtual
function is dynamic. In the typical case, a base class has a virtual function, and
derived classes have their versions of this function. A pointer to base class can
point at either a base-class object or a derived-class object. The member function
selected will depend on the class of the object being pointed at, not on the pointer
type. In the absence of a derived type member, the base-class virtual function is

used by default.
Note the difference in selection of the appropriate overridden virtual function

from an overloaded member function. The overloaded member function is selected
at compile time, based on its signature, and it can have distinct return types. A vir¬
tual function is selected at runtime, based on the object’s type, which is passed to it
as its thi s pointer argument. Also, once it is declared vi rtual, this property is car¬
ried along to all redefinitions in derived classes. It is unnecessary in the derived

class to use the function modifier vi rtual.
Consider the following example.

In file virt_sel.cpp

//virtual function selection

class B {
public:

i nt i ;
virtual void print_i() const

{ cout « i « " inside B" « endl; }

};

280 Chapter 8 ▼ Inheritance

class D : public B {
public:

//virtual as well
void print_i() const

{ cout « i « " inside D" « end!; }
};

int main()
{

B b;
B* pb = &b; //points at a B object
D f;

f .i = 1 + (b.i = 1) ;
pb -> print_i(); //call B::print_i()
pb = &f; //points at a D object
pb -> print_i(); //call D::print_i()

The output of this program is

1 inside B
2 inside D

Compare this behavior to the program student, shown in Section 8.2, “Typing Con¬
versions and Visibility,” on page 277. There, the selection of print () is based on
the pointer type, known at compile time. Here, pri nt_i () is selected on the basis
of what is being pointed at. In this case, a different version of pri nt_i () is exe¬
cuted. In OOP terminology, the object is sent the message pri nt_i (), and it selects
its own version of the corresponding method. Thus, the pointer’s base type is not
the determining method (function) selection. Different class objects are processed
by different functions, determined at runtime. Facilities that allow the implementa¬
tion of ADTs, inheritance, and the ability to process objects dynamically are the
essentials of OOP.

Virtual functions and member function overloading cause confusion Consider
the following.

8.3 ▼ Virtual Functions 281

In file virt_err.cpp

class B {
public:

virtual void foo(int);
virtual void foo(double);

};

class D : public B {
public:

void foo(int);

};

int main()

{
D d;
B b, *pb = &d;

b.foo(9);
b.foo(9.5) ;
d.foo(9);
d.foo(9.5) ;
pb -> foo(9);
pb -> foo(9.5);

//selects
//selects
//selects
//selects
//selects
//selects

B::foo(int);
B::foo(double) ;
D::foo(int) ;
D::foo(int);
D::foo(int);
B::foo(double);

The base-class member function B: :foo(int) is overridden, and the base-class
member function B: :foo(double) is hidden in the derived class. In the statement
d. foo(9.5), the doubl e value 9.5 is converted to the integer value 9. We could have
used d.B: : foo(double) to call the hidden member function.

The declaration of an identifier in a scope hides all declarations of that identi¬
fier in outer scopes. A base class is an outer scope of any class derived from it. This
rule is independent of whether the names are declared vi rtual. Access restrictions
(private, protected) are orthogonal to function selection. If the selected function

is inaccessible, that is a compile-time error.
Only nonstatic member functions can be virtual. The virtual characteristic is

inherited. Thus, the derived-class function is automatically virtual, and the presence
of the vi rtual keyword is usually a matter of taste. Constructors cannot be virtual,
but destructors can be. As a rule of thumb, any class having virtual functions

should have a virtual destructor.
Virtual functions allow runtime decisions. Consider a computer-aided design

application in which the area of the shapes in a design has to be computed. The var¬
ious shapes will be derived from the shape base class.

282 Chapter 8 ▼ Inheritance

In file shapel.cpp

class shape {
public:

virtual double area() const { return 0; }
//virtual double area is default behavior

protected:
double x, y;

class rectangle : public shape {
public:

double area() const { return (height * width); }
private:

double height, width;
};

class circle : public shape {
public:

double area() const
{ return (PI * radius * radius);}

private:
double radius;

};

In such a class hierarchy, the derived classes correspond to important, well-under¬
stood types of shapes. The system is readily expanded by deriving further classes.
The area calculation is a local responsibility of a derived class.

Client code that uses the polymorphic area calculation looks like this:

shape* p[N];

for (i =0; i < N; ++i)

tot_area += p[i] -> area() ;

A major advantage here is that the client code will not need to change if new shapes
are added to the system. Change is managed locally and propagated automatically
by the polymorphic character of the client code.

8.4 t Abstract Base Classes 283

8.4 Abstract Base Classes

A type hierarchy usually has its base class contain a number of virtual functions.
They provide for dynamic typing. In the base class, virtual functions are often
dummy functions and have an empty body. In the derived classes, however, virtual
functions will be given specific meanings. In C++, the pure virtual function is intro¬
duced for this purpose. A pure virtual fmiction is one whose body is normally unde¬
fined. Notationally, such a function is declared inside the class, as follows:

virtual function prototype = 0;

The pure virtual function is used to defer the implementation decision of the func¬
tion. In OOP terminology, it is called a deferred method.

A class that has at least one pure virtual function is an abstract class. In a type
hierarchy, it is useful for the base class to be an abstract class. This base class has
the basic common properties of its derived classes but cannot itself be used to
declare objects. Instead, it is used to declare pointers that can access subtype

objects derived from the abstract class.
We will explain this concept while developing a primitive form of ecological sim¬

ulation. OOP was originally developed as a simulation methodology using Simula
67. Hence, many of its ideas are easily understood as an attempt to model a particu¬

lar reality.
The world in our example will have various forms of life interacting, which will

inherit the interface of an abstract base class called 1 ivi ng. Each position in a grid
defined to be the world can either have a life-form or be empty. We shall have foxes
as an archetypal predator, with rabbits as prey. The rabbits will eat grass. Each of
these life-forms will live, reproduce, and die each iteration of the simulation.

In file predator.cpp

//Predator-Prey simulation using class living

const int N = 40; //size of square board
enum state { EMPTY , GRASS , RABBIT , FOX, STATES },
const int DRAB = 3, DFOX = 6, CYCLES = 5;

class living;
typedef living* world[N][N];

//forward declaration

284 Chapter 8 ▼ Inheritance

class living { //what lives in world
public:

virtual state who() = 0;
virtual living* next(world w)

//state identification

protected:
int row, column;
void sums(world w,int sm[]);

//location

};

void living::sums(world w, int sm[])
{

int i, j;

sm[EMPTY] = sm[GRASS] = sm[RABBIT] = sm[FOX] = 0;
for (i = -1; i <= l; ++i)

for (j = -1; j <= 1; ++j)

sm[w[row + i] [column + j] -> who()]++;

There are two pure virtual functions and one ordinary member function, sums().
Virtual functions incur a small added runtime cost over normal member functions.
Therefore, we use virtual functions only when necessary to our implementations.
Our simulation will have rules for deciding who goes on living, based on the popula¬
tions in the neighborhood of a given square. These populations are computed by
sums(). (This is akin to Conway’s “Game of Life” simulation.)

The inheritance hierarchy will be one level deep.

//currently only predator class

class fox : public living {
public:

fox(int r, int c, int a = 0) : age(a)
{ row = r; column = c; }

state who() { return FOX; } //deferred method for foxes
living* next(world w);

protected:

int age, //used to decide on dying

8.4 ▼ Abstract Base Classes 285

//currently only prey class

class rabbit : public living {
public:

rabbit(int r, int c, int a = 0) : age(a)
{ row = r; column = c; }

state who() { return RABBIT; }
living* next(world w);

protected:
int age;

};

//currently only plant life

class grass : public living {

public:
grass(int r, int c) { row = r; column = c; }
state who() { return GRASS; }
living* next (wo rid w) ;

//nothing lives here

class empty : public living {

public:
empty(int r, int c) { row = r; column = c; }
state who() { return EMPTY; }
living* next(world w);

Notice that the design allows other forms of predator, prey, and plant life to be
developed, using a further level of inheritance. The characteristics of how each life-

form behaves are captured in its version of next().
Grass can be eaten by rabbits. If there is more grass than the rabbits in the

neighborhood can eat, the grass remains; otherwise, it is eaten up. (Feel free to sub¬

stitute your own rules, as these are highly limited and artilicial.)

286 Chapter 8 ▼ Inheritance

living* grass::next(world w)
{

int sum[STATES];

sums(w, sum);

if (sum[GRASS] > sum[RABBIT]) //eat grass
return (new grass(row, column));

el se

return (new empty(row, column));

Rabbits die of old age if they exceed a defined limit DRAB; they are eaten if there
are an appropriate number of foxes in the neighborhood.

living* rabbit::next(world w)
{

int sum[STATES];

sums(w, sum);

if (sum[FOX] >= sum[RABBIT]) //eat rabbits
return (new empty(row, column));

else if (age > DRAB) //rabbit is too old
return (new empty(row, column));

el se

return (new rabbit(row, column, age + 1));

Foxes die of overcrowding or old age.

living* fox::next(world w)
{

int sum[STATES];

sums(w, sum);

if (sum[FOX] > 5) //too many foxes
return (new empty(row, column));

else if (age > DFOX) //fox is too old
return (new empty(row, column));

el se

return (new fox(row, column, age + 1));

Empty squares are competed for by the various life-forms.

8.4 ▼ Abstract Base Classes 287

living* empty::next(world w) //how to fill an empty square

{
int sum[STATES];
sums(w, sum);
if (sum[F0X] > 1)

return (new fox(row, column));
else if (sum[RABBIT] > 1)

return (new rabbit(row, column));
else if (sum[GRASS])

return (new grass(row, column));

el se
return (new empty(row, column));

}

The rules in the various versions of next () determine a possibly complex set of
interactions. Of course, to make the simulation more interesting, other behaviors,
such as sexual reproduction, whereby the animals have gender and can mate, could

be simulated.
The array type world is a container for the life-forms. The container will have

the responsibility of creating its current pattern. The container needs to have own¬
ership of the living objects so as to allocate new ones and to delete old ones.

//world is all empty

void init(world w)

{
int i, j;

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

w[i] [j] = new empty(i , j) ;

}

//new world w_new is computed from old world w_old

void update(world w_new, world w_old)

{
int i, j;

for (i = i; i < N - 1; ++i) //borders are taboo

for (j = 1; j < N - 1; ++j)
w_new[i] [j] = w_old[i] [j] -> next(w_old);

}

288 Chapter 8 ▼ Inheritance

//clean world up

void dele(world w)

{
int i, j;

for (i = 1; i < N - 1; ++i)
for (j = 1; j < N - 1; ++j)

delete(w[i][j]);
}

The simulation will have odd and even worlds, which alternate as the basis for
the next cycle’s calculations.

int main()
{

world odd, even;
int i ;

init (odd); init(even);

eden(even); //generate initial world
pr_state(even); //print Garden of Eden state

for (i = 0; i < CYCLES; ++i) { //simulation
if (i % 2) {

update(even, odd);
pr_state(even);
dele(odd);

}
else {

update(odd, even);
pr_state(odd);
dele(even);

}
}

}

We leave as exercises the writing of pr_state() and eden() (see exercise 8 on page
305).

8.5 ▼ Templates and Inheritance 289

8.5 Templates and Inheritance

Templates and inheritance are jointly an extremely powerful reuse technique.
Parameterized types can be reused through inheritance. Such use parallels that of
inheritance in deriving ordinary classes. Templates and inheritance are both mecha¬
nisms for code reuse, and both can involve polymorphism. They are distinct fea¬
tures of C++ and, as such, combine in various forms. A template class can derive
from an ordinary class, an ordinary class can derive from an instantiated template
class, and a template class can derive from a template class. Each of these possibili¬

ties leads to different relationships.
In some situations, templates lead to unacceptable cost in the size of the object

module. Each instantiated template class requires its own compiled object module.
This can be remedied by using a template to inherit the base class.

The derivation of a class from an instantiated template class is basically no dif¬
ferent from ordinary inheritance. In the following example, we reuse stack<char>

as a base class for a safe character stack.

In file stack_t2.cpp

//safe character stack

class safe_char_stack : public stack<char> {

public:
// test push and pop
void push(char c)

{ assert (!ful1()); stack<char>::push(c); }

char pop()
{ assert (iemptyO); return (stack<char>: : popO) ; }

};

The instantiated class stack<char> is generated and reused by safe_char_stack.
This example can be usefully generalized to a template class.

290 Chapter 8 t Inheritance

In file stack_t3.cpp

//parameterized safe stack

template cclass TYPE>
class safe_stack : public stack<TYPE> {
public:

void push(TYPE c)
{ assert (!ful1()); stack<TYPE>::push(c); }

TYPE pop()
{ assert (!empty()); return (stack<TYPE>::pop()); }

};

It is important to notice the linkage between the base class and the derived class.
Both require the same instantiated type. Each pair of base and derived classes is
independent of all other pairs.

8.6 Multiple Inheritance

The examples in the text thus far require only single inheritance; that is, they
require that a class be derived from a single base class. This feature can lead to a
chain of derivations wherein class B is derived from class A, class C is derived from
class B, . . ., and class N is derived from class M. In effect, N ends up being based on
A, B, . .. , M. This chain must not be circular, however; a class cannot have itself as
an ancestor.

Multiple inheritance allows a derived class to be derived from more than one
base class. The syntax of class headers is extended to allow a list of base classes and
their privacy designations. For example,

class student {

};

class worker {

};

class student_worker: public student, public worker {

8.6 ▼ Multiple Inheritance 291

In this example, the derived class student_worker publicly inherits the members
of both base classes. This parental relationship is described by the inheritance
directed acyclic graph (DAG). The DAG is a graph structure whose nodes are classes
and whose directed edges point from base to derived class. To be legal, a DAG can¬
not be circular; thus, no class may, through its inheritance chain, inherit from itself.

When identically named members are derived from different classes, ambigu¬
ities may arise. These derivations are allowed, provided the user does not make an
ambiguous reference to such a member. For example,

class worker {
public:

const int soc_sec;
const char* name;

>;

class student {
public:

const char* name;

};

class student_worker: public student, public
public:

void print() { cout « "ssn: " « soc_sec
cout « name; . }

worker {

« "\n" ;
//error

};

In the body of student_worker: : pri nt (), the reference to soc_sec is fine, but the
reference to name is inherently ambiguous. The problem can be resolved by prop¬
erly qualifying name, using the scope resolution operator.

With multiple inheritance, two base classes can be derived from a common
ancestor. If both base classes are used in the ordinary way by their derived class, it
will have two subobjects of the common ancestor. If this duplication is not desir¬
able, it can be eliminated, using virtual inheritance. An example is

class student: virtual public person {

292 Chapter 8 ▼ Inheritance

class worker: virtual public person {

};

class student_worker: public student, public worker {

};

Multiple Inheritance

Without the use of vi rtual in this example, class student_worker would have
objects of class student: :person and cl ass worker: :person. The order of
execution for initializing constructors in base and member constructors is given in
the following list.

Constructor Execution Order

1. Base classes initialized in declaration order

2. Members initialized in declaration order

3. The body of the constructor

Virtual base classes are constructed before any of their derived classes and
before any nonvirtual base classes. Construction order depends on their DAG. It is a
depth-first, left-to-right order. Destructors are invoked in the reverse order of con¬
structors. These rules, although complicated, are intuitive.

On many systems, a concrete example of multiple inheritance can be found in
the iostream library. This library contains the class iostream, which can be derived
from i stream and ostream. However, it is an interesting comment on multiple
inheritance that more recent implementations have gone back to single-inheritance
designs.

8.7 ▼ Inheritance and Design 293

8.7 Inheritance and Design

At one level, inheritance is a code-sharing technique. At another level, it reflects an
understanding of the problem and relationships between parts of the problem
space. Much of public inheritance is the expression of an is-a relationship between
the base and derived classes. The rectangle is a shape. This is the conceptual under¬
pinning for making shape a superclass and allowing the behavior described by its
public member functions to be interpretable on objects within its type hierarchy. In
other words, subclasses derived from the superclass share its interface.

A design cannot be specified in a completely optimal way. Design involves
trade-offs between the various objectives one wishes to achieve. For example, gener¬
ality is frequently at odds with efficiency. Using a class hierarchy that expresses is-a
relationships increases our effort to understand how to compartmentalize coding
relationships and potentially introduces coding inefficiencies by having various lay¬
ers of access to the (hidden) state description of an object. However, a reasonable
is-a decomposition can simplify the overall coding process. For example, a shape¬
drawing package need not anticipate shapes that might be added in the future.
Through inheritance, the class developer imports the base-class “shape” interface
and provides code that implements operations, such as “draw.” What is primitive or
shared remains unchanged. Also unchanged is the client’s use of the package.

An undue amount of decomposition imposes its own complexity and ends up
being self-defeating. There is a granularity decision, whereby highly specialized
classes do not provide enough benefit and are better folded into a larger concept.

Single inheritance (SI) conforms to a hierarchical decomposition of the key
objects in the domain of discourse. Multiple inheritance (MI) is more troubling as a
modeling or problem-solving concept. In MI, the new object is composed of several
preexisting objects and is usefully thought of as a form of each. The term mixin is
used to mean a class composed using MI, with each base class orthogonal. Much of
the time, there is an alternative has-a formulation. For example, is a vampire bat a
mammal that happens to fly, a flying machine that happens to be a mammal, or
both a flying machine and a mammal? Depending on what code is available, devel¬
oping a proper class for vampire bat might involve an MI derivation or an SI with

appropriate has-a members.
MI presents problems for the type theorist: student might be derived from per¬

son, and employee might be derived from person. But what about a student-
employee? Generally, types are best understood as SI chains.

None of this diminishes the attraction of MI as a code-reuse technique. It is
clearly a powerful generalization of SI. As such, it probably fits in with the style of
some programmers. Just as some programmers prefer iteration to recursion, some

prefer SI and aggregation to MI and composition.

294 Chapter 8 t Inheritance

8.7.1 Subtyping Form

ADTs are successful insofar as they behave like native types. Native types, such as
the integer types in C, act as a subtype hierarchy. This is a useful model for publicly
derived type hierarchies and promotes ease of use through polymorphism. Here is a
recipe for building such a type hierarchy. The base class is made abstract and is
used for interface inheritance. The derived classes will implement this interface
concretely.

class Abstract_Base {
public:

//interface - largely virtual
Abstract_Base(); //default constructor
Abstract_Base(const Abstract_Base&); //copy constructor
virtual ~Abstract_Base() = 0; //pure virtual

protected:
//used in place of private because of inheritance

private:

//often empty - else it constrains future designs

};

class Derived: virtual public Abstract_Base {
public:

//Concrete instance

DerivedO; //default constructor
Derived(const Derived&); //copy constructor
-DerivedO; //destructor
Derived& operator=(const Derived&); //assignment

protected:

//used in place of private if inheritance expected

private:

//used for implementation details

8.8 ▼ Runtime Type Identification 295

It is usual to leave the base class of the hierarchy abstract, yielding the most
flexible design. Generally, no concrete implementation is developed at this point. By
using pure virtual functions, we are precluded from declaring objects of this type.
Notice that the ~Abstract_Base() function is pure. This level of the design focuses
on public interface. These are the operations expected of any subtype in the hierar¬
chy. In general, basic constructors are expected and may not be virtual. Also, most
useful aggregates require an explicit definition of assignment that differs from
default assignment semantics. The destructor is virtual because response must be
at runtime and is dependent on the object’s size, which can vary across the hierar¬
chy. Finally, virtual public inheritance ensures that in MI schemes, we will not have
multiple copies of the abstract base class.

8.7.2 Code Reuse

Private inheritance does not have a subtype, or is-a relationship. In private inheri¬
tance, we reuse a base class for its code. We will call private derivation a like-a rela¬
tionship, or implementation inheritance, as opposed to interface inheritance. The
like-a relationship comes in handy when diagramming the class relationships in a
complicated software system. Because private and protected inheritance do not cre¬
ate type hierarchies, they have more limited utility than does public inheritance. In a
first pass in understanding these concepts, nonpublic inheritance can be skipped.

Code reuse is often all you want from inheritance. The template methodology is
simpler and more runtime efficient; it is simpler because instantiation requires only
a single type placed in the template declaration. In inheritance, we need to derive
the whole interface, substituting appropriate types. It is more runtime efficient
because it often avoids indirection. Inheritance allows special cases to be developed
for each type, if necessary; it does not lead to large object-code modules. Remem¬
ber, each template instantiation is compiled to object code.

8.8 Runtime Type Identification

Runtime type identification (RTTI) provides a mechanism for safely determining the
type pointed at by a base-class pointer at runtime. This mechanism involves
dynami c_cast, an operator on a base-class pointer; typeid, an operator for deter¬
mining the type of an object; and type_i nfo, a structure providing runtime infor¬
mation for the associated type. The dynami c_cast operator has the form

dynamic_cast< type >(v)

296 Chapter 8 ▼ Inheritance

where type must be a pointer or reference to a class type and v must be a corre¬
sponding pointer value or reference value.

This cast, used with classes having virtual functions, is implemented as follows:

class Base { virtual void foo(); . };
class Derived : public Base { . };

void fcn(Base* ptr)

{
Derived* dptr = dynamic_cast<Derived*>(ptr);

}

In this example, the cast converts the pointer value ptr to a Derived*. If the con¬
version is inappropriate, a value of 0, the NULL pointer, is returned. This is called a
downcast. Dynamic casts also work with reference types.

The operator typeid() can be applied to a typename or to an expression to
determine the exact type of the argument. The operator returns a reference to the
class type_i nfo, which is supplied by the system and is defined in the header file
typeinfo (some compilers use type_info). The class type_i nfo provides both a
name() member function that returns a string that is the type name and overloaded
equality operators. Remember to check the local implementation for the complete
interface of this class.

In file typeid.cpp

Base* bptr;

//print the type name of what bptr currently points at
cout « typeid(bptr).name() « endl;

if (typeid(bptr) == typeid(Derived)) {
//do something appropriate for Derived

}

Bad dynamic casts and typei d operations can be made to throw the exceptions
bad_cast and bad_typeid, so the user can choose between dealing with the NULL
pointer or catching an exception. (See Section 9.9, “Standard Exceptions and Their
Uses,” on page 318.)

8.9 ▼ Pragmatics 297

8.9 Pragmatics

A difficulty in learning C++ is the many distinctions and rules pertaining to the use
of functions. We have now described most of the extensions and shall mention
some of the distinctions.

Function Use in C++

■ A virtual function and its derived instances having the same signature must
have the same return type, with some minor exceptions. The virtual function
redefinition is called overriding. Notice that nonvirtual member functions
with the same signature can have different return types in derived classes.
(See exercise 6 on page 304.)

■ All member functions except constructors and overloaded new and del ete
can be virtual.

■ Constructors, destructors, overloaded operator^ and friends are not inher¬

ited.

■ The operators =, (), [], and -> can be overloaded only with nonstatic mem¬
ber functions. Conversion functions that are operator typeO must also be
done only with nonstatic member functions. Overloading operators new and
delete can be done only with static member functions. Other overloadable
operators can be done with friend, member, or ordinary functions.

■ A union may have constructors and destructors but not virtual functions. It
can neither serve as a base class nor have a base class. Members of a union
cannot require constructors or destructors.

■ Access modification is possible, but using it with public inheritance destroys
the subtype relationship. Access modification cannot broaden visibility. For

example,

298 Chapter 8 ▼ Inheritance

In file acc_mod.cpp

//Access modification

class B {
public:

int k;
protected:

int j, n;
private:

i nt i;

};

class D : public B {
public:

int m;
B::n; //illegal protected access can't be

private:

B::j; //otherwise default is protected
};

broadened

8.10 Moving from C++ to Java

Like C++, Java has the inheritance mechanism, which extends a new class from an
existing one, although Java does not have multiple inheritance and uses different
terminology with respect to inheritance. The Java base class is called the superclass.
The extended class adds to or alters the inherited superclass methods. This is used
to share interface and to create a hierarchy of related types.

Consider designing a data base for a college. The registrar must track various
types of students. The superclass we start with will be Personl. This class will be
identical to Person in Section 5.13, “Moving from C++ to Java,” on page 186, except
that the private instance variables will be changed to have access protected. This
access allows their use in the subclass but otherwise acts like private.

Here is an example of deriving a class:

8.10 t Moving from C++to Java 299

// Note Personl is Person with private instance variables
// made protected

class Student extends Personl {
private String college;
private byte year; //I = fr, 2 = so, S = jr, 4 = sr
private double gpa; //0.0 to 4.0
public void assignCollege(String nm) { college = nm; }
public void assignYear(byte a) { year = a; }
public void assignGpa(double g) { gpa = g; }
public String toStringO

{ return (super.toStri ng() + " College is " + college); }
public StudentO

{super.assignName("Unknown"); college = "Unknown";}
public Student(String nm)

{ super(nm); college = "Unknown"; }
public Student(String nm, int a, char b)

{ name =nm; age =a; gender = b; }

In this example, Student is the subclass, and Personl is the superclass. Notice the
use of the keyword super, which provides a means of accessing the instance vari¬
ables or methods found in the superclass.

The inheritance structure provides a design for the overall system. The super¬
class Personl leads to a design whereby the subclass Student is derived from it.
Other subclasses, such as CradStudent or Employee, could be added to this inher¬
itance hierarchy.

In Java, polymorphism comes from both method overloading and method over¬
riding. Overriding occurs when a method is redefined in the subclass. The
toStri ng() method is in Personl and is redefined in Student extended from

Personl.

//Overriding the printNameO method
class Personl {

protected String name;
protected int age;
protected char gender; //male == 'M' , female == 'F'

public toStringO {
return(name + " age is " + age +

" sex is " + (gender == 'F' ? "F": "M"));

}

300 Chapter 8 ▼ Inheritance

class Student extends Personl {
private String college;
private byte year;
private double gpa; //0.0 to 4.0
public toStringO

{ return(super.toString() + " College is " + college); }

};

The overridden method toStri ng() has the same name and signature in both the
superclass Personl and the subclass Student. Which one gets selected depends on
what is being referenced at runtime. For example,

//StudentTest.java use Personl

public class StudentTest {
public static void main (String[] args)

{
Personl ql;
ql = new Student();
ql.assignName("Charies Babbage");
System.out.println(ql.toString());
ql = new Personl();
ql.assignName("Charles Babbage");
System.out.println(ql.toString());

}
}

The variable ql can refer to either Personl object or the subtype Student object.
At runtime, the correct toStringO will be selected. The assignName() method is
known at compile time, since it is the superclass Personl method.

▼ Summary 301

Summary

1. Inheritance is the mechanism of deriving a new class from old ones. That is, the
existing classes can be added to or altered to create the derived class. Through
inheritance, a hierarchy of related, code-sharing ADTs can be created.

2. A class can be derived from an existing class, using the form

class class-name : (publ i c | protected | private) optbase-name

{
member declarations

};

As usual, the keyword cl ass can be replaced by the keyword struct, with the
usual implication that members are by default publ i c.

3. The keywords publ i c, private, and protected are available as visibility modi¬
fiers for class members. A public member is visible throughout its scope. A pri¬
vate member is visible to other member functions within its own class and to
friend functions. A protected member is visible to other member functions
within its class, within friend functions, and within any class immediately
derived from it. These visibility modifiers can be used within a class declaration

in any order and with any frequency.

4. The derived class has its own constructors, which will invoke the base-class con¬
structor. A special syntax is used to pass arguments from the derived-class con¬
structor back to the base-class constructor:

function header : base-classname (argument list)

5. A publicly derived class is a subtype of its base class. A variable of the derived
class can in many ways be treated as if it were the base-class type. A pointer
whose type is pointer to base class can point to objects of the publicly derived

class type.

6. A reference to the derived class may be implicitly converted to a reference to
the public base class. It is possible to declare a reference to a base class and to
initialize it to a reference to an object of the publicly derived class.

7. The keyword vi rtual is a function specifier that provides a mechanism to
dynamically select at runtime the appropriate member function from among

302 Chapter 8 ▼ Inheritance

base- and derived-class functions. This specifier may be used only to modify
member function declarations. This is called overriding. This ability to dynami¬
cally select a routine appropriate to an object’s type is a form of polymorphism.

8. Inheritance provides for code reuse. The derived class inherits the base-class
code and typically modifies and extends the base class. Public inheritance also
creates a type hierarchy, allowing further generality by providing additional
implicit type conversions. Also, at a runtime cost, it allows for runtime selection
of overridden virtual functions. Facilities that allow the implementation of
ADTs, inheritance, and the ability to process objects dynamically are the essen¬
tials of OOP.

9. A pure virtual function is a virtual member function whose body is normally
undefined. Notationally, a pure virtual function is declared inside the class, as
follows:

vi rtual function prototype = 0;

The pure virtual function is used to defer the implementation decision of the
function. In OOP terminology, it is called a deferred method. A class that has at
least one pure virtual function is an abstract class. It is useful for the base class
in a type hierarchy to be an abstract class. As such, the base class would define
the interface for its derived classes but cannot itself be used to declare objects.

Review Questions

1. In cl ass X : Y { . . . }, X is a_class and Y is a_class.

2. True or false: If D inherits from B privately, D is a subtype of B.

3. The term overriding refers to_functions.

4. An abstract base class contains a_.

5. The sub typing relationship is called the_.

6. True or false: Template classes cannot be base classes.

t Exercises 303

7. What is wrong with the following?

class A:B{...}; class class C:A{...};

8. In multiple inheritance, why is virtual inheritance used?

9. The class type_i nfo provides a name() member function that_•

10. True or false: Constructors, destructors, overloaded operator^ and friends are
not inherited.

Exercises

1. For student and grad_student code, input member functions that read input
for each data member in their classes. (See Section 8.1, “A Derived Class,” on
page 275.) Use student: : read to implement grad_student: : read.

2. Pointer conversions, scope resolution, and explicit casting create a wide selec¬
tion of possibilities. Using main(), discussed in Section 8.2, “Typing Conver¬
sions and Visibility,” on page 277, which of the following work, and what is

printed?

reinterpret_cast<grad_student *>(ps) -> print();

dynamic_cast<student *>(pgs) -> printO;
pgs -> student:: printO ;
ps -> grad_student: :printO ;

Print out and explain the results.

3. Modify class D in Section 8.3, “Virtual Functions,” on page 280, to be

class D2 : private B {

public:
//access modification

void print_i()

cout « i « " inside D2 and B::i is
« B::i « endl;

}
};

304 Chapter 8 ▼ Inheritance

What is changed in the output from that program?

4. Derive an integer vector class from the STL class vector<int> that has 1 as
its first index value and n as its last index value.

int_vector x(n); //vector whose range is 1 to n

5. Generalize the previous exercise by deriving a template class that creates the
index range 1 to n.

vec_l<double> x(n); //vector whose range is 1 to n

6. For the following program, explain when both overriding and overloading take
place.

class B {
public:

BCint j = 0) : i(j) {}
virtual void print() const

{ cout « " i = " « i « endl; }
void print(char *s) const

{ cout « s « i « endl; }
private:

int i ;

};

class D : public B {
public:

D(int j = 0) : B(5), i(j) {}
void print() const

{ cout « " i = " « i « endl; }
int print(char *s) const

{ cout « s « i « endl;
private:

int i;

};

return i; }

▼ Exercises 305

int main()

{
B bl, b2(10), *pb;
D dl, d2(10), *pd = &d2;

bl.printO; b2.print(); dl.print(); d2.print();
bl.print("bl.i = "); b2.print("b2.i = ");
dl.print("dl.i = "); d2.print("d2.i = ");
pb = pd;
pb -> print(); pb -> print("d2.i = ");
pd -> printQ; pd -> print("d2.i = ");

7. Define a base class person that will contain universal information, including
name, address, birth date, and gender. Derive from this class the following
classes:

class student : virtual public person {
// . relevant additional state and behavior

};

class worker : virtual public person {
// . relevant additional state and behavior

};

class student_worker : public student,public worker {

// .
};

Write a program that reads a file of information and creates a list of persons.
Process the list to create, in sorted order by last name, a list of all people, a list
of people who are students, a list of people who are employees, and a list of
people who are student-employees. On your system, can you easily produce a
list in sorted order of all students who are not employees?

8. (Project) Design and implement a graphical user interface (GUI) for the predator-
prey simulation. It is beyond the scope of this book to describe various available
GUI toolkits. The Interviews package works on top of X and is written in C++.
The program should draw each iteration of the simulation on the screen. You
should be able to directly input a “Garden of Eden” starting position. (See Sec¬
tion 8.4, “Abstract Base Classes,” on page 283, for the game-of-life simulation.)
You should also be able to provide other settings for the simulation, such as the
size of the simulation. Can you allow the user to define other life-forms and

306 Chapter 8 ▼ Inheritance

their rules for existing, eating, and reproducing? Make the graphical interface as
elegant as possible. The user should be able to position it on the screen, resize
it, and select icons for the various available life-forms.

9. (Java) Add GraduateStudent to the Java class hierarchy in Section 8.10, “Mov¬
ing from C++ to Java,” on page 300. Note how Java uses capitalization instead of
an underscore to separate words in an identifier. This is stylistic. C++ derives its
heritage directly from C and adopted C style. Java has a SmallTalk influence and
has styles adopted from that culture.

10. (Java) Develop the Java version of the shape hierarchy in Section 8.3, “Virtual
Functions,” on page 282.

11. (Java) Develop the predator-prey simulation in Java, using the awt library to
provide a graphical interface. (See Section 8.4, “Abstract Base Classes,” on page
283 for the predator-prey C++ simulation.) This is one area that Java excels in.
Section 10.6, “Moving from C++ to Java,” on page 336, has some discussion of
Java awt.

pter 9

eptions

This chapter describes exception handling in C++. Exceptions are generally unex¬
pected error conditions. Normally, these conditions terminate the user program
with a system-provided error message. An example is floating-point divide-by-zero.
Usually, the system aborts the running program. C++ allows the programmer to
attempt to recover from these conditions and to continue program execution.

Assertions are program checks that force error exits when correctness is vio¬
lated. One point of view is that an exception is based on a breakdown of a contrac¬
tual guarantee among the provider of a code, the code’s manufacturer, and the
code’s client. (See Section 10.1.1, “ADTs: Encapsulation and Data Hiding,” on page
328.) In this model, the client needs to guarantee that the conditions for applying
the code exist, and the manufacturer needs to guarantee that the code will work cor¬
rectly under these conditions. In this methodology, assertions provide the various

guarantees.

9.1 Using the assert Library

Program correctness can be viewed in part as a proof that the computation termi¬
nated with correct output, dependent on correct input. The user of the computation
had the responsibility of providing correct input. This was a precondition. The com¬
putation, if successful, satisfied a postcondition. Providing a fully formal proof of
correctness is an ideal but is not usually done. Nevertheless, such assertions can be
monitored at runtime to provide very useful diagnostics. Indeed, the discipline of
thinking out appropriate assertions frequently causes the programmer to avoid

bugs and pitfalls.
The C and C++ communities are increasingly emphasizing the use of assertions.

The standard library assert provides a macro, assert, which is invoked as though

its function signature were

void assert(bool expression)]

If the expression evaluates as fal se, execution is aborted with diagnostic output.

The assertions are discarded if the macro NDEBUG is defined.

308 Chapter 9 t Exceptions

Consider allocation to our safe array type dbl_vect in Section 5.5, “The Class
db1_vect,” on page 163.

dbl_vect::dbl_vect(int n) : size(n)
{

assert(n > 0);
p = new intfsize];
assert(p != 0);

}

The use of assertions replaces the ad hoc use of conditional tests with a more uni¬
form methodology. This is better practice. The downside is that the assertion meth¬
odology does not allow a retry or other repair strategy to continue program
execution. Also, assertions do not allow a customized error message, although it
would be easy to add this capability.

