
Texts and Monographs in Computer Science

Editor

David Gries

Advisory Board
F. L. Bauer

K.S.Fu
J. J. Horning

R.Reddy
D. C. Tsichritzis

W. M. Waite

Compiler
Construction

William M. Waite
Gerhard Goos

With 196 Figures

I
Springer-Verlag

New York Berlin Heidelberg Tokyo

William M. Waite
Department of Electrical
Engineering
University of Colorado
Boulder, CO 80309
U.S.A.

Series Editor

David Gries
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853
U.S.A.

AMS Subject Classification 68B99
(C.R.) Computer Classification: D2

Gerhard Goos
Institut fur Informatik II
Universitat Karlsruhe
7500 Karlsruhe I
Postfach 6380
West Germany

Library of Congress Cataloging in Publication Data
Waite, W. M. (William McCastiine)

Compiler construction.
(Texts and monographs in computer science)
I. Compiling (Electronic computers) I.

Goos, Gerhard, 1937- II. Title. III. Series.
QA76.6.W3195 1983 001.64'25 83-14714

© 1984 by Springer-Verlag New York Inc.

Softcover reprint of the hardcover 1st edition 1984

All rights reserved.
No part of this book may be translated or reproduced in any
form without written permission from Springer-Verlag, 175 Fifth Avenue,
New York, New York 10010, U.S.A.

Media conversion by House of Equations Inc., Newton, New Jersey.

9 8 7 6 543 2 I

ISBN-13: 978-1-4612-9731-4
DOl: 10. 1007/ 978-1-4612-5192-7

e-ISBN-13: 978-1-4612-5192-7

To all who know more than one language

Preface

Compilers and operating systems constitute the basic interfaces between a
programmer and the machine for which he is developing software. In this
book we are concerned with the construction of the former. Our intent is to
provide the reader with a firm theoretical basis for compiler construction
and sound engineering principles for selecting alternate methods, imple
menting them, and integrating them into a reliable, economically viable
product. The emphasis is upon a clean decomposition employing modules
that can be re-used for many compilers, separation of concerns to facilitate
team programming, and flexibility to accommodate hardware and system
constraints. A reader should be able to understand the questions he must
ask when designing a compiler for language X on machine Y, what tradeoffs
are possible, and what performance might be obtained. He should not feel
that any part of the design rests on whim; each decision must be based upon
specific, identifiable characteristics of the source and target languages or
upon design goals of the compiler.

The vast majority of computer professionals will never write a compiler.
Nevertheless, study of compiler technology provides important benefits for
almost everyone in the field .

• It focuses attention on the basic relationships between languages and
machines. Understanding of these relationships eases the inevitable tran
sitions to new hardware and programming languages and improves a
person's ability to make appropriate tradeoft's in design and implementa
tion .

• It illustrates application of software engineering techniques to the solution
of a significant problem. The problem is understandable to most users of
computers, and involves both combinatorial and data processing aspects.

viii Preface

• Many of the techniques used to construct a compiler are useful in a wide
variety of applications involving symbolic data. In particular, every
man-machine interface constitutes a form of programming language and
the handling of input involves these techniques.
We believe that software tools will be used increasingly to support many

aspects of compiler construction. Much of Chapters 7 and 8 is therefore de
voted to parser generators and analyzers for attribute grammars. The details
of this discussion are only interesting to those who must construct such tools;
the general outlines must be known to all who use them. We also realize
that construction of compilers by hand will remain an important alternative,
and thus we have presented manual methods even for those situations where
tool use is recommended.

Virtually every problem in compiler construction has a vast number of
possible solutions. We have restricted our discussion to the methods that are
most useful today, and make no attempt to give a comprehensive survey.
Thus, for example, we treat only the LL and LR parsing techniques and
provide references to the literature for other approaches. Because we do not
constantly remind the reader that alternative solutions are available, we may
sometimes appear overly dogmatic although that is not our intent.

Chapters 5 and 8, and Appendix B, state most theoretical results without
proof. Although this makes the book unsuitable for those whose primary in
terest is the theory underlying a compiler, we felt that emphasis on proofs
would be misplaced. Many excellent theoretical texts already exist; our
concern is reduction to practice.

A compiler design is carried out in the context of a particular
language/machine pair. Although the principles of compiler construction
are largely independent of this context, the detailed design decisions are not.
In order to maintain a consistent context for our major examples, we there
fore need to choose a particular source language and target machine. The
source language that we shall use is defined in Appendix A. We chose not to
use an existing language for several reasons, the most important being that a
new language enabled us to control complexity: Features illustrating
significant questions in compiler design could be included while avoiding
features that led to burdensome but obvious detail. It also allows us to illus
trate how a compiler writer derives information about a language, and pro
vides an example of an informal but relatively precise language definition.

We chose the machine language of the IBM 370 and its imitators as our
target. This architecture is widely used, and in many respects it is a difficult
one to deal with. The problems are representative of many computers, the
important exceptions being those (such as the Intel 8086) without a set of
general registers. As we discuss code generation and assembly strategies we
shall point out simplifications for more uniform architectures like those of
the DEC PDPII and Motorola 68000.

We assume that the reader has a minimum of one year of experience with
a block-structured language, and some familiarity with computer organiza-

Preface ix

tion. Chapters 5 and 8 use notation from logic and set theory, but the ma
terial itself is straightforward. Several important algorithms are based upon
results from graph theory summarized in Appendix B.

This book is based upon many compiler projects and upon the lectures
given by the authors at the U niversitat Karlsruhe and the University of
Colorado. For self-study, we recommend that a reader with very little back
ground begin with Section 1.1, Chapters 2 and 3, Section 12.1 and Appendix
A. His objective should be to thoroughly understand the relationships
between typical programming languages and typical machines, relationships
that define the task of the compiler. It is useful to examine the machine
code produced by existing compilers while studying this material. The
remainder of Chapter 1 and all of Chapter 4 give an overview of the organi
zation of a compiler and the properties of its major data structures, while
Chapter 14 shows how three production compilers have been structured.
From this material the reader should gain an appreciation for how the vari
ous subtasks relate to one another, and the important characteristics of the
interfaces between them.

Chapters 5, 6 and 7 deal with the task of determining the structure of the
source program. This is perhaps the best-understood of all compiler tasks,
and the one for which the most theoretical background is available. The
theory is summarized in Chapter 5, and applied in Chapters 6 and 7.
Readers who are not theoretically inclined, and who are not concerned with
constructing parser generators, should skim Chapter 5. Their objectives
should be to understand the notation for describing grammars, to be able to
deal with finite automata, and to understand the concept of using a stack to
resolve parenthesis nesting. These readers should then concentrate on
Chapter 6, Section 7.1 and the recursive descent parse algorithm of Section
7.2.2.

The relationship between Chapter 8 and Chapter 9 is similar to that
between Chapter 5 and Chapter 7, but the theory is less extensive and less
formal. This theory also underlies parts of Chapters 10 and 11. We suggest
that the reader who is actually engaged in compiler construction devote
more effort to Chapters 8-11 than to Chapters 5-7. The reason is that parser
generators can be obtained "off the shelf' and used to construct the lexical
and syntactic analysis modules quickly and reliably. A compiler designer
must typically devote most of his effort to specifying and implementing the
remainder of the compiler, and hence familiarity with Chapters 8-11 will
have a greater effect on his productivity.

The lecturer in a one-semester, three-hour course that includes exercises
is compelled to restrict himself to the fundamental concepts. Details of pro
gramming languages (Chapter 2), machines (Chapter 3) and formal
languages and automata theory (Chapter 5) can only be covered in a cursory
fashion or must be assumed as background. The specific techniques for
parser development and attribute grammar analysis, as well as the whole of
Chapter 13, must be reserved for a separate course. It seems best to present

x Preface

theoretical concepts from Chapter 5 in close conjunction with the specific
methods of Chapters 6 and 7, rather than as a single topic. A typical outline
is:
I. The Nature of the Problem

l.l. Overview of compilation (Chapter 1)
l.2. Languages and machines (Chapters 2 and 3)

2. Compiler Data Structures (Chapter 4)
3. Structural Analysis

3.1. Formal Systems (Chapter 5)
3.2. Lexical analysis (Chapter 6)
3.3. Parsing (Chapter 7)

Review and Examination
4. Consistency Checking

4.1. Attribute grammars (Chapter 8)
4.2. Semantic analysis (Chapter 9)

4 hours

4 hours
10 hours

2 hours
10 hours

5. Code Generation (Chapter 10) 8 hours
6. Assembly (Chapter II) 2 hours
7. Error Recovery (Chapter 12) 3 hours
Review 2 hours
The students do not write a compiler during this course. For several years it
has been run concurrently with a practicum in which the students implement
the essential parts of a LAX compiler. They are given the entire compiler,
with stubs replacing the parts they are to write. In contrast to project courses
in which the students must write a complete compiler, this approach has the
advantage that they need not be concerned with unimportant organizational
tasks. Since only the t:entral problems need be solved, one can deal with
complex language properties. At the same time, students are forced to read
the environment programs and to adhere to interface specifications. Finally,
if a student cannot solve a particular problem it does not cause his entire
project to fail since he can take the solution given by the instructor and
proceed.

Acknowledgments
This book is the result of many years of collaboration. The necessary

research projects and travel were generously supported by our respective
universities, the Deutsche Forschungsgemeinschaft and the National Sci
ence Foundation.

It is impossible to list all of the colleagues and students who have
influenced our work. We WOUld, however, like to specially thank four of our
doctoral students, Lynn Carter, Bruce Haddon, Uwe Kastens and Johannes
Rohrich, for both their technical contributions and their willingness to read
the innumerable manuscripts generated during the book's gestation. Mae
Jean Ruehlman and Gabriele Sahr also have our gratitude for learning
more than they ever wanted to know about computers and word processing
as they produced and edited those manuscripts.

Contents

CHAPTER 1
Introduction and Overview

1.1 Translation and Interpretation
1.2 The Tasks of a Compiler
1.3 Data Management in a Compiler
1.4 Compiler Structure
I.S Notes and References

CHAPTER 2
Properties of Programming Languages

2.1 Overview
2.2 Data Objects and Operations
2.3 Expressions
2.4 Control Structures
2.S Program Environments and Abstract Machine States
2.6 Notes and References

CHAPTER 3
Properties of Real and Abstract Machines

3.1 Basic Characteristics
3.2 Representation of Language Elements
3.3 Storage Management
3.4 Mapping Specifications
3.S Notes and References

4
7
8

12

IS

IS
19
28
30
32
43

46

47
S3
69
78
81

xii

CHAPTER 4
Abstract Program Representations

4.1 Intermediate Languages
4.2 Global Tables
4.3 Notes and References

CHAPTER 5
Elements of Formal Systems

5.1 Descriptive Tools
5.2 Regular Grammars and Finite Automata
5.3 Context-Free Grammars and Pushdown Automata
5.4 Notes and References

CHAPTER 6
lexical Analysis

6.1 Modules and Interfaces
6.2 Construction
6.3 Notes and References

CHAPTER 7
Parsing

7.1 Design
7.2 LL (1) Parsers
7.3 LR Parsers
7.4 Notes and References

CHAPTER 8
Attribute Grammars

8.1 Basic Concepts of Attribute Grammars
8.2 Traversal Strategies
8.3 Implementation Considerations
8.4 Notes and References

CHAPTER 9
Semantic Analysis

9.1 Description of Language Properites via Attribute Grammars
9.2 Implementation of Semantic Analysis
9.3 Notes and References

Contents

85

85
94

100

102

102
112
119
133

135

135
138
146

149

149
155
166
180

183

183
189
206
214

220

220
242
249

Contents

CHAPTER 10
Code Generation

10.1 Memory Mapping
10.2 Target Attribution
10.3 Code Selection
10.4 Notes and References

CHAPTER 11
Assembly

11.1 Internal Address Resolution
11.2 External Address Resolution
11.3 Instruction Encoding
11.4 Notes and References

CHAPTER 12
Error Handling

12.1 General Principles
12.2 Compiler Error Recovery
12.3 Run-Time Errors
12.4 Notes and References

CHAPTER 13
Optimization

13.1 The Computation Graph
14.2 Local Optimization
13.3 Global Optimization
13.4 Efficacy and Cost

CHAPTER 14
Implementing the Compiler

14.1 Implementation Decisions
14.2 Case Studies
14.3 Notes and References

Appendix A: Sample Programming Language LAX

A.I Basic Symbols
A.2 Program Structure
A.3 Declarations
A.4 Expressions

xiii

253

254
257
271
279

282

283
288
292
298

302

303
308
318
322

326

327
332
342
353

358

358
364
381

383

384
385
387
390

xiv

Appendix B: Useful Algorithms for Directed Graphs

B.l Terminology
B.2 Directed Graphs as Data Structures
BJ Partitioning Algorithms
B.4 Notes and References

Bibliography

Index

Contents

395

395
400
404
412

415

435

CHAPTER 1

I ntrod uction and Overview

The term compilation denotes the conversion of an algorithm expressed in a
human-oriented source language to an equivalent algorithm expressed in a
hardware-oriented target language. We shall be concerned with the engineer
ing of compilers - their organization, algorithms, data structures and user
interfaces.

1.1. Translation and Interpretation
Programming languages are tools used to construct formal descriptions of
finite computations (algorithms). Each computation consists of operations
that transform a given initial state into some final state. A programming
language provides essentially three components for describing such compu
tations:

• Data types, objects and values with operations defined upon them.
• Rules fixing the chronological relationships among specified operations.
• Rules fixing the (static) structure of a program.
These components together constitute the level of abstraction on which we
can formulate algorithms in the language. We shall discuss abstractions for
programming languages in detail in Chapter 2.

The collection of objects existing at a given point in time during the com
putation constitutes the state, s, of the computation at that time. The set, S,
of all states that could occur during computations expressed in the language
is called the state space of the language. The meaning of an algorithm is the
(partially-defined) function f: S -+S by which it transforms initial states to
final states.

1

2 Chapter 1. Introduction and Overview

Figure 1.1 illustrates the concept of a state. Figure 1.1 a is a fragment of a
program written in Pascal. Since this fragment does not declare the
identifiers i and j, we add the fact that both are integer variables. The
values of i and j before the given fragment begins to execute constitute the
initial state; their values after execution ceases constitute the final state. Fig
ure 1.1 b illustrates the state transformations carried out by the fragment,
starting from a particular initial state.

Let I be the function defined by the state transformation of some partic
ular algorithm A. If we are to preserve the meaning of A when compiling it

while i * j do
ifi>j theni:=i-j elsej:=j-i;

a) An algorithm

Initial:

Final:

i = 36
i = 12
i = 12

j = 24
j = 24
j = 12

b) A particular sequence of states

Figure 1.1 Algorithms and States

to a new language then the state transformation function I f of the translated
algorithm A f must, in some sense, 'agree' with I. Since the state space, Sf,
of the target language may differ from that of the source language, we must
first decide upon a function, M, to map each state s E S to a subset M (s) of
Sf. The function!, then preserves the meaning ofl if!,(M(s)) is a subset
of M(J (s)) for all allowable initial states s ES.

For example, consider the language of a simple computer with a single
accumulator and two data locations called I and J respectively (Exercise
1.3). Suppose that M maps a particular state of the algorithm given in Fig
ure l.la to a set of machine states in which I contains the value of the vari
able i, J contains the value of the variable j, and the accumulator contains
any arbitrary value. Figure 1.2a shows a translation of Figure 1.1 a for this
machine; a partial state sequence is given in Figure 1.2b.

In determining the state sequence of Figure 1.1 b, we used only the con
cepts of Pascal as specified by the language definition. For every program
ming language, PL, we can define an abstract machine: The operations, data
structures and control structures of PL become the memory elements and
instructions of the machine. A 'Pascal machine' is therefore an imaginary
computer with Pascal operations as its machine instructions and the data
objects possible in Pascal as its memory elements. Execution of an algo
rithm written in PL on such a machine is called interpretation; the abstract
machine is an interpreter.

A pure interpreter analyzes the character form of each source language
instruction every time that instruction is executed. If the given instruction is

1.1. Translation and Interpretation 3

only to be executed once, pure interpretation is the least expensive method
of all. Hence it is often used for job control languages and the 'immediate
commands' of interactive languages. When instructions are to be executed

LOOP

SUBI

EXIT

LOAD
SUB
JZERO
JNEG
STORE
JUMP
LOAD
SUB
STORE
JUMP

I
J
EXIT
SUBI
I
LOOP
J
I
J
LOOP

a) An algorithm

Initial:

Final:

1=36
1=36
1=36

1= 12

J = 24
J = 24
J = 24

J = 12

ACC =?
ACC = 36
ACC = 12

ACC = 0

b) A sequence of states corresponding to Figure l.l b

Figure 1.2 A Translation of Figure 1.1

repeatedly, a better approach is to analyze the character form of the source
program only once, replacing it with a sequence of symbols more amenable
to interpretation. This analysis is simply a translation of the source language
into some target language, which is then interpreted.

The translation from the source language to the target language can take
place as each instruction of the program is executed for the first time
(intepretation with substitution). Thus only that part of the program actually
executed will be translated; during testing this may be only a fraction of the
entire program. Also, the character form of the source program can often be
stored more compactly than the equivalent target program. The disadvan
tage of interpretation with substitution is that both the compiler and inter
preter must be available during execution. In practice, however, a system of
this kind should not be significantly larger than a pure interpreter for the
same language.

Examples may be found of virtually all levels of interpretation. Atone
extreme are the systems in which the compiler merely converts constants to
internal form, fixes the meaning of identifiers and perhaps transforms infix

4 Chapter 1. Introduction and Overview

notation to postfix (APL and SNOBOL4 are commonly implemented this
way); at the other are the systems in which the hardware, assisted by a small
run-time system, forms the interpreter (FORTRAN and Pascal implementa
tions usually follow this strategy).

1.2. The Tasks of a Compiler

A compilation is usually implemented as a sequence of transformations
(SL, L 1), (Lb L2), ... , (Lk> TL), where SL is the source language and TL is
the target language. Each language Li is called an intermediate language.
Intermediate languages are conceptual tools used in decomposing the task
of compiling from the source language to the target language. The design of
a particular compiler determines which (if any) intermediate language pro
grams actually appear as concrete text or data structures during compilation.

Any compilation can be broken down into two major tasks:

• Analysis: Discover the structure and primitives of the source program,
determining its meaning .

• Synthesis: Create a target program equivalent to the source program.

This breakdown is useful because it separates our concerns about the source
and target languages.

The analysis concerns itself solely with the properties of the source
language. It converts the program text submitted by the programmer into
an abstract representation embodying the essential properties of the algo
rithm. This abstract representation may be implemented in many ways, but
it is usually conceptualized as a tree. The structure of the tree represents the
control and data flow aspects of the program, and additional information is
attached to the nodes to describe other aspects vital to the compilation. In
Chapter 2 we review the general characteristics of source languages, point
ing out the properties relevant for the compiler writer. Figure 1.3 illustrates
the general idea with an abstraction of the algorithm of Figure l.la.

Figure l.3a describes the control and data flow of the algorithm by means
of the 'eh descendant of' relation. For example, to carry out the algorithm
described by a subtree rooted in a while node we first evaluate the expres
sion described by the subtree that is the first descendant of the while node. If
this expression yields true then we carry out the algorithm described by the
subtree that is the second descendant. Similarly, to evaluate the expression
described by an expression subtree, we evaluate the first and third descen
dants and then apply the operator described by the second descendant to the
results.

The algorithm of Figure l.la is not completely characterized by Figure
l.3a. Information must be added (Figure 1.3b) to complete the description.
Note that some of this information (the actual identifier for each idn) is
taken directly form the source text. The remainder is obtained by process-

1.2. The Tasks of a Compiler 5

a) Control and data flow

Node Additional Information

identifier
corresponding declaration

idn

name type of the variable

exp type of the expression value

b) Additional information about the source program

Node Additional Information

name corresponding data location

if address of code to carry out the else part

while address of the expression evaluation code

c) Additional information about the target program

Figure 1.3 An Abstract Program Fragment

ing the tree. For example, the type of the expression value depends upon
the operator and the types of the operands.

Synthesis proceeds from the abstraction developed during analysis. It
augments the tree by attaching additional information (Figure l.3c) that
reflects the source-to-target mapping discussed in the previous section. For
example, the access function for the variable i in Figure 1.1a would become
the address of data location I according to the mapping M assumed by Fig
ure 1.2. Similarly, the address of the else part of the conditional was
represented by the label SUBI. Chapter 3 discusses the general characteris
tics of machines, highlighting properties that are important in the develop
ment of source-to-target mappings.

6 Chapter 1. Introduction and Overview

Formal definitions of the source language and the source-to-target map
ping determine the structure of the tree and the computation of the addi
tional information. The compiler simply implements the indicated transfor
mations, and hence the abstraction illustrated in Figure 1.3 forms the basis
for the entire compiler design. In Chapter 4 we discuss this abstraction in
detail, considering possible intermediate languages and the auxiliary data
structures used in transforming between them.

Analysis is the more formalized of the two major compiler tasks. It is
generally broken down into two parts, the structural analysis to determine the
static structure of the source program, and the semantic analysiS to fix the
additional information and check its consistency. Chapter 5 summarizes
some results from the theory of formal languages and shows how they are
used in the structural analysis of a program. Two subtasks of the structural
analysis are identified on the basis of the particular formalisms employed:
Lexical analysis (Chapter 6) deals with the basic symbols of the source
program, and is described in terms of finite-state automata; syntactic
analysis, or parsing, (Chapter 7) deals with the static structure of the pro
gram, and is described in terms of pushdown automata. Chapter 8 extends
the theoretical treatment of Chapter 5 to cover the additional information
attached to the components of the structure, and Chapter 9 applies the
resulting formalism (attribute grammars) to semantic analysis.

There is little in the way of formal models for the entire synthesis process,
although algorithms for various subta~ks are known. We view synthesis as
consisting of two distinct subtasks, code generation and assembly. Code gen
eration (Chapter 10) transforms the abstract source program appearing at
the analysis/synthesis interface into an equivalent target machine program.
This transformation is carried out in two steps: First we map the algorithm
from source concepts to target concepts, and then we select a specific
sequence of target machine instructions to implement that algorithm.

Assembly (Chapter 11) resolves all target addressing and converts the tar
get machine instructions into an appropriate output format. We should
stress that by using the term 'assembly' we do not imply that the code gen
erator will produce symbolic assembly code for input to the assembly task.
Instead, it delivers an internal representation of target instructions in which
most addresses remain unresolved. This representation is similar to that
resulting from analysis of symbolic instructions during the first pass of a nor
mal symbolic assembler. The output of the assembly task should be in the
format accepted by the standard link editor or loader on the target machine.

Errors may appear at any time during the compilation process. In order
to detect as many errors as possible in a single run, repairs must be made
such that the program is consistent, even though it may not reflect the
programmer's intent. Violations of the rules of the source language should
be detected and reported during analysis. If the source algorithm uses con
cepts of the source language for which no target equivalent has been defined
in a particular implementation, or if the target algorithm exceeds limitations

1.3. Data Management in a Compiler 7

of a specific target language interpreter (e.g. requires more memory than a
specific computer provides), this should be reported during synthesis.
Finally, errors must be reported if any storage limits of the compiler itself
are violated.

In addition to the actual error handling, it is useful for the compiler to pro
vide extra information for run-time error detection and debugging. This
task is closely related to error handling, and both are discussed in Chapter
12.

A number of strategies may be followed in an attempt to improve the tar
get program relative to some specified measure of cost. (Code size and exe
cution speed are typical cost measures.) These strategies may involve deeper
analysis of the source program, more complex mapping functions, and
transformations of the target program. We shall treat the first two in our dis
cussions of analysis and code generation respectively; the third is the subject
of Chapter 13.

1.3. Data Management in a Compiler

As with other large programs, data management and access account for
many of the problems to be solved by the design of a compiler. In order to
control complexity, we separate the functional aspects of a data object from
the implementation aspects by regarding it as an instance of an abstract data
type. (An abstract data type is defined by a set of creation, assignment and
access operators and their interaction; no mention is made of the concrete
implementation technique.) This enables us to concentrate upon the rela
tionships between tasks and data objects without becoming enmeshed in
details of resource allocation that reflect the machine upon which the com
piler is running (the compiler host) rather than the problem of compilation.

A particular implementation is chosen for a data object on the basis of
the relationship between its pattern of usage and the resources provided by
the compiler host. Most of the basic issues involved become apparent if we
distinguish three classes of data:

• Local data of compiler tasks
• Program text in various intermediate representations
• Tables containing information that represents context-dependence in the

program text

Storage for local data can be allocated statically or managed via the normal
stacking mechanisms of a block-structured language. Such strategies are not
useful for the program text, however, or for the tables containing contextual
information. Because of memory limitations, we can often hold only a small
segment of the program text in directly-accessible storage. This constrains
us to process the program sequentially, and prevents us from representing it
directly as a linked data structure. Instead, a linear notation that represents
a specific traversal of the data structure (e.g. prefix or postfix) is often

8 Chapter 1. Introduction and Overview

employed. Information to be used beyond the immediate vicinity of the
place where it was obtained is stored in tables. Conceptually, this informa
tion is a component of the program text; in practice it often occupies
different data structures because it has different access patterns. For exam
ple, tables must often be accessed randomly. In some cases it is necessary to
search them, a process that may require a considerable fraction of the total
compilation time. For this reason we do not usually consider the possibility
of spilling tables to a file.

The size of the program text and that of most tables grows linearly with
the length of the original source program. Some data structures (e.g. the
parse stack) only grow with the complexity of the source program. (Com
plexity is generally related to nesting of constructs such as procedures and
loops. Thus long, straight-line programs are not particularly complex.)
Specification of bounds on the size of any of these data structures leads
automatically to restrictions on the class of translatable programs. These
restrictions may not be onerous to a human programmer but may seriously
limit programs generated by pre-processors.

1.4. Compiler Structure

A decomposition of any problem identifies both tasks and data structures.
For example, in Section 1.2 we discussed the analysis and synthesis tasks.
We mentioned that the analyzer converted the source program into an
abstract representation and that the synthesizer obtained information from
this abstract representation to guide its construction of the target algorithm.
Thus we are led to recognize a major data object, which we call the structure
tree, in addition to the analysis and synthesis tasks.

We define one module for each task and each data structure identified
during the decomposition. A module is specified by an interface that defines
the objects and actions it makes available, and the global data and opera
tions it uses. It is implemented (in general) by a collection of procedures
accessing a common data structure that embodies the state of the module.
Modules fall into a spectrum with single procedures at one end and simple
data objects at the other. Four points on this spectrum are important for our
purposes:

• Procedure: An abstraction of a single 'memoryless' action (i.e. an action
with no internal state). It may be invoked with parameters, and its effect
depends only upon the parameter values. (Example - A procedure to
calculate the square root of a real value.)

• Package: An abstraction of a collection of actions related by a common
internal state. The declaration of a package is also its instantiation, and
hence only one instance is possible. (Example - The analysis or structure
tree module of a compiler.)

1.4. Compiler Structure

INPUT
Source text

Compilation \

LOCAL
Structure Tree

OUTPUT
Target Code

Error Reports

Figure 1.4 Decomposition of the Compiler

INPUT
Source text

OUTPUT
Error Reports
Structure Tree

Analysis

Structural
Analysis

Semantic
Analysis

LOCAL
Connection Sequence

Figure 1.5 Decomposition of the Analysis Task

9

• Abstract data type: An abstraction of a data object on which a number
of actions can be performed. Declaration is separate from instantiation,
and hence many instances may exist. (Example - A stack abstraction
providing the operations push, pop, top, etc.)

• Variable: An abstraction of a data object on which exactly two opera
tions,fetch and store, can be performed. (Example - An integer variable
in most programming languages.)

Abstract data types can be implemented via packages: The package defines
a data type to represent the desired object, and procedures for all operations
on the object. Objects are then instantiated separately. When an operation

10 Chapter 1. Introduction and Overview

INPUT
Source text

Structural
Analysis

Lexical
Analysis

LOCAL
Token Sequence

OUTPUT
Error Reports

Connection Sequence

Figure 1.6 Decomposition of the Structural Analysis Task

INPUT
Structure Tree

Code
I Generation

LOCAL
Target Tree

OUTPUT
Error Reports
Target Code

Figure 1.7 Decomposition of the Synthesis Task

is invoked, the particular object to which it should be applied is passed as a
parameter to the operation procedure.

The overall compiler structure that we shall use in this book is outlined in
Figures 1.4 through 1.8. Each of these figures describes a single step in the
decomposition. The central block of the figure specifies the problem being
decomposed at this step. To the left are the data structures from which
information is obtained, and to the right are those to which information is
delivered. Below is the decomposition of the problem, with boxes represent-

1.4. Compiler Structure

INPUT
Structure Tree

OUTPUT
Error Reports
Target Tree

Code
Generation

Target
Mapping

Code
Selection

LOCAL
Computation Graph

Figure 1.8 Decomposition of the Code Generation Task

11

ing subtasks. Data structures used for communication among these subtasks
are listed at the bottom of the figure. Each box and each entry in any of the
three data lists corresponds to a module of the compiler. It is important to
note that Figures 1.4 through 1.8 reflect only the overall structure of the
compiler; they are not flowcharts and they do not specify module interfaces.

Our decomposition is based upon our understanding of the compilation
problem and our perception of the best techniques currently available for its
solution. The choice of precise boundaries is driven by control and data
flow considerations, primarily minimization of flow at interfaces. Specific
criteria that influenced our decisions will be discussed throughout the text.

The decomposition is virtually independent of the underlying implemen
tation, and of the specific characteristics of the source language and target
machine. Clearly these factors influence the complexity of the modules that
we have identified, in some cases reducing them to trivial stubs, but the
overall structure remains unchanged.

Independence of the modules from the concrete implementation is
obtained by assuming that each module is implemented on its own abstract
machine, which provides the precise operations needed by the module. The
local data structures of Figures 1.4-1.8 are thus components of the abstract
machine on which the given subproblem is solved.

One can see the degree of freedom remaining in the implementation by
noting that our diagrams never prescribe the time sequence of the subprob
lem solutions. Thus, for example, analysis and synthesis might run sequen
tially. In this case the structure tree must be completely built as a linked
data structure during analysis, written to a file if necessary, and then pro
cessed during synthesis. Analysis and synthesis might, however, run con-

12 Chapter 1. Introduction and Overview

currently and interact as coroutines: As soon as the analyzer has extracted
an element of the structure tree, the synthesizer is activated to process this
element further. In this case the structure tree will never be built as a con
crete object, but is simply an abstract data structure; only the element being
processed exists in concrete form.

In particular, our decomposition has nothing to do with the possible divi
sion of a compiler into passes. (We consider a pass to be a single, sequential
scan of the entire text in either direction. A pass either transforms the pro
gram from one internal representation to another or performs specified
changes while holding the representation constant.) The pass structure com
monly arises from storage constraints in main memory and from
input/output considerations, rather than from any logical necessity to divide
the compiler into several sequential steps. One module is often split across
several passes, and/or tasks belonging to several modules are carried out in
the same pass. Possible criteria will be illustrated by concrete examples in
Chapter 14. Proven programming methodologies indicate that it is best to
regard pass structure as an implementation question. This permits develop
ment of program families with the same modular decomposition but
different pass organization. The above consideration of coroutines and
other implementation models illustrates such a family.

l.5. Notes and References

Compiler construction is one of the areas of computer science that early
workers tried to consider systematically. Knuth [1962] reports some of those
efforts. Important sources from the first half of the 60's are an issue of the
Communications of the ACM [1961], the report of a conference sponsored by
the International Computing Centre [ICC 1962] and the collection of papers
edited by Rosen [1967]. Finally, Annual Review in Automatic Programming
contains a large number of fundamental papers in compiler construction.

The idea of an algorithmic conversion of expressions to a machine
oriented form originated in the work of Rutishauser [1952]. Although most
of our current methods bear only a distant resemblance to those of the 50's
and early 60's, we have inherited a view of the description of programming
languages that provides the foundation of compiler construction today:
Intermediate languages were first proposed as interfaces in the compilation
process by a SHARE committee [Mock 1958]; the extensive theory of for
mal languages, first developed by the linguist N oam Chomsky [1956], was
employed in the definition of ALGOL 60 [Naur 1963]; the use of pushdown
automata as models for syntax analysis appears in the work of Samelson and
Bauer [1960].

The book by Randell and Russell [1964] remains a useful guide for a
quick implementation of ALGOL 60 that does not depend upon extensive
tools. Grau, Hill and Langmaack [1967] describe an ALGOL 60 implemen-

1 .5. Notes and References 13

tation in an extended version of ALGOL 60. The books by Gries [1971],
Aho and Ullman [1972, 1977a] and Bauer and Eickel [1976] represent the
state of the art in the mid 1970's.

Recognition that parsing can be understood via models from the theory
of formal languages led to a plethora of work in this area and provided the
strongest motivation for the further development of that theory. From time
to time the impression arises that parsing is the only relevant component of
compiler construction. Parsing unquestionably represents one of the most
important control mechanisms of a compiler. However, while just under
one third of the papers collected in Pollack's 1972 bibliography are devoted
to parsing, there was not one reference to the equally important topic of
code generation. Measurements [Lalonde 1972] have shown that parsing
represents approximately 9% of a compiler's code and II % of the total com
pilation time. On the other hand, code generation and optimization account
for 50-70% of the compiler. Certainly this discrepancy is due, in part, to the
great advances made in the theory of parsing; the value of this work should
not be underestimated. We must stress, however, that a more balanced
viewpoint is necessary if progress is to be maintained.

Modular decomposition [Parnas 1972, Parnas 1976] is a design technique
in which intermediate stages are represented by specifications of the external
behavior (interfaces) of program modules. The technique of data-driven
decomposition was discussed by Liskov and Zilles [1974], and a summary of
program module characteristics was given by Goos and Kastens [1978].
This latter paper shows how the various kinds of program modules are con
structed in several programming languages. Our diagrams depicting single
decompositions are loosely based upon some ideas of Stevens, Myers and
Constantine [1974].

EXERCISES

1.1. Consider the Pascal algorithm of Figure l.la.
a. What are the elementary objects and operations?
b. What are the rules for chronological relations?
c. What composition rules are used to construct the static program?

1.2. Determine the state transformation function, f, for the algorithm of Figure
l.la. What initial states guarantee termination? How do you characterize the
corresponding final states?

1.3. Consider a simple computer with an accumulator and two data locations. The
instruction set is:

LOAD d:
STORE d:

SUB d:

JUMP i:

Copy the contents of data location d to the accumulator.
Copy the contents of the accumulator to data location d.

Subtract the contents of data location d from the accu
mulator, leaving the result in the accumulator. (Ignore
any possibility of overflow.)
Execute instruction i next.

14

JZERO i:

JNEG i:

Chapter 1. Introduction and Overview

Execute instruction i next if the accumulator contents are
zero.
Execute instruction i next if the accumulator contents are
less than zero.

a. What are the elementary objects?
b. What are the elementary actions?
c. What composition rules are used?
d. Complete the state sequence of Figure 1.2b.

CHAPTER 2

Properties of Programming Languages

Programming languages are often described by stating the meaning of the
constructs (expressions, statements, clauses, etc.) interpretively. This de
scription implicitly defines an interpreter for an abstract machine whose
machine language is the programming language.

The output of the analysis task is a representation of the program to be
compiled in terms of the operations and data structures of this abstract
machine. By means of code generation and the run-time system, these ele
ments are modeled by operation sequences and data structures of the com
puter and its basic software (operating system, etc.)

In this chapter we explore the properties of programming languages that
determine the construction and possible forms of the associated abstract
machines, and demonstrate the correspondence between the elements of the
programming language and the abstract machine. On the basis of this dis
cussion, we select the features of our example source language, LAX. A
complete definition of LAX is given in Appendix A.

2.1. Overview

The basis of every language implementation is a language definition. (See
the Bibliography for a list of the language definitions that we shall refer to in
this book.) Users of the language read the definition as a user manual:
What is the practical meaning of the primitive elements? How can they be
meaningfully used? How can they be combined in a meaningful way? The
compiler writer, on the other hand, is interested in the question of which
constructions are permitted. Even if he cannot at the moment see any useful
application of a construct, or if the construct leads to serious implementation

15

16 Chapter 2. Properties of Programming Languages

difficulties, he must implement it exactly as specified by the language
definition. Descriptions such as programming textbooks, which are oriented
towards the meaningful applications of the language elements, do not
clearly define the boundaries between what is permitted and what is prohi
bited. Thus it is difficult to make use of such descriptions as bases for the
construction of a compiler. (Programming textbooks are also informal, and
often cover only a part of the language.)

2.1.1. Syntax, Semantics and Pragmatics The syntax of a language
determines which character strings constitute well-formed programs in the
language and which do not. The semantics of a language describe the
meaning of a program in terms of the basic concepts of the language. Prag
matics relate the basic concepts of the language to concepts outside the
language (to concepts of mathematics or to the objects and operations of a
computer, for example).

Semantics include properties that can be deduced without executing the
program as well as those only recognizable during execution. Following
Griffiths [1973], we denote these properties static and dynamic semantics
respectively. The assignment of a particular property to one or the other of
these classes is partially a design decision by the compiler writer. For exam
ple, some implementations of ALGOL 60 assign the distinction between
integer and real to the dynamic semantics, although this distinction can
normally be made at compile time and thus could belong to the static
semantics.

Pragmatic considerations appear in language definitions as unelaborated
statements of existence, as references to other areas of knowledge, as appeals
to intuition, or as explicit statements. Examples are the statements
'[Boolean] values are the truth values denoted by the identifiers true and
false' (Pascal Report, Section 6.1.2), 'their results are obtained in the sense of
numerical analysis' (ALGOL 68 Revised Report, Section 2.l.3.l.e) or
'decimal numbers have their conventional meaning' (ALGOL 60 Report,
Section 2.5.3). Most pragmatic properties are hinted at through a suggestive
choice of words that are not further explained. Statements that certain con
structs only have a defined meaning under specified conditions also belong
to the pragmatics of a language. In such cases the compiler writer is usually
free to fix the meaning of the construct under other conditions. The richer
the pragmatics of a language, the more latitude a compiler writer has for
efficient implementation and the heavier the burden on the user to write his
program to give the same answers regardless of the implementation.

We shall set the following goals for our analysis of a language definition:

• Stipulation of the syntactic rules specifying construction of programs .
• Stipulation of the static semantic rules. These, in conjunction with the

syntactic rules, determine the form into which the analysis portion of the
compiler transforms the source program.

2.1. Overview 17

• Stipulation of the dynamic semantic rules and differentiation from prag
matics. These determine the objects and operations of the language
oriented abstract machine, which can be used to describe the interface
between the analysis and synthesis portions of the compiler: The analyzer
translates the source program into an abstract target program that could
run on the abstract machine .

• Stipulation of the mapping of the objects and operations of the abstract
machine onto the objects and operations of the hardware and operating
system, taking the pragmatic meanings of these primitives into account.
This mapping will be carried out partly by the code generator and partly
by the run-time system; its specification is the basis for the decisions
regarding the partitioning of tasks between these two phases.

2.1.2. Syntactic Properties The syntactic rules of a language belong to
distinct levels according to their meaning. The lowest level contains the
'spelling rules' for basic symbols, which describe the construction of key
words, identifiers and special symbols. These rules determine, for example,
whether keywords have the form of identifiers (begin) or are written with
special delimiters ('BEGIN', .BEGIN), whether lower case letters are per
mitted in addition to upper case, and which spellings « =, .LE., 'NOT'
'GREATER') are permitted for symbols such as < that cannot be repro
duced on all I/O devices. A common property of these rules is that they do
not affect the meaning of the program being represented. (In this book we
have distinguished keywords by using boldface type. This convention is
used only to enhance readability, and does not imply anything about the
actual representation of keywords in program text.)

The second level consists of the rules governing representation and
interpretation of constants, for example rules about the specification of
exponents in floating point numbers or the allowed forms of integers
(decimal, hexadecimal, etc.) These rules affect the meanings of programs
insofar as they specify the possibilities for direct representation of constant
values. The treatment of both of these syntactic classes is the task of lexical
analysis, discussed in Chapter 6.

The third level of syntactic rules is termed the concrete syntax. Concrete
syntax rules describe the composition of language contructs such as expres
sions and statements from basic symbols. Figure 2.la shows the parse tree (a
graphical representation of the application of concrete syntax rules) of the
Pascal statement 'if a or band c then ... else .. , '. Because the goal of
the compiler's analysis task is to determine the meaning of the source pro
gram, semantically irrelevant complications such as operator precedence
and certain keywordS can be suppressed. The language constructs are
described by an abstract syntax that specifies the compositional structure of a
program while leaving open some aspects of its concrete representation as a
string of basic symbols. Application of the abstract syntax rules can be illus
trated by a structure tree (Figure 2.1 b).

18 Chapter 2. Properties of Programming Languages

;f-:t"I~
____ simple eJPression ____

term or ..-----term~
factor factor and factor

I I I
varia ble varia ble varia ble

I I I
identifier identifier identifier

I I I
abc

a) Parse tree (application of concrete syntax rules)

statement ______ I _____
....- expression............ /\ /\ ____ I _____ ~ ~

expr~ssion or ./expr~ssion,

variable expressiOn and expression
I I I

identifier variable variable
I I I
a identifier identifier

I I
b c

b) Structure tree (application of abstract syntax rules)

Figure 2.1. Concrete and Abstract Syntax

2.1.3. Semantic Properties Most current programming languages
specify algorithms operationally, in contrast to 'very high level' languages
that allow the user to formally describe a problem and leave the implemen
tation to the compiler. Essential semantic elements of operational languages
are -
• Data objects and structures upon which operations take place
• Operations and construction rules for expressions and other operative

statements
• Constructs providing flow of control, the dynamic composition of pro-

gram fragments

Data objects appear as explicit constants, as values of variables and as
results of operations. At any point in the execution of a program the totality
of variable values represents the state of the abstract machine. This state
constitutes the environment for execution of further operations.

Included in the set of operations are the access functions such as indexing
of an array or selection of a field of a record, and operations such as the
addition or comparison of two values. These operations do not alter the
state of the abstract machine. Assignment is an example of an operation
with a side effect that alters the contents of a variable, a component of the

2.2. Data Objects and Operations 19

state of the abstract machine. Most programming languages contain a large
number of such state-changing operations, all of which may be regarded as
assignment combined with other operations. Usually these operations are
formulated as statements without results. Most COBOL 'verbs' designate
such statements. Finally, operations include block entry and exit, procedure
call and return, and creation of variables. These operations, which we asso
ciate with control of the state, change the state by creating and deleting
objects (variables, parameters, etc.) and altering the allowable access func
tions.

Flow of control includes conditional expressions or statements, case
selection, iteration, jumps and so forth. These elements appear in various
forms in most programming languages, and frequently take into account
some special implementation possibility or practice. For example, the con
ditional statement

if truth _ value then s 1 else s 2 ;

and the case selection

case truth_value of true: s 1 ;false: S2 end;

have identical effects in Pascal. As we shall see later, however, the two con
structs would probably be implemented differently.

In considering semantic properties, it is important for the compiler writer
to systematically collect the countless details such as properties of data
objects, operations and side effects, possibilities for iteration, and so forth,
into some schema. The clarity and adequacy of this schema determines the
quality of the compiler because the compiler structure is derived from it. A
shoddy schema makes well-nigh impossible a convincing argument that the
compiler translates the source language fully and completely.

For many languages, including ALGOL 60, ALGOL 68, Pascal and Ada,
good schemata are comparatively easy to obtain because the language
definitions are suitably structured. Other language definitions take the form
of a collection of language element descriptions with many exception rules;
a systematic treatment of such languages is often impossible.

2.2. Data Objects and Operations

The most important characteristics of a programming language are the
available data objects and the operations that may be executed upon them.
The term 'object' means a concrete instance of an abstract value. Many
such instances of the same value may exist at the same time. The set of
values possible in a language, such as numbers, character strings, records
and so forth, is usually infinite although a given program naturally uses only
a finite number of them.

Objects and values may be classified according to many criteria. For
example, their internal (to the computer) or external representation, the

20 Chapter 2. Properties of Programming Languages

algorithm used to access them, or the access rights might be used. Each such
classification leads to an attribute of the object. The most important
classification is a partition of the set of values according to the applicable
operations; the corresponding attribute is called the type or mode of the
value. Examples are the numeric types integer and real, to which the basic
arithmetic operations may be applied. (The special role of zero in division is
not covered by this classification.)

A rough subdivision of object types can be made on the basis of the possi
ble access functions. If an object can be accessed only in its entirety we say
that its type is elementary. If, however, the object consists of a collection of
distinct components, which may be altered individually, then we say that its
type is composite. Thus if a programming language were to explain floating
point operations in terms of updating operations on fraction and exponent
individually, floating point values would be composite. This is not usually
done; the floating point operations can only yield complete floating
numbers, and hence real is an elementary type.

Every operation interprets its operands in a specified manner. The
assignment of a type to a value fixes this interpretation and admits only
those operations for which this interpretation is meaningful. As usual with
such attributes, there are many possible choices for the binding time - the
point at which a particular attribute is ascribed to a particular object: If the
type is first fixed upon execution of an operation, and if practically any
operation can be applied to any object (so long as its length is appropriate),
then we term the language typeless or typejree; otherwise it is called a typed
language. If the type of an object can be determined explicitly from the
program text, we speak of manifest type; the type is latent if it cannot be
determined until the program is executed. (A language whose types are
manifest throughout is sometimes called a strongly-typed language, while one
whose types are latent is called weakly-typed.) Objects with latent types must
be provided with an explicit type indication during execution. Most assem
bly languages are examples of typeless languages. In contrast, ALGOL 60,
FORTRAN and COBOL are languages with manifest types: All variables
are declared (either explicitly or implicitly) to have values of a certain type,
and there are different forms of denotation for constants of different types.
SNOBOL4 has neither declarations nor implied type specifications for its
variables; on the contrary, the type may change during execution. Thus
SNOBOL4 has latent types. The union modes in ALGOL 68 and the vari
ant records of Pascal and Ada take an intermediate position. A variable of
such a 'discriminated union' has a latent type, but the possible value types
may only be drawn from an explicitly-stated set.

In a typeless language, the internal representation ('coding') of an object
is the concern of the programmer; the implementor of a typed language can
fix the coding because he is fully aware of all desired interpretations.
Erroneous coding by the programmer is thus impossible. Further, incon
sistent creation or use of a data object can be detected automatically and

2.2. Data Objects and Operations 21

hence the class of automatically-detected errors is broadened. With mani
fest types such errors appear during compilation, with latent types they are
first detected during execution. Moreover, in a language with latent types
the erroneous creation of an object is only detected upon subsequent use
and the necessary dynamic type checking increases the computation time.

2.2.1. Elementary Types Our purpose in this section and the next is to
give an overview of the types usually found in programming languages and
explore their 'normal' properties. The reader should note in particular how
these properties may be deduced from the language definition.

The elementary types can be partitioned according to the (theoretical)
size of their value sets. A type is called finite if only a fixed number of values
of this type exist; otherwise the type is (potentially) infinite.

Finite types can be defined by enumeration of all of the values of the
type. Examples are the type Boolean whose value set is {true ,false} and the
type character, with the entire set of characters permitted by an implementa
tion as its value set. Almost all operations and properties of a type with n
values can be defined giving a I-I correspondence with the natural numbers
0, ... ,n -I and then defining operations using these ordinal numbers. This
possibility does not imply that such a mapping is actually specified in every
language; on the contrary, finite types are introduced primarily to represent
value sets for which a numerical interpretation is meaningless. For exam
ple, the revised ALGOL 68 report defines no correspondence between truth
values and the integers ° and l. It asserts that such a correspondence exists
for character values, but leaves its precise specification to the implementor:
' ... this relationship is defined only to the extent that different characters
have different integral equivalents, and that there exists a "largest integral
equivalent'" (Section 2. 1.3. l.g). This specification permits gaps in the
sequence of corresponding integers, an important point in many implemen
tations.

In principle the value set of a finite type is unordered. If an ordering is
needed, say to define relational operators or a successor function, the order
ing induced by the mapping to natural numbers is used. For example, Pas
cal specifies that the relation false< true holds and thus demands the map
ping false-+O, true -+ I (although the ordering of Boolean values is really
irrelevant). Often the mere existence of an ordering is sufficient. For exam
ple, the ALGOL 68 specification of character values permits the use of
sorted tables or trees to speed up searching, even though the user could not
guarantee a particular ordering. Many applications demand that some par
ticular ordering (collating sequence) be defined on the set of characters; the
task of lexicographic ordering in a telephone book is a common example.
Different collating sequences may be appropriate for different problems.
COBOL recognizes this fact by allowing the user to provide different collat
ing sequences for different programs or for different operations within the
same program.

22 Chapter 2. Properties of Programming Languages

The integers and floating point numbers belong to the class of infinite
types. Most language definitions rely upon the mathematical intuition of the
reader for the definition of these types. Some of our mathematical intuition
is invalidated, however, because the machine representations of these types
are necessarily finite.

The important characteristics of integer type are that a successor function
is defined on the values, and that exact arithmetic is available. In contrast, a
real value has no defined successor (although a total ordering is defined) and
arithmetic is inexact. Some of the familiar axioms fail - for example, asso
ciativity is lost. In the representation of a floating point number as a pair
(s, e) such that v =s*be is stored in a single word, additional range is
obtained at the cost of decreased precision. In comparison to the integer
representation, the number of significant digits in s has been shortened to
obtain space for the exponent e. The radix b is usually 2,8, 10 or 16. Both
a range and a precision must be specified to characterize the floating point
domain, while a range alone suffices for the integer domain. The spec
ifications for the two domains are independent of one another. In particu
lar, it is often impossible to represent all valid integers exactly as floating
point numbers because s is not large enough to hold all integer values.

The number of significant digits and the size of the exponent (and similar
properties of other types) vary from computer to computer and implementa
tion to implementation. Since an algorithm's behavior may depend upon
the particular values of such parameters, the values should be accessible.
For this purpose many languages provide environment inquiries; some
languages, Ada for example, allow specifications for the range and precision
of numbers in the form of minimum requirements.

Restriction of the integer domain and similar specification of subranges
of finite types is often erroneously equated to the concept of a type.
ALGOL 68, for example, distinguishes an infinity of 'sizes' for integer and
real values. Although these sizes define different modes in the ALGOL 68
sense, the Standard Environment provides identical operators for each; thus
they are indistinguishable according to the definition of type given at the
beginning of Section 2.2. The distinction can only be understood by exami
nation of the internal coding.

The basic arithmetic operations are usually defined by recourse to the
reader's mathematical intuition. Only integer division involving negative
operands requires a more exact stipulation in a language definition.
Number theorists recognize two kinds of integer division, one truncating
toward zero (-3 divided by 2 yields -1) and the other truncating toward nega
tive infinity (-3 divided by 2 yields -2). ALGOL 60 uses the first definition,
which also forms the basis for most hardware realizations.

We have already seen that a correspondence between the values of a
finite type and a subset of the natural numbers can be defined. This
correspondence may be specified by the language definition, or it may be
described but its definition left to the implementor. As a general principle,

2.2. Data Objects and Operations 23

similar relationships are possible between the value sets of other types. For
example, the ALGOL 68 Revised Report asserts that for every integer of a
given length there is an equivalent real of that length; the FORTRAN Stan
dard implies a relation between integer and real values by its definition of
assignment, but does not define it precisely.

Even if two values of different types (say 2 and 2.0) are logically
equivalent, they must be distinguished because different operations may be
applied to them. If a programmer is to make use of the equivalence, the
abstract machine must provide appropriate transfer (conversion) operations.
This is often accomplished by overloading the assignment operator. For
example, Section 4.2.4 of the ALGOL 60 Report states that 'if the the type
of the arithmetic expression [in an assignment] differs from that associated
with the variables and procedure identifiers [making up the left part list],
appropriate transfer functions are understood to be automatically invoked'.
Another way of achieving this effect is to say that the operator indication
': =' stands for one of a number of assignment operations, just as '+' stands
for either integer or real addition.

The meaning of ': =' must be determined from the context in the above
example. Another approach to the conversion problem is to use the context
to determine the type of value directly, and allow the compiler to insert a
transfer operation if necessary. We say that the compiler coerces the value to
a type appropriate for the context; the inserted transfer operation is a coer
cion.

Coercions are most frequently used when the conversion is defined for all
values of the type being converted. If this is not the case, the programmer
may be required to write an explicit transfer function. In Pascal, for exam
ple, a coercion is provided from integer to real but not from real to integer.
The programmer must use one of the two explicit transfer functions trunc or
round in the latter case.

Sometimes coercions are restricted to certain syntactic positions.
ALGOL 68 has elaborate rules of this kind, dividing the complete set of
available coercions into four classes and allowing different classes in
different positions. The particular rules are chosen to avoid ambiguity in the
program. Ada provides a set of coercions, but does not restrict their use.
Instead, the language definition requires simply that each construct be
unambiguously interpretable.

LAX provides Boolean, integer and real as elementary types. We omit
ted characters and programmer-defined finite types because they do not
raise any additional significant issues. Integer division is defined to truncate
towards zero to match the behavior of most hardware. Coercion from
integer to real is defined, but there is no way to convert in the opposite direc
tion. Again, the reason for this omission is that no new issues are raised by it.

2.2.2. Composite Types Composite objects are constructed from a finite
number of components, each of which may be accessed by a selector. A com-

24 Chapter 2. Properties of Programming Languages

posite type is formed from the types of the components by a type constructor,
which also defines the selectors. Programming languages usually provide
two sorts of composite objects: records (also known as structures) and arrays.

Records are composite objects with a fixed number of components called
fields. Identifiers, which cannot be computed by the program, are used as
field selectors. The type of the composite object is given by enumeration of
the types and selectors of the fields. In some languages (such as COBOL
and PL/ I) the description of a record type is bound to a single object.

A record is used to collect related items, for example the name, address,
profession and other data about a single person. Often the number or form
of the data may vary in such cases. For example, the location of a point in
space could be given in terms of rectangular (x, y, z) or cylindrical (r,phi, z)
coordinates. In a record of type 'point', variations in the form of the data
are thus possible. Pascal allows such a record with variants to be constructed:

type
coordinates = (rectangular, cylindrical);
point = record

z:real;
case c : coordinates of

rectangular: (x,y: real);
cylindrical: (r,phi: real);

end;

The fields appearing in every record of the type are written first, followed by
alternative sets of fields; the c appearing in the case construct describes
which alternative set is actually present.

A union mode in ALGOL 68 is a special case of a variant record, in
which every variant consists of exactly one field and the fixed part consists
only of the variant selector. Syntactically, the construct is not described as a
record and the variant selector is not given explicitly. In languages such as
APL or SNOBOL4, essentially all objects are specified in this manner. An
important question about such objects is whether the variant is fixed for the
lifetime of a particular object, or whether it forms a part of the state and
may be changed.

Arrays differ from records in that their components may be selected via a
computable, one-to-one function whose domain is some finite set (such as
any finite type or a subrange p ~ i ~ q of the integers). In languages with
manifest types, all elements of an array have the same type. The operation
a [e 1 ('select the component of a corresponding to e ') is called indeXing.
Most programming languages also permit multi-dimensional rectan
gular arrays, in which the index set represents a Cartesian product
I I Xl 2 X . .. X In over a collection of index domains. Depending upon the
time at wh'ich the number of elements is bound, we speak of static (fixed at
compile time), dynamic (fixed at the time the object is created) or flexible
(variable by assignment) arrays (cf. Section 2.5.3).

2.2. Data Objects and Operations 25

One-dimensional arrays of Boolean values (bit vectors) may also be
regarded as tabular encodings of characteristic functions over the index set
I. Every value of an array c corresponds to (i I c [i) = true }. In Pascal
such arrays are introduced as 'sets' with type set of index Jet; in Ada they
are described as here, as Boolean arrays. In both cases, the operations union
(represented by + or or), intersection (*, and), set difference (-), equality (=
and < >), inclusion «, < =, >, > =) and membership (in) are defined
on such sets. Difficulties arise in specifying set constants: The element type
can, of course be determined by looking at the elements of the constant. But
if sets can be defined over a subrange of a type, it is not usually possible to
determine the appropriate subrange just by looking at the elements. In Pas
cal the problem is avoided by regarding all sets made up of elements of a
particular scalar type to be of the same type, regardless of the subrange
specified as the index set. (Sets of integers are regarded as being over an
implementation-defined subrange.) In Ada the index set is determined by
the context.

Only a few programming languages provide operations (other than set
operations) that may be applied to a composite object as a whole. (APL has
the most comprehensive collection of such operations.) Processing of com
posite objects is generally carried out componentwise, with field selection,
indexing and component assignment used as access operations on the com
posite objects. It may also be possible to describe groups of array elements,
for example entire rows or columns or even arbitrary rectangular index
domains (a[i I :i 2,j I :hl in ALGOL 68); this process is called slicing.

2.2.3. Strings Strings are exceptional cases in most programming
languages. In ALGOL 60, strings are permitted only as arguments to pro
cedures and can thus ultimately be used only as data for code procedures
(normally I/O routines). ALGOL 68 considers strings as flexible arrays, and
in FORTRAN 77 or PL/I the size can increase only to a maximum value
fixed when the object is created. In both languages, single characters may
be extracted by indexing; in addition, comparison and concatenation may
be carried out on strings whose length is known. These latter operations
consider the entire string as a single unit. In SNOBOL4 strings are always
considered to be single units: Assignment, concatenation, conversion to a
pattern, pattern matching and replacement are elementary operations of the
language.

We omitted strings from LAX because they do not lead to any unique
problems in compiler construction.

2.2.4. Pointers Records, arrays and strings are composite objects con
structed as contiguous sequences of elements. Composition according to the
model of a directed graph is possible using pointers, with which one node
can point to another. In all languages providing arrays, pointers can be
represented by indices in an array. Some languages (such as ALGOL 68,

26 Chapter 2. Properties of Programming Languages

Pascal and PL 11) define pointers as a new kind of type. In PL /1 the type of
the object pointed to is not specified, and hence one can place an arbitrary
interpretation upon the target node of the pointer. In the other languages
mentioned, however, the pointer type carries the type of the object pointed
to.

Pointers have the advantage of security over indices in an array: Indices
can be confused with other uses of integers, pointers cannot. Above all,
however, pointers can be used to reference anonymous objects that are
created dynamically. The number of objects thus created need not be
known ahead of time. With indices the array bounds fix the maximum
number of objects (except when the array is flexible).

Pascal pointers can reference only anonymous objects, whereas in
ALGOL 68 either named or anonymous objects may be referenced. When
named objects have at most a bounded lifetime, it is possible that a pointer
to an object could outlive the object to which it points. Such dangling refer
ences will be discussed in Section 2.5.2.

In addition to the technical questions of pointer implementation, the
compiler writer should be concerned with special testing aids (such as print
ing programs that can. traverse a structure, outputting links in some reason
able way). The reason is that programs containing pointers are usually more
difficult to debug than those not containing pointers.

2.2.5. Type Equivalence Whenever we use an object in a typed
language (e.g. as an operand of an operation), we must verify that the type
of the object satisfies the requirements of the context and is thus admissible.
To do this we need a technique to compare types with one another and to
determine whether they are equivalent.

The question of type equivalence is easy to answer as long as there are no
type declarations, and no subranges of a type are treated as types. Under
such circumstances we use textual equivalence: Two types are equivalent if
their external representations are the same. Thus for the elementary types
Boolean, character, integer and real the same symbol is required. Array
types are equivalent if they have equivalent element types and the same
number of dimensions; the values of the bounds are compared only in
languages with static arrays. Pointers must point to objects of equivalent
type. Procedures must have the same number of parameters, and
corresponding parameter and result types must be equivalent. For records,
it is usually required that both types and field selectors be equivalent and
appear in the same order. Therefore the following records are all of
different types:

record a : real; b: integer end
record x : real; y: integer end
record y: integer; x : real end
When type declarations and pointers are both allowed, textual

equivalence is no longer a useful criterion. Attempting to extend the above

2.2. Data Objects and Operations 27

definitions to recursive types leads to a cycle in the test. For example, the
equivalence of the following types depends upon the equivalence of the
second field which, in tum, depends upon the equivalence of the original
types:

type
m = record x: real; y: i mend;
p = record x: real; y: i pend;

To break the cycle, we may generalize textual equivalence to either struc
tural equivalence or name equivalence.

Structural equivalence is used in ALGOL 68. In this case, each type
identifier (mode indication) is assumed to be a shorthand notation for the
right side of the type declaration. Two types are equivalent if they are textu
ally equivalent after all type identifiers have been replaced by the right hand
sides of their declarations. This process may introduce other type identifiers,
and the substitution must be repeated; clearly a recursive type has an infinite
textual representation. In order to test for structural equivalence, these
infinite representations must be compared. In Section 9.2 we shall see that a
practical decision procedure using finite representations and working in
polynomial time is available.

Name equivalence states that two types are equivalent if and only if they
are denoted by the same identifier, which identifies the same definition in
each case. M and p above are different types under this definition, since m
and p are distinct identifiers. The right hand sides of the declarations of m
and p are automatically different, since they are not type identifiers. Name
equivalence is obviously easy to check, since it only involves fixing the iden
tity of type declarations.

Name equivalence seldom appears in pure form. On the one hand it
leads to a flood of type declarations, and on the other to problems in linking
to library procedures that have array parameters. However, name
equivalence is the basis for the definition of abstract data types, where type
declarations that carry the details of the representation are not revealed out
side the declaration. This is exactly the effect of name equivalence, whereas
structural equivalence has the opposite result. Most programming languages
that permit type declarations use an intermediate strategy. Euclid uses
structural equivalence locally; as soon as a type is 'exported', it is known
only by a type identifier and hence name equivalence applies.

If the language allows subranges of the basic types (such as a subrange of
integers in Pascal) the question of whether or not this sub range is a distinct
type arises. Ada allows both: The subrange can be defined as a subtype or
as a new type. In the second case, the pre-defined operations of the base
type will be taken over but later procedures requiring parameters of the base
type cannot be passed arguments of the new type.

The type equivalence rules of LAX embody a representative comprom
ise. They require textual equivalence as discussed above, but whenever a
type is denoted by an identifier it is considered elementary. (In other words,

28 Chapter 2. Properties of Programming Languages

if the compiler is comparing two type specifications for equality and an
identifier appears in one then the same identifier must appear in the same
position in the other.) Implementation of these rules illustrate the compiler
mechanisms needed to handle both structure and name equivalence.

2.3. Expressions

Expressions (or formulas) are examples of composite operations. Their struc
ture resembles that of composite objects: They consist of a simple operation
with operands, which are either ordinary data objects or further expressions.
In other words, an expression is a tree with operations as interior nodes and
data objects as leaves.

An expression written in linear infix notation may lead to distinct trees
when interpreted according to different language definitions (Figure 2.2). In
low-level languages modeled upon PL/360, the operators are strictly left
associative with no operator precedence, and parentheses are prohibited;
APL uses right-associativity with no precedence, but permits grouping by
parentheses. Most higher-level languages employ the normal precedence

a) Left-associative (e.g. PL/360)

b) Right-associative (e.g. APL)

c) Normal precedence rules

Figure 2.2. Trees for a *b +c *d

2.3. Expressions 29

rules of mathematics and associate operators of the same precedence to the
left. FORTRAN 77 (Section 6.6.4) is an exception: 'Once [a tree] has been
established in accordance with [the precedence, association and parenthesi
zation] rules, the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.' The
phrase 'mathematically equivalent' implies that a FORTRAN compiler may
assume that addition is associative, even though this is not true for computer
implementation of floating point arithmetic. (The programmer can, how
ever, always indicate the correct sequence by proper use of parentheses.)

The leaves of an expression tree represent activities that can be carried
out independently of all other nodes of the tree. Interior nodes, on the other
hand, depend upon the values returned by their descendants. The entire
tree may thus be evaluated by the following algorithm:

repeat
Select an arbitrary leaf and carry out its designated activity (access to

an object or execution of an operation);
if the selected leafis the root then terminate;
Transmit the result to the parent of the leaf and delete the leaf;

until termination

This evaluation algorithm performs the operations in some sequence permit
ted by the data flow constraints embodied in the tree, but does not specify
the order in which operands are evaluated. It is based upon a principle
known as referential transparency [Quine 1960] that holds in mathematics:
The value of an expression can be determined solely from the values of its
subexpressions, and if any subexpression is replaced by an arbitrary expres
sion with the same value then the value of the entire expression remains
unchanged.

In programming languages, evaluation of an expression may additionally
alter the state of the underlying abstract machine through a side effect. If the
altered state is used in another part of the expression then the principle of
referential transparency does not hold, and different evaluation orders may
yield different results.

Side effects are generally undesirable because they complicate program
verification and optimization. Unfortunately, it is often impossible to
mechanically guarantee that no side effects are present. In Euclid an
attempt was made to restrict the possibilities to the point where the compiler
could perform such a check safely. These restrictions include prohibition of
assignments to result parameters and global variables in functions, and
prohibition of I /0 operations in functions.

Some side effects do not destroy referential transparency, and are thus
somewhat less dangerous. Section 6.6 of the FORTRAN 77 Standard for
mulates the weakest useful restrictions: 'The execution of a function refer
ence in a statement may not alter the value of any other entity within the
statement in which the function reference appears.'

30 Chapter 2. Properties of Programming Languages

In some expressions the value of a subexpression determines that of the
entire expression. Examples are:

a and (...) when a =false
b or (...) when b = true

c *(...) when c = 0

If the remainder of the expression has no side effect, only the subexpression
determining the value need be computed. The FORTRAN 77 Standard
allows this short circuit evaluation regardless of side effects; the description is
such that the program is undefined if side effects are present, and hence it is
immaterial whether the remainder of the expression is evaluated or not in
that case. The wording (Section 6.6.1) is: 'If a statement contains a function
reference in a part of an expression that need not be evaluated, all entities
that would have become defined in the execution of that reference become
undefined at the completion of evaluation of the expression containing the
function reference.'

ALGOL 60, ALGOL 68 and many other languages require, in principle,
the evaluation of all operands and hence preclude such optimization unless
the compiler can guarantee that no side effects are possible. Pascal permits
short circuit evaluation, but only in Boolean expressions (User Manual, Sec
tion 4a): 'The rules of Pascal neither require nor forbid the evaluation of
the second part [of a Boolean expression, when the first part fixes the value)'.
Ada provides two sets of Boolean operators, one (and, or) prohibiting short
circuit evaluation and the other (and then, or else) requiring it.

LAX requires complete evaluation of operands for all operators except
and and or. The order of evaluation is constrained only by data flow con
siderations, so the compiler may assume referential transparency. This
simplifies the treatment of optimization. By requiring a specific short circuit
evaluation for and and or, we illustrate other optimization techniques and
also show how the analysis of an expression is complicated by evaluation
order rules.

2.4. Control Structures

There are three possibilities for the composition of several actions: serial,
collateral and parallel. Serial execution is implied by any dependence of two
actions upon one another. Such dependence occurs when (say) one action
uses the result of another; more generally, it occurs in any case where the
outcome depends upon the sequence in which the actions occur. If the
actions may be carried out serially or in parallel, or can be interleaved in
time, then we speak of collateral execution. Finally, we use the term paral
lel when either simultaneous or interleaved execution is required.

When actions are composed serially, the sequence may be prescribed
either implicitly or explicitly. Most programming languages use the

2.4. Control Structures 31

sequence in which the statements are written as an implicit serial order. The
semicolon separating two successive statements in ALGOL 60 and its suc
cessors is thus often called the 'sequence operator'. For explicit control, we
have the following possibilities:

• Conditional clause
• Case clause
• Iteration (with or without a count)
• Jump, exit, etc.
• Procedure call

Conditional clauses make the execution of a component S dependent
upon fulfillment of a Boolean condition. In many languages S may only
take on one of a restricted number of forms - in the extreme case, S may
only be a jump.

The case clause is a generalization of the conditional clause in which the
distinct values of an expression are associated with distinct statements. The
correspondence is either implicit as in ALGOL 68 (the statements
correspond successively to the values 1,2,3, ...), or explicit as in Pascal (the
value is used as a case label for the corresponding statement). The latter
construct allows one statement to correspond with more than one value and
permits gaps in the list of values. It also avoids counting errors and
enhances program readability.

Several syntactically distinct iteration constructs appear in many pro
gramming languages: with or without counters, test at the beginning or end,
etc. The inefficient ALGOL 60 rules requiring the (arbitrarily complex) step
and limit expressions to be re-evaluated for each iteration have been
replaced in newer languages by the requirement that these expressions be
evaluated exactly once. Another interesting point is whether the value of the
counter may be altered by assignment within the body of the iteration (as in
ALGOL 60), or whether it must remain constant (as in ALGOL 68). This
last is important for many optimizations of iterations, as is the usual prohibi
tion on jumps into an iteration.

Many programming languages allow jumps with variable targets. Exam
ples are the use of indexing in an array oflabels (the ALGOL 60 switch) and
the use of label variables (the FORTRAN assigned GOTO). While
COBOL or FORTRAN jumps control only the succession of statements,
jumps out of blocks or procedures in ALGOL-like languages influence the
program state (see Section 2.5). Procedure calls also influence the state.

The ALGOL 60 and ALGOL 68 definitions explain the operation of pro
cedure calls by substitution of the procedure body for the call (copy rule).
This copying process could form the basis for an implementation (open sub
routines), if the procedure is not recursive. Recursion requires that the pro
cedure be implemented as a closed subroutine, a model on which many
other language definitions are based. Particular difficulties await the writer
of compilers for languages such as COBOL, which do not distinguish the

32 Chapter 2. Properties of Programming Languages

beginning and end of the procedure body in the code. This means that, in
addition to the possibility of invoking the procedure by means of a call
(PERFORM in COBOL), the statements could be executed sequentially as a
part of the main program.

Parallel execution of two actions is required if both begin from the same
initial state and alter this state in incompatible ways. A typical example is
the parallel assignment x ,y: = y, x, in which the values are exchanged. To
represent this in a sequential program, the compiler must first extend the
state so that the condition 'identical starting states for both actions' can be
preserved. This can be done here by introducing an auxiliary variable t, to
which x is assigned.

Another case of parallel execution of two actions arises when explicit syn
chronization is embedded in these actions to control concurrent execution.
The compiler must fall back upon coroutines or parallel processing facilities
in the operating system in order to achieve such synchronization; we shall
not discuss this further.

Collateral execution of two actions means that the compiler need not fix
their sequence according to source language constraints. It can, for exam
ple, exchange actions if this will lead to a more efficient program. If both
actions contain identical sub-actions then it suffices to carry out this sub
action only once; this has the same effect as the (theoretically possible)
perfectly-synchronized parallel execution of the two identical sub-actions. If
a language specifies collateral evaluation, the question of whether the
evaluation off (x) in the assignment a [i + 1]: = f (x) +a [i + 1] can influence
the address calculation for ali + 1] by means of a side effect is irrelevant.
The compiler need only compute the address of a [i + 1] once, even if i were
the following function procedure:

function i: integer; begin k: =k + I; i: =k end;

In this case k will be incremented only once.

2.5. Program Environments and Abstract Machine
States

The operations of a programming language are applied to states of the
abstract machine for this language and transform those states. The state is
represented by the combination of the data objects and values existing at a
particular point in time, the hierarchy of procedure calls not yet completed,
and the representation of the next operation in the program text. The set of
data objects belonging to a state (independent of their values), together with
the procedure call hierarchy, constitute the environment (present in that
state). We can thus distinguish three distinct schemata for state transitions:

• Specify a new successor operation (e.g. by means of a jump).

2.5. Program Environments and Abstract Machine States 33

• Change the value of an existing data object by means of an assignment.
• Change the size of the state.
We have already discussed the first possibility in Section 2.4.

2.5.1. Constants, Variables and Assignment The data objects in a
programming language either have constant values or are variable. Con
stants are either specified by denotations (numbers, characters, strings) or
are made to correspond to identifiers by giving a declaration. The latter are
called symbolic constants, and contain the manifest constants as a subclass.
The value of a manifest constant is permanently fixed and can be deter
mined at compile time. A compiler could replace each occurrence of a
manifest constant identifier by its value, and then forget the identifier com
pletely. (The constant declarations of Pascal, for example, create manifest
constants.) In addition to manifest constants, a language may permit
dynamic constants. These can be treated by the compiler as variables to
which a value is assigned when the variable is declared, and to which further
assignments are prohibited. The following ALGOL 68 identity declaration
creates a dynamic constant c :

int c = if P then 3*x else y + 1 fi;

(If p, x and yare really manifest constants then the compiler could optimize
by evaluating the conditional statement and then treating c as a manifest
constant as well. This optimization is called folding - see Chapter 13.)

In the simplest case, variables are data objects with the following proper
ties:
• They are identified either by an identifier or a composite access path such

as a pair (identifier, index).
• They possess a value (from a domain determined by their type).
• There exists an access function to use their value as an operand.
• There exists an access function/assignment to alter their value.
This model of an elementary variable explains the variable concepts in FOR
TRAN,.COBOL, ALGOL 60, and partially explains that of Pascal.

In many languages, the only assignment permitted to a variable of
composite type is an assignment to a component. For example, ALGOL 60
does not allow assignment of an entire composite object and also prohibits
composite objects as results of function procedures. A composite object
must, however, be considered basically as a unit. Thus any assignment to a
component is an assignment to the entire object.

A variable does not always retain the last assigned value until a new
value is assigned. Typical examples are the control variables in ALGOL 60
and FORTRAN iterations, whose values are undefined upon normal termi
nation of the iteration. These rules permit the compiler to advance the con
trol variable either before or after the termination test. (Clearly the two pos
sibilities lead to different results and hence the value of the controlled vari
able cannot be guaranteed. ALGOL 68 avoids this problem because the

34 Chapter 2. Properties of PiOgramming Languages

control variable is local to the iteration body.) Another example is the
undefinition of a COBOL record by the write operation. This permits
implementation of the write operation by either changing the buffer pointer
or by transferring data. The FORTRAN 66 Standard gives (in Section
10.2.3.1) a further list of situations in which variables become undefined. A
compiler writer should carefully examine the language definition for such
rules, since they normally lead to optimization possibilities.

The pointer objects discussed in Section 2.2.4 provide access paths to
other objects. By using pointers, an arbitrary number of access paths to a
given object can be created. In the special case of parameter transmission,
additional access paths can be created even without pointers (see Section
2.5.3). The following identity declaration from ALGOL 68 is an example of
the general case: .

refm x = ... ;
Here the right hand side must give an access path to an object; x then
identifies a new access path to this object. In contrast to the ALGOL 60
name parameter, the identity of the object is fixed at the time the identity
declaration is executed. Some languages permit creation of access paths
with limited access rights: Assignments may be forbidden over certain
access paths or in certain contexts. For example, assignments to global
parameters are forbidden in Euclid functions. If such restrictions exist,
adherence to them must be verified by the compiler during semantic
analysis.

Existence of several access paths to the same object complicates the data
flow analysis (analysis of assignment and use patterns) required to verify
certain semantic constraints and to check for the applicability of certain
optimizations. If the compiler writer wishes to delay an assignment, for
example, he must be certain that an access to the new value will not be
attempted over a different access path. This complication is termed the
aliasing problem.

The LAX identity declaration allows creation of an arbitrary number of
new access paths to any variable. It is, however, the only mechanism by
which new access paths can be created. This allows us to illustrate the alias
ing problem in its full generality in one place, rather than having it appear
in several different constructs with possibly different constraints.

2.5.2. The Environment The environment of a program fragment
specifies not only which objects exist, but also the access paths by which they
may be reached. Changes in the accessibility (or visibility) of objects are
generally associated with procedure call and return, and for this reason the
procedure call hierarchy forms a part of the environment. We shall now
consider questions of lifetime and visibility; the related topic of procedure
parameter transmission will be deferred to Section 2.5.3.

That part of the execution history of a program during which an object
exists is called the extent of the object. The extent rules of most program-

2.5. Program Environments and Abstract Machine States 35

ming languages classify objects as follows:

• Static: The extent of the object is the entire execution history of the pro
gram.

• Automatic: The extent is the execution of a specified syntactic construct
(usually a procedure or block).

• Unrestricted: The extent begins at a programmer-specified point and
ends (at least theoretically) at the end of the program's execution.

• Controlled: The programmer specifies both the beginning and end of the
extent by explicit construction and destruction of objects.

Objects in COBOL and the blank common block of FORTRAN are
examples of static extent. Local variables in ALGOL 60 or Pascal, as well
as local variables in FORTRAN subprograms, are examples of automatic
extent. (Labeled common blocks in FORTRAN 66 also have automatic
extent, see Section 10.2.5 of the standard.) List elements in LISP and objects
created by the heap generator of ALGOL 68 have unrestricted extent, and
the anonymous variables of Pascal are controlled (created by new and dis
carded by dispose).

The possibility of a dangling reference arises whenever a reference can be
created to an object of restricted extent. To avoid errors, we must guarantee
that the referenced object exists at the times when references to it are actu
ally attempted. A sufficient condition to make this guarantee is the ALGOL
68 rule (also used in LAX) prohibiting assignment of references or pro
cedures in which the extent of the right-hand side is smaller than the refer
ence to which it is assigned. It has the advantage that it can be checked by
the compiler in many cases, and a dynamic run-time check can always be
made in the absence of objects with controlled extent. When a language
provides objects with controlled extent, as do PLII and Pascal, then the bur
den of avoiding dangling references falls exclusively upon the programmer.

LAX constants are the only objects having static extent. Variables are
generally automatic, although it is possible to generate unrestricted vari
ables. The language has no objects with controlled extent, because such
objects do not result in any new problems for the compiler. Static variables
were omitted because the techniques used to deal with automatic variables
apply to them essentially without change.

By the scope of an identifier definition we understand the region of the
program within which we can use the identifier with the defined meaning.
The scope of an identifier definition is generally determined statically by the
syntactic construct of the program in which it is directly contained. A range
is a syntactic construct that may have identifier definitions associated with it.
In a block-structured language, inner ranges are not part of outer ranges.
Usually any range may contain at most one definition of an identifier.
Exceptions to this rule may occur when a single identifier may be used for
distinct purposes, for example as an object and as the target of a jump. In
ALGOL-like languages the scope of a definition includes the range in which

36 Chapter 2. Properties of Programming Languages

it occurs and all enclosed ranges not containing definitions of the same
identifier.

Consider the field selection pJ. The position immediately following the
dot belongs to the scope of the declaration of p's record type. In fact, only
the field selectors of that record type are permitted in this position. On the
other hand, although the statement s of the Pascal (or SIMULA) inspection
with p do s also belongs to the scope of p's record type declaration, the
definitions from the inspection's environment remain valid in sunless over
ridden by field selector definitions. In COBOL and PL/I,j can be written
in place of pj(partial qualification) if there is no other definition off in the
surrounding range.

The concept of static block structure has the consequence that items not
declared in a procedure are taken from the static surrounding of the pro
cedure. A second possibility is that used in APL and LISP: Nonlocal items
of functions are taken from the dynamic environment of the procedure call.

In the case of recursive procedure calls, identically-declared objects with
nested extents may exist at the same time. Difficulties may arise if an object
is introduced (say, by parameter transmission) into a program fragment
where its original declaration is hidden by another declaration of the same
identifier. Figure 2.3 illustrates the problem. This program makes two
nested calls ofp, so that two incarnations, ql and q2, of the procedure q and
two variables i I and i 2 exist at the same time. The program should print the
values 1, 4 and I of i2, i I and k. This behavior can be explained by using
the contour model.

The contour model captures the state of the program execution as a com
bination of the (invariant) program text and the structured set of objects
(state) existing at respective points in time. Further, two pointers, ip and ep
belong to the state. Ip is the instruction pointer, which indicates the position
in the program text. For block-structured languages the state consists of a
collection of nested local environments called contours. Each contour
corresponds to a range and contains the objects defined in that range. If the
environment pointer ep addresses a contour c, then all of the objects
declared in c and enclosing contours are accessible. The contour addressed
by ep is called the local contour. The object identified by a given identifier is
found by scanning the contours from inner to outer, beginning at the local
contour, until a definition for the specified identifier is found.

The structure of the state is changed by the following actions:

• Construction or removal of an object.
• Procedure call or range entry.
• Procedure return or range exit.
• Jump out of a range.

When an object with automatic extent is created, it lies in a contour
corresponding to the program construct in which it was declared; static
objects behave exactly like objects declared in the main program with

2.5. Program Environments and Abstract Machine States

procedure outer;
var n , k : integer;
procedure p (procedure /; var j : integer);

label 1;
var i : integer;
procedure q;

label 2;
begin (* q *)
n : = n + 1; if n = 4 then q ;
n:=n +1; ifn =7 then 2:j:=j + 1;
i:=i+l;
end; (* q *)

begin (* p *)
i:=O;
n : = n + 1; if n = 2 then p (q , i) else j : = j + 1;
ifn =3 then 1:/;
i:=i+l;
writeln('j =',i:l);
end; (* p *)

procedure empty; begin end;
begin (* outer *)
n:= 1; k:=O;
p(empty,k);
writeln ('k =', k: 1);
end; (* outer *)

Figure 2.3. Complex Procedure Interactions in Pascal

37

automatic extent. Objects with unrestricted extent and controlled objects lie
in their own contours, which do not correspond to program constructs.

Upon entry into a range, a new contour is established within the local
contour and the environment pointer ep is set to point to it. Upon range exit
this procedure is reversed: the local contour is removed and ep set to point
to the immediately surrounding contour.

Upon procedure call, a new contour c is established and ep set to point to
it. In contrast to range entry, however, c is established within the contour c'
addressed byep at the time of procedure declaration. We term c'the static
predecessor of c to distinguish it from c: the dynamic predecessor, to which ep
pointed immediately before the procedure call. The pointer to c' must be
stored in c as a local object. Upon return from a procedure the local con
tour of the procedure is discarded and the environment pointer reset to its
dynamic predecessor.

To execute a jump into an enclosing range b, blocks and procedures are
exited and the corresponding contours discarded until a contour c
corresponding to b is reached such that c contained the contour of the jump.
C becomes the new local contour, to which ep will point, and ip is set to the
jump target. If the jump target is determined dynamically as a parameter or

38 Chapter 2. Properties of Programming Languages

the content of a label variable, as is possible in ALGOL 60, then that
parameter or variable must specify both the target address and the contour
that will become the new local contour.

Figures 2.4 and 2.5 show the contour model for the state existing at two
points during the execution of the program of Figure 2.3. Notice that
several contours correspond to the same range when a procedure is called
recursively. Further, the values of actual parameters of a procedure call
should be computed before the environment pointer is altered. If this is not
done, the pointer for parameter computation must be restored (as is neces
sary for name parameters in ALGOL 60).

In order to unify the state manipulation, procedures and blocks are often
processed identically. A block is then a parameterless procedure called 'on
the spot'. The contour of a block thus has a dynamic predecessor identical
with its static predecessor. The lifetimes of local objects in blocks can be
determined by the compiler, and a static overlay structure for them can be
set up within the contour of the enclosing procedure. The main program is
counted as a procedure for this purpose. The scope rules are not altered by
this transformation. Contours for blocks can be dispensed with, and all
objects placed in the contour of the enclosing procedure. Arrays with
dynamic bounds lead to difficulties with this optimization, since the bounds
can be determined only at the time of actual block entry.

The rules discussed so far do not permit description of either LISP or
SIMULA. In LISP a function / may have as its result a function g that

Contour for procedure outer J~
n: 3 I k: 0
empty Contour for procedure p
p J=empty

j=k
i I : I
ql

t
Contour for procedure p

/=ql
j=i l
i 2: 0
q2

ep

I
Note: Arrows show dynamic predecessor

Figure 2.4. Contours Existing When Control Reaches Label I in Figure 2.3

2.5. Program Environments and Abstract Machine States 39

Contour for procedure outer J~ n: 7
k: 0 J

empty Contour for procedure p
p f=empty

j=k
i I: 2 Contour for procedure q
ql ep , , . ~ ,

Contour for procedure p
f=ql
j =i l
i 2: 0
q2

Figure 2.5. Contours Existing When Control Reaches Label 2 in Figure 2.3

accesses the local storage off. Since this storage must also exist during the
call of g, the contour off must be retained at least until g becomes inacces
sible. Analogously, a SIMULA class k (an object of unrestricted extent)
may have name parameters from the contour in which it was instantiated.
This contour must therefore be retained at least until k becomes inaccessi
ble.

We solve these problems by adopting a uniform retention strategy that dis
cards an object only when that object becomes inaccessible. Accessibility is
defined relative to the current contour. Whenever an object in a contour c
references another object in a different contour, c: we implement that refer
ence by an explicit pointer from c to c: (Such references include the
dynamic predecessors of the contour, all reference parameters, and any
explicit pointers established by the user.) A contour is accessible if it can be
reached from the current contour by following any sequence of pointers or
by a downhill walk. The dangling reference problem vanishes when this
retention strategy is used.

2.5.3. Binding An identifier b is termed bound (or local) in a range if this
range contains a definition for b; otherwise b is free (or global) in this range.
As definitions we have:
• Declarations of object identifiers (including procedure identifiers).
• Definitions: Label definitions, type definitions, FORTRAN labeled com

mon blocks, etc.
• Formal parameter definitions.

40 Chapter 2. Properties of Programming Languages

In the first and second cases the defined value along with all of its attri
butes is obvious from the definition. In the third case only the identifier and
type of the defined value are available via the program text. The actual
parameter, the argument, will be associated with the identifier by parameter
transmission at the time of the procedure call. We distinguish five essen
tially different forms of parameter transmission:

1. Value (as in ALGOL 60, SIMULA, Pascal, Ada, for example): The for
mal parameter identifies a local variable of the procedure, which will be
initialized with the argument value at the procedure call. Assignment to
the parameter does not affect the caller.

2. Result (Ada): The formal parameter identifies a local variable of the
procedure with undefined initial value. Upon return from the procedure
the content of this local variable is assigned to the argument, which must
be a variable.

3. Value/Result (FORTRAN, Ada): The formal parameter identifies a
local variable of the procedure, which will be initialized with the argu
ment value at the procedure call. Upon return from the procedure the
content of this local variable is assigned to the argument if the argument
is a variable. The argument variable may be fixed prior to the call or
redetermined upon return.

4. Reference (FORTRAN, Pascal, Ada): A reference to the argument is
transmitted to the procedure. All operations on the formal parameter
within the procedure are carried out via this reference. (If the argument
is an expression but not a variable, then the result is placed in a tem
porary variable for which the reference is constructed. Some languages,
such as Pascal, do not permit use of an expression as an argument in this
case.)

5. Name (ALGOL 60): A parameterless procedure p, which computes a
reference to the argument, is transmitted to the procedure. (If the argu
ment is an expression but not a variable then p computes the value of the
expression, stores it in a temporary variable h, and yields a reference to
h .) All operations on the formal parameter first invoke p and then
operate via the reference yielded by p .

Call by value is occasionally restricted to a strict value transmission in which
the formal parameter identifies not a local variable, but rather a local con
stant. Call by name is explained in many language definitions by textual
substitution of the argument for the parameter. ALGOL 60 provides for
argument evaluation in the environment of the caller through a consistent
renaming.

The different parameter mechanisms can all be implemented in terms of
(strict) call by value, if the necessary kinds of data are available. For cases
(2)-(4), the language must provide the concept of arbitrary references as
values. Call by name also requires the concept of procedures as values (of
procedure variables). Only when these concepts are unavailable are the
transmission mechanisms (2)-(5) important. This is clear in the language

2.5. Program Environments and Abstract Machine States 41

SIMULA, which (in addition to the value and name calls inherited from
ALGOL 60) provides call by reference for classes and strings. A more care
ful study shows that in truth this could be handled by an ordinary value call
for references. In ALGOL 68 the call by reference is stated in terms of the
strict call by value, by using an identity declaration to make the formal
parameter jp an alias of the argument ap :

refintjp =ap
Expressions that do not yield references are not permitted as arguments if
this explanation of call by reference is used, since the right hand side of the
identity declaration must yield a reference.

LAX follows the style of ALGOL 68, explaining its argument bindings in
terms of identity declarations. This provides a uniform treatment of all
parameter mechanisms, and also eliminates the parameter mechanism as a
distinct means of creating new access paths. Finally, the identity declaration
gives a simple implementation model.

Many language definitions do not specify parameter transmission
mechanisms explicitly. The compiler writer must therefore attempt to del
ineate the possibilities by a careful consideration of their effects. For exam
ple, both case (3) and case (4) satisfy the conditions of the FORTRAN 66
Standard, but none of the others do. Ada generally requires case (1), (2) or
(3). For composite objects, however, case (4) is permitted as an alternative.
Use of this alternative is at the discretion of the implementor, and the pro
grammer is warned that any assumptions about the particular transmission
mechanism invalidates the program.

Programs whose results depend upon the parameter transmission
mechanism are generally difficult to understand. The dependencies arise
when an object has two access paths, say via two formal parameters or via a
global variable and a formal parameter. This can be seen in the program of
Figure 2.6a, which yields the results of Figure 2.6b for the indicated param
eter mechanisms.

In addition to knowing what value an identifier is bound to, it is
important to know when the binding takes place. The parameter transmis
sion differences discussed above can, to a large extent, be explained in terms
of binding times. In general, we can distinguish the following binding times
(explained in terms of the identity declaration refreal x =a[i ,j +3]):

1. Binding at each access (corresponding to call by name): Upon each
access to x the identity of ali ,j +3] is re-determined.

2. Binding at first access: Upon the first access to x the identity of
ali ,j +3] will be determined. All assignments to i and j up to that point
will have an effect.

3. Binding upon declaration (corresponding to call by reference): After ela
boration of the identity declaration the identity of ali ,j +3] is fixed. In
several languages the identifiers on the right-hand side must not be
declared in the same range, to avoid circular definitions.

42 Chapter 2. Properties of Programming Languages

begin
int m: = 1, n;
proc p = (??? int j, ??? int k) int:

beginj: =j + 1; m: =m +k;j +k end;
n:=p(m,m +3)
end

Note: '???' depends upon the parameter mechanism.

a) An ALGOL 68 program

Mechanism m n j k Comment

Value 5 6 2 4 Strict value is not possible due to
the assignment to j .

Val ue IResult 2 6 2 4 Pure result is unreasonable in this
example.

Reference 6 10 6 4 Only j is a reference parameter
because an expression is illegal as
a reference parameter in ALGOL
68. Hence k is a value parame-
ter.

Name 7 17 7 10

Note: m and n were evaluated at the end of the main program, j and k at
the end ofp.

b) The effect of different parameter mechanisms

Figure 2.6. Parameter Transmission

4. Static binding: The identity of ali ,j +3] is fixed throughout the entire
program. In this case a must have static extent and statically-determined
size. The values of i and j must be defined prior to program execution
and be independent of it (hence they must be constants).

In this spectrum, call by result would be classified as binding after access.
Call by value is a binding of the value, not of the reference.

Determination of identity is least costly at run time for static binding and
most costly for binding at access. During the analysis of the program, the
compiler writer is most concerned with gathering as much information as
possible, to bind as early as he can. For this reason static binding breaks
into two subcases, which in general depend not upon the language but upon
other considerations:

4a. Binding at compilation time. The identity of the bound values is deter
mined during compilation.

4b. Binding at program initialization: The identity of files or of external
procedures will be determined during a pre-process to program execu
tion.

In case 4a the knowledge of the bound values can be used in optimization.

2.6. Notes and References 43

Case 4b permits repeated execution of the program with different bindings
without re-compilation.

Free identifiers, which are not defined in a procedure, must be explained
in the context of the procedure so that their meaning can be determined.
The definitions of standard identifiers, which may be used in any program
without further declaration, are fitted into this scheme by assuming that the
program is embedded in a standard environment containing definitions for
them.

By an external entity we mean an entity identified by a free identifier with
no definition in either the program or the standard environment. A program
with external entities cannot be compiled and then directly executed.
Another step, which obtains the objects associated with external entities
from a program library, must be introduced. We shall discuss this step, the
binding of programs, in Chapter II. In the simplest case the binding can be
separated from the compilation as an independent terminal step. This
separation is normally chosen for FORTRAN implementations. One conse
quence is that the compiler has no complete overview of the properties of
external entities and hence cannot verify that they are used consistently.
Thus in FORTRAN it is not usually possible for the compiler to determine
whether external subprograms and functions are called with the correct
number and type of parameters. For such checking, but also to develop the
correct accesses, the compiler must have specifications like those for formal
parameters for every external entity. Many implementations of ALGOL 60,
Pascal, etc. provide that such specifications precede or be included in
independently compiled procedures. Since in these languages, as in many
others, separate compilation of language units is not specified by the
language definition, the compiler writer himself must design the handling of
external values in conjunction with introduction of these possibilities. Ada
contains a far-reaching specification scheme for external entities.

2.6. Notes and References

We draw our examples from a number of languages. In order to avoid the
necessity for referencing the proper definition each time a language property
is discussed, we give an exhaustive list of the languages we use and their
defining documents at the beginning of the Bibliography.

Descriptions of languages in the ALGOL family are interpretive, as are
those of FORTRAN and COBOL. The description ofPL/1 with the help of
the Vienna definition method (VOL [Lucas 1969, Wegner 1972]) is likewise
interpretive. Other definition methods are the axiomatic [Hoare 1973] and
the denotational [Gordon 1979, Tennent 1981].

Many languages are described by a given implementation. We have
nothing against this, provided that the implementation is stated in an
abstract form such as that of EV ALQUOTE, the function that implements

44 Chapter 2. Properties of Programming Languages

the kernel of LISP interpretively. Often, however, it is never defined in a
high-level manner and a new implementation of the same language is very
difficult. The macro implementation of SNOBOL4 [Griswold 1972],
although highly successful, exhibits this problem.

We have associated the concept of type with the set of operations possible
on a value. This led us to conclude that size was a distinct property. Both
ALGOL 68 and Pascal, however, treat values of distinct sizes as having dis
tinct types. Habermann [1973] gives a critical assessment of this philosophy
and its effect in Pascal.

We have only skimmed the properties of numeric types. Knuth [1969]
presents the general view of floating point numbers and shows how floating
point operations relate to the corresponding mathematical operations on
real numbers. A machine-oriented model that relates the parameters of the
number system to specific characteristics of the target machine is given by
Brown [1977, 1981].

The contour model was originally described by Dijkstra [1960, 1963] as
an implementation technique for ALGOL 60. Johnston [1971] coined the
name and introduced the graphical representation used here. A formal
proof that the contour model is equivalent to consistent renaming and the
copy rule as used in the definition of ALGOL 60 was given by Jones and
Lucas [1971].

Parallel processing, exception handling and some other features of
modem languages have been intentionally omitted from the overview given
in this chapter.

EXERCISES

2.1. [Housden 1975, Morrison 1982) Consider the manipulation of character string
data in a general purpose programming language.
a. What set of operations should be available on strings?
b. Should strings be regarded as elementary or composite objects? Why?
c. Should strings be regarded as objects of a separate type (or types), or as

arrays of characters? Support your position.

2.2. Suppose that Pascal were changed so that the structural equivalence rule (Sec
tion 2.2.5) held for types and so that' i ' could precede any type constructor.
Show that the types m and p given in the text are equivalent, and that they are
also equivalent to the type q defined as follows:

type q = record x: real; y: i record x: real; y: i q end end;

2.3. Why is the Boolean expression (x > - I) and (sqrt(I + x) > y) meaningless in
Pascal, FORTRAN or ALGOL 60? Consider only structurally equivalent
expressions in the various languages, making any necessary syntactic changes.
Give a similar expression in Ada that is meaningful.

2.4. Give the rules for contour creation and destruction necessary to support the
module concept in Ada.

2.5. Consider a block-structured language such as SIMULA, in which coroutines

2.6. Notes and References 45

are allowed. Generalize the contour model with a retention strategy to handle
the following situation: If n coroutines are started in block b, all have contour c
as dynamic predecessor. By means of call-by-name parameters, a coroutine
can obtain access to an object 0 belonging to c; on the other hand, contour c
can disappear (because execution of b has terminated) long before termination
of the coroutine. 0 is then nonexistent, but the access path via the name
parameter remains. What possible solutions do you see for this problem?

2.6. The retention strategy discussed in connection with SIMULA in Exercise 2.5
could be used to support parallel processing in ALGOL 68. Quote sections of
the ALGOL 68 Report to show that a simpler strategy can be used.

2.7. What problems arise from result parameters in a language that permits jumps
out of procedures?

2.8. Consider a program in which several procedures execute on different proces
sors in a network. Each processor has its own memory. What parameter
mechanisms are appropriate in such a program?

CHAPTER 3

Properties of Real and Abstract
Machines

In this chapter we shall discuss the target machine properties relevant for
code generation, and the mapping of the language-oriented objects and
operations onto objects and operations of the target machine. Systematic
code generation must, of course, take account of the peculiarities and
weaknesses of the target computer's instruction set. It cannot, however,
become bogged down in exploitation of these special idiosyncrasies; the
payoff in code efficiency will not cover the implementation cost. Thus the
compiler writer endeavors to derive a model of the target machine that is not
distorted by exceptions, but is as uniform as possible, to serve as a base for
code generator construction. To this end some properties of the hardware
may be ignored, or gaps in the instruction set may be filled by subroutine
invocations or inline sequences treated as elementary operations. In partic
ular, the instruction set is extended by the operations of a run-time system
that interfaces input/output and similar actions to the operating system, and
attends to storage management.

Further extension of this idea leads to construction of abstract target
machines implemented on a real machine either interpretively or by means
of a further translation. (Interpretive abstract machines are common targets
of code generation for microprocessors due to the need for space efficiency.)
We shall not attempt a systematic treatment of the goals, methods and cri
teria for the design of abstract target machines here; see the Notes and
References for further guidance.

46

3.1. Basic Characteristics 47

3.1. Basic Characteristics

Most computers have machine languages that are typeless in the sense of
Section 2.2: The interpretation of an object is determined by the operations
applied to it. Exceptions are computers like the Burroughs 5000 and its des
cendants that associate 'tag bits' with each word. The extra bits reduce the
number of possible interpretations of the word, or even make that interpre
tation unique.

Objects reside in storage of various classes. Access paths, characteristic of
the particular storage class, are used to access these objects as operands or
results of operations. Storage classes, access paths and operations together
constitute a model defining the computer for code generation purposes.

In this section we shall survey typical storage classes, access paths and
operations, and indicate how instructions may be encoded. The remainder
of the chapter will show how these facilities can be used to implement the
source language concepts presented in Chapter 2.

3.1.1. Storage Classes Computer storage can usually be classified as
follows for code generation purposes:

• Main Storage: Randomly-accessible array of identically-sized locations.
• Stack: Storage accessed in a last-in, first-out manner.
• Integer Accumulator: Storage on which integer arithmetic instructions

operate.
• Floating point Accumulator: Storage on which floating point arithmetic

instructions operate.
• Base Register: Storage used in operand access functions to hold

addresses.
• Index Register: Storage used in operand access functions to hold integer

offsets.
• Program Counter: Storage used to hold the address of the next instruc

tion to be executed.
• Condition Code: Storage used to hold the result of a comparison or test

instruction.
• Other Special Register (e.g. Stack Pointer, Programmable Boolean Flag).
Examples of this classification applied to typical machines are given in Fig
ure 3.1.

Every computer provides at least the main storage and program counter
classes. (Whether main storage is virtual or real is of no concern.) A partic
ular storage component may belong to more than one class. For example,
the base register and index register classes are identical on most computers.
On the IBM 370 these are the 'general-purpose registers', which also serve as
integer accumulators. Storage classes may also overlap without being ident
ical, as in the case of the Univac 1100 series. These computers have sixteen
'index registers' belonging to the index and base register classes and sixteen
'general-purpose registers' belonging to the integer accumulator and floating

48 Chapter 3. Properties of Real and Abstract Machines

Main storage.
General registers RO, ... ,RI5 serving as integer accumulators, base

registers or index registers.
Register pairs (RO,RI),(R2,R3), ... ,(RI4,RI5) serving as integer ac

cumulators.
Floating point registers FO,F2,F4,F6 serving as floating point accu

mulators.
Program counter
Condition code

Main storage

a) IBM 370

Data registers 00, ... ,07 serving as integer accumulators or index
registers.

Address registers AO, ... ,A 7 serving as base or index registers.
Program counter PC
Condition code
Stack pointer A 7

b) Motorola 68000

Figure 3.1. Storage Classes

point accumulator classes. However, the two storage classes overlap, with
four registers belonging to both. These four registers may be accessed as
index registers or as general-purpose registers, and their properties depend
upon the access path used.

Whether a particular storage class exists, and if so what its properties are,
is partially a decision of the compiler writer. If, for example, he chooses to
access a specific portion of the main memory of the Motorola 68000 only via
stack operations relative to register A 7 then this portion of the memory
belongs to the storage class 'stack' and not the class 'main storage'. (Such a
decision can be made differently for the generated code and the run-time
system, implying that the memory belongs to one class as far as the gen
erated code is concerned and another for the run-time system.) Also, since
the properties of a storage class depend to a certain extent upon the avail
able access paths, a Motorola 68000 stack will differ from that of a Bur
roughs 6700 /7700.

Most storage classes consist of a sequence of numbered elements, the
storage cells. (The numbering may have gaps.) The number of a storage cell
is called its address. Every access path yields an algorithm, the effective
address of the access path, for computing the address of the storage cell
being accessed. We speak of byte-oriented computers if the cells in the main
storage class have a size of 8 bits, otherwise (e.g. 16,24,32,48 or 60 bits per
cell) we term the computer word-oriented. For a word-oriented computer the
cell sizes in the main storage and register classes are usually identical,
whereas the registers of a byte-oriented computer (except for some

3.1. Basic Characteristics 49

microprocessors) are 2, 4 or possibly 8 bytes long. In this case the storage
cell of the integer accumulator class is usually termed a word.

All storage is ultimately composed of bits. Some early computers (such
as the IBM 1400 series) used decimal arithmetic and addressing, and many
current computers provide a packed decimal (4 bits per digit) encoding.
None of these architectures, however, consider decimal digits to be atoms of
storage that cannot be further decomposed; all have facilities for accessing
the individual bits of the digit in some manner.

Single bits and bit sequences such as the decimal digits discussed above
cannot be accessed directly on most machines. Instead, the bit sequence is
characterized by a partial-word access path specifying the address of a storage
cell containing the sequence, the position of the sequence from the left or
right boundary of this unit, and the size of the sequence. Often this partial
word access path must be simulated by means of shifts and logical opera
tions.

Aggregates hold objects too large for a single storage cell. An aggregate
will usually be specified by the address of its first storage cell, and the cells
making up the aggregate by their addresses relative to that point. Often the
address of the aggregate must be divisible by a given integer, called the
alignment. Figure 3.2 lists main storage operand sizes and alignments for
typical machines.

Aggregates also appear in classes other than main storage. For example,
the 16 general purpose registers of the IBM 370 form a storage class of 4-
byte cells addressed by the numbers 0 through 15. Every register whose
address is even forms the first element of a larger entity (a register pair) used
in multiplication, division and shift operations. When a single-length

Operand Size (bits) Alignment

Byte 8 I
Halfword 16 2
Word 32 4
Doubleword 64 8
String up to 256x8 I
a) IBM 370 - Storage cell is an 8-bit byte

Operand Size (bits) Alignment

Bit I
Digit 4
Byte 8 I
Word 16 2
Longword 32 2

b) Motorola 68000 - Storage cell is an 8-bit byte

Figure 3.2. Operand Sizes

50 Chapter 3. Properties of Real and Abstract Machines

operand for such an operation is supplied, it should be placed in the proper
register of a pair rather than in an arbitrary register. The other register of
the pair is then automatically reserved for the operation, and cannot be used
for other purposes.

The entities of a particular level in a hierarchy of aggregates may overlap.
This occurs, for example, for the segments in the main storage class of the
Intel 8086 (65536-byte blocks whose addresses are divisible by 16) or the
4096-byte blocks addressable via a base or index register in the IBM 370.

Operations on registers usually involve the full register contents. When
an object whose size is smaller than that of a register is moved between a
register and storage of some other class, a change of representation may
occur. The value of the object must, however, remain invariant. Depending
upon the type of the object, it may be lengthened by inserting leading or
trailing zeros, or by inserting leading or trailing copies of the sign. When it
is shortened, we must guarantee that no significant information is lost. Thus
the working length of an object must be distinguished from the storage length.

3.1.2. Access Paths An access path describes the value or location of an
operand, result or jump target. We classify an instruction as a 0-, 1-,2-, or
3-address instruction according to the number of access paths it specifies.
Very seldom are there more than three access paths per instruction, and if
more do exist then they are usually implicit. (For example, in the MVeL
instruction of the IBM 370 the two register specifications R 1 and R2 actually
define four operands in registers RI, RI + I, R2 and R2+ I respectively.)

Each access path specifies the initial element of an operand or result in a
storage class. Access paths to some of the storage classes (such as the stack,
program counter, condition code and special registers) are not normally
explicit in the instruction. They will appear only when there is some degree
of freedom associated with their use, as in the PDP}} where any register can
be used as a stack pointer.

The most common explicit access paths involve one of the following
computations:
• Constant. The value appears explicitly in the instruction.
• Register. The content of the register is taken as the value.
• Register + constant. The sum of the content of the register and a constant

appearing explicitly in the instruction is taken as the value.
• Register+register. The sum of the contents of two registers is taken as the

value.
• Register+register+constant. The sum of the contents of two registers

and a constant appearing in the instruction is taken as the value.
The computed value may itself be used as the operand (immediate), it may
be used as the effective address of the operand in main storage (direct), or it
may be used as the address of an address (indirect). On some machines the
object fetched from main storage in the third case may specify another com
putation and further indirection, but this feature is rarely used in practice.

3.1. Basic Characteristics

i: Operand is the byte i from the instruction.
d(m,n): Operand is the 24-bit value obtained by (Rm) + (Rn) + d.

Only the low-order 24 bits of each register are used, and the
value is interpreted as positive. Overflow in the addition is ig
nored. If m or n is 0 then the content of the register is assumed
to be 0; the actual content of general register 0 is not used.

m: Operand is the content of general register Rm.
m: Operand is the content of general register pair (Rm,Rm + I).
m: Operand is the content of floating point register Fm.
d(m,n): Operand is the content of a memory area whose address is

the value computed as discussed above.
Implicit access to the condition code and program counter.

Note: 0<i<28, 0<d<212, 0<m,n<24

a) IBM 370

==iI6: Operand is the word following the instruction.
==i32: Operand is the doubleword following the instruction.
i16: Operand is the value (PC)+iI6.
is(Am): Operand is the value (PC) + (Am) + is.
is(Dn): Operand is the value (PC) + (Dn)+iS.
Am: Operand is the content of address register Am.
On: Operand is the content of data register On.
(Am): Operand is the content of a memory area whose address is

the content of address register Am.
iI6(Am): Operand is the content of a memory area whose address

is the value of(Am)+iI6.
is(Am,On): Operand is the content of a memory area whose ad

dress is the value of (Am) + (Dn)+ is.
(Am) + : Operand is the content of a memory area whose address

is the content of Am. Am is then incremented by the operand
length. The increment is never less than 2 for A7.

-(Am): Am is decremented by the operand length. Operand is
then the content of a memory area whose address is the content
of Am. The decrement is never less than 2 for A7.

Implicit access to the condition code and program counter.
b) Motorola 6S000

Figure 3.3. Access Paths

Figure 3.3 illustrates these concepts for typical machines.

51

The addresses of registers must almost always appear explicitly as con
stants in the instruction. In special cases they may be supplied implicitly, as
when the content of the (unspecified) program counter is added to a constant
given in the instruction (relative addressing). If the computed value is used as
an address then the registers must belong to the base register or index regis
ter class; the sum of the (unsigned) base address and (signed) index is often

52 Chapter 3. Properties of Real and Abstract Machines

interpreted modulo the address size. The values of constants in instructions
are frequently restricted to nonnegative values, and often their maximum
values are far less than the maximu!fl address. (An example is the restriction
to the range [0,4095] of the IBM 370.)

Not all computers allow every one of the access paths discussed above;
restrictions in the combination (operation, access path) can also occur.
Many of these restrictions arise from the properties of the machine's regis
ters. We distinguish five architectural categories based upon register struc
ture:
• Storage-to-storage. All operands of a computational operation are taken

from main storage, and the result is placed into main storage (IBM 1400
series, IBM 1620). Storage-to-storage operations appear as a supplemen
tary concept in many processors.

• Stack. All operands of a computational operator are removed from the
top of the stack, and the result is placed onto the top of the stack (Bur
roughs 5000, 6000 and 7000 series, ICL 2900 family). The stack appears
as a supplementary concept in many processors.

