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Praise for Clean Craftsmanship

“Bob’s Clean Craftsmanship has done a great job explaining the purposes
of agile technical practices, along with a deep historical basis for how they
came into existence, as well as positioning for why they will always be
important. His involvement in history and formation of agility, thorough
understanding of practices, and their purposes reflect vividly throughout the
manuscript.”

—Tim Ottinger, well-known Agile Coach and author

“Bob’s writing style is excellent. It is easy to read and the concepts are
explained in perfect detail for even a new programmer to follow. Bob even
has some funny moments, which pleasantly snap you out of focus. The true
value of the book is really in the cry for change, for something better … the
cry for programmers to be professional … the realization that software is
everywhere. Additionally, I believe there is a lot of value in all the history
Bob provides. I enjoy that he doesn’t waste time laying blame for how we
got to where we are now. Bob calls people to action, asking them to take
responsibility by increasing their standards and level of professionalism,
even if that means pushing back sometimes.”

—Heather Kanser

“As software developers, we have to continually solve important problems
for our employers, customers, colleagues, and future selves. Getting the app
to work, though difficult, is not enough, it does not make you a craftsman.
With an app working, you have passed the app-titude test. You may have
the aptitude to be a craftsman, but there is more to master. In these pages,
Bob expresses clearly the techniques and responsibilities to go beyond the
app-titude test and shows the way of the serious software craftsman.”



—James Grenning, author of Test-Driven Development for Embedded C
and Agile Manifesto co-author

“Bob’s one of the very few famous developers with whom I’d like to work
on a tech project. It’s not because he’s a good developer, famous, or a good
communicator; it’s because Bob helps me be a better developer and a team
member. He has spotted every major development trend, years ahead of
others, and has been able to explain its importance, which encouraged me to
learn. Back when I started—apart from being honest and a good person—
the idea of craftsmanship and ethics was completely missing from this field.
Now, it seems to be the most important thing professional developers can
learn, even ahead of coding itself. I’m happy to see Bob leading the way
again. I can’t wait to hear his perspective and incorporate it into my own
practice.”

—Daniel Markham, Principal, Bedford Technology Group, Inc.
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Foreword

I remember meeting Uncle Bob in the spring of 2003, soon after Scrum was
introduced to our company and technology teams. As a skeptical, fledgling
ScrumMaster, I remember listening to Bob teach us about TDD and a little
tool called FitNesse, and I remember thinking to myself, “Why would we
ever write test cases that fail first? Doesn’t testing come after coding?” I
often walked away scratching my head, as did many of my team members,
and yet to this day I distinctly remember Bob’s palpable exuberance for
code craftsmanship like it was only yesterday. I recall his directness one day
as he was looking at our bug backlog and asking us why on earth we would
make such poor decisions about software systems that we did not in fact
own—“These systems are company assets, not your own personal assets.”
His passion piqued our curiosity, and a year and half later, we had
refactored our way to about 80 percent automated test coverage and a clean
code base that made pivoting much easier, resulting in much happier
customers—and happier teams. We moved lightning fast after that, wielding
our definition of done like armor to protect us from the always-lurking code
goblins; we had learned, in essence, how to protect us from ourselves. Over
time, we developed a warmth for Uncle Bob, who came to truly feel like an
uncle to us—a warm, determined, and courageous man who would over
time help us learn to stand up for ourselves and do what was right. While
some kids’ Uncle Bobs taught them how to ride bicycles or fish, our Uncle
Bob taught us to not compromise our integrity—and to this day, the ability
and desire to show up to every situation with courage and curiosity has been
the best lesson of my career.



I brought Bob’s early lessons with me on my journey as I ventured into the
world as an agile coach and quickly observed for myself that the best
product development teams figured out how to package up their own best
practices for their unique contexts, for their particular customers, in their
respective industries. I remembered Bob’s lessons when I observed that the
best development tools in the world were only as good as their human
operators—the teams who would figure out the best applications of those
tools within their own domains. I observed that, sure, teams can reach high
percentages of unit test coverage to check the box and meet the metric, only
to find that a large percentage of those tests are flaky—metric was met, but
value was not delivered. The best teams didn’t really need to care about
metrics; they had purpose, discipline, pride, and responsibility—and the
metrics in every case spoke for themselves. Clean Craftsmanship weaves
all of these lessons and principles into practical code examples and
experiences to illustrate the difference between writing something to meet a
deadline versus actually building something sustainable for the future.

Clean Craftsmanship reminds us to never settle for less, to walk the Earth
with fearless competence. This book, like an old friend, will remind you of
what matters, what works, what doesn’t, what creates risk, and what
diminishes it. These lessons are timeless. You may find that you already
practice some of the techniques contained within, and I bet you’ll find
something new, or at least something that you dropped because at some
point you caved to deadlines or other pressures in your career. If you are
new to the development world—whether in business or technology—you
will learn from the very best, and even the most practiced and battle weary
will find ways to improve themselves. Perhaps this book will help you find
your passion again, renew your desire to improve your craft, or rededicate
your energy to the search for perfection, regardless of the impediments on
your horizon.

Software developers rule the world, and Uncle Bob is here again to remind
us of the professional discipline of those with such power. He picks up
where he left off with Clean Code; because software developers literally
write the rules of humankind, Uncle Bob reminds us that we must practice a
strict code of ethics, a responsibility to know what the code does, how
people use it, and where it breaks. Software mistakes cost people their
livelihoods—and their lives. Software influences the way we think, the



decisions we make, and as a result of artificial intelligence and predictive
analytics, it influences social and herd behavior. Therefore, we must be
responsible and act with great care and empathy—the health and well-being
of people depend on it. Uncle Bob helps us face this responsibility and
become the professionals that our society expects, and demands, us to be.
As the Agile Manifesto nears its twentieth birthday at the writing of this
foreword, this book is a perfect opportunity to go back to basics: a timely
and humble reminder of the ever-increasing complexity of our
programmatic world and how we owe it to the legacy of humankind—and
to ourselves—to practice ethical development. Take your time reading
Clean Craftsmanship. Let the principles seep into you. Practice them.
Improve them. Mentor others. Keep this book on your go-to bookshelf. Let
this book be your old friend—your Uncle Bob, your guide—as you make
your way through this world with curiosity and courage.

—Stacia Heimgartner Viscardi, CST & Agile Mentor



Preface

Before we begin, there are two issues we need to deal with in order to
ensure that you, my gentle reader, understand the frame of reference in
which this book is presented.

On the Term Craftsmanship
The beginning of the twenty-first century has been marked by some
controversy over language. We in the software industry have seen our share
of this controversy. One term that is often called out as a failure to be
inclusive is craftsman.

I’ve given this issue quite a bit of thought and talked with many people of
varying opinions, and I’ve come to the conclusion that there is no better
term to use in the context of this book.

Alternatives to craftsman were considered, including craftsperson,
craftsfolk, and crafter, among others. But none of those terms carries the
historical gravitas of craftsman. And that historical gravitas is important to
the message here.

Craftsman brings to mind a person who is deeply skilled and accomplished
in a particular activity—someone who is comfortable with their tools and
their trade, who takes pride in their work, and who can be trusted to behave
with the dignity and professionalism of their calling.



It may be that some of you will disagree with my decision. I understand
why that might be. I only hope you will not interpret it as an attempt to be
exclusive in any way—for that is, by no means, my intent.

On the One True Path
As you read Clean Craftsmanship: Disciplines, Standards, and Ethics, you
may get the feeling that this is the One True Path to Craftsmanship. It may
be that for me, but not necessarily for you. I am offering this book to you as
an example of my path. You will, of course, need to choose your own.

Will we eventually need One True Path? I don’t know. Perhaps. As you will
read in these pages, the pressure for a strict definition of a software
profession is mounting. We may be able to get away with several different
paths, depending on the criticality of the software being created. But, as you
will read in what follows, it may not be so easy to separate critical from
noncritical software.

One thing I am certain of. The days of “Judges”1 are over. It is no longer
sufficient that every programmer does what is right in their own eyes. Some
disciplines, standards, and ethics will come. The decision before us today is
whether we programmers will define them for ourselves or have them
forced upon us by those who don’t know us.
1. A reference to the Old Testament book of Judges.

Introduction to the Book
This book is written for programmers and for managers of programmers.
But in another sense, this book is written for all of human society. For it is
we, programmers, who have inadvertently found ourselves at the very
fulcrum of that society.

For Yourself



If you are a programmer of several years’ experience, you probably know
the satisfaction of getting a system deployed and working. There is a certain
pride you feel at having been part of such an accomplishment. You are
proud of getting the system out the door.

But are you proud of the way you got that system out the door? Is your
pride the pride of finishing? Or is your pride the pride of workmanship? Are
you proud that the system has been deployed? Or are you proud of the way
you built that system?

When you go home after a hard day of writing code, do you look at yourself
in the mirror and say, “I did a good job today”? Or do you have to take a
shower?

Too many of us feel dirty at the end of the day. Too many of us feel trapped
into doing substandard work. Too many of us feel that low quality is
expected and is necessary for high speed. Too many of us think that
productivity and quality are inversely related.

In this book, I strive to break that mindset. This is a book about working
well. This is a book about doing a good job. This is a book that describes
the disciplines and practices that every programmer should know in order to
work fast, be productive, and be proud of what they write every single day.

For Society
The twenty-first century marks the first time in human history that our
society has become dependent, for its survival, on a technology that has
acquired virtually no semblance of discipline or control. Software has
invaded every facet of modern life, from brewing our morning coffee to
providing our evening entertainment, from washing our clothes to driving
our cars, from connecting us in a world-spanning network to dividing us
socially and politically. There is literally no aspect of life in the modern
world that is not dominated by software. And yet those of us who build this
software are little more than a ragtag batch of tinkerers who barely have any
idea what we are doing.



If we programmers had had a better grasp on what we do, would the 2020
Iowa Caucus results have been ready when promised? Would 346 people
have died in the two 737 Max crashes? Would Knight Capital Group have
lost $460 million in 45 minutes? Would 89 people have lost their lives in
Toyota’s unintended acceleration accidents?

Every five years, the number of programmers in the world doubles. Those
programmers are taught very little about their craft. They are shown the
tools, given a few toy projects to develop, and are then tossed into an
exponentially growing workforce to answer the exponentially growing
demand for more and more software. Every day, the house of cards that we
call software insinuates itself deeper and deeper into our infrastructure, our
institutions, our governments, and our lives. And with every day, the risk of
catastrophe grows.

Of what catastrophe do I speak? It is not the collapse of our civilization nor
the sudden dissolution of all the software systems at once. The house of
cards that is due to collapse is not composed of the software systems
themselves. Rather, it is the fragile foundation of public trust that is at risk.

Too many more 737 Max incidents, Toyota unintended acceleration
incidents, Volkswagen California EPA incidents, or Iowa Caucus incidents
—too many more cases of high-profile software failures or malfeasance—
and the lack of our discipline, ethics, and standards will become the focus
of a distrustful and enraged public. And then the regulations will follow:
regulations that none of us should desire; regulations that will cripple our
ability to freely explore and expand the craft of software development;
regulations that will put severe restrictions on the growth of our technology
and economy.

It is not the goal of this book to stop the headlong rush into ever-more
software adoption. Nor is it the goal to slow the rate of software production.
Such goals would be a waste of effort. Our society needs software, and it
will get it no matter what. Attempting to throttle that need will not stop the
looming catastrophe of public trust.

Rather, it is the goal of this book to impress upon software developers and
their managers the need for discipline and to teach those developers and
managers the disciplines, standards, and ethics that are most effective at
maximizing their ability to produce robust, fault-tolerant, effective



software. It is only by changing the way that we programmers work, by
upping our discipline, ethics, and standards, that the house of cards can be
shored up and prevented from collapse.

The Structure of This Book
This book is written in three parts that describe three levels: disciplines,
standards, and ethics.

Disciplines are the lowest level. This part of the book is pragmatic,
technical, and prescriptive. Programmers of all stripes will benefit from
reading and understanding this part. Within the pages of this part are several
references to videos. These videos show the rhythm of the test-driven
development and refactoring disciplines in real time. The written pages of
the book try to capture that rhythm as well, but nothing serves quite so well
as videos for that purpose.

Standards are the middle level. This section outlines the expectations that
the world has of our profession. This is a good section for managers to read,
so that they know what to expect of professional programmers.

Ethics are at the highest level. This section describes the ethical context of
the profession of programming. It does so in the form of an oath, or a set of
promises. It is laced with a great deal of historical and philosophical
discussion. It should be read by programmers and managers alike.

A Note for Managers
These pages contain a great deal of information that you will find
beneficial. They also contain quite a bit of technical information that you
probably don’t need. My advice is that you read the introduction of each
chapter and stop reading when the content becomes more technical than you
need. Then go to the next chapter and start again.

Make sure you read Part II, “The Standards,” and Part III, “The Ethics.”
Make sure you read the introductions to each of the five disciplines.
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1 Craftsmanship

The dream of flying is almost certainly as old as humanity. The ancient
Greek myth describing the flight of Daedalus and Icarus dates from around
1550 BCE. In the millennia that followed, a number of brave, if foolish,
souls have strapped ungainly contraptions to their bodies and leapt off cliffs
and towers to their doom in pursuit of that dream.

Things began to change about five hundred years ago when Leonardo
DaVinci drew sketches of machines that, though not truly capable of flight,



showed some reasoned thought. It was DaVinci who realized that flight
could be possible because air resistance works in both directions. The
resistance caused by pushing down on the air creates lift of the same
amount. This is the mechanism by which all modern airplanes fly.

DaVinci’s ideas were lost until the middle of the eighteenth century. But
then began an almost frantic exploration into the possibility of flight. The
eighteenth and nineteenth centuries were a time of intense aeronautical
research and experimentation. Unpowered prototypes were built, tried,
discarded, and improved. The science of aeronautics began to take shape.
The forces of lift, drag, thrust, and gravity were identified and understood.
Some brave souls made the attempt.

And some crashed and died.

In the closing years of the eighteenth century, and for the half century that
followed, Sir George Cayley, the father of modern aerodynamics, built
experimental rigs, prototypes, and full-sized models culminating in the first
manned flight of a glider.

And some still crashed and died.

Then came the age of steam and the possibility of powered manned flight.
Dozens of prototypes and experiments were performed. Scientists and
enthusiasts alike joined the gaggle of people exploring the potential of
flight. In 1890, Clément Ader flew a twin-engine steam-powered machine
for 50 meters.

And some still crashed and died.

But the internal combustion engine was the real game-changer. In all
likelihood, the first powered and controlled manned flight took place in
1901 by Gustave Whitehead. But it was the Wright Brothers who, on
December 17, 1903, at Kill Devil Hills, North Carolina, conducted the first
truly sustained, powered, and controlled manned flight of a heavier-than-air
machine.

And some still crashed and died.

But the world changed overnight. Eleven years later, in 1914, biplanes were
dogfighting in the air over Europe.



And though many crashed and died under enemy fire, a similar number
crashed and died just learning to fly. The principles of flight might have
been mastered, but the technique of flight was barely understood.

Another two decades, and the truly terrible fighters and bombers of World
War II were wreaking havoc over France and Germany. They flew at
extreme altitudes. They bristled with guns. They carried devastating
destructive power.

During the war, 65,000 American aircraft were lost. But only 23,000 of
those were lost in combat. The pilots flew and died in battle. But more often
they flew and died when no one was shooting. We still didn’t know how to
fly.

Another decade saw jet-powered craft, the breaking of the sound barrier,
and the explosion of commercial airlines and civilian air travel. It was the
beginning of the jet age, when people of means (the so-called jet set) could
leap from city to city and country to country in a matter of hours.

And the jet airliners tore themselves to shreds and fell out of the sky in
terrifying numbers. There was so much we still didn’t understand about
making and flying aircraft.

That brings us to the 1950s. Boeing 707s would be flying passengers from
here to there across the world by the end of the decade. Two more decades
would see the first wide-body jumbo jet, the 747.

Aeronautics and air travel settled down to become the safest and most
efficient means of travel in the history of the world. It took a long time, and
cost many lives, but we had finally learned how to safely build and fly
airplanes.1

1. The 737 Max notwithstanding.

Chesley Sullenberger was born in 1951 in Denison, Texas. He was a child
of the jet age. He learned to fly at age sixteen and eventually flew F4
Phantoms for the Air Force. He became a pilot for US Airways in 1980.

On January 15, 2009, just after departure from LaGuardia, his Airbus A320
carrying 155 souls struck a flock of geese and lost both jet engines. Captain
Sullenberger, relying on over twenty thousand hours of experience in the
air, guided his disabled craft to a “water landing” in the Hudson River and,



through sheer indomitable skill, saved every one of those 155 souls. Captain
Sullenberger excelled at his craft. Captain Sullenberger was a craftsman.

The dream of fast, reliable computation and data management is almost
certainly as old as humanity. Counting on fingers, sticks, and beads dates
back thousands of years. People were building and using abacuses over four
thousand years ago. Mechanical devices were used to predict the movement
of stars and planets some two thousand years ago. Slide rules were invented
about four hundred years ago.

In the early nineteenth century, Charles Babbage started building crank-
powered calculating machines. These were true digital computers with
memory and arithmetic processing. But they were difficult to build with the
metalworking technology of the day, and though he built a few prototypes,
they were not a commercial success.

In the mid-1800s, Babbage attempted to build a much more powerful
machine. It would have been steam powered and capable of executing true
programs. He dubbed it the Analytical Engine.

Lord Byron’s daughter, Ada—the Countess of Lovelace—translated the
notes of a lecture given by Babbage and discerned a fact that had apparently
not occurred to anyone else at the time: the numbers in a computer need not
represent numbers at all but can represent things in the real world. For that
insight, she is often called the world’s first true programmer.

Problems of precise metalworking continued to frustrate Babbage, and in
the end, his project failed. No further progress was made on digital
computers throughout the rest of the nineteenth and early twentieth
centuries. During that time, however, mechanical analog computers reached
their heyday.

In 1936, Alan Turing showed that there is no general way to prove that a
given Diophantine2 equation has solutions. He constructed this proof by
imagining a simple, if infinite, digital computer and then proving that there
were numbers that this computer could not calculate. As a consequence of
this proof, he invented finite state machines, machine language, symbolic
language, macros, and primitive subroutines. He invented, what we would
call today, software.
2. Equations of integers.



At almost exactly the same time, Alonzo Church constructed a completely
different proof for the same problem and consequently developed the
lambda calculus—the core concept of functional programming.

In 1941, Konrad Zuse built the first electromechanical programmable
digital computer, the Z3. It consisted of more than 2,000 relays and
operated at a clock rate of 5 to 10Hz. The machine used binary arithmetic
organized into 22-bit words.

During World War II, Turing was recruited to help the “boffins” at
Bletchley Park decrypt the German Enigma codes. The Enigma machine
was a simple digital computer that randomized the characters of textual
messages that were typically broadcast using radio telegraphs. Turing aided
in the construction of an electromechanical digital search engine to find the
keys to those codes.

After the war, Turing was instrumental in building and programming one of
the world’s first electronic vacuum tube computers—the Automatic
Computing Engine, or ACE. The original prototype used 1,000 vacuum
tubes and manipulated binary numbers at a speed of a million bits per
second.

In 1947, after writing some programs for this machine and researching its
capabilities, Turing gave a lecture in which he made these prescient
statements:

We shall need a great number of mathematicians of ability [to put the problems] into a form for
computation.

One of our difficulties will be the maintenance of an appropriate discipline, so that we do not
lose track of what we are doing.

And the world changed overnight.

Within a few years, core memory had been developed. The possibility of
having hundreds of thousands, if not millions, of bits of memory accessible
within microseconds became a reality. At the same time, mass production of
vacuum tubes made computers cheaper and more reliable. Limited mass
production was becoming a reality. By 1960, IBM had sold 140 model 70x
computers. These were huge vacuum tube machines worth millions of
dollars.



Turing had programmed his machine in binary, but everyone understood
that was impractical. In 1949, Grace Hopper had coined the word compiler
and by 1952 had created the first one: A-0. In late 1953, John Bachus
submitted the first FORTRAN specification. ALGOL and LISP followed by
1958.

The first working transistor was created by John Bardeen, Walter Brattain,
and William Shockley in 1947. They made their way into computers in
1953. Replacing vacuum tubes with transistors changed the game entirely.
Computers became smaller, faster, cheaper, and much more reliable.

By 1965, IBM had produced 10,000 model 1401 computers. They rented
for $2,500 per month. This was well within the reach of midsized
businesses. Those businesses needed programmers, and so the demand for
programmers began to accelerate.

Who was programming all these machines? There were no university
courses. Nobody went to school to learn to program in 1965. These
programmers were drawn from business. They were mature folks who had
worked in their businesses for some time. They were in their 30s, 40s, and
50s.

By 1966, IBM was producing 1,000 model 360 computers every month.
Businesses could not get enough. These machines had memory sizes that
reached 64kB and more. They could execute hundreds of thousands of
instructions per second.

That same year, working on a Univac 1107 at the Norwegian Computer
Center, Ole-Johan Dahl and Kristen Nygard invented Simula 67, an
extension of ALGOL. It was the first object-oriented language.

Alan Turing’s lecture was only two decades in the past!
Two years later, in March 1968, Edsger Dijkstra wrote his famous letter to
the Communications of the ACM (CACM). The editor gave that letter the
title “Go To Statement Considered Harmful.”3 Structured programming was
born.
3. Edsger W. Dijkstra, “Go To Statement Considered Harmful,” Communications of the ACM 11, no.

3 (1968).

In 1972, at Bell Labs in New Jersey, Ken Thompson and Dennis Ritchie
were between projects. They begged time on a PDP 7 from a different



project team and invented UNIX and C.

Now the pace picked up to near breakneck speeds. I’m going to give you a
few key dates. For each one, ask yourself how many computers are in the
world? How many programmers are in the world? And where did those
programmers come from?

1970—Digital Equipment Corporation had produced 50,000 PDP-8
computers since 1965.

1970—Winston Royce wrote the “waterfall” paper, “Managing the
Development of Large Software Systems.”

1971—Intel released the 4004 single-chip microcomputer.

1974—Intel released the 8080 single-chip microcomputer.

1977—Apple released the Apple II.

1979—Motorola released the 68000, a 16-bit single-chip microcomputer.

1980—Bjarne Stroustrup invented C with Classes (a preprocessor that
makes C look like Simula).

1980—Alan Kay invented Smalltalk.

1981—IBM released the IBM PC.

1983—Apple released the 128K Macintosh.

1983—Stroustrup renamed C with Classes to C++.

1985—The US Department of Defense adopted waterfall as the official
software process (DOD-STD-2167A).

1986—Stroustrup published The C++ Programming Language (Addison-
Wesley).

1991—Grady Booch published Object-Oriented Design with Applications
(Benjamin/Cummings).

1991—James Gosling invented Java (called Oak at the time).

1991—Guido Van Rossum released Python.

1995—Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley) was written by Erich Gamma, Richard Helm, John



Vlissides, and Ralph Johnson.

1995—Yukihiro Matsumoto released Ruby.

1995—Brendan Eich created JavaScript.

1996—Sun Microsystems released Java.

1999—Microsoft invented C#/.NET (then called Cool).
2000—Y2K! The Millennium Bug.

2001—The Agile Manifesto was written.

Between 1970 and 2000, the clock rates of computers increased by three
orders of magnitude. Density increased by four orders of magnitude. Disk
space increased by six or seven orders of magnitude. RAM capacity
increased by six or seven orders of magnitude. Costs had fallen from dollars
per bit to dollars per gigabit. The change in the hardware is hard to
visualize, but just summing up all the orders of magnitude I mentioned
leads us to about a thirty orders of magnitude increase in capability.

And all this in just over fifty years since Alan Turing’s lecture.

How many programmers are there now? How many lines of code have been
written? How good is all that code?

Compare this timeline with the aeronautical timeline. Do you see the
similarity? Do you see the gradual increase in theory, the rush and failure of
the enthusiasts, the gradual increase in competence? The decades of not
knowing what we were doing?

And now, with our society depending, for its very existence, on our skills,
do we have the Sullenbergers whom our society needs? Have we groomed
the programmers who understand their craft as deeply as today’s airline
pilots understand theirs? Do we have the craftsmen whom we shall certainly
require?

Craftsmanship is the state of knowing how to do something well and is the
outcome of good tutelage and lots of experience. Until recently, the
software industry had far too little of either. Programmers tended not to
remain programmers for long, because they viewed programming as a
steppingstone into management. This meant that there were few
programmers who acquired enough experience to teach the craft to others.



To make matters worse, the number of new programmers entering the field
doubles every five years or so, keeping the ratio of experienced
programmers far too low.

The result has been that most programmers never learn the disciplines,
standards, and ethics that could define their craft. During their relatively
brief career of writing code, they remain unapprenticed novices. And this,
of course, means that much of the code produced by those inexperienced
programmers is substandard, ill structured, insecure, buggy, and generally a
mess.

In this book, I describe the standards, disciplines, and ethics that I believe
every programmer should know and follow in order to gradually acquire the
knowledge and skill that their craft truly requires.



I The Disciplines

What is a discipline? A discipline is a set of rules that are composed of two
parts: the essential part and the arbitrary part. The essential part is what
gives the discipline its power; it is the reason that the discipline exists. The



arbitrary part is what gives the discipline its form and substance. The
discipline cannot exist without the arbitrary part.

For example, surgeons wash their hands before surgery. If you were to
watch, you would see that the handwashing has a very particular form to it.
The surgeon does not wash hands by simply soaping them under running
water, as you and I might do. Rather, the surgeon follows a ritualized
discipline of handwashing. One such routine I have seen is, in part, as
follows:

Use the proper soap.

Use the appropriate brush.

For each finger, use

Ten strokes across the top.

Ten strokes across the left side.

Ten strokes across the underside.

Ten strokes across the right side.

Ten strokes across the nail.

And so on.

The essential part of the discipline should be obvious. The surgeon’s hands
must be made very clean. But did you notice the arbitrary part? Why ten
strokes instead of eight or twelve? Why divide the finger into five sections?
Why not three or seven sections?

That’s all arbitrary. There is no real reason for those numbers other than that
they were deemed to be sufficient.

In this book, we study five disciplines of software craftsmanship. Some of
these disciplines are five decades old. Some are just two decades old. But
all have shown their usefulness over those decades. Without them, the very
notion of software-as-a-craft would be virtually unthinkable.

Each of these disciplines has its own essential and arbitrary elements. As
you read, you may find your mind objecting to one or more of the
disciplines. If this happens, be aware of whether the objection is about the
essential elements of the disciplines or just the arbitrary elements. Don’t



allow yourself to be misdirected by the arbitrary elements. Keep your focus
on the essential elements. Once you have internalized the essence of each
discipline, the arbitrary form will be likely to diminish in importance.

For example, in 1861, Ignaz Semmelweis published his findings for
applying the discipline of handwashing for doctors. The results of his
research were astounding. He was able to show that when doctors
thoroughly washed their hands in chlorine bleach before examining
pregnant women, the death rates of those women from subsequent sepsis
dropped from one in ten to virtually zero.

But the doctors of the day did not separate the essence from the arbitrary
when reviewing Semmelweis’s proposed discipline. The chlorine bleach
was the arbitrary part. The washing was the essence. They were repelled by
the inconvenience of washing with bleach, and so they rejected the
evidence of the essential nature of handwashing.

It was many decades before doctors started actually washing their hands.

Extreme Programming
In 1970, Winston Royce published the paper that drove the waterfall
development process into the mainstream. It took almost 30 years to undo
that mistake.

By 1995, software experts started considering a different, more incremental
approach. Processes such as Scrum, feature-driven development (FDD),
dynamic systems development method (DSDM), and the Crystal
methodologies were presented. But little changed in the industry at large.

Then, in 1999, Kent Beck published the book Extreme Programming
Explained (Addison-Wesley). Extreme Programming (XP) built upon the
ideas in those previous processes but added something new. XP added
engineering practices.

Enthusiasm grew exponentially for XP between 1999 and 2001. It was this
enthusiasm that spawned and drove the Agile revolution. To this day, XP
remains the best defined and most complete of all the Agile methods. The
engineering practices at its core are the focus of this section on disciplines.



The Circle of Life
In Figure I.1, you see Ron Jeffries’ Circle of Life, which shows the practices
of XP. The disciplines that we cover in this book are the four in the center
and the one on the far left.

Figure I.1 The Circle of Life: The practices of XP

The four in the center are the engineering practices of XP: test-driven
development (TDD), refactoring, simple design, and pairing (which we
shall call collaborative programming. The practice at the far left,
acceptance tests, is the most technical and engineering focused of the
business practices of XP. These five practices are among the foundational
disciplines of software craftsmanship.

Test-Driven Development



TDD is the lynchpin discipline. Without it, the other disciplines are either
impossible or impotent. For that reason, the two upcoming sections
describing TDD represent nearly half the pages of this book and are
intensely technical. This organization may seem unbalanced. Indeed, it feels
that way to me too, and I struggled with what to do about that. My
conclusion, however, is that the imbalance is a reaction to the corresponding
imbalance within our industry. Too few programmers know this discipline
well.

TDD is the discipline that governs the way a programmer works on a
second-by-second basis. It is neither an up-front discipline nor an after-the-
fact discipline. TDD is in-process and in-your-face. There is no way to do
partial TDD; it is an all-or-nothing discipline.

The essence of the TDD discipline is very simple. Small cycles and tests
come first. Tests come first in everything. Tests are written first. Tests are
cleaned up first. In all activities, tests come first. And all activities are
broken down into the tiniest of cycles.

Cycle times are measured in seconds, not minutes. They are measured in
characters, not lines. The feedback loop is closed almost literally as soon as
it is opened.

The goal of TDD is to create a test suite that you would trust with your life.
If the test suite passes, you should feel safe to deploy the code.

Of all the disciplines, TDD is the most onerous and the most complex. It is
onerous because it dominates everything. It is the first and last thing you
think about. It is the constraint that lays thick over everything you do. It is
the governor that keeps the pace steady regardless of pressure and
environmental stresses.

TDD is complex because code is complex. For each shape or form of code,
there is a corresponding shape or form of TDD. TDD is complex because
the tests must be designed to fit the code without being coupled to the code
and must cover almost everything yet still execute in seconds. TDD is an
elaborate and complex skill that is very hard won but immeasurably
rewarding.



Refactoring
Refactoring is the discipline that allows us to write clean code. Refactoring
is difficult, if not impossible, without TDD.1 Therefore, writing clean code
is just as difficult or impossible without TDD.
1. There may be other disciplines that could support refactoring as well as TDD. Kent Beck’s test

&& commit || revert is a possibility. At the time of this writing, however, it has not enjoyed a high
degree of adoption and remains more of an academic curiosity.

Refactoring is the discipline by which we manipulate poorly structured
code into code with a better structure—without affecting behavior. That last
part is critical. By guaranteeing that the behavior of the code is unaffected,
the improvements in structure are guaranteed to be safe.

The reason we don’t clean up code—the reason that software systems rot
over time—is that we are afraid that cleaning the code will break the
behavior. But if we have a way to clean up code that we know is safe, then
we will clean up the code, and our systems will not rot.

How do we guarantee that our improvements do not affect behavior? We
have the tests from TDD.

Refactoring is also a complex discipline because there are many ways to
create poorly structured code. Thus, there are many strategies for cleaning
up that code. Moreover, each of those strategies must fit frictionlessly and
concurrently into the TDD test-first cycle. Indeed, these two disciplines are
so deeply intertwined that they are virtually inseparable. It is almost
impossible to refactor without TDD, and it is virtually impossible to
practice TDD without practicing refactoring.

Simple Design
Life on Earth could be described in terms of layers. At the top is ecology,
the study of systems of living things. Below that is physiology, the study
life’s internal mechanisms. The next layer down might be microbiology, the
study of cells, nucleic acids, proteins, and other macromolecular systems.
Those are in turn described by the science of chemistry, which in turn is
described by quantum mechanics.



Extending that analogy to programming, if TDD is the quantum mechanics
of programming, then refactoring is the chemistry and simple design is the
microbiology. Continuing that analogy, SOLID principles, object-oriented
design, and functional programming are the physiology, and architecture is
the ecology of programming.

Simple design is almost impossible without refactoring. Indeed, it is the end
goal of refactoring, and refactoring is the only practical means to achieve
that goal. That goal is the production of simple atomic granules of design
that fit well into the larger structures of programs, systems, and
applications.

Simple design is not a complex discipline. It is driven by four very simple
rules. However, unlike TDD and refactoring, simple design is an imprecise
discipline. It relies on judgment and experience. Done well, it is the first
indication that separates an apprentice who knows the rules from a
journeyman who understands the principles. It is the beginning of what
Michael Feathers has called design sense.

Collaborative Programming
Collaborative programming is the discipline and the art of working together
in a software team. It includes subdisciplines such as pair programming,
mob programming, code reviews, and brainstorms. Collaborative
programming involves everyone on the team, programmers and
nonprogrammers alike. It is the primary means by which we share
knowledge, assure consistency, and gel the team into a functioning whole.

Of all the disciplines, collaborative programming is the least technical and
the least prescriptive. Nevertheless, it may be the most important of the five
disciplines, because the building of an effective team is both a rare and
precious thing.

Acceptance Tests
Acceptance testing is the discipline that ties the software development team
to the business. The business purpose is the specification of the desired



behaviors of the system. Those behaviors are encoded into tests. If those
tests pass, the system behaves as specified.

The tests must be readable and writeable by representatives of the business.
It is by writing and reading these tests and seeing them pass that the
business knows what the software does and that it does what the business
needs it to do.



2 Test-Driven Development

Our discussion of test-driven development (TDD) spans two chapters. We
first cover the basics of TDD in a very technical and detailed manner. In
this chapter, you will learn about the discipline in a step-by-step fashion.
The chapter provides a great deal of code to read and several videos to
watch as well.

In Chapter 3, “Advanced TDD,” we cover many of the traps and
conundrums that novice TDDers face, such as databases and graphical user



interfaces. We also explore the design principles that drive good test design
and the design patterns of testing. Finally, we investigate some interesting
and profound theoretical possibilities.

Overview
Zero. It’s an important number. It’s the number of balance. When the two
sides of a scale are in balance, the pointer on the scale reads zero. A neutral
atom, with equal numbers of electrons and protons, has a charge of zero.
The sum of forces on a bridge balances to zero. Zero is the number of
balance.

Did you ever wonder why the amount of money in your checking account is
called its balance? That’s because the balance in your account is the sum of
all the transactions that have either deposited or withdrawn money from that
account. But transactions always have two sides because transactions move
money between accounts.

The near side of a transaction affects your account. The far side affects
some other account. Every transaction whose near side deposits money into
your account has a far side that withdraws that amount from some other
account. Every time you write a check, the near side of the transaction
withdraws money from your account, and the far side deposits that money
into some other account. So, the balance in your account is the sum of the
near sides of the transactions. The sum of the far sides should be equal and
opposite to the balance of your account. The sum of all the near and far
sides should be zero.

Two thousand years ago, Gaius Plinius Secundus, known as Pliny the Elder,
realized this law of accounting and invented the discipline of double-entry
bookkeeping. Over the centuries, this discipline was refined by the bankers
in Cairo and then by the merchants of Venice. In 1494, Luca Pacioli, a
Franciscan friar and friend of Leonardo DaVinci, wrote the first definitive
description of the discipline. It was published in book form on the newly
invented printing press, and the technique spread.

In 1772, as the industrial revolution gained momentum, Josiah Wedgwood
was struggling with success. He was the founder of a pottery factory, and



his product was in such high demand that he was nearly bankrupting
himself trying to meet that demand. He adopted double-entry bookkeeping
and was thereby able to see how money was flowing in and out of his
business with a resolution that had previously escaped him. And by tuning
those flows, he staved off the looming bankruptcy and built a business that
exists to this day.

Wedgwood was not alone. Industrialization drove the vast growth of the
economies of Europe and America. In order to manage all the money flows
resulting from that growth, increasing numbers of firms adopted the
discipline.

In 1795, Johann Wolfgang von Goethe wrote the following in Wilhelm
Meister’s Apprenticeship. Pay close attention, for we will return to this
quote soon.

“Away with it, to the fire with it!” cried Werner. “The invention does not deserve the smallest
praise: that affair has plagued me enough already, and drawn upon yourself your father’s
wrath. The verses may be altogether beautiful; but the meaning of them is fundamentally false.
I still recollect your Commerce personified; a shrivelled, wretched-looking sibyl she was. I
suppose you picked up the image of her from some miserable huckster’s shop. At that time, you
had no true idea at all of trade; whilst I could not think of any man whose spirit was, or needed
to be, more enlarged than the spirit of a genuine merchant. What a thing it is to see the order
which prevails throughout his business! By means of this he can at any time survey the general
whole, without needing to perplex himself in the details. What advantages does he derive from
the system of book-keeping by double entry! It is among the finest inventions of the human
mind; every prudent master of a house should introduce it into his economy.”

Today, double-entry bookkeeping carries the force of law in almost every
country on the planet. To a large degree, the discipline defines the
accounting profession.

But let’s return to Goethe’s quote. Note the words that Goethe used to
describe the means of “Commerce” that he so detested:

A shrivelled, wretched-looking sibyl she was. I suppose you picked up the image of her from
some miserable huckster’s shop.

Have you seen any code that matches that description? I’m sure you have.
So have I. Indeed, if you are like me, then you have seen far, far too much
of it. If you are like me, you have written far, far too much of it.

Now, one last look at Goethe’s words:
What a thing it is to see the order which prevails throughout his business! By means of this he
can at any time survey the general whole, without needing to perplex himself in the details.



It is significant that Goethe ascribes this powerful benefit to the simple
discipline of double-entry bookkeeping.

Software
The maintenance of proper accounts is utterly essential for running a
modern business, and the discipline of double-entry bookkeeping is
essential for the maintenance of proper accounts. But is the proper
maintenance of software any less essential to the running of a business? By
no means! In the twenty-first century, software is at the heart of every
business.

What, then, can software developers use as a discipline that gives them the
control and vision over their software that double-entry bookkeeping gives
to accountants and managers? Perhaps you think that software and
accounting are such different concepts that no correspondence is required or
even possible. I beg to differ.

Consider that accounting is something of a mage’s art. Those of us not
versed in its rituals and arcanities understand but little of the depth of the
accounting profession. And what is the work product of that profession? It
is a set of documents that are organized in a complex and, for the layperson,
bewildering fashion. Upon those documents is strewn a set of symbols that
few but the accountants themselves can truly understand. And yet if even
one of those symbols were to be in error, terrible consequences could ensue.
Businesses could founder and executives could be jailed.

Now consider how similar accounting is to software development. Software
is a mage’s art indeed. Those not versed in the rituals and arcanities of
software development have no true idea of what goes on under the surface.
And the product? Again, a set of documents: the source code—documents
organized in a deeply complex and bewildering manner, littered with
symbols that only the programmers themselves can divine. And if even one
of those symbols is in error, terrible consequences may ensue.

The two professions are deeply similar. They both concern themselves with
the intense and fastidious management of intricate detail. They both require
significant training and experience to do well. They both are engaged in the



production of complex documents whose accuracy, at the level of individual
symbols, is critical.

Accountants and programmers may not want to admit it, but they are of a
kind. And the discipline of the older profession should be well observed by
the younger.

As you will see in what follows, TDD is double-entry bookkeeping. It is the
same discipline, executed for the same purpose, and delivering the same
results. Everything is said twice, in complementary accounts that must be
kept in balance by keeping the tests passing.

The Three Laws of TDD
Before we get to the three laws, we have some preliminaries to cover.

The essence of TDD entails the discipline to do the following:

1. Create a test suite that enables refactoring and is trusted to the extent
that passage implies deployability. That is, if the test suite passes, the
system can be deployed.

2. Create production code that is decoupled enough to be testable and
refactorable.

3. Create an extremely short-cycle feedback loop that maintains the task
of writing programs with a stable rhythm and productivity.

4. Create tests and production code that are sufficiently decoupled from
each other so as to allow convenient maintenance of both, without the
impediment of replicating changes between the two.

The discipline of TDD is embodied within three entirely arbitrary laws. The
proof that these laws are arbitrary is that the essence can be achieved by
very different means. In particular, Kent Beck’s test && commit || revert
(TCR) discipline. Although TCR is entirely different from TDD, it achieves
precisely the same essential goals.

The three laws of TDD are the basic foundation of the discipline. Following
them is very hard, especially at first. Following them also requires some
skill and knowledge that is hard to come by. If you try to follow these laws



without that skill and knowledge, you will almost certainly become
frustrated and abandon the discipline. We address that skill and knowledge
in subsequent chapters. For the moment, be warned. Following these laws
without proper preparation will be very difficult.

The First Law
Write no production code until you have first written a test that fails due to the lack of that
production code.

If you are a programmer of any years’ experience, this law may seem
foolish. You might wonder what test you are supposed to write if there’s no
code to test. This question comes from the common expectation that tests
are written after code. But if you think about it, you’ll realize that if you can
write the production code, you can also write the code that tests the
production code. It may seem out of order, but there’s no lack of
information preventing you from writing the test first.

The Second Law
Write no more of a test than is sufficient to fail or fail to compile. Resolve the failure by writing
some production code.

Again, if you are an experienced programmer, then you likely realize that
the very first line of the test will fail to compile because that first line will
be written to interact with code that does not yet exist. And that means, of
course, that you will not be able to write more than one line of a test before
having to switch over to writing production code.

The Third Law
Write no more production code than will resolve the currently failing test. Once the test passes,
write more test code.

And now the cycle is complete. It should be obvious to you that these three
laws lock you into a cycle that is just a few seconds long. It looks like this:

You write a line of test code, but it doesn’t compile (of course).

You write a line of production code that makes the test compile.

You write another line of test code that doesn’t compile.



You write another line or two of production code that makes the test
compile.

You write another line or two of test code that compiles but fails an
assertion.

You write another line or two of production code that passes the
assertion.

And this is going to be your life from now on.

Once again, the experienced programmer will likely consider this to be
absurd. The three laws lock you into a cycle that is just a few seconds long.
Each time around that cycle, you are switching between test code and
production code. You’ll never be able to just write an if statement or a
while loop. You’ll never be able to just write a function. You will be forever
trapped in this tiny little loop of switching contexts between test code and
production code.

You may think that this will be tedious, boring, and slow. You might think
that it will impede your progress and interrupt your chain of thought. You
might even think that it’s just plain silly. You may think that this approach
will lead you to produce spaghetti code or code with little or no design—a
haphazard conglomeration of tests and the code that makes those tests pass.

Hold all those thoughts and consider what follows.

Losing the Debug-foo
I want you to imagine a room full of people following these three laws—a
team of developers all working toward the deployment of a major system.
Pick any one of those programmers you like, at any time you like.
Everything that programmer is working on executed and passed all its tests
within the last minute or so. And this is always true. It doesn’t matter who
you pick. It doesn’t matter when you pick them. Everything worked a
minute or so ago.

What would your life be like if everything worked a minute or so ago? How
much debugging do you think you would do? The fact is that there’s not
likely much to debug if everything worked a minute or so ago.



Are you good at the debugger? Do you have the debug-foo in your fingers?
Do you have all the hot keys primed and ready to go? Is it second nature for
you to efficiently set breakpoints and watchpoints and to dive headlong into
a deep debugging session?

This is not a skill to be desired!
You don’t want to be good at the debugger. The only way you get good at
the debugger is by spending a lot of time debugging. And I don’t want you
spending a lot of time debugging. You shouldn’t want that either. I want you
spending as much time as possible writing code that works and as little time
as possible fixing code that doesn’t.

I want your use of the debugger to be so infrequent that you forget the hot
keys and lose the debug-foo in your fingers. I want you puzzling over the
obscure step-into and step-over icons. I want you to be so unpracticed at the
debugger that the debugger feels awkward and slow. And you should want
that too. The more comfortable you feel with a debugger, the more you
know you are doing something wrong.

Now, I can’t promise you that these three laws will eliminate the need for
the debugger. You will still have to debug from time to time. This is still
software, and it’s still hard. But the frequency and duration of your
debugging sessions will undergo a drastic decline. You will spend far more
time writing code that works and far less time fixing code that doesn’t.

Documentation
If you’ve ever integrated a third-party package, you know that included in
the bundle of software you receive is a PDF written by a tech writer. This
document purports to describe how to integrate the third-party package. At
the end of this document is almost always an ugly appendix that contains all
the code examples for integrating the package.

Of course, that appendix is the first place you look. You don’t want to read
what a tech writer wrote about the code; you want to read the code. And
that code will tell you much more than the words written by the tech writer.
If you are lucky, you might even be able to use copy/paste to move the code
into your application where you can fiddle it into working.



When you follow the three laws, you are writing the code examples for the
whole system. Those tests you are writing explain every little detail about
how the system works. If you want to know how to create a certain business
object, there are tests that show you how to create it every way that it can be
created. If you want to know how to call a certain API function, there are
tests that demonstrate that API function and all its potential error conditions
and exceptions. There are tests in the test suite that will tell you anything
you want to know about the details of the system.

Those tests are documents that describe the entire system at its lowest level.
These documents are written in a language you intimately understand. They
are utterly unambiguous. They are so formal that they execute. And they
cannot get out of sync with the system.

As documents go, they are almost perfect.

I don’t want to oversell this. The tests are not particularly good at
describing the motivation for a system. They are not high-level documents.
But at the lowest level, they are better than any other kind of document that
could be written. They are code. And code is something you know will tell
you the truth.

You might be concerned that the tests will be as hard to understand as the
system as a whole. But this is not the case. Each test is a small snippet of
code that is focused on one very narrow part of the system as a whole. The
tests do not form a system by themselves. The tests do not know about each
other, and so there is no rat’s nest of dependency in the tests. Each test
stands alone. Each test is understandable on its own. Each test tells you
exactly what you need to understand within a very narrow part of the
system.

Again, I don’t want to oversell this point. It is possible to write opaque and
complex tests that are hard to read and understand, but it is not necessary.
Indeed, it is one of the goals of this book to teach you how to write tests
that are clear and clean documents that describe the underlying system.

Holes in the Design
Have you ever written tests after the fact? Most of us have. Writing tests
after writing code is the most common way that tests are written. But it’s



not a lot of fun, is it?

It’s not fun because by the time we start writing after-the-fact tests, we
already know the system works. We’ve tested it manually. We are only
writing the tests out of some sense of obligation or guilt or, perhaps,
because our management has mandated some level of test coverage. So, we
begrudgingly bend into the grind of writing one test after another, knowing
that each test we write will pass. Boring, boring, boring.

Inevitably, we come to the test that’s hard to write. It is hard to write
because we did not design the code to be testable; we were focused instead
on making it work. Now, in order to test the code, we’re going to have to
change the design.

But that’s a pain. It’s going to take a lot of time. It might break something
else. And we already know the code works because we tested it manually.
Consequently, we walk away from that test, leaving a hole in the test suite.
Don’t tell me you’ve never done this. You know you have.

You also know that if you’ve left a hole in the test suite, everybody else on
the team has too, so you know that the test suite is full of holes.

The number of holes in the test suite can be determined by measuring the
volume and duration of the laughter of the programmers when the test suite
passes. If the programmers laugh a lot, then the test suite has a lot of holes
in it.

A test suite that inspires laughter when it passes is not a particularly useful
test suite. It may tell you when certain things break, but there is no decision
you can make when it passes. When it passes, all you know is that some
stuff works.

A good test suite has no holes. A good test suite allows you to make a
decision when it passes. That decision is to deploy.

If the test suite passes, you should feel confident in recommending that the
system be deployed. If your test suite doesn’t inspire that level of
confidence, of what use is it?

Fun



When you follow the three laws, something very different happens. First of
all, it’s fun. One more time, I don’t want to oversell this. TDD is not as
much fun as winning the jackpot in Vegas. It’s not as much fun as going to a
party or even playing Chutes and Ladders with your four-year-old. Indeed,
fun might not be the perfect word to use.

Do you remember when you got your very first program to work?
Remember that feeling? Perhaps it was in a local department store that had
a TRS-80 or a Commodore 64. Perhaps you wrote a silly little infinite loop
that printed your name on the screen forever and ever. Perhaps you walked
away from that screen with a little smile on your face, knowing that you
were the master of the universe and that all computers would bow down to
you forever.

A tiny echo of that feeling is what you get every time you go around the
TDD loop. Every test that fails just the way you expected it to fail makes
you nod and smile just a little bit. Every time you write the code that makes
that failing test pass, you remember that once you were master of the
universe and that you still have the power.

Every time around the TDD loop, there’s a tiny little shot of endorphins
released into your reptile brain, making you feel just a little more competent
and confident and ready to meet the next challenge. And though that feeling
is small, it is nonetheless kinda fun.

Design
But never mind the fun. Something much more important happens when
you write the tests first. It turns out that you cannot write code that’s hard to
test if you write the tests first. The act of writing the test first forces you to
design the code to be easy to test. There’s no escape from this. If you follow
the three laws, your code will be easy to test.

What makes code hard to test? Coupling and dependencies. Code that is
easy to test does not have those couplings and dependencies. Code that is
easy to test is decoupled!

Following the three laws forces you to write decoupled code. Again, there
is no escape from this. If you write the tests first, the code that passes those
tests will be decoupled in ways that you’d never have imagined.



And that’s a very good thing.

The Pretty Little Bow on Top
It turns out that applying the three laws of TDD has the following set of
benefits:

You will spend more time writing code that works and less time
debugging code that doesn’t.

You will produce a set of nearly perfect low-level documentation.

It is fun—or at least motivating.

You will produce a test suite that will give you the confidence to
deploy.

You will create less-coupled designs.

These reasons might convince you that TDD is a good thing. They might be
enough to get you to ignore your initial reaction, even repulsion. Maybe.

But there is a far more overriding reason why the discipline of TDD is
important.

Fear
Programming is hard. It may be the most difficult thing that humans have
attempted to master. Our civilization now depends upon hundreds of
thousands of interconnected software applications, each of which involves
hundreds of thousands if not tens of millions of lines of code. There is no
other apparatus constructed by humans that has so many moving parts.

Each of those applications is supported by teams of developers who are
scared to death of change. This is ironic because the whole reason software
exists is to allow us to easily change the behavior of our machines.

But software developers know that every change introduces the risk of
breakage and that breakage can be devilishly hard to detect and repair.

Imagine that you are looking at your screen and you see some nasty tangled
code there. You probably don’t have to work very hard to conjure that
image because, for most of us, this is an everyday experience.



Now let’s say that as you glance at that code, for one very brief moment, the
thought occurs to you that you ought to clean it up a bit. But your very next
thought slams down like Thor’s hammer: “I’M NOT TOUCHING IT!”
Because you know that if you touch it, you will break it; and if you break it,
it becomes yours forever.

This is a fear reaction. You fear the code you maintain. You fear the
consequences of breaking it.

The result of this fear is that the code must rot. No one will clean it. No one
will improve it. When forced to make changes, those changes will be made
in the manner that is safest for the programmer, not best for the system. The
design will degrade, and the code will rot, and the productivity of the team
will decline, and that decline will continue until productivity is near zero.

Ask yourself if you have ever been significantly slowed down by the bad
code in your system. Of course you have. And now you know why that bad
code exists. It exists because nobody has the courage to do the one thing
that could improve it. No one dares risk cleaning it.

Courage
But what if you had a suite of tests that you trusted so much that you were
confident in recommending deployment every time that suite of tests
passed? And what if that suite of tests executed in seconds? How much
would you then fear to engage in a gentle cleaning of the system?

