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To all who know more than one language



Preface

Compilers and operating systems constitute the basic interfaces between a
programmer and the machine for which he is developing software. In this
book we are concerned with the construction of the former. Our intent is to
provide the reader with a firm theoretical basis for compiler construction
and sound engineering principles for selecting alternate methods, imple-
menting them, and integrating them into a reliable, economically viable
product. The emphasis is upon a clean decomposition employing modules
that can be re-used for many compilers, separation of concerns to facilitate
team programming, and flexibility to accommodate hardware and system
constraints. A reader should be able to understand the questions he must
ask when designing a compiler for language X on machine Y, what tradeoffs
are possible, and what performance might be obtained. He should not feel
that any part of the design rests on whim; each decision must be based upon
specific, identifiable characteristics of the source and target languages or
upon design goals of the compiler.

The vast majority of computer professionals will never write a compiler.
Nevertheless, study of compiler technology provides important benefits for
almost everyone in the field.

® It focuses attention on the basic relationships between languages and
machines. Understanding of these relationships eases the inevitable tran-
sitions to new hardware and programming languages and improves a
person’s ability to make appropriate tradeoffs in design and implementa-
tion.

® Itillustrates application of software engineering techniques to the solution
of a significant problem. The problem is understandable to most users of
computers, and involves both combinatorial and data processing aspects.
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® Many of the techniques used to construct a compiler are useful in a wide
variety of applications involving symbolic data. In particular, every
man-machine interface constitutes a form of programming language and
the handling of input involves these techniques.

We believe that software tools will be used increasingly to support many
aspects of compiler construction. Much of Chapters 7 and 8 is therefore de-
voted to parser generators and analyzers for attribute grammars. The details
of this discussion are only interesting to those who must construct such tools;
the general outlines must be known to all who use them. We also realize
that construction of compilers by hand will remain an important alternative,
and thus we have presented manual methods even for those situations where
tool use is recommended.

Virtually every problem in compiler construction has a vast number of
possible solutions. We have restricted our discussion to the methods that are
most useful today, and make no attempt to give a comprehensive survey.
Thus, for example, we treat only the LL and LR parsing techniques and
provide references to the literature for other approaches. Because we do not
constantly remind the reader that alternative solutions are available, we may
sometimes appear overly dogmatic although that is not our intent.

Chapters 5 and 8, and Appendix B, state most theoretical results without
proof. Although this makes the book unsuitable for those whose primary in-
terest is the theory underlying a compiler, we felt that emphasis on proofs
would be misplaced. Many excellent theoretical texts already exist; our
concern is reduction to practice.

A compiler design is carried out in the context of a particular
language /machine pair. Although the principles of compiler construction
are largely independent of this context, the detailed design decisions are not.
In order to maintain a consistent context for our major examples, we there-
fore need to choose a particular source language and target machine. The
source language that we shall use is defined in Appendix A. We chose not to
use an existing language for several reasons, the most important being that a
new language enabled us to control complexity: Features illustrating
significant questions in compiler design could be included while avoiding
features that led to burdensome but obvious detail. It also allows us to illus-
trate how a compiler writer derives information about a language, and pro-
vides an example of an informal but relatively precise language definition.

We chose the machine language of the IBM 370 and its imitators as our
target. This architecture is widely used, and in many respects it is a difficult
one to deal with. The problems are representative of many computers, the
important exceptions being those (such as the Intel 8086) without a set of
general registers. As we discuss code generation and assembly strategies we
shall point out simplifications for more uniform architectures like those of
the DEC PDP11 and Motorola 68000.

We assume that the reader has a minimum of one year of experience with
a block-structured language, and some familiarity with computer organiza-
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tion. Chapters 5 and 8 use notation from logic and set theory, but the ma-
terial itself is straightforward. Several important algorithms are based upon
results from graph theory summarized in Appendix B.

This book is based upon many compiler projects and upon the lectures
given by the authors at the Universitdt Karlsruhe and the University of
Colorado. For self-study, we recommend that a reader with very little back-
ground begin with Section 1.1, Chapters 2 and 3, Section 12.1 and Appendix
A. His objective should be to thoroughly understand the relationships
between typical programming languages and typical machines, relationships
that define the task of the compiler. It is useful to examine the machine
code produced by existing compilers while studying this material. The
remainder of Chapter 1 and all of Chapter 4 give an overview of the organi-
zation of a compiler and the properties of its major data structures, while
Chapter 14 shows how three production compilers have been structured.
From this material the reader should gain an appreciation for how the vari-
ous subtasks relate to one another, and the important characteristics of the
interfaces between them.

Chapters 5, 6 and 7 deal with the task of determining the structure of the
source program. This is perhaps the best-understood of all compiler tasks,
and the one for which the most theoretical background is available. The
theory is summarized in Chapter 5, and applied in Chapters 6 and 7.
Readers who are not theoretically inclined, and who are not concerned with
constructing parser generators, should skim Chapter 5. Their objectives
should be to understand the notation for describing grammars, to be able to
deal with finite automata, and to understand the concept of using a stack to
resolve parenthesis nesting. These readers should then concentrate on
Chapter 6, Section 7.1 and the recursive descent parse algorithm of Section
72.2.

The relationship between Chapter 8 and Chapter 9 is similar to that
between Chapter 5 and Chapter 7, but the theory is less extensive and less
formal. This theory also underlies parts of Chapters 10 and 11. We suggest
that the reader who is actually engaged in compiler construction devote
more effort to Chapters 8-11 than to Chapters 5-7. The reason is that parser
generators can be obtained “off the shelf” and used to construct the lexical
and syntactic analysis modules quickly and reliably. A compiler designer
must typically devote most of his effort to specifying and implementing the
remainder of the compiler, and hence familiarity with Chapters 8-11 will
have a greater effect on his productivity.