• Single Accumulator. One operand of a computational operator is taken
from the accumulator, and the result is placed into the accumulator; all
other registers, including any accumulator extension, have special tasks or
cannot participate in all operations (IBM 7040/7090, Control Data 3000
series, many process-control computers, Intel 8080 and microprocessors
derived from it).

• Multiple Accumulator. One operand of a computational operator is
taken from one of the accumulators, and the result is returned to that
accumulator; long operands and results are accommodated by pairing the
accumulators (DEC PDPll, Motorola 68000, IBM 370, Univac 1100)

• Storage Hierarchy. All operands of a computational operator are taken
from accumulators, and the result is returned to an accumulator (Control
Data 6000, 7000 and Cyber series). This architecture is identical to the
storage-to-storage architecture if we view the accumulators as primary
storage and the main storage as auxiliary storage.

3.13. Operations Usually the instruction set of a computer provides
four general classes of operation:
• Computation: Implements a function from n-tuples of values to m-tuples

of values. The function may affect the state. Example: A divide instruc
tion whose arguments are a single-length integer divisor and a double
length integer dividend, whose results are a single-length integer quotient
and a single-length integer remainder, and which may produce a divide
check interrupt.

• Data transfer: Copies information, either within one storage class or from
one storage class to another. Examples: A move instruction that copies
the contents of one register to another; a read instruction that copies
information from a disc to main storage.

3.2. Representation of Language Elements 53

• Sequencing: Alters the normal execution sequence, either conditionally
or unconditionally. Examples: A halt instruction that causes execution to
terminate; a conditional jump instruction that causes the next instruction
to be taken from a given address if a given register contains zero .

• Environment control: Alters the environment in which execution is car
ried out. The alteration may involve a transfer of control. Examples: An
interrupt disable instruction that prohibits certain interrupts from occur
ring; a procedure call instruction that updates addressing registers, thus
changing the program's addressing environment.

It is not useful to attempt to assign each instruction unambiguously to one of
these classes. Rather the classes should be used as templates to evaluate the
properties of an instruction when deciding how to implement language
operations (Section 3.2.3)

It must be possible for the control unit of a computer to determine the
operation and all of the access paths from the encoding of an instruction.
Older computer designs usually had a single instruction size of, say, 24 or 36
bits. Fixed subfields were used to specify the operation and the various
access paths. Since not all instructions require the same access paths, some
of these subfields were unused in some cases. In an information-theoretic
sense, this approach led to an inefficient encoding.

Coding efficiency is increased in more modem computers by using
several different instruction sizes. Thus the IBM 370 has 16, 32 and 48 bit
(2, 4 and 6 byte) instructions. The first byte is the operation code, which
determines the length and layout of the instruction as well as the operation
to be carried out. Nearly all microprocessors have variable-size operation
codes as well. In this case the encoding process carried out by the assembly
task may require larger tables, but otherwise the compiler is not affected.
Variable-length instructions may also lead to more complex criteria of
optimality.

On some machines one or more operation codes remain unallocated to
hardware functions. Execution of an instruction specifying one of these
operation codes results in an interrupt, which can be used to activate a sub
program. Thus these undefined operations can be given meaning by
software, allowing the compiler writer to extend the instruction set of the
target machine. Such programmable extension of the instruction set is
sometimes systematically supported by the hardware, in that the access
paths to operands at specific positions are placed at the disposal of the sub
program as parameters. The XOP instruction of the Texas Instruments 990
has this property. (TRAP allows programmable instruction set extension on
the PDPll, but does not make special access path provisions.)

3.2. Representation of Language Elements
In this and following sections we shall discuss the mapping of the language
elements of Chapter 2 onto the machine elements of Section 3.1. This map-

54 Chapter 3. Properties of Real and Abstract Machines

ping is really the specification of the tasks of the code generator and the
run-time system, and must be performed for each language/machine pair.

3.2.1. Elementary Objects A combination of space and instruction
questions must be answered in order to determine the mapping of elemen
tary types such as integer, real, character, Boolean and other enumerations.
Implementation of the relevant basic operations is particularly important for
Boolean values.

For integers, the first decision is whether to use a decimal (4 bits/digit) or
binary encoding. Decimal encoding implies that decimal operations exist
(as on the IBM 370), or at least that there is a facility to detect a carry (result
digit> 9) and to increment the next higher position (as on many micropro
cessors). The values of variables have varying size with this encoding, which
complicates assignment operations. Decimal encoding is worth considering
if very few operations take place on each value (the cost of the translation
from decimal to binary on input and the reverse translation on output is
greater than the expected gain from using binary operations internally), or if
the numeric incompatibility of binary and decimal arithmetic is a significant
problem (as with some financial applications).

Binary encodings are normally fixed-length, and hence when a binary
encoding is chosen we must fix the length of the representation in terms of
the maximum source language integer. Since most programming languages
leave the range of integer values unspecified, we fall back upon the rule of
thumb that all addresses be representable as integers. This causes us to con
sider integer representations of 16, 24 or 32 bits. The representation must at
least include all conceivable indexes; 16 bits will suffice for this purpose on
small machines. We must also consider available instructions. For exam
ple, on the IBM 370 we would rule out 16 bits because no divide instruction
is included for 16 bit operands and because the test to determine whether
intermediate 32-bit results could be represented in 16 bits would slow execu
tion considerably. The extra instructions would, in many cases, wipe out the
savings resulting from the 16-bit representation. Similar reasoning would
eliminate the 24-bit representation on most computers.

A binary encoding with n bits can represent 2n distinct values, an even
number. Any range of integers symmetric about 0, however, contains an odd
number of values. This basic mismatch leads to anomalous behavior of
machine arithmetic. The exact nature of the anomaly depends upon the
representation chosen for negative numbers. A sign-magnitude or
diminished-radix complement (e.g. I's-complement) representation results
in two zero values, one positive and the other negative; a radix complement
(e.g. 2's-complement) representation results in a 'most negative' number that
has no positive counterpart. The extra-zero anomaly is usually the more
difficult of the two for the compiler writer. It may involve additional
instructions to ensure that comparisons yield the correct result, or compli
cated analysis to prove that these instructions need not be generated.

3.2. Representation of Language Elements 55

Comparisons may prove difficult if they are not provided as machine
instructions. Arithmetic instructions must then be used, and precautions
taken against erroneous results due to over- and underflow. For example,
consider a machine with integers in the range [-32767,32767]. If a > b is
implemented as (a -b) > 0 then an overflow will occur when comparing
values a = 16384 and b = -16384. The comparison code must either antici
pate and avoid this case, or handle the overflow and interpret the result
properly. In either case, a long instruction sequence may be required.
Underflow may occur in floating point comparisons implemented by a sub
traction when the operand difference is small. Since many machines deliver
o as a result, without indicating that an underflow has occurred, anticipation
and avoidance are required.

Actually, the symptom of the floating point underflow problem is that a
comparison asserts the equality of two numbers when they are really
different. We could argue that the inherent inaccuracy of floating point
operations makes equality testing a risky business anyway. The program
mer must thoroughly understand the algorithm and its interaction with the
machine representation before using equality tests, and hence we can inform
him of the problem and then forget about it. This position is defensible pro
vided that we can guarantee that a comparison will never yield an incorrect
relative magnitude (i.e. it will never report a > b when a is less than b, or
vice-versa).

If, as in Pascal, subranges m .. n of integers can be specified as types, the
compiler writer must decide what use to make of this information. When
the usual integer range can be exceeded (not possible in Pascal) this forces
the introduction of higher-precision arithmetic (in the extreme case, of
variable-length arithmetic). For small subranges the size of the range can
be used to reduce the number of bits required in the representation, if neces
sary by replacing the integer i by (i -lower _bound), although this last is not
recommended. The important question is whether arithmetic operations
exist for the shorter operands, or at least whether the conversion between
working length and storage length can easily be carried out. (Recall that no
significant bits may be discarded when shortening the representation.)

The possibilities for mapping real numbers are constrained by the float
ing point operations of the hardware or the given subroutine package. (If
neither is available on the target machine then implementation should fol
low the IEEE standard.) The only real choice to be made involves the preci
sion of the significand. This decision must be based upon the milieu in
which the compiler will be used and upon numeric problems whose discus
sion is beyond the scope of this book.

F or characters and character strings the choice of mapping is restricted to
the specification of the character code. Assuming that this is not fixed by the
source language, there are two choices: either a standard code such as the
ISO 7-bit code (ASCII), or the code accepted by the target computer's
operating system for input/output of character strings (EBCDIC or other 6-

56 Chapter 3. Properties of Real and Abstract Machines

1 Bit The bit position is specified by two masks, MO= B' 0 ... 010 ... 0' and
Ml =B' 1...101...1'.

1 Byte Let ° representfalse, K represent true.
a) Possible representations for Boolean values

Construct Code, depending on representation
Byte Bit

TM MO,p
BO Ll

MVC
NI Ml,q

q:=p q,p
B L2

Ll OJ MO,q
L2 continuation

p:= notp XI K,p XI MO,p
TM MO,p

OC
BZ Ll

q:=q orp q,p
OJ MO,q

Ll continuation
TM MO,p

q:=q andp NC BO Ll
q,p

NI MO,q
Ll continuation

(The masks MO and Ml are those appropriate to the second operand of the
instruction in which they appear.)

b) Code using the masks from (a)

Figure 3.4. Boolean Operations on the IBM 370

or 8-bit code; note that EBCDIC varies from one manufacturer to another).
Since most computers provide quite efficient instructions for character trans
lation, use of the standard code is often preferable.

The representation of other finite types reduces to the question of suitably
representing the integers Ooon -I, which we have already discussed. One
exception is the Boolean values false and true. Only a few machines are pro
vided with instructions that access single bits. If these instructions are
absent, bit operations must be implemented by long sequences of code (Fig
ure 3.4). In such cases it is appropriate to implement Boolean variables and
values as bytes or words. Provided that the source language has not con
strained their coding, the choice of representation depends upon the realiza
tion of operations with Boolean operands or Boolean results. In making this
decision, note that comparison and relational operations occur an order of
magnitude more frequently than all other Boolean operations. Also, the
operands of and and or are much more frequently relations than Boolean
variables. In particular, the implementation of and and or by jump cascades
(Section 3.2.3) introduces the possibilities (false = 0, true=ft 0) and (false> 0,

3.2. Representation of Language Elements 57

true<O) or their inverses in addition to the classical (jalse=O,true=l).
These possibilities underscore the use of more than one bit to represent a
Boolean value.

3.2.2. Composite Objects For composite objects, we are interested in
the properties of the standard representation and the possibilities for reduc
ing storage requirements.

An object a: array [m .. n] of M will be represented by a sequence of
(n -m + 1) components of type M. The address of element ali] becomes:

address(a[mD+(i -m)* I M I = address(a[OD+i* I M I
Here I M I is the size of an element in address units and address (a [OD is the
'fictitious starting address' of the array. The address of a[O] is computed
from the location of the array in storage; such an element need not actually
exist. In fact, address (a [OD could be an invalid address lying outside of the
address space.

The usual representation of an object b: array [m I .. n], ... ,mr .. nr] of M
occupies k l *k2*'" *kr * 1M I contiguous memory cells, where kj =
nj -mj + 1, j = 1, ... ,r. The address of element b[i], ... ,ir] is given by
the following storage mapping function when the array is stored in row
major order:

address (b [m 1> ••• , mr D+(i I-m 1)*k2*' .. *kr * I M I
+ ... +(ir-mr)* 1M I

=address(b[O, ... ,O])+i l *k2* ... *kr* I M 1+'" +ir* I M I
By appropriate factoring, this last expression can be rewritten as:

address (b[O, ... ,0])+«· .. (i 1 *k2 +i2)*k3 + ... +ir)* I M I
If the array is stored in column-major order then the order of the indices in
the polynomial is reversed:

address (b [0, ... ,0])+«- .. (ir *kr _I +ir-I)*kr- 2 + ... +i 1)* I M I
The choice of row-major or column-major order is a significant one.

ALGOL 60 does not specify any particular choice, but many ALGOL 60
compilers have used row-major order. Pascal implicitly requires row-major
order, and FORTRAN explicitly specifies column-major order. This means
that Pascal arrays must be transposed in order to be used as parameters to
FORTRAN library routines. In the absence of language constraints, make
the choice that corresponds to the most extensive library software on the tar
get machine.

Access to b[i I> ••• ,ir] is undefined if the relationship mj <,ij <,nj is not
satisfied for some j = 1, ... ,r. To increase reliability, this relationship
should be checked at run time if the compiler cannot verify it in other ways
(for example, that ij is the controlled variable of a loop and the starting and

58 Chapter 3. Properties of Real and Abstract Machines

ending values satisfy the condition). To make the check, we need to evalu
ate a storage mapping function with the following fixed parameters (or its
product with the size of the single element):

r,address(b [0, ... ,0)), mI> . .. ,mr , n 1, ... ,nr

Together, these parameters constitute the O"oy descriptor. The array
descriptor must be stored explicitly for dynamic and flexible arrays, even in
the trivial case r= 1. For static arrays the parameters may appear directly as
immediate operands in the instructions for computing the mapping function.
Several array descriptors may correspond to a single array, so that in addi
tion to questions of equality of array components we have questions of
equality or identity of array descriptors.

An r dimensional array b can also be thought of as an array of r -1
dimensional arrays. We might apply this perception to an object
c: array [l..m ,l..n] of integer, representing it as m one-dimensional arrays
of type t =array [l..n] of integer. The fictitious starting addresses of these
arrays are then stored in an object 0: array [l..m] of it. To be sure, this
descriptor technique raises the storage requirements of c from m *n to
m *n +m locations for integers or addresses; in return it speeds up access on
many machines by replacing the multiplication by n in the mapping func
tion address (c [0,0]) +(i *n + j)* I integer I by an indexed memory reference.
The saving may be particularly significant on computers that have no
hardware multiply instruction, but even then there are contraindications:
Multiplications occurring in array accesses are particularly amenable to
elimination via simple optimizations.

The descriptor technique is supported by hardware on Burroughs
670017700 machines. There, the rows of a two-dimensional array are stored
in segments addressed by special segment descriptors. The segment descrip
tors, which the hardware can identify, are used to access these rows. Actual
allocation of storage to the rows is handled by the operating system and
occurs at the first reference rather than at the declaration. The allocation
process, which is identical to the technique for handling page faults, is also
applied to one-dimensional arrays. Each array or array row is divided into
pages of up to 256 words. Huge arrays can be declared if the actual storage
requirements are unknown, and only that portion actually referenced is ever
allocated.

Character strings and sets are usually implemented as arrays of character
and Boolean values respectively. In both cases it pays to pack the arrays. In
principle, character string variables have variable length. Linked lists pro
vide an appropriate implementation; each list element contains a segment of
the string. List elements can be introduced or removed at will. Character
strings with fixed maximum length can be represented by arrays of this
length. When an array of Boolean values is packed, each component is
represented by a single bit, even when simple Boolean variables are
represented by larger storage units as discussed above.

3.2. Representation of Language Elements 59

A record is represented by a succession of fields. If the fields of a record
have alignment constraints, the alignment of the entire record must be con
strained also in order to guarantee that the alignment constraints of the
fields are met. An appropriate choice for the alignment constraint of the
record is the most stringent of the alignment constraints of its fields. Thus a
record containing fields with alignments of 2, 4 and 8 bytes would itself have
an alignment of 8 bytes. Whenever storage for an object with this record
type is allocated, its starting address must satisfy the alignment constraint.
Note that this applies to anonymous objects as well as objects declared
explicitly.

The amount of storage occupied by the record may depend strongly upon
the order of the fields, due to their sizes and alignment constraints. For
example, consider a byte-oriented machine on which a character variable is
represented by one byte with no alignment constraint and an integer vari
able occupies four bytes and is constrained to begin at an address divisible
by 4. If a record contained an integer field followed by a character field fol
lowed by a second integer field then it would occupy 12 bytes: There would
be a 3-byte gap following the character field, due to the alignment constraint
on integer variables. By reordering the fields, this gap could be eliminated.
Most programming languages permit the compiler to do such reordering.

Records with variants can be implemented with the variants sharing
storage. If it is known from the beginning that only one variant will be used
and that the value of the variant selector will never change, then the storage
requirement may be reduced to exactly that for the specified variant. This
requirement is often satisfied by anonymous records; Pascal distinguishes
the calls new (p) and new (p, variantselector) as constructors for anonymous
records. In the latter case the value of the variant selector may not change,
whereas in the former all variants are permitted.

The gaps arising from the alignment constraints on the fields of a record
can be eliminated by simply ignoring those constraints and placing the fields
one after another in memory. This packing of the components generally
increases the cost in time and instructions for field access considerably. The
cost almost always outweighs the savings gained from packing a single
record; packing pays only when many identical records are allocated simul
taneously. Packing is often restricted to partial words, leaving objects of
word length (register length) or longer aligned. On byte-oriented machines
it may pay to pack only the representation of sets to the bit level.

Packing alters the access function of the components of a composite
object: The selector must now specify not only the relative address of the
component, but also its position within the storage cell. On some computers
extraction of a partial word can be specified as part of an operand address,
but usually extra instructions are required. This has the result that packed
components of arrays, record and sets may not be accessible via normal
machine addresses. They cannot, therefore, appear as reference parameters.

Machine-dependent programs sometimes use records as templates for

60 Chapter 3. Properties of Real and Abstract Machines

hardware objects. For example, the assembly phase of a compiler might use
a record to describe the encoding of a machine instruction. The need for a
fixed layout in such cases violates the abstract nature of the record, and
some additional mechanism (such as the representation specification of Ada)
is necessary to specify this. If the language does not provide any special
mechanism, the compiler writer can overload the concept of packing by
guaranteeing that the fields of a packed record will be allocated in the order
given by the programmer.

Addresses are normally used to represent pointer values. Addresses rela
tive to the beginning of the storage area containing the objects are often
sufficient, and may require less storage than full addresses. If, as in ALGOL
68, pointers have bounded lifetime, and the correctness of assignments to
reference variables must be checked at run time, we must add information
to the pointer from which its lifetime may be determined. In general the
starting address of the activation record (Section 3.3) containing the refer
ence object serves this purpose; reference objects of unbounded extent are
denoted by the starting address of the stack. A comparison of these
addresses for relative magnitude then represents inclusion oflifetimes.

3.2.3. Expressions Because of the diversity of machine instruction sets,
we can only give the general principles behind the mapping of expressions
here. An important point to remember throughout the discussion, both here
and in Section 3.2.4, is that the quality of the generated code is determined
by the way it treats cases normally occurring in practice rather than by its
handling of the general case. Moreover, local code characteristics have a
greater impact than any optimizations on the overall quality. Table 3.5
shows the static frequencies of operations in a large body of Pascal text.
Note the preponderance of memory accesses over computation, but
remember that indexing generally involves both multiplication and addition.
Remember also that these are static frequencies; dynamic frequencies might
be quite different because a program usually spends about 90% of its time in
heavily-used regions accounting for less than 10% of the overall code.

Single target machine instructions directly implement operations appear
ing in the structure tree only in the simplest cases (such as integer arith
metic). A node of the structure tree generally corresponds to a sequence of
machine instructions, which may appear either directly in the generated
code or as a subroutine call. If subroutines are used then they may be gath
ered together into an interpreter consisting of a control loop containing a
large case statement. The operations are then simply selectors used to
choose the proper case, and may be regarded as instructions of a new
(abstract) machine. This approach does not really answer the question of
realizing language elements on a target machine; it merely changes the tar
get machine, hopefully simplifying the problem.

A closed sequence is invariably slower than the corresponding open
sequence because of the cost of the transfers in and out. It would therefore

3.2. Representation of Language Elements 61

Table 3.5. Static Frequencies of Pascal Operators [Carter 1982]

Structure Tree Operator Percent of All Operators

Access a variable 27
Assign 13
Select a field of a record 9.7
Access a value parameter 8.1
Call a procedure 7.8
Index an array (each subscript) 6.4
Access an array 6. I
Compare for equality (any operands) 2.7
Access a variable parameter 2.6
Add integers 2.3
Write a text line 1.9
Dereference a pointer variable 1.9
Compare for inequality (any operands) 1.3
Write a single value 1.2
Construct a set 1.0
not 0.7
and 0.7
Compare for greater (any operands) 0.5
Test for an element in a set 0.5
m M
All other operators 3.8

be used only if commensurate savings in space were possible. Some care
must be taken in evaluating the tradeoffs, because both open and closed
sequences usually involve setup code for the operands. It is easy to overlook
this code, making erroneous assumptions about the operand locations, and
thereby arrive at the wrong decision. Recall from Section 3.1.3 that it is
sometimes possible to take advantage of unused operation codes to access
closed instruction sequences. Depending upon the details of the hardware,
the time overhead for this method may be either higher or lower than that of
a conventional call. It is probably most useful for implementing facilities
that might be provided by hardware. The typical example is floating point
arithmetic on a microprocessor with integer operations only. A floating
point operation usually involves a long sequence of instructions on such a
machine (which may not even be capable of integer multiplication or divi
sion), and thus the entry/exit overhead is negligible. If the user later adds a
floating-point chip, and controls it with the previously unused operation
codes, no changes to the code generator are required. Even when different
operation codes are used the changes are minimal.

An object, label or procedure is addressable if its effective address can be
expressed by the relevant access path of an instruction. For entities that are
not addressable, additional operations and temporary storage are required
to compute the effective address. The allowable combinations of operation

62 Chapter 3. Properties of Real and Abstract Machines

L RI,I
A RI,] Result in RI
M RO,K Multiplicand from RI, product to (RO,RI)
D RO,L Dividend from (RO,RI)

L
A
A
SRDA
D

a) Code for the expression «i + j)*k /1)

RO,I
RO,]
RO,K Result in RO
RO,32 Extend to double, result in (RO,RI)
RO,L Dividend from (RO,R 1)

b) Code for the expression «i +j +k)/l)

Figure 3.6. Optimum Instruction Sequences for the IBM 370

and access function exert a very strong influence upon the code generation
process because of this. On the Motorola 68000, for example, specification
of the operation can be largely separated from selection of the access path,
and operand addressability is almost independent of the operator. Many
IBM 370 instructions, on the other hand, work only when the second
operand is in a register. In other cases memory access is possible, but only
via a base register without indexing. This leads to the problem that an
operand may be addressable in the context of one operation but not in the
context of another.

When an instruction set contains such asymmetries, the simplest solution
is to define the abstract machine for the source-to-target mapping with a
uniform access function, reserving the resources (usually one or two regis
ters) needed to implement the uniform access function for any instruction.
Many code sequences require additional resources internally in any event.
These can often be standardized across the code sequences and used to pro
vide the uniform access function in addition. The only constraint on
resources reserved for the uniform access function. is that they have no
inter-sequence meaning; they can be used arbitrarily within a sequence.

Consider the tree for an expression. The addressability of entities
described by leaves is determined by the way in which the environment is
encoded in the machine state. (We shall discuss possibilities for environ
ment encoding in Section 3.3.) For entities described by interior nodes,
however, the addressability depends upon the code sequence that imple
ments the node. It is often possible to vary a code sequence, without chang
ing its cost, to meet the addressability requirements of another node. Figure
3.6 shows a typical example. Here the constraints of the IBM 370 instruc
tion set require that a multiplicand be in the odd-numbered register of a
pair, and that the even-numbered register of that pair be free. Similarly, the
optimum mechanism for converting a single-length value to double-length
requires its argument to be in the even register of the pair used to hold its
result. An important part of the source-to-target mapping design is the

3.2. Representation of Language Elements 63

determination of the information made available by a node to its neighbors
in the tree, and how this information affects the individual code sequences.

Interior nodes whose operations yield addresses, such as indexing and
field selection nodes, mayor may not result in code sequences. Addressabil
ity is the key factor in this decision: No code is required if an access func
tion describing the node's result can be built, and if that access function is
acceptable to the instruction using the result. The richer the set of access
functions, the more nodes can be implemented simply by access function
restructuring. In fact, it is often possible to absorb nodes describing normal
value operations into access functions that use their result. Figure 3.7 is a
tree for b[i + 12]. As we shall see in Section 3.3, the local byte array b might
have access function 36(13) on an IBM 370 (here register 13 gives the base
address of the local contour, and 36 is the relative byte location of b within
that contour). After loading the value of i into register 1, the effects of the
index and addition nodes can be combined into the access function 48(13,1).
This access function (Figure 3.3a) can be used to obtain the second argu
ment in any RX-format instruction on the IBM 370.

Some machines incorporate automatic incrementing or decrementing of a
register content into certain access functions. These facilities are easy to use
in source-to-target mappings for special purposes such as stack manipula
tion. Their general use, for example in combining the increment of a loop
control variable with the last use of that variable as an index, is much more
difficult because it leads to 'combinatorial explosion' in the number of cases
that the code generator must examine. Such optimizations should be pro
vided by a separate process (peephole optimization), rather than being
incorporated into the source-to-target mapping.

Many Boolean expressions occur in contexts such as conditional state
ments and loops, where the result is used only to determine the flow of con
trol. Moreover, most of these expressions either are relations themselves or
are composed of relations. On the majority of computers a relation is

Figure 3.7. Tree for a Typical Array Access

64 Chapter 3. Properties of Real and Abstract Machines

if (a <b) and (c =d) or (e >!) then statement;
a) A conditional

L
C
BNL
L
C
BEQ

LlO L
C
BNH

RI,a
RI,b
LlO
RI,c
RI,d
Ll
RI,e
RI,!
L2

Note condition reversal here

Condition is not reversed here

Reversed
L I Code for statement
L2 Code following the conditional

b) IBM 370 code corresponding to (a)

Figure 3.8. Jump Cascades

evaluated by performing a comparison or arithmetic operation and then
executing a transfer of control based upon the result. The upshot is that
such expressions can be implemented most conveniently by omitting
Boolean computations completely! Figure 3.8 illustrates the concept, which
is called a jump cascade.

The concept of a jump cascade is completely independent of the concept
of short-circuit evaluation discussed in Section 2.3. It appears that Figure
3.8 is performing short-circuit evaluation because, for example, c is not
fetched unless the value of a is less than that of b. But fetching a simple
variable has no side effect, and hence the short-circuit evaluation is not
detectable. If c were a parameterless function with a side effect then it
should be invoked prior to the start of the code sequence of Figure 3.8b, and
the c in that code sequence would represent temporary storage holding the
function result. Thus we see that questions of short-circuit evaluation affect
only the relative placement of code belonging to the jump cascade and code
for evaluating the operands of the relations.

3.2.4. Control Structures A node representing a control structure gen
erally results in several disjoint code sequences rather than a single code
sequence. The meanings of and relationships among the sequences depend
primarily upon the source language, and hence general schemata can be
used to specify them. Each of the disjoint sequences then can be thought of
as an abstract machine operation with certain defined properties and imple
mented individually.

The goto statement is implemented by an unconditional jump instruction.
If the jump leaves a block or procedure then additional operations, dis
cussed in Section 3.3, are needed to adjust the state. In expression-oriented
languages, a jump out of an expression may require adjustment of a

3.2. Representation of Language Elements

condition(e, LI ,L2)
LI: clause
L2:

a) if e then clause;

condition(e,L 1 ,L2)
LI: clausel

GOTOL
L2: clause 2

L:
b) if e then clause 1 else clause 2 ;

select(e, k 1 ,L I, ... , kn ,Ln,LO)
LI: clausel

GOTOL

Ln: clausen
GOTOL

LO: clause 0

L:
c) case e of kl :clausel; ... ; kn :clausen else clauseo;

GOTOL
LI: clause
L: condition(e,LI,L2)
L2:

d) while e do clause;

LI: clause

L2:
condition(e, L2,L 1)

e) repeat clause until e

forbegin(i, e l, e2, e3)
clause
forend(i, e2, e3)

f) for i : =e 1 by e2 to e3 do clause;

Figure 3.9. Implementation Schemata for Common Control Structures

65

hardware stack used for temporary storage of intermediate values. This
adjustment is not necessary when the stack is simply an area of memory that
the compiler manages as a stack, computing the necessary offsets at compile
time. (Unless use of a hardware stack permits cheaper access functions, it
should be avoided for this reason.)

Schemata for common control structures are given in Figure 3.9. The
operation 'condition(expression,true.-iabel,false.-iabel), embodies the jump

66 Chapter 3. Properties of Real and Abstract Machines

target: array [kmin .. kmax] of address;
k: integer;
k:=e;
if k > kmin and k < kmax then goto target [k] else goto L 0;

a) General schema for 'select' (Figure 3.9c)

LA
LOOP ST

L
LA
LA
BXLE

1, e I
l,i

1, i
2,e2
3,e3
1,2,LOOP

el = constant < 212

Body of the clause

e2 = constant < 212
e3 = constant < 212

b) IBM 370 code for special-case forbegin ... forend

i:=el; t:=e3;
if i > t then goto 13 else goto 12;
lI:i:=i+l;
12: ... (* Body of the clause *)
if i < t then goto II ;
13:

c) Schema for forbegin ... forend when the step is I

Figure 3.10. Implementing Abstract Operations for Control Structures

cascade discussed in Section 3.2.3. The precise mechanism used to imple
ment the analogous 'select' operation depends upon the set {kl ... km }. Let
k min be the smallest and k max the largest values in this set. If 'most' of the
values in the range [kmin' kmaxl are members of the set then 'select' is imple
mented as shown in Figure 3.l0a. Each element of target that does not
correspond to an element of {k I ... km } is set to 'LO'. When the selector set
is sparse and its span is large (for example, the set 0, 5000, 10000), a decision
tree or perfect hash function should be used instead of an array. The choice
of representation is strictly a space/time tradeoff, and must be made by the
code generator for each case clause. The source-to-target mapping must
specify the parameters to be used in making this choice.

By moving the test to the end of the loop in Figure 3.9d, we reduce by
one the number of jumps executed each time around the loop without
changing the total number of instructions required. Further, if the target
machine can execute independent instructions in parallel, this schema pro
vides more opportunity for such parallelism than one in which the test is at
the beginning.

'Forbegin' and 'forend' can be quite complex, depending upon what the
compiler can deduce about the bounds and step, and how the language
definition treats the controlled variable. As an example, suppose that the
step and bounds are constants less than 212, the step is positive, and the

3.2. Representation of Language Elements 67

language definition states that the value of the controlled variable is
undefined on exit from the loop. Figure 3.lOb shows the best IBM 370
implementation for this case, which is probably one of the most common.
(We assume that the body of the loop is too complex to permit retention of
values in registers.) Note that the label LOOP is defined within the 'forbe
gin' operation, unlike the labels used by the other iterations in Figure 3.9. If
we permit the bounds to be general expressions, but specify the step to be I,
the general schema of Figure 3.lOc holds. This schema works even if the
value of the upper bound is the largest representable integer, since it does
not attempt to increment the controlled variable after reaching the upper
bound. More complex cases are certainly possible, but they occur only
infrequently. It is probably best to implement the abstract operations by
subroutine calls in those cases (Exercise 3.9).

Procedure and function invocations are control structures that also mani
pulate the state. Development of the instruction sequences making up these
invocations involves decisions about the form of parameter transmission,
and the construction of the activation record - the area of memory contain
ing the parameters and local variables.

A normal procedure invocation, in its most general form, involves three
abstract operations:
• Callbegin: Obtain access to the an activation record of the procedure.
• Transfer: Transfer control to the procedure.
• Callend: Relinquish access to the activation record of the procedure.
Argument computation and transmission instructions are placed between
'callbegin' and 'transfer'; instructions that retrieve and store the values of
result parameters lie between 'transfer' and 'callend'. The activation record
of the procedure is accessible to the caller between 'callbegin' and 'callend'.

In simple cases, when the procedure calls no other procedures and does
not require complex parameters, the activation record can be deleted
entirely and the parameters treated as local variables of the environment
statically surrounding the procedure declaration. The invocation then
reduces to a sequence of assignments to these variables and a simple subrou
tine jump. If, as in the case of elementary functions, only one or two param
eters are involved then they can be passed in registers. Note that such
special treatment leads to difficulties if the functions are invoked as formal
parameters. The identity of the procedure is not fixed under those cir
cumstances, and hence special handling of the call or parameter transmis
sion is impossible.

Invocations of formal procedures also cause problems if, as in ALGOL
60, the number and types of the parameters is not statically specified and
must be verified at execution time. These dynamic checks require addi
tional instructions not only at the call site, but also at the procedure entry.
The latter instructions must be avoided by a normal call, and therefore it is
useful for the procedure to have two distinct entry points - one with and
one without the tests.

68 Chapter 3. Properties of Real and Abstract Machines

Declarations of local variables produce executable code only when some
initialization is required. For dynamic arrays, initialization includes bounds
computation, storage allocation, and construction of the array descriptor.
Normally only the bounds computation would be realized as in-line code; a
library subroutine would be invoked to perform the remaining tasks.

At least for test purposes, every variable that is not explicitly initialized
should be implicitly assigned an initial value. The value should be chosen
so that its use is likely to lead to an error report; values recognized as illegal
by the target machine hardware are thus best. Under no circumstances
should 0 be used for implicit initialization. If it is, the programmer will too
easily overlook missing explicit initialization or assume that the implicit ini
tialization is a defined property of the language and hence write incorrect
programs.

Procedure and type declarations do not usually lead to code that is exe
cuted at the site of the declaration. Type declarations only result in machine
instructions if array descriptors or other variables must be initialized. As
with procedures, these instructions constitute a subprogram that is not called
at the point of declaration.

ALGOL 68 identity declarations of the form m id = expression are con
sistently replaced by initialized variable declarations m id': = expression.
Here id' is a new internal name, and every applied occurrence of id is con
sistently replaced by id' i. The initialization remains the only assignment
to id'. Simplification of this schema is possible when the expression can be
evaluated at compile time and all occurrences of id replaced by this value.

The same schema describes argument transmission for the reference and
strict value mechanisms, in particular in ALGOL 68. Transmission of a
reference parameter is implemented by initialization of an internal reference
variable: ref m parameter =argument becomes ref m variable: =argument.

We have already met the internal transformation used by the value and
name mechanisms in Section 2.5.3. In the result and value/result mechan
isms, the result is conveniently assigned to the argument after return. In this
way, transmission of the argument address to the procedure is avoided.
When implementing value/result transmission for FORTRAN, one should
generate the result assignment only in the case that the argument was a vari
able. (Note that if the argument address is transmitted to the procedure then
the caller must always treat the argument as a variable. If the programmer
uses a constant, the compiler must either flag it as an error or move the con
stant value to a temporary storage location and transmit the address of that
temporary.)

For function results, the compiler generally produces temporaries of suit
able type at the call site and in the function. Within the function, the result
is assigned to the local temporary. Upon return, as in the case of a result
parameter, the local temporary is copied into the global temporary. The
global temporary is only needed if the result cannot be used immediately.
(An example of this case is the value ofcos(x) in cos(x)+sin(y).)

3.3. Storage Management 69

Results delivered by function procedures can, in simple cases, be returned
in registers. (For compatibility with jump cascades, it may be useful for a
Boolean function to encode its result by returning to two different points.)
Transmission of composite values as function results can be difficult, espe
cially when these are arrays whose sizes are not known to the caller. This
means that the caller cannot reserve storage for the result in his own
environment a priori; as a last resort such objects may be left on the heap
(Section 3.3.3).

3.3. Storage Management

Until now we have dealt with the representation of single objects in
memory; in this section we shall discuss management of storage for collec
tions of objects, including temporary variables, during their lifetimes. The
important goals are the most economical use of memory and the simplicity
of access functions to individual objects. Source language properties govern
the possible approaches, as indicated by the following questions (see also
Section 2.5.2):
• Is the exact number and size of all objects known at compilation time?
• Is the extent of an object restricted, and what relationships hold between

the extents of distinct objects (e.g. are they nested)?
• Does the static nesting of the program text control a procedure's access to

global objects, or is access dependent upon the dynamic nesting of calls?

3.3.1. Static Storage Management We speak of static storage manage
ment if the compiler can provide fixed addresses for all objects at the time
the program is translated (here we assume that translation includes binding),
i.e. we can answer the first question above with 'yes'. Arrays with dynamic
bounds, recursive procedures and the use of anonymous objects are prohi
bited. The condition is fulfilled for languages like FORTRAN and BASIC,
and for the objects lying on the outermost contour of an ALGOL 60 or Pas
cal program. (In contrast, arrays with dynamic bounds can occur even in
the outer block of an ALGOL 68 program.)

If the storage for the elements of an array with dynamic bounds is
managed separately, the condition can be forced to hold in this case also.
That is particularly interesting when we have additional information that
certain procedures are not recursive, for example because recursivity must
be noted specially (as in PL/l) or because we have determined it from
analysis of the procedure calls. We can then allocate storage statically for
contours other than the outermost.

Static storage allocation is particularly valuable on computers that allow
access to any location in main memory via an absolute address in the
instruction. Here, static storage corresponds exactly to the class of objects
with direct access paths in the sense of Section 3.2.2. If, however, it is un-

70 Chapter 3. Properties of Real and Abstract Machines

known during code generation whether or not an object is directly address
able (as on the IBM 370) because this depends upon the final addressing
carried out during binding, then we must also access statically-allocated
objects via a base register. The only advantage of static allocation then con
sists of the fact that no operations for storage reservation or release need be
generated at block or procedure entry and exit.

33.2. Dynamic Storage Management Using a Stack As we have
already noted in Section 2.5.2, all declared values in languages such as Pas
cal and SIMULA have restricted lifetimes. Further, the environments in
these languages are nested: The extent of all objects belonging to the con
tour of a block or procedure ends before that of objects from the dynami
cally enclosing contour. Thus we can use a stack discipline to manage these
objects: Upon procedure call or block entry, the activation record contain
ing storage for the local objects of the procedure or block is pushed onto the
stack. At block end, procedure return or a jump out of these constructs the
activation record is popped off of the stack. (The entire activation record is
stacked, we do not deal with single objects individually!)

An object of automatic extent occupies storage in the activation record of
the syntactic construct with which it is associated. The position of the object
is characterized by the base address, b, of the activation record and the rela
tive location (offset), R, of its storage within the activation record. R must
be known at compile time but b cannot be known (otherwise we would have
static storage allocation). To access the object, b must be determined at run
time and placed in a register. R is then either added to the register and the
result used as an indirect address, or R appears as the constant in a direct
access function of the form 'register + constant'.

Every object of automatic extent must be decomposable into two parts,
one of which has a size that can be determined statically. (The second part
may be empty.) Storage for the static parts is allocated by the compiler, and
makes up the static portion of the activation record. (This part is often
called the first order storage of the activation record.) When a block or pro
cedure is activated, the static part of its activation record is pushed onto the
stack. If the activation record contains objects whose sizes must be deter
mined at run time, this determinatiQn is carried out and the activation
record extended. The extension, which may vary in size from activation to
activation, is often called the second order storage of the activation record.
Storage within the extension is always accessed indirectly via information
held in the static part; in fact, the static part of an object may consist solely
of a pointer to the dynamic part.

An array with dynamic bounds is an example of an object that has both
static and dynamic parts. In most languages, the number of dimensions of
an array is fixed, so the size of the array descriptor is known at compile time.
Storage for the descriptor is allocated by the compiler in the static part of the
activation record. On encountering the declaration during execution, the

3.3. Storage Management 71

bounds are evaluated and the amount of storage needed for the array ele
ments is determined. The activation record is extended by this amount and
the array descriptor is initialized appropriately. All accesses to elements of
the array are carried out via the array descriptor.

We have already noted that at compile time we do not know the base
address of an activation record; we know only the range to which it belongs.
From this we must determine the base address, even in the case where recur
sion leads to a number of activation records belonging to the same range.
The range itself can be specified by its block nesting depth, bnd, defined
according to the following rules based on the static structure of the program:
• The main program has bnd = I .
• A range is given bnd = t + I if and only if the immediately enclosing range

has bnd =t.

End = t indicates that during execution of the range the state consists of a
total of t nested contours.

If, as in all ALGOL-like languages, the scopes of identifiers are statically
nested then at every point in the execution history of a program there is at
most one activation record accessible at a given nesting depth. The base
address of a particular activation record can then be found by noting the
corresponding nesting depth at compile time and setting up a mapping
s :nesting depth base address during execution. The position of an object
in the fixed part of the activation record is fully specified by the pair (bnd,
R); we shall therefore speak of 'the object (bnd, R)'.

The mapping s changes upon range entry and exit, procedure call and
return, and jumps out of blocks or procedures. Updating s is thus one of the
tasks (along with stack pointer updating and parameter or result transmis
sion) of the state-altering operations that we met in Section 2.5.2. We shall
describe them semi-formally below, assuming that the stack is described by:

k: array [0 .. upper _limit 1 of storagLcell; k_top: 0 .. upper _limit;

We assume further that a storage cell can hold exactly one address, and we
shall treat address variables as integer variables with which we can index k.

The contour nesting and pointer to dynamic predecessor required by the
contour model are represented by address values stored in each activation
record. Together with the return address, and possibly additional informa
tion depending upon the implementation, they constitute the 'administrative
overhead' of the activation record. A typical activation record layout is
shown in Figure 3.11; the corresponding state change operations are given
in Figure 3.12. We have omitted range entry lexit operations. As noted in
Section 2.5.2, procedures and blocks can be treated identically by regarding
a block as a parameterless procedure called 'on the spot', or contours
corresponding to blocks can be eliminated and objects lying upon them can
be placed on the contour of the enclosing procedure. If blocks are to be
given separate activation records, the block entry lexit operations are identi
cal to those for procedures except that no return address is saved on entry

72 Chapter 3. Properties of Real and Abstract Machines

Second-order storage

2 Return Address First-order storage

I Pointer to Dynamic Predecessor
o Pointer to Static Predecessor

Figure 3.11. Typical Activation Record Layout

k [kJop]: =(* static predecessor of the procedure *);
k [k JOp + I]: = ep ; (* dynamic predecessor *)
k[kJop +2]: =ip; (* return address *)
ep : = k JOp ; (* current environment *)
k JOp : = k JOp +size; (* first free location *)
ip: =(* procedure code address *)

a) Procedure entry

kJop:=ep;
ep: =k[kJop + I]; (* back to the dynamic predecessor *)
ip: =k[kJop +2];

b) Procedure exit

kJop:=ep;
ep: =(* target environment of the jump *);
while k[kJop + l]:f: ep do

kJop: =k[kJop + 1]; (* leave all intermediate environments *)
ip : = (* target address of the jump *);

c) Jump out of a procedure

Figure 3.12. Environment Change Operations

and ip is not set on exit. Jumps out of blocks are treated exactly as shown in
Figure 3.l2c in any case.

The procedure and jump addresses indicated by the comments in Figures
3.12a and c are supplied by the compiler; the environment pointers must be
determined at run time. If a procedure is invoked directly, by stating its
identifier, then it must lie within the current environment and its environ
ment pointer can be obtained from the stack by following the chain of static

3.3. Storage Management

predecessors until the proper block nesting depth is reached:

environment: =ep ;
for i : =bndcaller downto bndprocedure do

environment: =k [environment];

73

The value (bndcaller -bndprocedure) is known at compile time and is usually
small, so the loop is sometimes 'unrolled' to a fixed sequence of
environment: =k [environment] operations.

When a procedure is passed as a parameter and then the parameter is
called, the static predecessor cannot be obtained from the stack because the
called procedure may not be in the environment of the caller. (Figures 2.3
and 2.5 illustrate this problem.) Thus a procedure parameter must be
represented by a pair of addresses: the procedure entry point and the activa
tion record address for the environment statically enclosing the procedure
declaration. This pair is called a closure. When a procedure parameter is
invoked, the address of the static predecessor is obtained from the closure
that represents the parameter. Figure 3.13 shows the stack representing the
contours of Figure 2.5; note the closures appearing in the activation records
for procedure p.

Jumps out of a procedure also involve changing the state (Figure 3.12c).
The mechanism is essentially the same as that discussed above: If the label
is referenced directly then it lies in the current environment and its environ
ment pointer can be obtained from the stack. A label variable or label
parameter, however, must be represented by a closure and the environment
pointer obtained from that closure.

Access to any object in the environment potentially involves a search
down the chain of static predecessors for the pointer to the activation record
containing that object. In order to avoid the multiple memory accesses
required, a copy of the addresses can be kept in an array, called a display,
indexed by the block nesting depth. Access to the object (bnd, R) is there
fore provided by display [bnd] + R; we need only a single memory access,
loading display [bnd] into a base register, to set up the access function.

The Burroughs 600017000 series computers have ·a 32-register display
built into the hardware. This limits the maximum block nesting depth to 32,
which is no limitation in practice. Even a restriction to 16 is usually no
problem, but 8 is annoying. Thus the implementation of a display within
the register set of a multiple-register machine is generally not possible,
because it leads to unnatural restrictions on the block nesting depth. The
display can be allocated to a fixed memory location, or we might keep only
a partial display (made up of the addresses of the most-frequently accessed
activation records) in registers. Which activation record addresses should be
kept is, of course, program-dependent. The current activation record
address and that of the outermost activation record are good choices in Pas
cal; the latter should probably be replaced with that of the current module
in an implementation of any language providing modules.

74

22

19

12

5

o

Chapter 3. Properties of Real and Abstract Machines

location after l:f

12

5

;=0

11 (reference to i)

5 (q's environment)

entry point address for q

location after p(q, i)
5

0

;=2

4 (reference to k)
o (empty's environment)

entry point address for empty
location after p(empty, k)

0

0

k=O
n=7

0

0

0

Activation record for procedure q

Activation record for procedure p

Activation record for procedure p

Activation record for procedure
outer

Note:

k_top = 22
ep = 19
ip = address of label 2

Figure 3.13. Stack Configuration Corresponding to Figure 2.5

If any sort of display, partial or complete, is used then it must be kept up
to date as the state changes. Figure 3.14 shows a general procedure for
bringing the display into synchronism with the static chain. It will alter only
those elements that need alteration, halting when the remainder is
guaranteed to be correct. In many cases the test for termination takes more

3.3. Storage Management

procedure update --tiisplay (bndnew, bndold : integer; a : address):
(* Make the display consistent with the static chain

On entry-
bndnew = nesting depth of the new activation record
a = address of the new activation record
bndold = nesting depth of the current activation record

On exit-
The display specifies the environment of the new contour

*)
var

i: integer;
h: address;

begin (* update _display *)
i:=bndnew;
h:=a;
while display [i]* h or i > bndold do

begin
display[i]: =h;
i:=i-l;h:=k[h]
end

end; (* updatLdisplay *)

Figure 3.14. Setting the Display

75

time than it saves, however, and a more appropriate strategy may be simply
to reload the entire display from the static chain.

Note that the full generality of update _display is needed only when
returning from a procedure or invoking a procedure whose identity is unk
nown. If a procedure at level bndnew in the current addressing environment
is invoked, the single assignment disp/ay[bndnew]: =a suffices. (Here a is
the address of the new activation record.) Display manipulation can become
a significant overhead for short procedures operating at large nesting depths.
Recognition of special cases in which this manipulation can be avoided or
reduced is therefore an important part of the optimization of such pro
cedures.

In SIMULA and Ada, as in all languages that contain coroutines and
concurrently-executing tasks, activation record creation and destruction
need not follow a strict stack discipline. Each coroutine or task corresponds
to a set of activation records, and these sets are growing and shrinking
independently. Thus each coroutine or task requires an independent stack,
and these stacks themselves follow a stack discipline. The result is called a
tree or cactus stack and is most easily implemented in a segmented virtual
memory. Implementation in a linear memory is possible by fixing the sizes
of the component stacks, but this can only be done when limitations can be
placed upon recursion depth and spawning of further tasks.

76 Chapter 3. Properties of Real and Abstract Machines

3.3.3. Dynamic Storage Management Using a Heap If none of the
questions stated at the beginning of Section 3.3 lead to sufficient reduction in
the lifetime and visibility of objects, the last resort is to allocate storage on a
heap: The objects are allocated storage arbitrarily within an area of memory.
Their addresses are determined at the time of allocation, and they can only
be accessed indirectly. Examples of objects requiring heap storage are
anonymous objects such as those created by the Pascal new function and
objects whose size changes unpredictably during their lifetime. (Linked lists
and the flexible arrays of ALGOL 68 belong to the latter class.)

Notice that the static and dynamic chain pointers were the only intercon
nections among the activation records discussed in Section 3.3.2. The use of
a stack storage discipline is not required, but simply provides a convenient
mechanism for reclaiming storage when a contour is no longer relevant. By
storing the activation records on a heap, we broaden the possibilities for
specifying the lifetimes of objects. This is the way in which the uniform
retention strategy mentioned at the end of Section 2.5.2 is implemented.
Storage for an activation record is released only if the program fragment
(block, procedure, class) to which it belongs has been left and no pointers to
objects within this activation record exist.

Heap allocation is particularly simple if all objects required during exe
cution can fit into the designated area at the same time. In most cases, how
ever, this is not possible. Either the area is not large enough or, in the case
of virtual storage, the working set becomes too large. A detailed discussion
of heap storage management policies is beyond the scope of this book (see
Section 3.5 for references to the relevant literature). We shall only sketch
three possible recycling strategies for storage and indicate the support
requirements placed upon the compiler by these strategies.

If a language provides an explicit 'release' operation, such as Pascal's
dispose or PL /I's free, then heap storage may be recycled by the user. This
strategy is simple for the compiler and the run-time system, but it is unsafe
because access paths to the released storage may still exist and be used even
tually to access recycled storage with its earlier interpretation. The release
operation, like the allocation operation, is almost invariably implemented as
a call on a support routine. Arguments that describe the size and alignment
of the storage area must be supplied to these calls by the compiler on the
basis of the source type of the object.

Automatic reclamation of heap storage is possible only if the designers of
a language have considered this and made appropriate decisions. The key is
that it must be possible to determine whether or not a variable contains an
address. For example, only a variable of pointer type may contain an
address in a Pascal program. A special value, nil, indicates the absence of a
pointer. When a pointer variable is created, it could be initialized to nil.
Unfortunately, Pascal also provides variant records and does not require
such records to have a tag field indicating which variant is in force. If one
variant contains a pointer and another does not, it is impossible to determine

3.3. Storage Management 77

whether or not the corresponding variable contains a pointer. Detailed dis
cussion of the tradeoffs involved in such a decision by a language designer is
beyond the scope of this text.

Storage can be recycled automatically by a process known as garbage col
lection, which operates in two steps:
• Mark. All accessible objects on the heap are marked as being accessible.
• Collect. All heap storage is scanned. The storage for unmarked objects is

recycled, and all marks are erased.
This has the advantage that no access paths can exist to recycled storage, but
it requires considerable support from the compiler and leads to periodic
pauses in program execution. In order to carry out the mark and collect
steps, it must be possible for the run-time system to find all pointers into the
heap from outside, find all heap pointers held within a given object on the
heap, mark an object without destroying information, and find all heap
objects on a linear sweep through the heap. Only the questions of finding
pointers affect the compiler; there are three principal possibilities for doing
this:
1. The locations of all pointers are known beforehand and coded into the

marking algorithm.
2. Pointers are discovered by a dynamic type check. (In other words, by

examining a storage location we can discover whether or not it contains a
pointer.)

3. The compiler creates a template for each activation record and for the
type of every object that can appear on the heap. Pointer locations and
(if necessary) the object length can be determined from the template.

Pointers in the stack can also be indicated by linking them together into a
chain, but this would certainly take too much storage on the heap.

Most LISP systems use a combination of (I) and (2). For (3) we must
know the target type of every pointer in order to be able to select the proper
template for the object referenced. This could be indicated in the object
itself, but storage would be saved if the template carried the number or
address of the proper template as well as the location of the pointer. In this
manner we also solve the problem of distinguishing a pointer to a record
from the pointer to its first component. Thus the template for an ALGOL
68 structure could have the following structure:

• Length of the structure (in storage units)
• For each storage unit, a Boolean value 'reference'
• For each reference, the address of the template of the referenced type.

If dynamic arrays or variants are allowed in records then single Boolean
values indicating the presence of pointers are no longer adequate. In the first
case, the size and number of components are no longer known statically.
The template must therefore indicate the location of descriptors, so that they
can be interpreted by the run-time system. In the second case the position of
the variant selector and the different interpretations based upon its value

78 Chapter 3. Properties of Real and Abstract Machines

must be known. If, as in Pascal, variant records without explicit tag fields
are allowed, then garbage collection is no longer possible.

Garbage collection also requires that all internal temporaries and regis
ters that can contain references must be identified. Because this is very
difficult in general it is best to arrange the generated code so that, whenever
a garbage collection might occur, no references remain in temporaries or
registers.

The third recycling strategy requires us to attach a counter to every object
in the heap. This counter is incremented whenever a reference to the object
is created, and decremented whenever a reference is destroyed. When the
counter is decremented to its initial value of 0, storage for the object can be
recycled because the object is obviously inaccessible. Maintenance of the
counters results in higher administrative and storage costs, but the overheads
are distributed. The program simply runs slower overall; it does not period
ically cease normal operation to reclaim storage. Unfortunately, the refer
ence counter method does not solve all problems:
• Reference counts in a cyclic structure will not become 0 even after the

structure as a whole becomes inaccessible .
• If a counter overflows, the number of references to the object is lost.

A complete solution requires that the reference counters be backed up by a
garbage collector.

To support storage management by reference counting, the compiler
must be able to identify all assignments that create or destroy references to
heap objects. The code generated for such assignments must include
appropriate updating of the reference counts. Difficulties arise when variant
records may contain references, and assignments to the tag field identifying
the variant are allowed: When such an assignment alters the variant, it des
troys the reference even though no direct manipulation of the reference has
taken place. Similar hidden destruction occurs when there is a jump out of a
procedure that leads to deletion of a number of activation records contain
ing references to heap objects. Creation of references is generally easier to
keep track of, the most difficult situation probably being assignment of a
composite value containing references as minor components.

3.4. Mapping Specifications
The results of the analysis discussed in the earlier sections of this chapter
should be embodied in a document called a mapping specification (Figure
3.15) for the particular source language/target machine pair. It should not
only give the final results, but also the reasoning that led to them. Even
when a particular choice was obvious, a brief statement of its basis should be
made. For example, one normally chooses the representation of integer
values to be that assumed by the hardware 'add integer' instruction; a single
sentence stating this fact should appear in the specification.

3.4. Mapping Specifications

L TO M MAPPING SPECIFICATION

1. The Abstract M
1.1. Storage Classes

One subsection per storage class (see Section 3.1.1).
1.2. Access Paths

One subsection per access path (see Section 3.1.2).
1.3. Instructions

One subsection per operation class (see Section 3.1.3).

2. Storage Mapping
2.1. Primitive Data Types

One subsection per primitive data type of L (see Section 3.2.1).
2.2. Composite Data Types

One subsection per composite data type of L (see Section 3.2.2).
2.3. Computation State

79

One subsection describing register usage, one describing the use of
space for code and constants, and one per storage area type (e.g.
static, stack, heap - see Section 3.3) required by L.

3. Operation Mapping
3.1. Routine Invocation

One subsection per operation (e.g. procedure call, procedure entry,
formal call, jump out of a procedure) required by L. Block
entry lexit should also be covered when L requires that these opera
tions manipulate the computation state.

3.2. Control Structures
One subsection per control structure of L (see Section 3.2.4).

3.3. Expressions
3.3.1. Attributes

Information to be exchanged among the nodes of an expres
sion (see Section 3.2.3).

3.3.2. Encodings
Encoding of each L operation as a sequence of instructions
and access paths from the abstract M, as a function of the
information exchanged among expression nodes.

Figure 3.15. Outline ofa Mapping Specification

Section 1 of the mapping specification relies heavily on the manu
facturer's manual for the target machine. It describes the machine as it will
be seen by the code generator, with anomalies smoothed out and omitted
operations (to be implemented by code sequences or subroutines) in place.
The actual details of realizing the abstraction might be included, or this
information might be the subject of a separate specification. We favor the

80 Chapter 3. Properties of Real and Abstract Machines

latter approach, because the abstraction should be almost entirely language
independent. It is clear that the designer must decide which facilities to
include in the abstract machine and which to implement as part of the
operation mapping. We cannot give precise criteria for making this choice.
(The problem is one of modular decomposition, with the abstraction consti
tuting a module and the operation encoding using the facilities of that
module.)

The most difficult part of Section 2 of the mapping specification is Section
2.3, which is tightly coupled to Section 3.1. Procedure mechanisms advo
cated by the manufacturer are often ill-suited to the requirements of a given
language. Several alternative mechanisms should be explored, and detailed
cost estimates prepared on the basis of some assumptions about the relative
numbers of calls at various static nesting depths and accesses to variables. It
is imperative that these assumptions be carefully stated, even though there is
only tenuous justification for them; unstated assumptions lead to conflicting
judgements and usually to a suboptimal design. Also, if measurements later
indicate that the assumptions should be changed, the dependence of the
design upon them is clearly stated.

Control structure implementation can be described adequately using
notation similar to that of Figure 3.9. When a variety of information is
exchanged among nodes of an expression, however, description of the
encoding for each node is complicated. The best notation available seems to
be the extended-entry decision table, which we discuss in this context in Sec
tion 10.3.2.

A mapping specification is arrived at by an iterative process, one that
should be allotted sufficient time in scheduling a compiler development pro
ject. The cost is dependent upon the complexities of both the source
language and the target machine. In one specific case, involving a Pascal
implementation for the Motorola 68000, two man-months of effort was
required over a six-month period. One person should be responsible for the
specification, but at least one other (and preferably several) should be
involved in frequent critical reviews. The objective of these reviews should
be to test the reasoning based upon the stated assumptions, making certain
that it has no flaws. Challenging the assumptions is less important unless
specific evidence against them is available.

Sections 2.1 and 2.2 of the mapping specification should probably be
written first. They are usually straightforward, and give a basis on which to
build. Sections 2.3 and 3.l should be nnt. As indicated earlier, these sec
tions interact strongly and involve difficult decisions. The remainder of Sec
tion 3 is tedious, but should be carried out in full detail. It is only by being
very explicit here that one learns the quirks and problems of the machine,
and discovers the flaws in earlier reasoning about storage mapping. Section
1 should be done last, not because it is the least important, but because it is
basically a modification of the machine manual in the light of the needs
generated by Section 3.

3.5. Notes and References 81

3.5. Notes and References

The question of mapping programming language constructs onto hardware
has been considered piecemeal by a number of authors. Tanenbaum [1976]
gives a good overview of the issues involved, and further information can be
gleaned from specific abstract machine designs [Richards 1971, Tanenbaum
1978, Waite 1977]. Floating point abstractions are discussed by Brown
[1977, 1981] and Cody [1980], and a standard has been defined by a commit
tee of IEEE [IEEE 1981]. McLaren [1970] provides a comprehensive dis
cussion of data structure packing and alignment. Randell and Russell
[1964] detail the implementation of activation record stacks and displays in
the context of ALGOL 60; Hill [1976] updates this treatment to handle the
problems of ALGOL 68.

Static storage management is not the only possible strategy for FOR
TRAN implementations. Both the 1966 and 1978 FORTRAN standards
restrict the extent of objects, and thus permit dynamic storage management
via a stack. We have not pursued the special storage allocation problems of
COMMON blocks and EQUIVALENCE statements here; the interested
reader is referred to Chapter to of the book by Aho and Ullman [1977a] and
the original literature cited there.

Our statements about the probability of access to objects at various nest
ing depths are debatable because no really good statistics exist. These pro
babilities are dependent upon the hierarchical organization of the program,
and may vary considerably between applications and system programs.

The fact that a procedure used as a parameter must carry its environment
with it appears in the original treatment of LISP [McCarthy 1960]. Landin
[1964] introduced the term 'closure' in connection with his mechanization of
Lambda expressions. More detailed discussions are given by Moses [1970]
and Waite [l973a]. Hill [1976] applied the same mechanism to the problem
of dynamic scope checking in ALGOL 68.

An overall treatment of storage management is beyond the scope of this
book. Knuth [l968b] provides an analysis of the various general strategies,
and a full discussion of most algorithms known at the time. A general
storage management package that permits a wide range of adaptation was
presented by Ross [1967]. The most important aspect of this package is the
interface conventions, which are suitable for most storage management
modules.

Both general principles of and algorithms for garbage collection and
compaction (the process of moving blocks under the user's control to conso
lidate the free space into a single block) are covered by Waite [l973a].
Wegbreit [1972] discusses a specific algorithm with an improved worst-case
running time.

Several authors [Deutsch 1976, Barth 1977, Morris 1978] have shown how
to reduce the cost of reference count systems by taking special cases into
account. Clark and Green [1977] demonstrated empirically that over 90% of

82 Chapter 3. Properties of Real and Abstract Machines

the objects in typical LISP programs never have reference counts greater
than I, a situation in which the technique operates quite efficiently.

EXERCISES

3.1. List the storage classes and access paths available on some machine with
which you are familiar. Did you have difficulty in classifying any of the
machine's resources? Why?

3.2. Consider access to data occupying a part of a word on some machine with
which you are familiar. Does the best code depend upon the bit position
within the word? Upon the size of the accessed field? Try to characterize the
set of 'best' code sequences. What information would you need to choose the
proper sequence?

3.3. [Steele 1977] Consider the best code for implementing multiplication and
division of an integer by a power of 2 on some machine with which you are
familiar.
a. Would multiplication by 2 best be implemented by an add, a multiply or a

shift? Give a detailed analysis, taking into account the location and possi
ble values of the multiplicand.

b. If you chose to use a shift for division, would the proper result be obtained
when the dividend was negative? Explain.

c. If your machine has a condition code that is set as a side effect of arith
metic operations, would it be set correctly in all of the cases discussed
above?

3.4. For some computer with which you are familiar, design encodings for the ele
mentary types boolean, integer, real of Pascal. Carefully defend your choice.

3.5. Consider the representation of a multi-dimensional array.
a. In what manner can a user of ALGOL, FORTRAN or Pascal determine

whether the elements are stored in row- or column-major order?
b. Write optimum code for some computer with which you are familiar that

implements the following doubly-nested loop over an object of type
array [l..m ,l..n] of integer stored in row-major order. Do not alter the
sequence of assignments to array elements. Compare the result with the
same code for an array stored in column-major order.
for i : = I to m do

for j : = I to n do
a[i,j]:=O;

c. Explain why a test that the affective address of an array element falls
within the storage allocated to the array is not sufficient to guarantee that
the access is defined.

3.6. Carefully describe the implementation of the access function for an array ele
ment (Section 3.2.2) in each of the following cases:
a. The fictitious starting address lies outside of the address space of the com

puter.
b. The computer provides only base registers (i.e. the registers involved in the

access computation of Section 3.1.3 cannot hold signed values).

3.5. Notes and References 83

3.7. Consider a computer requiring certain data items to be stored with alignment
2, while others have no alignment constraints. Give an algorithm that will
rearrange any arbitrary record to occupy minimum storage. Can this algo
rithm be extended to a machine whose alignment constraints require
addresses divisible by 2, 4 and 8?

3.8. Give a mapping of a Pascal while statement that places the condition at the
beginning and has the same number of instructions as Figure 3.9d. Explain
why there is less opportunity for parallel execution in your mapping than in
Figure 3.9d. Under what circumstances would you expect your expansion to
execute in less time than Figure 3.9d? What information would the compiler
need in order to decide between these schemata on the basis of execution
time?

3.9. Consider the mapping of a BASIC FOR statement with the general form:

FOR I=e 1 TO e2 STEP e3

NEXT I

Give implementations of forbegin and forend under each of the following
conditions:

a. e 1= 1, e2= 10, e3= 1

b. e 1 = I, e2= 10, e3=7

c. el= 10, e2= I, e3=-3

e. e 1 =A, e2=B, e3=C

Does your answer to (e) work when A is the largest negative integer
representable on the target machine? When B is the largest positive
representable integer? If not, what is the cost of repairing this defect? Would
you consider this cost acceptable in the light of the probability of such
bounds?

3.10. For some machine with which you are familiar, compare the cost of access to
statically-allocated objects, objects allocated at fixed locations in an activation
record, elements of dynamic arrays and objects allocated on the heap. Be
sure to account for any necessary base register loads.

3.11. The state change operations summarized in Figure 3.2 are actually imple
mented by a combination of code at the call site, code in the procedure or
block, and common code in system subprograms. Consider their realization
on some machine with which you are familiar.
a. Operations at the call site should be minimized, at least when the pro

cedure is called directly. What is the minimum code you can use? (You
may change the activation record layout of Figure 3.11 arbitrarily to suit
your implementation.)

b. How do you handle the fact that a given procedure may be called either
directly or as a parameter? Show that the environment is properly initial
ized in both cases.

84 Chapter 3. Properties of Real and Abstract Machines

c. Compare the cost of using a display with that of using simply static and
dynamic pointers. On the basis of your answer to Exercise 3.8, determine
the break -even point for a display in terms of number of variable accesses.

3.12. Code the display update routine of Figure 3.4 for some machine with which
you are familiar. What average nesting depth constitutes the break-even
point for the early termination test? On the basis of your own experience,
should the test be included or not?

3.13. Under what circumstances is it impossible to compare the extents of two
objects by comparing their addresses?

3.14. For some machine with which you are familiar, design a schema for
representing type templates. Be sure to handle variant records and dynamic
arrays.

3.15. Suppose that a machine provides no 'undefined' value. What values would
you propose to use as implicit initializations for Pascal boolean, integer and
real variables? Explain your choices.

3.16. Under what circumstances would you consider transmitting arguments and
results in registers? Illustrate your answer with several real machines.

3.17. Consider the following LAX fragment:

declare
procedure p (a: array [] of integer); ... ;
procedure q: array [J of integer; ...
begin p (q) end;

a. Explain why this fragment is illegal.
b. Suppose that the fragment were legal, and had the obvious effect: Pro

cedure q creates an array, which is then passed to procedure p. Discuss a
storage management strategy for the array elements. Where should the
storage be allocated? Can we avoid copying the array? What tradeoffs are
involved?

CHAPTER 4

Abstract Program Representations

Decomposition of the compilation process leads to interfaces specified by
abstract data types, and the basic purposes of these interfaces are largely
independent of the source language and target machine. Information cross
ing an interface between major compilation tasks constitutes a representa
tion of the program in an intermediate language. This representation may
or may not be embodied in a concrete data structure, depending upon the
structure and goals of a particular compiler. Similarly, the characteristics of
a particular compiler may make it useful to summarize the properties of
objects in tables stored separately from the program text.

The general characteristics of each interface stem from the modular
decomposition of the compiler discussed in Chapter 1. In this chapter we
consider several important intermediate languages and tables in detail. By
determining the content and possible realization of these interfaces, we
place more concrete requirements upon the major compilation tasks.

4.1. Intermediate Languages
Our decomposition leads to four intermediate languages: the token
sequence, the structure tree, the computation graph and the target tree. A
program is transformed from one to the other in the order given, and they
will be presented here in that order.

4.1.1. Token Sequence Chapter 2 pointed out that a source program is
composed of a sequence of basic symbols. These basic symbols, rather than
the characters from which they are formed, are the relevant units of the
source text. We shall use the term symbol to denote the external representa-

85

86 Chapter 4. Abstract Program Representations

tion of a basic symbol (or an encoding thereof); a token is the internal
representation.

LAX symbols are described in Section AI. Production AI.O.l classifies
them as identifiers, denotations and delimiters respectively. Comments are
not basic symbols, and therefore do not appear in the token sequence.

We can characterize the information carried by one token in terms of the
type declarations shown in Figure 4.1. Location encodes the information
required to relate an error message to the source language listing. Section
12.1.3 discusses error reporting mechanisms in detail, and hence we leave
the specification of the type coordinates open until then.

Most syntactic classes (encoded by members of the enumerated type
tokens) contain only a single symbol. Tokens representing such symbols
need specify only the syntactic class. Only identifiers and denotations
require additional information.

A LAX identifier has no intrinsic meaning that can be determined from
the character string constituting that identifier. As a basic symbol, therefore,
the only property distinguishing one identifier from another is its external
representation. This property is embodied in the sym field of the token.
Section 4.2.1 will consider the type symbol, and explain how the external
representation is encoded.

The field intv orfptv is a representation of the value denoted by the source
language denotation that the token abstracts. There are several possibilities,
depending upon the goals of the particular compiler; Section 4.2.2 considers
them in detail.

4.1.2. Structure Tree A structure tree is a representation of a compila
tion unit in terms of source concepts. It is an ordered tree (in the sense of
Section B.l) whose structure is that of an abstract syntax of the source

type
tokens =(

identifier,
integer_denotation,
fIoating_point-denotation,
plus, ... , equivalent,
and _kw, ... , whilLkw);

abstract _token = record

(* classification of LAX tokens *)
(* A 1.0.2 *)
(* A 1.0.6 *)
(* A 1.0. 7 *)
(* specials: A 1.0. 10 *)
(* keywords: Al.O.ll *)

location: coordinates; (* for error reports *)
case classification: tokens of

identifier: (sym : symbol);
integer _denotation: (intv : integer _value);
fIoating_point-denotation: (jptv: reaL value);

end;

Figure 4.1. LAX Abstract Token

4.1. Intermediate Languages 87

language. Additional information is attached to the nodes during semantic
analysis and the beginning of code generation. We call this information
attributes, and, to emphasize the attribution, the augmented tree is some
times termed an attributed structure tree. Important attributes are the iden
tity of the internal object corresponding to an identifier, the types of the
operands and result of an expression, or the operation corresponding to an
operator indication (e.g. the distinction between integer and real addition,
both originally specified by , + ').

Each node of the structure tree corresponds to a rule of the language
definition. Because the structure tree follows the abstract rather than the
concrete syntax, some rules will never have corresponding nodes in any
structure tree. Furthermore, the concrete syntax may use several names for
a single construct of the abstract syntax. Figure 4.2 illustrates these concepts
with an example from LAX. The nodes of the tree have been labelled in
Figure 4.2a with the corresponding rules from Appendix A. A single rule in
Appendix A may incorporate many definitions for the same construct, and
we have appended lower-case letters to the rule number in order to distin-

A.4.0.2

~~
A.4.0.16a A.4.0.9b

I ~I~
A.1.0.2 A.4.0.ISb A.4.0.IOa A.4.0.ISb

I I
A.4.0.16a A.4.0.16a

I I
A.I.O.2 A.I.O.2

a) Structure

expression, assignment, disjunction, conjunction,
comparison, relation, sum, term, factor, primary:

prim ode, postmode: entity

name:

mode: entity

eqop, relop, addop, mulop, unop:
rator: operation

identifier:
sym: symbol
ent: entity

b) Attributes
Figure 4.2. Structure Tree for x : = y + z

88 Chapter 4. Abstract Program Representations

guish these definitions. Thus 'A.4.0.9b' is the second alternative for rule
A.4.0.9 - sum :: = sum addop term. Expression, assignment, disjunction, and
so forth are different names appearing in the concrete syntax for the expres
sion construct of the abstract syntax. This means that any node correspond
ing to a rule defining any of these will have the attributes of an expression
attached to it. Figure 4.2b indicates which of the names defined by rules
used in Figure 4.2a are associated with the same abstract syntax construct.

The sym attribute of an identifier is just the value of the sym field of the
corresponding token (Figure 4.1). This attribute is known as soon as the
node to which it is attached is created. We call such attributes intrinsic. All
of the other attributes in the tree must be computed. The details of the com
putations will be covered in Chapters 8 and 9; here we merely sketch the
process.

Ent characterizes the object (for example, a particular integer variable)
corresponding to the identifier sym. It is determined by the declarations
valid at the point where the identifier is used, and gives access to all of the
declarative information. Section 4.2.3 discusses possible representations for
an entity.

The mode attribute of a name is the type of the object named. In our
example it can be obtained directly from the declarative information made
accessible by the ent attribute of the descendant node. In any case, it is
computed on the basis of attributes appearing in the 'A.4.0.l6a' node and its
descendants. The term synthesized is used to describe such attributes.

Two types are associated with each expression node in the tree. The first,
primode, is the type determined without regard to the context in which the
expression is embedded. This is a synthesized attribute, and in our example
the prim ode of an expression defined by an 'AA.O.1Sb' node is simply the
mode of the name below it. The second type, postmode, is the type demand
ed by the context in which the expression is embedded. It is computed on
the basis of attributes of the expression node, its siblings, and its ancestors.
Such attributes are called inherited.

If primode =l=postmode then either a semantic error has occurred or a coer
cion is necessary. For example, if y and z in Figure 4.2 were declared to be
of types boolean and real respectively then there is an error, whereas if they
were declared to be integer and real then a coercion would be necessary.

Three classes of operation, creation, access and assignment are necessary to
manipulate the structure tree. A creation operation establishes a new node
of a specified type. Assignment operations are used to interconnect nodes
and to set attribute values, while access operations are used to extract this
information. With these operations we can build trees, traverse them com
puting attribute values, and alter their structure. Structure tree operations
are invoked as the source program is parsed, constructing the tree and set
ting intrinsic attribute values. One or more additional traversals of the com
pleted tree may be necessary to establish all attribute values. In some cases
the structure of the tree may be altered during attribute computation.

4.1. Intermediate Lang uages

process node A;
if node A is not a leaf then

process all subtrees of A from left to right;

a) Prefix traversal

if node A is not a leaf then
process all subtrees of A from left to right;

process node A;
b) Postfix Traversal

process node A;
while subtrees of A remain do

begin
process next (to the right) subtree of A;
process node A;
end;

c) Hybrid traversal

Figure 4.3. Traversal Strategies

89

Chapter 8 explains how the necessary traversals of the structure tree can be
derived from the dependence relations among the attributes. (Figure 4.3
shows some basic traversal strategies.)

The result of processing a structure tree is a collection of related informa
tion. It may be possible to produce this result without ever actually con
structing the tree. In that case, the structure and attributes of the tree were
effectively embedded in the processing code. Another possibility is to have
an explicit data structure representing the tree. Implementation constraints
often prevent the compiler from retaining the entire data structure in pri
mary memory, and secondary storage must be used. If the secondary
storage device is randomly-addressable, only the implementation of the
structure tree operations need be changed. If it is sequential, however, con
straints must be placed upon the sequences of invocations that are permit
ted. An appropriate set of constraints can usually be derived rather easily
from a consideration of the structure tree traversals required to compute the
attributes.

Any of the traversal strategies described by Figure 4.3 could be used with
a sequential storage device: In each case, the operation 'process node A'
implies that A is the currently-accessible element of the device. It may be
read, altered, and written to another device. The remaining operations
advance the device's 'window', making another element accessible. Figure
4.4 illustrates the correspondence between the tree and the sequential file.
The letters in the nodes of Figure 4.4a stand for the attribute information.
In Figures 4.4b and 4.4c, the letters show the position of this information on
the file. Figure 4.4d differs from the others in that each interior node is asso
ciated with several elements of the file. These elements correspond to the

90 Chapter 4. Abstract Program Representations

a) A tree

debghfca

b) Postfix linearization

abdecfgh

c) Prefix linearization

a b d b e b a c
(() (

f g f h
(

d) Hybrid linearization

Figure 4.4. Linearization by Tree Traversal

f c
)

a

prefix encounter of the node during the traversal (flagged with 'C), some
number of infix encounters (flagged with ','), and the postfix encounter
(flagged with ')'). Information from the node could be duplicated in several
of these elements, or divided among them.

The most appropriate linearization of the tree on the basis of tree traver
sals and tree transformations is heavily dependent upon the semantic
analysis, optimization and code generation tasks. We shall return to these
questions in Chapter 14. Until then, however, we shall assume that the
structure tree may be expressed as a linked data structure.

4.1.3. Computation Graph A computation graph is an abstract
representation of a compilation unit in terms of target concepts. It is a
directed graph whose nodes correspond to target operations and whose
edges describe control and data flow. The access to identified variables and
intermediate results is not represented.

Each node of the computation graph specifies a single abstract target
machine operation. In addition to the operation, the node specifies its
successor(s) and an appropriate set of operands. An operand may be
another computation graph node (indicating the result of that node's com
putation), an identified variable (indicating the address of that variable) or a
constant (indicating the value of that constant). Figure 4.5 is a computation
graph describing the algorithm of Figure l.la in terms of an abstract target
machine based on Exercise 1.3.

Note that the accumulator is never mentioned in Figure 4.5. This is indi
cative of the abstract nature of the computation graph: It uses target opera
tions, but not target instructions, separating operations from access paths.
Moreover, the concept of a value has been separated from that of a variable.

4.1. Intermediate Languages 91

- SUB
i
j

Y

l
JZERO

exit

~

1
SUB -j

i
9

l
JNEG

~

1 1
SUB - SUB -j i

i j

9 Y

! 1
STORE STORE

j i

Figure 4.5. A Computation Graph

ADR J--- r---l ADR J-
a I a I
y I 9 I

l l
I VAL t- VAL I-

4 4 I
y y J

I l - MUL MUL
i j

---fo- -f0-
r - 9

l l
PA PA

-~
r- 9 14-

I
STI LDI ---

Y

l
Note: PA adds an integer to an address, yielding an address

Figure 4.6. Constant Operations and Array Access

92 Chapter 4. Abstract Program Representations

Triple Operation Operands

I VAL
2 VAL j
3 SUB (I) (2)
4 JZERO (3) (19)
5 VAL
6 VAL
7 SUB (5) (6)
8 JNEG (7) (14)
9 VAL j

10 VAL
II SUB (9) (10)
12 STORE J (II)
13 JMP (I)
14 VAL
15 VAL J
16 SUB (14) (15)
17 STORE (16)
18 JMP (I)

Note: (t) is a reference to triple t

Figure 4.7. Triple Representation of Figure 4.5

As we shall see in Chapter 13, this is a crucial point for common subexpres
sion recognition.

Figure 4.6 describes the array assignment aU]: =a[j], assuming a byte
addressed target machine and an array with 4-byte elements. The address
computation described at the beginning of Section 3.2.2 appears explicitly.
Address(a[O]) is represented by the identifier a and the PA operation adds
an integer to im address, yielding an address.

Computation graphs are often linearized as sequences of tuples. The
tuples are implicitly linked in the order of the sequence, and hence the last
field of the nodes in Figures 4.5 and 4.6 caq be dropped. An explicit JMP
operation is introduced to allow arbitrary linkage. 'Triples' (Figure 4.7) and
'quadruples' are examples of this technique. The only difference between
them is that in the latter the node identification is given explicitly while in
the former it is assumed to be the index of the node in the sequence. Figure
4.8 shows a more convenient notation for human consumption.

4.1.4. Target Tree The target tree forms the interface between code
generation and assembly. Its structure and most of the attribute values for
its nodes are established during code generation; some attribute values may
be added during assembly. The structure of the tree embodies code
sequence information, while the attributes specify particular machine
instructions and address computations. These characteristics are largely

4.1. Intermediate Languages

t,:i i
t2: t ,*4

t3:a +t2

t4:j i
t5:t4 *4
t6: a +t5
t7:t3: =t6

Figure 4.8. Human-Readable Representation of Figure 4.6

independent of both the source language and the target computer.

93

The operations necessary to manipulate the target tree fall into the same
classes as those necessary to manipulate the structure tree. As with the struc
ture tree, memory constraints may require that the target tree be placed in
secondary memory. The most reasonable linearization to use in this case is
one corresponding closely to the structure of a normal symbolic assembly
language.

Figure 4.9 gives a typical layout for a target tree node. Machine _op
would be a variant record that could completely describe any target comput
er instruction. This record might have fields specifying the operation, one or
more registers, addresses and addressing modes. Similarly,
constanL.specification must be capable of describing any constant represent
able on the target computer. For example, the specification of a literal con
stant would be similar to that appearing in a token (Figure 4. I and Section
4.2.2); an address constant would be specified by a pointer to an expression
node defining the address. In general, the amount of space to be occupied
by the constant must also be given.

type
instructions = (

operation,
constant,
label,
sequence,
expression) ;

(* Classification of target abstractions *)
(* machine instruction *)
(* constant value *)
(* address definition *)
(* code sequence *)
(* address expression *)

target _node = it_node _block;
t _node _block = record

link: target _node;
case classification: instructions of

operation: (instr: machine _op);
constant: (value: constant -specification);
label: (addr: address);
sequence: (seq, origin: targeLnode);
expression: (rator : expr _op ; rand _2: target _node);

end;

Figure 4.9. Target Code Node

94 Chapter 4. Abstract Program Representations

A label is an address constant. The label node is placed in a code
sequence at some arbitrary point, and represents the address at that point.
When this address is used as an operand in an address expression, one of the
operands of the expression node is a pointer to the label node. The addr
field is an example of an attribute whose value is established during assem
bly: It specifies the actual machine address, in a form that can be used as an
expression operand. It is important to stress that this attribute is not set by
the code generator; the code generator is responsible only for establishing
the label node and any linkages to it.

A target program may consist of an arbitrary number of code sequences,
each of which consists of instructions and/or data placed contiguously in the
target computer memory. Each sequence appears in the target tree as a list
of operation, constant and label nodes rooted in a sequence node. If the ori
gin field of the sequence node specifies an address expression then the
sequence begins at the address which is the value of that expression. Thus
the placement of a sequence can be specified relative to another sequence or
absolutely in the target computer memory. In the absence of an origin
expression, a sequence will be placed in an arbitrary position that guaran
tees no overlap between it and any other sequence not based upon it. (A
sequence s 1 is based upon a sequence s 2 when the origin expression of s 1

depends upon a label node in S2 or in some sequence based upon S2')

Related code sequences whose origin expressions result in gaps between
them serve to reserve uninitialized storage, while overlapping sequences
indicate run-time overlays.

Address expressions may contain integers and machine addresses, com
bined by the four basic integer operations with the normal restrictions for
subexpressions having machine addresses as operands. The code generator
must guarantee that the result of an address expression will actually fit into
the field in which it is being used. For some machines, this guarantee can
not be made in general. As a result, either restrictions must be placed upon
the expressions used by the code generator or the assembler must take over
some aspects of the code generation task. Examples of the latter are the
final selection of an instruction from a set whose members differ only in
address field size (e.g. short vs. long jumps), and selection of a base register
from a set used to access a block of memory. Chapter 11 will consider such
problems in detail.

4.2. Global Tables

We extract specific information from the token sequence, structure tree,
computation graph or target tree and represent it in special tables to simplify
the program representation, to speed up search processes, or to avoid many
repetitions of the same data. In particular, we often replace variable-length
data by fixed-length keys and thereby simplify storage management.

4.2. Global Tables 95

4.2.1. Symbol Table The purpose of the symbol table is to provide a
unique, fixed-length encoding for the identifiers (and possibly the keywords)
occurring in a program. In most programming languages the number of
possible identifiers, and hence the length of the encoding, is very large.
Since only a tiny fraction of the possible identifiers occur in any particular
program, a much shorter encoding suffices and the symbol table must
uniquely map the identifiers into this encoding. If the entire set of identifiers
is not known a priori then such a mapping can be achieved only by compar
ing each input character string against those already encountered.

A symbol table module provides three basic operations:

• initialize: Enter the standard identifiers.
• give--symbol (identi.fier--string) symbol: Obtain the encoding of a specified

identifier.
• give--string(symbol}identifier--string: Obtain the identifier having a

specified encoding.

Additional operations for delivering identifiers in alphabetical order are
necessary if cross-reference tables are to be produced.

Although the symbol table is used primarily for identifiers, we advocate
inclusion of keywords as well. No separate recognition procedure is then
required for them. With this understanding, we shall continue to speak of
the symbol table as though its only contents were identifiers.

The symbol is used later as a key to access the identifier's attributes, so it
is often encoded as a pointer to a table containing those attributes. A
pointer is satisfactory when only one such table exists and remains in main
storage. Positive integers provide a better encoding when several tables
must be combined (as for separate compilation in Ada) or moved to secon
dary storage. In the simplest case the integers chosen would be 1,2, ...

Identifiers may be character strings of any length. Since it may be awk
ward to store a table of strings of various lengths, many compilers either fix
the maximum length of an identifier or check only a part of the identifier
when computing the mapping. We regard either of these strategies as unac
ceptable. Clearly the finite size of computer memory will result in limita
tions, but these should be placed on the total number of characters rather
than the length of an individual identifier. Failure to check the entire
identifier may result in incorrect analysis of the source program with no
indication to the programmer.

The solution is to implement the symbol table as two distinct com
ponents: a string table and a lookup mechanism. The string table is simply a
very large, packed array of characters, capable of holding all of the distinct
identifiers appearing in a program. It is implemented using a conventional
virtual storage scheme (Exercise 4.4), which provides for allocation of
storage only as it is needed. The string forms of the identifiers are stored
contiguously in this array, and are specified by initial index and length.

In view of the large number of entries in the symbol table (often resulting
mainly from standard identifiers), hash techniques are preferable to search

96 Chapter 4. Abstract Program Representations

trees for implementing the lookup mechanism. The length of the hash table
must be specified statically, before the number of identifiers is known, so we
choose the scheme known as 'open hashing' or 'hash with chaining': A
computation is performed on the string to select one of M lists, which is then
searched sequentially. If the computation distributes the strings uniformly
over the lists, then the length of each will be approximately (number of dis
tinct identifiers)/M. By making M large enough the lengths of the lists can
be reduced to one or two items.

The first decision to be made is the choice of hash function. It should
yield a relatively smooth distribution of the strings across the M lists,
evaluation should be rapid, and it must be expressible in the implementation
language. One computation that gives good results is to express the string as
an integer and take the residue modulo M. M should be a prime number
not close to a power of the number of characters in the character set. For
example, M = 127 would not be a good choice if we were dealing with a
128-character set; M =401, on the other hand, should prove quite satisfac
tory.

There are two problems with the division method: It is time-consuming
for strings whose integer representations exceed the single-length integer
range of the implementation language, and it cannot be expressed at all if
the implementation language is strongly typed. To solve the former, we
generally select some substring for the hash computation. Heads or tails of
the string are poor choices because they tend to show regularities (SUMI,
SUM2, SUM3 or REDBALL, BLUEBALL, BLACKBALL) that cause the
computation to map too many strings into the same list. A better selection is
the center substring:

if I s I <,n then s else substr(s, (I s I -n) div 2, n) ;

(Here s is the string, I s I is the length of sand n is the length of the longest
string representable as a single-length integer. The function substr(s, t l)
yields the I-character substring of s beginning at the ph character.)

The constraints of a strongly-typed implementation language could be
avoided by providing a primitive transfer function to convert a sufficiently
short string into an integer for type checking purposes. It is important that
this transfer function not involve computation. For example, if the language
provides a transfer function from characters to integers, a transfer function
from strings to integers could be synthesized by a loop. This approach
defeats the whole purpose of the hashing function, however, by introducing
a time-consuming computation. It would probably be preferable to use a
single character to select the list in this case and accept a longer search!

Comparison of the input identifier with the symbols already present in the
table can be speeded up by a variety of quick checks, the simplest of which
is comparison of string lengths. Whether or not such checks are useful
depends upon the precise costs of string comparison and string table access.

In a multi-pass compiler, the lookup mechanism may be discarded after

4.2. Global Tables 97

the lexical analysis has converted identifiers to symbols. The string table
must, however, be retained for later tasks such as module linking.

4.2.2. Constant Table Literal constant values appearing in the program
must be retained and possibly manipulated during compilation. Compile
time computation involving numeric operations must be carried out using
the semantics of the target machine. In other words, integer operations must
conform to the range of the target machine's integer arithmetic, and floating
point operations must conform to its radix, range, precision and rounding
characteristics. Because of this, we regard the constant table as an abstract
data type: It defines a set of values, and any computations involving these
values must be carried out by operations that the constant table provides.

We distinguish three conceptually distinct representations of a constant:
the character representation appearing in the source program, the internal
representation defined by the constant table, and the representation required
by the target machine. The constant table module provides conversion
operations to accept source representations and return internal representa
tions, and to accept internal representations and return target representa
tions. Source-to-internal conversions are invoked during lexical analysis,
while internal-to-target conversions are invoked during assembly. Although
the three representations are conceptually distinct, two or more of them may
be physically identical in a particular compiler. For example, a LAX float
ing point constant might have identical internal and target representations.

The constant table module could use a string table of the form introduced
in the previous section to store string constants. Since identical string con
stants occur rarely in a program, no search is needed to enter strings into the
table; each is simply inserted as it is encountered. A fixed-length encoding
then consists of a string table index and length, which the constant table
module delivers as the internal value of the constant. In a multi-pass com
piler the string table could reside in secondary storage except during lexical
analysis and assembly.

In addition to conversions, the constant table module must provide com
putational and comparison operations for the internal representations.
These operations are used not only for manipulating denotations that
appear in the source program, but also for carrying out all computations and
comparisons of program-defined values during semantic analysis and code
generation. F or example, consider the Pascal type constructor
array [Lu] of m. During semantic analysis, constant table operations are
used to verify that the lower bound does not exceed the upper; during code
generation they are used to compute the size and alignment of the array.

The requirements of semantic analysis and code generation determine the
set of operations that must be provided. In general, these operations should
duplicate the behavior of the equivalent operations on the target machine.
For example, a character comparison should follow the target machine col
lating sequence. The range of integer values, however, must normally be

98 Chapter 4. Abstract Program Representations

larger than that of the target machine. Suppose that we compile a program
containing the type constructor of the previous paragraph for the PDPII
(maxint =32767). Suppose further that 1= -5000, U =5000 and m is real.
This is a perfectly legal declaration of an array that will easily fit into the
65536-byte memory of the PDPII, but computation of its size in bytes
(40004) overflows the PDPII's integer range.

If the compiler is being executed on the target machine, this requirement
for increased range implies that the computational and comparison opera
tions of the constant table must use a multiple-precision representation.
Knuth [1969] describes in detail how to implement such a package.

Although, as shown above, overflow of the target machine's arithmetic
range is legitimate in some cases, it is often forbidden. When the user writes
an expression consisting only of constants, and that expression overflows the
range of the target machine, the overflow must be detected if the expression
is evaluated by the compiler. This leads to a requirement that the constant
table module provide an overflow indicator that is set appropriately by each
computational operator to indicate whether or not the computation would
overflow on the target machine. Regardless of the state of the overflow indi
cator, however, the constant table should yield the (mathematically) correct
result.

In most programming languages, a particular numeric value can be
expressed in many different ways. For example, each of the following LAX
floating point numbers expresses the value 'one thousand':

lOOOOOOE-3 l.OE3 .001E6 1000.0

The source-to-internal conversion operators of the constant module should
accept only a standardized input format. Nonzero integers are normally
represented by a sequence of digits, the first of which is nonzero. A suitable
representation for nonzero floating point numbers is the pair (significand,
exponent), in which the significand is a sequence of digits without leading or
trailing zeros and the exponent is suitably adjusted. The significand can be
interpreted either as an integer or a normalized decimal fraction. 'One
thousand' would then be represented either as (' I ',3) or as (' I ',4) respec
tively. A fractional significand is preferable because it can be truncated or
rounded without changing the exponent. Zero is represented by ('0',0). In
Section 6.2 we shall show how the standardized format is obtained by the
lexical analyzer.

If no floating point arithmetic is provided by the constant table then the
significand can be stored in a string table. The internal representation is the
triple (string table index, significand length, adjusted exponent). When
compile-time floating point operations are available, floating point numbers
are converted to an internal representation of appropriate accuracy for
which the arithmetic of the target machine can be simulated exactly. (Note
that decimal arithmetic is satisfactory only if the target machine also uses
decimal arithmetic.)

4.2. Global Tables 99

4.2.3. Definition Table Types, variables, procedures and parameters are
examples of entities: components of the program whose attributes are esta
blished by declaration. Most of the leaves of the structure tree represent
uses of entities, at which the entity's attributes must be made available. A
definition table abstracts the entities, avoiding the need to explicitly repro
duce all of the attributes of an entity at each of the leaves representing its
uses. There is one definition table entry for each declared entity, and this
entry holds all attributes of that entity. A leaf representing the use of an
entity contains a reference to the definition table.

We must emphasize that a definition table merely restates structure tree
information in a more compact and accessible form. (Section 8.3.2 will
show how to partially automate the choice of information to be included in
a definition table.) Thus each form of the structure tree has, at least concep
tually, an associated definition table. Transformations of the structure tree
imply corresponding transformations of the definition table. Whether the
definition table is actually transformed, or a new definition table is built
from the transformed tree, is an implementation decision that depends upon
two factors:
• The relative costs of transformation and reconstruction .
• The relationship between the traversal needed to reconstruct the informa

tion and the traversal using that information.

When assessing the relative costs, we must be certain to consider the extra
storage required during the transformation as well as the code involved.

The second factor mentioned above may require some elaboration: Con
sider the definition table used during semantic analysis and that used during
code generation. Although the structure tree may be almost the same for
these two processes, the interesting attributes of defined objects are usually
quite different. During semantic analysis we are concerned with source pro
perties; during code generation with target properties. Thus the definition
tables for the two processes will differ. Suppose further that our code gen
eration strategy requires a single depth-first, left-to-right traversal of the
structure tree given that the definition table is available.

If the definition table can be rebuilt during a single depth-first, left-to
right traversal of the structure tree, and every attribute becomes available
before it is needed for code generation, then rebuilding can be combined
with code generation and the second factor noted above does not lead to
increased costs. When this condition is not satisfied, the second factor does
increase the rebuilding cost and this must be taken into account. It may
then be cheaper to transform the definition table between the last semantic
analysis traversal and the first code generation traversal. (The attribute
dependency analysis presented in Section 8.2 is used to decide whether the
condition is satisfied.)

A definition table is generally an unstructured collection of entries. Any
arbitrary entry can be accessed via a pointer in order to read an attribute or
assign a new value. In a one-pass compiler, a stack strategy could also be

100 Chapter 4. Abstract Program Representations

used: At every definition a new entry is pushed onto the top of the stack,
and at the end of a range all definitions found in the range are popped. This
organization has the advantage that only relevant entries must be held in
storage.

Copies of some of the more-frequently accessed attributes of an entity
may be included in each leaf representing a use of that entity. The choice of
such attributes depends upon the particular compiler design; we shall return
to this question several times, in Chapters 9, 10 and 14. It may be that these
considerations lead to including all attributes in the leaf. The definition
table then ceases to exist as a separate data structure.

4.3. Notes and References

Postfix, triples, and quadruples are often discussed in isolation as 'internal
forms' of the program, without reference to the structures they represent (see
Gries [1971] for example). Such discussions tend to bog down in a morass of
special cases and extensions once they move beyond the treatment of arith
metic expressions. We believe that thinking in terms of a tree helps the
compiler designer to concentrate on the important relationships present in
the text and to arrive at a more coherent representation. Once this has been
derived, a variety of linearizations may be used depending upon the particu
lar compiler design.

Most authors lump the various tables discussed in Section 4.2 into a single
dictionary, which they often call 'the symbol table' [Gries 1971, Bauer 1976,
Aho 1977a]. The concept of separate tables seems to be restricted to
descriptions of mUlti-pass compilers, as a mechanism for reducing main
storage requirements [Naur 1964). This is not invariably true, however,
especially when one considers the literature on ALGOL 68 [Peck 1971]. In
his description of a multi-pass Pascal compiler, Hartmann [1977] uses
separate tables both to reduce core requirements and to provide better com
piler structure.

Lookup mechanisms have concerned a large number of authors; the most
comprehensive treatment is that of Knuth [1973). He gives details of a
variety of mechanisms, including hashing, and shows how they compare for
different applications. It appears that hashing is the method of choice for
symbol table implementation, but there may be some circumstances in
which binary trees are superior [Palmer 1974]. For symbol tables with a
fixed number of known entries (e.g. keywords) Cichelli [1980] and Cercone
[1982] describe a way of obtaining a hash function that does not have any
collisions and hence requires no collision resolution.

4.3. Notes and References 101

Exercises
4.1. [Sale 1971, McIlroy 1974] Specify abstract tokens for FORTRAN 66.

4.2. Specify a target _node (Figure 4.6) suitable for some machine with which you
are familiar.

4.3. Is a symbol table needed to map identifiers in a compiler for Minimal Standard
BASIC? Explain.

4.4. Implement a string table module, using a software paging scheme: Statically
allocate an array of pointers (a 'page table') to blocks of fixed size (,pages').
Initially no additional blocks are allocated. When a string must be stored, try
to fit it into a currently-allocated page. If this cannot be done, dynamically
allocate a new page and place a pointer to it in the page table. Carefully define
the interface to your module.

4.5. Implement a symbol table module that provides a lookup mechanism, and uses
the module of Exercise 4.4 to store the identifier string.

4.6. Identifier strings are specified in the module of Exercise 4.5 by the pair (string
table index, length). On a computer like the DEC PDPII, this specification
occupies 8 bytes. Comment on the relative merits of this scheme versus one in
which identifier strings are stored directly if they are no longer than k bytes,
and a string table is used for those whose length exceeds k. What should the
value of k be for the PDPll? Would this scheme be appropriate for a mul
tipass compiler?

4.7. Consider the FORTRAN expression 'X * 3.1415926535897932385 * Y'.
Assume that no explicit type has been given for X, and that Y has been
declared DOUBLE PRECISION.
a. Should the constant be interpreted as a single or double precision value?

Explain.
b. For some machine with which you are familiar, estimate the relative errors

in the single and double precision representations of the constant.
c. Explain the relevance of this example to the problem of selecting the inter

nal representation to be provided by the constant table for floating point
numbers.

CHAPTER 5

Elements of Formal Systems

Formal grammars, in particular context-free grammars, are the tools most
frequently used to describe the structure of programs. They permit a lucid
representation of that structure in the form of parse trees, and one can (for
the most part mechanically) specify automata that will accept all correctly
structured programs (and only these). The automata are easy to modify so
that they output any convenient encoding of the parse tree.

We limit our discussion to the definitions and theorems necessary to
understand and use techniques explained in Chapters 6 and 7, and many
theorems are cited without proof. In the cases where we do sketch proofs,
we restrict ourselves to the constructive portions upon which practical algo
rithms are based. (We reference such constructions by giving the number of
the associated theorem.) A formally complete treatment would exceed both
the objectives of and size constraints on this book. Readers who wish to
delve more deeply into the theoretical aspects of the subject should consult
the notes and references at the end of this chapter.

5.1. Descriptive Tools

In this section we first review the standard mathematical notation used to
describe sets of strings. We then introduce some formal systems for the pro
duction of such sets and with these define certain classes of languages.
Finally, we discuss the representation of the structure of strings by means of
trees and give a complete example.

5.1.1. Strings and Rewriting Systems We begin with a vocabulary (or
alphabet), V: A finite, nonempty set of symbols having no discernible struc-

102

5.1. Descriptive Tools 103

ture. (At least we take no notice of further structure on the level of abstrac
tion we are considering.) One example of a vocabulary is the set of charac
ters available on a particular computer, others are the set of basic symbols
defined by a particular language (e.g. identifier, integer, +, begin) and the
set of syntactic terms we use to describe the structure of a program. We may
attach semantic significance to some of the symbols in the vocabulary,
without explaining them further by meams of the formal systems introduced
in this chapter.

The set of all finite strings Xl· .. X n , n ;;. I, formed by concatenating ele
ments of V is denoted by V+. V* denotes V+ augmented by adding the
empty string (which contains no symbols). We shall denote the empty string
by (; it is both a left and right identity for concatenation: q =X(=x,
X E V*. The count, n, of symbols in a string X = Xl· .. Xn is called the length
of X, and is denoted by 1 X I. Thus 1 (1 =0.

Definition 5.1. Let X =aw, a, wE V*. The string a is called a head, and the
string w a tail, of X. If a-=j=.((w-=j=.() then it is a proper head (tail) of X.

Each subset of V* is called a language over vocabulary V. The elements
of a language are called sentences. Interesting languages generally contain
infinitely many sentences, and hence cannot be defined by enumeration.
We therefore define each such language, L, by specifying a process that
generates all of its sentences, and no other elements of V*. This process may
be characterized by a binary, transitive relation =? + over V*, such that
L = {X 1 t =? + X} for a distinguished string tin V*. We term the rela
tion =? + a derivative relation.

Definition 5.2. A pair (V, =? +) consisting of a vocabulary V and a deriva
tive relation =? +, is called aformal system.

A derivative relation usually cannot be defined by enumeration either.
We shall concern ourselves only with relations that can be described by a
finite set of pairs (a, 'T) of strings from V*. We call such pairs productions,
and write them as a-"'T. The transitive closure of the finite relation
described by these productions yields a derivative relation. More precisely:

Definition 5.3. A pair (V,P), consisting of a vocabulary V and a finite set, P,
of productions a-"'T (a,'TE V) is called a general rewriting (or Semi-Thue)
system.

Definition 5.4. A string X is directly derivable from a string 7T (symbolically
7T=? X) by a general rewriting system (V, P) if there exist strings a, 'T, /L, p in
V such that 7T= /Lap, X = /L'TP and a -"'T is an element of P.

Definition 5.5. A string X is derivable from a string 7T (symbolically 7T=? +x)

104 Chapter 5. Elements of Formal Systems

by a general rewriting system (~ P) if there exist strings Po, ... , Pn in v*
(n > 1) such that 11' = Po, Pn = X and Pi _ I => Pi' i = 1 , ... , n. The sequence
Po, ... , Pn is called a derivation of length n.

We write 11'=> * X to indicate that either 11'=x or 11'=> +X. If X is (directly)
derivable from 11', we also say that X is (directly) reducible to 11'. Without
loss of generality, we shall assume that derivations 11' => +11' of a string from
itself are impossible.

5.1.2. Grammars Using the general rewriting system defined by Figure
5.1, it is possible to derive from E every correct algebraic expression consist
ing of the operators + and *, the variable i, and the parentheses (). Many
other strings can be derived also, as shown in Figure 5.2. In the remainder
of this chapter we shall concentrate on rewriting systems in which the voca
bulary is made up of two disjoint subsets: T, a set of terminals, and N, a set
of nonterminals (syntactic variables). We will ultimately be interested only in
those strings derivable from a distinguished nonterminal (the axiom or start
symbol) and consisting entirely of terminals. (Thus we speak of generative
systems. One could instead consider analytic systems in which the axiom is
derived from a string of terminals. We shall return to this concept with
Definitions 5.12 and 5.20.)

{E,T,F,+,*,(,),i}
a) The vocabulary V

{E~T,

T~F,

F~i,

E~E+T,

T~T*F,

F ~(E) }

b) The productions P

Figure 5.1. A General Rewriting System (v,P)

E=>T
T=>T*F

T*F=>T*i

a) Some immediate derivations

E;;;;, * T*i
E => * i + i*i
TiE ;;;;, * iii
TiE=> * TiE
E=>* T

(length 3)
(length 8)
(length 5)
(length 0)
(length I)

b) Additional derivations

Figure 5.2. Derivations

5.1. Descriptive Tools 105

Definition 5.6. A quadruple G = (T,N,P,Z) is called a grammar for the
language L(G) = {X E T* I Z:::>*X} ifT and N are disjoint, (TuN,P) is
is a general rewriting system, and Z is an element of N. We say that two
grammars G and G'are equivalent if L (G) = L (G ').

Figure 5.3 illustrates these concepts with two grammars that generate alge
braic expressions in the variable i. These grammars are equivalent

T = { +,*,(,),i}

N = {E,T,F}

P = {E~T, E~E+T,
T~F, T~T*F,

F~i, F~(E)}

Z=E

a) A grammar incorporating (V,P) from Figure 5.1

T = {+, * ,(,),i}

N = {E,E' ,T,T',F}

P = { E~T, E~TE',

E'~+T, E'~+TE',

T~F, T~FT',

T'~*F, T'~*FT,

F~i, F ~(E) }

Z=E

b) A grammar incorporating another general rewriting system

Figure 5.3. Equivalent Grammars

according to Definition 5.6.
Grammars may be classified by the complexity of their productions:

Definition 5.7. (Chomsky Hierarchy). The grammar G = (T,N,P,Z) is a

• type 0 grammar if each production has the form (J ~ 'T, (J E V+ and 'T E v".
• type 1 (context-sensitive) grammar if each production has the form

p.A P~p.xp, p., pE v", A EN and X E V+.
• type 2 (context-free) grammar if each production has the form A ~x,

A EN and X EV·.
• type 3 (regular) grammar if each production has either the form A ~a,

A EN and a ETu {t:} or the formA ~aB, A,BEN and a ET.

106 Chapter 5. Elements of Formal Systems

If a grammar that generates a language is context-sensitive (context-free,
regular), then we also term the language itself context-sensitive (context
free, regular). Regular and context-free grammars are the most interesting
to compiler writers. The former are usually used to describe the basic sym
bols (e.g. identifiers, constants) of a language, while the latter describe the
structure of a program. From now on, we restrict our attention to these two
grammar classes.

Although we admit f-productions (productions whose right-hand side
consists of the empty string) in context-free grammars, we are interested
only in languages that do not include the empty string. Such languages can
always be described by ffree grammars - grammars without f-productions.
Therefore f-productions will only be used when they result in more con
venient descriptions.

We assume further that every symbol in the vocabulary will appear in the
derivation of at least one sentence. Thus the grammar will not contain any
useless symbols. (This is not always true for actual descriptions of program
ming languages, as illustrated by the LAX definition of Appendix A.)

5.1.3. Derivations and Parse Trees Each production in a regular gram
mar can have at most one nonterminal on the right-hand side. This property
guarantees-in contrast to the context-free grammars-that each sentence of

T = {n,.,+,-,E}

N = {C,F,J,X,S, U}

p = {C n, C nF, C J,
F I,F ES,
J n,J nX,
X ES,
S n, S +U, S -U,
U n}

Z=C
a) A grammar for real constants

C C C
n .J nF

.n n.I
n.nX
n.nES
n.nE +U
n.nE +n

b) Three derivations according to the grammar of (a)

Figure 5.4. Derivations According to a Regular Grammar

5.1. Descriptive Tools

E
E+T
T+T
F+T
i+T
i+T*F
i+F*F
i +i*F
i +i*i

E
E+T
E+T*F
T+T*F
T+F*F
T+F*i
F+F*i
i +F*i
i +i*i

E
E+T
E+T*F
E+T*i
E+F*i
E+i*i
T+i*i
F+i*i
i +i*i

Figure 5.5. Derivations According to a Context-Free Grammar

107

the language has exactly one derivation when the grammar is unambiguous
(Definition 5.11).

Figure 5.4a is a regular grammar that generates the integers and real
numbers if n represents an arbitrary sequence of digits. Three derivations
according to this grammar are shown in Figure 5.4b. Each string except the
last in a derivation contains exactly one nonterminal, from which a new
string must be derived in the next step. The last string consists only of termi
nals. The sequence of steps in each derivation of this example is determined
by the derived sentence.

The situation is different for context-free grammars, which may have any
number of nonterminals on the right-hand side of each production. Figure
5.5 shows that several derivations, differing only in the sequence of applica
tion of the productions, are possible for a given sentence. (These derivations
are constructed according to the grammar of Figure 5.3a.)

In the left-hand column, a leftmost derivation was used: At each step a
new string was derived from the leftmost nonterminal. Similarly, a rightmost
derivation was used in the right-hand column. A nonterminal was chosen
arbitrarily at each step to produce the center derivation.

A grammar ascribes structure to a string not by giving a particular
sequence of derivation steps but by showing that a particular substring is
derived from a particular nonterminal. For example, in Figure 5.5 the sub
string i*i is derived from the single nonterminal T. We interpret this pro
perty of the derivation to mean that i*i forms a single semantic unit: an
instance of the operator * applied to the i's as operands. It is important to
realize that the grammar was constructed in a particular way specifically to
ascribe a semantically relevant structure to each sentence in the language.
We cannot be satisfied with any grammar that defines a particular language;
we must choose one reflecting the semantic structure of each sentence. For
example, suppose that the rules E-+E+T and T-+T*F of Figure 5.3a had
been replaced by E -+E*T and T -+T +F respectively. The modified gram
mar would describe the same language, but would ascribe a different struc
ture to its sentences: It would imply that additions should take precedence
over multiplications.

Substrings derived from single nonterminals are called phrases:

108 Chapter 5. Elements of Formal Systems

Definition 5.8. Consider a grammar G = (T,N,P,Z). The string X E V+ is a
phrase (for X) of /LXV if and only if Z =>' /LXV => + /LXV (/L,vE V, X EN).
It is a simple phrase of /L X V if and only if Z =>' /LX V => /L X v.