It is possible to make this scheme slightly more sophisticated by providing vari¬
ous testing levels, as are found in the Borland C++ checks library. Under this pack¬
age, the flag _DEBUG can be set to

_DEBUG 0 no testing
_DEBUG 1 PRECONDITION tests only
_DEBUG 2 CHECK tests also

The idea is that once the library functions are thought to be correct, the level of
checking is reduced to testing preconditions only. Once the client code is debugged,
all testing can be suspended.

9.2 C++ Exceptions

C++ introduces a context-sensitive exception-handling mechanism. It is not
intended to handle the asynchronous exceptions defined in signal, such as S IGF PE,
which indicates a floating-point exception. The context for handling an exception is
a try block. Handlers are declared at the end of a try block, using the keyword
catch.

C++ code can raise an exception in a try block by using the throw expression.
The exception is handled by invoking an appropriate handler selected from a list
found at the end of the handler’s try block. An example of this follows.

9.3 ▼ Throwing Exceptions 309

In file dbl_vect4.cpp

dbl_vect::dbl_vect(int n): size(n)

{
if (n < 1) //l) //precondition assertion

throw (n);
p = new int [n];
if (p == 0) //postcondition assertion

throw ("FREE STORE EXHAUSTED");

}

void g(int n)

{
try {

dbl_vect a(n), b(n);

}
catch(int n) {.} //catches incorrect size
catch(const char* error) {.} //catches no free store

}

The first throw() has an integer argument and matches the catch(i nt n) signa¬
ture. This handler is expected to perform an appropriate action where an incorrect
array size has been passed as an argument to the constructor. For example, an error
message and abort are normal. The second throw() has a pointer to character argu¬
ment and matches the catch (const char* error) signature.

9.3 Throwing Exceptions

Syntactically, throw expressions come in two forms:

throw expression
throw

The throw expression raises an exception. The innermost try block in which an
exception is raised is used to select the catch statement that processes the excep
tion. The throw with no argument can be used inside a catch to rethrow the current
exception. This throw is typically used when you want a second handler called from

the first handler to further process the exception.

310 Chapter 9 ▼ Exceptions

The expression thrown is a static temporary object that persists until exception
handling is exited. The expression is caught by a handler that may use this value, as
follows:

In file throwl.cpp

void foo()

{
int i;

//will illustrate how an exception is thrown
i = -15;
throw i;

}

int main()

{
try {

foo() ;

}
catch (int n)

{ cerr « "exception caught\n " « n « endl ; }
}

The integer value thrown by throw i persists until the handler with the integer sig¬
nature catch(int n) exits. This value is available for use within the handler as its
argument.

When a nested function throws an exception, the process stack is “unwound”
until an exception handler is found. This means that block exit from each termi¬
nated local process causes automatic objects to be destroyed.

In file throw2.cpp

void fooO

{

}

int i, j;

throw i;

9.3 ▼ Throwing Exceptions 311

void call_foo()

{
i nt k;

foo();

}

int main()

{
try {

call_foo(); //foo exits with i and j destroyed

}
catch (int n) { . }

}

9.3.1 Rethrown Exceptions

Using throw without an expression rethrows a caught exception. The catch that
rethrows the exception cannot complete the handling of the existing exception. This
catch passes control to the nearest surrounding try block, where a handler capable
of catching the still existing exception is invoked. The exception expression exists
until all handling is completed. Control resumes after the outermost try block that

last handled the rethrown expression.
An example of rethrowing of an exception follows.

void foo()

{
try {

throw i;

}
catch(int n)

{
if (i > 0) //handle

return;

}
else { //handle

throw; //rethrown

}
}

for positive values here

i <= 0 partially

312 Chapter 9 ▼ Exceptions

Assuming that the thrown expression was of integer type, the rethrown exception is
the same persistent integer object that is handled by the nearest handler suitable
for that type.

9.3.2 Exception Expressions

Conceptually, the thrown expression “passes” information to the handlers. Fre¬
quently, the handlers will not need this information. For example, a handler that
prints a message and aborts needs no information from its environment. However,
the user might want additional information printed so that it can be used to select
or to help decide the handler’s action. In this case, it is appropriate to package the
information as an object.

class dbl_vect_error {
private:

enum error { bounds,
int ub, index, size;

public:

dbl_vect_error(error,
dbl_vect_error(error,

};

Now, throwing an expression using an object of type dbl_vect_error can be more
informative to a handler than just throwing expressions of simple types.

heap, other } e_type;

int, int); //out of bounds
int); //out of memory

throw dbl_vect_error(bounds, i, ub);

9.4 ▼ Try Blocks 313

9.4 Try Blocks

Syntactically, a try block has the form

try
compound statement
handler list

The try block is the context for deciding which handlers are invoked on a raised
exception. The order in which handlers are defined determines the order in which a
handler for a raised exception of matching type will be tried.

try {

throw ("SOS");

io_condition eof (argvfi]) ;

throw (eof);

}

catch(const char*) {.}
catch(io_condition& x) {.}

Conditions Under Which Throw Expression Matches the Catch Handler Type

■ An exact match

■ A derived type of the public base-class handler type

■ A thrown object type that is convertible to a pointer type that is the catch

argument

It is an error to list handlers in an order that prevents them from being called. For

example,

catch(void*) //any char* would match

catch(char*)
catch(BaseTypeError&)
catch(DerivedTypeError&)

//always on DerivedTypeError

314 Chapter 9 ▼ Exceptions

A try block can be nested. If no matching handler is available in the immediate try
block, a handler is selected from its immediately surrounding try block. If no
handler that matches can be found, a default behavior is used. This is by default
terminateQ (see Section 9.7, “termi nateQ and unexpectedQ,” on page 315).

9.5 Handlers

Syntactically, a handler has the form

catch (formal argument)
compound statement

The catch looks like a function declaration of one argument without a return type.

In file catch.cpp

catch(char* message)
{

cerr « message « endl;
exit(l);

}

catch(...) //default action to be taken
{

cerr « "THAT'S ALL FOLKS." « endl;
abort();

}

An ellipsis signature matching any argument type is allowed. Also, the formal argu¬
ment can be an abstract declaration. In other words, it can have type information
without a variable name.

The handler is invoked by an appropriate throw expression. At that point the
try block is exited. The system calls clean-up functions that include destructors for
any objects that were local to the try block. A partially constructed object will have
destructors invoked on any parts of it that are constructed subobjects The program
resumes at the statement after the try block.

9.6 ▼ Exception Specification 315

9.6 Exception Specification

Syntactically, an exception specification is part of a function declaration or a func¬

tion definition and has the form

function header throw ftypelist)

The type list is the list of types that a throw expression within the function can have.
The function definition and the function declaration must write out the exception

specification identically.
If the list is empty, the compiler may assume that no throw will be executed by

the function, either directly or indirectly.

void foo() throw(int, over_flow);
void noex(int i) throw();

If an exception specification is left off, the assumption is that an arbitrary exception
can be thrown by such a function. Violations of these specifications are runtime

errors and are caught by the function unexpected().

9.7 terminateO and unexpected)

The system-provided function termi nate() is called when no handler has been
provided to deal with an exception. The abort () function, called by default, imme¬
diately terminates the program, returning control to the operating system. Another
action can be specified by using set_termi nate() to provide a handler. These dec¬

larations are found in the except library.
The system-provided handler unexpectedO is called when a function throws

an exception that was not in its exception-specification list. By default, the
terminateO function is called; otherwise, a set.unexpectedO can be used to

provide a handler.

316 Chapter 9 t Exceptions

9.8 Example Exception Code

In this section, we discuss some examples of exception code and their effects. Let us
return to catching a size error in our dbl_vect constructor from Section 6.7, “Over¬
loading Assignment and Subscripting Operators,” on page 210.

In file dbl_vect4.cpp

dbl_vect::dbl_vect(int n): size(n)
{

if (n < 1) //precondition assertion
throw (n);

p = new int [n];

if (p == 0) //postcondition assertion
throw ("FREE STORE EXHAUSTED");

}

void g(int m)

{
try {

dbl_vect a(m);

//retry g with
//legal size

catch(const char* error)
{

cerr « error « endl;
abort();

}
}

catch(int n)
{

cerr « "SIZE ERROR
9(10);

}

« n « endl;

9.8 ▼ Example Exception Code 317

The handler has replaced an illegal value with a default legal value. This may be rea¬
sonable in a system’s debugging phase, when many routines are being integrated
and tested. The system attempts to provide further diagnostics. It is analogous to a
compiler’s attempt to continue to parse an incorrect program after a syntax error.
Frequently, the compiler provides additional error messages that prove useful.

The preceding constructor checks that only one variable has a legal value. It
looks artificial in that it replaces code that could directly replace the illegal value
with a default by throwing an exception and allowing the handler to repair the
value. Elowever, in this form, the separation of what is an error and how it is han¬
dled is clear. It is a clear methodology for developing fault-tolerant code.

More generally, one could have an object’s constructor look like the following:

Object: : Object (arguments)

{ '

if (illegal argumentl)
throw expressionl;

if (illegal argument2)
throw expression2;

//attempt to construct

}

The Object constructor now provides a set of thrown expressions for an illegal
state. The try block can now use the information to repair or to abort incorrect code.

try {

//. fault-tolerant code

}
catch {declaration!) { /*
catch (declaration) { /*

fixup this case */ }
fixup this case */ }

catch (declarationK) {
//correct or repaired -

/* fixup this
state values

case */ }
are now legal

When many distinct error conditions are useful for the state of a given object, a
class hierarchy can be used to create a selection of related types to be used as throw

expressions.

318 Chapter 9 ▼ Exceptions

Object_Error {
public:

Obj ect_Er r or (arguments) ; //capture useful info
members that contain throwm expression state
virtual void repair()

{ cerr « "Repair failed in Object " « endl;
abort(): }

};

Object_Error_Sl : public Object_Error {
public:

Object_Error_Sl(arguments) ;
added members that contain thrown expression state
void repairQ; //override to provide repair

. //other derived error classes as needed

These hierarchies allow an appropriately ordered set of catches to handle excep¬
tions in a logical sequence. Recall that a base-class type should come after a
derived-class type in the list of catch declarations.

9.9 Standard Exceptions and Their Uses

C++ compilers and library vendors provide standard exceptions. For example, the
exception type bad_al loc is thrown by the ANSII compiler if the new operator fails
to return with storage from free store. The bad_al loc exception is in the except
library.

Here is a program that lets you test this behavior on the Borland compiler.

9.9 ▼ Standard Exceptions and Their Uses 319

In file except.cpp

int main()

{
int *p, n;

try {
while (true) {

cout « "enter allocation request:" « endl;
cin » n;
p = new int [n] ;

}
}
catch(bad_alloc x) { cout « "bad_alloc caught" « endl; }
catch(...) { cout « "default catch" « endl; }

}

This program loops until it is interrupted by an exception. On our system, a request
for 1 billion integers will invoke the bad_alloc handler. In some systems, the
exception class xal 1 oc is provided for this purpose.

A frequent use of standard exceptions is in testing casts. The standard excep¬
tion bad_cast is declared in file exception. The following program uses the typeinfo
and stdexception libraries. The program also uses RTTI, as well as the bad_cast

exception.

In file bad_cast.cpp

class A {
public:

virtual void foo() { cout « "in A" « endl; }

};

class B: public A {
public:

void foo() { cout « "in B" « endl; }

};

320 Chapter 9 ▼ Exceptions

int main()

{
try {

A a, *pa; B b, *pb;
pa = &b;
pb = dynamic_cast<B*>(pa); //succeeds
pb -> foo();
pa = &a;

pb = dynamic_cast<B*>(pa); //fails
pb -> foo();

}
catch(bad_cast) { cout « "dynamic_cast failed" « endl; }

}

In systems that do not throw these exceptions, the pointer should be tested with an
assertion to see that it is not converted to 0.

The standard library exceptions are derived from the base-class exception.
Two derived classes are logic_error and runtime_error. Logic-error types
include bad_cast, out_of_range, and bad_typeid, which are intended to be
thrown as indicated by their names. The runtime error types include range_error,
ove rf 1 ow_er ror, and bad_al 1 oc.

The base class defines a virtual function.

virtual const char* exception::what() const throw();

This member function should be defined in each derived class to give more helpful
messages. The empty throw-specification list indicates that the function should not
itself throw an exception.

9.10 Pragmatics

Paradoxically, error recovery is concerned chiefly with writing correct programs.
Exception handling is about error recovery. Exception handling is also a transfer-of-
control mechanism. The client/manufacturer model gives the manufacturer the
responsibility of making software that produces correct output, given acceptable
input. The question for the manufacturer is how much error detection and, conceiv¬
ably, correction should be built in. The client is often better served by fault-detect¬
ing libraries, which can be used in deciding whether to attempt to continue the
computation.

9.11 ▼ Moving from C++ to Java 321

Error recovery is based on the transfer of control. Undisciplined transfer of con¬
trol leads to chaos. In error recovery, one assumes that an exceptional condition has
corrupted the computation, making it dangerous to continue. It is analogous to driv¬
ing a car after realizing that the steering mechanism is damaged. Useful exception
handling is the disciplined recovery when damage occurs.

In most cases, programming that raises exceptions should print a diagnostic
message and gracefully terminate. Special forms of processing, such as real-time
processing and fault-tolerant computing, require that the system not go down. In
these cases, heroic attempts at repair are legitimate.

What can be agreed on is that classes can usefully be provided with error condi¬
tions. In many of these conditions, the object has member values in illegal states—
values it is not allowed to have. The system raises an exception for these cases, with
the default action being program termination. This is analogous to the native types
raising system-defined exceptions, such as SIGFPE.

But what kind of intervention is reasonable to keep the program running? And
where should the flow of control be returned? C++ uses a termination model that
forces the current try block to terminate. Under this regime, one will either retry the
code or ignore or substitute a default result and continue. Retrying the code seems
most likely to give a correct result.

Code is usually too thinly commented. It is difficult to imagine the program that
would be too rich in assertions. Assertions and simple throws and catches that ter¬
minate the computation are parallel techniques. A well-thought-out set of error con¬
ditions detectable by the user of an ADT is an important part of a good design. An
overreliance on exception handling in normal programming, beyond error detection
and termination, is a sign that a program was ill-conceived, with too many holes, in
its original form.

9.11 Moving from C++ to Java

Java has an exception-handling mechanism that is integral to the language and is
heavily used for error detection at runtime. The mechanism is similar to the one
found in C++. An exception is thrown by a method when it detects an error condi¬
tion. The exception will be handled by invoking an appropriate handler selected
from a list of handlers, or catches. These explicit catches occur at the end of an
enclosing try block. An uncaught exception is handled by a default Java handler
that issues a message and terminates the program. An exception is itself an object,
which must be derived from the superclass Throwable.

As a simple example of all this, we will add an exception NoSuchNameExcepti on
to our Personl example class in Section 8.10, “Moving from C++ to Java,” on page

300.

322 Chapter 9 ▼ Exceptions

class NoSuchNameException extends Exception {
public String str() { return name; }
public String name;
NoSuchNameException(String p) { name = p; }

The purpose of this exception is to report an incorrect or improperly formed name.
In many cases, exceptions act as assertions would in the C language. These excep¬
tions determine whether an illegal action has occurred and report it. We now modify
the Person code to take advantage of the exception.

In file Person2.java

//Person2.class: Person with exceptions added

class Person2 {
private String name;
public Person2(String p)throws NoSuchNameException{

if (p == "")
throw new NoSuchNameException(p);

name = p; }
public String toString(){ return name;}
public static void main(String[] args)

throws NoSuchNameException

{
try{

Person2 p = new Person2("ira pohl");
System.out.println("PERSONS");
System.out.println(p.toString());
p = new Person2("");

}
catch(NoSuchNameException t)

{ System.out.printlnC" exception with name " + t.str()); }
fi nal ly

{ System.out.println("finally clause"); }
};

The throw() has a NoSuchNameException argument and matches the catch() sig¬
nature. This handler is expected to perform an appropriate action where an incor¬
rect name has been passed as an argument to the Person2 constructor. As in this
example, an error message and abort are normal. The f i nal 1 y clause shown here is
code that is done regardless of how the try block terminates.

▼ Summary 323

Summary

1. Exceptions are generally unexpected error conditions. Normally, these condi¬
tions terminate the user program with a system-provided error message. An
example is floating-point divide-by-zero.

2. The standard library assert provides the macro

assertOxpression) ;

If the expression evaluates as false, execution is aborted with diagnostic out¬
put. The assertions are discarded if the macro NDEBUG is defined.

3. The signal library provides a standard mechanism for handling system-defined
exceptions in a straightforward manner. Some examples are

#define SIGINT 2 /^interrupt signal */
#define SIGFPE 8 /*floating-point exception */
#define SIGABRT 22 /*abort signal */

The system can raise these exceptions. On many systems, for example, pressing
control-C on the keyboard generates an interrupt. The normal action is to kill
the current user process. These exceptions can be handled by use of the
si gnal () function, which associates a handler function with a signal.

4. C++ code can raise an exception by using the throw expression. The exception is
handled by invoking an appropriate handler selected from a list of handlers
found at the end of the handler’s try block.

5. Syntactically, throws come in two forms:

throw
throw expression

The throw expression raises an exception in a try block. The throw with no argu¬
ment may be used in a catch to rethrow the current exception.

324 Chapter 9 ▼ Exceptions

6. Syntactically, a try block has the form

try
compound statement
handler list

The try block is the context for deciding which handlers are invoked on a raised
exception. The order in which handlers are defined determines the order in
which a handler for a raised exception of matching type is tried.

7. Syntactically, a handler has the form

catch (formal argument)
compound statement

The catch looks like a function declaration of one argument without a return
type.

8. Syntactically, an exception specification is part of a function declaration and
has the form

function header throw (type list)

The type list is the list of types that a throw expression within the function can
have. If the list is empty, the compiler may assume that no throw will be exe¬
cuted by the function, either directly or indirectly.

9. The system-provided handler termi nate() is called when no other handler has
been provided to deal with an exception. The system-provided handler
unexpected () is called when a function throws an exception that was not in its
exception-specification list. By default, termi nate() calls the abort()
function. The default unexpectedQ behavior is to call termi nateQ.

Review Questions

1. True or false: In C++, new cannot throw an exception.

2. Asynchronous exceptions, such as SIGFPE, are defined in _

3. The context for handling an exception is a_block.

▼ Exercises 325

4. The system-provided handler_is called when a function throws an
exception that was not in its exception-specification list.

5. A standard exception class is_and is used for_.

6. The system-provided handler_is called when no other handler has
been provided to deal with an exception.

7. Handlers are declared at the end of a try block, using the keyword_.

8. The_is the list of types a throw expression can have.

9. Name three standard exceptions provided by C++ compilers and libraries.

10. What two actions should most handlers perform?

Exercises

1. The following bubble sort does not work correctly:

//Incorrect bubble sort

void swap(int a, int b)

{
int temp = a;

a = b;
b = temp;

}

void bubble(int a[], int size)

{
int i, j;

for (i =0; i != size; ++i)
for (j = i ; j != size; ++j)

if Ca[j] < a [j +1])
swap (a[j], a[j + 1]);

}

326 Chapter 9 ▼ Exceptions

int main()

{
int t[10] = { 9, 4, 6, 4, 5, 9, -3, 1, 0, 12};

bubble(t, 10);
for (int i =0; i <10; ++i)

cout « t[i] « '\t' ;
cout « "\nsorted? " « end);

}

Place assertions in this code to test that it is working properly. Use this tech¬
nique to write a correct program.

2. Use templates to write a generic version of the correct bubble sort, complete
with assertions. Use a random-number generator to generate test data. On what
types can this be made to work generically?

3. Code the member function dbl_vect: :operator[] (int) to throw an out-of-
range exception if an incorrect index is used. (See Section 6.7, “Overloading
Assignment and Subscripting Operators,” on page 211.) Also, code a reasonable
catch that prints out the incorrect value and terminates. To test the code, exe¬
cute a try block in which the exception occurs. Write a catch that would allow
user intervention at the keyboard to produce a correct index and to continue or
to retry the computation. Can this be done in a reasonable manner?

4. Recode the ch_stack class to throw exceptions for as many conditions as you
think are reasonable. (See Section 5.2, “Constructing a Dynamically Sized Stack,”
on page 155.) Use an enumerated type to list the conditions.

enum stack_error { overflow, underflow, . };

Write a catch that will use a swi tch statement to select an appropriate message
and to terminate the computation.

5. Write a stack_error class that replaces the enumerated type of the previous
exercise. Make this a base class for a series of derived classes that encapsulates
each specific exception condition. The catches should be able to use overridden
virtual functions to process the various thrown exceptions.

6. (Java) Recode in Java the ch_stack class, complete with exceptions. Java
already throws exceptions if new fails to allocate storage, and Java automatically
throws a range-error exception when an index is out of range.

X

pter 10

Using C++

C++ is a hybrid language. The kernel language developed from C is classically used
as a system-implementation language. As such, C++ is suitable for writing very effi¬
cient code. The class-based additions to the language support the full range of OOP
requirements. Therefore, C++ is suitable for writing reusable libraries, and it sup¬
ports a polymorphic coding style.

Object-oriented programming (OOP) and C++ were embraced by the industry
very quickly. C++, as a hybrid OOP language, allows a multiparadigmatic approach
to coding. The traditional advantages of C as an efficient, powerful programmer’s
language are not lost. The key new ingredients in C++ are inheritance and polymor¬
phism, that is, its capability to assume many forms.

10.1 OOP Language Requirements

OOP Language Characteristics

■ Encapsulation with data hiding: the ability to distinguish an object’s internal
state and behavior from its external state and behavior

■ Type extensibility: the ability to add user-defined types to augment the native

types

■ Inheritance: the ability to create new types by importing or reusing the
description of existing types

■ Polymorphism with dynamic binding: the ability of objects to be responsible
for interpreting function invocation

These features cannot substitute for programmer discipline and community-
observed convention, but they can be used to promote such behavior.

Typical procedural languages, such as FORTRAN, Pascal, and C, have limited
forms of type extensibility and encapsulation. These languages have pointer and
record types that provide these features. C also has a scheme of file-oriented
privacy, in its stati c file-scope declarations. Such languages as Modula-2 and Ada
have more complete forms of encapsulation, namely, module and package,

328 Chapter 10 ▼ OOP Using C++

respectively. These languages readily allow users to build ADTs and provide
significant library support for many application areas. A language such as pure LISP
supports dynamic binding. The elements in OOP have been available in various
languages for at least 25 years.

LISP, Simula, and SmallTalk have long been in widespread use in both the aca¬
demic and research communities. These languages are in many ways more elegant
than C and C++. However, not until OOP elements were added to C was there any
significant movement to using OOP in industry. Indeed, the late 1980s saw a band¬
wagon effect in adopting C++ that cut across companies, product lines, and applica¬
tion areas; industry needed to couple OOP with the ability to program effectively at
a low level.

Also crucial was the ease of migration from C to C++. PL/1, by contrast, is
rooted in FORTRAN and COBOL; Ada is rooted in Pascal. But C++ had C as a nearly
proper subset. As such, the installed base of C code need not be abandoned. These
other languages required a nontrivial conversion process to modify existing code
from their ancestor languages.

The conventional academic wisdom is that excessive concern with efficiency is
detrimental to good coding practices. This concern misses the obvious, namely, that
product competition is based on performance. Consequently, industry values low-
level technology. In this environment, C++ is a very effective tool.

10.1.1 ADTs: Encapsulation and Data Hiding

To fully appreciate the OOP paradigm, we must view the overall coding process as
an exercise in shared and distributed responsibilities. This text has used the terms
client to mean a user of a class and manufacturer to mean the provider of the class.

A client of a class expects an approximation to an abstraction. A stack, to be
useful, has to be of reasonable size. A complex number must be of reasonable preci¬
sion. A deck of cards must be shufflable, with random outcome in dealing hands.
The internals of how these behaviors are computed is not a direct concern of the cli¬
ent. The client is concerned with cost, effectiveness, and ease of operation, not with
implementation. This is the black box principle, and it has two components.

Black Box for the Client

■ Simple to use, easy to understand, and familiar

■ In a component relationship within the system

■ Cheap, efficient, and powerful

10.1 ▼ OOP Language Requirements 329

Black Box for the Manufacturer

■ Easy to reuse and modify and difficult to misuse and reproduce

■ Profitable to produce with a large client base

■ Cheap, efficient, and powerful

The manufacturer competes for clients by implementing an ADT product that is
reasonably priced and efficient. It is in the manufacturer’s interest to hide details of
an implementation. This simplifies what the manufacturer needs to explain to the
client, and it frees the manufacturer to allow internal repairs or improvements that
do not affect the client’s use. It restrains the client from dangerous or inadvertent
tampering with the product.

A data-hiding scheme that restricts access of implementation detail to manufac¬
turers guarantees client conformance to the ADT abstraction. The private parts are
hidden from client code, and the public parts are available. It is possible to change
the hidden representation without changing the public access or functionality. If
done properly, client code need not change when the hidden representation is mod¬
ified. The two keys to fulfilling these conditions are inheritance and polymorphism.

10.1.2 Reuse and Inheritance

Library creation and reuse are crucial indicators of successful language strategies.
Inheritance, or deriving a new class from an old one, is used for code sharing and
reuse, as well as for developing type hierarchies. Inheritance can be used to create a
hierarchy of related ADTs that share both code and a common interface, a feature
critical to the ability to reuse code.

Inheritance influences overall software design by providing a framework that
captures conceptual elements that become the focus for system building and reuse.
For example, Interviews is a C++ package that supports building graphical user
interfaces for interactive, text, and graphics objects. These categories are readily
composed to produce various applications, such as a CAD system, a browser, or a
WYSIWYG editor.

OOP Design Methodology

1. Decide on an appropriate set of ADTs.

2. Design in their relatedness, and use inheritance to share code and interface.

3. Use virtual functions to process related objects dynamically.

Inheritance also facilitates the black box principle and is an important
mechanism for suppressing detail. It is hierarchical, and each level provides
functionality to the next level that is built on it. In retrospect, structured

330 Chapter 10 ▼ OOP Using C++

programming methodology, with its process-centered view, relied on stepwise
refinement to nest routines but did not adequately appreciate the need for a
corresponding view of data.

10.1.3 Polymorphism

Polymorphism is the genie in OOP, taking instruction from a client and properly
interpreting its wishes. A polymorphic function has many forms. Following Cardelli
and Wegner, we make the following distinctions:

Types of Polymorphism

1. Coercion (ad hoc polymorphism): A function or operator works on several
types by converting their values to the expected type. An example in ANSI C
is assignment conversions of arithmetic types on function call.

a / b //divide determined by native coercions

2. Overloading (ad hoc polymorphism): A function is called, based on its signa¬
ture, defined as the list of argument types in its parameter list. The C integer-
divide operator and float-divide operator are distinguished, based on their
argument list.

cout « a //function overloading

3. Inclusion (pure polymorphism): A type is a subtype of another type. Func¬
tions available for the base type will work on the subtype. Such a function can
have various implementations that are invoked by a runtime determination of
subtype.

p -> draw() //virtual function call

4. Parametric polymorphism (pure polymorphism): The type is left unspecified
and is later instantiated. Manipulation of generic pointers and templates pro¬
vides this in C++.

stack <window*> win[40]

Polymorphism localizes responsibility for behavior. The client code frequently
requires no revision when additional functionality is added to the system through
manufacturer-provided code additions.

Polymorphism directly contributes to the black box principle. The virtual func¬
tions specified for the base class are the interface used by the client throughout.
The client knows that an overridden member function takes responsibility for a spe¬
cific implementation of a given action relevant to the object. The client need not

10.2 ▼ OOP: The Dominant Programming Methodology 331

know different routines for each calculation or different forms of specification.
These details are suppressed.

10.2 OOP: The Dominant Programming Methodology

OOP using C++ gained dazzling acceptance in industry from 1986 on, despite
acknowledged flaws and unfamiliarity with OOP strategies. The reason for this is
that C++ brought OOP technology to industry in an acceptable way. C++ is based on
an existing, widely used successful language. C++ allows tight, efficient, portable
code to be written. Type safety is retained, and type extensibility is general. C++
coexists with standard languages and does not require special system resources.

C was designed as a system-implementation language and as such allows coding
that is readily translated to efficiently use machine resources. Software products
gain competitive advantage from such efficiency. Hence, despite complaints that
traditional C was not a safe or robust language to code in, C grew in its range of
application. The C community, by convention and discipline, used structured pro¬
gramming and ADT extensions. OOP made inroads into this professional commu¬
nity only when it was wed to C within a conceptual framework that maintained its
traditional point of view and advantages. Key to the bandwagon move to C++ has
been the understanding that inheritance and polymorphism gain additional impor¬
tant advantages over traditional coding practice.

Polymorphism in C++ allows a client to use an ADT as a black box. Success in
OOP is characterized by the extent to which a user-defined type can be made indis¬
tinguishable from a native type. Polymorphism allows coercions to be specified that
integrate the ADT with the native types. Objects from subtype hierarchies respond
dynamically to function invocation, the messaging principle in OOP. Polymorphism
also simplifies client protocols, and name proliferation is controlled by function
and operator overloading. The availability of all four forms of polymorphism
encourages the programmer to design with encapsulation and data hiding in mind.
OOP is many things to many people. Attempts to define it are like the blind men’s
attempts to describe an elephant. Recall the equation describing object-orientation:
OOP = type-extensibility + polymorphism.

In many languages and systems, the cost of detail suppression was runtime
inefficiency or undue rigidity in the interface. C++ has a range of choices that allow
both efficiency and flexibility. Also, the success of C++ was a precondition for the
introduction of Java in 1995. Together, C++ and Java have established OOP as the
dominant contemporary programming methodology.

332 Chapter 10 ▼ OOP Using C++

10.3 Designing with OOP in Mind

Most programming should involve the use of existing designs. For example, the
mathematical and scientific communities have standard definitions of complex
numbers, rationals, matrices, and polynomials. Each of these can be readily coded
as an ADT. The expected public behavior of these types is widely agreed on.

The programming community has widespread experience with standard con¬
tainer classes. Reasonable agreement exists as to the behavior of stack, associative
array, binary tree, and queue. Also, the programming community has many exam¬
ples of specialized programming language oriented to a particular domain. For
example, SNOBOL and its successor language ICON have powerful string-processing
features that can be captured as ADTs in C++.

OOP attempts to emphasize reuse, which is possible on several scales. The
grandest scale is the development of libraries that are effective for an entire prob¬
lem domain. The upside is that reuse contributes in the long run to more easily
maintained code. The downside is that a particular application does not need costly
library development.

OOP requires programmer sophistication. More sophisticated programmers are
better programmers. The downside is high training cost and the potential misuse of
sophisticated tools.

OOP makes client code simpler and more readily extensible. Polymorphism can
be used to incorporate local changes into a large-scale system without global modi¬
fication. The downside can be runtime overhead.

C++ provides programming encapsulations through classes, inheritance, and
templates. Encapsulations hide and localize. As systems get bigger and more com¬
plex, there is an increasing need for such encapsulations. Simple block structure
and functional encapsulation of such languages as Pascal are not enough. The
1970s taught us the need for the module as a programming unit. The 1980s taught
us that modules need to have a logical coherence supported in the language and
that they must be derivable from one another. When supported by a programming
language, encapsulations and relationships lead to increased programmer disci¬
pline. The art of programming is to blend rigor and discipline with creativity.

Occam’s Razor is a useful design principle: Entities should not be multiplied
beyond necessity—or beyond completeness, invertibility, orthogonality, consis¬
tency, simplicity, efficiency, or expressiveness. Such ideals can be in conflict and
frequently involve trade-offs in arriving at a design.

Invertibility means that the program should have member functions that are
inverses. In the mathematical types, addition and subtraction are inverses. In a text
editor, add and delete are inverses. Some commands, such as negation, are their
own inverses. The importance of invertibility in a nonmathematical context can be

10.4 t Class-Responsibility-Collaborator 333

seen by the brilliant success of the undo command in text editing and the recover
commands in file maintenance.

Completeness is best seen in Boolean algebra, in which the nand operation suf¬
fices to generate all possible Boolean expressions. But Boolean algebra is usually
taught with negation, conjunction, and disjunction as the basic operations. Com¬
pleteness by itself is not enough to judge a design by. A large set of operators is fre¬

quently more expressive.
Orthogonality means that each element of a design should integrate and work

with all other elements without overlapping or being redundant. For example, on a
system that manipulates shapes, one should have a horizontal move, a vertical
move, and a rotate operation. In effect, these operations would be adequate to posi¬
tion the shape at any point on the screen.

Hierarchy is captured through inheritance. Designs should be hierarchical. It is
a reflection of two principles—decomposition and localization. Both principles are
methods of suppressing detail, a key idea in coping with complexity. However, there
is a scale problem in such a design. How much detail is enough to make a concept
useful as its own class? It is important to avoid a proliferation of specialized con¬
cepts. Too much detail renders the class design difficult to master.

10.4 Class-Responsibility-Collaborator

Designs can be aided by a diagramming process. Several object-oriented design
(OOD) notations exist, and a number have been incorporated in CASE (computer-
assisted software engineering) tools. The most comprehensive of these are based on
the Universal Modeling Language (UML) pioneered by Rational Software. This section
describes a useful, related low-tech scheme: the Class-Responsibility-Collaborator

(CRC) notecard scheme.
A responsibility is an obligation the class must keep. For example, complex

number objects must provide an implementation of complex arithmetic. A collabo¬
rator is another object that cooperates with this object to provide an overall set of
behaviors. For example, integers and reals collaborate with complex numbers to
provide a comprehensive set of mathematical behaviors.

A CRC notecard is used to design a given class. The responsibilities of the class
and the collaborators for that class are initially described. The back of the card is
used to describe implementation detail. The front of the card corresponds to public

behavior.

334 Chapter 10 ▼ OOP Using C++

card front

classname: stack collaborators:
none

responsibilities
push
pop

empty

public

card back

state/description

top

base_pointer

CRC Card

As the design process proceeds, the cards are rewritten and refined. They become
more detailed and closer to a set of member function headers. The back of the card
can be used to show implementation details, including is-a, like-a, and has-a
relationships.

The attractiveness of this scheme is its flexibility. In effect, it represents a
pseudocode refinement process that can reflect local tastes. The number of revi¬
sions and the level of detail and rigor are a matter of taste.

10.5 Design Patterns

Reuse is a primary theme m modern programming. In early times, reuse was limited
to simple libraries of functions, such as the math functions found in math h or the
string functions in string.h. In OOP, the class or template becomes a key construct
for reuse. Classes and templates encapsulate code that conforms to certain designs
Thus, the iterator classes of STL are a design pattern. Recently, the concept of
design pattern has proved very popular in defining medium-scale reuse A design
pattern has four elements. 8

10.5 ▼ Design Patterns 335

Elements of a Design Pattern

1. The pattern terminology: for example, iterator

2. The problem and conditions: for example, visitation over a container

3. The solution: for example, pointer-like objects with a common interface

4. The evaluation: for example, the trade-off between defining an iterator on a
vector or using a native array

A design pattern is an abstraction that suggests a useful solution to a particular
programming problem. Often, reuse is inexpensive, as with STL container and itera¬
tor design patterns that require only instantiation. Sometimes, reuse is expensive,
such as inventing a balanced-tree class with an interface conforming to STL

sequence containers.

Design Patterns in This Text

1. Iterator, such as vector: : iterator; organizes visitation on a container

2. Composite, such as class gracLstudent; composes complex objects out of

simpler ones

3. Template method, such as the quicksortO template

OOP has stimulated reuse of design patterns. A design pattern is a software solution
in search of a problem. Consider how the iterator logic of STL decouples visitation
of container elements from specific details of the container. This idea is indepen¬
dent of computer language and is useful in C++, Java, and SmallTalk coding
projects. This idea can be summarized as the iterator pattern.