The lecturer in a one-semester, three-hour course that includes exercises
is compelled to restrict himself to the fundamental concepts. Details of pro-
gramming languages (Chapter 2), machines (Chapter 3) and formal
languages and automata theory (Chapter 5) can only be covered in a cursory
fashion or must be assumed as background. The specific techniques for
parser development and attribute grammar analysis, as well as the whole of
Chapter 13, must be reserved for a separate course. It seems best to present
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theoretical concepts from Chapter 5 in close conjunction with the specific
methods of Chapters 6 and 7, rather than as a single topic. A typical outline
is:
1. The Nature of the Problem 4 hours
1.1. Overview of compilation (Chapter 1)
1.2.  Languages and machines (Chapters 2 and 3)
2. Compiler Data Structures (Chapter 4) 4 hours
3. Structural Analysis 10 hours
3.1. Formal Systems (Chapter 5)
3.2. Lexical analysis (Chapter 6)
3.3. Parsing (Chapter 7)
Review and Examination 2 hours
4. Consistency Checking 10 hours
4.1. Attribute grammars (Chapter 8)
4.2. Semantic analysis (Chapter 9)

5. Code Generation (Chapter 10) 8 hours
6. Assembly (Chapter 11) 2 hours
7. Error Recovery (Chapter 12) 3 hours
Review 2 hours

The students do not write a compiler during this course. For several years it
has been run concurrently with a practicum in which the students implement
the essential parts of a LAX compiler. They are given the entire compiler,
with stubs replacing the parts they are to write. In contrast to project courses
in which the students must write a complete compiler, this approach has the
advantage that they need not be concerned with unimportant organizational
tasks. Since only the central problems need be solved, one can deal with
complex language properties. At the same time, students are forced to read
the environment programs and to adhere to interface specifications. Finally,
if a student cannot solve a particular problem it does not cause his entire
project to fail since he can take the solution given by the instructor and
proceed.
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CHAPTER 1
Introduction and Overview

The term compilation denotes the conversion of an algorithm expressed in a
human-oriented source language to an equivalent algorithm expressed in a
hardware-oriented target language. We shall be concerned with the engineer-
ing of compilers — their organization, algorithms, data structures and user
interfaces.

1.1. Translation and Interpretation

Programming languages are tools used to construct formal descriptions of
finite computations (algorithms). Each computation consists of operations
that transform a given inifial state into some final state. A programming
language provides essentially three components for describing such compu-
tations:

® Data types, objects and values with operations defined upon them.

® Rules fixing the chronological relationships among specified operations.

® Rules fixing the (static) structure of a program.

These components together constitute the level of abstraction on which we
can formulate algorithms in the language. We shall discuss abstractions for
programming languages in detail in Chapter 2.

The collection of objects existing at a given point in time during the com-
putation constitutes the state, s, of the computation at that time. The set, S,
of all states that could occur during computations expressed in the language
is called the state space of the language. The meaning of an algorithm is the
(partially-defined) function f: S -S by which it transforms initial states to
final states.
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Figure 1.1 illustrates the concept of a state. Figure 1.1a is a fragment of a
program written in Pascal. Since this fragment does not declare the
identifiers i and j, we add the fact that both are integer variables. The
values of i and j before the given fragment begins to execute constitute the
initial state; their values after execution ceases constitute the final state. Fig-
ure 1.1b illustrates the state transformations carried out by the fragment,
starting from a particular initial state.

Let f be the function defined by the state transformation of some partic-
ular algorithm A . If we are to preserve the meaning of A when compiling it

while i 7 j do
ifi >j theni:=i—jelsej:=j—i;
a) An algorithm

Initial: i =36 j =24

i=12 j=24

Fina: i=12 j =12
b) A particular sequence of states

Figure 1.1 Algorithms and States

to a new language then the state transformation function f’ of the translated
algorithm 4’ must, in some sense, ‘agree’ with /. Since the state space, S’,
of the target language may differ from that of the source language, we must
first decide upon a function, M, to map each state s €S to a subset M(s) of
S’. The function f’ then preserves the meaning of f if f'(M(s)) is a subset
of M(f (s)) for all allowable initial states s €S'.

For example, consider the language of a simple computer with a single
accumulator and two data locations called I and J respectively (Exercise
1.3). Suppose that M maps a particular state of the algorithm given in Fig-
ure 1.1a to a set of machine states in which I contains the value of the vari-
able i, J contains the value of the variable j, and the accumulator contains
any arbitrary value. Figure 1.2a shows a translation of Figure 1.1a for this
machine; a partial state sequence is given in Figure 1.2b.

In determining the state sequence of Figure 1.1b, we used only the con-
cepts of Pascal as specified by the language definition. For every program-
ming language, PL, we can define an abstract machine: The operations, data
structures and control structures of PL become the memory elements and
instructions of the machine. A ‘Pascal machine’ is therefore an imaginary
computer with Pascal operations as its machine instructions and the data
objects possible in Pascal as its memory elements. Execution of an algo-
rithm written in PL on such a machine is called interpretation; the abstract
machine is an interpreter.

A pure interpreter analyzes the character form of each source language
instruction every time that instruction is executed. If the given instruction is
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only to be executed once, pure interpretation is the least expensive method
of all. Hence it is often used for job control languages and the ‘immediate
commands’ of interactive languages. When instructions are to be executed

LOOP LOAD I

SUB J
JZERO  EXIT
INEG SUBI
STORE 1

JUMP LOOP
SUBI LOAD J

SUB I
STORE J
JUMP LOOP
EXIT
a) An algorithm

Initial: I =36 J=24 ACC=?
I1=36 J=24 ACC=36
I=36 J=24 ACC=12

Final: I=12 J=12 ACC=0
b) A sequence of states corresponding to Figure 1.1b

Figure 1.2 A Translation of Figure 1.1

repeatedly, a better approach is to analyze the character form of the source
program only once, replacing it with a sequence of symbols more amenable
to interpretation. This analysis is simply a translation of the source language
into some target language, which is then interpreted.

The translation from the source language to the target language can take
place as each instruction of the program is executed for the first time
(interpretation with substitution). Thus only that part of the program actually
executed will be translated; during testing this may be only a fraction of the
entire program. Also, the character form of the source program can often be
stored more compactly than the equivalent target program. The disadvan-
tage of interpretation with substitution is that both the compiler and inter-
preter must be available during execution. In practice, however, a system of
this kind should not be significantly larger than a pure interpreter for the
same language.

Examples may be found of virtually all levels of interpretation. At .one
extreme are the systems in which the compiler merely converts constants to
internal form, fixes the meaning of identifiers and perhaps transforms infix
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notation to postfix (APL and SNOBOL4 are commonly implemented this
way); at the other are the systems in which the hardware, assisted by a small
run-time system, forms the interpreter (FORTRAN and Pascal implementa-
tions usually follow this strategy).