Notice that a phrase need not consist solely of terminals.
Each of the three derivations of Figure 5.5 identifies the same set of sim

ple phrases. They are therefore equivalent in the sense that they ascribe
identical phrase structure to the string i +i*i. In order to have a single
representation for the entire set of equivalent derivations, one that makes
the structure of the sentence obvious, we introduce the notion of a parse tree
(see Appendix B for the definition of an ordered tree):

Definition 5.9. Consider an ordered tree (K, D) with root ko and label func
tion f:K ->M. Let k I, ... , kn' (n > 0) be the immediate successors of k o.
(K, D) is a parse tree according to the grammar (T, N, P, Z) if the following
conditions hold:

(a)MCVu{£}
(b)f(ko)=Z
(c)Z->f(kl) "'f(kn)EP
(d) iff (k;) E T, or if n = I and f (k;) = £, then k; is a leaf
(e) iff (k;) EN then k; is the root of a parse tree according to the grammar

(T,N,P,f (k; »

Figure 5.6 is a tree for i +i*i according to the grammar of Figure 5.3a, as
can be shown by recursive application of Definition 5.9.

Figure 5.6. The Parse Tree for i +i *i

We can obtain any string in any derivation of a sentence from the parse
tree of that sentence by selecting a minimum set of nodes, removal of which
will break all root-to-Ieaf paths. (Such a set of nodes is called a cut - see
Definition B.S.) For example, in Figure 5.6 the set {T, +, T, *, F} (the third
row of nodes, plus '+' from the second row) has this property and T+T*F
is the fourth step in the center derivation of Figure 5.5.

Theorem 5.10. In a parse tree according to a grammar G= (T,N,P,Z), a set of
nodes (k l , .. . ,kn) is a cut ifand only ifZ => *f(k l)' .. f(kn).

5.1. Descriptive Tools 109

A parse tree specifies the phrase structure of a sentence. With the gram
mars given so far, only one parse tree corresponds to each sentence. This
may not always be true, however, as illustrated by Figure 5.7. The grammar
of Figure 5.7a describes the same language as that of Figure 5.3a, but many
sentences have several parse trees.

Definition 5.11. A sentence is ambiguous if its derivations may be described
by at least two distinct parse trees (or leftmost derivations or rightmost
derivations). A grammar is ambiguous if there is at least one ambiguous
sentence in the language it defines; otherwise the grammar is unambiguous.

Figure 5.7b shows two parse trees for i +i*i that are essentially different
for our purposes because we associate two distinct sequences of operations
with them. If we use an ambiguous grammar to describe the language (and
this may be a useful thing to do), then either the ambiguity must involve
only phrases with no semantic relevance or we must provide additional rules
for removing the ambiguity.

T = { +, *, i}

N = {E}

Z=E
a) An ambiguous grammar

b) Two parse trees for i +i *i

Figure 5.7. Ambiguity

5.1.4. Extended Backus-Naur Fonn Appendix A uses a notation
known as extended Backus-Naur form (EBNF) to describe LAX. This nota
tion allows us to describe a grammar in a more compact form. Moreover, as
we shall see in Chapter 7, a parser can be derived easily from the
specification of a language written in EBNF. In this section we illustrate the
techniques we have been discussing by giving a formal definition of EBNF;
an informal description appears at the beginning of Appendix A.

110 Chapter 5. Elements of Formal Systems

Figure 5.8a is the grammar for EBNF. When a specification is written in
EBNF, character strings are used to represent the elements of T as indicated
in Figure 5.8b. A complete specification for EBNF itself appears in Figure
5.8c. Given a specification such as that of Figure 5.8c, we can derive one or
more grammars that define the same language. In this manner we establish
the 'meaning' of the specification.

The derivation proceeds from a parse tree (K,D) of the given
specification according to the grammar of Figure 5.8a. In addition to the
label function f from Definition 5.9, we define h:K -L U I, where L is
the set of identifiers and literals appearing in the specification and I is a set
of unique identifiers. L and I are disjoint; h associates an element of L
with every leaf of K and an element of I with every non-leaf node. An ele-

T = {identifier,literal,is,or,lpn,rpn,lbk,rbk,plus,star,period,separator}

N = {specification,rule,expression,tertiary,secondary,primary, unit, atom }

p = {specification -rule, specification -specification rule,
rule-identifier is expression period
expression _ tertiary, expression -expression separator atom,
tertiary -secondary, tertiary _ tertiary or secondary,
secondary-primary, secondary-secondary primary,
primary-unit, primary-unit star, primary-unit plus,
primary-lbk expression rbk,
unit -atom, unit -lpn expression rpn,
atom -+identifier, atom -+literal}

Z = specification
a) Grammar for EBNF

identifier: Sequence ofletters, digits and underscores.
literal: String delimited by apostrophes.
lpn : (rpn :) lbk : [rbk:] is: :: =
or: I star: * plus: + period: . separator: II

b) Representation used in this book for EBNF terminals

specification: : = rule + .
rule:: = identifier':: =' expression '.'.
expression:: = (primary + I I ' I' I expression ' I I' atom .
primary:: = unit ['*' I ' +'] I '[' expression']' .
unit :: = atom I '(' expression ')'.
atom :: = identifier I literal .

c) A possible EBNF specification for EBNF

Figure 5.8. Extended Backus-Naur Form

5.1. Descriptive Tools 111

ment of L may be associated with any number of leaves, but there is a 1-1
correspondence between non-leaf nodes and elements of I .

LuI is the vocabulary of the grammar that we shall derive from the

EBNF specification. All elements of I are nonterminals of the grammar, as
are identifiers appearing on the left of ':: =' in an EBNF rule. All literals
and identifiers not appearing on the left of ':: =' are terminals. Formally:

R = {h(k) I (k',k)ED, f (k')=rule, f(k)=identifter}

T=L-R

N = R uI

Here R is the set of rule identifiers. If the EBNF specification is well-formed
then there will be exactly one element of R that does not appear on the right
of ':: = ' in any rule. This element is the axiom of the derived grammar:

Z =rE(R - {h(k) I (k~k)ED,f(k')=atom})
A set of productions can be derived from every non-leaf node of the parse

tree, and P is the union of those sets. Consider each subtree formed from a
non-leaf node ko and its ordered immediate successors k 1> k 2, ... , kn • The
derived productions depend upon the structure of the subtree (given by a
production of Figure 5.8a) and the labels of the nodes in the subtree as fol
lows:

For subtree

rule~identifter is expression period
expression expression separator atom

tertiary tertiary or secondary
secondary secondary primary
primary ~unit star
primary unit plus
primary lbk expression rbk
unit lpn expression rpn

derive the production set

{h(kl) h(k3)}
{h(ko) h(k l), h(ko)

h(ko) h(k3) h(k l)}
{h(ko) h(k l), h(ko) h(k3)}

{h (ko) h (k I) h (k 2)}

{h(ko) t:, h(ko) h(ko) h(k l)}

{h(ko) h(k l), h(ko) h(ko) h(k l)}

{h (ko) t:, h (ko) ~h (k 2)}

{h(k o) h(k2)}

Derive the empty set of productions for any subtree with h (ko) =
specification, and derive {h (ko) h (k I)} for any subtree not yet mentioned.

The grammar derived from Figure 5.8c by this process will have more
productions than Figure 5.8a. The extra productions can be removed by a
simple substitution: If B EN occurs exactly twice in a grammar, once in a
production of the form A p.B" and once in a production of the form B p
(p., p, " E V*), then B can be eliminated and the two productions replaced by
A p.p". After all such substitutions have been made, the resulting grammar
will differ from Figure 5.8a only in the representation of vocabulary sym
bols.

112 Chapter 5. Elements of Formal Systems

5.2. Regular Grammars and Finite Automata

A grammar specifies a process for generating sentences, and thus allows us
to give a finite description of an infinite language. The analysis phase of the
compiler, however, must recognize the phrase structure of a given sentence:
It must parse the sentence. Assuming that the language has been described
by a grammar, we are interested in techniques for automatically generating
a recognizer from that grammar. There are two reasons for this require
ment:

• It provides a guarantee that the language recognized by the compiler is
identical to that defined by the grammar .

• It simplifies the task of the compiler writer.

We shall use automata, which we introduce as special cases of general
rewriting systems, as models for the parsing process. In this section we
develop a theoretical basis for regular languages and finite automata, and
then extend the concepts and algorithms to context-free languages and
pushdown automata in Section 5.3. The implementation of the automata is
covered in Chapters 6 and 7.

5.2.1. Finite Automata

Definition 5.12. A finite automaton (finite state acceptor) is a quintuple A
(T,Q,R.qo,F), where Q is a nonempty set, (T u Q,R) is a general rewriting
system, qo is an element of Q and F is a subset of Q. The sets T and Q are
disjoint. Each element of R has the form qt -+q', where q and q' are ele
ments of Q and t is an element of T. We say that A accepts a set of strings
L(A) = {TET· I qoT~·q,qEF}. Two automata, A and A' are
equivalent if and only if L (A) = L (A ').

We can conceive of the finite automaton as a machine that reads a given
input string out of a buffer one symbol at a time and changes its internal
state upon absorbing each symbol. Q is the set of internal states, with qo
being the initial state and F the set of final states. We say that a finite auto
maton is in state q when the current string in the derivation has the form qT.
It makes a transition from state q to state q' if T=tx and qt -+q' is an element
of R. Each state transition removes one symbol from the input string.

Theorem 5.13. For every regular grammar, G, there exists a finite automaton,
A, such that L (A)=L (G).

The proof of this theorem is an algorithm to construct A, given G =
(T,N,P,Z). LetA = (T,Nu{/},R,Z,F),/fi-N. R is constructed from P by
the following rules:

5.2. Regular Grammars and Finite Automata 113

1. If X -'>t (X EN, t E T) is a production of P then let Xt -'> f be a produc
tion of R.

2. If X -'>tY (X, YEN, t E T) is a production of P then let Xt -'> Y be a pro
duction of R .

Further, F = {f} U {X I X -'>(EP}. Figure 5.9 is an automaton constructed
by this process from the grammar of Figure 5.4a.

T = {n,.,+,-,E}

Q = {C,F,I,X,S,U,q}

R = { Cn -'>q, Cn -'>F, C. -'>1,
F. -,>1, FE -'>S,

qo = C

In -'>q, In -'>X,
XE -'>S,
Sn -'>q, S + -'> U, S - -'> U,
Un -'>q }

F = {q}

Figure 5.9. An Automaton Corresponding to Figure 5.4a

One can show by induction that the automaton constructed in this
manner has the following characteristic: For any derivation
Z'TX =? * X X=?* q ('T, X E T*, X EN, 'TX EL (A), q EF), the state X specifies
the nonterminal symbol of G that must have been used to derive the string
X. Clearly this statement is true for the initial state Z if'TX belongs to L (G).
It remains true until the final state q, which does not generate any further
symbols, is reached. With the help of this interpretation it is easy to prove
that each sentence of L (G) also belongs to L (A) and vice-versa.

Figure 5.9 is an unsatisfactory automaton in practice because at certain
steps - for example in state I with input symbol n - several transitions are
possible. This is not a theoretical problem since the automaton is capable of
producing a derivation for any string in the language. When implementing
this automaton in a compiler, however, we must make some arbitrary deci
sion at each step where more than one production might apply. An
incorrect decision requires backtracking in order to seek another possibility.
There are three reasons why backtracking should be avoided if possible:

• The time required to parse a string with backtracking may increase
exponentially with the length of the string .

• If the automaton does not accept the string then it will be recognized as
incorrect. A parse with backtrack makes pinpointing the error almost
impossible. (This is illustrated by attempting to parse the string

114 Chapter 5. Elements of Formal Systems

n.nE + +n with the automaton of Figure 5.9 trying the rules in the
sequence in which they are written.)

• Other compiler actions are often associated with state transitions. Back
tracking then requires unraveling of actions already completed, generally
a very difficult task.

In order to avoid backtracking, additional constraints must be placed upon
the automata that we are prepared to accept as models for our recognition
algorithms.

Definition 5.14. An automaton is deterministic if every derivation can be
continued by at most one move.

A finite automaton is therefore deterministic if the left-hand sides of all
rules are distinct. It can be completely described by a state table that has one
row for each element of Q and one column for each element of T. Entry
(q,t) contains q' if and only if the production qt -+q' is an element of R. The
rows corresponding to qo and to the elements of F are suitably marked.

Backtracking can always be avoided when recognizing strings in a regu
lar language:

Theorem 5.15. For every regular grammar, G, there exists a deterministic finite
automaton, A, such that L (A) = L (G).

Following construction 5.13, we can derive an automaton from a regular
grammar G = (T,N,P,Z) such that, during acceptance of a sentence in L (G),
the state at each point specifies the element of N used to derive the
remainder of the string. Suppose that the productions X -+tU and X -+tV
belong to P. When t is the next input symbol, the remainder of the string
could have been derived either from U or from V. If A is to be determinis
tic, however, R must contain exactly one production of the form Xt -+q'.
Thus the state q' must specify a set of nonterminals, anyone of which could
have been used to derive the remainder of the string. This interpretation of
the states leads to the following inductive algorithm for determining Q, R
and F of a deterministic automaton A =(T,Q,R.qo,F). (In this algorithm, q
represents a subset Nq of N U {f },f fiN):

l. Initially let Q = {qo} and R = 0, with Nqo = {Z}.

2. Let q be an element of Q that has not yet been considered. Perform steps
(3)-(5) for each t ET.

3. Letnext(q,t) = {U 1:3 XENq such that X -+tUEP}.

4. If there is an X ENq such that X -+t EP or X -+f.EP then add f to
next (q, t) if it is not already present.

5. If next(q,t)=F0 then let q' be the state representing Nq,=next(q,t).

5.2. Regular Grammars and Finite Automata 115

Add q' to Q and qt -+q' to R if they are not already present.

6. If all states of Q have been considered then let F = {q I f ENq } and
stop. Otherwise return to step (2).

You can easily convince yourself that this construction leads to a deter
ministic finite automaton A such that L (A) = L (G). In particular, the algo
rithm terminates: All states represent subsets of N u {f}, of which there
are only a finite number.

To illustrate this procedure, consider the construction of a deterministic
finite automaton that recognizes strings generated by the grammar of Figure
5.4a. The state table for this grammar, showing the correspondence between
states and sets of nonterminals, is given in Figure 5.lOa. You should derive

n

q]

q4

qs

qs

+

q2

q2

q6

a) The state table

T = {n,.,+,-,E}

p = { qon -+q], qo· -+q2,
q]. -+q2, q]E -+q3,
q2n -+q4,

q6

q3n -+qs, q3 + -+q6, q3 - -+q6,
q4E -+q3,
q6n -+qs }

F = {q].q4,qS}

b) The complete automaton

E

q3

q3

{C}

{f,F}

{I}

{S}

{f,X}

{f}

{U}

Figure 5.10. A Deterministic Automaton Corresponding to Figure 5.4a

116 Chapter 5. Elements of Formal Systems

this state table for yourself, following the steps of the algorithm. Begin with
a single empty row for qo and work across it, filling in each entry that
corresponds to a valid transition. Each time a distinct set of nonterminal
symbols is generated, add an empty row to the table. The algorithm ter
minates when all rows have been processed.

Theorem 5.16. For every finite automaton, A, there exists a regular grammar,
G, such that L (G)=L (A).

Theorems 5.l5 and 5.16 together establish the fact that finite automata and
regular grammars are equivalent. To prove Theorem 5.16 we construct the
production set P of the grammar G = (T,Q,P,qo) from the automaton
(T,Q,R,qo,F) as follows:

P = {q -+tq' I qt -+q'ER} u {q -+£ I q EF}

5.2.2. State Diagrams and Regular Expressions The phrase structure
of the basic symbols of the language is usually not interesting, and in fact
may simply make the description harder to understand. Two additional for
malisms, both of which avoid the need for irrelevant structuring, are avail
able for regular languages. The first is the representation of a finite automa
ton by a directed graph:

Definition 5.17.: Let A =(T,Q,R,qo,F) be a finite automaton, D =
{(q,q') I 3 t ,qt-+q'ER}, andJ:(q,q')-+{t I qt-+q'ER} be a mapping
from D into the powerset of T. The directed graph (Q,D) with edge labels
J « q ,q'» is called the state diagram of the automaton A .

Figure 5.lla is the state diagram of the automaton described in Figure
5. lOb. The nodes corresponding to elements of F have been represented as
squares, while the remaining nodes are represented as circles. Only the state
numbers appear in the nodes: 0 stands for qo, 1 for qb and so forth.

a) State diagram

n .n n.n
nEn nE + n nE-n
n.nEn n.nE + n n.nE-n

b) Paths

Figure 5.11. Another Description of Figure 5.1 Db

5.2. Regular Grammars and Finite Automata 117

In a state diagram, the sequence of edge labels along a path beginning at
qo and ending at a state in F is a sentence of L (A). Figure 5.lla has exactly
12 such paths. The corresponding sentences are given in Figure 5.11 b.

A state diagram specifies a regular language. Another characterization is
the regular expression:

Definition 5.1S. Given a vocabulary V, and the symbols E, t:, +, *, (and)
not in V. A string p over V U {E ,t:, +, * ,(,)} is a regular expression over V if
I. p is a single symbol of V or one of the symbols E or t:, or if
2. p has the form (X + Y), (XY) or (X) * where X and Yare regular

expressions.

Every regular expression results from a finite number of applications of
rules (1) and (2). It describes a language over V: The symbol E describes
the empty language, t: describes the language consisting only of the empty
string, v E V describes the language {v}, (X + Y) = {w I w EX or wE Y},
(XY) = {Xy I X EX,yE Y}. The closure operator (*) is defined by the fol
lowing infinite sum:

X* =t:+X +XX + XXX + ...

As illustrated in this definition, we shall usually omit parentheses. Star is
unary, and takes priority over either binary operator; plus has a lower prior
ity than concatenation. Thus W +XY* is equivalent to the fully
parenthesized expression (W +(X(Y*))).

Figure 5.12 summarizes the algebraic properties of regular expressions.
The distinct representations for X· show that several regular expressions can
be given for one language.

The main advantage in using a regular expression to describe a set of
strings is that it gives a precise specification, closely related to the 'natural
language' description, which can be written in text form suitable for input to
a computer. For example, let I denote any single letter and d any single
digit. The expression I (I +d) * is then a direct representation of the natural
language description 'a letter followed by any sequence ofletters and digits'.

The equivalence of regular expressions and finite automata follows from:

Theorem 5.19. Let R be a regular expression that describes a subset, S, of T*.
There exists a deterministic finite automaton, A =(T,Q,P,qo,F) such that
L(A)=S.

The automaton is constructed in much the same way as that of Theorem
5.15: We create a new expression R' by replacing the elements of T occur
ring in R by distinct symbols (multiple occurrences of the same element will
receive distinct symbols). Further, we prefix another distinct symbol to the
altered expression; if R =E, then R' consists only of this starting symbol.
(As symbols we could use, for example, natural numbers with 0 as the start
ing symbol.) The states of our automaton correspond to subsets of the sym-

118 Chapter 5. Elements of Formal Systems

X+Y = Y+X (commutative)

(X + Y)+Z = X +(Y +Z) (associative)
(XY)Z = X(YZ)

X(Y +Z) = XY +XZ (distributive)
(X + Y)Z = XZ + yz

X +E = E +X = X (identity)
Xf.=£X=X

XE = EX = E (zero)

X +X = X (idempotent)

(X·>* =X·
X· = f.+XX·
X· = X+X·

•
f. =f.

E' = f.
Figure 5.12. Algebraic Properties of Regular Expressions

R = 1 (l + d) *
R' = 0 1 (2 + 3)*

a) Modifying the Regular Expression

d

ql {O}

q2 q3 {l} (final)

q2 q3 {2} (final)

q2 q3 {3} (final)

b) The resulting state table

Figure 5.13. Regular Expressions to State Tables

bol set. The set corresponding to the initial state qo consists solely of the
starting symbol. We inspect the states of Q one after another and add new
states as required. For each q EQ and each t ET, let q' correspond to the
set of symbols in R' that replace t and follow any of the symbols of the set
corresponding to q. If the set corresponding to q' is not empty, then we add

5.3. Context-Free Grammars and Pushdown Automata 119

qt -"q' to P and add {q'} to Q if it is not already present. The set F of final
states consists of all states that include a possible final symbol of R'.

Figure 5.13 gives an example of this process. Starting with qo= {O}, we
obtain the state table of Figure 5.13b, with states qlo ql and q3 as final states.
Obviously this is not the simplest automaton which we could create for the
given language; we shall return to this problem in Section 6.2.2.

5.3. Context-Free Grammars and Pushdown
Automata

Regular grammars are not sufficiently powerful to describe languages such
as algebraic expressions, which have nested structure. Since most program
ming languages contain such structures, we must change to a sufficiently
powerful descriptive method such as context-free grammars. Because regu
lar grammars are a subclass of context-free grammars, one might ask why
we bother with regular languages at all. As we shall see in this section, the
analysis of phrase structure by means of context-free grammars is so much
more costly that one falls back upon the simpler methods for regular gram
mars whenever possible.

Here, and also in Chapter 7, we assume that all context-free grammars
(T,N,P,Z) contain a production Z --S. This is the only production in
which the axiom Z appears. (Any grammar can be put in this form by addi
tion of such a production.) We assume further that the terminator # fol
lows each sentence. This symbol identifies the condition 'input text com
pletely consumed' and does not belong to the vocabulary. Section 5.3.3
assumes further that the productions are consecutively numbered. The
above production has the number 1, n is the total number of productions
and the ith production has the form X; -"Xi, Xi =Xi, l' .. Xi,m' The length,
m, of the right-hand side is also called the length of the production. We
shall denote a leftmost derivation X :::;/ Y by X =;;, L Y and a rightmost
derivation by X =;;,R Y.

We find the following notation convenient for describing the properties of
strings: The k-head k:w of w gives the first min(k, I w I + 1) symbols of
w#. FIRSTk(w) is the set of all terminal k-heads of strings derivable from
w. The set EFFk (w) ('t:-free first') contains all strings from FIRSTk (w) for
which no t:-production A -"t: was applied at the last step in the rightmost
derivation. The set FOLLO~ (w) comprises all terminal k -heads that could
followw. By definition FOLLOWdZ) = {# } foranyk. Formally:

k . w _ {w# when I w I < k
. - a when w = ay and I a I = k

FIRSTk(w) = {'T I :3 vET' such that w=;;,'v, 'T=k:v}

EFFk(W) = {'TEFIRSTk(w) I :3 A EN, vET' such that w =;;,R A 'TV ~ 'Tv}

120 Chapter 5. Elements of Formal Systems

FOLLO~(w) = {T 1:3 JlEV' such that Z ~. p.6JJI, T=k:JI}

We omit the index k when it is 1. These functions may be.applied to sets of
strings, in which case the result is the union of the results of applying the
function to the elements of its argument. Finally, if a is a string and 0 is a
set of strings, we shall define aO = {aw I wEO}.

5.3.1. Pushdown Automata For finite automata, we saw that the state
specifies the set of nonterminal symbols of G that could have been used to
derive the remainder of the input string. Suppose that a finite automaton
has reached the first right parenthesis of the following expression (which can
be derived using a context-free grammar):

(al +(a2+(··· +(am)'" »
It must then be in a state specifying some set of nonterminal symbols that
can derive exactly m right parentheses. Clearly there must be a distinct state
for each m. But if m is larger than the number of states of the automaton
(and this could be arranged for any given number of states) then there can
not be a distinct state for each m. Thus we need a more powerful automa
ton, which can be obtained by providing a finite automaton with a stack as
an additional storage structure.

Definition 5.20. A pushdown automaton is a septuple A =(T.Q,R,qo,F,S,so),
where (T U Q U S ,R) is a general rewriting system, q 0 is an element of Q, F
is a subset of Q, and So is an element of S or SO=f. The sets T and Q are
disjoint. Each element of R has the form aqaT-+a'q'T, where a and a' are
elements of S~ q and q' are elements of Q, a is an element of T or a = f,

and T is an element of r*.

Q, qo and F have the same meaning as the corresponding components of a
finite automaton. S is the set of stack symbols, and So is the initial content of
the stack. The pushdown automaton accepts a string TET' ifsoqoT ~*q for
some q in F. If each sentence is followed by #, the pushdown automaton A
defines the language L(A) = {T I soqoT#~*q#,qEF,TEr*}. (In the
literature one often finds the requirement that a be an element of S rather
than S*; our automaton would then be termed a generalized pushdown auto
maton. Further, the definition of 'accept' could be based upon either the
relation SoqoT~ *aq, aES',q EF, or the relation soqoT~ *q, q arbitrary.
Under the given assumptions these definitions prove to be equivalent in
power.)

We can picture the automaton as a machine with a finite set Q ofintemal
states and a stack of arbitrary length. If we have reached the configuration
s I ... Sn q T in a derivation, then the automaton is in state q, T is the unread
part of the input text being analyzed, and s I ... Sn is the content of the stack
(s I is the bottom item and Sn the top). The transitions of the automaton
either read the next symbol of the input text (symbol-controlled) or are spon-

5.3. Context-Free Grammars and Pushdown Automata 121

taneous and do not shorten the input text. Further, each transition may alter
the topmost item of the stack; it is termed a stacking, unstacking or replacing
transition, respectively, if it only adds items, deletes items, or changes them
without altering their total number.

The pushdown automaton can easily handle the problem of nested
parentheses: When it reads a left parenthesis from the input text, it pushes a
corresponding symbol onto the stack; when it reads the matching right
parenthesis, that symbol is deleted from the stack. The number of states of
the automaton plays no role in this process, and is independent of the
parenthesis nesting depth.

Theorem 5.21. For every context free grammar, G, there exists a pushdown
automaton, A, such that L (A) = L (G).

As with finite automata, one proves this theorem by construction of A .
There are two construction procedures, which lead to distinct automata; we
shall go into the details of these procedures in Sections 5.3.2 and 5.3.3
respectively. The automata constructed by the two procedures serve as the
basic models for two fundamentally different parsing algorithms.

A pushdown automaton is not necessarily deterministic even if the left
sides of all productions are distinct. For example, suppose that a\q'T-Hlq''T'
and a2q'T~a"q"'T" are two distinct productions and a2 is a proper tail of al'

Thus al = aa2 and both productions are applicable to the configuration
aa2q'TX. If we wish to test formally whether the productions unambiguously
specify the next transition, we must make the left-hand sides the same
length. Determinism can then be tested, as in the case of finite automata, by
checking that the left-hand sides of the productions are distinct. We shall
only consider cases in which the state q and k lookahead symbols of the
input string are used to determine the applicable production.

Unfortunately, it is not possible to sharpen Theorem 5.21 so that the
pushdown automaton is always deterministic; Theorem 5.15 for regular
grammars cannot be generalized to context-free grammars. Only by addi
tional restrictions to the grammar can one guarantee a deterministic auto
maton. Most programming languages can be analyzed deterministically,
since they have grammars that satisfy these restrictions. (This has an obvi
ous psychological basis: Humans also find it easier to read a
deterministically-analyzable program.) The restrictions imposed upon a
grammar to obtain a deterministic automaton depend upon the construction
procedure. We shall discuss the details at the appropriate place.

5.3.2. Top-Down Analysis and LL(k) Grammars Let G=(T,N,P,Z)
be a context-free grammar, and consider the pushdown automaton A =
(T, {q},R,q, {q}, V,Z) with V=T u Nand R defined as follows:

R = {tqt ~q I t ET} u {Bq ~bn ... blq

B ~bl'" bn EP, n? 0, BEN, bi EV}

122 Chapter 5. Elements of Formal Systems

This automaton accepts a string in L (G) by constructing a leftmost deriva
tion of that string and comparing the symbols generated (from left to right)
with the symbols actually appearing in the string.

Figure 5.14 is a pushdown automaton constructed in this manner from
the grammar of Figure 5.3a. In the left-hand column of Figure 5.15 we
show the derivation by which this automaton accepts the string i +i*i. The
right-hand column is the leftmost derivation of this string, copied from Fig
ure 5.5. Note that the automaton's derivation has more steps due to the
rules that compare a terminal symbol on the stack with the head of the input

T = { +, * ,(,),i)

Q = {q}

R = { Eq ~ Tq, Eq ~ T + Eq,
Tq ~Fq, Tq ~F*Tq,
Fq ~iq, Fq ~)E(q,
+q+~q,*q*~q,(q(~q,)q)~q,iqi~q}

qo = q

F = {q}

s = {+,*,(,),i,E, T,F}

So = E

Figure 5.14. A Pushdown Automaton Constructed from Figure 5.3a

Stack Input Leftmost derivation

E q i +i*i E
T+E q i +i*i E+T
T+T q i +i*i T+T
T+F q i +i *i F+T
T+i q i +i *i i+T
T+ q +i*i

Tq i *i
F*T q i *i i+T*F
F*F q i *i i+F*F
F*i q i *i i +i*F
F* q *i
Fq

q i i +i *i
q

Figure 5.15. Top-Down Analysis

5.3. Context-Free Grammars and Pushdown Automata 123

string and delete both. Figure 5.16 shows a reduced set of productions com
bining some of these steps with those that precede them.

R' = { Eq -+ Tq , Eq -+ T + Eq ,
Tq -+Fq, Tq -+F*Tq,
Fqi-+q, Fq(-+)Eq,
+q + -+q, *q*-+q,)q)-+q }

Figure 5.16. Reduced Productions for Figure 5.14

The analysis performed by this automaton is called a top-down (or predic
tive) analysis because it traces the derivation from the axiom (top) to the sen
tence (bottom), predicting the symbols that should be present. For each
configuration of the automaton, the stack specifies a string from v* used to
derive the remainder of the input string. This corresponds to construction
5.13 for finite automata, with the stack content playing the role of the state
and the state merely serving to mark the point reached in the input scan.

We now specify the construction of deterministic, top-down pushdown
automata by means of the LL(k) grammars introduced by Lewis and
Steams [1969]:

Definition 5.22. A context-free grammar G = (T,N,P,Z) is LL (k) for given
k ;> 0 if, for arbitrary derivations

Z ~L /LA X ~/LwX ~ '/LY' y'ET', wE V'

(k :y=k :y') implies p=w.

Theorem 5.23. For every LL(k) grammar, G, there exists a deterministic push
down automaton, A, such that L (A) = L (G).

A reads each sentence of the language L (G) from left to right, tracing a left
most derivation and examining no more than k input symbols at each step.
(Hence the term 'LL(k) prime .)

In our discussion of Theorem 5.13, we noted that each state of the finite
automaton corresponding to a given grammar specified the nonterminal of
the grammar that must have been used to derive the string being analyzed.
Thus the state of the automaton characterized a step in the grammar's
derivation of a sentence. We can provide an analogous characterization of a
step in a context-free derivation by giving information about the production
being applied and the possible right context: Each state of a pushdown
automaton could specify a triple (p,j,O), where O~ j ~ np gives the
number of symbols from the right-hand side of production
Xp -+Xp, 1 ••• xp , np already analyzed and 0 is the set of k -heads of strings

124 Chapter 5. Elements of Formal Systems

that could follow the string derived from Xp. This triple is called a situation,
and is written in the following descriptive form:

[XJ, ~p:JI;O] JL=Xp,I'" Xp,j, JI=xp,j+I'" xp,np

The dot (which is assumed to be outside of the vocabulary) marks the posi
tion of the analysis within the right-hand side. (In most cases 0 contains a
single string. We shall then write it without set brackets.)

Given a grammar (T,N,P,Z), we specify the states Q and transitions R of the
automaton inductively as follows:
1. Initially let Q = {qo} and R = 0, with qo=[Z ~·S;#]. (Note that
FOLLO~(Z)= {# }.) The initial state is qo, which is also the initial
stack content of A. (We could have chosen an arbitrary state as the ini
tial stack content.) The automaton halts if this state is reached again, the
stack is empty, and the next input symbol is the terminator # .

2. Let q = [X ~ JL' JI; 0] be an element of Q that has not yet been considered.
3. If JI=f. then add qf.~f. to R if it is not already present. (The notation

q'T~'T is shorthand for the set of spontaneous unstacking transitions
q'q'T~q''T with arbitrary q'.)

4. IfJl=ty for some t ET and yE V', let q'=[X ~JLt·y;O]. Add q' to Q and
qt ~q' to R if they are not already present.

5. If JI=By for some BEN and yEV: let q'=[X~JLB'y;O] and H =
HB ~'P; ;FIRSTk(yO)] I B ~P; EP}. Set Q : = Q u {q'} u Hand R
:= R U {q'T; ~q'h;'T; I h; EH, 'T; EFIRSTk(P;yO)}.

6. If all states in Q have been examined, stop. Otherwise, return to step (2).

The construction terminates in all cases, since the set of situations is finite.
One can show that the resulting automaton is deterministic if and only if G
is an LL(k) grammar, and therefore the construction provides a test for the
LL(k) property.

Consider the grammar of Figure 5.l7a. We can apply Construction 5.23
with k = 3 to show that this grammar is LL(3), obtaining the states of Figure
5.l7b and the transitions of Figure 5.l7c.

With k =2 the construction leads to identical states. In state q7, however,
we obtain the following transitions:

q7ca ~qlOqllca, q7ca ~qlOqI2ca

The automaton is therefore nondeterministic and hence the grammar is
LL(3), but not LL(2). The example also shows that the lookahead symbols
are examined only at spontaneous, stacking transitions that correspond to
entry into a new production. As soon as such a transition is executed, the
reading of terminal symbols and the decision to terminate the production
with an unstacking transition proceeds without further lookahead.

There exist grammars that do not have the LL(k) property for any k.
Among the possible reasons is the occurrence of left recursive nonterminals
- nonterminals A for which a derivation A ~ A w, w-=l= f., is possible. In a

5.3. Context-Free Grammars and Pushdown Automata

P = { Z -->X,
X --> Y, X -->b Ya,
Y -->c, Y -->ca }

a) An LL(3) grammar

qo=[Z -->'X;# 1
ql =[Z -->X';# 1
q2=[X -->. Y;# 1
q3=[X -->·bYa;# 1
q4=[X --> y.;# 1
q5=[Y -->'c;# 1
q6=[Y -->'ca;# 1
q7=[X -->b'Ya;# 1
q8=[Y -->c·;# 1

q9=[Y -->c'a;# 1
qlO=[X -->bY'a;# 1
qll =[Y -->·c ;a# 1
ql2=[Y -->'ca;a# 1
q13=[Y -->ca';# 1
qI4=[X -->bYa';# 1
qI5=[Y -->c';a# 1
qI6=[Y -->c'a;a# 1
q17=[Y -->ca';a# 1

b) States of the automaton, with the situations they represent

R = { qoc # -->qlq2c #, q7ca # -->qlOqllca #,
qoca # -->qlq2ca #, q7caa -->q IOq l2caa ,
qolx:a -->qIq3lx:a, q8 -->(,
q I -->(, q9a -->qI3,
q2c # -->q4q5c #, q lOa -->q 14,
q2ca # -->Q4q6ca #, Q II C -->q 15,
q3b -->Q7, Q 12C -->Q 16,

Q13 -->(,
Q 4 -->(, Q 14 -->(,
Q5c -->Q8, Q 15 -->(,
Q6c -->Q9, Q 16a -->Q 17,

Q17-->(}

c) Production set of the Automaton

Figure 5.17. Constructing a Deterministic Top-Down Automaton

125

predictive automaton, left recursive nonterminals lead to cycles that can be
broken only by examining a right context of arbitrary length. They can,
however, be eliminated through a transformation of the grammar.

Theorem 5.24. An LL(k) grammar can have no left recursive nonterminal sym
bols.

Theorem 5.25. For every contextfree grammar G = (T,N,P,Z) with left recur
sive nonterminals, there exists an equivalent grammar G' = (T,N ~P ~Z) with no
left recursive nonterminals.

Let the elements of N be numbered consecutively: N = {XI, ... , Xn }. If
we choose the indices such that the condition i <j holds for all productions
Xi -->J0 w then G has no left recursive nonterminals. If such a numbering is

126 Chapter 5. Elements of Formal Systems

not possible for G, we can guarantee it for G' through the following con
struction:

1. Let N'=N, P'=P. Perform steps (2) and (3) for i = I, ... , n.

2. For j = I, ... , i-I replace all productions X; Xj wEP' by {Xi Xj w I
J0 Xj EP'}. (After this step, X;:::;:, + J0 Y implies i <; j.)

3. Replace the entire set of productions of the form X; XiwEP' (if any
exist) by the productions {Bi wBi I Xi XiwEP'}U {Bi (}, adding a
new symbol Bi to N'. At the same time, replace the entire set ofproduc
tions Xi X, X =1= X; y, by Xi XBi· The symbols added during this step
will be given numbers n + I, n +2, ... ,

If the string w in the production X; X; w does not begin with Xj ' j <; i
then we can replace X; X;w by {Bi w, Bi wB;} and X; X by {X; X,
X; XB;} in step (3). This approach avoids the introduction of (
productions; it was used to obtain the grammar of Figure 5.3b from that of
Figure 5.3a.

Note that left recursion such as E T, E E + T is used in the syntax of
arithmetic expressions to reflect the left-association of the operators. This
semantic property can also be seen in the transformed productions
E TE', E' +TE: E' (, but not in E T,E T+E. In EBNF the left
associativity of an expression can be conveniently represented by
E :: = T (,+'T)*.

One of the constructions discussed above results in (-productions, while
the other does not. We can always eliminate (-productions from an LL(k)
grammar, but by doing this we may increase the value of k :

Theorem 5.26. Given an LL(k) grammar G with (-productions. There exists an
LL(k + I) grammar without (-productions that generates the language
L(G)-{(}.

Conversely, k can be reduced by introducing (-productions:

Theorem 5.27. For every (free LL(k +1) grammar G, k>O, there exists an
equivalent LL(k) grammar with (-productions.

The proof of Theorem 5.27 rests upon a grammar transformation known
as leftfactoring, illustrated in Figure 5.18. In Figure 5.l8a, we cannot distin
guish the productions X Yc and X Yd by examining any fixed number
of symbols from the input text: No matter what number of symbols we
choose, it is possible for Y to derive a string of that length in either produc
tion.

We avoid the problem by deferring the decision. Since both productions
begin with Y, it is really not necessary to distinguish them until after the
string derived from Y has been scanned. The productions can be combined

5.3. Context-Free Grammars and Pushdown Automata

P = { z -+X,
X -+Yc,X -+Yd,
Y -+a, Y -+bY }

a) A grammar that is not LL(k) for any k

P = { Z -+X,
X -+ YX',
X'-+c,X'-+d,
Y -+a, Y -+bY }

b) An equivalent LL(l) grammar

Figure 5.18. Left Factoring

127

by 'factoring out' the common portion, as shown in Figure 5.18b. Now the
decision is made at exactly the position where the productions begin to
differ, and consequently it is only necessary to examine a single symbol of
the input string.

In general, by deferring a decision we obtain more information about the
input text we are analyzing. The top-down analysis technique requires us to
decide which production to apply before analyzing the string derived from
that production. In the next section we shall present the opposite technique,
which does not require a decision until after analyzing the string derived
from a production. Intuitively, this technique should handle a larger class of
grammars because more information is available on which to base a deci
sion; this intuition can be proven correct. The price is an increase in the
complexity of both the analysis procedure and the resulting automaton, but
in practice the technique remains competitive.

5.3.3. Bottom-Up Analysis and LR(k) Grammars Again let G
=(T,N,P,Z) be a context-free grammar, and consider the pushdown auto
matonA =(T,{q },R,q,{q}, v,t:) with V = TuN, and R defined as follows:

R = {Xl'" xnq -+Xq I X -+Xl'" Xn EP} U {qt -+tq I t ET} u {Zq -+q}

This automaton accepts a string in L (G) by working backward through a
rightmost derivation of the string.

Figure 5.19 is a pushdown automaton constructed in this manner from

T = { +, * ,(,),i}

R = { Tq -+Eq, E +Tq -+Eq,
Fq -+Tq, T*Fq -+Tq,
iq -+Fq, (E)q -+Fq,
q + -+ +q, q* -+ *q, q(-+(q, q) -+)q, qi -+iq,
Eq -+q }

S = {+, * ,(,),i ,E,T,F}

Figure 5.19. A Pushdown Automaton Constructed from Figure 5.3a

128

Stack

q
i q
Fq
T q
Eq

E+ q
E+i q
E+F q
E+T q

E+T* q
E +T*i q
E+T*F q

E+T q
E q

q

Chapter 5. Elements of Formal Systems

Input Reverse rightmost derivation

i +i*i i +i*i
+i*i
+i*i F+i*i
+i*i T+i*i
+i*i E+i*i
i*i
*i
*. I E+F*i
*. I E+T*i

E+T*F
E+T
E

Figure 5.20. Bottom-Up Analysis

R'= { Tq~Eq,E+Tq~Eq,
Fq ~Tq, T*Fq ~Tq,
qi ~Fq, (Eq)~Fq,
q + ~+q, q* ~*q, q(~(q,
Eq~q }

Figure 5.21. Reduced Productions for Figure 5.17

the grammar of Figure 5.3a. In the left-hand column of Figure 5.20, we
show the derivation by which this automaton accepts the string i +i *i. The
right-hand column is the reverse of the rightmost derivation of this string,
copied from Figure 5.5. The number of steps required for the automaton's
derivation can be decreased by combining productions as shown in Figure
5.21. (This reduction is analogous to that of Figure 5.16.)

The analysis performed by this automaton is called a bottom-up analysis
because of the fact that it traces the derivation from the sentence (bottom) to
the axiom (top). In each configuration of the automaton the stack contains a
string from S , from which the portion of the input text already read can be
derived. The state merely serves to mark the point reached in the input
scan. The meaningful information is therefore the pair (p,o), where pES'
denotes the stack contents and 0 E T* denotes the remainder of the input
text.

The pairs (p, 0) that describe the configurations of an automaton tracing
such a derivation may be partitioned into equivalence classes as follows:

Definition S.28. For p = I, ... , n let Xp ~Xp be the pth production of a
context-free grammar G = (T, N, P, Z). The reduction classes, Rj ,

j =0, ... , n are defined by:

5.3. Context-Free Grammars and Pushdown Automata 129

Ro= {(p, a) I p=p.y, a=pw such that Z ~Rp.A w, A ~R'yv, V =F £}

Rp = {(p, a) I P=P.Xp' Z ~Rp.Xpa}

'A ~R'a' denotes the relation 'A ~R a and the last step in the derivation
does not take the form B a ~ a'.

The reduction classes contain all pairs of strings that could appear during
the bottom-up parse of a sentence in L (G) by the automaton described
above. Further, the reduction class to which a pair belongs characterizes the
transition carried out by the automaton when that pair appears as a
configuration. There are three possibilities:

1. (p. a) ERo. The simple phrase X is not yet completely in the stack; the
transition qt -+tq with t = l:a is applied (shift transition).

2. (p. a) ERp ' 1< P < n. The simple phrase X is complete in the stack and
the reduce transition Xp q --+ Xp q is applied. (For p = I the transition
Zq -+q occurs and the automaton halts.)

3. (p,a) fiRj , 0< j < n. No further transitions are possible; the input text
does not belong to L (G).

A pushdown automaton that bases its decisions upon the reduction
classes is obviously deterministic if and only if the grammar is unambiguous.

Unfortunately the definition of the sets Rj uses the entire remainder of
the input string in order to determine the reduction class to which a pair
(p. a) belongs. That means that our bottom-up automaton must inspect an
arbitrarily long lookahead string to make a decision about the next transi
tion, if it is to be deterministic. If we restrict the number of lookahead sym
bols to k, we arrive at the following definition:

Definition 5.29. For some k ~ 0, the sets Rj , k , j = 0, ... , n, are called k
stack classes of a grammar G if:

Rj,k={(p,T) 1:3 (p,a)ERj such that T=k:a}

If the k -stack classes are pairwise-disjoint, then the pushdown automaton
is deterministic even when the lookahead is restricted to k symbols. This
property characterizes a class of grammars introduced by D. E. Knuth
[1965]:

Definition 5.30. A context-free grammar G = (T,N,P,Z) is LR(k) for given
k ~ ° if, for arbitrary derivations

Z~Rp.Aw~p.xw p.EV,wET*,A -+XEP

Z =>R p.'B w' =>p.'yw' p.' E V*, w' E T*, B --+yEP

(I p.x I +k):p.xw = (I p.'y I +k):p.'yw'implies p.=p.', A =B and X =y.

130 Chapter 5. Elements of Formal Systems

The automaton given at the beginning of this section scans the input text
from left to right, tracing the reverse of a rightmost derivation and examin
ing no more than k input symbols at each step. (Hence the term "LR(k)".)

Theorem 5.31. A context free grammar is LR(k) if and only if its k -stack
classes are pairwise-disjoint.

On the basis of this theorem, we can test the LR(k) property by determin
ing the intersection of the k-stack classes. Unfortunately the k-stack classes
can contain infinitely many pairs (p, '1'): The length restriction permits only a
finite number of strings '1', but the lengths of the stack contents are unres
tricted. However, we can give a regular grammar Gj for each k -stack class
Rj,k such that L(Gj)= {(p&'T) I (p,'T)ERj,d. Since algorithms exist for
determining whether two regular languages are disjoint, this construction
leads to a procedure for testing the LR(k) property.

Theorem 5.32. Let G = (T,N,P,Z) be a contextftee grammar, and let k > O.
Assume that & is not an element of the vocabulary V = TuN. There exists a set
of regular grammars Gj,j =0, ... , n such that L (Gj)= {p&'T I (p,'T) ERj,k}'

The regular grammars that generate the k -stack classes are based upon
the situations introduced in connection with Theorem 5.23:

W = ([X ~IL'P;W) I X ~lLpEP, wEFOLLOWdX)}

These situations are the nonterminal symbols of the regular grammars. To
define the grammars themselves, we first specify a set of grammars that gen
erate the k -stack classes, but are not regular:

G'j = (Vu {&,#}, W,plu P"u Pj ,[Z ~·s ;#])

The productions in P' U P" build the p components of the k-stack class.
They provide the finite description of the infinite strings. Productions in Pj

attach the 'I' component, terminating the k -stack class:

P' = ([X ~lL'vY;w) ~v[X ~lLv"y;w) I v E V}

P" = ([X ~IL'By;w]~[B ~',8;'T] I B ~,8EP, 'TEEFFk(yw)}

Po = ([X ~IL'P;W]~& 'I' I P=/= t:, 'TEEFFk(pw)}

Pp = {[xp ~Xp';w]~& w} P = I, ... , n

Remember that the lengths of 'I' and ware limited to k symbols, so the
number of possible strings & 'I' and & w is finite. If we regard these strings as
single terminal symbols, productions in P I and Pj , j = 0, ... , n, are allow
able in a regular grammar. Productions in P" are not allowable, however,
since they are of the form A ~ B , A, B EN. Thus G j is not regular.

It is always possible to rewrite a grammar so that it contains no produc-

5.3. Context-Free Grammars and Pushdown Automata 131

tions such as those in pIt. The key is the closure of a nonterminal:

H(A) = {A} u {B I C -+B EP,C EH(A)}

The procedure for rewriting the grammar is:

1. Select anA EN forwhichH(A)#: {A}.
2. SetP = P - {A -+B I BEN}.
3. Set P = P u {A -+/3 I B -+/3EP, B EH(A), /3f!.N}.

The algorithm terminates when no selection can be made in step (1).
We obtain Gj from Gj by applying this algorithm. The strings /3 are all

of the form v [...], & T or & w, and therefore all introduced productions
satisfy the conditions for a regular grammar.

Theorem 5.33. For every LR(k) grammar G there exists a deterministic push
down automaton A such that L (A) = L (G).

Let G = (T,N,P,Z). We base construction of the automaton on the
grammars Gj , effectively building a machine that simultaneously generates
the k -stack classes and checks them against the reverse of a rightmost
derivation of the string. Depending upon the particular k -stack class, the
automaton pushes the input symbol onto the stack or reduces some number
of stacked symbols to a nonterminal. The construction algorithm generates
the necessary situations as it goes, and uses the closure operation discussed
above 'on the fly' to avoid considering productions from P". As in the con
struction associated with Theorem 5.15, a state of the automaton must
specify a set of situations, anyone of which might have been used in deriv
ing the current k -stack class. It is convenient to restate the definition of a
closure directly in terms of a set of situations M:

H(M)=MU HB ·/3;T] I :3 [X p.-By;w]EH(M),

B -+/3EP, TEFIRSTk(yw)}

The elements of Q and R are determined inductively as follows:

1. Initially let Q = {qo} and R = 0, with qo=H({[Z -+·S;#]}).

2. Let q be an element of Q that has not yet been considered. Perform
steps (3)-(5) for each v E V.

3. Let basis (q,v) = {[X -+p.v--y;w] I [X -+p;vy;w]Eq}.

4. If basis(q,v) #: 0, then let next(q,v)=H(basis(q,v». Add q'=next(q, v)
to Q if it is not already present.

5. Ifbasis(q,v)#: 0 and v ET then set

{
{qv-+qq'} ifk~ 1

R := R U {qvT-+qq'T I [X -+1.&"Vy;w]Eq, TEFlRSTk_1(yW)} otherwise

132 Chapter 5. Elements of Formal Systems

[2 -+'X;#] q4: [Y -+C·;#]
[X -+. Y;#] [Y-+c'a;#]
[X -+·bYa;#]
[Y -+·c;#] q5: [X -+bY·a;#]
[Y-+·ca;#] q6: [Y -+c·;a#]
[2 -+K;#] [Y-+c·a;a#]
[X -+ y.;#] q7: [Y -+ca·;#]
[X -+b· Ya;#] qg: [X -+bYa·;#]
[Y -+·c ;a#] q9: [Y -+ca·;a#]
[Y -+·ca ;a#]

a) States

R = { qobc -+qOq3c,
qoc # -+qOq4#'

q3ca -+q3q6a,
q4a # -+q4q7#'
q5a # -+q5qg#,
q6aa -+q6q9a,
qoq2 # -+qoq 1 #,
qOq4 # -+qOq2 #,
q3q6a # -+q3q5a #,
qOq4q7# -+qOq2#,
QOQ3Q5Qg# -+QoQI #,
Q3Q6Q9a # -+Q3Q5a # }

b) Transitions

Figure 5.22. A Deterministic Bottom-Up Automaton for Figure 5.17a

6. If all elements of Q have been considered, perform step (7) for each
Q E Q and then stop. Otherwise return to step (2).

7. For each [X-+X·;w]EQ, where X=XI···Xn, set R := R u
{Ql ... qnqW-+qlq'w I [X -+·x ;w] Eqhqi +1 = next (qi, Xi)(i = I, ... , n -I),
q =next(qn, xn), q'= next(ql,X)}

The construction terminates in all cases, since only a finite number of
situations [X -+X·y;w] exist.

Figure 5.22 illustrates the algorithm by applying it to the grammar of
Figure 5.17a with k = 2. In this example k = I would yield the same set of
states. (For k =0, q4 and q7 would be coalesced, as would q7 and q9.)
Nevertheless, a single look ahead symbol is not sufficient to distinguish
between the shift and reduce transitions in state 6. The grammar is thus
LR(2), but not LR(l).

We shall conclude this section by quoting the following theoretical
results:

5.4. Notes and References 133

Theorem 5.34. For every LR(k) grammar with k> I there exists an equivalent
LR (I) grammar.

Theorem 535. Every LL (k) grammar is also an LR (k) grammar.

Theorem 536. There exist LR (k) grammars that are not LL (k ') for any k '.

Theorem 537. There exists an algorithm that, when given an LR(k) grammar
G, will decide in a finite number of steps whether there exists a k' such that G is
LL (k').

As a result of Theorem 5.34 we see that it might possibly be sufficient to
concern ourselves only with LR(l) grammars. (As a matter of fact, the
transformation underlying the proof of this theorem is unsuitable for
practical purposes.) The remaining theorems support our intuitive thoughts
at the end of Section 5.3.2.

5.4. Notes and References

The basic symbols of a programming language are often described by arbi
trary context-free productions, as illustrated by the LAX definition of
Appendix A.I. This description does not provide a suitable starting point
for mechanical construction of a lexical analyzer, and must therefore be
recast by hand in terms of a regular set or regular grammar.

Our interpretation of finite automata and pushdown automata as special
cases of general rewriting systems follows Salomaa [1973]. By this means we
avoid a special definition of concepts such as configurations or transitions of
an automaton.

BNF notation was first used to describe ALGOL 60 [Naur 1963]. Many
authors have proposed extensions similar to our EBNF, using quoted termi
nals rather than bracketed nonterminals and having a regular expression
capability. EBNF definitions are usually shorter than their BNF
equivalents, but the important point is that they are textual representations
of syntax charts [Jensen 1974, ANSI 1978]. This means that the context-free
grammar can actually be developed and described to the user by means of
pictures.

Pushdown automata were first examined by Samelson and Bauer [1960]
and applied to the compilation of a forerunner of ALGOL 60. Theoretical
mastery of the concepts and the proofs of equivalence to general context
free grammars followed later. Our introduction of LR(k) grammars via
reduction classes follows the work of Langmaack [1971].

Aho and Ullman [1972] (and many other books dealing with formal
languages) cover essentially the same material as this chapter, but in much
greater detail. The proofs that are either outlined here or omitted entirely
can be found in those texts.

134 Chapter 5. Elements of Formal Systems

EXERCISES

5.1. Prove that there is no loss of generality by prohibiting formal systems in which
a derivation 'TT=i;> + 'TT of a string from itself is possible.

5.2. Choose some useless nonterminal from the LAX definition and briefly justify
its inclusion in Appendix A.

5.3. Give an intuitive justification of Theorem 5.lD.

5.4. Write a program to examine a finite automaton A and return the accepted
language L (A) in closed form as a regular expression.

5.5. Regular expressions X I, ... , X. can also be defined implicitly via systems of
regular equations of the form:

Here the ajj are known regular expressions. State the conditions under which
such a system has a unique solution, and give an algorithm to compute this
solution. (Hint: For b * (, the equation X =aX +b has the solution b 'a.)

5.6. Give an explanation of the need for '-;;?RI' in Definition 5.28.

5.7. Prove that the algorithm for rewriting G to remove productions of the form
A ->B,A,B EN results in a grammar G such that L(G)=L(G).

CHAPTER 6

Lexical Analysis

Lexical analysis converts the source program from a character string to a
sequence of semantically-relevant symbols. The symbols and their encoding
form the intermediate language output from the lexical analyzer.

In principle, lexical analysis is a subtask of parsing that could be carried
out by the normal parser mechanisms. To separate these functions, the
source language grammar G must be partitioned into subgrammars
Go, GJ, G2 , ... such that GJ, G2 , .•. describe the structure of the basic sym
bols and Go describes the structure of the language in terms of the basic
symbols. L(G) is then obtained by replacing the terminal symbols of Go by
strings from L (G I), L (G 2) , ...

The separation of lexical analysis from parsing gives rise to higher organ
izational costs that can be justified only by realizing greater savings in other
areas. Such savings are possible in table-driven parsers through reduction in
table size. Further, basic symbols usually have such a simple structure that
faster procedures can be used for the lexical analysis than for the general
parsing.

We shall first discuss the partitioning of the grammar and the desired
results oflexical analysis, and then consider implementation with the help of
finite automata.

6.1. Modules and Interfaces
In this section we devote ourselves to the 'black box' aspects of lexical
analysis: Decomposition of the grammar and with it the definition of the
tasks of lexical analysis, arriving at the interface between the lexical
analyzer and the remainder of the compiler.

135

136 Chapter 6. Lexical Analysis

6.1.1. Decomposition of the Grammar Delimiters (keywords, mean
ingful special characters and combinations of special characters), identifiers
and constants together are termed basic symbols. In sharp contrast to other
language elements, their structure and representation may be arbitrarily
changed (say by introducing French or German keywords or by represent
ing '<' by '.L T.') without altering the power of the language. Further, the
structure of the basic symbols can generally be described with regular gram
mars or regular expressions.

The productions of Section A.l describe the basic symbols of LAX.
(Conversion to a regular grammar is left to the reader.) The productions
A. 1.0.1 , A.1.0.9-12 are superfluous because only the nonterminals identifier
and constant, single keywords, special characters and special character com
binations (other than '(*') occur in the remainder of the grammar.

In many languages the grammar for basic symbols (symbol grammar) is
not so easily determined from the language definition, or it results in addi
tional difficulties. For example, the ALGOL 60 Report defines keywords,
letters, digits, special characters and special character combinations as basic
symbols; it does not include identifiers, numbers and strings in this category.
This description must be transformed to meet the requirements of compiler
construction. In PL/l, as in other languages in which keywords are lexically
indistinguishable from identifiers, context determines whether an identifier
(e.g. IF) is to be treated as a keyword or a freely-chosen identifier. Two
symbol grammars must therefore be distinguished on the basis of context;
one accepts identifiers and not keywords, the other does the converse. An
example of similar context-dependence in FORTRAN is the first identifier
of a statement: In an assignment it is interpreted as the identifier of a data
object, while in most other cases it is interpreted as a keyword. (Statement
classification in FORTRAN is not an easy task - see the discussion by Sale
[1971] for details.)

Even if it is necessary to consult context in order to determine which sym
bols are possible at the given point in the input text, a finite automaton often
suffices. The automaton in this case has several starting states corresponding
to the distinct symbol grammars. We shall not pursue this point further.

6.1.2. Lexical Analyzer Interface The lexical analyzer is organized as
a module with several local state variables and implements the following
elementary operations:

• initialize _lexical_analysis

• next _token

• wrapup _lexical-tmalysis

The central operation nexLtoken is used by the parser to obtain the next
token in the token sequence (Section 4.1.1). (A coroutine, activated for each
token, might be used instead of a procedure.) If the parser does not interact

6.1. Modules and Interfaces 137

directly with the lexical analyzer, then a file of tokens must be constructed
by calls to next _token. The parser obtains the tokens by reading this file.
Even if direct calls are possible, such a file is necessary when the parsing is
done in several passes (as for ALGOL 68).

The lexical analyzer itself uses the following elementary operations:

• next _character
• report _lexical_error
• identifyJymbol
• enter _constant

(Source program input module)
(Error module)
(Symbol table module)
(Constant table module)

The information flow involving the lexical analyzer module is shown in Fig
ure 6.1.

Source program
Symbol table input

I -Lexical analyzer Constant table

t -
Parser Error handler

Figure 6.1. Lexical Analyzer Interfaces

The lexical analyzer reads the input text one character at a time by exe
cuting the next _character operation. Both the transition to a new line (if it is
significant) and the encounter with the end of the input text are represented
by characters in order to preserve the uniformity of the interface. (If
next _character is executed again after the end of the input text has been
encountered then it continues to deliver the termination character.) Usually
next _character is the most frequently executed operation in the entire com
piler, and thus strongly influences the speed of compilation. We shall con
sider the implementation of this operation in detail in Section 6.2.3.

The error reporting module is invoked when lexical errors (unrecognized
input characters and violations of the basic symbol grammar) are encoun
tered. This module will then determine the continuation of lexical analysis
(Section 12.2.3).

When a sequence of characters has been identified as a basic symbol, the
lexical analyzer will either create a token describing it or will restart in a
new state. Different representations of the same basic symbol are resolved
at this point. For example, if we were to allow the symbol' < ' to be written

138 Chapter 6. Lexical Analysis

'LESS' or 'L T' also, all three would lead to creation of the same token. The
operation identify-.Symbol is used during token creation to perform the map
ping discussed in Section 4.2.1. If the basic symbol is a literal constant, rath
er than an identifier, the enter_constant operation is used instead of
identify-.Symbol (Section 4.2.2).

6.2. Construction

We assume that the basic symbols are described by some set of regular
grammars or regular expressions as discussed in Section 6.1.1. According to
Theorem 5.15 or Theorem 5.19 we can construct a set of finite automata that
accept the basic symbols. Unfortunately, these automata assume the end of
the string to be known a priori; the task of the lexical analyzer is to extract
the next basic symbol from the input text, determining the end of the symbol
in the process. Thus the automaton only partially solves the lexical analysis
problem. To enhance the efficiency of the lexical analyzer we should use
the automaton with the fewest states from the set of automata that accept the
given language. Finally, we consider implementation questions.

In order to obtain the classification for the basic symbol (Figure 4.1) we
partition the final states of the automaton into classes. Each class either pro
vides the classification directly or indicates that it must be found by using
the operation identify-.Symbol. The textual representation of constants, and
the strings used to interrogate the symbol table, are obtained from the input
stream. The automaton is extended for this purpose to a finite-state trans
ducer that emits a character on each state transition. (In the terminology of
switching theory, this transducer is a special case of a Mealy machine.) The
output characters are collected together into a character string, which is then
used to derive the necessary information.

6.2.1. Extraction and Representation A semicolon is an ALGOL 60
basic symbol, and is not a head of any other basic symbol. When an
ALGOL 60 lexical analysis automaton reaches the final state corresponding
to semicolon, it can halt and accept the semicolon. The end of the accepted
string has been determined, and the input pointer is positioned for the next
symbol. A colon is also an ALGOL 60 basic symbol, but it is a head of : =.
Therefore the automaton must look ahead when it reaches the final state
corresponding to colon. A more complex lookahead is required in the case
of FORTRAN, where a digit sequence d is a basic symbol and also a head
of the basic symbol d .E1. Since .EQ. is also a basic symbol, the automaton
must look ahead three characters (in certain cases) before it can determine
the end of the symbol string.

By applying the tests of Section 5.3.3 to the original grammar G, we
could determine (for fixed k) whether a k -character look ahead is sufficient
to resolve ambiguity. Because of the effort involved, this is usually not done.

6.2. Construction 139

Instead, we apply the principle o/the longest match: The automaton continues
to read until it reaches a state with no transition corresponding to the current
input character. If that state is a final state, then it accepts the symbol
scanned to that point; otherwise it signals a lexical error. The feasibility of
the principle of the longest match is determined by the representation of the
symbols (the grammars GJ, G2, •••) and by the sequences of symbols permit
ted (the grammar Go).

The principle of the longest match in its basic form as stated above is
unsuitable for a large number of grammars. For example, an attempt to
extract the next token from '3.EQ.4' using the rules of FORTRAN would
result in a lexical error when 'Q' was encountered. The solution is to retain
information about the most-recently encountered final state, thus providing
a 'fall-back' position. If the automaton halts in a final state, then it accepts
the symbol; otherwise it restores the input stream pointer to that at the
most-recently encountered final state. A lexical error is signaled only if no
final state had been encountered during the scan.

We have tacitly assumed that the initial state of the automaton is
independent of the final state reached by the previous invocation of
next-token. If this assumption is relaxed, permitting the state to be retained
from the last invocation, then it is sometimes possible to avoid even the lim
ited backtracking discussed above (Exercise 6.3). Whether this technique
solves all problems is still an open question.

The choice of a representation for the keywords of a language plays a
central role in determining the representations of other basic symbols. This
choice is largely a question of language design: The definitions of COBOL,
FORTRAN and PL/I (for example) prescribe the representations and their
relationship to freely-chosen identifiers. In the case of ALGOL 60 and its
descendants, however, these characteristics are not discussed in the language
definitions. Here we shall briefly review the possibilities and their conse
quences.

The simplest possibility is the representation of keywords by reserved
words - ordinary identifiers that the programmer is not permitted to use for
any other purpose. This approach requires that identifiers be written
without gaps, so that spaces and newlines can serve as separators between
identifiers and between an identifier and a number. Letters may appear
within numbers, and hence they must not be separated from the preceding
part of the number by spaces. The main advantage of this representation is
its lucidity and low susceptibility to typographical errors. Its main disadvan
tage is that the programmer often does not remember all of the reserved
words and hence incorrectly uses one as a freely-chosen identifier. Further,
it is virtually impossible to modify the language by adding a new keyword
because too many existing programs might have used this keyword as a
freely-chosen identifier.

If keywords are distinguished lexically then it is possible to relax the res
trictions on placement of spaces and newlines. There is no need for the pro-

140 Chapter 6. Lexical Analysis

grammer to remember all of the keywords, and new ones may be introduced
without affecting existing programs. The rules for distinguishing keywords
are known as stropping conventions; the most common ones are:

• Underlining the keyword.

• Bracketing the keyword by special delimiters (such as the apostrophes
used in the DIN 66006 standard for ALGOL 60) .

• Prefixing the keyword with a special character and terminating it at the
first space, newline or character other than a letter or digit.

• Using upper case letters for keywords and lower case for identifiers (or
vice-versa).

All of these conventions increase the susceptibility of the input text to typo
graphical errors. Some also require larger character sets than others or rela
tively complex line-imaging routines.

6.2.2. State Minimization Consider a completely-specified finite auto
maton A = (T,Q,R,qo,F) in which a production qt -->q' exists for every
pair (q, t), q EQ, t ET. Such an automaton is termed reduced when there
exists no equivalent automaton with fewer states.

Theorem. For every completely-specified finite automaton A = (T,Q,R,qo,F)
there exists a reduced finite automaton A' = (T,Q',R',qo',F') with
L (A') = L (A).

To construct A I we first delete all states q for which there exists no string
w such that qow=;;' *q. (These states are termed unreachable.) We then apply
the refinement algorithm of Section B.3.2 to the state diagram of A , with the
initial partition {q I q EF}, {q I q eF}. Let Q'be the set of all blocks in
the resulting partition, and let [q] denote the block to which q E Q belongs.
The definition of A' can now be completed as follows:

R'= {[q]t-->[q1 I qt-->q'tiR}

qo' = [qo]

F' = {[q] I q EF}

As an example, consider the automaton of Figure 5.13, which recognized
the regular expression I (I +d)*. The initial partition consists of two blocks
{qo} and {q" q2, q3} and is not refined, leading to the automaton of Figure
6.2. We would have achieved the same result if we had begun with the regu
lar expression (A +B + ... +Z)(A +B + ... +Z +0+· .. +9)*.

Figure 6.2. Reduced Automaton Accepting /(l +d)*

6.2. Construction 141

In order to apply the algorithm of Section B.3.2 to this example we must
complete the original automaton, which permits only I as an input character
in state qo. To do this we introduce an 'error state', qe, and transitions qt ~qe
for all pairs (q, t 1 q E Q, t E T, not corresponding to transitions of the given
automaton. (In the example, qod ~qe suffices.) In practice, however, it is
easier to modify the algorithm so that it does not require explicit error tran
sitions.

If c denotes any character other than the quote, then the regular expres
sion "" + "(c + "")(c + "")*" describes the characters and strings of Pascal.
Figure 6.3a shows the automaton constructed from this expression according
to the procedure of Theorem 5.19, and the reduced automaton is shown in
Figure 6.3b.

a) Unreduced

o~----------------~

b) Reduced

Figure 6.3. Finite Automata Accepting ",,, + "(c + ")(c + ")*'

In our application we must modify the equivalence relation still further,
and only treat final states as equivalent when they lead to identical subse
quent processing. For an automaton recognizing the symbol grammar of
LAX, we divide the final states into the following classes:

• Identifiers or keywords

• Special characters

• Combinations of special characters

• Integers

• Floating point numbers

• Floating point numbers with exponents

142 Chapter 6. Lexical Analysis

This results in the reduced automaton of Figure 6.4. Letters denote the fol
lowing character classes:

• a = all characters other than '.'

• a' = all characters other than '.' or ')'

• c = all characters other than quote

• d = digits

• I = letters

• s = '+' '.' '*' '<' '>' , i ' ';' ',' ')' '[' ']'
Figure 6.4 illustrates several methods of obtaining the code correspond

ing to a basic symbol. States, I, 6, 7, 9, and 12-18 all provide the code
directly. IdentifyJymbol must be used in state 4 to distinguish identifiers
from keywords. In state 19 we might also use identifyJymbol, or we might
use some other direct computation based on the character codes.

Figure 6.4. Finite Automaton Accepting LAX Basic Symbols

6.2. Construction 143

The state reduction in these examples could be performed by hand with
no display of theory, but the theory is required if we wish to mechanically
implement a lexical analyzer based upon regular expressions.

6.2.3. Programming the Lexical Analyzer In order to extract the basic
symbol that follows a given position p in the input stream we must recognize
and delete irrelevant characters such as spaces and newlines, use the auto
maton to read the symbol, and fix the terminal position p'.

Superfluous spaces can be deleted by adding transitions q" q to all
states q in which such spaces are permitted. Since newlines (card boun
daries or carriage returns) are input characters if they are significant, we can
handle them in the same way as superfluous spaces in many languages.

There are two possibilities from which to choose when programming the
automaton:

• Representing the transition table as a matrix, so that the program for the
automaton has the general form:

while bask...symboLnoLyeLcomplete do
state: = table [state,nexLcharacter];

• Programming the transition table as a case clause for each state.

The first method is generally expensive in terms of memory. For LAX we
need a 20 X 57 matrix, even without considering characters that may occur
only in comments. We can reduce the size of this matrix by grouping
together all characters that are treated uniformly by the lexical analyzer and
provide one column for each such character class. The class to which a char
acter belongs is then obtained from an array indexed by the character. This
array makes the remainder of the compiler relatively independent of chang
ing character sets and their encoding, thus increasing its machine
independence. For LAX the classes are: {letters other than E}, {E},
{digits}, L}, {O' OJ, {*}, {+ -}, {;}, {=}, {I}, {"}, {.}, {:}, {< > j, [
]}, {space tab newline}, {terminator (#)}, {characters allowed only in com
ments}; the matrix size is then 20 X 18. The storage requirements can often
be reduced still further, possibly by means of techniques introduced in the
next chapter.

In contrast to the matrix representation, mechanical implementation of
the transition table by case clauses can be carried out only at great cost.
Hand coding is rather simple, however, and one usually obtains a much
smaller lexical analyzer. Steps can also be taken to speed up execution of the
most-frequently performed transitions.

The simplest way to provide output from the automaton is to add the
input character to a string - empty at the start of the basic symbol - during
each state transition. This strategy is generally inadequate. For example,
the quotes bounding a Pascal character or string denotation should be omit
ted and any doubled internal quote should be replaced by a single quote.

144 Chapter 6. Lexical Analysis

Thus more general actions may need to be taken at each state transition. It
usually suffices, however, to provide the following four options:

• Add (some mapping of) the input character to the output string.

• Add a given character to the output string.

• Set a pointer or index to the output string.

• Do nothing.

Figure 6.5 illustrates three of these actions applied to produce output from
the automaton of Figure 6.3b. A slash separates the output action from the
input character; the absence of a slash indicates the 'do nothing' action.

In order to produce the standard representation of floating point numbers
(see Section 4.2.2), we require three indices to the characters of the
significand:

beg: Initially indexes the first character of the significand, finally indexes
the first nonzero digit.

pnt: Indexes the first position to the right of the decimal point.

lim: Initially indexes the first position to the right of the significand, finally
indexes the first position to the right of the last nonzero digit.

By moving the indices beg and lim, the leading and trailing zeros are
removed so that the significand is left over in standard form. If e is the
value of the explicit exponent, then the adjusted exponent e' is given by:

e':=e +(beg -pnt)
e': =e +(pnt -lim)

significand interpreted as a fraction
significand interpreted as an integer

The standard representation of a floating point zero is the pair ('0',0).
This representation is obtained by taking a special exit from the standardi
zation algorithm if beg becomes equal to lim during the zero-removal pro
cess.

Many authors suggest that the next...character operation be implemented
by a procedure. We have already pointed out that the implementation of
next-character strongly influences the overall speed of the compiler; in
many cases simple use of a procedure leads to significant inefficiency. For

Or---------------~

Figure 6.5. Finite Transducer for Pascal Strings

6.2. Construction 145

Table 6.6. Lexical Analysis on a Control Data 6400 [Dunn 1974]

Lexical Analysis Time
Translator Program Microseconds Fraction of

per character total compile time

Page Formatter 3.56 14%

without comments 3.44 9%

Flowchart Generator 3.3 11.5%

COMPASS 2.0 I/O Package 5.1 21 %
Pascal 3.4 Pascal Compiler 35.6 39.6%

example, Table 6.6 shows the results of measuring lexical analysis times for
three translators running on a Control Data 6400 under KRONOS 2.0.
RUN 2.3 is a FORTRAN compiler that reads one line at a time, storing it in
an array; the next-.character operation is implemented as a fetch and index
increment in-line. The COMPASS 2.0 assembler implements some in
stances of next-character by procedure calls and others by in-line refer
ences, while the Pascal compiler uses a procedure call to fetch each charac
ter. The two test programs for the FORTRAN compiler had similar charac
teristics: Each was about 5000 lines long, composed of 30-40 heavily
commented subprograms. The test program for COMPASS contained 900
lines, about one-third of which were comments, and that for Pascal (the
compiler itself) had 5000 lines with very few comments.

Further measurements on existing compilers for a number of languages
indicate that the major subtasks of lexical analysis can be rank-ordered by
amount of time spent as follows:

1. Skipping spaces and comments.
2. Collecting identifiers and keywords.
3. Collecting digits.
4. All other tasks.

In many cases there are large (factor of at least 2) differences in the amount
of time spent between adjacent elements in this hierarchy. Of course the
precise breakdown depends upon the language, compiler, operating system
and coding technique of the user. For example, skipping a comment is
trivial in FORTRAN; on the other hand, an average non-comment card in
FORTRAN has 48 blank columns out of the 66 allocated to code [Knuth
1971].

Taken together, the measurements discussed in the two paragraphs above
lead to the conclusion that the lexical analyzer should be partitioned further:
Tasks 1-3 should be incorporated into a scanner module that implements the
next _character operation, and the finite automaton and its underlying regu
lar grammar (or regular expression) should be defined in terms of the char
acters digit -string, identifier, keyword, etc. This decomposition drastically

146 Chapter 6. Lexical Analysis

reduces the number of invocations of next _character, and also the influence
of the automaton implementation upon the speed of the lexical analyzer.

Tasks 1-3 are trivial, and can be implemented 'by hand' using all of the
coding tricks and special instructions available on the target computer.
They can be carefully integrated with the 110 facilities provided by the
operating system to minimize overhead. In this way, serious inefficiencies in
the lexical analyzer can be avoided while retaining systematic construction
techniques for most of the implementation.

6.3. Notes and References

The fact that the basic symbols are regular was first exploited to generate a
lexical analyzer mechanically in the RWORD System [Johnson 1968, Gries
1971]. More recently, DeRemer [1974] has proposed the use of a modified
LR technique (Section 5.3.3) for this generation. Lesk [1975] describes how
such a system can be linked to the remainder of a compiler.

Lexical analyzer generators are still the exception rather than the rule.
The analyzers used in practice are simple, and hand coding is not prohibi
tively expensive. There are also many indications that the hand-coded pro
duct provides significant savings in execution time over the products of
existing generators. Many of the coding details (table formats, output
actions, limited backtrack and character class tradeoffs) are discussed by
Waite [1973a] in his treatment of string-directed pattern matching.

Two additional features, macros and compiler control commands (com
piler options, compile-time facilities) complicate the lexical analyzer and its
interface to the parser. Macro processing can usually be done in a separate
pre-pass. If, however, it is integrated into the language (as in PL/M or Bur
roughs Extended ALGOL) then it is a task of the lexical analyzer. This
requires additional information from the parser regarding the scope of
macro definitions.

We recommend that control commands always be written on a separate
line, and be easily recognizable by the lexical analyzer. They should also be
syntactically valid, so that the parser can process them if they are not
relevant to lexical analysis. Finally, it is important that there be only one
form of control command, since the user should not be forced to learn
several conventions because the compiler writer decides to process com
mands in several places.

EXERCISES

6.1. Derive a regular grammar from the LAX symbol grammar of Appendix A.1.
Derive a regular expression.

6.3. Notes and References 147

6.2. [Sale 1971, McIlroy 1974] Consider the definition of FORTRAN 66.
a. Partition the grammar as discussed in Section 6.1.1. Explain why you dis

tinguished each of the symbol subgrammars Gi .

b. Carefully specify the lexical analyzer interface. How do you invoke
different symbol subgrammars?

6.3. Consider the following set of tokens, which are possible in a FORTRAN
assignment statement [McIlroy 1974] (identifier is constructed as usual, d
denotes a nonempty sequence of digits, and s denotes either' +' or ,-,):

+-*/**(),=
.TRUE. .F ALSE .
. AND. .OR. .NOT.
.L T. .LE. .EQ. .NE. .GE. .GT.
identifier
d d. d.d .d
dEd d.Ed d.dEd .dEd
dEsd d .Esd d .dEsd .dEsd

Assume that any token sequence is permissible, and that the ambiguity of ,***,
may be resolved in any convenient manner.
a. Derive an analysis automaton using the methods of Section 5.2, and minim

ize the number of states by the method of Section B.3.3.
b. Derive an analysis automaton using the methods given by Aho and

Corasick [1975], and minimize the number of states.
c. Describe in detail the interaction between the parser and the automaton

derived in (b). What information must be retained? What form should that
information take?

d. Can you generalize the construction algorithms of Aho and Cora sick to
arbitrary regular expression inputs?

6.4. Write a line-imaging routine to accept an arbitrary sequence of printable char
acters, spaces and backspace characters and create an image of the input line.
You should recognize an extended character set which includes arbitrary
underlining, plus the following overstruck characters:

c overstruck by / interpreted as 'cents'
= overstruck by / interpreted as 'not equal'

(Note: Overstrikes may occur in any order.) Your image should be an integer
array, with one element per character position. This integer should encode the
character (e.g. 'cents') resulting in that position from the arbitrary input
sequence.

6.5. Write a program to implement the automaton of Figure 6.4 as a collection of
case clauses. Compile the program and compare its size to the requirements
for the transition table.

6.6. Attach output specifications to the transitions of Figure 6.4. How will the
inclusion of these specifications affect the program you wrote for Exercise 6.5?
Will their inclusion change the relationship between the program size and tran
sition table size significantly?

6.7. Consider the partition of a lexical analyzer for LAX into scanner and an auto
maton.

148 Chapter 6. Lexical Analysis

a. Restate the symbol grammar in terms of identifier, digitJtring, etc. to reflect
the partition. Show how this change affects Figure 6.4.

b. Carefully specify the interface between scanner and automaton.
c. Rewrite the routine of Exercise 6.5, using the interface defined in (b). Has

the overall size of the lexical analyzer changed? (Don't forget to include the
scanner size!) Has the relationship between the two possible implementa
tions of the automaton (case clauses or transition tables) changed?

d. Measure the time required for lexical analysis, comparing the implementa
tion of (c) with that of Exercise 6.5. If they differ, can you attribute the
difference to any specific feature of your environment (e.g. an expensive
procedure mechanism)? If they do not differ, can you explain why?

6.8. Suppose that LAX is being implemented on a machine that supports both
upper and lower case letters. How would your lexical analyzer change under
each of the following assumptions:
a. Upper and lower case letters are indistinguishable.
b. Upper and lower case may be mixed arbitrarily in identifiers, but all

occurrences of a given identifier must use the same characters. (In other
words, if an identifier is introduced as ArraySize then no identifier such as
arraysize can be introduced in the same range.) Keywords must always be
lower case.

c. As (b), except that upper and lower case may be mixed arbitrarily in key
words, and need not always be the same.

d. Choose one of the schemes (a)-(c) and argue in favor of it on grounds of
program portability, ease of use, documentation value, etc.

CHAPTER 7

Parsing

The parsing of a source program determines the semantically-relevant
phrases and, at the same time, verifies syntactic correctness. As a result we
obtain the parse tree of the program, at first represented implicitly by the
sequence of productions employed during the derivation from (or reduction
to) the axiom according to the underlying grammar.

In this chapter we concern ourselves with the practical implementation of
parsers. We begin with the parser interface and the appropriate choice of
parsing technique, and then go into the construction of deterministic parsers
from a given grammar. We shall consider both the top-down and bottom
up parsing techniques introduced in Section 5.3.2 and 5.3.3. Methods for
coding parsers by hand and for generating them mechanically will be dis
cussed.

7.1. Design

To design a parser we must define the grammar to be processed, augment it
with connection points (points at which information will be extracted) and
choose the parsing algorithm. Finally, the augmented grammar must be
converted into a form suited to the chosen parsing technique. After this
preparation the actual construction of the parser can be carried out mechan
ically. Thus the process of parser design is really one of grammar design, in
which we derive a grammar satisfying the restrictions of a particular parsing
algorithm and containing the connection points necessary to determine the
semantics of the source program.

Even if we are given a grammar for the language, modifications may be
necessary to obtain a useful parser. We must, of course, guarantee that the
modified grammar actually describes the same language as the original, and

149

150 Chapter 7. Parsing

that the semantic structure is unchanged. Structural syntactic ambiguity
leading to different semantic interpretations can only be corrected by alter
ing the language. Other ambiguities can frequently be removed by deleting
productions or restricting their applicability depending upon the parser
state.

7.1.1. The Parser Interface A parser accepts a sequence of basic sym
bols, recognizes the extant syntactic structure, and outputs that structure
along with the identity of the relevant symbols. If the syntactic structure is
not error-free, the parser invokes the error handler to report errors and to
aid in recovery so that processing can continue. (The details of the recovery
mechanism will be discussed in Section 12.2.2.) Figure 7.1 shows the infor
mation flow involved in the parsing process.

Three possible interface specifications are suggested by Figure 7.1,
depending upon the overall organization of the compiler. The most com
mon is for the parser module to provide the operation parse _program. It
invokes the lexical analyzer's next -symbol operation for each basic symbol,
and reports each connection point by invoking an appropriate operation of
some other module. (We term this invocation a parser action.) Control of
the entire transduction process resides within the parser in this design. By
moving the control out of the parser module, we obtain the two alternative
designs: The parser module provides either an operation parse -symbol that
is invoked with a token as an argument, or an operation next _connection
that is invoked to obtain a connection point specification.

It is also possible to divide the parsing over more than one pass. Proper
ties of the language and demands of the parsing algorithm can lead to a
situation where we need to know the semantics of certain symbols before we
can parse the context of the definitions of these symbols. ALGOL 68, for
example, permits constructs whose syntactic structure can be recognized by
deterministic left-to-right analysis only if the complete set of type identifiers

Connection
Lexical Tokens

Parser
points Semantic

analyzer analyzer

Error Synthesized
reports tokens

Error
handler

Figure 7.1. Parser Information Flow

7.1. Design 151

is known beforehand. When the parsing is carried out in several passes, the
sequence of symbols produced by the lexical analyzer will be augmented by
other information collected by parser actions during previous passes. The
details depend upon the source language.

We have already considered the interface between the parser and the lex
ical analyzer, and the representation of symbols. The parser looks ahead
some number of symbols in order to control the parsing. As soon as it has
accepted one of the lookahead symbols as a component of the sentence
being analyzed, it reads the next symbol to maintain the supply of looka
head symbols. Through the use of LL or LR techniques, we can be certain
that the program is syntactically correct up to and including the accepted
symbol. The parser thus need not retain accepted symbols. If the code for
these symbols, or their values, must be passed on to other compiler modules
via parser actions, these actions must be connected directly to the accep
tance of the symbol. We shall term connection points serving this purpose
symbol connections.

We can distinguish a second class of connection point, the structure con
nection. It is used to connect parser actions to the attainment of certain sets
of situations (in the sense of Section 5.3.2) and permits us to trace the
phrases recognized by the parser in the source program. Note carefully that
symbol and structure connections provide the only information that a com
piler extracts from the input text.

In order to produce the parse tree as an explicit data structure, it suffices
to provide one structure connection at each reduction of a simple phrase and
one symbol connection at acceptance of each symbol having a symbol
value; at the structure connections we must know which production was
applied. We can fix the connection points for this process mechanically
from the grammar. This process has proved useful, particularly with
bottom-up parsing.

Parser actions that enter declarations into tables or generate code directly
cannot be fixed mechanically, but must be introduced by the programmer.
Moreover, we often know which production is to be applied well before the
reduction actually takes place, and we can make good use of this
knowledge. In these cases we must explicitly mark the connection points
and parser actions in the grammar from which the parser is produced. We
add the symbol encoding (code and value) taken from the lexical analyzer
as a parameter to the symbol connections, whereas parser actions at
structure connections extract all of their information from the state of the
parser.

Figure 7.2a illustrates a grammar with connection points. The character
% marks structure connections, the character & symbol connections. Fol
lowing these characters, the parser action at that point is specified.
Definitions of the parser actions are given in Figure 7.2b. The result of these
specifications is a translation of arithmetic expressions from infix to postfix
form.

152

Expression :: = Term (' +' Term %Addop) * .
Term :: = Factor ('*' Factor %Mulop)* .

Chapter 7. Parsing

Factor :: = 'Identifier' &Ident I '(' Expression ')'.

Addop:
Mulop:
Ident:

a) A grammar for expressions

Output "+"
Output "*"
Output the identifier returned by the lexical analyzer

b) Parser actions to produce postfix

Figure 7.2. Connection Points

The processes for parser generation to be described in Sections 7.2 and
7.3 can interpret symbol and structure connections introduced explicitly into
the grammar as additional nonterminals generating the null string. Thus the
connection points do not require special treatment; only the generated pars
ing algorithm must distinguish them from symbols of the grammar. In addi
tion, none of the transformations used during the generation process alters
the invocation sequence of the associated parser actions.

The introduction of connection points can alter the properties of the
grammar. For example, the grammar whose productions are {Z --S,
S --abc, S --ahd} is LR(O). The modified grammar {Z --S, S --a&Abc,
S --a&Bbd} no longer possesses this property: After reading a it is not yet
clear which of the parser actions should be carried out.

If a grammar does not have a desired property before connection points
are introduced, then their inclusion will not provide that property. This does
not, however, prohibit a parser action from altering the state of the parser
and thus simulating some desirable property. For example, one can occa
sionally distinguish among several possible state transitions through the use
of semantic information and in this manner establish an LL property not
previously present. More problems are generally created than avoided by
such ad hoc measures, however.

7.1.2. Selection ofthe Parsing Algorithm The choice of which parsing
technique to use in a compiler depends more upon the economic and imple
mentation viewpoint than upon the source language and its technical pro
perties. Experience with a particular technique and availability of a pro
gram to construct the parser (or the cost of developing such a program) are
usually stronger criteria than the suitability of the technique for the given
source language. The reason is that, in many cases, the grammar for a
language can be modified to satisfy the restrictions of several parsing tech
niques.

As we have previously stressed, the parser should work deterministically
under all circumstances. Only in this way can we parse correct programs in

7.1. Design 153

a time linearly dependent upon program length, avoiding backtrack and the
need to unravel parser actions. We have already pointed out the LL and LR
algorithms as special cases of deterministic techniques that recognize a syn
tactic error at the first symbol, t, that cannot be the continuation of a correct
program; other algorithms may not discover the error until attempting to
reduce the simple phrase in which t occurs. Moreover, LR(k) grammars
comprise the largest class whose sentences can be parsed using deterministic
pushdown automata. In view of these properties we restrict ourselves to the
discussion of LL and LR parsing algorithms. Other techniques can be
found in the literature cited in Section 7.4.

Usually the availability of a parser generator is the strongest motive for
the choice between LL and LR algorithms: If one has such a generator at
one's disposal, then the technique it implements is given preference. If no
parser generator is available, then an LL algorithm should be selected
because the LL conditions are substantially easier to verify by hand. Also a
transparent method for obtaining the parser from the grammar exists for LL
but not for LR algorithms. By using this approach, recognizers for large
grammars can be programmed relatively easily by hand.

LR algorithms apply to a larger class of grammafs than LL algorithms,
because they postpone the decision about the applicable production pntil
the reduction takes place. The main advantage of LR algorithms is that
they permit more latitude in the representation of the grammar. As the
example at the end of Section 7.1.1 shows, however, this advantage may be
neutralized if distinct structure connections that frustrate deferment of a
parsing decision must be introduced. (Note that LL and LR algorithms
behave identically for all language constructs that begin with a special key
word.)

We restrict our discussion to parsers with only one-symbol lookahead,
and thus to LL(l) and LR(l) grammars. Experience shows that this is not a
substantial restriction; programming languages are usually so simply con
structed that it is easy to satisfy the necessary conditions. In fact, to a large
extent one can manage with no lookahead at all. The main reason for the
restriction is the considerable increase in cost (both time and space) that
must be invested to obtain more lookahead symbols in the parser generator
and in the generated parser.

When dealing with LR grammars, not even the restriction to the LR(l)
case is sufficient to obtain practical tables. Thus we use an LR(l) parse
algorithm, but control it with tables obtained through a modification of the
LR(O) analyzer.

7.1.3. Parser Construction LL and LR parsers are pushdown auto
mata. Given a grammar G =(T,N,P,Z), we can use either construction 5.23
(LL) or construction 5.33 (LR) to derive a parsing automaton
A =(T,Q,R.qo,{qo},Q,qo). To implement this automaton, we must represent
the transitions of R in a convenient form so that we can determine the next

154 Chapter 7. Parsing

transition quickly and at the same time keep the total storage requirement
reasonable.

For this purpose we derive a transition function,f (q, v), from the produc
tion set R. It specifies which of the possible actions (e.g. read a symbol,
reduce according to a production from P, report an error) should be taken
in state q when the input string begins with the element vET. In the LR
case we also define f (q, v) for v EN; it then specifies the action to be taken
in state q after a reduction to v. The transition function may be represented
by a (transition) matrix.

Some of the entries off (q, v) may be unreachable, regardless of the ter
minal string input to the parser. (We shall give examples in Section 7.3.1.)
Because these entries can never be reached, the actions they specify are
irrelevant. In the terminology of sequential machines, these entries are
don't-cares and the transition function is incompletely specified. The presence
of don't-cares leads to possible reduction in table size by combining rows or
columns that differ only in those elements.

The transition function may be stored as program fragments rather than
as a matrix. This is especially useful in an LL parser, where there are simple
rules relating the program fragments to the original grammar.

Parser generation is actually compilation: The source program is a gram
mar with embedded connection points, and the target program is some
representation of the transition function. Like all compilers, the parser gen
erator must first analyze its input text. This analysis phase tests the grammar
to ensure that it satisfies the conditions (LL(l), LR(l), etc.) assumed by the
parser. Some generators, like 'error correcting' compilers, will attempt to
transform a grammar that does not meet the required conditions. Other
transformations designed to optimize the generated parser may also be
undertaken. In Sections 7.2 and 7.3 we shall consider some aspects of the
'semantic analysis' (condition testing) and optimization phases of parser
generators.

Table 7.3 summarizes the computational complexity of the parser genera
tion algorithms presented in the remainder of this chapter. (The parameter
n is the sum of the lengths of the right-hand sides of all productions.) It
should be emphasized that the expressions of Table 7.3 represent asymptotic

Table 7.3. Computational Complexity of
Parser Generation [Hunt 1975]

Grammar Type

LL(l)
Strong LL(k)
LL(k)
SLR(l)
SLR(k)
LR(k)

Test Parser generation

n2

nk +1

2nk +(k + I) log n

2n +Iogn

2n +k logn

2nk+1+k logn

7.2. LL(1)Parsers 155

bounds on execution time. All of the bounds given are sharp, since in every
case grammars exist whose parsers require an amount of table space propor
tional to the time bound specified for parser construction.

7.2. LL(l) Parsers

LL(l) parsers are top-down pushdown automata that can be obtained by
construction 5.23. We shall first sharpen the definition of an LL grammar
and thereby simplify the construction of the automaton. Next we explain
the relationship between a given LL(l) grammar and the implementation of
the pushdown automaton. Finally we develop the algorithms for an LL(I)
parser generator. We defer the problem of error handling until Section
12.2.2.

7.2.1. Strong LL(k) Grammars Consider an LL(k) grammar G =
(T,N,P,Z) and a left derivation:

Z =,,;>L J-tA v=";> J-ty J-t,yET*,A EN,vE v*

According to Definition 5.22, we can predict the next applicable production
A x if p. and k :y are given. The dependence upon p. is responsible for the
fact that, in construction 5.23, we must carry along the right context w in the
situation [A a· fl;w]. Without this dependence we could use the following
in place of step 5 of the construction algorithm:

5' If v=By for some BEN and yEV*, let q'=[X p.B·y;n] and
H = {[B ·Pi ;FOLLOWk (B)] I B Pi EP}. Set Q : = Q u {q'} u H,
andR := R U {q'T q'hi'T I hi EH,'TEFIRSTdP;FOLLO~(B»}.

In this way, situations distinct only in the right context always belong to the
same state. This simplification is made possible by the strong LL(k) gram
mars introduced by Rosenkrantz and Steams [1970]:

Definition 7.1. A context free grammar G = (T,N,P,Z) is called a strong
LL (k) grammar for given k > 0 if, for arbitrary derivations

p.,yET: v,x E V:A EN

Z :::;::,L p.'AX':::;::, p.'wx'=,,;> * p.'y' p.',y'ET: w,X'EV*

(k :y=k :y') implies v=w.

The grammar with P = {Z aAab, Z bAbb, A a, A (} is LL(2), as
can be seen by writing down all derivations. On the other hand, the deriva
tions Z =,,;>aAab =,,;>aab and Z =,,;>bAbb =,,;>babb violate the conditions for
strong LL(2) grammars.

The dependence upon J-t, the stack contents of the automaton, is reflected

156 Chapter 7. Parsing

in the fact that two distinct states q =[X ~Wp;w] and q' =[X ~Wp;w'], ident
ical except for the right context, can occur in construction 5.23 and lead to
distinct sequences of transitions. Without this dependence the further course
of the parse is determined solely by X ~WP, and FOLLOWdX) cannot dis
tinguish the right contexts w,w'.

Theorem 7.2. (LL (I) condition) A context free grammar G is LL (I) if for two
productiOns X ~X, X ~X', X =1= X' implies that FIRST(X FOLLOW(X» and
FIRST(X' FOLLOW(X» are disjoint.

To prove Theorem 7.2 we assume atE T that is an element of both
FIRST(X FOLLOW(X» and FIRST(X' FOLLOW(X».
Then one of the following cases must hold:

1. t EFIRST(X), t EFIRST(X')
2. f.EFIRST(X), t EFIRST(X'), t EFOLLOW(X)
3. f.EFIRST(X'), t EFIRST(X), t EFOLLOW(X)
4. f.EFIRST(X), f.EFIRST(X'), t EFOLLOW(X)

With the aid of the definition of FOLLOW we can easily see that each of
these cases contradicts Definition 5.22 for k = 1. Thus G is not an LL(l)
grammar; in fact, in case (4) the grammar is ambiguous. If, on the other
hand, the grammar does not fulfill the specifications of Definition 5.22, then
one of the above cases holds and the grammar does not satisfy the LL(I)
condition. (Note that Theorem 5.24 may be derived directly from the LL(I)
condition.)

If the grammar is f.-free, the LL(1) condition can be simplified by omit
ting FOLLOW(X). Obviously it is fulfilled if and only if G is a strong
LL(k) grammar. Thus Theorem 7.3 follows from Theorem 7.2:

Theorem 7.3. Every LL(1) grammar is a strong LL(1) grammar.

Theorem 7.3 cannot be generalized to k> I, as illustrated by the LL(2)
grammar with P = {Z ~aAab, Z ~bAbb, A ~a, A ~f.} cited above. The
simplification of pushdown automata mentioned at the beginning of the sec
tion thus applies only to the LL(l) case; it is not applicable to LL(k) gram
mars with k > I.

7.2.2. The Parse Algorithm A matrix representation of the transition
function for the LL(l) case does not provide as much insight into the parsing
process as does the conversion of the productions of the grammar to recur
sive procedures. We shall thus begin our treatment by discussing the tech
nique known as recursive descent.

In a recursive descent parser we use a position in the parser to reflect the
state of the automaton. The stack therefore contains locations at which exe-

7.2. LL(1)Parsers 157

Transition set Program schema

q ->f q:end
ql ->q' q: if symbol = I then next -..symbol else error; q': ...

q:X;q': ., .
.. .
procX:

begin
qII->q'qI/I case symbol of
... II: begin qI: ... end;
qlm ->q'qm 1m ...

1m : begin qm: '" end
otherwise error
end

end;

Figure 7.4. Program Schemata for an LL(l) Parser

cution of the parser may resume. When a state represents a situation
[X ->WBv;w), B EN, we must enter information into the stack about the fol
lowing state [X ->p.B·v;w) before proceeding to the consideration of the pro
duction B -> /1 If we are using a programming language that permits recur
sive procedures, we may associate a procedure with each nonterminal Band
use the standard recursion mechanism of the language to implement the
automaton's stack.

With this approach, the individual steps in construction 5.23 lead to the
program schemata shown in Figure 7.4. These schemata assume the
existence of a global variable symbol containing the value of the last symbol
returned by the lexical analyzer, which is reset by a call to next -..symbol.

Consider the grammar of Figure 7.5a, which, like the grammar of Figure
5.3b, satisfies the LL(l) condition. By construction 5.23, with the
simplification discussed in Section 7.2.1, we obtain the pushdown automaton
whose states are shown in Figure 7.5b and whose transitions appear in Fig
ure 7.5c. Figure 7.6 shows a parser for this grammar implemented by recur
sive descent. As suggested, the procedures correspond to the nonterminals
of the grammar. We have placed the code to parse the axiom on the end as
the main program. The test of the lookahead symbol in state qI guarantees
that the input has been completely processed.

This systematically-constructed program can be simplified, also systemat
ically, as shown in Figure 7.7a. The correspondence between the produc
tions of Figure 7.5a and the code of Figure 7.7a results from the following
transformation rules:

1. Every nonterminal X corresponds to a procedure X; the axiom of the
grammar cOITesponds to the main program.

158

Z -+E
E-+FEI
E 1-+£ I +FEI
F -+i I (E)

a) The grammar

qo: [Z -+·E]
ql: [Z -+£0]
q2: [E -+·FEd
q3: [E -+F-Ed
q4: [F -+·i]
q5: [F -+·(E)]
q6: [E -+FEd
q7: [E 1 -+·e]

qs: [E 1-+· +FEd
q9: [F -+i·]
qlO: [F -+(·E)]
qll: [E 1-+ +·FEd
q12: [F -+(E·)]
q13: [E 1-+ +F·Ed
q14: [F -+(Er]
qls: [E 1-+ +FEd

b) The states of the parsing automaton

qoi -+qlq2i ,qO-+qlq2('
ql-+£,

q2i -+q3q4i ,q2 -+q3q5(,
q3 # -+q6q7 #,q3 -+q6q7,q3 + -+q6qg +,
q4i -+q9,
q5 -+qlO,
q6-+£,
q7-+£,
qg+-+qll,
q9-+£,
qlOi -+Q12Q2i ,QIO-+Q12q2(,
Qlli -+QI3Q4i ,Qll(-+Q13Qs(,
Ql2 -+QI4,

Chapter 7. Parsing

Q13# -+QISQ7#,Q13) -+QISQ7),Q 13 + -+QlsQg +,
QI4-+£,

qls -+£

c) The transitions of the parsing automaton

Figure 7.5. A Sample Grammar and its Parsing Automaton

2. The body of procedure X consists of a case clause that distinguishes the
productions with X as left-hand side. Every nonterminal on the right
hand side of a production is converted to a call of the corresponding pro
cedure. Every terminal leads to a call of next -symbol, after the presence
of the terminal has been verified.

procedure parser;

procedure E ;forward;

procedure F;
begin (* F *)
case symbol of

'j ':

begin
(* q4: *) if symbol = 'i 'then next-symbol else error;
(* q9: *) end;

begin
(* q 5: *) if symbol = '(, then next -symbol else error;
(* qlO: *) E;
(* q 12: *) if symbol = ')' then next -symbol else error;
(* q14: *) end

otherwise error
end;

end; (* F *)

procedure E 1 ;
begin (* E 1 *)
case symbol of

'#', ')':

'+':
begin
(* q8:*) if symbol = '+ 'then next-symbol else error;
(*qll:*)F;
(* q13:*) E 1;

(* qI5:*) end
otherwise error
end;

end; (* E 1 *)

procedure E;
begin (* E *)
(* q2: *) F;
(* q3: *) El;
(* q6: *) end; (* E *)

begin (* parser *)
(* qo: *) E;
(* ql: *) if symbol < > '# 'then error;
end; (* parser *)

Figure 7.6. A Recursive Descent Parser for the Grammar of Figure 7.5

159

160

procedure parser;

procedure E ; forward;

procedure F;
begin (* F *)
case symbol of

'j ':

next -symbol;
'(':

begin
next -symbol;
E;

Chapter 7. Parsing

if symbol = ~' then next -symbol else error;
end

otherwise error
end;

end; (* F *)

procedure E 1;
begin (* E 1 *)
case symbol of

'#', ')':

'+':
begin next -symbol; F; E 1 end

otherwise error
end;

end; (* EI *)

procedure E;
begin F; E 1 end;

begin (* parser *)
E;
if symbol < > '# ' then error;
end; (* parser *)

a) Errors detected within E 1

procedure E 1;
begin (* E 1 *)
if symbol = '+ ' then begin next -symbol; F; E end;
end; (* El *)

b) Errors detected after exit from E 1

Figure 7.7. Figure 7.6 Simplified

7.2. LL(1)Parsers 161

3. In case none of the expected terminals is present, the error handler is
invoked.

If an empty production occurs for a nonterminal, this alternative can, in
principle, be deleted. Thus the procedure corresponding to E I could also be
written as shown in Figure 7.7b. Any errors would then be detected only
after return to the calling procedure. In Section 12.2.2 we shall see that the
quality of error recovery is degraded by this strategy.

If we already know that a grammar satisfies the LL(1) condition, we can
easily use these transformations to write a parser (either by mechanical
means or by hand). With additional transformation rules we can generalize
the technique sufficiently to convert our extended BNF (Section 5.1.3) and
connection points. Some of the additional rules appear in Figure 7.S. Fig
ure 7.9 illustrates the use of these rules.

Element Program schema

Option [x] if symbol in FIRST(x) then x ;

x+ repeat x until not(symbol in FIRST(x»
Closure

x* while symbol in FIRST(x) do x;

x I I d x;
List while symbol in FIRST(d) do

begin d; x end;

t&Y if Symbol = t then
begin Y; next Jymbol end

Connection else error;

%Z Z

Figure 7.8. Extension of Figure 7.4

Recursive descent parsers are easy to construct, but are not usually very
efficient in either time or storage. Most grammars have many nonterminals,
and each of these leads to the dynamic cost associated with the call of and
return from a recursive procedure. The procedures that recognize nontermi
nals could be implemented substantially more efficiently than arbitrary
recursive procedures because they have no parameters or local variables,
and there is only a single global variable. Thus the alteration of the
environment pointer on procedure entry and exit can be omitted.

An interpretive implementation of a recursive descent parser is also possi
ble: The control program interprets tables generated from the grammar.

162

expression :: = term ('+' term %addop)*.
term :: = 'i' &ident I '(' expression ~ '.

a) Grammar (compare Figure 7.2a)

procedure parser;

procedure term ;forward;

procedure expression;
begin (* expression *)

term;
while symbol = '+ 'do

begin next-symbol; term; addop end;
end; (* expression *)

procedure term ;
begin (* term *)
case symbol of

'; ':
begin ident; next -symbol end;

'(':
begin
next -symbol;
expression;

Chapter 7. Parsing

if symbol = ~'then next-symbol else error;
end

otherwise error
end;

end; (* term *)

begin (* parser *)
expression;
if symbol < > '# 'then error;
end (* parser *)

b) Parser

Figure 7.9. Parser for an Extended BNF Grammar

Every table entry specifies a basic operation of the parser and the associated
data. For example, a table entry might be described as follows:

type parse _table _entry = record
operation: integer;
lookahead : set of symbol_code;
next: integer
end;

(* Transition *)

(* Input or lookahead symbol *)
(* Parse table index *)

7.2. LL(1)Parsers 163

States corresponding to situations that follow one another in a single pro
duction follow one another in the table. Figure 7.10 specifies a recursive

procedure parser;
var

current: integer;
stack: array [l..max -.Stack] of integer;
stack _pointer: 0 .. max Jtack ;

begin (* parser *)
current: = I; stack _pointer: = 0;
repeat

with parse _table [current] do
case operation of

I: (* X p:tv*)
if symbol in lookahead then

begin next Jymbol; current: = current + I end
else error;

2: (* X X·*)
begin
current: = stack [stack_pointer];
stack _pointer: = stack _pointer - I;
end;

3: (* X p:Bv *)
begin
if stack -pointer = max -.Stack then abort;
stack _pointer: = stack _pointer + I;
stack [stack _pointer]: = current + I;
current: = next;
end;

4: (* X ·Xi (not the last alternative) *)
if symbol in lookahead then

current: = current + I
else current: = next;

5: (* X ·Xm (last alternative) *)
if symbol in lookahead then

current: = current + I
else error;

6: (* X ·tVi (not the last alternative) *)
if symbol in lookahead then

begin next Jymbol; current: = current + I end
else current: = next

end;
until current = I;
if symbol < > '# 'then error;
end; (* Parser *)

Figure 7.10. An Interpretive LL(l) Parser

164 Chapter 7. Parsing

descent interpreter assuming that parse _table is an array of
parse _table _entry .

Alternatives (1)-(5) of the case clause in Figure 7.10 supply the program
schemata for qt -+q', q -+£ and qtj -+q'qjtj introduced in Figure 7.4. As
before, the transition qt; -+q'q;ti is accomplished in two steps (alternative 3
followed by either 4 or 5). The situations represented by the alternatives are
given as comments. Alternative 6 shows one of the possible optimizations,
namely the combination of selecting a production X -+Xi (alternative 4) with
acceptance of the first symbol of Xi (alternative I). Further optimization is
possible (Exercise 7.6).

7.2.3. Computation of FIRST and FOLLOW Sets The first step in
the generation of an LL(I) parser is to ensure that the grammar
G = (T,N,P'Z) satisfies the LL(l) condition. To do this we compute the
FIRST and FOLLOW sets for all X EN. For each production X -+X EP
we can then determine the director set W =FIRST(X FOLLOW(X». The
director sets are used to verify the LL(l) condition, and also become the 100-

kahead sets used by the parser. With the computation of these sets, the task
of generating the parser is essentially complete. If the grammar does not
satisfy the LL(l) condition, the generator may attempt transformations
automatically (for example, left recursion removal and simple left factoring)
or it may report the cause of failure to the user for correction.

The following algorithm can be used to compute FIRST(X) and initial
values for the director set W of each production X -+ X.

1. Set FIRST(X) empty and repeat steps (2)-(5) for each production X -+X.
2. Let X = x I ... Xn , i = 0 and W = { # }. If n = 0, go to step 5.
3. Set i: =i + 1 and W: = WU FIRST(Xi). (If Xi is an element of T,

FIRST(Xj) = {Xi}; if FIRST(x;) is not available, invoke this algorithm
recursively to compute it.) Repeat step 3 until either i =n or # is not an
element of FIRST(Xi).

4. If # is not an element of FIRST(Xi), set W: = W - {#}.
5. Set FIRST(X): =FIRST(X) u W.

Note that if the grammar is left recursive, step (3) will lead to an endless
recursion and the algorithm will fail. This failure can be avoided by mark
ing each X when the computation of FIRST(X) begins, and clearing the
mark when that computation is complete. If step (3) attempts to invoke the
algorithm with a marked nonterminal, then a left recursion has been
detected.

This algorithm is executed exactly once for each X EN. If # is not in W
at the beginning of step 5 then W is the complete director set for the produc
tion X -+X. Otherwise the complete director set for X -+X is
(W -{#})UFOLLOW(X).

Efficient computation of FOLLOW(X) is somewhat trickier. The prob
lem is that some elements can be deduced from single rules, while others
reflect interactions among rules. For example, consider the grammar of Fig-

7.2. LL(1)Parsers 165

ure 7.5a. We can immediately deduce that FOLLOW(F) includes
FIRST(E I), because of the production E 1 --+ + FE 1 Since E I::;> * £,

FOLLOW(F) also contains FOLLOW(E 1), which includes FOLLOW(E)
because of the production E --+ FE I.

Interaction among the rules can be represented by the relation LAST:

Definition 7.4. Given a context free grammar G = (T,N,P,Z). For any two
nonterminals A, B, A LAST B if B --+/LA pEP and v=? \.

This relation can be described by a directed graph F = (N, D), with D
{(A, B) I A LAST B}. If there is a path from node A to node B in F, then
FOLLOW(A) is a subset of FOLLOW(B); all nodes in a strongly connected
region of F have identical follow sets. The general strategy for computing
follow sets is thus to compute provisional sets FOL (X) = {t I A --+ /LX v EP ,
t EFIRST(v)} - {#} based only upon the relationships among symbols
within productions, and then use F to combine these sets.

We can easily compute the graph F and the set FOL (X) by scanning the
production backward and recalling that A=?* £ if # is in FIRST(A). Since
F is sparse (I D I < < IN XN I), it must be represented by an edge list
rather than an adjacency matrix if the efficiency of the remaining
computation is to be maintained.

The next step is to form the strongly connected regions of F and derive
the directed acyclic graph F' =(N',D') of these regions:

D'={(A',B') I (A,B)ED such that A is in the strongly connected region
A 'and B is in the region B' }

F' can be constructed efficiently by using the algorithm of Section B.3.2 to
form the regions and then constructing the edges in one pass over F. At the
same time, we can compute the initial follow sets FOL (A ') of the strongly
connected regions A' EN' by taking the union of all FOL (A) such that A is
a nonterminal in the region A'.