Imagine that code on your screen again. Imagine the stray thought that you
might clean it up a little. What would stop you? You have the tests. Those
tests will tell you the instant you break something.

With that suite of tests, you can safely clean the code. With that suite of
tests, you can safely clean the code. With that suite of tests, you can safely
clean the code.
No, that wasn’t a typo. I wanted to drive the point home very, very hard.
With that suite of tests, you can safely clean the code!

And if you can safely clean the code, you will clean the code. And so will
everyone else on the team. Because nobody likes a mess.



The Boy Scout Rule
If you have that suite of tests that you trust with your professional life, then
you can safely follow this simple guideline:

Check the code in cleaner than you checked it out.

Imagine if everyone did that. Before checking the code in, they made one
small act of kindness to the code. They cleaned up one little bit.

Imagine if every check-in made the code cleaner. Imagine that nobody ever
checked the code in worse than it was but always better than it was.

What would it be like to maintain such a system? What would happen to
estimates and schedules if the system got cleaner and cleaner with time?
How long would your bug lists be? Would you need an automated database
to maintain those bug lists?

That’s the Reason
Keeping the code clean. Continuously cleaning the code. That’s why we
practice TDD. We practice TDD so that we can be proud of the work we do.
So that we can look at the code and know it is clean. So that we know that
every time we touch that code, it gets better than it was before. And so that
we go home at night and look in the mirror and smile, knowing we did a
good job today.

The Fourth Law
I will have much more to say about refactoring in later chapters. For now, I
want to assert that refactoring is the fourth law of TDD.

From the first three laws, it is easy to see that the TDD cycle involves
writing a very small amount of test code that fails, and then writing a very
small amount of production code that passes the failing test. We could
imagine a traffic light that alternates between red and green every few
seconds.

But if we were to allow that cycle to continue in that form, then the test
code and the production code would rapidly degrade. Why? Because



humans are not good at doing two things at once. If we focus on writing a
failing test, it’s not likely to be a well-written test. If we focus on writing
production code that passes the test, it is not likely to be good production
code. If we focus on the behavior we want, we will not be focusing on the
structure we want.

Don’t fool yourself. You cannot do both at once. It is hard enough to get
code to behave the way you want it to. It is too hard to write it to behave
and have the right structure. Thus, we follow Kent Beck’s advice:

First make it work. Then make it right.

Therefore, we add a new law to the three laws of TDD: the law of
refactoring. First you write a small amount of failing test code. Then you
write a small amount of passing production code. Then you clean up the
mess you just made.

The traffic light gets a new color: red → green → refactor (Figure 2.1).

Figure 2.1 Red → green → refactor

You’ve likely heard of refactoring, and as I said earlier, we’ll be spending a
great deal of time on it in coming chapters. For now, let me dispel a few
myths and misconceptions:

Refactoring is a constant activity. Every time around the TDD cycle,
you clean things up.



Refactoring does not change behavior. You only refactor when the
tests are passing, and the tests continue to pass while you refactor.

Refactoring never appears on a schedule or a plan. You do not reserve
time for refactoring. You do not ask permission to refactor. You
simply refactor all the time.

Think of refactoring as the equivalent of washing your hands after using the
restroom. It’s just something you always do as a matter of common
decency.

The Basics
It is very hard to create effective examples of TDD in text. The rhythm of
TDD just doesn’t come through very well. In the pages that follow, I try to
convey that rhythm with appropriate timestamps and callouts. But to
actually understand the true frequency of this rhythm, you just have to see
it.

Therefore, each of the examples to follow has a corresponding online video
that will help you see the rhythm first hand. Please watch each video in its
entirety, and then make sure you go back to the text and read the
explanation with the timestamps. If you don’t have access to the videos,
then pay special attention to the timestamps in the examples so you can
infer the rhythm.

Simple Examples
As you review these examples, you are likely to discount them because they
are all small and simple problems. You might conclude that TDD may be
effective for such “toy examples” but cannot possibly work for complex
systems. This would be a grave mistake.

The primary goal of any good software designer is to break down large and
complex systems into a set of small, simple problems. The job of a
programmer is to break those systems down into individual lines of code.



Thus, the examples that follow are absolutely representative of TDD
regardless of the size of the project.
This is something I can personally affirm. I have worked on large systems
that were built with TDD, and I can tell you from experience that the
rhythm and techniques of TDD are independent of scope. Size does not
matter.

Or, rather, size does not matter to the procedure and the rhythm. However,
size has a profound effect on the speed and coupling of the tests. But those
are topics for the advanced chapters.

Stack
Watch related video: Stack

Access video by registering at informit.com/register

We start with a very simple problem: create a stack of integers. As we walk
through this problem, note that the tests will answer any questions you have
about the behavior of the stack. This is an example of the documentation
value of tests. Note also that we appear to cheat by making the tests pass by
plugging in absolute values. This is a common strategy in TDD and has a
very important function. I’ll describe that as we proceed.

We begin:

Click here to view code image
// T: 00:00 StackTest.java 

package stack; 

import org.junit.Test; 

public class StackTest { 

 @Test 

 public void nothing() throws Exception { 

 } 

}

http://informit.com/register


It’s good practice to always start with a test that does nothing, and make
sure that test passes. Doing so helps ensure that the execution environment
is all working.

Next, we face the problem of what to test. There’s no code yet, so what is
there to test?

The answer to that question is simple. Assume we already know the code
we want to write: public class stack. But we can’t write it because we
don’t have a test that fails due to its absence. So, following the first law, we
write the test that forces us to write the code that we already know we want
to write.

Rule 1: Write the test that forces you to write the code you already know you want to write.

This is the first of many rules to come. These “rules” are more like
heuristics. They are bits of advice that I’ll be throwing out, from time to
time, as we progress through the examples.

Rule 1 isn’t rocket science. If you can write a line of code, then you can
write a test that tests that line of code, and you can write it first. Therefore,

Click here to view code image
// T:00:44 StackTest.java 

public class StackTest { 

 @Test 

 public void canCreateStack() throws Exception { 

   MyStack stack = new MyStack(); 

 } 

}

I use boldface to show code that has been changed or added and highlight
to depict code that does not compile. I chose MyStack for our example
because the name Stack is known to the Java environment already.

Notice that in the code snippet, we changed the name of the test to
communicate our intent. We can create a stack.

Now, because MyStack doesn’t compile, we’d better follow the second law
and create it, but by the third law, we’d better not write more than we need:
// T: 00:54 Stack.java 

package stack; 



public class MyStack { 

}

Ten seconds have passed, and the test compiles and passes. When I initially
wrote this example, most of that 10 seconds was taken up by rearranging
my screen so that I can see both files at the same time. My screen now
looks like Figure 2.2. The tests are on the left, and the production code is on
the right. This is my typical arrangement. It’s nice to have screen real estate.

Figure 2.2 Rearranged screen

MyStack isn’t a great name, but it avoided the name collision. Now that
MyStack is declared in the stack package, let’s change it back to Stack. That
took 15 seconds. The tests still pass.

Click here to view code image



// T:01:09 StackTest.java 

public class StackTest { 

 @Test 

 public void canCreateStack() throws Exception { 

   Stack stack = new Stack(); 

 } 

} 

// T: 01:09 Stack.java 

package stack; 

public class Stack { 

}

Here we see another rule: red → green → refactor. Never miss an
opportunity to clean things up.

Rule 2: Make it fail. Make it pass. Clean it up.

Writing code that works is hard enough. Writing code that works and is
clean is even harder. Fortunately, we can break the effort up into two steps.
We can write bad code that works. Then, if we have tests, we can easily
clean up the bad code while keeping it working.

Thus, every circuit around the TDD loop, we take the opportunity to clean
up any little messes we might have made.

You may have noticed that our test does not actually assert any behavior. It
compiles and passes but asserts nothing at all about the newly created stack.
We can fix that in 15 seconds:

Click here to view code image
// T: 01:24 StackTest.java 

public class StackTest { 

 @Test 

 public void canCreateStack() throws Exception { 

   Stack stack = new Stack(); 

   assertTrue(stack.isEmpty()); 

 } 

}

The second law kicks in here, so we’d better get this to compile:

Click here to view code image



// T: 01:49 

import static junit.framework.TestCase.assertTrue; 

public class StackTest { 

 @Test 

 public void canCreateStack() throws Exception { 

   Stack stack = new Stack(); 

   assertTrue(stack.isEmpty()); 

 } 

} 

// T: 01:49 Stack.java 

public class Stack { 

 public boolean isEmpty() { 

   return false; 

 } 

}

Twenty-five seconds later, it compiles but fails. The failure is intentional:
isEmpty is specifically coded to return false because the first law says that
the test must fail—but why does the first law demand this? Because now we
can see that our test fails when it ought to fail. We have tested our test. Or
rather, we have tested one half of it. We can test the other half by changing
isEmpty to return true:
// T: 01:58 Stack.java 

public class Stack { 

 public boolean isEmpty() { 

   return true; 

 } 

}

Nine seconds later, the test passes. It has taken 9 seconds to ensure that the
test both passes and fails.

When programmers first see that false and then that true, they often laugh
because it looks so foolish. It looks like cheating. But it’s not cheating, and
it’s not at all foolish. It has taken mere seconds to ensure that the test both
passes and fails as it should. Why in the world would we not do this?

What’s the next test? Well, we know we need to write the push function. So,
by Rule 1, we write the test that forces us to write the push function:



Click here to view code image
// T 02:24 StackTest.java 

@Test 

public void canPush() throws Exception { 

 Stack stack = new Stack(); 

 stack.push(0); 

}

This doesn’t compile. By the second law, then, we must write the
production code that will make it compile:

Click here to view code image
// T: 02:31 Stack.java 

public void push(int element) { 

}

This compiles, of course, but now we have another test without an
assertion. The obvious thing to assert is that, after one push, the stack is not
empty:

Click here to view code image
// T: 02:54 StackTest.java 

@Test 

public void canPush() throws Exception { 

 Stack stack = new Stack(); 

 stack.push(0); 

 assertFalse(stack.isEmpty()); 

}

This fails, of course, because isEmpty returns true, so we need to do
something a bit more intelligent—like create a Boolean flag to track
emptiness:

Click here to view code image
// T: 03:46 Stack.java 

public class Stack { 

 private boolean empty = true; 

 public boolean isEmpty() { 

   return empty; 



 } 

 public void push(int element) { 

   empty=false; 

 } 

}

This passes. It has been 2 minutes since the last test passed. Now, by Rule
2, we need to clean this up. The duplication of the stack creation bothers
me, so let’s extract the stack into a field of the class and initialize it:

Click here to view code image
// T: 04:24 StackTest.java 

public class StackTest { 

 private Stack stack = new Stack(); 

 @Test 

 public void canCreateStack() throws Exception { 

   assertTrue(stack.isEmpty()); 

 } 

 @Test 

 public void canPush() throws Exception { 

   stack.push(0); 

   assertFalse(stack.isEmpty()); 

 } 

}

This requires 30 seconds, and the tests still pass.

The name canPush is a pretty bad name for this test.

Click here to view code image
 // T: 04:50 StackTest.java 

 @Test 

 public void afterOnePush_isNotEmpty() throws Exception { 

   stack.push(0); 

   assertFalse(stack.isEmpty()); 

 }

That’s better. And, of course, it still passes.



Okay, back to the first law. If we push once and pop once, the stack should
be empty again:

Click here to view code image
// T: 05:17 StackTest.java 

@Test 

public void afterOnePushAndOnePop_isEmpty() throws Exception { 

 stack.push(0); 

 stack.pop() 

}

The second law kicks in because pop doesn’t compile, so
// T: 05:31 Stack.java 

public int pop() { 

 return -1; 

}

And then the third law allows us to finish the test:

Click here to view code image
// T: 05:51 

@Test 

public void afterOnePushAndOnePop_isEmpty() throws Exception { 

 stack.push(0); 

 stack.pop(); 

 assertTrue(stack.isEmpty()); 

}

This fails because nothing sets the empty flag back to true, so
// T: 06:06 Stack.java 

public int pop() { 

 empty=true; 

 return -1; 

}

And, of course, this passes. It has been 76 seconds since the last test passed.

Nothing to clean up, so back to the first law. The size of the stack should be
2 after two pushes.

Click here to view code image



// T: 06:48 StackTest.java 

@Test 

public void afterTwoPushes_sizeIsTwo() throws Exception { 

 stack.push(0); 

 stack.push(0); 

 assertEquals(2, stack.getSize()); 

}

The second law kicks in because of the compile errors, but they are easy to
fix. We add the necessary import to the test and the following function to
the production code:
// T: 07:23 Stack.java 

public int getSize() { 

 return 0; 

}

And now everything compiles, but the tests fail.

Of course, getting the test to pass is trivial:
// T: 07:32 Stack.java 

public int getSize() { 

 return 2; 

}

This looks dumb, but we have now seen the test fail and pass properly, and
it took only 11 seconds. So, again, why wouldn’t we do this?

But this solution is clearly naive, so by Rule 1, we modify a previous test in
a manner that will force us to write a better solution. And, of course, we
screw it up (you can blame me):

Click here to view code image
// T: 08:06 StackTest.java 

@Test 

public void afterOnePushAndOnePop_isEmpty() throws Exception { 

 stack.push(0); 

 stack.pop(); 

 assertTrue(stack.isEmpty()); 

 assertEquals(1, stack.getSize()); 

}



Okay, that was really stupid. But programmers make dumb mistakes from
time to time, and I am no exception. I didn’t spot this mistake right away
when I first wrote the example because the test failed just the way I
expected it to.

So, now, secure in the assumption that our tests are good, let’s make the
changes that we believe will make those tests pass:

Click here to view code image
// T: 08:56 

public class Stack { 

 private boolean empty = true; 

 private int size = 0; 

 public boolean isEmpty() { 

   return size == 0; 

 } 

 public void push(int element) { 

   size++; 

 } 

 public int pop() { 

   --size; 

   return -1; 

 } 

 public int getSize() { 

   return size; 

 } 

}

I was surprised to see this fail. But after composing myself, I quickly found
my error and repaired the test. Let’s do this:

Click here to view code image
// T: 09:28 StackTest.java 

@Test 

public void afterOnePushAndOnePop_isEmpty() throws Exception { 

 stack.push(0); 

 stack.pop(); 

 assertTrue(stack.isEmpty()); 



 assertEquals(0, stack.getSize()); 

}

And the tests all pass. It has been 3 minutes and 22 seconds since the tests
last passed.

For the sake of completeness, let’s add the size check to another test:

Click here to view code image
// T: 09:51 StackTest.java 

@Test 

public void afterOnePush_isNotEmpty() throws Exception { 

 stack.push(0); 

 assertFalse(stack.isEmpty()); 

 assertEquals(1, stack.getSize());  

}

And, of course, that passes.

Back to the first law. What should happen if we pop an empty stack? We
should expect an underflow exception:

Click here to view code image
// T: 10:27 StackTest.java 

@Test(expected = Stack.Underflow.class) 

public void poppingEmptyStack_throwsUnderflow() { 

}

The second law forces us to add that exception:

Click here to view code image
// T: 10:36 Stack.java 

public class Underflow extends RuntimeException { 

}

And then we can complete the test:

Click here to view code image
// T: 10:50 StackTest.java 

@Test(expected = Stack.Underflow.class) 

public void poppingEmptyStack_throwsUnderflow() { 

 stack.pop(); 

}



This fails, of course, but it is easy to make it pass:
// T: 11:18 Stack.java 

public int pop() { 

 if (size == 0) 

   throw new Underflow(); 

 --size; 

 return -1; 

}

That passes. It has been 1 minute and 27 seconds since the tests last passed.

Back to the first law. The stack should remember what was pushed. Let’s
try the simplest case:

Click here to view code image
// T: 11:49 StackTest.java 

@Test 

public void afterPushingX_willPopX() throws Exception { 

 stack.push(99); 

 assertEquals(99, stack.pop()); 

}

This fails because pop is currently returning -1. We make it pass by
returning 99:
// T: 11:57 Stack.java 

public int pop() { 

 if (size == 0) 

   throw new Underflow(); 

 --size; 

 return 99; 

}

This is obviously insufficient, so by Rule 1, we add enough to the test to
force us to be a bit smarter:

Click here to view code image
// T: 12:18 StackTest.java 

@Test 

public void afterPushingX_willPopX() throws Exception { 

 stack.push(99); 



 assertEquals(99, stack.pop()); 

 stack.push(88); 

 assertEquals(88, stack.pop()); 

}

This fails because we’re returning 99. We make it pass by adding a field to
record the last push:

Click here to view code image
// T: 12:50 Stack.java 

public class Stack { 

 private int size = 0; 

 private int element; 

 public void push(int element) { 

   size++; 

   this.element = element; 

 } 

 public int pop() { 

   if (size == 0) 

     throw new Underflow(); 

   --size; 

   return element; 

 } 

}

This passes. It has been 92 seconds since the tests last passed.

At this point, you are probably pretty frustrated with me. You might even be
shouting at these pages, demanding that I stop messing around and just
write the damned stack. But actually, I’ve been following Rule 3.

Rule 3: Don’t go for the gold.

When you first start TDD, the temptation is overwhelming to tackle the
hard or interesting things first. Someone writing a stack would be tempted
to test first-in-last-out (FILO) behavior first. This is called “going for the
gold.” By now, you have noticed that I have purposely avoided testing
anything stack-like. I’ve been focusing on all the ancillary stuff around the
outside of the stack, things like emptiness and size.



Why haven’t I been going for the gold? Why does Rule 3 exist? Because
when you go for the gold too early, you tend to miss all the details around
the outside. Also, as you will soon see, you tend to miss the simplifying
opportunities that those ancillary details provide.

Anyway, the first law has just kicked in. We need to write a failing test. And
the most obvious test to write is FILO behavior:

Click here to view code image
// T: 13:36 StackTest.java 

@Test 

public void afterPushingXandY_willPopYthenX() { 

 stack.push(99); 

 stack.push(88); 

 assertEquals(88, stack.pop()); 

 assertEquals(99, stack.pop());   

}

This fails. Getting it to pass will require that we remember more than one
value, so we should probably use an array. Let’s rename the field to
elements and turn it into an array:

Click here to view code image
// T: 13:51 Stack.java 

public class Stack { 

 private int size = 0; 

 private int[] elements = new int[2]; 

 public void push(int element) { 

   size++; 

   this.elements = element; 

 } 

 public int pop() { 

   if (size == 0) 

     throw new Underflow(); 

   --size; 

   return elements; 

 } 

}



Ah, but there are compile errors. Let’s tackle them one by one. The
elements variable in push needs brackets:

Click here to view code image
 // T: 14:01 Stack.java   

 public void push(int element) { 

   size++; 

   this.elements[] = element; 

 }

We need something to put into those braces. Hmmm. There’s that size++
from the previous snippets:

Click here to view code image
 // T: 14:07 Stack.java   

 public void push(int element) { 

   this.elements[size++] = element; 

 }

There’s the elements variable in pop too. It needs braces:
 // T: 14:13   

 public int pop() { 

   if (size == 0) 

     throw new Underflow(); 

   --size; 

   return elements[]; 

 }

Oh look! There’s that nice --size we could put in there:
 // T: 14:24   

 public int pop() { 

   if (size == 0) 

     throw new Underflow(); 

   return elements[--size]; 

 }

And now the tests pass again. It has been 94 seconds since the tests last
passed.

And we’re done. Oh, there’s more we could do. The stack holds only two
elements and does not deal with overflows, but there’s nothing left that I



want to demonstrate in this example. So, consider those improvements an
exercise for you, my reader.

It has taken 14 minutes and 24 seconds to write an integer stack from
scratch. The rhythm you saw here was real and is typical. This is how TDD
feels, regardless of the scope of the project.

Exercise
Implement a first-in-first-out queue of integers using the technique shown
previously. Use a fixed-sized array to hold the integers. You will likely need
two pointers to keep track of where the elements are to be added and
removed. When you are done, you may find that you have implemented a
circular buffer.

Prime Factors
Watch related video: Prime Factors
Access video by registering at informit.com/register

The next example has a story and a lesson. The story begins in 2002 or
thereabouts. I had been using TDD for a couple of years by that time and
was learning Ruby. My son, Justin, came home from school and asked me
for help with a homework problem. The homework was to find the prime
factors of a set of integers.

I told Justin to try to work the problem by himself and that I would write a
little program for him that would check his work. He retired to his room,
and I set my laptop up on the kitchen table and started to ponder how to
code the algorithm to find prime factors.

I settled on the obvious approach of using the sieve of Eratosthenes to
generate a list of prime numbers and then dividing those primes into the
candidate number. I was about to code it when a thought occurred to me:
What if I just start writing tests and see what happens?
I began writing tests and making them pass, following the TDD cycle. And
this is what happened.

http://informit.com/register


First watch the video if you can. It will show you a lot of the nuances that I
can’t show in text. In the text that follows, I avoid the tedium of all the
timestamps, compile-time errors, and so on. I just show you the incremental
progress of the tests and the code.

We begin with the most obvious and degenerate case. Indeed, that follows a
rule:

Rule 4: Write the simplest, most specific, most degenerate2 test that will fail.

2. The word degenerate is used here to mean the most absurdly simple starting point.

The most degenerate case is the prime factors of 1. The most degenerate
failing solution is to simply return a null.

Click here to view code image
public class PrimeFactorsTest { 

 @Test 

 public void factors() throws Exception { 

   assertThat(factorsOf(1), is(empty())); 

 } 

 private List<Integer> factorsOf(int n) { 

   return null; 

 } 

}

Note that I am including the function being tested within the test class. This
is not typical but is convenient for this example. It allows me to avoid
bouncing back and forth between two source files.

Now this test fails, but it is easy to make it pass. We simply return an empty
list:

Click here to view code image
private List<Integer> factorsOf(int n) { 

 return new ArrayList<>(); 

}

Of course, this passes. The next most degenerate test is 2.

Click here to view code image
assertThat(factorsOf(2), contains(2));



This fails; but again, it’s easy to make it pass. That’s one of the reasons we
choose degenerate tests: they are almost always easy to make pass.

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n>1) 

   factors.add(2); 

 return factors; 

}

If you watched the video, you saw that this was done in two steps. The first
step was to extract the new ArrayList<>() as a variable named factors. The
second step was to add the if statement.

I emphasize these two steps because the first follows Rule 5.
Rule 5: Generalize where possible.

The original constant, new ArrayList<>(), is very specific. It can be
generalized by putting it into a variable that can be manipulated. It’s a small
generalization, but small generalizations often are all that are necessary.

And so, the tests pass again. The next most degenerate test elicits a
fascinating result:

Click here to view code image
assertThat(factorsOf(3), contains(3));

This fails. Following Rule 5, we need to generalize. There is a very simple
generalization that makes this test pass. It might surprise you. You’ll have
to look closely; otherwise you’ll miss it.

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n>1) 

   factors.add(n); 

 return factors; 

}



I sat at my kitchen table and marveled that a simple one-character change
that replaced a constant with a variable, a simple generalization, made the
new test pass and kept all previous tests passing.

I’d say we were on a roll, but the next test is going to be disappointing. The
test itself is obvious:

Click here to view code image
assertThat(factorsOf(4), contains(2, 2));

But how do we solve that by generalizing? I can’t think of a way. The only
solution I can think of is to test whether n is divisible by 2, and that just
isn’t very general. Nevertheless,

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n>1) { 

   if (n%2 == 0) { 

     factors.add(2); 

     n /= 2; 

   } 

   factors.add(n); 

 } 

 return factors; 

}

Not only is this not very general; it also fails a previous test. It fails the test
for the prime factors of 2. The reason should be clear. When we reduce n by
a factor of 2, it becomes 1, which then gets put into the list.

We can fix that with some even less general code:

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n > 1) { 

   if (n % 2 == 0) { 

     factors.add(2); 

     n /= 2; 

   } 

   if (n > 1) 



     factors.add(n); 

 } 

 return factors; 

}

At this point, you might fairly accuse me of just tossing in various if
statements to make the tests pass. That’s not far from the truth. You might
also accuse me of violating Rule 5, because none of this recent code is
particularly general. On the other hand, I don’t see any options.

But there’s a hint of a generalization to come. Notice that the two if
statements have identical predicates. It’s almost as if they were part of an
unwound loop. Indeed, there’s no reason that second if statement needs to
be inside the first.

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n > 1) { 

   if (n % 2 == 0) { 

     factors.add(2); 

     n /= 2; 

   } 

 } 

 if (n > 1) 

   factors.add(n); 

 return factors; 

}

This passes and looks very much like an unwound loop.

The next three tests pass without any changes:

Click here to view code image
assertThat(factorsOf(5), contains(5)); 

assertThat(factorsOf(6), contains(2,3)); 

assertThat(factorsOf(7), contains(7));

That’s a pretty good indication that we are on the right track, and it makes
me feel better about those ugly if statements.

The next most degenerate test is 8, and it must fail because our solution
code simply cannot put three things into the list:



Click here to view code image
assertThat(factorsOf(8), contains(2, 2, 2));

The way to make this pass is another surprise—and a powerful application
of Rule 5. We change an if to a while:

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n > 1) { 

   while (n % 2 == 0) { 

     factors.add(2); 

     n /= 2; 

   } 

 } 

 if (n > 1) 

   factors.add(n); 

 return factors; 

}

I sat at my kitchen table and once again I marveled. It seemed to me that
something profound had happened here. At that time, I didn’t know what it
was. I do now. It was Rule 5. It turns out the while is a general form of if,
and if is the degenerate form of while.

The next test, 9, must also fail because nothing in our solution factors out 3:

Click here to view code image
assertThat(factorsOf(9), contains(3, 3));

To solve it, we need to factor out 3s. We could do that as follows:

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n > 1) { 

   while (n % 2 == 0) { 

     factors.add(2); 

     n /= 2; 

   } 

   while (n % 3 == 0) { 

     factors.add(3); 



     n /= 3; 

   } 

 } 

 if (n > 1) 

   factors.add(n); 

 return factors; 

}

But this is horrific. Not only is it a gross violation of Rule 5, but it’s also a
huge duplication of code. I’m not sure which rule violation is worse!

And this is where the generalization mantra kicks in:
As the tests get more specific, the code gets more generic.

Every new test we write makes the test suite more specific. Every time we
invoke Rule 5, the solution code gets more generic. We’ll come back to this
mantra later. It turns out to be critically important for test design and for the
prevention of fragile tests.

We can eliminate the violation of duplication, and Rule 5, by putting the
original factoring code into a loop:

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 int divisor = 2; 

 while (n > 1) { 

   while (n % divisor == 0) { 

     factors.add(divisor); 

     n /= divisor; 

   } 

   divisor++; 

 } 

 if (n > 1) 

   factors.add(n); 

 return factors; 

}

Once again, if you watch the video, you will see that this was done in
several steps. The first step was to extract the three 2s into the divisor
variable. The next step was to introduce the divisor++ statement. Then the



initialization of the divisor variable was moved above the if statement.
Finally, the if was changed into a while.

There it is again: that transition from if->while. Did you notice that the
predicate of the original if statement turned out to be the predicate for the
outer while loop? I found this to be startling. There’s something genetic
about it. It’s as though the creature that I’ve been trying to create started
from a simple seed and gradually evolved through a sequence of tiny
mutations.

Notice that the if statement at the bottom has become superfluous. The
only way the loop can terminate is if n is 1. That if statement really was the
terminating condition of an unwound loop!

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 int divisor = 2; 

 while (n > 1) { 

   while (n % divisor == 0) { 

     factors.add(divisor); 

     n /= divisor; 

   } 

   divisor++; 

 } 

 return factors; 

}

Just a little bit of refactoring, and we get this:

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 for (int divisor = 2; n > 1; divisor++) 

   for (; n % divisor == 0; n /= divisor) 

     factors.add(divisor); 

 return factors; 

}



And we’re done. If you watch the video, you’ll see that I added one more
test, which proves that this algorithm is sufficient.

Sitting at my kitchen table, I saw those three salient lines and I had two
questions. Where did this algorithm come from, and how does it work?

Clearly, it came from my brain. It was my fingers on the keyboard after all.
But this was certainly not the algorithm I had planned on creating at the
start. Where was the sieve of Eratosthenes? Where was the list of prime
numbers? None of it was there!

Worse, why does this algorithm work? I was astounded that I could create a
working algorithm and yet not understand how it functioned. I had to study
it for a while to figure it out. My dilemma was the divisor++ incrementer
of the outer loop, which guarantees that every integer will be checked as a
factor, including composite factors! Given the integer 12, that incrementer
will check whether 4 is a factor. Why doesn’t it put 4 in the list?

The answer is in the order of the execution, of course. By the time the
incrementer gets to 4, all the 2s have been removed from n. And if you
think about that for a bit, you’ll realize that it is the sieve of Eratosthenes—
but in a very different form than usual.

The bottom line here is that I derived this algorithm one test case at a time. I
did not think it through up front. I didn’t even know what this algorithm
was going to look like when I started. The algorithm seemed to almost put
itself together before my eyes. Again, it was like an embryo evolving one
small step at a time into an ever-more-complex organism.

Even now, if you look at those three lines, you can see the humble
beginnings. You can see the remnants of that initial if statement and
fragments of all the other changes. The breadcrumbs are all there.

And we are left with a disturbing possibility. Perhaps TDD is a general
technique for incrementally deriving algorithms. Perhaps, given a properly
ordered suite of tests, we can use TDD to derive any computer program in a
step-by-step, determinative, manner.

In 1936, Alan Turing and Alonzo Church separately proved that there was
no general procedure for determining if there was a program for any given
problem.3 In so doing, they separately, and respectively, invented
procedural and functional programming. Now TDD looks like it might be a



general procedure for deriving the algorithms that solve the problems that
can be solved.
3. This was Hilbert’s “decidability problem.” He asked whether there was a generalized way to

prove that any given Diophantine equation was solvable. A Diophantine equation is a
mathematical function with integer inputs and outputs. A computer program is also a
mathematical function with integer inputs and outputs. Therefore, Hilbert’s question can be
described as pertaining to computer programs.

The Bowling Game
In 1999, Bob Koss and I were together at a C++ conference. We had some
time to kill, so we decided to practice this new idea of TDD. We chose the
simple problem of computing the score of a game of bowling.

A game of bowling consists of ten frames. In each frame, the player is
given two attempts to roll a ball toward ten wooden pins in order to knock
them down. The number of pins knocked down by a ball is the score for
that ball. If all ten pins are knocked down by the first ball, it is called a
strike. If knocking all ten pins down requires both balls, then it is called a
spare. The dreaded gutter ball (Figure 2.3) yields no points at all.



Figure 2.3 The infamous gutter ball

The scoring rules can be stated succinctly as follows:

If the frame is a strike, the score is 10 plus the next two balls.

If the frame is a spare, the score is 10 plus the next ball.

Otherwise, the score is the two balls in the frame.

The score sheet in Figure 2.4 is a typical (if rather erratic) game.



Figure 2.4 Score sheet of a typical game

On the player’s first attempt, he knocked down one pin. On his second
attempt, he knocked down four more, for a total of 5 points.

In the second frame, he rolled a 4 followed by a 5, giving him a 9 for the
frame and a total of 14.

In the third frame, he rolled a 6 followed by a 4 (a spare). The total for that
frame cannot be computed until the player begins the next frame.

In the fourth frame, the player rolls a 5. Now the score can be computed for
the previous frame, which is 15, for a total of 29 in the third frame.

The spare in the fourth frame must wait until the fifth frame, for which the
player rolls a strike. The fourth frame is therefore 20 points for a total of 49.

The strike in the fifth frame cannot be scored until the player rolls the next
two balls for the sixth frame. Unfortunately, he rolls a 0 and a 1, giving him
only 11 points for the fifth frame and a total of 60.

And on it goes until the tenth and final frame. Here the player rolls a spare
and is thus allowed to roll one extra ball to finish out that spare.

Now, you are a programmer, a good object-oriented programmer. What are
the classes and relationships you would use to represent the problem of
computing the score of a game of bowling? Can you draw it in UML?4

4. The Unified Modeling Language. If you don’t know UML, don’t worry—it’s just arrows and
rectangles. You’ll work it out from the description in the text.

Perhaps you might come up with something like what is shown in Figure
2.5.



Figure 2.5 A UML diagram of the scoring of bowling

The Game has ten Frames. Each Frame has one or two Rolls, except the
TenthFrame subclass, which inherits the 1..2 and adds one more roll to
make it 2..3. Each Frame object points to the next Frame so that the score
function can look ahead in case it has to score a spare or a strike.

The Game has two functions. The roll function is called every time the
player rolls a ball, and it is passed the number of pins the player knocked
down. The score function is called once all the balls are rolled, and it
returns the score for the entire game.

That’s a nice, simple object-oriented model. It ought to be pretty easy to
code. Indeed, given a team of four people, we could divide the work into
the four classes and then meet a day or so later to integrate them and get
them working.

Or, we could use TDD. If you can watch the video, you should do that now.
In any case, please read through the text that follows.

Watch related video: Bowling Game

Access video by registering at informit.com/register

http://informit.com/register


We begin, as always, with a test that does nothing, just to prove we can
compile and execute. Once this test runs, we delete it:

Click here to view code image
public class BowlingTest { 

 @Test 

 public void nothing() throws Exception { 

 } 

}

Next, we assert that we can create an instance of the Game class:

Click here to view code image
@Test 

public void canCreateGame() throws Exception { 

 Game g = new Game(); 

}

Then we make that compile and pass by directing our IDE to create the
missing class:
public class Game { 

}

Next, we see if we can roll one ball:

Click here to view code image
@Test 

public void canRoll() throws Exception { 

 Game g = new Game(); 

 g.roll(0); 

}

And then we make that compile and pass by directing the IDE to create the
roll function, and we give the argument a reasonable name:

Click here to view code image
public class Game { 

 public void roll(int pins) { 

 } 



}

You’re probably already bored. This should be nothing new to you by now.
But bear with me—it’s about to get interesting. There’s a bit of duplication
in the tests already. We should get rid of it, so we factor out the creating of
the game into the setup function:

Click here to view code image
public class BowlingTest { 

 private Game g; 

 @Before 

 public void setUp() throws Exception { 

   g = new Game(); 

 } 

}

This makes the first test completely empty, so we delete it. The second test
is also pretty useless because it doesn’t assert anything. We delete it as well.
Those tests served their purpose. They were stairstep tests.

Stairstep tests: Some tests are written just to force us to create classes or functions or other
structures that we’re going to need. Sometimes these tests are so degenerate that they assert
nothing. Other times they assert something very naive. Often these tests are superseded by
more comprehensive tests later and can be safely deleted. We call these kinds of tests stairstep
tests because they are like stairs that allow us to incrementally increase the complexity to the
appropriate level.

Next, we want to assert that we can score a game. But to do that, we need to
roll a complete game. Remember that the score function can be called only
after all the balls in a game are rolled.

We fall back on Rule 4 and roll the simplest, most degenerate game we can
think of:

Click here to view code image
@Test 

public void gutterGame() throws Exception { 

 for (int i=0; i<20; i++) 

   g.roll(0); 

 assertEquals(0, g.score()); 

}



Making this pass is trivial. We just need to return zero from score. But first
we return -1 (not shown) just to see it fail. Then we return zero to see it
pass:

Click here to view code image
public class Game { 

 public void roll(int pins) { 

 } 

 public int score() { 

   return 0; 

 } 

}

Okay, I said this was about to get interesting, and it is. Just one more little
setup. The next test is another example of Rule 4. The next most degenerate
test I can think of is all ones. We can write this test with a simple copy paste
from the last test:

Click here to view code image
@Test 

public void allOnes() throws Exception { 

 for (int i=0; i<20; i++) 

   g.roll(1); 

 assertEquals(20, g.score()); 

}

This creates some duplicate code. The last two tests are virtually identical.
When we refactor, we’ll have to fix that. But first, we need to make this test
pass, and that’s really easy. All we need to do is add up all the rolls:

Click here to view code image
public class Game { 

 private int score; 

 public void roll(int pins) { 

   score += pins; 

 } 

 public int score() { 

   return score; 



 } 

}

Of course, this is not the right algorithm for scoring bowling. Indeed, it is
hard to see how this algorithm could ever evolve into becoming the rules
for scoring bowling. So, I’m suspicious—I expect squalls in the coming
tests. But for now, we must refactor.

The duplication in the tests can be eliminated by extracting a function
called rollMany. The IDE’s Extract Method refactoring helps immensely
with this and even detects and replaces both instances of the duplication:

Click here to view code image
public class BowlingTest { 

 private Game g; 

 @Before 

 public void setUp() throws Exception { 

   g = new Game(); 

 } 

 private void rollMany(int n, int pins) { 

   for (int i = 0; i < n; i++) { 

     g.roll(pins); 

   } 

 } 

 @Test 

 public void gutterGame() throws Exception { 

   rollMany(20, 0); 

   assertEquals(0, g.score()); 

 } 

 @Test 

 public void allOnes() throws Exception { 

   rollMany(20, 1); 

   assertEquals(20, g.score()); 

 } 

}



Okay, next test. It’s hard to think of something degenerate at this point, so
we might as well try for a spare. We’ll keep it simple though: one spare,
with one extra bonus ball, and all the rest gutter balls.

Click here to view code image
@Test 

public void oneSpare() throws Exception { 

 rollMany(2, 5); // spare 

 g.roll(7); 

 rollMany(17, 0); 

 assertEquals(24, g.score()); 

}

Let’s check my logic: This game has two balls in each frame. The first two
balls are the spare. The next ball is the ball after the spare, and the 17 gutter
balls complete the game.

The score in the first frame is 17, which is 10 plus the 7 rolled in the next
frame. The score for the whole game, therefore, is 24 because the 7 is
counted twice. Convince yourself that this is correct.

This test fails, of course. So how do we get it to pass? Let’s look at the
code:

Click here to view code image
public class Game { 

 private int score; 

 public void roll(int pins) { 

   score += pins; 

 } 

 public int score() { 

   return score; 

 } 

}

The score is being calculated in the roll function, so we need to modify
that function to account for the spare. But that will force us to do something
really ugly, like this:

Click here to view code image



public void roll(int pins) { 

   if (pins + lastPins == 10) { // horrors! 

     //God knows what… 

   } 

   score += pins; 

 }

That lastPins variable must be a field of the Game class that remembers
what the last roll was. And if the last roll and this roll add up to 10, then
that’s a spare. Right? Ew!

You should feel your sphincter muscles tightening. You should feel your
gorge rise and a tension headache beginning to build. The angst of the
software craftsman should be raising your blood pressure.

This is just wrong!
We’ve all had that feeling before, haven’t we? The question is, what do you
do about it?

Whenever you get that feeling that something is wrong, trust it! So, what is
it that’s wrong?

There’s a design flaw. You might rightly wonder how there could be a
design flaw in two executable lines of code. But the design flaw is there; it’s
blatant, and it’s deeply harmful. As soon as I tell you what it is you’ll
recognize it and agree with me. Can you find it?

Jeopardy song interlude.
I told you what the design flaw was at the very start. Which of the two
functions in this class claims, by its name, to calculate the score? The score
function, of course. Which function actually does calculate the score? The
roll function. That’s misplaced responsibility.

Misplaced responsibility: A design flaw in which the function that claims to perform a
computation does not actually perform the computation. The computation is performed
elsewhere.

How many times have you gone to the function that claims to do some task,
only to find that function does not do that task? And now you have no idea
where, in the system, that task is actually done. Why does this happen?

Clever programmers. Or rather, programmers who think they are clever.



It was very clever of us to sum up the pins in the roll function, wasn’t it?
We knew that function was going to be called once per roll, and we knew
that all we had to do was sum up the rolls, so we just put that addition right
there. Clever, clever, clever. And that cleverness leads us to Rule 6.

Rule 6: When the code feels wrong, fix the design before proceeding.

So how do we fix this design flaw? The calculation of the score is in the
wrong place, so we’re going to have to move it. By moving it, perhaps we’ll
be able to figure out how to pass the spare test.

Moving the calculation means that the roll function is going to have to
remember all the rolls in something like an array. Then the score function
can sum up the array.

Click here to view code image
public class Game { 

 private int rolls[] = new int[21]; 

 private int currentRoll = 0; 

 public void roll(int pins) { 

   rolls[currentRoll++] = pins; 

 } 

 public int score() { 

   int score = 0; 

   for (int i = 0; i < rolls.length; i++) { 

     score += rolls[i]; 

   } 

   return score; 

 } 

}

This fails the spare test, but it passes the other two tests. What’s more, the
spare test fails for the same reason as before. So, although we’ve
completely changed the structure of the code, the behavior remains
unchanged. By the way, that is the definition of refactoring.

Refactoring: A change to the structure of the code that has no effect upon the behavior.5

5. Martin Fowler, Refactoring: Improving the Design of Existing Code, 2nd ed. (Addison-Wesley,
2019).



Can we pass the spare case now? Well, maybe, but it’s still icky:

Click here to view code image
 public int score() { 

   int score = 0; 

   for (int i = 0; i < rolls.length; i++) { 

     if (rolls[i] + rolls[i+1] == 10) { // icky 

       // What now? 

     } 

     score += rolls[i]; 

   } 

   return score; 

 }

Is that right? No, it’s wrong, isn’t it? It only works if i is even. To make that
if statement actually detect a spare, it would have to look like this:

Click here to view code image
if (rolls[i] + rolls[i+1] == 10 && i%2 == 0) { // icky

So, we’re back to Rule 6—there’s another design problem. What could it
be?

Look back to the UML diagram earlier in this chapter. That diagram shows
that the Game class should have ten Frame instances. Is there any wisdom in
that? Look at our loop. At the moment, it’s going to loop 21 times! Does
that make any sense?

Let me put it this way. If you were about to review the code for scoring
bowling—code that you’d never seen before—what number would you
expect to see in that code? Would it be 21? Or would it be 10?

I hope you said 10, because there are 10 frames in a game of bowling.
Where is the number 10 in our scoring algorithm? Nowhere!

How can we get the number 10 into our algorithm? We need to loop
through the array one frame at a time. How do we do that?

Well, we could loop through the array two balls at a time, couldn’t we? I
mean like this:

Click here to view code image



public int score() { 

 int score = 0; 

 int i = 0; 

 for (int frame = 0; frame<10; frame++) { 

   score += rolls[i] + rolls[i+1]; 

   i += 2; 

 } 

 return score; 

}

Once again, this passes the first two tests and fails the spare test for the
same reason as before. So, no behavior was changed. This was a true
refactoring.

You might be ready to tear this book up now because you know that looping
through the array two balls at a time is just plain wrong. Strikes have only
one ball in their frame, and the tenth frame could have three.

True enough. However, so far none of our tests has used a strike, or the
tenth frame. So, for the moment, two balls per frame works fine.

Can we pass the spare case now? Yes. It’s trivial:

Click here to view code image
public int score() { 

 int score = 0; 

 int i = 0; 

 for (int frame = 0; frame < 10; frame++) { 

   if (rolls[i] + rolls[i + 1] == 10) { // spare 

    score += 10 + rolls[i + 2]; 

     i += 2; 

   } else { 

     score += rolls[i] + rolls[i + 1]; 

     i += 2; 

   } 

 } 

 return score; 

}

This passes the spare test. Nice. But the code is pretty ugly. We can rename
i to frameIndex and get rid of that ugly comment by extracting a nice little
method:

Click here to view code image



public int score() { 

 int score = 0; 

 int frameIndex = 0; 

 for (int frame = 0; frame < 10; frame++) { 

   if (isSpare(frameIndex)) { 

     score += 10 + rolls[frameIndex + 2]; 

     frameIndex += 2; 

   } else { 

     score += rolls[frameIndex] + rolls[frameIndex + 1]; 

     frameIndex += 2; 

   } 

 } 

 return score; 

} 

private boolean isSpare(int frameIndex) { 

 return rolls[frameIndex] + rolls[frameIndex + 1] == 10; 

}

That’s better. We can also clean up the ugly comment in the spare test by
doing the same:

Click here to view code image
private void rollSpare() { 

 rollMany(2, 5); 

} 

@Test 

public void oneSpare() throws Exception { 

 rollSpare(); 

 g.roll(7); 

 rollMany(17, 0); 

 assertEquals(24, g.score()); 

}

Replacing comments with pleasant little functions like this is almost always
a good idea. The folks who read your code later will thank you.

So, what’s the next test? I suppose we should try a strike:

Click here to view code image



@Test 

public void oneStrike() throws Exception { 

 g.roll(10); // strike 

 g.roll(2); 

 g.roll(3); 

 rollMany(16, 0); 

 assertEquals(20, g.score()); 

}

Convince yourself that this is correct. There’s the strike, the 2 bonus balls,
and 16 gutter balls to fill up the remaining eight frames. The score is 15 in
the first frame and 5 in the second. All the rest are 0 for a total of 20.

This test fails, of course. What do we have to do to make it pass?

Click here to view code image
public int score() { 

 int score = 0; 

 int frameIndex = 0; 

 for (int frame = 0; frame < 10; frame++) { 

   if (rolls[frameIndex] == 10) { // strike 

     score += 10 + rolls[frameIndex+1] +  

                   rolls[frameIndex+2]; 

     frameIndex++; 

   } 

   else if (isSpare(frameIndex)) { 

     score += 10 + rolls[frameIndex + 2]; 

     frameIndex += 2; 

   } else { 

     score += rolls[frameIndex] + rolls[frameIndex + 1]; 

     frameIndex += 2; 

   } 

 } 

 return score; 

}

This passes. Note that we increment frameIndex only by one. That’s
because a strike has only one ball in a frame—and you were so worried
about that, weren’t you?

This is a very good example of what happens when you get the design right.
The rest of the code just starts trivially falling into place. Pay special



attention to Rule 6, boys and girls, and get the design right early. It will
save you immense amounts of time.

We can clean this up quite a bit. That ugly comment can be fixed by
extracting an isStrike method. We can extract some of that ugly math into
some pleasantly named functions too. When we’re done, it looks like this:

Click here to view code image
public int score() { 

 int score = 0; 

 int frameIndex = 0; 

 for (int frame = 0; frame < 10; frame++) { 

   if (isStrike(frameIndex)) { 

     score += 10 + strikeBonus(frameIndex); 

     frameIndex++; 

   } else if (isSpare(frameIndex)) { 

     score += 10 + spareBonus(frameIndex); 

     frameIndex += 2; 

   } else { 

     score += twoBallsInFrame(frameIndex); 

     frameIndex += 2; 

   } 

 } 

 return score; 

}

We can also clean up the ugly comment in the test by extracting a
rollStrike method:

Click here to view code image
@Test 

public void oneStrike() throws Exception { 

 rollStrike(); 

 g.roll(2); 

 g.roll(3); 

 rollMany(16, 0); 

 assertEquals(20, g.score()); 

}

What’s the next test? We haven’t tested the tenth frame yet. But I’m starting
to feel pretty good about this code. I think it’s time to break Rule 3 and go
for the gold. Let’s test a perfect game!



Click here to view code image
@Test 

public void perfectGame() throws Exception { 

 rollMany(12, 10); 

 assertEquals(300, g.score()); 

}

We roll a strike in the first nine frames, and then a strike and two 10s in the
tenth frame. The score, of course, is 300—everybody knows that.

What’s going to happen when I run this test? It should fail, right? But, no! It
passes! It passes because we are done! The score function is the solution.
You can prove that to yourself by reading it. Here, you follow along while I
read it to you:

Click here to view code image
For each of the ten frames 

  If that frame is a strike, 

    Then the score is 10 plus the strike bonus  

     (the next two balls).  

  If that frame is a spare, 

    Then the score is 10 plus the spare bonus  

     (the next ball). 

  Otherwise, 

    The score is the two balls in the frame.

The code reads like the rules for scoring bowling. Go to the beginning of
this chapter and read those rules again. Compare them to the code. And then
ask yourself if you’ve ever seen requirements and code that are so closely
aligned.

Some of you may be confused about why this works. You look at the tenth
frame on that scorecard and you see that it doesn’t look like any of the other
frames; and yet there is no code in our solution that makes the tenth frame a
special case. How can that be?

The answer is that the tenth frame is not special at all. It is drawn differently
on the score card, but it is not scored differently. There is no special case for
the tenth frame.

And we were going to make a subclass out of it!



Look back at that UML diagram. We could have divvied out the tasks to
three or four programmers and integrated a day or two later. And the
tragedy is that we’d have gotten it working. We would have celebrated the
4006 lines of working code, never knowing that the algorithm was a for
loop and two if statements that fits into 14 lines of code.
6. I know it’s 400 lines of code because I’ve written it.

Did you see the solution early? Did you see the for loop and two if
statements? Or did you expect one of the tests to eventually force me to
write the Frame class? Were you holding out for the tenth frame? Is that
where you thought all the complexity would be found?

Did you know we were done before we ran the tenth frame test? Or did you
think there was a lot more to do? Isn’t it fascinating that we can write a test
fully expecting more work ahead, only to find, to our surprise, that we are
done?

Some folks have complained that if we’d followed the UML diagram
shown earlier, we’d have wound up with code that was easier to change and
maintain. That’s pure bollocks! What would you rather maintain, 400 lines
of code in four classes or 14 lines with a for loop and two if statements?

Conclusion
In this chapter, we studied the motivations and basics of TDD. If you’ve
gotten this far, your head may be spinning. We covered a lot of ground. But
not nearly enough. The next chapter goes significantly deeper into the topic
of TDD, so you may wish to take a little rest before turning the page.



3 Advanced TDD

Hold on to your hats. The ride is about to get fast and bumpy. To quote Dr.
Morbius as he led a tour of the Krell machine: “Prepare your minds for a
new scale of scientific values.”

Sort 1



The last two examples in Chapter 2, “Test-Driven Development,” begged an
interesting question. Where does the algorithm that we derive using test-
driven development (TDD) come from? Clearly it comes from our brain,
but not in the way we are used to. Somehow, the sequence of failing tests
coaxes the algorithm out of our brain without the need to think it all through
beforehand.

This raises the possibility that TDD may be a step-by-step, incremental
procedure for deriving any algorithm for any problem. Think of it like
solving a mathematical or geometric proof. You start from basic postulates
—the degenerate failing tests. Then, one step at a time, you build up the
solution to the problem.

At each step, the tests get more and more constraining and specific, but the
production code gets more and more generic. This process continues until
the production code is so general that you can’t think of any more tests that
will fail. That solves the entire problem.

Let’s try this out. Let’s use the approach to derive an algorithm for sorting
an array of integers.

If you can watch the video, this would be a good time, but in any case,
please continue on to read the text that follows.

Watch related video: SORT 1
Access video by registering at informit.com/register

We begin, as usual, with a test that does nothing:

Click here to view code image
public class SortTest { 

 @Test 

 public void nothing() throws Exception { 

 } 

}

The first failing test will be the degenerate case of an empty array:

Click here to view code image
public class SortTest { 

 @Test 

 public void sorted() throws Exception { 

http://informit.com/register


   assertEquals(asList(), sort(asList())); 

 } 

 private List<Integer> sort(List<Integer> list) { 

   return null; 

 } 

}

This obviously fails, but it is easy to make it pass:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 return new ArrayList<>(); 

}

Stepping up one level in degeneracy, we try a list with one integer in it:

Click here to view code image
assertEquals(asList(1), sort(asList(1)));

This clearly fails, but we can make it pass by making the production code a
bit more general:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 return list; 

}

Cute, right? And we saw that trick before, in the prime factors example in
Chapter 2. It seems relatively common that the first two tests in a given
problem are solved by returning the most degenerate answer, followed by
the input argument.