1.2. The Tasks of a Compiler

A compilation is usually implemented as a sequence of transformations
(SL, Ly), (L, Ly), ..., (Lg, TL), where SL is the source language and TL is
the target language. Each language L, is called an intermediate language.
Intermediate languages are conceptual tools used in decomposing the task
of compiling from the source language to the target language. The design of
a particular compiler determines which (if any) intermediate language pro-
grams actually appear as concrete text or data structures during compilation.

Any compilation can be broken down into two major tasks:

® Analysis: Discover the structure and primitives of the source program,
determining its meaning.
® Synthesis: Create a target program equivalent to the source program.

This breakdown is useful because it separates our concerns about the source
and target languages.

The analysis concerns itself solely with the properties of the source
language. It converts the program text submitted by the programmer into
an abstract representation embodying the essential properties of the algo-
rithm. This abstract representation may be implemented in many ways, but
it is usually conceptualized as a tree. The structure of the tree represents the
control and data flow aspects of the program, and additional information is
attached to the nodes to describe other aspects vital to the compilation. In
Chapter 2 we review the general characteristics of source languages, point-
ing out the properties relevant for the compiler writer. Figure 1.3 illustrates
the general idea with an abstraction of the algorithm of Figure 1.1a.

Figure 1.3a describes the control and data flow of the algorithm by means
of the k™ descendant of” relation. For example, to carry out the algorithm
described by a subtree rooted in a while node we first evaluate the expres-
sion described by the subtree that is the first descendant of the while node. If
this expression yields true then we carry out the algorithm described by the
subtree that is the second descendant. Similarly, to evaluate the expression
described by an expression subtree, we evaluate the first and third descen-
dants and then apply the operator described by the second descendant to the
results.

The algorithm of Figure 1.1a is not completely characterized by Figure
1.3a. Information must be added (Figure 1.3b) to complete the description.
Note that some of this information (the actual identifier for each idn) is
taken directly form the source text. The remainder is obtained by process-
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O
@) O )

piler

o)

a) Control and data flow

Node Additional Information

. identifier

idn . .
corresponding declaration

name | type of the variable

exp type of the expression value

b) Additional information about the source program

Node

Additional Information

name

corresponding data location

if

address of code to carry out the else part

while

address of the expression evaluation code

¢) Additional information about the target program

Figure 1.3 An Abstract Program Fragment

ing the tree. For example, the type of the expression value depends upon
the operator and the types of the operands.

Synthesis proceeds from the abstraction developed during analysis. It
augments the tree by attaching additional information (Figure 1.3c) that
reflects the source-to-target mapping discussed in the previous section. For
example, the access function for the variable i in Figure 1.1a would become
the address of data location I according to the mapping M assumed by Fig-
ure 1.2. Similarly, the address of the else part of the conditional was
represented by the label SUBI. Chapter 3 discusses the general characteris-
tics of machines, highlighting properties that are important in the develop-
ment of source-to-target mappings.
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Formal definitions of the source language and the source-to-target map-
ping determine the structure of the tree and the computation of the addi-
tional information. The compiler simply implements the indicated transfor-
mations, and hence the abstraction illustrated in Figure 1.3 forms the basis
for the entire compiler design. In Chapter 4 we discuss this abstraction in
detail, considering possible intermediate languages and the auxiliary data
structures used in transforming between them.

Analysis is the more formalized of the two major compiler tasks. It is
generally broken down into two parts, the structural analysis to determine the
static structure of the source program, and the semantic analysis to fix the
additional information and check its consistency. Chapter 5 summarizes
some results from the theory of formal languages and shows how they are
used in the structural analysis of a program. Two subtasks of the structural
analysis are identified on the basis of the particular formalisms employed:
Lexical analysis (Chapter 6) deals with the basic symbols of the source
program, and is described in terms of finite-state automata; syntactic
analysis, or parsing, (Chapter 7) deals with the static structure of the pro-
gram, and is described in terms of pushdown automata. Chapter 8 extends
the theoretical treatment of Chapter 5 to cover the additional information
attached to the components of the structure, and Chapter 9 applies the
resulting formalism (attribute grammars) to semantic analysis.

There is little in the way of formal models for the entire synthesis process,
although algorithms for various subtasks are known. We view synthesis as
consisting of two distinct subtasks, code generation and assembly. Code gen-
eration (Chapter 10) transforms the abstract source program appearing at
the analysis/synthesis interface into an equivalent target machine program.
This transformation is carried out in two steps: First we map the algorithm
from source concepts to target concepts, and then we select a specific
sequence of target machine instructions to implement that algorithm.

Assembly (Chapter 11) resolves all target addressing and converts the tar-
get machine instructions into an appropriate output format. We should
stress that by using the term ‘assembly’ we do not imply that the code gen-
erator will produce symbolic assembly code for input to the assembly task.
Instead, it delivers an internal representation of target instructions in which
most addresses remain unresolved. This representation is similar to that
resulting from analysis of symbolic instructions during the first pass of a nor-
mal symbolic assembler. The output of the assembly task should be in the
format accepted by the standard link editor or loader on the target machine.

Errors may appear at any time during the compilation process. In order
to detect as many errors as possible in a single run, repairs must be made
such that the program is consistent, even though it may not reflect the
programmer’s intent. Violations of the rules of the source language should
be detected and reported during analysis. If the source algorithm uses con-
cepts of the source language for which no target equivalent has been defined
in a particular implementation, or if the target algorithm exceeds limitations
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of a specific target language interpreter (e.g. requires more memory than a
specific computer provides), this should be reported during synthesis.
Finally, errors must be reported if any storage limits of the compiler itself
are violated.

In addition to the actual error handling, it is useful for the compiler to pro-
vide extra information for run-time error detection and debugging. This
task is closely related to error handling, and both are discussed in Chapter
12.

A number of strategies may be followed in an attempt to improve the tar-
get program relative to some specified measure of cost. (Code size and exe-
cution speed are typical cost measures.) These strategies may involve deeper
analysis of the source program, more complex mapping functions, and
transformations of the target program. We shall treat the first two in our dis-
cussions of analysis and code generation respectively; the third is the subject
of Chapter 13.

1.3. Data Management in a Compiler

As with other large programs, data management and access account for
many of the problems to be solved by the design of a compiler. In order to
control complexity, we separate the functional aspects of a data object from
the implementation aspects by regarding it as an instance of an abstract data
type. (An abstract data type is defined by a set of creation, assignment and
access operators and their interaction; no mention is made of the concrete
implementation technique.) This enables us to concentrate upon the rela-
tionships between tasks and data objects without becoming enmeshed in
details of resource allocation that reflect the machine upon which the com-
piler is running (the compiler host) rather than the problem of compilation.