The final computation of FOLLOW(A ') is similar to our original compu
tation of FIRST(A):

1. Initially, FOLLOW(A ') =FOL (A ') for A' =1= Z', and
FOLLOW(Z') = {#}.

2. For each immediate successor, B', of A' add FOLLOW(B') to
FOLLOW(A '). If FOLLOW(B') is not already available, then invoke
this algorithm recursively to compute it.

This algorithm also operates upon each element of N' exactly once. For
each production X --+x with # in W, we now obtain the final director sets by
setting W:=(W-{#})UFOLLOW(X') (X' is the strongly connected
region containing X).

166 Chapter 7. Parsing

7.3. LR Parsers

Using construction 5.33, we can both test whether a grammar is LR(l) and
construct a parser for it. Unfortunately, the number of states of such a
parser is too large for practical use. Exactly as in the case of strong LL(k)
grammars, many of the transitions in an LR(l) parser are independent of the
look ahead symbol. We can utilize this fact to arrive at a parser with fewer
states, which implements the LR(l) analysis algorithm but in which reduce
transitions depend upon the lookahead symbol only if it is absolutely neces
sary.

We begin the construction with an LR(O) parser, which does not examine
lookahead symbols at all, and introduce lookahead symbols only as
required. The grammars that we can process with these techniques are the
simple LR(J) (SLR(l» grammars of DeRemer [1969]. (This class can also
be defined for arbitrary k> 1.) Not all LR(l) grammars are also SLR(l)
(there is no equivalence similar to that between ordinary and strong LL(l)
grammars), but the distinction is unimportant in practice except for one
class of problems. This class of problems will be solved by sharpening the
definition ofSLR(l) to obtain lookahead LR(J) (LALR(l» grammars.

The verifications of the LR(l), SLR(l) and LALR(l) conditions are more
laborious than verification of the LL(l) condition. Also, there exists no sim
ple relationship between the grammar and the corresponding LR pushdown
automaton. LR parsers are therefore employed only if one has a parser gen
erator. We shall first discuss the workings of the parser and in that way
derive the SLR(l) and LALR(l) grammars from the LR(O) grammars. Next
we shall show how parse tables are constructed. Since these tables are still
too large in practice, we investigate the question of compressing them and
show examples in which the final tables are of feasible size. The treatment
of error handling will be deferred to Section 12.2.2.

7.3.1. The Parse Algorithm Consider an LR(k) grammar
G = (T,N,P,Z) and the pushdown automaton A =(T,Q,R,qo,{qo},Q,qo) of
construction 5.33. The operation of the automaton is most easily explained
using the matrix form of the transition function:

if v = vyET* and qvy~qq'yERor
if v EN and q' = next (q, v) (shift transition)

q'

f (q, v) = X ~x if[X ~X';v] Eq (reduce transition)

HALT if v = # and [Z ~S·;#]Eq

ERROR otherwise

This transition function is easily obtained from construction 5.33: All of
the transitions defined in step (2) deliver shift transitions with one terminal
symbol, which will be accepted; the remaining transitions result from step

7.3. LR Parsers 167

(3) of the construction. We divide the transition Pl·· ·PmqW--+Plq'w
referred to in step (3) into two steps: Because [X --+X·;v] is in q we know
that we must reduce according to the production X --+x and remove
m = I X I states from the stack. Further we define f (p bX)
=next(PbX)=q' to be the new state. Ifw=# and [Z--+S·;#]Eq then
the pushdown automaton halts.

Figure 7.11 gives an example of the construction of a transition function
for k =0. We have numbered the states and rules consecutively. '+ 2' indi
cates that a reduction will be made according to rule 2; ,*, marks the halting
of the pushdown automaton. Because k = 0, the reductions are independent
of the following symbols.

Figure 7.11c shows the transition function as the transition diagram of a
finite automaton for the grammars of Theorem 5.32. The distinct grammars
correspond to distinct final states. As an LR parser, the automaton operates
as follows: Beginning at the start state 0, we make a transition to the succes
sor state corresponding to the symbol read. The states through which we
pass are stored on the stack; this continues until a final state is reached. In
the final state we reduce by means of the given production X --+x, delete
I X I states from the stack and proceed as though X had been 'read'.

(1) Z--+E
(2)E--+E+F (3)E --+F
(4) F--+i (5) F --+(E)

a) The grammar

(+ # E F
0 3 4 2
1 5 *
2 +3 +3 +3 +3 +3
3 +4 +4 +4 +4 +4
4 3 4 6 2
5 3 4 7
6 8 5
7 +2 +2 +2 +2 +2
8 +5 +5 +5 +5 +5

b) The transition table

c) The transition diagram

Figure 7.11. An Example of an LR(O) Grammar

168 Chapter 7. Parsing

The only distinction between the mode of operation of an LR(k) parser
for k > 0 and the LR(O) parser of the example is that the reductions may
depend upon lookahead symbols. In the final states of the automaton,
reductions will take place only if the context allows them.

Don't-care entries with ! (q, v) = ERROR, i.e. entries such that there
exists no word X with qoqoX # =? 'wqvy# with suitable stack contents w,
may occur in the matrix representation of the transition function. Note that
all entries (q,X), XEN, with !(q,X)=ERROR are don't-cares. By the
considerations in step (3) of construction 5.33, no error can occur in a transi
tion on a nonterminal; it would have been recognized at the latest at the
preceding reduction. (The true error entries are denoted by'.', while don't
cares are empty entries in the matrix representation of! (q, v).)

7.3.2. SLR(l) and LALR(l) Grammars Figure 7.12a is a slight exten
sion of that of Figure 7.11a. It is not an LR(O) grammar, as Figure 7.13
shows. (A star before a situation means that this situation belongs to the
basis of the state; the look ahead string is omitted.) In states 2 and 9 we must
inspect the lookahead symbols to decide whether to reduce or not. Figure
7.12b gives a transition matrix that performs this inspection.

The operation of the parser can be seen from the example of the reduc
tion ofi +i*(i +i)# (Figure 7.14). The 'Next Symbol' column is left blank
when the parser does not actually examine the lookahead symbol. This
example shows how, by occasional consideration of a lookahead symbol, we

(l)Z-+E
(2)E -+ E+T (3) E -+ T
(4) T -+ T*F (5) T -+ F
(6) F -+ i (7) F -+ (E)

a) The grammar

(+ * # E T F
0 4 5 2 3
1 6 *
2 +3 +3 7 +3
3 +5 +5 +5 +5 +5 +5
4 +6 +6 +6 +6 +6 +6
5 4 5 8 2 3
6 4 5 9 3
7 4 5 10
8 11 6
9 +2 +2 7 +2

10 +4 +4 +4 +4 +4 +4
II +7 +7 +7 +7 +7 +7

b) The transition table

Figure 7.12. A Non-LR(O) Grammar

7.3. LR Parsers 169

State Situation v f(q, v)

0 * [2 -+'E] E I
[E -+·E +T]
[E -+'T] T 2
[T -+'T*F]
[T -+'F] F 3
[F -+'i] 4
[F -+'(E)] (5

* [2 -+E'] # HALT

* [E -+E' +T] + 6
2 * [E -+T'] #,), + reduce 3

* [T -+T'*F] * 7
3 * [T -+F'] reduce 5
4 * [F -+i'] reduce 6
5 * [F -+(-E)] E 8

[E -+'E +T]
[E -+'T] T 2
[T -+'T*F]
[T -+'F] F 3
[F -+'i] i 4
[F -+'(E)] (5

6 * [E -+E +'T] T 9
[T -+'T*F]
[T -+'F] F 3
[F-+'i] 4
[F -+'(E)] (5

7 * [T -+T*'F] F 10
[F-+'i] 4
[F -+'(E)] (5

8 * [F -+(E')]) 11
* [E -+E' +T] + 6

9 * [E -+E +T·] #,), + reduce 2
* [T -+T'*F] * 7

10 * [T -+T*F'] reduce 4
11 * [F -+(E)·] reduce 7

Figure 7.13. Derivation of the Automaton of Figure 7.12b

can also employ an LR(O) parser for a grammar that does not satisfy the
LR(O) condition. States in which a look ahead symbol must be considered
are called inadequate. They are characterized by having a situation [X -+X·]
that leads to a reduction, and also a second situation. This second situation
leads either to a reduction with another production or to a shift transition.

DeRemer [1971] investigated the class of grammars for which these
modifications lead to a parser:

170 Chapter 7. Parsing

Definition 7.5. A context free grammar G = (T,N,P,Z) is SLR(l) if the fol
lowing algorithm leads to a deterministic pushdown automaton.

The pushdown automaton A = (T, Q, R, qo, {qo}, Q, qo) will be defined
by its transition function f (q, v) rather than the production set R. The con
struction follows that of construction 5.33. We use the following as the clo
sure of a set of situations:

H(M)=M U ([Y -+./L] I :t [X -+x· Yy]EH(M)}

1. Initially let Q = {qo}, with qo=H(([Z -+·S]}).
2. Let q be an element of Q that has not yet been considered. Perform steps

(3)-(4) for each v E V.
3. Letbasis(q,v) = {[X -+/Lv·y] I [X -+wvy]Eq}.
4. If basis(q,v)-=I= 0, then let next(q,v)=H(basis(q,v». Add q'=

next (q,v) to Q ifit is not already present.
5. If all elements of Q have been considered, perform step (6) for each

q EQ and then stop. Otherwise return to step (2).

Right derivation
before transition

.i +i *(i +i)#
i. +i *(i +i)#
F. +i *(i +i)#
T. +i *(i +i)#
E. +i *(i +i)#
E +.i *(i +i)#
E +i. *(i +i)#
E +F.*(i +i)#
E +T.*(i +i)#
E +T*.(i +i)#
E + T*(.i +i)#
E +T*(i. +i)#
E +T*(F. +i)#
E +T*(T. +i)#
E +T*(E. +i)#
E +T*(E +.i)#
E +T*(E +i.)#
E +T*(E +F.)#
E +T*(E +T.)#
E +T*(E.)#
E +T*(E).#
E +T*F.#
E+T.#
E.#
z.#

Stack

° 0,4
0,3
0,2
0,1

0,1,6
0,1,6,4
0,1,6,3
0,1,6,9

0,1,6,9,7
0,1,6,9,7,5

0,1,6,9,7,5,4
0,1,6,9,7,5,3
0,1,6,9,7,5,2
0,1,6,9,7,5,8

0,1,6,9,7,5,8,6
0,1,6,9,7,5,8,6,4
0,1,6,9,7,5,8,6,3
0,1,6,9,7,5,8,6,9

0,1,6,9,7,5,8
0,1,6,9,7,5,8,11

0,1,6,9,7,10
0,1,6,9

0,1

Next
Symbol

+
+

*

+
+

)
)

Reduce by
Production

6
5
3

6
5

6
5
3

6
5
2

7
4
2

Figure 7.14. A Sample Parse by the Automaton of Figure 7.12b

Next
State

4
3
2
I
6
4
3
2
7
5
4
3
2
8
6
4
3
9
8

II
10
9
1

HALT

7.3. LR Parsers

(1) Z ~A
(2)A ~aBb (3)A ~adc (4)A ~bBc (5)A ~bdd
(6) B ~d

a) The grammar

HALT

+2 +3 +4

b) The SLR(I) transition diagram

abc
o 2 3
I
2
3
4 8
5 +6 9
6 10
7 +6
8 +2 +2 +2
9 +3 +3 +3

10 +4 +4 +4
II +5 +5 +5

d # A

5
7

II

*

+2 +2
+3 +3
+4 +4
+5 +5

c) The LALR(l) transition table

Figure 7.15. A Non-SLR(l) Grammar

6. ForaH v EV,definej(q,v) by:

next(q, v) if[X ~p:vy]Eq

+5

+6
on b, C

B

4
6

j(q, v) =
X ~x if[X ~X·] Eq and v EFOLLOW(X)

HALT if v = # and [Z ~S']Eq

ERROR otherwise

171

This construction is almost identical to construction 5.33 with k =0. The
only difference is the additional restriction v EFOLLOW(X) for the reduc
tion (second case).

SLR(1) grammars cover many practically important language constructs
not expressible by LR(O) grammars. Compared to the LR(I) construction,

172 Chapter 7. Parsing

the given algorithm leads to substantially fewer states in the automaton.
(For the grammar of Figure 7.12a the ratio is 22: 12). Unfortunately, even
SLR(1) grammars do not suffice for all practical requirements. The problem
arises whenever there is a particular sequence of tokens that plays different
roles in different places. In LAX, for example, an identifier followed by a
colon may be either a label (A.2.0.6) or a variable serving as a lower bound
(A.3.0.4). For this reason the LAX grammar is not SLR(l), because the
lookahead symbol ':' does not determine whether identifier should be
reduced to name (A.4.0.16), or a shift transition building a label-definition
should take place.

If the set of lookahead symbols for a reduction could be partitioned
according to the state then we could solve the problem, as can be seen from
the example of Figure 7.15. The productions of Figure 7.15a do not fulfill
the SLR(I) condition, as we see in the transition diagram of Figure 7.15b.
In the critical state 5, however, a reduction with look ahead symbol c need
not be considered! If c is to follow B then b must have been read before,
and we would therefore have had the state sequence 0, 3, 7 and not 0, 2, 5.
The misjudgement arises through states in which all of the symbols that
could possibly follow B are examined to determine whether to reduce
B -+d, without regard to the symbols preceding B. We thus refine the con
struction so that we do not admit all lookahead symbols in FOLLOW(X)
when deciding upon a reduction X -+x, but distinguish on the basis of
predecessor states look ahead symbols that can actually appear.

We begin by defining the kernel of an LR(l) state to be its LR(O) situa-
tions:

kernel(q) = {[X -+p:v] I [X -+p:v;Q]Eq}

Construction 7.5 above effectively merges states of the LR(l) parser that
have the same kernel, and hence any look ahead symbol that could have
appeared in any of the LR(I) states can appear in the LR(O) state. The set
of all such symbols forms the exact right context upon which we must base
our decisions.

Definition 7.6. Let G =(T, N, P, Z) be a context free grammar, Q be the
state set of the pushdown automaton formed by construction 7.5, and Q' be
the state set of the pushdown automaton formed by construction 5.33 with
k = 1. The exact right context of an LR(O) situation [X -+p:v] in a state
q E Q is defined by:

ERC(q,[X-+p:v]) = {tET I :3q'EQ"suchthatq
=kernel(q~ and [X -+JL·v;t] Eq'}

Theorem 5.31 related the LR(k) property to non-overlapping k -stack
classes, so it is not surprising that the definition of LALR(l) grammars
involves an analogous condition:

7.3. LR Parsers 173

Definition 7.7. Let G = (T,N,P,Z) be a context free grammar and Q be the
state set of the pushdown automaton formed by construction 7.5. G is
LALR(l) if the following sets are pairwise disjoint for all q E Q, p EP:

. Sq,O = {t I [X ->p:p] Eq, P=f= £, t EEFF(pERC(q, [X ->p:p]))}

Sq,p = ERC(q, [Xp ->Xp'j)

Although Definition 7.6 implies that we need to carry out construction
5.33 to determine the exact right context, this is not the case. The following
algorithm generates only the LR(O) states, but may consider each of those
states several times in order to build the exact right context. Each time a
shift transition into a given state is discovered, we propagate the right con
text. If the propagation changes the third element of any triple in the state
then the entire state is reconsidered, possibly propagating the change
further. Formally, we define a merge operation on sets of situations as fol
lows:

merge(A,B) = {[X->IL'P;~uQ]1 [X->IL'P;~]EA,[X->/L'P;Q]EB}

The LALR(I) construction algorithm is then:
1. Initially let Q = {qo}, with qo = H ({[Z ->. S; {#}]}).
2. Let q be an element of Q that has not yet been considered. Perform steps

(3)-(5) for each v E V.
3. Letbasis(q,v) = {[X ->/LV'y;Q] I [X ->/L'vy;Q]Eq}.
4. If basis (q, v) =f= 0 and there is a q' E Q such that kernel (q ') =

kerne/(H(basis(q,v))) then let next(q,v) = merge (H(basis(q,v»,q'). If
next (q, v) =f= q' then replace q' by next (q, v) and mark q' as not yet con
sidered.

5. If basis(q,v)=f= 0 and there is no q'EQ such that kernel(q') =
kernel(H(basis(q,v))) then let next (q,v) = H(basis(q,v». Add
q"=next(q,v) to Q.

6. If all elements of Q have been considered, perform step (7) for each
q EQ and then stop. Otherwise return to step (2).

7. For all v E V define f (q,v) as follows:

next (q, v) if basis (q, v)=f= 0

f(q,v)=
X ->X if[X ->X';Q]Eq, v EQ

HALT ifv=# and [Z->S·;{# }]Eq

ERROR otherwise

Figure 7.l5c shows the LALR(l) automaton derived from Figure 7.l5a.
Note that we can only recognize a B by reducing production 6, and this can
be done only with b or c as the look ahead symbol (see rows 5 and 7 of Fig
ure 7.15c). States 4 and 6 are entered only after recognizing a B, and hence
the current symbol must be b or c in these states. Thus Figure 7.15c has
don't-care entries for all symbols other than band c in states 4 and 6.

174 Chapter 7. Parsing

() + * # E T F

0 -6 5 2 -5
1 6 *
2 +3 +3 7 +3
5 -6 5 8 2 -5
6 -6 5 9 -5
7 -6 5 -4
8 -7 6
9 +2 +2 7 +2

Figure 7.16. The Automaton of Figure 7.12 Recast for Shift-Reduce Transitions

7.3.3. Shift-Reduce Transitions For most programming languages 30-
50% of the states of an LR parser are LR(O) reduce states, in which reduc
tion by a specific production is determined without examining the context.
In Figure 7.13 these states are 3, 4, 10 and 11. We can combine these reduc
tions with the stacking of the previous symbol to obtain a new kind of trans i
tion - the shift-reduce transition - specifying both the stacking of the last
symbol of the right-hand side and the production by which the next reduc
tion symbol is to be made. Formally:

If j(q: v)=X X (or j(q', v)=HALT) is the only possible action (other
than ERROR) in state q' then redefine j (q, v) to be 'shift reduce X X' for
all states q withj(q, v)=q' and for all v E V. Then delete state q'.

With this simplification the transition function of Figure 7.12 can be writ
ten as shown in Figure 7.16. (The notation remains the same, with the addi
tion of - p to indicate a shift-reduce transition that reduces according to the
i h production.)

Introduction of shift-reduce transitions into a parsing automaton for LAX
reduces the number of states from 131 to 70.

7.3.4. Chain Production Elimination A chain production A B is a
semantically meaningless element of P with a right-hand side of length 1.
In this section we shall denote chain productions by A C B and derivations
using only chain productions by A =>c B (instead of A=> *B). Any produc
tions not explicitly marked are not chain productions. Chain productions
are most often introduced through the description of expressions by rules
like sum :: = term I sum addop term. They also frequently arise from the
collection of single concepts into some all-embracing concept (as in A.3.0.1,
for example).

Reductions according to chain productions are completely irrelevant, and
simply waste time. Thus elimination of all chain productions may speed up
the parsing considerably. During the parse of the statement A: =B in LAX,
for example, we must reduce 11 times by productions of length 1 before
reaching the form name ': = ' expression, which can be recognized as an

7.3. LR Parsers 175

assignment. Of these reductions, only the identification of an identifier as a
name (A.4.0.l6) has relevant semantics. All other reductions are semanti
cally meaningless and should not appear in the structure tree.

We could remove chain productions by substitution, a process used in
conjunction with Theorem 5.25. The resulting definition of the LR parser
would lead to far too many states, which we must then laboriously reduce to
a manageable number by further processing. A more satisfactory approach
is to try to eliminate the reductions by chain productions from the parser
during construction. In many cases this technique will also lower the
number of states in the final parser.

The central idea is to simultaneously consider all chain productions that
could be introduced in a given parser state. Suppose that a state q contains
a situation [X WAv;t I and A ~ + B. We must first reduce to B, then to A .
If however, the derivation A ~ + B consists solely of chain productions then
upon a reduction to B we can immediately reduce to A without going
through any intermediate steps.

Construction 7.7, when applied to Figure 7.17a (a simplified version of
Figure 7.12a), yields a parser with the state diagram given in Figure 7.17b.
If we reach state 2, we can reduce to E given the lookahead symbol #, but
we could also reduce to Z immediately. We may therefore take either the

+4
on #, +, *

(1) Z E
(2)E E+T (3)£ T
(4) T T*i (5) T i

a) The grammar

+3
on #,+

on#

*
b) The transition diagram

HALT
on#

*
on#

+5
on #, +, *

+4
on #, +, * 7 I..---=----(~----*----r6 +2

on#.+

c) After elimination of the chain production (3) E T

Figure 7.17. A Simple Case of Chain Production Elimination

176 Chapter 7. Parsing

actions of state 1 or those of state 2. Figure 7.17c shows the parser that
results from merging these two states.

Note that in Figure 7.17b the actions for states I and 2 do not conflict
(with the exception of the reduction E T being eliminated). This property
is crucial to the reduction; fortunately it follows automatically from the
LR(I) property of the grammar: Suppose that for A of=. B, A =>c C and
B =>C C. Suppose further that some state q contains situations [X ""'/L"A y;f]
and [Y ""'(J·Bc5;~). The follower condition 'FIRST(YT) and FIRST(M) dis
joint' must then hold, since otherwise it would be impossible to decide
whether to reduce C to A or B in state f (q, C). Consideration of state 0 in
Figure 7.l7b with A = E, B = C = T illustrates that the follower condition is
identical to the absence of conflict required above.

Situations involving chain productions are always introduced by a closure
operation. Instead of using these chain production situations when estab
lishing a new state, we use the situations that introduced them. This is
equivalent to saying that reduction to the right-hand side of the chain pro
duction should be interpreted as reduction to the left-hand side. Thus the
only change in construction 7.7 comes in computation of basis (q, v):

3'. Letbasis(q,v) = {[y""'(Ja·c5;~] I [x""'/L"vy;r],[y""'(Tac5;~]Eq, a=>cv}
- {[A B· ;Q] I A C B}.

As an example of the process, assume that the productions E T and
T F in the grammar of Figure 7.l2a are chain productions. Figure 7.18
shows the derivation of an LALR(l) automaton that does not reduce by
these productions. (Compare this derivation with that of Figure 7.13.)

7.3.5. Implementation In order to carry out the parsing practically, a
table of the left sides and lengths of the right sides of all productions (other
than chain productions), as well as parser actions to be invoked at connec
tion points, must be known to the transition function. The transition func
tion is partitioned in this way to ease the storage management problems.
Because of cost we store the transition function as a packed data structure
and employ an access routine that locates the value f (q, v) given (q, v).
Some systems work with a list representation of the (sparse) transition
matrix; the access may be time consuming if such a scheme is used, because
lists must be searched.

The access time is reduced if the matrix form of the transition function is
retained, and the storage requirements are comparable to those of the list
method if as many rows and columns as possible are combined. In perform
ing this combination we take advantage of the fact that two rows can be
combined not only when they agree, but also when they are compatible
according to the following definition:

Definition 7.8. Consider a transition matrix f (q, v). Two rows q, q' E Q are
compatible if, for each column v, either f (q, v) = f (q', v) or one of the two
entries is a don't-care entry.

7.3. LR Parsers 177

State Situation v f(q, v)
0 • [Z ·E;{# }] E 1

[E ·E +T;{# +}]
[E ·T;{# +}] T 2
[T -r·F;{# +.}]
[T ·F;{# +.}] F 2
[F ·i ;{# +.}] 3
[F ·(E);{# +.}] (4

• [Z E·;{# }] # HALT
• [E E-+T;{# +}] + 5

2 • [Z E·;{# }] # HALT
• [E E· +T;{# +}] + 5
• [T T··F;{# +.}] • 6

3 • [F i·;{# +.)}] reduce 6
4 • [F (·E);{# +.)}] E 7

[E ·E +T;{)+}]
[E ·T;{)+}] T 8
[T -r·F;{)+·}]
[T ·F;{)+·}] F 8
[F ·i ;{)+.}] i 3
[F ·(E);{)+·}] (4

5 • [E E +·T;{# +)}] T 9
[T -r·F;{# +.)}]
[T ·F;{# +.)}] F 9
[F ·i ;{# +.)}] 3
[F ·(E);{# +.)}] (4

6 • [T T··F;{# +.)}] F 10
[F ·i;{# +.)}] 3
[F ·(E);{# +.)}] (4

7 • [F (E·);{# +.)}]) 11
• [E E-+T;{)+}] + 5

8 • [F (E·); {# +.)}]) 11
• [E E· +T;{)+}] + 5
• [T T··F;{)+·}] • 6

9 • [E E +T·;{# +)}] #)+ reduce 2
• [T T··F;{# +.)}] • 6

10 • [T T·P.;{# +.)}] reduce 4
11 • [F (E};{# +.)}] reduce 7

Figure 7.18. Chain Production Elimination Applied to Figure 7.12

178 Chapter 7. Parsing

Compatibility is defined analogously for two columns v, v'E V. We shall
only discuss the combination of rows here.

We inspect the terminal transition matrix, the submatrix of f (q, v) with
vET, separately from the nonterminal transition matrix. Often different
combinations are possible for the two submatrices, and by exploiting them
separately we can achieve a greater storage reduction. This can be seen in
the case of Figure 7.l9a, which is an implementation of the transition matrix
of Figure 7.18. In the terminal transition matrix rows 0, 4, 5 and 6 are com
patible, but none of these rows are compatible in the nonterminal transition
matrix.

In order to increase the number of compatible rows, we introduce a
Boolean failure matrix, F[q, t], q E Q, t E T. This matrix is used to filter the
access to the terminal transition matrix:

f(q, t)= if F[q, t] then error else entry_in_the_transition_matrix;

For this purpose we define F[q, t] as follows:

F[q,t] = {true iff(q,~) = ERROR
false otherwise

Figure 7.19b shows the failure matrix derived from the terminal transition
matrix of Figure 7.19a. Note that the failure matrix may also contain
don't-care entries, derived as discussed at the end of Section 7.3.2. Rowand
column combinations applied to Figure 7.l9b reduce it from 9 X 6 to 4 X 4.

With the introduction of the failure matrix, all previous error entries
become don't-care entries. Figure 7.l9c shows the resulting compression of
the terminal transition matrix. The nonterminal transition matrix is not
affected by this process; in our example it can be compressed by combining
both rows and columns as shown in Figure 7.19d. Each matrix requires an
access map consisting of two additional arrays specifying the row (column)
of the matrix to be used for a given state (symbol). For grammars of the size
of the LAX grammar, the total storage requirements are generally reduced
to 5-10% of their original values.

We have a certain freedom in combining the rows of the transition
matrix. For example, in the terminal matrix of Figure 7.19a we could also
have chosen the grouping {(0,4,5,6,9),(l,2,7,8)}. In general these groupings
differ in the final state count; we must therefore examine a number of possi
ble choices. The task of determining the minimum number of rows reduces
to a problem in graph theory: We construct the (undirected) incompatibility
graph I =(Q, D) for our state set Q, in which two nodes q and q' are con
nected if the rows are incompatible. Minimization of the number of rows is
then equivalent to the task of coloring the nodes with a minimum number of
colors such that any pair of nodes connected by a branch are of different
colors. (Graph coloring is discussed in Section B.3.3.) Further compression
may be possible as indicated in Exercises 7.12 and 7.13.

7.3. LR Parsers 179

+ * # E T F

0 -6 4 2 2
1 5 *
2 5 6 *
4 -6 4 7 8 8
5 -6 4 9 9
6 -6 4 -4
7 -7 5
8 -7 5 6
9 +2 +2 6 +2

a) Transition matrix for Figure 7.18 with shift-reduce transitions

() + * #

0 false false true true true true
I true false false
2 true true true false false false
4 false false true true true true
5 false false true true true true
6 false false true true true true
7 false false true
8 true true false false false true
9 true true false false false false

b) Uncompressed failure matrix for (a)

() + * #

0,1,2,4,
-6 4 -7 5 6 * 5,6,7,8

9 +2 +2 6 +2

c) Compressed terminal transition matrix

E TF

0,1,2 if-l 4 7 8
5 9

6,7,8,9 -4

d) Compressed nonterminal transition matrix

Figure 7.19. Table Compression

180 Chapter 7. Parsing

7.4. Notes and References

LL(l) parsing in the form of recursive descent was, according to McClure
[1972], the most frequently-used technique in practice. Certainly its flexibil
ity and the fact that it can be hand-coded contribute to this popularity.

LR languages form the largest class of languages that can be processed
with deterministic pushdown automata. Other techniques (precedence
grammars, (m, n)-bounded context grammars or Floyd-Evans Productions,
for example) either apply to smaller language classes or do not attain the
same computational efficiency or error recovery properties as the techniques
treated here. Operator precedence grammars have also achieved significant
usage because one can easily construct parsers by hand for expressions with
infix operators. Aho and Ullman [1972] give quite a complete overview of
the available parsing techniques and their optimal implementation.

Instead of obtaining the LALR(l) parser from the LR(I) parser by merg
ing states, one could begin with the SLR(l) parser and determine the exact
right context only for those states in which the transition function is ambigu
ous. This technique reduces the computation time, but unfortunately does
not generalize to an algorithm that eliminates all chain productions.

Construction 7.7 requires a redundant effort that can be avoided in prac
tice. For example, the closure of a situation [X p:By;O] depends only
upon the nonterminal B if the look ahead set is ignored. The closure can
thus be computed ahead of time for each B EN, and only the lookahead sets
must be supplied during parser construction. Also, the repeated construc
tion of the follower state of an LALR(I) state that develops from the combi
nation of two LR(l) states with distinct lookahead sets can be simplified.
This repetition, which results from the marking of states as not yet exam
ined, leaves the follower state (specified as a set of situations) unaltered. It
can at most add lookahead symbols to single situations. This addition can
also be accomplished without computing the entire state anew.

Our technique for chain production elimination is based upon an idea of
Pager [1974].

Use of the failure matrix to increase the number of don't-care entries in
the transition matrix was first proposed by 10liat [1973,1974].

EXERCISES
7.1. Consider a grammar with embedded connection points. Explain why

transformations of the grammar can be guaranteed to leave the invocation
sequence of the associated parser actions invariant.

7.2. State the LL(I) condition in terms of the extended BNF notation of Section
5.1.3. Prove that your statement is equivalent to Theorem 7.2.

7.3. Give an example of a grammar in which the graph of LAST contains a cycle.
Prove that FOLLOW(A) = FOLLOW(B) for arbitrary nodes A and B in the
same strongly connected subgraph.

7.4. Notes and References 181

7.4. Design a suitable internal representation of a grammar and program the gen
eration algorithm of Section 7.2.3 in terms of it.

7.5. Devise an LL(l) parser generation algorithm that accepts the extended BNF
notation of Section 5.1.3. Will you be able to achieve a more efficient parser
by operating upon this form directly, or by converting it to productions?
Explain.

7.6. Consider the interpretive parser of Figure 7.10.
a. Define additional operation codes to implement connection points, and

add the appropriate alternatives to the case statement. Carefully explain
the interface conventions for the parser actions. Would you prefer a
different kind of parse table entry? Explain.

b. Some authors provide special operations for the situations [X --'p:B] and
[X --'p:tB]. Explain how some recursion can be avoided in this manner,
and write appropriate alternatives for the case statement.

c. Once the special cases of (b) are recognized, it may be advantageous to
provide extra operations identical to 4 and 5 of Figure 7.10, except that the
conditions are reversed. Why? Explain.

d. Recognize the situation [X --.p:t] and alter the code of case 4 to absorb the
processing of the 2 operation following it.

e. What is your opinion of the value of these optimizations? Test your pred
ictions on some language with which you are familiar.

7.7. Show that the following grammar is LR(l) but not LALR(I):
Z --.A ,
A --.aBcB, A --.B, A --.D,
B --.b, B --.Ff,
D --.dE,
E --.FcA, E --.FcE,
F --.b

7.8. Repeat Exercise 7.5 for the LR case. Use the algorithm of Section 7.3.4.

7.9. Show that FIRST(A) can be computed by any marking algorithm for directed
graphs that obtains a 'spanning tree', B, for the graph. B has the same node
set as the original graph, G, and its branch set is a subset of that of G.

7.10. Consider the grammar with the following productions:
Z --.AXd, Z --.BX, Z --.C,
A --.B,A --.C,
B--.CXb,
C --.c,
X --.£

a. Derive an LALR(l) parser for this grammar.
b. Delete the reductions by the chain productions A --. B and A --. C .

7.11. Use the techniques discussed in Section 7.3.5 to compress the transition
matrix produced for Exercise 7.8.

7.12. [Anderson 1972] Consider a transition matrix for an LR parser constructed by
one of the algorithms of Section 7.3.2.

182 Chapter 7. Parsing

a. Show that for every state q there is exactly one symbol z (q) such that
I(q', a) implies a =z (q).

b. Show that, in the case of shift-reduce transitions introduced by the algo
rithms of Sections 7.3.3 and 7.3.4, an unambiguous symbol z (A ~X) exists
such that I (q, a) = 'shift and reduce A ~ X' implies a = z (A ~ X).

c. The states (and shift-reduce transitions) can be numbered in such a way
that all states in column c have sequential numbers co+i, i =0,1, ...
Thus it suffices to store only the relative number i in the transition matrix;
the base Co is only given once for each column. In exactly the same
manner, a list of the reductions in a row can be assigned to this row and
retain only the appropriate index to this list in the transition matrix.

d. Make these alterations in the transition matrix produced for Exercise 7.8
before beginning the compression of Exercise 7.11, and compare the result
with that obtained previously.

7.13. [Bell 1971] Consider an m Xn transition matrix, t, in which all unspecified
entries are don't-cares. Show that the matrix can be compressed into a p X q
matrix c, two length-m arrays I and u, and two length-n arrays g and v by
the following algorithm: Initially Ij =gj = 00, I';;; i';;; m, I';;; j';;; n, and
k = I. If all occupied columns of the j Ih row of t uniformly contain the value
r, then set/j:=k, k:=k+l, Uj:=r and delete the jlh row oft. Ifthe/h

column is uniformly occupied, delete it also and set g/ =k, k: =k + I, v/ =r.
Repeat this process until no uniformly-occupied row or column remains. The
remaining matrix is the matrix c. We then enter the row (column) number in
c of the former jlh row (jlh column) into Uj (Vj)' The following relation then
holds:

tj,j = if Ij <gj then Uj
else if Ij > gj then v j
else (* Ij =gj = 00 *) cu., •. ;

I]

(Hint: Show that the size of c is independent of the sequence in which the
rows and columns are deleted.)

CHAPTER 8

Attribute Grammars

Semantic analysis and code generation are based upon the structure tree.
Each node of the tree is 'decorated' with attributes describing properties of
that node, and hence the tree is often called an attributed structure tree for
emphasis. The information collected in the attributes of a node is derived
from the environment of that node; it is the task of semantic analysis to
compute these attributes and check their consistency. Optimization and
code generation can be also described in similar terms, using attributes to
guide the transformation of the tree and ultimately the selection of machine
instructions.

Attribute grammars have proven to be a useful aid in representing the
attribution of the structure tree because they constitute a formal definition of
all context-free and context-sensitive language properties on the one hand,
and a formal specification of the semantic analysis on the other. When
deriving the specification, we need not be overly concerned with the
sequence in which the attributes are computed because this can (with some
restrictions) be derived mechanically. Storage for the attribute values is also
not reflected in the specification. We begin by assuming that all attributes
belonging to a node are stored within that node in the structure tree; optimi
zation of the attribute storage is considered later.

Most examples in this chapter are included to show constraints and
pathological cases; practical examples can be found in Chapter 9.

8.1. Basic Concepts of Attribute Grammars

An attribute grammar is based upon a context-free grammar G = (N,T,P,Z).
It associates a set A (X) of attributes with each symbol, X, in the vocabulary
of G. Each attribute represents a specific (context-sensitive) property of the

183

184 Chapter 8. Attribute Grammars

symbol X, and can take on any of a specified set of values. We write Xa to
indicate that attribute a is an element of A (X).

Each node in the structure tree of a sentence in L (G) is associated with a
particular set of values for the attributes of some symbol X in the vocabu
lary of G. These values are established by attribution rules R (p) =
{~.a +-f(J0.b, ... , Xk·c)} for the productions P:XO-->Xl··· Xn used to
construct the tree. Each rule defines an attribute ~.a in terms of attributes
J0.b, ... , Xk·c of symbols in the same production. (Note that in this
chapter we use upper-case letters to denote vocabulary symbols, rather than
using case to distinguish terminals from nonterminals. The reason for this is
that any symbol of the vocabulary may have attributes, and the distinction
between terminals and nonterminals is generally irrelevant for attribute
computation.)

rule assignment:: = name ': =' expression.
attribution

name. environment +- assignment. environment ;
expression.environment +- assignment. environment ;
name.postmode +- name.primode ;
expression.postmode +-

if name.primode = ref _int _type then int _type else real_type 6;

rule expression :: = name addop name .
attribution

name [I].environment +- expression.environment ;
name[2].environment +- expression.environment;
expression.primode +-

if coercible (name [1].primode, int _type) and
coercible (name [2].primode, int _type) then int _type else real_type 6;

addop.mode +- expression.primode;
name [I].postmode +- expression.primode ;
name [2].postmode <- expression.primode ;

condition coercible (expression.primode, expression.postmode);

rule addop :: = '+'.
attribution

addop.operation +-

if addop.mode =inLtype then inLaddition else reaLaddition 6;

rule name :: = identifier.
attribution

name.primode +- defined..1ype (identifier.symbol ,name. environment);
condition coercible (name.primode, name.postmode);

Figure 8.1. Simplified LAX Assignment

8.1. Basic Concepts of Attribute Grammars 185

In addition to the attribution rules, a condition B ()(.a , ... , Xj.b) involv
ing attributes of symbols occurring in p may be given. B specifies the con
text condition that must be fulfilled if a syntactically correct sentence is
correct according to the static semantics and therefore translatable. We
could also regard this condition as the computation of a Boolean attribute
consistent, which we associate with the left-hand side of the production.

As an example, Figure 8.1 gives a simplified attribute grammar for LAX
assignments. Each pEP is marked by the keyword rule and written using
EBNF notation (restricted to express only productions). The elements of
R(p) follow the keyword attribution. We use a conventional expression
oriented programming language notation for the functions f, and terminate
each element with a semicolon. Particular instances of an attribute are dis
tinguished by numbering multiple occurrences of symbols in the production
(e.g. name[l), name [2]) from left to right. Any condition is also marked by a
keyword and terminated by a semicolon.

In order to check the consistency of the assignment and to further identify
the + operator, we must take the operand types into account. For this pur
pose we define two attributes, prim ode and postmode, for the symbols expres
sion and name, and one attribute, mode, for the symbol addop. Primode
describes the type determined directly from the node and its descendants;
postmode describes the type expected when the result is used as an operand
by other nodes. Any difference between prim ode and postmode

identifier2 '+'

a) Syntactic structure tree

assignment. environment
identifierj .symbol

identifier3

b) Attribute values given initially (i = I, ... , 3)

name I.environment expression. environment
name; . environment name Jprimode
name I.postmode expression.postmode name; prim ode
expression.primode name J condition
addop.mode name; .postmode expression condition
addop.operation name; condition

c) Attribute values computed (i =2,3)

Figure 8.2. Analysis of x: = y +z

186 Chapter 8. Attribute Grammars

assignment

environment

identifier
name

addop

identifier identifier

Figure 8.3. Attribute Dependencies in the Tree for x: = y +z

must be resolved by coercions. The Boolean function coercible (t f, t 2) tests
whether type t 1 can be coerced to t 2.

Figure 8.2 shows the analysis of x: = y +z according to the grammar of
Figure 8.1. (Assignment. environment would be computed from the declara
tions of x, y and z, but here we show it as given in order to make the exam
ple self-contained.) Attributes on the same line of Figure 8.2c can be
computed collaterally; every attribute is dependent upon at least one attri
bute from the previous line. These dependency relations can be expressed
as a graph (Figure 8.3). Each large box represents the production whose
application corresponds to the node of the structure tree contained within it.
The small boxes making up the node itself represent the attributes of the
symbol on the left-hand side of the production, and the arrows represent the
dependency relations arising from the attribution rules of the production.
The node set of the dependency graph is just the set of small boxes
representing attributes; its edge set is the set of arrows representing depen
dencies.

We must know all of the values upon which an attribute depends before
we can compute the value of that attribute. Clearly this is only possible if
the dependency graph is acyclic. Figure 8.3 is acyclic, but consider the fol
lowing LAX type definition, which we shall discuss in more detail in Sec
tions 9.1.2 and 9.1.3:

type t = record x :real; p :ref tend

We must compute a type attribute for each of the identifiers t, x and p so that
the associated type is known at each use of the identifier. The type attribute
of t consists of the keyword record plus the types and identifiers of the fields.

8.1. Basic Concepts of Attribute Grammars 187

Now, however, the type of p contains an application of t, implying that the
type identified by t depends upon which type a use of t identifies. Thus the
type t depends cyclically upon itself. (We shall show how to eliminate the
cycle from this example in Section 9.1.3.)

Let us now make the intuition gained from these examples more precise.
We begin with the grammar G, a set of attributes A (X) for each X in the
vocabulary of G, and a set of attribution rules R (p) (and possibly a condi
tion B (p)) for each p in the production set of G .

Definition 8.1. An attribute grammar is a 4-tuple, AG = (G,A,R,B).
G = (T,N,P,Z) is a reduced context free grammar, A = u A (X) is a

XETuN

finite set of attributes, R = u R (p) is a finite set of attribution rules, and
pEP

B=uB(p) is a finite set of conditions. A(X)nA(Y)*0
pEP

implies X = Y. For each occurrence of X in the structure tree correspond-
ing to a sentence of L (G), at most one rule is applicable for the computa
tion of each attribute a EA (X).

Definition 8.2. For each p :X 0 -> X I ... Xn E P the set of defining occurrences
of attributes isAF(p) = {Xi.a I Xi·a <-f(···)ER(p)}. An attribute Xa
is called derived or synthesized if there exists a production p:X ->x and Xa ,
in AF(p); it is called inherited if there exists a production q: Y ->/LX v ana
x'a EAF(q).

Synthesized attributes of a symbol represent properties resulting from
consideration of the subtree derived from the symbol in the structure tree.
Inherited attributes result from consideration of the environment. In Figure
8.1, the name.primode and addop.operation attributes were synthesized;
name. environment and addop.mode were inherited.

Attributes such as the value of a constant or the symbol of an identifier,
which arise in conjunction with structure tree construction, are called intrin
sic. Intrinsic attributes reflect our division of the original context-free gram
mar into a parsing grammar and a symbol grammar. If we were to use the
entire grammar of Appendix A as the parsing grammar, we could easily
compute the symbol attribute of an identifier node from the subtree rooted in
that node. No intrinsic attributes would be needed because constant values
could be assigned to left-hand side attributes in rules such as letter:: = 'a '.
Thus our omission of intrinsic attributes in Definition 8.2 results in no loss of
generality.

Theorem 8.3. The following sets are disjOint for all X in the vocabulary of G :

AS (X) = {Xa I 3p:X ->x EP and Xa EAF(p)}
A/(X) = {X.a I 3q:Y ->/LXV EP andXa EAF(q)}

188 Chapter 8. Attribute Grammars

Further, there exists at most one rule Xa f (...) in R (p) for each p EP and
a EA(X).

Suppose that an attribute a belonged to both AS(X) and A/(X). Some
derivation Z =>* aYT => ap,XPT => ap,XPT =>* w (wEL(G» would then
have two different rules for computing the value of attribute a at node X.
But this situation is prohibited by the last condition of Definition 8.1. It can
be shown that Theorem 8.3 is equivalent to that condition.

Definition 8.1 does not guarantee that a synthesized attribute a EA (X)
will be computable in all cases, because it does not require that Xa be an
element of AF(p) for every production p:X ->X. A similar statement holds
for inherited attributes.

Definition 8.4. An attribute grammar is complete if the following statements
hold for all X in the vocabulary of G :

For all p:X ->X EP, AS(X) C.AF(p)
For all q: Y ->p,Xv EP, A/(X) C.AF(q)
AS(X)uA/(X)= A (X)

Further, if Z is the axiom of G then A/(Z) is empty.

ii\ As compiler writers, we are only interested in attribute grammars that
ailow us to compute all of the attribute values in any structure tree.

Definition 8.5. An attribute grammar is well ... defined if, for each structure tree
corresponding to a sentence of L (G), all attributes are effectively comput ...
able. A sentence of L (G) is correctly attributed if, in addition, all conditions
yield true.

It is clear that a well ... defined attribute grammar must be complete. A
complete attribute grammar is well ... defined, however, only if no attribute
can depend upon itself in any structure tree. We therefore need to formalize
the dependency graph introduced in Figure 8.3.

Definition 8.6. For each p:Xo->X,··· Xn EP the set of direct attribute
dependencies is given by

DDP(p) = {(Xi·a,xj.b) I Xj.b ~f('" Xi·a···)ER(p)}

The grammar is locally acyclic if the graph of DDP(p) is acyclic for each
pEP.

We often write (X;.a,~.b) EDDP(p) as X;.a ->~.b EDDP(p), and follow
the same convention for the relations defined below. If no misunderstand ...
ing can occur, we omit the specification of the relation. In Figure 8.3 the
arrows lying inside each large box are the edges of DDP(p) for a particular
p.

8.2. Traversal Stategies 189

We obtain the complete dependency graph for a structure tree by 'pasting
together' the direct dependencies according to the syntactic structure of the
tree.

Definition 8.7. Let S be the attributed structure tree corresponding to a sen
tence in L (G), and let Ko' .. Kn be the nodes corresponding to application
ofp:Xo->X\'" Xn . We write Kj.a ->Kj.b ifX;.a ->~.b EDDP(p). The set
DT(S) = {K;.a ->Kj.b}, where we consider all applications of productions
in S, is called the dependency relation over the tree S.

Theorem 8.8. An attribute grammar is well-defined if and only if it is complete
and the graph of DT(S) is acyclic for each structure tree S corresponding to a
sentence of L (G).

If AG is a well-defined attribute grammar (WAG) then a nondeterministic
algorithm can be used to compute all attribute values in the attributed struc
ture tree for a sentence in L (G): We provide a separate process to compute
each attribute value, which is started after all operands of the attribution
rule defining that value have been computed. Upon completion of this pro
cess, the value will be available and hence other processes may be started.
Computation begins with intrinsic attributes, which become available as
soon as the structure tree has been built. The number of processes depends
not upon the grammar, but upon the number of nodes in the structure tree.
Well-definedness guarantees that all attributes will be computed by this sys
tem without deadlock, independent of the precise construction of the attri
bute rules.

Before building a compiler along these lines, we should verify that the
grammar on which it is based is actually WAG. Unfortunately, exponential
time is required to verify the conditions of Theorem 8.8. Thus we must
investigate subclasses of WAG for which this cost is reduced.

It is important to note that the choice of subclass is made solely upon
practical considerations; all well-defined attribute grammars have the same
formal descriptive power. The proof of this assertion involves a 'hoisting'
transformation that is sometimes useful in molding a grammar to a pre
specified tree traversal: An inherited attribute of a symbol is removed,.
along with all synthesized attributes depending upon it, and replaced by a
computation in the parent node. We shall see an example of this transfor
mation in Section 8.2.3.

8.2. Traversal Strategies

A straightforward implementation of any attribute evaluation scheme will
fail in practice because of gigantic storage requirements for attribute values
and correspondingly long computation times. Only by selecting an evalua-

190 Chapter 8. Attribute Grammars

tion scheme that permits us to optimize memory usage can the attribute
grammar technique be made practical for compiler construction. Section
8.3.2 will discuss optimizations based upon the assumption that we can
determine the sequence of visits to a particular node solely from the symbol
corresponding to that node. We shall require that each production
P:XO~Xl'" Xn EP be associated with a fixed attribution algorithm made
up of the following basic operations:

• Evaluate an element of R(p).
• Move to child node i (i = I, ... , n).
• Move to parent node.

Conceptually, a copy of the algorithm for p is attached to each node
corresponding to an application of p. Evaluation begins by moving to the
root and ends when the algorithm for the root executes 'move to parent'.

We first discuss algorithms based upon these operations - what they look
like and how they interact - and characterize the subclass of WAG for
which they can be constructed. We then examine two different construction
strategies. The first uses the attribute dependencies to define the tree
traversal, while the second specifies a traversal a priori. We only discuss the
general properties of each strategy in this section; implementation details
will be deferred to Section 8.3.

8.2.1. Partitioned Attribute Grammars Because of the properties of
inherited and synthesized attributes, the algorithms for two productions
p :X"",X and q: Y p.X p must cooperate to evaluate the attributes of an
interior node of the structure tree. Inherited attributes would be computed
by rules in R (q), synthesized attributes by rules in R (p). The attribution of
X represents the interface between the algorithms for p and q. In Figure
8.3, for example, the algorithms for expression :: = name addop name and
assignment :: = name ': =' expression are both involved in computation of
attributes for the expression node. Because all computation begins and ends
at the root, the general pattern of the (coroutine) interaction would be the
following: The algorithm for q computes values for some subset of AI (X)
using a sequence of evaluation instructions. It then passes control to the
algorithm for p by executing 'move to child i'. After using a sequence of
evaluation operations to compute some subset of AS (X), the algorithm for p
returns by executing 'move to parent'. (Of course both algorithms could
have other attribute evaluations and moves interspersed with these; here we
are considering only computation of X's attributes.) This process continues,
alternating computation of subsets of AI(X) and AS(X) until all attribute
values are available. The last action of each algorithm is 'move to parent'.

Figure 8.4 gives possible algorithms for the grammar of Figure 8.1.
Because a symbol like expression can appear in several productions on the
left or right sides, we always identify the production for the child node by
giving only the left-hand-side symbol. We do not answer the question of

8.2. Traversal Stategies

Evaluate name. environment
Move to name
Evaluate expression.environment
Move to expression
Evaluate name.postmode
Move to name
Evaluate expression.postmode
Move to expression
Move to parent

a) Procedure for assignment :: = name ' =' expression

Evaluate name [I J.environment
Move to name [I J
Evaluate name[2J.environment
Move to name [2J
Evaluate expression.primode
Move to parent
Evaluate name [IJ.postmode
Move to name [I J
Evaluate addop.mode
Move to addop
Evaluate name[2J.postmode
Move to name[2J
Evaluate condition
Move to parent

b) Procedure for expression :: = name addop name

Evaluate name.primode
Move to parent
Evaluate condition
Move to parent

c) Procedure for name :: = identifier

Figure 8.4. Attribution Algorithms for Figure 8.1

191

which production is really used because in general we cannot know. For the
same reason we do not specify the parent production more exactly.

The attributes of X constitute the only interface between the algorithms
for p and q. When the algorithm for q passes control to the algorithm for p
by executing 'move to child i', it expects that a particular subset of AS(X)
will be evaluated before control returns. Since the algorithms must work for
all structure trees, this subset must be evaluated by every algorithm
corresponding to a production of the form X -+x. The same reasoning holds
for subsets of AI (X) evaluated by algorithms corresponding to productions
of the form Y -+"x".

Definition 8.9. Given a partition of A (X) into disjoint subsets Ai (X),

192 Chapter 8. Attribute Grammars

i = 1, ... , m (X) for each X in the vocabulary of G, the resulting partition of
the entire attribute set A is admissible if, for all X, Ai (X) is a subset of
AS(X) for i = m, m -2, ... and Ai (X) is a subset of AI(X) for
i =m -1, m -3, ... Ai (X) may be empty for any i.

Definition 8.10. An attribute grammar is partitionable if it is locally acyclic
and an admissible partition exists such that for each X in the vocabulary of
G the attributes of X can be evaluated in the order A I (X), ... , Am (X). An
attribute grammar together with such a partition is termed partitioned.

Since all attributes can be evaluated, a partitionable grammar must be well
defined.

A set of attribution algorithms satisfying our constraints can be
constructed if and only if the grammar is partitioned. The admissible parti
tion defines a partial ordering on A (X) that must be observed by every algo
rithm. Attributes belonging to a subset Ai (X) may be evaluated in any order
permitted by DDP(p), and this order may vary from one production to
another. No context switch across the X interface occurs while these attri
butes are being evaluated, although context switches may occur at other
interfaces. A move instruction crossing the X interface follows evaluation of
each subset.

The grammar of Figure 8.1 is partitioned, and the admissible partition
used to construct Figure 8.4 was:

A I (expression) = {environment}
A 2(expression) = {prim ode }
A 3 (expression) = {postmode}
A 4{ expression) = {}

A I (addop) = {mode}
A z(addop) = {operation}

A I (name) = {environment}
A2(name) = {primode}
A 3 (name) = {postmode}
Ainame) = {}

A4 is empty in the cases of both expression and name because the last
nonempty subset in the partition consists of inherited attributes, while
Definition 8.9 requires synthesized attributes. At this point the algorithm
actually contains a test of the condition, which we have already noted can be
regarded as a synthesized attribute of the left-hand-side symbol. With this
interpretation, it would constitute the single element of A4 for each symbol.

8.2.2. Derived Traversals Let us now tum to the questions of how to
partition an attribute grammar and how to derive algorithms from an admis
sible partition that satisfies Definition 8.10, assuming no a priori constraints
upon the tree traversal. For this purpose we examine dependency graphs,
with which the partitions and algorithms must be compatible.

Suppose that Xa is an element of Ai (X) and Xb is an element of Aj (X)

8.2. Traversal Stategies 193

p

q

Figure 8.5. A Cycle Involving More Than One Production

in an admissible partition, and i > j. Clearly Kx.a ~Kx.b cannot be an
element of DT(S) for any structure tree S, because then Xb could not be
calculated before Xa as required by the fact that i > j. DDP(p) gives direct
dependencies for all attributes, but the graph of DT(S) includes indirect
dependencies resulting from the interaction of direct dependencies. These
indirect dependencies may lead to a cycle in the graph of DT(S) as shown in
Figure 8.5. We need a way of characterizing these dependencies that is
independent of the structure tree.

In a locally acyclic grammar, dependencies between attributes belonging
to AF(p) can be removed by rewriting the attribution rules:

X;.a ~f(oo.,xj.b,oo.)
~.b~g("·)

becomes
X;.a ~ f(oo.,g(· ..),00')
Xj.b ~g(" .)

In Figure 8.3 this transformation would, among other things, replace the
dependency expression.primode ~addop.mode by name [I].primode ~
addop.mode and name [2].primode ~ addop.mode. Dependencies that can be
removed in this way may require that the attributes within a partition ele
ment Ai (X) be computed in different orders for different productions, but
they have no effect on the usability of the partition itself (Exercise 8.3).

Definition 8.11. For each p :Xo ~Xl ... Xn EP, the normalized transitive clo
sure of DDP (p) is

NDDP(p) = DDP(p)+ - {(X;.a,Xj.b) I Xi.a,Xj.b EAF(p)}

The dependencies arising from interaction of nodes in the structure tree

194 Chapter 8. Attribute Grammars

are summarized by two collections of sets, IDP and IDS. IDP(p) shows all
of the essential dependencies between attributes appearing in production p,
while IDS (X) shows those between attributes of symbol X.

Definition 8.12. The induced attribute dependencies of an attribute grammar
(G,A,R,B) are defined as follows:

l. Forallp EP,IDP(p):=NDDP(p).
2. For all X in the vocabulary of G,

IDS(X):={(Xa,Xb) I 3q such that (Xa,Xb)EIDP(q)+}

3. Forallp:Xo X(··· Xn EP,

IDP(p):=IDP(p)uIDS(Xo)u", uIDS(Xn)

4. Repeat (2) and (3) until there is no change in any lOP or IDS.

IDP(p) and IDS (X) are pessimistic approximations to the desired depen
dency relations. Any essential dependency that could be present in any
structure tree is included in IDP(p) and IDS (X), and all are assumed to be
present simultaneously. The importance of this point is illustrated by the
grammar of Figure 8.6, which is well-defined but not partitioned. Both c e
and d f are included in IDS(y) even though it is clear from Figure 8.7
that only one of these dependencies could occur in any structure tree. A
similar situation occurs for e d and f c. The result is that IDS(Y) indi
cates a cycle that will never be present in any DT.

The pessimism of the indirect dependencies is crucial for the existence of
a partitioned grammar. Remember that it must always be possible to evalu
ate the attributes of X in the order specified by the admissible partition.
Thus the order must satisfy all dependency relations simultaneously.

Theorem 8.13. If an attribute grammar is partitionable then the graph of
IDP(p) is acyclic for every pEP and the graph of IDS (X) is acyclic for every
X in the vocabulary of G. Further, if a b is in IDS (X) then a EA; (X) and
b EAj (X) implies i < j.
Note that Theorem 8.13 gives a necessary, but not sufficient, condition for a
partitionable grammar. The grammar of Figure 8.8 illustrates the reason,
and provides some further insight into the properties of partitionable gram
mars.

Given the rules of Figure 8.8, a straightforward computation yields
IDS (X) = {a b, c d}. Three of the five admissible partitions of
{a, b, c, d} satisfy Theorem 8.13:

{a} {b} {c} {d} {c} {d} {a} {b} {a,c} {b,d}
Figure 8.9 gives the dependency graphs for the two structure trees that can
be derived according to this grammar. Simple case analysis shows that none
of the three partitions can be used to compute the attributes of X in both

8.2. Traversal Stategies

ruleZ ::= X
attribution

Xa <- 1;

(* Production 1 *)

rule X :: = s Y. (* Production 2 *)
attribution

Xb <- Y.f;
Y.c <- Xa;
Y.d <- Y.e;

rule X :: = t Y. (* Production 3 *)
attribution

Xb <- Y.e;
Y.c <- Y.f;
Y.d <- Xa;

rule Y ::= u.
attribution

Y.e <- 2;
Y.f <- Y.d;

rule Y ::= v.
attribution

Y.e <- Y.c;
Y.f <- 3;

(* Production 4 *)

(* Production 5 *)

a) Rules

IDS(X) = {a --+b}
IDS(Y) = {c --+e, d --+f, e --+d,f --+c}

b) Induced dependencies for symbols

Figure 8.6. A Well-Defined Grammar

195

trees. For example, consider the first partition. Attribute a must be com
puted before attribute d. In the first tree X[1].d must be known for the
computation of X[2].a, so the sequence must be X[1].a, X[l].d, X[2].a,
X[2].d. This is inadmissible, however, because X[2].d X[1].a is an element
of NDDP(Z --+sXX).

When we choose a partition, this choice fixes the order in which certain
attributes may be computed. In this respect the partition acts like a set of
dependencies, and its effect may be taken into account by adding these
dependencies to the ones arising from the attribution rules.

Definition 8.14. Let A I(X), ... , Am (X) be an admissible partition of A (X).
F or each p :X 0 --+ X I ... Xn in P the set of dependencies over the production p
IS:

DP(p)=IDP(pPu {(Xi.a,Xi.b) laEAj(X;),bEAdXi),O< i< n,j<k}

196 Chapter 8. Attribute Grammars

Z: : = X Z: : = X

X: : = sY X: : = sY

Y: : = u Y: : = v

Z: : = X

X: : = tY X: : = tY

Y: : = u Y: : = v

Figure 8.7. Dependency Graphs DT(s)

Theorem 8.15. Given an admissible partition for an attribute grammar, the
grammar is partitioned if and only if the graph of DP (p) is acyclic for each
pEP.

Unfortunately, Theorem 8.15 does not lead to an algorithm for partition
ing an attribute grammar. Figure 8.10 is a partitioned grammar, but the
obvious partition A \(X) = {b}, A 2(X) = {a} causes cyclic graphs for both
DP(l) and DP(2). In order to avoid the problem we must use A \(X) = {a},
A 2(X) = {b}, A 3(X) = D. A backtracking procedure for constructing the
partition begins with the dependency relations of IDS (X) and considers
pairs of independent attributes (a, b), one of which is inherited and the other
synthesized. It adds a ->b to the dependencies currently assumed and
immediately checks all DP graphs for cycles. If a cycle is found then the
dependency b ->a is tested. If this also results in a cycle then the procedure
backtracks, reversing a previously assumed dependency. Because this pro
cedure involves exponential cost, it is of little practical interest.

8.2. Traversal Stategies

ruleZ::=sXX.
attribution

X[I].a X[2].d ;
X[I].c 1;
X[2].a +- X[l].d ;
X[2].c 2;

rule Z :: = t X X .
attribution

X[l].a 3;
X[l].c X[2].b;
X[2].a 4;
X[2].c X[l].b ;

rule X ::= u.
attribution

Xb Xa;
Xd Xc;

Figure 8.8. An Attribute Grammar That Is Not Partitioned

Z: : = sXX

X: : = u X: : = u

Z: : = tXX

X:: =u X:: = u

Figure 8.9. Dependency Graphs for Figure 8.8

197

198 Chapter 8. Attribute Grammars

As in the case of parser construction, where pragmatic considerations
forced us to use subclasses of the LL(k) and LR(k) grammars, the cost of
obtaining an appropriate partition forces us to consider a subclass of the
partitioned grammars. The following definition yields a non backtracking
procedure for obtaining a partition that evaluates each attribute at the latest
point consistent with IDS (X).

Definition 8.16. An attribute grammar is ordered if the following partition of
A results in a partitioned grammar:

Ai(X) = Tm-i+l(X)-Tm-i-l(X) (;=1, ... , m)

Here m is the smallest k such that Tk_1(X)U Tk(X)=A(X), T _1(X)=
To(X)= 0, and for k >0
T2k - 1(X) = {aEAS(X) I a~bEIDS(X)impliesbE1j(X),j<.(2k-l)}
T2k (X) = {a EAI (X) I a ~b EIDS (X) implies b E 1j (X), j <. 2k}

This definition requires that all 1j (X) actually exist. Some attributes remain
unassigned to any 1j (X) if (and only if) the grammar is locally acyclic and
some IDS contains a cycle.

For the grammar of Figure 8.10, construction 8.16 leads to the 'obvious'
partition discussed above, which fails. Thus the grammar is not ordered,
and we must conclude that the ordered grammars form a proper subclass of
the partitionable grammars.

rule Z ::= s X Y. (* Production 1 *)
attribution

Xb <- Y.d;
Y.c <- 1;
Y.e <- Xa;

rule Z :: = t X Y . (* Production 2 *)
attribution

Xb <- Y.f;
Y.c <- Xa;
Y.e <- 2;

rule X ::= u.
attribution

Xa <- 3;

rule Y :: = v .
attribution

Y.d <- Y.c;
Y.f <- Y.e;

(* Production 3 *)

(* Production 4 *)

Figure 8.10. A Partitioned Grammar

8.2. Traversal Stategies 199

Suppose that a partitioned attribute grammar is given, with partitions
A I(X), ... , Am (X) for each X in the vocabulary. In order to construct an
attribution algorithm for a production p:X 0 ~ X I ... Xn , we begin by
defining a new attribute Cj,j corresponding to each subset Ai (~) of attri
butes not computed in the context of p. (These are the inherited attributes
Aj(Xo), j =m -I, m -3, ... of the left-hand side and the synthesized attri
butes Aj(~), ;=1= 0, j =m,m -2, ... of the right-hand side symbols.) For
example, the grammar of Figure 8.1 is partitioned as shown at the end of
Section 8.2.1. In order to construct the attribution algorithm of Figure 8.4b,
we must define new attributes as shown in Figure 8.11 a.

Every occurrence of an attribute from Aj (Xj) is then replaced by Cj ,j in
DP(p)uDDP(p), as illustrated by Figure 8.11b. DP(p) alone does not
suffice in this step because it was derived (via IDP(p» from NDDP(p), and
thus does not reflect all dependencies of DDP(p). In Figure 8.11b, for
example, the dependencies expression.primode ~name[i].postmode (i = 1,2)
are in DDP but not DP.

Figure 8.1Ib has a single node for each Cj,j because each partition con
tains a single attribute. In general, however, partitions will contain more
than one attribute. The resulting graph still has only one node for each Cj,j'
This node represents all of the attributes in Ai (Xj), and hence any relation
involving an attribute in Aj (~) is represented by an edge incident upon this
node.

The graph of Figure 8.11 b describes a partial order. To obtain an attri
bution algorithm, we augment the partial order with additional dependen
cies, consistent with each other and with the original partial order, until the
nodes are totally ordered. Figure 8.IIc shows such additional dependencies
for Figure 8.11 b. The total order defines the algorithm: Each element that
is an attribute in AF(p) corresponds to a computation of that attribute, each
element Cj,O corresponds to a move to the parent, and each element Ci,j
(j > 0) corresponds to a move to the ith child. Finally, a 'move to parent'
operation is added to the end of the algorithm. Figure 8Ab is the algorithm
resulting from the analysis of Figure 8.11.

The construction sketched above is correct if we can show that all attri
bute dependencies from IDP(p) and DDP(p) are accounted for and that
the interaction with the moves between nodes is proper. Since IDP(p) is a
subset of DP(p), problems can only arise from the merging of attributes that
are not elements of AF(p). We distinguish five cases:

X;.a ~X;.b EIDP(p),
X;.a ~X;.b EIDP(p),
Xj.a ~Xj.b EIDP(p),
X;.a ~~.b EIDP(p),
Xj.a ~Xj.b EIDP(p),

a fi,AF(p), b fi,AF(p)
a EAF(p), b fi,AF(p)
a fi,AF(p), b EAF(p)
i =1= j, a fi,AF(p)
; =1= j, b fi,AF(p)

In the first case the dependency is accounted for in all productions q for

200 Chapter 8. Attribute Grammars

which a and b are elements of AF(q). In the second and third cases ~.a
and ~.b must belong to different subsets Ar (~) and As (~). The depen
dency manifests itself in the ordering condition r < s or s < r, and will not
be disturbed by collapsing either subset. In the fourth case we compute ~.b
only after all of the attributes in the subset to which Xi.a belongs have been
computed; this is simply an additional restriction. The fifth case is excluded
by Definition 8.l1: ~.a -+Xj.b cannot be an element of DDP(p) because
~.b is not in AF(p); it cannot be an element of any IDS because i -=1= j.

When an algorithm begins with a visit Cj, i' this visit mayor may not actu
ally be carried out. Suppose that the structure tree has been completed

C I, 0 = {expression. environment }
C3, 0 = {expression.postmode }
C2, 1 = {name [I].primode }
C4, 1 = {}
C2, 2 = {addop.operation }
C2,3 = {name [2].primode }
C4,3={}

a) New attributes

condition

b) Graph defining DP(p) u DDP(p)

C2,1 -+name[2].environment
C3, 0 -+name [l].postmode
C4,1 -+addop.mode
C2,2 -+name [2].postmode
C 4,3 -+ condition

c) Additional dependencies used to establish a total order

Figure 8.11. Deriving the Algorithm of Figure 8.4b

8.2. Traversal Stategies 201

before the attribution is attempted. The traversal then begins at the root,
and every algorithm will be initiated by a 'move to child i '. Now if the first
action of the algorithm is c 1,0, i.e. a move to the parent to compute inherited
attributes, this move is superfluous because the child is only invoked if these
attributes are available. Hence the initial CI,O should be omitted. The situa
tion is reversed if the tree is being processed bottom-up, as when attribution
is merged with a bottom-up parse: An initial Ci,} that causes a move to the
leftmost subtree should be omitted.

Semantic conditions are taken care of in this schema by treating them as
synthesized attributes of the left-hand side of the production. They can be
introduced into an algorithm at any arbitrary point following computation
of the attributes upon which they depend. In practice, conditions should be
evaluated as early as possible to enhance semantic error recovery and
reduce the lifetime of attributes.

8.23. Pre-Specified Traversals Overall compiler design considerations
may indicate use of one or more depth-first, left-to-right and/or right-to-Ieft
traversals for attribute evaluation. This allows us to linearize the structure
tree as discussed in Section 4.1.2 and make one or more passes over the
linearized representation. (For this reason, attribute grammars that specify
such traversals are called multi-pass attribute grammars.) We shall discuss
the left-to-right case in detail here, leaving the analogous right-to-left case to
the reader.

Definition 8.17. An attribute grammar is LAG(J) if, for every node
corresponding to an application of p :Xo -4X1 ••• Xn EP, the attributes in
AI (Xo), AI(X1), AS(X1), AI(X2)' ... , AS(Xn), AS(Xo) can be computed in
that order.

An LAG(l) grammar is partitioned, with the partition being
A I(X)=AI(X), A 2(X)=AS(X) for all X. Further constraints on the order
of evaluation within a production are introduced to force processing of the
symbols from left to right.

Theorem 8.18. A n attribute grammar is LA G(1) if and only if it is locally acy
clic and, for all p :X0 -4X1 ••• Xn EP, Xi.a -4X}.b EDDP(p) implies one of
the following conditions:

• j=O
• i =0 and a EAI(Xo)

• 1< i <j
• I < i = j and a EAI (~)

Note that Theorem 8.18 makes use only of DDP(p); it does not consider
induced attribute dependencies. This is possible because every induced
dependency that would affect the computation must act over a path having a
'top' node similar to that in Figure 8.5: An inherited attribute of a symbol

202 Chapter 8. Attribute Grammars

depends directly upon a synthesized attribute of the same symbol. This case
is prohibited, however, by the conditions of the theorem.

LAG(l) grammars are inadequate even in comparatively simple cases, as
can be seen by considering the grammar of Figure 8.1. The production for
assignment satisfies the conditions of Theorem 8.18, but that for expression
does not because both name[l].postmode and name[2].postmode depend
upon expression.primode. We can repair the problem in this example by
applying the 'hoisting' transformation mentioned at the end of Section 8.1:
Delete the inherited attribute postmode and move the condition using it
upward. A similar change is required to move the operator identification
upward (Figure 8.12).

If one tree traversal does not suffice to compute all attributes, a sequence
of several traversals might be used. This idea is actually much older and
more general than that of attribute grammars. We have already met it in
Section 1.3: 'Any language requires at least one pass over the source text,
but certain language characteristics require more.' (The procedure

rule assignment :: = name ': =' expression .
attribution

name. environment ~ assignment. environment ;
expression. environment ~ assignment. environment ;

condition
coercible (

expression.primode,
if name.primode = ref _inLtype then inLtype else reaLtype fi);

rule expression :: = name addop name .
attribution

name [I].environment ~ expression.environment;
name [2]. environment ~ expression. environment ;
expression.primode ~

if coercible (name [1].primode, int _type) and
coercible (name [2].primode , int _type) then int _type else real_type fi;

addop.operation ~
if expression.primode =inLtype then inLaddition else reaLaddition fi;

condition
coercible (name [I].primode, expression.primode) and
coercible (name [2].primode, expression.primode);

rule addop :: = '+'.

rule name :: = identifier.
attribution

name.primode ~ definedJype (identifier. symbol ,name. environment);

Figure 8.12. Transformation of Figure 8.1

8.2. Traversal Stategies 203

determine _traversals discussed below describes, in terms of attributes, the
fundamental mechanism by which the number of passes of a compiler is
determined.) The difference between LAG and RAG appears in the same
section as the distinction between forward and backward passes.

All attributes in the structure tree of a sentence derived from any arbi
trary well-defined attribute grammar can be evaluated with an unlimited
number of traversals, but the cost of determining dynamically whether
another traversal is necessary is roughly as high as that of the nondeter
ministic evaluation procedure in Section 8.1. Here we are interested in cases
for which the number of traversals can be determined from the grammar
alone, independent of any structure tree.

Definition 8.19. An attribute grammar is LAG(k) if and only if for each X
in the vocabulary a partition

AI(X) = AI\(X)u ... uAh(X)
AS(X) = AS\(X)u ... uASdX)

exists such that for all productions p:X 0 -'> X \ ... Xn, the attributes in
AIl(XO), AIl(Xl), ... , AS\(Xn), AS\(Xo), Ah(Xo), ... , Ah(Xo), ... ,
ASk (Xo) can be computed in that order.

Note that this reduces to Definition 8.17 for k = 1.
The set of partitions taken together form an admissible partition of the

attribute set A with m (X) = 2k for every X. We can think of the sets Ali (X)
and AS;(X) as belonging to an LAG(l) grammar with AIj (X) and
ASj (X)(j < i) as intrinsic attributes. This reasoning leads to the following
LAG(k) condition which closely parallels Theorem 8.18:

Theorem 8.20. An attribute grammar is LA G(k) if and only if it is locallyacy
clic and a partition A =A \ u ... uAk exists such that for all
p:Xo-'>X\'" Xn EP, X;.a -'>Xj.b EDDP(p), a EAu(Xi), b EAv(Xj) implies
one of the following conditions:

.u<v

.u=vandj=O
• u=v andi=OandaEAI(Xo)
• u = v and 1:(i <j
• u = v and 1:(i = j and a EAI (X;)

Theorem 8.20 leads directly to a procedure for determining the partition
and the value of k from a locally acyclic grammar (Figure 8.13). For
k = 1,2,... this procedure assumes that all remaining attributes belong to Ak
and then deletes those for which this assumption violates the theorem.
There are two distinct stopping conditions:

• No attribute is deleted. The number of traversals is k and the partition is
A \, ... , Ak .

204 Chapter 8. Attribute Grammars

function determine _traversals : integer;
(* Test an attribute grammar for the LAG(k) property

On entry-
Attribute grammar (G,A, R, B) is defined as in Section 8.1
Sets A ,AS (X) and AF(p) are defined as in Section 8.1
Set DDP(p) is defined as in Section 8.2.2

If the grammar is LAG(k) then on exit
determine _traversals = k

Else on exit-
determine _traversals = - 1

*)
var

k: integer; (* current traversal number *)
candidates, (* possibly evaluable in the current traversal *)
later: attribute Jet; (* not evaluable in the first k traversals *)
candidates _unchanged: boolean;

begin (* determine _traversals *)
k: =0; later: =A; (* no attributes evaluable in 0 traversals *)
repeat (* determine the next Ak *)

k : = k + 1; candidates: = later; later: = 0;
repeat (* delete those unevaluable in traversal k *)

candidates _unchanged: = true ;
for all productions p:X 0 -+ X I ••• Xn do

for all Xj.b E(AF(p) n candidates) do
for all Xi.a EA(p) do

if Xi.a -+Xj.b ENDDP (p) then
if Xi.a Elater or} =1= 0 and (i >) or (i =0 or i = j)

and a EAS(Xi » then
begin
candidates: = candidates - {Xj.b};
later: = later U {Xj.b};
candidates _unchanged: = false;
end;

until candidates _unchanged;
Ak : = candidates;

until later = 0 or candidates = 0
if later = 0 then determine _traversals: = k else determine _traversals: = - 1 ;
end; (* determine_traversals *)

Figure 8.13. Testing the LAG(k) Property

• All attributes are deleted. The conditions of Theorem 8.20 cannot be met
and hence the attribute grammar is not LAG(k) for any k.
Analogous constructions are possible for RAG(k) grammars and for the

alternating evaluable attribute grammars (AAG(k ». With the latter class,
structure tree attributes are evaluated by traversals that alternate in direc
tion: The first is left-to-right, the second right-to-left, and so forth. We

8.2. Traversal Stategies 205

leave the derivation of these definitions and theorems, plus the necessary
processing routines, to the reader.

It is important to note that the algorithm of Figure 8.13 and its analogs
for RAG(k) and AAG(k) assign attributes to the first traversal in which they
might be computed. These algorithms give no indication that it might also
be possible to evaluate an attribute in a later traversal without delaying
evaluation of other attributes or increasing the total number of traversals.

Figure 8.14 is RAG(l) but not LAG(k) for any k. Each left-to-right
traversal can only compute the value of one Xa because of the dependency
relation involving the preceding nonterminal W. Hence the number of
traversals is not fixed, but is the depth of the recursion. A single right-to-Ieft
traversal suffices to compute all Xa, however, because traversal of W's sub
tree follows traversal of X[2]'s. If we combine two such attribute relation
ships with opposite dependencies then we obtain an AAG(2) grammar that
is neither LAG(k) nor RAG(k) for any k (Figure 8.15).

It is, of course, possible to construct an appropriate partition for a multi
pass grammar by hand. The development usually proceeds as follows: On
the basis of given properties of the language one determines the minimum
number of traversals required, partitions the attributes accordingly, and then
constructs the attribute definition rules to make that partition valid. The
'hoisting' transformation referred to earlier is often used implicitly during
rule construction.

The disadvantage of this technique is that it is based upon an initial opin
ion about the number of traversals and the assignment of attributes to
traversals that may tum out to be wrong. For example, one may discover
when constructing the rules that an attribute can only be computed if addi
tional arguments are available, or even that important attributes are missing

ruleZ ::= X.
attribution

Xb <-- 1;

rule X ::= W X.
attribution

X[l).a <-- We;
X[2).b <-- X[I).b;
Wd <- X[2).a ;

rule X ::= 's'.
attribution

Xa <-- Xb;

rule W:: = 't'.
attribution

We <-- Wd;

Figure 8.14. An RAG(I) Grammar That Is Not LAG(k)

206

rule Z ::= X.
attribution

Xb <- 1;

rule X :: = W X Y .
attribution

X[l).a <- Wd;
X[l].e <- Yg;
X(2).b <- X[l).b;
We <- X(2).a ;
Yj <- X(2).e;

rule X ::= 's'.
attribution

Xa <- Xb;
Xe <- Xb;

ruleW::='t'.
attribution

We <- Wd;

rule Y ::= 'u'.
attribution

Yg<-Yj;

Chapter 8. Attribute Grammars

Figure 8.15. An AAG(2) Grammar That Is Neither LAG(k) Nor RAG(k)

entirely. Experience shows that small changes of this kind often have disas
trous effects on the basic structure being built. Considering the cost
involved in developing a semantic analyzer - an attribute grammar for
LAX is barely 30 pages, but specifications for complex languages can easily
grow to well over 100 pages - such effects cannot be tolerated. It is more
advisable to construct an attribute grammar without regard to the number of
traversals. Only when it is certain that all aspects of the language have been
covered correctly should substitutions and other alterations to meet a con
straint upon the number of traversals be undertaken. The greater part of the
grammar will usually be unaffected by such changes.

As soon as a partition of the attribute set satisfying Definition 8.17 or 8.19
is available, it is simple to derive an algorithm via the technique discussed at
the end of the last section.

8.3. Implementation Considerations

Section 8.2 showed methods for constructing attribute evaluation algorithms
from attribute grammars. Here we concern ourselves with the implementa
tion of these algorithms. First we assume that the structure tree appears as a

8.3. Implementation Considerations 207

linked data structure providing storage for the attributes, and later we show
how to reduce the storage requirements.

8.3.1. Algorithm Coding Our attribution algorithms are coroutines that
transfer control among themselves by executing the basic operations 'move
to child i' and 'move to parent'. They might be coded directly, transformed
to a collection of recursive procedures, or embodied in a set of tables to be
interpreted. We shall discuss each of these possibilities in tum.

The coroutines can be coded directly in SIMULA as classes, one per
symbol and one per production. Each symbol class defines the attributes of
the symbol and serves as a prefix for classes representing productions with
that symbol on the left side. This allows us to obtain access to a subtree hav
ing a particular symbol as its root without knowing the production by which
it was constructed. Terminal nodes t are represented only by the class t.
Each production class contains pointer declarations for all of its descendants
X I ... Xn . A structure tree is built using statements of the form
node: - new P (or node: - new t) to create nodes and assignments of the
form node. Xi : -subnode to link them. Since a side effect of new is execution
of the class body, the first statement of each class body is detach (return to
caller). (Intrinsic attributes could be initialized by statements preceding this
first detach.) Figure 8.16 gives the SIMULA coding of the procedure from
Figure 8.4b.

Figure 8.17 gives an implementation using recursive procedures. The
tree is held in a data structure made up of the nodes defined in Figure 8.17a.
When a node corresponding to application of p :Xo --XI' .. Xn is created, its
fields are initialized as follows:

symb = Xo
XO-P = P
X -Pi = pointer to node representing X;, i = I, ... , n

The body of a coroutine is broken at the detach statements, with each seg
ment forming one branch of the case statement in the corresponding pro
cedure. Then detach is implemented by simply returning; resume (X;) is
implemented by sproc _s (x -pi' k), where sproc _s is the procedure
corresponding to symbol Xi and k is the segment of that procedure to be
executed. Figure 8.18 shows the result of applying the transformation to Fig
ure 8.16. We have followed the schema closely in constructing this example,
but in practice the implementation can be greatly simplified.

A tabular implementation, in which the stack is explicit, can be derived
from Figure 8.17. It involves a pushdown automaton that walks the struc
ture tree, invoking evaluate in much the same way that the parsing automata
of Chapter 7 invoke parser actions to report connection points. In each case
the automaton communicates with another processor via a sequence of
simple data items. Thus the implementations of the automaton and the
communicating processor are quite distinct, and different techniques may be

208 Chapter 8. Attribute Grammars

class expression;
begin comment Declarations of prim ode ,postmode and environment end;

class name;
begin comment Declarations of prim ode ,postmode and environment end;

class addop ;
begin comment Declarations of mode and operation end;

expression class p 2;
begin ref(name) X I; ref(addop) X2; ref(name) X3;
comment Initialization of X I , X2 and X3 needed here;
detach;
X I. environment : = environment;
resume (X I);
X3.environment: = environment ;
resume (X3);
prim ode : = if· .. ;
detach;
X l.postmode : = prim ode ;
resume (X I);
X2.mode: =primode;
resume (X2);
X3.postmode: =primode;
resume (X3);
if· .. ; comment Evaluate the condition;
detach;
end;

Figure 8.16. SIMULA Implementation of Figure 8.4b

used to carry them out. The number of actions is usually very large, and
when deciding how to handle them one must take account of any restrictions
imposed by the implementation language and its compiler.

Figure 8.19 shows how the pushdown automaton is implemented. Each
entry in the table corresponds to an element of some algorithm and there is
an auxiliary function, segment, such that segment (k, p) is the index of the
first entry for the eh segment of the algorithm for production p. If the ele
ment corresponds to ~.a then it specifies the computation in some
appropriate manner (perhaps as a case index or procedure address); other
wise it simply contains the pair of integers defining the visit. Because the
selectors for a visit must be extracted from the table, rather than being built
into the procedure, the tree node must be represented as shown in Figure
8.l9b.

Simplifications in the general coding procedure are possible for LAG(k),
RAG(k) and AAG(k) grammars. When k = I the partition for each X is
A I(X)=AI(X), A 2(X)=AS(X), so no intermediate detach operations occur
in the coroutines. This, in turn, means that no case statement is required in

8.3. Implementation Considerations

type
tree -pointer = i tree _node;
tree _node = record

case symbols of
s: (* one per symbol in the vocabulary *)

(. . . (* storage for attributes of S *)
case s -p : integer of

p : (* one per production p : S ~ X I ... Xn *)
(x _p : alTay [l..n] tree -pointer);

)
end;

a) General structure ofa node

procedure pproLp (t: treLpointer; k: integer);
(* one procedure per production *)
begin (* pproc _p *)
case k of

0:

end;

(* actions up to the first detach *)
(* successive segments *)

end; (* pproc-p *)

b) General structure of a production procedure

procedure sproc -s (t: tree _pointer; k: integer);
(* one procedure per symbol *)
begin (* sproc -s *)
case t.s -p of

p: pproc_p(t, k); (* one case element per production *)

end;
end; (* sproc-s *)

c) General structure of a symbol procedure

Figure 8.17. Transformation of Coroutines to Procedures

209

the production procedures or in the interpretive model. For k > I there are
k + I segments in each procedure proc _p, corresponding to the initialization
and k traversals. It is best to gather together the procedures for each traver
sal as though dealing with a grammar for which k = I, and then run them
sequentially. When parsing by recursive descent, the tree construction, the
calculation of intrinsic attributes and the first tree traversal can be combined
with the parsing.

210 Chapter 8. Attribute Grammars

type
tree _pointer = i tree _node;
tree _node = record

case symbols of
expression:

(expression_environment: environment;
expression _prim ode , expression _postmode: typespecification;
case expression_p: integer of

I: (x_l:array [1..3] of tree_pointer);
name:

(name _environment: environment;
name -prim ode , name -postmode : typespecification);

addop:
(addop -»Jode: typespecification;
addop _operation: operations);

end;
procedure sproc _expression (t: tree _pointer; k : integer);

begin (* sproc _expression *)
case t i .expression _p of

I:pprocl(t,k);
end;

end;(* sproc_expression *)
procedurepprocl(t: tree-pointer; k: integer);

begin (* pproc 1 *)
case k of

0: (* construction of subtrees *);
1 :

begin
t i.x _1[1] i .expression..1nvironment: =t i .expression..1nvironment;
sprocname(t i .x-l[lll);
t i .x_I[3] i .expression_environment:=t i .expression_environment;
sprocname(t i .x_l(311);
t i . expression _primode : = if· .. ;
end; .

2:
begin
t i .x_l[I].name-postmode:=t i .expression_primode;
sprocname(t i .x-l[112);
t i .x_I[2].namLpostmode:=t i .expression-primode;
sproc_addop(t i .x_l[2], 1);
t i .x_I[3].addop-postmode: =t i .expression_primode;
sproc_name(t i .x_l[312);
if· .. ;
end;

end;
end; (* pproc _1 *)

Figure 8.18. Transformation of Figure 8.16

8.3. Implementation Considerations

type
table _entry = record

case is _computation: boolean of
true: (* R . *) ~'P,X .. a

(rule: attribute _computation);
false: (* Csegment ~number, child *)

(segment _number, child: integer)
end;

a) Structure of a table entry

type
tree _pointer = i tree _node;
tree _node = record

production: integer;
X: array [l .. max _right _hand --side] of tree _pointer
end;

b) Structure of a tree node

procedure interpret;
label I;
var

t : tree _pointer;
state, next: integer;

begin (* interpret *)
t : = root _of _the _tree;
state: = segment (0, t i .production);
repeat

next: = state + I;
with table [state] do

if is _computation then evaluate (t, rule)
else if segment _number < > 0 then

begin
stack _push (t , next);
t: =t i .x[child];
next: = segment (segment _number, t i .production);
end

else if stack _empty then goto I
else stack-pop (t, next);

state: = next;
until false; (* forever *)

I: end; (* interpret *)

c) Table interpreter

Figure 8.19. Tabular Implementation of Attribution Algorithms

211

212 Chapter 8. Attribute Grammars

8.3.2. Attribute Storage So far we have assumed that all attributes of a
structure tree node were stored within the node itself. Applying this
assumption in practice usually leads to a gigantic storage requirement.
Several remedies are possible:
• Overlaying of attributes.
• Use of local temporaries of evaluation procedures.
• Storage of specified attributes only at designated nodes.
• Use of global variables and data structures.

Because these optimizations cannot be automated completely (given the
present state of the art), the question of attribute storage represents an
important part of the development of an attribute grammar implementation.

We classify the attributes of a node as final or intermediate. Final attri
butes are necessary in later phases of the compilation and must be available
in the structure tree following attribution. Intermediate attributes are used
only as aids in computing other attributes or testing conditions; they have a
bounded lifetime. The largest intermediate attribute, which we shall discuss
in Chapter 9, is the environment used to obtain the meaning of an identifier
at a particular point.

Distinct storage must be assigned to final attributes, but this storage can
be used earlier to hold one or more intermediate attributes if their lifetimes
do not overlap. Minimization of overlap (not minimization of lifetimes for
simple attributes) is thus one of the most important uses of our freedom to
specify the sequence of attribute evaluations. Usually it is best to begin with
the final attributes and work backwards, fixing the sequence so that attri
butes can take one another's place in storage.

We often discover that two attribute lifetimes overlap, but only briefly.
The overlap can be eliminated by defining a new attribute whose lifetime is
just this overlap, assigning the first attribute to it, and freeing the first
attribute's storage. The second attribute is then computed into that storage.
In this manner we reduce the overlap among 'long lived' attributes and
increase the number of 'short lived' attributes. The new attributes generally
have little overlap among themselves, but even if they had we have gained
something: This transformation usually makes other optimizations applica
ble.

In many cases we can implement short-lived attributes as local variables
of the evaluation procedures, thus avoiding the need for space within the
node entirely. If the attributes are referenced by other procedures (for the
parent or children of the node to which they belong) then their values can be
passed as extra parameters. This strategy only works for implementations
like that of Figure 8.17, where distinct processing procedures are provided.
The tabular implementation discussed at the end of Section 8.2.1 requires
stacks instead of procedure parameters or local variables to realize the same
strategy.

An attribution rule can only access attributes of the nodes corresponding
to the symbols of the associated production. Many of the attributes in a typ
ical grammar are therefore concerned with transmission of information from

8.3. Implementation Considerations 213

one part of the tree to another. Since attribute values do not change, they
may be transmitted by reference instead of by value. Thus we might store
the value of a large attribute at a single node, and replace this attribute in
other nodes by a pointer to the stored information. The node at which the
value is stored is usually the root of a subtree to which all nodes using this
information belong. For example, the environment attribute of a block or
procedure node is formed by combining the lists generated by local
definitions with the inherited environment. The result is passed to all nodes
in the subtree rooted in the block or procedure node. If a pointer to the next
enclosing block or procedure node is given during the processing of the
nodes in the subtree, then we obtain the same environment: First we reach
the local definitions in the innermost enclosing block and, in the same
manner, the next outermost, etc. The search of the environment for a suit
able definition thus becomes a search of the local definition lists from inner
to outer.

Attributes should often be completely removed from the corresponding
nodes and represented by global variables or linked structures in global
storage. We have already noted that it is usually impossible to retain the
entire structure tree in memory. Global storage is used to guarantee that an
attribute accessible by a pointer is not moved to secondary storage with the
corresponding node. Global storage is also useful if the exact size of an
attribute cannot be determined a priori. Finally, global storage has the
advantage that it is directly accessible, without the need to pass pointers as
parameters to the evaluation procedures.

If the environment is kept as a global attribute then it is represented by a
list of local definitions belonging to the nested blocks or procedures. In
order to be certain that the 'correct' environment is visible at each node we
alter the global attribute during the traversal of the structure tree: When we
move to a block or procedure node from its parent, we copy the local
definition set to this environment variable; when we return to the parent we
delete it.

The description in the previous paragraph shows that in reality we are
using a global data structure to describe several related attribute values.
This situation usually occurs with recursive language elements such as
blocks. The environment attribute shows the typical situation for inherited
attributes: Upon descent in the tree we alter the attribute value, for example
increasing its size; the corresponding ascent in the tree requires that the
previous state be restored. Sometimes, as in the case of the nesting depth
attribute of a LAX block, restoration is a simple inverse of the computation
done on entry to the substructure. Often there is no inverse, however, and
the old value of the attribute must be saved explicitly. (The environment
represents an intermediate situation that we shall consider in Section 9.3.)
By replacing the global variable with a global stack, we can handle such
cases directly.

Global variables and stacks are also useful for synthesized attributes, and
the analysis parallels that given above. Here we usually find that attribute

214 Chapter 8. Attribute Grammars

values replace each other at successive ascents in the tree. An example is the
primode computation in a LAX case _clause:

rule case :: = case_label ':'statement_list . attribution
case.primode .- statement _list.primode ;

rule cases :: = case .
rule cases :: = cases ':' statement .Jist . attribution

cases [I].primode .- balance (cases [2].primode, case.primode);

The value of cases [2].primode becomes irrelevant as soon as
cases[I].primode has been evaluated. A case may, however, contain another
case _clause. Hence a stack must be used rather than a variable.

By changing the attribution rules, we can often increase the number of
attributes implementable by global variables or stacks. A specific change
usually fixes a specific traversal strategy, but anyone of several changes
(each implying a different traversal strategy) could be used to achieve the
desired effect. Thus the designer should avoid such changes until the last
possible time, when they can be coordinated with the 'natural' traversal stra
tegies determined by the basic information flow.

8.4. Notes and References

Attribute grammars stern from the 'syntax-directed compilers' introduced by
Irons [1961, 1963a]. Irons' grammars had a single, synthesized attribute
attached to each nonterminal. This attribute provided the 'meaning' of the
subtree rooted in the nonterminal. Knuth [l968a, 1971aJ proved that such a
scheme was sufficient to define the meaning associated with any structure
tree, but pointed out that the description could be simplified considerably
through the use of inherited attributes in addition. (Sufficiency of syn
thesized attributes leads immediately to the conclusion that all well-defined
attribute grammars have the same descriptive power.) Intrinsic attributes
were first characterized by Schulz [1976], although Lewis, Rosenkrantz and
Steams [1974] had previously allowed certain terminal symbols to have
'attributes whose values are not given by rules'. The affix grammars of
Koster [1971, 1974] are similar to attribute grammars, the main difference
being that affixes are considered to be variables while attributes are con
stants. Riiihii [1980] provides a good overview of the attribute grammar
literature as it existed in 1979.

Our treatment of attribute classification differs from that of many authors
because we do not begin with disjoint sets of synthesized, inherited and
intrinsic attributes. Instead, Definition 8.2 classifies the attributes based
upon the placement of the attribution rules. Tienari [1980] has derived
results similar to Theorems 8.3 and 8.8 from a definition allowing more than
one attribution rule per attribute in a single production. His analog of
Theorem 8.8, however, includes the restriction to a single attribution rule as
a part of the hypothesis.

Theorem 8.8 assumes 'value semantics' for the attribution rules: The

8.4. Notes and References 215

operands of the rule are evaluated before the rule itself, and hence the fol
lowing represents a circularity:

a <- if P then b else 16; b <- ifnot p then a else 2 6;

'Lazy evaluation', in which an operand is not evaluated until its value is
required, would not lead to circularity in this case. The attendant broaden
ing of the acceptable grammars is not interesting for us because we are
attempting to define the evaluation sequence statically. Whenever there is a
difference between value semantics and lazy evaluation, the evaluation
sequence must be determined dynamically.

Dynamic attribute evaluators based on cooperating sequential processes
have been reported by Fang [1972] and Banatre [1979]. Borowiec [1977]
described a fragment of COBOL in this manner. The process scheduling
overhead can be avoided by deriving a dependency graph from the specific
tree being processed, and then converting this graph to a partial order. Gal
lucci [1981] implemented such a system, adding dependency links to the tree
and using reference counts to derive the partial order.

One of the major arguments given in support of a dynamic evaluator is
that it is simple to implement. The actual evaluation algorithm is simple,
but it will fail on certain programs if the grammar is not well-defined. We
have already pointed out that WAG testing is exponential [Jazayeri 1975a,
1981], and hence occasional failure of the dynamic evaluator is accepted by
most authors advocating this strategy. Acyclicity of IDP(p) and IDS (X), a
sufficient condition for WAG, can be tested in polynomial time [Kastens
1980]. This test forms the basis of all systems that employ subclasses of
WAG. Such systems are guaranteed never to fail during evaluation.

Kennedy and Warren [1976] termed the subclass of WAG for which
IDP(p) and IDS (X) are acyclic for all p and X 'absolutely non-circular
attribute grammars' (ANCAG). They developed an algorithm for construct
ing ANCAG evaluators that grouped attributes together, avoiding indivi
dual dependency links for every attribute. The evaluation remains dynamic,
but some decisions are shifted to evaluator construction time. In a later
paper, Kennedy and Ramanathan [1979] retain the ANCAG subclass but
use a pure dynamic evaluator. Their reasoning is that, although this strategy
is less efficient at run time, it is easier to understand and simpler to imple
ment.

Ordered attribute grammars were originated by Kastens [1976, 1980],
who used the term 'arranged orderly' to denote a partitioned grammar.
OAG is a subclass of ANCAG for which no decisions about evaluation
order are made dynamically; all have been shifted to evaluator construction
time. This means that attribute lifetimes can be determined easily, and the
optimizations discussed in Section 8.3.2 can be applied automatically: In a
semantic analyzer for Pascal, constructed automatically from an ALADIN
description by the GAG [Kastens 1982] system, attributes occupied only
about 20% of the total structure tree storage.

216 Chapter 8. Attribute Grammars

Lewis, Rosenkrantz and Stearns [1974] studied the problem of evaluating
all attributes during a single depth-first, left-to-right traversal of the structure
tree. Making no use of the local acyclicity of DDP(p), they derived the first
three conditions we stated in Theorem 8.18. The same conditions were
deduced independently by Bochmann [1976], who went on to point out that
dependencies satisfying the fourth condition of Theorem 8.18 are allowed if
the relationship NDDP(p) is used in place of DDP(p). There is no real need
for this substitution, however, because if DDP (p) is locally acyclic then the
dependency Xj.a ~~.b immediately rules out ~.b ~Xj.a. Thus depen
dencies satisfying the fourth condition of Theorem 8.18 cannot lead to any
problem in left-to-right evaluation. Since local acyclicity is a necessary con
dition for well-definedness, this assumption does not result in any loss of
generality.

LAG(k) conditions similar to those of Theorem 8.20 were also stated by
Bochmann [1976]. Again, he did not make use of local acyclicity to obtain
the last condition of our result. Systems based upon LAG(k) grammars
have been developed at the Universite de Montreal [Lecarme 1974] and the
Technische Universitat Miinchen [Giegerich 1979]. The theoretical under
pinnings of the latter system are described by Ripken [1977], Ganzinger
[1978] and Wilhelm [1977]. Wilhelm's work combines tree transformation
with attribution.

Alternating-evaluable grammars were introduced by Jazayeri and Walter
[1975b] as a generalization of Bochmann's work. Their algorithm for testing
the AAG(k) condition does not provide precise criteria analogous to those of
Theorem 8.18, but rather uses specifications such as 'occur before [the
current candidate] in the present pass' to convey the basic idea. A group at
the University of Helsinki developed a compiler generator based upon this
form of grammar [Riiihii 1977, Riiihii 1978].

Asbrock [1979] and Pozefsky [1979] both consider the question of attri
bute overlap minimization in more detail.

Jazayeri and Pozefsky give a completely different method of representing
a structure tree and evaluating a multi-pass attribute grammar [Jazayeri
1977, Pozefsky 1979]. They propose that the parser create k sequential files
Dj such that Dj contains the sequence of attribution rules with parameters
for pass i of the evaluation. Thus Dj contains, in sequential form, the entire
structure of the tree; only the attribute values, arbitrarily arranged and
without pointers to subnodes, are retained in memory. Pozefsky also con
siders the question of whether the evaluation of a multi-pass grammar can
be arranged to permit overlaying of the attributes in memory.

EXERCISES

8.1. Write an attribute grammar describing a LAX basic symbol as an identifier,
integer or floating-point. (Section A.I describes these basic symbols.) Your
grammar should compute the intrinsic attributes discussed in Section 4.1.1 for

8.4. Notes and References 217

8.1. Write an attribute grammar describing a LAX basic symbol as an identifier,
integer or floating-point. (Section A.l describes these basic symbols.) Your
each basic symbol (with the exception of location) as synthesized attributes.
Use no intrinsic attributes in your grammar. Be sure to invoke the appropri
ate symbol and constant table operations during your computation.

8.2. [Banatre 1979] Write a module for a given well-defined attribute grammar
(G, A, R, B) that will build the attributed structure tree of a sentence of L (G).
The interface for the module must provide creation, access and assignment
operations as discussed in Section 4.1.2. The creation and assignment opera
tions will be invoked by parser actions to build the structure tree and set
intrinsic attribute values; the access operation will be invoked by other
modules to examine the structure of the tree and attribute values of the nodes.
Within the module, access and assignment operations are used to implement
attribution rules. You may assume that all invocations of creation and assign
ment operations from outside the module will precede any invocation of an
access operation from outside. Invocations from within the module must, of
course, be scheduled according to the dependencies of the attribute grammar.
You may provide an additional operation to be invoked from outside the
module to indicate the end of the sequence of external creation and assign
ment invocations.

8.3. Consider the following attribute grammar:
rule Z :: = s X .
attribution

X.a <- X.c;
X.b <- X.a;

rule Z :: = t X .
attribution

X.b <- X.d;
x'a <- X.b;

rule X ::= u .
attribution

X.d <- I;
X.c <-X.d;

rule X ::= v .
attribution

X.c <- 2;
X.d <- X.c;

a. Show that this grammar is partitionable using the admissible partition
Al(X) = {c,d},A2(X) = {a,b},A3(X) = o.

b. Compute lDP(p) and lDS(X) replacing NDDP(p) by DDP(p) in
Definition 8.12. Explain why the results are cyclic.

c. Modify the grammar to make IDP(p) and IDS(X) acyclic under the
modification of Definition 8.12 postulated in (b).

d. Justify the use of NDDP(p) in Definition 8.12 in terms of the modification
of (c).

8.4. Compute IDP and IDS for all p and X in the grammar of Figure 8.1. Apply

218 Chapter 8. Attribute Grammars

construction 8.16, obtaining a partition (different from that given at the end of
Section 8.2.1), and verify that Theorem 8.13 is satisfied. Compute DP for all
p, and verify that Theorem 8.15 is satisfied.

8.5. Show that a partitionable grammar that is not ordered can be made into an
ordered grammar by adding suitable 'artificial dependencies' Xa ~Xb to
some IDS (X). (In other words, the gap between partitionable and ordered
grammars can always be bridged by hand.)

8.6. Define a procedure EvaluateP for each production of an LAO(l) grammar
such that all attributes of a structure tree can be evaluated by applying
EvaluateZ (where Z is the production defining the axiom) to the root.

8.7. A right-to-Ieft attribute grammar may have both inherited and synthesized
attributes. All of the attribute values can be obtained in some number of
depth-first, right-to-Ieft traversals of the structure tree. State a formal
definition for RAG(k) analogous to Definition 8.19 and prove a theorem
analogous to Theorem 8.20.

8.8. [Jazayeri 1975aj Define the class of alternating evaluable attribute grammars
AAG(k) formally, state the condition they must satisfy, and give an analysis
procedure for verifying this condition. (Hint: Proceed as for LAG(2k), but
make some of the conditions dependent upon whether the traversal number is
odd or even.)

8.9. Extend the basic definitions for multi-pass attribute grammars to follow the
hybrid linearization strategy of Figure 4.4d: Synthesized attributes can be
evaluated not only at the last visit to a node but also after the visit to the i 'h

subnode, I..;; i ..;; n, or even prior to the first subnode visit (i = 0). How does
this change the procedure determine _traversals?

8.10. Show that the LAG(k), RAG(k) or AAG(k) condition can be violated by a
well-defined attribute grammar only when a syntactic rule leads to recursion.

8.11. Complete the class definitions of Figure 8.16 and fill in the remaining details
to obtain a complete program that parses an assignment statement by recur
sive descent and then computes the attributes. If you do not have access to
SIMULA, convert the schema into MODULA2, Ada or some other language
providing coroutines or processes.

8.12. Under what conditions will the tabular implementation of an evaluator for a
partitioned attribute grammar require less space than the coroutine imple
mentation?

8.13. Give detailed schemata similar to Figure 8.17 for LAG(k) and AAG(k)
evaluators, along the lines sketched at the end of Section 8.3.1.

8.14. Consider the implementation strategies for attribution algorithms exemplified
by Figures 8.17 and 8.19.
a. Explain why the tree node of Figure 8.19b is less space-efficient than that

of Figure 8.17a.
b. Show that, by coding the interpreter of Figure 8.19c in assembly language

and assigning appropriate values to the child field of Figure 8.19a, it is pos
sible to use the tree node of Figure 8.17 a and also avoid the need for the

8.4. Notes and References 219

sproc -oS procedures of Figure 8.17c.

8.15. Modify Figure 8.1 by replacing name with expression everywhere, and chang
ing the second rule to expression :: = '(' expression addop expression ')'. Con
sider an interpretive implementation of the attribution algorithms that follows
the model of Exercise 8.16.
a. Show the memory layout of every possible node.
b. Define another rule, addop :: = '-', with a suitable attribution procedure.

What nodes are affected by this change, and how?
c. Show that the addop node can be incorporated into the expression node

without changing the attribution procedures for addop. What is the
minimum change necessary to the interpreter and the attribution pro
cedure for expression? (Hint: Introduce a second interpretation for Ci,j')

CHAPTER 9

Semantic Analysis

Semantic analysis determines the properties of a program that are classed as
static semantics (Section 2.1.1), and verifies the corresponding context con
ditions - the consistency of these properties.

We have already alluded to all of the tasks of semantic analysis. The first
is name analysis, finding the definition valid at each use of an identifier.
Based upon this information, operator identification and type checking
determine the operand types and verify that they are allowable for the given
operator. The terms 'operator' and 'operand' are used here in their broadest
sense: Assignment is an operator whether the language definition treats it as
such or not; we also speak of procedure parameter transmission and block
end (end of extent) as operations.

Section 9.1 is devoted to developing a formal specification of the source
language from which analysis algorithms can be mechanically generated by
the techniques of Chapters 5-8. Our goal for the specification is clarity, so
that we can convince ourselves of its correctness. This is an important point,
because the correspondence between the specification and the given source
language cannot be checked formally. In the interest of clarity, we often use
impractically inefficient descriptions that give the effect of auxiliary func
tions, but do not reflect their actual implementation. Section 9.2 discusses
the practical implementation of these auxiliary functions by modules.

9.1. Description of Language Properties via Attribute
Grammars

The description of a programming language by an attribute grammar pro
vides a formal definition of both its context-free syntax and its static seman
tics. (Dynamic semantics, such as expression evaluation, could be included

220

9.1. Description of Language Properties via Attribute Grammars 221

also; we shall not pursue that point, however.) We therefore approach the
total problem of analysis via attribute grammars as follows:

• First we develop an attribute grammar and replace the informal language
description with it.

• From the attribute grammar we extract the context-free syntax and
transform it to a parsing grammar in the light of the chosen parsing tech
nique.

• Finally we implement the attribution rules to obtain the semantic
analyzer.

The parsing grammar and implementation of the attribution rules can be
derived individually from the informal language definition, as we have done
implicitly up to this point. The advantage of using attribute grammars (or
some other formal description tool such as denotational semantics) lies in
the fact that one has a comprehensive and unified specification. This
ensures that the parsing grammar, structure tree and semantic analysis 'fit
together' without interface problems.

Development of an attribute grammar consists of the following inter
dependent steps:

• Development of the context-free syntax.
• Determination of the attributes and specification of their types.
• Development of the attribution rules.
• Formulation of the auxiliary functions.

Three major aspects of semantic analysis described via attribution are
scope and name analysis, types and type checking, and operator
identification in expressions. With a few exceptions, such as the require
ment for distinct case labels in a case clause (Section A.4.5), all of the static
semantic rules of LAX fall into these classes. Sections 9.1.1 to 9.1.4 examine
the relevant attribution rules in detail.

Many of the attribution rules in a typical attribute grammar are simple
assignments. To reduce the number of such assignments that must be writ
ten explicitly, we use the following conventions: A simple assignment to a
synthesized attribute of the left-hand side of a production may be omitted
when there is exactly one symbol on the right-hand side that has a syn
thesized attribute with the same name. Similarly, simple assignments of
inherited attributes of the left-hand side to same-named inherited attributes
of any number of right-hand side symbols may be omitted. In important
cases we shall write these (semantic) transfers for emphasis. (Attribute
grammar specification languages such as ALADIN [Kastens 1982] contain
even more far-reaching conventions.)

We assume for every record type R used to describe attributes the
existence of a function N -R whose parameters correspond to the fields of
the record. This function creates a new record of type R and sets its fields to

222 Chapter 9. Semantic Analysis

the parameter values. Further, we may define a list of objects by records of
the form:

type
t -1ist = i t -1ist _element;
t -1ist -'!Iement = record first: t; rest: t -1ist end;

If e is an object of type t then we shall also regard e as a single element of
type t -1ist wherever the context requires this interpretation. We write lJ&/2

to indicate concatenation of two lists, and hence e&1 describes addition of
the single element e to the front of the list I. 'Value semantics' are assumed
for list assignment: A copy of the entire list is made and this copy becomes
the value of the attribute on the left of the arrow.

9.1.1. Scope and Name Analysis The scope of identifiers is specified in
most languages by the hierarchical structure of the program. In block struc
tured languages the scopes are nested. Languages like FORTRAN have
only a restricted number of levels in the hierarchy (level I contains the sub
program and COMMON names, level 2 the local identifiers of a subpro
gram including statement numbers). Further considerations are the use of
implicit definition (FORTRAN), the admissibility (ALGOL 60) or inadmis
sibility (LIS) of new definitions in inner blocks for identifiers declared in
outer blocks, and the restriction of scope to the portion of the block follow
ing the definition (Pascal). We shall consider the special properties of field
selectors in Section 9.1.3.

Every definition of an identifier is represented in the compiler by a vari
ant record. The types of Figure 9.la suffice for LAX; different variants
would be required for other languages. For example, the variant
type -.definition would be missing in a language without type identifiers and
FORTRAN would require additional variants for subprograms and
COMMON blocks because these are not treated as objects. The definition
record could also specify further characteristics (such as the parameter pass
ing mechanism for ALGOL 60 parameters or the access rights to Ada
objects) that are known at the defining occurrence and used at the applied
occurrences.