The next test is trivial because it already passes: two elements in order. It
could be argued that we shouldn’t even have written it because it’s not a
failing test. But it’s nice to see these tests pass.

Click here to view code image
assertEquals(asList(1, 2), sort(asList(1, 2)));

If we reverse the order of the input array, the test will fail: two elements out
of order.



Click here to view code image
assertEquals(asList(1, 2), sort(asList(2, 1)));

To make this pass, we’re going to have to do something marginally
intelligent. If the input array has more than one element in it and the first
two elements of the array are out of order, then we should swap them:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 if (list.size() > 1) { 

   if (list.get(0) > list.get(1)) { 

     int first = list.get(0); 

     int second = list.get(1); 

     list.set(0, second); 

     list.set(1, first); 

   } 

 } 

 return list; 

}

Maybe you can see where this is headed. If so, don’t spoil the surprise for
everyone else. Also, remember this moment—we’ll be returning to it in the
next section.

The next two tests pass already. In the first test, the input array is already in
order. In the second test, the first two elements are out of order, and our
current solution swaps them.

Click here to view code image
assertEquals(asList(1, 2, 3), sort(asList(1, 2, 3))); 

assertEquals(asList(1, 2, 3), sort(asList(2, 1, 3)));

The next failing test is three elements with the second two out of order:

Click here to view code image
assertEquals(asList(1, 2, 3), sort(asList(2, 3, 1)));

We get this one to pass by putting our compare and swap algorithm into a
loop that walks down the length of the list:

Click here to view code image



private List<Integer> sort(List<Integer> list) { 

 if (list.size() > 1) { 

   for (int firstIndex=0; firstIndex < list.size()-1; 

firstIndex++) { 

     int secondIndex = firstIndex + 1; 

     if (list.get(firstIndex) > list.get(secondIndex)) { 

       int first = list.get(firstIndex); 

       int second = list.get(secondIndex); 

       list.set(firstIndex, second); 

       list.set(secondIndex, first); 

     } 

   } 

 } 

 return list; 

}

Can you tell where this is going yet? Most of you likely do. Anyway, the
next failing test case is three elements in reverse order:

Click here to view code image
assertEquals(asList(1, 2, 3), sort(asList(3, 2, 1)));

The failure results are telling. The sort function returns [2, 1, 3]. Note
that the 3 got moved all the way to the end of the list. That’s good! But the
first two elements are still out of order. It’s not hard to see why. The 3 got
swapped with the 2, and then the 3 got swapped with the 1. But that left the
2 and 1 still out of order. They need to be swapped again.

So, the way to get this test to pass is to put the compare and swap loop into
another loop that incrementally reduces the length of the comparing and
swapping. Maybe that’s easier to read in code:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 if (list.size() > 1) { 

   for (int limit = list.size() - 1; limit > 0; limit--) { 

     for (int firstIndex = 0; firstIndex < limit; firstIndex++) { 

       int secondIndex = firstIndex + 1; 

       if (list.get(firstIndex) > list.get(secondIndex)) { 

         int first = list.get(firstIndex); 

         int second = list.get(secondIndex); 

         list.set(firstIndex, second); 

         list.set(secondIndex, first); 



       } 

     } 

   } 

 } 

 return list; 

}

To finish this off, let’s do a larger-scale test:

Click here to view code image
assertEquals( 

            asList(1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 

9), 

            sort(asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 

9, 

                           3)));

This passes, so our sort algorithm appears to be complete.

Where did this algorithm come from? We did not design it up front. It just
came from the set of small decisions we made in order to get each failing
test to pass. It was an incremental derivation. Voila!

And what algorithm is this? Bubble sort, of course—one of the worst
possible sorting algorithms.

So maybe TDD is a really good way to incrementally derive really bad
algorithms.

Sort 2
Let’s try this again. This time we’ll choose a slightly different pathway. And
again, view the video if possible, but then continue reading from this point.

Watch related video: SORT 2
Access video by registering at informit.com/register

We begin as we did before with the most degenerate tests possible and the
code that makes them pass:

Click here to view code image

http://informit.com/register


public class SortTest { 

 @Test 

 public void testSort() throws Exception { 

   assertEquals(asList(), sort(asList())); 

   assertEquals(asList(1), sort(asList(1))); 

   assertEquals(asList(1, 2), sort(asList(1, 2))); 

 } 

 private List<Integer> sort(List<Integer> list) { 

   return list; 

 } 

}

As before, we then pose two items out of order:

Click here to view code image
assertEquals(asList(1, 2), sort(asList(2, 1)));

But now, instead of comparing and swapping them within the input list,
we compare and create an entirely new list with the elements in the right
order:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 if (list.size() <= 1) 

   return list; 

 else { 

   int first = list.get(0); 

   int second = list.get(1); 

   if (first > second) 

     return asList(second, first); 

   else 

     return asList(first, second); 

 } 

}

This is a good moment to pause and reflect. When we faced this test in the
previous section, we blithely wrote the compare and swap solution as
though it were the only possible way to pass the test. But we were wrong. In
this example, we see another way.

This tells us that from time to time we may encounter failing tests that have
more than one possible solution. Think of these as forks in the road. Which



fork should we take?

Let’s watch how this fork proceeds.

The obvious next test is, as it was before, three elements in order:

Click here to view code image
assertEquals(asList(1, 2, 3), sort(asList(1, 2, 3)));

But unlike in the previous example, this test fails. It fails because none of
the pathways through the code can return a list with more than two
elements. However, making it pass is trivial:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 if (list.size() <= 1) 

   return list; 

 else if (list.size() == 2){ 

   int first = list.get(0); 

   int second = list.get(1); 

   if (first > second) 

     return asList(second, first); 

   else 

     return asList(first, second); 

 } 

 else { 

   return list; 

 } 

}

Of course, this is silly, but the next test—three elements with the first two
out of order—eliminates the silliness. This obviously fails:

Click here to view code image
assertEquals(asList(1, 2, 3), sort(asList(2, 1, 3)));

How the devil are we going to get this to pass? There are only two
possibilities for a list with two elements, and our solution exhausts both of
those possibilities. But with three elements, there are six possibilities. Are
we really going to decode and construct all six possible combinations?



No, that would be absurd. We need a simpler approach. What if we use the
law of trichotomy?

The law of trichotomy says that given two numbers A and B, there are only
three possible relationships between them: A < B, A = B, or A > B. Okay,
so let’s arbitrarily pick one of the elements of the list and then decide which
of those relationships it has with the others.

The relevant code looks like this:

Click here to view code image
else { 

 int first = list.get(0); 

 int middle = list.get(1); 

 int last = list.get(2); 

 List<Integer> lessers = new ArrayList<>(); 

 List<Integer> greaters = new ArrayList<>(); 

 if (first < middle) 

   lessers.add(first); 

 if (last < middle) 

   lessers.add(last); 

 if (first > middle) 

   greaters.add(first); 

 if (last > middle) 

   greaters.add(last); 

 List<Integer> result = new ArrayList<>(); 

 result.addAll(lessers); 

 result.add(middle); 

 result.addAll(greaters); 

 return result; 

}

Now, don’t freak out. Let’s walk through this together.

First, we extract the three values into the three named variables: first,
middle, and last. We do this for convenience because we don’t want a
bunch of list.get(x) calls littering up the code.

Next, we create a new list for the elements that are less than the middle and
another for the elements that are greater than the middle. Note that we are



assuming the middle is unique in the list.

Then, in the four subsequent if statements, we place the first and last
elements into the appropriate lists.

Finally, we construct the result list by placing the lessers, the middle, and
then the greaters into it.

Now you may not like this code. I don’t much care for it either. But it
works. The tests pass.

And the next two tests pass as well:

Click here to view code image
assertEquals(asList(1, 2, 3), sort(asList(1, 3, 2))); 

assertEquals(asList(1, 2, 3), sort(asList(3, 2, 1)));

So far, we’ve tried four of the six possible cases for a list of three unique
elements. If we had tried the other two, [2,3,1] and [3,1,2], as we should
have, both of them would have failed.

But due either to impatience or oversight, we move on to test a lists with
four elements:

Click here to view code image
assertEquals(asList(1, 2, 3, 4), sort(asList(1, 2, 3, 4)));

This fails, of course, because the current solution assumes that the list has
no more than three elements. And, of course, our simplification of first,
middle, and last breaks down with four elements. This may make you
wonder why we chose the middle as element 1. Why couldn’t it be element
0?

So, let’s comment out that last test and change middle to element 0:
int first = list.get(1); 

int middle = list.get(0); 

int last = list.get(2);

Surprise—the [1,3,2] test fails. Can you see why? If middle is 1, then the 3
and 2 get added to the greaters list in the wrong order.



Now, it just so happens that our solution already knows how to sort a list
with two elements in it. And greaters is such a list, so we can make this
pass by calling sort on the greaters list:

Click here to view code image
List<Integer> result = new ArrayList<>(); 

result.addAll(lessers); 

result.add(middle); 

result.addAll(sort(greaters)); 

return result;

That caused the [1,3,2] test to pass but failed the [3,2,1] test because the
lessers list was out of order. But that’s a pretty easy fix:

Click here to view code image
List<Integer> result = new ArrayList<>(); 

result.addAll(sort(lessers)); 

result.add(middle); 

result.addAll(sort(greaters)); 

return result;

So, yeah, we should have tried the two remaining cases of three elements
before going on to the four-element list.

Rule 7: Exhaust the current simpler case before testing the next more complex case.

Anyway, now we need to get that four-element list to pass. So, we
uncommented the test and saw it fail (not shown).

The algorithm we currently have for sorting the three-element list can be
generalized, especially now that the middle variable is the first element of
the list. All we have to do to build the lessers and greaters lists is apply
filters:

Click here to view code image
else { 

 int middle = list.get(0); 

 List<Integer> lessers =  

   list.stream().filter(x -> x<middle).collect(toList()); 

 List<Integer> greaters =  

   list.stream().filter(x -> x>middle).collect(toList()); 



 List<Integer> result = new ArrayList<>(); 

 result.addAll(sort(lessers)); 

 result.add(middle); 

 result.addAll(sort(greaters)); 

 return result; 

}

It should come as no surprise that this passes and also passes the next two
tests:

Click here to view code image
assertEquals(asList(1, 2, 3, 4), sort(asList(2, 1, 3, 4))); 

assertEquals(asList(1, 2, 3, 4), sort(asList(4, 3, 2, 1)));

But now you may be wondering about that middle. What if the middle
element was not unique in the list? Let’s try that:

Click here to view code image
assertEquals(asList(1, 1, 2, 3), sort(asList(1, 3, 1, 2)));

Yeah, that fails. That just means we should stop treating the middle as
something special:

Click here to view code image
else { 

 int middle = list.get(0); 

 List<Integer> middles =  

   list.stream().filter(x -> x == middle).collect(toList()); 

 List<Integer> lessers =  

   list.stream().filter(x -> x<middle).collect(toList()); 

 List<Integer> greaters =  

   list.stream().filter(x -> x>middle).collect(toList()); 

 List<Integer> result = new ArrayList<>(); 

 result.addAll(sort(lessers)); 

 result.addAll(middles); 

 result.addAll(sort(greaters)); 

 return result; 

}



This passes. However, look up at that else. Remember what’s above it?
Here, I’ll show you:

Click here to view code image
if (list.size() <= 1) 

 return list; 

else if (list.size() == 2){ 

 int first = list.get(0); 

 int second = list.get(1); 

 if (first > second) 

   return asList(second, first); 

 else 

   return asList(first, second); 

}

Is that ==2 case really necessary anymore? No. Removing it still passes all
tests.

Okay, so what about that first if statement? Is that still necessary? Actually,
it can be changed to something better. And, in fact, let me just show you the
final algorithm:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 List<Integer> result = new ArrayList<>(); 

 if (list.size() == 0) 

   return result; 

 else { 

   int middle = list.get(0); 

   List<Integer> middles =  

     list.stream().filter(x -> x == middle).collect(toList()); 

   List<Integer> lessers =  

     list.stream().filter(x -> x < middle).collect(toList()); 

   List<Integer> greaters =  

     list.stream().filter(x -> x > middle).collect(toList()); 

   result.addAll(sort(lessers)); 

   result.addAll(middles); 

   result.addAll(sort(greaters)); 

   return result; 



 } 

}

This algorithm has a name. It’s called quick sort. It is one of the best sorting
algorithms known.

How much better it is? This algorithm, on my laptop, can sort an array of 1
million random integers between zero and a million in 1.5 seconds. The
bubble sort from the previous section will sort the same list in about six
months. So … better.

And this leads us to a disturbing observation. There were two different
solutions to sorting a list with two elements out of order. One solution led
us directly to a bubble sort, the other solution led us directly to a quick sort.

This means that identifying forks in the road, and choosing the right path,
can sometimes be pretty important. In this case, one path led us to a pretty
poor algorithm, and the other led us to a very good algorithm.

Can we identify these forks and determine which path to choose? Perhaps.
But that’s a topic for a more advanced chapter.

Getting Stuck
At this point, I think you’ve seen enough videos to get a good idea about
the rhythm of TDD. From now on, we’ll forego the videos and just rely on
the text of the chapter.

It often happens, to TDD novices, that they find themselves in a pickle.
They write a perfectly good test and then discover that the only way to
make that test pass is to implement the entire algorithm at once. I call this
“getting stuck.”

The solution to getting stuck is to delete the last test you wrote and find a
simpler test to pass.

Rule 8: If you must implement too much to get the current test to pass, delete that test and write
a simpler test that you can more easily pass.

I often use the following exercise in my classroom sessions to get people
stuck. It’s pretty reliable. Well over half the people who try it find



themselves stuck and also find it difficult to back out.

The problem is the good-old word-wrap problem: Given a string of text
without any line breaks, insert appropriate line breaks so that the text will
fit in a column N characters wide. Break at words if at all possible.

Students are supposed to write the following function:

Click here to view code image
Wrapper.wrap(String s, int w);

Let’s suppose that the input string is the Gettysburg Address:

Click here to view code image
"Four score and seven years ago our fathers brought forth upon this 

continent a new nation conceived in liberty and dedicated to the 

proposition that all men are created equal"

Now, if the desired width is 30, then the output should be

Click here to view code image
====:====:====:====:====:====: 

Four score and seven years ago 

Our fathers brought forth upon 

This continent a new nation 

Conceived in liberty and 

Dedicated to the proposition 

That all men are created equal 

====:====:====:====:====:====:

How would you write this algorithm test-first? We might begin as usual
with this failing test:

Click here to view code image
public class WrapTest { 

 @Test 

 public void testWrap() throws Exception { 

   assertEquals("Four", wrap("Four", 7)); 

 } 

 private String wrap(String s, int w) { 

   return null; 

 } 

}



How many TDD rules did we break with this test? Can you name them?
Let’s proceed anyway. It’s easy to make this test pass:

Click here to view code image
private String wrap(String s, int w) { 

 return "Four"; 

}

The next test seems pretty obvious:

Click here to view code image
assertEquals("Four\nscore", wrap("Four score", 7));

And the code that makes that pass is pretty obvious too:

Click here to view code image
private String wrap(String s, int w) { 

 return s.replace(" ", "\n"); 

}

Just replace all spaces with line ends. Perfect. Before we continue, let’s
clean this up a bit:

Click here to view code image
private void assertWrapped(String s, int width, String expected) { 

 assertEquals(expected, wrap(s, width)); 

} 

@Test 

public void testWrap() throws Exception { 

 assertWrapped("Four", 7, "Four"); 

 assertWrapped("Four score", 7, "Four\nscore"); 

}

That’s better. Now, the next failing test. If we simply follow the Gettysburg
Address along, the next failure would be

Click here to view code image



assertWrapped("Four score and seven years ago our", 7, 

 "Four\nscore\nand\nseven\nyears\nago our");

That does, in fact, fail. We can tighten that failure up a bit like so:

Click here to view code image
assertWrapped("ago our", 7, "ago our");

Okay, now how do we make that pass? It looks like we need to not replace
all spaces with line ends. So, which ones do we replace? Or, should we go
ahead and replace all spaces with line ends, and then figure out which line
ends to put back?

I’ll let you ponder this for a while. I don’t think you’ll find an easy solution.
And that means we’re stuck. The only way to get this test to pass is to
invent a very large part of the word-wrap algorithm at once.

The solution to being stuck is to delete one or more tests and replace them
with simpler tests that you can pass incrementally. Let’s try that:

Click here to view code image
@Test 

public void testWrap() throws Exception { 

 assertWrapped("", 1, ""); 

} 

private String wrap(String s, int w) { 

 return ""; 

}

Ah, yes, that’s a truly degenerate test, isn’t it? That’s one of the rules we
forgot earlier.

Okay, what’s the next most degenerate test? How about this?
assertWrapped("x", 1, "x");

That’s pretty degenerate. It’s also really easy to pass:

Click here to view code image
private String wrap(String s, int w) { 

 return s; 

}



There’s that pattern again. We get the first test to pass by returning the
degenerate constant. We get the second test to pass by returning the input.
Interesting. Okay, so what’s the next most degenerate test?

Click here to view code image
assertWrapped("xx", 1, "x\nx");

That fails because it returns "xx". It’s not hard to get it to pass, though:

Click here to view code image
private String wrap(String s, int w) { 

 if (w >= s.length()) 

   return s; 

 else 

   return s.substring(0, w) + "\n" + s.substring(w); 

}

That was easy. So, what’s the next most degenerate test?

Click here to view code image
assertWrapped("xx", 2, "xx");

That already passes. Nice. So, the next test would be

Click here to view code image
assertWrapped("xxx", 1, "x\nx\nx");

This fails. And it implies some kind of a loop. But wait. There’s an easier
way:

Click here to view code image
private String wrap(String s, int w) { 

 if (w >= s.length()) 

   return s; 

 else 

   return s.substring(0, w) + "\n" + wrap(s.substring(w), w); 

}



We don’t often think of recursion, do we? Perhaps we should think about it
more often.

We’ve got a nice little pattern cooking in our tests, don’t we? No words, not
even any spaces yet. Just a string of x’s with counts walking from 1 to the
size of the string. So, the next test will be

Click here to view code image
assertWrapped("xxx", 2, "xx\nx");

And that one already passes. So does the next one:

Click here to view code image
assertWrapped("xxx", 3, "xxx");

There’s probably no point in continuing with this pattern. It’s time for some
spaces:

Click here to view code image
assertWrapped("x x", 1, "x\nx");

This one fails because it returns "x\n \nx". We can fix that by eliminating
any prefix spaces before we do the recursive call to wrap.

Click here to view code image
return s.substring(0, w) + "\n" + wrap(s.substring(w).trim(), w);

This passes. And now we have a new test pattern to follow. So, the next test
is

Click here to view code image
assertWrapped("x x", 2, "x\nx");

This fails because the first substring has a trailing space. We can get rid of
that with another call to trim:

Click here to view code image
return s.substring(0, w).trim() + "\n" + 

wrap(s.substring(w).trim(), w);



And this passes. The next test in the sequence passes too:

Click here to view code image
assertWrapped("x x", 3, "x x");

What’s next? We could try these:

Click here to view code image
assertWrapped("x x x", 1, "x\nx\nx"); 

assertWrapped("x x x", 2, "x\nx\nx"); 

assertWrapped("x x x", 3, "x x\nx"); 

assertWrapped("x x x", 4, "x x\nx"); 

assertWrapped("x x x", 5, "x x x");

They all pass. There’s probably not much point in adding the fourth x.

Let’s try this:

Click here to view code image
assertWrapped("xx xx", 1, "x\nx\nx\nx");

That one passes. And so do the next two tests in the sequence:

Click here to view code image
assertWrapped("xx xx", 2, "xx\nxx"); 

assertWrapped("xx xx", 3, "xx\nxx");

But the next test fails:

Click here to view code image
assertWrapped("xx xx", 4, "xx\nxx");

It fails because it returns "xx x\nx". And that’s because it did not break on
the space between the two “words.” Where is that space? It’s before the wth
character. So, we need to search backwards from w for a space:

Click here to view code image
private String wrap(String s, int w) { 

 if (w >= s.length()) 

   return s; 

 else { 



   int br = s.lastIndexOf(" ", w); 

   if (br == -1) 

     br = w; 

   return s.substring(0, br).trim() + "\n" +  

          wrap(s.substring(br).trim(), w); 

 } 

}

This passes. I have a feeling that we are done. But let’s try a few more test
cases:

Click here to view code image
assertWrapped("xx xx", 5, "xx xx"); 

assertWrapped("xx xx xx", 1, "x\nx\nx\nx\nx\nx"); 

assertWrapped("xx xx xx", 2, "xx\nxx\nxx"); 

assertWrapped("xx xx xx", 3, "xx\nxx\nxx"); 

assertWrapped("xx xx xx", 4, "xx\nxx\nxx"); 

assertWrapped("xx xx xx", 5, "xx xx\nxx"); 

assertWrapped("xx xx xx", 6, "xx xx\nxx"); 

assertWrapped("xx xx xx", 7, "xx xx\nxx"); 

assertWrapped("xx xx xx", 8, "xx xx xx");

They all pass. I think we’re done. Let’s try the Gettysburg Address, with a
length of 15:
Four score and 

seven years ago 

our fathers 

brought forth 

upon this 

continent a new 

nation 

conceived in 

liberty and 

dedicated to 

the proposition 

that all men 

are created 

equal

That looks right.

So, what did we learn? First, if you get stuck, back out of the tests that got
you stuck, and start writing simpler tests. But second, when writing tests,



try to apply
Rule 9: Follow a deliberate and incremental pattern that covers the test space.

Arrange, Act, Assert
And now for something completely different.

Many years ago, Bill Wake identified the fundamental pattern for all tests.
He called it the 3A pattern, or AAA. It stands for Arrange/Act/Assert.

The first thing you do when writing a test is arrange the data to be tested.
This is typically done in a Setup method, or at the very beginning of the test
function. The purpose is to put the system into the state necessary to run the
test.

The next thing the test does is act. This is when the test calls the function,
or performs the action, or otherwise invokes the procedure that is the target
of the test.

The last thing the test does is assert. This usually entails looking at the
output of the act to ensure that the system is in the new desired state.

As a simple example of this pattern consider this test from the bowling
game in Chapter 2:

Click here to view code image
@Test 

public void gutterGame() throws Exception { 

 rollMany(20, 0); 

 assertEquals(0, g.score()); 

}

The arrange portion of this test is the creation of the Game in the Setup
function and the rollMany(20, 0) to set up the scoring of a gutter game.

The act portion of the test is the call to g.score().

The assert portion of the test is the assertEquals.

In the two and a half decades since I started practicing TDD, I have never
found a test that did not follow this pattern.



Enter BDD
In 2003, while practicing and teaching TDD, Dan North, in collaboration
with Chris Stevenson and Chris Matz, made the same discovery that Bill
Wake had made. However, they used a different vocabulary: Given-When-
Then (GWT).

This was the beginning of behavior-driven development (BDD).

At first, BDD was viewed as an improved way of writing tests. Dan and
other proponents liked the vocabulary better and affixed that vocabulary
into testing tools such as JBehave, and RSpec.

As an example, I can rephrase the gutterGame test in BDD terms as follows:

Click here to view code image
Given that the player rolled a game of 20 gutter balls, 

When I request the score of that game, 

Then the score will be zero.

It should be clear that some parsing would have to take place in order to
translate that statement into an executable test. JBehave and RSpec
provided affordances for that kind of parsing. It also ought to be clear that
the TDD test and the BDD test are synonymous.

Over time, the vocabulary of BDD drew it away from testing and toward
the problem of system specification. BDD proponents realized that even if
the GWT statements were never executed as tests, they remained valuable
as specifications of behavior.

In 2013, Liz Keogh said of BDD:
It’s using examples to talk through how an application behaves. … And having conversations
about those examples.

Still, it is hard to separate BDD entirely from testing if only because the
vocabulary of GWT and AAA are so obviously synonymous. If you have
any doubts about that, consider the following:

Given that the test data has been Arranged
When I execute the tested Act
Then the expected result is Asserted



Finite State Machines
The reason I made such a big deal out of the synonymity of GWT and AAA
is that there is another famous triplet that we frequently encounter in
software: the transition of a finite state machine.

Consider the state/transition diagram of a simple subway turnstile (Figure
3.1).

Figure 3.1 Transition/state diagram for a subway turnstile

The turnstile starts in the locked state. A coin will send it to the unlocked
state. When someone passes through, the turnstile returns to the locked
state. If someone passes without paying, the turnstile alarms. If someone
drops two coins, the extra coin is refunded.

This diagram can be turned into a state transition table as follows:

Current State Event Next State

Locked Coin Unlocked

Locked Pass Alarming



Current State Event Next State

Unlocked Coin Refunding

Unlocked Pass Locked

Refunding Refunded Unlocked

Alarming Reset Locked

Each row in the table is a transition from the current state to the next state
triggered by the event. Each row is a triplet, just like GWT or AAA. More
important, each one of those transition triplets is synonymous with a
corresponding GWT or AAA triplet, as follows:

Click here to view code image
Given it is in the Locked state 

When it gets a Coin event 

Then it transitions to the Unlocked state.

What we can deduce from this is that every test you write is a transition of
the finite state machine that describes the behavior of the system.

Repeat that to yourself several times. Every test is a transition of the finite
state machine you are trying to create in your program.

Did you know that the program you are writing is a finite state machine? Of
course it is. Every program is a finite state machine. That’s because
computers are nothing more than finite state machine processors. The
computer itself transitions from one finite state to the next with every
instruction it executes.

Thus, the tests you write when practicing TDD and the behaviors you
describe while practicing BDD are simply transitions of the finite state
machine that you are attempting to create. Your test suite, if it is complete,
is that finite state machine.

The obvious question, therefore, is how do you ensure that all the
transitions you desire your state machine to handle are encoded as tests?
How do you ensure that the state machine that your tests are describing is
the complete state machine that your program should be implementing?



What better way than to write the transitions first, as tests, and then write
the production code that implements those transitions?

BDD Again
And don’t you think it’s fascinating, and perhaps even a little ironic, that the
BDD folks, perhaps without realizing it, have come to the conclusion that
the best way to describe the behavior of a system is by specifying it as a
finite state machine?

Test Doubles
In 2000, Steve Freeman, Tim McKinnon, and Philip Craig presented a
paper1 called “Endo-Testing: Unit Testing with Mock Objects.” The
influence this paper had on the software community is evidenced by the
pervasiveness of the term they coined: mock. The term has since become a
verb. Nowadays, we use mocking frameworks to mock things out.
1. Steve Freeman, Tim McKinnon, and Philip Craig, “Endo-Testing: Unit Testing with Mock

Objects,” paper presented at eXtreme Programming and Flexible Processes in Software
Engineering (XP2000), https://www2.ccs.neu.edu/research/demeter/related-work/extreme-
programming/MockObjectsFinal.PDF.

In those early days, the notion of TDD was just beginning to permeate the
software community. Most of us had never applied object-oriented design to
test code. Most of us had never applied any kind of design at all to test
code. This led to all kinds of problems for test authors.

Oh, we could test the simple things like the examples you saw in the
previous chapters. But there was another class of problems that we just
didn’t know how to test. For example, how do you test the code that reacts
to an input/output (IO) failure? You can’t really force an IO device to fail in
a unit test. Or how do you test the code that interacts with an external
service? Do you have to have the external service connected for your tests?
And how do you test the code that handles external service failure?

The original TDDers were Smalltalk programmers. For them, objects were
what the universe was made of. So, although they were almost certainly

https://www2.ccs.neu.edu/research/demeter/related-work/extreme-programming/MockObjectsFinal.PDF


using mock objects, they likely thought nothing of it. Indeed, when I
presented the idea of a mock object in Java to one expert Smalltalker and
TDDer in 1999, his response to me was: “Too much mechanism.”

Nevertheless, the technique caught hold and has become a mainstay of
TDD practitioners.

But before we delve too much further into the technique itself, we need to
clear up a vocabulary issue. Almost all of us use the term mock object
incorrectly—at least in a formal sense. The mock objects we talk about
nowadays are very different from the mock objects that were presented in
the endo-testing paper back in 2000. So different, in fact, that a different
vocabulary has been adopted to clarify the separate meanings.

In 2007, Gerard Meszaros published xUnit Test Patterns: Refactoring Test
Code.2 In it, he adopted the formal vocabulary that we use today.
Informally, we still talk about mocks and mocking, but when we want to be
precise, we use Meszaros’s formal vocabulary.
2. Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (Addison-Wesley, 2007).

Meszaros identified five kinds of objects that fall under the informal mock
category: dummies, stubs, spies, mocks, and fakes. He called them all test
doubles.

That’s actually a very good name. In the movies, a stunt double stands in
for an actor, and a hand double stands in for closeups of an actor’s hands. A
body double stands in for shots when the body, and not the face, of the actor
is on screen. And that’s just what a test double does. A test double stands in
for another object while a test is being run.

Test doubles form a type hierarchy of sorts (Figure 3.2). Dummies are the
simplest. Stubs are dummies, spies are stubs, and mocks are spies. Fakes
stand alone.



Figure 3.2 Test doubles

The mechanism that all test doubles use (and which my Smalltalker friend
thought was “too much”) is simply polymorphism. For example, if you
want to test the code that manages an external service, then you isolate that
external service behind a polymorphic interface, and then you create an



implementation of that interface that stands in for the service. That
implementation is the test double.

But perhaps the best way to explain all this is to demonstrate it.

Dummy
Test doubles generally start with an interface—an abstract class with no
implemented methods. For example, we could start with the Authenticator
interface:

Click here to view code image
public interface Authenticator { 

 public Boolean authenticate(String username, String password); 

}

The intent of this interface is to provide our application with a way to
authenticate users by using usernames and passwords. The authenticate
function returns true if the user is authentic and false if not.

Now let’s suppose that we want to test that a LoginDialog can be cancelled
by clicking the close icon before the user enters a username and password.
That test might look like this:

Click here to view code image
@Test 

public void whenClosed_loginIsCancelled() throws Exception { 

 Authenticator authenticator = new ???; 

 LoginDialog dialog = new LoginDialog(authenticator); 

 dialog.show(); 

 boolean success = dialog.sendEvent(Event.CLOSE); 

 assertTrue(success); 

}

Notice that the LoginDialog class must be constructed with an
Authenticator. But that Authenticator will never be called by this test, so
what should we pass to the LoginDialog?

Let’s further assume that the RealAuthenticator is an expensive object to
create because it requires a DatabaseConnection passed in to its constructor.



And let’s say that the DatabaseConnection class has a constructor that
requires valid UIDs for a databaseUser and databaseAuthCode. (I’m sure
you’ve seen situations like this.)

Click here to view code image
public class RealAuthenticator implements Authenticator { 

 public RealAuthenticator(DatabaseConnection connection) { 

   //… 

 } 

 //… 

} 

public class DatabaseConnection { 

 public DatabaseConnection(UID databaseUser, UID databaseAuthCode) 

{ 

   //… 

 } 

}

To use the RealAuthenticator in our test, we’d have to do something
horrible, like this:

Click here to view code image
@Test 

public void whenClosed_loginIsCancelled() throws Exception { 

 UID dbUser = SecretCodes.databaseUserUID; 

 UID dbAuth = SecretCodes.databaseAuthCode; 

 DatabaseConnection connection =  

   new DatabaseConnection(dbUser, dbAuth); 

 Authenticator authenticator = new RealAuthenticator(connection); 

 LoginDialog dialog = new LoginDialog(authenticator); 

 dialog.show(); 

 boolean success = dialog.sendEvent(Event.CLOSE); 

 assertTrue(success); 

}

That’s a terrible load of cruft to put into our test just so that we can create
an Authenticator that will never be used. It also adds two dependencies to



our test, which the test does not need. Those dependencies could break our
test at either compile or load time. We don’t need the mess or the headache.

Rule 10: Don’t include things in your tests that your tests don’t need.

So, what we do instead is use a dummy (Figure 3.3).

Figure 3.3 Dummy



A dummy is an implementation that does nothing. Every method of the
interface is implemented to do nothing. If a method returns a value, then the
value returned by the dummy will be as close as possible to null or zero.

In our example, the AuthenticatorDummy would look like this:

Click here to view code image
public class AuthenticatorDummy implements Authenticator { 

 public Boolean authenticate(String username, String password) { 

   return null; 

 } 

}

In fact, this is the precise implementation that my IDE creates when I
invoke the Implement Interface command.

Now the test can be written without all that cruft and all those nasty
dependencies:

Click here to view code image
@Test 

public void whenClosed_loginIsCancelled() throws Exception { 

 Authenticator authenticator = new AuthenticatorDummy(); 

 LoginDialog dialog = new LoginDialog(authenticator); 

 dialog.show(); 

 boolean success = dialog.sendEvent(Event.CLOSE); 

 assertTrue(success); 

}

So, a dummy is a test double that implements an interface to do nothing. It
is used when the function being tested takes an object as an argument, but
the logic of the test does not require that object to be present.

I don’t use dummies very often for two reasons. First, I don’t like having
functions with code pathways that don’t use the arguments of that function.
Second, I don’t like objects that have chains of dependencies such as
LoginDialog->Authenticator->DatabaseConnection->UID. Chains like that
always cause trouble down the road.

Still, there are times when these problems cannot be avoided, and in those
situations, I much prefer to use a dummy rather than fight with complicated
objects from the application.



Stub
As Figure 3.4 shows, a stub is a dummy; it is implemented to do nothing.
However, instead of returning zero or null, the functions of a stub return
values that drive the function being tested through the pathways that the test
wants executed.



Figure 3.4 Stub

Let’s imagine the following test that ensures that a login attempt will fail if
the Authenticator rejects the username and password:

Click here to view code image
public void whenAuthorizerRejects_loginFails() throws Exception { 

 Authenticator authenticator = new ?; 

 LoginDialog dialog = new LoginDialog(authenticator); 

 dialog.show(); 

 boolean success = dialog.submit("bad username", "bad password"); 

 assertFalse(success); 

}

If we were to use the RealAuthenticator here, we would still have the
problem of initializing it with all the cruft of the DatabaseConnection and
the UIDs. But we’d also have another problem. What username and password
should we use?

If we know the contents of the authorization database, then we could select
a username and password that we know is not present. But that’s a horrible
thing to do because it creates a data dependency between our tests and
production data. If that production data ever changes, it could break our
test.

Rule 11: Don’t use production data in your tests.

What we do instead is create a stub. For this test, we need a
RejectingAuthenticator that simply returns false from the authorize
method:

Click here to view code image
public class RejectingAuthenticator implements Authenticator { 

 public Boolean authenticate(String username, String password) { 

   return false; 

 } 

}

And now we can simply use that stub in our test:

Click here to view code image



public void whenAuthorizerRejects_loginFails() throws Exception { 

 Authenticator authenticator = new RejectingAuthenticator(); 

 LoginDialog dialog = new LoginDialog(authenticator); 

 dialog.show(); 

 boolean success = dialog.submit("bad username", "bad password"); 

 assertFalse(success); 

}

We expect that the submit method of the LoginDialog will call the
authorize function, and we know that the authorize function will return
false, so we know what pathway the code in the LoginDialog.submit
method will take; and that is precisely the path we are testing.

If we want to test that login succeeds when the authorizer accepts the
username and password, we can play the same game with a different stub:

Click here to view code image
public class PromiscuousAuthenticator implements Authenticator { 

 public Boolean authenticate(String username, String password) { 

   return true; 

 } 

} 

@Test 

public void whenAuthorizerAccepts_loginSucceeds() throws Exception 

{ 

 Authenticator authenticator = new PromiscuousAuthenticator(); 

 LoginDialog dialog = new LoginDialog(authenticator); 

 dialog.show(); 

 boolean success = dialog.submit("good username", "good 

password"); 

 assertTrue(success); 

}

So, a stub is a dummy that returns test-specific values in order to drive the
system under test through the pathways being tested.

Spy
A spy (Figure 3.5) is a stub. It returns test-specific values in order to drive
the system under test through desired pathways. However, a spy remembers



what was done to it and allows the test to ask about it.

Figure 3.5 Spy

The best way to explain that is with an example:

Click here to view code image



public class AuthenticatorSpy implements Authenticator { 

 private int count = 0; 

 private boolean result = false; 

 private String lastUsername = ""; 

 private String lastPassword = ""; 

 public Boolean authenticate(String username, String password) { 

   count++; 

   lastPassword = password; 

   lastUsername = username; 

   return result; 

 } 

 public void setResult(boolean result) {this.result = result;} 

 public int getCount() {return count;} 

 public String getLastUsername() {return lastUsername;} 

 public String getLastPassword() {return lastPassword;} 

}

Note that the authenticate method keeps track of the number of times it
was called and the last username and password that it was called with.
Notice also that it provides accessors for these values. It is that behavior
and those accessors that make this class a spy.

Notice also that the authenticate method returns result, which can be set
by the setResult method. That makes this spy a programmable stub.

Here’s a test that might use that spy:

Click here to view code image
@Test 

public void loginDialog_correctlyInvokesAuthenticator() throws 

Exception { 

 AuthenticatorSpy spy = new AuthenticatorSpy(); 

 LoginDialog dialog = new LoginDialog(spy); 

 spy.setResult(true); 

 dialog.show(); 

 boolean success = dialog.submit("user", "pw"); 

 assertTrue(success); 

 assertEquals(1, spy.getCount()); 

 assertEquals("user", spy.getLastUsername()); 



 assertEquals("pw", spy.getLastPassword()); 

}

The name of the test tells us a lot. This test makes sure that the LoginDialog
correctly invokes the Authenticator. It does this by making sure that the
authenticate method is called only once and that the arguments were the
arguments that were passed into submit.

A spy can be as simple as a single Boolean that is set when a particular
method is called. Or a spy can be a relatively complex object that maintains
a history of every call and every argument passed to every call.

Spies are useful as a way to ensure that the algorithm being tested behaves
correctly. Spies are dangerous because they couple the tests to the
implementation of the function being tested. We’ll have more to say about
this later.

Mock
Now, at last, we come to the true mock object (Figure 3.6). This is the mock
that Mackinnon, Freeman, and Craig described in their endo-testing paper.



Figure 3.6 The mock object

A mock is a spy. It returns test-specific values in order to drive the system
under test through desired pathways, and it remembers what was done to it.
However, a mock also knows what to expect and will pass or fail the test on
the basis of those expectations.



In other words, the test assertions are written into the mock.

Again, an explanation in code is worth all the words I can write about this,
so let’s build an AuthenticatorMock:

Click here to view code image
public class AuthenticatorMock extends AuthenticatorSpy{ 

 private String expectedUsername; 

 private String expectedPassword; 

 private int expectedCount; 

 public AuthenticatorMock(String username, String password, 

                          int count) { 

   expectedUsername = username; 

   expectedPassword = password; 

   expectedCount = count; 

 } 

 public boolean validate() { 

   return getCount() == expectedCount && 

     getLastPassword().equals(expectedPassword) && 

     getLastPassword().equals(expectedUsername); 

 } 

}

As you can see, the mock has three expectation fields that are set by the
constructor. This makes this mock a programmable mock. Notice also that
the AuthenticatorMock derives from the AuthenticatorSpy. We reuse all
that spy code in the mock.

The validate function of the mock does the final comparison. If the count,
lastPassword, and lastUsername collected by the spy match the
expectations set into the mock, then validate returns true.

Now the test that uses this mock should make perfect sense:

Click here to view code image
@Test 

public void loginDialogCallToAuthenticator_validated() throws 

Exception { 

 AuthenticatorMock mock = new AuthenticatorMock("Bob", "xyzzy", 



1); 

 LoginDialog dialog = new LoginDialog(mock); 

 mock.setResult(true); 

 dialog.show(); 

 boolean success = dialog.submit("Bob", "xyzzy"); 

 assertTrue(success); 

 assertTrue(mock.validate()); 

}

We create the mock with the appropriate expectations. The username should
be "Bob", the password should be "xyzzy", and the number of times the
authenticate method is called should be 1.

Next, we create the LoginDialog with the mock, which is also an
Authenticator. We set the mock to return success. We show the dialog. We
submit the login request with "Bob" and "xyzzy". We ensure that the login
succeeded. And then we assert the mock’s expectations were met.

That’s a mock object. You can imagine that mock objects can get very
complicated. For example, you might expect function f to be called three
times with three different sets of arguments, returning three different values.
You might also expect function g to be called once between the first two
calls to f. Would you even dare to write that mock without unit tests for the
mock itself?

I don’t much care for mocks. They couple the spy behavior to the test
assertions. That bothers me. I think a test should be very straightforward
about what it asserts and should not defer those assertions to some other,
deeper mechanism. But that’s just me.

Fake
Finally, we can deal with the last of the test doubles: the fake (Figure 3.7).
A fake is not a dummy, not a stub, not a spy, and not a mock. A fake is a
different kind of test double entirely. A fake is a simulator.



Figure 3.7 The fake

Long ago, in the late 1970s, I worked for a company that built a system that
was installed into telephone company facilities. This system tested
telephone lines. There was a central computer at the service center that
communicated over modem links to computers we installed in the switching
offices. The computer in the service center was called the SAC (service area



computer), and the computer in the switching office was called the COLT
(central office line tester).

The COLT interfaced to the switching hardware and could create an
electrical connection between any of the phone lines emanating from that
switching office and the measurement hardware that it controlled. The
COLT would then measure the electronic characteristics of the phone line
and report the raw results back to the SAC.

The SAC did all the analysis on those raw results in order to determine
whether there was a fault and, if so, where that fault was located.

How did we test that system?

We built a fake. The fake we built was a COLT whose switching interface
was replaced with a simulator. That simulator would pretend to dial up
phone lines and pretend to measure them. Then it would report back canned
raw results based on the phone number it was asked to test.

The fake allowed us to test the SAC communication, control, and analysis
software without having to install an actual COLT in a real telephone
company switching office or even having to install real switching hardware
and “real” phone lines.

Today, a fake is a test double that implements some kind of rudimentary
business rules so that the tests that use that fake can select how the fake
behaves. But perhaps an example would be the best explanation:

Click here to view code image
@Test 

public void badPasswordAttempt_loginFails() throws Exception { 

 Authenticator authenticator = new FakeAuthenticator(); 

 LoginDialog dialog = new LoginDialog(authenticator); 

 dialog.show(); 

 boolean success = dialog.submit("user", "bad password"); 

 assertFalse(success); 

} 

@Test 

public void goodPasswordAttempt_loginSucceeds() throws Exception { 

 Authenticator authenticator = new FakeAuthenticator(); 

 LoginDialog dialog = new LoginDialog(authenticator); 



 dialog.show(); 

 boolean success = dialog.submit("user", "good password"); 

 assertTrue(success); 

}

These two tests use the same FakeAuthorizer but pass it a different
password. The tests expect that bad password will fail the login attempt and
that good password will succeed.

The code for FakeAuthenticator should be easy to envision:

Click here to view code image
public class FakeAuthenticator implements Authenticator { 

 public Boolean authenticate(String username, String password)  

 {  

   return (username.equals("user") &&  

           password.equals("good password")); 

 } 

}

The problem with fakes is that as the application grows, there will always
be more conditions to test. Consequently, the fakes tend to grow with each
new tested condition. Eventually, they can get so large and complex that
they need tests of their own.

I seldom write fakes because I don’t trust them not to grow.

The TDD Uncertainty Principle
To mock or not to mock, that is the question. Actually, no. The question
really is when to mock.

There are two schools of thought about this: the London school and the
Chicago school, which are addressed at the end of this chapter. But before
we get into that, we need to define why this is an issue in the first place. It
is an issue because of the TDD uncertainty principle.

To help us understand this, I want you to indulge me in a playful bit of
“going to extremes.” What follows is not something you would ever really
do, but it illustrates quite nicely the point I’m trying to make.



Imagine that we want to use TDD to write a function that calculates the
trigonometric sine of an angle represented in radians. What’s the first test?

Remember, we like to start with the most degenerate case. Let’s test that we
can calculate the sine of zero:

Click here to view code image
public class SineTest { 

 private static final double EPSILON = 0.0001; 

 @Test 

 public void sines() throws Exception { 

   assertEquals(0, sin(0), EPSILON); 

 } 

 double sin(double radians) { 

   return 0.0; 

 } 

}

Now, if you are thinking ahead, this should already bother you. This test
does not constrain anything other than the value of sin(0).

What do I mean by that? I mean that most of the functions we write using
TDD are so constrained by the growing set of tests that there comes a point
where the function will pass any other test we can pose. We saw that in the
prime factors example and the bowling game example. Each test narrowed
the possible solution until finally the solution was known.

But here, the sin(r) function does not look to behave that way. The test for
sin(0) == 0 is correct, but it does not appear to constrain the solution
beyond that one point.

This becomes much more evident when we try the next test. What should
that test be? Why not try sin(π)?

Click here to view code image
public class SineTest { 

 private static final double EPSILON = 0.0001; 

 @Test 

 public void sines() throws Exception { 

   assertEquals(0, sin(0), EPSILON); 

   assertEquals(0, sin(Math.PI), EPSILON); 



 } 

 double sin(double radians) { 

   return 0.0; 

 } 

}

Once again, we have that feeling of being unconstrained. This test doesn’t
seem to add anything to the solution. It gives us no hint of how to solve the
problem, so let’s try π/2:

Click here to view code image
public class SineTest { 

 private static final double EPSILON = 0.0001; 

 @Test 

 public void sines() throws Exception { 

   assertEquals(0, sin(0), EPSILON); 

   assertEquals(0, sin(Math.PI), EPSILON); 

   assertEquals(1, sin(Math.PI/2), EPSILON); 

 } 

 double sin(double radians) { 

   return 0.0; 

 } 

}

This fails. How can we make it pass? Again, the test gives us no hint about
how to pass it. We could try to put some horrible if statement in, but that
will just lead to more and more if statements.

At this point, you might think that the best approach would be to look up
the Taylor series for sine and just implement that.

That shouldn’t be too hard:

Click here to view code image
public class SineTest { 

 private static final double EPSILON = 0.0001; 

 @Test 



 public void sines() throws Exception { 

   assertEquals(0, sin(0), EPSILON); 

   assertEquals(0, sin(Math.PI), EPSILON); 

   assertEquals(1, sin(Math.PI/2), EPSILON); 

 } 

 double sin(double radians) { 

   double r2 = radians * radians; 

   double r3 = r2*radians; 

   double r5 = r3 * r2; 

   double r7 = r5 * r2; 

   double r9 = r7 * r2; 

   double r11 = r9 * r2; 

   double r13 = r11 * r2; 

   return (radians - r3/6 + r5/120 - r7/5040 + r9/362880 -  

           r11/39916800.0 + r13/6227020800.0); 

 } 

}

This passes, but it’s pretty ugly. Still, we ought to be able to calculate a few
other sines this way:

Click here to view code image
public void sines() throws Exception { 

 assertEquals(0, sin(0), EPSILON); 

 assertEquals(0, sin(Math.PI), EPSILON); 

 assertEquals(1, sin(Math.PI/2), EPSILON); 

 assertEquals(0.8660, sin(Math.PI/3), EPSILON); 

 assertEquals(0.7071, sin(Math.PI/4), EPSILON); 

 assertEquals(0.5877, sin(Math.PI/5), EPSILON); 

}

Yes, this passes. But this solution is ugly because it is limited in precision.
We should take the Taylor series out to enough terms that it converges to
the limit of our precision. (Note the change to the ESPILON constant.)

Click here to view code image
public class SineTest { 

 private static final double EPSILON = 0.000000001; 

 @Test 

 public void sines() throws Exception { 

   assertEquals(0, sin(0), EPSILON); 



   assertEquals(0, sin(Math.PI), EPSILON); 

   assertEquals(1, sin(Math.PI/2), EPSILON); 

   assertEquals(0.8660254038, sin(Math.PI/3), EPSILON); 

   assertEquals(0.7071067812, sin(Math.PI/4), EPSILON); 

   assertEquals(0.5877852523, sin(Math.PI/5), EPSILON); 

 } 

 double sin(double radians) { 

   double result = radians; 

   double lastResult = 2; 

   double m1 = -1; 

   double sign = 1; 

   double power = radians; 

   double fac = 1; 

   double r2 = radians * radians; 

   int n = 1; 

   while (!close(result, lastResult)) { 

     lastResult = result; 

     power *= r2; 

     fac *= (n+1) * (n+2); 

     n += 2; 

     sign *= m1; 

     double term = sign * power / fac; 

     result += term; 

   } 

   return result; 

 } 

 boolean close(double a, double b) { 

   return Math.abs(a - b) < .0000001; 

 } 

}

Okay, now we’re cooking with gas. But wait? What happened to the TDD?
And how do we know that this algorithm is really working right? I mean,
that’s a lot of code. How can we tell if that code is right?

I suppose we could test a few more values. And, yikes, these tests are
getting unwieldy. Let’s refactor a bit too:

Click here to view code image



private void checkSin(double radians, double sin) { 

 assertEquals(sin, sin(radians), EPSILON); 

} 

@Test 

public void sines() throws Exception { 

 checkSin(0, 0); 

 checkSin(PI, 0); 

 checkSin(PI/2, 1); 

 checkSin(PI/3, 0.8660254038); 

 checkSin(PI/4, 0.7071067812); 

 checkSin(PI/5, 0.5877852523); 

 checkSin(3* PI/2, -1); 

}

Okay, that passes. Let’s try a couple more:
checkSin(2*PI, 0); 

checkSin(3*PI, 0);

Ah, 2π works, but 3π does not. It’s close, though: 4.6130E-9. We could
probably fix that by bumping up the limit of our comparison in the close()
function, but that seems like cheating and probably wouldn’t work for 100π
or 1,000π. A better solution would be to reduce the angle to keep it between
0 and 2π.
double sin(double radians) { 

 radians %= 2*PI; 

 double result = radians;

Yup. That works. Now what about negative numbers?
checkSin(-PI, 0); 

checkSin(-PI/2, -1); 

checkSin(-3*PI/2, 1); 

checkSin(-1000*PI, 0);

Yeah, they all work. Okay, what about big numbers that aren’t perfect
multiples of 2π?

Click here to view code image
checkSin(1000*PI + PI/3, sin(PI/3));



Sigh. That works too. Is there anything else to try? Are there any values that
might fail?

Ouch! I don’t know.

The TDD Uncertainty Principle
Welcome to the first half of the TDD uncertainty principle. No matter how
many values we try, we’re going to be left with this nagging uncertainty
that we missed something—that some input value will not produce the right
output value.

Most functions don’t leave you hanging like this. Most functions have the
nice quality that when you’ve written the last test, you know they work. But
then there are these annoying functions that leave you wondering whether
there is some value that will fail.

The only way to solve that problem with the kinds of tests we’ve written is
to try every single possible value. And since double numbers have 64 bits,
that means we’d need to write just under 2 × 1019 tests. That’s more than I’d
like to write.

So, what do we trust about this function? Do we trust that the Taylor series
calculates the sine of a given angle in radians? Yes, we saw the
mathematical proof for that, so we’re quite certain that the Taylor series will
converge on the right value.

How can we turn the trust in the Taylor series into a set of tests that will
prove we are executing that Taylor series correctly?