The name is of great importance, as it increases the programmer’s technical
vocabulary. A name should be memorable and illuminate a key characteristic of the
method. The problem identifies circumstances under which the pattern provides a
solution. The solution shows how the pattern solves the problem. The consequences
are a discussion of the cost-benefit trade-off in using the pattern.

When the pattern is discussed in a specific language context, it is often called a
programming idiom. This is also sometimes used for smaller coding ideas. For
example, in C++ or C, EOF is frequently used as a guard value to terminate file

processing.
When the pattern is used in a wider context to provide a library of routines and

components, it is called a framework. The STL can be considered a framework that
makes heavy use of the iterator and template patterns, among others. In Java, the
Java Foundation Classes, also known as Swing, support window development. They
are implemented with the model-view-controller pattern.

336 Chapter 10 ▼ OOP Using C++

10.6 Moving from C++ to Java

Java shares with C++ the use of classes and inheritance to build software in an
object-oriented manner. Also, both languages use data hiding and have methods
that are bundled within the class.

Unlike C++, Java does not allow for conventional programming. Everything is
encapsulated in a class. This forces the programmer to think and to design every¬
thing as an object. The downside is that conventional C code is not as readily
adapted to Java as it is to C++. Java avoids most of the memory-pointer errors that
are common to C and C++. Address arithmetic and manipulation are done by the
compiler and the system, not the programmer. Therefore, the Java programmer
writes safer code. Also, memory reclamation is automatically done by the Java gar¬
bage collector.

Another important concept in OOP is the promotion of code reuse through the
inheritance mechanism. In Java, this is the mechanism of extending a new class,
called a subclass, from an existing one, called the superclass. Methods in the
extended class override the superclass methods. The method selection occurs at
runtime and is a highly flexible polymorphic style of coding.

Java, in a strict sense, is completely portable across all platforms that support
it. Java is compiled to byte code that is run on the Java virtual machine. This is typi¬
cally an interpreter—code that understands the Java byte code instructions. Such
code is much slower than native code on most systems. The trade-off here is univer¬
sally consistent behavior versus loss of efficiency.

Java has extensively developed libraries for performing Web-based program¬
ming. Java also has the ability to write graphical user interfaces that are used inter¬
actively. Its thread package has secure Web communication features that let the
coder write distributed applications.

Java is far simpler than C++ in the core language and its features. In some ways,
this is deceptive in that much of the complexity is in its libraries. Java is far safer
because of very strict typing, avoidance of pointer arithmetic, and well-integrated
exception handling. It is system independent in its behavior, so one size fits all. This
combination of object orientation, simplicity, universality, and Web-sensitive librar¬
ies make it the language of the moment.

Java programs are classes. A class has syntactic form that is derived from the
C struct, which is not in Java. Data and functions are placed within classes When a
class is executed as a program, it starts by calling the member function mai n ().

Java is known for providing applets on Web pages. A browser is used to display
and to execute the applet. Typically, the applet provides a graphical user interface
to the code. The following piece of code is an applet for computing the greatest
common devisor for two numbers:

10.6 ▼ Moving from C++to Java 337

In file wgcd.java

//GCD applet implementations

import java.applet.*; //gets the applet superclass
import java.awt.*; //abstract windowing toolkit
import java.io.*;

//derived from the class Applet

public class wgcd extends Applet {
int x, y, z, r;
TextField a = new TextField(10);
TextField b = new TextField(10);
TextField c = new TextField(10);
Label 11 = new Label("Valuel: ");
Label 12 = new Label("Value2: ");
Button gcd = new Button(" GCD: ");

//draws the screen layout such as the TextFields

public void init() {
setLayout(new FlowLayoutO) ;
c.setEditable(false);
add(ll); add(a);
add(l2) ; add(b);
add(gcd); add(c);

}

//computes the greatest common divisor

public int gcd(int m, int n) {
while (n !=0) {

r = m % n;
m = n;
n = r;

}
return m;

}

//input box
//input box
//output box

338 Chapter 10 t OOP Using C++

//looks for screen events to interact with

public boolean action(Event e, Object o) {
if (" GCD: ".equals(o)) { //press button

x = Integer.parselnt(a.getTextO) ;
y = Integer.parselnt(b.getTextO) ;
z = gcd(x,y);

//place answer in output TextField
c.setText(Integer.toString(z));

}
return true;

}
};

The code uses the graphics library awt and the applet class to draw an interac¬
tive interface that can be executed either by a special program called the applet-
viewer or by a Java-aware browser, such as Microsoft Explorer or Netscape
Navigator. Unlike ordinary Java programs, this program does not use a mai n ()
method to initiate the computation. Instead, the init() method draws the screen.
Further computation is event driven and is processed by the action() method. The
user terminates the applet by clicking on the Quit command in the applet pull-down
menu.

Summary

1. Object-oriented programming (OOP) and C++ were embraced by industry very
quickly. As a hybrid OOP language, C++ allows a multiparadigmatic approach to
coding. The traditional advantages of C as an efficient, powerful programmer’s
language are not lost. The key new ingredient is polymorphism, or the ability to
assume many forms.

2. Existing languages and methodology supported much of the OOP methodology
by combining language features with programmer discipline. It is possible to
create and to use ADTs in a non-OOP language. Three examples in the C commu¬
nity are string, boolean, and file, which are pseudotypes in that they do not
enjoy the same privileges as true types. What is gained by looking at these
examples is a better understanding of the limits of extensibility in non-OOP.

3. A black box for the client should be simple to use, easy to understand, and
familiar; cheap, efficient, and powerful; and in a component relationship within

▼ Summary 339

the system. A black box for the manufacturer should be easy to reuse and mod¬
ify and difficult to misuse and reproduce; cheap, efficient, and powerful; and
profitable to produce for a large client base. In brief, the OOP design methodol¬
ogy involves deciding on an appropriate set of ADTs, designing in their related¬
ness and using inheritance to share code and interface, and using virtual
functions to process related objects dynamically.

4. Polymorphism directly contributes to the black box principle. The virtual func¬
tions specified for the base class are the interface used by the client throughout.
The client knows that an overridden member function takes responsibility for a
specific implementation of a given action relevant to the object.

5. As a hybrid OOP language, C++ can cause the programmer a dialectical tension
headache. The penchant of C programmers to focus on efficiency and imple¬
mentation conflicts with the penchant of objectivists to focus on elegance,
abstraction, and generality. The two demands on the coding process are recon¬
cilable but require a measure of coordination and respect for the process.

6. OOP is many things to many people. In many languages and systems, the cost of
detail suppression was runtime inefficiency or undue rigidity in the interface.
C++ has a range of choices that allow both efficiency and flexibility.

7. Occam’s Razor, a useful design principle, states that entities should not be mul¬
tiplied beyond necessity—or beyond completeness, invertibility, orthogonality,
consistency, simplicity, efficiency, or expressiveness. These principles can be in
conflict and frequently involve trade-offs in arriving at a design.

8. The Class-Responsibility-Collaborator (CRC) notecard scheme is used in OOD. A
responsibility is an obligation the class must keep. A collaborator is another
object that cooperates with this object to provide an overall set of behaviors.
The responsibilities of the class and the collaborators for that class are initially
described. The back of the card is used to describe implementation detail. The
front of the card corresponds to public behavior.

9. OOP has stimulated reuse of design patterns. A design pattern is a software
solution in search of a problem. Consider how the iterator logic of STL decou¬
ples visitation of container elements from specific details of the container. This
idea can be summarized as the iterator pattern. The name is of great impor¬
tance, as it increases the programmer’s technical vocabulary. The name should
be clever and should illuminate a key characteristic of the method. The problem
identifies circumstances under which the pattern provides a solution. The solu¬
tion shows how the pattern solves the problem. The consequences are a discus¬

sion of the cost-benefit trade-off in using the pattern.

340 Chapter 10 ▼ OOP Using C++

Review Questions

1. Name three typical characteristics of an object-oriented programming language.

2. True or false: Conventional academic wisdom is that excessive concern with effi¬
ciency is detrimental to good coding practices.

3. Through_, a hierarchy of related ADTs can be created that share code
and a common interface.

4. Name three properties of a black box for the client.

5. Name three properties of a black box for the manufacturer.

6. _ methodology has a process-centered view and relies on stepwise
refinement to nest routines but does not adequately appreciate the need for a
corresponding view of data.

7. _is the genie in OOP, taking instruction from a client and properly inter¬
preting its wishes.

8. Give an example of ad hoc polymorphism.

9. Describe at least two separate concepts for the keyword vi rtual as used in
C++. Does this cause conceptual confusion?

10. The package string is a pseudotype. It uses traditional C technology and pro¬
grammer discipline to provide the ADT string. Why is it preferable to provide
the standard library class stri ng?

t Exercises 341

Exercises

1. Consider the following three ways to provide a Boolean type:

//Traditional C using the preprocessor

#define TRUE 1
#define FALSE 0
#define Boolean int

//ANSI C and C++ using enumerated types
enum Boolean { false, true };

//C++ as a class
class Boolean {

public:
//various member functions
//including overloading ! && |

};

Discuss the advantages and disadvantages of each style. Keep in mind scope,
naming, and conversion problems. In what ways is it desirable for C++ to now

have a native type bool?

2. C++ originally allowed the this pointer to be modifiable. One use was to have
user-controlled storage management by assigning directly to the thi s pointer.
The assignment of 0 meant that the associated memory could be returned to
free store. Discuss why this is a bad idea. Write a program with an assignment
of thi s = 0. What error message does your compiler give you? Can you get
around this with a cast? Would this be a good idea?

3. The rules for deciding which definition of an overloaded function to invoke
have changed since the first version of C++. One reason for this is to reduce the
number of ambiguities. A criticism is that the rules allow matching through con¬
versions that may be unintended by the programmer. This can cause difficult-
to-detect runtime bugs. One strategy is to have the compiler issue a diagnostic
warning in such cases; another is to use casting defensively to inform the com¬
piler of the intended choice. Discuss these alternatives after investigating how

the rules have changed.

342 Chapter 10 t OOP Using C++

4. (Java) Java and C++ have different casting rules. Investigate the differences. C++
allows a wider range of casting opportunities. Is this desirable?

5. List three things that you would drop from the C++ language. Argue why each
would not be missed. For example, it is possible to have protected inheritance,
although it was never discussed in this text. Should it be in the language for
completeness’ sake? Can you write code that uses protected inheritance that
demonstrates that it is a critical feature of language as opposed to an
extravagance?

6. (Java) Using awt, write a Java program that is a basic desktop calculator. Have
buttons that indicate a series of operations, such as +, *, sqrt, and reciprocal;
data fields to enter arguments; and a result field. If you have access to JFC
(Swing), you use it. Document your design with CRC cards.

lix A
Character Codes

American Standard Code for Information Interchange

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt np cr so si die del dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp i u # $ % &

4 () * + j - / 0 1

5 2 3 4 5 6 7 8 9 j

6 < = > ? @ A B C D E

7 F G H 1 J K L M N 0

8 P Q R S T U V W X Y

9 Z 1 \] A -
(a b c

10 d e f g h i j k 1 m

11 n 0 P q r s t u V w

12 X y z { 1 } ~ del

Some Observations

■ Character codes 0 through 31 and 127 are nonprinting.

■ Character code 32 prints a single space.

■ Character codes for digits 0 through SI are contiguous.

■ Character codes for letters A through Z are contiguous.

■ Character codes for letters a through z are contiguous.

■ The difference between an uppercase letter and the corresponding lowercase

letter is 32.

344 Appendix A ▼ ASCII Character Codes

The meanings for some of the abbreviations follow:

■ bel—audible bell

■ bs—backspace

■ cr—carriage return

■ esc—escape

■ ht—horizontal tab

■ nl—newline

■ nul—null

“ vt—vertical tab

Appendix B
Operator Precedence
and Associativity

Operators Associativity

:: (global scope)
:: (class scope)

left to right

() [] -> . (postfix)++ (postfix) — left to right

++(prefix) --(prefix) ! ~ sizeof (type} & (address)
+ (unary) -(unary) * (indirection) delete new

right to left

. * ->* left to right

* / % left to right

+ left to right

« » left to right

<<=>>= left to right

! = left to right

& left to right

A left to right

1 left to right

&& left to right

II left to right

?; right to left

= += -= *= /= %= »= «= &= A= | = right to left

, (comma operator) left to right

In case of doubt, use parentheses.

‘ ’

ix C
guage Guide

This concise guide to C++ summarizes many of the key language elements that are
not found in older procedural languages, such as Pascal and C. This appendix is

intended as a convenient guide to the language.

C.l Program Structure

A program in C++ is a collection of functions and declarations, which may be
declared in different files. Program execution begins with the function mai n().

//The computation of circumference and area of circles.

// Title: circles

// by
// Geometries Inc.
// Version 2.2

#include <iostream>
using namespace std;

const double pi = B.14159; //pi accurate to six places

inline double circum(double rad){ return (pi * 2 * rad); }
inline double area(double rad){ return (pi * rad * rad); }

int main()

{
double r;
cout « "\nEnter radius: ;
while (cin»r&&r>0.0){

cout « "\nArea is " « area(r);
cout « "\nCircumference is " « circum(r) « endl ;

cout « "\nEnter radius > 0.0: ";

>
}

348 Appendix C t Language Guide

C++ Program Organization

■ C++ relies on an external standard library to provide input and output (I/O).
The information the program needs to use this library resides in iostream.

" C++ uses a preprocessor to handle a set of directives, such as the include

directive, to convert the program from its preprocessing form to pure C++
syntax. Directives start with the symbol #.

A C++ program consists of declarations that may be in various files. Each
function is on the external, or global, level and may not be declared in a
nested manner. The files act as modules and may be compiled separately.

The function main() is the starting point for program execution. This func¬
tion obeys the C++ rules for function declaration. Normally, mai n() implicitly
returns the integer value 0, indicating normal program completion. Other val¬
ues need to be returned explicitly and indicate an error condition.

C.2 Lexical Elements

A C++ program is a sequence of characters that are collected into tokens, which
comprise the basic vocabulary of the language. The six categories of tokens are key¬
words, identifiers, constants, string constants, operators, and punctuators.

The following characters can be used to construct tokens:

abcdefghi j kl mnopq rstuvwxyz

ABCDEFGHIJ KLMNOPQRSTUVWXYZ
0123456789
+ - “/=(){}[]<> ' " ! # ~ % A & _ ; ; f 7 \ |

White space characters, such as blank and tab

In producing tokens, the compiler selects the longest string of characters that con¬
stitutes a token.

C.2 ▼ Lexical Elements 349

C.2.1 Comments

C++ has a rest-of-line comment symbol //. The C-style comment pairs /* */ are
also available. Connnents do not nest. Some examples of comments follow:

//OOP Using C++: Addison-Wesley Program GCD

const int N = 200; //N is number of trials

/* ***** *
Programmer: Laura M. Pohl

Compiler: Borland 5.0

Modifications: 5-2-96 Stack Overflow
* * * * * * * * /

Except for lengthy multiline comments, the rest-of-line comment should be used.
This style is easier to use and is less error prone.

C.2.2 Identifiers

An identifier can be one character or more. The first character must be a letter or
underscore. Subsequent characters can be letters, digits, or underscores. Although
in principle, identifiers can be arbitrarily long, many systems distinguish only up to
the first 31 characters. Identifiers that contain a double underscore or that begin
with an underscore followed by an uppercase letter are reserved for system use.

Identifier Examples Comments

multiword vector flag_x normal style

q213 sb3 abxlw opaque

speed Speed speedy distinct but confusing

Sysl _Adri ver _C_ reserved for system use

9i11egal wrong-2 i1$form illegal

typeid thi s register keywords can’t be used

350 Appendix C t Language Guide

C.2.3 Keywords

Keywords are explicitly reserved identifiers that have a strict meaning in C++. They
cannot be redefined or used in other contexts. Some other keywords are specific to
implementations, such as near and far in Borland C++. The following keywords are
in use in most current C++ systems.

Keywords

asm el se operator throw

auto enum private true

bool explicit protected try

break extern public typedef

case fal se register typeid

catch float reinterpret_cast typename

char for return uni on

class friend short unsigned

const goto signed usi ng

const_cast if sizeof virtual

continue inline static voi d

default int static_cast volati1e

delete long struct wchar_t

do mutable switch while

double namespace tempi ate

dynamic cast new thi s

C.3 Constants

C++ has constants for each basic type. These include integer, floating-point and
character constants. String constants are character sequences surrounded by’dou-
ble quotes. There is one universal pointer constant, namely 0.

C.3 ▼ Constants 351

Constants Examples Comments

156 0156 0x156 integer: dec, oct, hex

1561 156u integer: long, unsigned

'A' 'a' '7' '\t' character: A, a, 7, tab

3.14f 3.1415 3.14159L floating-point constants

"A string." string constant

true false bool constants

The suffixes u or U, 1 or L, and f or F are used to indicate unsigned, long, and
float, respectively. The unsigned constants are positive numbers. The long con¬
stants have greater range than normal. The float constants are usually less precise
than ordinary double constants.

The character constants are usually given in single quotes: for example, 's'.
Some nonprinting and special characters require an escape sequence.

Character Constants

' \a' alert

'\V backslash

' \b' backspace

' \r' carriage return
i \^n i double quote

'\f' formfeed

'\t' tab

' \n' newline

' \0' null character

'V single quote

'\v' vertical tab

'\101' octal 101 in ASCII ‘A’

'\x041' hexadecimal ASCII ‘A’

L'oop' wchar_t constant

352 Appendix C ▼ Language Guide

Floating-point constants can be specified with or without signed integer exponents.

Floating-Point Constants Examples Comments

3.14f 1.234F narrow f 1 oat constants

0.123456 .123456 double constants

0.12345678L 0.123456781 long double constants

3. 3.0 0.3E1 all express double 3.0

300e-2 . 03e2 30e-l also 3.0

A string constant is a contiguous array of characters. String constants are consid¬
ered stati c char [] constants. String constants that are separated only by white
space are implicitly concatenated into a single string. A backslash character at the
end of the line indicates string continuation. A backslash preceding a double quote
makes the double quote part of the string. The compiler places a null character at
the end of a complete string as a sentinel, or termination, character.

String Constants Examples Comments
ii n

empty string is ‘ \0 ’

"OOP 4ME" ‘0’ ‘0’ ‘P’ ‘ ’ ‘4’ ‘M’ ‘E’ ‘\0’

"my Y'quote \" is escaped" \" used for embedding "

"a multiline string \
is also possible"

\ at end of line indicates
string continuation

"This is a single string, "
"since it is only separated "
"by whitespace."

implicitly concatenated

Enumerations define a collection of named constants called enumerators. The
constants are a list of identifiers that are implicitly consecutive integer values, start¬
ing with 0. They can be either anonymous or distinct types.

C.3 ▼ Constants 353

Enumeration Constants Comments

enum { off, on }; off == 0, on == 1

enum color { red, blue, white, green }; color is a type

enum { BOTTOM = 50, TOP = 100, OVER }; OVER == 101

enum grades { F = 59, D = 60, C = 70,
B = 80, A = 90 };

all initialized

Enumeration constants are promoted to type i nt in expressions.
The keyword const is used to declare that an object’s value is constant

throughout its scope.

Using the const Keyword Comments

const int N = 100; N can’t change

double w[N]; [uses constant expressions]

const int bus_stops[5] =
{ 23, 44, 57, 59, 83 };

element values, bus_stops [i],
are constant

C++ uses a preprocessor to handle a set of directives, such as the i ncl ude directive,
to convert the program from its preprocessing form to pure C++ syntax. These
directives are introduced by the symbol #.

The use of const differs from the use of #def i ne, as in

#define N 100

In the case of the const i nt N declaration, N is a nonmodifiable lvalue of type i nt.
In the case of the def i ne macro, N is a constant. Also, the macro replacement of N
occurs as a preprocessor substitution without regard to other scope rules.

354 Appendix C ▼ Language Guide

C.4 Declarations and Scope Rules

Declarations associate meaning with a given identifier. The syntax of C++ declara¬
tions is highly complex, incorporating many disparate, context-dependent elements.
A declaration provides an identifier with a type, a storage class, and a scope. (See
Section 2.4.1, “Initialization,” on page 33.) A simple declaration is often a definition
as well. For a simple variable, this means that the object is created and, possibly, ini¬
tialized. For a function, it means that the function body—that is, the brace-enclosed
statements the function executes—are written out.

const int n = 17;
int sqrt(double);
void foo()

{
int i = 5;

}

//n is declared and defined
//sqrt is declared not defined
//foo is declared and defined

//i is defined and initialized
//i is automatic and local to foo

Complex declarations, such as those for classes, functions, and templates, are
described in separate sections of this appendix.

The typedef mechanism can be used to create a synonym for the type it
defines.

Typedefs Examples Comments

typedef int BOOLEAN; used prior to bool type

typedef char* c string; c stri ng pointer to char

typedef void (*ptr_f)(); pointer to voi d fcn()

C++ has file scope, function scope, block scope, class scope, function prototype
scope, and namespace scope. File scope, also known as global scope, extends from
the point of declaration in a file to the end of that file. Function prototype scope,
the scope of identifiers in the function prototype argument list, extends to the end
of the declaration. Blocks nest in a conventional way, and functions cannot be
declared inside other functions or blocks.

Declarations can occur almost anywhere in a block. A declaration can also be an
initializer in a for statement. For a code example, see file for_test.cvp in Section
2.8.5, “The for Statement,” on page 48.

C.4 ▼ Declarations and Scope Rules 355

Selection statements, such as the if or switch statement, cannot merely con¬
trol a declaration. In general, jumps and selections cannot bypass an initialization.
This is not true in C.

if (flag)
int j=6; //illegal

el se

j = 19;

if (flag) {
int j = 6; //legal within block
cout « j;

}

C++ has a scope resolution operator : :. When used in the form : : variable, it
allows access to the named global variable. Other uses of this notation are impor¬
tant for classes and namespaces. Class member identifiers are local to that class.
The scope resolution operator can be used to resolve ambiguities. When used in the
form class-name : : variable, it accesses the named variable from that class.

class A {
public:

static void foo();

};

class B {
public:

void foo() { A :: foo(); . }

};

A hidden external name can be accessed by using the scope resolution operator.

i; //external i

foo(int i) //parameter i

= ::i; //parameter i is assigned external i

}

Classes can be nested. C++ rules scope the inner class within the outer class.
This is a source of confusion, since the rules have changed and differ from C rules.
For a code example, see file nested.cpp in Section 4.6.2, “Nested Classes,” on page

124.

int
voi d

{
i

356 Appendix C ▼ Language Guide

Enumerations declared inside a class give the enumerator’s class scope, as in

class foo {
public:

enum button { off, on } flag;

};

int main()

{
foo c;

c.flag = foo::off;

}

C.5 Namespaces

C++ traditionally had a single, global namespace. Since inadvertent name clashes
may occur when programs written by different people are combined, and since C++
encourages multivendor library use, namespace scope was added.

In file iostream

//encapsulating a file in namespace std

namespace std { //turn iostream.h into iostream
#include <iostream.h>

}
//fully scoped resolved name would be
std::cout « "hello world" « std::endl;

//add your corporate name to your code

namespace LMPinc { //LMP toy company software
class puzzles { . };
class toys { . };

}
//fully scoped resolved name would now be
LMPinc::puzzles x, y, z;

C.6 ▼ Linkage Rules 357

In effect, encapsulated declarations are given a qualified name. The usi ng declara¬
tion allows these names to be used without the namespace identifier.

using namespace std;
using namespace LMPinc;
toys top; //LMPinc::toys

The namespace declaration, like the class declaration, can be used as part of a scope
resolved identifier.

Namespaces can nest. For a code example, see file namespac.cpp in Section
3.10, “Namespaces,” on page 81. Namespaces can be used to provide a unique scope
similar in effect to the use of static global declarations. This is done with an
unnamed namespace definition.

namespace { int count = 0; } //count is unique here
//count is available in the rest of the file
void chg_cnt(int i) { count = i; }

The new ANSTconforming library headers will no longer use the .h suffix. Files,
such as iostream or complex will be declared with the namespace std. Vendors will
no doubt continue shipping old-style headers, such as iostream.h or complex.h as
well, so that old code can run without change.

Most C++ programs will now begin with i ncl udes of standard library headers
followed by a using declaration.

#include <iostream> //std::cout is fully qualified name
#include <vector> //STL vector templates
#include <cstddef> //Old C libraries
using namespace std;

C.6 Linkage Rules

Modern systems are built around multifile inclusion, compilation, and linkage. For
C++, it is necessary to understand how multifile programs are combined. Linking
separate modules requires resolving external references. The key rule is that exter¬
nal nonstatic variables must be defined in only one place. Use of the keyword
extern, together with an initializer, constitutes defining a variable. Using the key¬
word extern without an initializer constitutes a declaration but not a definition. If
the keyword extern is omitted, the resulting declaration is a definition, with or
without an initializer. The following example, in which these files would all be
linked, illustrates these rules:

358 Appendix C ▼ Language Guide

In file progl.cpp

char c; //definition of c

In file prog2.cpp

extern char c; //declaration of c

In file prog3.cpp

extern int n = 5;

In file prog4.cpp

char c;
extern float n;
extern int k;

//definition of n

//i11egal
//illegal
//i11egal

second definition
type mismatch
no definition

Constant definitions and inline definitions at file scope are local to that file; in other
words, they are implicitly static. Constant definitions can be explicitly declared
extern. It is usual to place them in a header file to be included with any code that
needs them.

A typedef declaration is local to its file. An enumeration constant declaration
has linkage internal to its file. Enumerators and typedefs that are needed in a mul¬
tifile program should be placed in a header file. Enumerators defined within a class
are local to that class, and access to them requires the scope resolution operator.

Typically, declarations are placed in header files and are used in code files.

//LMPstack.h

#ifndef LMP_stack //avoid reinclusion
#define LMP_stack
namespace LMP {
class stack { . };

}
#endif

//LMPstack.cpp

#include <LMPstack.h> //include file above as source
using namespace LMP;

C.7 ▼ Types 359

C.7 Types

The fundamental types in C++ are integral and floating-point types. The char type
is the shortest integral type. The long double is the longest floating-point type.

The following table lists these types from shortest to longest. Reading across
the table, the leftmost, topmost element is shortest, and the rightmost, bottommost
element is longest.

Fundamental Data Types

bool

char signed char unsigned char

wchar_t

short int long

unsigned short unsigned unsigned long

float double long double

Two of these data types, bool and wchar_t, were added by the ANSI committee.
The type wchar_t is intended for character sets that require characters not rep¬

resentable by char, such as the Japanese Kana alphabet. Literals of this type are
wide character constants. This type is an integral type and in mixed expression fol¬
lows the same rules for integral promotion.

The type bool is a break with C tradition. Over the years, many schemes have
been used to achieve a Boolean type, and the new bool type removes these inconsis¬
tencies in practice. It is also an integral type. It becomes the type returned by rela¬
tional, logical, and equality expressions. The bool constants true and false are
promotable to 1 and 0, respectively. Nonzero values are assignment convertible to
true, and 0 is assignment convertible to false. It is anticipated that as compiler
vendors add this type, they will provide switches or options that allow the old prac¬

tice of not using bool.
Types can be derived from the basic types. A simple derived type is the enumer¬

ation type. The derived types allow pointer types, array types, and structure types.
A generic pointer type void* is allowed. Both anonymous unions and anonymous
enumerations are allowed, and there is also a reference type. An anonymous union
can have only nonstatic public data members. A file scope anonymous union has to
be declared static. The class and struct types are structure types. Union, enu¬

meration, and structure names are type names.

360 Appendix C ▼ Language Guide

Types Comments

void* gen ptr; a generic pointer

int i, &ref i = i; ref_i is an alias for i

enum button { off, on }; enumeration

button flag; button is now a type name

wchar_t w = L'yz'; new wide character type

bool mine = false, yours = true;
bool* p = &my_turn;

new boolean type

button set[10]; array

class card {
public:

suit s;
pips p;
void pr_card();

private:
int cd;

};

user-defined type

public data member

member function

private data member

suit card::* ptr_s = &card::s; pointer to member

There are five storage class keywords, as shown in the following table:

Storage Class Keywords

auto local to blocks and implicit

register optimization advice and automatic

extern global scope

static within blocks, value retained

typedef creates synonyms for types

The keyword auto can be used within blocks, but it is redundant and is normally
omitted. Automatic variables are created at block entry and are destroyed at block
exit. The keyword regi ster can be used within blocks and for function parameters.
It advises the compiler that for optimization purposes, the program wants a vari¬
able to reside in a high-speed register. The behavior of register variables is semanti¬
cally equivalent to that of automatic variables.

C.8 ▼ Conversion Rules and Casts 361

The keyword extern can be used within blocks and at file scope. This keyword
indicates that a variable is linked in from elsewhere. The keyword stati c can be
used within blocks and at file scope. Inside a block, extern indicates that a vari¬
able’s value is retained after block exit. At file scope, it indicates that declarations
have internal linkage.

There are two special type-specifier keywords.

const //nonmodifiable
volatile //suppresses compiler optimization

The keyword const is used to indicate that a variable or a function parameter has a
nonmodifiable value. The keyword volatile implies that an agent undetectable to
the compiler can change the variable’s value; therefore, the compiler cannot readily
perform optimizations on code accessing this variable. Variables getting values
from external agents would be vol ati 1 e.

volatile const gmt; //expect external time signal

C.8 Conversion Rules and Casts

C++ has both explicit conversions, called casts, and implicit conversions. The
implicit conversions can occur in expressions, as well as in passing in arguments
and returning expressions from functions. Many conversions are implicit, which
makes C++ convenient but potentially dangerous for the novice. Implicit conver¬
sions can induce runtime bugs that are difficult to detect.

The general rules are straightforward.

Automatic Expression Conversion

1. Any char, wchar_t, short, bool, or enum is promoted to an int. Integral
types unrepresentable as i nt are promoted to unsigned.

2. If, after the first step, the expression is of mixed type, then, according to the

hierarchy of types,

int < unsigned < long < unsigned long
< float < double < long double

the operand of lower type is promoted to that of the higher type, and the
value of the expression has that type. Note that if long cannot contain all the
values of unsigned, unsigned is promoted to unsigned long.

362 Appendix C ▼ Language Guide

The new type bool is an integral type, with the bool constant true promoted to 1,
and the bool constant fal se promoted to 0.

Implicit pointer conversions also occur in C++. Any pointer type can be con¬
verted to the generic pointer of type voi d*. However, unlike in ANSI C, a generic
pointer is not assignment compatible with an arbitrary pointer type. This means
that C++ requires that generic pointers be cast to an explicit type for assignment to
a nongeneric pointer variable.

char* mem;
void* gen_p;

gen_p = mem;
mem = (char*)gen_p;
mem = static_cast<char*>(gen_p);
mem = gen_p;

//C and C++
//C and (obsolete) C++

/ / C++
//legal C and illegal C++

The name of an array is a pointer to its base element. The null-pointer constant
can be converted to any pointer type.

char* p = 0; //p is a null pointer
int* x = p; //illegal need static_cast
int* y = 0; //legal

A pointer to a class can be converted to a pointer to a publicly derived base class.
This also applies to references.

In addition to implicit conversions, which can occur across assignments and in
mixed expressions, there are explicit conversions, or casts. If i is an i nt, the expres¬
sion stati c_cast<double>(i) will cast the value of i so that the expression has
type doubl e. The variable i itself remains unchanged. The stati c_cast is available
for a conversion that is portable, well defined, and invertible. Some more examples
are

static_cast<char>('A' + 1.0)
x = static_cast<double>(static_cast<int>(y) + 1)

Casts that are representation or system dependent use rei nterpret_cast.

int i = reinterpret_cast<int>(&x) //system dependent

System-dependent casts are undesirable and generally should be avoided.
Two other special casts exist in C++: const_cast and dynami c_cast. A useful

discussion of dynami c_cast requires understanding inheritance (see Section
C.13.5, “Runtime Type Identification,” on page 398). The const modifier means that

C.8 ▼ Conversion Rules and Casts 363

a variable’s value is nonmodifiable. Very occasionally, it is convenient to remove
this restriction. Known as casting away constness, this is done with the
const_cast, as in

foo(const_cast<int>(c_var)); //used to invoke foo

Older C++ systems allow the following unrestricted forms of cast:

(type) expression or type (expression)

Some examples are

y = i/double(7); //would do division in double
ptr = (char*)(i + 88); //int to pointer value

These older forms are considered obsolete and are not used in this text, but many
older compilers and older source code still use them. The older casts do not differ¬
entiate among relatively safe casts, such as static_cast, and system-dependent
unsafe casts, such as rei nterpret_cast. The newer casts are self-documenting as
well; for example, a const_cast suggests its intent through its name.

enum peer { king, prince, earl } a;
enum animal { horse, frog, snake } b;

a = static_cast<peer>(frog);

These new casts are safer and can replace all existing cast expressions. Still,
casting should be avoided, as turning a frog into a pri nee is rarely a good idea.

Casts Comments

x = float(i) ; C++ functional notation

x = (float) i; C cast notation

x = static_cast<float>(i); ANSI C++

static_cast<char>('A' + 1.0) ANSI C++

i = reinterpret_cast<int>(&x) ANSI C++ system dependent

foo(const_cast<int>(c_var));
used to invoke foo() while casting
away constness

364 Appendix C ▼ Language Guide

A constructor of one argument is a de facto type conversion from the argu¬
ment’s type to the constructor’s class type unless preceded by the keyword
explicit. (See Section 5.1.3, “Constructors as Conversions,” on page 152.) Consider
the following example of a my_stri ng constructor:

my_string::my_string(const char* p)

{
len = strlen(p);
s = new char[len + 1];
assert (s != 0);
strcpy(s, p);

}

This is automatically a type transfer from char* to my_stri ng. These conversions
are from an already defined type to a user-defined type. However, it is not possible
for the user to add a constructor to a built-in type—for example, to i nt or to
double. In the my_string example, you may also want a conversion from
my_string to char*. You can do this by defining a special conversion function
inside the my_string class, as follows.

operator char*() { return s; } //char* s is a member

The general form of such a member function is

operator typeO {.}

These conversions occur implicitly in assignment expressions and in argument and
return conversions from functions. Hidden temporaries can be created by the com¬
piler to perform these operations and can affect execution speeds.

In systems implementing the bool type, implicit conversion to bool is required
for expressions controlling the if or the while statement and for the first operand
of the ternary ?: operator. The obvious conversion of 0 to fal se and nonzero to
true occurs.

C.9 Expressions and Operators

C++ is an operator-rich, expression-oriented language. The operators have 17 prece¬
dence levels. Operators can also have side effects. See Appendix B, “Operator Prece¬
dence and Associativity,” on page 345 for the complete table of operator precedence
and associativity.

C.9 ▼ Expressions and Operators 365

C.9.1 sizeof Expressions

The si zeof operator can be applied to an expression or a parenthesized type name.
This operator gives the size in bytes of the type to which it is applied. Its results are
system dependent.

Declarations

int a, b[10] ;

Expression
Value on gnu C++ Running

on a DECstation

sizeof(a) 4

si zeof(b) 40 the array storage

sizeofCb[1]) 4

sizeof(5) 4

sizeof(5.5L) 8

C.9.2 Autoincrement and Autodecrement Expressions

C++ provides autoincrement (++) and autodecrement (--) operators in both prefix
and postfix form. The postfix form behaves differently from the prefix form by
changing the affected lvalue after the rest of the expression is evaluated.

Autoincrement and
Autodecrement Equivalent Expression

j = ++i; i = i + 1; j = i;

i_
i. ii _!
.

+ + j = i; i = i + 1;

j = —i; i = i - 1; j = i;

j = i —; j = i; i = i - 1;

366 Appendix C ▼ Language Guide

C.9.3 Arithmetic Expressions

Arithmetic expressions are consistent with expected practice. The following exam¬
ples are grouped by precedence, highest first.