A particular implementation is chosen for a data object on the basis of
the relationship between its pattern of usage and the resources provided by
the compiler host. Most of the basic issues involved become apparent if we
distinguish three classes of data:

® [ ocal data of compiler tasks

® Program text in various intermediate representations

® Tables containing information that represents context-dependence in the
program text

Storage for local data can be allocated statically or managed via the normal
stacking mechanisms of a block-structured language. Such strategies are not
useful for the program text, however, or for the tables containing contextual
information. Because of memory limitations, we can often hold only a small
segment of the program text in directly-accessible storage. This constrains
us to process the program sequentially, and prevents us from representing it
directly as a linked data structure. Instead, a linear notation that represents
a specific traversal of the data structure (e.g. prefix or postfix) is often
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employed. Information to be used beyond the immediate vicinity of the
place where it was obtained is stored in tables. Conceptually, this informa-
tion is a component of the program text; in practice it often occupies
different data structures because it has different access patterns. For exam-
ple, tables must often be accessed randomly. In some cases it is necessary to
search them, a process that may require a considerable fraction of the total
compilation time. For this reason we do not usually consider the possibility
of spilling tables to a file.

The size of the program text and that of most tables grows linearly with
the length of the original source program. Some data structures (e.g. the
parse stack) only grow with the complexity of the source program. (Com-
plexity is generally related to nesting of constructs such as procedures and
loops. Thus long, straight-line programs are not particularly complex.)
Specification of bounds on the size of any of these data structures leads
automatically to restrictions on the class of translatable programs. These
restrictions may not be onerous to a human programmer but may seriously
limit programs generated by pre-processors.

1.4. Compiler Structure

A decomposition of any problem identifies both tasks and data structures.
For example, in Section 1.2 we discussed the analysis and synthesis tasks.
We mentioned that the analyzer converted the source program into an
abstract representation and that the synthesizer obtained information from
this abstract representation to guide its construction of the target algorithm.
Thus we are led to recognize a major data object, which we call the structure
tree, in addition to the analysis and synthesis tasks.

We define one module for each task and each data structure identified
during the decomposition. A module is specified by an interface that defines
the objects and actions it makes available, and the global data and opera-
tions it uses. It is implemented (in general) by a collection of procedures
accessing a common data structure that embodies the state of the module.
Modules fall into a spectrum with single procedures at one end and simple
data objects at the other. Four points on this spectrum are important for our
purposes:
® Procedure: An abstraction of a single ‘memoryless’ action (i.e. an action

with no internal state). It may be invoked with parameters, and its effect

depends only upon the parameter values. (Example — A procedure to
calculate the square root of a real value.)

® Package: An abstraction of a collection of actions related by a common
internal state. The declaration of a package is also its instantiation, and

hence only one instance is possible. (Example — The analysis or structure
tree module of a compiler.)
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INPUT ouTpPUT

Source text Target Code
Error Reports

Compilation

Analysis Synthesis

LOCAL
Structure Tree

Figure 1.4 Decomposition of the Compiler

INPUT OUTPUT
Source text Error Reports
Structure Tree

Analysis

Structural Semantic
Analysis Analysis

LOCAL
Connection Sequence

Figure 1.5 Decomposition of the Analysis Task

® Abstract data type: An abstraction of a data object on which a number
of actions can be performed. Declaration is separate from instantiation,
and hence many instances may exist. (Example — A stack abstraction
providing the operations push, pop, top, etc.)

® Variable: An abstraction of a data object on which exactly two opera-
tions, fetch and store, can be performed. (Example — An integer variable
in most programming languages.)

Abstract data types can be implemented via packages: The package defines

a data type to represent the desired object, and procedures for all operations

on the object. Objects are then instantiated separately. When an operation
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INPUT OUTPUT
Source text Error Reports
Connection Sequence

Structural
Analysis

Lexical

Analysis Parsing

LOCAL
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Figure 1.6 Decomposition of the Structural Analysis Task
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Figure 1.7 Decomposition of the Synthesis Task

is invoked, the particular object to which it should be applied is passed as a
parameter to the operation procedure.

The overall compiler structure that we shall use in this book is outlined in
Figures 1.4 through 1.8. Each of these figures describes a single step in the
decomposition. The central block of the figure specifies the problem being
decomposed at this step. To the left are the data structures from which
information is obtained, and to the right are those to which information is
delivered. Below is the decomposition of the problem, with boxes represent-
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INPUT OoUTPUT
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Target Code
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Figure 1.8 Decomposition of the Code Generation Task

ing subtasks. Data structures used for communication among these subtasks
are listed at the bottom of the figure. Each box and each entry in any of the
three data lists corresponds to a module of the compiler. It is important to
note that Figures 1.4 through 1.8 reflect only the overall structure of the
compiler; they are not flowcharts and they do not specify module interfaces.

Our decomposition is based upon our understanding of the compilation
problem and our perception of the best techniques currently available for its
solution. The choice of precise boundaries is driven by control and data
flow considerations, primarily minimization of flow at interfaces. Specific
criteria that influenced our decistons will be discussed throughout the text.

The decomposition is virtually independent of the underlying implemen-
tation, and of the specific characteristics of the source language and target
machine. Clearly these factors influence the complexity of the modules that
we have identified, in some cases reducing them to trivial stubs, but the
overall structure remains unchanged.

Independence of the modules from the concrete implementation is
obtained by assuming that each module is implemented on its own abstract
machine, which provides the precise operations needed by the module. The
local data structures of Figures 1.4-1.8 are thus components of the abstract
machine on which the given subproblem is solved.

One can see the degree of freedom remaining in the implementation by
noting that our diagrams never prescribe the time sequence of the subprob-
lem solutions. Thus, for example, analysis and synthesis might run sequen-
tially. In this case the structure tree must be completely built as a linked
data structure during analysis, written to a file if necessary, and then pro-
cessed during synthesis. Analysis and synthesis might, however, run con-



12 Chapter 1. Introduction and Overview

currently and interact as coroutines: As soon as the analyzer has extracted
an element of the structure tree, the synthesizer is activated to process this
element further. In this case the structure tree will never be built as a con-
crete object, but is simply an abstract data structure; only the element being
processed exists in concrete form.