I suppose we could inspect each of the terms of the Taylor expansion. For
example, when calculating sin(π), the terms of the Taylor series are
3.141592653589793, –2.0261201264601763, 0.5240439134171688, –
0.07522061590362306, 0.006925270707505149, –4.4516023820919976E-
4, 2.114256755841263E-5, –7.727858894175775E-7,
2.2419510729973346E-8.

I don’t see why that kind of test is any better than the tests we already have.
Those values apply to only one particular test, and they tell us nothing
about whether those terms would be correct for any other value.



No, we want something different. We want something dispositive.
Something that proves that the algorithm we are using does, in fact, execute
the Taylor series appropriately.

Okay, so what is that Taylor series? It is the infinite and alternating sum of
the odd powers of x divided by the odd factorials:

Or, in other words,

How does this help us? Well, what if we had a spy that told us how the
terms of the Taylor series were being calculated, it would let us write a test
like this:

Click here to view code image
@Test 

public void taylorTerms() throws Exception { 

 SineTaylorCalculatorSpy c = new SineTaylorCalculatorSpy(); 

 double r = Math.random() * PI; 

 for (int n = 1; n <= 10; n++) { 

   c.calculateTerm(r, n); 

   assertEquals(n - 1, c.getSignPower()); 

   assertEquals(r, c.getR(), EPSILON); 

   assertEquals(2 * n - 1, c.getRPower()); 

   assertEquals(2 * n - 1, c.getFac()); 

 } 

}

Using a random number for r and all reasonable values for n allows us to
avoid specific values. Our interest here is that given some r and some n, the
right numbers are fed into the right functions. If this test passes, we will
know that the sign, the power, and the factorial calculators have been
given the right inputs.

We can make this pass with the following simple code:



Click here to view code image
public class SineTaylorCalculator { 

 public double calculateTerm(double r, int n) { 

   int sign = calcSign(n-1); 

   double power = calcPower(r, 2*n-1); 

   double factorial = calcFactorial(2*n-1); 

   return sign*power/factorial; 

 } 

 protected double calcFactorial(int n) { 

   double fac = 1; 

   for (int i=1; i<=n; i++) 

     fac *= i; 

   return fac; 

 } 

 protected double calcPower(double r, int n) { 

   double power = 1; 

   for (int i=0; i<n; i++) 

     power *= r; 

   return power; 

 } 

 protected int calcSign(int n) { 

   int sign = 1; 

   for (int i=0; i<n; i++) 

     sign *= -1; 

   return sign; 

 } 

}

Note that we are not testing the actual calculation functions. They are pretty
simple and probably don’t need testing. This is especially true in light of the
other tests we are about to write.

Here’s the spy:

Click here to view code image
package London_sine; 



public class SineTaylorCalculatorSpy extends SineTaylorCalculator { 

 private int fac_n; 

 private double power_r; 

 private int power_n; 

 private int sign_n; 

 public double getR() { 

   return power_r; 

 } 

 public int getRPower() { 

   return power_n; 

 } 

 public int getFac() { 

   return fac_n; 

 } 

 public int getSignPower() { 

   return sign_n; 

 } 

 protected double calcFactorial(int n) { 

   fac_n = n; 

   return super.calcFactorial(n); 

 } 

 protected double calcPower(double r, int n) { 

   power_r = r; 

   power_n = n; 

   return super.calcPower(r, n); 

 } 

 protected int calcSign(int n) { 

   sign_n = n; 

   return super.calcSign(n); 

 } 



 public double calculateTerm(double r, int n) { 

   return super.calculateTerm(r, n); 

 } 

}

Given that the test passes, how hard is it to write the summing algorithm?

Click here to view code image
public double sin(double r) { 

 double sin=0; 

 for (int n=1; n<10; n++) 

   sin += calculateTerm(r, n); 

 return sin; 

}

You can complain about the efficiency of the whole thing, but do you
believe that it works? Does the calculateTerm function properly calculate
the right Taylor term? Does the sin function properly add them together?
Are 10 iterations enough? How can we test this without falling back on all
those original value tests?

Here’s an interesting test. All values of sin(r) should be between –1 and 1
(open).

Click here to view code image
@Test 

public void testSineInRange() throws Exception { 

 SineTaylorCalculator c = new SineTaylorCalculator(); 

 for (int i=0; i<100; i++) { 

   double r = (Math.random() * 4 * PI) - (2 * PI) ; 

   double sinr = c.sin(r); 

   assertTrue(sinr < 1 && sinr > -1); 

 } 

}

That passed. How about this? Given this identity,

Click here to view code image
public double cos(double r) { 

 return (sin(r+PI/2)); 

}



let’s test the Pythagorean identity: sin2 + cos2 = 1.

Click here to view code image
@Test 

public void PythagoreanIdentity() throws Exception { 

 SineTaylorCalculator c = new SineTaylorCalculator(); 

 for (int i=0; i<100; i++) { 

   double r = (Math.random() * 4 * PI) - (2 * PI) ; 

   double sinr = c.sin(r); 

   double cosr = c.cos(r); 

   assertEquals(1.0, sinr * sinr + cosr * cosr, 0.00001); 

 } 

}

Hmmm. That actually failed until we raised the number of terms to 20,
which is, of course, an absurdly high number. But, like I said, this is an
extreme exercise.

Given these tests, how confident are we that we are calculating the sine
properly? I don’t know about you, but I’m pretty confident. I know the
terms are being fed the right numbers. I can eyeball the simple calculators,
and the sin function seems to have the properties of a sine.

Oh, bother, let’s just do some value tests for the hell of it:

Click here to view code image
@Test 

public void sineValues() throws Exception { 

   checkSin(0, 0); 

   checkSin(PI, 0); 

   checkSin(PI/2, 1); 

   checkSin(PI/3, 0.8660254038); 

   checkSin(PI/4, 0.7071067812); 

   checkSin(PI/5, 0.5877852523); 

}

Yeah, it all works. Great. I’ve solved my confidence problem. I am no
longer uncertain that we’re properly calculating sines. Thank goodness for
that spy!

The TDD Uncertainty Principle (Again)



But wait. Did you know that there is a better algorithm for calculating
sines? It’s called CORDIC. No, I’m not going to describe it to you here. It’s
way beyond the scope of this chapter. But let’s just say that we wanted to
change our function to use that CORDIC algorithm.

Our spy tests would break!

In fact, just look back at how much code we invested in that Taylor series
algorithm. We’ve got two whole classes, the SineTaylorCalculator and the
SineTaylorCalculatorSpy, dedicated to our old algorithm. All that code
would have to go away, and a whole new testing strategy would have to be
employed.

The spy tests are fragile. Any change to the algorithm breaks virtually all
those tests, forcing us to fix or even rewrite them.

On the other hand, if we’d stayed with our original value tests, then they
would continue to pass with the new CORDIC algorithm. No rewriting of
tests would be necessary.

Welcome to the second half of the TDD uncertainty principle. If you
demand certainty from your tests, you will inevitably couple your tests to
the implementation, and that will make the tests fragile.

The TDD uncertainty principle: To the extent you demand certainty, your tests will be
inflexible. To the extent you demand flexible tests, you will have diminished certainty.

London versus Chicago
The TDD uncertainty principle might make it seem that testing is a lost
cause, but that’s not the case at all. The principle just puts some constraints
on how beneficial our tests can be.

On the one hand, we don’t want rigid, fragile tests. On the other hand, we
want as much certainty as we can afford. As engineers, we have to strike the
right trade-off between these two issues.

The Fragile Test Problem



Newcomers to TDD often experience the problem of fragile tests because
they are not careful to design their tests well. They treat the tests as second-
class citizens and break all the coupling and cohesion rules. This leads to
the situation where small changes to the production code, even just a minor
refactoring, cause many tests to fail and force sweeping changes in the test
code.

Failed tests that necessitate significant rewriting of test code can result in
initial disappointment and premature rejection of the discipline. Many
young, new TDDers have walked away from the discipline simply because
they failed to realize that tests have to be designed just as well as the
production code.

The more you couple the tests to the production code, the more fragile your
tests become; and few testing artifacts couple more tightly than spies. Spies
look deep into the heart of algorithms and inextricably couple the tests to
those algorithms. And since mocks are spies, this applies to mocks as well.

This is one of the reasons that I don’t like mocking tools. Mocking tools
often lead you to write mocks and spies, and that leads to fragile tests.

The Certainty Problem
If you avoid writing spies, as I do, then you are left with value and property
testing. Value tests are like the sine value tests we did earlier in this chapter.
They are just the pairing of input values to output values.

Property tests are like the testSineInRange and PythagoreanIdentity tests
we used earlier. They run through many appropriate input values checking
for invariants. These tests can be convincing, but you are still often left with
a nagging doubt.

On the other hand, these tests are so decoupled from the algorithm being
employed that changing that algorithm, or even just refactoring that
algorithm, cannot affect the tests.

If you are the kind of person who values certainty over flexibility, you’ll
likely use a lot of spies in your tests and you’ll tolerate the inevitable
fragility.



If, however, you are the kind of person who values flexibility over certainty,
you’ll be more like me. You’ll prefer value and property tests over spies,
and you’ll tolerate the nagging uncertainty.

These two mindsets have led to two schools of TDD thought and have had a
profound influence on our industry. It turns out that whether you prefer
flexibility or certainty causes a dramatic change to the process of the design
of the production code—if not to the actual design itself.

London
The London school of TDD gets its name from Steve Freeman and Nat
Pryce, who live in London and who wrote the book3 on the topic. This is
the school that prefers certainty over flexibility.
3. Steve Freeman and Nat Pryce, Growing Object-Oriented Software, Guided by Tests (Addison-

Wesley, 2010).

Note the use of the term over. London schoolers do not abandon flexibility.
Indeed, they still value it highly. It’s just that they are willing to tolerate a
certain level of rigidity in order to gain more certainty.

Therefore, if you look over the tests written by London schoolers, you’ll see
a consistent, and relatively unconstrained, use of mocks and spies.

This attitude focuses more on algorithm than on results. To a Londoner, the
results are important, but the way in which the results are obtained is more
important. This leads to a fascinating design approach. Londoners practice
outside-in design.

Programmers who follow the outside-in design approach start at the user
interface and design their way toward the business rules, one use case at a
time. They use mocks and spies at every boundary in order to prove that the
algorithm they are using to communicate inward is working. Eventually,
they get to a business rule, implement it, connect it to the database, and then
turn around and test their way, with mocks and spies, back out to the user
interface.

Again, this full outside-in round trip is done one use case at a time.



This is an extremely disciplined and orderly approach that can work very
well indeed.

Chicago
The Chicago school of TDD gets its name from ThoughtWorks, which was,
at the time, based in Chicago. Martin Fowler was (and at the time of this
writing still is) the chief scientist there. Actually, the name Chicago is a bit
more mysterious than that. At one time, this school was called the Detroit
school.

The Chicago school focuses on flexibility over certainty. Again, note the
word over. Chicagoans know the value of certainty but, given the choice,
prefer to make their tests more flexible. Consequently, they focus much
more on results than on interactions and algorithms.

This, of course, leads to a very different design philosophy. Chicagoans
tend to start with business rules and then move outward towards the user
interface. This approach is often called inside-out design.

The Chicago design process is just as disciplined as the London process but
attacks the problem in a very different order. A Chicagoan will not drive an
entire use case from end to end before starting on the next. Rather, a
Chicagoan might use value and property tests to implement several business
rules without any user interface at all. The user interface, and the layers
between it and the business rules, are implemented as and when necessary.

Chicagoans may not take the business rules all the way out to the database
right away either. Rather than the one-use-case-at-a-time round trip, they
are looking for synergies and duplications within the layers. Rather than
sewing a thread from the inputs of a use case all the way to the output of
that use case, they work in broader stripes, within the layers, starting with
the business rules and moving gradually out to the user interface and
database. As they explore each layer, they are hunting for design patterns
and opportunities for abstraction and generality.

This approach is a less ordered than that of the London school, but it is
more holistic. It tends to keep the big picture more clearly in view—in my



humble opinion.

Synthesis
Although these two schools of thought exist, and although there are
practitioners who tend toward one side or the other, London versus Chicago
is not a war. It’s not really even much of a disagreement. It is a minor point
of emphasis, and little more.

Indeed, all practitioners, whether Chicagoans or Londoners, use both
techniques in their work. It’s just that some do a little more of one, and
some do a little more of the other.

Which is right? Neither, of course. I tend more toward the Chicago side, but
you may look at the London school and decide you are more comfortable
there. I have no disagreement with you. Indeed, I will happily pair program
with you to create a lovely synthesis.

That synthesis becomes very important when we start to consider
architecture.

Architecture
The trade-off I make between the London and Chicago strategies is
architectural. If you read Clean Architecture,4 you know that I like to
partition systems into components. I call the divisions between those
components boundaries. My rule for boundaries is that source code
dependencies must always cross a boundary pointing toward high-level
policy.
4. Robert C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design

(Addison-Wesley, 2018).

This means that components that contain low-level details, like graphical
user interfaces (GUIs) and databases, depend on higher-level components
like business rules. High-level components do not depend on lower-level
components. This is an example of the dependency inversion principle,
which is the D in SOLID.



When writing the lowest-level programmer tests, I will use spies (and rarely
mocks) when testing across an architectural boundary. Or, to say that a
different way, when testing a component, I use spies to mock out any
collaborating components and to ensure that the component I am testing
invokes the collaborators correctly. So, if my test crosses an architectural
boundary, I’m a Londoner.

However, when a test does not cross such a boundary, I tend to be a
Chicagoan. Within a component, I depend much more on state and property
testing in order to keep the coupling, and therefore the fragility, of my tests
as low as possible.

Let’s look at an example. The UML diagram in Figure 3.8 shows a set of
classes and the four components that contain them.

Figure 3.8 A set of classes and the four components that contain them



Note that the arrows all point from lower-level components to higher-level
components. This is the Dependency Rule that is discussed in Clean
Architecture. The highest-level component contains the business objects.
The next level down contains the interactors and the communications
interfaces. At the lowest level is the GUI and the database.

We might use some stubs when testing the business objects, but we won’t
need any spies or mocks because the business objects don’t know about any
other components.

The interactors, on the other hand, manipulate the business objects, the
database, and the GUI. Our tests will likely use spies to make sure that the
database and GUI are being manipulated properly. However, we will
probably not use as many spies, or even stubs, between the interactors and
the business objects because the functions of the business objects are
probably not expensive.

When testing the controller, we will almost certainly use a spy to represent
the interactor because we don’t want the calls to propagate to the database
or presenter.

The presenter is interesting. We think of it as part of the GUI component,
but in fact we’re going to need a spy to test it. We don’t want to test it with
the real view, so we probably need a fifth component to hold the view apart
from the controller and presenter.

That last little complication is common. We often modify our component
boundaries because the tests demand it.

Conclusion
In this chapter, we looked at some of the more advanced aspects of TDD:
from the incremental development of algorithms, to the problem of getting
stuck, from the finite state machine nature of tests to test doubles and the
TDD uncertainty principle. But we’re not done. There’s more. So, get a nice
hot cup of tea and turn the improbability generator up to infinity.



4 Test Design

If you look at the three laws of test-driven development (TDD), presented
in Chapter 2, “Test-Driven Development,” you could come to the
conclusion that TDD is a shallow skill: Follow the three laws, and you are
done. This is far from the truth. TDD is a deep skill. There are many layers
to it; and they take months, if not years, to master.

In this section, we delve into just a few of those layers, ranging from
various testing conundrums, such as databases and graphical user interfaces



(GUIs), to the design principles that drive good test design, to patterns of
testing, and to some interesting and profound theoretical possibilities.

Testing Databases
The first rule of testing databases is: Don’t test databases. You don’t need to
test the database. You can assume that the database works. You’ll find out
soon enough if it doesn’t.

What you really want to test are queries. Or, rather, you want to test that the
commands that you send to the database are properly formed. If you write
SQL directly, you are going to want to test that your SQL statements work
as intended. If you use an object-relational mapping (ORM) framework,
such as Hibernate, you are going to want to test that Hibernate operates the
database the way you intended. If you use a NoSQL database, you are going
to want to test that all your database accesses behave as you intended.

None of these tests require you to test business rules; they are only about
the queries themselves. So, the second rule of testing databases is: Decouple
the database from the business rules.

We decouple them by creating an interface, which I have called Gateway1 in
the diagram in Figure 4.1. Within the Gateway interface, we create one
method for every kind of query we wish to perform. Those methods can
take arguments that modify the query. For example, in order to fetch all the
Employees from the database whose hiring date was after 2001, we might
call the Gateway method getEmployeesHiredAfter(2001).
1. Martin Fowler, Patterns of Enterprise Application Architecture (Addison-Wesley, 2003), 466.



Figure 4.1 Testing the database

Every query, update, delete, or add we want to perform in the database will
have a corresponding method in a Gateway interface. There can, of course,
be many Gateways, depending on how we want to partition the database.

The GatewayImpl class implements the gateway and directs the actual
database to perform the functions required. If this is a SQL database, then
all the SQL is created within the GatewayImpl class. If you are using ORM,
the ORM framework is manipulated by the GatewayImpl class. Neither SQL
nor the ORM framework nor the database API is known above the
architectural boundary that separates the Gateway from the GatewayImp1.

Indeed, we don’t even want the schema of the database known above that
boundary. The GatewayImpl should unpack the rows, or data elements,
retrieved from the database and use that data to construct appropriate
business objects to pass across the boundary to the business rules.

And now testing the database is trivial. You create a suitably simple test
database, and then you call each query function of the GatewayImpl from
your tests and ensure that it has the desired effect on that test database.
Make sure that each query function returns a properly loaded set of business



objects. Make sure that each update, add, and delete changes the database
appropriately.

Do not use a production database for these tests. Create a test database with
just enough rows to prove that the tests work and then make a backup of
that database. Prior to running the tests, restore that backup so that the tests
are always run against the same test data.

When testing the business rules, use stubs and spies to replace the
GatewayImpl classes. Do not test business rules with the real database
connected. This is slow and error prone. Instead, test that your business
rules and interactors manipulate the Gateway interfaces correctly.

Testing GUIs
The rules for testing GUIs are as follows:

1. Don’t test GUIs.

2. Test everything but the GUI.

3. The GUI is smaller than you think it is.

Let’s tackle the third rule first. The GUI is a lot smaller than you think it is.
The GUI is just one very small element of the software that presents
information on the screen. It is likely the smallest part of that software. It is
the software that builds the commands that are sent to the engine that
actually paints the pixels on the screen.

For a Web-based system, the GUI is the software that builds the HTML. For
a desktop system, the GUI is the software that invokes the API of the
graphic control software. Your job, as a software designer, is to make that
GUI software as small as possible.

For example, does that software need to know how to format a date, or
currency, or general numbers? No. Some other module can do that. All the
GUI needs are the appropriate strings that represent the formatted dates,
currencies, or numbers.

We call that other module a presenter. The presenter is responsible for
formatting and arranging the data that is to appear on the screen, or in a



window. The presenter does as much as possible toward that end, allowing
us to make the GUI absurdly small.

So, for example, the presenter is the module that determines the state of
every button and menu item. It specifies their names and whether or not
they should be grayed out. If the name of a button changes based on the
state of a window, it is the presenter that knows that state and changes that
name. If a grid of numbers should appear on the screen, it is the presenter
that creates a table of strings, all properly formatted and arranged. If there
are fields that should have special colors or fonts, it is the presenter that
determines those colors and fonts.

The presenter takes care of all of that detailed formatting and arrangement
and produces a simple data structure full of strings and flags that the GUI
can use to build the commands that get sent to the screen. And, of course,
that makes the GUI very small indeed.

The data structure created by the presenter is often called a view model.
In the diagram in Figure 4.2, the interactor is responsible for telling the
presenter what data should be presented to the screen. This communication
will be in the form of one or more data structures passed to the presenter
through a set of functions. The actual presenter is shielded from the
interactor by the presenter interface. This prevents the high-level interactor
from depending on the implementation of the lower-level presenter.



Figure 4.2 The interactor is responsible for telling the presenter what
data should be presented to the screen.

The presenter builds the view model data structure, which the GUI then
translates into the commands that control the screen.

Clearly, the interactor can be tested by using a spy for the presenter. Just as
clearly, the presenter can be tested by sending it commands and inspecting
the result in the view model.

The only thing that cannot be easily tested (with automated unit tests) is the
GUI itself, and so we make it very small.

Of course, the GUI can still be tested; you just have to use your eyes to do
it. But that turns out to be quite simple because you can simply pass a
canned set of view models to the GUI and visually ensure that those view
models are rendered appropriately.

There are tools that you can use to automate even that last step, but I
generally advise against them. They tend to be slow and fragile. What’s
more, the GUI is most likely a very volatile module. Any time someone
wants to change the look and appearance of something on the screen, it is
bound to affect that GUI code. Thus, writing automated tests for that last
little bit is often a waste of time because that part of the code changes so
frequently, and for such evanescent reasons, any tests are seldom valid for
long.

GUI Input
Testing GUI input follows the same rules: We drive the GUI to be as
insignificant as possible. In the diagram in Figure 4.3, the GUI framework
is the code that sits at the boundary of the system. It might be the Web
container, or it might be something like Swing2 or Processing3 for
controlling a desktop.
2. https://docs.oracle.com/javase/8/docs/technotes/guides/swing/

3. https://processing.org/

https://docs.oracle.com/javase/8/docs/technotes/guides/swing/
https://processing.org/


Figure 4.3 Testing the GUI

The GUI framework communicates with a controller through an
EventHandler interface. This makes sure that the controller has no transitive
source code dependency on the GUI framework. The job of the controller is
to gather the necessary events from the GUI framework into a pure data
structure that I have here called the RequestModel.

Once the RequestModel is complete, the controller passes it through the
InputBoundary interface to the interactor. Again, the interface is there to
ensure that the source code dependencies point in an architecturally sound
direction.

Testing the interactor is trivial; our tests simply create appropriate request
models and hand them to the interactor. We can either check the results
directly or use spies to check them. Testing the controller is also trivial—
our tests simply invoke events through the event handler interface and then
make sure that the controller builds the right request model.



Test Patterns
There are many different design patterns for testing, and there are several
books that have documented them: XUnit Test Patterns4 by Gerard
Meszaros and JUnit Recipes5 by J. B. Rainsberger and Scott Stirling, to
mention just two of them.
4. Gerard Meszaros, XUnit Test Patterns: Refactoring Test Code (Addison-Wesley, 2012).

5. J. B. Rainsberger and Scott Stirling, JUnit Recipes: Practical Methods for Programmer Testing
(Manning, 2006).

It is not my intention to try to document all those patterns and recipes here.
I just want to mention the three that I have found most useful over the
years.

Test-Specific Subclass
This pattern is primarily used as a safety mechanism. For example, let’s say
that you want to test the align method of the XRay class. However, the align
method invokes the turnOn method. You probably don’t want x-rays turned
on every time you run the tests.

The solution, as shown in Figure 4.4, is to create a test-specific subclass of
the XRay class that overrides the turnOn method to do nothing. The test
creates an instance of the SafeXRay class and then calls the assign method,
without having to worry that the x-ray machine will actually be turned on.



Figure 4.4 Test-Specific-Subclass pattern

It is often helpful to make the test-specific subclass a spy so that the test can
interrogate the safe object about whether the unsafe method was actually
called or not.

In the example, if SafeXRay were a spy, then the turnOn method would
record its invocation, and the test method in the XRayTest class could
interrogate that record to ensure that turnOn was actually called.

Sometimes the Test-Specific Subclass pattern is used for convenience and
throughput rather than safety. For example, you may not wish the method
being tested to start a new process or perform an expensive computation.

It is not at all uncommon for the dangerous, inconvenient, or slow
operations to be extracted into new methods for the express purpose of
overriding them in a test-specific subclass. This is just one of the ways that
tests impact the design of the code.

Self-Shunt
A variation on that theme is the Self-Shunt pattern. Because the test class is
a class, it is often convenient for the test class to become the test-specific
subclass, as shown in Figure 4.5.

Figure 4.5 Self-Shunt pattern



In this case, it is the XRayTest class that overrides the turnOn method and
can also act as the spy for that method.

I find Self-Shunt to be very convenient when I need a simple spy or a
simple safety. On the other hand, the lack of a separate well-named class
that specifically provides the safety or spying can be confusing for the
reader, so I use this pattern judiciously.

It is important to remember, when using this pattern, that different testing
frameworks construct the test classes at different times. For example, JUnit
constructs a new instance of the test class for every test method invocation.
NUnit, on the other hand, executes all test methods on a single instance of
the test class. So, care must be taken to ensure that any spy variables are
properly reset.

Humble Object
We like to think that every bit of code in the system can be tested using the
three laws of TDD, but this is not entirely true. The parts of the code that
communicate across a hardware boundary are perniciously difficult to test.

It is difficult, for example, to test what is displayed on the screen or what
was sent out a network interface or what was sent out a parallel or serial I/O
port. Without some specially designed hardware mechanisms that the tests
can communicate with, such tests are impossible.

What’s more, such hardware mechanisms may well be slow and/or
unreliable. Imagine, for example, a video camera staring at the screen and
your test code trying desperately to determine if the image coming back
from the camera is the image you sent to the screen. Or imagine a loopback
network cable that connects the output port of the network adapter to the
input port. Your tests would have to read the stream of data coming in on
that input port and look for the specific data you sent out on the output port.

In most cases, this kind of specialized hardware is inconvenient, if not
entirely impractical.

The Humble Object pattern is a compromise solution. This pattern
acknowledges that there is code that cannot be practicably tested. The goal



of the pattern, therefore, is to humiliate that code by making it too simple to
bother testing. We saw a simple example of this earlier, in the “Testing
GUIs” section, but now let’s take a deeper look.

The general strategy is shown in Figure 4.6. The code that communicates
across the boundary is separated into two elements: the presenter and the
Humble Object (denoted here as the HumbleView). The communication
between the two is a data structure named the Presentation.

Figure 4.6 The general strategy

Let’s assume that our application (not shown) wants to display something
on the screen. It sends the appropriate data to the presenter. The presenter
then unpacks that data into the simplest possible form and loads it into the
Presentation. The goal of this unpacking is to eliminate all but the simplest
processing steps from the HumbleView. The job of the HumbleView is simply
to transport the unpacked data in the Presentation across the boundary.

To make this concrete, let’s say that the application wants to put up a dialog
box that has Post and Cancel buttons, a selection menu of order IDs, and a
grid of dates and currency items. The data that the application sends to the



presenter consists of that data grid, in the form of Date and Money objects. It
also sends the list of selectable Order objects for the menu.

The presenter’s job is to turn everything into strings and flags and load
them into the Presentation. The Money and Date objects are converted into
locale-specific strings. The Order objects are converted into ID strings. The
names of the two buttons are loaded as strings. If one or more of the buttons
should be grayed out, an appropriate flag is set in the Presentation.

The end result is that the HumbleView has nothing more to do than transport
those strings across the boundary along with the metadata implied by the
flags. Again, the goal is to make the HumbleView too simple to need testing.

It should be clear that this strategy will work for any kind of boundary
crossing, not just displays.

To demonstrate, let’s say we are coding the control software for a self-
driving car. Let’s also say that the steering wheel is controlled by a stepper
motor that moves the wheel one degree per step. Our software controls the
stepper motor by issuing the following command:
out(0x3ff9, d);

where 0x3ff9 is the IO address of the stepper motor controller, and d is 1 for
right and 0 for left.

At the high level, our self-driving AI issues commands of this form to the
SteeringPresenter:
turn(RIGHT, 30, 2300);

This means that the car (not the steering wheel!) should be gradually turned
30 degrees to the right over the next 2,300ms. To accomplish this, the wheel
must be turned to the right a certain number of steps, at a certain rate, and
then turned back to the left at a certain rate so that, after 2,300ms, the car is
heading 30 degrees to the right of its previous course.

How can we test that the steering wheel is being properly controlled by the
AI? We need to humiliate the low-level steering-wheel control software. We
can do this by passing it a presentation, which is an array of data structures
that looks like this:

Click here to view code image



struct SteeringPresentationElement{ 

 int steps; 

 bool direction; 

 int stepTime; 

 int delay; 

};

The low-level controller walks through the array and issues the appropriate
number of steps to the stepper motor, in the specified direction, waiting
stepTime milliseconds between each step and waiting delay milliseconds
before moving to the next element in the array.

The SteeringPresenter has the task of translating the commands from the
AI into the array of SteeringPresentationElements. In order to accomplish
this, the SteeringPresenter needs to know the speed of the car and the ratio
of the angle of the steering wheel to the angle of the wheels of the car.

It should be clear that the SteeringPresenter is easy to test. The test simply
sends the appropriate Turn commands to the SteeringPresenter and then
inspects the results in the resulting array of SteeringPresentationElements.

Finally, note the ViewInterface in the diagram. If we think of the
ViewInterface, the presenter, and the Presentation as belonging together in
a single component, then the HumbleView depends on that component. This
is an architectural strategy for keeping the higher-level presenter from
depending on the detailed implementation of the HumbleView.

Test Design
We are all familiar with the need to design our production code well. But
have you ever thought about the design of your tests? Many programmers
have not. Indeed, many programmers just throw tests at the code without
any thought to how those tests should be designed. This always leads to
problems.

The Fragile Test Problem



One of the issues that plagues programmers who are new to TDD is the
problem of fragile tests. A test suite is fragile when small changes to the
production code cause many tests to break. The smaller the change to the
production code, and the larger the number of broken tests, the more
frustrating the issue becomes. Many programmers give up on TDD during
their first few months because of this issue.

Fragility is always a design problem. If you make a small change to one
module that forces many changes to other modules, you have an obvious
design problem. In fact, breaking many things when something small
changes is the definition of poor design.

Tests need to be designed just like any other part of the system. All the rules
of design that apply to production code also apply to tests. Tests are not
special in that regard. They must be properly designed in order to limit their
fragility.

Much early guidance about TDD ignored the design of tests. Indeed, some
of that guidance recommended structures that were counter to good design
and led to tests that were tightly coupled to the production code and
therefore very fragile.

The One-to-One Correspondence
One common and particularly detrimental practice is to create and maintain
a one-to-one correspondence between production code modules and test
modules. Newcomers to TDD are often erroneously taught that for every
production module or class named χ, there should be a corresponding test
module or class named χTest.

This, unfortunately, creates a powerful structural coupling between the
production code and the test suite. That coupling leads to fragile tests. Any
time the programmers want to change the module structure of the
production code, they are forced to also change the module structure of the
test code.

Perhaps the best way to see this structural coupling is visually (Figure 4.7).



Figure 4.7 Structural coupling

On the right side of the diagram, we see five production code modules, α, β,
γ, δ, and ε. The α and ε modules stand alone, but β is coupled to γ, which is
coupled to δ. On the left, we see the test modules. Note that each of the test
modules is coupled to the corresponding production code module.
However, because β is coupled to γ and δ, βTest may also be coupled to γ
and δ.

This coupling may not be obvious. The reason that βTest is likely to have
couplings to γ and δ is that β may need to be constructed with γ and δ, or
the methods of β may take γ and δ as arguments.

This powerful coupling between βTest and so much of the production code
means that a minor change to δ could affect βTest, γTest, and δTest. Thus,
the one-to-one correspondence between the tests and production code can
lead to very tight coupling and fragility.



Rule 12: Decouple the structure of your tests from the structure of the production code.

Breaking the Correspondence
To break, or avoid creating, the correspondence between tests and
production code, we need to think of the test modules the way we think of
all the other modules in a software system: as independent and decoupled
from each other.

At first, this may seem absurd. You might argue that tests must be coupled
to production code, because the tests exercise the production code. The last
clause is true, but the predicate is false. Exercising code does not imply
strong coupling. Indeed, good designers consistently strive to break strong
couplings between modules while allowing those modules to interact with
and exercise each other.

How is this accomplished? By creating interface layers.

In the diagram in Figure 4.8, we see αTest coupled to α. Behind α we see a
family of modules that support α but of which αTest is ignorant. The α
module is the interface to that family. A good programmer is very careful to
ensure that none of the details of the α family leak out of that interface.

Figure 4.8 Interface layers



As shown in the diagram in Figure 4.9, a disciplined programmer could
protect αTest from the details within the α family by interposing a
polymorphic interface between them. This breaks any transitive
dependencies between the test module and the production code modules.

Figure 4.9 Interposing a polymorphic interface between the test and the
α family

Again, this may seem absurd to the newcomer to TDD. How, you might
ask, can we write tests against α5 when we cannot access that module from
αTest? The answer to that question is simply that you do not need access to
α5 in order to test the functionality of α5.

If α5 performs an important function for α, then that functionality must be
testable through the α interface. That is not an arbitrary rule—it is a
statement of mathematical certainty. If a behavior is important, it must also
be visible through the interface. That visibility can be direct or indirect, but
it must exist.

Perhaps an example would be beneficial to drive this point home.

The Video Store



The video store is a traditional example that demonstrates the concept of
separating tests from production code quite well. Ironically, this example
arose from an accident. The problem was first presented as a refactoring
example in Martin Fowler’s first edition of Refactoring.6 Martin presented a
rather ugly Java solution without tests and then proceeded to refactor the
code into a much cleaner form.
6. Martin Fowler, Refactoring (Addison-Wesley, 1999).

In this example, we use TDD to create the program from scratch. You will
learn the requirements by reading the tests as we go along.

Requirement 1: Regular movies rent, on the first day, for $1.50 and earn 1
renter point per day rented.

Red: We write a test class for the customer named CustomerTest and add the
first test method.

Click here to view code image
public class CustomerTest { 

 @Test 

 public void RegularMovie_OneDay() throws Exception { 

   Customer c = new Customer(); 

   c.addRental("RegularMovie", 1); 

   assertEquals(1.5, c.getRentalFee(), 0.001); 

   assertEquals(1, c.getRenterPoints()); 

 } 

}

Green: We can make this pass trivially.

Click here to view code image
public class Customer { 

 public void addRental(String title, int days) { 

 } 

 

 public double getRentalFee() { 

   return 1.5; 

 } 

 

 public int getRenterPoints() { 



   return 1; 

 } 

}

Refactor: We can clean this up quite a bit.

Click here to view code image
public class CustomerTest { 

 private Customer customer; 

 

 @Before 

 public void setUp() throws Exception { 

   customer = new Customer(); 

 } 

 

 private void assertFeeAndPoints(double fee, int points) { 

   assertEquals(fee, customer.getRentalFee(), 0.001); 

   assertEquals(points, customer.getRenterPoints()); 

 } 

 

 @Test 

 public void RegularMovie_OneDay() throws Exception { 

   customer.addRental("RegularMovie", 1); 

   assertFeeAndPoints(1.5, 1); 

 } 

}

Requirement 2: The second and third days’ rentals of regular movies are
free, and no points are earned for them.

Green: No change to production code.

Click here to view code image
@Test 

public void RegularMovie_SecondAndThirdDayFree() throws Exception { 

 customer.addRental("RegularMovie", 2); 

 assertFeeAndPoints(1.5, 1); 

 customer.addRental("RegularMovie", 3); 

 assertFeeAndPoints(1.5, 1); 

}



Requirement 3: All subsequent days rent for $1.50 and earn 1 renter point.

Red: The test is simple.

Click here to view code image
@Test 

public void RegularMovie_FourDays() throws Exception { 

 customer.addRental("RegularMovie", 4); 

 assertFeeAndPoints(3.0, 2); 

}

Green: This isn’t hard to fix.

Click here to view code image
public class Customer { 

 private int days; 

 

 public void addRental(String title, int days) { 

   this.days = days; 

 } 

 

 public double getRentalFee() { 

   double fee = 1.5; 

   if (days > 3) 

     fee += 1.5 * (days - 3); 

   return fee; 

 } 

 

 public int getRenterPoints() { 

   int points = 1; 

   if (days > 3) 

     points += (days - 3); 

   return points; 

 } 

}

Refactor: There’s a bit of duplication we can eliminate, but it causes some
trouble.

Click here to view code image



public class Customer { 

 private int days; 

 

 public void addRental(String title, int days) { 

   this.days = days; 

 } 

 

 public int getRentalFee() { 

   return applyGracePeriod(150, 3); 

 } 

 

 public int getRenterPoints() { 

   return applyGracePeriod(1, 3); 

 } 

 

 private int applyGracePeriod(int amount, int grace) { 

   if (days > grace) 

     return amount + amount * (days - grace); 

   return amount; 

 } 

}

Red: We want to use applyGracePeriod for both the renter points and the
fee, but the fee is a double, and the points are an int. Money should never
be a double! So, we changed the fee into an int, and all the tests broke. We
need to go back and fix all our tests.

Click here to view code image
public class CustomerTest { 

 private Customer customer; 

 

 @Before 

 public void setUp() throws Exception { 

   customer = new Customer(); 

 } 

 

 private void assertFeeAndPoints(int fee, int points) { 

   assertEquals(fee, customer.getRentalFee()); 



   assertEquals(points, customer.getRenterPoints()); 

 } 

 

 @Test 

 public void RegularMovie_OneDay() throws Exception { 

   customer.addRental("RegularMovie", 1); 

   assertFeeAndPoints(150, 1); 

 } 

 

 @Test 

 public void RegularMovie_SecondAndThirdDayFree() throws Exception 

{ 

   customer.addRental("RegularMovie", 2); 

   assertFeeAndPoints(150, 1); 

   customer.addRental("RegularMovie", 3); 

   assertFeeAndPoints(150, 1); 

 } 

 

 @Test 

 public void RegularMovie_FourDays() throws Exception { 

   customer.addRental("RegularMovie", 4); 

   assertFeeAndPoints(300, 2); 

 } 

}

Requirement 4: Children’s movies rent for $1.00 per day and earn 1 point.

Red: The first day business rule is simple:

Click here to view code image
@Test 

public void ChildrensMovie_OneDay() throws Exception { 

 customer.addRental("ChildrensMovie", 1); 

 assertFeeAndPoints(100, 1); 

}

Green: It’s not hard to make this pass with some very ugly code.

Click here to view code image
public int getRentalFee() { 

 if (title.equals("RegularMovie")) 

   return applyGracePeriod(150, 3); 



 else 

   return 100; 

}

Refactor: But now we have to clean up that ugliness. There’s no way the
type of the video should be coupled to the title, so let’s make a registry.

Click here to view code image
public class Customer { 

 private String title; 

 private int days; 

 private Map<String, VideoType> movieRegistry = new HashMap<>(); 

 enum VideoType {REGULAR, CHILDRENS}; 

 public Customer() { 

   movieRegistry.put("RegularMovie", REGULAR); 

   movieRegistry.put("ChildrensMovie", CHILDRENS); 

 } 

 public void addRental(String title, int days) { 

   this.title = title; 

   this.days = days; 

 } 

 

 public int getRentalFee() { 

   if (getType(title) == REGULAR) 

     return applyGracePeriod(150, 3); 

   else 

     return 100; 

 } 

 

 private VideoType getType(String title) { 

   return movieRegistry.get(title); 

 } 

 public int getRenterPoints() { 

   return applyGracePeriod(1, 3); 



 } 

 

 private int applyGracePeriod(int amount, int grace) { 

   if (days > grace) 

     return amount + amount * (days - grace); 

   return amount; 

 } 

}

That’s better, but it violates the single responsibility principle7 because the
Customer class should not be responsible for initializing the registry. The
registry should be initialized during early configuration of the system. Let’s
separate that registry from Customer:
7. Robert C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design

(Addison-Wesley, 2018), 61ff.

Click here to view code image
public class VideoRegistry { 

 public enum VideoType {REGULAR, CHILDRENS} 

 

 private static Map<String, VideoType> videoRegistry = 

                new HashMap<>(); 

 

 public static VideoType getType(String title) { 

   return videoRegistry.get(title); 

 } 

 

 public static void addMovie(String title, VideoType type) { 

   videoRegistry.put(title, type); 

 } 

}

VideoRegistry is a monostate8 class, guaranteeing that there is only one
instance. It is statically initialized by the test:
8. Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices (Prentice

Hall, 2003), 180ff.

Click here to view code image



@BeforeClass 

public static void loadRegistry() { 

 VideoRegistry.addMovie("RegularMovie", REGULAR); 

 VideoRegistry.addMovie("ChildrensMovie", CHILDRENS); 

}

And this cleans up the Customer class a lot:

Click here to view code image
public class Customer { 

 private String title; 

 private int days; 

 

 public void addRental(String title, int days) { 

   this.title = title; 

   this.days = days; 

 } 

 

 public int getRentalFee() { 

   if (VideoRegistry.getType(title) == REGULAR) 

     return applyGracePeriod(150, 3); 

   else 

     return 100; 

 } 

 

 public int getRenterPoints() { 

   return applyGracePeriod(1, 3); 

 } 

 

 private int applyGracePeriod(int amount, int grace) { 

   if (days > grace) 

     return amount + amount * (days - grace); 

   return amount; 

 } 

}

Red: Note that requirement 4 said that customers earn 1 point for a
children’s movie, not 1 point per day. So, the next test looks like this:

Click here to view code image



@Test 

public void ChildrensMovie_FourDays() throws Exception { 

 customer.addRental("ChildrensMovie", 4); 

 assertFeeAndPoints(400, 1); 

}

I chose four days because of the 3 currently sitting as the second argument
of the call to applyGracePeriod within the getRenterPoints method of the
Customer. (Though we sometimes feign naïveté while doing TDD, we do
actually know what’s going on.)

Green: With the registry in place, this is easily repaired.

Click here to view code image
public int getRenterPoints() { 

 if (VideoRegistry.getType(title) == REGULAR) 

   return applyGracePeriod(1, 3); 

 else 

   return 1; 

}

At this point, I want you to notice that there are no tests for the
VideoRegistry class. Or, rather, no direct tests. VideoRegistry is, in fact,
being tested indirectly because none of the passing tests would pass if
VideoRegistry were not functioning properly.

Red: So far, our Customer class can handle only a single movie. Let’s make
sure it can handle more than one:

Click here to view code image
@Test 

public void OneRegularOneChildrens_FourDays() throws Exception { 

 customer.addRental("RegularMovie", 4); //$3+2p 

 customer.addRental("ChildrensMovie", 4); //$4+1p 

 

 assertFeeAndPoints(700, 3); 

}

Green: That’s just a nice little list and a couple of loops. It’s also nice to
move the registry stuff into the new Rental class:

Click here to view code image



public class Customer { 

 private List<Rental> rentals = new ArrayList<>(); 

 

 public void addRental(String title, int days) { 

   rentals.add(new Rental(title, days)); 

 } 

 

 public int getRentalFee() { 

   int fee = 0; 

   for (Rental rental : rentals) { 

     if (rental.type == REGULAR) 

       fee += applyGracePeriod(150, rental.days, 3); 

     else 

       fee += rental.days * 100; 

   } 

   return fee; 

 } 

 

 public int getRenterPoints() { 

   int points = 0; 

   for (Rental rental : rentals) { 

     if (rental.type == REGULAR) 

       points += applyGracePeriod(1, rental.days, 3); 

     else 

       points++; 

   } 

   return points; 

 } 

 

 private int applyGracePeriod(int amount, int days, int grace) { 

   if (days > grace) 

     return amount + amount * (days - grace); 

   return amount; 

 } 

} 

 

public class Rental { 

 public String title; 

 public int days; 

 public VideoType type; 



 

 public Rental(String title, int days) { 

   this.title = title; 

   this.days = days; 

   type = VideoRegistry.getType(title); 

 } 

}

This actually fails the old test because Customer now sums up the two
rentals:

Click here to view code image
 @Test 

 public void RegularMovie_SecondAndThirdDayFree() throws Exception 

{ 

   customer.addRental("RegularMovie", 2); 

   assertFeeAndPoints(150, 1); 

   customer.addRental("RegularMovie", 3); 

   assertFeeAndPoints(150, 1); 

 }

We have to divide that test in two. That’s probably better anyway.

Click here to view code image
@Test 

public void RegularMovie_SecondDayFree() throws Exception { 

 customer.addRental("RegularMovie", 2); 

 assertFeeAndPoints(150, 1); 

} 

 

@Test 

public void RegularMovie_ThirdDayFree() throws Exception { 

 customer.addRental("RegularMovie", 3); 

 assertFeeAndPoints(150, 1); 

}

Refactor: There’s an awful lot I don’t like about the Customer class now.
Those two ugly loops with the strange if statements inside them are pretty
awful. We can extract a few nicer methods from those loops.

Click here to view code image



public int getRentalFee() { 

 int fee = 0; 

 for (Rental rental : rentals) 

   fee += feeFor(rental); 

 return fee; 

} 

 

private int feeFor(Rental rental) { 

 int fee = 0; 

 if (rental.getType() == REGULAR) 

   fee += applyGracePeriod(150, rental.getDays(), 3); 

 else 

   fee += rental.getDays() * 100; 

 return fee; 

} 

public int getRenterPoints() { 

 int points = 0; 

 for (Rental rental : rentals) 

   points += pointsFor(rental); 

 return points; 

} 

 

private int pointsFor(Rental rental) { 

 int points = 0; 

 if (rental.getType() == REGULAR) 

   points += applyGracePeriod(1, rental.getDays(), 3); 

 else 

   points++; 

 return points; 

}

Those two private functions seem to play more with the Rental than with
the Customer. Let’s move them along with their utility function
applyGracePeriod. This makes the Customer class much cleaner.

Click here to view code image
public class Customer { 

 private List<Rental> rentals = new ArrayList<>(); 

 



 public void addRental(String title, int days) { 

   rentals.add(new Rental(title, days)); 

 } 

 

 public int getRentalFee() { 

   int fee = 0; 

   for (Rental rental : rentals) 

     fee += rental.getFee(); 

   return fee; 

 } 

 public int getRenterPoints() { 

   int points = 0; 

   for (Rental rental : rentals) 

     points += rental.getPoints(); 

   return points; 

 } 

}

The Rental class has grown a lot and is much uglier now:

Click here to view code image
public class Rental { 

 private String title; 

 private int days; 

 private VideoType type; 

 

 public Rental(String title, int days) { 

   this.title = title; 

   this.days = days; 

   type = VideoRegistry.getType(title); 

 } 

 

 public String getTitle() { 

   return title; 

 } 

 

 public VideoType getType() { 

   return type; 

 } 



 public int getFee() { 

   int fee = 0; 

   if (getType() == REGULAR) 

     fee += applyGracePeriod(150, days, 3); 

   else 

     fee += getDays() * 100; 

   return fee; 

 } 

 public int getPoints() { 

   int points = 0; 

   if (getType() == REGULAR) 

     points += applyGracePeriod(1, days, 3); 

   else 

     points++; 

   return points; 

 } 

 private static int applyGracePeriod(int amount, int days, int 

grace) 

 { 

   if (days > grace) 

     return amount + amount * (days - grace); 

   return amount; 

 } 

}

Those ugly if statements need to be gotten rid of. Every new type of video
is going to mean another clause in those statements. Let’s head that off with
some subclasses and polymorphism.

First, there’s the abstract Movie class. It’s got the applyGracePeriod utility
and two abstract functions to get the fee and the points.

Click here to view code image
public abstract class Movie { 

 private String title; 

 

 public Movie(String title) { 



   this.title = title; 

 } 

 

 public String getTitle() { 

   return title; 

 } 

 

 public abstract int getFee(int days, Rental rental); 

 public abstract int getPoints(int days, Rental rental); 

 protected static int applyGracePeriod(int amount, int days, 

                                       int grace) { 

   if (days > grace) 

     return amount + amount * (days - grace); 

   return amount; 

 } 

}

RegularMovie is pretty simple:

Click here to view code image
public class RegularMovie extends Movie { 

 public RegularMovie(String title) { 

   super(title); 

 } 

 

 public int getFee(int days, Rental rental) { 

   return applyGracePeriod(150, days, 3); 

 } 

 

 public int getPoints(int days, Rental rental) { 

   return applyGracePeriod(1, days, 3); 

 } 

}

ChildrensMovie is even simpler:

Click here to view code image
public class ChildrensMovie extends Movie { 

 public ChildrensMovie(String title) { 

   super(title); 



 } 

 

 public int getFee(int days, Rental rental) { 

   return days * 100; 

 } 

 

 public int getPoints(int days, Rental rental) { 

   return 1; 

 } 

}

There’s not much left of Rental—just a couple of delegator functions:

Click here to view code image
public class Rental { 

 private int days; 

 private Movie movie; 

 

 public Rental(String title, int days) { 

   this.days = days; 

   movie = VideoRegistry.getMovie(title); 

 } 

 

 public String getTitle() { 

   return movie.getTitle(); 

 } 

 

 public int getFee() { 

   return movie.getFee(days, this); 

 } 

 

 public int getPoints() { 

   return movie.getPoints(days, this); 

 } 

}

The VideoRegistry class turned into a factory for Movie.



Click here to view code image
public class VideoRegistry { 

 public enum VideoType {REGULAR, CHILDRENS;} 

 

 private static Map<String, VideoType> videoRegistry = 

                new HashMap<>(); 

 

 public static Movie getMovie(String title) { 

   switch (videoRegistry.get(title)) { 

     case REGULAR: 

       return new RegularMovie(title); 

     case CHILDRENS: 

       return new ChildrensMovie(title); 

   } 

   return null; 

 } 

 

 public static void addMovie(String title, VideoType type) { 

   videoRegistry.put(title, type); 

 } 

}

And Customer? Well, it just had the wrong name all this time. It is really the
RentalCalculator class. It is the class that protects our tests from the family
of classes that serves it.

Click here to view code image
public class RentalCalculator { 

 private List<Rental> rentals = new ArrayList<>(); 

 

 public void addRental(String title, int days) { 

   rentals.add(new Rental(title, days)); 

 } 

 

 public int getRentalFee() { 

   int fee = 0; 

   for (Rental rental : rentals) 

     fee += rental.getFee(); 

   return fee; 



 } 

 

 public int getRenterPoints() { 

   int points = 0; 

   for (Rental rental : rentals) 

     points += rental.getPoints(); 

   return points; 

 } 

}

Now let’s look at a diagram of the result (Figure 4.10).

Figure 4.10 The result

As the code evolved, all those classes to the right of RentalCalculator were
created by various refactorings. Yet RentalCalculatorTest knows nothing
of them other than VideoRegistry, which it must initialize with test data.
Moreover, no other test module exercises those classes.



RentalCalculatorTest tests all those other classes indirectly. The one-to-
one correspondence is broken.

This is the way that good programmers protect and decouple the structure
of the production code from the structure of the tests, thereby avoiding the
fragile test problem.

In large systems, of course, this pattern will repeat over and over. There will
be many families of modules, each protected from the test modules that
exercise them by their own particular facades or interface modules.

Some might suggest that tests that operate a family of modules through a
facade are integration tests. We talk about integration tests later in this
book. For now, I’ll simply point out that the purpose of integration tests is
very different from the purpose of the tests shown here. These are
programmer tests, tests written by programmers for programmers for the
purpose of specifying behavior.

Specificity versus Generality
Tests and production code must be decoupled by yet another factor that we
learned about in Chapter 2, when we studied the prime factors example. I
wrote it as a mantra in that chapter. Now I’ll write it as a rule.

Rule 13: As the tests get more specific, the code gets more generic.

The family of production code modules grows as the tests grow. However,
they evolve in very different directions.

As each new test case is added, the suite of tests becomes increasingly
specific. However, programmers should drive the family of modules being
tested in the opposite direction. That family should become increasingly
general (Figure 4.11).



Figure 4.11 The suite of tests becomes more specific, while the family
of modules being tested becomes more general.