Arithmetic Expressions Comments

-i +w unary minus unary plus

a * b a / b i % 5 multiply divide modulus

a + b a - b binary addition subtraction

a = 3 / 2.0; a is assigned 1.5

a = 3 / 2; a is assigned 1

The modulus operator % is the remainder from the division of the first argument by
the second argument. The operator may be used only with integer types. Arithmetic
expressions depend on the conversion rules given earlier. (See Section 5.1.3, “Con¬
structors as Conversions,” on page 152.) In the preceding table, see how the result
of the division operator / depends on its argument types.

C.9.4 Relational, Equality, and Logical Expressions

This discussion is based on ANSI C++ adopting a bool type with constants fal se
and true. Prior to the introduction of the bool type, the values 0 and nonzero were
thought of as false and true and were used to affect the flow of control in various
statement types. The following table contains the C++ operators that are most often
used to affect flow of control.

Relational, Equality, and Logical Operators

Relational operators less than <

greater than >

less than or equal to <=

greater than or equal to >=

Equality operators equal ==

not equal 1 =

Logical operators (unary) negation i

logical and &&

logical or II

C.9 t Expressions and Operators 367

The negation operator ! is unary. All of the other relational, equality, and logical
operators are binary. They operate on expressions and yield either true or fal se.
Logical negation can be applied to an arbitrary expression, which is then converted
to bool. When negation is applied to a true value, it results in fal se; when nega¬
tion is applied to a fal se value, it results in true.

In the evaluation of expressions that are the operands of && and | |, the evalua¬
tion process stops as soon as the outcome true or fal se is known. This is called
short-circuit evaluation. For example, suppose that exprl and expr2 are expressions.
If exprl has fal se value, expr2 in

exprl && expr2

will not be evaluated, because the value of the logical expression is already deter¬
mined to be false. Similarly, if exprl has true value, expr2in

exprl || expr2

will not be evaluated, because the value of the logical expression is already deter¬

mined to be true.
On systems that do not implement the bool type, these expressions will evalu¬

ate to 1 and 0 instead of true and false.

Declarations and Initialization

int a = -5, b=3, c=0;

Expression Equivalent Value

a + 5 && b ((a + 5) && b) false or 0

! (a < b) && c ((! (a < b)) && c) false or 0

111 (a != 7) dll (a != 7)) true or 1

Note that the last expression always short-circuits to value true.

368 Appendix C ▼ Language Guide

C.9.5 Assignment Expressions

In C++, assignment occurs as part of an assignment expression. The effect is to eval¬
uate the right-hand side of the assignment and to convert it to a value compatible
with the variable on the left-hand side. Assignment conversions occur implicitly and
include narrowing conversions; simple variables are lvalues.

C++ allows multiple assignments in a single statement. Thus,

a = b + (c = 3) ; is equivalent to c = 3; a = b + c;

C++ provides assignment operators that combine an assignment and some other
operator.

a op= b; is equivalent to a = a op b

Declarations and Initialization

int a, i, *p = &i;
double w, *q = &w;

Assignment Expressions Comments

a = i +1; assigns (i + 1) to a

i = w; legal w value converted to i nt

*q = i; legal integer value promoted to doubl e

*q = *p; legal

q = p; illegal conversion between pointer types

q = (double*)p; legal

a *= a + b; equivalent to a = a * (a + b) ;

-Q II + equivalent to a = a + b;

C.9 ▼ Expressions and Operators 369

C.9.6 Comma Expressions

The comma operator has the lowest precedence. It is a binary operator with expres¬
sions as operands. In a comma expression of the form

exprl, expr2

exprl is evaluated first, then expr2. The comma expression as a whole has the value
and type of its right operand. The comma operator is a control point. Therefore,
each expression in the comma-separated list is evaluated completely before the next
expression to its right. An example is

sum =0, i = 1

If i has been declared an i nt, this comma expression has value 1 and type i nt. The
comma operator associates from left to right.

C.9.7 Conditional Expressions

The conditional operator ?: is unusual in that it is a ternary operator. It takes as
operands three expressions. In a construct such as

exprl ? expr2 : expr3

exprl is evaluated first. If it is true, expr2 is evaluated, and its value is the value of
the conditional expression as a whole. If exprl is f al se, expr3 is evaluated, and its
value is the value of the conditional expression as a whole. The following example
uses a conditional operator to assign the smaller of two values to the variable x:

x = (y < z) ? y : z;

The parentheses are not necessary, because the conditional operator has prece¬
dence over the assignment operator. However, using parentheses is good style

because they clarify what is being tested for.
The type of the conditional expression

exprl ? expr2 : expr3

is determined by expr2 and expr3. If they are different types, the usual conversion
rules apply. The conditional expression’s type cannot depend on which of the two
expressions is evaluated. The conditional operator ?: associates right to left.

370 Appendix C ▼ Language Guide

C.9.8 Bit-Manipulation Expressions

C++ provides bit-manipulation operators. They operate on the machine-dependent
bit representation of integral operands. It is customary that the shift operators be
overloaded to perform I/O.

Bitwise
Operators Meaning

~ unary one’s complement

« left shift

» right shift

& and

A exclusive or

1 or

C.9.9 Address and Indirection Expressions

The address operator & is a unary operator that yields the address, or location,
where an object is stored. The indirection operator * is a unary operator that is
applied to a value of type pointer. It retrieves the value from the location being
pointed at. This is also known as dereferencing.

Declarations and Initialization

int a = 5; //declaration of a
int* p = &a; //p points to a
int& ref_a = a //alias for a

Expression Value

*P = 7; lvalue in effect a is assigned 7

a = *p + 1; rvalue 7 added to 1 and a assigned 8

C.9 t Expressions and Operators 371

C.9.10 new and del ete Expressions

The unary operators new and del ete are available to manipulate free store, which is
a system-provided memory pool for objects whose lifetime is directly managed by
the programmer. Using new creates an object and using del ete destroys it.

The new operator is used in the following simple forms:

new type-name initializeropt
new type-name[integer expression]

The first form allocates an object of the specified type from free store. An initializ¬
ing expression, if present, performs the initialization. The second form allocates an
array of objects of the specified type from free store. A default initializer must be
available for these objects.

The new Operator Comments

new int allocates an i nt

new char[100] allocates an array of 100 i nts

new int(99) allocates an i nt initialized to 99

new char('c') allocates a char initialized to c

new int[n][4] allocates an array of pointers to i nt

In each case, there are at least two effects. First, an appropriate amount of store is
allocated from free storage to contain the named type. Second, the base address of
the object is returned as the value of the new expression. If new fails, either the null-
pointer value 0 is returned, or the exception bad_al loc is thrown (see Section 9.9,
“Standard Exceptions and Their Uses,” on page 318). It is good practice to test for

failure.
An initializer is a parenthesized list of arguments. For a simple type, such as an

i nt, it would be a single expression. It cannot be used to initialize arrays, but it can
be an argument list to an appropriate constructor. If the type being allocated has a
constructor, the allocated object will be initialized.

The operator delete is used in the following forms:

delete expression
delete [] expression

In both forms, the expression is typically a pointer variable used in a previous new
expression. The second form is used when returning storage that was allocated as

372 Appendix C ▼ Language Guide

an array type. The brackets indicate that a destructor should be called for each ele¬
ment of the array. The operator delete returns a value of type void.

The delete Operator Comments

delete ptr deletes the pointer to an object

delete p[i] deletes object p[i]

delete [] p deletes each object of type p

The operator delete destroys an object created by new, in effect returning its allo¬
cated storage to free store for reuse. If the type being deleted has a destructor, it
will be called. There are no guarantees on what values will appear in objects allo¬
cated from free store. The programmer is responsible for properly initializing such
objects. For a code example, see file dynarray.cpp in Section 3.20, “Free-Store
Operators new and delete,” on page 98.

Placement Syntax and Overloading

The operator new has the general form

'•'■opt new placementopt type-name initializer opt

The global operator new() is typically used to allocate free store. The system pro¬
vides a si zeof (type) argument to this function implicitly. Its function prototype is

void* operator new(size_t size);

The operator new can be overloaded at the global level by adding parameters
and calling it, using placement syntax. THe operator can be overloaded and used to
override the global versions at the class level. But when allocating an array of
objects, only the default global void* operator new(size_t size) will be called

The del ete operator also can be overloaded. The global version is

void operator delete(void* ptr)

A class-specific version can be declared as either of the following:

void operator delete(void* ptr)

void operator delete(void* ptr, size_t size)

C.9 ▼ Expressions and Operators 373

However, only one of these forms can be used by any one class. When deallocat¬
ing an array of objects, the global version will be called. This feature provides a sim¬
ple mechanism for user-defined manipulation of free store. For example,

class X {

public:
void* operator new(size_t size)

{ return (malloc(size)); }
void operator delete(void* ptr) { free(ptr); }
X(unsigned size) { new(size); }
~X() { delete(this) ; }

};

In this example, the class X provides overloaded forms of new() and delete().
When a class overloads operator new(), the global operator is still accessible,
using the scope resolution operator : :. Note that the stddef library is required for
size_t type, and mal 1 oc() is in the stdlib library.

The placement syntax provides for a comma-separated argument list that is
used to select an overloaded operator new() with a matching signature. These
additional arguments are often used to place the constructed object at a particular
address. One form of this can be found in the new library.

Class new() and deleteO member functions are always static. For a code
example, see file over_new.cpp in Section 6.12, “Overloading new and delete,” on

page 221.

Error Conditions

In the absence of implemented exception handling, new returns a 0 value, indicating
an allocation failure. The standard library new has the function
set_new_handler(), which installs the function to be called when new fails. Calling
this with value 0 means that a version of new that does not throw exceptions will be
used. Otherwise, a bad_al 1 oc exception will be thrown. The implementation of new

can be system dependent.

C.9.11 Other Expressions

C++ considers function call () and indexing or subscripting [] to be operators. They
have the same precedence as the member and structure pointer operators.

a[j + 6]
sqrt(z + 15.5);

//means *(a + j + 6)
//returns a double

374 Appendix C ▼ Language Guide

lhe global scope resolution operator is of highest precedence. The class scope reso¬
lution operator is used with a class name to qualify a local-to-class identifier.

::1 //access global i
A::foo() //invoke member fooQ defined in A

C.10 Statements

C++ has a large variety of statement types and uses the semicolon as a statement
terminator. Braces are used to enclose multiple statements and to treat them as a
single unit. Statements are control points. Before a new statement is executed, the
actions of the previous statements must be completed. Inside statements, the com¬
piler has some liberty to pick which parts of subexpressions are evaluated first.

a = f (i) ;

a += g(j);
a = f(i) + g(j);

//call f()
//call g()
//compiler

and assign to a
and add to a
decides calling order

C++ is a block-structured language in which declarations are often at the head
of blocks. Unlike in C, declarations are statements and can be intermixed with other
statements. Structured programming principles should still be followed when writ¬
ing C++ code. Namely, the goto should be avoided, and care should be taken that
the program’s flow of control is easy to follow.

Because C++ has many possible side effects in expressions, care should be
exercised in avoiding system-dependent effects. For example, the side effect
operators autoincrement and autodecrement should be used sparingly in
expressions where order-of-evaluation and possible compiler optimizations can
lead to system dependencies.

In many cases, C++ statements are overly unrestrictive, and good programming
discipline is reqmred to avoid error-prone constructions. For example,

for (double x = 0.1; !(x y); x += 0.1)

is problematic because machine accuracy and round-off problems will
cause a failure in the terminating condition.

in most cases

C.10 r Statements 375

The following table gives a summary of general C++ statements.

Statement C++ Comments

empty J

expression i = i + k; assignment may use conversions

compound { .
}

used for function definitions and
structuring; same as block

goto goto 11; avoid

if if (p == 0)
cerr « "new error";

one-branch conditional

if-else if (x == y)
cout « "same\n";

el se
cout « "unequal\n";

two-branch conditional

for for (i =0; i < n; ++i)
a[i] = b[i] + c[i];

declarations allowed in the first
component

while while (x != y) zero or more iterations

do-whi1e do
y = y - 1;

whi 1 e (y >= 0) ;

one or more iterations

switch switch (s) {
case 1: ++i; break;
case 2: —i; break;

default: ++j;

};

use break to avoid fall-through
semantics and default as a last

label

break break; used in swi tch and iteration

continue continue; used in iterations

declaration int i = 7; in a block, file, or namespace

try block
try { . }

see Section 9.4, “Try Blocks,” on

page 313

labeled error: cerr « "ERROR”; target of goto

return return x * x * x; try for one return per function

376 Appendix C ▼ Language Guide

C.10.1 Expression Statements

In C++, assignment occurs as part of an assignment expression. There is no assign¬
ment statement, since it is a form of expression statement.

a = b + 1;

++i ;
a + b;

//assign (b + 1) to a
//an expression statement
//also a statement - but seemingly useless

C++ allows multiple assignments in a single statement.

a = b = c + 3; is equivalent to b = c + 3;a = b;

C.10.2 The Compound Statement

A compound statement in C++ is a series of statements surrounded by braces { }.
The chief use of the compound statement is to group statements into an executable
unit. The body of a C++ function is always a compound statement. In C, when decla¬
rations come at the beginning of a compound statement, the statement is called a
block. This rule is relaxed in C++, and declaration statements may occur throughout
the statement list. Wherever it is possible to place a statement, it is also possible to
place a compound statement.

C.10.3 The i f and i f-el se Statements

The general form of an i f statement is

if (condition)
statement

If condition is true, statement is executed; otherwise, it is skipped After the if
statement has been executed, control passes to the next statement. A condition is
an expression or a declaration with initialization that selects flow of control For a
code example, see file if_test.cpp in Section 2.8.3, “The i f and if-else State¬
ments,” on page 45.

The if-else statement has the general form

if (condition)
statementl

el se

statement2

C.10 ▼ Statements 377

If condition is true, statementl is executed, and statement2 is skipped; if condition
is false, statementl is skipped, and statement2 is executed. After the if-else
statement has been executed, control passes to the next statement. Note that an
else statement associates with its nearest if; this rule prevents the ambiguity of a
dangling else. For a code example, see file if_test.cpp in Section 2.8.3, “The if and

i f-el se Statements,” on page 46.

C.10.4 The while Statement

The general form of a whi 1 e statement is

while (condition)
statement

First, condition is evaluated. If it is true, statement is executed, and control passes
back to the beginning of the while loop. The effect of this is that the body of the
while loop, namely, statement, is executed repeatedly until condition is false. At
that point, control passes to the next statement. The effect of this is that statement
can be executed zero or more times. For a code example, see file while_t.cpp in Sec¬

tion 2.8.4, “The while Statement,” on page 47.

C.10.5 The for Statement

The general form of a for statement is

for (for-init-statement; condition; expression)

statement
next statement

First the for-init-statement is evaluated and is used to initialize a variable in the
loop.’ Then condition is evaluated. If it is true, statement is executed, expression is
evaluated, and control passes back to the beginning of the for loop, except that
evaluation of for-init-statement is skipped. This iteration continues until condition is

fal se, at which point control passes to next statement.
The for-init-statement can be an expression statement or a simple declaration.

Where it is a declaration, the declared variable has the scope of the for statement.
Note that this scope rule has changed from the previous rule, which gave such dec¬
larations scope outside the enclosing for statement.

The for statement is iterative and is typically used with a variable that is incre¬
mented or decremented. For a code example, see file for_test.cpp in Section 2.8.5,

“The for Statement,” on page 48.

378 Appendix C ▼ Language Guide

The comma expressions can be used to initialize more than one variable.

for (factorial = n, i = n - 1; i >= 1; --i)
factorial *= i;

Any or all of the expressions in a for statement can be missing, but the two semico¬
lons must remain. If for-init-statement is missing, no initialization step is performed
as part of the for loop. If expression is missing, no incrementation step is per¬
formed as part of the for loop. If condition is missing, no testing step is performed
as part of the for loop. The special rule for when condition is missing is that the test
is always true. Thus, the for loop in the code

for (i = 1, sum = 0 ; ; sum += i++)
cout « sum « endl;

is an infinite loop.

The for statement is one common case in which a local declaration is used to
provide the loop control variable, as in

for (int i =0; i < N; ++i)
sum += a[i]; //sum array a[0] + ... + a[N - 1]

The semantics are that the int variable i is local to the given loop. In earlier C++
systems, it was considered declared within the surrounding block. This can be con¬
fusing, and so it is reasonable to declare all automatic program variables at the
heads of blocks.

C.10.6 The do Statement

The general form of a do statement is

do
statement

while (condition);
next statement

First, statement is executed and then condition is evaluated. If it is true control
passes back to the beginning of the do statement, and the process repeats itself.

en the value of condition is f al se, control passes to next statement. For a code
example, see file do_test.cpp in Section 2.8.6, “The do Statement,” on page 49.

C.10 ▼ Statements 379

C.10.7 The break and continue Statements

To interrupt the normal flow of control within a loop, the programmer can use the
two special statements break and conti nue.The break statement, in addition to its
use in loops, can be used in a switch statement. It causes an exit from the inner¬

most enclosing loop or switch statement.
The following example illustrates the use of a break statement. A test for a neg¬

ative value is made; if it is true, the break statement causes the for loop to be
exited. Program control jumps to the statement immediately following the loop. For
a code example, see file for_test.cpp in Section 2.8.7, The break and continue

Statements,” on page 50.
The conti nue statement causes the current iteration of a loop to stop and the

next iteration of the loop to begin immediately. For a code example, see file
for_test.cpp in Section 2.8.7, “The break and conti nue Statements,” on page 50.

A break statement can occur only inside the body of a for, while, do, or
swi tch statement. The continue statement can occur only inside the body of a

for, whi 1 e, or do statement.

C.10.8 The switch Statement

The switch statement is a multiway conditional statement generalizing the

i f-el se statement. Its general form is

switch (condition)
statement

where statement is typically a compound statement containing case labels and
optionally a defaul t label. Typically, a swi tch is composed of many cases, and the
condition in parentheses following the keyword switch determines which, if any, ol

the cases are executed.
A case label is of the form

case constant integral expression:

In a swi tch statement, all case labels must be unique.
If no case label is selected, control passes to the default label, if there is one.

No defaul t label is required. If no case label is selected and if there is no defaul t
label the switch statement is exited. The keywords case and default canno
occur outside a switch. For a code example, see file switch_t.cpp m Section 2.8.8,

“The switch Statement,” on page 51.

Appendix C ▼ Language Guide

The Effect of a switch Statement

1. Evaluate the integral expression in the parentheses following switch.

2. Execute the case label having a constant value that matches that of the
expression found in step 1. If no match is found, execute the defaul t label; if
there is no default label, terminate the switch.

3. Terminate the switch when a break statement is encountered or by “falling
off the end.”

A switch cannot bypass initialization of a variable unless the entire scope of
the variable is bypassed.

switch (k) {
case 1:

int very_bad = 3; break;

Case 2: //illegal: bypasses init of very_bad

switch (k) {
case 1:

{
int d

}
case 2:

}

= 3; break;

//legal: bypasses scope of d

C.10.9 The goto Statement

The goto statement is an unconditional branch to an arbitrary labeled statement in

—r—a “—in——^
A label is an identifier. By executing a goto statement of the form

goto label]

tTm/onpageC5°2de eXamP'e' “* a°to-tstc™ in Section 2.8.9, “The goto Sta”'

varil9e°iS°bC^edbyPaSS initialiZa,ion of a liable unless the entire scope of the

C.10 ▼ Statements 381

if (i < j)
goto max; //illegal: bypasses init

int crazy = 5;

max:

C.10.10 The return Statement

The return statement is used for two purposes. When it is executed, program con¬
trol is immediately passed back to the calling environment. In addition, if an expres¬
sion follows the keyword return, the value of the expression is returned to the
calling environment as well. This value must be assignment convertible to the
return type of the function-definition header.

A return statement has one of the following two forms:

return;
return expression,

Some examples are

return;
return 3;
return (a + b) ;

C.10.11 The Declaration Statement

The declaration statement can be placed nearly anywhere in a block. This lifts the C
restriction that variable declarations are placed at the head of a block before execut¬
able statements. A declaration statement has the form

type variable-name;

Normal block-structure rules apply to a variable so declared. Two examples are

for (int i = 0; i < N; ++i) { //typical for loop
a[i] = b[i] * c[i] ;
int k = a[i] ; //k local - possibly inefficient

}

C++ imposes natural restrictions on transferring into blocks passed where declara¬
tions occur. These are disallowed, as are declarations that would occur in only one

branch of a conditional statement.

382 Appendix C t Language Guide

C.ll Functions

Special features include the use of function prototypes, overloading, default argu¬
ments, and the effects of the keywords i nl i ne, f ri end, and vi rtual. This section
restricts its discussion to basic functions, overloading, call-by-value, default argu¬
ments, and inlining. Member functions are discussed in Section C.12.2, “Member
Functions,” on page 389; friend functions in Section C.12.3, “Friend Functions,” on
page 389; and virtual functions in Section C.13.6, “Virtual Functions,” on page 399.
Generic functions are discussed throughout Appendix E, “STL and String Libraries.”

In C++, function parameters are call-by-value unless they are declared as refer¬
ence types.

Function
Declaration

C++ Comments

function double cube(double x)
{

return x * x * x;
}

parameters are call-by-value;
return expression must be
assignment compatible with
return type

pure
procedure

void pr_int_sq(int i)
{

cout « i*i « end!;
}

voi d return type denotes a
pure procedure

empty
argument
list

void pr_hi()

{
cout « "HI" « endl;

}

can also be voi d pr_hi (voi d)

reference
argument

voi d
swap(int& i, int& j)
{

i nt t = i ;

i = j; j = t;
}

if invoked as swap(r, s),
r and s exchange values

variable i nt

scanf(const char*,...);
matches any number of
arguments

C.ll ▼ Functions 383

Function
Declaration

C4-+ Comments

inline inline cube(int x); inline code

default
argument

i nt
power(int x, int n = 2);

power(4) yields 16
power(4, 3) yields 64

overload
double
power(double x, int n);

signature is double, int

C.ll.l Prototypes

In C++, the prototype form is

type name(argument-declaration-lisf) ;

Examples are

double sqrt(double x); //in math.h
double stats(const double data[], int size,

double& max, double& min);
void print(const char* s);
int printf(char* format, ...); //in stdio.h

Prototypes make C++ functions type safe. When functions are called, the arguments
are assignment converted to the formal arguments type. With the preceding sqrt()
prototype definition, invoking sqrt() guarantees that, if feasible, an argument will
be converted to type double. When variable-length argument lists are needed, the

ellipsis symbol ... is used.

C. 11.2 Call-by-Reference

Reference declarations allow C++ to have call-by-reference arguments. Let us use
this mechanism to write a function, g reate r(), that exchanges two values if the

first is greater than the second.

int greater(int& a, int& b)

Now, if i and j are i nt variables,

greater(i , j)

384 Appendix C ▼ Language Guide

will use the references to i and j to exchange, if necessary, their two values. In tra¬
ditional C, this operation must be accomplished by using pointers and dereferenc¬
ing. For a code example, see file orderl.cpp in Section 3.11.2, “Pointer-Based Call-
by-Reference,” on page 83.

C.11.3 Inline Functions

The keyword inline suggests to the compiler that the function be converted to
inline code. This keyword is used for the sake of efficiency, generally with short
functions. It is implicit for member functions that are defined within their classes. A
compiler can ignore this directive for a variety of reasons, including that the func¬
tion is too long. In such cases, the inline function is compiled as an ordinary func¬
tion. An example is

inline float circum(float rad) { return (pi * 2 * rad); }

Inline functions have internal linkage.

C. 11.4 Default Arguments

A formal parameter can be given a default argument but only with contiguous for¬
mal parameters that are rightmost in the parameter list. A default value is usually
an appropriate constant that occurs frequently when the function is called. The fol¬
lowing function illustrates this point.

r_sqrd = pow(r); //return r*r
r_5th = pow(r, 5); //return r*r*r*r*r

For a code example, see file powers.cpp in Section 3.5, “Default Arguments ” on
page 70.

C.11.5 Overloading

Overloading is using the same name for multiple meanings of an operator or a func¬
tion. The meaning selected depends on the types of the arguments used by the
operator or function.

Consider a function that averages the values in an array of doubl e versus one
that averages the values in an array of i nt. Both are conveniently named avq_arr
as shown in the following program.

double avg_arr(const int a[], int size)
double avg_arr(const double a[], int size)

C.ll t Functions 385

The function argument type list is called its signature. The return type is not a part
of the signature, but the order of the arguments is crucial. For a code example, see
file avg_arr.cpp in Section 3.7, “Overloading Functions,” on page 72.

Consider the following overloaded declarations:

void print(int i = 0);
void print(int i, double x);
void print(double y, int i);

//signature is int
//int, double
//double,int

When the pri nt() function is invoked, the compiler matches the actual arguments
to the various signatures and picks the best match. In general, there are three possi¬
bilities: a best match, an ambiguous match, and no match. Without a best match, the
compiler issues an appropriate syntax error.

//converts and matches int
//no match, wrong type
//ambiguous
//matches int, double
//matches int by default

printC A') ;
pri nt (str []) ;
print(15, 9);
print(15, 9.0);
printQ ;

The signature-matching algorithm has two parts. The first part determines a best
match for each argument, and the second sees whether one function is a uniquely
best match in each argument. This uniquely best match is defined as being a best
match on at least one argument and a “tied-for-best” match on all other arguments.

For a given argument, a best match is always an exact match. An exact match
also includes an argument with an outermost const or vol ati 1 e. Thus,

void print (int i);
void print(const int& i);

is a redefinition error.
Whichever overloaded function is to be invoked, the invocation argument list

must be matched to the declaration parameter list according to the function-selec¬

tion algorithm.

386 Appendix C ▼ Language Guide

Overloaded Function Selection Algorithm

1. Use an exact match if found.

2. Try standard type promotions.

3. Try standard type conversions.

4. Try user-defined conversions.

5. Use a match-to-ellipsis, if found.

Standard promotions are better than other standard conversions. These are conver¬
sions from float to double and from char, short, or enum to int. Standard con¬
versions also include pointer conversions.

An exact match is clearly best. Casts can be used to force such a match. The
compiler will complain about ambiguous situations.

C.11.6 Type-Safe Linkage for Functions

Linkage rules for non-C++ functions can be specified by using a linkage specifica¬
tion. Some examples are

extern "C" atoi(const char* nptr); //C linkage

extern "C" { //C linkage all functions
#include <stdio.h>

}

This specification is at file scope, with C and C++ always supported. It is system
dependent if type-safe linkage for other languages is provided. Of a set of
overloaded functions with the same number, one at most can be declared to have
other than C++ linkage. Class member functions cannot be declared with a linkage
specification.

C.12 ▼ Classes 387

C.12 Classes

Classes are forms of heterogeneous aggregate types and allow data hiding, inheri¬
tance, and member functions as a mechanism to provide user-defined types. An
example is

//An implementation of a safe array type dbl_vect

class dbl_vect {
public:

explicit dbl_vect(int n = 10);
dbl_vect(const dbl_vect& v);
dbl_vect(const double a[], int n) ;
~dbl_vect() { delete [] p; }
int ub() const;
int& operator[](int i) const;
dbl_vect& operator=(const dbl_vect& v);
friend ostream& operator«(ostream& out,

private:
double *p;
int size;

//default constructor
//copy constructor
//init by array
//destructor
//upper bound
//indexing

//assignment
const dbl_vect& v)

//base pointer
//number of elements

};

The keywords public, private, and protected indicate the access of members
that follow. The default for cl ass is pri vate; for struct, publ i c. In the preceding
example, the data members p and size are private. This makes them accessible
solely to member functions of the same class. For a code example, see file
ch_stacl.h in Section 4.12, “A Container Class Example: ch_stack,” on page 137.

C.12.1 Constructors and Destructors

A constructor, a member function whose name is the same as the class name, con¬
structs objects of the class type. This involves initialization of data members and
also frequently involves free-store allocation using new. If a class has a constructor
with a void argument list, or a list whose arguments all have defaults, the class can
be a base type of an array declaration, where initialization is not explicit. Such a

constructor is called the default constructor.

dbl_vect::dbl_vect() { . } //default constructor

dbl_vect::dbl_vect(int i = 0) { } //default constructor

388 Appendix C ▼ Language Guide

A destructor is a member function whose name is the class name preceded by the
tilde character ~. Its usual purpose is to destroy values of the class type. This is typ¬
ically accomplished by using del ete.

A constructor of the form

type::fype(const type& x)

is used to copy one type value into another, according to whether a type variable is
initialized by a type value, a type value is passed as an argument in a function, or a
type value is returned from a function. This is called the copy constructor; if not
explicitly implemented, it is compiler generated. The default is member-by-member
initialization of value.

Classes with default constructors can have a derived array type. For example,
the dbl_vect a[5] declaration uses the empty argument constructor to create an
array a of five objects, each of which is a size iO dbl_vect.

A special syntax exists for initializing subelements of objects with constructors.
Initializers for structure and class members can be specified in a comma-separated
list that follows the constructor parameter list and precedes the code body. An ini¬
tializer’s form is

member name (expression list)

For example,

foo: :foo(int* t):i(7), x(9.8), z(t) //initializer list
{ //other executable follows here . }

When members are themselves classes with constructors, the expression list is
matched to the appropriate constructor signature to invoke the correct overloaded
constructor. It is not always possible to assign values to members in the body of the
constructor. An initializer list is required when a nonstatic member is either a
const or a reference. In the class dbl_vect example in the next section, the con¬
structors use an initializer for the member dbl_vect: : size.

Constructors cannot be virtual, although destructors can. Neither is inherited.
Constructors of a single parameter are automatically conversion functions. Con¬

sider the following class, whose purpose is to print nonvisible characters with their
ASCII designations, for example, the code 07 (octal) is alarm or bel. The automatic
creation of a conversion constructor from a single-parameter constructor can be
disabled by using the keyword expl i ci t to preface a single-argument constructor.
For a code example, see file string2.cpp in Section 5.10, “Strings Using Reference
Semantics,” on page 181.

C.12 ▼ Classes 389

C.12.2 Member Functions

Member functions are functions declared within a class. As a consequence, they
have access to private, protected, and public members of that class. If defined
inside the class, they are treated as inline functions and are also treated, when nec¬
essary, as overloaded functions. In the class dbl_vect, the member function

int ub() const { return (size - 1); } //upper bound

is defined. In this example, the member function ub is i nl i ne, and it has access to
the private member size.

Member functions are invoked normally by use of the . or -> operators, as in

dbl_vect a(20), b; //invoke appropriate constructor
dbl_vect* ptr_v = &b;
int uba = a.ub(); //invoke member ub
ubb = ptr_v -> ub(); //invoke member ub

Overloaded operator member functions, a special case of member functions, are
discussed in Section C.11.5, “Overloading,” on page 384.

C.12.3 Friend Functions

The keyword friend, a function specifier, allows a nonmember function access to
the hidden members of the class of which it is a friend. A friend function must be
declared inside the class declaration of which it is a friend. It is prefaced by the key¬
word friend and can appear anywhere in the class. Member functions of one class
can be friend functions of another class. In this case, the member function is
declared in the friend’s class, using the scope resolution operator to qualify its func¬
tion name. If all member functions of one class are friend functions of a second
class, this can be specified by writing f ri end cl ass classname.

The following declarations are typical:

class tweedledum {

friend int tweedledee::cheshi re();

};

class node {

friend class tree;
//tree member functions have access to node

390 Appendix C y Language Guide

class complex {

friend complex operator+(complex);
};

C.12.4 The this Pointer

The keyword this denotes an implicitly declared self-referential pointer that can be
used only in a nonstatic member function. The this keyword provides for a built-in,
self-referential pointer. It is as if clock implicitly declared the private member
clock" const this. Early C++ systems allowed memory management for objects
to be controlled by assignment to the thi s pointer. Such code is obsolete because
the thi s pointer is nonmodifiable. For a code example, see file clock.cpp in Section
6.5, “Unary Operator Overloading,” on page 205.

C.12.5 Operator Overloading

Operator overloading is a special case of function overloading. The keyword
operator is used. Just as a function, such as print(), can be given a variety of
meanings, depending on its arguments, so can an operator, such as +, be given
additional meanings. This allows infix expressions of both user and built-in types to
be written. The precedence and associativity remain fixed.

Operator overloading typically uses either member or friend functions, because
both have privileged access. Overloading a unary operator using a member function
has an empty argument list, because the single-operator argument is the implicit
argument. For binary operators, member function operator overloading has, as its
fust argument, the imphcitly passed class variable and, as its second argument, the
lone argument-list parameter. Friend functions and ordinary functions have both
arguments specified in the parameter list.

We expand the dbl_vect class from Section 6.7, “Overloading Assignment and
Subscripting Operators,” on page 210, to have overloaded operators for addition
assignment, subscripting, and output.

C.12 ▼ Classes 391

//Implementation of a safe array type dbl_vect

class dbl_vect {
public:

int& operator[](int i) const;
dbl_vect& operator=(const dbl_vect& v);
friend dbl_vect operator+(const dbl_vect&, const dbl_vect&);
friend ostream& operator«(ostream& , const dbl_vect&)

private:

double *p; //base pointer
int size; //number of elements

This class overloads the assignment and subscript operators as member functions.
The overloaded operator<<() (put to) is made a friend of dbl_vect so that it
may access the private members of dbl_vect. The overloaded operato r«()
should always return type ostream so that multiple put to operations may be exe¬
cuted in a single expression. The overloaded binary plus operator is a friend so that
conversion operations can be applied to both arguments. Note that the overloaded
assignment operator checks for assignment to itself. For a code example, see file
dbl_vect2.h in Section 6.7, “Overloading Assignment and Subscripting Operators,”
on page 210.

The ternary conditional operator ?:, the scope resolution operator : :, and the
two member operators . and . * cannot be overloaded.

Overloaded postfix autoincrement and autodecrement can be distinguished by
defining the postfix overloaded function as having a single unused integer argu¬
ment, as in

class T {
public:

//postfix ++ invoked as t.operator++(0);
void operator++(int);
void operator--(int);

};

There is no implied semantic relationship between the postfix and prefix forms.

392 Appendix C ▼ Language Guide

C.12.6 static and const Member Functions

An ordinary member function invoked as

object.mem(i, j, k);

has an explicit argument list i, j, k and an implicit argument list that contains the
members of object. The implicit arguments can be thought of as a list of argu¬
ments accessible through the this pointer. In contrast, a static member function
cannot access any of the members using the thi s pointer. A const member func¬
tion cannot modify its implicit arguments.

class X{
public:

void print() const { cout « "i = " « i « endl; }
static void change_x_score(int i){ x_score = i; }

private:
static int x_score;
i nt i ;

};

A const member function, such as pri nt(), is not allowed to modify member vari¬
ables of its class, such as i. A static member function, such as change_x_score(),
is not given access to the nonstatic data members, such as i.

For a code example, see file salary.cpp in Section 4.8, “stati c and const Mem¬
bers,” on page 130.

C.12.7 Mutable

The keyword mutable allows data members of class variables that have been
declared const to remain modifiable. This reduces the need to cast away constness.
This relatively new feature is not implemented on all C++ compilers. For a code
example, see file mutable.cpp in Section 4.8.1, “Mutable Members,” on page 132.

C.13 ▼ Inheritance 393

C.13 Inheritance

Inheritance is the mechanism of deriving a new class from an old one. The existing
class, called a base class, can be added to or altered to create a new derived class. A
class can be derived from an existing class by using the form

class class-name: (pub! i c | protected | pri vate)opf base-name

{
member declarations

};

As usual, the keyword class can be replaced by the keyword struct, with the
implication that members are by default public. The keywords public, private,
and protected are available as access modifiers for class members. A public mem¬
ber is accessible throughout its scope. A private member is accessible to other mem¬
ber functions within its own class. A protected member is accessible to other
member functions within its class and any class immediately derived from it. These
access modifiers can be used within a class declaration in any order and with any
frequency.