In particular, our decomposition has nothing to do with the possible divi-
sion of a compiler into passes. (We consider a pass to be a single, sequential
scan of the entire text in either direction. A pass either transforms the pro-
gram from one internal representation to another or performs specified
changes while holding the representation constant.) The pass structure com-
monly arises from storage constraints in main memory and from
input/output considerations, rather than from any logical necessity to divide
the compiler into several sequential steps. One module is often split across
several passes, and/or tasks belonging to several modules are carried out in
the same pass. Possible criteria will be illustrated by concrete examples in
Chapter 14. Proven programming methodologies indicate that it is best to
regard pass structure as an implementation question. This permits develop-
ment of program families with the same modular decomposition but
different pass organization. The above consideration of coroutines and
other implementation models illustrates such a family.

1.5. Notes and References

Compiler construction is one of the areas of computer science that early
workers tried to consider systematically. Knuth [1962] reports some of those
efforts. Important sources from the first half of the 60’s are an issue of the
Communications of the ACM [1961], the report of a conference sponsored by
the International Computing Centre [ICC 1962] and the collection of papers
edited by Rosen [1967]. Finally, Annual Review in Automatic Programming
contains a large number of fundamental papers in compiler construction.

The idea of an algorithmic conversion of expressions to a machine-
oriented form originated in the work of Rutishauser [1952]. Although most
of our current methods bear only a distant resemblance to those of the 50’s
and early 60’s, we have inherited a view of the description of programming
languages that provides the foundation of compiler construction today:
Intermediate languages were first proposed as interfaces in the compilation
process by a SHARE committee [Mock 1958]; the extensive theory of for-
mal languages, first developed by the linguist Noam Chomsky [1956], was
employed in the definition of ALGOL 60 [Naur 1963]; the use of pushdown
automata as models for syntax analysis appears in the work of Samelson and
Bauer [1960].

The book by Randell and Russell [1964] remains a useful guide for a
quick implementation of ALGOL 60 that does not depend upon extensive
tools. Grau, Hill and Langmaack [1967] describe an ALGOL 60 implemen-
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tation in an extended version of ALGOL 60. The books by Gries [1971],
Aho and Ullman [1972, 1977a] and Bauer and Eickel [1976] represent the
state of the art in the mid 1970’s.

Recognition that parsing can be understood via models from the theory
of formal languages led to a plethora of work in this area and provided the
strongest motivation for the further development of that theory. From time
to time the impression arises that parsing is the only relevant component of
compiler construction. Parsing unquestionably represents one of the most
important control mechanisms of a compiler. However, while just under
one third of the papers collected in Pollack’s 1972 bibliography are devoted
to parsing, there was not one reference to the equally important topic of
code generation. Measurements [Lalonde 1972] have shown that parsing
represents approximately 9% of a compiler’s code and 11% of the total com-
pilation time. On the other hand, code generation and optimization account
for 50-70% of the compiler. Certainly this discrepancy is due, in part, to the
great advances made in the theory of parsing; the value of this work should
not be underestimated. We must stress, however, that a more balanced
viewpoint is necessary if progress is to be maintained.

Modular decomposition [Parnas 1972, Parnas 1976] is a design technique
in which intermediate stages are represented by specifications of the external
behavior (interfaces) of program modules. The technique of data-driven
decomposition was discussed by Liskov and Zilles [1974], and a summary of
program module characteristics was given by Goos and Kastens [1978].
This latter paper shows how the various kinds of program modules are con-
structed in several programming languages. Our diagrams depicting single
decompositions are loosely based upon some ideas of Stevens, Myers and
Constantine [1974].

EXERCISES

1.1. Consider the Pascal algorithm of Figure 1.1a.
a. What are the elementary objects and operations?
b. What are the rules for chronological relations?
¢. What composition rules are used to construct the static program?

1.2. Determine the state transformation function, f for the algorithm of Figure
I.1a. What initial states guarantee termination? How do you characterize the
corresponding final states?

1.3. Consider a simple computer with an accumulator and two data locations. The
instruction set is:

LOAD  d: Copy the contents of data location d to the accumulator.
STORE d:  Copy the contents of the accumulator to data location d.

SUB d:  Subtract the contents of data location d from the accu-
mulator, leaving the result in the accumulator. (Ignore
any possibility of overflow.)

JUMP 1: Execute instruction i next.
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JZERO i Execute instruction i next if the accumulator contents are
Z€ero.

JNEG i Execute instruction i next if the accumulator contents are
less than zero.

a. What are the elementary objects?
b. What are the elementary actions?
c. What composition rules are used?
d. Complete the state sequence of Figure 1.2b.



CHAPTER 2
Properties of Programming Languages

Programming languages are often described by stating the meaning of the
constructs (expressions, statements, clauses, etc.) interpretively. This de-
scription implicitly defines an interpreter for an abstract machine whose
machine language is the programming language.

The output of the analysis task is a representation of the program to be
compiled in terms of the operations and data structures of this abstract
machine. By means of code generation and the run-time system, these ele-
ments are modeled by operation sequences and data structures of the com-
puter and its basic software (operating system, etc.)

In this chapter we explore the properties of programming languages that
determine the construction and possible forms of the associated abstract
machines, and demonstrate the correspondence between the elements of the
programming language and the abstract machine. On the basis of this dis-
cussion, we select the features of our example source language, LAX. A
complete definition of LAX is given in Appendix A.

2.1. Overview

The basis of every language implementation is a language definition. (See
the Bibliography for a list of the language definitions that we shall refer to in
this book.) Users of the language read the definition as a user manual:
What is the practical meaning of the primitive elements? How can they be
meaningfully used? How can they be combined in a meaningful way? The
compiler writer, on the other hand, is interested in the question of which
constructions are permitted. Even if he cannot at the moment see any useful
application of a construct, or if the construct leads to serious implementation

15
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difficulties, he must implement it exactly as specified by the language
definition. Descriptions such as programming textbooks, which are oriented
towards the meaningful applications of the language elements, do not
clearly define the boundaries between what is permitted and what is prohi-
bited. Thus it is difficult to make use of such descriptions as bases for the
construction of a compiler. (Programming textbooks are also informal, and
often cover only a part of the language.)

2.1.1. Syntax, Semantics and Pragmatics The syntax of a language
determines which character strings constitute well-formed programs in the
language and which do not. The semantics of a language describe the
meaning of a program in terms of the basic concepts of the language. Prag-
matics relate the basic concepts of the language to concepts outside the
language (to concepts of mathematics or to the objects and operations of a
computer, for example).