This is one of the goals of the refactoring step. You saw it happening in the
video store example. First a test case was added. Then some ugly
production code was added to get the test to pass. That production code was
not general. Often, in fact, it was deeply specific. Then, in the refactoring
step, that specific code was massaged into a more general form.

This divergent evolution of the tests and the production code means that the
shapes of the two will be remarkably different. The tests will grow into a
linear list of constraints and specifications. The production code, on the
other hand, will grow into a rich family of logic and behavior organized to
address the underlying abstraction that drives the application.

This divergent style further decouples the tests from the production code,
protecting the two from changes in the other.



Of course, the coupling can never be completely broken. There will be
changes in one that force changes in the other. The goal is not to eliminate
such changes but to minimize them. And the techniques described are
effective toward that end.

Transformation Priority Premise
The previous chapters have led up to a fascinating observation. When we
practice the discipline of TDD, we incrementally make the tests more
specific, while we manipulate the production code to be ever more general.
But how do these changes take place?

Adding a constraint to a test is a simple matter of either adding a new
assertion to an existing test or adding a whole new test method to arrange,
act, and then assert the new constraint. This operation is entirely additive.
No existing test code is changed. New code is added.

Making the new constraint pass the tests, however, is very often not an
additive process. Instead, the existing production code must be transformed
to behave differently. These transformations are small changes to the
existing code that alter the behavior of that code.

Then, of course, the production code is refactored in order to clean it up.
These refactorings are also small changes to the production code, but in this
case, they preserve the behavior.

Already you should see the correlation to the Red/Green/Refactor loop. The
Red step is additive. The Green step is transformative. The Blue step is
restorative.

We discuss restorative refactorings in Chapter 5, “Refactoring.” Here, we
discuss the transformations.

Transformations are small changes to the code that change behavior and
simultaneously generalize the solution. The best way to explain this is with
an example.

Recall the prime factors kata from Chapter 2. Early on, we saw a failing test
and a degenerate implementation.

Click here to view code image



public class PrimeFactorsTest { 

 @Test 

 public void factors() throws Exception { 

   assertThat(factorsOf(1), is(empty())); 

 } 

 

 private List<Integer> factorsOf(int n) { 

   return null; 

 } 

}

We made the failing test pass by transforming the null into new ArrayList<>
(), as follows:

Click here to view code image
private List<Integer> factorsOf(int n) { 

 return new ArrayList<>(); 

}

That transformation changed the behavior of the solution but also
generalized it. That null was extremely specific. ArrayList is more general
than null.

The next failing test case also resulted in generalizing transformations:

Click here to view code image
assertThat(factorsOf(2), contains(2)); 

private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n>1) 

   factors.add(2); 

 return factors; 

}

First, ArrayList was extracted to the factors variable, and then the if
statement was added. Both of these transformations are generalizing.
Variables are always more general than constants. However, the if
statement is only partially generalizing. It is specific to the test because of



the 1 and the 2, but it softens that specificity with the n>1 inequality. That
inequality remained part of the general solution all the way to the end.

Armed with this knowledge, let’s look at some other transformations.

{} → Nil
This is usually the very first transformation employed at the start of a TDD
session. We begin with no code at all. We write the most degenerate test we
can think of. Then, to get it to compile and fail, we make the function we
are testing return null,9 as we did in the prime factors kata.
9. Or the most degenerate allowed return value.

Click here to view code image
 private List<Integer> factorsOf(int n) { 

   return null; 

 }

This code transforms nothing into a function that returns nothing. Doing so
seldom makes the failing test pass, so the next transformation usually
follows immediately.

Nil → Constant
Again, we see this in the prime factors kata. The null we returned is
transformed into an empty list of integers.

Click here to view code image
private List<Integer> factorsOf(int n) { 

 return new ArrayList<>(); 

}

We also saw this in the bowling game kata in Chapter 2, though in that case,
we skipped the {} → Nil transformation and went straight to the constant.
 public int score() { 

   return 0; 

 }



Constant → Variable
This transformation changes a constant into a variable. We saw this in the
stack kata (Chapter 2) when we created the empty variable to hold the true
value that isEmpty had been returning.

Click here to view code image
public class Stack { 

 private boolean empty = true; 

 

 public boolean isEmpty() { 

   return empty; 

 } 

      … 

}

We saw this again in prime factors when, in order to pass the case for
factoring 3, we replaced the constant 2 with the argument n.

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n>1) 

   factors.add(n); 

 return factors; 

}

At this point, it should be obvious that every one of these transformations,
so far, moves the code from a very specific state to a slightly more general
state. Each of them is a generalization, a way to make the code handle a
wider set of constraints than before.

If you think about it carefully, you’ll realize that each of these
transformations widens the possibilities much more than the constraint
placed on the code by the currently failing test. Thus, as these
transformations are applied, one by one, the race between the constraints of
the tests and the generality of the code must end in favor of the
generalizations. Eventually, the production code will become so general that
it will pass all future constraints within the current requirements.



But I digress.

Unconditional → Selection
This transformation adds an if statement, or the equivalent. This is not
always a generalization. Programmers must take care not to make the
predicate of the selection specific to the currently failing test.

We saw this transformation in the prime factors kata when we needed to
factor the number 2. Note that the predicate of the if statement in that kata
was not (n==2); that would have been too specific. The (n>1) inequality
was an attempt to keep the if statement more general.

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n>1) 

   factors.add(2); 

 return factors; 

}

Value → List
This generalizing transformation changes a variable that holds a single
value into a list of values. The list could be an array or a more complex
container. We saw this transformation in the stack kata when we changed
the element variable into the elements array.

Click here to view code image
public class Stack { 

 private int size = 0; 

 private int[] elements = new int[2]; 

 public void push(int element) { 

   this.elements[size++] = element; 

 } 



 

 public int pop() { 

   if (size == 0) 

     throw new Underflow(); 

   return elements[--size]; 

 } 

}

Statement → Recursion
This generalizing transformation changes a single statement into a recursive
statement, in lieu of a loop. These kinds of transformations are very
common in languages that support recursion, especially those like Lisp and
Logo that have no looping facilities other than recursion. The
transformation changes an expression that is evaluated once into an
expression that is evaluated in terms of itself. We saw this transformation in
the word-wrap kata in Chapter 3, “Advanced TDD.”

Click here to view code image
private String wrap(String s, int w) { 

 if (w >= s.length()) 

   return s; 

 else 

   return s.substring(0, w) + "\n" + wrap(s.substring(w), w); 

}

Selection → Iteration
We saw this several times in the prime factors kata when we converted
those if statements into while statements. This is clearly a generalization
because iteration is the general form of selection, and selection is merely
degenerate iteration.

Click here to view code image
private List<Integer> factorsOf(int n) { 

 ArrayList<Integer> factors = new ArrayList<>(); 

 if (n > 1) { 

   while (n % 2 == 0) { 



     factors.add(2); 

     n /= 2; 

   } 

 } 

 if (n > 1) 

   factors.add(n); 

 return factors; 

}

Value → Mutated Value
This transformation mutates the value of a variable, usually for the purpose
of accumulating partial values in a loop or incremental computation. We
saw this in in several of the katas but perhaps most significantly in the sort
kata in Chapter 3.

Note that the first two assignments are not mutations. The first and second
values are simply initialized. It is the list.set(…) operations that are the
mutations. They actually change the elements within the list.

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 if (list.size() > 1) { 

   if (list.get(0) > list.get(1)) { 

     int first = list.get(0); 

     int second = list.get(1); 

     list.set(0, second); 

     list.set(1, first); 

   } 

 } 

 return list; 

}

Example: Fibonacci
Let’s try a simple kata and keep track of the transformations. We’ll do the
tried and true Fibonacci kata. Remember that fib(0) = 1, fib(1) = 1, and
fib(n) = fib(n-1) + fib(n-2).



We begin, as always, with a failing test. If you are wondering why I’m
using BigInteger, it is because Fibonacci numbers get big very quickly.

Click here to view code image
public class FibTest { 

 @Test 

 public void testFibs() throws Exception { 

   assertThat(fib(0), equalTo(BigInteger.ONE)); 

 } 

 

 private BigInteger fib(int n) { 

   return null; 

 } 

}

We can make this pass by using the Nil → Constant transformation.

Click here to view code image
private BigInteger fib(int n) { 

 return new BigInteger("1"); 

}

Yes, I thought the use of the String argument was odd too; but that’s the
Java library for you.

The next test passes right out of the box:

Click here to view code image
@Test  

public void testFibs() throws Exception { 

 assertThat(fib(0), equalTo(BigInteger.ONE)); 

 assertThat(fib(1), equalTo(BigInteger.ONE)); 

}

The next test fails:

Click here to view code image
@Test 

public void testFibs() throws Exception { 

 assertThat(fib(0), equalTo(BigInteger.ONE)); 

 assertThat(fib(1), equalTo(BigInteger.ONE)); 



 assertThat(fib(2), equalTo(new BigInteger("2"))); 

}

We can make this pass by using Unconditional → Selection:

Click here to view code image
private BigInteger fib(int n) { 

 if (n > 1) 

   return new BigInteger("2"); 

 else 

   return new BigInteger("1"); 

}

This is perilously close to being more specific than general, though it
titillates me with the potential for negative arguments to the fib function.

The next test tempts us to go for the gold:

Click here to view code image
assertThat(fib(3), equalTo(new BigInteger("3")));

The solution uses Statement → Recursion:

Click here to view code image
private BigInteger fib(int n) { 

 if (n > 1)     

   return fib(n-1).add(fib(n-2)); 

 else 

   return new BigInteger("1"); 

}

This is a very elegant solution. It’s also horrifically expensive in terms of
time10 and memory. Going for the gold too early often comes at a cost. Is
there another way we could have done that last step?

10. fib(40)==165580141 took nine seconds to compute on my 2.3GHz MacBook Pro.

Of course there is:

Click here to view code image
private BigInteger fib(int n) { 

 return fib(BigInteger.ONE, BigInteger.ONE, n); 

} 



 

private BigInteger fib(BigInteger fm2, BigInteger fm1, int n) { 

 if (n>1) 

   return fib(fm1, fm1.add(fm2), n-1); 

 else 

   return fm1; 

 

}

This is a nice tail-recursive algorithm that is tolerably fast.11

11. fib(100)==573147844013817084101 in 10ms.

You might think that last transformation was just a different application of
Statement → Recursion, but it wasn’t. It was actually Selection → Iteration.
In fact, if the Java compiler would deign to offer us tail-call-optimization,12

it would translate almost exactly to the following code. Note the implied
if->while.

12. Java, Java, wherefore art thou Java?

Click here to view code image
private BigInteger fib(int n) { 

 BigInteger fm2 = BigInteger.ONE; 

 BigInteger fm1 = BigInteger.ONE; 

 while (n>1) { 

   BigInteger f = fm1.add(fm2); 

   fm2 = fm1; 

   fm1 = f; 

   n--; 

 } 

 return fm1; 

}

I took you on that little diversion to make an important point:
Rule 14: If one transformation leads you to a suboptimal solution, try a different
transformation.

This is actually the second time we have encountered a situation in which a
transformation led us to a suboptimal solution and a different
transformation produced much better results. The first time was back in the
sort kata. In that case, it was the Value → Mutated Value transformation



that led us astray and drove us to implement a bubble sort. When we
replaced that transformation with Unconditional → Selection, we wound up
implementing a quick sort. Here was the critical step:

Click here to view code image
private List<Integer> sort(List<Integer> list) { 

 if (list.size() <= 1) 

   return list; 

 else { 

   int first = list.get(0); 

   int second = list.get(1); 

   if (first > second) 

     return asList(second, first); 

   else 

     return asList(first, second); 

 } 

}

The Transformation Priority Premise
As we have seen, there are sometimes forks in the road as we are following
the three laws of TDD. Each tine of a fork uses a different transformation to
make the currently failing test pass. When faced with such a fork, is there a
way to choose the best transformation to use? Or, to say this differently, is
one transformation better than another in every case? Is there a priority to
the transformations?

I believe there is. I’ll describe that priority to you in just a moment.
However, I want to make it clear that this belief of mine is only a premise. I
have no mathematical proof, and I am not sure that it holds in every case.
What I am relatively certain of is that you are likely to wind up at better
implementations if you choose the transformations in something like the
following order:

{} → Nil

Nil → Constant

Constant → Variable

Unconditional → Selection



Value → List

Selection → Iteration

Statement → Recursion

Value → Mutated Value

Don’t make the mistake of thinking that the order here is natural and
immune to violation (e.g., that Constant → Variable cannot be used until
Nil → Constant has been completed). Many programmers might make a
test pass by transforming Nil to a Selection of two constants without going
through the Nil → Constant step.

In other words, if you are tempted to pass a test by combining two or more
transformations, you may be missing one or more tests. Try to find a test
that can be passed by using just one of these transformations. Then, when
you find yourself at a fork in the road, first choose the tine of that fork that
can be passed by using the transformation that is higher on the list.

Does this mechanism always work? Probably not, but I’ve had pretty good
luck with it. And as we’ve seen, it gave us better results for both the sort
and the Fibonacci algorithms.

Astute readers will have realized by now that following the transformations
in the specified order will lead you to implement solutions using the
functional programming style.

Conclusion
This concludes our discussion of the discipline of TDD. We’ve covered a
lot of ground in the last three chapters. In this chapter, we talked about the
problems and patterns of test design. From GUIs to databases, from
specifications to generalities, and from transformations to priorities.

But, of course, we’re not done. There’s the fourth law to consider:
refactoring. That’s the topic of the next chapter.



5 Refactoring



In 1999, I read Refactoring1 by Martin Fowler. It is a classic, and I
encourage you to get a copy and read it. He has recently published a second
edition,2 which has been considerably rewritten and modernized. The first



edition presents examples in Java; the second edition presents examples in
JavaScript.
1. Martin Fowler, Refactoring: Improving the Design of Existing Code, 1st ed. (Addison-Wesley,

1999).

2. Martin Fowler, Refactoring: Improving the Design of Existing Code, 2nd ed. (Addison-Wesley,
2019).

At the time that I was reading the first edition, my twelve-year-old son,
Justin, was on a hockey team. For those of you who are not hockey parents,
the games involve five minutes of your child playing on the ice and ten to
fifteen minutes off the ice so that they can cool down.

While my son was off the ice, I read Martin’s wonderful book. It was the
first book I had ever read that presented code as something malleable. Most
other books of the period, and before, presented code in final form. But this
book showed how you could take bad code and clean it.

As I read it, I would hear the crowd cheer for the kids on the ice, and I
would cheer along with them—but I was not cheering for the game. I was
cheering for what I was reading in that book. In many ways, it was the book
that put me on the path to writing Clean Code.3

3. Robert C. Martin, Clean Code (Addison-Wesley, 2009).

Nobody said it better than Martin:
Any fool can write code that a computer can understand. Good programmers write code that
humans can understand.

This chapter presents the art of refactoring from my personal point of view.
It is not intended as a replacement for Martin’s book.

What Is Refactoring?
This time, I paraphrase Martin with my own quote:

Refactoring is a sequence of small changes that improve the structure of the software without
changing its behavior—as proven by passing a comprehensive suite of tests after each change
in the sequence.

There are two critical points in this definition.



First, refactoring preserves behavior. After a refactoring, or a sequence of
refactorings, the behavior of the software remains unchanged. The only way
I know to prove the preservation of behavior is to consistently pass a suite
of comprehensive tests.

Second, each individual refactoring is small. How small? I have a rubric:
small enough that I won’t have to debug.
There are many specific refactorings, and I describe some of them in the
pages that follow. There are many other changes to code that are not part of
the refactoring canon but that are still behavior-preserving changes to
structure. Some refactorings are so formulaic that your IDE can do them for
you. Some are simple enough that you can do them manually without fear.
Some are a bit more involved and require significant care. For those in the
latter case, I apply my rubric. If I fear that I will wind up in a debugger, I
break the change down into smaller, safer pieces. If I wind up in a debugger
anyway, I adjust my fear threshold in favor of caution.

Rule 15: Avoid using debuggers.

The purpose of refactoring is to clean the code. The process for refactoring
is the red → green → refactor cycle. Refactoring is a constant activity, not a
scheduled and planned activity. You keep the code clean by refactoring it
every time around the red → green → refactor loop.

There will be times when larger refactorings are necessary. You will
inevitably find that the design for your system needs updating, and you’ll
want to make that design change throughout the body of the code. You do
not schedule this. You do not stop adding features and fixing bugs to do it.
You simply add a bit of extra refactoring effort to the red → green →
refactor cycle and gradually make the desired changes as you also
continuously deliver business value.

The Basic Toolkit
I use a few refactorings much more than any of the others. They are
automated by the IDE that I use. I urge you to learn these refactorings by
heart and understand the intricacies of your IDE’s automation of them.



Rename
A chapter in my Clean Code book discusses how to name things well.
There are many other references4 for learning to name things well. The
important thing is … to name things well.
4. Another good reference is Domain-Driven Design: Tackling Complexity in the Heart of Software

by Eric Evans (Addison-Wesley, 2013).

Naming things is hard. Finding the right name for something is often a
process of successive, iterative improvements. Do not be afraid to pursue
the right name. Improve names as often as you can when the project is
young.

As the project ages, changing names becomes increasingly difficult.
Increasing numbers of programmers will have committed the names to
memory and will not react well if those names are changed without
warning. As time goes on, renaming important classes and functions will
require meetings and consensus.

So, as you write new code, and while that code is not too widely known,
experiment with names. Rename your classes and methods frequently. As
you do, you’ll find that you’ll want to group them differently. You’ll move
methods from one class to another to remain consistent with your new
names. You’ll change the partitioning of functions and classes to correspond
to the new naming scheme.

In short, the practice of searching for the best names will likely have a
profoundly positive effect on the way you partition the code into classes and
modules.

So, learn to use the Rename refactoring frequently and well.

Extract Method
The Extract Method refactoring may be the most important of all the
refactorings. Indeed, this refactoring may be the most important mechanism
for keeping your code clean and well organized.

My advice is to follow the extract ’til you drop discipline.



This discipline pursues two goals. First, every function should do one
thing.5 Second, your code should read like well-written prose.6

5. Martin, Clean Code, p. 7.

6. Martin, p. 8.

A function does one thing when no other function can be extracted from it.
Therefore, in order that your functions all do one thing, you should extract
and extract and extract until you cannot extract any more.

This will, of course, lead to a plethora of little tiny functions. And this may
disturb you. You may feel that so many little tiny functions will obscure the
intent of your code. You may worry that it would be easy to get lost within
such a huge swarm of functions.

But the opposite happens. The intent of your code becomes much more
obvious. The levels of abstraction become crisp and the lines between them
clear.

Remember that languages nowadays are rich with modules, classes, and
namespaces. This allows you to build a hierarchy of names within which to
place your functions. Namespaces hold classes. Classes hold functions.
Public functions refer to private functions. Classes hold inner and nested
classes. And so on. Take advantage of these tools to create a structure that
makes it easy for other programmers to locate the functions you have
written.

And then choose good names. Remember that the length of a function’s
name should be inversely proportional to the scope that contains it. The
names of public functions should be relatively short. The names of private
functions should be longer.

As you extract and extract, the names of the functions will get longer and
longer because the purpose of the function will become less and less
general. Most of these extracted functions will be called from only one
place, so their purpose will be extremely specialized and precise. The
names of such specialized and precise functions must be long. They will
likely be full clauses or even sentences.

These functions will be called from within the parentheses of while loops
and if statements. They will be called from within the bodies of those
statements as well, leading to code that looks like this:



Click here to view code image
if (employeeShouldHaveFullBenefits()) 

 AddFullBenefitsToEmployee();

It will make your code read like well-written prose.

Using the Extract Method refactoring is also how you will get your
functions to follow the stepdown rule.7 We want each line of a function to
be at the same level of abstraction, and that level should be one level below
the name of the function. To achieve this, we extract all code snippets
within a function that are below the desired level.
7. Martin, p. 37.

Extract Variable
If Extract Method is the most important of refactorings, Extract Variable
is its ready assistant. It turns out that in order to extract methods, you often
must extract variables first.

For example, consider this refactoring from the bowling game in Chapter 2,
“Test-Driven Development.” We started with this:

Click here to view code image
@Test 

public void allOnes() throws Exception { 

 for (int i=0; i<20; i++) 

   g.roll(1); 

 assertEquals(20, g.score()); 

}

And we ended up with this:

Click here to view code image
 private void rollMany(int n, int pins) { 

   for (int i = 0; i < n; i++) { 

     g.roll(pins); 

   } 

 } 



 

 @Test 

 public void allOnes() throws Exception { 

   rollMany(20, 1); 

   assertEquals(20, g.score()); 

 }

The sequence of refactorings was as follows:

1. Extract Variable: The 1 in g.roll(1) was extracted into a variable
named pins.

2. Extract Variable: The 20 in assertEquals(20, g.score()); was
extracted into a variable named n.

3. The two variables were moved above the for loop.

4. Extract Method: The for loop was extracted into the rollMany
function. The names of the variables became the names of the
arguments.

5. Inline: The two variables were inlined. They had served their purpose
and were no longer needed.

Another common usage for Extract Variable is to create an explanatory
variable.8 For example, consider the following if statement:
8. Kent Beck, Smalltalk Best Practice Patterns (Addison-Wesley, 1997), 108.

Click here to view code image
if (employee.age > 60 && employee.salary > 150000) 

    ScheduleForEarlyRetirement(employee);

This might read better with an explanatory variable:

Click here to view code image
boolean isEligibleForEarlyRetirement = employee.age > 60 && 

                                      employee.salary > 150000  

if (isEligibleForEarlyRetirement) 

    ScheduleForEarlyRetirement(employee);



Extract Field
This refactoring can have a profoundly positive effect. I don’t use it often,
but when I do, it puts the code on a path to substantial improvement.

It all begins with a failed Extract Method. Consider the following class,
which converts a CSV file of data into a report. It’s a bit of a mess.

Click here to view code image
public class NewCasesReporter { 

 public String makeReport(String countyCsv) { 

   int totalCases = 0; 

   Map<String, Integer> stateCounts = new HashMap<>(); 

   List<County> counties = new ArrayList<>(); 

 

   String[] lines = countyCsv.split("\n"); 

   for (String line : lines) { 

     String[] tokens = line.split(","); 

     County county = new County(); 

     county.county = tokens[0].trim(); 

     county.state = tokens[1].trim(); 

     //compute rolling average 

     int lastDay = tokens.length - 1; 

     int firstDay = lastDay - 7 + 1; 

     if (firstDay < 2) 

       firstDay = 2; 

     double n = lastDay - firstDay + 1; 

     int sum = 0; 

     for (int day = firstDay; day <= lastDay; day++) 

       sum += Integer.parseInt(tokens[day].trim()); 

     county.rollingAverage = (sum / n); 

 

     //compute sum of cases. 

     int cases = 0; 

     for (int i = 2; i < tokens.length; i++) 

       cases += (Integer.parseInt(tokens[i].trim())); 

     totalCases += cases; 

     int stateCount = stateCounts.getOrDefault(county.state, 0); 

     stateCounts.put(county.state, stateCount + cases); 

     counties.add(county); 

   } 

   StringBuilder report = new StringBuilder("" + 



     "County     State     Avg New Cases\n" + 

     "======     =====     =============\n"); 

   for (County county : counties) { 

     report.append(String.format("%-11s%-10s%.2f\n", 

       county.county, 

       county.state, 

       county.rollingAverage)); 

   } 

   report.append("\n"); 

   TreeSet<String> states = new TreeSet<>(stateCounts.keySet()); 

   for (String state : states) 

     report.append(String.format("%s cases: %d\n", 

       state, stateCounts.get(state))); 

   report.append(String.format("Total Cases: %d\n", totalCases)); 

   return report.toString(); 

 } 

 

 public static class County { 

   public String county = null; 

   public String state = null; 

   public double rollingAverage = Double.NaN; 

 } 

}

Fortunately for us, the author was kind enough to have written some tests.
These tests aren’t great, but they’ll do.

Click here to view code image
public class NewCasesReporterTest { 

 private final double DELTA = 0.0001; 

 private NewCasesReporter reporter; 

 

 @Before 

 public void setUp() throws Exception { 

   reporter = new NewCasesReporter(); 

 } 

 

 @Test 

 public void countyReport() throws Exception { 

   String report = reporter.makeReport("" + 

     "c1, s1, 1, 1, 1, 1, 1, 1, 1, 7\n" + 



     "c2, s2, 2, 2, 2, 2, 2, 2, 2, 7"); 

   assertEquals("" + 

       "County     State     Avg New Cases\n" + 

       "======     =====     =============\n" + 

       "c1         s1        1.86\n" + 

       "c2         s2        2.71\n\n" + 

       "s1 cases: 14\n" + 

       "s2 cases: 21\n" + 

       "Total Cases: 35\n", 

     report); 

 } 

 

 @Test 

 public void stateWithTwoCounties() throws Exception { 

   String report = reporter.makeReport("" + 

     "c1, s1, 1, 1, 1, 1, 1, 1, 1, 7\n" + 

     "c2, s1, 2, 2, 2, 2, 2, 2, 2, 7"); 

   assertEquals("" + 

       "County     State     Avg New Cases\n" + 

       "======     =====     =============\n" + 

       "c1         s1        1.86\n" + 

       "c2         s1        2.71\n\n" + 

       "s1 cases: 35\n" + 

       "Total Cases: 35\n", 

     report); 

 } 

 

 @Test 

 public void statesWithShortLines() throws Exception { 

   String report = reporter.makeReport("" + 

     "c1, s1, 1, 1, 1, 1, 7\n" + 

     "c2, s2, 7\n"); 

   assertEquals("" + 

       "County     State     Avg New Cases\n" + 

       "======     =====     =============\n" + 

       "c1         s1        2.20\n" + 

       "c2         s2        7.00\n\n" + 

       "s1 cases: 11\n" + 

       "s2 cases: 7\n" + 

       "Total Cases: 18\n", 

     report); 

 } 

}



The tests give us a good idea of what the program is doing. The input is a
CSV string. Each line represents a county and has a list of the number of
new COVID cases per day. The output is a report that shows the seven-day
rolling average of new cases per county and provides some totals for each
state, along with a grand total.

Clearly, we want to start extracting methods from this big horrible function.
Let’s begin with that loop up at the top. That loop does all the math for all
the counties, so we should probably call it something like
calculateCounties.

However, selecting that loop and trying to extract a method produces the
dialog shown in Figure 5.1.



Figure 5.1 Extract Method dialog

The IDE wants to name the function getTotalCases. You’ve got to hand it
to the IDE authors—they worked pretty hard to try to suggest names. The
IDE decided on that name because the code after the loop needs the number
of new cases and has no way to get it if this new function doesn’t return it.

But we don’t want to call the function getTotalCases. That’s not our intent
for this function. We want to call it calculateCounties. Moreover, we don’t



want to pass in those four arguments either. All we really want to pass in to
the extracted function is the lines array.

So let’s hit Cancel and look again.

To refactor this properly, we need to extract some of the local variables
within that loop into fields of the surrounding class. We use the Extract
Field refactoring to do this:

Click here to view code image
public class NewCasesReporter { 

 private int totalCases; 

 private final Map<String, Integer> stateCounts = new HashMap<>(); 

 private final List<County> counties = new ArrayList<>(); 

 

 public String makeReport(String countyCsv) { 

   totalCases = 0; 

   stateCounts.clear(); 

   counties.clear(); 

 

   String[] lines = countyCsv.split("\n"); 

   for (String line : lines) { 

     String[] tokens = line.split(","); 

     County county = new County();

Note that we initialize the values of those variables at the top of the
makeReport function. This preserves the original behavior.

Now we can extract out the loop without passing in any more variables than
we want and without returning the totalCases:

Click here to view code image
public class NewCasesReporter { 

 private int totalCases; 

 private final Map<String, Integer> stateCounts = new HashMap<>(); 

 private final List<County> counties = new ArrayList<>(); 

 

 public String makeReport(String countyCsv) { 

   String[] countyLines = countyCsv.split("\n"); 

   calculateCounties(countyLines); 



    

   StringBuilder report = new StringBuilder("" + 

     "County     State     Avg New Cases\n" + 

     "======     =====     =============\n"); 

   for (County county : counties) { 

     report.append(String.format("%-11s%-10s%.2f\n", 

       county.county, 

       county.state, 

       county.rollingAverage)); 

   } 

   report.append("\n"); 

   TreeSet<String> states = new TreeSet<>(stateCounts.keySet()); 

   for (String state : states) 

     report.append(String.format("%s cases: %d\n", 

       state, stateCounts.get(state))); 

   report.append(String.format("Total Cases: %d\n", totalCases)); 

   return report.toString(); 

 } 

 

 private void calculateCounties(String[] lines) { 

   totalCases = 0; 

   stateCounts.clear(); 

   counties.clear(); 

 

   for (String line : lines) { 

     String[] tokens = line.split(","); 

     County county = new County(); 

     county.county = tokens[0].trim(); 

     county.state = tokens[1].trim(); 

     //compute rolling average 

     int lastDay = tokens.length - 1; 

     int firstDay = lastDay - 7 + 1; 

     if (firstDay < 2) 

       firstDay = 2; 

     double n = lastDay - firstDay + 1; 

     int sum = 0; 

     for (int day = firstDay; day <= lastDay; day++) 

       sum += Integer.parseInt(tokens[day].trim()); 

     county.rollingAverage = (sum / n); 

 

     //compute sum of cases. 

     int cases = 0; 



     for (int i = 2; i < tokens.length; i++) 

       cases += (Integer.parseInt(tokens[i].trim())); 

     totalCases += cases; 

     int stateCount = stateCounts.getOrDefault(county.state, 0); 

     stateCounts.put(county.state, stateCount + cases); 

     counties.add(county); 

   } 

 } 

 

 public static class County { 

   public String county = null; 

   public String state = null; 

   public double rollingAverage = Double.NaN; 

 } 

}

Now, with those variables as fields, we can continue to extract and rename
to our heart’s delight.

Click here to view code image
public class NewCasesReporter { 

 private int totalCases; 

 private final Map<String, Integer> stateCounts = new HashMap<>(); 

 private final List<County> counties = new ArrayList<>(); 

 

 public String makeReport(String countyCsv) { 

   String[] countyLines = countyCsv.split("\n"); 

   calculateCounties(countyLines); 

 

   StringBuilder report = makeHeader(); 

   report.append(makeCountyDetails()); 

   report.append("\n"); 

   report.append(makeStateTotals()); 

   report.append(String.format("Total Cases: %d\n", totalCases)); 

   return report.toString(); 

 } 

 

 private void calculateCounties(String[] countyLines) { 

   totalCases = 0; 

   stateCounts.clear(); 



   counties.clear(); 

 

   for (String countyLine : countyLines) 

     counties.add(calcluateCounty(countyLine)); 

 } 

 

 private County calcluateCounty(String line) { 

   County county = new County(); 

   String[] tokens = line.split(","); 

   county.county = tokens[0].trim(); 

   county.state = tokens[1].trim(); 

 

   county.rollingAverage = calculateRollingAverage(tokens); 

 

   int cases = calculateSumOfCases(tokens); 

   totalCases += cases; 

   incrementStateCounter(county.state, cases); 

 

   return county; 

 } 

 

 private double calculateRollingAverage(String[] tokens) { 

   int lastDay = tokens.length - 1; 

   int firstDay = lastDay - 7 + 1; 

   if (firstDay < 2) 

     firstDay = 2; 

   double n = lastDay - firstDay + 1; 

   int sum = 0; 

   for (int day = firstDay; day <= lastDay; day++) 

     sum += Integer.parseInt(tokens[day].trim()); 

   return (sum / n); 

 } 

 

 private int calculateSumOfCases(String[] tokens) { 

   int cases = 0; 

   for (int i = 2; i < tokens.length; i++) 

     cases += (Integer.parseInt(tokens[i].trim())); 

   return cases; 

 } 



 

 private void incrementStateCounter(String state, int cases) { 

   int stateCount = stateCounts.getOrDefault(state, 0); 

   stateCounts.put(state, stateCount + cases); 

 } 

 

 private StringBuilder makeHeader() { 

   return new StringBuilder("" + 

     "County     State     Avg New Cases\n" + 

     "======     =====     =============\n"); 

 } 

 

 private StringBuilder makeCountyDetails() { 

   StringBuilder countyDetails = new StringBuilder(); 

   for (County county : counties) { 

     countyDetails.append(String.format("%-11s%-10s%.2f\n", 

       county.county, 

       county.state, 

       county.rollingAverage)); 

   } 

   return countyDetails; 

 } 

 

 private StringBuilder makeStateTotals() { 

   StringBuilder stateTotals = new StringBuilder(); 

   TreeSet<String> states = new TreeSet<>(stateCounts.keySet()); 

   for (String state : states) 

     stateTotals.append(String.format("%s cases: %d\n", 

       state, stateCounts.get(state))); 

   return stateTotals; 

 } 

 

 public static class County { 

   public String county = null; 

   public String state = null; 

   public double rollingAverage = Double.NaN; 

 } 

}



This is much better, but I don’t like the fact that the code that formats the
report is in the same class with the code that calculates the data. That’s a
violation of the single responsibility principle because the format of the
report and the calculations are very likely to change for different reasons.

In order to pull the calculation portion of the code out into a new class, we
use the Extract Superclass refactoring to pull the calculations up into a
superclass named NewCasesCalculator. NewCasesReporter will derive from
it.

Click here to view code image
public class NewCasesCalculator { 

 protected final Map<String, Integer> stateCounts = new HashMap<>

(); 

 protected final List<County> counties = new ArrayList<>(); 

 protected int totalCases; 

 

 protected void calculateCounties(String[] countyLines) { 

   totalCases = 0; 

   stateCounts.clear(); 

   counties.clear(); 

 

   for (String countyLine : countyLines) 

     counties.add(calcluateCounty(countyLine)); 

 } 

 

 private County calcluateCounty(String line) { 

   County county = new County(); 

   String[] tokens = line.split(","); 

   county.county = tokens[0].trim(); 

   county.state = tokens[1].trim(); 

 

   county.rollingAverage = calculateRollingAverage(tokens); 

 

   int cases = calculateSumOfCases(tokens); 

   totalCases += cases; 

   incrementStateCounter(county.state, cases); 

 



   return county; 

 } 

 

 private double calculateRollingAverage(String[] tokens) { 

   int lastDay = tokens.length - 1; 

   int firstDay = lastDay - 7 + 1; 

   if (firstDay < 2) 

     firstDay = 2; 

   double n = lastDay - firstDay + 1; 

   int sum = 0; 

   for (int day = firstDay; day <= lastDay; day++) 

     sum += Integer.parseInt(tokens[day].trim()); 

   return (sum / n); 

 } 

 

 private int calculateSumOfCases(String[] tokens) { 

   int cases = 0; 

   for (int i = 2; i < tokens.length; i++) 

     cases += (Integer.parseInt(tokens[i].trim())); 

   return cases; 

 } 

 

 private void incrementStateCounter(String state, int cases) { 

   int stateCount = stateCounts.getOrDefault(state, 0); 

   stateCounts.put(state, stateCount + cases); 

 } 

 

 public static class County { 

   public String county = null; 

   public String state = null; 

   public double rollingAverage = Double.NaN; 

 } 

} 

 

======= 

 

public class NewCasesReporter extends NewCasesCalculator { 

 public String makeReport(String countyCsv) { 

   String[] countyLines = countyCsv.split("\n"); 

   calculateCounties(countyLines); 



 

   StringBuilder report = makeHeader(); 

   report.append(makeCountyDetails()); 

   report.append("\n"); 

   report.append(makeStateTotals()); 

   report.append(String.format("Total Cases: %d\n", totalCases)); 

   return report.toString(); 

 } 

 

 private StringBuilder makeHeader() { 

   return new StringBuilder("" + 

     "County     State     Avg New Cases\n" + 

     "======     =====     =============\n"); 

 } 

 private StringBuilder makeCountyDetails() { 

   StringBuilder countyDetails = new StringBuilder(); 

   for (County county : counties) { 

     countyDetails.append(String.format("%-11s%-10s%.2f\n", 

       county.county, 

       county.state, 

       county.rollingAverage)); 

   } 

   return countyDetails; 

 } 

 private StringBuilder makeStateTotals() { 

   StringBuilder stateTotals = new StringBuilder(); 

   TreeSet<String> states = new TreeSet<>(stateCounts.keySet()); 

   for (String state : states) 

     stateTotals.append(String.format("%s cases: %d\n", 

       state, stateCounts.get(state))); 

   return stateTotals; 

 } 

}

This partitioning separates things out very nicely. Reporting and calculation
are accomplished in separate modules. And all because of that initial
Extract Field.



Rubik’s Cube
So far, I’ve tried to show you how powerful a small set of refactorings can
be. In my normal work, I seldom use more than the ones I’ve shown you.
The trick is to learn them well and understand all the details of the IDE and
the tricks for using them.

I have often compared refactoring to solving a Rubik’s cube. If you’ve
never solved one of these puzzles, it would be worth your time to learn
how. Once you know the trick, it’s relatively easy.

It turns out that there are a set of “operations” that you can apply to the
cube that preserve most of the cube’s positions but change certain positions
in predictable ways. Once you know three or four of those operations, you
can incrementally manipulate the cube into a solvable position.

The more operations you know and the more adept you are at performing
them, the faster and more directly you can solve the cube. But you’d better
learn those operations well. One missed step and the cube melts down into a
random distribution of cubies, and you have to start all over.

Refactoring code is a lot like this. The more refactorings you know and the
more adept you are at using them, the easier it is to push, pull, and stretch
the code in any direction you desire.

Oh, and you’d better have tests too. Without them, meltdowns are a near
certainty.

The Disciplines
Refactoring is safe, easy, and powerful if you approach it in a regular and
disciplined manner. If, on the other hand, you approach it as an ad hoc,
temporary, and sporadic activity, that safety and power can quickly
evaporate.

Tests



The first of the disciplines, of course, is tests. Tests, tests, tests, tests, and
more tests. To safely and reliably refactor your code, you need a test suite
that you trust with your life. You need tests.

Quick Tests
The tests also need to be quick. Refactoring just doesn’t work well if your
tests take hours (or even minutes) to run.

In large systems, no matter how hard you try to reduce test time, it’s hard to
reduce it to less than a few minutes. For this reason, I like to organize my
test suite such that I can quickly and easily run the relevant subset of tests
that check the part of the code I am refactoring at the moment. This usually
allows me to reduce the test time from minutes to sub-seconds. I run the
whole suite once every hour or so just to make sure no bugs leaked out.

Break Deep One-to-One Correspondences
Creating a test structure that allows relevant subsets to be run means that, at
the level of modules and components, the design of your tests will mirror
the design of your code. There will likely be a one-to-one correspondence
between your high-level test modules and your high-level production code
modules.

As we learned in the previous section, deep one-to-one correspondences
between tests and code lead to fragile tests.

The speed benefit of being able to run relevant subsets of tests is much
greater than the cost of one-to-one coupling at that level. But in order to
prevent fragile tests, we don’t want the one-to-one correspondence to
continue. So, below the level of modules and components, we purposely
break that one-to-one correspondence.

Refactor Continuously



When I cook a meal, I make it a rule to clean the preparation dishes as I
proceed.9 I do not let them pile up in the sink. There’s always enough time
to clean the used utensils and pans while the food is cooking.
9. My wife disputes this claim.

Refactoring is like that too. Don’t wait to refactor. Refactor as you go. Keep
the red → green → refactor loop in your mind, and spin around that loop
every few minutes. That way, you will prevent the mess from building so
large that it starts to intimidate you.

Refactor Mercilessly
Merciless refactoring was one of Kent Beck’s sound bites for Extreme
Programming. It was a good one. The discipline is simply to be courageous
when you refactor. Don’t be afraid to try things. Don’t be reluctant to make
changes. Manipulate the code as though it is clay and you are the sculptor.
Fear of the code is the mind-killer, the dark path. Once you start down the
dark path, forever will it dominate your destiny. Consume you it will.

Keep the Tests Passing!
Sometimes you will realize that you’ve made a structural error and that a
large swath of code needs to change. This can happen when a new
requirement that invalidates your current design comes along. It can also
happen out of the blue when, one day, you suddenly realize that there’s a
better structure for the future of your project.

You must be merciless, but you must also be smart. Never break the tests!
Or, rather, never leave them broken for more than a few minutes at a time.

If the restructuring is going to take hours or days to complete, then do the
restructuring in small chunks while you keep everything passing and while
you continue to do other activities.

For example, let’s say that you realize that you need to change a
fundamental data structure in the system—a data structure that large



swathes of the code use. If you were to change that data structure, those
swaths would stop working and many tests would break.

Instead, you should create a new data structure that mirrors the content of
the old data structure. Then, gradually, move each portion of the code from
the old data structure to the new data structure while keeping the tests
passing.

While this is going on, you may also be adding new features and fixing
bugs according to your regular schedule of work. There is no need to ask
for special time to perform this restructuring. You can keep on doing other
work while you opportunistically manipulate the code until the old data
structure is no longer used and can be deleted.

This may take weeks or even months, depending on how significant the
restructuring is. Even so, at no time would the system be down for
deployment. Even while the restructuring is only partially complete, the
tests still pass and the system can be deployed into production.

Leave Yourself an Out
When flying into an area where the weather might not be so good, pilots are
taught to always make sure they leave an avenue of escape. Refactoring can
be a bit like that. Sometimes you start a series of refactorings that, after an
hour or two, leads you to a dead end. The idea you started with just didn’t
pan out for some reason.

In situations like this, git reset --hard can be your friend.

So, when beginning such a sequence of refactorings, make sure to tag your
source repository so you can back out if you need to.

Conclusion
I kept this chapter intentionally brief because there were only a few ideas
that I wanted to add to Martin Fowler’s Refactoring. Again, I urge you to
refer to that book for an in-depth understanding.



The best approach to refactoring is to develop a comfortable repertoire of
refactorings that you use frequently and to have a good working knowledge
of many others. If you use an IDE that provides refactoring operations,
make sure you understand them in detail.

Refactoring makes no sense without tests. Without tests, the opportunities
for error are just too common. Even the automated refactorings that your
IDE provides can sometimes make mistakes. So always back up your
refactoring efforts with a comprehensive suite of tests.

Finally, be disciplined. Refactor frequently. Refactor mercilessly. And
refactor without apology. Never, ever ask permission to refactor.



6 Simple Design

Design. The Holy Grail and ultimate objective of the software craft. We all
seek to create a design so perfect that features can be added without effort
and without fuss. A design so robust that, despite months and years of
constant maintenance, the system remains facile and flexible. Design, in the
end, is what it’s all about.



I have written a great deal about design. I have written books about design
principles, design patterns, and architecture. And I am far from the only
author to focus on this topic. The amount of literature on software design is
enormous.

But that’s not what this chapter is about. You would be well advised to
research the topic of design, read those authors, and understand the
principles, the patterns, and the overall gestalt of software design and
architecture.

But the key to it all, the aspect of design that imbues it with all the
characteristics that we desire, is—in a word—simplicity. As Chet
Hendrickson1 once said, “Uncle Bob wrote thousands of pages on clean
code. Kent Beck wrote four lines.” It is those four lines we focus on here.
1. As cited by Martin Fowler in a tweet quoting Chet Hendrickson at AATC2017. I was in

attendance when Chet said it, and I completely agreed with him.

It should be obvious, on the face of it, that the best design for a system is
the simplest design that supports all the required features of that system
while simultaneously affording the greatest flexibility for change. However,
that leaves us to ponder the meaning of simplicity.2 Simple does not mean
easy. Simple means untangled, and untangling things is hard.
2. In 2012, Rich Hickey gave a wonderful talk, Simple Made Easy. I encourage you to listen to it.

https://www.youtube.com/watch?v=oytL881p-nQ.

What things get tangled in software systems? The most expensive and
significant entanglements are those that convolve high-level policies with
low-level details. You create terrible complexities when you conjoin SQL
with HTML, or frameworks with core values, or the format of a report with
the business rules that calculate the reported values. These entanglements
are easy to write, but they make it hard to add new features, hard to fix
bugs, and hard to improve and clean the design.

A simple design is a design in which high-level policies are ignorant of
low-level details. Those high-level policies are sequestered and isolated
from low-level details such that changes to the low-level details have no
impact on the high-level policies.3

3. I write a great deal about this in Clean Architecture: A Craftsman’s Guide to Software Structure
and Design (Addison-Wesley, 2018).

https://www.youtube.com/watch?v=oytL881p-nQ


The primary means for creating this separation and isolation is abstraction.
Abstraction is the amplification of the essential and the elimination of the
irrelevant. High-level policies are essential, so they are amplified. Low-
level details are irrelevant, so they are isolated and sequestered.

The physical means we employ for this abstraction is polymorphism. We
arrange high-level policies to use polymorphic interfaces to manage the
low-level details. Then we arrange the low-level details as implementations
of those polymorphic interfaces. This practice keeps all source code
dependencies pointing from low-level details to high-level policies and
keeps high-level policies ignorant of the implementations of the low-level
details. Low-level details can be changed without affecting the high-level
policies (Figure 6.1).

Figure 6.1 Polymorphism

If the best design of a system is the simplest design that supports the
features, then we can say that such a design must have the fewest
abstractions that manage to isolate high-level policy from low-level detail.

And yet, this was precisely the opposite of the strategy we employed
throughout the 1980s and 1990s. In those days, we were obsessed with
future-proofing our code by putting the hooks in for the changes we
anticipated in the future.

We took this path because software, in those days, was hard to change—
even if the design was simple.



Why was software hard to change? Because build times were long and test
times were longer.

In the 1980s, a small system might require an hour or more to build and
many hours to test. Tests, of course, were manual and were therefore
woefully inadequate. As a system grew larger and more complicated, the
programmers became ever-more afraid of making changes. This led to a
mentality of overdesign, which drove us to create systems that were far
more complicated than necessary for the features they had.

We reversed course in the late 1990s with the advent of Extreme
Programming and then Agile. By then, our machines had become so
massively powerful that build times could be reduced to minutes or even
seconds, and we found that we could afford to automate tests that could run
very quickly.

Driven by this technological leap, the discipline of YAGNI and the four
principles of simple design, described by Kent Beck, became practicable.

YAGNI
What if you aren’t gonna need it?
In 1999, I was teaching an Extreme Programming course with Martin
Fowler, Kent Beck, Ron Jeffries, and a host of others. The topic turned to
the dangers of overdesign and premature generalization. Someone wrote
YAGNI on the whiteboard and said, “You aren’t gonna need it.” Beck
interrupted and said something to the effect maybe you are gonna need it,
but you should ask yourself, “What if you aren’t?”

That was the original question that YAGNI asked. Every time you thought
to yourself, I’m going to need this hook, you then asked yourself what
would happen if you didn’t put the hook in. If the cost of leaving the hook
out was tolerable, then you probably shouldn’t put it in. If the cost of
carrying the hook in the design, year after year, would be high but the odds
that you’d eventually need that hook were low, you probably shouldn’t put
that hook in.



It is hard to imagine the furor this new perspective raised in the late 1990s.
Designers everywhere had gotten very used to putting all the hooks in. In
those days, putting the hooks in was considered conventional wisdom and a
best practice.

So, when the YAGNI discipline of Extreme Programming surfaced, it was
roundly criticized and panned as heresy and claptrap.

Nowadays, ironically, it is one of the most important disciplines of good
software design. If you have a good suite of tests and you are skilled at the
discipline of refactoring, then the cost of adding a new feature and updating
the design to support that new feature will almost certainly be smaller than
the cost of implementing and maintaining all the hooks you might need one
day.

Hooks are problematic in any case. We seldom get them right. That’s
because we are not particularly good at predicting what customers will
actually do. Consequently, we tend to put in far more hooks than we need
and base those hooks on assumptions that rarely pan out.

The bottom line is that that the effect that gigahertz clock rates and terabyte
memories had on the process of software design and architecture took us all
by surprise. We did not realize until the late 1990s that those advances
would allow us to vastly simplify our designs.

It is one of the great ironies of our industry that the exponential increase of
Moore’s law that drove us to build ever-more complex software systems
also made it possible to simplify the designs of those systems.

YAGNI, it turns out, is the unintended consequence of the virtually limitless
computer power now at our disposal. Because our build times have shrunk
down into the seconds and because we can afford to write and execute
comprehensive test suites that execute in seconds, we can afford to not put
the hooks in and instead refactor the designs as the requirements change.

Does this mean that we never put the hooks in? Do we always design our
systems only for the features we need today? Do we never think ahead and
plan for the future?

No, that’s not what YAGNI means. There are times when putting a
particular hook in is a good idea. Future-proofing the code is not dead, and
it is always wise to think of the future.



It’s just that the trade-offs have changed so dramatically in the last few
decades that it is now usually better to leave the majority of the hooks out.
And that’s why we ask the question:

What if you aren’t gonna need it?

Covered by Tests
The first time I ran across Beck’s rules of simple design was in the first
edition of Extreme Programming Explained.4 At that time, the four rules
were as follows:
4. Kent Beck, Extreme Programming Explained (Addison-Wesley, 1999).

1. The system (code and tests) must communicate everything you want
to communicate.

2. The system must contain no duplicate code.

3. The system should have the fewest possible classes.

4. The system should have the fewest possible methods.

By 2011, they had evolved to these:

1. Tests pass.

2. Reveal intent.

3. No duplication.

4. Small.

By 2014, Corey Haines had written a book5 about those four rules:
5. Corey Haines, Understanding the Four Rules of Simple Design (Leanpub, 2014).

In 2015, Martin Fowler wrote a blog6 about them in which he rephrased
them:
6. Martin Fowler, “BeckDesignRules,” March 2, 2015,

https://martinfowler.com/bliki/BeckDesignRules.xhtml.

1. Passes the tests.

2. Reveals intention.

https://martinfowler.com/bliki/BeckDesignRules.xhtml


3. No duplication.

4. Fewest elements.

In this book I express the first rule as
1. Covered by tests.

Notice how the emphasis of that first rule has changed over the years. The
first rule split in two and the last two rules merged into one. Notice also
that, as the years went by, tests grew in importance from communication to
coverage.

Coverage
The concept of tests coverage is an old one. The first mention I was able to
find goes all the way back to 1963.7 The article begins with two paragraphs
that I think you’ll find interesting, if not evocative.
7. Joan Miller and Clifford J Maloney, “Systematic Mistake Analysis of Digital Computer

Programs,” Communications of the ACM 6, no. 2 (1963): 58–63.

Effective program checkout is imperative to any complex computer program. One or more test
cases are always run for a program before it is considered ready for application to the actual
problem. Each test case checks that portion of the program actually used in its computation.
Too often, however, mistakes show up as late as several months (or even years) after a program
has been put into operation. This is an indication that the portions of the program called upon
only by rarely occurring input conditions have not been properly tested during the checkout
stage.

In order to rely with confidence upon any particular program it is not sufficient to know that
the program works most of the time or even that it has never made a mistake so far. The real
question is whether it can be counted upon to fulfill its functional specifications successfully
every single time. This means that, after a program has passed the checkout stage, there should
be no possibility that an unusual combination of input data or conditions may bring to light an
unexpected mistake in the program. Every portion of the program must be utilized during
checkout in order that its correctness be confirmed.

Nineteen sixty-three was only seventeen years after the very first program
ran on the very first electronic computer,8 and already we knew that the
only way to effectively mitigate the threat of software errors is to test every
single line of code.
8. Presuming that the first computer was the Automated Computing Engine and that the first

program executed in 1946.