A derived class must have a constructor if its base class lacks a default con¬
structor. Where the base class has constructors requiring arguments, the derived
class explicitly invokes the base-class constructor in its initializing list. The form of
such a constructor is

class-name(arg-list) : base-nameopt (base-class-arg-list)

{

};

The base-class-arg-list is used when invoking the appropriate base-class constructor
and is executed before the body of the derived-class constructor is executed.

A publicly derived class is a subtype of its base class. A variable of the derived
class can in many ways be treated as if it were the base-class type. A pointer whose
type is pointer to base class can point to objects having the publicly derived class
type. A reference to the derived class, when meaningful, may be implicitly converted
to a reference to the public base class. It is possible to declare a reference to a base
class and to initialize it to an object of the publicly derived class.

In the following example, the db1_vect class from Section 6.7, “Overloading
Assignment and Subscripting Operators,” on page 210, is used as the base class.
The only modification to the base class is to make the private members protected.
The following dbl_vect_bnd class is the derived class:

394 Appendix C ▼ Language Guide

class dbl_vect_bnd : public dbl_vect {
public:

dbl_vect_bnd(int =0, int = 9); //default 10 array
dbl_vect_bnd(const dbl_vect_bnd& v); //copy constructor
dbl_vect_bnd(const dbl_vect& v); //conversion

constructor
dbl_vect_bnd(const double a[], int ne, int lb = 0);
double& operator[](int) const;
int ub() const { return (u_bnd); }
int 1b() const { return (l_bnd); }
dbl_vect_bnd& operator=(const dbl_vect_bnd& v);

private:
int l_bnd, u_bnd;

};

//default constructor
dbl_vect_bnd::dbl_vect_bnd(int lb, int ub) :

dbl_vect(ub - lb + 1), l_bnd(lb), u_bnd(ub) { }

//conversion constructor
dbl_vect_bnd::dbl_vect_bnd(const dbl_vect& v) :

dbl_vect(v), l_bnd(0), u_bnd(size - 1) { }

//copy constructor
dbl_vect_bnd::dbl_vect_bnd(const dbl_vect_bnd& v) :

dbl_vect(v), l_bnd(v.l_bnd), u_bnd(v.u_bnd) { }

dbl_vect_bnd::dbl_vect_bnd(const double a[], int n, int lb) :
dbl_vect(a, n), l_bnd(lb), u_bnd(lb + n) { }

In this example, the constructors for the derived class invoke a constructor in the
base class, with the argument list following the colon.

C.13 ▼ Inheritance 395

C.13.1 Multiple Inheritance

Multiple inheritance allows a class to be derived from more than one base class. The
syntax of class headers is extended to allow a list of base classes and their privacy
designation. An example is

class shape {
//class for shape interface

};

class tview {
//class implementing text view

};

class tshape:public shape, private tview {
//adapter of text view to shape view

};

In this example, the derived class tshape publicly inherits the shape base class, an
interface, and privately inherits tvi ew, an implementation of text vi ew. This pat¬
tern of class design is called the adapter pattern. It uses multiple inheritance to
combine an interface with an implementation; this technique is also known as using
a mixin class.

In general, the parental relationship between classes is described by the inheri¬
tance directed acyclic graph (DAG). The DAG is a graph structure whose nodes are
classes and whose directed edges point from base to derived class.

In deriving an identically named member from different classes, ambiguities
may arise. These derivations are allowed, provided that the user does not make an
ambiguous reference to such a member.

With multiple inheritance, two base classes can be derived from a common
ancestor. If both base classes are used in the ordinary way by their derived class,
that class will have two subobjects of the common ancestor. This duplication can be
eliminated by using virtual inheritance. For a code example, see file shapel.cpp in
Section 8.3, “Virtual Functions,” on page 282.

396 Appendix C y Language Guide

C.13.2 Constructor Invocation

The order of execution for initializing constructors in base and member construc¬
tors is as follows: Base classes are initialized in declaration order; members are ini¬
tialized in declaration order. Virtual base classes are constructed before any of then
derived classes and before any nonvirtual base classes. Their construction order
depends on their DAGs. It is a depth-first, left-to-right order. Destructors are
invoked in the reverse order of the constructors.

C.13.3 Abstract Base Classes

A pure virtual function is a virtual member function whose body is normally un¬
defined. Notationally, it is declared inside the class as follows:

virtual function prototype = 0;

A class that has at least one pure virtual function is an abstract base class. Variables
of an abstract base class cannot exist, but pointers of such a class can be defined
and used polymorphically. For a code example, see file predator.cpp in Section 8.4,
“Abstract Base Classes,” on page 283.

A pure virtual destructor must have a definition.

C.13.4 Pointer to Class Member

A pointer to class member is distinct from a pointer to class. A pointer to class
member’s type is T: : *, where Tis the class name. C++ has two operators that act to
dereference a pointer to class member. The two pointer-to-member operators are . *
and ->*. Think of obj. *ptr_mem and pointer->*ptr_mem as first accessing the
object and then accessing and dereferencing the member that is specified.

The following code shows how to use these operators.

C.13 ▼ Inheritance 397

In file showhide.cpp

//Pointer to class member

class X {
public:

int visible;
void printO

{ cout « "\nhide = " « hide
« " visible = " « visible; }

void resetC) { visible = hide; }
void set(int i) { hide = i; }

private:
int hide;

};

typedef void (X::*pfcn)();

int main()

{
X a, b, *pb = &b;
int X::*pXint = &X::visible;
pfcn pF = &X::print;

a. set(8); a.resetC);
b. set(4) ; b.resetO;
a.printO;
a.*pXint += 1;
a.printO ;
cout « "\nb.visible = " « pb ->*pXint;

(b. *pF) () ;
pF = &X::reset;
(a.*pF)();
a.printO ;
cout « endl;

398 Appendix C t Language Guide

The output is as follows:

hide = 8 visible = 8
hide = 8 visible = 9
b.visible = 4
hide = 4 visible = 4
hide = 8 visible = 8

The typedef voi d (X: : *pfcn) () ; statement says that pfcn is a pointer to class X
member whose base type is a function with no arguments that returns voi d. Mem¬
ber functions X: :print andX: : reset match this type.

The declaration

int X::*pXint = &X::visible;

declares pXi nt to be a pointer to class X member whose base type is i nt. It is initial¬
led by pfcn pF = &X: :print to point at the member X: : visible. The pointer pF
is initialized to point at the member functionX: : pri nt. Given the pointer assign¬
ments in the program, the following equivalencies hold:

a.*pXint += 1
pb ->*pXint
b ■ *PF()
(a.*pF)()

is equivalent to
is equivalent to
is equivalent to
is equivalent to

++a.visible
pb -> visible
b. pri nt()
a. resetQ.

Consider the memory layout for representing an object. The object has a base
address, and the various nonstatic members are offset relative to this base address
In effect, a pointer to class member is used as an offset and is not a true pointer- a
true pointer has general memory addresses as values. A static member is not offset
and, as such, a pointer to a static member is a true address.

C.13.5 Runtime Type Identification

Runtime type identification (RTTI) provides a mechanism for safely determining the
type pointed at by a base-class pointer at runtime. RTTI involves dynami c_cast an
operator on a base-class pointer; typei d, an operator for determining the type of an

atedtyp^1^ tyPe-1nf0, 3 structure Providing runtime information for theassoci-

The dynami c_cast operator has the form

dynami c_cast< type >(v)

C.13 t Inheritance 399

where type must be a pointer or a reference to a class type and v must be a corre¬
sponding pointer value or reference value. This operator is used with inherited

classes having virtual functions, as follows.

class Base { . };
class Derived : Base { . };

void fcn(Base* ptr)

{
Derived* bptr = dynamic_cast<Derived*>(ptr) ;

}

In this example, the cast converts the pointer value ptr to a Derived*. If the con¬
version is inappropriate, a value of 0 is returned or a bad_cast exception is thrown.
Dynamic casts also work with reference types. Conceptually, the derived type object
has a subobject that corresponds to the base type. The conversion replaces the
derived-type pointer value or reference with an appropriate base-type pointer value

or reference.
The operator typeidO can be applied to a typename or to an expression to

determine the exact type of the argument. The operator returns a reference to the
cl ass type_i nfo, which is supplied by the system and is defined in the header file
typeinfo or typeinfo.h. The class type_i nfo provides both a name() member func¬
tion returning a string that is the type name and overloaded equality operators.
Remember to check the local implementation for the complete class interface. Bad
dynamic casts and typeid operations can be made to throw the exceptions
bad_cast and bad_typeid, so the user can choose between dealing with the NULL
pointer and catching an exception. For a code example, see file typeid.cpp in Sec¬

tion 8.8, “Runtime Type Identification,” on page 296.

C.13.6 Virtual Functions

The keyword vi rtual is a function specifier that provides a mechanism for select¬
ing, at runtime, the appropriate member function from among base- and derived-
class functions. It may be used only to modify member function declarations. A vir¬
tual function must be executable code. When invoked, its semantics are the same as
those of other functions. In a derived class, it can be overridden. The selection of
which function to invoke from among a group of overridden virtual functions is
dynamic. In the typical case, a base class has a virtual function and derived classes
have their versions of this function. A pointer to a base-class type can point at
either a base-class object or a derived-class object. The member function to be
invoked is selected at runtime and corresponds to the object’s type, not the
pointer’s. In the absence of a derived type member, the base-class virtual function is

400 Appendix C ▼ Language Guide

used by default. For a code example, see file shapel.cpp in Section 8.3, “Virtual
Functions,” on page 282.

One reason C++ is so complex is that it has many types of functions and many
rule variations that apply to them. At this point, with inheritance and the introduc¬
tion of virtual functions, we have seen most varieties of functions. There are also
those functions that are generated by template syntax, as well as catch () handlers
that are function-like and that are part of the exception mechanism. It is useful to
summarize characteristics and rules applying to most of these by category. For
example, inlined functions can be member or nonmember functions and can have or
not have return types. Inlining forces local linkage.

Function Characteristics

Function
Category Member Virtual

Return
Type Special

constructor yes no no not inherited; default
destructor yes yes no not inherited; default
assignment yes yes yes not inherited
-> □ 0 yes yes yes
operator maybe yes yes
conversion yes yes no no arguments
new static no voi d*
delete static no voi d*
inline maybe yes maybe local linkage
catch no no no one argument
friend friend no yes not inherited

C.14 Templates

The keyword template is used to implement parameterized types. Rather than
repeatedly recoding for each type, the template feature allows instantiation to gen¬
erate code automatically for each type. 8

C.14 ▼ Templates 401

template cclass T> //parameterize T
class stack {
public:

stack() ;
explicit stack(int s) ;
T& pop();
void push(T);

private:
T* item;
int top;
int size;

};

typedef stack<string> str_stack;
str_stack s(100); //explicit string stack variable

For a code example, see file stack_tl.cpp in Section 7.1, “Template Class stack,” on

page 240.
A template declaration has the form

template < template arguments > declaration

and a template argument can be

class identifier
argument declaration

The class identifier arguments are instantiated with a type. Other argument decla¬
rations are instantiated with constant expressions of a nonfloating type and can be
a function or an address of an object with external linkage, as shown in the follow¬

ing code:

tempiate<class T, int n >
class array_n {

private:
T items[n]; //n explicitly instantiated

};

array_n<complex, 1000> w; //w is an array of complex

402 Appendix C ▼ Language Guide

Member function syntax, when external to the class definition, is as follows:

template <class T>
T& stack<T>::pop()
{

return(item[top--]);
}

The classname used by the scope resolution operator includes the template argu¬
ments, and the member function declaration requires the template declaration as a
preface to the function declaration.

C.14.1 Template Parameters

The preceding template can be rewritten with default parameters for both the i nt
argument and the type. For example, 1

tempiate<class T = int, int n = 100>
class array_n {

};

The default parameters can be instantiated when declaring variables or can be omit¬
ted, in which case the defaults will be used.

Templates can use the keyword typename in place of class. For example,

tempiate<typename T = double, double* ptr_dbl>

This allows the template code to use a pointer to a double argument. Ordinary
floating-point arguments are not allowed; only pointer and reference to floating¬
point arguments are allowed.

A template argument can also be a template parameter. For example,

tempiatectypename Tl, templatecclass T2> class T3>

This allows very sophisticated metatemplates-templates instantiated with tern-
plates—to be coded. Libraries, such as STL, can use such features.

C.14 ▼ Templates 403

C.14.2 Function Template

Until 1995, compilers allowed ordinary functions to be parameterized, using a
restricted form of template syntax. Only class identifier instantiation is allowed. It
must occur inside the function argument list.

//generic swap

template eclass T>
void swap(T& x, T& y)

{
T temp;

temp = x;
x = y;
y = temp;

}

//ANSI C++ but unavailable in many current compilers

template eclass T, int n>

T foo()

{
T tempfn];

}

fooechar, 20>Q; //use char, 20 and call foo

A function template is used to construct an appropriate function for any invoca¬
tion that matches its arguments unambiguously.

//i j int - okay
//cl, c2 complex - okay
//i int ch char - illegal

swap(i, j);
swap(cl, c2);
swap(i, ch);

The overloading function-selection algorithm is as follows: exact match with trivial
conversions allowed on a nontemplate function, exact match using a function tem¬
plate, and ordinary argument resolution on a nontemplate function. In the previous
example an ordinary function declaration voi d swap (char, char) would have
been invoked on swap(i , ch). For a code example, see file swap.cpp in Section
7.2.1, “Signature Matching and Overloading,” on page 244.

404 Appendix C t Language Guide

C.14.3 Friends

Template classes can contain friends. A friend function that does not use a template
specification is universally a friend of all instantiations of the template class. A
friend function that incorporates template arguments is a friend only of its instanti¬
ated class.

template <class T>
class matrix {
private:

friend void foo_bar();

friend dbl_vect<T> product(dbl_vect<T> v);
//universal
//instantiated

};

C.14.4 Static Members

Static members are not universal but are specific to each instantiation.

template <class T>
class foo {
public:

static int count;

};

foo<int> a, b;
foo<double> c;

The static variables foo<i nt>: : count and foo<doubl e>: : count are distinct The
variables amount and b.count reference foo<int>: icount, but c.count refer-
ences foo<doubl e>: : count. It is preferable to use the form foo<type> ■ • count
which makes it clear that the variable referenced is the static variable.

C.14.5 Specialization

When the template code is unsatisfactory for a particular argument type it can be
specialized. A template function overloaded by an ordinary function of’the same
type that is, one whose list of arguments and return type conform to the template
declaration—is a specialization of the template. When the specialization matches
the call, it, rather than code generated from the template, is called.

C.15 t Exceptions 405

void maxelement<char*>(char*a[],char* &max,int size);
//specialized using strcmpO to return max string

This would be a specialization of the previously declared template for
tempi ate<cl ass T>maxelement(). Class specializations are also possible, as in

class stack<foobar_obj> { /*specialize for foobar_obj */ };

For a code example, see file swap.cpp in Section 7.2.1, “Signature Matching and

Overloading,” on page 244.

C.15 Exceptions

Classically, an exception is an unexpected condition that the program encounters
and cannot cope with. An example is floating-point divide-by-zero. Usually, the sys¬

tem aborts the running program.
C++ code is allowed to directly raise an exception in a try block by using the

throw expression. The exception will be handled by invoking an appropriate handler
selected from a list of handlers found in the handler’s try block. A simple example

of this follows:

dbl_vect::dbl_vect(i nt n)
{ //fault tolerant constructor

try {
if (n < 1)

throw (n);
p = new double [n] ;

if (p == 0)
throw ("FREE STORE EXHAUSTED");

}
catch (int n) { . } //catches an incorrect size

catch (const char* error) { . }
//catches free-store exhaustion

}

Note that new in this example is the traditional new returning 0 for an allocation
error. C++ systems using exceptions within new can throw an xal 1 oc or bad_al 1 oc
exception on failure. This replaces new returning 0 on failure to allocate. The older-
style error handling can be retained by using set_new_handl er (0). For a code
example see file dbl vect4.cpp in Section 9.2, “C++ Exceptions,” on page 309.

406 Appendix C ▼ Language Guide

C.15.1 Throwing Exceptions

Syntactically, throw expressions come in two forms:

throw
throw expression

The throw expression raises an exception in a try block. The innermost try block is
used to select the catch statement that processes the exception. The throw expres¬
sion with no argument rethrows the current exception and is typically used when
one wants a second handler called from the first handler to further process the
exception.

The expression thrown is a static temporary object that persists until exception
handling is exited. The expression is caught by a handler that may use this value. An
uncaught expression terminates the program.

void foo()
{

int i;

//will illustrate how an exception is thrown
i = -15;
throw i;

}

int main()

{
try {

foo() ;
}
catch(int n)

{ cerr « "exception caught\n " « n « endl; }

The integer value thrown by throw i persists until the handler with integer signa-
ure catchO nt n) exits. This value is available for use within the handler as its

hon^Tn pa^To16 GXample’ 866 ffle throwLcPP m Section 9.3, “Throwing Excep-

C.15 ▼ Exceptions 407

An example of rethrowing an exception follows:

catch(int n)

{

throw; //rethrown

}

Assuming that the thrown expression was of integer type, the rethrown exception is
the same persistent integer object that is handled by the nearest handler suitable

for that type.

C.15.2 Try Blocks

Syntactically, a try block has the form

try
compound statement
handler list

The try block is the context for deciding which handlers are invoked on a raised
exception. The order in which handlers are defined is important, as it determines
the order in which a handler for a raised exception of matching type will be tried.

try {

throw ("SOS");

io_condition eof(argvfi]);

throw (eof);

}

catch (const char*) { . }
catch (io_condition& x) { . }

Recall that a throw expression matches the catch if it is an exact match, a derived
type of the public base-class handler type, or a thrown object type that is convert¬

ible to a pointer type that is the catch argument.

Appendix C ▼ Language Guide

It is an error to list handlers in an order that prevents them from being called
For example,

catch (void-') //any char* would match
catch(char*)

catch(BaseTypeError&) //always for DerivedTypeError
catch(DerivedTypeError&)

C.15.3 Handlers

Syntactically, a handler has the form

catch (formal argument)
compound statement

The catch looks like a function declaration of one argument without a return type,

catch (const char* message)

cerr « message « endl;
exit(l);

An ellipses signature that matches any argument is allowed. Also, the formal argu¬
ment can be an abstract declaration, meaning that it can have type information

XrsTon page 314name' ^ ^ 6Xample’ 866 file catchcpp in Section 9'5’ “Han‘

C. 15.4 Exception Specification

Syntacticany, an exception specification is part of a function declaration and has the

function header throw {type list)

have^hefnn°f.typeS that a throw exPression within the function can

cation iden" “ declaration must ou, the exception specifi-

the Son! dtSSly/Sec”/ ” “th'be eXe™ted

void foo() throw(int, over_flow);
void noex(int i) throwQ ;

C.16 ▼ Caution and Compatibility 409

If an exception specification is left off, the assumption is that an arbitrary exception
can be thrown by such a function. Violations of these specifications are runtime
errors. They are caught by the function unexpected().

C.15.5 terminateO and unexpected()

The system-provided function termi nate() is called when no handler has been
provided to deal with an exception. The abort () function, called by default, imme¬
diately terminates the program, returning control to the operating system. Other
action can be specified by using set_termi nate() to provide a handler. These dec¬

larations are found in the except library.
The system-provided handler unexpected () is called when a function throws

an exception that was not in its exception-specification list. By default, the
termi nate() function is called. Otherwise, set_unexpected() can be used to

provide a handler.

C.15.6 Standard Library Exceptions

The standard library exceptions are derived from the base-class except! on. Two of
the derived classes are logic_error and runtime_error. The logic-error types
include bad_cast, out_of_range, and bad_typeid, which are intended to be
thrown as indicated by their names. The runtime error types include range_error,

overflow_error, and bad_alloc.
The base class defines a virtual function

virtual const char* exception::what() const throw();

This member function is intended to return a meaningful diagnostic message and
should be defined in each derived class to give more helpful messages. The empty
throw-specification list indicates that the function itself should not throw an

exception.

C.16 Caution and Compatibility

C++ is not completely upward compatible with C. In most cases of ordinary use, C++
is a superset of C. Also, C++ is not a completely stable language design. It is in the
process of being standardized. The following sections note problematic features of

the language.

410 Appendix C ▼ Language Guide

C.16.1 Nested Class Declarations

The original scoping of nested classes was based on C rules. In effect, nesting was
cosmetic, with the inner class globally visible. In C++, the inner class is local to the
outer class enclosing it. Accessing such an inner class could require multiple uses of
the scope resolution operator.

1nt outer::inner::foo(double w) //f00 is nested

It is also possible to have classes nested inside functions.

C.16.2 Type Compatibilities

!he8follo»inCg+l+istS m°re Str°ngly tyPed ANSI C iS' S°me differences Siven in

Type Differences for ANSI C

Enumerations are distinct types, and enumerators are not explicitly i nt This
means that enumerations must be cast when making assignments from inte-
ger types or other enumerations. Enumerations are promotable to integer.
(See Section 2.6, Enumeration Types,” on page 38.)

Any P01nter type can be converted to a generic pointer of type void* How¬
ever, unlike in ANSI C, a generic pointer in C++ is not assignment compatible
with an arbitrary pointer type. This means that C++ requires that generic
p inters be cast to an explicit type for assignment to a nongeneric pointer
variable. (See Section 3.13, “The Uses of void,” on page 87.)

A character constant in C++ is a char, but in ANSI C it is an int. The char
ype is distinct from both signed char and unsigned char. Functions may

not co“e ^ °n 'he diStinCti°nS' and P°intOTS to thr“ ^

C.16.3 Miscellaneous

ANST°cdhvifhpnCtiT S7ntaX’ in Whkh the argument list is left blank, is replaced in
SI C by the explicit argument voi d. The signature foo() in C is considered enniv

mem fetthe °f dUPSeS and ‘n C++ iS equivalent1 to th^emp^^gu-

In early C++ systems, the this pointer could be modified and used to allocatn

can con^

C.l 7 ▼ New Features in C++ 411

C++ allows declarations to be intermixed with executable statements. ANSI C
allows declarations to be at the heads of blocks or in file scope only. However, in
C++, goto, iteration, and selection statements are not allowed to bypass initializa¬

tion of variables. This rule differs from ANSI C.
In C++, a global data object must have exactly one definition. Other declarations

must use the keyword extern. ANSI C allows multiple declarations without the key¬

word extern.

C.l 7 New Features in C++

Most compilers have complete implementations of templates and exceptions. The
behavior of new with exceptions implemented is to throw a bad_al loc exception.
(See Section 9.9, “Standard Exceptions and Their Uses,” on page 318.)

Mechanisms that dynamically determine object type have entered the language.
This is called runtime type identification (RTTI). The new operator typeidO
applies to either a typename or an expression and dynami c_cast<type>(pointer),
whose effect is either to return 0 if the cast fails or to perform the cast. With excep¬
tions in use, the standard library bad_cast exception is thrown when a conversion
fails. In general, such casts will be allowed in polymorphic class hierarchies. (See
Section C.13.5, “Runtime Type Identification,” on page 398.)

The cast conversion operators static_cast and rei nterpret_cast are also

added. (See Section 2.5, “The Traditional Conversions,” on page 34.)
Single-argument constructors may be prohibited from being conversion con¬

structors with the use of the keyword expl i ci t. (See Section 5.1.3, “Constructors as

Conversions,” on page 152.)
The keyword mutable allows data members of class variables that have been

declared const to remain modifiable. (See Section 4.8.1, “Mutable Members,” on

page 132.)
Two new types, bool and wchar_t, were added to the simple types. (See Section

2.4, “Simple Types,” on page 32.)
The existence of libraries that can lead to name clashes motivated the addition

of a namespace scope. (See Section 3.10, “Namespaces,” on page 80.) The standard
library is encapsulated in the namespace std. This library includes the standard

container classes, iterators, and algorithms of the STL.
See system manuals for a detailed description of what is implemented.

«

.

endix D

This appendix describes input/output in C++, using iostream and its associated
libraries. The software for C++ includes a standard library that contains functions
commonly used by the C++ community. The standard input/output library for C,
described by the header stdio.h, is still available in C++. However, C++ introduces
iostream, which implements its own collection of input/output functions. The
header stream was used on systems before release 2.0 and is still available under

many C++ systems.
The stream I/O is described as a set of classes in iostream. These classes over¬

load the put to and get from operators « and ». Streams can be associated with
files, and examples of file processing using streams are discussed in this section. A
lot of file processing requires character-handling macros, which are found in ctype.

These are also discussed here.
In OOP, objects should know how to print themselves, and in this text we have

frequently made pri nt() a member function of a class. Notationally, it is also use¬
ful to overload « for user-defined ADTs. In this section, we develop output func¬
tions for the types card and deck to illustrate these techniques.

D.l The Output Class ost ream

Output is inserted into an object of type ostream, declared in the header file
iostream. An operator « is overloaded in this class to perform output conversions
from standard types. The overloaded left-shift operator is called the insertion, or
put to operator. The operator is left associative and returns a value of type
ostream&. The standard output ostream corresponding to stdout is cout, and the
standard output ostream corresponding to stderr is cerr.

The effect of executing a simple output statement, such as

cout « "x = " << x << '\n';

is to print to the screen a string of four characters, followed by an appropriate rep¬
resentation for the output of x, followed by a new line. The representation depends

on which overloaded version of « is invoked.
The class ostream contains public members, such as

414 Appendix D ▼ Input/Output

ostream& operator«(int i);
ostream& operator«(long i);
ostream& operator«(double x) ;
ostream& operator«(char c);
ostream& operator<<(const char* s);
ostream& put(char c) ;

ostream& write(const char* p, int n);
ostream& flush();

The member function put() outputs the character representation of c. The member
function wri te () outputs the string of length n pointed at by p. The member func¬
tion flush() forces the stream to be written. Since these are member functions
they can be used as follows:

cout.put('A'); //output A

char* str = "ABCDEFGHI";
cout.write(str + 2, 3);
cout.flush();

//output CDE
//write buffered stream

D.2 Formatted Output and iomanip

The put to operator « produces by default the minimum number of characters
needed to represent the output. As a consequence, output can be confusing, as seen
m the following example:

int i =8, j = 9;

cout « i « j ;
cout « i « "
cout « "i= " « « i « 1= " « j; //best: i= 8 j= 9

//confused: prints 89
//better: prints 8 9

x = 1;
cout « "x = " « x « endl;

D.2 ▼ Formatted Output and iomanip 415

This immediately prints the line

x = 1

Another manipulator, fl ush, flushes the ostream, as in

cout « "x = " « x « flush;

This has almost the same effect as the previous example but does not advance to a
new line.

The manipulators dec, hex, and oct can be used to change integer bases. The
default is base 10. The conversion base remains set until it is explicitly changed.

In file manip.cpp

//Using different bases in integer I/O

int main()

{
int i = 10, j = 16, k = 24;
cout « i « '\t1 « j « '\t' « k « endl ;
cout « oct « i « '\t' « j « '\t' « k « endl;
cout « hex « i « '\t' « j « '\t' « k « endl;
cout « "Enter 3 integers, e.g. 11 11 12a" « endl;
cin » i » hex » j » k;
cout « dec « i « '\t' « j « '\t' « k « endl;

}

The resulting output is

10 16 24
12 20 30
a 10 18
Enter 3 integers, e.g. 11 11 12a
11 17 298

The reason that the final line of output is 11 followed by 17 followed by 298 is that
the second 11 in the input was interpreted as hexadecimal, which is 16 + 1, and the
third input was hexadecimal 12a, which is decimal 298.

The preceding manipulators are found in iostream. Other manipulators are
found in iomanip. For example, setw(i nt wi dth) is a manipulator that changes the
default field width for the next formatted I/O operation to the value of its argument.

416 Appendix D ▼ Input/Output

This value reverts to the default. The following table briefly lists the standard
manipulators, the function of each, and the location where each is defined.

I/O Manipulators

Manipulator Function File
end! outputs newline and flush iostream
ends outputs null in string io stream
fl ush flushes the output iostream
dec uses decimal iostream
hex uses hexadecimal iostream
oct uses octal iostream
ws skips white space on input iostream
skipws skips white space iostream
noskipws do not skip white space iostream
boolalpha prints “true” and “false” iostream
nobool alpha prints “1” and “0” iostream
fixed prints 123.45 iostream
scientific print 1.2345 e+02 iostream
1 eft fill characters to the right of value iostream
right fill characters to the left of value iostream
internal fill characters between sign and value iostream
setw(int) sets field width iomanip
setfi11(int) sets fill character iomanip
setbase(int) sets base format iomanip
setprecision(int) sets floating-point precision iomanip
setiosflags(long) sets format bits iomanip
resetiosflags(long) resets format bits iomanip

A further example will demonstrate the use of setw setf i 11
manipulators. and setprecision

D.2 t Formatted Output and iomanip 417

//Display use of formatting manipulators.

#include <iostream.h>
#include <iomanip.h>

const long double pi = 3.14159265358979323846L;//pi to 21 places

inline long double area(long double rad)
{ return (pi * rad * rad); }

int main()

{
long double r;

cout « "\nEnter radius:
cin » r;
cout « "\nArea is " « setw(20) « area(r);
cout « "\nArea is " « setw(20)

« setprecision(10) « area(r);
cout « "\nArea is " « area(r);
cout « "\nArea is " « setprecision(20) « area(r) « endl;
cout « setfi11('*');
cout « setprecision(4) « setw(20) « r « endl;

}

The output from this program when 1.0 is entered for r is

Enter radius:
Area is 3.14159
Area is 3.141592654
Area is 3.141592654
Area is 3.141592653589793116
*******************]_

As expected, the setpreci si on() yields a different number of decimal digits of
floating-point precision. Be careful not to exceed the meaningful precision of the
result. The fill character by default is blank, and here in the last line of output, 1 i t
was changed to the “star.” The output widths are adjusted per each output value.
Otherwise, the default width is the exact number of characters needed to display a

result.

418 Appendix D ▼ Input/Output

D.3 User-Defined Types: Output

User-defined types have typically been printed by creating a member function
print(). Let us use the types card and deck as an example of a simple user-
defined type. We write out a set of output routines for displaying cards.

In file pr_cardl.cpp

//card output

char

char

pips_symbol[14] = { 'A', '2', '3',
'5', '6', '7', '8', '9', 'T', 'J', 'Q'

suit_symbol [4] ={ 'c\ 'd\ 'h\ 's' };

'4',

, 'K' };

enum suit { clubs, diamonds, hearts, spades };

class pips {
public:

void assign(int n) {p=n%13+l; }
void print() { cout « pips_symbol[p]; }

private:
int p;

class card {
public:

suit s;

Pi ps p;
void assign(int n)

{ cd = n; s = suit(n / 13); p.assign(n); }
void pr_card()

{ p.printO; cout « suit_symbol [s] « "
private:

int cd; //a cd is from 0 to 51

D.3 ▼ User-Defined Types: Output 419

class deck {
public:

void init_deck();
void shuffleO;
void deal(int, int, card*);
void pr_deck();

private:
card d[52] ;

};

void deck::pr_deck()

{
for (int i =0; i < 52; ++i) {

if (i % 13 == 0) //13 cards to a line
cout « endl;

d [i] . pr_card() ;

}
}

Each card will be printed out in two characters. If d is a variable of type deck, then
d. pr_deck() will print out the entire deck, 13 cards to a line.

In keeping with the spirit of OOP, it would also be nice to overload « to accom¬
plish the same aim. The operator « has two arguments—an ostream& and the
ADT—and it must produce an ostream&. You want to use a reference to a stream
and to return a reference to a stream, whenever overloading « or », because you
do not want to copy a stream object. Let us write these functions for the types card

and deck.

In file pr_card2.cpp

ostream& operator«(ostream& out, pips x)

{
return (out « pips_symbol[x.p]);

}

ostream& operator«(ostream& out, card cd)

{
return (out « cd.p « suit_symbol[cd.s] « " ");

}

420 Appendix D ▼ Input/Output

ostreamS operator«(ostream& out, deck x)
{

for (int i = 0; i < 52; ++i) {

if (i % 13 == 0) //13 cards to a line
out « endl;

out « x.d[i] ;
}
return out;

}

The functions that operate on pi ps and deck need to be friends of the correspond¬
ing class, because they access private members.

D.4 The Input Class istream

An operator » is overloaded in i stream to perform input conversions to standard
types. The overloaded right-shift operator is called the extraction, or get from, oper¬
ator. The standard input i stream corresponding to stdi n is ci n.

The effect of executing a simple input statement, such as

ci n » x » i ;

is to read from standard input, normally the keyboard, a value for x and then a
value for i. White space is ignored.

The class i stream contains public members, such as

istream& operator»(intS i);
istream& operator»(longS i);
istream& operator»(double& x) ;
istreams operator»(charS c) ;
istreamS operator»(char* s) ;
istream& get(char& c);

istream& get(char* s, int n, char c = '\n');
istream& getline(char* s, int n, char c = '\n')-
istreams read(char* s, int n);

D.4 ▼ The Input Class istream 421

The member function get(char& c) inputs the character representation to c,
including white space characters. The member function get (char* s, int n, int
c = ' \n ') inputs into the string pointed at by s at most n - 1 characters, up to the
specified delimiter character c or an end-of-file (EOF). A terminating 0 is placed in
the output string. The optionally specified default character acts as a terminator but
is not placed in the output string. If not specified, the input is read up to the next
newline. The member function getl i ne() works like get (char*, int, char =
' \n '), except that it discards rather than keeps the delimiter character in the desig¬
nated i stream. The member function read(char* s, int n) inputs into the
string pointed at by s at most n characters. It sets the fai 1 bi t if an end-of-file is
encountered before n characters are read. (See Section D.8, “Using Stream States,”
on page 427.) In systems that have implemented ANSI standard exceptions, the
i os_base: : fai lure may be thrown.

cin.get(c); //one character
cin.get(s, 40); //length 40 or terminated by '\n'
cin.get(s, 10, '*'); //length 10 or terminated by *
cin.getline(s , 40); //same as get but '\n' discarded

Other useful member functions are

int gcountO; //number of recently extracted chars
istream& ignore(int n=l, int delimiter=EOF); //skips
int peek(); //get next character without extraction
istream& putback(char c); //puts back character

When overloading the » operator to produce input to a user-defined type, the
typical form is

istream& operator»(istream& p, user-defined-type& x)

If the function needs access to private members of x, it must be made a friend of
class x. A major point is to make x a reference parameter so that its value can be
modified.

422 Appendix D ▼ Input/Output

D.5 Files

C systems have stdin, stdout, and stderr as standard files. In addition, systems
may define other standard files, such as stdprn and stdaux. Abstractly, a file may
be thought of as a stream of characters that are processed sequentially.

Standard Files

C C++ Name Connected to
stdi n ci n standard input file keyboard
stdout cout standard output file screen
stderr cerr standard error file screen
stdprn cprn standard printer file printer
stdaux caux standard auxiliary file auxiliary port

The C++ stream input/output ties the first three of these standard files to ci n,
cout, and cerr, respectively. Typically, C++ ties cprn and caux to their correspond¬
ing standard files, stdprn and stdaux. There is also clog, which is a buffered ver¬
sion of cerr. Other files can be opened or created by the programmer. We will show
how to do this in the context of writing a program that double spaces an existing
file into an existing or new file. The file names will be specified on the command
line and passed into argv.

File I/O is handled by including fstream, which contains the classes of stream
and i fstream for output and input file-stream creation and manipulation. To prop¬
erly open and manage an i fstream or of stream related to a system file, you must
first declare it with an appropriate constructor.

ifstream();

ifstream(const char*, int = ios::in,

int prot = fi1ebuf::openprot);
ofstreamO ;

ofstream(const char*, int = ios::out,

int prot = filebuf::openprot);

The constructor of no arguments creates a variable that will later be associated with
an input file The constructor of three arguments takes as its first argument the
named file. The second argument specifies the file mode. The third argument is for

D.5 ▼ Files 423

The arguments for file mode are defined as enumerators in class ios, as shown
in the following table.