Semantics include properties that can be deduced without executing the
program as well as those only recognizable during execution. Following
Griffiths [1973], we denote these properties static and dynamic semantics
respectively. The assignment of a particular property to one or the other of
these classes is partially a design decision by the compiler writer. For exam-
ple, some implementations of ALGOL 60 assign the distinction between
integer and real to the dynamic semantics, although this distinction can
normally be made at compile time and thus could belong to the static
semantics.

Pragmatic considerations appear in language definitions as unelaborated
statements of existence, as references to other areas of knowledge, as appeals
to intuition, or as explicit statements. Examples are the statements
{Boolean] values are the truth values denoted by the identifiers true and
false’ (Pascal Report, Section 6.1.2), ‘their results are obtained in the sense of
numerical analysis’ (ALGOL 68 Revised Report, Section 2.1.3.1.e) or
‘decimal numbers have their conventional meaning’ (ALGOL 60 Report,
Section 2.5.3). Most pragmatic properties are hinted at through a suggestive
choice of words that are not further explained. Statements that certain con-
structs only have a defined meaning under specified conditions also belong
to the pragmatics of a language. In such cases the compiler writer is usually
free to fix the meaning of the construct under other conditions. The richer
the pragmatics of a language, the more latitude a compiler writer has for
efficient implementation and the heavier the burden on the user to write his
program to give the same answers regardless of the implementation.

We shall set the following goals for our analysis of a language definition:
® Stipulation of the syntactic rules specifying construction of programs.
® Stipulation of the static semantic rules. These, in conjunction with the

syntactic rules, determine the form into which the analysis portion of the

compiler transforms the source program.
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e Stipulation of the dynamic semantic rules and differentiation from prag-
matics. These determine the objects and operations of the language-
oriented abstract machine, which can be used to describe the interface
between the analysis and synthesis portions of the compiler: The analyzer
translates the source program into an abstract target program that could
run on the abstract machine.

® Stipulation of the mapping of the objects and operations of the abstract
machine onto the objects and operations of the hardware and operating
system, taking the pragmatic meanings of these primitives into account.
This mapping will be carried out partly by the code generator and partly
by the run-time system; its specification is the basis for the decisions
regarding the partitioning of tasks between these two phases.

2.1.2. Syntactic Properties The syntactic rules of a language belong to
distinct levels according to their meaning. The lowest level contains the
‘spelling rules’ for basic symbols, which describe the construction of key-
words, identifiers and special symbols. These rules determine, for example,
whether keywords have the form of identifiers (begin) or are written with
special delimiters ('BEGIN’, .BEGIN), whether lower case letters are per-
mitted in addition to upper case, and which spellings (< =, .LE., 'NOT’
"GREATER’) are permitted for symbols such as < that cannot be repro-
duced on all I/O devices. A common property of these rules is that they do
not affect the meaning of the program being represented. (In this book we
have distinguished keywords by using boldface type. This convention is
used only to enhance readability, and does not imply anything about the
actual representation of keywords in program text.)

The second level consists of the rules governing representation and
interpretation of constants, for example rules about the specification of
exponents in floating point numbers or the allowed forms of integers
(decimal, hexadecimal, etc.) These rules affect the meanings of programs
insofar as they specify the possibilities for direct representation of constant
values. The treatment of both of these syntactic classes is the task of lexical
analysis, discussed in Chapter 6.

The third level of syntactic rules is termed the concrete syntax. Concrete
syntax rules describe the composition of language contructs such as expres-
sions and statements from basic symbols. Figure 2.1a shows the parse tree (a
graphical representation of the application of concrete syntax rules) of the
Pascal statement ‘if a or b and ¢ then --- else ---’. Because the goal of
the compiler’s analysis task is to determine the meaning of the source pro-
gram, semantically irrelevant complications such as operator precedence
and certain keywords can be suppressed. The language constructs are
described by an abstract syntax that specifies the compositional structure of a
program while leaving open some aspects of its concrete representation as a
string of basic symbols. Application of the abstract syntax rules can be illus-
trated by a structure tree (Figure 2.1b).
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Figure 2.1. Concrete and Abstract Syntax

2.1.3. Semantic Properties = Most current programming languages

specify algorithms operationally, in contrast to ‘very high level’ languages

that allow the user to formally describe a problem and leave the implemen-

tation to the compiler. Essential semantic elements of operational languages

are -

® Data objects and structures upon which operations take place

® Operations and construction rules for expressions and other operative
statements

® Constructs providing flow of control, the dynamic composition of pro-
gram fragments

Data objects appear as explicit constants, as values of variables and as
results of operations. At any point in the execution of a program the totality
of variable values represents the state of the abstract machine. This state
constitutes the environment for execution of further operations.

Included in the set of operations are the access functions such as indexing
of an array or selection of a field of a record, and operations such as the
addition or comparison of two values. These operations do not alter the
state of the abstract machine. Assignment is an example of an operation
with a side effect that alters the contents of a variable, a component of the
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state of the abstract machine. Most programming languages contain a large
number of such state-changing operations, all of which may be regarded as
assignment combined with other operations. Usually these operations are
formulated as statements without results. Most COBOL ‘verbs’ designate
such statements. Finally, operations include block entry and exit, procedure
call and return, and creation of variables. These operations, which we asso-
ciate with control of the state, change the state by creating and deleting
objects (variables, parameters, etc.) and altering the allowable access func-
tions.

Flow of control includes conditional expressions or statements, case
selection, iteration, jumps and so forth. These elements appear in various
forms in most programming languages, and frequently take into account
some special implementation possibility or practice. For example, the con-
ditional statement

if truth _value then s, else s,;
and the case selection

case truth_value of true: s,; false: s, end;

have identical effects in Pascal. As we shall see later, however, the two con-
structs would probably be implemented differently.

In considering semantic properties, it is important for the compiler writer
to systematically collect the countless details such as properties of data
objects, operations and side effects, possibilities for iteration, and so forth,
into some schema. The clarity and adequacy of this schema determines the
quality of the compiler because the compiler structure is derived from it. A
shoddy schema makes well-nigh impossible a convincing argument that the
compiler translates the source language fully and completely.