Code coverage tools have been around for decades. I don’t remember when
I first encountered them. I think it was in the late 1980s or early 1990s. At
the time, I was working on Sun Microsystems Sparc Stations, and Sun had a
tool called tcov.

I don’t remember when I first heard the question, What’s your code
coverage? It was probably in the very early 2000s. But thereafter the notion
that code coverage was a number became pretty much universal.

Since then, it has become relatively commonplace for software teams to run
a code coverage tool as part of their continuous build process and to publish
the code coverage number for each build.

What is a good code coverage number? Eighty percent? Ninety percent?
Many teams are more than happy to report such numbers. But six decades
before the publication of this book, Miller and Maloney answered the
question very differently: Their answer was 100 percent.

What other number could possibly make sense? If you are happy with 80
percent coverage, it means you don’t know if 20 percent of your code
works. How could you possibly be happy with that? How could your
customers be happy with that?

So, when I use the term covered in the first rule of simple design, I mean
covered. I mean 100 percent line coverage and 100 percent branch
coverage.

An Asymptotic Goal
You might complain that 100 percent is an unreachable goal. I might even
agree with you. Achieving 100 percent line and branch coverage is no mean
feat. It may, in fact, be impractical depending on the situation. But that does
not mean that your coverage cannot be improved.

Think of the number 100 percent as an asymptotic goal. You may never
reach it, but that’s no excuse for not trying to get closer and closer with
every check-in.

I have personally participated in projects that grew to many tens of
thousands of lines of code while constantly keeping the code coverage in



the very high nineties.

Design?
But what does high code coverage have to do with simple design? Why is
coverage the first rule?

Testable code is decoupled code.

In order to achieve high line and branch coverage of each individual part of
the code, each of those parts must be made accessible to the test code. That
means those parts must be so well decoupled from the rest of the code that
they can be isolated and invoked from an individual test. Therefore, those
tests not only are tests of behavior but also are tests of decoupling. The act
of writing isolated tests is an act of design, because the code being tested
must be designed to be tested.

In Chapter 4, “Testing Design,” we talked about how the test code and the
production code evolve in different directions in order to keep the tests from
coupling too strongly to the production code. This prevents the problem of
fragile tests. But the problem of fragile tests is no different from the
problem of fragile modules, and the cure for both is the same. If the design
of your system keeps your tests from being fragile, it will also keep the
other elements of your system from being fragile.

But There’s More
Tests don’t just drive you to create decoupled and robust designs. They also
allow you to improve those designs with time. As we have discussed many
times before in these pages, a trusted suite of tests vastly reduces the fear of
change. If you have such a suite, and if that suite executes quickly, then you
can improve the design of the code every time you find a better approach.
When the requirements change in a way that the current design does not
easily accommodate, the tests will allow you to fearlessly shift the design to
better match those new requirements.



And this is why this rule is the first and most important rule of simple
design. Without a suite of tests that covers the system, the other three rules
become impractical, because those rules are best applied after the fact.
Those other three rules are rules that involve refactoring. And refactoring is
virtually impossible without a good, comprehensive suite of tests.

Maximize Expression
In the early decades of programming, the code we wrote could not reveal
intent. Indeed, the very name “code” suggests that intent is obscured. Back
in those days, code looked like what is shown in Figure 6.2.



Figure 6.2 An example of an early program

Notice the ubiquitous comments. These were absolutely necessary because
the code itself revealed nothing at all about the intent of the program.



However, we no longer work in the 1970s. The languages that we use are
immensely expressive. With the proper discipline, we can produce code that
reads like “well written-prose [that] never obscures the designer’s intent.”9

9. Martin, Clean Code, p. 8 (personal correspondence with Grady Booch).

As an example of such code, consider this little bit of Java from the video
store example in Chapter 4:

Click here to view code image
public class RentalCalculator { 

 private List<Rental> rentals = new ArrayList<>(); 

 public void addRental(String title, int days) { 

   rentals.add(new Rental(title, days)); 

 } 

 public int getRentalFee() { 

   int fee = 0; 

   for (Rental rental : rentals) 

     fee += rental.getFee(); 

   return fee; 

 } 

 public int getRenterPoints() { 

   int points = 0; 

   for (Rental rental : rentals) 

     points += rental.getPoints(); 

   return points; 

 } 

}

If you were not a programmer on this project, you might not understand
everything that is going on in this code. However, after even the most
cursory glance, the basic intent of the designer is easy to identify. The
names of the variables, functions, and types are deeply descriptive. The
structure of the algorithm is easy to see. This code is expressive. This code
is simple.



The Underlying Abstraction
Lest you think that expressivity is solely a matter of nice names for
functions and variables, I should point out that there is another concern: the
separation of levels and the exposition of the underlying abstraction.

A software system is expressive if each line of code, each function, and
each module lives in a well-defined partition that clearly depicts the level of
the code and its place in the overall abstraction.

You may have found that last sentence difficult to parse, so let me be a bit
clearer by being much more longwinded.

Imagine an application that has a complex set of requirements. The example
I like to use is a payroll system.

Hourly employees are paid every Friday on the basis of the timecards
they have submitted. They are paid time and a half for every hour they
work after forty hours in a week.

Commissioned employees are paid on the first and third Friday of
every month. They are paid a base salary plus a commission on the
sales receipts they have submitted.

Salaried employees are paid on the last day of the month. They are
paid a fixed monthly salary.

It should not be hard for you to imagine a set of functions with a complex
switch statement or if/else chain that captures these requirements.
However, such a set of functions is likely to obscure the underlying
abstraction. What is that underlying abstraction?

Click here to view code image
public List<Paycheck> run(Database db) { 

 Calendar now = SystemTime.getCurrentDate(); 

 List<Paycheck> paychecks = new ArrayList<>(); 

 for (Employee e : db.getAllEmployees()) { 

   if (e.isPayDay(now)) 

     paychecks.add(e.calculatePay()); 

 } 

 return paychecks; 

}



Notice that there is no mention of any of the hideous details that dominate
the requirements. The underlying truth of this application is that we need to
pay all employees on their payday. Separating the high-level policy from
the low-level detail is the most fundamental part of making a design simple
and expressive.

Tests: The Other Half of the Problem
Look back at Beck’s original first rule:

1. The system (code and tests) must communicate everything you want to communicate.

There is a reason he phrased it that way, and in some ways, it is unfortunate
that the phrasing was changed.

No matter how expressive you make the production code, it cannot
communicate the context in which it is used. That’s the job of the tests.

Every test you write, especially if those tests are isolated and decoupled, is
a demonstration of how the production code is intended to be used. Well-
written tests are example use cases for the parts of the code that they test.

Thus, taken together, the code and the tests are an expression of what each
element of the system does and how each element of the system should be
used.

What does this have to do with design? Everything, of course. Because the
primary goal we wish to achieve with our designs is to make it easy for
other programmers to understand, improve, and upgrade our systems. And
there is no better way to achieve that goal than to make the system express
what it does and how it is intended to be used.

Minimize Duplication
In the early days of software, we had no source code editors at all. We
wrote our code, using #2 pencils, on preprinted coding forms. The best
editing tool we had was an eraser. We had no practical means to copy and
paste.



Because of that, we did not duplicate code. It was easier for us to create a
single instance of a code snippet and put it into a subroutine.

But then came the source code editors, and with those editors came
copy/paste operations. Suddenly it was much easier to copy a snippet of
code and paste it into a new location and then fiddle with it until it worked.

Thus, as the years went by, more and more systems exhibited massive
amounts of duplication in the code.

Duplication is usually problematic. Two or more similar stretches of code
will often need to be modified together. Finding those similar stretches is
hard. Properly modifying them is even harder because they exist in different
contexts. Thus, duplication leads to fragility.

In general, it is best to reduce similar stretches of code into a single instance
by abstracting the code into a new function and providing it with
appropriate arguments that communicate any differences in context.

Sometimes that strategy is not workable. For example, sometimes the
duplication is in code that traverses a complex data structure. Many
different parts of the system may wish to traverse that structure and will use
the same looping and traversal code only to then operate on the data
structure in the body of that code.

As the structure of the data changes over time, programmers will have to
find all the duplications of the traversal code and properly update them. The
more the traversal code is duplicated, the higher the risk of fragility.

The duplications of the traversal code can be eliminated by encapsulating it
in once place and using lambdas, Command objects, the Strategy pattern or
even the Template Method pattern10 to pass the necessary operations into
the traversal.
10. Erich Gamma, Richard Helm, Ralph Johnson, and John M Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software (Addison-Wesley, 1995).

Accidental Duplication
Not all duplication should be eliminated. There are instances in which two
stretches of code may be very similar, even identical, but will change for



very different reasons.11 I call this accidental duplication. Accidental
duplicates should not be eliminated. The duplication should be allowed to
persist. As the requirements change, the duplicates will evolve separately
and the accidental duplication will dissolve.
11. See the single responsibility principle. Robert C. Martin, Agile Software Development:

Principles, Patterns, and Practices (Pearson, 2003).

It should be clear that managing duplication is nontrivial. Identifying which
duplications are real and which are accidental, and then encapsulating and
isolating the real duplications, requires a significant amount of thought and
care.

Determining the real duplications from the accidental duplications depends
strongly on how well the code expresses its intent. Accidental duplications
have divergent intent. Real duplications have convergent intent.

Encapsulating and isolating the real duplications, using abstraction,
lambdas, and design patterns, involves a substantial amount of refactoring.
And refactoring requires a good solid test suite.

Therefore, eliminating duplication is third in the priority list of the rules of
simple design. First come the tests and the expression.

Minimize Size
A simple design is composed of simple elements. Simple elements are
small. The last rule of simple design states that for each function you write,
after you’ve gotten all the tests to pass, and after you have made the code as
expressive as possible, and after you have minimized duplication, then you
should work to decrease the size of the code within each function without
violating the other three principles.

How do you do that? Mostly by extracting more functions. As we discussed
in Chapter 5, “Refactoring,” you extract functions until you cannot extract
any more.

This practice leaves you with nice small functions that have nice long
names that help to make the functions very small and very expressive.



Simple Design
Many years back, Kent Beck and I were having a discussion on the
principles of design. He said something that has always stuck with me. He
said that if you followed these four things as diligently as possible, all other
design principles would be satisfied—the principles of design can be
reduced to coverage, expression, singularization, and reduction.

I don’t know if this is true or not. I don’t know if a perfectly covered,
expressed, singularized, and reduced program necessarily conforms to the
open-closed principle or the single responsibility principle. What I am very
sure of, however, is that knowing and studying the principles of good
design and good architecture (e.g., the SOLID principles) makes it much
easier to create well-partitioned and simple designs.

This is not a book about those principles. I have written about them many
times before,12 as have others. I encourage you to read those works and
study those principles as part of maturing in your craft.
12. See Martin, Clean Code; Clean Architecture; and Agile Software Development: Principles,

Patterns, and Practices.



7 Collaborative Programming

What does it mean to be part of a team? Imagine a team of players working
to move the ball down the field against their opponents. Imagine one of
those players trips and falls, but the play continues. What do the other
players do?

The other players adapt to the new reality by shifting their field positions in
order to keep the ball moving down the field.

That’s how a team behaves. When a team member goes down, the team
covers for that member until they are back up on their feet.



How do we make a programming team into a team like that? How can the
team cover for someone who gets sick for a week or just has a bad
programming day? We collaborate! We work together so that knowledge of
the whole system spreads through the team.

When Bob goes down, someone else who has recently worked with Bob
can cover the hole until Bob gets back on his feet.

The old adage that two heads are better than one is the basic premise of
collaborative programming. When two programmers collaborate, it is often
called pair programming.1 With three or more, it goes by mob
programming.2

1. Laurie Williams and Robert Kessler, Pair Programming Illuminated (Addison-Wesley, 2002).

2. Mark Pearl, Code with the Wisdom of the Crowd (Pragmatic Bookshelf, 2018).

The discipline involves two or more people working together at the same
time, on the same code. Nowadays, this is typically done by using screen-
sharing software. Both programmers see the same code on their screens.
Both can use their mouse and keyboard to manipulate that code. Their
workstations are slaved to each other either locally or remotely.

Collaboration like this is not something that should generally be done 100
percent of the time. Rather, collaboration sessions are generally brief,
informal, and intermittent. The total time a team should work
collaboratively depends on the maturity, skill, geography, and demographics
of the team and should be somewhere in the range of 20 to 70 percent.3

3. There are teams who pair 100 percent of the time. They seem to enjoy it, and more power to them.

A collaboration session can last as little as 10 minutes or as long as an hour
or two. Sessions that are shorter or longer than those limits are likely to be
less than helpful. My favorite collaboration strategy is to use the Pomodoro
technique.4 This technique divides time into “tomatoes” of 20 minutes or
so, with short breaks in between. A collaboration session should last
between one and three tomatoes.
4. Francesco Cirillo, The Pomodoro Technique (Currency Publishing, 2018).

Collaboration sessions are much shorter lived than programming tasks.
Individual programmers take responsibility for particular tasks and then,
from time to time, invite collaborators to help meet those responsibilities.



No one person is in charge of a collaboration session or of the code being
manipulated within a session. Rather, every participant is an equal author of
and contributor to the code under consideration. The programmer
responsible for the task is the final arbiter should a dispute arise in the midst
of a session.

In a session, all eyes are on the screen, all minds are engaged on the
problem. One or two people may be seated at keyboards, but those seats can
change frequently within the session. Think of the session as
simultaneously being a live coding exercise and a code review.

Collaboration sessions are very intense and require a lot of mental and
emotional energy. One or two hours at that level of intensity is likely all that
the average programmer can tolerate before needing to break away to
something less consuming.

You might worry that collaboration like this is an inefficient use of
manpower, that people working independently can get more done than
people working together. This does not turn out to be particularly true.
Studies5 of programmers working in pairs have shown that the productivity
within a pairing session drops by only about 15 percent, as opposed to the
feared 50 percent. However, during that pairing session, the pair creates
about 15 percent fewer defects and (more important) about 15 percent less
code per feature.
5. Two such studies are “Strengthening the Case for Pair Programming” by Laurie Williams, Robert

R. Kessler, Ward Cunningham, and Ron Jeffries, IEEE Software 17, no. 4 (2000), 19–25; and
“The Case for Collaborative Programming” by J. T. Nosek, Communications of the ACM 41, no. 3
(1998), 105–108.

Those last two statistics imply that the structure of the code being produced
is significantly better than the code that might have been produced by the
programmers working alone.

I haven’t seen any studies on mobbing, but the anecdotal evidence6 is
encouraging.
6. Agile Alliance, “Mob Programming: A Whole Team Approach,” AATC2017,

https://www.agilealliance.org/resources/sessions/mob-programming-aatc2017/.

Seniors can collaborate with juniors. When they do, the seniors are slowed
down by the juniors for the duration of the session. The juniors, on the other
hand, are sped up for the rest of their lives—so it’s a good trade-off.

https://www.agilealliance.org/resources/sessions/mob-programming-aatc2017/


Seniors can collaborate with seniors; just make sure there are no weapons in
the room.

Juniors can collaborate with juniors, though seniors should watch such
sessions carefully. Juniors are likely to prefer to work with other juniors. If
that happens too frequently, a senior should step in.

Some folks simply do not like to participate in collaborations like this.
Some people work better alone. They should not be forced into
collaboration sessions beyond reasonable peer pressure. Nor should they be
disparaged for their preference. Often, they will be happier in a mob than in
a pair.

Collaboration is a skill that takes time and patience to acquire. Don’t expect
to be good at it until you’ve practiced it for many hours. However, it is a
skill that is very beneficial to the team as a whole, and to each programmer
who engages in it.



8 Acceptance Tests

Of all the disciplines of clean craftsmanship, acceptance testing is the one
that programmers have the least control over. Fulfilling this discipline
requires the participation of the business. Unfortunately, many businesses
have, so far, proven unwilling to properly engage.

How do you know when a system is ready to deploy? Organizations around
the world frequently make this decision by engaging a QA department or
group to “bless” the deployment. Typically, this means that the QA folks



run a rather large bevy of manual tests that walk through the various
behaviors of the system until they are convinced that the system behaves as
specified. When those tests “pass,” the system may be deployed.

This means that the true requirements of the system are those tests. It does
not matter what the requirements document says; it is only the tests that
matter. If QA signs off after running their tests, the system is deployed.
Therefore, it is those tests that are the requirements.

The discipline of acceptance testing recognizes this simple fact and
recommends that all requirements be specified as tests. Those tests should
be written by the business analysis (BA) and QA teams, on a feature-by-
feature basis, shortly before each feature is implemented. QA is not
responsible for running those tests. Rather, that task is left to the
programmers; therefore, the programmers will very likely automate those
tests.

No programmer in their right mind wants to manually test the system over
and over again. Programmers automate things. Thus, if the programmers are
responsible for running the tests, the programmers will automate those tests.

However, because BA and QA author the tests, the programmers must be
able to prove to BA and QA that the automation actually performs the tests
that were authored. Therefore, the language in which the tests are
automated must be a language that BA and QA understand. Indeed, BA and
QA ought to be able to write the tests in that automation language.

Several tools have been invented over the years to help with this problem:
FitNesse,1 JBehave, SpecFlow, Cucumber, and others. But tools are not
really the issue. The specification of software behavior is always a simple
function of specifying input data, the action to perform, and the expected
output data. This is the well-known AAA pattern: Arrange/Act/Assert.2

1. fitnesse.org

2. This pattern is credited to Bill Wake, who identified it in 2001 (https://xp123.com/articles/3a-
arrange-act-assert).

All tests begin by arranging the input data for the test; then the test causes
the tested action to be performed. Finally, the test asserts that the output
data from that action matches the expectation.

https://xp123.com/articles/3a-arrange-act-assert


These three elements can be specified in a variety of different ways, but the
most easily approachable is a simple tabular format.

Figure 8.1, for example, is a portion of one of the acceptance tests within
the FitNesse tool. FitNesse is a wiki, and this test checks that the various
markup gestures are properly translated into HTML. The action to be
performed is widget should render, the input data is the wiki text, and the
output is the html text.

Figure 8.1 A portion of the results of one of the acceptance tests from
the FitNesse tool



Another common format is Given-When-Then:

Click here to view code image
      Given a page with the wiki text: !1 header 

      When that page is rendered. 

      Then the page will contain: <h1>header</h1>

It should be clear that these formalisms, whether they are written in an
acceptance testing tool or in a simple spreadsheet or text editor, are
relatively easy to automate.

The Discipline
In the strictest form of the discipline, the acceptance tests are written by BA
and QA. BA focuses on the happy path scenarios, whereas QA focuses on
exploring the myriad of ways that the system can fail.

These tests are written at the same time as, or just before, the features they
test are developed. In an Agile project, divided up into sprints or iterations,
the tests are written during the first few days of the sprint. They should all
pass by the end of the sprint.

BA and QA provide the programmers with these tests, and the programmers
automate them in a manner that keeps BA and QA engaged.

These tests become the definition of done. A feature is not complete until all
its acceptance tests pass. And when all the acceptance tests pass, the feature
is done.

This, of course, puts a huge responsibility on BA and QA. The tests that
they write must be full specifications of the features being tested. The suite
of acceptance tests is the requirements document for the entire system. By
writing those tests, BA and QA are certifying that when they pass, the
specified features are done and working.

Some BA and QA teams may be unaccustomed to writing such formal and
detailed documents. In these cases, the programmers may wish to write the
acceptance tests with guidance from BA and QA. The intermediate goal is
to create tests that BA and QA can read and bless. The ultimate goal is to
get BA and QA comfortable enough to write the tests.



The Continuous Build
Once an acceptance test passes, it goes into the suite of tests that is run
during the continuous build.

The continuous build is an automated procedure that runs every time3 a
programmer checks code into the source code control system. This
procedure builds the system from source and then runs the suites of
automated programmer unit tests and automated acceptance tests. The
results of that run are visibly posted, often in an email to every programmer
and interested party. The state of the continuous build is something
everyone should be continuously aware of.
3. Within a few minutes.

The continuous running of all these tests ensures that subsequent changes to
the system do not break working features. If a previously passing
acceptance test fails during the continuous build, the team must
immediately respond and repair it before making any other changes.
Allowing failures to accumulate in the continuous build is suicidal.



II The Standards

Standards are baseline expectations. They are the lines in the sand that we
decide we cannot cross. They are the parameters we set as the minimum we
can accept. Standards can be exceeded, but we must never fail to meet
them.

Your New CTO



Imagine that I am your new CTO. I’m going to tell you what I expect of
you. You will read these expectations, and you will view them from two
contradictory perspectives.

The first will be the perspective of your managers, executives, and users.
And, from their perspective, these expectations will seem obvious and
normal. No manager, executive, or user would ever expect less.

As a programmer, you may be more familiar with the second perspective. It
is that of the programmers, architects, and technical leads. From their
perspective, these expectations will seem extreme, impossible, even insane.

The difference in those two perspectives, the mismatch of those
expectations, is the primary failing of the software industry, and it is one
that we must urgently repair.

As your new CTO, I expect. …



9 Productivity

As your CTO, I have a couple of expectations about productivity.

We Will Never Ship S**T



As your new CTO, I expect that we will never ship S**T.

I’m sure you know what S**T stands for. As your CTO, I expect that we
will not ship S**T.

Have you ever shipped S**T? Most of us have. I have. It didn’t feel good. I
didn’t like it. The users didn’t like it. The managers didn’t like it. Nobody
liked it.

So why do we do it? Why do we ship S**T?

Because somehow or another, we decided that we had no choice. Perhaps it
was a deadline that we just absolutely had to meet. Maybe it was an
estimate that we were too embarrassed to miss. Maybe it was just downright
sloppiness or carelessness. Maybe it was management pressure. Maybe it
was a matter of self-worth.

Whatever the reason, it was invalid. It is an absolute minimum standard that
we will not ship S**T.

What is S**T? I’m sure you already know, but let’s go over it anyway.

Every bug you ship is S**T.

Every untested function is S**T.

Every poorly written function is S**T.



Every dependency on detail is S**T.

Every unnecessary coupling is S**T.

SQL in the GUI is S**T.

Database schema in the business rules is S**T.

I could go on. But let me cut this short. Every failure of one of the
disciplines in the foregoing chapters risks shipping S**T.

That doesn’t mean that every single one of those disciplines must be upheld
at all times.

We are engineers. Engineers make trade-offs. But an engineering trade-off
is not careless or sloppy. If you must break a discipline, you’d better have a
good reason.

More important, you’d better have a good mitigation plan.

For example, let us say that you are writing Cascading Style Sheets (CSS)
code. Writing automated tests up front for CSS is almost always
impractical. You don’t really know how the CSS will render until you
actually see it on the screen.

So how are we going to mitigate the fact that CSS breaks the test-driven
development testing discipline?

We’re going to have to test the CSS manually, with our eyeballs. We’re also
going to have to test it in all the browsers that our customers are likely to
use. So, we’d better come up with a standard description of what we want
to see on the screen and how much variation we can tolerate. Even more
important, we’d better come up with a technical solution that makes that
CSS easy to manually test because we, not QA, are going to test it before
we ever release it from development.

Let me say this all another way: Do a good job!
That’s what everyone really expects. All our managers, all our users,
everyone who ever touches or is touched by our software, expects us to
have done a good job. We must not let them down.

I expect we will never ship S**T.



Inexpensive Adaptability
Software is a compound word that means “flexible product.” The entire
reason that software exists is so that we can quickly and easily change the
behavior of our machines. To the extent that we build software that is hard
to change, we thwart the very reason that software exists.

And yet inflexibility of software remains a huge problem in our industry.
The reason we focus so much on design and architecture is to improve the
flexibility and maintainability of our systems.

Why does software become rigid, inflexible, and fragile? Again, it is
because software teams fail to engage in the testing and refactoring
disciplines that support flexibility and maintainability. In some cases, those
teams may depend solely on initial design and architecture efforts. In other
cases, they may depend on fads that make unsustainable promises.

But no matter how many microservices you create, no matter how well
structured your initial design and architectural vision is, without the testing
and refactoring disciplines, the code will rapidly degrade and the system
will become harder and harder to maintain.

I do not expect this. I expect that when customers ask for changes, the
development team will be able to respond with a strategy that involves an
expense that is proportional to the scope of the change.
Customers may not understand the internals of the system, but they have a
good sense of the scope of the changes they request. They understand that a
change may affect many features. They expect the cost of that change to be
relative to the scope of that change.

Unfortunately, too many systems become so inflexible over time that the
cost of change rises to a level that customers and managers cannot
rationalize against the scope of the changes they request. To make matters
worse, it is not uncommon for developers to rail against certain kinds of
change on the basis that the change is against the architecture of the system.

An architecture that resists the changes that a customer requests is an
architecture that thwarts the meaning and intent of software. Such an
architecture must be changed to accommodate the changes that the



customers will make. Nothing makes such changes easier than a well-
refactored system and a suite of tests that you trust.

I expect that the design and architecture of the system will evolve with the
requirements. I expect that when customers request changes, those changes
will not be impeded by existing architecture or the rigidity and fragility of
the existing system.

I expect inexpensive adaptability.

We Will Always Be Ready
As your new CTO, I expect that we will always be ready.

Long before Agile made it popular, it was well understood by most
software experts that well-run projects experience a regular rhythm of
deployment and release. In the very early days, this rhythm tended to be
quick: weekly or even daily. However, the waterfall movement that began
in the 1970s greatly slowed the rhythm into months, sometimes years.

The advent of Agile, at the turn of the millennium, reasserted the need for
faster rhythms. Scrum recommended sprints of 30 days. XP recommended
iterations of 3 weeks. Both quickly increased the rate to biweekly.
Nowadays, it is not uncommon for development teams to deploy multiple
times per day, effectively reducing the development period to near zero.

I expect a quick rhythm. One or two weeks at most. And at the end of each
sprint, I expect that the software will be technically ready to release.

Technically ready to release does not mean that the business will want to
release it. The technically ready software may not have a feature set that the
business deems complete or appropriate for its customers and users.
Technically ready simply means that if the business decides to release it, the
development team, including QA, has no objections. The software works,
has been tested, has been documented, and is ready for deployment.

This is what it means to always be ready. I do not expect the development
team to tell the business to wait. I do not expect long burn-in periods or so-
called stabilization sprints. Alpha and beta testing may be appropriate to



determine feature compatibility with users but should not be used to drive
out coding defects.

Long ago, my company consulted for a team who built word processors for
the legal profession. We taught them Extreme Programming. They
eventually got to the point that every week the team would burn a new CD.1
They’d put that CD on top of a stack of weekly releases that was kept in the
developer’s lab. The salespeople, on their way to do a demo for a
prospective customer, would walk into the lab and take the top CD on the
stack. That’s how ready the development team was. That’s how ready I
expect us to be.
1. Yes, there was a time in the deep dark past when software was distributed on CDs.

Being ready as frequently as this requires a very high discipline of planning,
testing, communication, and time management. These are, of course, the
disciplines of Agile. Stakeholders and developers must be frequently
engaged in estimating and selecting the highest-value development stories.
QA must be deeply engaged in providing automated acceptance tests that
define “done.” Developers must work closely together and maintain an
intense testing, review, and refactoring discipline in order to make progress
in the short development periods.

But always being ready is more than just following the dogma and rituals of
Agile. Always being ready is an attitude, a way of life. It is a commitment
to continuously provide incremental value.

I expect that we will always be ready.

Stable Productivity
Software projects often experience a decrease in productivity with time.
This is a symptom of serious dysfunction. It is caused by the neglect of
testing and refactoring disciplines. That neglect leads to the ever-increasing
impediment of tangled, fragile, and rigid code.

This impediment is a runaway effect. The more fragile and rigid the code
within a system becomes, the more difficult that code is to keep clean. As
the fragility of the code increases, so does the fear of change. Developers



become ever-more reluctant to clean up messy code because they fear that
any such effort will lead to more defects.

This process leads, in a matter of months, to an extreme and accelerating
loss of productivity. Each succeeding month sees the team’s productivity
seeming to approach zero asymptotically.

Managers often try to combat this decline in productivity by adding
manpower to the project. But this strategy often fails because the new
programmers brought onto the team are no less subject to the fear of change
than the programmers who have been there all along. They quickly learn to
emulate the behavior of those team members and thereby perpetuate the
problem.

When pressed about the loss of productivity, the developers often complain
about the awful nature of the code. They may even begin to militate for a
redesign of the system. Once begun, this complaint grows in volume until
managers cannot ignore it.

The argument posed by the developers is that they can increase productivity
if they redesign the system from scratch. They argue that they know the
mistakes that were made and will not repeat them. Managers, of course, do
not trust this argument. But managers are desperate for anything that will
increase productivity. In the end, many managers accede to the demands of
the programmers despite the costs and risks.

I do not expect this to happen. I expect development teams to keep their
productivity consistently high. I expect that development teams will reliably
employ the disciplines that keep the structure of the software from
degrading.

I expect stable productivity.



10 Quality

As your CTO, I have several expectations about quality.

Continuous Improvement
I expect continuous improvement.

Human beings improve things with time. Human beings impose order upon
chaos. Human beings make thing better.



Our computers are better than they used to be. Our cars are better than they
used to be. Our airplanes, our roads, our telephones, our TV service, our
communications services are all better than they used to be. Our medical
technology is better than it used to be. Our space technology is better than it
used to be. Our civilization is massively better than it used to be.

Why, then, does software degrade with time? I do not expect our software
to degrade.

I expect that, as time goes by, the design and architecture of our systems
will improve. I expect that the software will get cleaner and more flexible
with every passing week. I expect that the cost of change will decrease as
the software ages. I expect everything to get better with time.

What does it take to make software better with time? It takes will. It takes
attitude. It takes a commitment to the disciplines that we know work.

I expect that every time any programmer checks in code, they check it in
cleaner than they checked it out. I expect that every programmer improves
the code that they touch, regardless of why they are touching it. If they fix a
bug, they should also make the code better. If they are adding a feature, they
should also make the code better. I expect every manipulation of the code to
result in better code, better designs, and better architecture.

I expect continuous improvement.

Fearless Competence



I expect fearless competence.

As the internal structure of a system degrades, the complexity of the system
can rapidly become intractable. This causes the developers to naturally
become more and more fearful of making changes. Even simple
improvements become fraught with risk. Reluctance to make changes and
improvements can drastically lower the programmers’ competence to
manage and maintain the system.

This loss of competence is not intrinsic. The programmers have not become
less competent. Rather, the growing intractable complexity of the system
begins to exceed the natural competence of the programmers.

As the system becomes increasingly difficult for the programmers to
handle, they begin to fear working on it. That fear exacerbates the problem
because programmers who are afraid to change the system will only make
changes that they feel are safest to make. Such changes are seldom those
that improve the system. Indeed, often the so-called safest changes are those
that degrade the system even more.

If this trepidation and timidity are allowed to continue, estimates will
naturally grow, defect rates will increase, deadlines will become harder and
harder to achieve, productivity will plumet, and morale will slide into the
pit.



The solution is to eliminate the fear that accelerates the degradation. We
eliminate the fear by employing the disciplines that create suites of tests
that the programmers trust with their lives.

With such tests in place and with the skill to refactor and drive toward
simple design, the programmers will not fear to clean a system that has
degraded in one place or another. They will have the confidence and the
competence to quickly repair that degradation and keep the software on an
ever-improving trajectory.

I expect the team to always exhibit fearless competence.

Extreme Quality
I expect extreme quality.

When did we first begin to accept that bugs are just a natural part of
software? When did it become acceptable to ship software with a certain
level of defects? When did we decide that beta tests were appropriate for
general distribution?

I do not accept that bugs are unavoidable. I do not accept the attitude that
expects defects. I expect every programmer to deliver software that is defect
free.

And I am not simply referring to behavior defects. I expect every
programmer to deliver software that is free of defects in behavior and
structure.

Is this an achievable goal? Can this expectation be met? Whether it can or
can’t, I expect every programmer to accept it as the standard and
continuously work toward achieving it.

I expect extreme quality coming out of the programming team.

We Will Not Dump on QA



I expect that we will not dump on QA.

Why do QA departments exist? Why would companies invest in entirely
separate groups of people to check the work of the programmers? The
answer is obvious and depressing. Companies chose to create software QA
departments because programmers were not doing their jobs.

When did we get the idea that QA belongs at the end of the process? In too
many organizations, QA sits waiting for the programmers to release the
software to them. Of course, the programmers do not release the software
on schedule, so it is QA that is stuck trying to make the release date by
cutting their testing short.

This puts the QA people under tremendous pressure. It is a high-stress,
tedious job in which shortcuts are necessary if shipment dates are to be
maintained. And that is clearly no way to assure quality.

The QA Disease
How do you know if QA is doing a good job? On what basis do you give
them raises and promotions? Is it defect discovery? Are the best QA people



the ones who find the most defects?

If so, then QA views defects as positive things. The more the better! And
that is, of course, sick.

But QA may not be the only folks who view defects in a positive light.
There’s an old saying1 in software: “I can meet any schedule you like, so
long as the software doesn’t need to work.”
1. I first heard it from Kent Beck.

That may sound funny, but it is also a strategy that developers can use to
meet individual deadlines. If it’s QA’s job to find the bugs, why not deliver
on time and let them find some?

No word has to be spoken. No deal has to be made. No handshakes ever
occur. And yet everyone knows that there is an economy of bugs flowing
back and forth between the developers and QA. And that is a very deep
sickness.

I expect that we will not dump on QA.

QA Will Find Nothing
I expect that if QA is at the end of the process, then QA will find nothing. It
should be the goal of the development team that QA at the end never finds a
bug. Anytime a bug is found by QA, the developers should determine to
find out why, correct the process, and make sure it never happens again.

QA should wonder why they are at the end of the process, because they
never find anything.

In fact, QA does not belong at the end of the process. QA belongs at the
beginning of the process. The job of QA is not to find all the bugs; that’s the
programmers’ job. The job of QA is to specify the system behavior in terms
of tests with sufficient detail that defects are excluded from the final
system. Those tests should be executed by the programmers, not QA.

I expect that QA will find nothing.



Test Automation
In most instances, manual testing is a huge waste of money and time.
Almost any test that can be automated should be automated. This includes
unit tests, acceptance tests, integration tests, and system tests.

Manual testing is expensive. It should be reserved for situations in which
human judgment is necessary. This includes things like checking the
aesthetics of a GUI, exploratory testing, and subjectively evaluating the
ease of an interaction.

Exploratory testing deserves a special mention. This kind of testing depends
entirely on human ingenuity, intuition, and insight. The goal is to
empirically derive the behavior of the system through extensive observation
of the way the system operates. Exploratory testers must infer corner cases
and deduce appropriate operational pathways to exercise them. This is no
mean feat and requires a significant amount of expertise.

Most tests, on the other hand, are eminently automatable. The vast majority
are simple Arrange/Act/Assert constructs that can be executed by supplying
canned inputs and examining expected outputs. Developers are responsible
to provide a function-callable API that allows these tests to run quickly and
without significant setup of an execution environment.

Developers should design the system to abstract out any slow or high-setup
operations. If, for example, the system makes extensive use of a relational
database management system (RDBMS), the developers should create an
abstraction layer that encapsulates the business rules from it. This practice
allows the automated tests to replace the RDBMS with canned input data,
vastly increasing both the speed and reliability of the tests.

Slow and inconvenient peripherals, interfaces, and frameworks should also
be abstracted so that individual tests can run in microseconds, can be run in
isolation from any environment,2 and are not subject to any ambiguity
regarding socket timing, database contents, or framework behavior.
2. For example, at 30,000 feet over the Atlantic on your laptop.

Automated Testing and User Interfaces



Automated tests should not test business rules through the user interface.
User interfaces are subject to change for reasons that have more to do with
fashion, facility, and general marketing chaos than with business rules.
When automated tests are driven through the user interface, as shown
Figure 10.1, those tests are subject to those changes. As a consequence, the
tests become very fragile, which often results in the tests being discarded as
too difficult to maintain.

Figure 10.1 Tests driven through the user interface

To avoid this situation, developers should isolate the business rules from the
user interface with a function call API, as shown in Figure 10.2. Tests that
use this API are completely independent of the user interface and are not
subject to interface changes.



Figure 10.2 Tests through the API are independent of the user interface.

Testing the User Interface
If the business rules are automatically tested through a function call API,
then the amount of testing required for the behavior of the user interface is
vastly reduced. Care should be taken to maintain the isolation from the
business rules by replacing the business rules with a stub that supplies
canned values to the user interface, as shown in Figure 10.3.



Figure 10.3 The stub supplies canned values to the user interface.

Doing so ensures that the tests of the user interface will be fast and
unambiguous. If the user interface is significantly large and complex, then
an automated user interface testing framework may be appropriate. The use
of the business rule stub will make those tests much more reliable.

If the user interface is small and simple, it may be more expeditious to fall
back on manual testing, especially if there are aesthetics to be evaluated.
Again, the use of the business rule stub will make these manual tests much
easier to conduct.

I expect that every test that can practicably be automated will be automated,
that the tests will execute quickly, and that the tests will not be fragile.



11 Courage

As CTO, I have several expectations related to courage.

We Cover for Each Other
We use the word team to describe a group of developers working on a
project. But do we understand what a team really is?



A team is a group of collaborators who understand their goals and their
interaction so well that when a team member goes down for some reason,
they keep making progress toward their goal. For example, every crew
member on board a ship has a job to do. Every crew member also knows
how to do someone else’s job—for obvious reasons. The ship has to keep
sailing even when a crew member goes down.

I expect that the members of a programming team will cover for each other
like the crew of a ship. When a team member goes down, I expect others on
the team to take over that role until the fallen team member resumes their
place on the team.

People on a team can go down for many reasons. They may get sick. They
may be distracted by trouble at home. They may go on vacation. Work on
the project cannot stop. Others must fill the hole left behind.

If Bob is the database guy, and Bob goes down, someone else must pick up
the database work and keep making progress. If Jim is the GUI guy, and
Jim goes down, someone else must pick up the GUI work and continue to
make progress.

This means that each member of the team must be familiar with more than
just their own work. They must be familiar with the work of others so that
they can step in if one of those others goes down.

But let me turn this around. It is your responsibility to make sure someone
can cover for you. It is your responsibility to ensure that you are not the one
indispensable player on the team. It is your responsibility to seek out others
and teach them enough about your work that they can take over for you in a
pinch.

How can you teach others about your work? Probably the best way is to sit
down with them at a workstation and write code together for an hour or so.
And if you are wise, you will do this with more than one other member of
the team. The more people who know your work, the more people can
cover for you if you go down.

And remember, once is not enough. As you continue to make progress on
your part of the project, you’ll have to continually keep the others abreast of
your work.



You will find the discipline of collaborative programming helpful in this
regard.

I expect that the members of programming teams will be able to cover for
each other.

Honest Estimates

I expect honest estimates.

As a programmer, the most honest estimate you can give is “I don’t know”
because you actually do not know how long the task will take. On the other
hand, you do know that you will probably finish the task in less than a
billion years. So, an honest estimate is an amalgam of what you don’t know
with what you do know.

An honest estimate looks something like this:

I have a 5 percent chance of finishing this task before Friday.



I have a 50 percent chance of finishing before the next Friday.

I have a 95 percent chance of finishing before the Friday after that.

An estimate like this provides a probability distribution that describes your
uncertainty. Describing your uncertainty is what makes this estimate honest.

You should provide estimates in this form when managers ask you to
estimate large projects. For example, they may be trying to judge the cost of
a project before they authorize it. That’s when this kind of honesty about
uncertainty is most valuable.

For smaller tasks, it is best to use the Agile practice of story points. Story
points are honest because they do not commit to a timeframe. Rather, they
describe the cost of a task in comparison to another. The numbers used are
arbitrary, but relative.

A story point estimate looks something like this:
The Deposit story has a cost of 5.

What is that 5? It’s an arbitrary number of points that is relative to some
task of known size. For example, let’s say that the Login story was
arbitrarily given 3 points. When you estimate the Deposit story, you decide
that Deposit is not quite twice as hard as Login, so you give it a 5. That’s
really all there is to it.

Story points already have the probability distribution embedded within
them. First, the points are not dates or times; they are just points. Second,
the points are not promises; they are guesses. At the end of each Agile
iteration (usually a week or two), we total the points completed. We use that
number to estimate how many points we might complete in the next
iteration.

I expect honest estimates that describe your uncertainty. I do not expect a
promise of a date.

You Must Say NO
I expect you to say no when the answer is no.



One of the most important things a programmer can say is “No!” Said at the
right time, in the right context, this answer can save your employer massive
amounts of money and prevent horrible failures and embarrassments.

This is not a license to storm around saying no to everything. We are
engineers; our job is to find a way to yes. But sometimes yes is not an
option. We are the only ones who can determine this. We are the ones who
know. Therefore, it is up to us to say no when the answer really is no.

Let’s say your boss asks you to get something done by Friday. After giving
it due consideration, you realize that there is no reasonable chance that
you’ll complete the task by Friday. You must return to your boss and say
“No.” You would be wise to also say that you can get it done by the
following Tuesday, but you must be firm that Friday is out of the question.

Managers often don’t like to hear no. They may push back on you. They
may confront you. They may yell at you. Emotional confrontation is one of
the tools that some managers employ.

You must not give in to it. If the answer is no, then you must hold to that
answer and not yield to the pressure.

And be very wary of the “Will you at least try?” gambit. It seems so
reasonable to be asked to try, doesn’t it? But it’s not reasonable at all
because you are already trying. There’s nothing new you can do to change
the no to yes, so saying you’ll try is just a lie.

I expect that when the answer is no, you will say no.

Continuous Aggressive Learning



The software industry is wildly dynamic. We can debate whether this
should be so, but we cannot debate whether it is so. It is. And therefore, we
must all be continuous aggressive learners.

The language you are using today will likely not be the language you’ll be
using in 5 years. The framework you are using today will probably not be
the framework you’ll be using next year. Be prepared for these changes by
being aware of what is changing all around you.

Programmers have often been advised1 to learn a new language every year.
This is good advice. Moreover, pick a language that has a style you are
unfamiliar with. If you’ve never written code in a dynamically typed
language, learn one. If you’ve never written code in a declarative language,
learn one. If you’ve never written Lisp or Prolog or Forth, learn them.
1. David Thomas and Andrew Hunt, The Pragmatic Programmer: From Journey to Mastery

(Addison-Wesley, 2020).

How and when do you do this learning? If your employer provides you the
time and space to do this kind of learning, then take as much advantage of it



as you can. If your employer is not so helpful, then you’ll have to learn on
your own time. Be prepared to spend several hours per month on it. Make
sure you have the personal time set aside for it.

Yes, I know, you have family obligations, there are bills to pay and planes
to catch, and you’ve got a life. Okay, but you also have a profession. And
professions need care and maintenance.

I expect us all to be continuous aggressive learners.

Mentoring
We seem to have an unending need for more and more programmers. The
number of programmers in the world is increasing at a furious and
exponential pace. Universities can only teach so much, and unfortunately,
many of them fail to teach much at all.

Therefore, the job of teaching new programmers falls to us. We, the
programmers who have been working for a few years, must pick up the
burden of teaching those who have just started.

Perhaps you think this is hard. It is. But it comes with a huge benefit. The
best way to learn is to teach. Nothing else even comes close. So, if you
want to learn something, teach it.

If you have been a programmer for 5 years, or 10 years, or 15 years, you
have an immense amount of experience and life lessons to teach to the new
programmers who have just started. Take one or two of them under your
wing and guide them through their first 6 months.

Sit down with them at their workstations and help them write code. Tell
them stories about your past failures and successes. Teach them about
disciplines, standards, and ethics. Teach them the craft.

I expect all programmers to become mentors. I expect you to get involved
in helping others to learn.



III The Ethics



The First Programmer
The profession of software began, inauspiciously, in the summer of 1935
when Alan Turing began work on his paper. His goal was to resolve a
mathematical dilemma that had perplexed mathematicians for a decade or
more—the Entscheidungsproblem. The decision problem.

In that goal he was successful, but he had no idea, at the time, that his paper
would spawn a globe-spanning industry upon which we would all depend
and that now forms the life’s blood of our entire civilization.

Many people think of Lord Byron’s daughter, Ada, the countess of
Lovelace, as the first programmer, and with good reason. She was the first
person we know of who understood that the numbers manipulated by a
computing machine could represent nonnumeric concepts. Symbols instead
of numbers. And, to be fair, Ada did write some algorithms for Charles
Babbage’s Analytical Engine, which unfortunately was never built.

But it was Alan Turing who wrote the first1 programs to execute in an
electronic computer. And it was Alan Turing who first defined the
profession of software.

In 1945, Turing wrote code for the Automated Computing Engine (ACE).
He wrote this code in binary machine language, using base-32 numbers.
Code like this had never been written before, so he had to invent and
implement concepts such as subroutines, stacks, and floating-point
numbers.

After several months of inventing the basics and using them to solve
mathematical problems, he wrote a report that stated the following
conclusion:

We shall need a great number of mathematicians of ability, because there will probably be a
good deal of work of this kind to be done.

1. Some folks point out that Konrad Zuse wrote algorithms for his electromechanical computer
before Turing programmed the ACE.

“A great number.” How did he know? In reality, he had no idea just how
prescient that statement was—we certainly have a great number now.

But what was that other thing he said? “Mathematicians of ability.” Do you
consider yourself to be a mathematician of ability?



In the same report, he went on to write:
One of our difficulties will be the maintenance of an appropriate discipline, so that we do not
lose track of what we are doing.

“Discipline!” How did he know? How could he look forward 70 years and
know that our problem would be discipline?

Seventy years ago, Alan Turing laid the first stone in the framework of
software professionalism. He said that we should be mathematicians of
ability who maintain an appropriate discipline.

Is that who we are? Is that who you are?

Seventy-Five Years
One person’s lifetime. That’s how old our profession is as of this writing.
Just 75 years. And what has happened in those three score and fifteen
years? Let’s more carefully revisit the history that I presented in Chapter 1,
“Craftsmanship.”

In 1945, there was one computer in the world and one programmer. Alan
Turing. These numbers grew rapidly in those first years. But let’s use this as
our origin.

1945. Computers: O(1). Programmers: O(1).

In the decade that followed, the reliability, consistency, and power usage of
vacuum tubes improved dramatically. This made it possible for larger and
more powerful computers to be built.

By 1960, IBM had sold 140 of its 700 series computers. These were huge,
expensive behemoths that could only be afforded by military, government,
and very large corporations. They were also slow, resource limited, and
fragile.

It was during this period that Grace Hopper invented the concept of a
higher-level language and coined the term compiler. By 1960, her work led
to COBOL.

In 1952, John Backus submitted the FORTRAN specification. This was
followed rapidly by the development of ALGOL. By 1958, John McCarthy



had developed LISP. The proliferation of the language zoo had begun.

In those days, there were no operating systems, no frameworks, no
subroutine libraries. If something executed on your computer, it was
because you wrote it. Consequently, in those days, it took a staff of a dozen
or more programmers just to keep one computer running.

By 1960, 15 years after Turing, there were O(100) computers in the world.
The number of programmers was an order of magnitude greater: O(1,000).

Who were these programmers? They were people like Grace Hopper,
Edsger Dijkstra, Jon Von Neumann, John Backus, and Jean Jennings. They
were scientists and mathematicians and engineers. Most were people who
already had careers and already understood the businesses and disciplines
they were employed by. Many, if not most, were in their 30s, 40s, and 50s.

The 1960s was the decade of the transistor. Bit by bit, these small, simple,
inexpensive, and reliable devices replaced the vacuum tube. And the effect
on computers was a game changer.

By 1965, IBM had produced more than ten thousand 1401 transistor-based
computers. They rented for about $2,500 per month, putting them within
reach of thousands of medium-sized businesses.

These machines were programmed in Assembler, Fortran, COBOL, and
RPG. And all those companies who rented those machines needed staffs of
programmers to write their applications.

IBM wasn’t the only company making computers at the time, so we’ll just
say that by 1965, there were O(10,000) computers in the world. And if each
computer needed ten programmers to keep it running, there must have been
O(100,000) programmers.

Twenty years after Turing, there must have been several hundred thousand
programmers in the world. Where did these programmers come from?
There weren’t enough mathematicians, scientists, and engineers to cover the
need. And there weren’t any computer science graduates coming out of the
universities because there weren’t any computer science degree programs—
anywhere.

Companies thus drew from the best and brightest of their accountants,
clerks, planners, and so on—anyone with some proven technical aptitude.



And they found lots.

And, again, these were people who were already professionals in another
field. They were in their 30s and 40s. They already understood deadlines,
and commitments, what to leave in, and what to leave out.2 Although these
people were not mathematicians per se, they were disciplined professionals.
Turing would likely have approved.

But the crank kept on turning. By 1966, IBM was producing a thousand
360s every month. These computers were popping up everywhere. They
were immensely powerful for the day. The model 30 could address 64K
bytes of memory and execute 35,000 instructions per second.

It was during this period, in the mid-1960s, when Ole Johann Dahl and
Kristen Nygard invented Simula-67—the first object-oriented language. It
was also during this period that Edsger Dijkstra invented structured
programming. And it was also during this time that Ken Thompson and
Dennis Ritchie invented C and UNIX.
2. Apologies to Bob Seger.

Still the crank turned. In the early 1970s, the integrated circuit came into
regular use. These little chips could hold dozens, hundreds, even thousands
of transistors. They allowed electronic circuits to be massively
miniaturized.

And thus, the minicomputer was born.

In the late 1960s and into the 1970s, Digital Equipment Corporation sold
fifty thousand PDP-8 systems and hundreds of thousands of PDP-11
systems.

And they weren’t alone! The minicomputer market exploded. By the mid-
1970s, there were dozens and dozens of companies selling minicomputers,
so by 1975, 30 years after Turing, there were about 1 million computers in
the world. And how many programmers were there? The ratio was starting
to change. The number of computers was approaching the number of
programmers, so by 1975, there were O(1E6) programmers.

Where did these millions of programmers come from? Who were they?

They were me. Me and my buddies. Me and my cohort of young, energetic,
geeky boys.



Tens of thousands of new electronic engineering and computer science
grads: We were all young. We were all smart. We, in the United States, were
all concerned about the draft. And we were almost all male.

Oh, it’s not that women were leaving the field in any number—yet. That
didn’t start until the mid-1980s. No, it’s just that many more boys (and we
were boys) were entering the field.

In my first job as a programmer, in 1969, there were a couple of dozen
programmers. They were all in their 30s or 40s, and a third to a half were
women.

Ten years later, I was working at a company with about 50 programmers,
and perhaps three were women.

So, 30 years after Turing, the demographics of programming had shifted
dramatically toward very young men. Hundreds of thousands of twenty-
something males. We were typically not what Turing would have described
as disciplined mathematicians.

But businesses had to have programmers. The demand was through the
roof. And what very young men lack in discipline, they make up for with
energy.

We were also cheap. Despite the high starting salaries of programmers
today, back then companies could pick up programmers pretty
inexpensively. My starting salary in 1969 was $7,200 per year.

This has been the trend ever since. Young men have been pouring out of
computer science programs every year, and industry seems to have an
insatiable appetite for them.

In the 30 years between 1945 and 1975, the number of programmers grew
by at least a factor of a million. In the 40 years since then, that growth rate
has slowed a bit but is still very high.

How many programmers do you think were in the world by 2020? If you
include the VBA3 programmers, I think there must be hundreds of millions
of programmers in the world today.