The definition class unknown-.definition is important because semantic
functions must deliver a value under all circumstances. If no definition is
available for an identifier, one must be supplied (with the variant
unknown -.defini lion).

Records of type definition are collected into linear lists referenced as the
environment attribute by every construct that uses an identifier. The rules
for this attribute describe the scope rules of the language. Figure 9.1 b gives
the type of this attribute, and Figure 9.lc shows a typical example of its use.
(Examples such as that of Figure 9.lc will normally contain only the attribu
tion rules necessary for the point that we are trying to make. Do not assume,
therefore, that no additional attributes or attribution rules are associated
with the given syntax rule.)

9.1. Description of Language Properties via Attribute Grammars

type
definition_class = (

object --.definition,
type --.definition,
label --.definition,
unknown --.definition);

(* Section A.3.1 *)
(* Section A.3.1 *)
(* Section A.2.6 *)
(* Undefined identifier *)

223

definition = record
uid: interger;
ident : symbol;

(* Discussed in Section 9.1.3 *)
(* Identifier being defined *)

case k : definition_class of
object --.definition: (object -1ype: mode);
type --.definition: (defineLtype: mode);
label --.definition,
unknown--.definition: 0

end;

(* mode is discussed *)
(* in Section 9.1.2 *)

a) The attributes of an identifier

definition-1able = i dt ~/ement ;
dt _element = record first: definition; rest: definition-1able end;

b) Type of the environment attribute

rule name :: = identifier_use .
condition

identifier _use. corresponding --.definition.k = object -1iefinition;

rule identifier_use :: = identifier.
attribution

identifier _use. corresponding --.definition <-

current -1iefinition(identifier.sym ,identifier -use. environment);

c) Use of an environment

Figure 9.1. Environments

The introduction of an additional nonterminal identifie,-use in Figure
9.lc is necessary because we cannot attach the attribute corresponding _
definition to either the nonterminal name or the terminal identifier. For the
former the attribute would be meaningless in the production
name :: = name ' i', while for the latter we would have difficulty with
defining occurrences of identifiers.

In LAX, the environment attribute is changed only upon entry to ranges
(A.2.0.2). Figure 9.2a shows the change associated with a statement _list.
For language constructs that are not ranges, the environment attribute is
simply passed along unchanged as illustrated in Figure 9.2b. (Figure 9.2b is
an example of a 'transfer rule', where we would normally not write the attri
bute assignment.)

The synthesized attribute statements.definitions is a definition-1able that

224

rule statement -.list :: = statements .
attribution

statements. environment <-

Chapter 9. Semantic Analysis

statements.definitions & statement -.list. environment ;
condition

unambiguous (statements. definitions) ;

a) Language construct that changes the environment

rule unlabelled -statement :: = expression .
attribution

expression. environment <- unlabelled -statement. environment ;

b) Language construct that does not change the environment

Figure 9.2. Environment Manipulation

has one entry for each label definition. It describes the identifiers given new
meanings in the statement -.list. This attribute is constructed as shown in
Figure 9.3. (Note that the rule statements:: = statement is simply a transfer,
and hence the attribution rules are omitted.) The function gennum is a
source of unique integers: Each invocation of gennum yields a new integer.

Section A.2.2 gives the visibility rules for LAX. Implementation of these
rules in the attribute grammar is illustrated by Figures 9.lc and 9.2a. The
function unambiguous is used in Figure 9.2a to verify that

rule statements :: = statement .

rule statements :: = statements ';' statement.
attribution

statements [1). definitions <-

statements [2]. definitions & statement. definitions;

rule statement :: = label--'.lefinition statement .
attribution

statement [1).definitions <-

label--'.lefinition.def & statement [2]. definitions;

rule statement :: = unlabelled -statement .
attribution

statement.definitions <- nil;

rule label--'.lefinition :: = identifier':' .
attribution

label--'.lefinition.de f <-

N --'.lefinition(gennum ,identifier.sym ,Iabel--'.lefinition);

Figure 9.3. Label Definition

9.1. Description of Language Properties via Attribute Grammars 225

statements.definitions contains no more than one definition of any identifier.
CurrenLdefinition (Figure 9.lc) searches the environment linearly from left
to right and selects the first definition for the desired identifier. As shown in
Figure 9.2a, the local definitions are placed at the front of the environment
list; they therefore 'hide' any definitions of the same identifiers appearing in
outer ranges because a linear search will find them first.

We must reiterate that attributes belonging to different symbols in a pro
duction or to different nodes in a structure tree are different, even if they are
identically named. Thus there is not just one attribute environment, but as
many as there are nodes in the structure tree. The fact that these many
environments will be represented by a single definition table in the imple
mentation discussed in Section 9.2 does not concern us in the specification.
In the same way, it does not follow from the informal specification of
current --.definition given above that the implementation must also use an
inefficient linear search; this strategy is only a simple specification of the
desired effect.

If the scope of a definition begins at that definition, and not at the begin
ning of the range in which it appears (an important property for one-pass
compilers), then the environment must be passed 'along the text' as shown in
Figure 9.4. The right-recursive solution of Figure 9.4a requires the parser to
accumulate entries for all of the declarations on its stack before it can begin
reducing declaration lists. This can lead to excessive storage requirements.
A better approach is to use left recursion, as shown in Figure 9.4b. In this
case the parser will never have more than one declaration entry on its stack,
no matter how many declarations appear in the declaration list. Figure 9.4b
is easy to understand, but it has the unpleasant property that for each
declaration the original environment is augmented by all of the definitions
resulting from earlier declarations in the list. Figure 9.4c, where the
environment is extended in a stepwise manner, is the best strategy.

Figure 9.4c makes the passing of the environment 'along the text' explicit.
Declaration-1ist has an (inherited) attribute environment.-in that describes
the initial state and a (synthesized) attribute environment _out that describes
the final state. The latter consists of the former augmented by the current
definition. Although this solution appears to be quite costly because of the
multiple environments, it is actually the most efficient: Simple analysis
shows that all of the environments replace one another and therefore all of
them can be represented by a single data structure.

It is clear that all of the definitions of Figure 9.4 are equivalent from the
standpoint of the language definition. If, however, we wish to specify the
semantic analyzer then we prefer Figure 9.4c. Examining a given attribute
grammar for optimizations of this kind often pays dividends.

The implicit declarations of FORTRAN are described in a similar
fashion, with each identifier_use a potential declaration (Figure 9.5). We
pass the environment along the text of the expressions and statements, modi-

226 Chapter 9. Semantic Analysis

rule declaration-.list :: = declaration ';' declaration -.list.
attribution

declaration. environment <- declaration -.list [I].environment ;
declaration -.list [2]. environment <-

declaration.definitions & declaration -.list [I].environment ;
declaration -.list [I].definitions <-

declaration.definitions & declaration -.list [2]. definitions;

a) Right-recursive solution

rule declaration-.list :: = declaration-.list ';' declaration.
attribution

declaration -.list [2]. environment <- declaration -.list [I].environment
declaration. environment <-

declaration -.list [2]. definitions & declaration -.list [1].environment ;
declaration -.list [I].definitions <-

declaration -.list [2]. definitions & declaration.definitions;

b) Left-recursive solution

ruledeclaration-.list ::= declaration-.list ';' declaration.
attribution

declaration -.list [2]. environment _ E <- declaration -.list [I].environment _ E;
declaration. environment <- declaration -.list [2]. environment _out;
declaration -.list [I]. environment _out <-

declaration -.list [2]. environment _out & declaration. definitions;
declaration -.list [I].definitions <-

declaration -.list [2].definitions & declaration. definitions;

c) Stepwise environment construction

Figure 9.4. Scope Beginning at the Declaration

rule identifier -'JSe :: = identifier.
attribution

identifier _use.implicit .-definitions <-

if found (identifier.sym ,identifier _use. environment) tben nil
else

N .-definition(
gennum,
identifier.sym,
object .-definition,
identifier. implici t ~ype) ;

identifier _use. corresponding .-definition <

current .-definition(
identifier.sym,
identifiecuse.implicit .-definitions & identifier _use. environment);

Figure 9.5. Implicit Declarations in FORTRAN

9.1. Description of Language Properties via Attribute Grammars 227

fying it at each operand, by rules analogous to those of Figure 9.4c. This
strategy avoids the problem of double implicit declarations in expressions
such as /*/.

Greater difficulties arise from the fact that the Pascal fragment shown in
Figure 9.6 is illegal because i is declared in p but used prior to its declara-

CORsti = 17;
typet=· .. ;
procedure p ;

CORst

j =i;
i = 1;

type
tt=jt;
t = ... ;

(* First declaration of t *)

(* Use of i illegal here *)
(* This makes the previous line illegal *)

(* Refers to second declaration of t *)
(* Second declaration of t *)

Figure 9.6. Definition Before Use in Pascal

tion. This is not allowed, even though a declaration of i exists outside of p .
On the other hand, the use of t in the declaration of It is correct and
identifies the type whose declaration appears on the next line. This problem
can be solved by a variant of the standard technique for dealing with
declarations in a one-pass ALGOL 60 compiler (Exercise 9.5).

9.1.2. Types A type specifies the possible operations on an entity and the
coercions that can be applied to it. During semantic analysis this informa
tion is used to identify operators and verify the compatibility of constructs
with their environment. We shall concentrate on languages with manifest
types. Languages with latent types, in which type checking and operator
identification occur during execution, are treated in the same manner except
that these tasks are deferred.

In order to perform the tasks outlined in the previous paragraph, every
structure tree node that represents a value must have an attribute describing
its type. These attributes are usually tree-valued, and are built of linked
records. For uniformity, the compiler writer should define a single record
format to be used in building all of them. The record format must therefore
be capable of representing the type of any value that could appear in a
source program, regardless of whether the language definition explicitly
describes that value as being typed. For example, the record format used in
a LAX compiler must be capable of representing the type of nil because nil
can appear as a value. Section A.3.1 does not describe nil as having a
specific type, but says that it 'denotes a value of type ref t , for arbitrary t'.

Figure 9.7 defines a record that can be used to build attributes describing
LAX types. Type class bad Jype is used to indicate that errors have made it
impossible to determine the proper type. The type itself must be retained,
however, since all attributes must be assigned values during semantic

228 Chapter 9. Semantic Analysis

type
type _class = (

bad _type, nil_type, void _type, bool_type, int _type, real_type,
ref _type,
arr_type,
ree_type,
proc_type,
unidentified-type ,
identified-type) ;

mode = record
case k : type _class of

(* See Section 9.1.3 *)
(* See Section 9.1.3 *)

bad _type, nil_type, void _type, bool_type, int _type, real_type: 0;
ref _type: (target: i mode);
arr _type: (dimensions: integer; element: i mode);
ree _type: (fields: definition....1able);
proc _type: (parameters: definition_table; result: i mode);
unidentified-type : (identifier: symbol);
identified-type: (definition: integer)

end;

Figure 9.7. Representation of LAX Types

analysis. Nil-type is the type of the predefined identifier nil. We also need
a special mechanism for describing the result type of a proper procedure.
Void -type specifies this case, and in fact is used whenever a result is to be
discarded.

For languages like ALGOL 60 and FORTRAN, which have only a fixed
number of types, an enumeration similar to type _class serves to represent all
types. Array types must also specify the number of dimensions, but the ele
ment type can be subsumed into the enumeration (e.g. integer _array_type or
real--'JTray -type). Pascal requires additional specifications for the index
bounds; in LAX the bounds are expressions whose values do not belong to
the static semantics, as illustrated by the rules of Figure 9.8.

Figure 9.9 shows how procedure types are constructed in LAX.
(Bad -.Symbol represents a nonexistent identifier.) Because parameter
transmission is always by value (reference parameters are implemented by
passing a ref value as discussed in Section 2.5.3) it is not necessary to give a
parameter transmission mechanism. In Pascal or ALGOL 60, however, the
transmission mechanism must be included for each parameter. For a
language like Ada, in which keyword association of arguments and parame
ters is possible, the identifiers must be retained also. We retain the parame
ter identifiers, even though this is not required in LAX, to reduce the
number of attributes for the common case of a procedure declaration
(A.3.0.8). Here we can use the procedure type attribute both to validate the

9.1. Description of Language Properties via Attribute Grammars

rule type Jpecification :: = ' ref' type Jpecification .
attribution

type Jpecification[1].repr
Nmode (ref ..Jype ,type Jpecification[2). repr);

rule type Jpecification :: = ' ref' array..Jype .
attribution

typeJpecification.repr N....mode(ref ..Jype,array-1ype.repr);

rule array..Jype :: = array '[' dimensions ']' 'of' type Jpecification .
attribution

array..Jype.repr
Nmode (arr ..Jype ,dimensions. count ,type Jpecification.repr);

rule dimensions :: = .
attribution

dimensions. count 1;

rule dimensions :: = dimensions ',' .
attribution

dimensions [1].count dimensions [2]. count + 1;

rule record ..Jype :: = 'record' fields' end' .
attribution

record ..Jype.repr Nmode (rec ..Jype fields. definitions) ;
condition

unambiguous (fields. definitions) ;

rule fields :: = field.

rule fields :: = fields ';' field.
attribution

fields[1].definitions fields(2).definitions & field. definitions;

rule field:: = identifier ':' type Jpecification .
attribution

field. definitions
N -tlefinition(

gennum,
identifier.sym,
object -tlefinition,
type Jpecification.repr);

Figure 9.8. Type Definition

229

230 Chapter 9. Semantic Analysis

rule type Jpecification :: = 'procedure I parameter ...Jype -.list result ...Jype .
attribution

type Jpecification.repr <-

N -.mode (proc ...Jype,parameter _type -.list.dejinitions,result _type.repr);

rule parameter ...Jype -.list :: = .
attribution

parameter ...Jype -.list.dejinitions <- nil;

rule parameter ...Jype -.list :: = '(' parameter ...Jypes ')' .

rule parameter ...Jypes :: = type Jpecification .
attribution

parameter ...Jypes.dejinitions <-

N Jiejinition(gennum,bod Jymbol,type Jiejinition,type Jpecification.repr);

rule parameter ...Jypes :: = parameter ...Jypes ',' type Jpecification .
attribution

parameter ...Jypes [I].dejinitions <

parameter ...Jypes [2].dejinitions &
N Jiejinition(gennum,bod Jymbol,type Jiejinition,type Jpecification.repr);

Figure 9.9. Procedure Type Definition

type compatibility and to provide the parameter definitions. If we were to
remove the parameter identifiers from the procedure type this would not be
possible.

When types and definitions are represented by attributes, the complete set
of declarations (other than procedure declarations) can, in principle, be
deleted from the structure tree to avoid duplicating information both as
attributes and as subtrees of the structure tree. Actually, however, this
compression of the representation should only be carried out under extreme
storage constraints; normally both representations should be retained. The
main reason is that expressions (like dynamic array bounds) appearing
within declarations cannot be abstracted as attributes because they are not
evaluated until the program is executed.

Context-sensitive properties of types lead to several relations that can be
expressed as recursive functions over types (objects of type mode). These
basic relations are:

• Equivalent: Two types t and t I are semantically equivalent.
• Compatible: Usually an asymmetric relation, in which an object of type t

can be used in place of an object of type t I.
• Coercible: A type t is coercible to a type t I if it is either compatible with t I

or can be converted to t I by a sequence of coercions.

9.1. Description of Language Properties via Attribute Grammars 231

Type equivalence is defined in Section A.3.1 for LAX; this definition is
embodied in the procedure type -.equivalent of Figure 9.10. Type -.equivalent
must be used in all cases where two types should be compared. The direct
comparison t I = t 2 may not yield true for equivalent composite types
because the pointers contained in the type records may address equivalent
types represented by different records.

The test for equivalence of type identifiers is for the identity of the type
declarations rather than for the equivalence of types they declare. This
reflects the name equivalence rule of Section A.3.l. If structural

function type -.equivalent(t l,t2: mode): boolean;
(* Compare two types for equivalence *)

function compare -Pflrameters (fl! 2: dejinition....table): boolean ;
(* Compare parameter lists for equivalent types *)
begin (* compare -Pfl'ameters *)
if fl = nil then compare -parameters: = f 2 = nil
else iff 2 = nil then compare -parameters: = false
else

compare -Pfl'ameters : =
type -.equivalent(fl i .jirst.objecLJype,f2 i .jirst.objeCLJype) and
compare -parameters (fl i . rest,f 2 i . rest)

end; (* compare -parameters *)

begin (* type -.equivalent *)
if t I.k < > t 2.k then type -.equivalent: = false
else

case t I.k of
ref ..Jype:

type -.equivalent: = type -.equivalent (t l.target i ,t 2. target i);
arr ..Jype:

type -.equivalent: =
I I.dimension = t 2. dimension and
type -.equivalent (t I.element i ,t 2.element i);

rec..Jype:
type -.equivalent: = false;

proc..Jype:
type -.equivalenl : =

compare -Pfl'ameters (I I.parameters ,t 2.parameters) and
type -.equi valent (t 1. result i ,t 2. resull i);

identi.fted..Jype :
Iype -.equivalent: = I I.dejinition = 12.dejinition

otherwise Iype -.equivalent: = true
end;

end; (* type -.equivalent *)

Figure 9.lD. Type Equivalence in LAX

232

function coercible(t 1,t2: mode): boolean;
(* Verify that t 1 can be coerced to t2 *)
begin (* coercible *)

Chapter 9. Semantic Analysis

if type --.equivalent (t l,t 2) or t 2.k = void -.lype or t 2.k = bad -.lype
then coercible: = true
else

case t l.k of
bad -.lype : coercible: = true
nil -.lype : coercible: = t 2.k = ref -.lype ;
inLtype: coercible: = t 2.k = reaLtype;
ref -.lype : coercible: = coercible (t l.target i ,t 2) ;
proc -.lype : coercible: = t l.parameters = nil and coercible (t l.result i ,t 2)
otherwise coercible: = false
end;

end; (* coercible *)

Figure 9.11. Coercibility in LAX

equivalence is required, as in ALGOL 68, then we must compare the
declared types instead. A simple implementation of this comparison leads to
infinite recursion for types containing pointers to themselves. The recursion
can, however, be stopped as soon as we attempt to compare two types whose
comparison has been begun but has not yet terminated. During comparison
we therefore hold such pairs in a stack. Since the only types that can partici
pate in infinite recursion are those of class identified_type, we enter pairs of
identified-.lype types into the stack when we begin to compare them. The
next pair is checked against the stack before beginning their comparison; if
the pair is found then they are considered to be equivalent and no further
comparison of them is required. (If they are not equivalent, this will be
detected by the first comparison - the one on the stack.)

Figure 9.10 compares exactly two types. If we wish to group all types of a
block, procedure or program into classes of structurally equivalent types
then it is better to use the refinement algorithm of Section B.3.2 as general
ized in Exercise B.7. This algorithm has the advantage of reducing the
number of records that represent types, and therefore the amount of storage
required to hold the attributes.

The Pascal Standard proposes name equivalence for all types except sets
and subranges, whose equivalence depends upon the equivalence of the base
types. In addition, however, it defines the property of type compatibility
and relies upon that property for assignments and parameter transmission.
Among other things, two array types are compatible if they have the same
bounds and compatible element types. Other languages also provide (expli
citly or implicitly) a somewhat weaker compatibility relation in addition to
the strong type equivalence. There is no separate type compatibility rule in
LAX.

The allowable LAX coercions (Section A.4.2) are embodied in the

9.1. Description of Language Properties via Attribute Grammars

rule variable --.dec/aration :: = identifier ':' type -specification.
attribution

variable -lieclaration.definitions <-

N -liefinition(
gennum,
identifier.sym,
object --.definition,
N Jnode (ref -1ype ,type -specification.repr »;

rule variable -lieclaration :: = .
identifier I: I I array I '[' bounds '1' I of I type -specification.

attribution
variable --.declaration. definitions <-

N --.dejinition(
gennum,
identifier.sym,
object --.definition,
NJnode(

ref -1ype,
N Jnode (arr -1ype ,bounds. count ,type -specification.repr)));

rule bounds :: = bound -JXJir .
attribution

bounds. count : = 1;

rule bounds :: = bounds ',' bound --[Jllir .
attribution

bounds [1]. count: = bounds [2]. count + 1 ;

233

rule identity --.dec/aration :: = identifier I is I expression I: I type -specification.
attnbution

identity --.declaration. definitions <-

N --.definition(
gennum,
identifier.sym ,
object --.definition,
type -specification.repr);

Figure 9.12. Variable and Identity Declarations

function coercible (Figure 9.l1). Note that when the type class of a type is
bad -1ype any coercion is allowed. The reason is that this class can only
occur as the result of an error. If we did not allow the coercion, the use of
an erroneous construct would lead to further (superfluous) error messages.

9.1.3. Declarations Figure 9.12 shows the attribution rules for variable
and identity declarations in LAX. A definition is created for each declara-

234 Chapter 9. Semantic Analysis

tion, just as was done for label definitions in Figure 9.3. Note that the vari
able declaration creates a reference to the given type, while the identity
declaration uses that type as it stands. This is because the variable declara
tion creates 'a variable referring to an undefined value (of the specified
type)' (Section A.3.2) and the identity declaration creates 'a new instance of
the value (of the specified type)' (Section A.3.3).

The treatment of array variables in Figure 9.12 reflects the requirements
of Section A.3.2. We construct the array type based only on the dimen
sionality and element type. The bounds must be integer expressions, but
they are to be evaluated at execution time.

Type declarations introduce apparent circularities into the declaration

rule typespecification :: = identifier.
attribution

typespecification. repr <- Nmode (unidentifieLtype,identifier.sym);

a) Reference to a type identifier

rule type -ileclaration :: = 'type' identifier' =' record --1ype .
attribution

type -ileclaration.definitions +-

N -ilefinition(gennum ,identifier.sym ,type -ilefinition,record --1ype.repr);

rule declaration :: = variable -ileclaration .

rule declaration :: = identity -ileclaration .

rule declaration :: = type -ileclaration .

rule declarations :: = declarations ';' declaration .
attribution

declarations [1].definitions <-

declarations [2]. definitions & declaration. definitions;

rule block :: = 'declare' declarations 'begin' statements 'end' .
attribution

declarations. environment <

complete --.env (
declarations. definitions,
declarations. definitions & statements.definitions & block.environment) &

statements. definitions &
block. environment ;

statements. environment <- declarations. environment;
condition

unambiguous (declarations. definitions & statements. definitions) ;

b) Completing the type declarations

Figure 9.13. Type Declarations

9.1. Description of Language Properties via Attribute Grammars

function identify-..Jype (s : symbol; e : defini tion--1able): mode;
(* Find the type defined by an identifier *)
begin (* identify--1ype *)
if e = nil then identify--1ype : = N -»lode (bad --1ype)
else with e i, first do

if s < >ident then identify--1ype: = identify--1ype (s,rest)

235

else if def.k < > type --.definition then identify--1ype: =N -»lode (bad --1ype);
else identify--1ype : = N -»lode (identified--1ype ,uid)

end; (* identify--1ype *)

Figure 9.14. Type Identification

process: The definition of an identifier must be known in order to define
that identifier. One obvious example, the declaration type t = record x:
real; p : ref t end, was mentioned in Section 8.1. Another is the fact that the
analysis process discussed in Section 9.1.1 assumes we can construct
definitions for all identifiers in a range and then form an environment for
that range. Unfortunately the definition of a variable identifier includes its
type, which might be specified by a type identifier declared in the same
range. Hence the environment must be available to obtain the type. We
solve the problem in three steps, as shown in Figure 9.13, using the
Unidentified-type and identified-type variants of mode:

1. Collect all of the type declarations of a range into one attribute, of type
definitionJable. Any type identifiers occurring in the corresponding
types are not yet identified, but are given by the unidentified-type variant.

2. As soon as step (I) has been completed, transform the entire attribute to
another definition--1able in which each unidentified--1ype has been re
placed by an identified--1ype that identifies the proper definition. This
transformation uses the environment inherited by the range as well as the
information present in the type declarations.

3. Incorporate the newly-created definition--1able into the range's environ
ment, and then process all of the remaining declarations (none of which
are type declarations).

Complete -'!nv is a recursive function that traverses the definitions seeking
unidentified types. Whenever one is found, identify--1ype (Figure 9.14) is
used to obtain the current definition of the type identifier. Note that
identify--1ype must use a unique representation of the definition, not the
definition itself, corresponding to the type identifier. The reason is that, if
types involve recursive references, we cannot construct any of the definitions
until we have constructed all of them! (Remember that attributes are not
variables, so it is not possible to construct an 'empty' definition and then fill
it in later.)

9.1.4. Expressions and Statements The a priori type (prim ode) of an
expression is a synthesized attribute, and describes the type with which a

236 Chapter 9. Semantic Analysis

result is computed; the a posteriori type (postmode) is an inherited attribute,
and describes the type required by the context. If these two types are
different then a sequence of coercion operations must be used during execu
tion to convert the value from one to the other.

The a posteriori type of a particular expression mayor may not depend
upon its a priori type. If the expression is an operand of an operator indica
tion like +, which can stand for several operations (e.g. integer addition,
real addition), then its postmode depends upon the prim ode attributes of
both operands. If, on the other hand, the expression is an array index in
LAX then postmode is integer independent of the expression's prim ode .

Some constructs, like the LAX clause, may not yield a result of the same
type every time they are executed. This does not lead to difficulty when the
construct appears in a context where the a posteriori type is fixed, because
each part of the construct simply inherits the fixed postmode. When the a
posteriori type depends upon the a priori types of the operands, however, we

function base -1ype (t : mode): mode;
(* Remove all levels of reference and procedure call from a type *)
begin (* base -1ype *)
if t.k = ref -1ype then base -1ype : = base -1ype (t. target i)
else if t.k =proc --.lype then

if t.parameters < > nB then base -1ype : = t
else base -1ype : = base -1ype (t. result i)

else base -1ype : = t
end; (* base -1ype *)

function balance(t I,t2: mode): mode;
(* Obtain the representative a priori type oftl,t2 *)
begin (* balance *)
if coercible (t l,t 2) then balance: = t 2
else if coercible (t 2,t 1) then balance: = t 1
else if coercible (t I,base -1ype (t 2» then

case t2.k of
ref --.lype : balance: = balance (t l,t 2. target i);
proc -1ype : balance: = balance (t l,t 2.result i)
end

else if coercible. (t 2,base -1ype (t 1» then
case t l.k of

ref -1ype : balance: = balance (t l.target i ,t 2);
proc -1ype: balance: = balance (t l.result i ,t 2)
end

else N .Jnode (void -1ype);
end; (* balance *)

Figure 9.15. Balancing in LAX

9.1. Description of Language Properties via Attribute Grammars 237

need a type I to serve as a 'model a priori type' in place of the result types
1\, ... , In. This type is obtained by balancing: A set of types 1\, . .. , tn ,
n> 1 can be balanced to a type t if each Ii is coercible to I, and there is no
type I' coercible to t such that each Ii is coercible to t '.

For LAX (and most other languages) balancing is commutative and
'associative' (Exercise 9.11), so that we may restrict ourselves to the case
n =2 (Figure 9.15). Three facts were used in constructing balance:

• If I \ is coercible to but not equivalent to t 2, t 2 is not coercible to t \.
• If not voided, the result has the same base type (type after all references

and procedures have been removed) as one of the operands.
• If I 1 is coercible to the base type of t 2 but not to t 2 itself, the result type is

a dereferencing and/or deproceduring of t 2.

If LAX types t 1 and t 2 are coerced to an a posteriori type t', then the type
balance (t J, 12) always appears as an intermediate step. This may not be true
in other languages, however. In ALGOL 68, for example,
balance (integer,real) = real but both types can be coerced to union
(integer,real) and in this case integer is not coerced to real first.

Figure 9.16 illustrates the use of balancing. In addition to the attributes

type
case --..selectors = i cs --Element;
cs _element = record first: integer; rest: case --..selectors end;

a) Type of label_values

rule case _clause :: = 'case' expression ' of' cases 'else' stalemenLlist 'end' .
attribution

clause.primode balance (cases.primode ,statement _list.primode);
expression.poslmode Nmode (int _type);

condition
values -unambiguous (cases. label_ values) ;

rule cases :: = case .

rule cases :: = cases '/ I' case .
attribution

cases [1].primode balance (cases [2].primode ,case.primode);
cases[l].labeLvalues cases[2].labeLvalues & case.labeLvalues;

rule case :: = case -.label ':' slatement -.lisl .
attribution

case. label_values case -.label. value;

b) Attribution rules

Figure 9.16. Case Clauses

238 Chapter 9. Semantic Analysis

primode and postmode, this example uses labeLvalues (synthesized, type
case -selectors). Postmode is simply passed through from top to bottom, so
we follow our convention of not writing these transfers explicitly.
Label_values collects the values of all case labels into a list so we can check
that no label has occurred more than once (Section A.4.5).

Note that there is no condition checking coercibility of the resulting a
priori type of the case clause to the a posteriori type. Similarly, the a priori
type of the selecting expression is not checked against its a posteriori type in
these rules. Such tests appear only in those rules where the a priori type is
determined by considerations other than balancing or transfer from adjacent
nodes.

Figure 9.17 illustrates some typical attribution rules for primode and post
mode in expressions. Table A.2 requires that the left operand of an assign
ment be a reference, and Section A.4.2 permits only dereferencing coercions
of the left operand. Thus the assignment rule invokes deproc (Figure 9.18)
to obtain an a posteriori type for the name. Note that there is no guarantee
that the type obtained actually is a reference, so additional checks are
needed. Coercible (Figure 9.11) is invoked to verify that the a priori type of
the assignment itself can be coerced to the a posteriori type required by the
context in which the assignment appears. As can be seen from the
remainder of Figure 9.17, this check is made every time an object is created.

Assignment is the only dyadic operator in Table A.2 whose left and right
operands have different types. In all other cases, the types of the operands
must be the same. The attribution rules for comparison show how balance
can be used in this case to obtain a candidate operand type. The two rules
for eqop illustrate placement of additional requirements upon this candi
date.

The attribution for a simple name sets the a priori type to the type
specified by the identifier's definition, and must also verify (via coercible)
that the a priori type satisfies the requirements of the context as specified by
the a posteriori type. Field selection is a bit trickier. Section AAA states
that the name preceding the the dot may yield either an object or a reference
to an object. This requirement, which also holds for index selection, is
embodied in one .-ref (Figure 9.18). Note that the environment in which the
field identifier is sought is that of the record type definition, not the one in
which the field selection appears. We must therefore write the transfer of
the environment attribute explicitly. Finally, the type yielded by the field
selection is a reference if and only if the object yielded by the name to the
left of the dot was a reference (Section A.4A).

Figure 9.19 shows how the field definitions of the record are obtained.
Section A.3 requires that every record type be given a name. The declara
tion process described in Figures 9.13 and 9.14 guarantees that if this name
is associated with an identijied-1ype, the type definition will actually be in the
current environment. Moreover, the type definition cannot specify anything
but a record. Thus recordenv need not verify these conditions.

rule assignment :: = name ': =' expression.
attribution

assignment.primode <- name.postmode ;
name.postmode <- deproc (name.primode);
expression.postmode <-

if name.postmode.k < > ref --type then N Jrlode (bad --type)
else name.postmode. target i ;

condition
coercible (assignment.primode ,assignment.postmode) and
name.postmode.k = ref --type;

rule comparison :: = relation eqop relation .
attribution

comparison.primode <- N Jrlode (bool --type);
relation [I].postmode <- eqop. operand -post;
eqop. operand -pri <- balance (relation [I].primode ,relation [2].primode);
relation [2].postmode <- eqop.operand -post;

condition
coercible (comparison.primode ,comparison.postmode);

ruleeqop ::= '='.
attribution

eqop.operand -f'Ost <- dere f (eqop. operand -pri);
condition

eqop.operand -post.k < > void --type;

rule eqop :: =' , .
attribution

eqop.operand -post <- deproc (eqop.operand -pri);
condition

eqop. operand -f'Ost.k = ref --type;

rule name :: = name '.' identifier_use .
attribution

name [I].primode <-

if identifier _use. current ---1iefinition < > object ---1iefini tion then
N Jrlode (bad --type)

else if name [2].postmode.k = ref --type then
N Jrlode (ref --type ,identifier _use. current ---1iefinition. object --type)

else identifier -use. current ---1iefinition.object --type;
name[2]'postmode <- oneJef(name[2].primode);
name [2]. environment <- name [I].environment ;
identifier _use. environment <-

if deref (name [2].postmode).k < >identified--type then nil
else record -.en v (deref (name [2].postmode).definition,name [I].environment);

condition
coercible (name [I].primode ,name [I].postmode) and
identifier _use. current ---1iefinition. k = object ---1iefinition;

Figure 9.17. Determining A Priori and A Posteriori Types

240 Chapter 9. Semantic Analysis

function deproc (t : mode): mode;
(* Remove all levels of procedure call from a type *)
begin (* deproc *)
if t.k < > proc -.lype then deproc : = t
else if t.parameters < > nil then deproc : = t
else deproc : = deproc (t. result i)
end; (* deproc *)

function dere f (t : mode): mode;
(* Remove all levels of reference from a type *)
begin (* deref *)
ift.k < > ref -.lype then deref: =t
else dere f : = dere f (t. target i);
end; (* deref *)

function one Je f (t : mode): mode;
(* Remove all but one level of reference from a type *)
begin (* one Jef *)
case t.k of

ref -.lype:
if t. target i .k < > arr -.lype and t. target i .k < > rec -.lype then

one Jef: = oneJef (t.target i)
else oneJef: =t;

prOC-.lype:
if t.parameters < > nil then one Je f : = t
else oneJef: = oneJef (t.result i)

otherwise
oneJef:=t

end;
end; (* one Je! *)

Figure 9.18. Type Transformations in LAX

function record -l?nv (i : integer; e: dejinition-.lahle): dejinition-.lable;
(* Obtain the field definitions of a record type

On entry-
t = type for which the fields are sought
e = environment containing the type definition

*)
begin (* record -l?nv *)
ife i jirst.uid<>i thenrecord-l?nv:=record-l?nv(i,e i.rest)
else record -l?nv : = e i jirst.dejined-.lypejields;
end; (* record -l?nv *)

Figure 9.19. Obtaining a Record's Field Definitions

9.1. Description of Language Properties via Attribute Grammars 241

In most programming languages the specification of the operator and the
a posteriori types of the operands uniquely determines the operation to be
carried out, but usually no operation attribute appears in the language
description itself. The reason is that semantic analysis does not make any
further use of the operation, and the operation determined by the semantic
analysis may be either an over- or underspecification for code generation
purposes. For example, the distinction between integer and real assignment
is usually an overspecification because only the length of the object being
assigned is of interest. On the other hand, a record assignment operator is
an underspecification because the code generator must decide between a
load/store sequence, a block transfer and a closed subroutine on the basis of
the record size.

The situation is different for languages like ALGOL 68 and Ada, in
which a user may define operations. There the semantic analyzer must iden
tify the operations, and there is scarcely any distinction between operators
and functions of one or two operands. Which operations or functions are
implemented with closed subprograms and which with open sequences of
instructions is a decision made by the code generator.

Operator identification for Ada depends not only upon the a priori types
of the operands, but also upon the a posteriori type of the result. There is no
coercion, so the a priori and a posteriori types must be compatible, but on
the other hand the constant 2 (for example) could have any of the types
'short integer', 'integer' and 'long integer'. Thus both the operand types
and the result types must be determined by analysis of the tree.

Each operand and result is given one inherited and one synthesized attri
bute, each of which is a set of types. We begin at the leaves of the tree and
compute the possible (a priori) types of each operand. Moving up the tree,
we specify the possible operations and result types based upon the possible
combinations of operand types and the operator indication. Upon arriving
at the root of the tree for the expression we have a synthesized attribute for
every node giving the possible types for the value of this node. Moving
down the tree, these type sets are now further restricted: An inherited attri
bute, a subset of the previous synthesized attribute, is computed for each
node. It specifies the set of types permitted by the use of this value as an
operand in operations further up the tree. At the beginning of the descent,
the previously-computed set of possible result types at the root is used as the
inherited attribute of the root. If this process leads to a unique type for
every node of the tree, i.e. if the inherited attribute is always a singleton set,
then the operations are all specified; otherwise at least one operator (and
hence the program) is semantically ambiguous and hence illegal.

Because LAX is an expression-oriented language, statements and
statement-like constructs (statement- list, iteration, loop, etc.) also have pri
mode and postmode attributes. Most rules involving these constructs simply
transfer those attributes. Figure 9.20 shows rules that embody the conditions
given in Sections A.2.4 through A.2.6.

242

rule statements :: = statements ';' statement .
attribution

statements [I).primode <- statement.primode ;
statements [2].postmode <- N Jrlode (void -type);
statement.postmode <- statements [I].postmode ;

rule iteration :: = 'while' expression loop.
attribution

iteration.primode <- N Jrlode (void -type);
expression.postmode <- N Jrlode (bool-type);
loop.postmode <- N Jrlode (void -type);

condition
iteration.postmode. k = void -type;

Chapter 9. Semantic Analysis

rule iteration :: = 'for' identifier 'from' expression 'to' expression loop .
attribution

iteration.primode <- N Jrlode (void -type);
expression [1).postmode <- N Jrlode (inLtype);
expression [2).postmode <- N Jrlode (int _type);
loop. environment <-

N --..definition(gennum,identifier.sym,ob jecL.definition,N Jrlode (int _type)) &
iteration. environment ;

loop.postmode <- N Jrlode (void -type);
condition

iteration.postmode.k = void -type;

rule jump :: = 'goto' identifieLuse .
attribution

jump.primode <- N Jrlode (void -type);
condition

jump.postmode.k = void -type and
(identifier _use. corresponding --..definition.k = label--..definition or

identifier -.-USe. corresponding --..definition. k = unknown --..definition) ;

Figure 9.20. A Priori and A Posteriori Types in Statements

9.2. Implementation of Semantic Analysis

If we have fully specified the semantic analysis with an attribute grammar
and auxiliary functions, the implementation consists of the following steps:

• Derive the abstract syntax for the structure tree.
• Derive the attribution algorithms as discussed in Section 8.2.
• Derive the attribute storage layout as discussed in Section 8.3.
• Code the attribution rules and auxiliary functions.

9.2. Implementation of Semantic Analysis 243

As we noted in connection with Figure 4.2, the distinction between the
concrete and abstract syntax is that groups of symbols appearing in the
former are really different names for a single construct of the latter, and
hence chain rules that simply transform one of these symbols into another
are omitted. The abstract syntax is derived from the attribute grammar by
identifying symbols whose attributes are the same, and deleting all rules
whose attribution consists solely of transfers.

We extract the context-free syntax directly from the attribute grammar
for input to a parser generator. The only thing missing is the connection
point specifications, which can be attached systematically as discussed in
Section 7.1.1. If a rule does not belong to the abstract syntax, no connection
points are attached to it. Thus the parser uses the concrete syntax for its
analysis of the token sequence, but produces a connection sequence that is a
linearization of a structure tree obeying the abstract syntax.

The result of the attribution algorithm specification leads to the choice of
analysis technique: multi-pass, ordered, etc. As with the selection of a pars
ing technique discussed in Chapter 7, this choice depends primarily upon
the experience of the compiler writer and the availability of tools for
automated processing. Tools are indispensable if ordered grammars are to
be used; the evaluation sequence for mUlti-pass grammars can be obtained
by hand. Further, the available memory plays a role. Roughly the same
amount of memory suffices to store the attributes for any method, if inter
mediate attributes are suitably overlaid. In the case of multi-pass evalua
tion, however, the algorithm and attribution rules can be segmented and
overlaid so that only the relevant part is required during each pass.

The storage layout of the attributes is fixed last, based upon the discussion
in Section 8.3.2. As noted there, particular attention must be paid to the
interaction among attribute representation, algorithms and formulation of
the attribution rules. Often one can influence the entire behavior of the
semantic analysis through small (in terms of content) variations in the attri
bute representation or attribution rules. For example, a one-pass attribution
for languages like Pascal is usually not obtained at first, but only after some
modification of the original specification. This is not surprising, since the
language description discussed in Section 9.l aims above all for a correct
rendition of the language properties and does not consider implementability.

One of the most common attributes in the structure tree is the environ
ment, which allows us to determine the meaning of an identifier at a given
point in the program. In the simplest case, for example in several machine
oriented languages, each identifier has exactly one definition in the program.
The definition entry can then be reached directly via a pointer in the symbol
table. In fact, the symbol and definition table can be integrated into a single
table in this case.

Most languages permit an identifier to have several meanings. Figure
9.21 shows a definition table organization that provides access to the current
definition for an identifier, given its symbol table entry, in constant time:

244

Range header

Symbol stack
headers

Chapter 9. Semantic Analysis

Possession relations for the range

Symbol
Entity

Current
possession
relation

' .. -a

.. -Ek
Possession relations holding in

outer ranges

Note: 'Entity' is a pointer to a definition.

Figure 9.21. A Definition Table Structure

The symbol table entry points to a stack of elements, the first of which con
tains a pointer to the current possession, and the current possession points to
the definition. But this access is exactly the current ..1iejinition function of
Figure 9.lc. Thus Figure 9.21 allows us to implement current ..1iejinition
without using any list search at all. The access time is essentially the same as
that in the simple case of the previous paragraph; only two additional
memory accesses (to follow the possession pointer contained in the stack
and the definition pointer contained in the possession) are required.

At first glance, it may seem that there is too much indirection in Figure
9.21. Why does the stack element contain a pointer to the possession instead
of a pointer to the definition? Why does the possession contain a pointer to
the definition instead of the definition itself? The answers to these questions
become clear if we examine the operations that take place on entry to and
exit from a range, when the set of currently-valid declarations changes and
the definition table must be updated to reflect these changes.

When a range is entered, the stack for each identifier defined in the range
must be pushed down and an entry describing the definition valid in this
range placed on top. Conversely, the stack for each identifier defined in a
range must be popped when leaving that range. To simplify the updating,

9.2. Implementation of Semantic Analysis 245

we represent the range by a linear list of elements specifying a symbol table
entry and a corresponding definition as shown at the top of Figure 9.2l.
This gives constant-time access to the stacks to be pushed or popped, and
means that the amount of time required to enter or leave a range is linear in
the number of identifiers having definitions in it.

We use a pointer to the definition rather than the definition itself in the
range list because many identifiers in different ranges may refer to the same
definition. (For example, in Pascal many type identifiers might refer to the
same complex record type.) By using a pointer we avoid having to store
multiple copies of the definition itself, and also we simplify equality tests on
definitions.

We stack a pointer to the appropriate range list entry instead of stacking
the range list entry itself because it is possible to enter a range and then enter
it again before leaving it. (Figure 9.22 is a Pascal fragment that has this pro
perty. The statement with j j enters the range of the record type one; the
range will be left at the end of that statement. However, the nested state
ment with h j also enters the same range!) When a range is entered twice
without being left, its definitions are stacked twice. If the (single) range list
entry were placed on the stack twice, a cycle would be created and the com
piler would fail.

Finally, we stack a pointer to the range list entry rather than a pointer to
the definition to cater for languages (such as COBOL and PL/l) that allow
partial qualification: In a field selection the specification of the containing
record may be omitted if it can be determined unambiguously. (This
assumes that, in contrast to LAX, exactly one object exists for each record

type
one = record f: integer; g: j two end;
two = record f : boolean; h: i one end;

var
j: jone;

with) j do
begin

withg j do
begin

with h j do
begin

end
end

end;

Figure 9.22. Self-Nesting Ranges

246 Chapter 9. Semantic Analysis

type. In other words, the concepts of record and record type merge.)
Figure 9.23 illustrates the problem of partial qualification, using an

example from PL/l. Each qualified name must include sufficient identifiers
to resolve any ambiguity within a single block; the reference is unambiguous
if either or both of the following conditions hold:

• The reference gives a valid qualification for exactly one declaration .
• The reference gives the complete qualification for exactly one declaration.

Most of the references in Figure 9.23 are unambiguous because the first of
these conditions holds. The Q in W = Q, however, gives a valid
qualification for either the major structure or the field Q.x. Q; it is unambi
guous because it gives the complete qualification of the major structure.
References Z and Q.Z in procedure B would be ambiguous.

In order to properly analyze Figure 9.23, we must add three items of
structural information to each possession relation in Figure 9.21: The level
is the number of identifiers in a fully-qualified reference to the entity
possessed. If the level is greater than 1, containing -structure points to the
possession relation for the containing structure. In any case, the range to
which the possession belongs must be specified. Figure 9.24 shows the pos-

A: PROCEDURE;
DECLARE

1 W,
.... ,

B: PROCEDURE;
DECLARE

P,
1 Q,

2R,

2X,

Y = R.z;

3Z,

3Y,
3Z,
3Q;

W = Q, BY NAME;
C: PROCEDURE

DECLAREY,
1 R,

Z=Q.Y
2Z;

X = R, BY NAME;
ENDC;

ENDB;
END A;

/* Q.x.Y from B, Q.R.Z from B * /
/* W from A, major Q from B * /

/* R.Z from C, Q.x.Y from B * /
/* Q.x from B, R from C * /

Figure 9.23. Partial Qualification

9.2. Implementation of Semantic Analysis

Range header

Z:

Symbol stack
headns

Possession relations for the range

Figure 9.24. Range Specification Including Structure

247

session relations for procedure B of Figure 9.23. Note that this range con
tains two valid possession relations for Q and two for Z. The symbol stack
entries for Z have been included to show that this results in two stack entries
for the same range.

A reference is represented by an array of symbols. The stack correspond
ing to the last of these is scanned, and the test of Figure 9.25 applied to each
possession relation. When a relation satisfying the test is found, no further
ranges are tested; any other relations for the same symbol within that range
must be tested, however. If more than one relation in a range satisfies the
test, then the reference is ambiguous unless the level of one of the relations
is equal to the number of symbols in the reference.

A definition table module might provide the following operations:

• New _range Orange: Establish a new range.
• Add _possession (symbol,definition,range): Add a possession relation to a

given range.
• Enter _range (range): Enter a given range.
• Leave _range: Leave the current range.
• CurrenLdefinition(symbol)definition: Identify the definition correspond

ing to a given identifier at the current point in the program.
• Definition-in Jange (symbol,range)definition: Identify the definition

corresponding to a given identifier in a given range.

248 Chapter 9. Semantic Analysis

type
possession = record

range: i range Jteader ;
next: i possession;
possessing --symbol: symbol;
possessed -'!ntity: entity;
level: integer;
containing --structure: i possession
end;

symboL.array = amay [1.. max....quaifiersJ of symbol;

function test (qualifier: symbol-'JITay ; i : integer; p : possession): boolean ;
(* Check a qualified reference

On entry-
qualifier= reference to be checked
i = number of symbols in the reference
p = possession to be checked

If the reference describes the possession then on exit
test = true

Else on exit-
test =false

*)
label I;
begin (* test *)
test: = true ;
whUe i <p.level do

begin
if qualifier[i] = p.possessing --symbol then

begin
;:=i-I;
if i =0 then goto I;
end;

p: =p.containing --structure
end;

if i = p.level then
wbile qualifier[i] = p.possessing --symbol do

begin
i:=i-I;
if i =0 then goto I;
P : = p.containing --structure
end;

test: = false
I: end; (* test *)

Figure 9.25. Test for Partially Qualified Reference

The first two of these operations are used to build the range lists. The next
three have been discussed in detail above. The last is needed for field selec-

9.3. Notes and References 249

tion in languages such as Pascal and LAX. Recall the treatment of field
selection in Figure 9.17. There the environment in which the field identifier
was sought consisted only of the field identifiers defined in the record yielded
by name. This is exactly the function of definition..inJange. If we were to
enter the range corresponding to the record and then use current -liefinition,
we would not achieve the desired effect. If the identifier sought were not
defined in the record's range, but was defined in an enclosing range, the
latter definition would be found!

Unfortunately, definition..inJange must perform a search. (Actually, the
search is slightly cheaper than the incorrect implementation outlined in the
previous paragraph.) It might linearly search the list of definitions for the
range representing the record type. This technique is advantageous if the
number of fields in the record is not too large. Alternatively, we could asso
ciate a list of pairs (record type, pointer to a definition entry for a field with
this selector) with each identifier and search that. This would be advanta
geous if the number of record types in which an identifier occurred was, on
the average, smaller than the number of fields in a record.

9.3. Notes and References

Many language definitions use context-free syntax rules to indicate proper
ties that are more easily checked with attribute computations. The compiler
designer should not slavishly follow the language definition in this regard;
checks should be apportioned between the context-free rules and attribution
rules on the basis of simplicity. '

In many compilers the semantic analysis is not treated as a separate task
but as a by-product of parsing or code generation. The result is generally
that the static semantic conditions are not fully verified, so erroneous pro
grams are sometimes accepted as correct. We have taken the view here that
semantic analysis is the fundamental target-independent task of the com
piler, and should be the controlling factor in the development of the analysis
module.

Many of the techniques presented here for describing specific language
facilities were the result of experience with attribute grammars for PEARL
[DIN 1980], Pascal [Kastep.s 1982] and Ada [Uhl 1982] developed at the
Universitat Karlsruhe. The representation of arbitrarily many types by lists
was first discussed in conjunction with ALGOL 68 compilers [Peck 1971].
Koster [1969] described the recursive algorithm for ALGOL 68 mode
equivalence using this representation.

The attribution process for Ada operator identification sketched in Sec
tion 9.1.4 is due to Persch and his colleagues [1979, 1980]. Baker [1982] has
proposed a similar algorithm that computes attributes containing pointers to
the operator nodes that must be identified. The advantage claimed by the
author is that if the nodes can be accessed randomly, this means that a com-

250 Chapter 9. Semantic Analysis

plete second traversal is unnecessary. Operator identification cannot be
considered in isolation, however. It is not at all clear that a second complete
traversal will not be required by other attribution, giving us the operator
identification 'for free'. This illustrates the importance of constructing the
complete attribute grammar without regard to number of traversals, and then
processing it to determine the overall evaluation order.

Most authors combine the symbol and definition tables into a single 'sym
bol table' [Gries 1971, Bauer 1976, Abo 1977]. Separate tables appear in
descriptions of multi-pass compilers and serve above all to reduce the main
storage requirements [Naur 1964a]; the literature on ALGOL 68 [Peck 1971]
is an exception. In his description of a multi-pass compiler for 'sequential
Pascal', Hartmann [1977] separates the tables both to reduce the storage
requirement and simplify the compiler structure.

The basic structure of the definition table was developed for ALGOL 60
[Randell 1964, Grau 1967, Gries 1971]. We have refined this structure to
allow it to handle record types and incompletely-qualified identifiers [Busam
1971]. An algebraic specification of a module similar to that sketched at the
end of Section 9.2 was given by Guttag [1975, 1977].

EXERCISES

9.1. Determine the visibility properties of Pascal labels. Write attribution rules
that embody these properties. Treat the prohibition against jumping into a
compound statement as a restriction on the visibility of the label definition (as
opposed to the label dec/aration, which appears in the declaration part of the
block).

9.2. Write the function current _ definition (Figure 9.lc).

9.3. Write the function unambiguous (Figure 9.2a).

9.4. Note that Figure 9.5 requires additional information: the implicit type of an
identifier. Check the FORTRAN definition to find out how this information
is determined. How would you make it available in the attribute grammar?
Be specific, discussing the role of the lexical analyzer and parser in the pro
cess.

9.5. [Sale 1979] Give attribution rules and auxiliary functions to verify the
definition before use constraint in Pascal. Assume that the environment is
being passed along the text, as illustrated by Figure 9.4.
a. Add a depth field to the definition record, and provide attribution rules that

set this field to the static nesting depth at which the definition occurred.
b. Add attribution rules that check the definition depth at each use of an

identifier. Maintain a list of identifiers that have been used at a depth
greater than their definition.

c. When an identifier is defined, check the list to ensure that the identifier has
not previously been used at a level greater than or equal to the current
level when it was defined at a level less than the current level.

d. Demonstrate that your rules correctly handle Figure 9.6.

9.3. Notes and References 251

9.6. What extensions to the environment attribute are required to support modules
as defined in MODULA2?

9.7. Extend the representation of LAX types to handle enumerated types and
records with variants, described as in Pascal.

9.8. Develop type representations analogous to Figure 9.7 for FORTRAN,
ALGOL 60 and Ada.

9.9. Modify the procedure IypLequivalenl to handle the following alterations in
the LAX definition:
a. Structural type equivalence similar to that of ALGOL 68 is specified

instead of the equivalence of A.3.1.
b. Union types union(t I, ... ,tn) similar to those of ALGOL 68. The

sequence of types is arbitrary and union(l],union(12h» = union
(union(llh),fJ) = union(tlhh)·

9.10. Consider the case clause described in Figure 9.16.
a. Formulate a procedure value_unambiguous to verify the uniqueness of the

case labels.
b. Alter the attribution rules to check the uniqueness at each label.
c. Alter the attribution rules and extend the value_unambiguous procedure so

that the labels may be constants of an enumerated type (see Exercise 9.7).

9.11. Prove the following relations for types I], 12 and 13, using the coercion rules
defined in A.4.1 :
a. balance (II h) = balance (12,1 I)
b. balance (balance (II h),fJ) = balance (t],balance (t 2,fJ»

9.12. Suppose that we chose to use the definition table discussed in Section 9.2 for a
LAX compiler.
a. [Guttag 1975, 1977] The definition table module operations were stated as

operations of a package, with 'definition table' as an implied parameter.
Restate them as operations of an abstract data type, making this depen
dence explicit.

b. Two abstract data types, range and definition_table, are involved in this
module. Which of the attributes in the LAX rules discussed in this chapter
will be of type range, and which of type definition _table?

c. Replace the computations of the attributes you listed in (b) with computa
tions involving the operations of the definition table module. Does this
change affect the traversal strategy?

d. Given the modified rules of (c), do any of the attributes you listed in (b)
satisfy the conditions for implementation as global variables? As global
stacks? How do your answers to these questions bear upon the implemen
tation of the definition table as a package vs. an abstract data type?

9.13. Develop definition tables for BASIC, FORTRAN, COBOL and Pascal.

9.14. Add the use before definition check of Exercise 9.5 to the definition table of
Figure 9.21.

9.15. Give a detailed explanation of the problems encountered when analyzing Fig
ure 9.22 if possession relation entries are stacked directly.

252 Chapter 9. Semantic Analysis

9.16. How must a Pascal definition table be set up to handle the with statement?
(Hint: Build a stack of with expressions for each record type.)

9.17. Show the development during compilation of the definition table for the pro
gram of Figure 9.23 by giving a sequence of snapshots.

CHAPTER 10

Code Generation

The code generator creates a target tree from a structure tree. This task has,
in principle, three subtasks:

• Resource allocation: Determine the resources that will be required and
used during execution of instruction sequences. (Since in our case the
resources consist primarily of registers, we shall speak of this as register
allocation.)

• Execution order determination: Specify the sequence in which the des
cendants of a node will be evaluated.

• Code selection: Select the final instruction sequence corresponding to the
operations appearing in the structure tree under the mapping discussed in
Chapter 3.

In order to produce code optimum under a cost criterion that minimizes
either program length or execution time, these subtasks must be intertwined
and iterated. The problem is NP-complete even for simple machine archi
tectures, which indicates that in practice the cost will be exponential in the
number of structure tree nodes. In view of the simple form of the expres
sions that actually occur in programs, however, it is usually sufficient to
employ linear-cost algorithms that do not necessarily produce the optimum
code in all cases.

The approach taken in this chapter is to first map the source-language
objects onto the memory of the target machine. An estimate of register
usage is then made, and the execution order determined on the basis of that
estimate. Finally, the behavior of the target machine is simulated during an
execution-order traversal of the structure tree, driving the code selection and
register assignment. The earlier estimate of register usage must guarantee

253

254 Chapter 10. Code Generation

that all register requirements can actually be met during the final traversal.
The code may be suboptimal in some cases because the final register assign
ment cannot affect the execution order.

The computation graph discussed in Section 4.1.3 is implicit in the
execution-order structure tree traversal. Chapter 13 will make the computa
tion graph explicit, and discuss optimizing transformations that can be
applied to it. If a compiler writer follows the strategies of Chapter 13, some
of the optimization discussed here becomes redundant. Nevertheless, the
three code generation subtasks introduced above remain unchanged.

Section 10.1 shows how the memory map is built up, starting with the
storage requirements for elementary objects given by the implementor in the
mapping specification of Section 3.4. We present the basic register usage
estimation process in Section 10.2, and show how additional attributes can
be used to improve the generated code. Target machine simulation and
code selection are covered in Section 10.3.

10.1. Memory Mapping

Memory mapping determines the size and (relative) address of each object.
In the process, it yields the sizes and alignments for all target types and the
relative addresses of components of composite objects. This information is
used to find access paths during the code selection and, in the case of static
allocation, to generate storage reservation requests to the assembly module.
It also constitutes most of the information needed to construct the type tem
plates discussed in Section 3.3.3, if these are required.

The storage mapping process begins with elementary objects whose sizes
and alignments are known. These are combined, step-by-step, into larger
aggregates until an object is created whose base address cannot be deter
mined until run time. We term such an object allocatable. Examples of allo
catable objects are activation records and objects on the heap. Objects are
characterized during this aggregation process by their size and relative
address within the containing object. The sum of the base address deter
mined at run time and the sequence of relative addresses of aggregates in
which an object is contained yields the effective address of that object.

When the objects are combined, the compactness (packed/aligned) may
be specified. This specification influences not only the relative address of a
component, but also its size and the alignment of the composite object: If
the source language permits value constraints (e.g. Pascal subranges), then a
type can be characterized by both a size (for the unconstrained value set)
and a minimum size (taking the constraint into account). For example, in
Pascal an object defined to lie in a subrange 0 .. 10 would have a minimum
size of 4 (if sizes are expressed in bits) or I (if sizes are expressed in bytes)
and a size equal to that of an unconstrained integer. When this object is
combined with others in a packed composite object, its minimum size is

10.1. Memory Mapping 255

assumed; when the composite object is not packed, the size is used.
The alignment of a composite object that is not packed is the least com

mon multiple of the alignments of its components. When the object is
packed, however, no alignment constraint is imposed.

The storage mapping process can, of course, only use objects of known
length as components of other objects. As noted in Chapter 3, this means
that activation records containing arrays whose bounds are not known until
run time must be split into two parts; only the array descriptor is held in the
static part. For languages like FORTRAN, in which all objects have fixed
size, and in which each procedure is associated with one and only one local
storage area, the procedure and its activation record can be combined into a
single allocatable object. This object then becomes the basis for planning
run-time overlay structure.

Figure 1O.l defines an interface for a memory mapping module. The
module is independent of both source language and target machine. It can
be used for packing to either the memory cell or the bit, depending upon the
interpretation of the types size and location.

The basic idea of the storage module is that one has areas that may grow
by accretion of blocks (objects of known size). An area whose growth has
ceased becomes a block and can itself be added to other areas. Areas may
grow either upward or downward in memory, and the packing attribute is
specified individually for each area. (Both properties are fixed at the time
the area is established.) Each area has a growth point that summarizes the
current amount of the area's growth. For example, at the beginning of the
variant part of a Pascal record, the storage mapping module notes the
growth point; for each alternative it resets to that point. Since variants may
be nested, the growth points must be saved on stacks (one per area) within
the memory mapping module. After all of the alternatives have been
specified, the growth point is advanced by the maximum length over all
alternatives.

In Pascal, the size and alignment of each variant of a record must be kept
so that new and dispose calls can be handled correctly. This requirement is
most easily satisfied by adding two output parameters to both back and com
bine (Figure 10.1), making their calling sequences identical to that of
end_area.

In areas that will become activation records, storage must be reserved for
pointers to static and dynamic predecessors, plus the return address and pos
sibly a template pointer. The size and alignment of this information is fixed
by the mapping specification, which may also require space for saving regis
ters and for other working storage. It is usually placed either at the begin
ning of the record or between the parameters and local variables. (In the
latter case, the available access paths must permit both negative and positive
offsets.) Finally, it is convenient to leave an activation record area open
during the generation of code for the procedure body, so that compiler
generated temporaries may be added. Only upon completion of the code

type
area
size = ...
location = ...
direction = (up, down);
strategy = (align, pack);

procedure new _area (d : direction; s: strategy; var a : area);
(* Establish a new memory area

On entry-
d = growth direction for this area
s = growth strategy for this area

On exit-
a specifies the new area

*)
.... ,

procedure add _block (a: area; s: size; alignment: integer; var I: location);
(* Allocate a block in an area

On entry-
a specifies the area to which the block is to be added
s = size of the block
alignment = alignment of the block

On exit-
I = relative location of the first cell of the block

*)
.... ,

procedure end _area (a: area; var s : size; var alignment: integer);
(* Terminate an area

On entry-
a specifies the area to be terminated

On exit-
s = size of the resulting block
alignment = alignment of the resulting block

*)
.... ,

procedure mark(a : area);
(* Mark the current growth point of an area *)
.... ,

procedure back(a : area);
(* Reset the growth point of an area to the last outstanding mark *)
.... ,

procedure combine (a : area);
(* Erase the last outstanding mark in an area and

reset the growth point to the maximum of all previous growths
*)
.... ,

Figure 10.1. Memory Mapping Module Interface

10.2. Target Attribution 257

selection will the area be closed and the size and alignment of the activation
record finally determined.

In principle, the storage module is invoked at the beginning of code gen
eration to fix the length, relative address and alignment of all declared
objects and types. For languages like Ada, integration with the semantic
analyzer is essential because object size may be interrogated by the program
and must be used in verifying semantic conditions. Even in this case, how
ever, we must continue to regard the storage module as a part of the syn
thesis task of the compiler; only the location of the calls, not the modular
decomposition, is changed.

10.2. Target Attribution

In the simplest case we fix the execution order without regard to target
machine register allocation. The code selector performs a depth-first, left
to-right traversal of the structure tree that corresponds directly to the postfix
form of the expressions. It does not alter the left-to-right evaluation of the
operands, since there is no additional information upon which to base such
an alteration. If the number of registers available does not suffice to hold
the intermediate results while computing the value of an expression then an
ad hoc decision is made during the code generation about which intermedi
ate value(s) should be left in memory. In general this strategy leads to
greater register requirements and longer code than necessary; hence some
planning is recommended. This planning results in computation of addi
tional attributes.

In this section we consider the computation of seven attributes:
Register _count, store and operand _sequence are used to determine the exe
cution order, desire and target _labels provide information about the use of a
result, cost and decision are used to modify the instruction sequence gen
erated from a node. These attributes are evaluated by three distinct kinds of
computation, which we treat in the following subsections: Register alloca
tion (Section 10.2.1) is concerned with determining the temporary storage
requirements of subtrees and hence the execution order. Targeting (Section
10.2.2) specifies desirable placement of results. Finally, algebraic identities
(Section 10.2.3) can be used to obtain equivalent computations having better
properties.

10.2.1. Register Allocation We distinguish global register allocation,
which holds over an entire procedure, from local register allocation, which
controls the use of registers within expressions and influences the execution
order. Further, we partition the task into allocation, by which we plan the
register usage, and asSignment, by which we fix the registers actually used for

258 Chapter 10. Code Generation

a specific purpose. Register assignment takes place during code selection,
and will be discussed in Section 10.3.1; here we concern ourselves only with
allocation.

Global register allocation begins with values specified by the implemen
tation as being held permanently in registers. This might result in the follow
ing allocations for the IBM 370:

Register 15: Subprogram entry address
Register 14: Return address
Register 13: Local activation record base address
Register 12: Global activation record base address
Register I I: Base address for constants
Register 10: Code base address
Register 9: Code offset (Section 11.1.3)

Only two registers are allocated globally as activation record bases; registers
for access to the activation records of intermediate contours are obtained
from the local allocation, as are registers for stack and heap pointers.

Most compilers use no additional global register allocation. Further glo
bal allocation might, for example, be appropriate because most of a
program's execution time is spent in the innermost loops. We could there
fore stretch the register usage considerably and shorten the code if we
reserved a fixed number of registers (say, 3) for the most-frequently used
values of the innermost loops. The controlled variable of the loop is often
one of these values. The simple approach of assigning the controlled vari
ables of the innermost loops to the reserved registers gives very good results
in practice; more complex analysis is generally unnecessary.

Upon completion of the global allocation, we must ensure that at least n
registers always remain for local allocation. Here n is the maximum
number of registers used in a single instruction. (For the IBM 370, n =4 in
the MVCL instruction.) A rule of thumb says that we should actually
guarantee that n + I registers remain for local allocation, which allows at
least one additional intermediate result or base address to be held in a regis
ter.

Pre-planning of local register allocation would be unnecessary if the
number of available registers always sufficed for the number of
simultaneously-existing intermediate results of an expression. Given a lim
ited number of registers, however, we can guarantee this only for some sub
trees. Outside of these, the register requirement is not fixed unambiguously:
Altering the sequence of operations may change the number of registers
required. Figure 10.2 shows an example.

The general strategy for local register allocation is to seek subtrees evalu
able, possibly with rearrangement, using only the number of registers avail
able to hold intermediate results. These subtrees can be coded without addi
tional store instructions. We choose the largest, and generate code to evalu-

10.2. Target Attribution 259

(x+y)/(a*b +c*d)

a) A LAX expression

LE O,x LE 2,a
AE O,y ME 2,b
LE 2,a LE O,c
ME 2,b ME O,d
LE 4,c AER 2,0
ME 4,d LE O,x
AER 2,4 AE OJ'
DER 0,2 DER 0,2
(uses 3 registers) (uses 2 registers)

b) Two possible IBM 370 implementations

Figure 10.2. Dependence of Register Usage on Evaluation Order

ate it and store the result. All registers are then again available to hold
intermediate results in the next subtree.

Consider an expression represented as a structure tree and a machine
with n identical registers rj. The machine's instructions have one of the
following forms:

• Load: rj : = memory _location
• Store: memory _location : = rj
• Compute: rj := 0p(Vj, ... , vd, where Vh may be either a register or a

memory location.

The machine has various computation instructions, each of which requires
specific operands in registers and memory locations. (Note that a load
instruction can be considered to compute the identity function, and require a
single operand in a memory location.)

We say that a program fragment is in normal form if it is written as
P IJ I ... Ps -IJs _ IPs such that each J is a store instruction, each P is a
sequence containing no store instructions, and all of the registers are free
immediately after each store instruction. Let I I ... In be one of the
sequences containing no stores. We term this sequence strongly contiguous if,
whenever Ii is used to compute an operand of h (i < k) all I j such that
i ~ j < k are also used in the computation of operands of h. The sequence
P IJ I ... Ps is in strong normal form if Pq is strongly contiguous for all
l~q~s.

Aho [1976] shows that, provided no operand or result has a size exceed
ing the capacity of a single register, an optimal program to evaluate an
expression tree on our assumed machine can be written in strong normal
form. (The criterion for optimality is minimum program length.) Thus to
achieve an optimal program it suffices to determine a suitable sequence in
which to evaluate the operands of each operator and - in case the register

260 Chapter 10. Code Generation

requirements exceed n - to introduce store operations at the proper points.
The result can be described in terms of three attributes: register _count, store
and operand Jequence. Register _count specifies the maximum number of
registers needed simultaneously at any point during the computation of the
subtree. Store is a Boolean attribute that is true if the result of this node
must be stored. Operand Jequence is an array of integers giving the order in
which the operands of the node should be evaluated. A Boolean attribute
can be used if the maximum number of operands is 2.

The conditions for a strong normal form stated above are fulfilled on
most machines by floating point expressions with single-length operands and
results. For integer expressions they generally do not hold, since multiplica
tion of single-length values produces a double-length result and division
requires a double-length dividend. Under these conditions the optimal

Round nodes have single-length results
Square nodes have double-length results

a) An expression involving single- and double-length values

MOV
MUL
MOV
MUL
ADD
ADC
ADD
DIV
MOV
MUL
MOV
ADD
DIV
MUL
DIV

A,RO
B,RO
C,R2
D,R2
R3,RI
R2
R2,RO
E,RO
G,R2
H,R2
I,RI
J,RI
RI,R2
F,RO
R2,RO

(RO,Rl): =A*B

(R2,R3): = C*D

(RO,R 1): = (RO,R 1) + (R2,R3)

RO:=(RO,RI) DIV E
(R2,R3): =G*H

RI:=I+J

R2: = (R2,R3) DIV RI
(RO,R I): = RO*F
RO: = (RO,R 1) DIV R2

b) An optimal PDPII program to evaluate (a)

Figure 10.3. Oscillation

10.2. Target Attribution 261

instruction sequence may involve 'oscillation'. Figure IOJa shows a tree
that requires oscillation in any optimal program. The square nodes produce
double-length values, the round nodes single-length values. An optimal
PDPII program to evaluate the expression appears as Figure IOJb. The
PDPII is an 'even/odd machine' - one that requires double-length values
to be held in a pair of adjacent registers, the first of which has an even regis
ter number. No polynomial algorithm that yields an optimal solution in this
case is known.

Under the conditions that the strong normal form theorem holds and,
with the exception of the load instruction, all machine instructions take their
operands from registers, the following register allocation technique leads to
minimum register requirements: For the case of two operands with register
requirements k (> k 2, always evaluate the one requiring k (registers first.
The result remains as an intermediate value in a register, so that while
evaluating the other operand, k 2 + I registers are actually required. Since
k (> k2 however, the total register requirement cannot exceed k (.

When k(=k2' either operand may be evaluated first. The evaluation of
the first operand will still require k (registers and the result remains in a
register. Thus k (+ I registers will be needed to evaluate the second
operand, leading to an overall requirement for k (+ I registers. If k (= n
then it is not possible to evaluate the entire expression in the registers
available, although either subexpression can be evaluated entirely in regis
ters. We therefore evaluate one operand (usually the second) and store the
result. This leaves all n registers free to evaluate the other operand. Figure
10.4 formalizes the computation of these attributes.

If the second operand may be either in a register or in memory we apply

rule expression :: = simple _operand .
attribution

expression. register _count <- I;
expression. operand -sequence <- true,

rule expression :: = expression operator expression .
attribution

expression [I]. operand -sequence <-

expression [2]. register _count> expression [3]. register _count;
expression [I]. register _count <-

if expression [2]. register _count = expression [3]. register _count then
min(expression [2]. register _count + I, n)

else max(expression [2]. register _count, expression [3]. register _count) ;
expression [2]. store <- false;
expression [3].store <-

expression [2]. register _count = nand
expression [3]. register _count =n;

Figure 10.4. Local Register Allocation and Execution Order Determination

262 Chapter 10. Code Generation

the same rules, but begin with simple operands having a register _count of 0;
further, the left operand count is replaced by max (expression
[2]. register _count ,1) since the first operand must always be loaded and
therefore has a cost of at least one register. Extension to the case in which
the second operand must be in memory (as for halfword arithmetic on the
IBM 370) presents some additional problems (Exercise 10.3). For integer
multiplication and division we must take account of the fact that the result
(respectively the first operand) requires two registers. The resulting se
quence is not always optimal in this case.

Several independent sets of registers can also be dealt with in this
manner; examples are general registers and floating point registers or gen
eral registers and index registers. The problem of the Univac 1108, in which
the index registers and general registers overlap, requires additional thought.

On machines like the PDPII or Motorola 68000, which have stack
instructions in addition to registers or the ability to execute operations with
all operands and the result in memory, optimization of the local register
allocation is a very difficult problem. The minimum register requirement in
these cases is always 0, so that we must include the program length or execu
tion time as cost criteria. The result is that in general memory-to-memory
operations are only reasonable if no operands are available in registers, and
also the result does not appear in a register and will not be required in one.
Operations involving the stack usually have longer execution time than
operations of the same length involving registers. On the other hand, the
operations to move data between registers and the stack are usually shorter
and faster than register-memory moves. As a general principle, then, inter
mediate results that must be stored because of insufficient registers should be
placed on the stack.

10.2.2. Targeting Targeting attributes are inherited attributes used to
provide information about the desired destination of a result or target of a
jump.

We use the targeting attribute desire to indicate that a particular operand
must be in a register of a particular class. If a descendant can arrange to
have its result in a suitable register at no extra cost, this should be done.
Figure 10.5 gives the attribution rules for expressions containing the four
basic arithmetic operations, assuming the IBM 370 as the target machine.
This machine requires a multiplicand to be in an odd register, and a divi
dend to be in a register pair. We therefore target a single-length dividend to
the even-numbered register of the pair, so that it can be extended to
double-length with a simple shift.

In the case of the commutative operators addition and multiplication, we
target both operands to the desired register class. Then if the register alloca
tion can satisfy our preference for the second operand but not the first, we
make use of commutativity (Section 10.2.3) and interchange the operands.
If neither of the preferences can be satisfied, then an instruction to move the

10.2. Target Attribution

type register _class = (donLcare, even, odd, pair);

rule expression :: = expression operator expression .
attribution

expression [2].desire
case operator. operator of

plus, minus :
if expression [I].desire = pair then even
else expression [I].desire ;

times: odd;
divided _by: even
end;

expression [3].desire
case operator. operator of

plus :
if expression [I].desire = pair then even
else expression [I].desire ;

times: odd;
otherwise dont _care
end;

Figure 10.5. Even/Odd Register Targeting for the IBM 370

263

information to the proper register will be generated as a part of the coding
of the multiplication or division operator. No disadvantages arise from ina
bility to satisfy the stated preference. This example illustrates the impor
tance of the non-binding nature of targeting information. We propagate our
desire to both branches in the hope it will be satisfied on one of them. If it is
satisfied on one branch then it is actually spurious on the other, and no cost
should be incurred by trying to satisfy it there.

Many Boolean expressions can be evaluated using conditional jumps
(Section 3.2.3), and it is necessary to specify the address at which execution
continues after each jump. Figure 10.6 shows the attribution used to obtain
short-circuit evaluation, in the context of a conditional jump. (If short
circuit evaluation is not permitted by the language, the only change is to
delay generation of the conditional jumps until after all operands not con
taining Boolean operators have been evaluated, as discussed in Section
3.2.3.) Labels (and procedure entry points) are specified by references to
target tree elements, for which the assembler must later substitute addresses.
Thus the type assembler --symbol is defined not by the code generator, but by
the assembler (Section 11.1.1).

Given the attribution of Figure 10.6, it is easy to see how code is
generated: A conditional jump instruction is produced following the code to
evaluate each operand that contains no further Boolean operators (e.g. a
relation). The target of the jump is the label that does not immediately fol
low the operand, and the condition is chosen accordingly. Boolean operator

264

type boolean _labels = record
false-.label, true -.label: assembler Jymbol ;
immediate -successor: boolean;
end;

rule conditional_clause :: =

Chapter 10. Code Generation

'if' boolean -'!xpression 'then' statement -.list 'else' statement -.list 'end' .
attribution

boolean_expression. location <- N _assembler -symbol;
conditional_clause. then _location <- N _assembler -symbol;
conditional_clause. else _location <- N _assembler _symbol;
boolean _expression.jump _target <-

N _boolean _labels (
conditional_clause. else _location,
conditional_clause. then _location,
true); (* true target follows immediately *)

rule boolean _expression :: =
boolean _expression boolean _operator boolean _expression .

attribution
boolean _expression [2]. location <- boolean _expression [I].location ;
boolean _expression [3]. location <- N _assembler -symbol ;
boolean _expression [2].jump _target <-

if boolean_operator. operator = 'or' then
N _boolean _labels (

boolean _expression [3].location,
boolean _expression [I].jump _target. true _label,
false) (* false target follows immediately *)

else (* operator must be and *)
N _boolean _labels (

boolean _expression [I].jump _targetjalse-.label,
boolean _expression [3]. location ,

true);
boolean _expression [3].jump _target <- boolean _expression [I].jump _target;

rule boolean _expression :: = 'not' boolean -'!xpression .
attribution

boolean _expression [2]. location <- boolean _expression [I]. location ,
boolean _expression [2].jump _target <-

N _boolean _labels (
boolean _expression [I].jump _target. true _label,

boolean _expression [I].jump _target.f alse _label,
not boolean _expression [I].jump _target. immediate _successor);

Figure 10.6. Jump Targeting for Boolean Expression Evaluation

nodes generate no code at all. Moreover, the execution order is fixed; no
use of commutativity is allowed.

10.2. Target Attribution 265

10.2.3. Use of Algebraic Identities The goal of the attribution dis
cussed in Section 10.2.1 was to reduce the register requirements of an
expression, which usually leads to a reduction in the length of the code
sequence. The length of the code sequence can often be reduced further
through use of the algebraic identities summarized in Figure 1O.7a. We dis
tinguish two steps in this reduction:

• Reduction of the number of computational instructions .
• Reduction of the number ofload instructions.

The number of computational instructions can be reduced by, for example,
using the identities of Figure 1O.7a to remove a change of sign or combine it
with a load instruction (unary complement elimination). Load operations
can be avoided by applying commutativity when the right operand of a
commutative operator is already in a register and the left operand is still in
memory. Figures 10.7b-d give a simple example of these ideas.

None of the identities of Figure 1O.7a involve the associative or distribu
tive laws of algebra. Computers do not obey these axioms, and hence
transformations based upon them are not safe. Also, if the target machine
uses a radix-complement representation for negative numbers then the iden-

x+y =y+x
x-y =x+(-y)= -0'-x)
-(-x)=x
x*y = y*x = (-x)*(-y)
-(x*y) = (-x)*y = x*(-y)

a) Identities for integer and real operands

L l,x
LNR 1,1
L 2,y
S 2,z
MR 0,2

b) Computation of (- x)*0' - z)

L 2,z
S 2,y
L l,x
MR 0,2

c) Computation of x *(z - y), which is equivalent to (b)

L I,z
S I,y
M O,X

d) Computation of (z - y)* x, which is equivalent to (c)

Figure 10.7. Algebraic Identities

266 Chapter 10. Code Generation

tity -(-x)=x fails when x is the most negative representable value, leav
ing commutativity of addition and multiplication as the only safe identities.
As implementors, however, we are free to specify the range of values
representable using a given type. By simply stating that the most negative
value does not lie in that range, we can use all of the identities listed in Fig
ure W.7a. This does not unduly constrain the programmer, since its only
effect is to make the range symmetric and thus remove an anomaly of the
hardware arithmetic. (We normally remove the analogous anomaly of
sign-magnitude representation, the negative zero, without debate.)

Although use of algebraic identities can reduce the register requirement,
the decisive cost criterion is the code size. Here we assume that every
instruction has the same cost; in practical applications the respective instruc
tion lengths must be introduced. Let us also assume, for the moment, a
machine that only provides register-register arithmetic instructions. All
operands must therefore be loaded into registers before they are used. We
shall restrict ourselves to addition, subtraction, multiplication and negation
in this example and assume that multiplication yields a single-length result.
The basic idea consists of attaching a synthesized attribute, cost, to each
expression. Cost specifies the minimum costs (number of instructions) to
compute the result of the expression in its correct and inverse (negated)
form. It is determined from the costs of the operation, the operand compu
tations, and any complementing required. An inherited attribute, decision,
is then computed on the basis of these costs and specifies the actual form
(correct or inverse) that should be used.

To generate code for a node, we must know which operation to actually
implement. (In general this may differ from the operator appearing in the
structure tree.) If the actual operation is not commutative then we have to
know whether the operands are to be taken in the order given by the struc
ture tree or not. Finally, we need to know whether the result must be com
plemented. As shown in Table 10.8, all of this information can be deduced
from the structure tree operator and the forms of the operands and result.

The k column of Table 10.8 gives the cost of the operation, including any
complementing. This information is used to obtain the minimum costs of
the correct and inverse forms of the expression as shown in Figure 10.9: Best
is invoked with the structure tree operator and the costs of all combinations
of operand computations. It tests all of the possibilities, finding the combi
nation of operand forms that minimizes the cost of computing each of the
possible result forms. Figure 10.10 gives the attribution rules. Note that the
costs assessed to simple operands in Figure 10.10 do not include the cost of a
load operation. Loads and stores are completely determined by the local
register allocation process for a machine with only register-register instruc
tions.

Let us now consider a machine that has an additional instruction for each
binary arithmetic operation. These additional instructions require the left
operand value to be in a register and the right operand value to be in

10.2. Target Attribution

Table 10.8. Unary Complement Elimination

Tree
Node

Result Operand
Form Forms

k
Reverse
Operands

Negate

a +b

a -b

a*b

cc I false false
ci I false false

c
ic I false true
ii 2 false true

cc 2 false true
ci I true false

i
ic I false false
ii I false false

cc 1 false false
ci I false false

c
ic 2 false true
ii 1 true false

cc 1 true false
ci 2 false true

i
ic 1 false false
ii I false false

cc 1 false false
ci 2 false true

c
ic 2 false true
ii I false false

cc 2 false true
ci 1 false false

i
ic 1 false false
ii 2 false true

c means that the sign of the operand is not inverted
i means that the sign of the operand is inverted
k is a typical cost of the operation in instructions

Actual
Operation

plus
minus
minus
plus

plus
minus
minus
plus

minus
plus
plus
minus

minus
plus
plus
minus

times
times
times
times

times
times
times
times

267

Method

a +b
a-(-b)
b-(-a)
-(-a+(-b»

-(a+b)
-b -a
-a-b
-a+(-b)

a -b
a +(-b)
-(-a+b)
-b -(-a)

b -a
-(-a+(-b»
-a+b
-a-(-b)

a*b
-(a*(-b»
-(-a*b)
-a*(-b)

-(a*b)
a *(-b)
-a*b
-(-a*(-b»

memory. Since the best choice of computation depends upon the operand
locations, we must extend Table 10.8 to include this information. Table
10.11 shows such an extension for the integer addition operator. The k
column of Table 10.11 includes the cost of a load instruction when both
operands are in memory.

We took the operand location as fixed in deriving Table 10.11. This
meant, for example, that when the correct left operand was in memory and
the inverted right operand was in a register we used the sequence subtract,
negate to obtain the correct value of the expression (Table 10.11, row 7).
We could also have used the sequence load, subtract, but this would have
increased the register requirements. If we allow the unary complement
elimination to alter the register requirements then it must be integrated with
the local register allocation, increasing the number of attribute dependencies

268

type
/orm = (correct, inverse);
combination = (cc , ci, ic, ii);

Chapter 10. Code Generation

costJpeci/ication =array [correct .. inverse) of record
length: integer;
operands: combination
end;

function best (op: operator; kcc, kci, kic, kii : integer): cost -specification;
(* Determine the cheapest combination

On entry-
op = Structure tree operator
kpq = Sum of the operand costs for combination pq

On exit-

*)

var

best = Cost of the optimum instructions yielding, respectively, the
correct and inverted values of the expression

operand _length: array [cUi) of integer;
cost: cost -specification;
next: integer;

begin (* best *)
operand _length [ci): = kci ;
operand _length [ic): = kic ;
operand _length [ii): =kii;
for / : = correct to inverse do

begin
cost [/ J. length: = kee + k [op,f,ee]; cost [/]. operands: = ee ;
for pq : = ci to ii do

begin
next :=operand-Iength[pq)+k[op,/,pq); (* k from Table to.8.*)
if cost [f].length > next then

begin
cost [/).length : = next; cost [/].operands : = pq
end

end
end;

best: = cost
end; (* best *)

Figure 10.9. The Cost Attribute

and possibly requiring a more complex tree traversal. Our approach is
optimal provided that the cost of a load instruction is never less than the cost
of negating a value in a register.

10.2. Target Attribution

rule assignment :: = name I: = I expression .
attribution

expression.decision +- correct;

rule expression :: = denotation .
attribution

269

expression. cost +-

N --costspecification{
O,cc,

(* Combination is a dummy value *)
(* Load instruction only *)

0, cc);

rule expression :: = name .
attribution

expression. cost +-

N --costspecification{
0, cc,
1, cc);

(* Negative constant is stored *)

(* Combination is a dummy value *)
(* Load instruction only *)
(* Load and complement *)

rule expression :: = expression binary _operator expression .
attribution

expression[l).cost +-

best {
binary _operator.op,
expression [2). cost [correct).length +expression [3).cost [correct).length,
expression [2). cost [correct).length +expression [3). cost [inverse).length ,
expression [2). cost [inverse).length + expression [3). cost [correct].length,
expression [2]. cost [inverse].length + expression [3]. cost [inverse].length);

expression [2].decision +-

if expression [1]. cost [expression [1]. decision]. operands in fcc, ci J then correct
else inverse;

expression [3].decision +-

if expression [I].cost [expression [I].decision]. operands in fcc, ic J then correct
else inverse;

rule expression :: = unary _operator expression .
attribution

expression [I).cost +-

best {
unary _operator.op,
expression [2]. cost [correct].length ,
maxint, maxint, (* ci, ic are invalid in this case *)
expression [2]. cost [inverse].length);

expression [2]. decision +-

if expression [1].cost [expression [I].decision].operands = cc then correct
else inverse;

Figure 10.10. Unary Complement Costing

270 Chapter 10. Code Generation

Table 10.11. Addition on a Machine with Both Memory
and Register Operands

Result
Form

Operand
Forms

Operand
Locations

k
Reverse
Operands

Negate

c

i

rr I false false
rm I false false

cc
I true false mr

mm 2 false false

rr I false false
rm I false false

ci
2 true true mr

mm 2 false false

rr I true false
rm 2 false true

ic
mr I true false
mm 2 true false

" 2 false true
rm 2 false true

ii
mr 2 true true
mm 3 false true

rr 2 false true
rm 2 false true

cc
2 true true mr

mm 3 false true

rr I true false

ci
rm 2 false true
mr I true false
mm 2 true false
rr I false false

ic rm I false false
mr 2 true true
mm 2 false false

rr I false false

ii
rm I false false
mr I true false
mm 2 false false

c means that the sign of the operand is not inverted
i means that the sign of the operand is inverted
r means that the value of the operand is in a register
m means that the value of the operand is in memory
k is a typical cost of the operation in instructions

Actual
Operation

plus
plus
plus
plus

minus
minus
minus
minus

minus
minus
minus
minus

plus
plus
plus
plus

plus
plus
plus
plus

minus
minus
minus
minus

minus
minus
minus
minus

plus
plus
plus
plus

Method

a+b
a+b
b+a
a+b
a-(-b)
a-(-b)
-(-b-a)
a-(-b)

b -(-a)
-(-a-b)
b -(-a)
b -(-a)

-(-a +(-b»
-(-a+(-b))
-(-b +(-a))
-(-a+(-b))

-(a +b)
-(a +b)
-(b +a)
-(a +b)

-b-a
-(a-(-b))
-b-a
-b-a

-a-b
-a-b
-(b -(-a»
-a-b

-a +(-b)
-a+(-b)
-b +(-a)
-a +(-b)

When we apply algebraic identities on a machine with both register
register and register-memory instructions, the local register allocation pro
cess should assume that each computational instruction can accept any of its

10.3. Code Selection 271

operands either in a register or in memory, and returns its result to a register
(the general model proposed in Section 10.2.1). This assumption leads to
the proper register requirement, and allows complete freedom in applying
the identities. Local register allocation decides the evaluation order of the
operands, but leaves open the question of which operand is left and which is
right. Algebraic identities, on the other hand, deal with the choice of left
and right operands but make no decisions about evaluation order.

10.3. Code Selection

Although the techniques of the previous sections largely determine the
shape of the generated code, a number of problems remain open. These
include the final assignment of registers and the question of which instruc
tions will actually implement a previously-specified operation: On the IBM
370, for example, can a constant be loaded with an LA instruction or must it
be stored as a literal? Does an addition of two addresses require a separate
add instruction, or can the addition be carried out during computation of the
effective address of the following instruction?

10.3.1. Machine Simulation The relationship between values com
puted by the program being compiled and the machine resources that will
be used to represent them during execution can be characterized by a
sequence of machine states. These states form the pre- and post-conditions
for the generated instructions. We could include the machine state as an
attribute in the structure tree and specify it in advance by attribution rules.
This would mean, for example, that we would combine register assignment
with local register allocation and thereby specify the final register numbers
for operands and results. Such a strategy complicates a number of optimiza
tions, however. Examples are the re-use of intermediate results that remain
in registers from previous computations in the same expression, and the
delay of store instructions discussed below. Thus we assume that, during the
execution-order traversal of the structure tree in which code selection takes
place, a machine simulation is used to determine the run-time machine state
as closely as possible.

Every value computed by the program and every allocatable resource of
the target machine is (conceptually) specified by a descriptor. The machine
state consists of links between these descriptors, indicating the relationship
between the values and the resources representing them at a given point in
the execution sequence. Figure 10.12 shows typical descriptor layouts for
implementing LAX on the IBM 370.

Constants that might appear in the address field of the instruction, and
constants whose values are to be processed further by the code generator,
are described by the value class literaL value. Other constants, like strings
and floating point numbers, will be placed in storage and consequently
appear as memory values.

272 Chapter 10. Code Generation

type
main Jtorage _access = record

base, index; i value _descriptor;
displacement: internal_int ;
end;

value _class = (
literal_ value ,
label Jeference,
procedure Jeference,
general_register,
register -[Xlir ,
floating -fJOint _register,
memory _address,
memory _ value);

value _descriptor = record
tmode : target _type ;
case class: value _class of

literaL value :
(Ivai: internal_int);

(* Current access *)
(* Manipulable integer constant *)
(* Explicitly-referenced label *)
(* Explicitly-referenced procedure *)
(* Single general register *)
(* Adjacent even/odd general registers *)
(* Single floating point register *)
(* Pointer to a memory location *)
(* Contents of a memory location *)

label Jeference, procedure Jeference:
(code: assembler --symbol;
environment: i value _descriptor);

general_register, register _pair, floating _point _register:
(reg: i register -tlescriptor);

memory _address, memory _ value :
(location: main --storage _access)

end;
register --state = (

free,
copy,
unique,
locked);

register _descriptor = record
state: register --state;
content: i value _descriptor;

(* Current usage *)
(* Unused *)
(* A copy exists in memory *)
(* No other copy available *)
(* Not available for assignment *)

memory _copy: main --storage _access;
end;

Figure 10.12. Descriptors for Implementing LAX on the IBM 370

Label and procedure references are represented by closures (Section
2.5.2), leaving the code location to be defined by the assembler and indicat
ing the proper environment by an execution-time value. Note that this
representation is used only for an explicit label or procedure reference; the
closure for a label or procedure-type variable or parameter is not known at
compile time and must therefore appear as a memory or register value.

10.3. Code Selection 273

The value descriptors of Figure 10.12 contain no information for the
storage classes 'program counter' and 'condition code' (Section 3.1.1), since
these classes occur only implicitly in IBM 370 instructions. The situation
could be different on the PDPll, where explicit assignments to the program
counter are possible. Computers like the Motorola 68000 and PDPII, which
provide stack instructions, also require information about the storage class
'stack'. The actual representation in the descriptor depends upon how many
stacks there are and whether only the top element or also lower elements can
be accessed. We restrict ourselves here to two storage classes: 'main storage'
and 'registers'. Similar techniques can be used for other storage classes.

When an access function is realizable within a given addressing structure,
we say that the accessed object is addressable within that structure. If an
object required by the computation is not addressable then the code genera
tor must issue instructions to manipulate the state, making it addressable,
before it can be used. These manipulations can be divided into two groups,
those required by source language concepts and those required by limita
tions on the addressing structure of the target machine. Implementing a
reference with a pointer variable would be an example of the former, while
loading a value into an index register illustrates the latter. The exact divi
sion between the groups is determined by the structure of the main storage
access function implemented in the descriptors. We assume that every non
literal leaf of the structure tree is addressable by this access function. The
main storage access function of Figure 10.12 is stated in terms of a base, an
index and a displacement. The base refers to an allocatable object (Section
1O.l) whose address may, in general, be computed during execution. The
index is an integer value computed during execution, while the displacement
is fixed at compile time. Index and displacement values are summed to
yield the relative address of the accessed location within the allocatable
object referred to by the base.

If the access is to statically-allocated storage then the 'allocatable object'
to which the accessed object belongs is the entire memory. We indicate this
special case by a nil base, and the displacement becomes the static address.
A more interesting situation arises when the access is to storage in the
activation record of a LAX procedure. Figure 1O.13a shows a LAX pro
gram with five static nesting levels. If we associate activation records only
with procedures (Section 3.3.2) then we need consider only three levels.
Value descriptors for the three components of the assignment in the body of
q could be constructed as shown in Figure 1O.13b.

The level array is built into the compiler with an appropriate maximum
size. When the compiler begins to translate a procedure, it ensures one value
descriptor for each level up to the level of the procedure. Initially, the
descriptor at level I indicates that the global activation record base address
can be found in register 12 and the descriptor at the procedure's level indi
cates that the local activation record base address can be found in register
13. Base addresses for other activation records can be found by following

o
1
2
3
4

274

. .
Level
Array

Chapter 10. Code Generation

declare
a: integer;
procedure p ;

declare
b: integer;
procedure q(c: integer); a: =b +c
begin
b:=I;q(2)
end

begin
p
end

a) A LAX program

general
register

12

memory
value

static chain
offset

general
register

13

Value descriptors
for activation
record bases

memory
address

a offset

memory
value

b offset

memory
value

c offset

Value descriptors
for operands

b) Value descriptors for the IBM 370

Figure 10.13. Referencing Dynamic Storage

Value class

Base

Index

Displacement

the static chain, as indicated by the descriptor at level 2. This initial condi
tion is determined by the mapping specification. Weare assuming here that
the LAX-to-IBM 370 mapping specification makes the global register allo
cation proposed at the beginning of Section 10.2.1.

When a value descriptor is created for a variable, its base is simply a copy

10.3. Code Selection 275

of the level array element corresponding to the variable's static nesting
depth. (The program is assumed at level 0 here.) The index field for a simple
variable's access function is nil (indicated in Figure 1O.13b by an empty
field) and the displacement is the offset of the variable within the activation
record. For array variables, the index field points to the value descriptor of
the index, and the displacement is the fictitious offset discussed in Section
3.2.2.

The access function for a value may change as instructions that manipu
late the value are generated. For example, suppose that we generate code to
carry out the assignment in Figure 1O.l3a, starting from the machine state
described by Figure 1O.13b. We might first consider generating a load
instruction for b. Unfortunately, b is not addressable; the IBM 370 load
instruction requires that the base be in a register. Thus we must first obtain a
register (say, general register I) and load the base address for the activation
record at level 2 into it. When this instruction has been generated, we
change the value descriptor for the base to have a value class of
general_register and indicate general register I. Generation of the load for
b is now possible, and the value descriptor for b must be altered to reflect
the fact that it is in (say) general register 3.

There is one register descriptor for each register used by the code genera
tor. This includes both the registers controlled by the local register alloca
tion and globally-assigned registers with fixed interpretations. The local
register allocation process discussed in Section 10.2.1 schedules movement
of values into and out of registers. As we noted at the beginning of the
chapter, however, only an estimate of the register requirements is possible.
The code selection process, working with the machine state description, may
be able to reduce the register count below that estimated by the local register
allocator. As a consequence, it may be unnecessary to store an intermediate
value whose node had been given the store attribute. For this reason, we
defer the generation of store instructions requested by these attributes in the
hope that the register holding the value will not actually be required before
the value can be used again. Using this strategy, we may have to free the
register 'unexpectedly' in a context where the value descriptor for the value
is not directly accessible. This means that the register descriptor of a register
containing a value must point to the value descriptor for the contained
value. If the register must be freed, a store instruction can be emitted and
the value descriptor updated to reflect the current location of the value.

Immediately after a load or store instruction, the contents of a register are
a copy of the contents of some memory location. This 'copy' relationship
represents a condition that occurs during execution, and to specify it the
register descriptor must be able to define a memory access function. This
access function is copied into the register descriptor from a value descriptor
at the time the two are linked; it might describe the location from which the
register was loaded or that to which it was stored. Some care must be
exercised in deciding when to establish such a relationship: The code gen-

276 Chapter 10. Code Generation

if/ree registers exist then choose one arbitrarily
else if copy registers exist then choose the least-recently accessed
else

begin
choose the least-recently accessed unique register;
allocate a temporary memory location;
emit a store instruction;
end;

if chosen register has an associated value descriptor then
de-link the value descriptor;

lock the chosen register;

Figure 10.14. Register Management

era tor must be able to guarantee that the value in memory will not be
altered by side effects without explicitly terminating the relationship. Use of
programmer-defined variables is particularly dangerous because of this
requirement, but use of compiler-generated temporaries and activation
record bases is safe.

The register assignment algorithm should not make a random choice
when asked to assign a register (Figure 10.14). If some register is in state
free, it may be assigned without penalty. A register whose state is copy may
be assigned without storing its value, but if this value is needed again it will
have to be reloaded. The contents of a register whose state is unique must be
stored before the register can be reassigned, and a locked register cannot be
reassigned at all. All globally-allocated registers are locked throughout the
simulation. The states of locally-allocated registers change during the simu
lation; they are always free at a label.

As shown in Figure 10.14, the register assignment algorithm locks a regis
ter when it is assigned. The code selection routine requesting the register
then links it to the proper value descriptor, generating any code necessary to
place the value into the register. If the value is the result of a node with the
store attribute then the register descriptor state is changed to unique. This
makes the register available for reassignment, and guarantees that the value
will be saved if the register is actually reassigned. When a value descriptor
is destroyed, it is first de-linked from any associated register descriptor. The
state of the register descriptor is changed to free if the register descriptor
specifies no memory copy; otherwise it is changed to copy. In either case it
is available for reassignment without any requirement to store its contents.
The local register allocation algorithm of Section 10.2.1 guarantees that the
simulator can never block due to all registers being locked.

10.3.2. Code Transfonnation We traverse the structure tree in execu
tion order, carrying out a simulation of the target machine's behavior, in
order to obtain the final transformation of the structure tree into a sequence

10.3. Code Selection 277

of instructions. When the traversal reaches a leaf of the tree, we construct a
value descriptor for the object that the leaf represents. When the traversal
reaches an interior node, a decision table specific to that kind of node is con
sulted. There is at least one decision table for every abstract operation, and
if the traversal visits the node more than once then each visit may have its
own decision table. The condition stubs of these decision tables involve
attributes of the node and its descendants.

Figure 10.15 shows a decision table for integer addition on the IBM 370
that is derived from Table 10.11. The condition stub uses the form and loca
tion attributes discussed in Section 10.2.3 to select a single column, and the
elements of the action stub corresponding to X's in that column are carried
out in sequence from top to bottom. These actions are based primarily upon
the value descriptors for the operands, but they may interrogate any of the
node's attributes. They are basically of two kinds, machine state manipula
tion and instruction generation, although instructions must often be gen
erated as a side effect of manipulating the machine state.

Four machine state manipulation actions appear in Figure 10.15:
swap (I, r) simply interchanges the contents of the value descriptors for the
left and right operands. A register is allocated by Ireg(l, desire), taking into
account the preference discussed in Section 10.2.2. This action also gen
erates an instruction to load the allocated register with the value specified by
value descriptor I, and then links that value descriptor to the register

Result correct YYYYYYYYYYYYYYYYNNNNNNNNNNNNNNNN
i correct YYYYYYYYNNNNNNNNYYYYYYYYNNNNNNNN
It correct YYYYNNNNYYYYNNNNYYYYNNNNYYYYNNNN
i in register YYNNYYNNYYNNYYNNYYNNYYNNYYNNYYNN
It in register YNYNYNYNYNYNYNYNYNYNYNYNYNYNYNYN

.6wap(i,lt} X X X XX X X X XX X X
iJte.g (i, du.ur.e.) X X X X X X X X
ge.n(A,i,lt} XXX XXX XXX XXX
ge.n (AR, i, It) X X X X
ge.n(S,i,lt} XXX XXX XXX XXX
ge.n (SR, i, It) X X X X
ge.n(LCR, t,t) X X XXXXXXXX X X
6lte.e.(It) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1te.6UU (i, "tOlte.) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

"correct" means the sign is not inverted
1 = value descriptor of the left operand
r = value descriptor of the right operand
desire = desire attribute of the current node
store = store attribute of the current node
AR, A, S, SR and LNR are IBM 370 instructions

Figure 10.15. IBM 370 Decision Table for +(integer,integer)integer
Based on Table 10.11

278 Chapter 10. Code Generation

descriptor of the allocated register. After the code to carry out the addition
has been generated, registers that might have been associated with the right
operand must be freed and the descriptor for the register holding the left
operand must be linked to the value descriptor for the result. If the store
attribute is true then the result register descriptor state is set to unique; other
wise it remains locked as discussed in Section 10.3.1.

Figure 10.15 contains one action to generate the RR-format of the add
instruction and another to generate the RX-format. A single action could
have been used instead, deferring the selection to assembly. The choice
between having the code generator select the instruction format and having
the assembler select it is made on grounds of convenience. In our case the
code generator possesses all of the information necessary to make the selec
tion; for machines with several memory addressing formats this is not
always true because the proper format may depend upon the location
assigned to an operand by the assembler.

We must stress here a point made earlier: The code selection process,
specified by the decision tables and the register assignment algorithm
operating on the machine state, produces the final code. All previous attri
bution prepares for this process, gathering information but making no deci
sions.

Decision tables occurring in the code generator usually have a
comparatively small number of conditions (two to six), and well-known
techniques for converting decision tables into programs can be applied to
implement them. We can distinguish two essentially different methods:
programmed decision trees and realization as data structures. The former
method generally leads to long programs with large storage requirements.
In the latter case the tables must be interpreted; the storage costs are smaller
but the execution time is longer. Because each decision table is used infre
quently, we give priority to reduction of memory requirements over shorten
ing of execution time. Mixed-code approaches, based upon the frequency of
use of the table, can also be followed. Programmed decision tables are most
successful in small, simple compilers. The more cases and attributes that the
code generator distinguishes, the more heavily the advantages of a data
structure weigh.

To represent the decision tables by data structures we first collect all of
the possible actions into a large case statement. The actions can then be
represented in the tables by their case selectors. In most cases the tables are
(or are close to being) complete, so we can apply a method based upon the
idea that the sequence of values for the conditions that characterize the pos
sible cases can be regarded as a mixed-radix number. The lower right qua
drant of the decision table (see Figure 10.15) is implemented as a Boolean
matrix indexed by the action number (row) and the condition (column). An
X corresponds to a true element, a blank to a false element. Instead of using
a Boolean matrix, each column could also be coded as a list of the case
labels that correspond to the actions which must be carried out.

10.4. Notes and References 279

10.4. Notes and References

The memory _map module enters blocks into an area as they are delivered,
regardless of whether or not gaps are introduced because of alignment con
straints. As noted in Chapter 3, such gaps can often be eliminated or
reduced by rearrangement of the components of a composite object. Unfor
tunately, the problem of obtaining an optimum layout is a variant of the
'knapsack problem' [Miller 1972], which is known to be NP-complete.

The problem of optimal code generation for expression trees has been
studied extensively. Proof that the problem is NP-complete was given by
Bruno [1976]. Our treatment is derived from those of Bruno and Lassagne
[1975] and Aho and Johnson [1976]. The basic method for estimating regis
ter usage is due to Sethi and Ullman [1970]. Multi-register machines were
discussed by Aho, Johnson and Ullman [l977b], who showed that a polyno
mial algorithm for optimal code generation could be obtained if double
length values could occupy arbitrary pairs of registers. Unfortunately, most
machines restrict double-length values to pairs of adjacent registers, and
usually require that the first register of the pair have an even number.

Targeting is a concept that is implicit in the notion of an inherited attri
bute. Wulf and his students [1975] were the first to make systematic use of
targeting under that name, and our discussion of unary complement elimi
nation is based upon their work.

Target attribution is described by an attribute grammar, and hence the
semantic analysis and code generation tasks can be interfaced by merging
their attribute grammars. If storage constraints require splitting of this com
bined attribution, the split should be made on the basis of traversals
required by the combined attribute grammar. Thus each traversal may be
implemented as a pass, and each pass may carry out both semantic analysis
and code generation tasks. The specifications of the two tasks remain dis
tinct, however, their merging is an implementation decision that can be car
ried out automatically.

'Peephole optimization' [McKeeman 1965] uses a machine simulation,
and capitalizes upon relationships that arise when certain code fragments
are joined together. Wilcox [197 I] proposed a code generator consisting of
two components, a transducer (which essentially evaluates attributes) and a
simulator (which performs the machine simulation and code selection). He
introduced the concepts of value and register descriptors in a form quite
similar to that discussed here. Davidson [1980] uses a simulation following a
simple code selector based upon a depth-first, left-to-right traversal of the
structure tree with no attempt to be clever about register allocation. He
claims that this approach is easier to automate, and gives results approach
ing those of far more sophisticated techniques.

Formulation of the code selection process in terms of decision tables is
relatively rare in the literature, although they seem to be the natural vehicle
for describing it. A number of authors [Elson 1970, Wilcox 1971, Waite

280 Chapter 10. Code Generation

1974] have proposed special code generator description languages that
effectively lead to programmed decision trees. Gries [1971] mentions deci
sion tables, but only in the context of a rather specialized implementation
used by the IBM FORTRAN H compiler [Lowry 1969]. This technique,
known as 'bit strips', divides the conditions into two classes. Conditions in
the first class select a column of the table, while those in the second are sub
stituted into particular rows of the selected column. It is useful only when a
condition applies to some (but not all) elements of a row. The technique
precludes the use of a bit matrix because it requires each element to specify
one of three possibilities (execute, skip and substitute) instead of two.

Glanville and Graham [1978] use SLR(l) parse tables as a data structure
implementation of the decision tables; this approach has also been used in
the context of LALR(l) parse tables by lansohn and Landwehr [1982].

EXERCISES

10.1. Complete the definition of the memory mapping module outlined in Figure
10.1 for a machine of your choice.

10.2. Devise a linear algorithm to rearrange the fields of a record to minimize
waste space, assuming that the only possible alignments are I and 2. (The
DEC PDPII and Inte18086 have this property.)

10.3. [Aho 1976) Consider an expression tree attributed according to the rules of
Figure lOA.
a. State an execution-order traversal algorithm that will produce optimum

code when arithmetic instructions are emitted at the postfix encounters of
interior nodes.

b. State the conditions under which LOAD and STORE instructions will be
emitted during the traversal of (a).

c. Show that the attribution of Figure 10.4 is inadequate in the case where
some arithmetic operations can be carried out only by instructions that
require one operand in memory.

d. Show that optimum code can be produced in case (c) if it is possible to
create a queue of pointers to the tree and use this queue to guide the
execution-order traversal.

lOA. Extend the attribution of Figure lOA to handle expression nodes with
arbitrary numbers of operands, all of which must be in registers.

10.5. [Bruno 1975) Suppose that the target computer has a stack of fixed depth
instead of a set of registers. (This is the case for most floating point chips
available for microprocessors.) Show that your algorithm of Exercise lOA
will still work if extra constraints are placed upon the allowable permuta
tions.

10.6. What changes would you make in your solution to Exercise lOA if some of a
node's operands had to be in memory and others in registers?

10.7. Show that the attribution rules of Figure 10.6 obey DeMorgan's law, i.e. that
either member of the following pairs of LAX expressions leads to the same

10.4. Notes and References

set of attributes for a and b:

not (a and b), not a or not b
not (a or b), not a and not b

281

10.8. Modify Figure 10.6 for a language that does not permit short-circuit evalua
tion. What corresponding changes must be made in the execution-order
determination?

10.9. [Elson 19701 The PLiI LENGTH function admits optimizations of string
expressions analogous to short-circuit evaluation of Boolean expressions:
LENGTH (A I I B) becomes LENGTH (A) + LENGTH (B). (' I I' is the
concatenation operator.) Devise targeting attributes to carry this informa
tion and show how they are propagated.

10.10. Show that the unary complement elimination discussed in Section 10.2.3 also
minimizes register requirements.

10.11. Extend Table 10.8 to include division.

10.12. Show that the following relation holds for the cost attribute (Figure 10.10) of
any expression node:

I cost [correct I. length - cost [inverse I. length I ,.:; L

Where L is the length of a negation operator. (This condition must hold for
all operations, not just those illustrated in Table 10.8.) What follows from
this if register-memory instructions are also allowed?

10.13. What changes would be required in Figure 10.10 for a machine with a 'load
negative' instruction that places the negative of a memory value into a regis
ter?

10.14. Modify Figure 10.9 for a machine with both register-register and register
memory instructions. Write a single set of attribution rules incorporating the
tasks of both Figure 10.4 and Figure 10.10.

10.15. Specify descriptors to be used in implementing LAX on some computer
other than the IBM 370. Carefully explain any difference between your
specification and that of Figure 10.12.

10.16. Under what circumstances could a LAX code generator link register values
to programmer-defined variables? Do you believe that the payoff would jus
tify the analysis required?