For many languages, including ALGOL 60, ALGOL 68, Pascal and Ada,
good schemata are comparatively easy to obtain because the language
definitions are suitably structured. Other language definitions take the form
of a collection of language element descriptions with many exception rules;
a systematic treatment of such languages is often impossible.

2.2. Data Objects and Operations

The most important characteristics of a programming language are the
available data objects and the operations that may be executed upon them.
The term ‘object’ means a concrete instance of an abstract value. Many
such instances of the same value may exist at the same time. The set of
values possible in a language, such as numbers, character strings, records
and so forth, is usually infinite although a given program naturally uses only
a finite number of them.

Objects and values may be classified according to many criteria. For
example, their internal (to the computer) or external representation, the
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algorithm used to access them, or the access rights might be used. Each such
classification leads to an attribute of the object. The most important
classification is a partition of the set of values according to the applicable
operations; the corresponding attribute is called the zype or mode of the
value. Examples are the numeric types integer and real, to which the basic
arithmetic operations may be applied. (The special role of zero in division is
not covered by this classification.)

A rough subdivision of object types can be made on the basis of the possi-
ble access functions. If an object can be accessed only in its entirety we say
that its type is elementary. If, however, the object consists of a collection of
distinct components, which may be altered individually, then we say that its
type is composite. Thus if a programming language were to explain floating
point operations in terms of updating operations on fraction and exponent
individually, floating point values would be composite. This is not usually
done; the floating point operations can only yield complete floating
numbers, and hence real is an elementary type.

Every operation interprets its operands in a specified manner. The
assignment of a type to a value fixes this interpretation and admits only
those operations for which this interpretation is meaningful. As usual with
such attributes, there are many possible choices for the binding time — the
point at which a particular attribute is ascribed to a particular object: If the
type is first fixed upon execution of an operation, and if practically any
operation can be applied to any object (so long as its length is appropriate),
then we term the language typeless or type-free; otherwise it is called a typed
language. If the type of an object can be determined explicitly from the
program text, we speak of manifest type; the type is latent if it cannot be
determined until the program is executed. (A language whose types are
manifest throughout is sometimes called a strongly-typed language, while one
whose types are latent is called weakly-typed.) Objects with latent types must
be provided with an explicit type indication during execution. Most assem-
bly languages are examples of typeless languages. In contrast, ALGOL 60,
FORTRAN and COBOL are languages with manifest types: All variables
are declared (either explicitly or implicitly) to have values of a certain type,
and there are different forms of denotation for constants of different types.
SNOBOL4 has neither declarations nor implied type specifications for its
variables; on the contrary, the type may change during execution. Thus
SNOBOLA4 has latent types. The union modes in ALGOL 68 and the vari-
ant records of Pascal and Ada take an intermediate position. A variable of
such a ‘discriminated union’ has a latent type, but the possible value types
may only be drawn from an explicitly-stated set.

In a typeless language, the internal representation (‘coding’) of an object
is the concern of the programmer; the implementor of a typed language can
fix the coding because he is fully aware of all desired interpretations.
Erroneous coding by the programmer is thus impossible. Further, incon-
sistent creation or use of a data object can be detected automatically and
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hence the class of automatically-detected errors is broadened. With mani-
fest types such errors appear during compilation, with latent types they are
first detected during execution. Moreover, in a language with latent types
the erroneous creation of an object is only detected upon subsequent use
and the necessary dynamic type checking increases the computation time.

2.2.1. Elementary Types Our purpose in this section and the next is to
give an overview of the types usually found in programming languages and
explore their ‘normal’ properties. The reader should note in particular how
these properties may be deduced from the language definition.

The elementary types can be partitioned according to the (theoretical)
size of their value sets. A type is called finite if only a fixed number of values
of this type exist; otherwise the type is (potentially) infinite.

Finite types can be defined by enumeration of all of the values of the
type. Examples are the type Boolean whose value set is {true, false} and the
type character, with the entire set of characters permitted by an implementa-
tion as its value set. Almost all operations and properties of a type with n
values can be defined giving a 1-1 correspondence with the natural numbers
0,...,n—1 and then defining operations using these ordinal numbers. This
possibility does not imply that such a mapping is actually specified in every
language; on the contrary, finite types are introduced primarily to represent
value sets for which a numerical interpretation is meaningless. For exam-
ple, the revised ALGOL 68 report defines no correspondence between truth
values and the integers 0 and 1. It asserts that such a correspondence exists
for character values, but leaves its precise specification to the implementor:
‘... this relationship is defined only to the extent that different characters
have different integral equivalents, and that there exists a “largest integral
equivalent” (Section 2.1.3.1.g). This specification permits gaps in the
sequence of corresponding integers, an important point in many implemen-
tations.

In principle the value set of a finite type is unordered. If an ordering is
needed, say to define relational operators or a successor function, the order-
ing induced by the mapping to natural numbers is used. For example, Pas-
cal specifies that the relation false< true holds and thus demands the map-
ping false -0, true »1 (although the ordering of Boolean values is really
irrelevant). Often the mere existence of an ordering is sufficient. For exam-
ple, the ALGOL 68 specification of character values permits the use of
sorted tables or trees to speed up searching, even though the user could not
guarantee a particular ordering. Many applications demand that some par-
ticular ordering (collating sequence) be defined on the set of characters; the
task of lexicographic ordering in a telephone book is a common example.
Different collating sequences may be appropriate for different problems.
COBOL recognizes this fact by allowing the user to provide different collat-
ing sequences for different programs or for different operations within the
same program.
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The integers and floating point numbers belong to the class of infinite
types. Most language definitions rely upon the mathematical intuition of the
reader for the definition of these types. Some of our mathematical intuition
is invalidated, however, because the machine representations of these types
are necessarily finite.

The important characteristics of infeger type are that a successor function
is defined on the values, and that exact arithmetic is available. In contrast, a
real value has no defined successor (although a total ordering is defined) and
arithmetic is inexact. Some of the familiar axioms fail — for example, asso-
ciativity is lost. In the representation of a floating point number as a pair
(s,e) such that v =s*° is stored in a single word, additional range is
obtained at the cost of decreased precision. In comparison to the integer
representation, the number of significant digits in s has been shortened to
obtain space for the exponent e. The radix b is usually 2, 8, 10 or 16. Both
a range and a precision must be specified to characterize the floating point
domain, while a range alone suffices for the integer domain. The spec-
ifications for the two domains are independent of one another. In particu-
lar, it is often impossible to represent all valid integers exactly as floating
point numbers because s is not large enough to hold all integer values.