This is clearly exponential growth. Exponential growth curves have a
doubling rate. You can do the math. Hey, Albert, what’s the doubling rate if
we go from 1 to 100 million in 75 years?



The log to the base 2 of 100 million is approximately 27—divide that into
75, and you get about 2.8, so perhaps the number of programmers doubled
roughly every two and a half-ish years.
3. Visual Basic for Applications.

Actually, as we saw earlier, the rate was higher in the first decades and has
slowed down a bit now. My guess is that the doubling rate is about five
years. Every five years, the number of programmers in the world doubles.

The implications of that fact are staggering. If the number of programmers
in the world doubles every five years, it means that half the programmers in
the world have less than five years’ experience, and this will always be true
so long as that doubling rate continues. This leaves the programming
industry in the precarious position of—perpetual inexperience.

Nerds and Saviors
Perpetual inexperience. Oh, don’t worry, this doesn’t mean that you are
perpetually inexperienced. It just means that once you gain 5 years of
experience, the number of programmers will have doubled. By the time you
gain 10 years of experience, the number of programmers will have
quadrupled.

People look at the number of young people in programming and conclude
that it’s a young person’s profession. They ask, “Where are all the old
people?”

We’re all still here! We haven’t gone anywhere. There just weren’t that
many of us to begin with.

The problem is that there aren’t enough of us old guys to teach the new
programmers coming in. For every programmer with 30 years’ experience,
there are 63 programmers who need to learn something from her (or him),
32 of whom are brand new.

Hence the state of perpetual inexperience, with insufficient mentors to
correct the problem. The same old mistakes get repeated over and over and
over again.



But something else has happened in the last 70 years. Programmers have
gained something that I am sure Alan Turing never anticipated: notoriety.

Back in the 1950s and 1960s, nobody knew what a programmer was. There
weren’t enough of them to have a social impact. Programmers did not live
next door to very many people.

That started to change in the 1970s. By then, fathers were advising their
sons (and sometimes their daughters) to get degrees in computer science.
There were enough programmers in the world so that everybody knew
somebody who knew one. And the image of the nerdy, twinkie-eating geek
was born.

Few people had seen a computer, but virtually everyone had heard about
them. Computers showed up in TV shows such as Star Trek and movies
such as 2001: A Space Odyssey and Colossus: The Forbin Project. All too
often in those shows, the computers were cast as villains. But in Robert
Heinlein’s 1966 book The Moon Is a Harsh Mistress,4 the computer was the
self-sacrificing hero.

Notice, however, that in each of these cases, the programmer is not a
significant character. Society didn’t know what to make of programmers
back then. They were shadowy, hidden, and somehow insignificant
compared to the machines themselves.

I have fond memories of one television commercial from this era. A wife
and her husband, a nerdy little guy with glasses, a pocket protector, and a
calculator, were comparing prices at a grocery store. Mrs. Olsen described
him as “a computer genius” and proceeded to school the wife and husband
alike on the benefits of a particular brand of coffee.

The computer programmer in that commercial was naive, bookish, and
inconsequential. Someone smart, but with no wisdom or common sense.
Not someone you’d invite to parties. Indeed, computer programmers were
seen as the kind of people who got beaten up a lot at school.
4. Robert Heinlein, The Moon Is a Harsh Mistress (Ace, 1966).

By 1983, personal computers started to appear, and it was clear that
teenagers were interested in them for lots of reasons. By this time, a rather
large number of people knew at least one computer programmer. We were
considered professionals but still mysterious.



That year, the movie War Games depicted a young Mathew Broderick as a
computer-savvy teenager and hacker. He hacks into the United States’
weapons control system, thinking it is a video game, and starts the
countdown to thermonuclear war. At the end of the movie, he saves the
world by convincing the computer that the only winning move is not to
play.

The computer and the programmer had switched roles. Now it was the
computer that was the childlike naive character and the programmer the
conduit, if not the source, of wisdom.

We saw something similar in the 1986 movie Short Circuit in which the
computerized robot known as Number 5 is childlike and innocent but learns
wisdom with the help of its creator/programmer and his girlfriend.

By 1993, things had changed dramatically. In the film Jurassic Park, the
programmer was the villain, and the computer was not a character at all. It
was just a tool.

Society was beginning to understand who we were and the role we played.
We had graduated from nerd to teacher to villain in just 20 years.

But the vision changed again. In the 1999 film The Matrix, the main
characters were both programmers and saviors. Indeed, their godlike
powers came from their ability to read and understand—“the code.”

Our roles were changing fast. Villain to savior in just a few years. Society at
large was beginning to understand the power we have both for good and for
bad.

Role Models and Villains
Fifteen years later, in 2014, I visited the Mojang office in Stockholm to do
some lectures on clean code and test-driven development. Mojang, in case
you didn’t know, is the company that produced the game Minecraft.

Afterward, because the weather was nice, the Mojang programmers and I
sat outside at a beer garden, chatting. All of a sudden, a young boy, perhaps
12, runs up to the fence and calls out to one of the programmers: “Are you
Jeb?”



He was referring to Jens Bergensten, one of the lead programmers at
Mojang.

The lad asked Jens for his autograph and peppered him with questions. He
had eyes for no one else.

And I’m, like, sitting right there. …

Anyway, the point is that programmers have become role models and idols
for our children. They dream of growing up to be like Jeb or Dinnerbone or
Notch.

Programmers, real-life programmers, are heroes.

But where there are real heroes, there are also real villains.

In October of 2015, Michael Horn, the CEO of Volkswagen North America,
testified before the US Congress regarding the software in their cars that
was cheating the Environmental Protection Agency’s testing devices. When
asked why the company did this, he blamed programmers. He said, “This
was a couple of software engineers who put this in for whatever reasons.”

Of course, he was lying about the “whatever reasons.” He knew what the
reasons were, and so did the Volkswagen company at large. His feeble
attempt to shift blame onto the programmers was pretty transparent.

On the other hand, he was exactly right. It was some programmers who
wrote that lying, cheating code.

And those programmers—whoever they were—gave us all a bad name. If
we had a true professional organization, their recognition as programmers
would, and should, be revoked. They betrayed us all. They besmirched the
honor of our profession.

And so, we’ve graduated. It’s taken 75 years. But we’ve gone from nothing
to nerds to role models and villains in that time.

Society has begun—just begun—to understand who we are and the threats
and promises that we represent.

We Rule the World



But society doesn’t understand everything yet. Indeed, neither do we. You
see, you and I, we are programmers, and we rule the world.

That may seem like an exaggerated statement, but consider. There are more
computers in the world, right now, than there are people. And these
computers, which outnumber us, perform myriads of essential tasks for us.
They keep track of our reminders. They manage our calendars. They deliver
our Facebook messages and keep our photo albums. They connect our
phone calls and deliver our text messages. They control the engines in our
cars, as well as the brakes, accelerator, and sometimes even the steering
wheels.

We can’t cook without them. We can’t wash clothes without them. They
keep our houses warm in winter. They entertain us when we’re bored. They
keep track of our bank records and our credit cards. They help us pay our
bills.

In fact, most people in the modern world interact with some software
system every waking minute of every day. Some even continue interacting
while they sleep.

The point is that nothing happens in our society without software. No
product gets bought or sold. No law gets enacted or enforced. No car drives.
No Amazon products get delivered. No phone connects. No power comes
out of outlets. No food gets delivered to stores. No water comes out of
faucets. No gas gets piped to furnaces. None of these things happens
without software monitoring and coordinating it all.

And we write that software. And that makes us the rulers of the world.

Oh, other people think they make the rules—but then they hand those rules
to us, and we write the rules that execute in the machines that monitor and
coordinate every aspect of our lives.

Society does not quite understand this yet. Not quite. Not yet. But the day is
coming soon when our society will understand it all too well.

We, programmers, don’t quite understand this yet either. Not really. But,
again, the day is coming when it will be savagely driven home to us.



Catastrophes
We’ve seen plenty of software catastrophes over the years. Some have been
pretty spectacular.

For example, in 2016, we lost the Schiaparelli Mars Lander and Rover
because of a software issue that caused the lander to believe it had already
landed when it was actually nearly 4 kilometers above the surface.

In 1999, we lost the Mars Climate Orbiter because of a ground-based
software error that transmitted data to the orbiter using English units
(pound-seconds) rather than metric units (newton-seconds). This error
caused the orbiter to descend too far into the Martian atmosphere, where it
was torn to pieces.

In 1996, the Ariane 5 launch vehicle and payload was destroyed 37 seconds
after launch because of an integer overflow exception when a 64-bit
floating-point number underwent an unchecked conversion to a 16-bit
integer. The exception crashed the onboard computers, and the vehicle self-
destructed.

Should we talk about the Therac-25 radiation therapy machine that, because
of a race condition, killed three people and injured three others by blasting
them with a high-powered electron beam?

Or maybe we should talk about Knight Capital Group, which lost $460
million in 45 minutes because it reused a flag that activated dead code left
in the system.

Or perhaps we should talk about the Toyota stack overflow bug that could
cause cars to accelerate out of control—killing perhaps as many as 89
people.

Or maybe we should talk about HealthCare.gov, the software failure that
nearly overturned a new and controversial American healthcare law.

These disasters have cost billions of dollars and many lives. And they were
caused by programmers.

We, programmers, through the code that we write, are killing people.



Now, I know you didn’t get into this business in order to kill people.
Probably, you became a programmer because you wrote an infinite loop
that printed your name once, and you experienced that joyous feeling of
power.

But facts are facts. We are now in a position in our society where our
actions can destroy fortunes, livelihoods, and lives.

One day, probably not too long from now, some poor programmer is going
to do something just a little dumb, and tens of thousands of people will die.

This isn’t wild speculation—it’s just a matter of time.

And when this happens, the politicians of the world will demand an
accounting. They will demand that we show them how we will prevent such
errors in the future.

And if we show up without a statement of ethics, if we show up without any
standards or defined disciplines, if we show up and whine about how our
bosses set unreasonable schedules and deadlines—then we will be found
GUILTY.

The Oath
To begin the discussion of our ethics as software developers, I offer the
following oath.

In order to defend and preserve the honor of the profession of computer programmers, I
promise that, to the best of my ability and judgment:

1. I will not produce harmful code.
2. The code that I produce will always be my best work. I will not

knowingly allow code that is defective either in behavior or structure
to accumulate.

3. I will produce, with each release, a quick, sure, and repeatable proof
that every element of the code works as it should.

4. I will make frequent, small releases so that I do not impede the
progress of others.



5. I will fearlessly and relentlessly improve my creations at every
opportunity. I will never degrade them.

6. I will do all that I can to keep the productivity of myself and others as
high as possible. I will do nothing that decreases that productivity.

7. I will continuously ensure that others can cover for me and that I can
cover for them.

8. I will produce estimates that are honest in both magnitude and
precision. I will not make promises without reasonable certainty.

9. I will respect my fellow programmers for their ethics, standards,
disciplines, and skill. No other attribute or characteristic will be a
factor in my regard for my fellow programmers.

10. I will never stop learning and improving my craft.



12 Harm



Several promises in the oath are related to harm.

First, Do No Harm
Promise 1. I will not produce harmful code.

The first promise of the software professional is DO NO HARM! That
means that your code must not harm your users, your employers, your
managers, or your fellow programmers.

You must know what your code does. You must know that it works. And
you must know that it is clean.

Some time back, it was discovered that some programmers at Volkswagen
wrote some code that purposely thwarted Environmental Protection Agency
(EPA) emissions tests. Those programmers wrote harmful code. It was
harmful because it was deceitful. That code fooled the EPA into allowing
cars to be sold that emitted twenty times the amount of harmful nitrous
oxides that the EPA deemed safe. Therefore, that code potentially harmed
the health of everyone living where those cars were driven.

What should happen to those programmers? Did they know the purpose of
that code? Should they have known?

I’d fire them and prosecute them because, whether they knew or not, they
should have known. Hiding behind requirements written by others is no
excuse. It’s your fingers on the keyboard, it’s your code. You must know
what it does!

That’s a tough one, isn’t it? We write the code that makes our machines
work, and those machines are often in positions to do tremendous harm.
Because we will be held responsible for any harm our code does, we must
be responsible for knowing what our code will do.

Each programmer should be held accountable based on their level of
experience and responsibility. As you advance in experience and position,
your responsibility for your actions and the actions of those under your
charge increases.

Clearly, we can’t hold junior programmers as responsible as team leads. We
can’t hold team leads as responsible as senior developers. But those senior



people ought to be held to a very high standard and be ultimately
responsible for those whom they direct.

That doesn’t mean that all the blame goes to the senior developers or the
managers. Every programmer is responsible for knowing what the code
does to the level of their maturity and understanding. Every programmer is
responsible for the harm their code does.

No Harm to Society
First, you will do no harm to the society in which you live.

This is the rule that the VW programmers broke. Their software might have
benefited their employer—Volkswagen. However, it harmed society in
general. And we, programmers, must never do that.

But how do you know whether or not you are harming society? For
example, is building software that controls weapon systems harmful to
society? What about gambling software? What about violent or sexist video
games? What about pornography?

If your software is within the law, might it still be harmful to society?

Frankly, that’s a matter for your own judgment. You’ll just have to make the
best call you can. Your conscience is going to have to be your guide.

Another example of harm to society was the failed launch of
HealthCare.gov, although in this case the harm was unintentional. The
Affordable Care Act was passed by the US Congress and signed into law by
the president in 2010. Among its many directives was the demand that a
Web site be created and activated on October 1, 2013.

Never mind the insanity of specifying, by law, a date certain by which a
whole new massive software system must be activated. The real problem
was that on October 1, 2013, they actually turned it on.

Do you think, maybe, there were some programmers hiding under their
desks that day?

Oh man, I think they turned it on.



Yeah, yeah, they really shouldn’t be doing that.
Oh, my poor mother. Whatever will she do?
This is a case where a technical screwup put a huge new public policy at
risk. The law was very nearly overturned because of these failures. And no
matter what you think about the politics of the situation, that was harmful to
society.

Who was responsible for that harm? Every programmer, team lead,
manager, and director who knew that system wasn’t ready and who
nevertheless remained silent.

That harm to society was perpetrated by every software developer who
maintained a passive-aggressive attitude toward their management,
everyone who said, “I’m just doing my job—it’s their problem.” Every
software developer who knew something was wrong and yet did nothing to
stop the deployment of that system shares part of the blame.

Because here’s the thing. One of the prime reasons you were hired as a
programmer was because you know when things are going wrong. You
have the knowledge to identify trouble before it happens. Therefore, you
have the responsibility to speak up before something terrible happens.

Harm to Function
You must KNOW that your code works. You must KNOW that the
functioning of your code will not do harm to your company, your users, or
your fellow programmers.

On August 1, 2012, some technicians at Knight Capital Group loaded their
servers with new software. Unfortunately, they loaded only seven of the
eight servers, leaving the eighth running with the older version.

Why they made this mistake is anybody’s guess. Somebody got sloppy.

Knight Capital ran a trading system. It traded stocks on the New York Stock
Exchange. Part of its operation was to take large parent trades and break
them up into many smaller child trades in order to prevent other traders



from seeing the size of the initial parent trade and adjusting prices
accordingly.

Eight years earlier, a simple version of this parent–child algorithm, named
Power Peg, was disabled and replaced with something much better called
Smart Market Access Routing System (SMARS). Oddly, however, the old
Power Peg code was not removed from the system. It was simply disabled
with a flag.

That flag had been used to regulate the parent–child process. When the flag
was on, child trades were made. When enough child trades had been made
to satisfy the parent trade, the flag was turned off.

They disabled the Power Peg code by simply leaving the flag off.

Unfortunately, the new software update that made it on to only seven of the
eight servers repurposed that flag. The update turned the flag on, and that
eighth server started making child trades in a high-speed infinite loop.

The programmers knew something had gone wrong, but they didn’t know
exactly what. It took them 45 minutes to shut down that errant server—45
minutes during which it was making bad trades in an infinite loop.

The bottom line is that, in that first 45 minutes of trading, Knight Capital
had unintentionally purchased more than $7 billion worth of stock that it
did not want and had to sell it off at a $460 million loss. Worse, the
company only had $360 million in cash. Knight Capital was bankrupt.

Forty-five minutes. One dumb mistake. Four hundred sixty million dollars.

And what was that mistake? The mistake was that the programmers did not
KNOW what their system was going to do.

At this point, you may be worried that I’m demanding that programmers
have perfect knowledge about the behavior of their code. Of course, perfect
knowledge is not achievable; there will always be a knowledge deficit of
some kind.

The issue isn’t the perfection of knowledge. Rather, the issue is to KNOW
that there will be no harm.

Those poor guys at Knight Capital had a knowledge deficit that was
horribly harmful—and given what was at stake, it was one they should not



have allowed to exist.

Another example is the case of Toyota and the software system that made
cars accelerate uncontrollably.

As many as 89 people were killed by that software, and more were injured.

Imagine that you are driving in a crowded downtown business district.
Imagine that your car suddenly begins to accelerate, and your brakes stop
working. Within seconds, you are rocketing through stoplights and
crosswalks with no way to stop.

That’s what investigators found that the Toyota software could do—and
quite possibly had done.

The software was killing people.

The programmers who wrote that code did not KNOW that their code
would not kill—notice the double negative. They did not KNOW that their
code would NOT kill. And they should have known that. They should have
known that their code would NOT kill.

Now again, this is all about risk. When the stakes are high, you want to
drive your knowledge as near to perfection as you can get it. If lives are at
stake, you have to KNOW that your code won’t kill anyone. If fortunes are
a stake, you have to KNOW that your code won’t lose them.

On the other hand, if you are writing a chat application or a simple
shopping cart Web site, neither fortunes nor lives are at stake …

… or are they?

What if someone using your chat application has a medical emergency and
types “HELP ME. CALL 911” on your app? What if your app malfunctions
and drops that message?

What if your Web site leaks personal information to hackers who use it to
steal identities?

And what if the poor functioning of your code drives customers away from
your employer and to a competitor?

The point is that it’s easy to underestimate the harm that can be done by
software. It’s comforting to think that your software can’t harm anyone



because it’s not important enough. But you forget that software is very
expensive to write, and at very least, the money spent on its development is
at stake—not to mention whatever the users put at stake by depending on it.

The bottom line is, there’s almost always more at stake than you think.

No Harm to Structure
You must not harm the structure of the code. You must keep the code clean
and well organized.

Ask yourself why the programmers at Knight Capital did not KNOW that
their code could be harmful.

I think the answer is pretty obvious. They had forgotten that the Power Peg
software was still in the system. They had forgotten that the flag they
repurposed would activate it. And they assumed that all servers would
always have the same software running.

They did not know their system could exhibit harmful behavior because of
the harm they had done to the structure of the system by leaving that dead
code in place. And that’s one of the big reasons why code structure and
cleanliness are so important. The more tangled the structure, the more
difficulty in knowing what the code will do. The more the mess, the more
the uncertainty.

Take the Toyota case, for example. Why didn’t the programmers know their
software could kill people? Do you think the fact that they had more than
ten thousand global variables might have been a factor?

Making a mess in the software undermines your ability to know what the
software does and therefore your ability to prevent harm.

Messy software is harmful software.

Some of you might object by saying that sometimes a quick and dirty patch
is necessary to fix a nasty production bug.

Sure. Of course. If you can fix a production crisis with a quick and dirty
patch, then you should do it. No question.



A stupid idea that works is not a stupid idea.

However, you can’t leave that quick and dirty patch in place without
causing harm. The longer that patch remains in the code, the more harm it
can do.

Remember that the Knight Capital debacle would not have happened if the
old Power Peg code had been removed from the code base. It was that old
defunct code that actually made the bad trades.

What do we mean by “harm to structure”? Clearly, having thousands of
global variables is a structural flaw. So is dead code left in the code base.

Structural harm is harm to the organization and content of the source code.
It is anything that makes that source code hard to read, hard to understand,
hard to change, or hard to reuse.

It is the responsibility of every professional software developer to know the
disciplines and standards of good software structure. They should know
how to refactor, how to write tests, how to recognize bad code, how to
decouple designs and create appropriate architectural boundaries. They
should know and apply the principles of low- and high-level design. And it
is the responsibility of every senior developer to make sure that younger
developers learn these things and satisfy them in the code that they write.

Soft
The first word in software is soft. Software is supposed to be SOFT. It’s
supposed to be easy to change. If we didn’t want it to be easy to change,
we’d have called it hardware.

It’s important to remember why software exists at all. We invented it as a
means to make the behavior of machines easy to change. To the extent that
our software is hard to change, we have thwarted the very reason that
software exists.

Remember that software has two values. There’s the value of its behavior,
and then there’s the value of its “softness.” Our customers and users expect
us to be able to change that behavior easily and without high cost.



Which of these two values is the greater? Which value should we prioritize
above the other? We can answer that question with a simple thought
experiment.

Imagine two programs. One works perfectly but is impossible to change.
The other does nothing correctly but is easy to change. Which is the more
valuable?

I hate to be the one to tell you this but, in case you hadn’t noticed, software
requirements tend to change, and when they change, that first software will
become useless—forever.

On the other hand, that second software can be made to work, because it’s
easy to change. It may take some time and money to get it to work initially,
but after that, it’ll continue to work forever with minimal effort.

Therefore, it is the second of the two values that should be given priority in
all but the most urgent of situations.

What do I mean by urgent? I mean a production disaster that’s losing the
company $10 million per minute. That’s urgent.

I do not mean a software startup. A startup is not an urgent situation
requiring you to create inflexible software. Indeed, the opposite is true. The
one thing that is absolutely certain in a startup is that you are creating the
wrong product.

No product survives contact with the user. As soon as you start to put the
product into users’ hands, you will discover that the product you’ve built is
wrong in a hundred different ways. And if you can’t change it without
making a mess, you’re doomed.

This is one of the biggest problems with software startups. Startup
entrepreneurs believe they are in an urgent situation requiring them to throw
out all the rules and dash to the finish line, leaving a huge mess in their
wake. Most of the time, that huge mess starts to slow them down long
before they do their first deployment. They’ll go faster and better and will
survive a lot longer if they keep the structure of the software from harm.

When it comes to software, it never pays to rush.

—Brian Marick



Tests
Tests come first. You write them first, and you clean them first. You will
know that every line of code works because you will have written tests that
prove they work.

How can you prevent harm to the behavior of your code if you don’t have
the tests that prove that it works?

How can you prevent harm to the structure of your code if you don’t have
the tests that allow you to clean it?

And how can you guarantee that your test suite is complete if you don’t
follow the three laws of test-driven development (TDD)?

Is TDD really a prerequisite to professionalism? Am I really suggesting that
you can’t be a professional software developer unless you practice TDD?

Yes, I think that’s true. Or rather, it is becoming true. It is true for some of
us, and with time, it is becoming true for more and more of us. I think the
time will come, and relatively soon, when the majority of programmers will
agree that practicing TDD is part of the minimum set of disciplines and
behaviors that mark a professional developer.

Why do I believe that?

Because, as I said earlier, we rule the world! We write the rules that make
the whole world work.

In our society, nothing gets bought or sold without software. Nearly all
correspondence is through software. Nearly all documents are written with
software. Laws don’t get passed or enforced without it. There is virtually no
activity of daily life that does not involve software.

Without software, our society does not function. Software has become the
most important component in the infrastructure of our civilization.

Society does not understand this yet. We programmers don’t really
understand it yet either. But the realization is dawning that the software we
write is critical. The realization is dawning that many lives and fortunes
depend on our software. And the realization is dawning that software is
being written by people who do not profess a minimum level of discipline.



So, yes, I think TDD, or some discipline very much like it, will eventually
be considered a minimum standard behavior for professional software
developers. I think our customers and our users will insist on it.

Best Work
Promise 2. The code that I produce will always be my best work. I will not knowingly allow
code that is defective in either behavior or structure to accumulate.

Kent Beck once said, “First make it work. Then make it right.”

Getting the program to work is just the first—and easiest—step. The second
—and harder—step is to clean the code.

Unfortunately, too many programmers think they are done once they get a
program to work. Once it works, they move on to the next program, and
then the next, and the next.

In their wake, they leave behind a history of tangled, unreadable, code that
slows down the whole development team. They do this because they think
their value is in speed. They know they are paid a lot, and so they feel that
they must deliver a lot of functionality in a short amount of time.

But software is hard and takes a lot of time, and so they feel like they are
going too slowly. They feel like they are failing, which creates a pressure
that causes them to try to go faster. It causes them to rush. They rush to get
the program working, and then they declare themselves to be done—
because, in their minds, it’s already taken them too long. The constant
tapping of the project manager’s foot doesn’t help, but that’s not the real
driver.

I teach lots of classes. In many of them, I give the programmers small
projects to code. My goal is to give them a coding experience in which to
try out new techniques and new disciplines. I don’t care if they actually
finish the project. Indeed, all the code is going to be thrown away.

Yet still I see people rushing. Some stay past the end of the class just
hammering away at getting something utterly meaningless to work.

So, although the boss’s pressure doesn’t help. The real pressure comes from
inside us. We consider speed of development to be a matter of our own self-



worth.

Making It Right
As we saw earlier in this chapter, there are two values to software. There is
the value of its behavior and the value of its structure. I also made the point
that the value of structure is more important than the value of behavior. This
is because to have any long-term value, software systems must be able to
react to changes in requirements.

Software that is hard to change also is hard to keep up to date with the
requirements. Software with a bad structure can quickly get out of date.

In order for you to keep up with requirements, the structure of the software
has to be clean enough to allow, and even encourage, change. Software that
is easy to change can be kept up to date with changing requirements,
allowing it to remain valuable with the least amount of effort. But if you’ve
got a software system that’s hard to change, then you’re going to have a
devil of a time keeping that system working when the requirements change.

When are requirements most likely to change? Requirements are most
volatile at the start of a project, just after the users have seen the first few
features work. That’s because they’re getting their first look at what the
system actually does as opposed to what they thought it was going to do.

Consequently, the structure of the system needs to be clean at the very start
if early development is to proceed quickly. If you make a mess at the start,
then even the very first release will be slowed down by that mess.

Good structure enables good behavior and bad structure impedes good
behavior. The better the structure, the better the behavior. The worse the
structure, the worse the behavior. The value of the behavior depends
critically on the structure. Therefore, the value of the structure is the most
critical of the two values, which means that professional developers put a
higher priority on the structure of the code than on the behavior.

Yes, first you make it work; but then you make very sure that you continue
to make it right. You keep the system structure as clean as possible



throughout the lifetime of the project. From its very beginning to its very
end, it must be clean.

What Is Good Structure?
Good structure makes the system easy to test, easy to change, and easy to
reuse. Changes to one part of the code do not break other parts of the code.
Changes to one module do not force massive recompiles and
redeployments. High-level policies are kept separate and independent from
low-level details.

Poor structure makes a system rigid, fragile, and immobile. These are the
traditional design smells.

Rigidity is when relatively minor changes to the system cause large portions
of the system to be recompiled, rebuilt, and redeployed. A system is rigid
when the effort to integrate a change is much greater than the change itself.

Fragility is when minor changes to the behavior of a system force many
corresponding changes in a large number of modules. This creates a high
risk that a small change in behavior will break some other behavior in the
system. When this happens, your managers and customers will come to
believe that you have lost control over the software and don’t know what
you are doing.

Immobility is when a module in an existing system contains a behavior you
want to use in a new system but is so tangled up within the existing system
that you can’t extract it for use in the new system.

These problems are all problems of structure, not behavior. The system may
pass all its tests and meet all its functional requirements, yet such a system
may be close to worthless because it is too difficult to manipulate.

There’s a certain irony in the fact that so many systems that correctly
implement valuable behaviors end up with a structure that is so poor that it
negates that value and makes the system worthless.

And worthless is not too strong a word. Have you ever participated in the
Grand Redesign in the Sky? This is when developers tell management that



the only way to make progress is to redesign the whole system from
scratch; those developers have assessed the current system to be worthless.

When managers agree to let the developers redesign the system, it simply
means that they have agreed with the developers’ assessment that the
current system is worthless.

What is it that causes these design smells that lead to worthless systems?
Source code dependencies! How do we fix those dependencies?
Dependency management!

How do we manage dependencies? We use the SOLID5 principles of object-
oriented design to keep the structure of our systems free of the design
smells that would make it worthless.
5. These principles are described in Robert C. Martin, Clean Code (Addison-Wesley, 2009), and

Agile Software Development: Principles, Patterns, and Practices (Pearson, 2003).

Because the value of structure is greater than the value of behavior and
depends on good dependency management, and because good dependency
management derives from the SOLID principles, it follows that overall
value of the system depends on proper application of the SOLID principles.

That’s quite a claim, isn’t it? Perhaps it’s a bit hard to believe. The value of
the system depends on design principles. But we’ve gone through the logic,
and many of you have had the experiences to back it up. So, that conclusion
bears some serious consideration.

Eisenhower’s Matrix
General Dwight D. Eisenhower once said, “I have two kinds of problems,
the urgent and the important. The urgent are not important, and the
important are never urgent.”

There is a deep truth to this statement—a deep truth about engineering. We
might even call this the engineer’s motto:

The greater the urgency, the less the relevance.

Figure 12.1 presents Eisenhower’s decision matrix: urgency on the vertical
axis, importance on the horizontal. The four possibilities are urgent and



important, urgent and unimportant, important but not urgent, and neither
important nor urgent.

Figure 12.1 Eisenhower’s decision matrix

Now let’s arrange these in order of priority. The two obvious cases are
important and urgent at the top and neither important nor urgent at the
bottom.

The question is, how do you sort the two in the middle: urgent but
unimportant and important but not urgent? Which should you address first?

Clearly, things that are important should be prioritized over things that are
unimportant. I would argue, furthermore, that if something is unimportant,
it shouldn’t be done at all. Doing unimportant things is a waste.

If we eliminate all the unimportant things, we have two left. We do the
important and urgent things first. Then we do the important but not urgent
things second.

My point is that urgency is about time. Importance is not. Things that are
important are long-term. Things that are urgent are short-term. Structure is
long-term. Therefore, it is important. Behavior is short-term. Therefore, it is
merely urgent.

So, structure, the important stuff, comes first. Behavior is secondary.

Your boss might not agree with that priority, but that’s because it’s not your
boss’s job to worry about structure. It’s yours. Your boss simply expects



that you will keep the structure clean while you implement the urgent
behaviors.

Earlier in this chapter, I quoted Kent Beck: “First make it work, then make
it right.” Now I’m saying that structure is a higher priority than behavior.
It’s a chicken-and-egg dilemma, isn’t it?

The reason we make it work first is that structure has to support behavior;
consequently, we implement behavior first, then we give it the right
structure. But structure is more important than behavior. We give it a higher
priority. We deal with structural issues before we deal with behavioral
issues.

We can square this circle by breaking the problem down into tiny units.
Let’s start with user stories. You get a story to work, and then you get its
structure right. You don’t work on the next story until that structure is right.
The structure of the current story is a higher priority than the behavior of
the next story.

Except, stories are too big. We need to go smaller. Not stories, then—tests.
Tests are the perfect size.

First you get a test to pass, then you fix the structure of the code that passes
that test before you get the next test to pass.

This entire discussion has been the moral foundation for the red → green →
refactor cycle of TDD.

It is that cycle that helps us to prevent harm to behavior and harm to
structure. It is that cycle that allows us to prioritize structure over behavior.
And that’s why we consider TDD to be a design technique as opposed to a
testing technique.

Programmers Are Stakeholders
Remember this. We have a stake in the success of the software. We,
programmers, are stakeholders too.

Did you ever think about it that way? Did you ever view yourself as one of
the stakeholders of the project?



But, of course, you are. The success of the project has a direct impact on
your career and reputation. So, yes, you are a stakeholder.

And as a stakeholder, you have a say in the way the system is developed
and structured. I mean, it’s your butt on the line too.

But you are more than just a stakeholder. You are an engineer. You were
hired because you know how to build software systems and how to structure
those systems so that they last. Along with that knowledge comes the
responsibility to produce the best product you can.

Not only do you have the right as a stakeholder, but you have the duty as an
engineer, to make sure that the systems you produce do no harm either
through bad behavior or bad structure.

A lot of programmers don’t want that kind of responsibility. They’d rather
just be told what to do. And that’s a travesty and a shame. It’s wholly
unprofessional. Programmers who feel that way should be paid minimum
wage because that’s what their work output is worth.

If you don’t take responsibility for the structure of the system, who else
will? Your boss?

Does your boss know the SOLID principles? How about design patterns?
How about object-oriented design and the practice of dependency
inversion? Does your boss know the discipline of TDD? What a self-shunt
is, or a test-specific subclass, or a Humble Object? Does your boss
understand that things that change together should be grouped together and
that things that change for different reasons should be separated?

Does your boss understand structure? Or is your boss’s understanding
limited to behavior?

Structure matters. If you aren’t going to care for it, who will?

What if your boss specifically tells you to ignore structure and focus
entirely on behavior? You refuse. You are a stakeholder. You have rights
too. You are also an engineer with responsibilities that your boss cannot
override.

Perhaps you think that refusing will get you fired. It probably will not. Most
managers expect to have to fight for things they need and believe in, and
they respect those who are willing to do the same.



Oh, there will be a struggle, even a confrontation, and it won’t be
comfortable. But you are a stakeholder and an engineer. You can’t just back
down and acquiesce. That’s not professional.

Most programmers do not enjoy confrontation. But dealing with
confrontational managers is a skill we have to learn. We have to learn how
to fight for what we know is right because taking responsibility for the
things that matter, and fighting for those things, is how a professional
behaves.

Your Best
This promise of the Programmer’s Oath is about doing your best.

Clearly, this is a perfectly reasonable promise for a programmer to make. Of
course you are going to do your best, and of course you will not knowingly
release code that is harmful.

And, of course, this promise is not always black and white. There are times
when structure must bend to schedule. For example, if in order to make a
trade show, you have to put in some quick and dirty fix, then so be it.

The promise doesn’t even prevent you from shipping to customers code
with less-than-perfect structure. If the structure is close but not quite right,
and customers are expecting the release tomorrow, then so be it.

On the other hand, the promise does mean that you will address those issues
of behavior and structure before you add more behavior. You will not pile
more and more behavior on top of known bad structure. You will not allow
those defects to accumulate.

What if your boss tells you to do it anyway? Here’s how that conversation
should go.

Boss: I want this new feature added by tonight.

Programmer: I’m sorry, but I can’t do that. I’ve got some structural cleanup
to do before I can add that new feature.

Boss: Do the cleanup tomorrow. Get the feature done by tonight.



Programmer: That’s what I did for the last feature, and now I have an even
bigger mess to clean up. I really have to finish that cleanup before I start
on anything new.

Boss: I don’t think you understand. This is business. Either we have a
business or we don’t have a business. And if we can’t get features done,
we don’t have a business. Now get the feature done.

Programmer: I understand. Really, I do. And I agree. We have to be able to
get features done. But if I don’t clean up the structural problems that
have accumulated over the last few days, we’re going to slow down and
get even fewer features done.

Boss: Ya know, I used to like you. I used to say, that Danny, he’s pretty
nice. But now I don’t think so. You’re not being nice at all. Maybe you
shouldn’t be working with me. Maybe I should fire you.

Programmer: Well, that’s your right. But I’m pretty sure you want features
done quickly and done right. And I’m telling you that if I don’t do this
cleanup tonight, then we’re going to start slowing down. And we’ll
deliver fewer and fewer features.

Look, I want to go fast, just like you do. You hired me because I know how
to do that. You have to let me do my job. You have to let me do what I
know is best.

Boss: You really think everything will slow down if you don’t do this
cleanup tonight?

Programmer: I know it will. I’ve seen it before. And so have you.

Boss: And it has to be tonight?

Programmer: I don’t feel safe letting the mess get any worse.

Boss: You can give me the feature tomorrow?

Programmer: Yes, and it’ll be a lot easier to do once the structure is
cleaned up.

Boss: Okay. Tomorrow. No later. Now get to it.

Programmer: Okay. I’ll get right on it.



Boss: [aside] I like that kid. He’s got guts. He’s got gumption. He didn’t
back down even when I threatened to fire him. He’s gonna go far, trust
me—but don’t tell him I said so.

Repeatable Proof
Promise 3. I will produce, with each release, a quick, sure, and repeatable proof that every
element of the code works as it should.

Does that sound unreasonable to you? Does it sound unreasonable to be
expected to prove that the code you’ve written actually works?

Allow me to introduce you to Edsger Wybe Dijkstra.

Dijkstra
Edsger Wybe Dijkstra was born in Rotterdam in 1930. He survived the
bombing of Rotterdam and the German occupation of the Netherlands, and
in 1948, he graduated high school with the highest possible marks in math,
physics, chemistry, and biology.

In March 1952, at the age of 21, and just 9 months before I would be born,
he took a job with the Mathematical Center in Amsterdam as the
Netherlands’ very first programmer.

In 1957, he married Maria Debets. In the Netherlands, at the time, you had
to state your profession as part of the marriage rites. The authorities were
unwilling to accept “programmer” as his profession. They’d never heard of
such a profession. Dijkstra settled for “theoretical physicist.”

In 1955, having been a programmer for 3 years, and while still a student, he
concluded that the intellectual challenge of programming was greater than
the intellectual challenge of theoretical physics, and as a result, he chose
programming as his long-term career.

In making this decision, he conferred with his boss, Adriaan van
Wijngaarden. Dijkstra was concerned that no one had identified a discipline
or science of programming and that he would therefore not be taken



seriously. His boss replied that Dijkstra might very well be one of the
people who would make it a science.

In pursuit of that goal, Dijkstra was compelled by the idea that software was
a formal system, a kind of mathematics. He reasoned that software could
become a mathematical structure rather like Euclid’s Elements—a system of
postulates, proofs, theorems, and lemmas. He therefore set about creating
the language and discipline of software proofs.

Proving Correctness
Dijkstra realized that there were only three techniques we could use to
prove the correctness of an algorithm: enumeration, induction, and
abstraction. Enumeration is used to prove that two statements in sequence
or two statements selected by a Boolean expression are correct. Induction is
used to prove that a loop is correct. Abstraction is used to break groups of
statements into smaller provable chunks.

If this sounds hard, it is.

As an example of just how hard this is, I have included a simple Java
program for calculating the remainder of an integer (Figure 12.2), and the
handwritten proof of that algorithm (Figure 12.3).6

6. This is a translation into Java of a demonstration from Dijkstra’s work.



Figure 12.2 A simple Java program



Figure 12.3 Handwritten proof of the algorithm

I think you can see the problem with this approach. Indeed, this is
something that Dijkstra complained bitterly about:

Of course I would not dare to suggest (at least at present!) that it is the programmer’s duty to
supply such a proof whenever he writes a simple loop in his program. If so, he could never
write a program of any size at all.

Dijkstra’s hope was that such proofs would become more practical through
the creation of a library of theorems, again similar to Euclid’s Elements.

But Dijkstra did not understand just how prevalent and pervasive software
would become. He did not foresee, in those early days, that computers
would outnumber people and that vast quantities of software would be



running in the walls of our homes, in our pockets, and on our wrists. Had he
known, he would have realized that the library of theorems he envisioned
would be far too vast for any mere human to grasp.

So, Dijkstra’s dream of explicit mathematical proofs for programs has faded
into near oblivion. Oh, there are some holdouts who hope against hope for a
resurgence of formal proofs, but their vision has not penetrated very far into
the software industry at large.

Although the dream may have passed, it drew something deeply profound
in its wake. Something that we use today, almost without thinking about it.

Structured Programming
In the early days of programming, the 1950s and 1960s, we used languages
such as Fortran. Have you ever seen Fortran? Here, let me show you what it
was like.

Click here to view code image
       WRITE(4,99) 

99      FORMAT(" NUMERATOR:") 

       READ(4,100)NN 

       WRITE(4,98) 

98      FORMAT(" DENOMINATOR:") 

       READ(4,100)ND 

100     FORMAT(I6) 

       NR=NN 

       NDD=ND 

1       IF(NDD-NR)2,2,3 

2       NDD=NDD*2 

       GOTO 1 

 

3       IF(NDD-ND)4,10,4 

4       NDD=NDD/2 

       IF(NDD-NR)5,5,6 

5       NR=NR-NDD 

6       GOTO 3 

 

10      WRITE(4,20)NR 



20      FORMAT(" REMAINDER:",I6) 

       END

This little Fortran program implements the same remainder algorithm as the
earlier Java program.

Now I’d like to draw your attention to those GOTO statements. You probably
haven’t seen statements like that very often. The reason you haven’t seen
statements like that very often is that nowadays we look on them with
disfavor. In fact, most modern languages don’t even have GOTO statements
like that anymore.

Why don’t we favor GOTO statements? Why don’t our languages support
them anymore? Because in 1968, Dijkstra wrote a letter to the editor of
Communications of the ACM, titled “Go To Statement Considered
Harmful.”7

7. Edsger W. Dijkstra, “Go To Statement Considered Harmful,” Communications of the ACM 11, no.
3 (1968), 147–148.

Why did Dijkstra consider the GOTO statement to be harmful? It all comes
back to the three strategies for proving a function correct: enumeration,
induction, and abstraction.

Enumeration depends on the fact that each statement in sequence can be
analyzed independently and that the result of one statement feeds into the
next. It should be clear to you that in order for enumeration to be an
effective technique for proving the correctness of a function, every
statement that is enumerated must have a single entry point and a single exit
point. Otherwise, we could not be sure of either the inputs or the outputs of
a statement.

What’s more, induction is simply a special form of enumeration, where we
assume the enumerated statement is true for some x and then prove by
enumeration that it is true for x + 1.

Thus, the body of a loop must be enumerable. It must have a single entry
and a single exit.

GOTO is considered harmful because a GOTO statement can jump into or out of
the middle of an enumerated sequence. GOTOs make enumeration intractable,



making it impossible to prove an algorithm correct by enumeration or
induction.

Dijkstra recommended that, in order to keep code provable, it be
constructed of three standard building blocks.

Sequence, which we depict as two or more statements ordered in
time. This simply represents nonbranching lines of code.

Selection, depicted as two or more statements selected by a predicate.
This simply represents if/else and switch/case statements.

Iteration, depicted as a statement repeated under the control of a
predicate. This represents a while or for loop.

Dijkstra showed that any program, no matter how complicated, can be
composed of nothing more than these three structures and that programs
structured in that manner are provable.

He called the technique structured programming.

Why is this important if we aren’t going to write those proofs? If something
is provable, it means you can reason about it. If something is unprovable, it
means you cannot reason about it. And if you can’t reason about it, you
can’t properly test it.

Functional Decomposition
In 1968, Dijkstra’s ideas were not immediately popular. Most of us were
using languages that depended on GOTO, so the idea of abandoning GOTO or
imposing discipline on GOTO was abhorrent.

The debate over Dijkstra’s ideas raged for several years. We didn’t have an
Internet in those days, so we didn’t use Facebook memes or flame wars. But
we did write letters to the editors of the major software journals of the day.
And those letters raged. Some claimed Dijkstra to be a god. Others claimed
him to be a fool. Just like social media today, except slower.

But in time, the debate slowed, and Dijkstra’s position gained increasing
support until, nowadays, most of the languages we use simply don’t have a
GOTO.



Nowadays, we are all structured programmers because our languages don’t
give us a choice. We all build our programs out of sequence, selection, and
iteration. And very few of us make regular use of unconstrained GOTO
statements.

An unintended side effect of composing programs from those three
structures was a technique called functional decomposition. Functional
decomposition is the process whereby you start at the top level of your
program and recursively break it down into smaller and smaller provable
units. It is the reasoning process behind structured programming. Structured
programmers reason from the top down through this recursive
decomposition into smaller and smaller provable functions.

This connection between structured programming and functional
decomposition was the basis for the structured revolution that took place in
the 1970s and 1980s. People like Ed Yourdon, Larry Constantine, Tom
DeMarco, and Meilir Page-Jones popularized the techniques of structured
analysis and structured design during those decades.

Test-Driven Development
TDD, the red → green → refactor cycle, is functional decomposition. After
all, you have to write tests against small bits of the problem. That means
that you must functionally decompose the problem into testable elements.

The result is that every system built with TDD is built from functionally
decomposed elements that conform to structured programming. And that
means the system they compose is provable.

And the tests are the proof.
Or, rather, the tests are the theory.

The tests created by TDD are not a formal, mathematical proof, as Dijkstra
wanted. In fact, Dijkstra is famous for saying that tests can only prove a
program wrong; they can never prove a program right.

This is where Dijkstra missed it, in my opinion. Dijkstra thought of
software as a kind of mathematics. He wanted us to build a superstructure
of postulates, theorems, corollaries, and lemmas.



Instead, what we have realized is that software is a kind of science. We
validate that science with experiments. We build a superstructure of theories
based on passing tests, just as all other sciences do.

Have we proven the theory of evolution, or the theory of relativity, or the
Big Bang theory, or any of the major theories of science? No. We can’t
prove them in any mathematical sense.

But we believe them, within limits, nonetheless. Indeed, every time you get
into a car or an airplane, you are betting your life that Newton’s laws of
motion are correct. Every time you use a GPS system, you are betting that
Einstein’s theory of relativity is correct.

The fact that we have not mathematically proven these theories correct does
not mean that we don’t have sufficient proof to depend on them, even with
our lives.

That’s the kind of proof that TDD gives us. Not formal mathematical proof
but experimental empirical proof. The kind of proof we depend on every
day.

And that brings us back to the third promise in the Programmer’s Oath:
I will produce, with each release, a quick, sure, and repeatable proof that every element of the
code works as it should.

Quick, sure, and repeatable. Quick means that the test suite should run in a
very short amount of time. Minutes instead of hours.

Sure means that when the test suite passes, you know you can ship.

Repeatable means that those tests can be run by anybody at any time to
ensure that the system is working properly. Indeed, we want the tests run
many times per day.

Some may think that it is too much to ask that programmers supply this
level of proof. Some may think that programmers should not be held to this
high a standard. I, on the other hand, can imagine no other standard that
makes any sense.

When a customer pays us to develop software for them, aren’t we honor
bound to prove, to the best of our ability, that the software we’ve created
does what that customer has paid us for?



Of course we are. We owe this promise to our customers, and our
employers, and our teammates. We owe it to our business analysts, our
testers, and our project managers. But mostly we owe this promise to
ourselves. For how can we consider ourselves professionals if we cannot
prove that the work we have done is the work we have been paid to do?

What you owe, when you make that promise, is not the formal
mathematical proof that Dijkstra dreamed of; rather, it is the scientific suite
of tests that covers all the required behavior, runs in seconds or minutes,
and produces the same clear pass/fail result every time it is run.



13 Integrity



Several promises in the oath involve integrity.

Small Cycles



Promise 4. I will make frequent, small releases so that I do not impede the progress of others.

Making small releases just means changing a small amount of code for each
release. The system may be large, but the incremental changes to that
system are small.

The History of Source Code Control
Let’s go back to the 1960s for a moment. What is your source code control
system when your source code is punched on a deck of cards (Figure 13.1)?

Figure 13.1 Punch card



The source code is not stored on disk. It’s not “in the computer.” Your
source code is, literally, in your hand.

What is the source code control system? It is your desk drawer.

When you literally possess the source code, there is no need to “control” it.
Nobody else can touch it.

And this was the situation throughout much of the 1950s and 1960s.
Nobody even dreamed of something like a source code control system. You
simply kept the source code under control by putting it in a drawer or a
cabinet.

If anyone wanted to “check out” the source code, they simply went to the
cabinet and took it. When they were done, they put it back.

We certainly didn’t have merge problems. It was physically impossible for
two programmers to be making changes to the same modules at the same
time.

But things started to change in the 1970s. The idea of storing your source
code on magnetic tape or even on disk was becoming attractive. We wrote
line editing programs that allowed us to add, replace, and delete lines in
source files on tape. These programs weren’t screen editors. We punched
our add, change, and delete directives on cards. The editor would read the
source tape, apply the changes from the edit deck, and write the new source
tape.

You may think this sounds awful. Looking back on it—it was. But it was
better than trying to manage programs on cards! I mean 6,000 lines of code
on cards weighs 30 pounds. What would you do if you accidentally dropped
those cards and watched as they spread all over the floor and under
furniture and down into heating vents?

If you drop a tape, you can just pick it up again.

Anyway, notice what happened. We started with one source tape, and in the
editing process, we wound up with a second, new source tape. But the old
tape still existed. If we put that old tape back on the rack, someone else
might inadvertently apply their own changes to it, leaving us with a merge
problem.



To prevent that, we simply kept the master source tape in our possession
until we were done with our edits and our tests. Then we put a new master
source tape back on the rack. We controlled the source code by keeping
possession of the tape.

Protecting our source code required a process and convention. A true source
code control process had to be used. No software yet, just human rules. But
still, the concept of source code control had become separate from the
source code itself.

As systems became increasingly larger, they needed greater numbers of
programmers working on the same code at the same time. Grabbing the
master tape and holding it became a real nuisance for everyone else. I mean,
you could keep the master tape out of circulation for a couple of days or
more.

So, we decided to extract modules from the master tape. The whole idea of
modular programming was pretty new at the time. The notion that a
program could be made up of many different source files was revolutionary.

We therefore started using bulletin boards like the one in Figure 13.2.



Figure 13.2 A bulletin board

The bulletin board had labels on it for each of the modules in the system.
We programmers each had our own color thumbtack. I was blue. Ken was
red. My buddy CK was yellow, and so on.

If I wanted to edit the Trunk Manager module, I’d look on the bulletin
board to see if there was a pin in that module. If not, I put a blue pin in it.
Then I took the master tape from the rack and copied it onto a separate tape.



I would edit the Trunk Manager module, and only the Trunk Manager
module, generating a new tape with my changes. I’d compile, test, wash
and repeat until I got my changes to work. Then I’d go get the master tape
from the rack, and I would create a new master by copying the current
master but replacing the Trunk Manager module with my changes. I’d put
the new master back in the rack.

Finally, I’d remove my blue pin from the bulletin board.

This worked, but it only worked because we all knew each other, we all
worked in the same office together, we each knew what the others were
doing. And we talked to each other all the time.

I’d holler across the lab: “Ken, I’m going to change the Trunk Manager
module.” He’d say: “Put a pin in it.” I’d say: “I already did.”

The pins were just reminders. We all knew the status of the code and who
was working on what. And that’s why the system worked.

Indeed, it worked very well. Knowing what each of the other programmers
was doing meant that we could help each other. We could make
suggestions. We could warn each other about problems we’d recently
encountered. And we could avoid merges.

Back then, merges were NOT fun.

Then, in the 1980s, came the disks. Disks got big, and they got permanent.
By big, I mean hundreds of megabytes. By permanent, I mean that they
were permanently mounted—always on line.

The other thing that happened is that we got machines like PDP11s and
VAXes. We got screen editors, real operating systems, and multiple
terminals. More than one person could be editing at exactly the same time.

The era of thumbtacks and bulletin boards had to come to an end.

First of all, by then, we had twenty or thirty programmers. There weren’t
enough thumbtack colors. Second, we had hundreds and hundreds of
modules. We didn’t have enough space on the bulletin board.

Fortunately, there was a solution.

In 1972, Marc Rochkind wrote the first source code control program. It was
called the Source Code Control System (SCCS), and he wrote it in



SNOBOL.1

1. A lovely little string processing language from the 1960s that had many of the pattern-matching
facilities of our modern languages.

Later, he rewrote it in C, and it became part of the UNIX distribution on
PDP11s. SCCS worked on only one file at a time but allowed you to lock
that file so that no one else could edit it until you were done. It was a life
saver.