10.17. There is no guarantee that the heuristic of Figure 10.14 will produce optimal
code. Under what circumstances would the code improve when unique
registers were chosen before copy registers?

10.18. Give, for a machine of your choice, the remaining decision tables necessary
to translate LAX trees involving simple integer operands and operators from
Table A.2.

CHAPTER 11

Assembly

The task of assembly is to convert the target tree produced by the code gen
erator into the target code required by the compiler specification. This tar
get code may be a sequence of bit patterns to be interpreted by the control
unit of the target machine, or it may be text subject to further processing by
a link editor or loader. In either case, the assembler must determine
operand addresses and resolve any issues left open by the code generator.

Since the largest fraction of the compilers for most machines originate
from the manufacturer, the manufacturer's target code format provides a de
facto standard that the compiler writer should use: If the manufacturer's
representation is abandoned then all access to the software already
developed using other compilers, and probably all that will be developed in
the future at other installations, is lost. For the same reason, it is best to use
manufacturer-supplied link editors and loaders to carry out the external
address resolution. Otherwise, if the target code format is extended or
changed then we must alter not only the compilers, but also the resolution
software that we had developed. We shall therefore assume that the output
of the assembly task is a module rather than a whole program, and that
external address resolution is to be provided by other software. (If this is not
the case, then the encoding process is somewhat simplified.)

Assembly is essentially independent of the source language, and should
be implemented by a common module that can be used in any compiler for
the given machine. To a large extent, this module can be made machine
independent in design. Regardless of the particular computer, it must be
able to resolve operand addresses and encode instructions. The information
required by different link editors and loaders does not vary significantly in
content. In this chapter we shall discuss the two main subtasks of assembly,

282

11.1. Internal Address Resolution 283

internal address resolution and instruction encoding, in some detail. We
shall sketch the external address resolution problem briefly in order to indi
cate the kind of information that must be provided by the compiler; two
specific examples of the way in which this information is represented can be
found in Chapter 14.

11.1. Internal Address Resolution

Internal address resolution is the process of mapping the target tree onto a
block of contiguous target machine memory locations, determining the
addresses of all labels relative to the beginning of this block. We begin by
assuming that the size of an instruction is fixed, and then show how this
assumption can be relaxed. Special problems can arise from particular
machine architectures, and we shall briefly discuss a representative example.

11.1.1. Label Value Detennination We begin with the structure of the
target tree discussed in Section 4.1.4, which can be characterized by the
context-free rules of Figure 11.1. The attribution rules in Figure 11.1 gather
information from the tree about the relationships among sequences
(origin -..env) and the placement oflabels within the sequences (labeLenv).
This information is exactly what is found in the 'symbol table' of a
conventional symbolic assembler. It can easily be shown that Figure 11.1 is
LAG(I), and the single traversal corresponds to 'pass l' of the conventional
assembler. Clearly we could integrate this traversal with the code selection
process in an implementation, but it remains conceptually distinct.

The environments are lists whose elements have the types shown in Fig
ure 11.2a. A based origin element specifies an address expression stored as a
tree, using linked records of the form shown in Figure 11.2h. This tree
actually forms a part of the origin_env attribute; it is abstracted from the
target tree by rules not shown in Figure 11.1, and delivered as the attribute
expression.expr in the rule for sequence :: = expression nodes. We shall
assume that all address computations either involve only absolute values or
have the form relative ±absolute; situations requiring more complex calcu
lations can easily be avoided by the compiler.

On the basis of the information in labeLenv and origin_env, every label
can be assigned a value that is either absolute or relative to the origin of a
sequence whose origin class is arbitrary. We could simply consider each
arbitrary-origin sequence as a separate 'module' and terminate the internal
address resolution process when the attribution of Figure 11.1 was complete.
This is generally not done. Instead, we compute the overall length of each
arbitrary -origin sequence and concatenate them, restating all but the first as
based. The concatenated sequences form the relocatable portion of the pro
gram in which every label can be assigned a relocatable address - an
address relative to the single arbitrary origin.

284

rule target _tree :: = sequences

rule sequences :: =
attribution

sequences.labeLenv <- nil;
sequences.origin_env <- nil;

rule sequences :: = sequences sequence
attribution

sequences [l].label_env <-

sequences[2].labeLenv & sequence.origin-'!nv;
sequences[I].origin_env <

sequences[2].origin_env & sequence.origin_env;

rule sequence :: = nodes
attribution

nodes. base <- gennum;
sequence.origin_env <-

Chapter 11. Assembly

N _origin_element (nodes. base , nodes. length ,arbitrary)

rule sequence :: = expression nodes
attribution

nodes.base <- gennum;
sequence.origin_env <-

N _origin_element (nodes. base ,nodes. length, based, expression.expr);

rule nodes :: =
attribution

nodes.labeLenv <- nil;
nodes. length 0;

rule nodes :: = nodes operation
attribution

nodes[I).length <- nodes[2].length + instrJize(operation.instr);

rule nodes :: = nodes constant
attribution

nodes[I).length <- nodes [2]. length + constJize(constant.value);

rule nodes :: = nodes label
nodes[I).labeLenv <

nodes[2].labeLenv &
N _labeLelement (label. uid, nodes [I].base, nodes [2]./ength);

Figure 11.1. Target Tree Structure and Attribution

Most programming languages do not offer the user a way to specify an
absolute origin, and hence the compiler will create only relocatable target

11.1. Internal Address Resolution 285

type
label_element = record

uid : integer;
base : integer;
relative _address: integer
end;

(* Unique identification for the label *)
(* Sequence to which the label belongs *)
(* Address of the label in the sequence *)

origin_element = record
uid: integer;
length: integer
case k : origin_class of

arbitrary: 0;

(* Unique identification for the sequence *)
(* Space occupied by the sequence *)

based: (origin: addresLexp)
end;

a) Types used in the environments of Figure 11.1

type
address _exp = record

case k : expr _class of
absolute:

(value: integer _value); (* Provided by the constant table *)
relative:

(label: integer); (* Unique identification of the referenced label *)
computation:

(rator: (add, sub);
right, left: i address _exp)

end;

b) Types used to represent address expressions

Figure 11.2. The Environment Attributes

code. If a particular implementation does require absolute sequences, there
are two ways to proceed. The first is to fix the arbitrary origin and treat the
entire program as absolute; the second is to resolve the addresses separately
in the absolute and relocatable portions, resolving cross references between
them by the methods of Section 11.2. The latter approach can also be taken
when the source language allows the programmer to specify that portions of
the program reside in read-only memory and others in read-write memory.

11.1.2. Span-Dependent Instructions The assumption that the size of
an instruction is fixed does not hold for all machines. For example, the con
ditional branch instructions of the PDPII use a single-byte address and can
therefore transfer control a maximum of 127 words back or 128 words for
ward. If the branch target lies outside of this range then a sequence involv
ing a conditional branch over an unconditional jump must be used. The
code generator cannot decide between these two possibilities, and hence it
outputs an abstract conditional jump instruction for the assembler to

286 Chapter 11. Assembly

resolve. Clearly the size of the resulting code depends upon the relative
locations of the target label and jump instruction. (A simple-minded assem
bler could always assume the worst case and generate the longest version of
the jump.)

A span-dependent instruction can be characterized by its location and the
manner in which its length depends upon the label(s) appearing in its
operand(s). For example, the length of a jump may depend upon the
difference between the location of the jump and the location of its target; in
rare cases the length of a constant-setting instruction may depend upon the
value of an expression (LABEL I - LABEL 2). In the remainder of this sec
tion we shall consider only the former situation, and restrict the operand of
the span-dependent instruction to a simple label.

Span-dependence does not change the basic attribution of Figure ll.l,
but it requires that an extra attribute be constructed. This attribute, called
mod _list, consists of linked records whose form is given in Figure II.3a.
Mod _list is initialized and propagated in exactly the same way as label_env .
Elements are added to it at span-dependent instructions as shown in Figure
11.3b. The function instr -size returns the minimum length of the span
dependent instruction, and this value is used to determine origin values as
discussed in Section 11.1.1.

The next step is to construct a relocation table that can be consulted when
ever a label value must be determined. Each relocation table entry specifies

type
mod _element = record

base: integer; (* Sequence in which instruction appears *)
relative _address: integer; (* Address of the instruction in the sequence *)
operand: integer; (* Unique identification for the operand label *)
ins!r: machine _op ; (* Characterization of the instruction *)
end;

a) Type used in mod _list

rule nodes :: = nodes span _dependent _operation
attribution

nodes [I].length <-

nodes [2]. length + instr _size (span _dependent _operation. instr);
nodes [l].mod _list <-

nodes [2].mod _list&
N .Jnod _element (

nodes [I]. base ,
nodes [2]. length ,
span _dependent _operation. operand _uid ,
span_dependent _operation.instr);

b) Calculation of mod _list

Figure 11.3. Span-Dependent Instructions

11.1. Internal Address Resolution 287

the total increase in size for all span-dependent instructions lying below a
given address (relative or absolute). When the label address calculation of
Section 11.1.1 indicates an address lying between two relocation table
entries, it is increased by the amount specified in the lower entry.

The properties of the span-dependent instructions are embodied in a
module that provides two operations:

Too --short (machine _op ,integer)boolean: Yields true if the instruction
defined by machinLop cannot have its operand at the (signed) dis
tance from the instruction given by the integer.

Lengthen (machine _op, integer)integer: Updates the given
machine _op, if necessary, so that the instruction defined can have its
operand at the (signed) distance given by the integer. Yields the
increase in instruction size resulting from the change.

The relocation table is built by the following algorithm:
I. Establish an empty relocation table.
2. Make the first element of mod _list current.
3. Calculate the addresses of the span-dependent instruction represented by

the current element of mod _list and its operand, using the current
environments and relocation table.

4. Apply too--short to the (signed) distance between the span-dependent
instruction and its operand. If the result is false, go to step 6.

5. Lengthen the instruction and update the relocation table accordingly.
Go to step 2.

6. If elements remain in mod _list, make the next element current and go to
step 3. Otherwise stop.

This algorithm has running time proportional to n2 in the worst case (n is
the number of span-dependent instructions), even when each span
dependent instruction has more than two lengths.

Span-dependency must be resolved separately in each portion of the pro
gram that depends upon a different origin (see the end of Section 11.1.1). If
span-dependent instructions provide cross-references between portions
based on different origins then either all analysis of span-dependence must
be deferred to external address resolution or some arbitrary assumption
must be made about the cross-referencing instructions. The usual approach
is to optimize span-dependent instructions making internal references and
use the longest version of any cross-referencing instruction.

11.1.3. Special Problems The IBM 370 and its imitators have a short
address field and do not permit addressing relative to the program counter.
This is a design flaw that means the general-purpose registers must be used
as base registers to provide addressability within the code sequence. Such
addressability is required for two purposes: access to constants and
specification of jump targets. The code generator could, as a part of the

288 Chapter 11. Assembly

memory mapping process, map all constants into a contiguous block of
memory and determine the number of base registers required to provide
addressability for this block. Given our decomposition of the compilation
process, however, it is impossible to guarantee that the code generator can
allocate the minimum number of base registers needed for jump target
specification.

The number of code base registers required for any procedure can be
reduced to two, at the cost of increasing the size of a jump instruction from 4
bytes to 8: One of the two registers holds the address of the procedure's first
instruction. Any jump target is defined by its address, t, relative to this
address. Let t = 4096q +d , such that 0 < d < 4096 will fit the displacement
field of an RX-format instruction. Assuming that the address of the first
instruction is in register 10 and the second register allocated for code basing
is 9, a jump to t becomes

LH 9,CONS+2*q(l0)
BC MASK,d(9,1O)

(Here 'CONS' is an array of halfword values for 4096q and 'MASK' is the
condition code mask defining the branch condition.)

By performing additional analysis of the code sequence, it may be possi
ble to avoid expanding some of the jumps. The value of q (and hence the
contents of register 9) is easily determined at every point in the program. If
the target of a jump has the same q as is in force at the location of the jump
then no expansion is necessary. Effectively, jump becomes a span
dependent instruction. The problem of finding the minimum number of
jumps that must be expanded is NP-complete, but a linear algorithm that
never shortens a previously-generated jump gives adequate results in prac
tice.

11.2. External Address Resolution

External address resolution combines separately-compiled modules into a
complete program or simply a larger module. Component modules may
constitute a part of the input text, or may be extracted automatically from
one or more libraries. They may have originally been coded in a variety of
programming languages, and translated by different compilers. (This last is
only possible when all of the compilers produce target code using a common
representation.)

We restrict ourselves here to the basic problems of external address reso
lution and their solution. To do so we must assume a particular code for
mat, but this should in no way be taken as advice that the compiler writer
should design his own representation! As noted at the beginning of the
chapter, we strongly advocate use of manufacturer-supplied link editors and
loaders for external address resolution.

11.2. External Address Resolution 289

11.2.1. Cross-Referencing In many respects, external address resolu
tion is analogous to internal address resolution: Each module is a single
code sequence with certain locations (usually called entry points, although
they may be either data or code addresses) distinguished. These locations
are analogous to the label nodes in the internal address resolution case. The
module may also contain address expressions that depend upon values (usu
ally called external references) not defined within that module. These values
are analogous to the label references in the internal address resolution case.
When the modules are combined, they can be considered to be a list of
independent code sequences and all of the techniques discussed in Section
11.1 can be carried over.

There can be some benefit in going beyond the analogy discussed in the
previous paragraph, and simply deferring the internal address resolution
until all modules have been gathered together. Under those circumstances
one could optimize the length of inter-module references as well as intra
module references (Section 11.1.2). We believe that the benefits are not
commensurate with the costs, however, since inter-module references should
be relatively rare.

Two basic mechanisms are available for establishing inter-module refer
ences: transfer vectors and direct substitution. A transfer vector is best suited
to references involving a transfer of control. It is a block of memory,
included in each module that contains external references, consisting of one
element for each distinct external symbol referenced (Figure 11.4). The
internal address resolution process replaces every external reference with a
reference to the corresponding element of the transfer vector, and the exter
nal address resolution process fills each transfer vector element with the
address of the proper entry point. When the machine architecture permits
indirect addressing, the initial reference is indirect and may be either a con-

procedure ex (x, y : real): real;
var

a, b: real;
begin
a: = sign (x)*sqrt(abs(x »;
b: = sign (y)*sqrt(abs(y»;
ex:=(a -b)/(a +b)
end; (* ex *)

a) External references

abs
sign
sqrt

b) Transfer vector for procedure ex

Figure 11.4. Transfer Vectors

290 Chapter 11. Assembly

trol or a data reference. If the machine does not provide indirect addressing
via main memory, the transfer vector address must be loaded into a base
register for the access. When the address length permits jumps to arbitrary
addresses, we might also place an unconditional jump to the entry point in
the transfer vector and implement a call as a call to that transfer vector
entry.

Direct substitution avoids the indirection inherent in the transfer vector
mechanism: The actual address of an entry point is determined during
external address resolution and stored into the instruction that references it.
Even with the transfer vector mechanism, direct substitution is required
within the transfer vector itself. In the final analysis, we use a transfer vector
because it reduces to one the number of changes that must be made when
the address of an entry point changes, and concentrates these changes at a
particular point in the program. Entry point addresses may change stati
cally, as when a module is newly compiled and bound without altering the
program, or they may change dynamically, as when a routine resides in
memory temporarily. For example, service routines in an operating system
are often 'transient' - they are brought into memory only when needed.
The operating system provides a transfer vector, and all invocations of ser
vice routines must go via this transfer vector. When a routine is not in
memory, its transfer vector entry is replaced by a jump to a loader. Even if
the service routines are not transient, a transfer vector is useful: When
changes made to the operating system result in moving the service routine
entry points, only the transfer vector is altered; there is no need to fix up the
external references of all user programs. (Note that in this case the transfer
vector is a part of the operating system, not of each module using the operat
ing system as discussed in the previous paragraph. If the vector occupies a
fixed location in memory, however, it may be regarded either as part of the
module or as part of the operating system.)

In the remainder of this section we shall consider the details of the direct
substitution mechanism. As pointed out earlier, this is analogous to internal
address resolution. We shall therefore concern ourselves only with the
differences between external and internal resolution. These differences lie
mainly in the representation of the modules.

A control dictionary is associated with each module to provide the follow
ing information:

• Length of the module.
• Locations of entry points relative to the beginning of the module.
• Symbols used to denote entry points and external values.
• Fields within the module that represent addresses relative to the begin-

ning of the module.
• Fields within the module that represent external references.

Additional information about the size of external areas may also be carried,
to support external static data areas such as FORTRAN COMMON.

11.2. External Address Resolution 291

The module length, relative entry point addresses and symbols are used
to establish an attribute analogous to labeLelement. Note that this requires
a traversal of the list of modules, but not of the individual modules them
selves. After this attribute is known, the fields representing relative and
external addresses must be updated. A relative address is updated by adding
the address of the module origin; the only information necessary to charac
terize the field is the fact that it contains a relative address. One common
way of encoding this information is to associate relocation bits with the
module text. The precise relationship between relocation bits and fields
depends upon the machine architecture. For example, on the PDP}} a
relative address occurring in an instruction must occupy one word. We
might therefore use one relocation bit per word, } indicating a relative
address. Note that this encoding precludes other placement of relative
addresses, and may therefore impose constraints upon the code generator's
mapping of data structures to be initialized by the compiler.

To characterize an external reference we must specify the particular
external symbol involved in addition to the fact that an external reference
occurs in the field. The concept of a relocation bit can be extended to cover
the existence of an external reference by adding a third state: For a particu
lar field the possibilities are 'no change', 'relative' and 'external'. The field
itself then contains an integer specifying the particular external symbol.

There are two disadvantages to this strategy for characterizing external
references. The most important is that it does not permit an address relative
to an external symbol, since the field must be used to define the symbol
itself. Data references, especially those to external arrays like FORTRAN
COMMON, tend to violate this constraint. A second disadvantage is that
the number of relocation bits for every field is increased, although only a
small minority of the fields may actually contain external references. Both
disadvantages may be overcome by maintaining a list of all fields containing
external references relative to a particular symbol. The field itself contains
the relative address and the symbol address is simply added to it, exactly as
a relative address is updated. (This same strategy can be used instead of
relocation bits for relative addresses on machines whose architectures tend
to make relative addresses infrequent; the IBM 370 is an example.)

The result of the cross-referencing process could be a ready-to-run pro
gram, with all addresses absolute, or it could be single module with relative
addresses, entry points and external references that can be used as input to
further linkage steps. In the latter case, the input must specify not only the
modules to be linked but also the entry points to be retained after linkage.
External references will be retained automatically if and only if they do not
refer to entry points of other input modules.

11.2.2. Library Search A language such as Ada requires that the
semantic analyzer verify the correctness of all inter-module references.
Thus during assembly all of the modules needed are already known. This is

292 Chapter 11. Assembly

not the case for languages such as FORTRAN. Mathematical subroutines,
I/O procedures, environment inquiries and the like are almost always sup
plied by the installation and placed in a library in target code format. After
the first traversal of the input module list, external references not
corresponding to entry points may be looked up in this library. If a module
in the library has one or more of these symbols as entry points then it is
added to the list and processed just as though it had come from the input.
Clearly more than one library may be searched in the process of satisfying
external references; the particular libraries and order of search are specified
by the user.

A library is often quite large, so it would be inefficient to scan all of the
modules in a search for entry points. The entry point information is there
fore normally gathered into a catalog during the process of constructing the
library, and only the catalog is examined to select appropriate modules.
Since the modules of a library may have a high degree of internal linkage,
the catalog should also specify the external symbols referenced by each
module. After the modules necessary to satisfy user external references have
been determined, a transitive closure operation adds any others required by
those already selected.

11.3. Instruction Encoding

After all attributes of target tree nodes have been computed, the information
must be converted into target code suitable for execution. This process is
similar to the code selection discussed in Section 10.3, but somewhat
different specification techniques are appropriate. After discussing an
appropriate interface for the target code converter, we shall present an
encoding mechanism and a specification language.

11.3.1. Target Code We regard the target code as an abstract data type
defined by eight operations:

Module JIOme (identifier --..String): Establish the name of the module being
generated.

Module --..Size (length): Specify the length of the block of contiguous
memory locations required for the module being generated.

Entry -point (identifier --..String): Establish an entry point to the module be
ing generated.

Set-location (relative ...11d.dress): Specify the load point at which subse
quent target code is to be placed in memory.

Absolute -lext (target -lext,length): Place encoded target text into memory
at the current load point. The length argument gives the amount of text to
be placed. After the text has been placed, the current load point is the point
immediately beyond it.

11.3. Instruction Encoding 293

InternaL.reference(relative.....address): Place an encoded relative address
into memory at the current load point. After the address has been placed,
the current load point is the point immediately beyond it.

ExternaL.reference (offset, identifier --string): Place an external reference
into memory at the current load point. The offset is the address relative to
the external symbol identifier--string. After the reference has been placed,
the current load point is the point immediately beyond it.
These operations provide the information summarized in Section 11.2, and
would constitute the interface for a module that actually produced a target
code file. Some manufacturer's software may place restrictions upon
parameter values, and some may provide facilities (such as repetitions of
data values) that cannot be reached via these operations.

Module _name, module --size and entry _point all provide specific infor
mation for the control dictionary. Set-location is used to reset the current
load point at the beginning of a code sequence. It embodies the 'scatter
loading' concept in which the target code is broken up into a number of
compact blocks, each of which carries the address at which it is to be placed.
These addresses need not be contiguous. We shall consider two specific
implementations of this concept in Section 14.2.

Only a small range of length parameters is possible for the absolute _text
operation on any given machine: There is a fixed set of instruction and
instruction fragment lengths, and most constants have a length dependent
only upon their type and not upon their value. One notable exception is the
string constant, which must be broken into smaller units to be used with the
absolute _text operation.

There is no length parameter specified for an internal or external refer
ence. On most computers, relative addresses are only useful as operands of
a specific length, and hence that length is assumed.

Absolute text, internal references and external references are dis
tinguished because they may be represented in very different ways by the
manufacturer's software. For a particular target computer there may even
be several operating systems with quite different target code formats. It is
therefore wise for the compiler writer to design his target code module
according to the abstract data type given here instead of attempting to
merge absolute_text, internaLreference and external...Jeference into one
operation and inserting relocation bits explicitly.

11.3.2. The Encoding Process Each target tree node represents a label,
storage reservation, constant or abstract machine instruction. Label nodes
are ignored by the encoding process, and storage reservation nodes simply
result in invocations of the set _location operation. The remaining nodes
must be encoded by invoking one or more of the last three operations
defined in the previous section.

Constants may appear as literal values to be incorporated directly into the
target code, or they may be components of address expressions. In the latter

294 Chapter 11. Assembly

case, the result of the expression could be used as data or as an operand of
an instruction. Literal values must be converted using the internal-to-target
conversion operations of the constant table (Section 4.2.2), and then inserted
into the target code by absolute _text. An address expression is evaluated as
outlined in Exercise 11.9. If the result is used as data then the appropriate
target code operation is used to insert it; otherwise it is handled by the
instruction encoding.

In the simplest case the abstract instructions correspond to unique opera
tion codes of the real machine. In general, however, the correspondence is
not so simple: One abstract operation can represent several instructions, or
one of several operation codes could be appropriate depending upon the
operand access paths. Decisions are thus made during instruction encoding
on the basis of the abstract operator and the attributes of the operand(s) just
as in the case of code generation.

The basic instruction encoding operations are called formats. They are
procedures that take sets of values and add them to the target code so that
the result is a single instruction. These procedures sometimes correspond to
the instruction formats recognized by the target machine's control unit, and
hence their name. In many cases, however, the instruction format shows
regularities that can be exploited to reduce the number of encoding formats.
For example, the five instruction formats of the IBM 370 (Figure l1.5a)
might correspond to only three encoding formats (Figure II.Sb).

An instruction is encoded by calling a sequence of one or more format
encoding procedures. The process can be described in a language resem
bling a normal macro assembly language. Figure 11.6 shows a portion of a
description of the IBM 370 instruction encoding cast in this form. Each
macro body specifies the sequence of format invocations, using constants or
macro parameters (denoted by the character '%' followed by the position of
the parameter) as arguments. A separate directive, NAME, is used to asso
ciate the macro body with an instruction because many instructions can
often use the same encoding procedure. NAME directives may specify an
argument, which becomes parameter 0 of the macro. In Figure 11.6 the
NAME directive has been used to supply the hexadecimal operation code
for each instruction. (A hexadecimal constant begins with a digit and ends
with 'H'.) We use the IBM mnemonics to denote the instructions; in prac
tice these macros would be represented by tables and the node type of an
abstract operation would appear in place of the symbolic operation code.

Formal parameters of the macros in Figure 11.6 are described by com
ments. (Strings following ';' on the same line are comments.) The
corresponding actual parameters are the operands of the target tree node,
and their values will have been established during code generation or
address resolution. Note that a 'memory' operand includes its base register
but not an index register. Thus the 'FM' format takes a single memory
address and encodes it as a base and displacement. This reflects the fact that
the index register is assigned by the code generator, while the base register is

11.3. Instruction Encoding 295

RRI opcode RI I R21

RXI opcode RI I X21 B2 02

RS I opcode RI I R31 B2 02

SI opcode 12 BI 01

SS opcode Ll L2 BI 01 1 B21 02

a) Instruction formats

FRI opcode RI R2

PI opcode I

FMI B 0

b) Encoding formats

Figure 11.5. IBM 370 Formats

determined during assembly. In other words, the abstract IBM 370 from
which these macros were derived did not have the concept of a based access.

Consider the LAX expression a +b i [c). If a were in register I, b i in
register 2 and c (multiplied by the appropriate element length) in register 3
then the addition could be performed by a single IBM 370 add instruction
with R I = I, B2=2, X2=3 and D2 a displacement appropriate to the lower
bound of the array being referenced. Given the macros of Figure 11.6, how
ever, this instruction could not be encoded because the abstract machine has
no concept of a based access. Clearly one solution to this problem is to give
FM two arguments and make the base register explicit in the abstract
machine; another is to provide the abstract machine with two kinds of
memory address: one in the code sequence and the other in data memory.

296

AR NAME
SR NAME

MACRO
FR
ENDM

A NAME
S NAME

MACRO
FR
FM
ENDM

AP NAME
SP NAME

MACRO
FR
FM
FM
ENDM

IAH
IBH

%0,%1,%2

5AH
5BH

%0,%1,%3
%2

OFAH
OFBH

%0,%2,%4
%1
%3

Chapter 11. Assembly

; Register,Register

; Register,Memory,Index

; Memory,Length,Memory,Length

Note: Suffix 'H' denotes hexadecimal.

Figure 11.6. IBM 370 Instruction Encoding

We favor the latter solution because these two kinds of memory address are
specified differently. The code generator defines the former by a label and
the latter by a base register and displacement. The assembler must pick a
base register for the former but not the latter. Because of these differences it
is probably useful to have distinct target node formats for the two cases.

Figure 11.7 shows a modification of the macros of Figure 11.6 to allow
our second solution. In Figure 11.7a the add instruction is associated with
two macro bodies, and one of the parameters of the first is specified. The
specification gives the attribute that the operand must possess if this macro is
to be selected. By convention, the macros associated with a given name are
checked in the order in which they appeared in the definition; parameters
with no specified attributes match anything. Figure 11.7b combines the two
bodies, using a conditional to select the proper format invocation. Here the
operator '@' is used to select the attribute rather than the value of the param
eter. This emphasizes the fact that there are two components of an operand,
attribute and value, which must be distinguished.

What constitutes an attribute of an operand, and what constitutes a
value? These questions depend intimately upon the design of the abstract
machine and its relationship to the actual target instructions. We shall
sketch a specific mechanism for defining and dealing with attributes as an
illustration.

11.3. Instruction Encoding 297

A NAME
S NAME

MACRO
FR
FMI
ENDM
MACRO
FR
FM2
ENDM

A NAME
S NAME

MACRO
FR
IF
FMI
ELSE
FM2
ENDIF
ENDM

5AH
5BH
,LABEL
%0,% 1,%3
%2

%0,%1,%3
%2,%4

; Register, Memory, Index

; Register,Base,Index,Displacement

a) Selection of different macros

5AH
5BH

%0,%1,%3
@%2=foLABEL
%2

%2,%4

; Either pattern

b) Conditional within a macro

Figure 11.7. Two Memory Operand Types

The value and attribute of an operand are arbitrary bit patterns of a
specified length. They may be accessed and manipulated individually, using
the normal arithmetic and bitwise-logical operators. Any expression yields a
value consisting of a single bit pattern. Two expressions may be formed into
a value/attribute pair by using the quote operator: e 1 "e2. (See Figure 11.8
for examples.) An operand is compatible with a parameter of a macro if the
following expression yields true:

(@operand and @parameter) = parameter

Thus the operand R2 would be compatible with the parameters R2,
EVENGR and GENREG in Figure 11.8; it would not be compatible with
ODDGR or LABEL. Clearly any operand is compatible with ANY, and it is
this object that is supplied when a parameter specification is omitted.

Macro languages similar to the one sketched here have been used to
specify instruction encoding in many contexts. Experience shows that they
are useful, but if not carefully implemented can lead to very slow processors.
It is absolutely essential to implement the formats by routines coded in the
implementation language of the compiler. Macros can be interpreted, but
the interpretive code must be compact and carefully tailored to the interpre
tation process. The normal implementation of a macro processor as a string

298

ANY
LABEL
EVENGR
ODDGR
GENREG
RO
RI
R2
R3

Chapter 11. Assembly

SET 0"0 ; Any operand
SET 10H"lOH ; Code sequence memory operand
SET 20H"21H ; Even-numbered general register
SET 21H"21H ; Odd-numbered general register
SET 20H"20H ; Any general register
SET 0"20H ; General register 0
SET 1"21 H ; General register I
SET 2"22H ; General register 2
SET 3"23H ; General register 3

a) Symbol definitions

LABEL
@LABEL
RO+I
@RO-I
RI+@LABEL
@R3 and @EVENGR
@R3 and @ODDGR

b) Expressions

= 10H
= lOH
= I
= 17H
= llH
= 21H
= 21H

Figure 11.8. Values and Attributes

manipulator is inadequate. Names should be implemented as a compact set
of integers so that access to lists of macro bodies is direct. Since the number
of bodies associated with a name is usually small, linear search is adequate.
Note that a tradeoff is possible between selection on the basis of the name
and selection on the basis of attributes.

As a by-product of the encoding, it is possible to produce a symbolic
assembly code version of the program to aid in the debugging and mainte
nance of the compiler itself. If the macro names are specified symbolically,
as in Figures 11.6 and 11.7, these can be used as symbolic operation codes in
the listing. The uid that appears as an intrinsic attribute of the label nodes
can be converted into a normal identifier by prefixing a letter. Only con
stants need special treatment: a set of target value-to-character conversion
procedures must be provided.

11.4. Notes and References

Assembly is seldom provided as a cleanly-separated module that can be
invoked by any compiler. Exceptions to this rule are IBSYS [Talmadge
1963] and EMAS [Stephens 1974], both of which contain standard assembly
modules. The IBSYS assembler requires the target code tree to reside on a
sequential file, while EMAS makes a collection of assembly procedures
available as part of the standard library. IBM chose not to follow the IBSYS
example in OS/360, probably because of complaints about performance

11.4. Notes and References 299

degradation due to the need to explicitly write the target code tree.
The idea of using separate code sequences instead of specific storage

reservation nodes in the target tree was discussed by Mealy [1963]. Tal
madge [1963] shows how complex addressing relationships among
sequences can be implemented. His philosophy was to provide complete
flexibility in the assembler (which was written once for each machine) in
order to reduce effort that would otherwise be duplicated in every compiler.
In practice, it seems that the duplicated effort is generally required to sup
port quality code generation. Thus the complexity does not occur in target
code produced by a compiler, but it is often found in symbolic assembly
code produced by human programmers.

Several 'meta-assemblers' have been proposed and used to implement
symbolic assembly languages. These systems provide mechanisms for speci
fying the instruction encoding process in terms of formats and macros as dis
cussed in Section 11.3.2. Most of the basic ideas are covered by Graham
and Ingerman [1965], but the concept of including attributes in the pattern
match does not occur until much later [Language Resources 1981].

The problem of span-dependence has been studied by a number of
authors. Our treatment follows that of Hanglberger [1977] and Szymanski
[1978], and is specially adapted for use in a compiler. In symbolic assem
blers, more complex address expressions may appear and the order of the
algorithm may be altered thereby.

EXERCISES

11.1. Complete Figure 11.1 by adding rules to describe address expressions and
construct the attribute expression. expr.

11.2. [Galler 1964] Consider the problem of mapping storage described by FOR
TRAN COMMON, DIMENSION, EQUIVALENCE and DATA state
ments onto a sequence of contiguous blocks of storage (one for each COM
MON area and one for local variables).
a. How can these statements be translated into a target tree of the form dis

cussed in Section 4.2.2 and Figure II.I?
b. Will the translation you describe in (a) every produce more than one

arbitrary-origin sequence? Carefully explain why or why not.
c. Does your target tree require any processing by the assembler in addition

to that described in Section 11.1.1? If so, explain why.

11.3. [Talmadge 1963] Consider the concatenation of all arbitrary-origin sequences
discussed in Section 11.1.1.
a. Write a procedure to determine the length of an arbitrary-origin sequence.
b. Write a procedure to scan origilLenv, finding two arbitrary-origin

sequences and concatenating them by altering the origilLelement record
for the second.

11.4. Consider the implementation of the span-dependence algorithm of Section
11.1.2.
a. Show that the algorithm has running time proportional to n 2 in the worst

300 Chapter 11. Assembly

case, where n is the number of span -dependent instructions.
b. Define a relocation table entry and write the update routine mentioned in

step (5) of the algorithm.

11.5. [Szymanski 1978] Modify the span-dependence analysis to allow target
expressions of the form label ± constant.

11.6. Consider the code basing problem of Section 11.1.3.
a. Define any attributes necessary to maintain the state of q within a code

sequence, and modify the rules of Figures 11.1 and IIJ to include them.
b. Explain how the operations too_short and lengthen (Section 11.1.2. must

be altered to handle this case. Would you prefer to define other opera
tions instead? Explain.

11.7. [Robertson 1979] The Data General Nova has an 8-bit address field,
addressing relative to the program counter is allowed, and any address may
be indirect. Constants must be placed in the code sequence within 127
words of the instruction that references them. If a jump target is further than
127 words from the jump then the address must be placed in the code
sequence as a constant and the jump made indirect. (The size of the jump
instruction is the same in either case.)
a. Give an algorithm for placing constants that takes advantage of any

unconditional jumps already present in the code, placing constants after
them.

b. Indicate how the constant blocks might be considered span-dependent
instructions, whose size varies depending upon whether or not they con
tain jump target addresses.

c. Show that the problem of optimizing the span-dependence in (b) is NP
complete.

11.8. [Talmadge 1963] Some symbolic assemblers provide 'multiple location
counters', where each location counter defines a sequence in the sense of
Section 11.1.1. Pseudo operations are available that allow the user to switch
arbitrarily from one location counter to another.
a. Show how a target tree could represet arbitrary sequence changes by

using internally-generated labels to associate 'pieces' of the same
sequence.

b. Some computers (such as the Control Data Cyber series) have instruc
tions that are smaller than a single memory element, but an address refers
only to an entire memory element. How could labels be represented for
such a machine? How does the choice of label representation impact the
solution to (a)?

c. What changes to Figure ILl would be needed if we chose not to
represent arbitrary sequence changes by internally-generated labels, but
instead gave every 'piece' of the same sequence the same uid?

d. If we used the representation for sequences suggested in (c), how would
the answer to (b) change?

11.9. The ultimate value of an address embedded in the target code must be either
a number or a pair (external symbol, number). A number alone may
represent either a numeric operand or a relative address.

11.4. Notes and References 301

a. Suppose that A, Band C are labels. What form does the value of
(A+B)-C take? Why is (A+B)+C a meaningless address expression?

b. Specify an attribute that could be used to distinguish the cases mentioned
in (a).

c. If A were an external symbol, would your answer to (a) change? Would
your answer to (b) change? How?

d. Would you allow the expression (A+B)-(A+C), A an external symbol,
Band C labels? What form would its value take?

e. Use an attribute grammar to define the language of legal address expres
sions. Make the value of the expression an attribute of the root.

11.10. [Hedberg 1963] What requirements are placed upon the external address
resolution process by FORTRAN COMMON blocks? Quote the FOR
TRAN standard to support your position, and then explain how these
requirements might be satisfied.

11.11. Suppose that the target machine provided an instruction to add an immedi
ate value to a register, but none to subtract an immediate value from a regis
ter. The addition is, however, a 2's complement addition so that subtraction
can be accomplished by adding the complement of an immediate value.
How would you provide the complement of a relative address as an immedi
ate operand?

11.12. [GE 1965] Several utility modules may require the same support functions,
but optimizations may arise from integrating these support functions with
the utility modules. The result is that several modules may have identical
entry points for the support functions but differ in other entry points. Devise
a library catalog that will distinguish between primary and secondary entry
points: A module will be selected only if one or more of its primary entry
points corresponds to an unsatisfied external reference. Once a module has
been selected, however, secondary entry points can be used to satisfy exter
nal references. Comment upon any user problems you foresee.

CHAPTER 12
Error Handling

Error handling is concerned with failures due to many causes: errors in the
compiler or its environment (hardware, operating system), design errors in
the program being compiled, an incomplete understanding of the source
language, transcription errors, incorrect data, etc. The tasks of the error
handling process are to detect each error, report it to the user, and possibly
make some repair to allow processing to continue. It cannot generally
determine the cause of the error, but can only diagnose the visible symp
toms. Similarly, any repair cannot be considered a correction (in the sense
that it carries out the user's intent); it merely neutralizes the symptom so that
processing may continue.

The purpose of error handling is to aid the programmer by highlighting
inconsistencies. It has a low frequency in comparison with other compiler
tasks, and hence the time required to complete it is largely irrelevant, but it
cannot be regarded as an 'add-on' feature of a compiler. Its influence upon
the overall design is pervasive, and it is a necessary debugging tool during
construction of the compiler itself. Proper design and implementation of an
error handler, however, depends strongly upon complete understanding of
the compilation process. This is why we have deferred consideration of
error handling until now.

It is perhaps useful to make a distinction between the correctness of a sys
tem and its reliability. The former property is derived from certain assump
tions regarding both the primitives upon which the system is based and the
inputs that drive it. For example, program verification techniques might be
used to prove that a certain compiler will produce correct object programs
for all source programs obeying the rules of the source language. This
would not be a useful property, however, if the compiler collapsed whenever
some illegal source program was presented to it. Thus we are more

302

12.1. General Principles 303

interested in the reliability of the compiler: its ability to produce useful
results under the weakest possible assumptions about the quality of the
environment, input data and human operator. Proper error handling tech
niques contribute to the reliability of a system by providing it with a means
for dealing with violations of some assumptions on which its design was
based. (Theoretically, of course, this could be regarded simply as a relaxa
tion of those assumptions; pragmatically, techniques for achieving correct
ness and reliability are quite different.)

We shall begin this chapter by considering some general principles of
error handling. A distinction will be made between errors detectable at
compilation time and errors whose symptoms do not appear until execution
time. The compiler must deal with those in the former class directly, and
must provide support for the run-time system that allows it to handle those
in the latter class. Section 12.2 further classifies compiler-detected errors,
and explains methods of recovering from erroneous input in order to obtain
as much diagnostic information as possible from a single run. Support for
run-time error handling is considered in Section 12.3.

12.1. General Principles

The class of detectable errors is determined by the design of the program
ming language, not the design of the compiler. An error handler should
recognize and repair all detectable errors occurring in a program. Unfor
tunately, this goal often conflicts with the principle that a correct program
should pay nothing for error handling. One compromise is to subdivide the
detectable errors into several classes and proceed in a stepwise fashion: The
detection of errors in different classes is provided for by distinct options in
the compiler or controlled by additional monitoring code during execution.

Almost by definition, error handling involves a mass of special cases and
exceptions to rules. It is thus very difficult to provide any sort of clean,
theoretical foundation for this aspect of the compilation process. What we
shall try to do in this section is to classify errors and outline the broad stra
tegies useful in dealing with these classes.

12.1.1. Errors, Symptoms, Anomalies and Limitations We distin
guish between the actual error and its symptoms. Like a physician, the error
handler sees only symptoms. From these symptoms, it may attempt to diag
nose the underlying error. The diagnosis always involves some uncertainty,
so we may choose simply to report the symptoms with no further attempt at
diagnosis. Thus the word 'error' is often used when 'symptom' would be
more appropriate.

A simple example of the symptom/error distinction is the use of an unde
clared identifier in LAX. The use is only a symptom, and could have arisen
in several ways:

304 Chapter 12. Error Handling

• The identifier was misspelled on this use.

• The declaration was misspelled or omitted.

• The syntactic structure has been corrupted, causing this use to fall
outside of the scope of the declaration.

Most compilers simply report the symptom and let the user perform the
diagnosis.

An error is detectable if and only if it results in a symptom that violates
the definition of the language. This means that the error handling procedure
is dependent upon the language definition, but independent of the particular
source program being analyzed. For example, the spelling errors in an
identifier will be detectable in LAX (provided that they do not result in
another declared identifier) but not in FORTRAN, which will simply treat
the misspelling as a new implicit declaration.

Our goal in implementation should be to report each detectable error at
the earliest opportunity. If the symptom can be noticed at compile time,
then we should do so. Some care must be taken, however, not to report
errors before their symptoms occur. For example, the LAX expression (1/0)
conforms to the syntax and static semantics of the language; the symptom
'division by zero' only occurs when the expression is actually evaluated dur
ing execution. It is important that the compiler not report an error in this
case, even though it might detect the problem (say, while folding constants).
The reason is that this expression may never actually be evaluated, and
hence the program may not be incorrect at all. (Another possibility is that
the programmer is attempting to force an execution-time error, perhaps to
check out a new recovery mechanism.)

We shall use the term anomaly to denote something that appears suspi
cious, but that we cannot be certain is an error. Anomalies cannot be
derived mechanically from the language definition, but require some
exercise of judgement on the part of the implementor. As experience is
gained with users of a particular language, one can spot frequently
occurring errors and report them as anomalies before their symptoms arise.
An example of such a case is the fragment of ALGOL 60 shown in Figure
12.la. Since ALGOL 60 treats text following end as a comment (terminated
by else, end or ;), there is no inconsistency here. However, the appearance
of : = in the comment makes one suspicious that the user actually intended
the fragment of Figure 12.1b. Many ALGOL 60 compilers will therefore
report an anomaly in this case.

Note that a detectable error may appear as an anomaly before its symp
toms arise: A LAX compiler could report the expression (l/O) as an ano
maly even though its symptoms would not be detected until execution time.
Reports of anomalies therefore differ from error reports in that they are sim
ply warnings that the user may choose to suppress.

Anomalies may be reported even though there is no reason whatever to

12.1. General Principles 305

believe that they represent true errors; some compilers are quite prepared to
simply comment on the programmer's style. The SIMULA compiler for the
Univac 1108, for example, diagnoses Figure 12.lc as poor style because - as
in ALGOL 60 - the upper limit of the iteration is evaluated 2n + 1 times
even though its value probably does not change during execution of the
loop. Such reports may also be used to call the programmer's attention to
nonstandard constructs supported by the particular system on which he is
running.

A particular implementation normally places some limitations on the
language definition, due to the finite resources at its disposal. (Examples
include the limitation of finite-precision arithmetic, a limit on the number of
identifiers in a program, the number of dimensions in an array or the max
imum depth of parentheses in an expression.) Although violations of
implementation-imposed constraints are not errors in the sense discussed
above, they have the same effect for the user. A major design goal is there
fore to minimize the number of such limitations, and to make them as 'rea
sonable' as possible. They should not be imposed lightly, simply to ease the
task of the implementor, but should be based upon a careful analysis of the
cost/benefit ratio for user programs.

12.1.2. Responses We distinguish three possible levels of response to a
symptom:

I. Report: Provide the user with an indication that an error has occurred.
Specify the symptom, locate its position precisely, and possibly attempt a
diagnosis.

2. Recover: Make the state of the process (compilation, execution) con
sistent and continue in an attempt to find further errors.

3. Repair: On the basis of the observed symptom, attempt a diagnosis of
the error. If confident that the diagnosis is correct, make an appropriate
alteration in the program or data and continue.

Both the compiler and the run-time system must at least report every symp-

end
i: = I;

a) A legal fragment of an ALGOL 60 program

end;
i: = I;

b) The probable intent of (a)

for i: = I step I until 2*n + I
c) A probable inefficiency in SIMULA

Figure 12.1. Anomalies

306 Chapter 12. Error Handling

tom they detect (level I). Recovery (level 2) is generally provided only by
the compiler, while repair may be provided by either. The primary criterion
for recovery techniques is that the system must not collapse, since in so
doing it may take the error message (and even the precise location of the
symptom) with it. There is nothing more frustrating than a job that aborts
without telling you why!

A compiler that reports the first symptom detected and then terminates
compilation is not useful in practice, since one run would be needed for
each symptom. (In an interactive setting, however, it may be reasonable for
the compiler to halt at the first symptom, requiring the programmer to deal
with it before continuing.) The compiler should therefore recover from
almost all symptoms, allowing detection of as many as possible in a single
run. Some errors (or restrictions) make it impossible for the compiler to
continue; in this case it is best to give a report and terminate gracefully. We
shall term such errors deadly, and attempt to minimize their number by
careful language and compiler design.

Recovery requires that the compiler make some alteration of its state to
achieve consistency. This alteration may cause spurious errors to appear in
later text that is actually correct. Such spurious errors constitute an
avalanche, and one of the major design criteria for a recovery scheme is to
minimize avalanches. We shall discuss this point in more detail in Section
12.2.

If the compiler is able to diagnose and repair all errors with a high proba
bility of success, then the program could safely be executed to permit detec
tion of further errors. We must, however, be quite clear that a repair is not a
correction. Much of the early literature on this subject used these terms
interchangeably. This has unfortunate connotations, particularly for the
novice, indicating that the compiler is capable of actually determining the
programmer's intent.

Repair requires some circumspection, since the cost of execution could be
very high and the particular nature of the repair could render that execution
useless or could cause it to destroy important data files. In general, repair
should not be attempted unless the user specifically requests it.

As in the case of recovery, we may classify certain errors as uneconomic
or impossible to repair. These are termed fatal, and may cause us to refuse
to execute the program. If a program containing a fatal error is to be exe
cuted, the compiler should produce code to abort the program when the
error location is reached.

12.13. Communication with the User The program listing is the pri
mary document linking the user and the compiler. At a minimum, the list
ing reproduces the source program that the compiler translated; it may also
provide indexes and cross-references to data items, labels and procedures.
All error reports must indicate the relevant position of the symptom on the
listing in addition to describing the symptom.

12.1. General Principles 307

As indicated in Figure 1.3, the compiler itself should not produce the pro
gram listing. A separate listing editor uses the original source text and a
compiler-generated error report file to create the listing. Each error report
specifies the error number and a source text position. The reports are sorted
according to source text position either by the compiler or by the listing edi
tor. As the listing editor creates the listing, it inserts the full text of the error
message at the error location. A standard format, which causes the message
to stand out in the listing, should be used: Special characters, printed in
some part of the print line that is normally blank, act as a flag. The position
of the symptom is clearly marked, and the remainder of the line contains a
brief description. This description should be readable (in the user's natural
language), restrained and polite. It should be stated in terms of what the user
has done (or not done) rather than in terms of the compiler's internal state.
If the compiler has recovered from the error, the nature of the recovery
should be made clear so that any resulting avalanche will be understand
able.

Ideally, error reports should occur in two places: at the point where the
compiler noticed the symptom, and in a summary at the end of the program.
By placing a report at the point of detection, the compiler can identify the
coordinates of the symptom in a simple manner and spare the programmer
the task of switching his attention from one part of the listing to another.
The summary report directs the programmer to the point of error without
requiring him to scan the entire listing, reducing the likelihood that errors
will be missed.

Compiler error reports may be classified into several levels according to
severity:

l. Note
2. Comment
3. Warning
4. Error
5. Fatal error
6. Deadly error

Levels 1-3 are reports of anomalies: Notes refer to nonstandard constructs,
and are only important for programs that will be transported to other imple
mentations; comments criticize programming style; warnings refer to possi
ble errors. The remaining levels are reports of actual errors or violations of
limits. Errors at level 4 can be repaired, fatal errors suppress production of
an executable program (but the compiler will recover from them), and
deadly errors cause compilation to terminate.

The user should be able to suppress messages below a given severity
level. Both the default severity cutoff and the number of reports possible on
each level will vary with the design goals of the compiler. A compiler for
use in introductory programming courses should probably have a default
cutoff of 0 or I, and produce a plethora of comments and warnings; one for

308 Chapter 12. Error Handling

use in a production operation with a single type of computer should prob
ably have a cutoff of 3, and do very little repair. The ability to vary these
characteristics is a key component in the adaptability of a compiler.

The programmer's ability to cope with errors seems to be inversely pro
portional to the density of errors. If the error density becomes very large, the
compiler should probably abandon the program and let the programmer
deal with those errors found so far. (There is always the chance that a job
control error has been made, and the 'program' is really a data file or a pro
gram in another language!) It is difficult to state a precise criterion for
abandonment, but possibly one should consider this response when the
number of errors exceeds one-tenth of the number of lines processed and is
greater than 10.

The error report file is maintained by a module that provides a single
operation:

Error(position,severity, code)
position: The source text position for the message.
severity: One of the numbers 1-6, as discussed above.
code: An integer defining the error.

There is no need to supply additional information, such as symbols or con
text, in the error report. For example, if the symptom is that a particular
symbol is undefined, we do not need to include the symbol. This is because
the position is located precisely, and the message points directly to the sym
bol for which there is no definition. Further, the position given by the report
need not be the position reached by the lexical analyzer at the time the error
was detected. We can retain position information for certain constructs and
then use that information later when we have sufficient context to diagnose
an error. For example, suppose that a label was declared in a Pascal pro
gram and then never used. The error would be diagnosed at the end of the
procedure declaring the label, but we would give the position of the declara
tion in the report and therefore the message 'label never used' would point
directly to the declaration.

12.2. Compiler Error Recovery

All errors detected at compile time are detected during analysis of the source
program. During program synthesis, we can detect only compiler errors or
violations of limits; these are invariably fatal, and do not interest us in this
section. Errors detected during analysis can be classified by the analysis task
being carried out at the time:

• Lexical. Errors in token formation, such as illegal characters or
misspelled keywords .

• Syntactic. Errors in structure formation, such as missing operators or
parentheses.

12.2. Compiler Error Recovery 309

• Semantic. Errors in agreement, such as operands whose types are
incompatible with their operator, or undeclared variables.

If recovery is to be achieved, each analysis task must repair the errors it
detects and pass a consistent result to the next task. Unfortunately, this
repair may be less than perfect; it usually leads to a local repair, rather than
a repair in the sense of Section 12.1.2 and often results in detection of
related errors by subsequent tasks that have more contextual information.

Any recovery scheme must be based upon redundant information present
in the program. The higher the redundancy, the easier and more certain
recovery will be. Since the amount of structure available to the error
recovery procedure increases significantly from the lexical level to the
semantic level, competent semantic error recovery is considerably easier
than competent recovery from lexical errors. We shall therefore begin by
discussing recovery from semantic errors and work our way back through
syntactic errors to lexical errors.

12.2.1. Semantic Errors Semantic errors are detected when conditions
embedded in the attribute grammar of the language yield false. Recovery
from semantic errors is simply a function of the attribute grammar itself. In
Chapter 8 we emphasized the importance of guaranteeing that all attributes
are defined under all circumstances, and noted that this implied the intro
duction of special error values for some attributes.

If the attributes of an item can be determined unambiguously then the
compiler can work with the correct attributes after an error has been detect
ed. This occurs in LAX with multiple definitions of an identifier in a range,
possibly as a field selector or formal parameter. Operands on the right hand
sides of identity declarations and assignments provide another example, as
do situations in which the operator fully determines the type of the required
operand(s). Finally, we have type declarations for which the storage re
quirements cannot be determined: type t = record a : integer;b:t end.

The recovery is more difficult if several attributes influence the choice, or
if the erroneous symbol is not unambiguously determined. Consider the
case of a binary operator indication, none of whose associated operators is
consistent with the pattern of operand types given. This symptom could
result from an error in one of the operand expressions, or from an erroneous
operator indication. There is no way to be certain which error has occurred,
although the probability of the former is enhanced if one of the operands is
consistent with some operator associated with the indication. In this case,
the choice of operator should be based upon the consistent operand, and
might take into account the use of the result. If this choice is not correct,
however, spurious errors may occur later in the analysis. To prevent an
avalanche in this case, we should carry along the information that a seman
tic error has been repaired. Further error messages involving type
mismatches of this result should then be suppressed.

310 Chapter 12. Error Handling

Another important class of semantic error is the undeclared identifier.
We have already noted (Section 12.1.1) that this error may arise in several
ways. Clearly we should produce an error message if the problem was that
the identifier was misspelled on this use, but if the declaration were
misspelled or omitted the messages attached to each use of the variable con
stitute an avalanche, and should be suppressed.

In order to distinguish between these cases, we might set up a definition
table entry for the undeclared identifier specifying as many properties as
could be determined from the context of the use. Subsequent occurrences
could then be used to refine the properties, but error messages would not be
issued unless the properties were inconsistent. This strategy attempts to dis
tinguish the cases on the basis of frequency of use of an identifier: At the
first use an error will be reported; thereafter we assume that the declaration
is missing or erroneous and do not make further reports. This method works
well in practice. It breaks down when the programmer chooses an identifier
susceptible to a consistent misspelling, or when the text is entered into the
machine by a typist prone to a certain type of error (usually a character
transposition or replacement).

The specific details of the consistency check are language dependent. As
a concrete example, consider the algorithm used by the Whetstone Compiler
for ALGOL 60 [Randell 1964]. (There the algorithm is not used to suppress
avalanches, but rather to resolve forward references to declared identifiers in
a one-pass compilation.) The Whetstone Compiler created a property set
upon the first use of an (as yet) undeclared identifier, with each element
specifying a distinct property that could be deduced from local context
(Table 12.2). The first three elements of Table 12.2 determine the form of
the use, while the remaining nine elements retain information about its con
text. For each successive occurrence, a new set A' was established and
checked for consistency with the old one, A: The union of the two must be

Table 12.2. Identifier Properties in the Whetstone ALGOL Compiler

Property

simple
array
proc
value
variable
arithmetic
Boolean
integer
location
normal
string
nopar

Meaning

The use takes the form of a simple variable.
The use takes the form of an array reference.
The use takes the form of a procedure call.
The object may be used in a context where a value is required.
The object is a variable to which assignments can be made.
The object has an arithmetic (i.e. integer or real) value.
The object has a Boolean value.
The object has an integer value.
The object is either a label or a switch.
The object is not a label, switch or string.
The object is a string.
The object is a parameterless procedure.

12.2. Compiler Error Recovery 311

identical to either set (e.g. A must be a subset of A' or A' must be a subset of
A). If A ' is a superset of A , then the new use provides additional informa
tion.

Suppose that we encounter the assignment p : = q where neither p nor q
have been seen before. We deduce that both p and q must have the form of
simple variables, and that values could be assigned to each; the type must
therefore be real, integer or Boolean. If the assignment r: =p +s; were
encountered later, we could deduce that p must possess an arithmetic (i.e.
real or integer) value. This use of p is consistent with the former use, and
provides additional information. (Note that the same deduction can be
applied to q, but this relationship is a bit too devious to pursue.) Figures
12.3a and 12.3b show the sets established for the first and second
occurrences of p. If the statement p [i 1 : = 3; were now encountered, the
union of Figure 12.3c with Figure 12.3b would indicate an inconsistency.

If a declaration is available, we are usually not able to accept additional
information about the variable. There is one case in ALGOL 60 (and in
many other languages) in which the declaration does not give all of the
necessary information: A procedure used as a formal parameter might or
might not have parameters of its own, so the declaration does not specify
which of the properties {simple,proc} should appear (Figure 12.3d). That
decision must be deferred until a call of the procedure is encountered.

12.2.2. Syntactic Errors A syntactic error is one resulting in a program
that is not a sentence in the (context-free) language being compiled.
Recovery from syntactic errors can change the structure of the program and
the entire semantic analysis. (Lexical errors with such far-reaching conse
quences are considerably rarer.)

Consider the grammar G =(N, T, P, Z) for the source language L. Ifwe
think of the elements of T* as being points in space, we might ask which
sentence is 'closest' to the erroneous program. We would then take this sen
tence as the correct version of the program, and define the error as the

{simple, value, variable}

a) Property set for both p and q derived from p : = q

{simple, value, variable, arithmetic}

b) Property set for p derived from r: =p +s;

{array, value, variable}

c) Property set for p derived from p [i 1: = 3;

procedure x (p); procedure p ;
d) A declaration that leaves properties unspecified

Figure 12.3. Consistency Checks

312 Chapter 12. Error Handling

transformation that carries the correct program into the incorrect one. This
approach is called minimum-dislance correction, and it requires that we
define a metric on the T* space. One way of defining this metric is to regard
every transformation as a sequence of elementary transformations, each
corresponding to a distance of I. The usual elementary transformations are:

• Insert one symbol
• Delete one symbol
• Replace one symbol by another

Global minimum-distance correction, which examines the entire pro
gram, is currently impractical. Moreover, a minimum-distance correction is
often not the best: The minimum-distance correction for an ALGOL 60
statement containing more than one error would be to precede it with com
ment! For ALGOL-like languages simpler methods that can change more
symbols are often superior. On the other hand, global minimum-distance
correction minimizes avalanches.

The symptom of a syntactic error is termed a parser-defined error. Since
we parse a program deterministically from left to right, the parser-defined
error is the first symbol I such that w is a head of some string in the
language, but wI is not. For example, the string w of Figure 12.4a is cer
tainly a head of a legal FORTRAN program, which might continue as
shown in Figure 12.4b. If I is the end-of-statement marker, # ,then wI is
not the head of any legal program. Hence # constitutes a parser-defined
error. Possible minimum-distance corrections are shown in Figure 12.4d.
From the programmer's point of view, the first has the highest probability of
being a correct program. This shows that a parser-defined error may not
always coincide with the point of the error in the user's eyes. This is espe
cially true for bracketing errors, which are generally the most difficult to
repair.

Ad hoc parsing techniques, and even some of the older formal methods,

DO 10 I = J(K,L
a) A head, w, of a FORTRAN program

w) # X

b) A possible continuation (# is end-of-statement)

w# X

c) A parser-defined error

DO 10 I = J,K,L
DO 10 I = J(K,L)

d) Two minimum-distance corrections

Figure 12.4. Syntax Errors

12.2. Compiler Error Recovery 313

may fail to detect any errors at all in certain strings not belonging to the
language. Other approaches (e.g. simple precedence) may delay the point of
detection arbitrarily. The LL and LR algorithms will detect the error
immediately, and fail to accept t. This not only simplifies the localization of
the symptom in the listing, but also avoids the need to process any syntacti
cally incorrect text. Recovery is eased, since the immediate context of the
error is still available for examination and alteration.

If wt X E (T* - L) is an erroneous program with parser-defined error t,
then to effect recovery the parser must alter either w or t X such that
w'tx E L or wt'X'E L. Alteration of w is unpleasant, since it may involve
undoing the effects of connection points. It will also slow the processing of
correct programs to permit backtrack when an error is detected. Thus we
shall only consider alteration of the erroneous symbol t and the following
string x.

Our basic technique will be to recover from each error by the following
sequence of steps:

I. Determine a continuation, p., such that wp. E L .
2. Construct a set of anchors D = {d E T I v is a head of p. and wvd is a

head of some string in L }.
3. Find the shortest string 1jE T* such that tx = 1jt"p.', t"E D.
4. Discard 1j from the input string and insert the shortest string v E T* such

that wvt" is a head of some string in L .
5. Resume the normal parse.

This procedure can never cause the error recovery process to loop
indefinitely, since at least one symbol (til) of the input string is consumed
each time the parser is restarted. Note also that it is never necessary to actu
ally alter the input string during step (2); the parser is simply advanced
through the required steps. A dummy symbol of the appropriate kind is
created at each symbol connection encountered during this advance.

The sequence of connection points reported by the parser is always con
sistent when this error recovery technique is used. Semantic analysis can
therefore proceed without checking for inconsistent input. Generated sym
bols, however, must be recognized as having arbitrary attributes. This is
guaranteed by using special 'erroneous' attribute values as discussed in the
previous section.

It is clear from the example of Figure 12.4 that we can make no claim
regarding the 'correctness' of the continuation determined during step (I).
The quality of the recovery in the eyes of the user depends upon the particu
lar continuation chosen, but it seems unlikely that we will find an algorithm
that 'optimizes' this choice at acceptable cost. We therefore advocate a pro
cess that can be incorporated into a parser generator and applied automati
cally without any effort on the part of the compiler writer. The most impor
tant benefit is a guarantee that the parser will recover from all syntactic
errors, presenting only consistent input to the semantic analyzer. This

314 Chapter 12. Error Handling

guarantee cannot be made with ad hoc error recovery techniques.
We begin by designating one production for each nonterminal, such that

the set of designated productions contains no recursion. For example, in the
production set of Figure 12.5a we would designate the productions listed in
Figure 12.5b. (With this example the designation is unique, a condition sel
dom encountered in larger grammars.) We then reorder the productions for
each nonterminal so that the designated production is first, and apply the
parser generation algorithms of Chapters 5 and 7. As the transitions of the
parsing automata are derived, certain of them are marked. When an error
occurs during the parse, we choose a valid continuation by allowing the
parsing automaton to carry out the marked transitions until it reaches its
final state. No input is read during this process, but at each step the set of
input symbols that could be accepted is added to the set of anchors.

Construction 5.23, as modified in Section 7.2.1 for strong LL(I) gram-

p = { Z ~E#,
E ~FE',
E'~+FE',E'~t:,

F ~i, F ~(E)}

a) Productions of the grammar

Z~E#

E~FE'

E'~t:

F~i

b) Designated productions

*qoi ~qlq2i, qo(~qlq2(,
*ql ~(,
*q2i ~q3q4i, q2(~q3qS(,
*q3# ~q6q7#' q3)~q6q7)' q3+ ~q6q8+,
*q4i ~q9,
*qs(~qlO,
*q6~t:,

*q7~t:,

*q8+~qll'
*q9~t:,

*qlOi ~qI2q2i, qlO(~ql2q2(,
*qlli ~ql3q4i, qll(~qI3qS(,
*ql2)~qI4'
*ql3# ~qISq7#' ql3)~qISq7)' ql3+ ~qISq8+,
*qI4~t:,
*qls~£

c) The transitions of the parsing automaton (compare Figure 7.5)

Figure 12.5. Adding Error Recovery to an LL(l) Parser

12.2. Compiler Error Recovery 315

mars, was used to generate the automaton of Figure 12.5c. The transitions
were marked as follows (marked transitions are preceded by an asterisk in
Figure 12.5c):

• Any transition introduced by step 3 or step 4 of the construction was
marked .

• The elements of H in step 5' are listed in the order discussed in the previ
ous paragraph. The first transition q w -">qh [l]w of a group introduced by
step 5' was marked.

To see the details of the recovery, consider the erroneous sentence i + # .
Figure 12.6a traces the actions of the automaton up to the point at which the
error is detected. The continuation is traced in Figure 12.6b. Note that the
input is simply ignored, and the stack is updated as though the parser were
reading symbols that caused it to make the marked transition. At each step,
all terminal symbols that could be accepted are added to D. Figure 12.6c
shows the remainder of the recovery. No symbols are deleted from the input
string, since # is in the set of anchors. The parser now follows the con
tinuation again, generating any terminal symbols needed to cause it to make
the marked transitions. When it reaches a point where the first symbol of

qoi +#
qlq2i +#
qlq3q4i +#
qlq3q9+#
qlq3+#
qlq6q8+#
qlq6qll #

a) Parse to the point of error detection

qlq6qll D = {iO
qlq6q13q4
qlq6q13q9
qlq6ql3 D = {i(#)+}
qlq6ql5q7
qlq6ql5
qlq6
ql

b) Continuation to the final state

qlq6qll#
qlq6ql3q4#
q)q6q13q9#
qlq6ql3#

i is generated by q4i -">q9
the normal parse may now continue

c) Continuation to the resume point

Figure 12.6. Recovery Using Figure 12.5c

316 Chapter 12. Error Handling

the input string can be accepted, the normal parse resumes.
Let us now tum to the LR case. Figure 12.7a shows a left-recursive

grammar for the same language as that defined by the grammar of Figure
12.5a. The designated productions are 1,3 and 4. Ifwe reorder productions
2 and 3 and then apply Construction 5.33, we obtain the states of Figure
12.7b. The situations are given in the order induced by the ordering of the
productions and the mechanics of Construction 5.33. Figure 12.7c shows the
transition table of the automaton generated from Figure 12.7b, incorporat
ing shift-reduce transitions. The marked transition in each state (indicated
by a prime) was the first shift, reduce or shift-reduce transition generated in
that state considering the situations in order.

An example of the LR recovery is given in Figure 12.8, using the same

(1) Z --->E#
(2) E --->E +F,
(4) F --->i,

(3) E--->F
(5) F --->(E)

a) The grammar

0: Z--->.E; #
E--->.F;# +
E--->.E+F; # +
F--->.i; # +
F--->.(E); # +

I: Z--->E.;#
E--->E.+F; # +

2: E --->F. ; # +)

3: F --->i. ; # +)

4: F--->(.E); # +)
E--->.F ;)+
E--->.E+F;)+
F--->.i;)+
F --->.(E);)+

5: E--->E+.F; # +)
F --->.i ; # +)
F--->.(E); # +)

6: F--->(E.); # +)
E--->E.+F;)+

7: E--->E+F.; # +)

8: F--->(E).; # +)

b) States of the Automaton

(

o -4' 4
I
4 -4' 4
5 -4' 4

)

6 -5'

+ # E F

-3
5 * I'

6 -3
-2

5

c) The transition function for the parser

Figure 12.7. Error Recovery in an LR(O) Parser

12.2. Compiler Error Recovery

qoi +)i#
qoql +)i#
qoqlqs)i#

a) Parse to the point of error detection

D={i ()
D = {i (+ # }

b) Continuation to the final state

the normal parse may now continue

c) Continuation to the resume point

Figure 12.8. LR Error Recovery

317

format as Figure 12.6. The erroneous sentence is i +)i#. In this case,)
does not appear in the set of anchors and is therefore deleted.

One obvious question raised by use of automatic syntactic error recovery
is that of providing meaningful error reports for the user. Fortunately, the
answer is also obvious: Describe the repair that was made! This description
requires one error number per token class (Section 4.1.1) to report insertions,
plus a single error number to report deletions. Since token classes are usu
ally denoted by a finite type, the obvious choice is to use the ordinal of the
token class as the error number to indicate that a token of that class has been
inserted.

Missing or superfluous closing brackets always present the danger that
avalanches will occur because brackets are inserted in (globally) unsuitable
places. For this reason we must take cognizance of error recovery when
designing the grammar. In particular, we wish to make bracketed constructs
'visible' as such to the error recovery process. Thus the grammar should be
written to ensure that closing brackets appear in the anchor sets for any
errors that could cause them to be deleted from the input string. This condi
tion guarantees that an opening bracket will not be deleted by mistake and
lead to an avalanche error at the matching closing bracket. It is easy to see
that the grammar of Figure 12.5a satisfies the condition, but that it would
not if F were defined as follows:

F ~i, F ~(F',
F'~E)

12.2.3. Lexical Errors The lexical analyzer recognizes two classes of
lexical error: Violations of the regular grammar for the basic symbols and
illegal characters not belonging to the terminal vocabulary of the language
or, in languages with stropping conventions, misspelled keywords.

Violations of the regular grammar for the basic symbols (,structural'
errors), such as the illegal LAX floating point number .E2, are recovered in

318 Chapter 12. Error Handling

essentially the same way as syntax errors. Characters are not usually deleted
from the input string, but insertions are made as required to force the lexical
analyzer to either a final state or a state accepting the next input character.
If a character can neither form part of the current token, nor appear as the
first character of any token, then it must be discarded. A premature transi
tion to a final state can make two symbols out of one, usually resulting in
syntactic avalanche errors. A third possibility is to skip to a symbol termina
tor like 'space' and then return a suitable symbol determined in an ad hoc
manner. This is interesting because in most languages lexical errors occur
primarily in numbers, where the kind of symbol is known.

Invalid characters are usually deleted without replacement. Occasionally
these characters are returned to the parser so it can give a more informative
report. This behavior violates the important basic principle that each
analysis task should cope with its own errors.

When keywords are distinguished by means of underlines or bracketed
by apostrophes, the compiler has sufficient information available to attempt
a more complete recovery by checking for certain common misspellings. If
we restrict ourselves to errors consisting of single-character substitutions,
insertions, omissions or transpositions then the length of the basic symbol
cannot change by more than one character. For each erroneous symbol
there exists a (relatively small) set of correct keywords that are identical to it
if one of these errors occurred.

If a spelling-correction algorithm is used, it should form a distinct module
that tests a pair of strings to determine whether they are equivalent under
one of the four transformations listed in the previous paragraph. The two
strings should be in a standard form, chosen to speed the test for
equivalence. This module can be used in other cases also, such as to check
whether an undefined identifier is misspelled. The spelling-correction algo
rithm should not be required to scan a list of candidate strings, since
different callers will generate candidates in different ways.

The decision to provide spelling correction usually has far-reaching
effects on the compiler data structures: Searches for additional candidates
to test against a misspelled word often have a pattern different from the nor
mal accesses. This entails additional linkage, as well as the additional infor
mation to facilitate 'quick checks'. Such increases in data storage violate
our previously-stated principle that an error-free program should not be
required to pay for error recovery.

12.3. Run-Time Errors

During execution of a program, the values of the data objects obey certain
restrictions and relationships, so that the operations of the program can be
carried out. Most relationships result either implicitly or explicitly from the
language definition or implementation restrictions. When the validity of

12.3. Run-Time Errors 319

these relationships cannot be determined from the context during compila
tion, they can be tested at run time with the help of the hardware or by code
generated by the compiler. If such a test fails, then a symptom of a run-time
error has been detected.

Examples of such relationships are given in Figure 12.9. Since c** 2 can
not be less than 0, the compiler could prove that both the first and the third
assertions in Figure 12.9b hold; in the case of I +c** 2 =1= 0, however, this
would be costly. Frequently the first assertion will be tested again at run
time (and consequently the test could be omitted at compile time), because
the computation and test of the storage mapping function is done by a stan
dard library routine.

A run-time error report should give the symptom and location in the
source program. The compiler must therefore provide at least the informa
tion needed by the run-time system to locate the symptom of the error. If a
more exact description or a diagnosis of the cause of the error is required,
the compiler must prepare additional information about the neighborhood
of the error and its dynamic environment. Debugging aids (like traces and
snapshots) require similar information from the compiler's symbol and
definition tables.

In this section we shall not consider run-time error handling in detail.
Our concern will be with the information that the compiler must provide to
the run-time system to make competent error handling possible.

a: array [l:4, 1 :4] of real;

b:=a[3,i]/(l+c**2)

a) A LAX fragment

1~ 3~ 4
1 ~ i ~ 4
1 +c**2=1= °

b) Relationships implied by the LAX definition and (a)

J = K * L

c) A FORTRAN statement

I K 1<248

d) Relationship implied by the
Control Data 6000 FORTRAN implementation and (c)

ASSERT m = n

e) Relationship explicitly stated by the programmer

Figure 12.9. Implicit and Explicit Relationships

320 Chapter 12. Error Handling

12.3.1. Static Error Location In order to specify the exact location of
an error in the program, it must be possible to determine from the instruc
tion position, z, the position, f (z), of the corresponding source text in the
program listing. This requires us to establish an appropriate coordinate sys
tem for the listing. The lines of the listing are usually chosen as the basis for
this coordinate system, and are numbered in ascending order of appearance
to facilitate location of a position in the program. The numbers may be
chosen in various ways: One of the simplest is to use the address of the first
instruction generated by the source line. (This numbering, like others dis
cussed below, may contain gaps.) The contents of the location counter pro
vides a direct reference to the program line if the compiler produces abso
lute code. If the compiler produces relocatable code and the final target
program is drawn from several sources, then the conversion f (z) first
requires identification of the (separately compiled) program unit by means
of a load map produced when the units are linked. This map gives the abso
lute address of each program unit. The relative address appearing on the
listing is obtained by subtracting the starting address from the address of the
erroneous instruction.

If the compiler has used several areas for instructions (Section 1l.l.4), the
monotonicity of the (relative) addresses is no longer guaranteed and we
must use arbitrary sequence numbers. These numbers could be provided by
the programmer himself or supplied by the compiler. In the latter case the
number could be incremented for each line or for each construct of a given
class (for example, assignments).

When arbitrary sequence numbers are used, the compiler must either
store f (z) in tabular form accessible to the run-time system or insert instruc
tions into the target program to place the current sequence number into
some specified memory location. If a table is given in a file, a relationship
between the table and the program must be established by the run-time sys
tem; no further cost is incurred. In the second case all information is held
within the program and a run-time overhead in both time and space is
implied.

The line number, and even the position within the line, can be given for
each instruction if a table is used. For dynamic determination of line
numbers, the line number must be set in connection with a suitable syntactic
unit of the source program. The instructions making up an assignment, for
example, do not always occur in the order in which they appear in the
source program. This is noticeable when the assignment is spread over
several source lines. Of course the numbering need only be updated at those
syntactic units that might fail; it may be omitted for the empty statement in
ALGOL 60, for example.

12.3.2. Establishing the Dynamic Environment Run-time errors usu
ally lead to symptoms that can be described quite simply. Diagnosis of the
error from these symptoms is considerably more difficult than diagnosis of

12.3. Run-Time Errors 321

compile time errors because it must take account of the dynamic environ
ment of the error: the values of data objects being manipulated and the
path by which control arrived at the failure point. Most of this information
can be recovered from the contents of the memory at the failure point; the
only difficulty lies in establishing the correct relationship to the source pro
gram. For this purpose, the compiler should at least provide sufficient infor
mation in the source program listing to enable the programmer to locate
every data object in a printout of the memory contents. This information, in
conjunction with that discussed in Section 12.3.1, we shall term cross
reference information; if it exists in tabular form, these tables are cross
reference tables.

Analysis of a memory dump is always tedious. In order to provide a
more convenient specification of the data objects, the compiler could gen
erate templates similar to those needed to support garbage collection (Sec
tion 3.3.3). These templates can then be used by a run-time support routine
to print the object in a suitable form. Templates may be incorporated into
the compiled program or written on an auxiliary file. Extra storage is
required by the former approach, cooperation of the loader and the operat
ing system by the latter.

A symbolic dump describes a single state of the computation-it is a
'snapshot' of the program's execution. In order to achieve a full understand
ing of the symptom we often need information about how the program
reached the failure point. There are two aspects of this execution history,
the call hierarchy, which specifies the procedures whose invocation has not
yet ended, and the jump history, which defines the path taken through the
procedures.

The call hierarchy is embodied in the current state as a chain of pro
cedure activation records. In order to represent it we extend the symbolic
dump by attaching the procedure name and point of call to each procedure's
activation record. (The former is obtained from the cross-reference tables,
the latter from the return address.)

The jump history, represented by the addresses of successful jumps, can
not be obtained from the environment of the symptom. It must be stored
explicitly during execution. Either the compiler must generate specific
instructions for this purpose, or the hardware must store the addresses of
successful jumps automatically (EDSAC 2 [Barron 1963] and the Siemens
7000 series are examples of such machines). The relevance of the jump his
tory diminishes with the 'age' of the jumps; to save memory we would there
fore retain only the most recent jump addresses. In some debugging systems
for machine-oriented languages the number 4 is chosen, EDSAC 2 chose 41
and the Siemens 7000 chose 64. Loops rapidly fill the jump history with use
less information. It is thus better to store a sequence of identical jumps as a
single address with a cycle count. Cycles of length 2 can be represented in a
similar manner, but recognition oflonger cycles does not seem worthwhile.

In a language like LAX, which provides a variety of control structures,

322 Chapter 12. Error Handling

source programs will usually contain no jumps at all. The jump history is
thus understandable only if the sequence of source language constructs that
created it can be recovered. For this purpose one can use the cross
referencing techniques of Section 12.3.1, augmented with information about
the kind of jump (conditional, case clause, repetition of a loop, etc.) The
source language constructs need be determined from the cross-reference
tables only when the dump actually occurs, and then only for the jumps
appearing in the jump history.

We must always be aware of the possibility that the state of the memory
may have been corrupted by the error, and that inconsistencies may be
present that could cause the analysis routines to loop or make further errors.
During the output of a symbolic dump or jump history all information must
be carefully examined for consistency. The compiler may provide redun
dant information, for example special bit patterns in particular places, to aid
in this process.

12.3.3. Debugging Aids A program can be tested by following its pro
gress to normal termination or to some unusual event. This can be done by
tracing the jump addresses and/or procedure calls, tracing the values of cer
tain data objects, or taking selective symbolic dumps. When working
interactively, one can insert breakpoints to halt execution and permit exami
nation and resetting of variables. The program can then be restarted at a
specified point, possibly after alteration of the call hierarchy. All of these
techniques require the support of the compiler as discussed in Sections
12.3.1 and 12.3.2.

All supervision mechanisms other than those specific to interactive execu
tion can be provided by modification and recompilation of the program.
With large programs this is quite costly; in addition, the modification can
cause unrecognized side effects in the program's behavior. By concentrating
the facilities in a test system independent of the compiler, this problem can
be avoided. Such a solution increases the demands on the cross-reference
tables, since the test system is now in the position of having to use them to
modify the target program. If the same test system is to be used for several
languages, then the structure and contents of the cross-reference tables
becomes a standard interface for all compilers.

12.4. Notes and References

The user orientation of the error handling (understandable error reports,
suppression of avalanches, run-time information in terms of the source pro
gram), and the principle that the cost of preventive tests should be as small
as possible, obviously represent the main problems of error handling today.
Koster [1972] gives a good overview of the demands placed upon the error

12.3. Run-Time Errors 323

handler. The implementation of PL/C [Conway 1973] represents an
attempt at extensive error recovery.

Lyon [1974] gives an algorithm for global minimum-distance correction
that requires 0 (n 2) space and 0 (n 3) time to correct an n -symbol input
string. Theoretical results [Peterson 1972] indicate that improvement of
these bounds is highly unlikely. A backtracking method for global repair of
syntactic errors is given by Levy [1975]; our approach is based upon some
ideas of Irons [1963 b] that were applied to top-down parsers by Gries [1971].
Rohrich [1978, 1980] formalized these ideas and extended them to LR
parsers. The use of recovery sequences as error messages first appeared in
the SP /k compiler [Holt 1977].

Damerau [1964] has observed that over 80% of all spelling errors in a par
ticular retrieval system consisted of single-character substitutions, insertions,
omissions or transpositions. This observation serves as the basis for most
spelling correction algorithms, of which the one described by Morgan [1970]
is typical.

Dynamic updating of a variable containing a line number may consume
significant resources. Brinch-Hansen [1975] notes that up to 25% of the gen
erated code for a Sequential Pascal program may be devoted to line number
bookkeeping. Kruseman-Aretz [1971] considers how this overhead can be
minimized in the context of ALGOL 60, and Klint [1979] suggests that the
information be obtained from a static analysis of the program rather than
being maintained dynamically.

Symbolic dumps in source language terms have been available since the
early sixties. The papers by Seegmiiller [1963] and Bayer [1967] summarize
the information the compiler must provide to support them. Other descrip
tions of this information can be found in the literature on symbolic debug
ging packages [Hall 1975, Pierce 1974, Satterthwaite 1972, Balzer 1969,
Gaines 1969].

EXERCISES

12.1. Define the class of detectable errors for some language available at your
installation. Which of these are detected at compile time? At run time? Are
any of the detectable errors left undetected? Have you made any such errors
in your programming?

12.2. We have classified the LAX expression (I/O) as a compile-time anomaly,
rather than a compile-time error. Some authors disagree, arguing that if the
expression is evaluated at run time it will lead to a failure and that if it can
never be evaluated then the program is erroneous for other reasons. Write a
cogent argument for or against (whichever you prefer) our classification.

12.3. The definition of the programming language Euclid specifies minimum limi
tations that may be placed on programs by an implementation. For

324 Chapter 12. Error Handling

example, the definition requires that any compiler accept expressions having
parentheses nested to depth 7, and programs having environments nested to
depth 31. The danger of setting such minimum limits is pointed out by Sale
[1977), who demonstrates that the requirement for environments nested to
depth 31 effectively precludes implementation of Euclid on Burroughs 6700
and 7700 equipment. Comment on the advantages and disadvantages of
Euclid approach, indicating the scope of the problem and possible
compromise solutions.

12.4. Consider some compiler running at your installation. How are its error mes
sages communicated to the user? If the result gives less information than the
model we discussed in Section 12.1.3, argue for or against its adequacy.
Were there any constraints on the implementor forcing him to his choice?

12.5. Experiment with some compiler running at your installation, attempting to
create an avalanche based upon a semantic error. If you succeed, analyze
the cause of the avalanche. Could it have been avoided? How? At what
cost to correct programs? If you do not succeed, analyze the cause of your
failure. Is the language subject to avalanches from semantic errors? Is the
implementation very clever, possibly at some cost to correct programs?

12.6. Under what conditions might a simple preccdence analyzer [Gries 1971)
delay detection of an error?

12.7. [Rohrich 1980) Give an algorithm for designating productions of a grammar
so that there is one production designated for each nonterminal, and the set
of designated productions contains no recursion.

12.8. Apply the syntactic error recovery technique of Section 12.2.2 to a recursive
descent parser based upon extended BNF (Section 7.2.2).

12.9. Apply both the automaton of Figure 12.5c and that of Figure 12.7c to the
string (i (i +i #. Do you feel that the recovery is reasonable?

12.10. [Dunn 1981] Consider the modification of Figure 7.10 to support automatic
error recovery.
a. Assuming that the form of the table entry remained unchanged, how

would you incorporate the definition of the continuation into the tables?
b. Based upon your answer to (a), write procedures parser_error, get-anchor

and advance_parser to actually carry out the recovery. These procedures
should be nested in parser as follows, and parser should be modified
appropriately to invoke them:
parser

parser_error
get-anchor
advance_parser

c. Carefully explain your mechanism for generating symbols. Does it
require access to information known only to the lexical analysis module?
If so, how do you obtain this information?

12.11. [Morgan 1970) Design an algorithm for checking the equivalence of two
strings under the transformations discussed in Section 12.2.3 .. How would

12.3. Run-Time Errors 325

you interface this algorithm to the analysis process discussed in Chapters 6

and 7? Be specific!

12.12. Consider some compiler running at your installation. How is the static loca
tion of a run-time error determined when using that compiler? To what
extent could the determination be automated without making any change to
the compiler? What (if anything) would such automation add to the cost of
running a correct program?

12.13. [Kruseman-Aretz 1971] A run-time error-reporting system for ALGOL 60
programs uses a variable Inc to hold the line number of the first basic symbol
of the smallest statement whose execution has begun but not yet terminated.
We wish to minimize the number of assignments to Inc. Give an algorithm
that decides when assignments to Inc must be generated.

12.14. Consider some compiler running at your installation. How is the dynamic
environment of a run-time error determined when using that compiler? To
what extent could the determination be automated without making any
change to the compiler? What (if anything) would such automation add to
the cost of running a correct program?

12.15. [Bayer 1967] Consider some language and machine with which you are fami
liar. Define a reasonable symbolic dump format for that language, and
specify the information that a compiler must supply to support it. Give a
detailed encoding of the information for the target computer, and explain
the cost increase (if any) for running a correct program. ed without making
any change to the compiler? What (if anything) would such automation add
to the cost of running a correct program?

CHAPTER 13

Optimization

Optimization seeks to improve the performance of a program. A true
optimum may be too costly to obtain because most optimization techniques
interact, and the entire process of optimization must be iterated until there is
no further change. In practice, therefore, we restrict ourselves to a fixed
sequence of transformations that leads to useful improvement in
commonly-occurring cases. The primary goal is to compensate for
inefficiencies arising from the characteristics of the source language, not to
lessen the effects of poor coding by the programmer. These inefficiencies
are inherent in the concept of a high level language, which seeks to suppress
detail and thereby simplify the task of implementing an algorithm.

Every optimization is based upon a cost function, a meaning-preserving
transformation, and a set of relationships occurring within some component
of the program. Code size, execution time and data storage requirements are
the most commonly used cost criteria; they may be applied individually, or
combined according to some weighting function.

The boundary between optimization and competent code generation is
fuzzy. We have chosen to regard techniques based upon processing of an
explicit computation graph as optimizations. A computation graph is impli
cit in the execution-order traversal of the structure tree, as pointed out at the
beginning of Chapter 10, but the code generation methods discussed so far
do not require that it ever appear as an explicit data structure. In this
chapter we shall consider ways in which a computation graph can be mani
pulated to improve the performance of the generated code.

Our treatment in this chapter differs markedly from that in the remainder
of the text. The nature of most optimization problems makes computation
ally efficient algorithms highly unlikely, so the available techniques are all

326

13.1. The Computation Graph 327

heuristic. Each has limited applicability and many are quite complex.
Rather than selecting a particular approach and exploring it in detail, we
shall try to explain the general tasks and show how they fit together. Cita
tions to appropriate literature will be given along with the discussion. In
Section 13.1 we motivate the characteristics of the computation graph and
sketch its implementation. Section 13.2 focuses on optimization within a
region containing no jumps, while Section 13.3 expands our view to a com
plete compilation unit. Finally, Section 13.4 gives an assessment of the
gains to be expected from various optimizations and the costs involved.

13.1. The Computation Graph

Profitable optimizations usually involve the implementation of data access
operations, and hence the target form of these operations should be made
explicit before optimization begins. Moreover, many optimizations depend
upon the execution order, and others may alter that order. These require
ments make the structure tree an unsuitable representation of the program
being optimized. In the first place, the structure tree reflects the semantics of
the source language and therefore suppresses detail. Secondly, execution
order tree traversals depend upon the values of specified attributes and
hence cannot be generated mechanically by the tools of Chapter 8.

Data access operations are often implicit in the target machine code as
well: They are incorporated into the access paths of instructions, rather than
appearing as separate computations. Because of this, it is difficult to isolate
them and discover patterns that can be optimized. The target tree is thus
also an unsuitable representation for use by an optimizer.

To avoid these problems, we define the computation graph to have the
following properties:

• All source operations have been replaced by (sequences of) operations
from the instruction set of the target machine. Coercions appear as
machine operations only if they result in code. Other coercions, which
only alter the interpretation of the binary representation of a value, are
omitted.

• Every operation appears individually, with the appropriate number of
operands. Operands are either intermediate results or directly-accessible
values. Each value has a specified target type.

• All address computations are explicit.
• Assignments to program variables are separated from other operations.
• Control flow operations are represented by conditional and unconditional

jumps.

Although based upon target machine operations, the computation graph is
largely machine-independent because the instruction sets of most Von Neu
mann machines are very similar.

328 Chapter 13. Optimization

We assume that every operation has no more than one result. To satisfy
this assumption, we either ignore any side effects of the machine
instruction(s) implementing the operation or we create a sequence of opera
tions making those side effects explicit. In both cases we rely upon subse
quent processing to generate the proper instructions. For example, the
arithmetic operations of some machines set the condition code as a side
effect. We ignore this, producing comparison operators (whose one result is
placed in the condition code) where required. Peephole optimization (Sec
tion 13.2.3) will remove superfluous comparisons in cases where a preceding
arithmetic operation has properly set the condition code. The second
approach is used to deal with the fact that on many machines the integer
division instruction yields both the quotient and the remainder. Here we
create a sequence of two operations for both div and mod. The first opera
tion in each case is divmod; the second is a unary selector, div or mod respec
tively, that operates on the result of divmod. Common subexpression elimi
nation (Section 13.2.1) will remove any superfluous divmod operators.

The atoms of the computation graph are tuples. A tuple consists of an
operator of the (abstract) target machine and one or more operands, each of
which is either a value known to the compiler or the result of a computation
described by a tuple. Each appearance of a tuple in the computation graph
is called a program point, and given an integer index greater than o.

Let 0] and 02 be operands in a computation graph. These operands are
congruent if they are the same known value, or if they are the results of
tuples t] and t 2 with the same numbers of operands for which
operator(t])=operator(t2) and operandi(t]) is congruent to operandi (t2) for
all i. A unique operand identifier is associated with each set of congruent
operands, and this identifier is used to denote all of the operands in the set.

Figure 13.1 b has 12 program points and 9 distinct tuples. Values known
to the compiler have the corresponding source language constructs as their
operand identifiers. The full definition of a tuple is given only at its first
occurrence; subsequent occurrences are denoted by the operand identifier

V.i:=aa i *y+v.j;aa i :=aa i +v.j;
a) A Pascal fragment

t]: aa i
t2: t] i
t3:y i
t4: t2*t3
t5: v.j i
t6: t4 +t5
t7: V.i:=t6

t]

t2
t5
t8: t2 +t5
t9: t]:=t8

b) The tuple sequence resulting from (a)

Figure 13.1. Tuples and Operands

13.1. The Computation Graph 329

alone. Note that each operand identifier denotes a single value. For
example, Vj is the address of the j field of the record V, relative to the base
of the activation record. This value is the sum of the offset of V from the
base of the activation record and the offset of j from the base of the record.
Both offsets are known to the compiler, and hence the sum is known. Also,
contrast the representations of the two assignments. In the first, the target
address (V.i) is known to the compiler, while in the second it is the content
of a pointer variable.

A module very similar to the symbol table acts as a source of unique
operand identifiers. By analogy to section 4.2.1, this module provides three
operations:

• initialize: Enter the standard entities.
• give_operand_identifier(tuple-spec)operand_identifier: Obtain the operand

identifier for a specified tuple or known value.
• give_tuple(operand_identijier)tuple-spec: Obtain the tuple or known value

having a specified operand identifier.

Tuple-spec is a variant record capable of describing any tuple or known
value. One possible representation would be as two major variants, a value
descriptor to specify a known value and an operator plus an array of
operand identifiers to specify a tuple.

A straight-line segment is a set of tuples, each of which will be executed
exactly once whenever the first is executed. A straight-line segment of maxi
mal length is called a basic block. The flow graph of a compilation unit is a
directed graph whose nodes are basic blocks and whose edges specify the
possible execution sequences of those basic blocks. We also sometimes con
sider extended basic blocks, which are subtrees of the flow graph. (Extended
basic blocks correspond to nested conditional clauses and to the bodies of
innermost loops that contain no jumps.)

The value of every tuple depends ultimately upon some set of variables.
If the value of any of these variables changes, then the value computed by
the tuple will also change. Figure l3.2c is a directed acyclic graph illustrat
ing such dependency for the tuples of Figure l3.2b. A tuple is dependent
upon a variable if there is a directed path in the graph from the node
corresponding to the variable to the node corresponding to the tuple. When
the value of a variable is altered, any previously-computed value of a tuple
depending upon that variable becomes invalid. Note that a is treated as a
single variable, whose value directly influences the value of t4 but not the
value Of/3.

In general, evaluation of a particular tuple may use some operand values,
define some operand values and invalidate some operand values. We can
define the following dependency sels for each tuple 1 :

~ = {o lois a tuple or program variable operand of t }
D/ = {o lois an operand defined by t }
~ = {o lois an operand invalidated by 1 }

330

I I
12
13
t4
15
16
17
Is
19
110
III

1\2
113

Chapter 13. Optimization

w: = a [i]; a [)]: = x; z : = a [i] + z ;
a) A Pascal fragment

II: i i
12: II *4
13: a +/2

14: /3i
15: w:=/4

16:) i
17: 16*4
Is: a +/7

19: x i
110: Is: =/9

113: z: =/ 12

b) Tuple sequence resulting from (a)

c) Dependency graph for the tuples of (b)

U D X

{} {i j} {}
{i j} {II *4} {}
{II *4} {a +t2} {}
{a+/c} {t3 i } {}
{t3 i } {w j} {}

{} Uj} {}
Uj} {/6 *4} {}
{/6 *4} {a +t7} {}

{} {x i} {}
{a +t7,x i} {Is i } {t 3 i,1 4 +t I d

{} {z j} {}
{/3i,zi} {/4 +tId {}
{l4 +/ld {z j} {l4+ / 1I}

d) Dependency sets for the tuples of (b)

Figure 13.2. Analyzing Array References

The rules of the language determine these sets. Figure l3.2d shows the sets
for the tuples of Figure l3.2b.

13.1. The Computation Graph 331

The effect of an assignment to a pointer variable is similar to, but more
extensive than, that of an assignment to an array element. Pointer variables
in Pascal or Ada potentially access any anonymous target of any other
pointer variable of the same type. In LAX or ALGOL 68, every object of
the given target type is potentially accessible. A reference parameter of a
procedure has the same properties as a LAX or ALGOL 68 pointer in most
languages, except that the accessibility is limited to objects outside the
current activation record. A procedure call must be assumed to use and
potentially modify every variable visible to that procedure, as well as every
variable passed to it as a reference parameter.

To construct the computation graph, we apply the storage mapping, tar
get attribution and code selection techniques of Sections 10.1-10.3. These
methods yield the tuples in an execution order determined by the target
attributes, in particular the register estimate. The only changes lie in the
code selection process (Section 10.3), where the abstract nature of the com
putation graph must be reflected.

A new value_class, generated, must be introduced in Figure 10.12. If the
class of a value descriptor is generated, the variant part contains a single id
field specifying an operand identifier. Decision tables (such as Figure 10.15)
do not have tests of operand value class in their condition stubs, nor do they
generate different instructions for memory and register operands. The result
is a significant reduction in the table size (Figure 13.3). Note that the gen
routine calls in Figure 13.3 still specify machine operation codes, even
though no instruction is actually being produced. This is done to emphasize
the fact that the tuple'S operator is actually a machine operator. In this case
we have chosen 'A' to represent IBM 370 integer addition. A tuple whose
operator was A might ultimately be coded using an AR instruction or
appear as an access path of an RX-format instruction, but it would never
result in (say) a floating add.

The gen routine's behavior is controlled by the operator and the operand
descriptor classes. When the operands are literal values and the operator is

Result correct Y Y Y Y N N N N

t correct Y Y N N Y Y N N

It correct Y N Y N Y N Y N

<\wa.p(.e,It) X X
gen(A,.e,It) X X X X

gen(S,.e,It) X X X X
gen(LCR,.e,.e) X X

Figure 13.3. Decision Table for +(integer,integer) integer Based on Figure 10.15

332 Chapter 13. Optimization

one made available by the constant table, then the specified computation is
performed and the appropriate literal value delivered as the result. In this
case, nothing is added to the computation graph. Memory operands (either
addresses or values) are checked to determine whether they are directly
addressable. If not, tuples are generated to produce the specified results. In
any case, the value descriptors are altered to class generated and an
appropriate operand identifier is inserted. Finally a tuple is generated to
describe the current operation and the proper operand identifier is inserted
into the value descriptor for the left operand.

Although we have not shown it explicitly, part of the input to the gen rou
tine specifies the program variables potentially used and destroyed. This
information is used to derive the dependency sets. An example giving the
flavor of the process can be found in the description of Bliss-II [Wulf 1975).

13.2. Local Optimization

The simplest approach to optimization is to treat each basic block as a
separate unit, optimizing it without regard to its context. A computation
graph is built for the basic block, transformed, and used to generate the final
machine code. It is then discarded and the next basic block is considered.

Our strategy for optimizing a basic block is to carry out the following
steps in the order indicated:

I. Value Numbering: Perform a 'symbolic execution' of the block, propagat
ing symbolic values and eliminating redundant computations.

2. Coding: Collect access paths for program variables and combine them
with operations to form valid target machine instructions, assuming an
infinite set of registers.

3. Peephole Optimization: Attempt to combine sequences of instructions into
single instructions having the same effect.

4. Register Allocation: Map the register set resulting from the coding step
onto the available target machine registers, generating spill code (code to
save and/or restore registers) as necessary.

Throughout this section we assume that all program variables are poten
tially accessed after the end of the basic block, and that no tuple values are.
The latter assumption fails for an expression-oriented language, and in that
case we must treat the tuple representing the final value of the expression
computed by the block as a program variable. Section 13.3 will consider the
more general case occurring as a result of global optimization.

13.2.1. Value Numbering Access computations for composite objects
are rich sources of common subexpressions. One classic example is the code
for the following FORTRAN statement, used in solving three-dimensional
boundary value problems:

13.2. Local Optimization 333

A(I,J,K) = (A(I,J,K-I)+A(I,J,K+I) +
A(I,J-I,K)+A(I,J +1,K) +
A(I-I,J,K) +A(I +1,J,K» / 6.0

The expression I +d, *(J +d2*K), where d, and d 2 are the first two dimen
sions of A, is generated (in combination with various constants) seven times.
The value of this expression cannot change during evaluation of the assign
ment statement if I, J and K are variables, and hence six of the seven
occurrences are redundant.

Value numbering is used to detect and eliminate common subexpressions
in a basic block. The general idea is to simulate the computation described
by the tuples, generating a new basic block that is no longer than the origi-

invalid: = initialize _ vn ;
Set all elements of PV to invalid;
for i : = first program point to last program point do

if PV[ti] = invalid then
begin
T: = evaluate (ti);
if T = II V : = 0 II then

begin
if PV[v i] * PV[o] then

begin V: = new_value (T); for tuple E~. do PV[tuple]: = invalid end;
V: =PV[o]; I

end
else if(T* "V i") and (T occurred earlier) then

V: =value number of the previous occurrence of T
else

begin V: = new _value (T); for tuple E ~. do P V[tuple]: = invalid end;
• I

for tuple EDt. do PV[tuple]: = V;
end; I

a) The algorithm

Operation

initialize _ vn : value Jlumber

evaluate (tuple): tuple

new _value (tuple): value _number

Meaning

Clear the output block and return
the first value number.

Create a new tuple by replacing each
tuple reference t in the argument by
PV[t]. Return the newly-created tuple.

Add tuple to the output block, asso
ciating it with a new value number.
Return the new value number.

b) Operations of the output module

Figure 13.4. Value Numbering

334 Chapter 13. Optimization

nal. In the new basic block, only fetch (v j) and assignment (v: =0) tuples
may appear at more than one program point. Each such occurrence is given
a unique identifier, so that every tuple appearing in the new basic block is
associated with a distinct identifier. These new identifiers are called value
numbers, since each denotes a particular value generated by the computa
tion. As the new basic block is being constructed, we use an array to keep
track of the value numbers that currently denote the values generated by
each tuple. A distinguished value number denotes an unknown value.
Figure 13.4 defines the value numbering algorithm, and the example of Fig
ure 13.5 gives the flavor of the process. (Operand identifiers of the form Vi

have been used in Figure 13.5c to emphasize the fact that a new set of tuples
is being generated, and that the value numbers can be used as operand
identifiers.)

Simulation of I I requires generation of an assignment, and as a result the
value of a j is known to be 2. Tuple 12 then has a value known to the com
piler; no computation is required in the basic block being generated. No
value is known for X j, so V2 must be generated. When we reach 17, the

a:=2;
b:=a*X +1;
a: =2*X;
c:=a+l+b;

a) A sequence of assignments
Tuple U D X

II: a:=2 {} {a j} {t2 */3,14 + Ih +1,/9+1 1O }
12: a j {} {a j} {}
13: X j {} {X j} {}
14: 12 *13 {a j,X j} {12 *13} {}
Is: 14+ 1 {1 2 *13} {14 + I} {}
16: b :=ls {/4 + l} {b j} {19+t1O}
13
17: 2*/3 {X j} {2 *13} {}
Ig:a:=17 {2 *13} {a j} {t2 *13,14 + Ih + 1,19 +tlO}
12
19: /2+1 {a j} {t2 + l} {}
110: b j {} {b j} {}
111 :/9+/ 10 {t2+ 1,b j} {t9+t1O} {}
112 :C:=111 {t9+t1O} {c j} {}

b) Tuples and sets for (a)

vI:a:=2 vS:b:=V4
v2: X j V6: a :=V3
V3: 2*V2 V7: V4 +V4
V4: v3+ l VS: C:=V7

c) Transformed computation graph

Figure 13.5. Common Subexpression Elimination

13.2. Local Optimization 335

value computed by 13 is known to be V2. The computation needed in the
new basic block is therefore 2*v2. But a tuple for this computation will have
already been executed, and we have called its result V3. Thus 2 *v2 is a com
mon subexpression that may be eliminated. The only result of the simulation
is to note that the value Of/7 is V3.

Execution of 18 may cause four earlier computations to yield new values if
c~rried out again (the other three elements of ~8 correspond to computa
tIOns not yet performed). Thus we must treat the old values of those compu
tations as invalid at this point. In addition, the value of a i is set to V3 by 18.

The values of 12,19 and llO are known. Finally, III and 112 result in the last
two tuples of Figure l3.5c. As can be seen from this example, value
numbering recognizes some common subexpressions even when they are
written differently in the source program.

In more complex examples than Figure 13.5, the precise identity of the
accessed object may not be known. For example, the value of ali] in Figure
13.2a might be altered even though none of the assignment tuples in the
corresponding straight-line segment has a [i) as a target. The analysis uses
X, to account for this phenomenon, yielding the basic block of Figure 13.6.
N61e that the algorithm correctly recognizes the address of ali] as being a
common subexpression.

The last step in the value numbering process is to delete redundant
assignments to program variables (such as VI in Figure 13.Sc) and, as a
byproduct, to develop use counts for all of the tuples. Figure 13.7 gives the
algorithm. Since each tuple value is defined exactly once, and never used

VI: i i v6:j i VII: V3 i
V2: VI *4 V7: v6*4 V12: z i
v3: a + v 2 vs: a +V7 v13: VII +v12

V4: V3 i v9: x i VI4: Z :=V13

V5: W :=V4 vlO: vS:=v9

Figure 13.6. Value Numbering Applied to Figure 13.2

for 0 E U [Or u Dr] do USECOUNT[o]: =0;
r

for 0 E {Program variables} do USECOUNT[o i): = I;
for i : = last program point downto first program point do

begin
c:=O;
for 0 ED, do

begin I

c: =c + USECOUNT[o];
if 0 is a program variable then USECOUNT[o]: =0;
end;

if c =0 then delete tuple Ii
else for 0 E Or do USECOUNT[o]: = USECOUNT[o] + I;
end; I

Figure 13.7. Redundant Assignment Elimination and Use Counting

336 Chapter 13. Optimization

before it is defined, USECOUNT[v] will give the number of uses of v at the
end of the algorithm. The entries for program variables, on the other hand,
may not be accurate because they include potential uses by procedures and
pointer assignments.

The analysis discussed in this section can be easily generalized to
extended basic blocks. Each path through the tree of basic blocks is treated
as a single basic block; when the control flow branches, we save the current
information in order to continue the analysis on the other branch. Should
constant folding determine that the condition of a conditional jump is fixed,
we replace this conditional jump by an unconditional jump or remove it. In
either case one of the alternatives and the corresponding basic block is
superfluous and its code can be deleted. These situations arise most fre
quently in automatically-generated code, or when the if··· then' .. else
construct, controlled by a constant defined at the beginning of the program,
is used for conditional compilation.

To generalize Figure 13.7, we begin by analyzing the basic blocks at the
leaves of the extended basic block. The contents of USECOUNT are saved,
and analysis restarted on a predecessor block by resetting each element of
USECOUNT to the maximum of the saved values for the successors. We
cannot guarantee consistency in the use counts by this method, since not all
of the use counts must reach their maxima along the same execution path. It
turns out, however, that this inconsistency is irrelevant for our purposes.

13.2.2. Coding The coding process is very similar to that of Section 10.3.
We maintain a value descriptor for each operand identifier, and simulate the
action of the target computer using these value descriptors as a data base.
There is no need to maintain register descriptors, since we are assuming an
infinite supply.

Figure 13.8 gives two possible codings of Figure 13.la for the IBM 370.
Our notation for describing the instructions is essentially that of Davidson
[1980]: 'R["']' means 'contents of register ... ' and 'M["']' means 'con-
tents of the memory location addressed by ... '. Register numbers greater
than 15 represent 'abstract registers' of the infinite-register machine, while
those less than 15 represent actual registers whose usage is prescribed by the
mapping specification. (As discussed in Section 10.2.1, register 13 is used to
address the local activation record.)

The register transfer notation of Figure 13.8 is independent of the target
machine (although the particular descriptions of Figure 13.8b are specific to
the IBM 370), and is useful for the peephole optimization discussed at the
end of this section. Figure 13.8b is not a complete description of the register
transfers for the given instructions, but it suffices for the current example.
Later we shall show an example that uses a more complete description.

The differences between the left and right columns of Figure 13.8b stem
from the choice of the left operand of the multiply instruction, made when
the second line was generated. Because the multiply is a two-address

13.2. Local Optimization 337

instruction, the value of the left operand will be replaced by the value of the
result. Wulf[1975] calls this operand the target path.

In generating the left column of Figure 13.Sb, we used Wulfs criterion:
Operand V2 has a use count greater than I, and consequently it cannot be
destroyed by the operation because it will be needed again. It should not lie
on the target path, because then an extra instruction would be needed to
copy it. Since V3 is only used once, no extra instructions are required when
it is chosen as the target path. Nevertheless, the code in the right column is
two bytes shorter-why? The byte counts for the first six rows reflect the
extra instruction required to preserve V2 when it is chosen as the target path.
However, that instruction is an LR rather than an L and thus its cost is only
two bytes. It happens that the last use of V2 involves an operation with two
memory operands, one of which must be loaded at a cost of 4 bytes! If the
last use involved an operation whose other operand was in a register, we
could use an RR instruction for that operation and hence the byte counts of
the two codings would be equal.

This example points up the fact that the criteria for target path selection
depend strongly upon the target computer architecture. Wulfs criterion is

Tuple Use count

vl:aa i 2
V2:Vti 2
v3:Y i I
V4: V2 *V3 I
v5:V,ji 2
V6: V4+v5 1
V7: V,i:=v6
v8: v2+ vS
Vy:Vl:=VS

a) Result of value numbering

R[16] : = M[R[13] +aa]
R[17]:= M[R[l3]+y]

R[l7]:= R[17]*M[R[16]+0]
R[17] : = R[l7] +M[R[l3] + V, j]
M[R[13]+v'i] : = R[17]
R[lS] : = M[R[16] +0]
R[lS]:= R[l8]+M[R[l3]+v'j]
M[R[16]+0]:= R[18]

R[16] : = M[R[13]+aa]
R[l7] := M[R[l6]+0]
R[l8] : = R[l7]
R[l8] : = R[l8] *M[R[13] +y]
R[18]:= R[18]+M[R[l3]+v'j]
M[R[13] + V,i] : = R[l8]

R[17]:= R[l7]+M[R[l3]+v'j]
M[R[l6]+0] : = R[17]

32 bytes 30 bytes
3 registers 4 registers

b) Two possible codings

Figure 13.8. Coding Figure 13.1 for the IBM 370.

338 Chapter 13. Optimization

the proper one for the DEC PDPll, but not for the IBM 370.
Figure 13.8b does not account for the fact that the IBM 370 multiply

instruction requires the multiplicand to be in an odd register and leaves the
product in a register pair. The register allocation process must enforce these
conditions in any event, and it does not appear useful to introduce extra
notation for them at this stage. We shall treat the problem in detail in Sec
tion 13.2.4.

13.2.3. Peephole Optimization Every tuple of the computation graph
corresponds to some instruction of the target machine. It may be, however,
that a sequence of several tuples can be implemented as a single instruction.
The purpose of peephole optimization is to combine such tuples, reducing
the size of the basic block and the number of intermediate values. There are
two basic strategies:

• Each instruction of the target machine is defined in terms of register
transfers. The optimizer determines the overall register transfer of a
group of instructions and seeks a single instruction with the same effects
[Davidson 1980] .

• A set of patterns describing instruction sequences is developed, and a sin
gle instruction associated with each. When the optimizer recognizes a
given pattern in the basic block, it performs the associated substitution
[Tanenbaum 1982].

Figure 13.9 illustrates register transfer descriptions of PDPII and IBM
370 instructions; no attempt at completeness has been made in either case.
Upper-case identifiers and special characters are matched as they stand,
while lower-case identifiers represent generic patterns as indicated. (Note
that in Figure 13.9b the description of an add instruction fits both A and
AR; there is no need to distinguish these instructions until assembly, when
they could be encoded by the technique of Section 11.3.2.) Literal charac
ters in the patterns are chosen simply for their mnemonic value. The optim
izer needs no concept of machine operations; optimization is carried out
solely on the basis of pattern matching and replacement. Thus the process is
machine-independent-all machine dependence is concentrated in the regis
ter transfer descriptions themselves.