File Modes

Argument Mode

ios::in input mode

ios::app append mode

ios::out output mode

ios::ate open and seek to end of file

ios::nocreate open but do not create mode

ios::trunc discard contents and open

ios::noreplace if file exists, open fails

Thus, the default for an i f stream is input mode, and the default for an of stream is
output mode. If file opening fails, the stream is put into a bad state. The mode can
be tested with the !operator. In libraries built with exceptions, the fai lure excep¬
tion can be thrown.

Other important member functions found in fstream include

//opens ifstream file
void open(const char*, int = ios::in,

int prot = filebuf::openprot);

//opens ofstream file
void open(const char*, int = ios::out,

int prot = filebuf::openprot);

void close() ;

These functions can be used to open and close appropriate files. If you create a file
stream with the default constructor, you would normally use open() to associate it
with a file. You could then use closeO to close the file and to open another file,
using the same stream. Additional member functions in other I/O classes allow for a
full range of file manipulation. The following program uses both the fstream and
the stdlib libraries.

424 Appendix D ▼ Input/Output

In file dbl.sp.cpp

//A program to double space a file.
//Usage: executable fl f2
//fl must be present and readable
//f2 must be writable if it exists

void double_space(ifstream& f, ofstream& t)
{

char c;

while (f.get(c)) {
t.put(c);
if (c == '\n')

t.put(c);
}

}

int main(int argc, char** argv)
{

if (argc != 3) {
cout « "\nUsage: " « argv[0]

« " infile outfile" « endl;
exit(l) ;

}

ifstream f_in(argv[l]);
ofstream f_out(argv[2]);

if (!f_in) {

cerr « "cannot open " « argv[l] « endl;
exit(l);

}
if (!f_out) {

cerr « "cannot open " « argv[2] « endl;
exit(l) ;

}
double_space(f_in, f_out);

D.6 ▼ Using Strings as Streams 425

D.6 Using Strings as Streams

The class strstream allows char* strings to be treated as iostreams. When using
st rst reams, the strstream library must be included. Newer libraries provide both
i stri ngstream and ostri ngstream, which support in-memory I/O, using the stan¬
dard library type stri ng. Check your system to determine which of these libraries
is available.

The i strstream is used when input is from a string rather than from a stream.
The overloaded » get from operator may be used with i strstream variables. The
forms for declaring an i strstream variable are

istrstream name (char* s) ;
istrstream name (char* s, int n) ;

where s is a string to use as input, n is the optional length of the input buffer, and
name is used instead of ci n. If n is not specified, the string must be terminated with
a 0. The end-of-string sentinel is treated as an EOF. An example follows.

In file str_strm.cpp

char name[15];
int total;
char* scores[4] = { "Dave 2","Ida 5","Jim 4","Ira 8" };

istrstream ist(scores[3]); //ist uses scores[3]
ist » name » total; //name: Ira , total = 8

The ost rst ream declarations have the following forms:

ostrstreamO;
ostrstream nnme(char* s, int n, int mode = ios::out);

where s is pointer to buf to receive string, n is the optional size of buffer, and mode
specifies whether the data are to be put into an empty buffer (i os: : out) or
appended to the existing null-terminated string in the buffer (ios: :app or
ios: :ate). If no size is specified, the buffer is dynamically allocated. The
ostrstream variable may use the overloaded put to operator « to build the string.
The use of ostrstream is particularly useful when you want to construct a single
string from information kept in a variety of variables. This technique is used in
exception handling to build a single string variable to be used as an argument in a
throwQ. Our vect example, in Section 9.8, “Example Exception Code,” on page 316,

426 Appendix D ▼ Input/Output

uses this technique. In the following example, note that ost2 must contain an
existing null-terminated string in order for the append to work correctly.

strstream ostl;
strstream ost2 (charbuf, 1000, ios::app);

ostl « name « " " « score « endl;
ost2 « address « ci ty « endl « ends;

D.7 The Functions and Macros in ctype

The system provides a standard header file, ctype or cctype, which contains a set of
functions used to test characters and a set of functions used to convert characters.
These functions may be implemented as macros or as inline functions. This is men¬
tioned here because of its usefulness in C++ input/output. Those functions that
only test a character return an i nt value. The argument is type i nt.

ctype Function Nonzero (true) Is Returned if c Is

isalpha(c) a letter

isupper(c) an uppercase letter

islower(c) a lowercase letter

isdigit(c) a digit

isxdigit(c) a hexadecimal digit

isspace(c) a white space character

isalnum(c) a letter or digit

ispunct(c) a punctuation character

isgraph(c) a printing character, except space

isprint(c) a printable character

iscntrl (c) a control character

isascii(c) an ASCII code

Other functions provide for the appropriate conversion of a character value.
Note that these functions do not change the value of c stored in memory.

D.8 ▼ Using Stream States 427

ctype Conversion Function Effect

toupper(c) changes c from lowercase to uppercase

tolower(c) changes c from uppercase to lowercase

toascii(c) changes c to ASCII code

The ASCII code functions are usual on ASCII systems.

D.8 Using Stream States

Each stream has an associated state that can be tested. The states on existing sys¬
tems are

enum io_state { goodbit, eofbit, fail bit, badbit };

ANSI systems propose the type i os_base: : i ostate to be a bitmask type defining
these values. When the nongood values are set by an I/O operation, ANSI systems
can throw the I/O standard exception ios_base: : failure. Associated with this
exception is a member function what () returning a char* message that gives a rea¬
son for the failure.

The values for a particular stream can be tested by using the public member
functions in the following table.

Stream State Function What It Returns

int good(); nonzero if not EOF or other error bit set

int eof(); nonzero if istream eofbi t set

int fai1 () ; nonzero if fai 1 bi t, badbi t set

i nt bad(); nonzero if badbit set

int rdstateO; returns error state

void clear(int i = 0) ; resets error state

int operator!(); return true if fai 1 bit or badbi t set

operator void*() const; return fai se if fai 1 bi t or badbi t set

428 Appendix D y Input/Output

Testing for a stream’s being in a nongood state can protect a program from hanging

up. A stream state ot good means that the previous input/output operation worked

and that the next operation should also. A stream state of EOF means that the previ¬

ous input operation returned an end-of-file condition. A stream state of fai 1 means

that the previous input/output operation failed but that the stream will be usable

once the error bit is cleared. A stream state of bad means that the previous input/

output operation is invalid but that the stream may be usable once the error condi¬
tion is corrected.

It is also possible to directly test a stream. It is nonzero if it is in either a good
or EOF state.

if (cout « x) //output succeeded

el se

. //output failed

The following program counts the number of words coming from the standard

input. Normally, this would be redirected to use an existing file. The program illus¬
trates ideas discussed in this and the previous two sections.

In file word_cnt.cpp

//The word_cnt program for counting words
//Usage: executable < file

int found_next_word();

int main()

{
int word_cnt = 0;

while (found_next_word())
++word_cnt;

cout « "word count is " « word_cnt « endl;

D.9 ▼ Mixing I/O Libraries 429

int found_next_word()

{
char c;
int word_sz = 0;

cin » c;
while (!cin.eof() && !isspace(c)) {

++word_sz;
cin.get(c) ;

}
return word_sz;

}

A nonwhite space character is received from the input stream and is assigned to c.
The while loop calls the isspaceO function in the ctype library to test that adja¬
cent characters are not white space. The loop terminates when either an end-of-file
character or a white space character is found. The word size is returned as 0 when
the only nonwhite space character found is the end-of-file. One last point: The loop
cannot be rewritten as

while (!cin.eof() && !isspace(c)) {
++word_sz;
cin » c;

}

because this would skip white space.

D.9 Mixing I/O Libraries

Throughout this text, iostream has been used. It is perfectly reasonable to want to
continue using stdio. This is the standard in the C community, and it is well under¬
stood. Its disadvantage is that it is not type safe. Functions such as pri ntf () use
unchecked variable-length argument lists. Stream I/O requires, as arguments to its
functions and overloaded operators, assignment-compatible types. You might also
want to mix both forms of I/O. Synchronization problems can occur because the
two libraries use different buffering strategies. This can be avoided by calling

ios::sync_with_stdio();

The following program coordinates the two libraries.

430 Appendix D ▼ Input/Output

In file mix_io.cpp

4

//The mix_io program with syncronized I/O

unsigned long fact(int n)
{

unsigned long f = 1;

for (int i =2; i <= n; ++i)
f *= i;

return f;
}

int main()

{
int n;

ios::sync_with_stdio();

do {

cout « "\nEnter n positive or 0 to halt: "■
scanf("%d", &n);

printf("\n fact(%d) =%ld", n, fact(n));
} while (n > 0);

cout « "\nend of session" « endl ■
}

Note that for integer values greater than 12, the results will overflow. It is safe
mix stdio and iostream, provided they are not mixed on the same file.

to

Appendix E
STL and String Libraries

The C++ standard template library (STL) provides generic programming for many
standard data structures and algorithms. The STL provides containers, iterators,
and algorithms that support a standard for generic programming. This appendix
presents a brief description, emphasizing these three components.

The library is built using templates and is highly orthogonal in design. Compo¬
nents can be used with one another on native and user-provided types through
proper instantiation of the various elements of the STL. Different header files are
required, depending on the system. Examples here conform to the ANSI standard
and are encapsulated in namespace std. For a code example, see file stLcont.cpp in
Section 7.5.1, “STL Example Code,” on page 253.

E.l Containers

Containers may be either sequence or associative. Sequence containers (vectors,
lists, and deques) are ordered by having a sequence of elements. Associative con¬
tainers (sets, multisets, maps, and multimaps) have keys for looking up elements.
The map container is a basic associative array and requires that a comparison oper¬
ation on the stored elements be defined. All varieties of containers share a similar

interface.

STL Typical Container Interfaces

■ Constructors, including default and copy constructors

■ Element access

■ Element insertion

■ Element deletion

■ Destructor

Iterators

Appendix E ▼ STL and String Libraries

Containers are traversed by using iterators. These pointer-like objects are available
as templates and are optimized for use with STL containers. Lor a code example, see
file stLdeq.cpp in Section 7.6, “Containers,” on page 254.

Container classes are designated as CAN in the following table.

All container classes have these definitions available, for example, the vector
container class vector<char>: :value_type means that a character value is
stored in the vector container. Such a container could be traversed with a
vector<char>: :iterator.

Containers allow both equality and comparison operators. These operators are
as follows:

>= < > <=

E.l ▼ Containers 433

Containers also have an extensive list of standard member functions.

STL Container Members

CAN::CAN() default constructor

CAN::CAN(c) copy constructor

c.begin() beginning location of CAN c

c.end() ending location of CAN c

c. rbegin() beginning for a reverse iterator

c. rend() ending for a reverse iterator

c. si ze() number of elements in CAN

c.max size() largest possible size

c.emptyO true if the CAN is empty

c.swap(d) swap two CANs

E.1.1 Sequence Containers

The sequence containers (vector, list, and deque) have a sequence of accessible ele¬
ments. In many cases, the C++ array type can also be treated as a sequence con¬
tainer. For a code example, see file stl_vec2.cpp in Section 7.6.1, “Sequence
Containers,” on page 255.

Sequence classes are designated as SEQ in the following table; these are in addi¬
tion to the already described CAN interface.

STL Sequence Members

SEQ::SEQ(n, v) n elements of value v

SEQ::SEQ(b_it, e_it) starts at b i t and goes to e i t - 1

c.insert(w_it, v) inserts v before w_i t

c.insert(w_it, v, n) inserts n copies of v before w i t

c.insert(w_it, b_it, e_it) inserts b_i t to e_i t before w_i t

c.erase(w_it) erases the element at w_i t

c.erase(b_it, e_it) erases b_i t to e_i t

434 Appendix E ▼ STL and String Libraries

Some examples of using these members follow:
4

double w[6] = { 1.1, 1.2, 2.2, 2.3, 3.3, 4.4 };
vector<double> v(15, 1.5); //15 elements of value 1.5
deque<double> d(w +2, w + 6); //use 2.2 to 4.4
d.erase(d.begin() + 2); //erase 3rd element
v.insert(v.begin() +1, w[3]); //insert w[3]

E.1.2 Associative Containers

The associative containers (set, map, multiset, and multimap) have key-based acces¬
sible elements. These containers have an ordering relation, Compare, which is the
comparison object for the associative container, for a code example, see file
stLage.cpp in Section 7.6.2, “Associative Containers,” on page 257.

Associative classes are designated as ASSOC in the following table; these are in
addition to the already described CAN interface.

STL Associative Definitions

ASSOC::key type the retrieval key type

ASSOC::key compare the comparison object type

ASSOC::value_compare the type for comparing ASSOC: : val ue_type

The associative containers have several standard constructors for initialization.

STL Associative Constructors

ASSOC() default constructor using Compare
ASSOC(cmp) constructor using emp as the comparison object
ASS0C(b_it, e_it) uses element range b_i t to e_i t using Compare
ASSOC(b_it, e_it, emp) uses element range b_i t to e_i t and emp as the

comparison object

What distinguishes associative constructors from sequence container
tors is the use of a comparison object.

construe-

E.l ▼ Containers 435

STL Insert and Erase Member Functions

c. insert(t) inserts t if no existing element has the same key as
t; returns pai r citerator, bool> with bool
being true if t was not present

c. insert(w_it, t) inserts t with w_i t as a starting position for the
search; fails on sets and maps if key value is
already present; returns position of insertion

c.insert(b_it, e_it) inserts the elements in this range

c.erase(k) erases elements whose key value is k, returning the
number of erased elements

c.erase(w it) erases the pointed-to element

c.erase(b_it, e_it) erases the range of elements

The insertion works when no element of the same key is already present.

STL Member Functions

c.find(k) returns iterator to element having the
given key k; otherwise, ends

c.count(k) returns the number of elements with k

c.lower_bound(k) returns iterator to first element having
value greater than or equal to k

c.upper_bound(k) returns iterator to first element having
value greater than k

c.equal_range(k) returns an iterator pair for 1 ower_bound
and upper_bound

Here are some examples of using these members.

int m[4] ={1,2, 3,4};
setcint, less<int> > s;
set<int, 1esscint> > t(m,

s. insert (3) ;
t. insert(3);
s. erase(2);
t. erase(4);

//set of ints ordered on less
m +4); //use 1, 2, 3, 4
//place 3 in set s
//no insertion as 3 is in set
//s had no such element
//t now contains 1, 2, 3

t

436 Appendix E y STL and String Libraries

E.1.3 Container Adapters

Container adapter classes modify existing containers to produce different public
behaviors based on an existing implementation. Three provided container adapters
are stack, queue, and priority_queue.

The stack, which can be adapted from vector, 1 ist, and deque, needs an
implementation that supports back, push_back, and pop_back operations. This is a
last-in-first-out data structure.

STL Adapted stack Functions

void push(const value type& v) places v on the stack
void pop() removes the top element of the stack
value type& top() const returns the top element of the stack
bool empty() const returns true if the stack is empty
size type size() const returns the number of elements in the stack
operator== and operator< equality and lexicographically less than

The queue can be adapted from 1 i st or deque. It needs an implementation that
supports empty, size, front, back, push_back, and pop_front operations. This is
a lirst-m-first-out data structure.

STL Adapted queue Functions

void push(const value type& v) places v on the end of the queue
void pop() removes the front element of the queue
value type& front() const returns the front element of the queue
value type& back() const returns the back element of the queue
bool empty() const returns true if the queue is empty
size type size() const returns the number of elements in the queue
operator== and operator< equality and lexicographically less than

The priori ty_queue, which can be adapted from vector or deque needs an
implementation that supports empty. size, front, push.back, and pop back ope”

, A pnori tyqueue also needs a comparison object for its instantiation The

pno":Vuee geS' dement 35 defi"ed bY ‘he -lationsWp fonhe

E.2 ▼ Iterators 437

STL Adapted priority_queue Functions

void push(const value type& v) places v in the priori ty queue

void pop() removes top element of the priori ty queue

value type& top() const returns top element of the pri ori ty_queue

bool emptyO const checks for pri ori ty_queue empty

size_type sizeQ const shows number of elements in the
priority_queue

We adapt the stack from an underlying vector implementation. Notice how
the STL ADTs replace our individually designed implementations of these types. For
a code example, see file stl_stak.cpp in Section 7.6.3, “Container Adapters,’ on page

258.

E.2 Iterators

Navigation over containers is by iterator. Iterators can be thought of as an enhanced
pointer type. They are templates that are instantiated as to the container class type
over which they iterate. There are five iterator types: input, output, forward, bidirec¬
tional, and random access. Not all iterator types may be available for a given con¬
tainer class. For example, random-access iterators are available for vectors but not

for maps.
The input and output iterators have the fewest requirements and can be used

for input and output. These iterators have special implementations, called
i stream_i terator and ostream_i terator, for these purposes. A forward iterator
can do everything an input/output iterator can do and can additionally save a posi¬
tion within a container. A bidirectional iterator can go both forward and backward.
A random-access iterator is the most powerful and can access any element in a suit¬
able container, such as a vector, in constant time. For a code example, see file
stLio.cpp in Section 7.7.1, “The istream_i terator and ostream_i terator,” on

page 259.

E.2.1 Iterator Categories

Input iterators support equality operations, dereferencing, and autoincrement. An
iterator that satisfies these conditions can be used for one-pass algorithms that
read values of a data structure in one direction. A special case of the input iterator
is the istream_i terator, which is derived from an i nput_i terator to work

Appendix E ▼ STL and String Libraries

specifically with reading from streams. The template for i st ream_i terator is
instantiated with a <type, distance>. This distance is usually specified by
ptrdiff_t. As defined in cstddef or stddef, it is an integer type representing the
difference between two pointer values. For a code example, see file stLio.cpp in
Section 7.7.1, “The istream_i terator and ostream_i terator,” on page 259.

Output iterators support dereferencing restricted to the left-hand side of
assignment and autoincrement. An iterator that satisfies these conditions can be
used for one-pass algorithms that write values to a data structure in one direction.
A special case of the output iterator is the ostream_i terator, which is derived
from an output_iterator to work specifically with writing to streams. The
ostream_i terator can be constructed with a char* delimiter, in this case “\t”.
Thus, the tab character will be issued to the stream cout after each int value is
written. In this program, the iterator out, when it is dereferenced, writes the
assigned i nt value to cout. For a code example, see file stLio.cpp in Section 7.7.1,
The i stream_i terator and ostream_i terator,” on page 259.

Forward iterators support all input/output iterator operations and additionally
support unrestricted use of assignment. This allows position within a data structure
to be retained from pass to pass. Therefore, general one-directional multipass algo¬
rithms can be written with forward iterators.

Bidirectional iterators support all forward iterator operations, as well as both
autoincrement and autodecrement. Therefore, general bidirectional multipass algo¬
rithms can be written with bidirectional iterators.

Random-access iterators support all bidirectional iterator operations and also
address arithmetic operations, such as indexing. In addition, random-access itera¬
tors support comparison operations. Therefore, algorithms that require efficient
random access m linear time, such as quicksort, can be written with these iterators

Container classes and algorithms dictate the category of iterator available or
needed, so vector containers allow random-access iterators, but lists do not

topSttJator Y 16(1111168 9 rand0m‘access iterator’ but finding requires only an

E.2.2 Iterator Adapters

Iterators can be adapted to provide backward traversal and traversal with insertion
For a code example, see file stLio.cpp in Section 7.7.1, “The istream iterator and
ostream_iterator,” on page 259. terator and

STL Iterator Adapters

Reverse iterators—reverse the order of iteration.

" mode. lterators_insertion takes Pla« ‘"stead of the normal overwriting

E.2 ▼ Iterators 439

Some adapters and their purpose as found in this library are as follows.

tempiate<class Bidilter,

class T, class Ref = T&,

class Distance = ptrdiff_t>

cl ass reverse_bidirectional_iterator;

This reverses the normal direction of iteration. Use rbeginO and rend() for

range.

tempiate<class RandAccIter,

class T, class Ref = T&,

class Distance = ptrdiff_t>

class reverse_iterator;

This reverses the normal direction of iteration. Use rbeginO and rend() for

range.

template eclass Can>
class insert_iterator;

template <class Can, class Iter>

insert_iterator<Can>

inserter(Can& c, Iter p);

The insert iterator inserts instead of overwrites. The insertion into c is at posi¬

tion p.

template <class Can>
class front_insert_iterator;

template <class Can>
front_insert_iterator<Can>

front_inserter(Can& c);

Front insertion occurs at the front of the container and requires the member

push_f ront().

template eclass Can>
class back_insert_iterator;

template eclass Can>
back_insert_iteratoreCan>

back_inserter(Can& c);

Back insertion occurs at the back of the container and requires a push_back()

member.

Appendix E ▼ STL and String Libraries

E.3 Algorithms

The STL algorithms library contains the following four categories: sorting algo¬
rithms, nonmutatmg sequence algorithms, mutating sequence algorithms, and
numerical algorithms. These algorithms generally use iterators to access containers
instantiated on a given type. The resulting code can be competitive in efficiency
with special-purpose codes. y

E.3.1 Sorting Algorithms

Sortmg algorithms include general sorting, merges, lexicographic comparison, per-
mutation binary search, and selected similar operations. These algorithms have ver-

ns that use either operator<() or a Compare object. They often require random-
access iterators. Section 7.8.1, “Sorting Algorithms,” on page 262.

Some library prototypes for sorting algorithms follow.

" tempiate<class RandAco

void sort(RandAcc b, RandAcc e);

pS a qmcksort algorithm over the elements in the range b to e. The iterator
type RandAcc must be a random-access iterator.

■ tempiate<cl ass RandAco

void stable_sort(RandAcc b, RandAcc e);

This is a stable sorting algorithm over the elements in the range b to e In a sta-
b e sort, equal elements remain in their relative same positions.

" tempi ate<class RandAco

void partial_sort(RandAcc b, RandAcc m, RandAcc e);

This is a partial sorting algorithm over the elements in the range b to e The
range b to m is filled with elements sorted up to position m.

template<class Inputlter, class RandAco

void partial_sort_copy(InputIter b, Inputlter e,

RandAcc result_b, RandAcc result_e);

This is a partial sorting algorithm over the elements in the ranee h m 0 ri

ments sorted are taken from the input iterator range ^ me copfed to the r n
dom-access iterator range. The smaller of the two ranges is used

E.3 ▼ Algorithms 441

■ tempiate<class RandAco
void nth_element(RandAcc b, RandAcc nth, RandAcc e);

The nth element is placed in sorted order, with the rest of the elements parti¬
tioned by it. For example, if the fifth position is chosen, the four smallest ele¬
ments are placed to the left of it. The remaining elements are placed to the right
of it and will be greater than it.

■ tempiate<class Inputlterl, class Inputlter2, class OutputIter>
Outputlter merge(lnputlterl bl, Inputlterl el, Inputlter2 b2,

Inputlter2 e2, Outputlter result_b);

The elements in the range bl to el and b2 to e2 are merged to the starting posi¬
tion resul t_b.

■ tempiatecclass Bidilter>
void inplace_merge(BidiIter b, Bidilter m, Bidilter e);

The elements in the range b to m and m to e are merged in place.

The following table briefly lists other algorithms and their purposes as found in
this library.

STL Sort-Related Library Functions

binary search(b, e, t) true if t is found in b to e

lower_bound(b, e, t) the first position for placing t while
maintaining sorted order

upper_bound(b, e, t) the last position for placing t while
maintaining sorted order

equal_range(b, e, t) returns an iterator pair for the range
where t can be placed maintaining
sorted order

push_heap(b, e) places the location’s e element into an
already existing heap

pop_heap(b, e) swaps the location’s e element with its b
element and reheaps

sort heap(b, e) performs a sort on the heap

make heap(b, e) creates a heap

next_permutation(b, e) produces the next permutation

prev_permutation(b, e) produces the previous permutation

Appendix E v STL and String Libraries

STL Sort-Related Library Functions

1exicographical_compare
(bl, el, b2, e2)

returns true if sequence 1 is lexico¬
graphically less than sequence 2

min(t1, t2) returns the minimum of tl and t2 that
are call-by-reference arguments

max(tl, t2) returns the maximum
min_element(b, e) returns the position of the minimum
max_element(b, e) returns the position of the maximum
includes(bl, el, b2, e2) returns true if the second sequence is a

subset of the first sequence
set_umon (bl, el, b2,

e2, r)
returns the union as an output iterator r

set_intersection (bl, el,

b2, e2, r)
returns the set intersection as an output
iterator r

set_difference (bl, el, b2,
e2, r)

returns the set difference as an output
iterator r

set_symmetric_difference
(bl, el, b2, e2, r)

returns the set symmetric difference as
an output iterator r

fohreexamplelthmS ^ ^ USeS 3 Compare object rePlacing operator<();

tempiate<class RandAcc, class Compare>
void sort(RandAcc b, RandAcc e, Compare comp);

This is a quicksort algorithm over the elements in the range b to
tor ordering. e, using comp

E.3.2 Nonmutating Sequence Algorithms

Nonmutating algorithms do not modify the contents of the containers they work on
typical operation is searching a container for a particular element and returning

l s position. Lor a code example, see file stLfind.cpp in Section 7.8 2 “Nonmutatins
Sequence Algorithms, on page 262. ’ rimumtmg

The library prototypes for some nonmutating algorithms are as follows:

■ tempiatecclass Inputlter, class T>

Inputlter find(lnputlter b, Inputlter e, const T& t));

This finds the position of t in the range b to e.

E.3 ▼ Algorithms 443

■ tempiate<class Inputlter, class Predicate>
Inputlter find(lnputlter b, Inputlter e, Predicate p));

This finds the position of the first element that makes the predicate true in the
range b to e; otherwise, the position e is returned.

■ tempiatecclass Inputlter, class Function>
void for_each(InputIter b, Inputlter e, Function f));

This applies the function f to each value found in the range b to e.

The following table briefly lists other algorithms and their purposes as found in

this library.

STL Nonmutating Sequence Library Functions

next permutation(b, e) produces next permutation

prev_permutation(b, e) produces previous permutation

count(b, e, t, n) returns to n the count of elements equal to t

count_if(b, e, p, n) returns to n the count of elements that make
predicate p true

adjacent_find(b, e) returns the first position of adjacent elements
that are equal; otherwise, returns e

adjacent_find(b, e, binp) returns the first position of adjacent elements
satisfying the binary predicate bi np; otherwise,

returns e

mismatch(bl, el, b2) returns an iterator pair indicating the positions
where elements do not match from the given
sequences, starting with bl and b2

mismatch (bl, el, b2, binp) as above, with a binary predicate bi np used
instead of equality

equal(bl, el, b2) returns true if the indicated sequences match;
otherwise, returns fal se

equal(bl, el, b2, binp) as above, with a binary predicate bi np used

instead of equality

search(bl, el, b2, e2) returns an iterator where the second sequence
is contained in the first, if it is not el

search (bl, el, b2, e2, binp) as above, with a binary predicate bi np used
instead of equality

444 Appendix E ▼ STL and String Libraries

E.3.3 Mutating Sequence Algorithms

Mutating algorithms can modify the contents of the containers they work on. A typ¬
ical operation is reversing the contents of a container, for a code example, see file
stLrevr.cpp in Section 7.8.3, “Mutating Sequence Algorithms,” on page 263.

The library prototypes for some mutating algorithms follow.

tempiatecclass Inputlter, class OutputIter>

Outputlter copy(InputIter bl, Inputlter el, Outputlter b2);

This is a copying algorithm over the elements bl to el. The copy is placed start¬
ing at b2. The position returned is the end of the copy.

template<class Bidilterl, class Bidilter2>
Bidilter2 copy_backward(BidiIterl bl, Bidilterl el,

Bidilter2 b2);

This is a copying algorithm over the elements bl to el. The copy is placed start¬
ing at b2. The copying runs backward from el into b2, which are also going
backward. The position returned is b2 - (el - bl).

■ tempiate<class Bidilter>
void reverse(BidiIter b, Bidilter e) ;

This reverses in place the elements b to e.

templatecclass Bidilter, class OutputIter>
Outputlter reverse_copy(BidiIter bl, Bidilter el,

Outputlter b2);

This is a reverse copying algorithm over the elements bl to el. The codv in

reverse is placed starting at b2. The copying runs backward from el into b2
which are also going backward. The position returned is b2 + (el - bl)

tempi ateccl ass Forwlteo

Forwardlter unique(ForwIter b, Forwlter e);

The adjacent elements in the range b to e are erased. The position returned is
the end of the resulting range. 8

template<class Forwlter, class BinaryPred>

Forwardlter unique(ForwIter b, Forwlter e, BinaryPred bp);

The adjacent elements in the
erased. The position returned

range b to e with binary predicate bp satisfied
is the end of the resulting range.

are

E.3 ▼ Algorithms 445

■ tempiatecclass Inputlter, class OutputIter>
Outputlter unique_copy(InputIter bl, Inputlter el,

Outputlter b2);

tempiatecclass Inputlter, class Outputlter, class BinaryPred>
Outputlter unique_copy(InputIter bl, Inputlter el,

Outputlter b2, BinaryPred bp);

The results are copied to b2, with the original range unchanged.

The remaining library functions are described in the following table.

STL Mutating Sequence Library Functions

swap(tl, t2) swaps tl and t2

iter swap(bl, b2) swaps pointed-to locations

swap_range(bl, el, b2) swaps elements from bl to el with
those starting at b2; returns
b2 + (el - bl)

transform(bl, el, b2, op) uses the unary operator op to trans¬
form the sequence bl to el, placing
it at b2; returns the end of
the output location

transform(bl, el, b2, b3, bop) uses the binary operator bop on the
two sequences starting with bl and
b2 to produce the sequence b3;
returns the end of the output
location

replace(b, e, tl, t2) replaces in the range b to e the
value tl by t2

replace_if(b, e, p, t2) replaces in the range b to e the
elements satisfying the predicate p
by t2

replace_copy(bl, el, b2, tl, t2) copies and replaces into b2 the
range bl to el, with the value tl
replacing t2

replace_copy_if(bl, el, b2, p, t2) copies and replaces into b2 the
range bl to el, with the elements
satisfying the predicate p replacing
t2

remove(b, e, t) removes elements of value t

446 Appendix E r STL and String Libraries

STL Mutating Sequence Library Functions

remove_if, remove_copy,
remove copy if

similar to replace family except
that values are removed

fillCb, e, t) assigns t to the range b to e
fill n(b, n, t) assigns n ts starting at b
generated, e, gen) assigns to the range b to e by

calling generator gen
generate_n(b, n, gen) assigns n values starting at b using

gen
rotate(b, m, e) rotates leftward the elements of the

range b to e; element in position i
ends up in position (i + n - m)%n,
where n is the size of the range, m is
the midposition, and b is the first
position

rotate_copy(bl, m, el, b2) as above, but copied to b2 with the
original unchanged

random_shuffle(b, e) shuffles the elements
random_shuffle(b, e, rand) shuffles the elements, using the

supplied random-number
generator rand

partition(b, e, p) partitions the range b to e to have
all elements satisfying predicate p
placed before those that do not
satisfy p

stable_partition(b, e, p) as above, but preserving relative
order

E.3.4 Numerical Algorithms

Numerical algorithms include sums, inner product, and adjacent difference for
code example, see file stLnumr.cpp in Section 7.8.4, “Numerical Algorithms,”
page 264. ’

The library prototypes for numerical algorithms follow.

a
on

E.3 t Algorithms 447

■ tempiate<class Inputlter, class T>
T accumulate(lnputlter b, Inputlter e, T t);

This is a standard accumulation algorithm whose sum is initially t. The succes¬
sive elements from the range b to e are added to this sum.

■ tempiatecclass Inputlter, class T, class BinOp>
T accumulate(lnputlter b, Inputlter e, T t, BinOp bop);

This is an accumulation algorithm whose sum is initially t. The successive ele¬
ments from the range b to e are summed with sum = bop(sum, element).

The following table briefly lists other algorithms and their purposes as found in
this library.

STL Numerical Library Functions

inner_product(bl, el, b2, t) returns the inner product from the
two ranges starting with bl and b2;
this product is initialized to t,
which is usually 0

inner_product(bl,el,b2,t,bopl,bop2) returns a generalized inner product,
using bopl to sum and bop2 to
multiply

partial_sum(bl, el, b2) starting at b2, produces a sequence
that is the partial sum of terms
from the range bl to el

partial sum(bl, el, b2, bop) as above, using bop for summation

adjacent_difference(bl, el, b2) starting at b2, produces a sequence
that is the adjacent difference of
terms from the range bl to el

adjacent_difference(bl, el, b2, bop) as above, using bop for difference

448 Appendix E ▼ STL and String Libraries

E.4 Functions

It is useful to have function objects to further leverage the STL. Lor example, many
of the previous numerical functions had a built-in meaning using + or * but also had
a form in which user-provided binary operators could be passed in as arguments.
Defined function objects can be either found in function or built, function objects
are classes that have operator() defined. These are inlined and are compiled to
produce efficient object code.

In file stl_fucn.cpp

//Using a function object minus<int>.
#include <iostream>
#include <numeric>
using namespace std;

int main()

{
double vl[3] = { 1.0, 2.5, 4.6 },

sum = accumulate(vl, vl + 3, 0.0,
cout « "sum = " « sum « endl;

sum;

minus<int>()) ;
//sum = -7

Accumulation is done by using integer minus for the binary operation over the array
vl []. Therefore, the double values are truncated, with the result being -7.

There are three defined function object classes.

STL Defined Function Object Classes

■ Arithmetic objects

■ Comparison objects

■ Logical objects

The following tables briefly list algorithms and their
library. purposes as found in this

E.4 ▼ Functions 449

STL Arithmetic Objects

template <class T> struct plus<T> adds two operands of type T

template <class T> struct minus<T> subtracts two operands of type T

template <class T> struct times<T> multiplies two operands of type T

template <class T> struct divides<T> divides two operands of type T

template cclass T> struct modulus<T> modulus for two operands of type T

template cclass T> struct negate<T> unary minus for one argument of type T

Arithmetic objects are often used in numerical algorithms, such as accumul ate().

STL Comparison Objects

template cclass T>

struct equal_tocT>

equality of two operands of type T

template cclass T>

struct not_equal_tocT>

inequality of two operands of type T

template cclass T>

struct greatercT>

comparison by the greater (>) of two
operands of type T

template cclass T>
struct lesscT>

comparison by the lesser (c) of two oper¬
ands of type T

template cclass T>

struct greater equalcT>

comparison by the greater or equal (>=)
of two operands of type T

template cclass T>

struct less_equalcT>

comparison by the lesser or equal (c=) of
two operands of type T

The comparison objects are frequently used with sorting algorithms, such as

mergeQ.

STL Logical Objects

template cclass T> struct

logical andcT>

performs logical and (&&) on two
operands of type T

template cclass T>

struct logical orcT>

performs logical or (| I) on two operands
of type T

template cclass T>

struct 1ogical_notcT>

performs logical negation (!) on a single
argument of type T

4S0 Appendix E ▼ STL and String Libraries

E.4.1 Function Adapters

Lunction adapters allow for the creation of function objects using adaption. In the
following example, binder function bi nd2nd transforms an initial sequence of val¬
ues to these values doubled.

In file stLadap.cpp

//Use of the function adapter bind2nd.
#include <iostream>
#include <algorithm>
#include <functional>
#include <string>
using namespace std;

template <class Forwlteo

void print(ForwIter first, Forwlter last, const char* title)
{

cout « title « endl;
while (first != last)

cout « *first++ « '\t' ;
cout « endl;

}

int main()

{
int data[3] = { 9, 10, 11};

print(data, data + 3, "Original values");
transform(data, data + 3, data,

bind2nd(times<int>(), 2));
print(data, data + 3, "New values");

STL Function Adapters

■ Negators for negating predicate objects

■ Binders for binding a function argument

■ Adapters for pointer to a function

The following table briefly lists algorithms and their purposes as found in this
library.