In 1982, RCS, the Revision Control System, was created by Walter Tichy. It
too was file based and knew nothing of projects, but it was considered an
improvement over SCCS and rapidly became the standard source code
control system of the day.

Then, in 1986, CVS, the Concurrent Versions System, came along. It
extended RCS to deal with whole projects, not just individual files. It also
introduced the concept of optimistic locking.

Up to this time, most source code control systems worked like my
thumbtacks. If you had checked out the module, nobody else could edit it.
This is called pessimistic locking.

CVS used optimistic locking. Two programmers could check out and
change the same file at the same time. CVS would try to merge any
nonconflicting changes and would alert you if it couldn’t figure out how to
do the merge.

After that, source code control systems exploded and even became
commercial products. Literally hundreds of them flooded the market. Some
used optimistic locking, others used pessimistic locking. The locking
strategy became a kind of religious divide in the industry.

Then, in 2000, Subversion was created. It vastly improved upon CVS, and
was instrumental in driving the industry away from pessimistic locking
once and for all. Subversion was also the first source code control system to
be used in the cloud. Does anybody remember Source Forge?

Up to this point, all source code control systems were based on the master
tape idea that I used back in my bulletin board days. The source code was
maintained in a single central master repository. Source code was checked
out from that master repository, and commits were made back into that
master repository.



But all that was about to change.

Git
The year is 2005. Multi-gigabyte disks are in our laptops. Network speeds
are fast and getting faster. Processor clock rates have plateaued at 2.6GHz.

We are very, very far beyond my old bulletin board control system for
source code. But we are still using the master tape concept. We still have a
central repository that everybody has to check in and out of. Every commit,
every reversion, every merge requires network connectivity to the master.

And then came git.

Well, actually, git was presaged by BitKeeper and monotone; but it was git
that caught the attention of the programming world and changed everything.

Because, you see, git eliminates the master tape.

Oh, you still need a final authoritative version of the source code. But git
does not automatically provide this location for you. Git simply doesn’t care
about that. Where you decide to put your authoritative version is entirely up
to you. Git has nothing whatever to do with it.

Git keeps the entire history of the source code on your local machine. Your
laptop, if that’s what you use. On your machine, you can commit changes,
create branches, check out old versions, and generally do anything you
could do with a centralized system like Subversion—except you don’t need
to be connected to some central server.

Any time you like, you can connect to another user and push any of the
changes you’ve made to that user. Or you can pull any changes they have
made into your local repository. Neither is master. Both are equal. That’s
why they call it peer to peer.

And the final authoritative location that you use for making production
releases is just another peer that people can push to or pull from any time
they like.

The end result is that you are free to make as many small commits as you
like before you push your changes somewhere else. You can commit every



30 seconds if you like. You can make a commit every time you get a unit
test to pass.

And that brings us to the point of this whole historical discussion.

If you stand back and look at the trajectory of the evolution of source code
control systems, you can see that they have been driven, perhaps
unconsciously, by a single underlying imperative.

Short Cycles
Consider again how we began. How long was the cycle when source code
was controlled by physically possessing a deck of cards?

You checked the source code out by taking those cards out of the cabinet.
You held on to those cards until you were done with your project. Then you
committed your changes by putting the changed deck of cards back in the
cabinet. The cycle time was the whole project.

Then, when we used thumbtacks on the bulletin board, the same rule
applied. You kept your thumbtacks in the modules you were changing until
you were done with the project you were working on.

Even in the late 1970s and into the 1980s when we were using SCCS and
RCS, we continued to use this pessimistic locking strategy, keeping others
from touching the modules we were changing until we were done.

But CVS changed things—at least for some of us. Optimistic locking meant
that one programmer could not lock others out of a module. We still
committed only when we were done with a project, but others could be
working concurrently on the same modules. Consequently, the average time
between commits on a project shrank drastically. The cost of concurrency,
of course, was merges.

And how we hated doing merges. Merges are awful. Especially without unit
tests! They are tedious, time-consuming, and dangerous.

Our distaste for merges drove us to a new strategy.



Continuous Integration
By 2000, even while we were using tools such as Subversion, we had begun
teaching the discipline of committing every few minutes.

The rationale was simple. The more frequently you commit, the less likely
you are to face a merge. And if you do have to merge, the merge will be
trivial.

We called this discipline continuous integration.

Of course, continuous integration depends critically on having a very
reliable suite of unit tests. I mean, without good unit tests, it would be easy
to make a merge error and break someone else’s code. So, continuous
integration goes hand in hand with test-driven development (TDD).

With tools like git, there is almost no limit to how small we can shrink the
cycle. And that begs the question: Why are we so concerned about
shrinking the cycle?

Because long cycles impede the progress of the team.

The longer the time between commits, the greater the chance that someone
else on the team—perhaps the whole team—will have to wait for you. And
that violates the promise.

Perhaps you think this is only about production releases. No, it’s actually
about every other cycle. It’s about iterations and sprints. It’s about the
edit/compile/test cycle. It’s about the time between commits. It’s about
everything.

And remember the rationale: so that you do not impede the progress of
others.

Branches versus Toggles
I used to be a branch nazi. Back when I was using CVS and Subversion, I
refused to allow members on my teams to branch the code. I wanted all
changes returned to the main line as frequently as possible.



My rationale was simple. A branch is simply a long-term checkout. And, as
we’ve seen, long-term checkouts impede the progress of others by
prolonging the time between integrations.

But then I switched to git—and everything changed overnight.

At the time, I was managing the open source FitNesse project, which had a
dozen or so people working on it. I had just moved the FitNesse repository
from Subversion (Source Forge) to git (GitHub). Suddenly, branches started
appearing all over the place.

For the first few days, these crazy branches in git had me confused. Should
I abandon my branch-nazi stance? Should I abandon continuous integration
and simply allow everyone to make branches willy-nilly, forgetting about
the cycle time issue?

But then it occurred to me that these branches I was seeing were not true
named branches. Instead, they were just the stream of commits made by a
developer between pushes. In fact, all git had really done was record the
actions of the developer between continuous integration cycles.

So, I resolved to continue my rule to restrict branches. It’s just that now, it’s
not commits that return immediately to the mainline. It’s pushes.
Continuous integration was preserved.

If we follow continuous integration and push to the main line every hour or
so, then we’ll certainly have a bunch of half-written features on the main
line. There are typically two strategies for dealing with that: branches and
toggles.

The branching strategy is simple. You simply create a new branch of the
source code in which to develop the feature. You merge it back when the
feature is done. This is most often accomplished by delaying the push until
the feature is complete.

If you keep the branch out of the main line for days or weeks, then you’ll
likely face a big merge, and you’ll certainly be impeding the team.

However, there are cases in which the new feature is so isolated from the
rest of the code that branching it is not likely to cause a big merge. In these
circumstances, it might be better to let the developers work in peace on the
new feature without continuously integrating.



In fact, we had a case like this with FitNesse a few years ago. We
completely rewrote the parser. This was a big project. It took a few man
weeks. And there was no way to do it incrementally. I mean, the parser is
the parser.

We therefore created a branch and kept that branch isolated from the rest of
the system until the parser was ready.

There was a merge to do at the end, but it wasn’t too bad. The parser was
isolated well enough from the rest of the system. And, fortunately, we had a
very comprehensive set of unit and acceptance tests.

Despite the success of the parser branch, I think it’s usually better to keep
new feature development on the main line and use toggles to turn those
features off until ready.

Sometimes we use flags for those toggles, but more often we use the
Command pattern, the Decorator pattern, and special versions of the
Factory pattern to make sure that the partially written features cannot be
executed in a production environment.

And most of the time we simply don’t give the user the option to use the
new feature. I mean, if the button isn’t on the Web page, you can’t execute
that feature.

In many cases, of course, new features will be completed as part of the
current iteration—or at least before the next production release—so there’s
no real need for any kind of toggle.

You only need a toggle if you are going to be releasing to production while
some of the features are unfinished. How often should that be?

Continuous Deployment
What if we could eliminate the delays between production releases? What if
we could release to production several times per day? After all, delaying
production releases impedes others.

I want you to be able to release your code to production several times per
day. I want you to feel comfortable enough with your work that you could



release your code to production on every push.

This, of course, depends on automated testing: automated tests written by
programmers to cover every line of code and automated tests written by
business analysts and QA testers to cover every desired behavior.

Remember our discussion of tests in Chapter 12, “Harm.” Those tests are
the scientific proof that everything works as it is supposed to. And if
everything works as it is supposed to, the next step is to deploy to
production.

And by the way, that’s how you know if your tests are good enough. Your
tests are good enough if, when they pass, you feel comfortable deploying. If
passing tests don’t allow you to deploy, your tests are deficient.

Perhaps you think that deploying every day or even several times per day
would lead to chaos. However, the fact that you are ready to deploy does
not mean that the business is ready to deploy. As part of a development
team, your standard is to always be ready.

What’s more, we want to help the business remove all the impediments to
deployment so that the business deployment cycle can be shortened as
much as possible. After all, the more ceremony and ritual the business uses
for deployment, the more expensive deployment becomes. Any business
would like to shed that expense.

The ultimate goal for any business is continuous, safe, and ceremony-free
deployment. Deployment should be as close as possible to a nonevent.

Because deployment is often a lot of work, with servers to configure and
databases to load, you need to automate the deployment procedure. And
because deployment scripts are part of the system, you write tests for them.

For many of you, the idea of continuous deployment may be so far from
your current process that it’s inconceivable. But that doesn’t mean there
aren’t things you can do to shorten the cycle.

And who knows? If you keep shortening the cycle, month after month, year
after year, perhaps one day you’ll find that you are deploying continuously.



Continuous Build
Clearly, if you are going to deploy in short cycles, you have to be able to
build in short cycles. If you are going to deploy continuously, you have to
be able to build continuously.

Perhaps some of you have slow build times. If you do, speed them up.
Seriously, with the memory and speed of modern systems, there is no
excuse for slow builds. None. Speed them up. Consider it a design
challenge.

And then get yourself a continuous build tool, such as Jenkins, Buildbot, or
Travis, and use it. Make sure that you kick off a build at every push and do
what it takes to ensure that the build never fails.

A build failure is a red alert. It’s an emergency. If the build fails, I want
emails and text messages sent to every team member. I want sirens going
off. I want a flashing red light on the CEO’s desk. I want everybody to stop
whatever they are doing and deal with the emergency.

Keeping the build from failing is not rocket science. You simply run the
build, along with all the tests, in your local environment before you push.
You push the code only when all the tests pass.

If the build fails after that, you’ve uncovered some environmental issue that
needs to be resolved posthaste.

You never allow the build to go on failing, because if you allow the build to
fail, you’ll get used to it failing. And if you get used to the failures, you’ll
start ignoring them. The more you ignore those failures, the more annoying
the failure alerts become. And the more tempted you are to turn the failing
tests off until you can fix them—later. You know. Later?

And that’s when the tests become lies.

With the failing tests removed, the build passes again. And that makes
everyone feel good again. But it’s a lie.

So, build continuously. And never let the build fail.

Relentless Improvement



Promise 5. I will fearlessly and relentlessly improve my creations at every opportunity. I will
never degrade them.

Robert Baden Powell, the father of the Boy Scouts, left a posthumous
message exhorting the scouts to leave the world a better place than they
found it. It was from this statement that I derived my Boy Scout rule:
Always check the code in cleaner than you checked it out.

How? By performing random acts of kindness upon the code every time
you check it in.

One of those random acts of kindness is to increase test coverage.

Test Coverage
Do you measure how much of your code is covered by your tests? Do you
know what percentage of lines are covered? Do you know what percentage
of branches are covered?

There are plenty of tools that can measure coverage for you. For most of us,
those tools come as part of our IDE and are trivial to run, so there’s really
no excuse for not knowing what your coverage numbers are.

What should you do with those numbers? First, let me tell you what not to
do. Don’t turn them into management metrics. Don’t fail the build if your
test coverage is too low. Test coverage is a complicated concept that should
not be used so naively.

Such naive usage sets up perverse incentives to cheat. And it is very easy to
cheat test coverage. Remember that coverage tools only measure the
amount of code that was executed; not the code that was actually tested.
This means that you can drive the coverage number very high by pulling the
assertions out of your failing tests. And, of course, that makes the metric
useless.

The best policy is to use the coverage numbers as a developer tool to help
you improve the code. You should work to meaningfully drive the coverage
toward 100 percent by writing actual tests.

One hundred percent test coverage is always the goal, but it is also an
asymptotic goal. Most systems never reach 100 percent, but that should not



deter you from constantly increasing the coverage.

That’s what you use the coverage numbers for. You use them as a
measurement to help you improve, not as a bludgeon with which to punish
the team and fail the build.

Mutation Testing
One hundred percent test coverage implies that any semantic change to the
code should cause a test to fail. TDD is a good discipline to approximate
that goal because, if you follow the discipline ruthlessly, every line of code
is written to make a failing test pass.

Such ruthlessness, however, is often impractical. Programmers are human,
and disciplines are always subject to pragmatics. So, the reality is that even
the most assiduous test-driven developer will leave gaps in the test
coverage.

Mutations testing is a way to find those gaps, and there are mutation testing
tools that can help. A mutation tester runs your test suite and measures the
coverage. Then it goes into a loop, mutating your code in some semantic
way and then running the test suite with coverage again. The semantic
changes are things like changing > to < or == to != or x=<something> to
x=null. Each such semantic change is called a mutation.

The tool expects each mutation to fail the tests. Mutations that do not fail
the tests are called surviving mutations. Clearly, the goal is to ensure that
there are no surviving mutations.

Running a mutation test can be a big investment of time. Even relatively
small systems can require hours of runtime, so these kinds of tests are best
run over weekends or at month’s end. However, I have not failed to be
impressed by what mutation testing tools can find. It is definitely worth the
occasional effort to run them.

Semantic Stability



The goal of test coverage and mutation testing is to create a test suite that
ensures semantic stability. The semantics of a system are the required
behaviors of that system. A test suite that ensures semantic stability is one
that fails whenever a required behavior is broken. We use such test suites to
eliminate the fear of refactoring and cleaning the code. Without a
semantically stable test suite, the fear of change is often too great.

TDD gives us a good start on a semantically stable test suite, but it is not
sufficient for full semantic stability. Coverage, mutation testing, and
acceptance testing should be used to improve the semantic stability toward
completeness.

Cleaning
Perhaps the most effective of the random acts of kindness that will improve
the code is simple cleaning—refactoring with the goal of improvement.

What kinds of improvements can be made? There is, of course, the obvious
elimination of code smells. But I often clean code even when it isn’t smelly.

I make tiny little improvements in the names, in the structure, in the
organization. These changes might not be noticed by anyone else. Some
folks might even think they make the code less clean. But my goal is not
simply the state of the code. By doing little minor cleanings, I learn about
the code. I become more familiar and more comfortable with it. Perhaps my
cleaning did not actually improve the code in any objective sense, but it
improved my understanding of and my facility with that code. The cleaning
improved me as a developer of that code.

The cleaning provides another benefit that should not be understated. By
cleaning the code, even in minor ways, I am flexing that code. And one of
the best ways to ensure that code stays flexible is to regularly flex it. Every
little bit of cleaning I do is actually a test of the code’s flexibility. If I find a
small cleanup to be a bit difficult, I have detected an area of inflexibility
that I can now correct.

Remember, software is supposed to be soft. How do you know that it is
soft? By testing that softness on a regular basis. By doing little cleanups and



little improvements and feeling how easy or difficult those changes are to
make.

Creations
The word used in Promise 5 is creations. In this chapter, I have focused
mostly on code, but code is not the only thing that programmers create. We
create designs and documents and schedules and plans. All of these artifacts
are creations that should be continuously improved.

We are human beings. Human beings make things better with time. We
constantly improve everything we work on.

Maintain High Productivity
Promise 6. I will do all that I can to keep the productivity of myself and others as high as
possible. I will do nothing that decreases that productivity.

Productivity. That’s quite a topic, isn’t it? How often do you feel that it’s the
only thing that matters at your job? If you think about it, productivity is
what this book and all my books on software are about.

They’re about how to go fast.

And what we’ve learned over the last seven decades of software is that the
way you go fast is to go well.

The only way to go fast is to go well.

So, you keep your code clean. You keep your designs clean. You write
semantically stable tests and keep your coverage high. You know and use
appropriate design patterns. You keep your methods small and your names
precise.

But those are all indirect methods of achieving productivity. Here, we’re
going to talk about much more direct ways to keep productivity high.

1. Viscosity—keeping your development environment efficient

2. Distractions—dealing with every day business and personal life



3. Time management—effectively separating productive time from all
the other junk you have to do

Viscosity
Programmers are often very myopic when it comes to productivity. They
view the primary component to productivity as their ability to write code
quickly.

But the writing of code is a very small part of the overall process. If you
made the writing of code infinitely fast, it would increase overall
productivity only by a small amount.

That’s because there’s a lot more to the software process than just writing
code. There’s at least

Building

Testing

Debugging

Deploying

And that doesn’t count the requirements, the analysis, the design, the
meetings, the research, the infrastructure, the tooling, and all the other stuff
that goes into a software project.

So, although it is important to be able to write code efficiently, it’s not even
close to the biggest part of the problem.

Let’s tackle some of the other issues one at a time.

Building
If it takes you 30 minutes to build after a 5-minute edit, then you can’t be
very productive, can you?

There is no reason, in the second and subsequent decades of the twenty-first
century, that builds should take more than a minute or two.



Before you object to this, think about it. How could you speed the build?
Are you utterly certain, in this age of cloud computing, that there is no way
to dramatically speed up your build? Find whatever is causing the build to
be slow, and fix it. Consider it a design challenge.

Testing
Is it your tests that are slowing the build? Same answer. Speed up your
tests.

Here, look at it this way. My poor little laptop has four cores running at a
clock rate of 2.8GHz. That means it can execute around 10 billion
instructions per second.

Do you even have 10 billion instructions in your whole system? If not, then
you should be able to test your whole system in less than a second.

Unless, of course, you are executing some of those instructions more than
once. For example, how many times do you have to test login to know that
it works? Generally speaking, once should be sufficient. How many of your
tests go through the login process? Any more than one would be a waste!

If login is required before each test, then during tests, you should short-
circuit the login process. Use one of the mocking patterns. Or, if you must,
remove the login process from systems built for testing.

The point is, don’t tolerate repetition like that in your tests. It can make
them horrifically slow.

As another example, how many times do your tests walk through the
navigation and menu structure of the user interface? How many tests start at
the top and then walk through a long chain of links to finally get the system
into the state where the test can be run?

Any more than once per navigation pathway would be a waste! So, build a
special testing API that allows the tests to quickly force the system into the
state you need, without logging in and without navigating.

How many times do you have to execute a query to know that it works?
Once! So, mock out your databases for the majority of your tests. Don’t
allow the same queries to be executed over and over and over again.



Peripheral devices are slow. Disks are slow. Web sockets are slow. UI
screens are slow. Don’t let slow things slow down your tests. Mock them
out. Bypass them. Get them out of the critical path of your tests.

Don’t tolerate slow tests. Keep your tests running fast!

Debugging
Does it take a long time to debug things? Why? Why is debugging slow?

You are using TDD to write unit tests, aren’t you? You are writing
acceptance tests too, right? And you are measuring test coverage with a
good coverage analysis tool, right? And you are periodically proving that
your tests are semantically stable by using a mutation tester, right?

If you are doing all those things or even just some of those things, your
debug time can be reduced to insignificance.

Deployment
Does deployment take forever? Why? I mean, you are using deployment
scripts, right? You aren’t deploying manually, are you?

Remember, you are a programmer. Deployment is a procedure—automate
it! And write tests for that procedure too!

You should be able to deploy your system, every time, with a single click.

Managing Distractions
One of the most pernicious destroyers of productivity is distraction from the
job. There are many different kinds of distractions. It is important for you to
know how to recognize them and defend against them.

Meetings
Are you slowed down by meetings?



I have a very simple rule for dealing with meetings. It goes like this:
When the meeting gets boring, leave.

You should be polite about it. Wait a few minutes for a lull in the
conversation, and then tell the participants that you believe your input is no
longer required and ask them if they would mind if you returned to the
rather large amount of work you have to do.

Never be afraid of leaving a meeting. If you don’t figure out how to leave,
then some meetings will keep you forever.

You would also be wise to decline most meeting invitations. The best way
to avoid getting caught in long, boring meetings is to politely refuse the
invitation in the first place. Don’t be seduced by the fear of missing out. If
you are truly needed, they’ll come get you.

When someone invites you to a meeting, make sure they’ve convinced you
that you really need to go. Make sure they understand that you can only
afford a few minutes and that you are likely to leave before the meeting is
over.

And make sure you sit close to the door.

If you are a group leader or a manager, remember that one of your primary
duties is to defend your team’s productivity by keeping them out of
meetings.

Music
I used to code to music long, long ago. But I found that listening to music
impedes my concentration. Over time, I realized that listening to music only
feels like it helps me concentrate, but actually, it divides my attention.

One day, while looking over some year-old code, I realized that my code
was suffering under the lash of the music. There, scattered through the code
in a series of comments, were the lyrics to the song I had been listening to.

Since then, I’ve stopped listening to music while I code, and I’ve found I
am much happier with the code I write and with the attention to detail that I
can give it.



Programming is the act of arranging elements of procedure through
sequence, selection, and iteration. Music is composed of tonal and rhythmic
elements arranged through sequence, selection, and iteration. Could it be
that listening to music uses the same parts of your brain that programming
uses, thereby consuming part of your programming ability? That’s my
theory, and I’m sticking to it.

You will have to work this out for yourself. Maybe the music really does
help you. But maybe it doesn’t. I’d advise you to try coding without music
for a week, and see if you don’t end up producing more and better code.

Mood
It’s important to realize that being productive requires that you become
skilled at managing your emotional state. Emotional stress can kill your
ability to code. It can break your concentration and keep you in a
perpetually distracted state of mind.

For example, have you ever noticed that you can’t code after a huge fight
with your significant other? Oh, maybe you type a few random characters in
your IDE, but they don’t amount to much. Perhaps you pretend to be
productive by hanging out in some boring meeting that you don’t have to
pay much attention to.

Here’s what I’ve found works best to restore your productivity.

Act. Act on the root of the emotion. Don’t try to code. Don’t try to cover
the feelings with music or meetings. It won’t work. Act to resolve the
emotion.

If you find yourself at work, too sad or depressed to code because of a fight
with your significant other, then call them to try to resolve the issue. Even if
you don’t actually get the issue resolved, you’ll find that the action to
attempt a resolution will sometimes clear your mind well enough to code.

You don’t actually have to solve the problem. All you have to do is
convince yourself that you’ve taken enough appropriate action. I usually
find that’s enough to let me redirect my thoughts to the code I have to write.

The Flow



There’s an altered state of mind that many programmers enjoy. It’s that
hyperfocused, tunnel-vision state in which the code seems to pour out of
every orifice of your body. It can make you feel superhuman.

Despite the euphoric sensation, I’ve found, over the years, that the code I
produce in that altered state tends to be pretty bad. The code is not nearly as
well considered as code I write in a normal state of attention and focus. So,
nowadays, I resist getting into the flow. Pairing is a very good way to stay
out of the flow. The very fact that you must communicate and collaborate
with someone else seems to interfere with the flow.

Avoiding music also helps me stay out of the flow because it allows the
actual environment to keep me grounded in the real world.

If I find that I’m starting to hyperfocus, I break away and do something else
for a while.

Time Management
One of the most important ways to manage distraction is to employ a time
management discipline. The one I like best is the Pomodoro Technique.2

2. Francesco Cirillo, The Pomodoro Technique: The Life-Changing Time-Management System
(Virgin Books, 2018).

Pomodoro is Italian for “tomato.” English teams tend to use the word
tomato instead. But you’ll have better luck with Google if you search for
the Pomodoro Technique.

The aim of the technique is to help you manage your time and focus during
a regular workday. It doesn’t concern itself with anything beyond that.

At its core, the idea is quite simple. Before you begin to work, you set a
timer (traditionally a kitchen timer in the shape of a tomato) for 25 minutes.

Next, you work. And you work until the timer rings.

Then you break for 5 minutes, clearing your mind and body.

Then you start again. Set the timer for 25 minutes, work until the timer
rings, and then break for 5 minutes. You do this over and over.



There’s nothing magical about 25 minutes. I’d say anything between 15 and
45 minutes is reasonable. But once you choose a time, stick with that time.
Don’t change the size of your tomatoes!

Of course, if I were 30 seconds away from getting a test to pass when the
timer rang, I’d finish the test. On the other hand, maintaining the discipline
is important. I wouldn’t go more than a minute beyond.

So far, this sounds mundane, but handling interruptions, such as phone
calls, is where this technique shines. The rule is to defend the tomato!
Tell whoever is trying to interrupt you that you’ll get back to them within
25 minutes—or whatever the length of your tomato is. Dispatch the
interruption as quickly as possible, and then return to work.

Then, after your break, handle the interruption.

This means that the time between tomatoes will sometimes get pretty long,
because people who interrupt you often require a lot of time.

Again, that’s the beauty of this technique. At the end of the day, you count
the number of tomatoes you completed, and that gives you a measure of
your productivity.

Once you’ve gotten good at breaking your day up into tomatoes like this
and defending the tomatoes from interruptions, then you can start planning
your day by allocating tomatoes to it. You may even begin to estimate your
tasks in terms of tomatoes and plan your meetings and lunches around
them.



14 Teamwork

The remaining promises of the oath reflect a commitment to the team.



Work as a Team
Promise 7. I will continuously ensure that others can cover for me and that I can cover for
them.

Segregation of knowledge into silos is extremely detrimental to a team and
to an organization. The loss of an individual can mean the loss of an entire
segment of knowledge. It can paralyze the team and the organization. It also
means that the individuals on the team don’t have sufficient context to
understand each other. Often, they wind up talking past each other.

The cure for this problem is to spread knowledge through the team. Make
sure each team member knows a lot about the work that other team
members are performing.

The best way to spread that knowledge is to work together—to pair, or
mob.

The truth is that there’s hardly any better way to improve the productivity of
a team than to practice collaborative programming. A team that knows the
deep connections among the work that’s being done can’t help but be much
more productive than a group of silos.

Open/Virtual Office
It is also important that the members of the team see and interact with each
other very frequently. The best way to achieve this is to put them into a
room together.

In the early 2,000s, I owned a company that helped organizations adopt
Agile development. We would send a group of instructors and coaches to
those companies and guide them through the change. Before each
engagement began, we told the managers to rearrange the office space so
that the teams we would be coaching worked in their own team rooms. It
happened more than once that, before we arrived to begin coaching, the
managers told us that the teams were already much more productive just
because they were working together in the same room.



I’m writing this paragraph in the first quarter of 2021. The COVID-19
pandemic is beginning to wane, vaccines are being rapidly distributed (I
will get my second shot today), and we are all looking forward to a return to
normal life. But the pandemic will leave, in its wake, a large number of
software teams who work remotely.

Working remotely can never be quite as productive as working together in
the same room. Even with the best electronic help, seeing each other on
screens is just not as good as seeing each other in person. Still, the
electronic systems for collaboration are very good nowadays. So, if you are
working remotely, use them.

Create a virtual team room. Keep everyone’s face in view. Keep everyone’s
audio channel as open as feasible. Your goal is to create the illusion of a
team room, with everyone in it working together.

Pairing and mobbing enjoy a lot of electronic support nowadays. It is
relatively easy to share screens and program together across distances.
While you do that, keep the faces and the audio up and running. You want
to be able to see each other while you are collaborating on code.

Remote teams should try, as hard as they can, to maintain the same working
hours. This is very difficult when there is a huge East–West distribution of
programmers. Try to keep the number of time zones in each team as small
as possible, and try very hard to have at least six contiguous hours per day
when everyone can be together in the virtual team room.

Have you ever noticed how easy it is to yell at another driver while driving
your car? This is the windshield effect. When you are sitting behind a
windshield, it’s easy to see other people as fools, imbeciles, and even
enemies. It is easy to dehumanize them. This effect happens, to a lesser
degree, behind computer screens.

To avoid this effect, teams should get together in the same physical room
several times per year. I recommend one week each quarter. This will help
the team congeal and maintain itself as a team. It is very hard to fall into the
windshield trap with someone you ate lunch with and physically
collaborated with two weeks ago.



Estimate Honestly and Fairly
Promise 8. I will produce estimates that are honest in both magnitude and precision. I will not
make promises without reasonable certainty.

In this section, we’re going to talk about estimating projects and large tasks
—things that take many days or weeks to accomplish. The estimation of
small tasks and stories is described in Clean Agile.1

1. Robert C Martin, Clean Agile: Back to Basics (Pearson, 2020).

Knowing how to estimate is an essential skill for every software developer
and one that most of us are very, very bad at. The skill is essential because
every business needs to know, roughly, how much something is going to
cost before they commit resources to it.

Unfortunately, our failure to understand what estimates actually are and
how to create them has led to an almost catastrophic loss of trust between
programmers and business.

The landscape is littered with billions of dollars in software failures. Often,
those failures are due to poor estimation. It is not uncommon for estimates
to be off by a factor of 2, 3, even 4 and 5. But why? Why are estimates so
hard to get right?

Mostly it’s because we don’t understand what estimates actually are and
how to create them. You see, in order for estimates to be useful, they must
be honest: They must be honestly accurate, and they must be honestly
precise. But most estimates are neither. Indeed, most estimates are lies.

Lies
Most estimates are lies because most estimates are constructed backward
from a known end date.

Consider HealthCare.gov, for example. The president of the United States
signed a bill into law that mandated a specific date when that software
system was to be turned on.



The depth of that illogic is nausea inducing. I mean, how absurd. Nobody
was asked to estimate the end date; they were just told what the end date
had to be—by law!

So, of course, all estimates associated with that mandated date were lies.
How could they be anything else?

It reminds me of a team I was consulting for about twenty years ago. I
remember being in the project room with them when the project manager
walked in. He was a young fellow, perhaps twenty-five. He’d just returned
from a meeting with his boss. He was visibly agitated. He told the team
how important the end date was. He said, “We really have to make that
date. I mean, we really have to make that date.”

Of course, the rest of the team just rolled their eyes and shook their heads.
The need to make the date was not a solution for making the date. The
young manager offered no solution.

Estimates, in an environment like that, are just lies that support the plan.

And that reminds me of another client of mine who had a huge software
production plan on the wall—full of circles and arrows and labels and tasks.
The programmers referred to it as the laugh track.

In this section, we’re going to talk about real, worthwhile, honest, accurate,
and precise estimates. The kind of estimates that professionals create.

Honesty, Accuracy, Precision
The most important aspect of an estimate is honesty. Estimates don’t do
anybody any good unless they are honest.

Me: So, let me ask you. What is the most honest estimate you can give?

Programmer: Um, I don’t know.

Me: Right.

Programmer: Right what?

Me: I don’t know.



Programmer: Wait. You asked me for the most honest estimate.

Me: Right.

Programmer: And I said I don’t know.

Me: Right.

Programmer: So, what it is?

Me: I don’t know.

Programmer: Well, then, how do you expect me to know?

Me: You already said it?

Programmer: Said what?

Me: I don’t know.

The most honest estimate you can give is “I don’t know.” But that estimate
is not particularly accurate or precise. After all, you do know something
about the estimate. The challenge is to quantify what you do and don’t
know.

First, your estimate must be accurate. That doesn’t mean you give a firm
date—you don’t dare be that precise. It just means that you name a range of
dates that you feel confident in.

So, for example, sometime between now and ten years from now is a pretty
accurate estimate for how long it would take you to write a hello world
program. But it lacks precision.

On the other hand, yesterday at 2:15 a.m. is a very precise estimate, but it’s
probably not very accurate if you haven’t started yet.

Do you see the difference? When you give an estimate, you want it to be
honest both in accuracy and in precision. To be accurate, you name a range
of dates within which you are confident. To be precise, you narrow that
range up to the level of your confidence.

And for both of these operations, brutal honesty is the only option.

To be honest about these things, you have to have some idea of how wrong
you can be. So let me tell you two stories about how wrong I once was.



Story 1: Vectors
The year was 1978. I was working at a company named Teradyne, in
Deerfield, Illinois. We built automated test equipment for the telephone
company.

I was a young programmer, 26 years old. And I was working on the
firmware for an embedded measurement device that bolted into racks in
telephone central offices. This device was called a COLT—central office
line tester.

The processor in the COLT was an Intel 8085—an early 8-bit
microprocessor. We had 32K of solid-state RAM and another 32K of ROM.
The ROM was based on the Intel 2708 chip, which stored 1K × 8, so we
used 32 of those chips.

Those chips were plugged into sockets on our memory boards. Each board
could hold 12 chips, so we used three boards.

The software was written in 8085 assembler. The source code was held in a
set of source files that were compiled as a single unit. The output of the
compiler was a single binary file somewhat less than 32K in length.

We took that file and cut it up into 32 chunks of 1K each. Each 1K chunk
was then burned onto one of the ROM chips, which were then inserted into
the sockets on the ROM boards.

As you can imagine, you had to get the right chip into the right socket on
the right board. We were very careful to label them.

We sold hundreds of these devices. They were installed in telephone central
offices all over the country and—indeed—the world.

What do you think happened when we changed that program? Just a one-
line change?

If we added or removed a line, then all the addresses of all the subroutines
after that point changed. And because those subroutines were called by
other routines earlier in the code, every chip was affected. We had to reburn
all 32 chips even for a one-line change!

It was a nightmare. We had to burn hundreds of sets of chips and ship them
to all the field service reps all around the world. Then those reps would



have to drive hundreds of miles to get to all the central offices in their
district. They’d have to open our units, pull out all the memory boards,
remove all 32 old chips, insert the 32 new chips, and reinsert the boards.

Now, I don’t know if you know this, but the act of removing and inserting a
chip into a socket is not entirely reliable. The little pins on the chips tend to
bend and break in frustratingly silent ways. Therefore, the poor field service
folks had to have lots of spares of each of the 32 chips and suffer through
the inevitable debugging by removing and reinserting chips until they could
get a unit to work.

My boss came to me one day and told me that we had to solve this problem
by making each chip independently deployable. He didn’t use those words,
of course, but that was the intent. Each chip needed to be turned into an
independently compilable and deployable unit. This would allow us to
make changes to the program without forcing all 32 chips to be reburned.
Indeed, in most cases, we could simply redeploy a single chip—the chip
that was changed.

I won’t bore you with the details of the implementation. Suffice it to say
that it involved vector tables, indirect calls, and the partitioning of the
program into independent chunks of less than 1K each.2

2. That is, each chip was turned into a polymorphic object.

My boss and I talked through the strategy, and then he asked me how long it
would take me to get this done.

I told him two weeks.

But I wasn’t done in two weeks. I wasn’t done in four weeks. Nor was I
done in six, eight, or ten weeks. The job took me twelve weeks to complete
—it was a lot more complicated than I had anticipated.

Consequently, I was off by a factor of 6. Six!

Fortunately, my boss didn’t get mad. He saw me working on it every day.
He got regular status updates from me. He understood the complexities I
was dealing with.

But still. Six? How could I have been so wrong?



Story 2: pCCU
Then there was that time, in the early 1980s, when I had to work a miracle.

You see, we had promised a new product to our customer. It was called
CCU-CMU.

Copper is a precious metal. It’s rare and expensive. The phone company
decided to harvest the huge network of copper wires that it had installed all
over the country during the last century. The strategy was to replace those
wires with a much cheaper high-bandwidth network of coaxial cable and
fiber carrying digital signals. This was known as digital switching.
The CCU-CMU was a complete re-architecture of our measurement
technology that fit within the new digital switching architecture of the
phone company.

Now, we had promised the CCU-CMU to the phone company a couple of
years before. We knew it was going to take us a man-year or so to build the
software. But then we just never quite got around to building it.

You know how it goes. The phone company delayed their deployment, so
we delayed our development. There were always lots of other, more urgent
issues to deal with.

So, one day, my boss calls me into his office and says that they had
forgotten about one small customer who had already installed an early
digital switch. That customer was now expecting a CCU/CMU within the
next month—as promised.

Now I had to create a man-year of software in less than a month.

I told my boss that this was impossible. There was no way that I could get a
fully functioning CCU/CMU built in one month.

He looked at me with a sneaky grin and said that there was a way to cheat.

You see, this was a very small customer. Their installation was literally the
smallest possible configuration for a digital switch. What’s more, the
configuration of their equipment just happened—just happened—to
eliminate virtually all of the complexity that the CCU/CMU solved.



Long story short—I got a special-purpose, one-of-a-kind unit up and
running for the customer in two weeks. We called it the pCCU.

The Lesson
Those two stories are examples of the huge range that estimates can have.
On the one hand, I underestimated the vectoring of the chips by a factor of
six. On the other, we found a solution to the CCU/CMU in one-twentieth
the expected time.

This is where honesty comes in. Because, honestly, when things go wrong,
they can go very, very wrong. And when things go right, they can
sometimes go very, very right.

This makes estimating, one hell of a challenge.

Accuracy
It should be clear by now that an estimate for a project cannot be a date. A
single date is far too precise for a process that can be off by as much as a
factor of 6, or even 20.

Estimates are not dates. Estimates are ranges. Estimates are probability
distributions.

Probability distributions have a mean and a width—sometimes called the
standard deviation or the sigma. We need to be able to express our
estimates as both the mean and the sigma.

Let’s first look at the mean.

Finding the expected mean completion time for a complex task is a matter
of adding up all the mean completion times for all of the subtasks. And, of
course, this is recursive. The subtasks can be estimated by adding up all the
times for the sub-subtasks. This creates a tree of tasks that is often called a
work breakdown structure (WBS).



Now, this is all well and good. The problem, however, is that we are not
very good at identifying all the subtasks and sub-subtasks, and sub-sub-
subtasks. Generally, we miss a few. Like, maybe, half.

We compensate for this by multiplying the sum by two. Or sometimes three.
Or maybe even more.

Kirk: How much refit time until we can take her out again?
Scotty: Eight weeks, sir. But you don’t have eight weeks, so I’ll do it for

you in two.

Kirk: Mr. Scott, have you always multiplied your repair estimates by a
factor of four?

Scotty: Certainly, sir! How else can I keep my reputation as a miracle
worker?3

3. Star Trek II: The Wrath of Khan, directed by Nicholas Meyer (Paramount Pictures, 1982).

Now this fudge factor of 2, or 3, or even 4, sounds like cheating. And, of
course, it is. But so is the very act of estimating.

There is only one real way to determine how long something is going to
take, and that’s by doing it. Any other mechanism is cheating.

So, face it, we’re going to cheat. We’re going to do the WBS and then
multiply by some F, where F is between 2 and 4, depending on your
confidence and productivity. That will give us our mean time to completion.

Managers are going to ask you how you came up with your estimates, and
you’re going to have to tell them. And when you tell them about that fudge
factor, they’re going to ask you to reduce it by spending more time on the
WBS.

This is perfectly fair, and you should be willing to comply. However, you
should also warn them that the cost of developing a complete WBS is
equivalent to the cost of the task itself. Indeed, by the time you have
developed the complete WBS, you will also have completed the project,
because the only way to truly enumerate all the tasks is by executing the
tasks you know about in order to discover the rest—recursively.

So, make sure you put your estimation effort into a timebox, and let your
managers know that getting better refinement on the fudge factor is going to



be very expensive.

There are many techniques for estimating the subtasks at the leaves of the
WBS tree. You could use function points or a similar complexity measure.
But I’ve always found that these tasks are best estimated by raw gut feel.

Typically, I do this by comparing the tasks to some other tasks that I’ve
already completed. If I think it’s twice as hard, I multiply the time by two.

Once you’ve estimated all the leaves of the tree, you just sum the whole tree
up to get the mean for the project.

And don’t worry overmuch about dependencies. Software is a funny
material. Even though A depends on B, B often does not have to be done
before A. You can, in fact, implement logout before you implement login.

Precision
Every estimate is wrong. That’s why we call it an estimate. An estimate that
is correct is not an estimate at all—it’s a fact.

But even though the estimate is wrong, it may not be all that wrong. Part of
the job of estimation, then, is to estimate how wrong the estimate is.

My favorite technique for estimating how wrong an estimate is, is to
estimate three numbers: the best case, the worst case, and the normal case.

The normal case is how long you think the task would take you if the
average number of things go wrong—if things go the way they usually do.
Think of it like a gut-level call. The normal case is the estimate you would
give if you were being realistic.

The strict definition of a normal estimate is one that has a 50 percent chance
of being too short or too long. In other words, you should miss half of your
normal estimates.

The worst-case estimate is the Murphy’s law estimate. It assumes that
anything that can go wrong will go wrong. It is deeply pessimistic. The
worst-case estimate has a 95 percent chance of being too long. In other
words, you would only miss this estimate 1 in 20 times.



The best-case estimate is when everything possible goes right. You eat the
right breakfast cereal every morning. When you get into work, your
coworkers are all polite and friendly. There are no disasters in the field, no
meetings, no telephone calls, no distractions.

Your chances of hitting the best-case estimate are 5 percent: 1 in 20.

Okay, so now we have three numbers: the best case, which has a 5 percent
chance of success; the normal case, which has a 50 percent chance of
success; and the worst case, which has a 95 percent chance of success. This
represents a normal curve—a probability distribution. It is this probability
distribution that is your actual estimate.

Notice that this is not a date. We don’t know the date. We don’t know when
we are really going to be done. All we really have is a crude idea of the
probabilities.

Without certain knowledge, probabilities are the only logical way to
estimate.

If your estimate is a date, you are really making a commitment, not an
estimate. And if you make a commitment, you must succeed.

Sometimes you have to make commitments. But the thing about
commitments is that you absolutely must succeed. You must never promise
to make a date that you aren’t sure you can make. To do so would be deeply
dishonest.

So, if you don’t know—and I mean know—that you can make a certain
date, then you don’t offer that date as an estimate. You offer a range of dates
instead. Offering a range of dates with probabilities is much more honest.

Aggregation
Okay, let’s say that we’ve got a whole project full of tasks that have been
described in terms of Best (B), Normal (N), and Worst (W) case estimates.
How do we aggregate them all into a single estimate for the whole project?

We simply represent the probability of each task and then accumulate those
probabilities using standard statistical methods.



The first thing we want to do is represent each task in terms of its expected
completion time and the standard deviation.

Now remember, 6 standard deviations (3 on each side of the mean)
corresponds to a probability of better than 99 percent. So, we’re going to set
our standard deviation, our sigma, to Worst minus Best over 6.

The expected completion time (mu) is a bit trickier. Notice that N is
probably not equal to (W-B), the midpoint. Indeed, the midpoint is probably
well past N because it is much more likely for a project to take more time
than we think than less time. So, on average, when will this task be done?
What is the expected completion time?

It’s probably best to use a weighted average like this: mu = (2N + (B +
W)/2)/3.

Now we have calculated the mu and sigma for a set of tasks. The expected
completion time for the whole project is just the sum of all the mus. The
sigma for the project is the square root of the sum of the squares of all the
sigmas.

This is just basic statistical mathematics.

What I’ve just described is the estimation procedure invented back in the
late 1950s to manage the Polaris Fleet Ballistic Missile program. It has been
used successfully on many thousands of projects since.

It is called PERT—the program evaluation and review technique.

Honesty
We started with honesty. Then we talked about accuracy, and we talked
about precision. Now it’s time to come back to honesty.

The kind of estimating we are talking about here is intrinsically honest. It is
a way of communicating, to those who need to know, the level of your
uncertainty.

This is honest because you truly are uncertain. And those with the
responsibility to manage the project must be aware of the risks that they are
taking so that they can manage those risks.



But uncertainty is something that people don’t like. Your customers and
managers will almost certainly press you to be more certain.

We’ve already talked about the cost of increasing certainty. The only way to
truly increase certainty is to do parts of the project. You can only get perfect
certainty if you do the entire project. Therefore, part of what you have to
tell your customers and managers is the cost of increasing certainty.

Sometimes, however, your superiors may ask you to increase certainty
using a different tactic. They may ask you to commit.

You need to recognize this for what it is. They are trying to manage their
risk by putting it onto you. By asking you to commit, they are asking you to
take on the risk that it is their job to manage.

Now, there’s nothing wrong with this. Managers have a perfect right to do
it. And there are many situations in which you should comply. But—and I
stress this—only if you are reasonably certain you can comply.

If your boss comes to you and asks if you can get something done by
Friday, you should think very hard about whether that is reasonable. And if
it is reasonable and probable, then, by all means, say yes!

But under no circumstances should you say yes if you are not sure.

If you are not sure, then you must say NO and then describe your
uncertainty as we’ve described. It is perfectly okay to say, “I can’t promise
Friday. It might take as long as the following Wednesday.”

In fact, it’s absolutely critical that you say no to commitments that you are
not sure of, because if you say yes, you set up a long domino chain of
failures for you, your boss, and many others. They’ll be counting on you,
and you’ll let them down.

So, when you are asked to commit and you can, then say yes. But if you
can’t, then say no and describe your uncertainty.

Be willing to discuss options and workarounds. Be willing to hunt for ways
to say yes. Never be eager to say no. But also, never be afraid to say no.

You see, you were hired for your ability to say no. Anybody can say yes.
But only people with skill and knowledge know when and how to say no.



One of the prime values you bring to the organization is your ability to
know when the answer must be no. By saying no at those times, you will
save your company untold grief and money.

One last thing. Often, managers will try to cajole you into committing—into
saying yes. Watch out for this.

They might tell you that you aren’t being a team player or that other people
have more commitment than you do. Don’t be fooled by those games.

Be willing to work with them to find solutions, but don’t let them bully you
into saying yes when you know you shouldn’t.

And be very careful with the word try. Your boss might say something
reasonable, like “Well, will you at least try?”

The answer to this question is
NO! I am already trying. How dare you suggest that I am not? I am trying as hard as I can,
and there is no way I can try harder. There are no magic beans in my pocket with which I can
work miracles.

You might not want to use those exact words, but that’s exactly what you
should be thinking.

And remember this. If you say, “Yes, I’ll try,” then you are lying. Because
you have no idea how you are going to succeed. You don’t have any plan to
change your behavior. You said yes just to get rid of the manager. And that
is fundamentally dishonest.

Respect
Promise 9. I will respect my fellow programmers for their ethics, standards, disciplines, and
skill. No other attribute or characteristic will be a factor in my regard for my fellow
programmers.

We, software professionals, accept the weighty burden of our craft. We
brave folks are men and women, straight and gay, black, brown, yellow, and
white, republicans, democrats, religious believers, and atheists. We are
humans, in all the many forms and varieties that humans come in. We are a
community of mutual respect.



The only qualifications for entry into our community and for receiving the
acceptance and the respect of each and every member of that community
are the skills, disciplines, standards, and ethics of our profession. No other
human attribute is worthy of consideration. No discrimination on any other
basis can be tolerated.

’Nuff said.

Never Stop Learning
Promise 10. I will never stop learning and improving my craft.

A programmer never stops learning.

I’m sure you’ve heard it said that you should learn a new language every
year. Well, you should. A good programmer should know a dozen or so
languages.

And not just a dozen varieties of the same language. Not just C, C++, Java,
and C#. Rather, you should know languages from many different families.

You should know a statically typed language like Java or C#. You should
know a procedural language like C or Pascal. You should know a logic
language like Prolog. You should know a stack language like Forth. You
should know a dynamically typed language like Ruby. You should know a
functional language like Clojure or Haskell.

You should also know several different frameworks, several different design
methodologies, and several different development processes. I don’t mean
to say you should be an expert in all these things, but you should make a
point to expose yourself to them at significantly more than a cursory level.

The list of things you should similarly expose yourself to is virtually
endless. Our industry has experienced rapid change over the decades, and
that change is likely to continue for some time. You have to keep up with it.

And that means you have to keep on learning. Keep reading books and
blogs. Keep watching videos. Keep going to conferences and user groups.
Keep going to training courses. Keep learning.



Pay attention to the treasured works of the past. The books written in the
1960s, 1970s, and 1980s are wonderful sources of insight and information.
Don’t fall into the trap of thinking that all that old stuff is out of date. There
is not much, in our industry, that actually goes out of date. Respect the
effort and accomplishments of those who came before you, and study their
advice and conclusions.

And don’t fall into the trap of thinking that it is your employer’s job to train
you. This is your career—you have to take responsibility for it. It is your
job to learn. It is your job to figure out what you should be learning.

If you are lucky enough to work for a company that will buy you books and
send you to conferences and training classes, then take full advantage of
those opportunities. If not, then pay for those books, conferences, and
courses yourself.

And plan to spend some time at this. Time every week. You owe your
employer 35 to 40 hours per week. You owe your career another 10 to 20.

That’s what professionals do. Professionals put in the time to groom and
maintain their careers. And that means you should be working 50 to 60
hours per week total. Mostly at work, but a lot at home too.
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Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to
the previous page viewed, click the Back button on your device or app.


































































































































































































	Cover Page
	About This eBook
	Halftitle Page
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1. Craftsmanship
	Part I: The Disciplines
	Extreme Programming
	Test-Driven Development
	Refactoring
	Simple Design
	Collaborative Programming
	Acceptance Tests
	Chapter 2. Test-Driven Development
	Overview
	The Basics
	Conclusion

	Chapter 3. Advanced TDD
	Sort 1
	Sort 2
	Getting Stuck
	Arrange, Act, Assert
	Test Doubles
	Architecture
	Conclusion

	Chapter 4. Test Design
	Testing Databases
	Testing GUIs
	Test Patterns
	Test-Specific Subclass
	Humble Object
	Test Design
	Breaking the Correspondence
	Transformation Priority Premise
	{} → Nil
	Nil → Constant
	Unconditional → Selection
	Value → List
	Statement → Recursion
	Selection → Iteration
	Value → Mutated Value
	The Transformation Priority Premise
	Conclusion

	Chapter 5. Refactoring
	What Is Refactoring?
	The Basic Toolkit
	Extract Method
	The Disciplines
	Conclusion

	Chapter 6. Simple Design
	YAGNI
	Covered by Tests
	Coverage
	Design?
	Maximize Expression
	The Underlying Abstraction
	Minimize Duplication
	Minimize Size

	Chapter 7. Collaborative Programming
	Chapter 8. Acceptance Tests
	The Discipline
	The Continuous Build


	Part II: The Standards
	Your New CTO
	Chapter 9. Productivity
	We Will Never Ship S**T
	Inexpensive Adaptability
	We Will Always Be Ready
	Stable Productivity

	Chapter 10. Quality
	Continuous Improvement
	Fearless Competence
	Extreme Quality
	We Will Not Dump on QA
	QA Will Find Nothing
	Test Automation
	Automated Testing and User Interfaces
	Testing the User Interface

	Chapter 11. Courage
	We Cover for Each Other
	Honest Estimates
	You Must Say NO
	Continuous Aggressive Learning
	Mentoring


	Part III: The Ethics
	The First Programmer
	Seventy-Five Years
	Nerds and Saviors
	Role Models and Villains
	We Rule the World
	Catastrophes
	The Oath
	Chapter 12. Harm
	First, Do No Harm
	Best Work
	Repeatable Proof

	Chapter 13. Integrity
	Small Cycles
	Relentless Improvement
	Maintain High Productivity

	Chapter 14. Teamwork
	Work as a Team
	Estimate Honestly and Fairly
	Respect
	Never Stop Learning


	Index
	Code Snippets