In Section 13.1 we asserted that extra comparisons introduced to allow us
to ignore the side effect of condition code setting in arithmetic instructions
could easily be removed. The example of Figure 13.10 illustrates the steps
involved. (Abstract registers have numbers larger than 7, and we assume
that register 5 addresses the local activation record.) Note that the combined
effect of the move and compare instructions (Figure 13.lOd) is identical to
the effect of the move instruction (line 3 of Figure l3.lOc). The optimizer
discovers this by pattern matching, and replaces the pair (move, compare)
by the single move.

A two-instruction 'window' was sufficient to detect the redundant com-

13.2. Local Optimization 339

parison in the example of Figure 13.10. When a computer provides memory
updating instructions that are equivalent to simple load/operate/store
sequences, the optimizer needs to examine instruction triples rather than
pairs. Figure 13.11 shows how an increment instruction is generated. The
' ... ' in Figure 13.lla stands for an arbitrarily complex address expression
that appears on both sides of the assignment. This expression is recognized
as common during value numbering, and the address it describes appears as
an operand identifier (Figure 13.11 b).

Davidson and Fraser [1980] assert that windows larger than 3 are not
required. Additional evidence for this position comes from Tanenbaum's
[1982] table of 123 optimization patterns. Only seven of these were longer
than three instructions, and none of the seven resulted in just a single output
instruction. Three of them converted addition or subtraction of 2 to two
increments or decrements, the other four produced multi-word move
instructions from successive single-word moves when the addresses were
adjacent. All of these patterns were applied rather infrequently.

The optimizations of Figures 13.10 and 13.II could be specified by the
following patterns if we used the second peephole optimization method
mentioned at the beginning of this section:

MOYa,b CMP a,b
MOYa,b ADD I,b

Instruction

MOY s,d
ADD s,d
CMP s,d
Be !
INC d

MOY b,a

Register transfers

d: =s; CC: =s?O

MOYa,b
INCa

d: =d +s; CC: =d +s?O
CC: =s?d
ifCC=e then PC:=!
d:=d +1; CC:=d +I?O

d and s match any PDPII operand address.
e matches any condition.
! matches any label.

a) DEC PDPII

Instruction

L r,x
A r,x
C r,x
Be !

r matches any register.

Register transfers

r:=x;
r:=r+x; CC:=r+x?O
CC: =r?x
ifCC=e then PC:=!

x matches any RX-format operand.
e matches any condition.
! matches any label.

b) IBM 370

Figure 13.9. Register Transfer Descriptions.

340 Chapter 13. Optimization

a: = b +c ; if a> 0 then goto L ;

a) A straight-line segment involving local variables

tl: b i
t2: c i
t3: tl +t2
14 :a:=13
Is: 13&0
t6: JGT(ts) L

b) The tuple sequence for (a) after value numbering

R[8] : = M[R[5]+b]; CC : = M[R[5]+b]?O;
R[8] : = R[8] +M[R[5]+c]; CC : = R[8]+M[R[5]+c]?O;
M[R[5] +a] : = R[8]; CC : = R[8]?0;
CC : = R[8]?O;
ifCC = GT then PC := L;

c) Register transfers for instructions implementing (b)

R[8] : = M[R[5] +b];
R[8] : = R[8] +M[R[5] +c];
M[R[5]+a]:= R(18];
CC : = R[8]?O;
ifCC = GT then PC: = L;

d) After eliminating redundant transfers from (c)

M[R[5] +a] : = R[8]; CC : = R[8]?0;

e) The combined effect oflines 3 and 4 in (d)

Figure 13.10. Comparison.

Any finite-state pattern matching technique, such as that of Aho and
Corasick [1975], can be modified to efficiently match patterns such as these.
(Modification is required to guarantee that the item matching the first
occurrence of a or b also matches subsequent occurrences.) A complete
description of a particular algorithm is given by Ramamoorthy and
lahanian (1976].

As indicated earlier, an extensive set of patterns may be required.
(Tanenbaum and his coauthors [1982] give a representative example.) The
particular set of patterns that will prove useful depends upon the source
language, compiler code generation and optimization strategies, and target
machine. It is developed over time by examining the code output by the
compiler and recognizing areas of possible improvement. There is never
any guarantee that significant optimizations have not been overlooked, or
that useless patterns have not been introduced. On the other hand, the pro
cessing is significantly faster than that for the first method because it is
unnecessary to 'rediscover' the patterns for each pair of instructions.

13.2. Local Optimization

... := ... +1

a) Incrementing an arbitrary location

Ii : Ij i t is the address ...
Ik : Ii + I i'ncrement the value
II : Ij : = Ik Store the result

b) The tuple sequence for (a) after value numbering

R[S] : = M[R[9]];
R[S] : = R[S] +1;
M[R[9]]: = R[S];

c) Registers transfers for (b) after redundant transfer elimination

M[R[9]] : = M[R[9]] + I;

d) The overall effect of (c)

Figure 13.11. Generating an Increment.

341

13.2.4. Local Register Allocation The classical approach to register
allocation determines the register assignment 'on the fly' as the final code is
being output to the assembler. This determination is based upon attributes
calculated by previous traversals of the basic block, and uses value descrip
tors to maintain the state of the allocation. We solve the register pair prob
lem by computing a size and alignment for each abstract register. (Thus the
abstract register becomes a block in the sense of Section 10.1.) In the right
column of Figure 13.Sb, R[l6] and R[l7] each have size 1 and alignment I
but R[IS] has size 2 and alignment 2 because of its use as a multiplicand.
Other machine-specific attributes may be required. For example, R[l6] is
used as a base register and thus cannot be assigned to register 0 on the IBM
370.

A register assignment algorithm similar to that described in Section 10.3.1
can be used. The only modification lies in the choice of a register to free. In
Figure 10.14 we chose the least-recently accessed register; here we should
choose the one whose next access is furthest in the future. (Belady [1966]
has shown this strategy to be optimal in the analogous problem of determin
ing which page to replace in a virtual memory system.) We can easily obtain
this information at the same time we compute the other attributes mentioned
in the previous paragraph. Note that all of the attributes used in register
allocation must be computed after peephole optimization; the peephole
optimizer, by combining instructions, may alter some of the attribute values.

Figure 10.14 makes use of a register state copy that indicates existence of
a memory copy of the register content. If it has been necessary to spill a
register then the assignment algorithm knows that it is in the copy state.
However, as the example of Figure 13.S shows, a register (e.g. R[16]) may
be in the copy state because it has been loaded from a memory location

342 Chapter 13. Optimization

whose content will not be altered. In order to make use of this fact, we must
guarantee that no side effect will invalidate the memory copy. The neces
sary information is available in the sets D and X associated with the original
tuples, and must be propagated by the value numbering and coding
processes.

When we are dealing with a machine like the IBM 370, the algorithm of
Figure 10.14 should make an effort to maximize the number of available
pairs by appropriate choice of a free register to allocate. Even when this is
done, however, we may reach a situation in which no pair is free but at least
two registers are free. We can therefore free a pair by freeing one register,
and we might free that register by moving its content to the second free
register at a cost of two bytes. If the state of one of the candidate registers is
copy, then it can be freed at a cost of two bytes if and only if its next use is
the proper operand of an RR instruction (either operand if the operation is
commutative). It appears that we cannot lose by using an LR instruction.
However, suppose that the value being moved must ultimately (due to other
conflicts) be saved in memory. In that case, we are simply paying to post
pone the inevitable! We conclude that the classical strategy cannot be
guaranteed to produce an optimum assignment on a machine with double
length results.

13.3. Global Optimization

Code is ultimately produced by the methods discussed in Section 13.2, one
basic block at a time. The purposes of global optimization are to perform
global rearrangement of the computation graph and to provide contextual
information at the basic block boundaries. For example, in Section 13.2 we
assumed that all program variables were potentially accessed after the end
of each basic block. Thus the algorithm of Figure 13.7 initialized
USECOUNT[v] to I for all program variables v. A global analysis of the
program might show, however, that there was no execution path along
which certain of these variables were used before being reset.
USECOUNT[v] could be initialized to ° for those variables, and this might
result in eliminating more tuples.

We shall first sketch the process by which information is .collected and
disseminated over the computation graph, and then discuss two common
global transformations. The last section considers ways of allocating regis
ters globally, thus increasing register utilization and avoiding mismatches at
basic block boundaries.

It is important to emphasize that none of the algorithms discussed in Sec
tion 13.2 should precede global optimization. Papers appearing in the
literature often combine value numbering with the original generation of
tuples, but doing so may prevent global optimization by destroying
congruence of tuples in different basic blocks.

13.3. Global Optimization 343

13.3.1. Global Data Flow Analysis The information derived by global
data flow analysis consists of sets defined at particular program points. Two
types of set may be interesting: a set of operand identifiers and a set of pro
gram points. For example, we might define a set LIVE(b) at the end of
each basic block b as the set of operand identifiers that were used after the
end of b before being reset. This set could then be used in initializing
USECOUNT as discussed above.

Sets of program points are useful when we need to find all the uses of an
operand that could be affected by a particular definition of that operand,
and vice-versa. Global constant propagation is a good example of this kind
of analysis. As the computation graph is being built, we accumulate a list of
all of the program points at which an operand is given a constant value.
During global data flow analysis we define a set USES (o,p) at each program
point p as the set of program points potentially using the value of 0 defined
at p. Similarly, a set DEFS (o,p) is the set of program points potentially
defining the value of operand 0 used at program point p. For each element
of the list of constant definitions, we can then find all of the potential uses.
For each potential use, in turn, we can find all other potential definitions. If
all definitions yield the same constant then this constant can be substituted
for the operand use in question. Finally, if we substitute constants for all
operand uses in a tuple then the tuple can be evaluated and its program
point added to the list. The process terminates when the list is empty.

For practical reasons, global data flow analysis is carried out in two parts.
The first part gathers information within a single basic block, summarizing it
in sets defined at the entry and/or exit points. This drastically reduces the
number of sets that must be processed during the second part, which pro
pagates the information over the flow graph. The result of the second part is
then again sets defined at the entry and/or exit points of basic blocks. These
sets are finally used to distribute the information within the block. A com
plete treatment of the algorithms used to propagate information over the
flow graph is beyond the scope of this book. Kennedy [1981] gives a good
survey, and Hecht [1977] covers the subject in depth.

As an example, consider the computation of LIVE(b). We characterize
the flow graph for this computation by two sets:

PRED(b) = h -h is an immediate predecessor of b in the flow graph
SUCC (b) = h - h is an immediate successor of b in the flow graph

An operand is then live on exit from a block b if it is used by any block in
SUCC(b) before it is either defined or invalidated. Moreover, if a block
h ESUCC(b) neither defines nor invalidates the operand, then it is live on
exit from b ifit is live on exit from h. Symbolically:

LIVE(b)= u [IN(h)uTHRU(h)nLIVE(h)] (I)
h ESUCC(b)

IN(h) is the set of operand identifiers used in h before being defined or
invalidated, and THRU(h) is the set of operand identifiers neither defined

344 Chapter 13. Optimization

nor invalidated in h .
We can solve the system of set equations (l) iteratively as shown in Fig

ure 13.12. This algorithm is O(n 2), where n is the number of basic blocks:
At most n - I executions of the repeat statement are needed to make a
change in a basic block b available to another arbitrary basic block b'. The
actual number of iterations depends upon the sequence in which the basic
blocks are considered and the complexity of the program. For programs
without explicit jumps the cost can be reduced to two iterations, if the basic
blocks are ordered so that inner loops are processed before the loops in
which they are contained.

Computation of the sets USES (o,p) and DEFS (o,p) provides a more
complex example of global flow analysis. We begin by computing
REA CHES(b), the set of program points that define values valid at the entry
point of basic block b. Let DEF(b) be the set of program points within b
whose definitions remain valid at the end of b, and let VALID(b) be the set
of program points whose definitions are not changed or invalidated in b.
REACHES(b) is then defined by:

REACHES(b) = u [DEF(h)u VALID(h)nREACHES(h)] (2)
h EPRED(b)

Note the similarity between (l) and (2). It is clear that essentially the same
algorithm can be used to solve both sets of equations. Similar systems of
equations appear in most global data flow analysis problems, and one can
show that a particular problem can be handled by a standard algorithm

for all basic blocks b do
begin
IN(b):= 0; THRU(b):= {all operand identifiers};
for i : = last program point of b downto first program point of b do

begin
IN(b): = (IN(b) -Dt -Xr)u Or;
THRU(b): = THRU(b)-Dt -Xr
end; I I

LIVE(b):= 0
end;

repeat
changed: =false;
for all basic blocks b do

begin
old: =LIVE(b);
LIVE(b):= u [IN(h)u THRU(h)nLlVE(h)];

h ESUCC(b)

changed: = changed or (LI VE (b) =1= old);
end;

until not changed;

Figure 13.12. Computation of LIVE(b).

13.3. Global Optimization 345

simply by showing that the sets and rules for combining them at junctions
satisfy the axioms of the algorithm.

The computation of DEF(b) and VALID (b) is described in Figure
13.13a. It uses auxiliary sets DF(o) which specify, for each operand
identifier 0, the program points whose definitions of 0 reach the ends of the
basic blocks containing those program points. Once DEF(b) and
VALID(b) are known for every basic block, REACHES(b) can be com-

C: array [operand _identifier] of program _point;

for all operand identifiers 0 do DF(o): = 0;
for all basic blocks b do

begin
for all operand identifiers 0 do C[o]: =0;
for i : = first program point of b to last program point of b do

begin
for 0 E~ (i) do C[o]: =0;
for 0 E Dr (i) do C[0]: = i ;
end;

DEF(b):= 0;
for all operand identifiers 0 do

if C[o] =t= 0 then
begin
DEF(b):=DEF(b)u {C[o]};
DF(o): =DF(o)u {C[o]};
end;

end;
for all basic blocks b do

begin
VALID(b):= 0;
for all operand identifiers 0 do

ifo ETHRU(b) then VALID(b):= VALID(b)uDF(o);
end;

a) Computation of DEF(b) and VALID(b)

TR: = REA CHES(b);
for i : = first program point of b to last program point of b do

begin
DEFS(i,o):= 0;
for 0 E llr (i) do DEFS(i,o): = TR n DF(o);
foro ED,(i)u~(i) do TR:=TR -DF(o);
for 0 ED, (i) do TR : = TR u {i };
end;

b) Computation of DEFS(P,o)

Figure 13.13. Computing a Set of Program Points.

346 Chapter 13. Optimization

puted by solving the system of set equations (2). Finally, a simple scan
(Figure 13.l3b) suffices to define DEFS(P,o) at each program point.
USES (P,o) is computed by scanning the entire program and, for each tuple
p that uses 0, addingp to USES (q,o) for every q EDEFS(P,o).

13.3.2. Code Motion The address expression for a [i,)] in the Pascal
value remains unchanged. The second implementation of Figure 13.14b
shows how we can move the computation, with the assignment, forming an
epilogue to the conditional. This code motion transformation reduces the
code size but leaves the execution time unchanged. In the third implemen
tation of Figure 13.14b we have moved a computation whose value does not
change in the inner loop to the prologue of that loop. Here the execution
time is reduced and the code size is increased slightly.

A key consideration in code motion is safety: The transformation is
allowed when the transformed program will deliver the same result as the
original, and will terminate abnormally only if the original would have ter
minated abnormally. (Note that the abnormal termination may occur in a
different place.) In Figure 13.14, the value oU div k does not change in the
inner loop. Moving that computation to the prologue of the inner loop
would be unsafe, however, because if k were zero the transformed program
would terminate abnormally and the original would not.

We can think of code motion as a combination of insertions and dele
tions. An insertion is safe if the expression being inserted is available at the
point of insertion. An expression is available at a given point if it has been
computed on every path leading to that point and none of its operands have
been altered since the last computation. Clearly the program's result will
not be changed by the inserted code if the inserted expression is available,
and if the inserted code were to terminate abnormally then the original pro
gram would have terminated abnormally at one of the earlier computations.
This argument guarantees the safety of the first transformation in Figure
13.14b. We first insert the address computation and assignment to ali,)],
making it an epilogue of the conditional. The original computations in the
two branches are then redundant and may be removed.

The second transformation in Figure 13.14b involves an insertion where
the inserted expression is not available, but where it is anticipated. An
expression is anticipated at a given point if it appears on every execution
path leaving that point and none of its operands could be altered between
the point in question and the first computation on each path. In our exam
ple, (i - 1) *n is anticipated in the prologue of the) loop, but i div k is not.
Therefore it is safe to insert the former but not the latter. Once the insertion
has been made, the corresponding computation in the epilogue of the condi
tional is redundant because its value is available.

Let A VAIL (b) be the set of operand identifiers available on entry to
basic block band ANTIC(b) be the set of operand identifiers anticipated on
exit from b. These sets are defined by the following systems of equations:

13.3. Global Optimization 347

for i : = I to n do
for j : = I to n do

ifj > k then ali .j]: = ° else ali .j]: = i div k:

a) A Pascal fragment

LA RO,I LA RO,I LA RO,I

C RO,n (R 13) C RO,n(RI3) C RO,n(RI3)

BH ENOl BH ENDI BH ENDI

B BODI B BOD 1 B BODI

INCI A RO,=I INCI A RO,=I INCI A RO,=I

BODI ST RO,i (R 13) BODI ST RO,i(RI3) BODI ST RO,i (R13)

C RO,n(RI3) C RO,n(RI3) C RO,n(RI3)

BH ENOl BH END) BH END)
L R5,i(RI3)
S R5,=1
M R4,n(RI3)

B BOD] B BOD] B BOD)

INCJ A RO,=I INC) A RO,=I INCJ A RO,=I
BOOl ST RO,j(RI3) B001 ST RO,j(RI3) BOD) ST RO,j(R13)

C RO,k(RI3) C RO,k(R13) C RO,k(R\3)

BNH ELSE BNH ELSE BNH ELSE
SR RI,RI SR RI,RI SR RI,RI

L R3,i(RI3)
S R3,=1
M R2,n (R 13)
A R3,j (R 13)
SLA R3,2
ST R I.a -4(R3,R 13)
B ENOC B ENOC B ENOC

ELSE L RO,i(RI3) ELSE L RO,i(RI3) ELSE L RO.i(RI3)
SROARO,32 SROARO,32 SROARO,32
0 RO,k(R13) 0 RO,k (R 13) D RO,k (R 13)
L R3,i(RI3) ENOCL R3,i(RI3)
S R3,=1 S R3.= I
M R2,n(RI3) M R2,n(RI3)
A R3J(RI3) A R3J(RI3) ENOCL R3,j(RI3)

AR R3,R5
SLA R3,2 SLA R3.2 SLA R3,2
ST RI,a-4(R3,RI3) ST RI,a-4(R3,RI3) ST RI,a-4(R3,R13)

ENOCL RO,j (R 13) L RO,j(R13) L RO,j(R13)
C RO,n(R13) C RO.n(R\3) C RO,n (R \3)
BL INC) BL INC] BL INC)

END) L RO,i(RI3) END) L RO,i(R13) END) L RO,i(RI3)
C RO,n(RI3) C RO,n (R (3) C RO,n(RI3)
BL INC! BL INCI BL INCI

ENDI ENOl ENDI
(142 bytes) (118 bytes) (120 bytes)

b) IBM 370 implementations

Figure 13.14. Code Motion.

AVAIL(b)= n [OUT(h)uTHRU(h)nAVAIL(h)]
h EPRED(b)

ANTIC(b) = n [ANLOC(h)u THRU(h)nANTIC(h)]
h ESUCC(b)

Here OUT(b) is the set of operand identifiers defined in b and not invali-

348 Chapter 13. Optimization

dated after their last definition, and ANLOC(b) is the set of operand
identifiers for tuples computed in b before any of their operands are defined
or invalidated.

The main task of the optimizer is to find code motions that are safe and
profitable (reduce the cost of the program according to the desired measure).
Wulf [197S] considers 'a - w' code motions that move computations from
branched constructs to prologues and epilogues. (The center column of Fig
ure 13.14 illustrates an w motion; an a motion would have placed the com
putation of a [i,j] before the compare instruction.) He also discusses the
fragment of Figure 13.14a is common to both branches of the conditional
statement, although there is no path from one to the other over which the
movement of invariant computations out of loops, as illustrated by the right
column of Figure 13.14. If loops are nested, invariant code is moved out
one region at a time. Morel and Renvoise [1979] present a method for mov
ing a computation directly to the entrance block of the outermost strongly
connected region in which it is invariant.

13.3.3. Strength Reduction Figure 13.IS gives yet another implementa
tion of Figure 13.14a for the IBM 370. The code is identical to that of the
right-hand column of Figure 13.14b, except that the expression (i -I)*n has
been replaced by an initialization and increment of RS. It is easy to see that
in both cases the sequence of values taken on by RS is 0, n, 2n, 3n,... This
strength reduction transformation reduces the execution time, but its effect on
the code size is unpredictable.

Allen [1981] gives an extensive catalog of strength reductions. The major
improvement in practice comes from simplifying access to arrays, primarily
multidimensional arrays, within loops. We shall therefore consider only
strength reductions involving expressions of this kind. All of these
transformations are based upon the fact that multiplication is distributive
over addition.

Let S be a strongly-connected component of the computation graph. A
region constant is an expression whose value is unchanged in S, and an induc
tion value is one defined only by tuples having one of the following forms:

j ±k
-j

i:=j

i i
Here j and k are either induction values or region constants and i is an
induction variable. The set of induction values is determined by assuming
that all values defined in the region are induction values, and then deleting
those that do not satisfy the conditions [Cocke 1977]. The induction values
in Figure 13.16 are /, t2, t3 and t7.

To perform a strength reduction transformation on Figure 13.16, we
define a variable VI to hold the value t 9' An assignment must be made to

13.3. Global Optimization 349

LA RO,I
C RO,n(R13)
BH ENOl
SR R5,R5 (i - I) *n initially °
B BODI

INCI A RO,=I
A R5,=n Increment (i - I) *n

BODI ST RO,i (RI3)
LA RO,I
C RO,n(RI3)
BH END]
B BOD]

INC] A RO,= I
BOD] ST RO,j(RI3)

C RO,k(R13)
BNH ELSE
SR RI,RI
B ENDIF

ELSE L RO,i(RI3)
SRDA RO,32
0 RO,k(RI3)

ENDIF L R3,j(R13)
AR R3,R5
SLA R3,2
ST RI,a-4(R3,R13)
L ROJ(R13)
C RO,n(RI3)
BL INC]

END] L RO,i(RI3)
C RO,n(RI3)
BL INCI

ENOl
(ll8 bytes)

Figure 13.15. Strength Reduction Applied to Figure l3.l4b.

this variable prior to entering the strongly-connected region, and at program
points where 19 has been invalidated and yet 12 *d I is anticipated. For exam
ple, 19 is invalidated by 18 in Figure 13.16, and yet 12*d l is anticipated at
that point. An assignment VI: = 12 *d I should therefore be inserted just
before 12, Since 12 is the value of Ii, 1:=/7; VI:=/2*d l is equivalent to
VI:=(t2+1)*dl; 1:=/7, Using the distributive law, and recalling the
invariant that VI always holds the value of 19 (= 12 *d I), this sequence can
be written as VI:=VI+d l ; 1:=/7 , Figure 13.17 shows the result of the
transformation, after appropriate decomposition into tuples.

We could now apply exactly the same reasoning to Figure 13.17, noting

350

II:

Chapter 13. Optimization

for i: = I to n do a [j,i]: =a[k,i] +a[m,i];

a) A Pascal fragment

11:;:=1 12:

12: ; i
13: n i
14: 12?/3
15:JGT(t4) 13
16:JMP 12

12
17: 12+1
18:i:=/7

12
19: 12 *d I

110: k i
11I:/ IO +t9
tl2: 111*4
1l3: a +/ l2
/ 14 : 113 i
12
19
t15: m i
/ 16 : 115 +/9
117:116*4

t18: a +/17
/ 19: t l8 i
120: /14 +/ 19

b) Computation graph for (a)

12
19
12l: j i
122 : 12l +/9
123 : 122 *4
124 : a +/23
125: 124 : = 120
12
13
14
126: JLT(/4) II

Figure 13.16. Finding Induction Values.

I I 12: 128 128

12 110 /21

13 /31: 110 +/28 140 : 121 +/28

14 132 : 131*4 141:/40*4

15 133: a +/32 142: a +/41
127: VI:=d l 134: 133 i 143: 142: = 139

16 128 12
128: VI i /15 13

129 : 128+d l t35: / 15 +128 14
130: V I:=/29 136: 133 *4 126

12 137: a +/36 13:

17 138: 137 i
18 139: 134 +138

Figure 13.17. Figure 13.16b After One Strength Reduction.

that VI' 128' 129, 131 , 135 and 140 are now induction values. The obvious vari
ables then hold 132, 136 and 141 . Unfortunately, none of these variables have
simple recurrence relations. F our more variables, to hold 128 * 4, 110 * 4,
/15 *4 and 121 *4 must be defined. Although tedious, the process is straight
forward; a complete algorithm is given by Allen [1981].

As can be seen from this simple example, the number of variables intro
duced grows rapidly. Many of these variables will later be eliminated
because their functions have been effectively taken over by other variables.

13.3. Global Optimization 351

This is the case after further processing of Figure 13.17, where the function
of VI is taken over by the variable implementing t 28 * 4. In fact, the program
variable I can be omitted in this loop if the test for termination is changed
to use one of the derived induction variables.

Clearly strength reduction must precede code motion. The strength
reduction process generates many extra tuples that are constant within the
strongly connected region and hence should be moved to its prologue. It is
also clear that strength reduction must be iterated if it is to be effective. The
proliferation of derived induction variables, with concomitant initialization
and incrementing, may cause a significant increase in code size. Thus
strength reduction is strictly an execution time optimization, and usually
involves a time/space tradeoff. Scarborough and Kolsky [1980] advocate
judicious preprocessing of subscript expressions in an effort to reduce the
growth due to strength reduction.

13.3.4. Global Register Allocation As discussed in Section 13.2.4, local
register allocation considers each basic block in isolation. Values that live
across basic block boundaries are generally program variables, and are
stored in memory. Thus it is unnecessary to retain values in registers from
one basic block to the next. The global optimizations discussed so far alter
this condition. They tend to increase the number of operands whose life
times include more than one basic block, and if such operands must be kept
in memory then much of the advantage is lost. It is absolutely essential that
we take a more global view in allocating registers in order to minimize the
number of additional fetch, store and copy register instructions.

Most global register allocation strategies allow program variables to com
pete equally for registers with other operands. Some care must be taken,
however, since program variables may be accessible over paths that are
effectively concealed from the compiler. It is probably best to exclude pro
gram variables from the allocation when such paths are available. As indi
cated in Section 13.1, this is a property of the source language and the
necessary restrictions will vary from compiler to compiler.

Day [1970] discusses the general register allocation problem and gives
optimal solutions for the basic strategies. These solutions provide standards
for measuring the effectiveness of heuristics, but are themselves too expen
sive for use in a production compiler. Two faster, non-optimal procedures
are also discussed. All of these algorithms assume a homogeneous set of
registers. Late in the paper, Day mentions that the problem of register pairs
might be solved by running the allocation twice. The first run would be
given only the values that must be assigned to one register of a pair (or
both). Input to the second run would include all items, but attach a very
high profit to each assignment made by the first run.

One of the problems with global register allocation is the large number of
operands that must be considered. In spite of the previous global optimiza
tions, the majority of these operands have lifetimes contained within a basic

352 Chapter 13. Optimization

block. We would like to perform the expensive global allocation procedure
on only those operands whose lifetimes cross a basic block boundary, allo
cating the remainder by the cheaper methods of Section 13.2.4. If we do
this, however, we run the risk of allocating all registers globally and hence
generating very poor local code. Beatty [1974] suggests that we divide the
local register allocation process into two phases, determining the number of
registers required ('allocation') and deciding which registers will be used
('assignment'). The requirements set by the first phase are used in determin
ing global register usage, and then the unclaimed registers are assigned in
each basic block individually.

All data items that live across basic block boundaries are initially
assumed to be in memory, but all instructions that can take either register or
memory operands are assumed to be in their register-register form. Explicit
loads and stores are inserted where required, and the processes of Sections
13.2.1-13.2.3 are carried out. The methods of Section 13.2.4 are applied to
determine the number of registers required locally. With this information, a
global analysis [Beatty 1974] is used to guide load-store motion (code motion
involving only the loads and stores of operands live across basic block boun
daries) and global register assignment. As the assignment proceeds, some
(but not necessarily all) loads and stores will become redundant and be
deleted. When the global analysis is complete, we apply the allocation of
Section 13.2.4 to assign local registers.

Real computers usually have annoying asymmetries in register capability
that wreak havoc with uniform register allocation schemes. It is necessary to
provide a mechanism for incorporating such asymmetries in order to avoid
having to exclude certain registers from the allocation altogether. One allo
cation scheme [Chaitin 1981, Chaitin 1982] that avoids the problem is based
on graph coloring (Section B.3.3). The constraints on allocation are
expressed as an interference graph, a graph with one node for each register,
both abstract and actual. An edge connects two nodes if they interfere (i.e. if
they exist simultaneously). Clearly all of the machine registers interfere
with each other. In the left column of Figure 13.8, R[l7] and R[l8] do not
interfere with each other, although they both interfere with R[l6]; all
abstract registers interfere with each other in the right column. If there are n
registers, a register assignment is equivalent to an n-coloring (Section B.3.3)
of the interference graph.

Many asymmetry constraints are easily introduced as interferences. For
example, any abstract register used as a base register on the IBM 370 inter
feres with machine register O. Similarly, we can solve a part of the
multiplication problem by making the abstract multiplicand interfere with
every even machine register and defining another abstract register that inter
feres with every odd machine register and every abstract register that exists
during the multiply. This guarantees that the multiplicand goes into an odd
register and that an even register is free, but it does not guarantee that the
multiplicand and free register form a pair.

13.4. Efficacy and Cost 353

The coloring algorithm [Chaitin 1981] used for this problem differs from
that of Section B.3.3 because the constraints are different: There we are try
ing to find the minimum number of colors, assuming that the graph is fixed;
here we are trying to find an n -coloring, and the graph can be changed to
make that possible. (Spilling a value to memory removes some of the
interferences, changing the graph.) Any node with fewer than n interfer
ences does not affect the coloring, since there will be a color available for it
regardless of the colors chosen for its neighbors. Thus it (and all edges
incident upon it) can be deleted without changing whether the graph can be
n-colored. If we can continue to delete nodes in this manner until the entire
graph disappears, then the original was n-colorable. The coloring can be
obtained by adding the nodes back into the graph in the reverse order of
deletion, coloring each as it is restored.

If the coloring algorithm encounters a node with n or more interferences,
it must make a decision about which node to spill. A separate table is used
to give the cost of spilling each register, and the register is chosen for which
cost/(incident edges) is as small as possible. Some local intelligence is
included: When a computation is local to a basic block, and no abstract
register lifetimes end between its definition and last use, the cost of spilling it
is set to infinity. The cost algorithm also accounts for the facts that some
computations can be redone instead of being spilled and reloaded, and that
if the source or target of a register copy operation is spilled then that opera
tion can be deleted. It is possible that a particular spill can have negative
cost!

Unfortunately, the introduction of spill code changes the conditions of
the problem. Thus, after all spill decisions are made, the original program is
updated with spill code and the allocation re-run. Chaitin claims that the
second iteration usually succeeds, but it may be necessary to insert more
spill code and try again. To reduce the likelihood of multiple iterations, one
can make the first run with n - k registers instead of n registers.

13.4. Efficacy and Cost

We have discussed a number of transformations in this chapter. Do they
provide an improvement commensurate with the cost of performing them?
In some sense this is a meaningless question, because it is too broad. Each
user has a definition of 'commensurate', which will vary from one program
to another. The best we can do is to try to indicate the costs and benefits of
some of the techniques we have discussed and leave it to the compiler writer
to strike, under pressure from the marketplace, a reasonable balance.

By halving the code size required to implement a language element that
accounts for 1 % of a program we reduce the code size of that program by
only 0.5%, which certainly does not justify a high compilation cost. Thus it
is important for the compiler writer to know the milieu in which his com-

354 Chapter 13. Optimization

piler will operate. For example, elimination of common subexpressions,
code motion and strength reduction might speed up a numerical
computation solving a problem in linear algebra by a factor of 2 or 3. The
same optimizations often improve non-numeric programs by scarcely 10%.
Carter's [1982] measurements of 95,000 lines of Pascal, primarily non
numeric code, shows that the compiler would typically be dealing with basic
blocks containing 2-4 assignments, 10-15 tuples and barely 2 common
subexpressions!

Static analysis does not, of course, tell the whole story. Knuth [1971b]
found in his study of FORTRAN that less than 4% of a program generally
accounts for half of its running time. This phenomenon was exploited by
Dakin and Poole [1973] to implement an interactive text editor as a mixture
of interpreted and directly-executed code. Their measurements showed that
in a typical editing session over 97% of the execution involved less than 10%
of the code, and more than half of the code was never used at all. Finally,
Knuth discovered that over 25% of the running times of the FORTRAN
programs he profiled was spent performing input/output.

Actual measurements of optimization efficacy and cost are rare in the
literature, and the sample size is invariably small. It is thus very difficult to
draw general conclusions. Table 13.18 summarizes a typical set of measure
ments [Cocke 1980]. PLllL, an experimental optimizing compiler for a
PL/l-like language, was run over each of four programs several times. A
different level of optimization was specified for each compilation of a given
program, and measurements made of the compilation time, code space used
for the resulting object program, and execution time of the resulting object
program on a set of data. At every level the compiler allocated registers glo
bally by the graph coloring algorithm sketched in Section 13.3.4. No other
optimizations were performed at the 'None' level. The 'Local' optimizations
were those discussed in Section 13.2.1, and the 'Global' optimizations were
those discussed in Sections 13.3.1 through 13.3.3. It is not clear what (if any)
peephole optimization was done, although the global register allocation sup-

Table 13.18 Evaluation ofPLIlL [Cocke 1980]

Measure
Ratios

Local/None Global/None Global/Local

Min. 0.8 1.0 1.2
Compilation time Avg. 0.9 1.4 1.4

Max. 1.0 1.6 1.6

Min. 0.42 0.38 0.89
Code space Avg. 0.54 0.55 1.02

Max. 0.69 0.66 1.19

Min. 0.32 0.19 0.58
Execution time Avg. 0.50 0.42 0.82

Max. 0.72 0.61 0.94

13.4. Efficacy and Cost 355

posedly deleted redundant comparisons following arithmetic operations by
treating the condition code as another allocatable register [Chaitin 1981].

The reduction in compilation time for local optimization clearly illus
trates the strong role that global register allocation played in the compilation
time figures. Local optimization reduced the number of nodes in the
interference graph, thus more than covering its own cost. One of the test
programs was also compiled by the standard optimizing PL/I compiler in a
bit less than half of the time required by the PL/IL compiler. OPT=O was
selected for the PL/l compiler, and local optimization for the PL/IL com
piler. This ratio changed slightly in favor of the PL/l compiler (0.44 to
0.38) when OPT=2 and 'global' were selected. When the same program
was rewritten in FORTRAN and compiled using FORTRAN H, the ratios
OPT=O/local and OPT=21g10bal were almost identical at 0.13. (Section
14.2.3 discusses the internals of FORTRAN H.)

In the late 1970's, Wulf and his students attempted to quantitatively
evaluate the size of the object code produced by an optimizing compiler.
They modeled the optimization process by the following equation:

K (C,P) = Ku (C,P) X II 0i (C)

K(C,P) is the cost (code space) of program P compiled with compiler C,
and Ku is the corresponding unoptimized cost. Each q (C) is a measure of
how effectively compiler C applies optimization i to reduce the code size of
a typical program, assuming that all optimizations 1, ... ,i -1 have already
been done. They were never able to validate this model to their satisfaction,
and hence the work never reached publication. They did, however, measure
the factors 0i (C) for Bliss-II [Wulf 1975] (Table 13.19).

We have considered optimizations 1 and 4 of Table 13.19 to precede for
mation of the computation graph; the remainder of 1-6 constitute the local

Table 13.19 Optimization Factors for Bliss-II [Wulf 1975]

Index Description Factor

I Evaluating constant expressions 0.938
2 Dead code elimination 0.98
3 Peephole optimization 0.88
4 Algebraic laws 0.975
5 CSE in statements 0.987
6 CSE in basic blocks 0.973
7 Global CSE 0.987
8 Global register allocation 0.975
9 Load/store motion 0.987

10 Cross jumping 0.972
II Code motion 0.985
12 Strength reduction

356 Chapter 13. Optimization

optimizations of Section 13.2. Thus the product of these factors (roughly
0.76) should approximate the effect of local optimization alone. Similarly,
the product offactors 7-12 (roughly 0.91) should approximate the additional
improvement due to global optimization. Comparing this latter figure with
the last column of Table 13.15 shows the deleterious effect of strength reduc
tion on code space discussed in Section 13.3.3.

The first column of Table 13.18 shows a code size improvement
significantly better than 0.76, implying that the PL/lL compiler generates
poorer initial code than Bliss-ll, leaving more to be gained by simple
optimizations. This should not be taken as a criticism. After all, using a
sophisticated code generator with an optimizer is a bit like vacuuming the
office before the cleaning crew arrives! Davidson and Fraser [1980] take the
position that code generation should be trivial, producing instructions to
simulate a simple stack machine on an infinite-register analog of the target
computer. They then apply the optimizations of Section 13.2, using a frag
ment bounded by labels (i.e. a path in an extended basic block) in lieu of a
basic block.

EXERCISES

13.1. Show how the dependency sets would be derived when building a computa
tion graph that represents a LAX program for a target machine of your
choice.

13.2. Assume that the FORTRAN assignment statement

A(I,J,K) = (A(I,J,K-l)+A(I,J,K+l) +
A(I,J-l,K) +A(I,J + I,K) +
A(I-l,J,K) +A(I + 1,J,K)) /6.0

constitutes a single basic block.
a. Write the initial tuple sequence for the basic block.
b. Derive a new tuple sequence by the algorithm of Figure 13.4a.
c. Code the results of (b), using register transfers that describe the instruc

tions of some machine with which you are familiar.

13.3. Give" an example, for some machine with which you are familiar, of a com
mon subexpression satisfying each of the following conditions. If this is
impossible for one or more of the conditions, carefully explain why.
a. Always cheaper to recompute than save.
b. Never cheaper to recompute than save.
c. Cheaper to recompute iff it must be saved in memory.

13.4. Explain how the first method of peephole optimization described in Section
13.2.3 could be used to generate patterns for the second. Would it be feasible
to combine the two methods, backing up the second with the first? Explain.

13.5. Assume that the register management algorithm of Figure 10.14 is to be used
in an optimizing compiler. Define precisely the conditions under which all
possible changes in register state will occur.

13.4. Efficacy and Cost 357

13.6. Show how the D and X sets are propagated through the value numbering and
coding processes to support the decisions of Exercise 13.5, as described in Sec
tion 13.2.4.

13.7. Give examples of safe code motions in which the following behavior is
observed:
a. The transformed program terminates abnormally in a different place than

the original, but with the same error.
b. The transformed program terminates abnormally in a different place than

the original, with a different error.

13.8. Consider a Pascal for statement with integer constant bounds. Assume that
the lower bound is smaller than the upper bound, which is smaller than max
int. Instead of using the schema of Figure 3.1 Dc, the implementor chooses the
following:

(* Body of the loop *)

i:=i+l;
if i ,;;; t then goto 11;

a. Explain why no strength reduction can be carried out in this loop.
b. Suppose that we ignore the explanation of (a) and carry out the transfor

mation anyway. Give a specific example in which the transformed pro
gram terminates abnormally but the original does not. Restrict the expres
sions in your example to those arising from array subscript calculations.
Your array bounds must be reasonable (i.e. arrays with maxint elements

CHAPTER 14

Implementing the Compiler

In earlier chapters we have developed a general framework for the design of
a compiler. We have considered how the task and its data structures could
be decomposed, what tools and strategies are available to the compiler
writer, and what problems might be encountered. Given a source language,
target machine and performance goals for the generated code we can design
a translation algorithm. The result of the design is a set of module
specifications.

This chapter is concerned with issues arising out of the implementation of
these specifications. We first discuss the decisions that must be made by the
implementors and the criteria that guide these decisions. Unfortunately, we
can give no quantitative relationship between decisions and criteria! Com
piler construction remains an art in this regard, and the successful compiler
writer must simply develop a feel for the inevitable compromises. We have
therefore included three case studies of successful compilers that make very
different architectural decisions. For each we have tried to identify the deci
sions made and show the outcome.

14.1. Implementation Decisions

Many valid implementations can generally be found for a set of module
specifications. In fact, an important property of a module is that it hides one
or more implementation decisions. By varying these decisions, one obtains
different members of a 'family' of related programs. All of the members of
such a family carry out the same task (defined by the module specifications)
but generally satisfy different performance criteria. In our case, we vary the

358

14.1. Implementation Decisions 359

pass structure and data storage strategies of the compiler to satisfy a number
of criteria presented in Section 14.1.1. Despite this variation, however, the
module specifications remain unchanged. This point is an extremely impor
tant one to keep in mind, especially since many implementation languages
provide little or no support for the concept of a module as a distinct entity.
With such languages it is very easy to destroy the modular decomposition
during development or maintenance, and the only protection one has
against this is eternal vigilance and a thorough understanding of the design.

14.1.1. Criteria Maintainability, performance and portability are the three
main criteria used in making implementation decisions. The first is heavily
influenced by the structure of the program, and depends ultimately on the
quality of the modular design. Unfortunately, given current implementation
languages, it is sometimes necessary to sacrifice some measure of maintaina
bility to achieve performance goals. Such tradeoffs run counter to our basic
principles. We do not lightly recommend them, but we recognize that in
some cases the compiler will not run at all unless they are made. We do
urge, however, that all other possibilities be examined before such a decision
is taken.

Performance includes memory requirements, secondary storage require
ments and processing time. Hardware constraints often place limits on per
formance tradeoffs, with time the only really free variable. In Sections
14.1.2 and 14.1.3 we shall be concerned mainly with tradeoffs between pri
mary and secondary storage driven by such constraints.

Portability can be divided into two sub-properties often called rehostabil
ity and retargetability. Rehosting is the process of making the compiler itself
run on a different machine, while retargeting is the process of making it gen
erate code for a different machine. Rehostability is largely determined by
the implementation language and the performance tradeoffs that have been
made. Suppose, for example, that we produce a complete design for a Pas
cal compiler, specifying all modules and interfaces carefully. If this design
is implemented by writing a FORTRAN program that uses only constructs
allowed by the FORTRAN standard, then there is a good chance of its run
ning unchanged on a wide variety of computers. If, on the other hand, the
design is implemented by writing a program in assembly language for the
Control Data Cyber series then running it on another machine would
involve a good deal of effort.

Even when we fix both the design and the implementation language, per
formance considerations may affect rehostability. For example, consider the
use of bit vectors (say as parser director sets or error matrices, or as code
generator decision table columns) when the implementation language is
Pascal. One possible representation is a set, another is a packed array of
Boolean. Unfortunately, some Pascal implementations represent all sets
with the same number of bits. This usually precludes large sets, and the bit
vectors must be implemented as arrays of sets or packed arrays of Boolean.

360 Chapter 14. Implementing the Compiler

Other implementations only pack arrays to the byte level, thus making a
packed array of Boolean eight times as large as it should be. Clearly when
the compiler is rehosted from a machine with one of these problems to a
machine with the other, different implementations of bit vectors may be
needed to meet performance goals.

Neither of the situations in the two previous paragraphs affected the
design (set of modules and interfaces). Rehostability is thus quite evidently
a property of the implementation. Retargetability, on the other hand, is
more dependent upon the design. It requires a clean separation between
the analysis and synthesis tasks, since the latter must be redesigned in order
to retarget the compiler. If the target machine characteristics have been
allowed to influence the design of the analysis task as well as the synthesis
task, then the redesign will be more extensive. For example, suppose that
the design did not contain a separate constant table module. Operations on
constants were carried out wherever they were needed, following the
idiosyncrasies of the target machine. Retargeting would then involve
redesign of every module that performed operations on constants, rather
than redesign of a single module.

Although the primary determinant of retargetability is the design, imple
mentation may have an effect in the form of tradeoffs between modularity
and performance that destroy the analysis/synthesis interface. Such
tradeoffs also degrade the maintainability, as indicated at the beginning of
this section. This should not be surprising, because retargeting a compiler is,
after all, a form of maintenance: The behavior of the program must be
altered to fit changing customer requirements.

14.1.2. Pass Structure It often becomes obvious during the design of a
compiler that the memory (either actual or virtual) available to a user on the
host machine will not be sufficient for the code of the compiler and the data
needed to translate a typical program. One strategy for reducing the
memory requirement is analogous to that of a dentist's office in which the
patient sits in a chair and is visited in turn by the dentist, hygienist and x-ray
technician: The program is placed in the primary storage of the machine
and the phases of the compiler are 'passed by the program', each performing
a transformation of the data in memory. This strategy is appropriate for sys
tems with restricted secondary storage capability. It does not require that
intermediate forms of the program be written and then reread during compi
lation; a single read-only file to hold the compiler itself is sufficient. The
size of the program that can be compiled is limited, but it is generally possi
ble to compile programs that will completely fill the machine's memory at
execution time. (Source and intermediate encodings of programs are often
more compact than the target encoding.)

Another strategy is analogous to that of a bureau of motor vehicles in
which the applicant first goes to a counter where application forms are
handed in, then to another where written tests are given, and so on through

14.1. Implementation Decisions 361

the eye test, driving test, cashier and photographer: The compiler 'passes
over the program', repeatedly reading and writing intermediate forms, until
the translation is complete. This strategy is appropriate for systems with
secondary storage that can support several simultaneously-open sequential
files. The size of the program that can be compiled is limited by the filing
system rather than the primary memory. (Of course primary memory will
limit the complexity of the program as discussed in Chapter 1.)

Either strategy requires us to decompose the compilation into a sequence
of transformations, each of which is completed before the next is begun.
One fruitful approach to the decomposition is to consider relationships
between tasks and large data structures, organizing each transformation
around a single data structure. This minimizes the information flow
between transformations, narrowing the interfaces. Table 14.1 illustrates the
process for a typical design. Each row represents a transformation. The first
column gives the central data structure for the tasks in the second column.
It participates in only the transformation corresponding to its row, and hence
no two of these data structures need be held simultaneously.

Our second strategy places an extra constraint upon the intermediate
representations of the program: They must be linear, and each will be pro
cessed sequentially. The transformations are carried out by passes, where a
pass is a single scan, in either direction, of a linear intermediate representa
tion of the program. Each pass corresponds to a traversal of the structure
tree, with forward passes corresponding to depth-first, left-to-right traversals
and backward passes corresponding to depth-first, right-to-left traversals.
Under this constraint we are limited to AAG(n) attribution; the attribute
dependencies determine the number of passes and the tasks carried out in
each. It is never necessary to build an explicitly-linked structure tree unless
we wish to change traversals. (An example is the change from a depth-first,
left-to-right traversal of an expression tree to an execution-order traversal
based upon register counts.)

The basic Pascal file abstraction is a useful one for the linear intermediate

Table 14.1 Decomposition via Major Data Structures

Data
Structure

Symbol table

Parse table

Definition table

Decision tables

Address table

Tasks

Lexical analysis

Parsing

Name analysis
Semantic analysis
Memory mapping
Target attribution

Code selection

Assembly

Reference

Chapter 6

Chapter 7

Chaptet9
Chapter 9
Section 10.1
Section 10.2

Section 10.3

Chapter I I

362 Chapter 14. Implementing the Compiler

representations of the program. A module encapsulates the representation,
providing an element type and a single window variable of that type. Opera
tions are available to empty the sequence, add the content of the window to
the sequence, get the first element of the sequence into the window, get the
next element of the sequence into the window, and test for the end of the
sequence. This module acts as a 'pipeline' between the passes of the com
piler, with each operating directly on the window. By implementing the
rnodule in different ways we can cause the communicating passes to operate
as coroutines or to interact via a file.

While secondary storage is larger than primary storage, constraints on
space are not uncommon. Moreover, a significant fraction of the passes may
be I/O-bound and hence any reduction in the size of an intermediate
representation will be reflected directly in the compilation time. Our com
munication module, if it writes information to a file, should therefore encode
that information carefully to avoid redundancy. In particular, the element
will usually be a variant record and the communication module should
transmit only the information present in the stated variant (rather than
always assuming the largest variant). Further compression may be possible
given a knowledge of the meanings of the fields. For example, in the token
of Figure 4.1 the line number field of coordinates changes only rarely, and
need be included only when it does change. The fact that the line number is
present can be encoded by the classification field in an obvious way.
Because most tokens are completely specified by the classification field
alone, this optimization can reduce the size of a token file by 30%.

14.1.3. Table Representation We have seen how the requirements for
table storage are reduced by organizing each pass around a table and then
discarding that table at the end of the pass. Further reduction can be based
upon the restricted lifetime of some of the information contained in the
table. For example, consider a block-structured language with a left-to-right
attribute grammar (such as Pascal). The definition table entries for the enti
ties declared locally are not used after the range in which those entities were
declared has been left. They can therefore be thrown away at that point.

Pascal is admittedly a simple case, but even in languages with more com
plex attribute relationships definition table entities are only accessed during
processing of a program fragment. One purpose of the definition table is to
abstract information from the program, making it more accessible during
processing. This purpose can only be served if the entry is, in fact, accessed.
Thus it is often reasonable to destroy definition table entries when the frag
ment in which they are accessed has been left, and re-create them when that
fragment is entered again.

A table entry can only be destroyed if its information is no longer needed,
can be recomputed from other information, or can be stored in the structure
tree in a position where it can be recovered before it is needed next. The last
condition is most easily satisfied if forward and backward passes alternate,

14.1. Implementation Decisions 363

but it can also occur in other situations. We shall see several examples of
this 'distribution' of attribute information in Section 14.2.1.

Unfortunately, many implementation languages do not support freeing of
storage. Even for those where it is nominally supported, the implementation
is often poor. The compiler writer can avoid this problem by managing his
own dynamic storage, only making requests for storage allocation and never
returning storage to the system. The basic strategy for a block-structured
language is quite simple: All storage allocated for a given table is held in a
single one-way list. A pointer indicates the most-recently delivered element.
When a program fragment that will add elements to the table is entered, this
pointer is remembered; when the fragment is left, its value is restored. If a
new element is needed then the pointer of the current element is checked. If
it is nil, storage allocation is requested and a pointer to the resulting block
placed in the current element. In any case the pointer to the most-recently
delivered element is advanced along the list. Thus the list acts like a stack,
and its final length is the maximum number of entries the table required at
one point in the compilation.

The disadvantage of this strategy is that the storage requirements are
those that would obtain if all tables in each pass reached their maximum
requirement simultaneously. Often this is not the case, and hence larger
programs could have been accommodated if storage for unused entries had
been returned to the operating system.

Every pass that manipulates constant values must include the necessary
operations of the abstract data type constanLtable discussed in Section 4.2.2.
ConstanLtable defines an internal representation for each type of value.
This representation can be used as an attribute value, but any manipulation
of it (other than assignment) must be carried out by constant table opera
tions. We pointed out in Section 4.2.2 that the internal representation might
simply describe an access function for a data structure within the constant
table module. This strategy should be used carefully in a multipass compiler
to avoid broadening the interface between passes: The extra data structure
should usually not be retained intact and transmitted from one pass to the
next via a separate file. Instead, all of the information about a constant
should be added to the linearized form of the attributed structure tree at an
appropriate point. The extra data structure is then reconstituted as the
linearized tree is read in.

The string table is a common exception to the approach suggested above.
Careful design of the compiler can restrict the need for string table access to
two tasks: lexical analysis and assembly. (This is true even though it may
be used to store literal strings and strings representing the fractions of float
ing point numbers as well as identifiers.) Thus the string table is often writ
ten to a separate file at the completion oflexical analysis. It is only retrieved
during assembly when the character representations of constants must be
converted to target code, and identifiers must be incorporated into external
symbol dictionaries.

364 Chapter 14. Implementing the Compiler

14.2. Case Studies

We have discussed criteria for making implementation decisions and indi
cated how the pass structure and table representation are affected by such
decisions. This section analyzes three compilers, showing the decisions
made by their implementors and the consequences of those decisions. Our
interest is to explore the environment in which such decisions are made and
to clarify their interdependence. We have tried to choose examples that
illustrate the important points, and that have been used routinely in a pro
duction setting. Pragmatic constraints such as availability of design or
maintenance documentation and understandability of the compiler itself
were also influential.

14.2.1. GIER ALGOL This compiler implements ALGOL 60 on GIER,
a machine manufactured by Regnecentralen, Copenhagen. The decision to
develop the compiler was taken in January, 1962 and the final product was
delivered in February, 1963. It implemented all of ALGOL 60 except
integer labels, arrays as value parameters, and own arrays. The compiler
was intended to run on a minimum GIER configuration consisting of 1024
40-bit words of 8.8 microsecond core memory and a 128,000 word drum
(320 tracks of 40 words each).

Previous experience with ALGOL compilers led the designers to predict
a code size of about 5000 words for the GIER compiler. They chose to
organize the compiler as a sequence of passes over linearized representa
tions of the program. Each intermediate representation consists of a
sequence of 1O-bit bytes. The interpretation of this sequence depends upon
the passes accessing it; it is a unique encoding of a specific data structure.
Use of relatively small, uniform units improves the efficiency of the encod
ing and allows the implementors to use common basic 110 routines for all
passes. The latter consideration is perhaps most important for compilers
implemented in machine code. As we indicated in Section 14.1.2, however,
a multi-pass compiler is often 1/0 bound and hence specially tailored
machine code I/O routines might result in a significant performance
improvement. We should emphasize that such a decision should only be
made on the basis of careful measurement, but the implementor should
make it possible by an appropriate choice of representation.

Assuming that about half of the core memory would be used for code in
each pass, simple arithmetic shows that 10 passes will be required. This
value was not taken as a target to be met, but merely as an indication of the
number to be expected. Passes were generally organized around major data
structures, with the additional proviso that large tables should be combined
with simple code and vice-versa.

Table 14.2 shows the final structure, using the descriptions given by Naur
[1964a] and the corresponding tasks discussed in this book.

Lexical analysis is divided into two passes in order to satisfy the code

14.2. Case Studies 365

size/table size relationship mentioned in the last paragraph: Since up to 510
identifiers are allowed, and there is no restriction on identifier length, it is
clear that the maximum possible space must be made available for the sym
bol table. Thus the remainder of the lexical analysis was placed in another
pass. Here we have a decision that should be validated by measurements
made on the running compiler. In the final system, each pass had 769 words
of core memory available (the remainder was occupied by the control code).
Pass 1 used 501 words of program and 132 words of data, plus a 40-word
buffer for long character strings; pass 2 used 89 words for program and 62
words for data. Unless the pass 1 code could be reduced significantly by
using a different algorithm or data structure, or the allowance of 510
identifiers was found to be excessive, the decision to split the two tasks
stands.

Note the interdependence of the decisions about representation of tokens
and form of the intermediate code. A lO-bit byte allows values in the range
[0,1023]. By using the subrange [512,1022] for identifiers, one effectively
combines the classification and symbol fields of Figure 4.1. Values less than
512 classify non-identifier tokens, in most cases characterizing them com-

Table 14.2 Pass Structure for the GIER ALGOL Compiler

Pass Task(s) Description

I Lexical analysis Analysis and check of hardware representation.r
Conversion to reference language. Strings are as-
sembled. I

2 Lexical analysis Identifier matching. In the output, each distinct
identifier is associated with an integer between 512
and 1022.

3 Syntactic analysis Analysis and check of delimiter structure. Delim-
iters of multiple meaning are replaced by distinc-
tive delimiters. Extra delimiters are inserted to fa-
cilitate later scanning.

4 Collection of declarations and specifications at the
begin of blocks and in procedure headings. Rear-
rangements of procedure calls.

5
Name analysis Distribution of identifier descriptions.
Storage mapping Storage allocation for variables.

6 Semantic analysis Check the types and kinds of identifiers and other
operands. Conversion to reverse polish notation.

7 Code generation Generation of machine instructions for expres-
sions. Allocation of working variables.

8 Assembly Final addressing of the program. Segmentation
into drum tracks. Production of final machine
code.

9 Rearrangement of the program tracks on the drum

366 Chapter 14. Implementing the Compiler

pletely. Only constants need more than a single byte using this scheme, and
we know that constants occur relatively infrequently. Interestingly, only
string constants are handled in pass 1. Those whose machine representa
tions do not exceed 40 bits are replaced by a marker byte followed by 4
bytes holding the representation. Longer strings are saved on the drum and
replaced in the code by a marker byte followed by 4 bytes giving the drum
track number and relative address. In the terminology of Section 4.2.2, the
constant table has separate fixed-length representations for long and short
strings. Numeric constants remain in the text as strings of bytes, one
corresponding to each character of the constant.

Pass 3 performs the normal syntactic analysis, and also converts numeric
and logical constants to a flag byte followed by 4 bytes giving the machine
representation. Again in the terminology of Section 4.2.2, the internal and
target representations of numeric constants are identical. (The flag byte
simply serves as the classification field of Figure 4.1; it is not part of the con
stant itself.) Naur's description of the compiler strongly suggests that pars
ing is carried out by the equivalent of a pushdown automaton while the lexi
cal analysis of pass 1 is more ad-hoc. As we have seen, numeric constants
can be handled easily by a pushdown automaton. The decision to process
numeric and logical constants in pass 3 rather than in pass 1 was therefore
probably one of convenience.

The intermediate output from pass 3 consists of the unchanged identifiers
and constants, and a transformed set of delimiters that precisely describe the
program's structure. It is effectively a sequence of connection point
numbers and tokens, with the transformed delimiters specifying structure
connections and each identifier or constant specifying a single symbol con
nection plus the associated token.

Attribute flow is generally from declaration to use. Since declaration
may follow use in ALGOL 60, reverse attribute flow may occur. Pass 4 is a
reverse pass that collects all declarative information of a block at the head of
the block. It merely simplifies subsequent processing.

In pass 5, the definition table is actually distributed through the text.
Each identifier is replaced by a 4-byte group that is the corresponding
definition table entry. It gives the kind (e.g. variable, procedure), result
type, block number, relative address and possibly additional information.
Thus GIER ALGOL does not abstract entities as proposed in Section 4.2.3,
but deposits the necessary information at the leaves of the structure tree.
This example emphasizes the fact that possessions and definitions are
separate. GIER ALGOL uses possessions virtually identical to those dis
cussed in connection with Figure 9.21 to control placement of the attributes
during pass 5, but it has no explicit definition table at all.

Given the attribute propagation performed by passes 4 and 5, the attribu
tion of pass 6 is LAG(1). This illustrates the interaction between attribute
flow and pass structure. Given an attribute grammar, we must attempt to
partition the relationships and semantic functions so that they fall into

14.2. Case Studies 367

separable components that can be fit into the overall implementation model.
This partitioning is beyond the current state of the art for automatic genera
tors. We can only carry out the partitioning by hand and then use analysis
tools based upon the theorems of Chapter 8 to verify that we have not made
any mistake.

Address calculations are carried out during both pass 7 and pass 8. Back
ward references are resolved by pass 7; pass 8 is backward over the program,
and hence can trivially resolve forward references. Literal pooling is also
done during pass 7. All of the constants used in the code on one drum track
appear in a literal pool on that track.

14.2.2. Zurich Pascal The first Pascal compiler was developed during
the years 1969-71 for Control Data 6000 series hardware at the Institut (ur
Informatik, Eidgenossische Technische Hochschule, Zurich. Changes were
made in Pascal itself as a result of experience with the system, and a new
implementation was begun in July, 1972. This project resulted in a family of
two compilers, Pascal-P and Pascal-6000, having a single overall design.
Pascal-P is a portable compiler that produces code for a hypothetical stack
computer; the system is implemented by writing an interpreter for this
machine. Pascal-6000 produces relocatable binary code for Control Data
6000 series machines. The two compilers were completed in March, 1973
and July, 1974 respectively. Descendants of these two compilers comprised
the bulk of the Pascal implementations in existence in 1982, ten years after
their development was initiated.

Written in Pascal itself, the Zurich compilers have a one-pass, recursive
descent architecture that reflects the freedom from storage constraints
afforded by the Control Data machine. 6000 series processors permit a user
direct access to l31,072 60-bit words of I microsecond core memory. Even
the more common configuration installed at the time Zurich Pascal was
developed provided each user with a maximum of about 40,000 words.
(This is almost 60 times the random-access memory available for the GIER
ALGOL compiler.)

Pascal provides no linguistic mechanisms for defining packages or
abstract data types, and hence all explicit modules in the compilers are pro
cedures or variables. The effect of a package must be obtained by defining
one or more variables at a given level and providing a collection of pro
cedures to manipulate them. Encapsulation can be indicated by comments,
but cannot be enforced. Similarly, an abstract data type is implemented by
defining a type and providing procedures to manipulate objects of that type.
Lack of linguistic support for encapsulation encourages the designer to con
sider a program as a single, monolithic unit. Control of complexity is still
essential, however, and leads to an approach known as stepwise refinement.
This technique is particularly well-suited to the development of recursive
descent compilers.

Stepwise refinement is subtly different from modular decomposition as a

368 Chapter 14. Implementing the Compiler

Table 14.3 Development Steps for the Zurich Pascal Compilers

Step Task(s) Description

I
Lexical analysis Syntax analysis for syntactical-
Syntactic analysis Iy correct programs

2 Syntactic error Treatment of syntactic errors
recovery

3 Semantic analysis Analysis of the declarations

4 Semantic analysis Treatment of declaration errors

5 Memory mapping Address allocation

6
Code selection

Code generation
Assembly

7 Optimization Local improvement of the gen-
erated code

design methodology. Instead of dividing the problem to be solved into a
number of independent subproblems, it divides the solution into a number
of development steps. A painter uses stepwise refinement when he first
sketches the outlines of his subject and then successively fills in detail and
adds color; an automobile manufacturer uses modular decomposition when
he combines engine, power train and coachwork into a complete product.
Table 14.3 lists the development steps used in the Zurich Pascal project, with
the descriptions given by Ammann [1975] and the corresponding tasks dis
cussed in this book.

The overall structure of the compiler was established in step 1; Figure
14.4 shows this structure. Each line represents a procedure, and nesting is
indicated by indentation. At this step the procedure bodies had the form
discussed in Section 7.2.2, and implemented an EBNF description of the
language.

Lexical analysis is carried out by a single procedure that follows the out
line of Chapter 6. It has no separate scanning procedures, and it incor
porates the constant table operations for conversion from source to internal
form. Internal form and target form are identical. No internal-to-target
operators are used, and the internal form is manipulated directly via normal
Pascal operations.

There is no symbol table. Identifiers are represented internally as packed
arrays of 10 characters-one 60-bit word. If the identifier is shorter than 10
characters then it is padded on the right with spaces; if it is longer then it is
truncated on the right. (We have already deplored this strategy for a
language whose definition places no constraints upon identifier length.)
Although the representation is fixed-length, it still does not define a small
enough address space to be used directly as a pointer or table index. Name
analysis therefore requires searching and, because there may be duplicate
identifiers in different contexts, the search space may be larger than in the

14.2. Case Studies 369

case of a symbol table. Omission of the symbol table does not save much
storage because most of the symbol table lookup mechanism must be
included in the name analysis.

Syntactic error recovery is carried out using the technique of Section
12.2.2. A minor modification was needed because the stack is not accessible
when an error is detected: Each procedure takes an anchor set as an argu
ment. This set describes the anchors after reduction of the nonterminal
corresponding to the procedure. Symbols must be added to this set to
represent anchors within the production currently being examined. Of
course all of the code to update the anchors, check for errors, skip input
symbols and advance the parse was produced by hand. This augmentation
of the basic step I routines constituted step 2 of the compiler development.

basic symbol
program

block
constant
type

simple type
field list

label declaration
constant declaration
type declaration
variable declaration
procedure declaration

parameter list
body

statement
selector
variable
call
expression

simple expression
term

factor
assignment
compound statement
goto statement
if statement
case statement
while statement
repeat statement
for statement
with statement

Figure 14.4. The Structure of the Zurich Pascal Compilers.

370 Chapter 14. Implementing the Compiler

The basic structure of Figure 14.4 remained virtually unchanged; common
routines for error reporting and skipping to an anchor were introduced, with
the former preceding the basic symbol routine (so that lexical errors could
be reported) and the latter following it (so that the basic symbol routine
could be invoked when skipping).

Step 3 was concerned with building the environment attribute discussed
in Section 9.1.1. Two record types, identree and struetree, were added to the
existing compiler. The environment is a linked data structure made up of
records of these types. There is one identree per declared identifier, and
those for identifiers declared in the same range are linked as an unbalanced
binary tree. An array of pointers to tree roots constitutes the definition of
the current addressing environment. Three of the definition table operations
discussed in Section 9.2 (add a possession to a range, search the current
environment, search a given range) are implemented as common routines
while the others are coded in line. Entering and leaving a range are trivial
operations, involving pointer assignment only, while searching the current
environment is complex. This is exactly the opposite of Figure 9.21, which
requires complex behavior on entry to and exit from a range with simple
access to the current environment. The actual discrepancy between the two
techniques is reduced, however, when we recall that the Zurich compiler
does not perform symbol table lookups.

Each identree carries attribute information as well as the linkages used to
implement the possession table. Thus the possessions and definitions are
combined in this implementation. The type attribute of an identifier is
represented by a pointer to a record of type struetree, and there is one such
record for every defined type. Certain types (as for example scalar types)
are defined in terms of identifiers and hence a struetree may point to an iden
tree. The identree contains an extra link field, beyond those used for the
range tree, to implement lists of identifiers such as scalar constants, record
fields and formal parameters.

The procedures of Figure 14.4 can be thought of as carrying out a depth
first, left-to-right traversal of the parse tree even though that tree never has
an explicit incarnation. Since only one pass is made over the source pro
gram, the attribution rules must meet the LAG(1) condition. They were
simply implemented by Pascal statements inserted into the procedures of
Figure 14.4 at the appropriate points. Thus at the conclusion of step 3 the
bodies of these procedures still had the form of Section 7.2.2, but contained
additional Pascal code to calculate the environment attribute. As discussed
in Section 8.3.2, attribute storage optimization led to the representation of
the environment attribute as a linked, global data structure rather than an
item stored at each parse tree node. The interesting part of the structure tree
is actually represented by the hierarchy of activation records of the recursive
descent procedures. Attribute values attached to the nodes are stored as
values oflocal variables of these procedures.

During step 4 of the refinement the remainder of the semantic analysis

14.2. Case Studies 371

was added to the routines of Figure 14.4. This step involved additional attri
bution and closely followed the discussion of Chapter 9. Type definitions
were introduced for the additional attributes, global variables were declared
for those attributes whose storage could be optimized, and local variables
were declared for the others. The procedures of Figure 14.4 were aug
mented by the Pascal code for the necessary attribution rules, and functions
were added to implement the recursive attribute functions.

Ammann [1975] reports that steps 1-4 occupied a bit more than 6 months
of the 24-month project and accounted for just over 2000 of the almost 7000
lines in Pascal-6000. Steps 5 and 6 for Pascal-P were carried out in less than
two and a half months and resulted in about 1500 lines of Pascal, while the
corresponding numbers for Pascal-6000 were thirteen months and 4000
lines. Step 7 added another three and a half months to the total cost of
Pascal-6000, while increasing the number oflines by less than 1000.

The abstract stack computer that is the target for the Pascal-P compiler is
carefully matched to Pascal. Its elementary operators and data types are
those of Pascal, as are its memory access paths. There are special instruc
tions for procedure entry and exit that provide exactly the effect of a Pascal
procedure invocation, and an indexed jump instruction for implementing a
case selection. Code generation for such a machine is clearly trivial, and we
shall not consider this part of the project further.

Section 10.1 describes storage allocation in terms of blocks and areas. A
block is an object whose size and alignment are known, while an area is an
object that is still growing. In Pascal, blocks are associated with
completely-defined types, whereas areas are associated with types in the pro
cess of definition and with activation records. Thus Pascal-6000 represents
blocks by means of a size field in every structrec. The actual form of this
field varies with the type defined by the structrec; there is no uniform size
attribute like that of Figure 10.1. Because of the recursive descent architec
ture and the properties of Pascal, the lifetime of an area coincides with the
invocation of one of the procedures of Figure 14.4 in every case. For exam
ple, an area corresponding to a record type grows only during an invocation
of the field list procedure. This means that the specification of an area can
be held in local variables of a procedure. Step 5 added these local variable
declarations and the code to process area growth to the procedures of Figure
14.4. The size field was also added to structrec in this step.

Step 6 was the first point at which a 'foreign' structure-the structure of
the target machine-appeared. This refinement was thus the first that added
a significant number of procedures to those of Figure 14.4. The added pro
cedures effectively act as modules for simulation and assembly.

As we pointed out earlier, no explicit structure tree is ever created by
Pascal-6000. This means that the structure tree cannot be decorated with
target attributes used to determine an improved execution order and then
traversed according to this execution order for code selection. Pascal-6000
thus computes no target attributes other than the value descriptors of Section

372 Chapter 14. Implementing the Compiler

1003.1. They are used in conjunction with a set of register descriptors and
register allocation operations to perform a machine simulation exactly as
discussed in Section 1003.1. The recursive descent architecture once again
manifests itself in the fact that global storage is provided for only one value
descriptor. Most value descriptors are held as local variables of procedures
appearing in Figure 14.4, with the global variable describing the 'current'
value-the one that would lie at the 'top of the stack'.

The decision tables describing code selection are hand-coded as Pascal
conditionals and case statements within the analysis procedures. Code is
generated by invoking register allocation procedures, common routines such
as load and store, and assembly interface procedures from Table 14.5.

The first four operations of Table 14.5 assemble target code sequentially;
Pascal-6000 does not have the concept of separate sequences discussed in
Section 1l.l.1. A 'location counter' holds the current relative address, which
may be accessed by any routine and saved as a label. The third operand of
a 30-bit instruction may be either an absolute value or a relative address,
and gen30 has a fourth parameter to distinguish these cases. Forward refer
ences are handled by ins, which allows a relative address to be stored at a
given position in the code already assembled.

In keeping with the one-pass architecture, Pascal-6000 retains all of the
code for a single procedure. The assembly 'module' is initialized when the
'body' procedure (Figure 14.4) is invoked, and a complete relocatable deck
is output at the end of this invocation to finalize the 'module'. Pascal-6000
uses Control Data's standard relocatable binary text as its target code, in
keeping with our admonition at the beginning of Section 11.2. We shall dis
cuss the layout of that text here in some detail as an illustration; another
example, the IBM 370 object module, will be given at the end of the next
section.

A relocatahle subprogram is a logical record composed of a sequence of
tables (Figure 14.6), which are simply blocks of information with various
purp8ses. The first word of each table contains an identifying code and

Table 14.5 Pascal-6000 Assembly Operations

Procedure Description

noop Force code alignment to a word boundary

genl5 Assemble a 15-bit instruction

gen30 Assemble a 30-bit instruction

gen60 Assemble a 60-bit constant

searchextid Set up an external reference

ins Satisfy a given forward reference

19ohead Output PIDL and ENTR

19otext Output TEXT

19oend Output XFER and LINK

14.2. Case Studies 373

specifies the number of additional 60-bit words in the table. As with any
record, a relocatable subprogram may be preceded by a prefix table contain
ing arbitrary information (such as the date compiled, version of the com
piler, etc.), but the first component of the subprogram proper is the program
identification and length (PIDL) table. PIDL is conventionally followed by
an entry point (ENTR) table that associates entry point symbols with the
locations they denote (Section 11.2.1), but in fact the loader places no con
straints on either the number or the position(s) of any tables other than
PIDL.

The body of the subprogram is made up of TEXT tables. Each TEXT
table specifies a block of up to 15 words, the first of which should be loaded
at the specified address. Four relocation bits are used for each text word
(hence the limit of 15 text words). References to external symbols are not
indicated by the relocation bits, which only distinguish absolute and signed
relative addresses. External references are specified by LINK tables: For
each external symbol, a sequence of operand field definitions is given. The
loader will add the address of the external symbol to each of the fields so
defined. Thus a call of sqrt, for example, would appear in the TEXT table
as an RJ (return jump) instruction with the absolute value 0 as its operand.
This O-field would then be described in a LINK table by one of the operand
field definitions following the symbol sqrt. When the loader had determined
the address of sqrt it would add it to the O-field, thus changing the instruction
into RJ sqrt. There is no restriction on the number of LINK tables, the
number of times a symbol may appear or the number offield definitions that
may follow a single symbol. As shown in Figure 14.6, each field definition
occupies 30 bits, each symbol occupies 60 bits, and a symbol may be split
between words.

The transfer (XFER) table is conventionally associated with a main pro
gram. It gives the entry point to which control is transferred after the loader
has completed loading the program. Again, however, the loader places no
restriction on the number of XFER tables or the subprograms with which
they are associated. An XFER table is ignored if its start symbol begins with
a space, or if a new XFER whose start symbol does not begin with a space is
encountered. The only requirement is that, by the time the load is com
pleted, a start symbol that is an entry point of some loaded subprogram has
been specified.

Internal and external references, either of which may occur in a 30-bit
instruction, are represented quite differently in the target code. This is
reflected at the assembly interface by the presence of searchextid. When a
30-bit instruction is emitted, gen 30 checks a global pointer. If it is not nil
then it points to an external symbol, and gen 30 adds the target location of
the current instruction's third operand to a list rooted in that symbol. This
list will ultimately be used by 19oend to generate a LINK table. The global
pointer checked by gen 30 is set by searchextid and cleared to nil by gen 30.
When the code generator emits a 30-bit instruction containing an external

374 Chapter 14. Implementing the Compiler

reference it therefore first invokes searchextid with the external identifier and
then invokes gen 30 with the absolute value 0 as the third operand. Section
11.3.1 gives an alternative strategy.

14.2.3. IBM FORTRAN H The major design goal for FORTRAN H
was production of efficient object code. IBM began development of the
compiler in 1963, using FORTRAN as the implementation language on the
7094. The initial version was used to compile itself for System/360, produc
ing over half a million 8-bit bytes of code. Running on System/360, the
compiler optimized itself, reducing its size by about 25%. It was then rewrit
ten to take advantage of language extensions permitting efficient bit mani
pulation and introducing a form of record access. This reduced compilation
time by about 35% and allowed the compiler to compile itself on a 262,140
byte configuration. Major development of FO R TRAN H was completed in
1967, but modification and enhancement has been a continuous process
since then. The details presented in this section correspond to release 17 of
the compiler [IBM 1968].

The entire program unit being compiled is held in main storage by the

PIDL

34 1 1 1

TEXT
0 40 1 n +11 address

name 1 length relocation bits

textt
XFER

46 1 1 1 0 ...

Start symbol I 0 textn

ENTR

36 1 2n 1 0
LINK

441 n 1 0

symbo/ t
1

0 symbol t

01 addresst fieldt,t ...

... fieldl,i sym

symboln
1

0 symbol2 field2,t

01 addressn ...

Figure 14.6. Control Data 6000 Series Relocatable Binary Code.

14.2. Case Studies 375

FORTRAN H compiler. This is done to simplify the optimizer, which
accesses the program text randomly and rearranges it. It does imply limita
tions on the size of a compilable unit, but such limitations are less serious for
FORTRAN than for ALGOL 60 or Pascal because the language design
supports separate compilation of small units.

As shown in Table 14.7, the compiler has five major phases. Code for
these phases is overlaid, with a total of 13 overlay segments. A maximum of
about 81,000 bytes of code is actually in the memory at anyone time (this
maximum occurs during phase 20), and the minimum storage in which a
compilation can be carried out is about 89,000 bytes.

FORTRAN is a rather unsystematic language, and Phase 10 reflects this.
The unit of processing is a complete statement, which is read into a buffer,
packed to remove superfluous spaces, and then classified. Based upon the
classification, ad hoc analysis routines are used to deal with the parts of the
statement. All of these routines have similar structures: They scan the
statement from left to right, extracting each operand and making an entry
for it in the definition table if one does not already exist, and building a
linear list of operator /operand pairs. The operator of the pair is the opera
tor that preceded the operand; for the first pair it is the statement class. An
operand is represented by a pointer to the definition table plus its type and
kind (constant, simple variable, array, etc.) The type and kind codes are
also in the definition table entry, and are retained in the list solely to sim
plify access.

Phase 10 performs only a partial syntactic analysis of the source program.

Table 14.7 Phase Structure of the IBM FORTRAN H Compiler

Phase Task(s) Description

Lexical analysis . .
10 S t t· I· Convert source text to operator-operand paIrs and mforma-

yn ac IC ana YSIS . bl . D .
S . I· hon ta e entnes. etect syntactlc errors.
emantlc ana YSIS

Syntactic analysis .
S t· I· Convert operator-operand palTS to quadruples. Operator

IS eman IC ana YSls·d ·fi· d . h k C
M . I entl cahon an conSIstency c ec s. onvert constants and

emory mappmg. I· dd . bl
T ·b . aSSIgn re atlve a resses to constants, vana es and arrays.

arget attn utlOn

Target attribution Eliminate common subexpressions, perform live/dead
20 Optimization analysis and strength reduction, and move constant expres

sions out of loops. Assign registers and determine the sizes of
code blocks. Optimize jump targets.

25 Code selection
Assembly

30 Error reporting

Convert quadruples into System/360 machine code. Create
an object module.

Record appropriate messages for errors encountered during
previous phases.

376 Chapter 14. Implementing the Compiler

It does not determine the tree structure within a statement, but it does
extract the statement number and classify some delimiters that have multiple
meaning. For example, it replaces '(' by 'left arithmetic parenthesis', 'left
subscript parenthesis' or 'function parenthesis' as appropriate.

Name analysis is rudimentary in FORTRAN because the meaning of an
identifier is independent of the structure of a program unit. This means that
no possessions are required, and the symbol and definition tables can be
integrated without penalty. Symbol lookup uses a simple linear scan of the
chained definition table entries, but the organization of the chains is
FORTRAN-specific: There is one ordered chain for each of the six possible
identifier lengths, and each chain is doubly-linked with the header pointing
to the center of the chain. Thus a search on any chain only involves half the
entries. (The header is moved as entries are added to a chain, in order to
maintain the balance.) Constants, statement numbers and common block
names also have entries in the definition table. Three chains are used for
constants, one for each allowable length (4, 8 or 16 bytes), and one each for
statement numbers and common block names.

The only semantic analysis done during Phase 10 is 'declaration process
ing'. Type, dimension, common and equivalence statements are completely
processed and the results summarized in the definition table. Because FOR
TRAN does not require that identifiers be declared, attribute information
must also be gathered from applied occurrences. A minor use of the attri
bute information is in the classification of left parentheses (mentioned
above), because FORTRAN does not make a lexical distinction between
subscript brackets and function parentheses.

Phase 15 completes the syntactic analysis, converting the lists of
operator/operand pairs to lists of quadruples where appropriate. Each qua
druple consists of an operator, a target type and three pointers to the
definition table. This means that phase 15 also creates a definition table
entry for every anonymous intermediate result. Such 'temporary names' are
treated exactly like programmer-defined variables in subsequent processing,
and may be eliminated by various optimizations. The quadruples are
chained in a correct (but not necessarily optimum) execution order and gath
ered into basic blocks.

Semantic analysis is also completed during phase 15, with all operator
identification and consistency checking done as the quadruples are built.
The target type is expressed as a general type (logical, integer, real) plus an
operand type (short, long) for each operand and for the result.

The syntactic and semantic analysis tasks of phase 15 are carried out by
an overlay segment known as PHAZ15, which also gathers defined/used
information for common subexpression and dead variable analysis. This
information is stored in basic block headers as discussed in Chapter 13.
Finally, PHAZ15 links the basic block headers to both their predecessors
and their successors, describing the flowgraph of the program and preparing
for dominance analysis.

14.2. Case Studies 377

CORAL is the second overlay segment of phase 15, which carries out the
memory mapping task. The algorithm is essentially that discussed in Sec
tion 10.1, but its only function is to assign addresses to constants and vari
ables (in other words, to map the activation record). There are no variant
records, but equivalence statements cause variables to share storage. By
convention, the activation record base is in register 13. The layout of the
activation record is given in Figure 14.8. It is followed immediately by the
code for the program unit. (Remember that storage allocation is static in
FORTRAN.) The size of the save area (72 bytes) and its alignment (8) are
fixed by the implementation, as is the size of the initial contents for register
12 (discussed below). Storage for the computed GOTO tables and the
parameter lists have already been allocated storage by Phase 10. CORAL
allocates storage for constants first, then for simple variables and then for
arrays. Local variables and arrays mentioned in equivalence statements
come next, completing this part of the activation record. Finally the com
mon blocks specified by the program unit are mapped as separate areas.

System/360 access paths limit the maximum displacement to 4095.
When a larger displacement is generated during CORAL processing, the
compiler defines an adcon variable-a new activation record base-and resets
the displacement to O. The adcon is entered into the definition table and
treated as a normal variable for further processing. CORAL does not place
either adcons or temporaries into the activation record at this time, because
they may be deleted during optimization.

Phase 20 assigns operands to registers. If the user has specified optimiza
tion level 0, the compiler treats the machine as having one accumulator, one
base register and one register for specifying jump addresses (Table 14.9).
Machine simulation (Section 10.3.1) is used to avoid redundant loads and
stores, but no change is made in the execution order of the quadruples.
Attributes are added to the quadruples, specifying the register or base regis
ter used for each operand and for the result.

Level I optimization makes use of a pool of general-purpose registers, as
shown in Table 14.9. Register 13 is always reserved as the base of the

Save area
Initial contents for register 12
Branch tables for computed GOTO's
Parameter lists
Constants and local variables
Address values ('adcons')
Namelist dictionaries
Compiler-generated temporaries
Label addresses

Figure 14.8. FORTRAN H Activation Record.

378 Chapter 14. Implementing the Compiler

activation record. A decision about whether to reserve some or all of regis
ters 9-12 is made on the basis of the number of quadruples output by phase
15. This statistic is available prior to register allocation, and it predicts the
size of the subprogram code. Once the register pool is fixed, phase 20 per
forms local register assignment within basic blocks and global assignment
over the entire program unit. Again, the order of the quadruples is
unchanged and attributes giving the registers used for each operand or
memory access path are added to the quadruples.

Common subexpression elimination, live/dead analysis, code motion and
strength reduction are all performed at optimization level 2. The register
assignment algorithms used on the entire program unit at level 1 are then
applied to each loop of the modified program, starting with the innermost
and ending with the entire program unit. This guarantees that the register
assignment within an inner loop will be determined primarily by the activity
of operands within that loop, whereas at level 1 it may be influenced by
operand activity elsewhere in the program.

The basic implementation used for a branch is to load the target address
of the branch into a register and then execute an RR-format branch instruc
tion. This requires an adcon for every basic block whose first instruction is a

Register
Assignment at optimization level

o 1)

0
Operands and results

1
2
3 Not used

4

5
Branch addresses Operands and results
Selected logical operands

6 Operands representing index
values

7 Base addresses
8
9

Not used
10 Code bases or operands

11 and results

12 Adcon base
13 Activation record base

14 Computed GOTO
Logical results of comparisons Operands and results

15 Computed GOTO

Table 14.9. General-Purpose Register Assignment by FORTRAN H

14.2. Case Studies 379

branch target. If a register already happened to hold an address less than
4096 bytes lower than the branch target, however, both the load and the
adcon would be unnecessary. A single RX-format branch instruction would
suffice. Thus the compiler reserves registers to act as code bases. To under
stand the mechanism involved, we must consider the layout of information
in storage more carefully.

We have already seen that phase 15 allocates activation record storage
for constants and programmer-defined variables, generating adcons as
necessary to satisfy the displacement limit of 4095. When register allocation
is complete, all adcons and temporary variables that have not been elim
inated are added to the activation record. The adcons must all be directly
addressable, since they must be loaded to provide base addresses for
memory access. If they are not all within 4095 bytes of the activation record
base then the reserved register 12 is assumed to contain either the address of
the first adcon or (base address of the activation record +4096), whichever is
larger. It is assumed that the number of adcons will never exceed 1024
(although this is theoretically possible, given the address space of Sys
tem/360) and hence all adcons will be directly accessible via either register
12 or register 13. (Note that a fail-safe decision to reserve register 12 can be
made on the basis of the phase 15 output, without regard to the number of
quadruples.)

If the number of quadruples output from phase 15 is large enough, regis
ter 11 will be reserved and initialized to address the 4096th byte beyond that
addressed by register 12. Similarly, for a larger number of quadruples,
register 10 will be reserved and initialized to an address 4096 larger than
register 11. Finally, register 9 will be reserved and initialized for an even
larger number of quadruples. Phase 20 can calculate the maximum possible
address of each basic block. Those lying within 4096 bytes of one of the
reserved registers are marked with the register number and displacement.
The adcon corresponding to the basic block label is then deleted. (These
deletions, plus the ultimate shortening of the basic blocks due to optimiza
tion of the branch instructions, can never invalidate the addressability con
ditions on the basic blocks.)

The branch optimization described in the previous paragraphs is carried
out only at optimization levels 1 and 2. At optimization level 0 the basic
implementation is used for all branches.

Phase 25 uses decision tables to select the proper sequence of machine
instructions. The algorithm is basically that of Section 10.3.2, except that
the action stub of the decision table is simply a sequence of instruction tem
plates. Actions such as swap and [reg (Figure 10.15) have already been car
ried out during phase 20. There is conceptually one table for every quadru
ple operator. Actually, several tables are associated with families of opera
tors, and the individual operator modifies the skeletons as they are extracted.
The condition is selected by a 4-bit status, which may have somewhat
different meanings for different operators. It is used as an index to select the

380 Chapter 14. Implementing the Compiler

proper column of the table, which in turn identifies the templates to be used
in implementing the operator.

FORTRAN H generates System/360 object modules, which are
sequences of 80-character card images (Figure 14.10). Each card image is
output by a normal FORTRAN formatted write statement. The first byte
contains 2, which is the communication control character STX (start of text).
All other fields left blank in Figure 14.10 are unused. Columns 2-4 and 73-
80 contain alphanumeric information as indicated, with the serial number

2-4 5 6-8 9-10 11-12 13-14 15-16 17-72 73-80

n

n

n

IENDI I address I I esdid I I serial

a) Object module card images

1-8 9 10-12 13 14-16
Deck I length characters

1
0

I
offset I

Entry II I characters address Idid

External
characters

121

b) Symbols

1-2 3-4 5 6-8

Position Location
f address

sdid esdid

c) Relocations

Figure 14.10. IBM System 1360 Relocatable Binary Code.

14.3. Notes and References 381

conslstmg of a four-character deck identifier and a four-digit sequence
number. The remaining columns simply contain whatever character hap
pens to have the value of the corresponding byte as its EBCDIC code. Thus
24-bit (3-byte) addresses occupy three columns and half word (2-byte)
integers occupy two columns. Even though the length field n has a max
imum value of 56, it occupies a halfword because System/360 has no byte
arithmetic.

Comparing Figure 14.10 with Figure 14.6, we see that essentially the
same elements are present. END optionally carries a transfer address, thus
subsuming XFER. ESD plays the roles of both PIDL and ENTR, and also
specifies the symbols from LINK. Its purpose is to describe the characteris
tics of the control sections associated with global symbols, and to define short,
fixed-length representations (the esdid's) for those symbols. The esdid in
columns 15-16 identifies a deck or external; only one symbol of these types
may appear on an ESD card. Entry symbols identify the control sections to
which they belong (ldid) , and therefore they may be placed on any ESD
card where space is available.

RLD provides the remaining function of LINK, and also that of the relo
cation bits in TEXT. Each item of relocation information modifies the field
at the absolute location specified in the position esdid and address by either
adding or subtracting the value identified by the relocation esdid. Byte f
determines whether the value will be added or subtracted, and also specifies
the width of the field being modified (which may be 1,2, 3 or 4 bytes). If a
sequence of relocations involve the same esdid's then these specifications are
omitted from the second and subsequent relocations. (The rightmost bit off
is I if the following relocation does not specify esdid's, 0 otherwise.)

The decision to use relocation bits on the Control Data machine and the
RLD mechanism on System/360 reflects a fundamental difference in the
instruction sets: 30-bit instructions on the 6000 Series often reference
memory directly, and therefore relocatable addresses are common in the
text. On System/360, however, all references to memory are via values in
registers. Only the adcons are relocatable and therefore relocatable
addresses are quite rare in the text.

14.3. Notes and References

Most implementation decisions are related to performance in one way or
another, and must either be made on the basis of hard data or validated on
that basis when the compiler is running. It is well known that performance
problems are elusive, and that most programmers have incorrect ideas about
the source of bottlenecks in their code. Measurement of critical parameters
of the compiler as it is running is thus imperative. These parameters include
the sizes of various data structures and the states of various allocation and
lookup mechanisms, as well as an execution histogram [Waite 1973b].

382 Chapter 14. Implementing the Complier

The only description of GIER ALGOL in the open literature is the paper
by Naur [1964] cited earlier, but a very similar compiler for a variant of Pas
cal was discussed in great detail by Hartmann [1977].

Ammann [1975] gives an excellent account in German of the develop
ment of Zurich Pascal, and partial descriptions are available in English
[Ammann 1974, Ammann 1977].

In addition to the Program Logic Manual [IBM 1968], descriptions of
FORTRAN H have been given by Lowry [1969] and Scarborough [1980].
These treatments concentrate on the optimization performed by Phase 20,
however, and give very little information about the compiler as a whole.

APPENDIX A

The Sample Programming Language LAX

In this Appendix we define the sample programming language LAX
(LAnguage eXample), upon which the concrete compiler design examples in
this book are based. LAX illustrates the fundamental problems of compiler
construction, but avoids uninteresting complications.

We shall use extended Backus-Naur form (ERNF) to describe the form of
LAX. The differences between EBNF and normal BNF are:

• Each rule is terminated by a period.
• Terminal symbols of the grammar are delimited by apostrophes. (Thus

the metabrackets '<' and '>' ofBNF are superfluous.)
• The following abbreviations are permitted:

Abbreviation
X :: = a(f3)y.
X :: = a[f3]y.
X ::= au +y.
X::=au*y.
X ::= a I It.

Meaning
X::=aYy. Y::=f3.
X :: = ay I a(f3)y.
X :: = a Y y. Y:: = u Yu .
X ::= a[u+]y.
X:: = a(ta)* .

Here a, f3 and yare arbitrary right-hand sides of rules, Y is a symbol that
does not appear elsewhere in the specification, u is either a single symbol
or a parenthesized right-hand side, and t is a terminal symbol.

For a more complete discussion ofEBNF see Section 5.1.4.
The axiom of the grammar is program. EBNF rules marked with an

asterisk in this Appendix are included to aid in the description of the
language, but they do not participate in the derivation of any sentence.
Thus they define useless nonterminals in the sense of Chapter 5.

383

384 Appendix A. The Sample Programming Language LAX

A.I. Basic Symbols

A. 1.0.1
A. 1.0.2
A. 1.0.3

* basicJymbol :: = identifier I denotation I delimiter.
identifier:: = letter (['_'] letter I digit) * .
letter ::= 'a' I 'b' I 'c' I'd' I 'e' I 'f' I 'g' I 'h' I 'i'

I ')' I 'k' I 'I' I 'm' I 'n' I '0' I 'p' I 'q' I 'r'
I 's' I 't' I 'u' I 'v' I 'w' I 'x' I 'y' I 'z'.

A. 1.0.4 digit :: = '0' I '1' I '2' I '3' I '4' I '5' I '6' I '7' I '8' I '9'.
A. 1.0.5 denotation :: = integer I floating-point .
A. 1.0.6 integer :: = digit + .
A. 1.0.7 floating_point :: = digit + scale I digit* '.' digit + [scale].
A. 1.0.8 scale :: = 'e' [' +' I '-'] integer.
A. 1.0.9 * delimiter:: = special I keyword .
A. 1.0. 10 * special ::= '+' I '-' I '*' I 'I' I '<' I '>' I '=' I 'i'

I ':' I ';' I '.' I ',' I '(' I ')' I '[' I ']'
I 'II' I ':=' I '='.

A.l.O.ll * keyword ::= 'and' I array' I 'begin' I 'case'
I 'declare' I 'div' I 'do' I 'else' I 'end'
I 'for' I 'from' I 'goto' I 'if' I 'is'
I 'loop' I 'mod' I 'new' I 'not' I 'of' I 'or'
I 'procedure' I 'record' I 'ref' I 'then' I 'to'
I 'type' I 'while'.

A.1.0.l2 * comment:: = '(*' arbitrary '*)'.

Note: arbitrary does not contain '*)'

An identifier is a freely-chosen representation for a type, label, object,
procedure, formal parameter or field selector. It is given meaning by a con
struct of the program. The appearances at which an identifier is given a
meaning are called defining occurrences of that identifier. All other appear
ances of the identifier are called applied occurrences.

Integer and floating point denotations have the usual meaning.
Keywords are reserved identifiers that can only be used as indicated by

the rules of the EBNF specification. We have used boldface type to
represent keywords in the book only to enhance readability. This conven
tion is not followed in the grammar, where the keywords are simply strings
to be processed.

Comments, spaces and newlines may not appear within basic symbols.
Two adjacent basic symbols must be separated by one or more comments,
spaces or newlines unless one of the basic symbols is a special. Otherwise
comments, spaces and newlines are meaningless.

An upper case letter is considered to be equivalent to the corresponding
lower case letter.

A.2. Program Structure 385

A.2. Program Structure

A.2.0. I program :: = block .
A.2.0.2 * range :: =

A.2.0J
block I statement _list I iteration I record _type I procedure .

block :: = 'declare' (declaration I I ';') 'begin'

A.2.0.4
A.2.0.5
A.2.0.6
A.2.0.7

A.2.0.8
A.2.0.9

(statement I I ';') 'end'.
statement-list :: = statement I I ';'.
statement :: = labeLdefinition * (expression I iteration I jump).
labeLdefinition :: = identifier':' .
iteration :: = 'while' expression loop

I 'for' identifier 'from' expression 'to' expression loop.
loop :: = 'do' statement _list 'end' .
jump :: = ' goto' identifier.

See Section A.3 for declarations, record types and procedures, and Section
AA for expressions.

A.2.t. Programs A program specifies a computation by describing a
sequence of actions. A computation specified in LAX may be realized by
any sequence of actions having the same effect as the one described here for
the given computation. The meaning of constructs that do not satisfy the
rules given here is undefined. Whether, and in what manner, a particular
implementation of LAX gives meaning to undefined constructs is outside the
scope of this definition.

Before translation, a LAX program is embedded in the following block,
which is then translated and executed:

declare standard _declarations begin program end

The standard declarations provide defining occurrences of the predefined
identifiers given in Table A.I. These declarations cannot be expressed in
LAX.

Table A.I Predefined Identifiers

Identifier

boolean
false
integer
nil
real
true

Meaning
Logical type
Falsity
Integer type
Reference to no object
Floating point type
Truth

A.2.2. Visibility Rules The text of a range, excluding the text of ranges
nested within it, may contain no more than one defining occurrence of a

386 Appendix A. The Sample Programming Language LAX

given identifier. Every applied occurrence of an identifier must identify
some defining occurrence of that identifier. Unless otherwise stated, the
defining occurrence D identified by an applied occurrence A of the
identifier I is determined as follows:

1. Let R be the text of A, and let B be the block in which the LAX program
is embedded.

2. Let R' be the smallest range properly containing R. and let T be the text
of R ' excluding the text of all ranges nested within it.

3. If T does not contain a defining occurrence of I, and R' is not B, then let
R be R' and go to step (2).

4. If T contains a defining occurrence of I then that defining occurrence is
D.

Identifier is a defining occurrence in the productions for labeLdefinition
(A.2.0.6),iteration(A.2.0.7),variable_declaration(AJ.O.2), identity_declaration
(A.3.0.7), procedure_declaration (A.3.0.8), parameter (A.3.0.lO),
type_declaration (A.3.0.l2) and field (AJ.O.l4). All other instances of
identifier are applied occurrences.

A.2.3. Blocks The execution of a block begins with a consistent renaming:
If an identifier has defining occurrences in this block (excluding all blocks
nested within it) then those defining occurrences and all applied occurrences
identifying them are replaced by a new identifier not appearing elsewhere in
the program.

After the consistent renaming, the declarations of the block are executed
in the sequence they were written and then the statements are executed as
described for a statement list (Section A.2.4). The result of this execution is
the result of the block. The extent of the result of a block must be larger
than the execution of that block.

A.2.4. Statement Lists Execution of a statement list is begun by execut
ing the first statement in the list. The remaining statements in the list are
then executed in the sequence in which they were written unless the
sequence is altered by executing a jump (Section A.2.6). If a statement is
followed by a semicolon then its result (if any) is discarded when its execu
tion is finished. The result of the last statement in a statement list is the
result of the statement list; if the last statement does not deliver a result then
the statement list does not deliver a result.

A.2.S. Iterations The iteration

while expression do statement _list end

is identical in meaning to the conditional clause:

if expression then

A.3. Declarations

The iteration

statement _list;

while expression do statement _list end

end

for identiJierfrom initiaL value to finaL value do statemenLlist end

is identical in meaning to the block:

declare a : integer; b : integer
begin
a: = initial_value ; b: = final_value;
ifnot (a> b) then

declare identifier is a: integer begin statement _list end;
whilea<b do

a:=a+l;
declare identifier is a : integer begin statement _list end
end (* while *)

end (* if*)
end

Here a and b are identifiers not appearing elsewhere in the program.
An iteration delivers no result.

387

A.2.6. Labels and Jumps If an identifier has an applied occurrence in a
jump then the defining occurrence identified must be in a label definition. A
jump breaks off the execution of the program at the point of the jump, and
resumes execution at the labelled expression, iteration or jump.

A jump delivers no result.

A.3. Declarations

A.3.0.1

AJ.O.2

A.3.0J

AJ.O.4

declaration :: = variable _declaration
I identity _declaration
I procedure _declaration
I type _declaration .

variable _declaration :: = identifier':' typeJpecijication
I identifier':'

'array"[' (bound_pair I I ',') ']' 'of' type-specification .
type -specijication :: = identifier

I 'ref'type-specification
I ' ref' array _type
I procedure _type .

bound -pair:: = expression ':' expression.

388

AJ.O.5
AJ.O.6

AJ.O.7

A.3.0.8
AJ.O.9

A.3.0.l0
AJ.O.lI
A.3.0.12
AJ.O.l3
AJ.O.l4
A.3.0.l5 •

Appendix A. The Sample Programming Language LAX

array_type :: = 'array"[",'· ']' 'of' type_specification.
procedure _type :: =

'procedure' ['(' (type-specification I I ',') ')'] [result-type].
identity _declaration :: =

identifier 'is' expression ':' type -specification.
procedure _declaration :: = 'procedure' identifier procedure .
procedure ::= ['(' (parameter I I ';') ')']

[result _type] ';' expression.
parameter :: = identifier':' type -specification.
result-type :: = ':' type-specification.
type _declaration :: = 'type' identifier' =' record _type .
record_type :: = 'record' (field I I';'),end'
field :: = identifier':' type -specification.
type :: = type -specification I array _type I procedure _type .

See Section A.4 for Expressions.

A.3.1. Values, Types and Objects Values are abstract entities upon
which operations may be performed, types classify values according to the
operations that may be performed upon them, and objects are the concrete
instances of values that are operated upon. Two objects are equal if they are
instances of the same value. Two objects are identical if references (see
below) to them are equal. Every object has a specified extent, during which
it can be operated upon. The extents of denotations, the value nil (see
below) and objects generated by new (Section A.4J) are unbounded; the
extents of other objects are determined by their aeclarations.

The predefined identifiers boolean, integer and real represent the types of
truth values, integers and floating point numbers respectively. Values of
these types are called primitive values, and have the usual meanings.

An instance of a value of type ref t is a variable that can refer to (or con
tain) an object of type t. An assignment to a variable changes the object to
which the variable refers, but does not change the identity of the variable.
The predefined identifier nil denotes a value of type ref t, for arbitrary t. Nil
refers to no object, and may only be used in a context that specifies the refer
enced type t uniquely.

Values and objects of array and record types are composite. The
immediate components of an array are all of the same type, and the simple
selectors are integer tuples. The immediate components of a record may be
of different types, and the simple selectors are represented by identifiers. No
composite object may have a component of its own type.

Values of a procedure type are specifications of computations. If the
result type is omitted, then a call of the procedure yields no result and the
procedure is called a proper procedure; otherwise it is called a function pro
cedure.

If two types consist of the same sequence of basic symbols and, for every

A.3. Declarations 389

identifier in that sequence, the applied occurrences in one type identify the
same defining occurrence as the applied occurrences in the other, then the
two types are the same. In all other cases, the two types are different.

A.3.2. Variable Declarations A variable referring to an undefined value
(of the specified type) is created, and the identifier represents this object.
The extent of the created variable begins when the declaration is executed
and ends when execution of the smallest range containing the declaration is
complete.

If the variable declaration has the form

identifier : t

then the created variable is of type ref t, and may refer to any value of type t.
If, on the other hand, it has the form

identifier: array [/]:u], ... , In :un] of t

then the created variable is of type ref array_type, and may only refer to
values having the specified number of immediate components. The type of
the array is obtained from the variable-tleclaration by deleting 'identifier:'
and each bound pair e] :e2; array [I] :U], . .. , In :Un] of t specifies an array of
this type with (u] -I] + 1) * ... *(Un -In + 1) immediate components of type
t. The bounds Ii and Ui are integers with Ii < Ui'

A.3.3. Identity Declarations A new instance of the value (of the
specified type) resulting from evaluation of the expression is created, and the
identifier represents this object. If the expression yields an array or refer
ence to an array, the new instance has the same bounds. The extent of the
created object is identical to the extent of the result of the expression.

A.3.4. Procedure Declarations A new instance of the value (of the
specified procedure type) resulting from copying the basic symbol sequence
of the procedure is created, and the identifier represents this object. The
extent of the created object begins when the declaration is executed and
ends when execution of the smallest block containing the declaration is
complete.

Evaluation of the expression of a function procedure must yield a value of
the given resulLtype.

The procedure type is obtained from the procedure_declaration by delet
ing 'identifier' and '; expression', and removing 'identifier:' from each
parameter.

A.3.5. Type Declarations The identifier represents a new record type
defined according to the given specification.

390 Appendix A. The Sample Programming Language LAX

A.4. Expressions

A.4.0.1
A.4.0.2
A.4.0J
A.4.0.4
A.4.0.5
A.4.0.6
A.4.0.7
A.4.0.S
A.4.0.9
A.4.0.10
A.4.0.11
A.4.0.12
A.4.0.l3
A.4.0.l4
A.4.0.15

A.4.0.16

A.4.0.17
A.4.0.IS
A.4.0.19

A.4.0.20

A.4.0.21

A.4.0.22

expression:: = assignment I disjunction.
assignment :: = name ': =' expression.
disjunction :: = conjunction I disjunction 'or' conjunction.
conjunction :: = comparison I conjunction 'and' comparison .
comparison :: = relation [eqop relation].
eqop :: = ' =' I ' - , .
relation:: = sum [relop sum] .
relop ::= '<' I '>'.
sum :: = term I sum addop term .
addop :: = '+' I '-'.
term :: = factor I term mulop factor.
mulop :: = '.' I ' /' I 'div' I 'mod'.
factor: : = primary I unop factor.
unop ::= '+' I '-' I'not'.
primary:: = denotation I name I '(' expression ')'

I block I clause .
name :: = identifier

I name '.' identifier
I name '[' (expression I I ',') ']'
I name' i'
I 'new' identifier
I procedure _call .

procedure_call :: = name '(' (argument I I ',') ')'.
argument :: = expression .
clause :: = conditional_clause

I case _clause .
conditional_clause :: = 'if' expression 'then'

statement _list 'end'
I 'if' expression 'then' statement _list

'else' statement _list 'end' .
case _clause :: =

'case' expression 'of'
(case_label':' statement-list I I '//')
'else' statement _list 'end' .

case _label :: = integer .

A.4.1. Evaluation of Expressions This grammar ascribes structure to an
expression in the usual way. Every subexpression (asSignment, disjunction,
conjunction, etc.) may be evaluated to yield a value of a certain type. The
operands of an expression are evaluated collaterally unless the expression is
a disjunction or a conjunction (see Section A.4.3). Each operator indication
denotes a set of possible operations, with the particular one meant in a given

A.4. Expressions

Indication

'-.-
or
and

--
--

<
>
+
-

*
div

mod

/
not

+
-

Table A.2 Operator Identification

Operand Type
Left Right

ref t t

boolean boolean

ref t ref t
m m

a a

integer integer

real real
boolean

a

Result
Type

ref t

boolean

a

integer

real
boolean

a

Operation

assignment

disjunction
conjunction

identity

equality

less than

greater than

addition

subtraction

multiplication

division
remainder

division

complement

no operation

negation

391

Here t denotes any type, m denotes any non-reference type and a denotes
integer or real type.

context being determined by the operand types according to Table A.2.
When the type of value delivered by an operand does not satisfy the require
ments of a operation, a coercion sequence can be applied to yield a value that
does satisfy the requirements. Any ambiguities in the process of selecting
computations and coercions is resolved in favor of the choice with the shor
test total coercion sequence length.

It must be possible to determine an operation for every operator indica
tion appearing in a program.

A.4.2. Coercions The context in which a language element (statement,
argument, expression, operand, name as a component of an indexed object,
procedure call, etc.) appears may permit a stated set of types for the result
of that element, prescribe a single type, or require that the result be dis
carded. When the a priori type of the result does not satisfy the require
ments of the context, coercion is employed. The coercion consists of a
sequence of coercion operations applied to the result. If several types are
permitted by the context then the one leading to the shortest coercion
sequence will be selected.

Coercion operations are:

392 Appendix A. The Sample Programming Language LAX

• Widen: Convert from integer to floating point.
• Deprocedure: Invoke a parameterless procedure (see Section A.4.5). This

is the only coercion that can be applied to the left-hand side of an assign
ment.

• Dereference: Replace a reference by the object to which it refers. Dere
ferencing may also be specified explicitly by using the content operation
(see Section A.4.4). Nil cannot be dereferenced.

• Void: Discard a computed value. If the value to be discarded is a param
eterless procedure or a reference to such a procedure, the procedure must
be invoked and its result (if any) discarded.

A.4.3. Operations An assignment causes the variable yielded by the left
operand to refer to a new instance of the value yielded by the right operand.
The result of the assignment is the reference yielded by the left operand.
Assignments to nil are not permitted, nor are assignments of references or
procedures in which the extent of the value yielded by the right operand is
smaller than the extent of the reference yielded by the left operand. Assign
ment of composite objects is carried out by collaterally assigning the com
ponents of the value yielded by the right operand to the corresponding com
ponents of the reference yielded by the left operand. For array assignments,
the reference and value must have the same number of dimensions and
corresponding dimensions must have the same numbers of elements.

The expression a or b has the meaning if a then true else b
The expression a and b has the meaning if a then b else false.
The expression not a has the meaning if a then false else true.
Identity yields true if the operand values are identical variables.

Equality has the usual meaning. Composite values are equal if each ele
ment of one is equal to the corresponding element of the other. Arrays can
only be equal if they have the same dimensions, each with the same number
of elements. Procedure values are equal if they are identical.

Relational operators for integer and real types are defined as usual.
The arithmetic operators +, - (unary and binary), *, / have the usual

meaning as long as the values of all operands and results lie in the permitted
range and division by zero does not occur. div (integer division) and mod
(remainder) are defined only when the value of the right operand is not O.
Their results are then the same as those of the following expressions:

i div}
}

otherwise

i mod} = (i - (i div j)*j)

A.4. Expressions 393

Here I x I is the magnitude of x and lx j is the largest integer not larger
than x.

A.4.4. Names Identifiers name objects of specified types created by
declarations. If an applied occurrence of an identifier is a name then the
defining occurrence identified by it may not be in a type definition, label
definition or selector specification.

In the field selection name.identifier the name must (possibly after coer
cion) yield a record or reference to a record. The record type must contain a
field that provides a defining occurrence of the identifier, and it is this
defining occurrence which is identified by identifier. If the name yields a
record then the result of the field selection is the value of the field selected;
otherwise the result of the field selection is a reference to this field.