E.5 ▼ Allocators 451

STL Function Adapters

tempiate<class Pred>
unary_negate<Pred>
notl(const Pred& p)

returns ! p, where p is a unary predicate

tempiatecclass Pred>
binary_negate<Pred>
not2(const Pred& p)

returns ! p, where p is a binary predicate

template<class Op, class T>
binderlst<Op>bindlst

(const 0p& op,const T& t)

the binary op has a first argument bound
to t; a function object is returned

tempiatecclass Op, class T>
binder2nd<0p>bind2nd

(const 0p& op,const T& t)

the binary op has a second argument
bound to t; a function object is returned

tempiate<class Arg,class T>
ptr fun(T (*f)(Arg))

constructs a
pointer to unary function<Arg, T>

tempiate<class Argl,
class Arg2, class T>

ptr_fun(T (*f)(Argl, Arg2))

constructs a
pointer_to_binary_function<Arg,T>

E.5 Allocators

Allocator objects manage memory for containers. These allocators allow implemen¬
tations to be tailored to local system conditions while maintaining a portable inter¬
face for the container class. Allocator definitions include val ue_type, reference,
size_type, pointer, and di fference_type.

The following table briefly lists allocator member functions and their purposes
as found in this library.

452 Appendix E y STL and String Libraries

STL Allocator Members

allocator(); constructor and destructor for
~al1ocator(); allocators

pointer address(reference r); returns the address of r

pointer allocate(size_type n); allocates memory for n objects
of size type from free store

void deal locate(pointer p); deallocates memory associated
with p

size_type max_size(); returns the largest value for
di fference_type; in effect, the
largest number of element
allocatable to a container
—

Check your vendor’s product for specific system-dependent implementations.

E.6 String Library

C++ provides a string type by including the standard header file string. It is the
instantiation of a template class basi c_stri ng<T> with char. The string type pro¬
vides member functions and operators that perform string manipulations, such as
concatenation, assignment, or replacement. An example of a program using the
string type for simple string manipulation follows.

In file stringt.cpp

//String class to rewrite a sentence

int main()

{
string sentence, words[10];
int pos = 0, old_pos = 0, nwords, i = 0;

sentence = "Eskimos have 23 ways to
sentence += "describe snow";

E.6 ▼ String Library 453

while (pos < sentence.si ze()) {
pos = sentence.find(' olcLpos);

words[i++].assign(sentence, old_pos, pos - old_pos);
cout « words[i - 1] « endl; //print words
old_pos = pos + 1;

}
nwords = i;
sentence = "C++ programmers
for (i = 1; i < nwords -1; ++i)

sentence += words[i] + '
sentence += "windows";
cout « sentence « endl;

}

The stri ng type is used to capture each word from an initial sentence in which the
words are separated by the space character. The position of the space characters is
computed by the fi nd() member function. Then, the assign() member function is
used to select a substring from sentence. Finally, a new sentence is constructed,
using the overloaded assignment, operator+=(), and operator+O functions to
perform assignments and concatenations.

The representation for a string of characters follows. It is usual to have the
instantiation basi c_st ri ng<wchar_t> for a wide string type wst ri ng. Other
instantiations are possible as well.

String Private Data Members

char* ptr for pointing at the initial character

size_t len for the length of the string

size_t res for the currently allocated size or, for an
unallocated string, its maximum size

This implementation provides an explicit variable to track the string length; thus,
string length can be looked up in constant time, which is efficient for many string
computations.

454 Appendix E r STL and String Libraries

E.6.1 Constructors

Strings have six public constructors, which makes it easy to declare and initialize
strings from a wide range of parameters.

String Constructor Members

stri ng() default; creates an empty string

string(const char* p) conversion constructor from a
pointer to char

string(InputIterator b,
Inputlterator e)

constructor from the Inputltera¬
tor range from b to e

string(const string& str,
size_t pos = 0, size_t n = npos)

copy constructor; npos is usually
-1 and indicates that no memory
was allocated

string(const char* p, size_t n) copy n characters, where p is the
base address

string(size_t n, char c) construct a string of n cs

These constructors make it quite easy to use the string type initialized from char*
pointers, which is the traditional C method for working with strings. Also, many
computations are readily handled as a vector of characters. This is also facilitated
by the stri ng interface.

E.6.2 Member Functions

Strings have some members that overload operators, as described in the next table.

String Overloaded Operator Members

string& operator=(const string^ s) assignment operator

string^ operator=(const char* p) assigns achar*toa string
string& operator=(const char c) assigns a char c to a string

string& operator+=(const string&s) appends string s

string& operator+=(const char* p) appends a char* to a string
string& operator+=(const char c) appends acharctoa string
char operator[](size_t pos) const returns the character at pos
char& operator[](size_t pos) returns the reference to the

character at pos

E.6 ▼ String Library 455

The extensive set of public member functions lets you manipulate strings. In
many cases, these functions are overloaded to work with stri ng, char*, and char.
A description of append () follows.

■ string& append(const string& s, size_t pos = 0, size_t n=npos);

Appends n characters, starting at pos from s to the implicit string object,

//example si "I am " s2 "7 years old"
si.append(s2); // si " I am 7 years old"
s2.append(sl,0,4); //s2 "7 years old I am"

■ string& append(const char* p, size_t n);
strings append(const char* p);
strings append(size_t n, char c) ;

In each case, a stri ng object is constructed using the constructor of the same
signature and appended to the implicit stri ng object.

■ strings assign(const strings s, size_t pos = 0, size_t n=npos);

Assigns n characters, starting at pos from s to the implicit string object.

//example si " I am " s2 "7 years old"
si.assign(s2); // si "7 years old"

The following signatures with the expected semantics are also overloaded:

strings assign(const char* p, size_t n);
strings assign(const char* p);
strings assign(size_t n, char c);
strings assign(InputIterator b, Inputlterator e) ;

■ strings insert(size_t posl, const strings str, size_t pos2 = 0,
size_t n = npos);

The i nsert () function is an overloaded set of definitions that insert a string of
characters at a specified position. This function inserts n characters taken from
str, starting with pos2, into the implicit string at position posl.

//example si " I am " s2 " 7 years old"
sl.insert(2,s2); // si "I 7 years old am"

The following signatures with the expected semantics are also overloaded:

4S6 Appendix E ▼ STL and String Libraries

string& insert(size_t pos,const char* p, size_t n);
string& insert(size_t pos, const char* p);
string& insert(size_t pos, size_t n, char c);
iterator insert(iterator p, char c);
iterator insert(iterator p, size_t n, char c);
void insert(iterator p, Inputlterator b, Inputlterator e);

The inverse function is remove ().

■ strings remove(size_t pos = 0, size_t n = npos);

An n number of characters are removed from the implicit string at position pos.

The following table briefly describes further public string member functions.

String Members

strings replace(posl, nl, str,
pos2 =0, n2 = npos)

replaces at post for nl characters,
the substring in str at pos2 of n2
characters

strings replace(pos,n,p,n2);
strings replace(pos,n,p);
strings replace(pos,n,c);

replaces n characters at pos, using
a char* p of n2 characters, or a
char* p until null, or a character c

size t length() const; returns the string length
const char* c_str() const; converts stri ng to traditional char*

representation
const char* data() const; returns the base address of the

string representation
void resize(n, c) ;
void resize(n);

resizes the string to length n; the
padding character c is used in the
first function, and the eos()
character is used in the second

void reserve(size_t res_arg);
size t reserve() const;

allocates memory for string; returns
the size of the allocation

size t copy(p, n, pos = 0) const; the implicit string starting at pos
is copied into the char* p for
n characters

string substr(pos = 0, npos)const; a substring of n characters of the
implicit string is returned

E.6 ▼ String Library 457

You can lexicographically compare two strings by using compare (), a family of
overloaded member functions.

■ int compare(const string& str, size_t pos = 0,
size_t n = npos) const;

Compares the implicit string starting at pos for n characters with str. Returns 0
if the strings are equal; otherwise, returns a positive or a negative integer value
indicating that the implicit string is greater or less than str lexicographically.
The following signatures with the expected semantics are also overloaded:

int compare(const char* p,size_t pos, size_t n) const;
int compare(const char* p, size_t pos = 0) const;

Each signature specifies how the explicit string is constructed and then com¬
pared to the implicit string.

The final set of member functions perform a find operation. One group is dis¬
cussed here; a table summarizes the rest of this group of member functions.

■ size_t find(const string& str, size_t pos = 0) const;

The string str is searched for in the implicit string starting at pos. If it is found,
the position it is found at is returned; otherwise, npos is returned, indicating
failure.

The following signatures with the expected semantics are also overloaded:

size_t find(const char* p, size_t pos, size_t n)const;
size_t find(const char* p, size_t pos= 0) const;
size_t find(char c, size_t pos = 0) const;

Each signature specifies how the explicit string is constructed and then
searched for in the implicit string. Further functions for finding strings and
characters are briefly described in the following table.

458 Appendix E ▼ STL and String Libraries

String Find Members

size_t rfind(str, pos=npos) const; like find() but scans the string
size_t rfind(p, pos, n) const; backward for a first match
size_t rfind(p, pos=npos) const;
size t rfind(c, pos=npos) const;

size t find first of
searches for the first character

V —1 1 > (Jt/O KJ J V_VJII^Lj

size t find first of of any character in the specified

(p, pos, n) const; pattern: str, char- p, or char c

size_t find_first_of
(p, pos = 0) const;

size_t find_first_of
(c,pos = 0) const;

size_t find_last_of searches backward for the first
(str, pos = npos) const; character of any character in the

size_t find_last_of specified pattern: str, char* p,
(p, pos, n) const; or char c

size_t find_last_of
(p, pos= npos) const;

size_t find_last_of
(c,pos = npos) const;

size_t find_first_not_of searches for the first character
(str, pos = 0) const; that does not match any

size_t find_first_not_of character in the specified pat-
(p, pos, n) const; tern: str, char* p, or char c

size_t find_first_not_of
(p, pos = 0) const;

size_t find_first_not_of
(c,pos = 0) const;

size_t find_last_not_of searches backward for the first
(str, pos = npos) const; character that does not match

size_t find_last_not_of any character in the specified
(p, pos, n) const; pattern: str, char* p,

size_t find_last_not_of or char c
(p, pos= npos) const;

size_t find_last_not_of
(c,pos = npos) const;

E.6 ▼ String Library 459

E.6.3 Global Operators

The string package contains operator overloadings that provide input/output, con¬
catenation, and comparison operators. These are intuitively understandable and are
briefly described in the following table.

String Overloaded Global Operators

ostream& operator«(ostream& o,
const string& s);

output operator

istream& operator»(istream& in,
string& s);

input operator

string operator+(const string& si,
const string& s2);

concatenates si and s2

bool operator==(const string& si,
const string& s2);

true if string si and s2
are lexicographically equal

A

A
 ii V

V
 II II as expected

The comparison operators and the concatenation ope rator+() are also over¬
loaded with the following four signatures:

bool operator==(const char'- p, const string& s);
bool operator==(char c, const string& s);
bool operator==(const string& s, const char* p);
bool operator==(const string& s, char c);

In effect, a comparison or concatenation of any kind can occur between string and a
second argument that is a string, a character, or a character pointer.

References

Arnold, K. and J. Gosling, The Java Programming Language. 1996. Reading, Mass.:
Addison-Wesley.

Boehm, H., and M. Weiser, “Garbage Collection in an Uncooperative Environment,”
Software—Practice and Experience. September 1988. pp. 807-820.

Booch, G., Object-Oriented Analysis and Design with Applications, 2nd ed. 1994.
Reading, Mass.: Addison-Wesley.

Budd, T., An Introduction to Object-Oriented Programming. 1991. Reading, Mass.:
Addison-Wesley.

Cardelli, L., and P. Wegner, “On Understanding Types, Data Abstraction, and Poly¬
morphism.” Computing Surveys, vol. 17, 1985. pp. 471-522.

Edelson, D., “A Mark and Sweep Collector for C++,” in Proceedings of Principles of
Programming Languages (January 1992).

Edelson, D., and I. Pohl, “A Copying Collector for C++,” in Usenix C++ Conference

Proceedings. 1991. pp. 85-102.

Ellis, M., and B. Stroustrup, The Annotated C++ Reference Manual. 1990. Reading,

Mass.: Addison-Wesley.

Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software.

1995. Reading, Mass.: Addison-Wesley.

Glass, G., and B. Schuchert, The STL <Primer>. 1996. Upper Saddle River, N.J.:

Prentice Hall.

Kelley, A., and I. Pohl, A Book on C, 3rd ed. 1995. Reading, Mass.: Addison-Wesley.

Kernighan, B., and P. Plauger, The Elements of Programming Style, 4th ed. 1974. New

York: McGraw-Hill.

Kernighan, B., and D. Ritchie, The C Programming Language, 2nd ed. 1988. Engle¬

wood Cliffs, N.J.: Prentice Hall.

462 ▼ References

Linton, M., J. Vlissides, and P. Calder, “Composing User Interfaces with Interviews,”
IEEE Computer v. 22, no. 2, 1989, pp. 8-22.

Lippman, S., C++ Primer, 2nd ed. 1991. Reading, Mass.: Addison-Wesley.

Meyers, S., Effective C++; 50 Specific Ways to Improve Your Programs and Designs.
1992. Reading, Mass.: Addison-Wesley.

Musser, D., and A. Saini, STL Tutorial and Reference Guide: C++ Programming with
the Standard Template Library. 1996. Reading, Mass.: Addison-Wesley.

Pohl, I., C++ for C Programmers, 2nd ed 1994. Reading, Mass.: Addison-Wesley.

Pohl, I., C++ for Pascal Programmers, 2nd ed. 1995. Reading, Mass.: Addison-Wesley.

Pohl, I., and D. Edelson, “A-Z: C Language Shortcomings,” Computer Languages vol
13, no. 2. 1988. pp. 51-64.

Stroustrup, B., The C++ Programming Language, 2nd ed. 1991. Reading Mass ■
Addison-Wesley.

Stroustrup, B„ The Design and Evolution of C++. 1994. Reading, Mass.: Addison-
Wesley.

Taligent Press, Taligent’s Guide to Designing Programs: Well Mannered Object-
Oriented Design in C++. 1994. Reading, Mass.: Addison-Wesley.

Teale, S., C++ IOStreams Handbook 1993. Reading, Mass.: Addison-Wesley.

Symbols
! negation, 40, 366
!= not equal, 40, 366

% modulus, 366
& address, 43, 82, 135, 370
& and (bitwise), 43, 370
&& and (logical), 40,

366-367
() function call, 43, 216,

373
* dereferencing or indirec¬

tion, 43, 83, 87, 370
++ autoincrement, 44,

204-206, 365, 391
, comma, 42
— autodecrement, 44,

204, 365, 391
-> smart pointer, 236
-> structure pointer, 117,

219
. member operator, 8,117,

204
. * member object selector,

204, 396
/* */ comment pair, 5, 24,

349
// comment, 5, 24, 349
// comment (Java), 15
:: scope resolution, 122,

204, 355, 410
< less than, 40, 366
« left shift, 43, 370
« put to, 29, 215,

413-414, 419
<= less than or equal, 40,

366

= assignment, 40, 44
== equal, 40, 366
> greater than, 40, 366
>= greater than or equal,

40, 366
» get from, 29, 215, 420
» right shift, 43, 370
?: conditional expression,

42, 204, 369
[] indexing or subscript¬

ing, 43, 90, 373
\ backslash, 27, 351
\" double quote, 27, 351
Y single quote, 27, 351
\0 end-of-string sentinel,

26, 158
a exclusive or (bitwise), 43,

370
a unary one’s complement,

370
{} braces, 45
| or (bitwise), 43, 370
| | or (logical), 40, 366-367
~ complement, 43
->* pointer to member,

396
0 null pointer, 169

A
\a alert, 27, 351
AB^file program, 110
abort(), 315, 409
abstract base class, 283,

294, 396
abstract class, 283

abstract data type, 2, 6,
328-329

abstraction, 328
acc_mod program, 298
access keywords

private, 120-121, 138,
274, 387, 393

protected, 138, 274,
387, 393

public, 120, 138,
274-275, 387, 393

accessor function, 139,
154

accumulateO (STL), 253,
264, 447

ad hoc polymorphism,
195, 330

Ada, 327-328
adapter (STL)

container, 257
iterator, 260, 438

adapter pattern, 395
add_term(), 179
address &, 43, 82, 135, 370
addressO (STL), 452
adjacent_di fferenceO

(STL), 447
adjacent_fi nd() (STL),

443
ADT, 2, 6, 328-329

complex, 7-11
point, 118
polynomial, 213
string, 93, 158
student, 12
template stack, 240
template vector, 248

464 ▼ Index

alert \a, 27, 351
algorithm (STL), 252, 261,

431, 440
mutating sequence, 263
nonmutating sequence,

262
numerical, 264
sort, 261, 441

algorithm library, 261-264
alias, 85
allocateO (STL), 452
allocator object (STL), 451
ancestor, 291
and (bitwise) <&, 43, 370
and (logical) &&, 40,

366-367
anonymous enumeration,

39
anonymous namespace, 81
anonymous structure, 117
anonymous union, 135,

184, 359
ANSI C++, xix
append(), 455
appletviewer (Java), 338
argument, 68

default, 70, 384
explicit, 129
implicit, 129, 208
return, 348
template, 246, 401

arithmetic expression, 39,
366

array, 65, 82, 89, 164
bounds, 163
dynamic, 165
element, 90
index, 164
initialization, 90, 95
multidimensional, 95,

173
passing to function, 92
pointer to, 91
subscript, 90
summation, 93
two-dimensional, 173

array_mx program, 75
array_tm program, 247
assert library, 96,112,181,

307
assertion, 96, 307-308
assignO, 160, 182, 455
assignment, 368, 376

multiple, 30, 212, 218,
368

pointer, 278
assignment =, 40, 44
assignment-compatible

conversion, 68
associative container (STL),

431, 434
associativity, 40, 204, 345
auto, 76, 360
autodecrement 44,

204, 365, 391
autoincrement ++, 44,

204-206, 365, 391
Automatic Expression

Conversion, 361
automatic variables, 76
avg_arr program, 72
avg_arr(), 72-73

B
\b backspace, 27, 351
back() (STL), 436
back_inserter() (STL),

439
backslash \, 27, 351
backspace \b, 27, 351
bad(), 427
bad_al loc(), 319, 373,

411
bad_cast, 296, 319, 399
bad_cast program, 319
baa_typei d, 296, 399
bandwagon effect, 328,

331
base class, 12, 273

begin() (STL), 433
Bidi Iter() (STL), 444
bidirectional iterator (STL),

437-438
binary operator overload-

big, 207
binary_search() (STL),

441
bindlstO (STL), 451
bind2nd() (STL), 450-451
bit field, 135
bit manipulation, 42, 370
Bitwise Operators, 43, 370
black box principle, 139,

328-330
block, 45, 74-76

exit, 157, 184, 310
scope, 75, 354
structure, 30, 374

bool, 32, 40, 359, 362,
366-367

braces {}, 45
break, 49, 375, 379-380
bubble program, 325
built-in type, 364, 390

c
C, 327-328
C++ and C Differences, 31
C++ Relational, Equality,

and Logical Operators,
40

c_str(),456
call-by-reference, 83, 85,

383
call-by-value, 30, 156, 382
carriage return \r, 27, 351
CASE, 333
case, 51, 375, 379-380
cast, 35, 153, 223, 361-363

conversion operator,
411

down, 296

▼ Index 465

casts
const_cast, 132,

362-363
dynamic_cast, 362,

398, 411
mutable, 132, 392, 411
reinterpret_cast,

362-363
static_cast, 362-363
typei d, 295-296,

398-399, 411
catch, 308-309, 313-314,

400, 408
catch handler, 314, 408
catch program, 314
caux, 422
cctype library, 426
cerr, 29, 422
ch_stack program, 137,

155-158
char, 32, 359, 410
character constant, 351
Character Literals, 27, 351
checks library, 308
cin, 29, 420, 422
ci rcle(), 77
class, 6,115,121,274,387,

401
abstract, 283
base, 12, 273, 393, 395
container, 332, 438
data member, 139
derived, 12, 275, 393,

395
global, 128
handler, 181
hierarchy, 12, 17, 282,

333
initialization, 9,

150-151
iterator (STL), 334
mixin, 395
nested, 124, 355, 410
scope, 122, 354
template, 245
virtual base, 292, 396

class (Java), 14, 16, 139

classes (Java)
Improved, 15
Moon, 56
NoSuchNameExcep-

ti on, 322
Person, 139
Personl, 299
Person2,322
PersonTest,140
Student, 299-300
StudentTest, 300
wgcd, 337

clear(),427
client, 3, 8, 307, 320, 328
client (Java), 140
clock program, 205, 207,

225
clog, 422
close(), 423
cnt_char(), 156
COBOL, 328
code reuse, 12
coerce program, 247
coerceO, 247
coercion, 34, 330
comma ,, 42
comma expression, 369
command program, 111
comment (Java) //, 15
comment //, 5, 24, 349
comment pair /* */. 5, 24,

349
compare object (STL), 440
compareO, 457
comparison object (STL),

257, 434, 436, 449
comparison operator

(STL), 432
compatibility, 409
compiler, 411
complement ~, 43
completeness, 333
complex library, 2, 32, 81
complex program, 9-11,

122
complexity, 3

compound statement, 45,
376

concatO, 160
conditional expression ?:,

42, 204, 369
const, 128-129, 353,

361-362, 392
const-correctness, 129
const_cast, 132, 362-363
constant, 26

character, 351
enumeration, 352, 358
floating-point, 351-352
long, 351
string, 352
unsigned, 351

constructor, 9, 149-150,
276, 387-388

conversion, 152, 185,
364, 388

copy, 156, 161, 183,
185, 388

default, 151, 387
explicit, 152, 164,

185, 249, 388
initialization, 185, 396
initializer, 152, 388
invocation, 396
order, 292

constructor (Java), 186
container (STL), 252-255,

431-432
adapter, 257, 436
associative, 254, 257
deque, 254-255, 257
list, 254-255, 257
map, 254, 257
members, 433
multimap, 254, 257
multiset, 254, 257
priority_queue, 257
queue, 257
sequence, 254-255
set, 254, 257
stack, 257
vector, 254-255, 257

container class, 332, 438

466 ▼ Index

continue, 49, 375, 379
conversion, 195, 276

ADT, 196
assignment-compati¬

ble, 68
cast operators, 411
constructor, 152, 185,

364, 388
explicit, 35, 196,

361-362
function, 152
implicit, 35, 153,

361-362
narrowing, 35
rules, 366
traditional, 34
trivial, 224
widening, 35

convert(), 267
Conway’s “Game of Life”,

284
copy constructor, 156,

161, 183, 185, 388
copy program, 243-244
copy(), 243-244, 263, 456
copy() (STL), 263, 444
copy_backward() (STL),

444
count() (STL), 435, 443
count_if () (STL), 443
cout, 29, 422
cprn, 422
CRC notecard, 333
cstddef library, 259, 438
cstdio library, 29
cstring library, 88, 93-94,

107, 158
ctype library, 413,426-427,

429
cubes program, 109

D
DAG, 291, 395
dangling else, 377
data hiding, 7, 16, 121,

139, 329

data hiding (Java), 140
data member, 387
data(), 456
dbLsp program, 424
dbLvect program, 163,

210, 309, 316
deal(), 126
deal 1 ocate() (STL), 452
deallocation, 9
dec, 416
declaration, 25, 33, 348

global, 357
statement, 354, 381,

411
template, 401

declarations, 34
const, 128-129, 353,

361-362, 392
typedef, 39, 354, 358,

360
volatile, 224, 361

deep copy semantics, 161
default, 51, 375, 379-380
default argument, 70, 384
default constructor, 151,

387
deferred method, 283
definition, 33
del(),169
dele(), 288
delete, 97, 157, 222,

371-372
demotion, 35
deque (STL), 431, 433, 436
deque library, 255
dereferencing or indirec¬

tion *, 43, 83, 87, 370
derived class, 12, 275
deriving, 23, 273, 393
design, 293, 332
design pattern, 334-335
destructor, 9, 149, 157,

184, 387-388
directed acyclic graph

(DAG), 291, 395
directive, 348, 353

dissections
dynarray, 99
improved, 15
matrix, 218
moon, 56
my_stri ng, 160
operator+(), 11
operator=(), 211
order(), 84
print() and

releaseO, 170
rational, 199
salary, 131
stLvect, 256

do, 49, 375, 378
do_ test program, 49
double, 32, 359
double quote \", 27, 351
double underscore, 349
double_space(), 424
downcast, 296
dynamic data structure, 82
dynamic storage alloca¬

tion, 9
dynami c_cast, 295, 362,

398, 411
dynarray program, 98

E
echo program, 66-67
Eiffel, 1
element of array, 90
elementO, 174
ellipsis, 314, 408
else, 46, 375-376
empty parameter list, 68
empty() (STL), 433,

436-437
encapsulation, 3, 6, 16,

122, 331
end() (STL), 256, 433
end-of-string sentinel \0,

26, 158
endl, 30, 416
ends, 416
enum, 38, 353

▼ Index 467

enum_tst program, 38
enumeration, 38, 356, 410

anonymous, 39
constant, 352, 358
type, 38

EOF, 421, 427-428
eofC), 427
equal ==, 40, 366
equal () (STL), 443
equal_range() (STL),

435, 441
equality operator (STL),

432
equality operators, 40, 367
eraseO (STL), 433, 435
error condition, 307
except library, 315, 318,

409
except program, 319
exception, 296, 307, 399

handler, 314, 405, 408
specification, 315, 408

exception library, 319
exceptions

catch, 308-309,
313- 314, 400, 408

throw, 308-309,
314- 315, 406, 408

try, 311, 313-314, 375,
407

exclusive or (bitwise) a, 43,
370

explicit, 152, 164, 185,
249, 388

explicit argument, 129
explicit conversion, 35,

196, 362
expression, 39

address, 370
arithmetic, 39, 366
assignment, 44, 368,

376
bit manipulation, 42,

370
comma, 369
conversion, 34
equality, 40, 366-367

evaluation, 367
indirection, 370
infix, 203
logical, 366
mixed, 34
relational, 366
statement, 376
throw, 406

extensibility, 6, 23, 331
extern, 76, 357-358,

360-361, 411
extraction, 420

F
\f formfeed, 27, 351
f(), 78
fact(), 430
factorial program, 69
fail (), 427
false, 40, 359, 366-367
fault-tolerant, 321
file, 422
file modes, 423
file scope, 74, 80,128, 354,

386
fill () (STL), 446
finalization, 9
findO, 453, 457
findO (STL), 262, 435,

442-443
fincLfirst_not_of(),

458
find_first_of(),458
find_last_not_of(),

458
f i nd_l ast_of (), 458
first_element(),167
float, 32, 359
float library, 33
floating-point constant,

351-352
flow of control, 366
flush, 416
flushO, 414
for, 47, 375, 377-378
for_each() (STL), 443

for_test program, 48, 50
formal parameter, 67, 88
formfeed \f, 27, 351
forward iterator (STL),

437-438
found_next_word(), 429
free store, 97, 154, 220,

371-372
friend, 200, 207-208, 246,

389, 404
frontO (STL), 436
front_inserter() (STL),

439
fstream library, 422-423
function, 65, 348

accessor, 139, 154
adapter (STL), 450-451
argument, 68
call (), 43, 216, 373
call-by-reference, 83,

85, 383
call-by-value, 30, 156,

382
characteristics, 400
const member, 128
conversion, 152
declaration, 382
default argument, 70,

384
definition, 66
exit, 158, 184
friend, 200, 207-208,

246, 389, 404
header, 66-67
i nl i ne, 37, 73,

119-120, 384
invocation, 66
Java, 16
member, 10, 115, 119,

364, 389
member (Java), 140
mutator, 139, 154
nested, 310
object (STL), 448
overloading, 72, 244,

279-280, 384, 410
overridden, 399

468 ▼ Index

function (continued)
overridden virtual, 279
override (Java), 299
parameter, 67-68, 88
passing array to, 92
prototype, 68, 354, 383
pure virtual, 283, 396
scope, 354
selection, 197
signature, 385
signature matching, 73,

224, 244, 385
static member, 128, 246
STL, 448
syntax, 410
template, 242, 403
vi rtual, 279, 395-396,

399
function library (STL), 448
Function Use in C++, 297
functions

abort(), 315, 409
adcLtermO, 179
appendf),455
assign(), 160, 182,

455
avg_arr(), 72-73
bad(), 427
bad_al loc(), 319, 373,

411
c_str(),456
ci rcle(), 77
clear(), 427
close(),423
cnt_char(),156
coerce(), 247
compare(),457
concat(), 160
convert(), 267
copy(), 243-244, 263,

456
data(), 456
deal (), 126
del(), 169
deleO, 288
double_space(),424
elementO, 174

eof (), 427
f(), 78
fact(),430
fail(), 427
find(), 453, 457
find_first_not_of()

, 458
find_fi rst_of (), 458
find_last_not_of(),

458
find_last_of O, 458
first_element(), 167
flush(), 414
found_next_word(),

429
gcd(), 30, 108
get(), 421
getlineO, 421
good(), 427
heap_exhausted(),

222
how_manyO, 123
init(), 241, 287
init_deck(), 126
i nsertO, 455
isalnum(), 426
i salphaO, 426
isascii (), 426
i scntrl (), 426
isdigitO, 426
isgraphO, 426
i slower(), 426
isprintO, 426
ispunct(),426
i sspaceO, 426
isupperO, 426
isxdigitO, 426
lengthO, 456
main(), 31, 66, 348
max(), 75

maxelementO, 266,
405

memcpyO, 112
mpy(), 202
nameO, 399
nextO, 286-287
open(),423

operator double(),
197

operator new(), 373
operatorO, 217, 235
operator'" O, 208
operator+(), 11, 207,

212, 453
operator++(), 206
operator+=(), 217,

453
operator->(),220
operator«(), 215,

391, 419-420
operator=(), 211,214,

217, 223, 251
operator [] (), 211,

250
operator-O, 208
order(), 84, 86, 96
place_min(), 97
plot(), 71
plus(), 119, 180
pr_deck(),419
prepend(),169
printO, 10, 87, 170,

253, 260, 277, 450
printfO, 69
printlnO (Java), 16
put(), 414
rdstateO, 427
read(), 421
release(), 170
replaceO, 456
reserveO, 456
reset(), 225
resetiosflagsO, 416
resize(), 456
rest_of(), 180
reverseO, 176, 241
rfind(), 458
ringO, 66
second_element(),

167
set_new_handler()

373,405
set_terminate(),315,

409

▼ Index 469

set_unexpected(),
315, 409

setbaseO, 416
setfi 11(),416
setiosflagsO, 416
setprecision(), 416
setw(), 415-416
shuffleO, 126
sqr_or_power(), 70
strcmpO, 94
strcpyO, 94, 162
streqO, 107
strlenO, 94, 108
sub_str(), 184
substr(), 456
sumO, 92, 100-101, 254
sums(),284
swap(), 234, 244-245,

403
terminateO, 314-315,

409
throw(), 425
toascii(),427
tolower(), 427
toupperO, 427
unexpectedO, 315,

409
updateO, 287
wri te(), 414

Fundamental Data Types,
32, 359

G
garbage collection, 181
gcd program, 30
gcdO, 30, 108
generateO (STL), 446
generate_n() (STL), 446
generic pointer, 87, 359,

362, 410
generic programming, 239,

244
get from », 29, 215,

420
getO, 421
getline(),421

global, 76
class, 128
data object, 411
declaration, 357
function, 348
scope, 354

good(), 427
goto, 52, 374-375, 380,

411
goto_tst program, 52
greater than >, 40, 366
greater than or equal >=,

40, 366

H
handler, 308, 314, 400,

405, 408
class, 181

handler (Java), 321
has-a relationship, 166,

334
heap_exhausted(), 222
hello program, 4, 6-7
hex, 416
hidden member, 200
hierarchy, 12, 17, 333
how_many program, 123
how_many(), 123

I
I/O library, 29, 413
I/O manipulators, 416
ICON, 332
identifier, 25, 349-350
if, 45, 355, 375-376
if-else, 45, 376-377
if Jest program, 45-46
ifstream, 423
implementation inheri¬

tance, 295
implicit argument, 129,

208
implicit conversion, 35,

153, 362
improved, 15

Improved class (Java), 15
includes() (STL), 442
inclusion, 330
indexing or subscripting

[], 43, 90, 373
infix expression, 203
inheritance, 12, 16, 329

implementation, 295
interface, 275
multiple, 290, 293, 395
public, 13
single, 293
structure, 14
template, 289
virtual, 291

init(), 241, 287
init_deck(), 126
initialization, 33, 79, 90,

387
array, 90
arrays, 95
class, 9, 150-151
constructor, 185, 396
memberwise, 157

initializer list, 152, 388
inline, 37, 73, 119-120,

384
inline program, 73
i nner_product() (STL),

264, 447
i nplace_merge() (STL),

441
input, 29, 413

iterator (STL), 258, 437
insert(),455
insertO (STL), 433, 435
i nserter () (STL), 439
insertion, 413
instantiation, 239, 246,

404
int, 32, 359
interface, 139
interface inheritance, 275
Interviews, 329
invertibility, 332
io program, 29
iomanip library, 414-416

470 ▼ Index

iostream library, 5, 29, 81,
292, 348,413-416,429

is-a relationship, 275, 293
isalnum(), 426
isalpha(), 426
isascii(), 426
iscntrl(),426
isdigit(), 426
isgraph(),426
islower(), 426
isprintO, 426
ispunctO, 426
isspace(), 426
istream, 420
isupper(),426
isxdigit(), 426
i ter_swap() (STL), 445
iterator, 411
iterator (STL), 252-253,

258, 431, 437-438
adapter, 260, 438
bidirectional, 258-259
class, 334
forward, 258-259
input, 258
istream, 259-260
ostream, 259-260
output, 258
random access, 258-259

iterator library (STL), 259,
261

J
Java, 1

appletviewer, 338
constructor, 186
method, 16, 140
override, 299
polymorphism, 299

K
Kelley, A., xvii
kernel language, 23, 65
key-based element (STL),

257

keywords, 25, 350
auto, 76, 360
bool, 32, 40, 359, 362,

366-367
break, 49, 375, 379-380
case, 51, 375, 379-380
catch, 308-309,

313-314, 400, 408
char, 32, 359, 410
class, 115, 121, 274,

387, 401
const, 128-129, 353,

361- 362, 392
const_cast, 132,

362- 363
continue, 49, 375, 379
default, 51, 375,

379-380
delete, 97, 157, 222,

371-372
do, 49, 375, 378
double, 32, 359
dynami c_cast, 295,

362, 398, 411
else, 46, 375-376
enum, 38, 353
explicit, 152, 164,

185, 249, 388
extern, 76, 357-358,

360-361, 411
false, 40, 359, 366-367
float, 32, 359
for, 47, 375, 377-378
friend, 200, 207-208,

246, 389, 404
goto, 52, 374-375, 380,

411
if, 45, 355, 375-376
if-else, 45, 376-377
inline, 37, 73,

119-120, 384
int, 32, 359
long, 32, 359
long double, 359
mutable, 132, 392, 411
namespace, 5, 29,

79-81, 356

new, 97, 185, 220,
371-373

operator, 10, 203
private, 120-121, 138,

274, 387, 393
protected, 138, 274,

387, 393
public, 120, 138,

274-275, 387, 393
regi ster, 78, 360
reinterpret_cast,

362-363
return, 68, 375, 381
short, 32, 359
signed, 32
signed char, 410
sizeof, 32,43, 204, 365
static, 78, 128, 132,