In the index selection name [i 1, ••. ,in] the name must (possibly after
coercion) yield an n-dimensional array or a reference to an n-dimensional
array. The name and subscript expressions i; are evaluated collaterally. If
the name yields an array then the result of the index selection is the value of
the element selected; otherwise the result of the index selection is a reference
to this element.

In the content operation name i the name must (possibly after coercion)
yield a variable. The result of the content operation is the value referred to.

The generator new t yields a new variable that can reference objects of
type t.

A.4.S. Procedure Calls In the procedure call p (a 1, •.. ,an) the name p
must (possibly after coercion) yield an object of procedure type having n
parameters (n ~ 0). The name p and argument expressions a; are evaluated
collaterally. Let P = (P]' . .. 'Pn): expression be the result of evaluating the
name, and let r; be the result of evaluating ll;. The procedure call is then
evaluated as follows (copy rule):

l. If n =0 then the procedure call is replaced by (expression), otherwise the
procedure call is replaced by the block

declare PI is r 1: t 1; ... ; Pn is rn : tn begin expression end

2. The block (or parenthesized expression) is executed. If it is not left by a
jump, the result is coerced to the result type of P (or voided, in the case
of a proper procedure).

3. As soon as execution is completed, possibly by a jump, the substitution of
step I is reversed (i.e. the original call is restored).

The value yielded by the coercion in step (2) is the result of the procedure
call.

A.4.6. Clauses The expression in a conditional clause must deliver a
Boolean result. If this result is true then the first statement list will be exe-

394 Appendix A. The Sample Programming Language LAX

cuted and its result will be taken as the result of the conditional clause; oth
erwise the second statement list will be executed and its result will be taken
as the result of the conditional clause. The first alternative of a one-sided
conditional clause, in which the second alternative is omitted, is voided.

The expression in a case clause must deliver an integer result. When the
value of the expression is i and one of the case labels is i, the statement list
associated with that case label will be executed and its result will be taken as
the result of the case clause; otherwise the statement list following else will
be executed and its result will be taken as the result of the case clause. All
case labels in a case clause must be distinct.

The component statement lists of a clause must be balanced to ensure that
the type of the result yielded is the same regardless of which alternative was
chosen. Balancing involves coercing the result of each component statement
list to a common type. If there is no one type to which all of the result types
are coercible then all the results are voided. When the type returned by the
clause is uniquely prescribed by the context then this type is chosen as the
common result type for all alternatives. If the context of the expression is
such that several result types are possible, the one leading to the smallest
total number of coercions is chosen.

APPENDIX B

Useful Algorithms for Directed Graphs

The directed graph is a formalism well-suited to the description of syntactic
derivations, data structures and control flow. Such descriptions allow us to
apply results from graph theory to a variety of compiler components. These
results yield standard algorithms for carrying out analyses and transforma
tions, and provide measures of complexity for many common tasks. In this
appendix we summarize the terminology and algorithms most important to
the remainder of the book.

B.I. Terminology

Definition B.l. A directed graph is a pair (K,D), where K is a finite,
nonempty set and D is a subset of K X K. The elements of K are called the
nodes of the graph, and the elements of D are the edges.
Figure B.la is a directed graph, and Figure B.lb shows how this graph
might be represented pictorially.

In many cases, a label function ,f, is defined on the nodes and/or edges of
a graph. Such a function associates a label, which is an element of a finite,
nonempty set, with each node or edge. We then speak of a graph with node
or edge labels. The labels serve as identification of the nodes or edges, or
indicate their interpretation. This is illustrated in Figure B.I b, where a func
tion has been provided to map K into the set {I ,2,3,4}.

Definition B.2. A sequence (ko,"" kn) of nodes in a directed graph
(K,D), n ~ 1, is called a path of length n if (k; -1 ,k;) ED, i = I, ... ,n. A path
is called a cycle if ko = kn .

395

396 Appendix B. Useful Algorithms for Directed Graphs

K = {1,2,3,4}
D = {(1,2),(1,3),(4,4),(2,3),(3,2),(3,4)}

a) The components of the graph

b) Pictorial representation

~~--------~.~~~--------__ t~
c) The condensation graph

Figure B.t. A Directed Graph.

An edge may appear more than once in a path: In the graph of Figure B.l,
the sequence of edges (2,3), (3,2), (2,3), (3,4), (4,4), (4,4) defines the path
(2,3,2,3,4,4,4) oflength 6.

Definition B.3. Let (K,D) be a directed graph. Partition K into equivalence
classes X; such that nodes u and v belong to the same class if and only if
there is a cycle to which u and v belong. Let D; be the subset of edges con
necting pairs of nodes in X;. The directed graphs (X; ,D;) are the strongly
connected components of (K,D).

The graph of Figures B.la and B.l b has three strongly connected com
ponents:

KI={l},DI ={}
K2 = {4}, D2 = {(4,4)}
K3 = {2,3}, D3 = {(2,3),(3,2)}

Often we deal with graphs in which all nodes of a strongly connected com
ponent are identical with respect to some property of interest. When dealing
with this property, we can therefore replace the original graph with a graph
having one node for each strongly connected component.

Definition B.4. Let P = {K I, ... , Kn} be a partition of node set of a
directed graph (K,D). The reduction of(K,D) with respect to the partition P
is the directed graph (K~D') such that K' = {k l , • .. , kn } and
D' = {(k; ,kj) Ii =1= j, and (u,v) is an element of D for some u EX; and
v EKj }.

B.1. Terminology 397

We term the subsets K; of an (arbitrary) partition blocks. The reduction
with respect to strongly connected components is the condensation graph.

The condensation graph of Figure B.lb is shown in Figure B.lc. Since
every cycle lies wholly within a single strongly connected region, the con
densation graph has no cycles.

Definition B.S. A directed acyclic graph is a directed graph that contains no
cycles.

Definition B.6. A directed acyclic graph is called a tree with root ko if for
every node k =1= ko there exists exactly one path (ko, ... , k).

These two special classes of graphs are illustrated in Figure B.2.
If a tree has an edge (k,k '), we say that k' is a child of k and k is the

parent of k '. Note that Definition B.6 permits a node to have any number of
children. Because the path from the root is unique, however, every node
k =1= ko has exactly one parent. The root, ko, is the only node with no
parent. A tree has at least one leaf, which is a node with no children. If
there is a path in a tree from node k to node k', we say that k' is a descen
dant of k and k is an ancestor of k'.

Definition B.7. A tree is termed ordered if, for every node, a linear order is
defined on the children of that node.

a) A directed acyclic graph

b) A tree

Figure B.2. Special Cases of Directed Graphs.

398 Appendix B. Useful Algorithms for Directed Graphs

If we list the children of a node k' in an ordered tree, we shall always do so
in the sense of the ordering; we can therefore take the enumeration as the
ordering. The first child of k' is also called the left child; the child node that
follows k in the order of successors of k' is called the right sibling of k. In
Figure B.2b, for example, we might order the children of a node according
to the magnitude of their labels. Thus 1 would be the left child of 0, 2 would
be the right sibling of 1, and 3 the right sibling of 2. 3 has no right siblings
and there is no relationship between 6 and 7.

In an ordered tree, the paths leaving the root can be ordered lexicograph
ically: Consider two paths x = (xo, ... , Xm) and Y = (Yo, ... , Yn) with
m < nand Xo = Yo being the root. Because both paths begin at the root,
there exists some i > 0 such that Xj = Yj , j = 0, ... ,i. We say that x <y
either if i =m and i < n, or if Xi +] <Yi +] according to the ordering of the
children of Xi (= Yi)' Since there is exactly one path from the root to any
node in the tree, this lexicographic ordering of the paths specifies a linear
ordering of all nodes of the tree.

Definition B.S. A cut in a tree (K,D) is a subset, C, of K such that for each
leaf Ie", E(K,D) exactly one element of C lies on the path (ko, ... , km) from
the root ko to that leaf.

Examples of cuts in Figure B.2b are {OJ, {l,2,3}, {l,2,7,8} and {4,5,6,7,8}.
In an ordered tree, the nodes of a cut are linearly-ordered on the basis of

the ordering of all nodes. When we describe a cut in an ordered tree, we
shall always write the nodes of that cut in the sense of this order.

Definition B.9. A spanning forest for a directed graph (K,D) is a set of trees
{(K],D]), ... , (Kn ,Dn)} such that the K; 's partition K and each Di is a (pos
sibly empty) subset of D.

All of the nodes of a directed graph can be visited by traversing the trees of
some spanning forest. The spanning forest used for such a traversal is often
the one corresponding to a depth-first search:

procedure deptlLfirst...search(k:node);
begin mark k as having been visited;

for each immediate successor k' of k do
if k' has not yet been visited then depth_firsLsearch(k ')

end;(*deptlLfirsLsearch *)

To construct a spanning forest, this procedure is applied to an arbitrary
unvisited node and repeated so long as such nodes exist.

A depth-first search can also be used to number the nodes in the graph:

Definition B.I0. A depth-first numbering is a permutation (k], . .. , kn) of the
nodes of a directed graph (K,D) such that k] is the first node visited by a

B.2. Declarations 399

particular depth-tirst search, k2 the second and so forth.
Once a spanning forest {(K1,D1), ... ,(Kn ,Dn)} has been detined for a

graph (K,D) the set D can be partitioned into four subsets:

• Tree edges, elements of DIU . . . U Dn .
• Forward edges, (kp ,kq) such that kp is an ancestor of kq in some tree K;,

but (kp ,kq) is not an element of Di .
• Back edges, (kq ,kp) such that either kp is an ancestor of kq in some tree K;

orp =q.
• Cross edges, (kp ,kq) such that kp is neither an ancestor nor a descendant

of kq in any tree K; .

These detinitions are illustrated by Figure B.3. Figure B.3b shows a
spanning forest and depth-tirst numbering for the graph of Figure B.3a. The
forest has two trees, whose roots are nodes I and 7 respectively. All edges
appearing in Figure B.3b are tree edges. In Figure B.3a, (1.4) is a forward
edge, (3,2) and (6,6) are back edges, and (5,3), (6,4) and (6,5) are cross
edges.

a) A directed graph

~----'-""{5

b) A depth-tirst numbering and spanning forest for (a)

Figure B.3. Depth-First Numbering.

400 Appendix B. Useful Algorithms for Directed Graphs

B.2. Directed Graphs as Data Structures

Directed graphs can be implemented as data structures in different ways. It
can be shown that the efficiency of graph algorithms depends critically upon
the representation chosen, and that some form of list is usually the appropri
ate choice for applications in compilers. We shall therefore use the abstract
data type of Figure B.4 for the algorithms described in this Appendix.

module graph(n,e:public integer);
(* Representation of a directed graph

n = Number of nodes in the graph
e = Maximum number of edges in the graph

*)
var

node: array [l..n] of record inward,outward,next _in,next _out: integer end;
edge: array [l..e] of record head,tail,next _in,next _out: integer end;
i,edge _count: integer;

procedure nexLsucc (n,e : integer): integer;
(* Obtain the next successor of a node

On entry-

*)

n = Node for which a successor is desired
e = First unexplored edge

begin (* next JUCC *)
if e = 0 then next JUCC : = 0
else begin node[n].nexLout: = edge [e].nexLout;

next JUcc: = edge [e].tail end;
end; (* next JUCC *)

procedure next _pred (n,e : integer): integer;
(* Obtain the next predecessor of a node

On entry-

*)

n = Node for which a predecessor is desired
e = First unexplored edge

begin (* next _pred *)
if e = 0 then next _pred : = 0
else begin node[n].nexLin: =edge[e].next_in;

nexLpred: = edge [e].head end;
end; (* nexLpred *)

public procedure define_edge (hd,tl: integer);
begin (* define_edge *)
edge_count: = edge_count + 1; (* edge_count ~ maximum not tested *)
with edge [edgLcount] do

begin
head: = hd ; tail: = tl ; nexLin : = node [tl].inward ;
next _out: = node [hd].outward

B.2. Directed Graphs as Data Structures

end;
node[hd].outward: = node [tl].inward : =edgLcount;
end; (* define_edge *)

public function jirstJuccessor (n : integer): integer;
begin firstJuccessor : = next JUCC (n,node [n]. outward) end;

public function next Juccessor (n : integer): integer;
begin next Juccessor : = next JUCC (n,node [n]. next _out) end;

public function firsLpredecessor (n : integer): integer;
begin firsLpredecessor : = next -pred (n,node [n]. inward) end;

public function next -predecessor (n : integer): integer;
begin next-predecessor: = next _pred (n,node[n].next_in) end;

begin (* graph *)
for i : = I to n do with node [i] do

inward: = outward: = next _in: = next _out: = 0;
edge_count: =0
end; (* graph *)

Figure B.4. Abstract Data Type for a Directed Graph.

401

A directed graph is instantiated by a variable declaration of the following
form:

g: graph (node_count,max_edges);
The structure of the graph is then established by a sequence of calls
g.define_edge(· ..). Note that the module embodies only the structure of the
graph; further properties, such as node or edge labels, must be stored
separately.

A directed graph that is a tree can, of course, be represented by the
abstract data type of Figure B.4. In this case, however, a simpler representa
tion (Figure B.5) could also be used. This simplification is based upon the
fact that any node in a tree can have at most one parent. Note that the edges
do not appear explicitly, but are implicit in the node linkage. The abstract
data structure is set up by instantiating the module with the proper number
of nodes and then invoking define_edge once for each edge to specify the
nodes at its head and tail. If it is desired that the order of the sibling list
reflect a total ordering defined on the children of a node, then the sequence
of calls on define_edge should be the opposite of this order.

A partition is defined by a collection of blocks (sets of nodes) and a
membership relation node Eblock The representation of the partition must
be carefully chosen so that operations upon it may be carried out in constant
time. Figure B.6 defines such a representation.

When a partition module is instantiated, its block set is empty. Blocks
may be created by invoking new_block, which returns the index of the new
block. This block has no members initially. The procedure adLnode is
used to make a given node a member of a given block. Since each node can
be a member of only one block, this procedure must delete the given node
from the block of which it was previously a member (if such exists).

402

//
I

I
I

/
I
I

Appendix B. Useful Algorithms for Directed Graphs

Solid lines represent tree edges. Dashed lines represent actual links main
tained by the tree module.

a) Pictorial representation

module tree(n:public integer);
(* Representation of a tree

n = Number of nodes in the tree
*)

var
node: array [l..n) ofrecord parent,child,sibling: integer end;
i: integer;

public procedure define_edge (hd,tl : integer);
begin (* define_edge *)
with node [tl) do

begin parent: =hd; sibling: = node [hd).child end;
node [hd).child : =tl;
end; (* definLedge *)

public function parent (n : integer): integer;
begin parent: = node [n) .parent end;

public function child (n : integer): integer;
begin child: = node [n) .child end;

public function sibling (n : integer): integer;
begin sibling: = node [n).sibling end;

begin (* tree *)
for i : = I to n do with node [i) do parent: = child: = sibling: = 0;
end; (* tree *)

b) Abstract data type

Figure B.S. Simplification for a Tree.

B.2. Directed Graphs as Data Structures

module partition(n:public integer);
(* Representation of a partition on of a set of n nodes *)

var
p: array[0 .. 2 *n] of record member,/ast,next: integer end;
i,number _of_blocks,next _node ---.State: integer;

public function block . ..count:integer;
begin block _count: = number _of_blocks end;

public function new . .hlock:integer;

403

begin new_block: = number _of_blocks: = number _of_blocks + I end;

public procedure addJlode(node,block:integer);
begin (* add _node *)
with p [node] do

begin
if member =F 0 then (* Remove node from its previous block *)

begin
p [member]. member: = p [member].member - I;
p[/ast].next: = next ; p [next].Iast: = last;
end;

member: = block;
p[block +n].member: =p[block +n].member + I;
last: = member; next: = p [block + n]. next;
p[last].next: =p[next].last: = node ;
end;

end; (* add _node *)

public function block-containing(node: integer) : integer;
begin block _containing: = p [node]. member end;

public function node_count(block: integer) : integer;
begin node_count: =p[block +n].member end;

public function jirstJlode(block: integer): integer;
begin jirst-node : = next _node ---.State: = p [block + n]. next end;

public function nextJlode:integer;
begin (* next _node *)
if next _node ---.State = 0 then next _node: = 0
else next _node: = next _node ---.State: = p [next _node _state].next ;
end; (* next _node *)

begin (* partition *)
for i: = I to 2 *n do with p[i] do member: = last : = next : =0;
number _of_blocks: = next-node ---.State: = 0;
end; (* partition *)

Figure B.6. Abstract Data Type for a Partition.

404 Appendix B. Useful Algorithms for Directed Graphs

The status of a partition can be determined by invoking
number _of_blocks, block_containing, node_count, firsLnode and nexLnode. If
a node does not belong to any block, then block_containing returns 0;
otherwise it returns the number of the block of which the node is a member.
Application of the function node_count to a block yields the number of
nodes in that block. The procedures firsLnode and nexLnode work together
to access all of the members of a block: A call of firsLnode returns the first
member of a specific block. (If the block is empty then firsLnode returns 0.)
Each subsequent invocation of nexLnode returns the next member of that
block. When all members have been accessed, nexLnode returns O.

The membership relation is embodied in a doubly-linked list. Each node
specifies the block of which it is a member, and each block specifies the
number of members. Figure B.6 uses a single array to store both node and
block information. This representation greatly simplifies the treatment of
the doubly-linked list, since the last and next fields have identical meanings
for node and block entries. The member field specifies the number of
members in a block entry, but the block of which the node is a member in a
node entry. For our problems, the number of partitions can never exceed
the number of nodes. Hence the array is allocated with twice as many ele
ments as there are nodes in the graph being manipulated. (Element 0 is
included to avoid zero tests when accessing the next element in a node list.)
The first half of the array is indexed by the node numbers; the second half is
used to specify the blocks of the partition. Note that the user is not aware of
this offset in block indices because all necessary translation is provided by
the interface procedures.

B.3. Partitioning Algorithms

In this section we discuss algorithms for partitioning the node set of a graph
according to three criteria that are particularly important in compiler con
struction: strong connectivity, compatibility of a partition and a function,
and nonadjacency. All of the algorithms are defined in terms of the
representations presented in Section B.2.

8.3.1. Strongly Connected Components We begin the determination
of the strongly connected components of a directed graph by using a depth
first search to obtain a spanning forest and a corresponding depth-first
numbering of the nodes. Suppose that kz is the first node (in the depth-first
numbering) that belongs to a strongly connected component of the graph.
Then, by construction, all other nodes of the component must belong to the
spanning forest subtree, ~, whose root is kz . We term kz the root of the
strongly connected component (with respect to the given spanning forest).
Every node, k, of ~ either belongs to the strongly connected component
with root kz or it belongs to a subtree Tx of Tz , with root kx , and kx is the

B.3. Partitioning Algorithms 405

root of another strongly connected component. (It is possible that k =kx .)

These notions are illustrated by Figure B.l: Node 2 is the root of a
strongly-connected component of Figure B.I. The only other node in this
component is 3, which is a descendant of 2 in the spanning forest subtree
rooted at 2. This subtree has three nodes. Nodes 2 and 3 belong to the
strongly-connected region, and node 4 is the root of a strongly-connected
region containing only itself.

There must be a path from the root of a strongly-connected component to
itself. Let kz be the root, and suppose that the path contained a node
k < kz • If this were the case then k would be an ancestor of kz in the tree,
contradicting the hypothesis that kz is the root of the strongly-connected
region. This observation is the basis for recognizing a strongly-connected
region: During the depth-first search that numbers the nodes of the spanning
forest, we keep track of the lowest-numbered ancestor reachable from a
node. (We assume that a node is reachable from itself.) As we back out of
the search, we check each node to see whether any ancestors are reachable
from it. If not, then it is the root of a strongly-connected component.

The algorithm makes use of a fixed-depth stack (Figure B.7) for holding
nodes. (No node is ever stacked more than once, and hence the stack depth

module fixed _depth --stack (public maximum _depth: integer);
(* Representation of a stack no deeper than maximum _depth *)

var
stack: array [l..maximum -tiepth] of integer;
i ,top: integer;

public procedure push(n:integer);
begin stack [n 1: = top; top: = n end;

public procedure pop: integer;
var n : integer;
begin n: = top ; top: =stack[n]; stack [n]: =0; pop: =n end;

public function member(n:integer):boolean;
begin member: =stack[n] =1= 0 end;

public function empty:boolean;
begin empty: = top < 0 end;

begin (* fixed_depth--Stack *)
for i: = I to maximum _depth do stack [i): = 0;
top:= -I;
end; (* fixed_depth--Stack *)

Figure B.7. Abstract Data Type for a Fixed-Depth Stack.

406 Appendix B. Useful Algorithms for Directed Graphs

can never exceed the number of nodes.) The crucial property of this module
is that it provides a constant-time test to discover whether a node is on the
stack.

Figure B.8 gives the complete algorithm for identifying strongly con
nected components. Note that strongly_connected_components has a graph as
a parameter. This is not a variable declaration, so no new graph is instan-

procedure strongly _connected _components (g : graph; p : partition);
(* Make p define the strongly-connected components of g *)

var
lowlink: array [l..g.n] of integer;
i,counter,root : integer;
s : fixeLdeptlLstack(g. n) ;

procedure deptlLfirsLsearch(node: integer);
var

serial,k,b,w: integer;
begin (* deptlLfirst..search *)
serial: = lowlink [node]: = counter: = counter + 1 ;
s.push (node) ;
k : = g.firsLsuccessor (node);
while k =1= 0 do

begin
if lowlink [k] = 0 then deptlLfirsLsearch (k »;
if s.member(k) then lowlink[node]: = min (lowlink [node]lowlink[k D;
k : = g. next Juccessor (node)
end;

if lowlink [node 1 = serial then
begin
b: =p.new_block;
repeat s.pop (w); p.add _node (w,b) until w = node;
end

end; (* deptlLfirstJearch *)

begin (* strongly_connected_components *)
for i: = 1 to g.n do lowlink[i]: =0;
counter: = 0; root: = 1;
while counter =1= g.n do

begin
while lowlink [root] =1= 0 do root: = root + 1;
deptlLfirstJearch(root) ;
end;

end; (* strongly_connected_components *)

Figure B.8. Partitioning Into Strongly Connected Components.

B.3. Partitioning Algorithms 407

tiated. The value of the parameter is a reference to the argument graph; the
argument graph is not copied into the procedure.

The algorithm traverses the nodes of the graph in the order of a depth
first numbering. Each activation of deptILfirsLsearch corresponds to a sin
gle node of the graph. Lowlink [i) specifies the lowest-numbered (in the
depth-first numbering) node reachable from node i. (The lowlink array is
also used to indicate the nodes not yet visited.) The fixed-depth stack con
tains all nodes from which it is possible to reach an ancestor of the current
node. Note that all access to a node is in terms of its index in the graph g;
the index of a node in the depth-first numbering appears only in lowlink and
the local variable serial of deptILfirsLsearch.

8.3.2. Refinement Consider a graph
P = {Pp, ... ,Pd of Q with m>2. We
R = {R I> ••• , Rr } with smallest r such that:

(K,D) and a partition
wish to find the partition

• Each ~ is a subset of some Pj ('R is a refinement of P')
• If a and b are elements of Rk then, for each (a,x) ED and (b,y) ED, x

and yare elements of some one ~ ('R is compatible with D').

The state minimization problem discussed in Section 6.2.2 and the determi
nation of structural equivalence of types from Section 9.1.2 can both be cast
in this form.

The obvious strategy for making a refinement is to check the successors of
all nodes in a single element of the current partition. This element must be
split if two nodes have successors in different elements of the partition. To
obtain the refinement, split the element so that these two nodes lie in
different elements. The refined partition is guaranteed to satisfy condition
(I). The process terminates when no element must be split. Since a parti
tion in which each element contains exactly one node must satisfy condition
(2), the process of successive refinement must eventually terminate. It can
be shown that this algorithm is quadratic in the number of nodes.

By checking predecessors rather than successors of the nodes in an ele
ment, it is possible to reduce the asymptotic behavior of the algorithm to
O(n log n), where n is the number of nodes. This reduction is achieved at
the cost of a more complex algorithm, however, and may not be worthwhile
for small problems. In the remainder of this section we shall discuss the
O(n log n) algorithm, leaving the simpler approach to the reader (Exercise
B.6).

The refinement procedure of Figure B.9 accepts a graph G = (K,D) and
a partition {P I, ... , Pm } of K with m > 2. The elements of D correspond
to a mapping f:K -+K for which (k,k') is an element of D if f(k)=k'.
Refine inspects the inverse mappings f-I(Pj). A set Pk must be split into
two subsets if and only if Pk n f-I(Pj) is nonempty for some j, and yet Pk is
not a subset of f-I(Pj). The two subsets are then P'k = (Pk nf-I(Pj))

and P"k = Pk -P'k' This split must be carried out once for every Pj . If Pj

408 Appendix B. Useful Algorithms for Directed Graphs

contributes to the splitting of Pk and is itself split later, both subsets must
again be used to split other partitions.

The first step in each execution of the split procedure is to construct the
inverse of block Pj . Next the blocks Pk for which Pk n f-'(Pj) is nonempty
but Pk is not a subset of f-'(Pj) are split and the smaller of the two com
ponents is returned to the stack of blocks yet to be considered.

Figure B.IO defines an abstract data type that can be used to represent
f-'(Pj). When inverse is instantiated, it represents an empty set. Nodes are
added to the set by invoking inv_node. After all nodes belonging to
inverse(j) have been added to the set, we wish to consider exactly those

procedure refine(p : partition; f : graph);
(* Make p be the coarsest partition compatible with p and f *)

var
pending: fixed-depth _stack (f n);
i: integer;

procedure split (block: integer);
var

inv: inverse (j,block,p); (* Construct the inverse of block *)
b,k,n : integer;

begin (* split *)
k: =inv.nexLblock;
while k =1= 0 do

begin (* Pk U f- ' (block) =1= 0 but not Pk ~f-' (block) *)
b : = p. new _block;
while (n: =inv.common_node) =1= 0 do p.add_node(n,b);
if pending. member (k) or (p.element _count(k) > p.elemenLcount(b»
then pending.push (b)
else pending.push (k)
k : = inv. next _block;
end

end; (* split *)

begin (* refine *)
for i : = I to p. block _count do pending.push (i);
repeat pending.pop (i); split (i) until pending. empty
end; (* refine *)

Figure B.9. Refinement Algorithm.

B.3. Partitioning Algorithms 409

module inverse (f : graph; b : integer; p : partition);
(* Representation off-1(b) with respect to partition p *)

var
node: array [1..f n] of integer;
block: array [l..p.block _count] of record first.....node,link,count:integer end;
i ,j,block _list,node _list: integer;

public procedure inv.....node(n:integer);
var b: integer;
begin (* inv _node *)
b: =p.block_containing(n);
with block [b] do

begin
if count = 0 then begin link: = block _list; block _list: = bend;
node [n]: = firsLnode ; firsLnode : = n ;
count: = count + I
end

end; (* inv _node *)
public function nexL.hlock:integer;

begin (* next _block *)
while block _list =1= 0 and

block [block _list].count = p.node _count (block _list) do
block _list: = block [block _list].link ;

if block _list = 0 then next _block: = 0
else

begin
next -1Jlock : = block _list
with block [block _list] do

begin node _list: = firsLnode ; block _list: = link end;
end

end; (* next-block *)
public function common.....node:integer);

begin (* common _node *)
if node _list = 0 then common _node: = 0
else begin common _node: = node _list; node _list: = node [node _list] end
end; (* common _node *)

begin (* inverse *)
for i: = I to p.block_count do with block[i] dofirsLnode: = count : =0;
block _list: = 0; i : = p.firsLnode (b) ;
while i =1= 0 do

begin
j: = ffirsLpredecessor (i);
whilej =1= Odo begin inv_node(j);j: = fnext_predecessor(j) end;
i: =p.nexLnode;
end

end; (* inverse *)

Figure B.IO. Abstract Data Type for an Inverse.

410 Appendix B. Useful Algorithms for Directed Graphs

blocks that contain elements of inverse (j) but are not themselves subsets of
inverse(j). The module allows us to obtain a block satisfying these con
straints by invoking next-block. (If next-block returns 0, no more such
blocks exist.) Once a block has been obtained, successive invocations of
common-node yield the elements common to that block and inverse (j).
Note that each of the operations provided by the abstract data type requires
constant time.

B.3.3. Coloring The problem of minimizing the number of rows in a
parse table can be cast as a problem in graph theory as follows: Let each
row correspond to a node. Two nodes k and k' are adjacent (connected by
edges (k,k ') and (k:k)) if the corresponding rows are incompatible and
therefore cannot be combined. We seek a partition of the graph such that
no two adjacent nodes belong to the same block of the partition. The rows
corresponding to the nodes in a single block of the partition then have no
incompatibilities, and can be merged. Clearly we would like to find such a
partition having the smallest number of blocks, since this will result in max
imum compression of the table.

This problem is known in graph theory as the coloring problem, and the
minimum number of partitions is the chromatic number of the graph. It has
been shown that the coloring problem is NP-complete, lind hence we seek
algorithms that efficiently approximate the optimum partition.

Most approximation algorithms are derived from backtracking algo
rithms that decide whether a given number of colors is sufficient for the
specified graph. If such an algorithm is given a number of colors equal to
the number of nodes in the graph then it will never need to backtrack, and
hence all of the mechanism for backtracking can be removed. A good back
tracking algorithm contains heuristics designed to prune large portions of
the search tree, which, in this case, implies using as few colors as possible for
trial colorings. But it is just these heuristics that lead to good approxima
tions when there is no backtracking!

A general approach is to make the most constrained decisions first. This
can be done by sorting the nodes in order of decreasing incident edge count.
The first node colored has the maximum number of adjacent nodes and
hence rules out the use of its color for as many nodes as possible. We then
choose the node with the most restrictive constraint on its color next, resolv
ing ties by taking the one with most adjacent nodes. At each step we color
the chosen node with the lowest possible color.

Figure B.ll gives the complete coloring algorithm. We assume that g
contains no cycles of length 1. (A graph with cycles of length 1 cannot be
colored because some node is adjacent to itself and thus, by definition, must
have a different color than itself.) First we partition the nodes according to
number of adjacencies, coloring any isolated nodes immediately. Because

procedure coloring (g: graph; p : partition);
(* Make p define a coloring of g *)
var

sort: partition (g. n) ;
choice: array [l..g.n) of integer;
available: array [l..g.n,l..g.n) of boolean;
i,},k,uncolored,min _choice,node,color: integer;

begin (* coloring *)
for i : = 1 to g. n do

begin
}: = sort. new_block ;
choice[i): = g. n;
for}: = 1 to g.n do available[i,}): = true ;
end;

uncolored: = 0;
for i : = 1 to g. n do

if g . .ftrsLsuccessor (i) = 0 then p.add _node (i, I)
else

begin
} : = I; while g. next -successor =1= 0 do} : =} + 1 ;
sort. add _block (i,})
end;

for i : = 1 to uncolored do
begin
min_choice:=g.n +1;
for}: =g.n downto 1 do

begin
k : = sort . .ftrsLnode (j);
while k =1= 0 do

begin
if choice [k) < min _choice then

begin node: = k ; min _choice: = choice [k) end;
k: =sort.nexLnode;
end

end;
sort. add _node (node,g.n);
color: = 1; while not available [color,node) do color: = color + 1 ;
p.add _node (node,color);
} : = g . .ftrst-successor (node);
while} =1= 0 do

begin
if available [color,}) then

begin available [color,}): =false; choice[j): = choice [}) - 1 end;
}: =g.next-successor(node);
end

end
end; (* coloring *)

Figure B. I I. Coloring Algorithm.

412 Appendix B. Useful Algorithms for Directed Graphs

of our assumptions, block g.n of sort must be empty. The coloring loop then
scans the nodes in order of decreasing adjacency count, seeking the most
restrictive choice of colors. This node is then assigned the lowest available
color, and that color is made unavailable to all of the node's neighbors.
Note that we mark a node as having been colored by moving it to block g.n
of the sort partition.

B.4. Notes and References

For further information about graph theory, the interested reader should
consult the books by Berge [1962] or Harary [1969].

The representations of graphs and partitions discussed in Section B.2 are
chosen to have the least impact on the complexity of the algorithms that fol
low. Further insight into the rationale underlying these representations can
be obtained from the book by Aho, Hopcroft and Ullman [1974]. Both the
algorithm for identifying strongly connected components and the partition
ing algorithm are drawn from this book.

Proofs of the NP-completeness of the graph coloring problem are given
by Karp [1972] and Aho [1974]. It can also be shown that most approxima
tion algorithms perform poorly on particular graphs. Johnson [1974]
demonstrates that each of the popular algorithms has an associated class of
graphs for which the ratio of the approximate to the true chromatic number
grows linearly with the number of vertices. Further work by Garey and
Johnson [1976] indicates that it is unlikely that any fast algorithm can
guarantee good approximations to the chromatic number. The algorithm
presented in Section B.3.3 has been proposed by a number of authors [Wells
1971, Diirre 1973, Brelaz 1979]. It has been incorporated into an LALR(l)
parser generator [Dencker 1977] and has proven satisfactory in practice.
Further experimental evidence in favor of this algorithm has also been
presented by Durre [1973].

EXERCISES

B.l. The graph module of Figure B.4 is unpleasant when the number of edges is
not known at the time the module is instantiated: If e is not made large
enough then the program will fail, and if it is made too large then space will be
wasted.

a. Change the module definition so that the array edge is not present. Instead,
each edge should be represented by a record allocated dynamically by
define_edge.

b. What is the lifetime of the edge storage in (a)? How can it be recovered?

B.2. Modify the module of Figure B.5 to save space by omitting the parent field of
each node. Provide access to the parent via the sibling pointer of the last child.

B.4. Notes and References 413

What additional information is required? If the two versions of the module
were implemented on a machine with which you are familiar, would there be
any difference in the actual storage requirements for a node? Explain.

B.3. Consider the partition module of Figure B.6.
a. Show that if array p is defined with lower bound 1, execution of adLnode

may abort due to an illegal array reference. How can this error be avoided
if the lower bound is made I? Why is initialization of plO] unnecessary?

b. What changes would be required if we wished to remove a node from all
blocks by using add_node to add it to a fictitious block O?

c. Under what circumstances would the use of firsLnode and nexLnode to
scan a block of the partition be unsatisfactory? How could this problem be
overcome?

B.4. Explain why the elements of stack are initialized to 0 in Figure B.7 and why
the pop operation resets the element to O. Could top be set to 0 initially also?

B.5. Consider the application of strongly_connecteLcomponents to the graph of Fig
ure B.3a. Assume that the indexes of the node in the graph were assigned 'by
column': The leftmost node has number 1, the next three have numbers 2-4
(from the top) and the rightmost three have numbers 5-7. Also assume that
the lists of edges leaving a node are ordered clockwise from the 12 o'clock
position.
a. Show that the nodes will be visited in the order given by Figure B.3b.
b. Give a sequence of snapshots showing the procedure activations and the

changes in lowlink.
c. Show that the algorithm partitions the graph correctly.

B.6. Consider the refinement problem of Section B.3.2.
a. Implement a Boolean procedure split(block) that will refine block according

to the successors of its nodes: If all of the successors of nodes in block lie in
the same block of p, then split(block) returns false and p is unchanged. Oth
erwise, suppose that the successors of nodes in block lie in n distinct blocks,
n > I. Add n - I blocks to p and distribute the nodes of block among block
and these new blocks on the basis of their successor blocks. Split(block)
returns true in this case.

b. Implement refine as a loop that cycles through the blocks of p, applying split
to each. Repeat the loop so long as anyone of the applications of split
yields true. (Note that for each repetition of the loop, the number of blocks
in p will increase by at least one.)

B.7. Consider the problem of structural equivalence of types discussed in Section
9.1.2. We can solve this problem as follows:
a. Define a graph. each of whose nodes represents a single type. There is an

edge from node k I to node k 2 if type k I 'depends upon' type k 2. One type
'depends upon' another if its definition uses that type. For example, if k I is
declared to be of type ref k 2 then k I 'depends upon' k 2')

b. Define a partition that groups all of the 'similarly defined' types. (Two
types are 'similarly defined' if their type definitions have the same structure,
ignoring any type specifications appearing in them. For example, ref k I

and ref k2 are 'similarly defined'.)

414 Appendix B. Useful Algorithms for Directed Graphs

c. Apply the refinement algorithm of Section B.3 .2.
Assume that array types are 'similarly defined' if they have the same dimen
sions, and record types are 'similarly defined' if they have the same field
identifiers in the same order. Apply the procedure outlined above to the
structural equivalence problem of Exercise 2.2.

B.B. Consider the problem of state minimization discussed in Section 6.2.2. The
state diagram is a directed graph with node and edge labels. It defines a func
tion l(i,s), where i is an input symbol selected from the set of edge labels and
s is a state selected from the set of node labels.
a. Assume that the state diagram has been completed by adding an error state,

so that there is an edge for every input symbol leaving every node. Define a
three-block partition on the graph, with the error state in one block, all final
states in the second and all other states in the third. Consider the edges of
the state diagram to define a set of functions, Ih one per input symbol.
Show that the states of the minimum automaton correspond to the nodes of
the reduction (Definition 3.3) of the state diagram with respect to the
refinement of the three block partition compatible with all Ii.

b. Show that Definition B. I permits only a single edge directed from one
specific node to another. Is this limitation enforced by Figure B.4? If so,
modify Figure B.4 to remove it.

c. Modify Figure B.4 to allow attachment of integer edge labels.
d. Modify Figure B.9 to carry out the refinement of a graph with edge labels,

treating each edge label as a distinct function.
e. Modify the result of (d) to make completion of the state diagram unneces

sary: When a particular edge label is missing, assume that its destination is
the error state.

Bibliography

We have repeatedly stressed the need to derive information about a
language from the definition of that language rather than from particular
implementation manuals or textbooks describing the language. In this
book, we have used the languages listed below as sources of examples. For
each language we give a reference that we consider to be the 'language
definition'. Any statement that we make regarding the language is based
upon the cited reference, and does not necessarily hold for particular imple
mentations or descriptions of the language found elsewhere in the literature.

Ada-The definition of Ada was still under discussion when this book went
to press. We have based our examples upon the version described by
Ichbiah [Ichbiah 1980].

ALGOL 60-[Naur 1963]
ALGOL 68-[Wijngaarden 1975]
BASIC-Almost every equipment manufacturer provides a version of this

language, and the strongest similarity among them is the name. We
have followed the standard for 'minimal BASIC' [ANSI 1978a].

COBOL-[ANSI 1968]
Euclid-[Lampson 1977]
FORTRAN-We have drawn examples from both the 1966 [ANSI 1966]

and 1978 [ANSI 1978b] standards. When we refer simply to 'FOR
TRAN', we assume the 1978 standard. If we are pointing out
differences, or if the particular version is quite important, then we use
'FORTRAN 66' and 'FORTRAN 77' respectively. (Note that the ver
sion described by the 1978 standard is named 'FORTRAN 77', due to
an unforeseen delay in publication of the standard.)

415

416 Bibliography

LIS-[Ichbiah 1974]
LISP-The examples for which we use LISP depend upon its applicative

nature, and hence we rely upon the original description [McCarthy
1960] rather than more modern versions.

MODULA2-[Wirth 1980]
Pascal-Pascal was in the process of being standardized when this book went

to press. We have relied for most of our examples on the User Manual
and Report [Jensen 1974], but we have also drawn upon the draft stan
dard [Addyman 1980]. The examples from the latter have been expli
citly noted as such.

SIMULA-[Dahl1970]
SNOBOL4-[Griswold 1971]

ACM 1961
ACM Compiler Symposium 1960. Communications of the ACM 4(1),
3-84 (1961).

ANSI 1966
FORTRAN. American National Standards Institute, New York,
X3.9-1966,1966.

ANSI 1968
COBOL. American National Standards Institute, New York, X3.23-
1968, 1968.

ANSI 1978a
Minimal BASIC. American National Standards Institute, New York,
X3.60-1978,1978.

ANSI 1978b
FORTRAN. American National Standards Institute, New York,
X3.9-1978,1978.

Addyman 1980
Addyman, A. M. A Draft Proposal for Pascal. SIGPLAN Notices 15(4),
1-66 (1980).

Aho 1972
Aho, A. V. and J. D. Ullman. The Theory of Parsing, Translation and
Compiling. Prentice-Hall, Englewood Cliffs, NJ, 1972.

Aho 1974
Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, Ma, 1974.

Aho 1975
Abo, A. V. and M. J. Corasick. Efficient String Matching: An Aid to
Bibliographic Search. Communications of the ACM 18(6), 333-340
(1975).

Aho 1976
Aho, A. V. and S. C. Johnson. Optimal Code Generation for Expres
sion Trees. Journal of the ACM23(3), 488-501 (1976).

Bibliography 417

Aho 1977a
Aho, A. V. and J. D. Ullman. Principles of Compiler Design. Addison
Wesley, Reading, Ma, 1977.

Aho 1977b
Aho, A. V., S. C. Johnson, and J. D. Ullman. Code Generation for
Machines with Multiregister Operations. Journal of the ACM, 21-28
(1977).

Allen 1981
Allen, F. E., J. Cocke, and K. Kennedy. Reduction of Operator
Strength. In Muchnick, S. S. and N. D. Jones (Eds.) Program Flow
Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ,
1981, pp. 79-101.

Ammann 1974
Ammann, U. The Method of Structured Programming Applied to the
Development of a Compiler. In Proceedings of the International Com
puting Symposium 1973. North-Holland, Amsterdam, 1974, pp. 94-99.

Ammann 1975
Ammann, U. Die Entwicklung eines PASCAL-Compilers nach der
Methode des Strukturierten Programmierens. Eidgenossische Tech
nische Hochschule Ziirich, Ziirich, Ph.D. Thesis, 1975.

Ammann 1977
Ammann, U. On Code Generation in a PASCAL Compiler. Software
Practice and Experience 7,391-423 (1977).

Anderson 1973
Anderson, T., J. Eve, and J. J. Horning. Efficient LR(1) Parsers. Acta
Informatica 2, 12-39 (1973).

Asbrock 1979
Asbrock, B. Attribut-Implementierung und - Optimierung fiir Attribu
tierte Grammatiken. Fakultat fur Informatik, Universitat Karlsruhe,
Karlsruhe, FRG, Diplomarbeit, 1979.

Baker 1982
Baker, T. P. A One-Pass Algorithm for Overload Resolution in Ada.
ACM Transactions on Programming Languages and Systems 4(4),615-649
(1982).

Balzer 1969
Balzer, R. M. EXDAMS - Extendable Debugging and Monitoring Sys
tem. AFIPS Conference Proceedings 34,567-580 (1969).

Banatre 1979
Banatre, J. P., J. P. Routeau, and L. Trilling. An Event-Driven Com
piling Technique. Communications of the ACM22(1), 34-42 (1979).

Barron 1963
Barron, D. W. and D. F. Hartley. Techniques for Program Error Diag
nosis on EDSAC2. Computer Journal 6, 44-49 (1963).

Barth 1977
Barth, J. M. Shifting Garbage Collection Overhead to Compile Time.

418 Bibliography

Communications of the ACM20(7), 513-518 (1977).
Bauer 1976

Bauer, F. L. and J. Eickel (Eds.) Compiler Construction - An Advanced
Course. (Lecture Notes in Computer Science 21) Springer-Verlag,
Heidelberg, FRG, 1976.

Bayer 1967
Bayer, R., D. Gries, M. Paul, and H. Wiehle. The ALCOR ILLINOIS
709017094 Post Mortem Dump. Communications of the ACM 10(12),
804-808 (1967).

Beatty 1974
Beatty, J. C. Register Assignment Algorithm for Generation of Highly
Optimized Object Code. IBM Journal of Research and Development
18(1),20-39 (1974).

Belady 1966
Belady, L. A. A Study of Replacement Algorithms for a Virtual Storage
Computer. IBM Systems Journal 5(2), 613-640 (1966).

Bell 1974
Bell, J. R. A Compression Method for Compiler Precedence Tables. In
Rosenfeld, J. L. (Ed.) Information Processing 74. North-Holland,
Amsterdam, 1974, pp. 359-362.

Berge 1962
Berge, C. The Theory of Graphs and Its Applications. Wiley, New York.
1962.

Bochmann 1976
Bochmann, G. V. Semantic Evaluation from Left to Right. Communi
cations of the ACM 19(2), 55-62 (1976).

Borowiec 1977
Borowiec, J. Pragmatics in a Compiler Production System. (Lecture
Notes in Computer Science 47) Springer-Verlag, Heidelberg, FRG,
1977.

Brelaz 1979
Brelaz, D. New Methods to Color the Vertices of a Graph. Communi
cations of the ACM22(4), 251-256 (1979).

Brinch-Hansen 1975a
Brinch-Hansen, P. and A. C. Hartmann. Sequential Pascal Report. Cal
ifornia Institute of Technology, Pasadena, Ca, 1975.

Brown 1977
Brown, W. S. A Realistic Model of Floating-Point Computation. In
Rice, J. R. (Ed.) Mathematical Software III. Academic Press, New
York, 1977, pp. 343-360.

Brown 1981
Brown, W. S. A Simple But Realistic Model of Floating-Point Compu
tation. Bell Telephone Laboratories, Murray Hill, NJ, Computing Sci
ence Technical Report 83,1981.

Bibliography 419

Bruno 1975
Bruno, J. L. and T. Lassagne. The Generation of Optimal Code for
Stack Machines. Journal of the ACM22(3), 382-396 (1975).

Bruno 1976
Bruno, J. L. and R. Sethi. Code Generation for a One-Register
Machine. Journal of the ACM 23(3),382-396 (1976).

Busam 1971
Busam, V. A. On the Structure of Dictionaries for Compilers. SIG
PLAN Notices 6(2),287-305 (1971).

Carter 1982
Carter, L. R. An Analysis of Pascal Programs. UMI Research Press, Ann
Arbor, Mi, 1982.

Cercone 1982
Cercone, N., M. Kraus, and J. Boates. Lexicon Design Using Perfect
Hash Functions. SIGSOC Bulletin 13(2),69-78 (1982).

Chaitin 1981
Chaitin, G. J., M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hop
kins, and P. W. Markstein. Register Allocation via Coloring. Computer
Languages 6, 47-57 (1981).

Chaitin 1982
Chaitin, G. J. Register Allocation & Spilling via Coloring. SIGPLAN
Notices 17(6),98-105 (1982).

Chomsky 1956
Chomsky, N. Three Models for the Description of Language. IRE
Transactions on Information Theory IT -2, 113-124 (1956).

Cichelli 1980
Cichelli, R. J. Minimal Perfect Hash Functions Made Simple. Com
munications of the ACM 23(I), 17-19 (1980).

Clark 1977

Clark, D. W. and C. C. Green. An Empirical Study of List Structure in
LISP. Communications of the ACM20(2), 78-87 (1977).

Cocke 1977
Cocke, J. and K. Kennedy. An Algorithm for Reduction of Operator
Strength. Communications of the ACM 20(11),850-856 (1977).

Cocke 1980
Cocke, J. and P. W. Markstein. Measurement of Code Improvement
Algorithms. In Lavington, S. H. (Ed.) Information Processing 80.
North-Holland, Amsterdam, 1980, pp. 221-228.

Cody 1980
Cody, W. J. and W. M. Waite. Software Manual for the Elementary
Functions. Prentice-Hall, Englewood Cliffs, NJ, 1980.

Conway 1973
Conway, R. and T. R. Wilcox. Design and Implementation of a Diag
nostic Compiler for PLil. Communications of the ACM 16(3), 169-179
(1973).

420 Bibliography

DIN 1980
Programmiersprache PEARL. Beuth-Verlag, DIN 66253, 1980.

Dahl 1970
Dahl, 0., B. Myrhaug, and K. Nygaard. SIMULA 67 Common Base
Language. Norwegian Computing Center, Oslo, S-22, 1970.

Dakin 1973
Dakin, R. J. and P. C. Poole. A Mixed Code Approach. Computer
Journal 16(3), 219-222 (1973).

Damerau 1964
Damerau, F. A Technique for Computer Detection and Correction of
Spelling Errors. Communications o/the ACM 7(3), 171-176 (1964).

Davidson 1980
Davidson, J. W. and C. W. Fraser. The Design and Application of a
Retargetable Peephole Optimizer. ACM Transactions on Programming
Languages and Systems 2(2), 191-202 (1980).

Day 1970
Day, W. H. E. Compiler Assignment of Data Items to Registers. IBM
Systems Journal 9(4), 281-317 (1970).

DeRemer 1969
DeRemer, F. L. Practical Translators for LR(k) Languages. Mas
sachusetts Institute of Technology, Cambridge, Ma, MAC-TR-65, 1969.

DeRemer 1971
DeRemer, F. L. Simple LR(k) Grammars. Communications o/the ACM
14(7),453-460 (1971).

DeRemer 1974
DeRemer, F. L. Lexical Analysis. In Bauer, F. L. and J. Eickel (Eds.)
Compiler Construction - An Advanced Course. (Lecture Notes in Com
puter Science 21) Springer-Verlag, Heidelberg, FRG, 1974, pp. 109-
120.

Dencker 1977
Dencker, P. Ein Neues LALR-System. Institut fUr Informatik,
Universitat Karlsruhe, Karlsruhe, FRG, Diplomarbeit, 1977.

Deutsch 1976
Deutsch, L. P. and D. G. Bobrow. An Efficient, Incremental,
Automatic Garbage Collector. Communications o/the ACM 19, 522-526
(1976).

Dijkstra 1960
Dijkstra, E. W. Recursive Programming. Numerische Mathematik 2,
312-318 (1960).

Dijkstra 1963
Dijkstra, E. W. An ALGOL 60 Translator for the Xl. Annual Review in
Automatic Programming 3,329-345 (1963).

Durre 1973
Durre, K. An Algorithm for Coloring the Vertices of an Arbitrary
Graph. In Deussen, P. (Ed.) 2. Jahrestagung der Gesellschaft for Infor-

Bibliography 421

matik Karlsruhe, 1972. (Lecture Notes in Economics and Mathematical
Systems 78) Springer-Verlag, Heidelberg, FRG, 1973, pp. 82-89.

Dunn 1974
Dunn, R. C. Design of a Higher-Level Language Transput System.
University of Colorado, Boulder, Co, Ph.D. Thesis, 1974.

Dunn 1981
Dunn, R. C. and W. M. Waite. SYNPUT. Department of Electrical
Engineering, University of Colorado, Boulder, Co, 1981.

Elson 1970
Elson, M. and S. T. Rake. Code-Generation Technique for Large
Language Compilers. IBM Systems Journal 9(3), 166-188 (1970).

Fang 1972
Fang, I. FOLDS, a Declarative Formal Language Definition System.
Stanford University, Stanford, Ca, Ph.D. Thesis, 1972.

GE 1965
GE-625/635 General Loader Reference Manual. General Electric
Company, Phoenix, Az, CPB-l008B, 1965.

Gaines 1969
Gaines, R. S. The Debugging of Computer Programs. Princeton
University, Princeton, NJ, Ph.D. Thesis, 1969.

Galler 1964
Galler, B. A. and M. J. Fischer. An Improved Equivalence Algorithm.
Communications of the ACM7(5), 301-303 (1964).

Gallucci 1981
Gallucci, M. A. SAM/SAL. An Experiment Using an Attributed
Grammar. University of Colorado, Boulder, Co, Ph.D. Thesis, 1981.

Ganzinger 1978
Ganzinger, H. Optimierende Erzeugung von Ubersetzerteilen aus
implementierungsorientierten Sprachbeschreibungen. Technische
Universitiit Munchen, Munchen, FRG, Ph.D. Thesis, 1978.

Garey 1976
Garey, M. S. and D. S. Johnson. The Complexity of Near-Optimal
Graph Coloring. Journal of the ACM23(1), 43-49 (1976).

Giegerich 1979
Giegerich, R. Introduction to the Compiler Generating System MUG2.
Institut flir Mathematik und Informatik, Technische Universitiit
Munchen, Munchen, FRG, TUM-INFO 7913,1979.

Glanville 1978
Glanville, R. S. and S. L. Graham. A New Method for Compiler Code
Generation. In Conference Record of the Fifth ACM Symposium on Prin
ciples of Programming Languages. Association for Computing
Machinery, New York, 1978, pp. 231-240.

Goos 1978
Goos, G. and U. Kastens. Programming Languages and the Design of
Modular Programs. In Hibbard, P. and S. Schuman (Eds.) Constructing

422 Bibliography

Quality Software. North-Holland, Amsterdam, 1978, pp. 153-186.
Gordon 1979

Gordon, M. J. C. The Denotational Definition of Programming Languages.
An Introduction. Springer-Verlag, Heidelberg, FRG, 1979.

Graham 1965
Graham, M. L. and P. Z. Ingerman. An Assembly Language for
Reprogramming. Communications of the A CM 8(12), 769-773 (1965).

Grau 1967
Grau, A. A., U. Hill, and H. Langmaack. Translation of ALGOL 60.
Springer-Verlag, Heidelberg, FRG, 1967.

Gries 1971
Gries, D. Compiler Construction for Digital Computers. Wiley, New
York,1971.

Griffiths 1973
Griffiths, M. Relationship Between Definition and Implementation of a
Language. In Bauer, F. L. (Ed.) Advanced Course on Software
Engineering. (Lecture Notes in Economics and Mathematical Systems
81) Springer-Verlag, Heidelberg, FRG, 1973, pp. 76-110.

Griswold 1971
Griswold, R. E., J. F. Poage, and I. P. Polonsky. The SNOBOL4 Pro
gramming Language. Prentice-Hall, Englewood Cliffs, NJ, 1971.

Griswold 1972
Griswold, R. E. The Macro Implementation of SNOBOL4. w. C. Free
man and Co., San Francisco, 1972.

Guttag 1975
Guttag, J. The Specification and Application to Programming of
Abstract Data Types. Computer Systems Research Group, University
of Toronto, Toronto, CSRG-59, 1975.

Guttag 1977
Guttag, J. Abstract Data Types and the Development of Data
Structures. Communications of the ACM20(6), 396-404 (1977).

Habermann 1973
Habermann, A. N. Critical Comments on the Programming Language
Pascal. Acta Informatica 3,47-58 (1973).

Hall 1975
Hall, A. D. FDS. A FORTRAN Debugging System Overview and
Installers Guide. Bell Telephone Laboratories, Murray Hill, NJ, Com
puting Science Technical Report 29, 1975.

Hangelberger 1977
Hangelberger, P. Ein Algorithmus zur Losung des Problems der kurzen
Spriinge. Elektronische Rechenanlagen 19,68-71 (1977).

Harary 1969
Harary, F. Graph Theory. Addison-Wesley, Reading, Ma, 1969.

Hartmann 1977
Hartmann, A. C. A Concurrent Pascal Compiler for Minicomputers.

Bibliography 423

(Lecture Notes in Computer Science 50) Springer-Verlag, Heidelberg,
FRG,1977.

Hecht 1977
Hecht, M. S. Flow Analysis of Computer Programs. Elsevier North
Holland, New York, 1977.

Hedberg 1963
Hedberg, R. Design of an Integrated Programming and Operating Sys
tem Part III. The Expanded Function of the Loader. IBM Systems
Journal 2, 298-310 (1963).

Hill 1976
Hill, U. Special Run-Time Organization Techniques for ALGOL 68.
In Bauer, F. L. and J. Eickel (Eds.) Compiler Construction - An
Advanced Course. (Lecture Notes in Computer Science 21) Springer
Verlag, Heidelberg, FRG, 1976, pp. 222-252.

Hoare 1973
Hoare, C. A. R. and N. Wirth. An Axiomatic Definition of the Pro
gramming Language PASCAL. Acta Informatica 3, 335-355 (1973).

Holt 1977
Holt, R. c., D. B. Wortman, D. T. Barnard, and J. R. Cordy. SP Ik: A
System for Teaching Computer Programming. Communications of the
ACM20(5), 301-309 (1977).

Housden 1975
Housden, R. J. W. On string Concepts and their Implementation. Com
puterJournaI18(2), 150-156 (1975).

Hunt 1975
H. B. Hunt, T. G. Szymanski, and J. D. Ullman. On the Complexity of
LR(k) Testing. In Conference Record of the Second ACM Symposium on
Principles of Programming Languages. Association for Computing
Machinery, 1975, pp. 137-148.

IBM 1968
IBM System/360 Operating System FORTRAN IV (H) Compiler Pro
gram Logic Manual. IBM Corporation, Y28-6642-3, 1968.

ICC 1962
Symbolic Languages in Data Processing. Gordon and Breach, New
York, 1962.

Ichbiah 1974
Ichbiah, J. D., J. P. Rissen, J. C. Heliard, and P. Cousot. The System
Implementation Language LIS, Reference Manual. CII Honeywell
Bull, Louveciennes, France, Technical Report 4549 E/EN, 1974.

Ichbiah 1980
Ichbiah, J. D. Ada Reference Manual. (Lecture Notes in Computer Sci
ence 106) Springer-Verlag, Heidelberg, FRG, 1980.

Irons 1961
Irons, E. T. A Syntax-Directed Compiler For ALGOL 60. Communica
tions of the ACM 4(1),51-55 (1961).

424 Bibliography

Irons 1963a
Irons, E. T. Towards More Versatile Mechanical Translators. In Exper
imental Arithmetic, High Speed Computing and Mathematics. (Proceed
ings of Symposia in Applied Mathematics 15) American Mathematical
Society, Providence, RI, 1963, pp. 41-50.

Irons 1963b
Irons, E. T. An Error Correcting Parse Algorithm. Communications of
theACM6(1l), 669-673 (1963).

Jazayeri 1975a
Jazayeri, M., W. F. Ogden, and W. C. Rounds. On the Complexity of
the Circularity Test for Attribute Grammars. In Conference Record of
the Second ACM Symposium on Principles of Programming Languages.
Association for Computing Machinery, New York, 1975, pp. 119-129.

Jazayeri 1975b
Jazayeri, M. and K. G. Walter. Alternating Semantic Evaluator. In
Proceedings of the ACM National Conference. Association for Comput
ing Machinery, New York, 1975, pp. 230-234.

Jazayeri 1977
Jazayeri, M. and D. P. Pozefsky. Algorithms for Efficient Evaluation of
Multi-pass Attribute Grammars Without a Parse Tree. Department of
Computer Science, University of North Carolina, Chapel Hill, NC,
TP77 -001, 1977.

J azayeri 1981
Jazayeri, M. A Simpler Construction Showing the Intrinsically
Exponential Complexity of the Circularity Problem for Attribute
Grammars. Journal of the A CM 28(4), 715-720 (1981).

Jensen 1974
Jensen, K. and N. Wirth. PASCAL User Manual and Report. (Lecture
Notes in Computer Science 18) Springer-Verlag, Heidelberg, FRG,
1974.

Johnson 1974
Johnson, D. S. Worst Case Behavior of Graph Coloring Algorithms. In
Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph
Theory and Computing. Utilitas Mathematica Publishing, Winnipeg,
Canada, 1974, pp. 513-523.

Johnson 1968
Johnson, W. L., J. H. Porter, S. I. Ackley, and D. T. Ross. Automatic
Generation of Efficient Lexical Processors Using Finite State Tech
niques. Communications of the ACM 11(12),805-813 (1968).

Johnston 1971
Johnston, J. B. Contour Model of Block Structured Processes. SJG
PLAN Notices 6(2),55-82 (1971).

Joliat 1973
Joliat, M. L. On the Reduced Matrix Representation of LR(k) Parser
Tables. University of Toronto, Toronto, Ph.D. Thesis, 1973.

Bibliography 425

Joliat 1974
Joliat, M. L. Practical Minimization of LR(k) Parser Tables. In Rosen
feld, J. L. (Ed.) Information Processing 74. North-Holland, Amster
dam, 1974, pp. 376-380.

Jones 1971
Jones, C. B. and P. Lucas. Proving Correctness of Implementation
Techniques. In Enge1er, E. (Ed.) Symposium on Semantics of Algo
rithmic Languages. (Lecture Notes in Mathematics 188) Springer
Verlag, Berlin, 1971, pp. 178-211.

Karp 1972
Karp, R. M. Reducibility Among Combinatorial Problems. In Miller,
R. E. and J. W. Thatcher (Eds.) Complexity of Computer Computations.
Plenum Press, New York, 1972, pp. 85-104.

Kastens 1976
Kastens, U. Systematische Analyse semantischer Abhiinigkeiten. In
Programmiersprachen. (Informatik Fachberichte 1) Springer-Verlag,
Heidelberg, FRG, 1976, pp. 19-32.

Kastens 1980
Kastens, U. Ordered Attribute Grammars. Acta Informatica 13(3),
229-256 (1980).

Kastens 1982
Kastens, U., B. Hutt, and E. Zimmermann. GAG: A Practical Compiler
Generator. (Lecture Notes in Computer Science 141) Springer-Verlag,
Heidelberg, FRG, 1982.

Kennedy 1976
Kennedy, K. and S. K. Warren. Automatic Generation of Efficient
Evaluators for Attribute Grammars. In Conference Record of the Third
ACM Symposium on Principles of Programming Languages. Association
for Computing Machinery, New York, 1976, pp. 32-49.

Kennedy 1979
Kennedy, K. and J. Ramanathan. A Deterministic Attribute Grammar
Evaluator Based on Dynamic Sequencing. A CM Transactions on Pro
gramming Languages and Systems I, 142-160 (1979).

Kennedy 1981
Kennedy. K. A Survey of Data Flow Analysis Techniques. In
Muchnick, S. S. and N. D. Jones (Eds.) Program Flow Analysis: Theory
and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981, pp. 5-54.

Klint 1979
Klint, P. Line Numbers Made Cheap. Communications of the ACM
22(10), 557-559 (1979).

Knuth 1962
Knuth, D. E. History of Writing Compilers. Computers and Automation
II, 8-14 (1962).

Knuth 1965
Knuth, D. E. On the Translation of Languages from Left to Right.

426 Bibliography

Information and Control 8(6), 607-639 (1965).
Knuth 1968a

Knuth, D. E. Semantics of Context-Free Languages. Mathematical Sys
tems Theory 2(2), 127-146 (1968).

Knuth 1968b
Knuth, D. E. Fundamental Algorithms. (The Art of Computer Program
ming 1) Addison-Wesley, Reading, Ma, 1968.

Knuth 1969
Knuth, D. E. Seminumerical Algorithms. (The Art of Computer Pro
gramming 2) Addison-Wesley, Reading, Ma, 1969.

Knuth 1971a
Knuth, D. E. Semantics of Context-free Languages: Correction.
Mathematical Systems Theory 5, 95-96 (1971).

Knuth 1971b
Knuth, D. E. An Empirical Study of FORTRAN Programs. Software
Practice and Experience 1, 105-133 (1971).

Knuth 1973
Knuth, D. E. Sorting and Searching. (The Art of Computer Program
ming 3) Addison-Wesley, Reading, Ma, 1973.

Koster 1969
Koster, C. H. A. On Infinite Modes. SIGPLAN Notices 4(3), 109-112
(1969).

Koster 1971
Koster, C. H. A. Affix Grammars. In Peck, J. E. L. (Ed.) ALGOL 68
Implementation. North-Holland, Amsterdam, 1971, pp. 95-109.

Koster 1973
Koster, C. H. A. Error Reporting, Error Treatment and Error Correc
tion in ALGOL Translation. Part 1. In Deussen, P. (Ed.) 2. Jahres
tagung der Gesellschaft fur Informatik Karlsruhe, 1972. (Lecture Notes in
Economics and Mathematical Systems 78) Springer-Verlag, Heidel
berg, FRG, 1973.

Koster 1974
Koster, C. H. A. Using the CDL Compiler-Compiler. In Bauer, F. L.
and J. Eickel (Eds.) Compiler Construction - An Advanced Course. (Lec
ture Notes in Computer Science 21) Springer-Verlag, Berlin, 1974, pp.
366-426.

Kruseman-Aretz 1971
Kruseman-Aretz, F. E. J. On the Bookkeeping of Source-Text Line
Numbers During the Execution Phase of ALGOL 60 Programs. In
MC-25 Informatica Symposium. (Mathematical Centre Tracts 37)
Mathematisch Centrum, Amsterdam, 1971, pp. 6.1-6.12.

Lalonde 1972
Lalonde, W. R., E. S. Lee, and J. J. Horning. An LALR(k) Parser
Generator. In Freiman, C. V. (Ed.) Information Processing 71. North
Holland, Amsterdam, 1972, pp. 513-518.

Bibliography 427

Lampson 1977
Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and G. L.
Popek. Report on the Programming Language Euclid. SIGPLAN
Notices 12(2), 1-79 (1977).

Landin 1964
Landin, P. J. The Mechanical Evaluation of Expressions. Computer
Journal 6(4), 308-320 (1964).

Landwehr 1982
Landwehr, R., H. Jansohn, and G. Goos. Experience With an
Automatic Code Generator Generator. SIGPLAN Notices 17(6),56-66
(1982).

Langmaack 1971
Langmaack, H. Application of Regular Canonical Systems to Gram
mars Translatable from Left to Right. Acta Informatica 1, 111-114
(1971).

Language Resources 1981
Language Resources Pascal System BLIM-86 Binding Language
Specification. Language Resources Inc., Boulder, Co, 1981.

Lecarme 1974
Lecarme, O. and G. V. Bochmann. A (Truly) Usable and Portable
Compiler Writing System. In Rosenfeld, J. L. (Ed.) Information Pro
cessing 74. North-Holland, Amsterdam, 1974, pp. 218-22l.

Lesk 1975
Lesk, M. E. Lex - A Lexical Analyzer Generator. Bell Telephone
Laboratories, Murray Hill, NJ, Computing Science Technical Report
39, 1975.

Levy 1975
Levy, J. Automatic Correction of Syntax-Errors in Programming
Languages. Acta Informatica 4,271-292 (1975).

Lewis 1969
Lewis, P. M. and R. E. Stearns. Property Grammars and Table
Machines. Information and Control 14(6), 524-549 (1969).

Lewis 1974
Lewis, P. M., D. J. Rosenkrantz, and R. E. Stearns. Attributed Transla
tions. Journal of Computer and System Sciences 9(3), 279-307 (1974).

Liskov 1974
Liskov, B. and S. ZiUes. Programming with Abstract Data Types. SIG
PLAN Notices 9(4), 50-59 (1974).

Lowry 1969
Lowry, E. S. and C. W. Medlock. Object Code Optimization. Com
munications of the ACM 12(1), 13-22 (1969).

Lucas 1969
Lucas, P. and K. Walk. On the Formal Description of PLiI. Annual
Review in Automatic Programming 6(3), 105-181 (1969).

428 Bibliography

Lyon 1974
Lyon, G. Syntax-Directed Least-Error Analysis for Context-Free
Languages: A Practical Approach. Communications of the ACM 17(1),
3-14 (1974).

McCarthy 1960
McCarthy, J. Recursive Functions of Symbolic Expressions and their
Computation by Machine, Part 1. Communications of the ACM 3(4),
184-195 (1960).

McClure 1972
McClure, R. M. An Appraisal of Compiler Technology. AFIPS Confer
ence Proceedings 40, 1-9 (1972).

McIlroy 1974
McIlroy, M. D. ANS FORTRAN Charts. Bell Telephone Labora
tories, Murray Hill, NJ, Computing Science Technical Report 13, 1974.

McKeeman 1965
McKeeman, W. M. Peephole Optimization. Communications of the
ACM8(7), 443-444 (1965).

McLaren 1970
McLaren, M. D. Data Matching, Data Alignment and Structure Map
ping in PLiI. SIGPLAN Notices 5(12), 30-43 (1970).

Mealy 1963
Mealy, G. H. A Generalized Assembly System. Rand Corporation,
Santa Monica, Ca, RM-3646-PR, 1963.

Miller 1972
Miller, R. E. and J. W. Thatcher (Eds.) Complexity of Computer Compu
tations. Plenum Press, New York, 1972.

Mock 1958
Mock, 0., 1. Olsztyn, 1. Strong, T. B. Steel, A. Tritter, and J. Wegstein.
The Problem of Programming Communications with Changing
Machines: A Proposed Solution. Communications of the ACM 1(2), 12-
18 (1958).

Morel 1979
Morel, E. and C. Renvoise. Global Optimization by Suppression of
Partial Redundancies. Communications of the ACM 22(11), 96-103
(1979).

Morgan 1970
Morgan, D. L. Spelling Correction in System Programs. Communica
tions of the ACM 13, 90-94 (1970).

Morris 1978
Morris, F. L. A Time- and Space-Efficient Garbage Compaction Algo
rithm. Communications of the ACM21(8), 662-665 (1978).

Morrison 1982
Morrison, R. The String as a Simple Data Type. SIGPLAN Notices
17(3),46-52 (1982).

Bibliography 429

Moses 1970
Moses, J. The Function of function in LISP. SIGSAM Bulletin, 13-27
(1970).

Naur 1963
Naur, P. Revised Report on the Algorithmic Language ALGOL 60.
Communications of the ACM6(1), 1-17 (1963).

Naur 1964
Naur, P. The Design of the GIER ALGOL Compiler. Annual Review in
Automatic Programming 4,49-85 (1964).

Pager 1974
Pager, D. On Eliminating Unit Productions from LR(k) Parsers. In
Loeckx, J. (Ed.) Automata, Languages and Programming. (Lecture
Notes in Computer Science 14) Springer-Verlag, Heidelberg, FRG,
1974, pp. 242-254.

Palmer 1974
Palmer, E. M., M. A. Rahimi, and R. W. Robinson. Efficiency of a
Binary Comparison Storage Technique. Journal of the ACM 21(3),
376-384 (1974).

Parnas 1972
Parnas, D. L. On the Criteria to be Used in Decomposing Systems Into
Modules. Communications of the ACM 15(12),1053-1058 (1972).

Parnas 1976
Parnas, D. L. On the Design and Development of Program Families.
IEEE Transactions on Software Engineering SE-2(1), 1-9 (1976).

Peck 1971
Peck, J. E. L. (Ed.) ALGOL 68 Implementation. North-Holland,
Amsterdam, 1971.

Persch 1980
Persch, G., G. Winterstein, M. Dausmann, and S. Drossopoulou. Over
loading in Preliminary Ada. SIGPLAN Notices 15(11),47-56 (1980).

Peterson 1972
Peterson, T. G. Syntax Error Detection, Correction and Recovery in
Parsers. Stevens Institute of Technology, Hoboken, NJ, Ph.D. Thesis,
1972.

Pierce 1974
Pierce, R. H. Source Language Debugging on a Small Computer.
Computer Journal 17(4), 3l3-317 (1974).

Pozefsky 1979
Pozefsky, D. P. Building Efficient Pass-Oriented Attribute Grammar
Evaluators. University of North Carolina, Chapel Hill, NC, Ph.D.
Thesis, 1979.

Quine 1960
Quine, W. V. O. Word and Object. Wiley, New York, 1960.

Riiihii 1977
Rliihli, K. and M. Saarinen. An Optimization of the Alternating

430 Bibliography

Semantic Evaluator. Information Processing Letters 6(3),97-100 (1977).
Riiihii 1978

Riiihii, K., M. Saarinen, E. Soisalon-Soininen, and M. Tienari. The
Compiler Writing System HLP (Helsinki Language Processor).
Department of Computer Science, University of Helsinki, Helsinki,
Finland, Report A-1978-2, 1978.

Riiihii 1980
Riiiha, K. Bibliography on Attribute Grammars. SIGPLAN Notices
15(3),35-44 (1980).

Ramamoorthy 1976
Ramamoorthy, C. V. and P. Jahanian. Formalizing the Specification of
Target Machines for Compiler Adaptability Enhancement. In Proceed
ings of the Symposium on Computer Software Engineering. Polytechnic
Institute of New York, New York, 1976, pp. 353-366.

Randell 1964
Randell, B. and L. J. Russell. ALGOL 60 Implementation. Academic
Press, London, 1964.

Richards 1971
Richards, M. The Portability of the BCPL Compiler. Software - Practice
and Experience 1,135-146 (1971).

Ripken 1977
Ripken, K. Formale Beschreibung von Maschinen, Implementierungen
und Optimierender Machinecoderzeugung Aus Attributierten Pro
grammgraphen. Technische Universitat Miinchen, Miinchen, FRG,
Ph.D. Thesis, 1977.

Rohrich 1978
Rohrich, J. Automatic Construction of Error Correcting Parsers.
Universitat Karlsruhe, Karlsruhe, FRG, Interner Bericht 8, 1978.

Rohrich 1980
Rohrich, J. Methods for the Automatic Construction of Error Correct
ing Parsers. Acta Informatica 13(2), 115-139 (1980).

Robertson 1979
Robertson, E. L. Code Generation and Storage Allocation for
Machines with Span-Dependent Instructions. ACM Transactions on
Programming Languages and Systems 1(1),71-83 (1979).

Rosen 1967
Rosen, S. Programming Systems and Languages. McGraw-Hill, New
York,1967.

Rosenkrantz 1970
Rosenkrantz, D. J. and R. E. Stearns. Properties of Deterministic Top
Down Grammars. Information and Control 17, 226-256 (1970).

Ross 1967
Ross, D. T. The AED Free Storage Package. Communications of the
ACM 10(8), 481-492 (1967).

Bibliography 431

Rutishauser 1952
Rutishauser, H. Automatische Rechenplanfertigung bei Programm
gesteuerten Rechenmaschinen. (Mitteilungen aus dem Institut fUr
Angewandte Mathematik der ETH-Ziirich 3) Birkhauser, Basel, 1952.

Sale 1971
Sale, A. H. J. The Classification of FORTRAN Statements. Computer
Journal 14, 10-12 (1971).

Sale 1977
Sale, A. H. J. Comments on 'Report on the Programming Language
Euclid'. SIGPLAN Notices 12(4), 10 (1977).

Sale 1979
Sale, A. H. J. A Note on Scope, One-Pass Compilers, and Pascal. Pas
cal News (15), 62-63 (1979).

Salomaa 1973
Salomaa, A. Formal Languages. Academic Press, New York, 1973.

Samelson 1960
Samelson, K. and F. L. Bauer. Sequential Formula Translation. Com
munications of the A CM 3(2}, 76-83 (1960).

Satterthwaite 1972
Satterthwaite, E. Debugging Tools for High Level Languages. Software
- Practice and Experience 2, 197-217 (1972).

Scarborough 1980
Scarborough, R. G. and H. G. Kolsky. Improved Optimization of
FORTRAN Object Programs. IBM Journal of Research and Develop
ment 24(6}, 660-676 (1980).

Schulz 1976
Schulz, W. A. Semantic Analysis and Target Language Synthesis in a
Translator. University of Colorado, Boulder, Co, Ph.D. Thesis, 1976.

SeegmiiIler 1963
SeegmiiIler, G. Some remarks on the Computer as a Source Language
Machine. In Popplewell, C. M. (Ed.) Information Processing 1962.
North-Holland, Amsterdam, 1963, pp. 524-525.

Sethi 1970
Sethi, R. and J. D. Ullman. The Generation of Optimal Code for
Arithmetic Expressions. Journal of the ACM 17(4}, 715-728 (1970).

Steele 1977
Steele, G. L. Arithmetic Shifting Considered Harmful. SIGPLAN
Notices 12(11}, 61-69 (1977).

Stephens 1974
Stephens, P. D. The IMP Language and Compiler. Computer Journal
17,216-223 (1974).

Stevens 1974
Stevens, W. P., G. J. Myers, and L. L. Constantine. Structured Design.
IBM Systems Journal 2, llS-139 (1974).

432 Bibliography

Stevenson 1981
Stevenson, D. A Proposed Standard for Binary Floating-Point Arith
metic. Computer 14(3),51-62 (1981).

Szymanski 1978
Szymanski, T. G. Assembling Code for Machines with Span
Dependent Instructions. Communications of the ACM 21(4), 300-308
(1978).

Talmadge 1963
Talmadge, R. B. Design of an Integrated Programming and Operating
System Part II. The Assembly Program and its Language. IBM Systems
Journal 2, 162-179 (1963).

Tanenbaum 1976
Tanenbaum, A. S. Structured Computer Organization. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

Tanenbaum 1978
Tanenbaum, A. S. Implications of Structured Programming for
Machine Architecture. Communications of the ACM 21(3), 237-246
(1978).

Tanenbaum 1982
Tanenbaum, A. S., H. v. Staveren, and J. W. Stevenson. Using
Peephole Optimization on Intermediate Code. ACM Transactions on
Programming Languages and Systems 4(1),21-36 (1982).

Tennent 1981
Tennent, R. D. Principles of Programming Languages. Prentice-Hall
International, London, 1981.

Tienari 1980
Tienari, M. On the Definition of an Attribute Grammar. In Semantics
Directed Compiler Generation. (Lecture Notes in Computer Science 94)
Springer-Verlag, Heidelberg, FRG, 1980, pp. 408-414.

Uh11982
Uhl, J., S. Drossopoulou, G. Persch, G. Goos, M. Dausmann, G.
Winterstein, and W. Kirchgassner. An Attribute Grammar for the
Semantic Analysis of Ada. (Lecture Notes in Computer Science 139)
Springer-Verlag, Heidelberg, FRG, 1982.

Waite 1973a
Waite, W. M. Implementing Software for Non-Numerical Applications.
Prentice-Hall, Englewood Cliffs, NJ, 1973.

Waite 1973b
Waite, W. M. A Sampling Monitor for Applications Programs.
Software - Practice and Experience 3(1), 75-79 (1973).

Waite 1974
Waite, W. M. Code Generation. In Bauer, F. L. and J. Eickel (Eds.)
Compiler Construction - An Advanced Course. (Lecture Notes in Com
puter Science 21) Springer-Verlag, Berlin, 1974, pp. 302-332.

Bibliography 433

Waite 1977
Waite, W. M. Janus. In Brown, P. J. (Ed.) Software Portability. Cam
bridge University Press, Cambridge, 1977, pp. 277-290.

Wegbreit 1972
Wegbreit, B. A Generalised Compactifying Garbage Collector. Com
puter Journal 15, 204-208 (1972).

Wegner 1972
Wegner, P. The Vienna Definition Language. Computing Surveys 4(1),
5-63 (1972).

Wells 1971
Wells, M. B. Elements of Combinatorial Computing. Pergamon Press,
Oxford, 1971.

Wijngaarden 1975
Wijngaarden, A v., B. J. Mailloux, J. E. L. Peck, C. H. A Koster, M.
Sintzoff, C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker.
Revised Report on the Algorithmic Language ALGOL 68. Acta Infor
matica 5, 1-236 (1975).

Wilcox 1971
Wilcox, T. R. Generating Machine Code for High-Level Programming
Languages. Computer Science Department, Cornell University, Ithaca,
NY, Ph.D. Thesis, 1971.

Wilhelm 1977
Wilhelm, R. Baum Transformatoren: Ein Vergleich mit Baum
Transduktoren und Aspekte der Implementierung. Technische
Universitat Miinchen, Miinchen, FRG, Ph.D. Thesis, 1977.

Wirth 1980
Wirth, N. Modula-2. Eidgenossische Technische Hochschule, Ziirich,
Bericht 36, 1980.

Wulf 1975
Wulf, W. A, R. K. Johnsson, C. B. Weinstock, and S. O. Hobbs. The
Design of an Optimizing Compiler. American Elsevier, New York, 1975.

Index

AAG,204
Abnormal termination, 346
Absolute_text, 292, 294
Abstract data type, 7-9, 401-408
Abstract machine, 2, 17, 79--81
Abstract syntax, 17, 86-88
Abstract_token, 86
Accepting a symbol, 139
Access path, 47-53, 59, 61-{i3, 79,82,273-

275
Activation record, 70-78, 254--255, 273-

275, 377-379
Activation record base, 70-71, 73, 258
Ada, 19-20,22-23,25,27,40-41,43-44,

60,75,95,218,228,241,249,251,
257,291,331

Addressable, 61, 273-275
Add_possession, 247
Admissible partition, 192
AF(p) , 187
Aggregate, 49
Aho, Ao Vo, 13,81, 100, 133, 147, 180,

250,259,279--280,340,412
Al(X) , 187
ALADIN, 215, 221
Algebraic identities, 265-266
ALGOL 60,12,16,19--20,22-23,25,30-

31,33-35,38,40-41,43-44,57,67,
69, 81-82, 133, 136, 138-139, 222,
227-228, 249-251, 304--305, 310-
312, 320, 323, 325, 364, 366, 375

ALGOL 68,16,19-27,30-31,33-35,41,
44--45,60, 68-{i9, 76-77, 81-82, 100,
137,150,232,237,241,249--251,331

Aliasing problem, 34, 329
Alignment, 59, 254--255
Allen, Fo Eo, 348, 350
Allocatable object, 254, 273
Alphabet, 102
Ammann, Uo, 368, 371, 382
Analysis, 4-{i

Analytic system, 104
Ancestor, 397
Anchor, 313
Anderson, To, 181
Anticipated computation, 346
APL, 4, 24, 28, 36
Applied occurrence of an identifier, 384
Area, 255
Array descriptor, 58, 255

construction, 68
Asbrock, Bo, 216
Assembly, 6, 372, 375
AS(X) , 187

435

436

Attribute, 87-89, 183, 296
collateral computation, 186
defining occurrence, 187
dependency, 188
distribution, 363
lifetime, 212
transmission by reference, 213

Attribute grammar, 183
alternating evaluable (AAG), 204
development, 221
left-to-right evaluable (LAG), 201
ordered (OAG), 198
well defined (WAG), 188

Attribute storage, 212-213
Attribution algorithm, 190
Attribution rule, 184, 187
Automatic extent, 35
Available computation, 346
Avalanche, 306
Axiom, 104

Back edge, 399
Backtracking, 113-114

limited, 139
Backward pass, 361
Bad_symbol, 228
Bad_type, 227
Baker, T. P., 249
Balance, 236
Balancing, 237-238, 394
Balzer, R. M., 323
Banatre, J. P., 215, 217
Barron, D. W., 321
Barth, J. M., 81
Base address, 254, 273
Base register, 47--48, 288, 296, 377
Base type, 237
BASIC, 69,83, 101,251
Basic block, 329
Basic symbol, 17, 142

in LAX, 384
recognition, 142-143
representation, 85-86, 139, 362

Basis, 173, 176
Bauer, F. L., 12-13, 100, 133,250
Bayer, R., 323, 325
Beatty, J. C., 352
Belady, L. A., 341

Bell, 1. R., 182
Berge, C., 412
Bliss-ll, 332, 355-356
Block, 255
BNF,133
Bochmann, G. V., 216
Borowiec, J., 215
Bottom-up parse, 128-129
Brelaz, D., 412
Brinch-Hansen, P., 323
Brown, W. S., 44, 81
Bruno, J. L., 279-280
Burroughs 5000, 47, 52

Index

Burroughs 670017700, 48, 52, 58, 73, 324
Burroughs Extended ALGOL, 146
Busam, V. A., 250

Cij , 199-200
Call hierarchy, 321
Callbegin, 67
Callend,67
Carter, L. R., 354
Cercone, N., 100
Chain production, 174
Chaitin, G. J., 352-353, 355
Character class, 143
Child, 397
Chomsky hierarchy, 105
Chomsky, N., 12
Chromatic number, 410
Cichelli, R. 1., 100
Clark, D. W., 81
Clause, 393
Closure

of a nonterminal, 131
of a procedure, 73, 81

COBOL, 19-20,24,31-36,43, 139,215,
245, 251

Cocke, J., 348, 354
Code basing, 379
Code generation, 6
Code motion, 346-348
Code quality predictor, 355
Code size improvement, 356
Cody, W. J., 81
Coercible, 232
Coercion, 23

in LAX, 391

Index

Collateral computation, 30, 32
in LAX, 390

Collision resolution, 100
COMMON, 81, 222, 290-291
Common subexpression, 334-335
COMPASS, 145
Compatibility relation in a transition

matrix, 176
Compatible types, 230
Compile-time facility, 146
Complete attribute grammar, 188
Completely specified finite automaton, 140
Complete_env, 235
Component, 20
Composite object, 20, 57

as function result, 69
storage mapping, 254

Computation graph, 90, 327
Concatenation, 103
Concrete syntax, 17, 87-88
Condensation graph, 396-397
Condition, 185, 187
Condition code, 47-48, 338
Configuration, 120
Congruent operands, 328
Connection point, 149-152, 161, 243
Consistent renaming, 44

in LAX, 366
Constant

folding, 33, 336
propagation, 343

Constant table, 97, 137, 332, 363
Constantine, L. L., 13
Constraints, implementation-imposed, 305
Context-free grammar, 105-106
Context-sensitive grammar, 105-106
Contour, 69-70
Contour model, 36
Control Data 3000, 52
Control Data 6400, 145
Control Data Cyber, 52, 359, 367, 372
Control dictionary, 290
Controlled extent, 35
Controlled variable, 66, 258
Conway, R., 323
Coordinate system for the listing, 320
Coordinates, 86
Copy rule, 393
Corasick, M. J., 147,340

Correctness, 302
Cost, 266, 269
Cross edge, 399
Cross-jumping, 355
Cross-referencing, 289, 321
Current_definition, 247
Cut, 108, 398
Cycle, 395

Dakin, R. J., 354
Damerau, F., 323
Data flow analysis, 343
Data General Nova, 300
Data management, 7
Data object, 18-19

437

Davidson, 1. W., 279, 336, 338-339, 356
Day, W. H. E., 351
DDP(p), 188, 199

normalized transitive closure NDDP(p),
193

Dead code elimination, 355
Deadly error, 306-307
Debugging aids, 319
DEC PDPll, 50, 52, 101, 338-339
Decision, 266, 268
Decision table, 80, 277-278, 331
Declaration, 8-9
Declaration_list, 225, 266
Defining occurrence of an identifier,

384-386
Definition, 222-223
Definition table, 99, 243-245, 366,

375-376
Definition_class, 223
Definition_in_range, 247
Definition_table, 223
Delay of store instructions, 275
Delimiter, 136
Dencker, P., 412
Denotation, 97, 384
Dependency graph, 186
Deproceduring coercion, 237-238, 392
Depth-first numbering, 398
Depth-first search, 398
Dereferencing coercion, 237-238, 392
DeRemer, F. L., 146, 169
Derivable, 103
Derivation, 104

438

Derivative relation, 103
Derived attribute, 187
Descendant, 397
Descriptor, 271-272
Desire, 262-263
Determine_traversals, 204
Deterministic

bottom-up automaton, 132
finite automaton, 114-115
parsing techniques, 153
pushdown automaton, 121

Deutsch, L. P., 81
Diagnosis, 303
Dictionary, 100
Dijkstra, E. W., 44
Directed graph, 395

acyclic, 165, 397
Directly derivable, 103
Directly reducible, 104
Director set, 164
Displacement, 70, 273
Display, 73-75
Don't-care, 178
Doubly-linked list, 404
DP(p), 195,199
DT(S), 189
Dunn, R. C., 324
DUrre, K., 412
Dynamic array, 24
Dynamic composition, 18
Dynamic constant, 33
Dynamic semantics, 16-17

EBNF, 109,383
Edge, 395
EDSAC 2,321
EFF .. 119
Effective address, 48, 254
Eickel, 1., 13
Elementary action, 14
Elementary object, 13-14,20
Elementary variable, 33
Elson, M., 279, 281
EMAS, 298
Empty language, 117
Empty string, 103
Enter _constant, 137
Enter _range, 247

Entity, 244
Entry point, 289-291
Entry_point, 292
Environment, 222
Environment pointer, 36
ep, 36,72
Epilogue, 346
E-free grammar, 106
E-production, 106
Equivalence relation, 141
EQUIVALENCE statement, 81
Equivalent grammars, 105
Equivalent types, 230
ERe, 172-173
Error, 303, 307

context, 308
density, 308
lexical, 317
message, 307-309
number, 307
recovery, 313-317
run-time, 318

Error, 308
Error handling, 7

in FORTRAN H, 375
in ZUrich Pascal, 370

Error state, 141

Index

Euclid, 27, 29, 34, 323-324
Evaluating constant expressions, 355
Exact right context, 172-173
Execution order, 257, 259, 261, 264, 271,

327,331,377
Expression, 28
Extended Backus-Naur form (EBNF), 109,

383
Extended basic block, 329
Extent, 34-35, 76, 388
External address resolution, 288-291
External_reference, 293

Failure matrix, 178-179
Fall-back position, 139
Fang, I., 215
Fatal error, 306-307
Fictitious base address, 57-58, 275
Final attribute, 212
Final state, 112
Finite automaton, 112

Index

Finite-state acceptor, 112
Finite-state transducer, 138
FIRST,l64
FIRST., 119
First order storage, 70, 72
Fixed-depth stack, 405
Flexible array, 24-25
Flow graph, 329

propagating information over, 343
FOUOW, l64
FOUOW., 119-120
Follower condition, 176
Forbegin, 66-67
Forend,66
Fonnal system, 103
Fonnula,28
FORTRAN, 20, 23, 31, 33, 35, 39-40,

43-44,57,68-69,81-82, 101, 136,
138-139, 145, 147, 222, 225, 228,
250-251, 255, 290-292, 299, 304,
312, 319, 332, 354-356, 359, 374-
377,380

FORTRAN 66,34-35,41
FORTRAN 77,25,29-30
FORTRAN H, 355, 374
Forward edge, 399
Forward pass, 361
Fraser, C. W., 339, 356

GAG,215
Gaines, R. S., 323
Galler, B. A., 299
Gallucci, M. A., 215
Ganzinger, H., 216
Garey, M. S., 412
GE,301
General register, 47-49
General rewriting system, 103
Generalized pushdown automaton, 120
Generative system, 104
Gennum, 224
Giegerich, R., 216
GIER ALGOL, 364
Give_operand_identifier, 329
Give_string, 95
Give_symbol,95
Give_tuple, 329
Glanville, R. S., 280

Global optimization, 356
Global register allocation, 355
Goos, G., 13
Gordon, M. J. C., 43
Graham, M. L., 299
Graham, S. L., 280
Grammar, 104-106

left recursive, 164
Graph coloring, 178,352-354,410
Grau, A. A., 12, 250
Green, C. C., 81
Gries, D., 13, 100, 146,250,280,

323-324
Griffiths, M., 16
Griswold, R. E., 44
Growth point, 255
Guttag, J., 250-251

Habennann, A. N., 44
Hall, A. D., 328
Hangelberger, P., 299
Harary, F., 412
Hartmann, A. C., 100,250,382
Hash technique, 95-96
Head of a string, 103
Hecht, M. S., 343
Hedberg, R., 301
Hill, U., 12,81
Hoare, C. A. R., 43
Hoisting transfonnation, 189
Holt, R. C., 323
Hopcroft, J. E., 412
Host, 7
Housden, R. J. W., 44

IBM FORTRAN H, 280
IBM 1400, 49, 52
IBM 704017090,52
mM 1620, 52

439

IBM 370, 47-54, 56, 62~, 67, 70,
258-259, 262-263, 271-275, 277,
281, 287, 291, 294-295, 298, 331,
336-339,341-342,348,352,372,374

mM 360,374,377,380-381
msys, 298
ICL 2900,52
Identified_type, 228

440

Identifier, 136
applied occurrence, 384
defining occurrence, 384-385
implicit type, 250
maximum length, 95
undeclared, 310

Identifier _use, 223
Identify_symbol, 137
Identify_type, 235
Identity declaration, 33, 233

in LAX, 389
IDP(p) , 194, 199
IDS(X) , 194
Implicit declarations in FORTRAN, 226
Inadequate state, 169
Incompatibility graph, 178
Index register, 47--48, 273
Indexing, 24-25, 273-275
Induced attribute dependencies, 194
Induction variable, 348

derived, 351
Ingerman, P. Z., 299
Inherited attribute, 187
Initial state, 112
Initialize _lexical_analysis, 136
Instantiation, 8-9, 39
Instruction format, 278
Instruction pointer, 36
Intel 8080, 52
Intel 8086, 50
Interface, 8
Interference graph, 352
Intermediate attribute, 212
Intermediate language, 4, 85, 361
Internal_reference, 293
Interpreter, 2-3
Interpretive LL(1) parser, 163
Intrinsic attribute, 187

calculation, 209
Ip, 36,72
Irons, E. T., 214, 323

Jahanian, P., 340
Jansohn, H.-St., 280
Jazayeri, M., 215-216, 218
Jensen, K., 133
Johnson, D. S., 412
Johnson, S. C., 279

Johnson, W. L., 146
Johnston,1. B., 44
Joliat, M. L., 180
Jones, C. B., 44
Jump cascade, 56, 64, 263-264
Jump history, 321

Karp, R. M., 412
Kastens, U., 13, 215, 221, 249
Kennedy, K., 215, 343
Kernel of an LR state, 172-173
Keyword, 17, 100, 136,318,384

representation, 139-140
k-head, 119
Klint, P., 323

Index

Knuth, D. E., 12, 44, 81, 98, 100, 129,
145, 214, 354

Kolsky, H. G., 351
Koster, C. H. A., 214, 249, 322

rule, 185
Kruseman-Aretz, F. E. J., 323, 325
k-stack class, 129-131, 172

Label, 395
Label function, 395
Label_definition, 224
LAG, 201, 218
LALR(l) automaton, 176
LALR(1) construction algorithm, 173
Landin, P. J., 81
Landwehr, R., 280
Langmaack, H., 12, 133
Language Resources, 299
Lassagne, T., 279
LAST, 165
LAX, 15,23,25,27,30,34-35,41,84,

86-87, 97-98, 106, 109, 133-134,
136, 141-143, 147-148, 172, 174,
178, 186, 213-214, 216-217,
221-224, 227-228, 231-233, 236-
237, 240-241, 245, 249, 251, 259,
271-274, 280-281, 295, 303-304,
309, 317, 319, 321, 323, 331, 356,
383

Leaf,397
Leave_range, 247
Lecarme, 0., 216

Index

Left factoring, 127
Left recursion removal, 126
Leftmost derivation, 107, 122
Left-recursive nonterminal, 124-125
Lengthen, 287
Lesk, M. E., 146
Level array, 273-275
Level of abstraction, 1
Levy, J., 323
Lewis, P. M., 214, 216
LEX, 146
Lexical analysis, 6

in FORTRAN H, 375
in GIER ALGOL, 363-364
in Zurich Pascal, 368
timings, 145

Lexical error, 308, 317
Lexicographic order, 398
Library, 291-292
Lifetime, 34
Line boundaries, 143
Line numbers, 320
Line-imaging routine, 140
Link editor, 6
LIS, 222
Liskov, B., 13
LISP, 35-36, 38,44,77,81-82
Listing coordinates, 306-307
Listing editor, 307
Literal pooling, 367
Live variables, 343
Live/dead analysis, 378
LL(l) condition, 156
LL(l) parser, 155
LL(k) grammar, 123
LL(K) grammar, 123
Load map, 320
Loader, 6
Load/store motion, 352
Locally acyclic attribute grammar, 188
Location counter, 372
Lookahead in a lexical analyzer, 138
Lookahead symbol, 121
Lookup mechanism, 95-96
Loop optimization, 348
Lowry, E. S., 280, 382
LR parsers, 166
LR(O) grammar, 167
LR(O) reduce state, 174

LR(I) grammar, 181
LR(k) grammar, 129
Lucas, P., 43-44
Lyon, G., 323

Machine simulation, 271
in FORTRAN H, 377
in Zurich Pascal, 372

Machine state, 275-277
Macro, 294-298
Maintainability, 359
Mapping function, 2
Mapping specification, 78-80
McCarthy, J., 81
McClure, R. M., 180
McIlroy, M. D., 101, 147
McKeeman, W. M., 279
McLaren, M. D., 81
Mealy, G. H., 299
Membership relation, 404
Memory access, 379
Memory dump, 321

441

Memory mapping, 57-58, 79-80, 254-255
in FORTRAN H, 377
in Zurich Pascal, 371

Merge, 173
Miller, R. E., 279
Minimum-distance correction 312
Mixed code, 354 '
Mock, 0.,12
Mode, 20
Mode, 228
MODULA 2, 218, 251
Module, 8
Module_name, 292
Module_size, 292
Mod_list, 286-287
Morel, E., 348
Morgan, D. L., 323-324
Morris, F. L., 81
Morrison, R., 44
Moses, J., 81
Motorola 68000, 48, 51-52, 62, 80, 262

273 '

MUlti-pass attribute grammar, 201
Myers, G. J., 13

Name, 393

442

Name analysis, 222
in Ziirich Pascal, 370

Name equivalence, 27-28
verification, 231

Naur, P., 12, 100, 133, 250, 364, 382
NDDP(p), 193
Newline as a separator, 139
New_range, 247
Next_character, 137, 145
Next_connection, 150
Next_symbol, 150
Next_token, 136
Nil_type, 228
Node, 395
Non-LR(O) grammar, 168
Nonterminal, 104
Nonterminal transition matrix, 178-179
Normal form, 259
Number, 136

OAG,215
Object, 388
One_ref, 238
Open hashing, 96
Operand, 5
Operand_sequence, 257, 260-261
Operation, 18

specification, 241
Operation, 184
Operational specification, 18
Operator, 5
Operator identification, 202
Operator indication, 87

in LAX, 390
Operator/operand pair, 375-376
Optimization factors, 355
Optimization in FORTRAN H, 377-379
Ordered attribute grammar (OAG), 198
Ordered tree, 397-398
Origin, 283-285
Origin, 94
OS/360,298
Oscillation, 260-261

Package, 8-9
Packing, 59, 254-255
PAG,192

Pager, D., 180
Palmer, E. M., 100
Parameter transmission, 40
Parent, 397
Parnas, D. L., 13
Parse, 112

extracting information from, 151
information flow in, 150
programming by hand, 153
selection of an algorithm, 152

Parse table size, reduction in, 154
Parse tree, 17, 108
Parser generator, 153-154
Parser-defined error, 312-313
Parse_program, 150
Parse_symbol, 150
Parse_table_entry, 162
Parsing, 6
Parsing algorithm, 121
Partial qualification, 36, 245-248
Partition, 140, 401-404

Index

Partitionable attribute grammar, 192
Partitioned attribute grammar (pAG), 192
Pascal, 2, 4, 13, 16-17, 19-21, 23,

25-27,30-31,33,35-36,40,43-44,
55,57,59~0,69-70, 73, 76, 78,80,
82-84,97, 100, 141, 143, 145,215,
222, 227-228, 232, 243, 245, 249-
252, 254-255, 308, 323, 328, 330-
331, 346-347, 354, 359, 361-362,
367-368, 370-372, 375, 382

Pascal-6000, 367
Pascal-P, 367
Pass structure, 12, 359-361
Path, 395,405
PDPll, 53, 98, 260-262, 273, 280, 285,

291
PEARL, 249
Peck, J. E. L., 100,249-250
Peephole optimization, 338
Performance, 359

measurement, 381
Persch, G., 249
Peterson, T. G., 323
Phrase, 107-108
Phrase structure, 108
Pierce, R. H., 323
PL/l, 24-26, 35-36,43,69, 76,136,139,

245-246, 281, 354-355

Index

PUlL, 354-356
PL360, 28
PUC, 323
PUM, 146
Pointer, 25-26
Poole, P. C., 354
Portability, 359
Possession, 244
Postmode, 236
Pozefsky, D. P., 216
Pragmatics, 16--17
Precedence grammar, 180
Predictive analysis, 123
Primade, 235
Procedure, 8
Procedure-oriented storage allocation,

38,273
Production, 103-106
Profitability, 348
Program counter, 47-48, 273
Program point, 328
Prologue, 346
Pushdown automaton, 120-122

Quadruple, 92, 376--378
Quine, W. V. 0., 29

RAG, 203, 208, 218
Riiihii, K., 214, 216
Ramamoorthy, C. V., 340
Ramanathan, J., 215
Randell, B., 12,81,250,310
Range, 35-36, 244

in LAX, 385
Recognizer, 112
Recovery, 305-306
Recursive descent, 156--161
Reduce transition, 129
Reduced automaton, 140-142
Reducible, 104
Reduction class, 128-129
Reduction of a graph, 396
Referential transparency, 29-30
Refinement, 140, 407
Register allocation, 257, 271, 341, 351

in FORTRAN H, 378
in Zi.irich Pascal, 372

Register descriptor, 275-277
Register estimate, 265, 275, 331
Register management, 276
Register pair, 48-50, 62, 262
Register state, 341
Register transfer notation, 336
Register _class, 263
Register _count, 261
Regular expression, 117-118

443

Regular grammar, 105-106, 112, 130
Regular language, 105
Rehostability, 359-360
Relative address, 51, 254
Reliability, 302
Relocatable binary representation, 372, 380
Relocation bits, 291
Relocation table, 286--287
Renvoise, c., 348
Repair, 305-306
Report, 305
Report_lexical_error, 137
Reserved word, 139
Resource allocation, 7
Retargetability, 359-360
Richards, M., 81
Right sibling, 398
Rightmost derivation, 107, 128
Ripken, K., 216
Robertson, E. L., 300
Rohrich, J., 323-324
Root, 404
Rosen, S., 12
Rosenkrantz, D. J., 155,214,216
Ross, D. T., 81
Run-time error, 318-319
Run-time system, 4
Russell, L. J., 12, 81
Rutishauser, H., 12
RWORD,146

Safety, 346
Sale, A. H. J., 101, 136, 147,250,324
Salomaa, A., 133
Samelson, K., 12, 133
Satterthwaite, E., 323
Scanner, 145
Scarborough, R. G., 351, 382
Scatter loading, 293

444

Schulz, W. A., 214
Scope, 35-36
Scope analysis, 222
Second order storage, 70, 72
SeegmUller, G., 323
Semantic analysis, 6, 87

in FORTRAN H, 376
in ZUrich Pascal, 370

Semantic error, 309
Semantic transfer, 221
Semantics, 16
Sentence, 103

correctly attributed, 188
Separate compilation, 288
Sequence numbers, 320
Sethi, R., 279
Set_location, 292
Severity level of error messages, 307
Shift transition, 129
Shift-reduce transition, 174
Short-circuit evaluation, 30, 64, 263
Side effect, 18, 328
Siemens 7000, 321
Simple phrase, 108
SIMULA, 36, 38--41,44-45,70,75,207,

218, 305
Simulator blocking, 276
Size, 254
SLR(l) grammar, 170
SLR(1) parser, 280
Snapshot, 319, 321
SNOBOL4, 4, 20, 24-25, 44
Source language, 1
Space as a separator, 139
Span-dependent instruction, 285-288
Spanning forest, 398-399
Spanning tree of a directed graph, 181
Special character, 136
Spelling checks, 318
Spelling rule, 17
Spill, 332, 341, 353
SPIk,323
Spontaneous transition, 121, 124
Stack, 47, 73-74, 262
Stack symbol, 120
Stacking transition, 121, 124
Start symbol, 104
State, 1-2, 18

sequence, 14

State minimization, 140-142,407
State table, 115
State transition, 112
Statement, 224

Index

Statement classification in FORTRAN, 136
Statement_list, 224
Static analysis, 354
Static array, 24
Static extent, 35
Static semantics, 16
Stearns, R. E., 155, 214, 216
Steele, G. L., 82
Stephens, P. D., 298
Stepwise refinement, 367
Stevens, W. P., 13
Storage class, 47, 79, 273
Storage constraint, 12
Store, 257,260-261
Straight-line segment, 329
Strength reduction, 348-351

in FORTRAN H, 378
String, 25, 136
String table, 95-97, 363
Strong LL(k) grammar, 155
Strongly connected component, 396,

404-406
Strongly contiguous, 259
Strongly-typed language, 20
Stropping convention, 140
Structural equivalence, 27-28, 232, 407
Structure connection, 151-152
Structure tree, 8, 17-18, 85-87, 327

attributed, 87, 183
deleting declarations from, 230
linearizati on, 90
traversal, 88-90

Substr, 96
Summary report, 307
Suppressing error message, 307
Symbol, 184
Symbol connection, 151-152
Symbol dictionary, external, 363
Symbol grammar, 136
Symbol table, 95-96, 137, 243-245

in FORTRAN H, 376
in GIER ALGOL, 365
in ZUrich Pascal, 368-370

Symbol-controlled transition, 120
Symbolic constant, 33

Index

Symbolic execution, 332
Symptom, 303
Syntactic analysis, 6

in FORTRAN H, 375-376
in GIER ALGOL, 366
in ZUrich Pascal, 368

Syntactic class, 86
Syntactic error recovery, 311

in ZUrich Pascal, 369
Syntactic rule, 17
Syntactic variable, 104
Syntax, 16
Synthesis, 4-6
Synthesized attribute, 187
Szymanski, T. G., 299-300

Table compression, 179
Table representation, 362
Table storage, freeing of, 363
Tail of a string, 103
Talmadge, R. B., 298-299
Tanenbaum, A. S., 81, 338-340
Target attribution, 257, 331
Target label, 286
Target language, 1
Target path, 337
Target tree, 92-94, 284
Targeting, 262-264
Target_labels, 257
Tennent, R. D., 43
Tenninal, 104
Tenninal transition matrix, 178-179
Tenninator, 137
Texas Instruments 990, 53
Textual equivalence, 27
Tienari, M., 214
Token sequence, 85-86
Too_short, 287
Top-down analysis, 121
Trace, 319
Transfer, 221
Transfer vector, 289-290
Transfonnation, 4
Transition, 120-121
Transition function, 154

implementation, 176
Transition matrix, 176-179
Translatable, 185

Translation, 2-3
Tree, 397,401-402
Tree edge, 399
Tree transfonnation, 90
Triple, 92
Tuple sequence, 328
Type, 20, 388
Type compatibility, 227, 232
Type declaration, 234, 389

445

Type equivalence, 26-27, 230-231, 413
in LAX, 388-389

Type identification, 235
Type template, 77, 254-255, 321
Type transfonnation, 240
Typed language, 20
Typeless language, 20
Type_class, 228
Type_equivalent, 231

Uhl, J., 249
Ullman, J. D., 13,81,133,180,279,412
Unambiguous, 224
Unambiguous grammar, 107
Unary complement costing, 269
Unary complement elimination, 265-267
Undefinition of a variable, 33-34, 329-330
Union, 251
Univac 1100, 47, 52
Univac 1108, 262, 305
Unknown_definition, 222
Unreachable state, 140
Unrestricted extent, 35
U nstacking transition, 121, 124
USECOUNT, 335
Useless symbol, 106, 383

Value, 388
Value descriptor, 273-278
Value numbering, 332-335
Variable, 9
Variable declaration, 233
Virtual storage, 95
Visibility, 34, 385
Vocabulary, 102-104
Void,392
Voiding coercion, 237

446

WAG, 189-190
Waite, W. M., 61, 146,279,381
Walter, K. G., 216
Warning, 307
Warren, S. K., 215
Weakly-typed language, 20
Wegbreit, B., 81
Wegner, P., 43

Index

Well-defined attribute grammar (WAG), 188
Wells, M. B., 412
Whetstone ALGOL compiler, 310
Widening coercion, 392
Wilcox, T. R., 279
Wilhelm, R., 216
Wrapup_lexical_analysis, 136
Wulf, W. A., 279, 332, 337, 348, 355

Texts and Monographs in Computer Science

Suad Alagic and Michael A. Arbib
The Design of Well-Structured and Correct Programs
1978. x, 292pp. 14 illus. cloth

Michael A. Arbib, A.J. Kfoury, and Robert N. Moll
A Basis for Theoretical Computer Science
1981. vii, 220pp. 49 illus. cloth

F. L. Bauer and H. Wossner
Algorithmic Language and Program Development
1982. xvi, 497pp. 109 illus. cloth

Edsger W. Dijkstra
Selected Writings on Computing: A Personal Perspective
1982. xvii, 362pp. I illus. cloth

Peter W. Frey, Ed.
Chess Skill in Man and Machine, 2nd Edition
1983. xiv, 329pp. 104 illus. cloth

David Gries, Ed.
Programming Methodology: A Collection of Articles by Members of IFIP WG2.3
1978. xiv, 437 pp. 68 illus. cloth

David Gries
The Science of Programming
1981. xvi, 366pp. cloth

A. J. Kfoury, Robert N. Moll, and Michael A. Arbib
A Programming Approach to Computability
1982. viii, 251pp. 36 iIlus. cloth

Brian Randell, Ed.
The Origins of Digital Computers: Selected Papers
3rd Edition. 1982. xvi, 580pp. 126 illus. cloth

Arto Salomaa and Matti Soittola
Automata-Theoretic Aspects of Formal Power Series
1978. x, 171pp. cloth

Jeffrey R. Sampson
Adaptive Information Processing: An Introductory Survey
1976. x, 214pp. 83 illus. cloth

William M. Waite and Gerhard Goos
Compiler Construction
1984. xiv, 446pp. 196 illus. cloth

Niklaus Wirth
Programming in Modula-2
2nd Corr. Edition. 1983. iv, 176 pp. cloth

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