360, 392, 404
static_cast, 362-363
struct, 115-116, 387
switch, 51, 355, 375,

379-380
template, 239-240, 400
this, 129, 133, 390,

392, 410
throw, 308-309,

314-315, 406, 408
true, 40, 359, 366-367
try, 311, 313-314, 375,

407
typedef, 39, 354, 358,

360
typeid, 295-296,

398-399, 411
union, 134, 136, 184
unsigned, 32, 359
unsigned char, 32
using, 5, 81, 357
virtual, 279, 395-396,

399
void, 87, 382, 410
void*, 87, 359, 362, 410
volatile, 224, 361
wchar_t, 32, 359
while, 46-47, 375, 377

▼ Index 471

keywords (Java)
class, 14, 16, 139

L
label, 52, 380
left shift «, 43, 370
length(),456
less than <, 40, 366
less than or equal <=, 40,

366
1exicographical_compa

re() (STL), 442
libraries

algorithm, 261-264
assert, 96, 112, 181, 307
cctype, 426
checks, 308
complex, 2, 32, 81
cstddef, 259, 438
cstdio, 29
cstring, 88, 93-94, 107,

158
ctype, 413, 426, 429
degue, 255
except, 315, 318, 409
exception, 319
float, 33
f,stream, 422-423
function (STL), 448
iomanip, 414-416
iostream, 5, 29, 81, 292,

348, 413-416, 429
iterator (STL), 259, 261
limits, 33
list, 253
map, 257
math, 334
new, 221-222, 373
numeric (STL), 253, 264,

446
signal, 308
stack, 257
stddef, 88, 259, 373,438
stdexception, 319
stdio, 29, 63, 69, 413,

429

std lib, 126, 157,
221-222, 373, 423

stream, 413
string, 5, 66, 88, 93,

158-159, 181, 257,
263, 271, 334

strstream, 425
time, 192
typejnfo, 296, 399
typeinfo, 319
vector, 255, 257,

259-260, 263-264
library mixing, 429
like-a relationship, 295
limits library, 33
linkage, 80, 386
linked list, 174
LISP, 181, 328
list (STL), 431, 433, 436
list library, 253
List Operations, 168
literal, 26
local scope, 37, 74
location, 82
logical operators, 40-41,

366
long, 32, 359
long constant, 351
long double, 359
loop, 50
lower_bound() (STL),

435, 441
lvalue, 44, 164, 174, 224,

353, 368

M
m_to_k program, 37
machine addresses, 82
macro expansion, 74
main(), 31, 66, 348
make_heap() (STL), 441
manip program, 415
manipulator, 5, 30, 414
manufacturer, 96, 307,

320, 328
map (STL), 431, 434

map library, 257
math library, 334
matrix program, 173, 202,

216
max(), 75
max() (STL), 442
max_el ement() (STL), 442
max_size() (STL), 433,

452
maxelementO, 266, 405
member, 166

data, 387
function, 10, 115, 119,

364, 389
hidden, 200

member function (Java),
140

member object selector
204, 396

member operator ., 8,117,
204

memberwise copy, 184
memberwise initializa¬

tion, 157
memcpyO, 112
memory location, 82
memory management

delete, 97, 157, 222,
371-372

new, 97, 185, 220,
371-373

memory register, 78
merge() (STL), 441
merge-sort, 178
message, 7, 280
method, 6-7, 16, 280
method (Java), 140
Ml, 293
tnin() (STL), 442
mi n_element() (STL), 442
mismatchO (S TL), 443
mix Jo program, 430
mixed expression, 34
mixin class, 395
mixing libraries, 429
Modula-2, 327
modulo program, 150

472 ▼ Index

modulus %, 366
Monte Carlo calculation,

125
moon, 56
Moon class (Java), 56
mpyO, 202
multidimensional array,

95, 173
multifile program, 357-358
multiline comment, 349
multimap (STL), 431, 434
multiple assignment, 30,

212, 218, 368
multiple inheritance, 290,

293, 395
multiset (STL), 431, 434
mutable, 132, 392,

411
mutable program, 132
mutator function, 139,

154

N
name(), 399
namespac program, 81
namespace

anonymous, 81
scope, 80, 240, 354

namespace, 5, 29, 79-81,
356

narrowing, 35
native type, 23, 153, 195
need to know style, 122
negation !, 40, 366
nested class, 124, 355, 410
nested function, 310
nested program, 124
new, 97, 185, 220, 371-373
new library, 221-222, 373
new_hdlr program, 222
next(), 286-287
next_permutation()

(STL), 441, 443
nonmutating algorithm

(STL), 442

NoSuchNameException
class (Java), 322

not equal !=, 40, 366
notl() (STL), 451
not2() (STL), 451
nth_el ement() (STL), 441
null character \0, 26, 158
null pointer 0, 169
null statement, 44
numeric library (STL), 253,

264, 446

o
object, 2, 9, 16, 120, 139,

149
object-oriented program¬

ming, 1-2, 16, 327
Occam’s Razor, 332
oct, 416
ofstream, 423
one-dimensional array,

163
OOP, 1-2, 16, 327
OOP Characteristics, 327
OOP Design Methodology,

12, 273, 329
openO, 423
operator, 28, 364

assignment overload¬
ing, 209

associativity, 40, 204,
345

binary overloading, 207
bit manipulation, 42,

370
bit shift, 29
equality, 40, 366-367
logical, 40-41, 366
overloading, 195, 203,

223, 390
precedence, 40, 204,

345
relational, 40, 366
subscript overloading,

209
unary overloading, 204

operator, 10, 203
operator doubleO, 197
operator new(), 373
Operator Precedence and

Associativity, 345
operatorO, 217, 235
operator*(), 208
operator+O, 11, 207,

212, 453
operator+() dissection,

11

operator++0, 206
operator+=0, 217, 453
operator->(),220
operator«0, 215, 391,

419-420
operator=(), 211, 214,

217, 223, 251
operator [] (), 211, 250
operator-(), 208
operators

address &, 43, 82, 135,
370

and (bitwise) &, 43, 370
and (logical) &&, 40,

366-367
assignment =, 40, 44
autodecrement 44,

204, 365, 391
autoincrement ++, 44,

204-206, 365, 391 ’
comma ,, 42
complement ~, 43
conditional expression

?:, 42, 204, 369
delete, 97, 157, 222,

371-372
dereferencing or indi¬

rection *, 43, 83, 87,
370

equal ==, 40, 366
exclusive or (bitwise) a

43, 370
function call (), 43

216, 373
get from », 29, 215,

420

t Index 473

greater than >, 40, 366
greater than or equal

>=, 40, 366
indexing or subscript¬

ing [], 43, 90, 373
left shift «, 43, 370
less than <, 40, 366
less than or equal <=,

40, 366
member ., 8, 117, 204
member object selector

204, 396
modulus %, 366
mutable, 132, 392, 411
negation !, 40, 366
new, 97, 185, 220,

371-373
not equal !=, 40, 366
or (bitwise) |, 43, 370
or (logical) | |, 40,

366-367
pointer to member ->*,

396
put to «, 29, 215,

413-414, 419
right shift », 43, 370
scope resolution ::,

122, 204, 355, 410
si zeof, 32, 43, 204, 365
smart pointer ->, 236
structure pointer ->,

117, 219
typei d, 295-296,

398-399, 411
unary one’s comple¬

ment a, 370
or (bitwise) |, 43, 370
or (logical) I 1,40, 366-367
order program, 83, 86, 96
orderO, 84, 86, 96
orthogonality, 266, 333
ostream, 413
OstreamJterator (STL),

438
out of bounds, 163
out of free store, 222

output, 29, 413
iterator (STL), 258,

437-438
user-defined, 418

over_new program, 221
Overloaded Function

Selection Algorithm,
245, 386

overloading, 10, 330
assignment, 209, 211
constructor, 151
function, 72, 244,

279-280, 384, 410
I/O operators, 215
indexing, 216
new, 372
new and delete, 220
operator, 195, 203, 223,

390
operator, 10, 203
subscript, 209, 211
template function, 404

override, 275, 279, 399

P
pain^e cT program, 167
parameter, 68

formal, 67, 88
tempi ate, 266

parametric polymorphism,
239-240, 330, 400

partial_sort() (STL),
440

parti al_sort_copy()
(STL), 440

partial_sum() (STL), 447
parti ti on () (STL), 446
Pascal, 328, 332
person, 139
Person class (Java), 139
Personl class (Java), 299
Person2 class (Java), 322
PersonTest class (Java),

140
place_mi n(), 97
placement, 221

plot(), 71
plus(), 119, 180
Pohl, I., xvii
point program, 118-121,

133, 153
pointer, 65, 82, 89, 278

arithmetic, 91
array, 91
assignment, 278
declarations, 86
generic, 87, 359, 362,

410
null 0, 169
self-referential, 133,

390
this, 129, 133, 390,

392, 410
to class member, 396
type, 65
universal constant, 350

pointer to member ->*,
396

poker program, 125
poly program, 175,

213-214
Polymorphic Genie, 239
polymorphism, 289, 294,

330-331
ad hoc, 195, 330
parametric, 239, 330
pure, 273, 279, 330
types, 330

polymorphism (Java), 299
Polynomial Prepend

Figure, 177
popO (STL), 436-437
pop_heap() (STL), 441
postcondition, 96, 307
postfix, 44, 365
powers program, 70
pr_card program, 418-419
pr_deck(), 419
precedence, 40, 204, 345
precondition, 96, 307
predator program, 283
prefix, 44, 365

474 ▼ Index

Prepend and Reverse Oper¬
ations Figure, 177

prependO, 169
preprocessor, 348, 353
prev_permutation()

(STL), 441, 443
PrintO, 10, 87, 170, 253,

260, 277, 450
printable program, 152
printf(), 69
print!n() (Java), 16
priority,queue (STL), 436
private, 120-121, 138,

274, 387, 393
prog program, 358
program

correctness, 96, 307
organization, 348
structure, 30

programs
AB_file, 110
acc_mod, 298
array_mx, 75
arrayJm, 247
avg_arr, 72
bad_cast, 319
bubble, 325
catch, 314
ch_stack, 137, 155-158
clock, 205, 207, 225
coerce, 247
command, 111
complex, 9-11, 122
copy, 243-244
cubes, 109
dbLsp, 424
dbLvect, 163, 210, 309,

316
do_test, 49
dynarray, 98
echo, 66-67
enum_tst, 38
except, 319
factorial, 69
for^test, 48, 50
gcd, 30

goto^tst, 52
hello, 4, 6-7
how_many, 123
if-test, 45-46
inline, 73
io, 29
m_to_k, 37
manip, 415
matrix, 173, 202, 216
mix_io, 430
modulo, 150
multifile, 357-358
mutable, 132
namespac, 81
nested, 124
new_hdlr, 222
order, 83, 86, 96
over_new, 221
pairvect, 167
point, 118-121, 133, 153
poker, 125
poly, 175, 213-214
powers, 70
pr_card, 418-419
predator, 283
print abl, 152
prog, 358
rational, 198, 215
root, 71
salary, 130
scope_t, 75
set, 136
shape, 282
showhide, 397
slist, 168, 170-171
stack_t, 240-241,

289-290
stat_count, 110
statist, 78
stLadap, 450
stLage, 257
stLcont, 253
stLdeq, 254
stLfind, 262
stLfucn, 448
stljadp, 260

stLio, 259
stLlist, 253
stLnumr, 264
stLrevr, 263
stLsort, 262
stLstak, 258, 437
stLvect, 252, 255
str_strm, 425
strfunc, 94
string, 101, 159, 162,

181, 452
student, 12, 274-277
sum_arr, 89, 91-92, 101
SumArray (Java), 102
swap, 244
switch_t, 51
throw, 310
tracking, 183
triple, 219
typeid, 296
union, 134
vectjt, 249, 251
virLerr, 281
virt_sel, 279
voidcast, 88
weekend, 135
while_t, 47
word_cnt, 428

promotion, 35
protected, 138, 274, 387,

393
prototype, 383
ptr_fun() (STL), 451

public, 120,138,274-275,
387, 393

public inheritance, 13
punctuator, 28
pure polymorphism, 273,

279, 330
pure virtual function, 283,

396
push() (STL), 436-437
push_heap() (STL), 441
put to «, 29, 215,

413-414, 419
putQ, 414

▼ Index 475

Q
queue (STL), 436

R
\r carriage return, 27, 351
random-access iterator

(STL), 437-438
random_shuffle() (STL),

446
rational program, 198, 215
rbegi n() (STL), 433
rdstateO, 427
read(), 421
reference

counting, 181
declaration, 85
semantics, 181
type, 382
variable, 82

register, 78, 360
reinterpret_cast,

362-363
relational expression, 366
relational operators, 40
Relational, Equality, and

Logical Operators, 366
released), 170
remove() (STL), 445
remove_copy () (STL), 446
remove_copy_i f () (STL),

446
remove_if() (STL), 446
rendO (STL), 433
replaceO, 456
replaceO (STL), 445
repl ace_copy() (STL),

445
repl ace_copy_if()

(STL) 445
replacelif () (STL), 445
reserveO, 456
resetO, 225
resetiosflagsO, 416
resized), 456
rest_of(), 180
rethrow, 309, 311, 407

return, 68, 375, 381
return argument, 348
return type, 67
reuse, 289, 329, 332
reverseO, 176, 241
reversed) (STL), 263
reverse_copy() (STL),

444
rfind(),458
right shift », 43, 370
ri ng(), 66
Ritchie, D., xvii, 1
roof program, 71
rotated) (STL), 446
rotate_copyd) (STL), 446
runtime type identification

(RTTI), 295, 319, 398,
411

s
safe dynamic array, 165
salary program, 130
scope, 38, 74, 79, 81, 354,

357
block, 75, 354
class, 122, 354
file, 74, 80, 128, 354,

386
function, 354
global, 354
local, 37, 74
namespace, 80, 240,

354
scope resolution ::, 122,

204, 355, 410
scopej program, 75
searchd) (STL), 443
second_elementd), 167
selection statement, 411
self-referential pointer,

133, 390
self-referential structure,

168
semicolon terminator, 43
sequence algorithm (STL),

444

sequence container (STL),
431, 433

set program, 136
set_differenced) (STL),

442
set_intersectiond)

(STL), 442
set_new_handlerd), 373,

405
set_symmetric_

differenced) (STL),
442

set_terminated), 315,
409

set_unexpectedd), 315,
409

set_uniond) (STL), 442
setbased),416
setfi lid), 416
setiosflagsd), 416
setprecisiond), 416
setwd), 415-416
shallow copy, 157, 162,

184
shape program, 282
short, 32, 359
short-circuit evaluation,

41, 367
showhide program, 397
shuffled),126
SI, 293
side effect, 44, 374
signal library, 308
signature matching, 73,

224, 244, 385
signed, 32
signed char, 410
simple data type, 32
simple derived type, 359
Simula 67, 1, 283, 328
single inheritance, 293
single quote \ \ 27, 351
Singly Linked List Figure,

168
sized) (STL), 433, 436-437
sizeof, 32, 43, 204, 365
slist program, 168,170-171

476 ▼ Index

SmallTalk, 1, 7, 181, 328
smart pointer ->, 236
SNOBOL, 332
sort() (STL), 253, 261,

440, 442
sort_heap() (STL), 441
sorting algorithm (STL),

440
special character, 351
sqr_or_power(), 70
stable_partition()

(STL), 446
stable_sort() (STL), 440
stack (STL), 436
stack library, 257
stack_t program, 240-241,

289-290
Standard Files, 422
stat_count program, 110
stat_tst program, 78
statement, 43

compound, 45, 376
declaration, 354, 381,

411
expression, 39, 376
labeled, 52, 380
null, 44
return, 381
selection, 411
terminator ;, 43, 374

statements
break, 49, 375, 379-380
case, 51, 375, 379-380
continue, 49, 375, 379
default, 51, 375,

379-380
do, 49, 375, 378
else, 46, 375-376
for, 47, 375, 377-378
goto, 52, 374-375, 380,

411
if, 45, 355, 375-376
if-else, 45, 376-377
return, 68, 375, 381
switch, 51, 355, 375,

379-380
while, 46-47, 375, 377

static, 78, 128, 132, 360,
392, 404

static member, 128, 246
stati c_cast, 362-363
stddeflibrary, 88, 259, 373,

438
stdexception library, 319
stdio library, 29, 63, 69,

413, 429
stdlib library, 126, 157,

221-222, 373,423
stepwise refinement, 65
STL, 239, 252

adapted priority_queue,
437

adapted queue, 436
adapted stack, 436
algorithm, 252, 261,

431, 440
allocator object, 451
arithmetic object, 449
associative constructor,

434
associative container,

254, 257,431,434
associative definition,

434
bidirectional iterator,

258-259
comparison object, 257,

434, 436, 449
comparison operator,

432

container, 252,254-255,
431

container adapter, 257
436

container definition,
432

container interface,
254, 431

container member, 433
deque, 254-255, 257,

431, 433, 436
equality operator, 432
forward iterator,

258-259

function, 448
function adapter,

450-451
function object, 448
input iterator, 258
insert and erase, 435
istreamjterator,

259-260
iterator, 252-253, 258,

431, 437-438
adapter, 260, 438
bidirectional,

437-438
forward, 437-438
input, 437
output, 437-438
random-access,

437-438
key, 257
list, 253-255, 257, 431,

433, 436
logical objects, 449
map, 254, 257, 431, 434
member functions, 435
multimap, 254, 257,

431, 434
multiset, 254, 257, 431,

434
mutating sequence

algorithm, 263,
444-445

nonmutating algo¬
rithm, 442

nonmutating sequence
algorithm, 262, 443

numerical algorithm,
264, 447

ostreamjterator,
259-260, 438

output iterator, 258
priority_queue, 257,

436
queue, 257, 436
random access iterator

258-259
reverse_bidirectional_

iterator, 439

▼ Index 477

reverse_iterator, 439
sequence container,

254-255, 431
sequence member, 433
set, 254, 257
sort algorithm, 261, 441
sorting algorithm, 440
stack, 257, 436
vector, 254-255, 257,

431, 436
STL Defined Function

Object Classes, 448
STL functions

accumulate(), 253,
264, 447

addressO, 452
adjacent_difference

(),44/
adjacent_find(), 443
allocate(), 452
back(), 436
back_inserter(), 439
begin(), 433
BidiIter(),444
binary_search(), 441
bi ndlstO, 451
bi nd2nd(), 450-451
copy(), 263, 444
copy_backward(), 444
count(), 435, 443
count_if(), 443
deal locateO, 452
emptyO, 433, 436-437
end(), 256, 433
equal(), 443
equal_range(), 435,

441
eraseO, 433, 435
fill 0,446
find(), 262, 435,

442-443
for_each(), 443
front(), 436
front_inserter(),

439
generateO, 446
generate_n(), 446

includesO, 442
inner_product(),264,

447
inplace_merge(),441
insertO, 433, 435
inserter(), 439
iter_swap(), 445
1exicographi cal_

compareO, 442
lower_bound(), 435,

441
make_heapO, 441
max(),442
max_element(),442
max_size(), 433, 452
merge(), 441
mi n(), 442
min_element 0,442
mismatch(), 443
next_permutation(),

441,443
notl(), 451
not2(), 451
nth_element(), 441
partial_sort(), 440
partial_sort_copy(),

440
partial_sum(), 447
partition(), 446
pop(), 436-437
pop_heap(), 441
prev_permutation(),

441, 443
ptr_fun(), 451
push(), 436-437
push_heap(), 441
random_shuffle(),

446
rbegin(),433
removeO, 445
remove_copyO, 946
remove_copy_if(),

446
removeO f (), 446
rend(), 433
replaceO, 445
replace_copy(),445

replace_copy_if0,
445

replace_if(), 445
reverseO, 263
reverse_copy(), 444
rotateO, 446
rotate_copy(), 446
searchf), 443
set_difference(),

442
set_i ntersectionO,

442
set_symmetric_

differenceO, 442
set_union(), 442
sizeO, 433, 436-437
sortO, 253, 261, 440,

442
sort_heap(), 441
stable_partition(),

446
stable_sort(), 440
swap(), 433, 445
swap_range(),445
topO, 436-437
transformO, 445
unique(),444
unique_copy(), 445
upper_bound(), 435,

441
stLadap program, 450
stLage program, 257
stLcont program, 253
stLdeq program, 254
stLfind program, 262
stl_fucn program, 448
slLiadp program, 260
stLio program, 259
stljist program, 253
stLnumr program, 264
stLrevr program, 263
stLsort program, 262
stl_stak program, 258,

437
stLvect program, 252,

255
storage class, 74, 360

478 ▼ Index

storage types
auto, 76, 360
extern, 76, 357-358,

360-361, 411
regi ster, 78, 360
static, 78, 128, 132,

360, 392, 404
str_func program, 94
str_strm program, 425
strcmpO, 94
strcpyO, 94, 162
stream library, 413
stream states, 427
streams

caux, 422
cerr, 29, 422
cin, 29, 420, 422
clog, 422
cout, 29, 413,

422
cprn, 422

streq(), 107
string, 82, 452

ADT, 93, 158
constant, 352
constructor, 454
data member, 453
find member, 458
global operator, 459
literal, 26-27
member function, 454,

456
overloaded operator,

454
overloaded operators,

459
reference semantics,

181
type, 158

string library, 5, 66, 88, 93,
158-159, 181, 257,
263, 271, 334

string program, 101, 159,
162, 181, 452

strlen(), 94, 108
Stroustrup, B„ xvii, 1,115
strstream library, 425
struct, 115-116, 387
structure

anonymous, 117
block, 30
member, 115
program, 30

structure pointer ->, 117,
219

Student class (Java), 299
student program, 12,

274-277
Student<id> class

(Java), 300
StudentTest class (Java),

300
style

need to know, 122
polymorphic, 327

sub_str(), 184
substr(),456
subtype, 276, 294, 393
sum(), 92, 100-101, 254
sum_arr program, 89,

91-92, 101
SumArray Java program,

102
sums(),284
swap program, 244
swap(), 234, 244-245, 403
swap() (STL), 433, 445
swap_range() (STL), 445
switch, 51, 355, 375,

379-380
switch effects, 380
switchj program, 51
symbol, 28
symbolic constant, 90

T
tag name, 38, 116
template, 239, 289

argument, 246, 401
declaration, 401
function, 242, 403
library (STL), 239, 252
methodology, 295
parameter, 266
specialization, 404

template, 239-240, 400
terminateO, 314-315,

409
terminator statement, 43,

374
this, 129, 133, 390, 392,

410
Thompson, K., xvii
throw, 308-309, 314-315,

406, 408
throw expression, 309, 406
Throw Expression Match,

313
throw program, 310
throw(), 425
tick(), 205
time library, 192
toascii(), 427
tokens, 24, 348
tolower(), 427
top() (STL), 436-437
toupper(), 427
tracking program, 183
traditional conversion, 34
transformO (STL), 445
triple program, 219
trivial conversion, 224
true, 40, 359, 366-367
try, 311, 313-314, 375,

407
try block, 313
two-dimensional array

173

▼ Index 479

type, 37
built-in, 364, 390
checking, 68
compatibility, 410
declaration, 25, 348
derived, 359
enumeration, 38, 410
examples, 360
extensibility, 6, 23, 331
generic pointer, 87, 359,

362, 410
instantiation, 239, 246,

404
native, 6, 23, 153, 195
pointer, 65
reference, 382
return, 67
safety, 74, 331, 383
simple, 32
string, 82, 158, 452
tag name, 38, 116
user-defined, 195, 387,

418
Type Differences for ANSI

C, 410
typejd program, 296
typejnfo library, 296, 399
typedef, 39,354,358,360
typeid, 295-296, 398-399,

411
typeinfo library, 319
types

bool, 32, 40, 359, 362,
366-367

char, 32, 359,410
class, 115, 121, 274,

387, 401
class (Java), 14,16,139
double, 32, 359
enum, 38, 353
float, 32, 359
i nt, 32, 359
long, 32, 359
long double, 359

short, 32, 359
si gned, 32
si gned char, 410
struct, 115-116, 387
template, 239-240, 400
union, 134, 136, 184
unsigned, 32, 359
unsigned char, 32
void, 87, 382, 410
voi d*, 87, 359, 362, 410
wchar_t, 32, 359

u
unary one’s complement a,

370
unary operator overload¬

ing, 204
unconditional branch, 52
underscore, 349
unexpectedO, 315, 409
union

anonymous, 135, 184,
359

initializer, 134
member, 134

union, 134, 136, 184
union program, 134
uniqueO (STL), 444
unique_copy() (STL),

445
universal pointer constant,

350
UNIX, xvii, 1
unsi gned, 32, 359
unsigned char, 32
unsigned constant, 351
updateO, 287
upper_bound() (STL),

435, 441
user-defined output, 418
user-defined type, 195,

387, 418
usi ng, 5, 81, 357

V
\v vertical tab, 27, 351
variable, 354

global, 76
reference, 82

vect_it program, 249, 251
vector (STL), 431, 436
vector library, 255, 257,

259-260, 263-264
vertical tab \v, 27, 351
virt_sel program, 279, 281
virtual

base class, 292, 396
inheritance, 291

vi rtual, 279, 395-396,
399

visibility, 79, 115, 276
void, 87, 382,410
void*, 87, 359, 362,

410
voidcast program, 88
volati le, 224, 361

w
wchar_t, 32, 359
website, xx
weekend program, 135
wgcd class (Java), 337
while, 46-47, 375,

377
wh ilej program, 47
white space, 27-28, 352
widening, 35
width of bit field, 135
word_cnt program, 428
write(), 414
ws, 416

z
zero, 26, 158
zero null pointer, 169

*■

*

I

t

C Interfaces and Implementations
Techniques for Creating Reusable Software

David R. Hanson

Every programmer and software project manager must master the art of creating
reusable software modules, which are the building blocks of large, reliable
applications. Unlike some modem object-oriented languages, C provides little
linguistic support or motivation for creating reusable application programming
interfaces (APIs). While most C programmers use APIs and the libraries that
implement them in almost every application they write, relatively few program¬
mers create and disseminate new, widely applicable APIs. C Interfaces and
Implementations shows how to create reusable APIs using interface-based design,
a language-independent methodology that separates interfaces from their
implementations. This methodology is explained by example. The author
describes in detail twenty-four interfaces and their implementations, providing
the reader with a thorough understanding of this design approach.

544 pages • Paperback • ISBN 0-201-49841-3

http: / / www.awl.com/cseng / titles /0-201-49841-3 /

A Retargetable C Compiler
Design and Implementation

Christopher W. Fraser and David R. Hanson

This book examines the design and implementation of lcc, a production-quality,
retargetable compiler for the ANSI C programming language designed at
AT&T Bell Laboratories and Princeton University. The authors' innovative
approach—a "literate program" that intermingles the text with the source
code—gives a detailed tour of the code that explains the implementation and
design decisions reflected in the software. And while most books describe toy
compilers or focus on isolated pieces of code, the authors provide the entire
source code for a real compiler, which is available via ftp. Structured as a self-
study guide that describes the real-world tradeoffs encountered in building a
production-quality compiler, this book is useful to individuals who work in
application areas applying or creating language-based tools and techniques.

592 pages • Hardcover • ISBN 0-8053-1670-1

http://www.awl.com/cseng/titles/0-8053-1670-1/

Programming

C Programming FAQs
Frequently Asked Questions

Steve Summit

Steve Summit furnishes you with answers to some of the most frequently
asked questions in C. Extensively revised from his popular FAQ list on the
Internet, more than 400 questions are answered to illustrate key points and
to provide practical guidelines for programmers. C Programming FAQs is a
welcomed reference for all C programmers, providing accurate answers,
insightful explanations, and clarification of fine points, along with numerous
code examples.

432 pages • Paperback • ISBN 0-201-84519-9

http://www.awl.com/cseng/titles/0-201-84519-9/

C BY DISSECTION
THE ESSENTIALS OF C PROGRAMMING

►

$

AL KELLEY AND IRA POHL THIRD EDITION

C By Dissection, Third Edition
The Essentials ofC Programming

A1 Kelley and Ira Pohl

This significantly revised edition has been carefully designed to meet

the needs of readers new to C. The reader moves easily through the

fundamentals of C and on to its latest applications by means of a time-

tested explanatory tool called dissection, first developed by the authors in

1984. Dissection, a pedagogical method similar to a structured step-by-step

walk-through, explains new programming elements and idioms as they

are encountered in working code. Right from the start, the authors

introduce the reader to complete programs, and at an early point in

the text the reader learns to write functions, an important feature of

structured programming.

720 pages • Paperback • ISBN 0-8053-3149-2

http://www.awl.com/cseng/titles/0-8053-3149-2/

A BUSINESS APPROACH

JIM SEARING

C for COBOL Programmers
A Business Approach

Jim Gearing

Written by an experienced business data systems designer and

programmer, this new tutorial provides an ideal introduction to C

for the COBOL programmer who wants to become proficient in the

powerful C language. Featuring side-by-side comparisons of the

syntax and constructs of the two languages, Cfor COBOL Programmers

uses the reader's knowledge of COBOL to build a framework for

learning C quickly and easily. The book introduces coded examples

in C early, and in the context of a business environment. A complete

chapter is devoted to explaining the important differences between

COBOL and C for data handling and I/O, while another chapter

focuses on C programming standards as applied to business data

processing. A valuable appendix cross-references COBOL commands

to C commands, operators, and functions.

544 pages • Paperback • ISBN 0-8053-1660-4

http: / / www.awl.com / cseng / titles / 0-8053-1660-4 /

C++ FOR FORTRAN
PROGRAMMERS

IRA POHL.

C++ For Fortran Programmers
Ira Pohl

Using your existing knowledge of Fortran, C++for Fortran Programmers

gets you up and running with C++ quickly. By showing how individual

elements of a Fortran program compare and translate into C++, this book

helps you make a smooth transition to C++ and object-oriented concepts.

Best-selling author and C++ authority Ira Pohl uses his trademark

dissection technique to illustrate the underlying structure of programs

and to help you understand design trade-offs. Scientific and engineering
coding examples are featured throughout the text.

560 pages • Paperback • ISBN 0-201-92483-8

http://www.awl.com/cseng/titles/0-201-92483-8/

COVERS ANSI/ISO DRAFT STANDARD

++DISTILLED

C++ Distilled
A Concise ANSI/ISO Reference and Style Guide
Ira Pohl

In C++ Distilled, veteran teacher and programmer Dr. Ira Pohl condenses

700 pages of proposed ANSI standard into a concise road map to C++.

Selecting the most important and commonly used language elements. Dr.

Pohl provides syntax, semantics, and examples, as well as style tips that he

has distilled from more than two decades of experience. C++ Distilled is a

handy reference to the most recent additions to the language, many of

which have yet to be covered in existing C++ books. All source code from

the book is available via the World Wide Web.

224 pages • Paperback • ISBN 0-201-69587-1

http://www.awl.com/cseng/titles/0-201-69587-1 /

Object-Oriented Programming Using C++,

Second Edition
Ira Pohl

Object-Oriented Programming Using C++, Second Edition provides the

experienced programmer with a clear and thorough introduction to the

object-oriented paradigm using ANSI C++. Each chapter introduces you

to specific C++ language features that support object-oriented programming

concepts, including the most recent additions to the language such as STL,

namespaces, RTTI, and the bool type. The book illustrates concepts by

example, providing full working programs right from the start. All source

code from the book is available via the World Wide Web.

576 pages • Paperback • ISBN 0-201-89550-1

http://www.awl.com/cseng/titles/0-201-89550-1/

A Book on C, Fourth Edition
Programming in C

A1 Kelley and Ira Pohl

Now in its fourth edition, A Book on C retains the features that have made

it a proven, best-selling tutorial and reference on the ANSI C programming

language. This new edition includes new and updated programming

examples and dissections (the authors' trademark technique!), multifile

programming. Abstract Data Types, updated material on transitioning to

C++, and new coverage on transitioning from C to Java. References to key

programming functions and C features are provided in convenient tables.

Beginners and professional programmers alike will benefit from the

numerous examples and extensive exercises developed to guide readers

through each concept.

752 pages • Paperback • ISBN 0-201-18399-4

http://www.awl.com/cseng/titles/0-201-18399-4/

Addison-Wesley Compi. ,ig Group H DUE / PATE DE RETOUR
'MnHMBHr ' *VHBvnnm

Howto
7. Visit our Web site
http://www.awl.com/cseng

When you think you've read enough, there's always more content for you at

Addison-Wesley's web site. Our web site contains a directory of complete

product information including:

• Chapters

• Exclusive author interviews

• Links to authors'pages

• Tables of contents

• Source code

You can also discover what tradeshows and conferences Addison-Wesley will

be attending, read what others are saying about our titles, and find out where

and when you can meet our authors and have them sign your book.

3. Contact with Us via Email
cepubprof@awl.com

Ask general questions about our books.

Sign up for our electronic mailing lists.

Submit corrections for our web site.

bexpress@awl.com

Request an Addison-Wesley catalog.

Get answers to questions regarding

your order or our products.

innovations@awl.com

Request a current Innovations Newsletter.

webmaster@awl.com

Send comments about our web site.

cepubeditors@awl.com

Submit a book proposal.

Send errata for an Addison-Wesley book.

cepubpublicity@awl.com

Request a review copy for a member of the media

interested in reviewing new Addison-Wesley titles.

Addison Wesley Longman
Computer and Engineering Publishing Group

One Jacob Way, Reading, Massachusetts 01867 USA

TEL 781-944-3700 • FAX 781-942-3076

We encourage you to patronize the many fine retailers

who stock Addison-Wesley titles. Visit our online directory

to find stores near you or visit our online store:

http://store.awl.com/ or call 800-824-7799.

Interact
with Us

2. Subscribe to Our Email Mailing Lists
Subscribe to our electronic mailing lists and be the first to know

when new books are publishing. Here's how it works: Sign up for our

electronic mailing at http://www.awl.com/cseng/mailinglists.html.

Just select the subject areas that interest you and you will receive

notification via email when we publish a book in that area.

TREN T UN V RS TY

64 0406224 6

C++/Programming Languages

C~ FOR C PROGRAMMERS
THIRD EDITION

IRA F» O H l_

Extensively revised and updated, this proven book by noted C++/C expert Ira Pohl
is written specifically for C programmers who are transitioning to C++. C++ for C
Programmers, Third Edition, takes an evolutionary teaching approach, using C
as a starting point and C++ as a destination. This edition reflects the new ANSI C++
Standard, and covers the latest language features—including detailed discussions
of templates, STL, and exception handling. Each chapter contains a brief examination
of Java that compares and contrasts it with C++, providing the C programmer with a
more complete understanding of both C and C++ and their relationship to Java.

Highlights of C++ for C Programmers, Third Edition, include:

• A smooth transition to C++ and object-oriented programming for programmers
already familiar with C

• Extensive exercises and frequent language comparisons to teach concepts quickly
and to introduce the language’s powerful object-oriented features

• Pohl’s trademark “dissection” code presentation technique, which illustrates the
underlying structure of programs and makes design tradeoffs understandable

A companion Web site, including source code, is located at:
http://www.awl.com/cseng/titles/0-201 -39519-3/

Ira Pohl is a professor of computer and information sciences at the University of
California, Santa Cruz. He has thirty years of experience as a software methodologist
and is an internationally recognized authority on C++/C programming. Pohl is also
a frequent consultant for organizations such as Apple, DEC, and NTU (National
Technological University), and is the author of eight books on C++, C, and Java
programming.

Cover illustration by Malcolm Piers, The Image Bank

o Text printed on recycled paper

AADDISON-WESLEY_
Addison-Wesley is an imprint of
Addison Wesley Longman, Inc.