The number of significant digits and the size of the exponent (and similar
properties of other types) vary from computer to computer and implementa-
tion to implementation. Since an algorithm’s behavior may depend upon
the particular values of such parameters, the values should be accessible.
For this purpose many languages provide environment inquiries; some
languages, Ada for example, allow specifications for the range and precision
of numbers in the form of minimum requirements.

Restriction of the integer domain and similar specification of subranges
of finite types is often erroneously equated to the concept of a type.
ALGOL 68, for example, distinguishes an infinity of ‘sizes’ for integer and
real values. Although these sizes define different modes in the ALGOL 68
sense, the Standard Environment provides identical operators for each; thus
they are indistinguishable according to the definition of type given at the
beginning of Section 2.2. The distinction can only be understood by exami-
nation of the internal coding.

The basic arithmetic operations are usually defined by recourse to the
reader’s mathematical intuition. Only integer division involving negative
operands requires a more exact stipulation in a language definition.
Number theorists recognize two kinds of integer division, one truncating
toward zero (-3 divided by 2 yields -1) and the other truncating toward nega-
tive infinity (-3 divided by 2 yields -2). ALGOL 60 uses the first definition,
which also forms the basis for most hardware realizations.

We have already seen that a correspondence between the values of a
finite type and a subset of the natural numbers can be defined. This
correspondence may be specified by the language definition, or it may be
described but its definition left to the implementor. As a general principle,
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similar relationships are possible between the value sets of other types. For
example, the ALGOL 68 Revised Report asserts that for every integer of a
given length there is an equivalent real of that length; the FORTRAN Stan-
dard implies a relation between integer and real values by its definition of
assignment, but does not define it precisely.

Even if two values of different types (say 2 and 2.0) are logically
equivalent, they must be distinguished because different operations may be
applied to them. If a programmer is to make use of the equivalence, the
abstract machine must provide appropriate transfer (conversion) operations.
This is often accomplished by overloading the assignment operator. For
example, Section 4.2.4 of the ALGOL 60 Report states that if the the type
of the arithmetic expression [in an assignment] differs from that associated
with the variables and procedure identifiers [making up the left part list],
appropriate transfer functions are understood to be automatically invoked’.
Another way of achieving this effect is to say that the operator indication
‘.=’ stands for one of a number of assignment operations, just as ‘+’ stands
for either integer or real addition.

The meaning of *:=" must be determined from the context in the above
example. Another approach to the conversion problem is to use the context
to determine the type of value directly, and allow the compiler to insert a
transfer operation if necessary. We say that the compiler coerces the value to
a type appropriate for the context; the inserted transfer operation is a coer-
cion.

Coercions are most frequently used when the conversion is defined for all
values of the type being converted. If this is not the case, the programmer
may be required to write an explicit transfer function. In Pascal, for exam-
ple, a coercion is provided from integer to real but not from real to integer.
The programmer must use one of the two explicit transfer functions trunc or
round in the latter case.

Sometimes coercions are restricted to certain syntactic positions.
ALGOL 68 has elaborate rules of this kind, dividing the complete set of
available coercions into four classes and allowing different classes in
different positions. The particular rules are chosen to avoid ambiguity in the
program. Ada provides a set of coercions, but does not restrict their use.
Instead, the language definition requires simply that each construct be
unambiguously interpretable.

LAX provides Boolean, integer and real as elementary types. We omit-
ted characters and programmer-defined finite types because they do not
raise any additional significant issues. Integer division is defined to truncate
towards zero to match the behavior of most hardware. Coercion from
integer to real is defined, but there is no way to convert in the opposite direc-
tion. Again, the reason for this omission is that no new issues are raised by it.

2.2.2. Composite Types Composite objects are constructed from a finite
number of components, each of which may be accessed by a selector. A com-
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posite type is formed from the types of the components by a type constructor,
which also defines the selectors. Programming languages usually provide
two sorts of composite objects: records (also known as structures) and arrays.

Records are composite objects with a fixed number of components called
fields. Identifiers, which cannot be computed by the program, are used as
field selectors. The type of the composite object is given by enumeration of
the types and selectors of the fields. In some languages (such as COBOL
and PL/1) the description of a record type is bound to a single object.

A record is used to collect related items, for example the name, address,
profession and other data about a single person. Often the number or form
of the data may vary in such cases. For example, the location of a point in
space could be given in terms of rectangular (x, y, z) or cylindrical (r, phi, z)
coordinates. In a record of type ‘point’, variations in the form of the data
are thus possible. Pascal allows such a record with variants to be constructed:

type
coordinates = (rectangular, cylindrical ),
point =record
z:real;
case ¢ : coordinates of
rectangular : (x,y : real);
cylindrical : (r,phi: real);
end;

The fields appearing in every record of the type are written first, followed by
alternative sets of fields; the ¢ appearing in the case construct describes
which alternative set is actually present.

A union mode in ALGOL 68 is a special case of a variant record, in
which every variant consists of exactly one field and the fixed part consists
only of the variant selector. Syntactically, the construct is not described as a
record and the variant selector is not given explicitly. In languages such as
APL or SNOBOLA4, essentially all objects are specified in this manner. An
important question about such objects is whether the variant is fixed for the
lifetime of a particular object, or whether it forms a part of the state and
may be changed.

Arrays differ from records in that their components may be selected via a
computable, one-to-one function whose domain is some finite set (such as
any finite type or a subrange p < i < ¢ of the integers). In languages with
manifest types, all elements of an array have the same type. The operation
ale] (‘select the component of a corresponding to e’) is called indexing.
Most programming languages also permit multi-dimensional rectan-
gular arrays, in which the index set represents a Cartesian product
I,XI,X -+ XI, over a collection of index domains. Depending upon the
time at which the number of elements is bound, we speak of static (fixed at
compile time), dynamic (fixed at the time the object is created) or flexible
(variable by assignment) arrays (cf. Section 2.5.3).
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One-dimensional arrays of Boolean values (bit vectors) may also be
regarded as tabular encodings of characteristic functions over the index set
I. Every value of an array ¢ corresponds to {i | c[i]=true}. In Pascal
such arrays are introduced as ‘sets’ with type set of index _set ; in Ada they
are described as here, as Boolean arrays. In both cases, the operations union
(represented by + or or), intersection (*, and), set difference (-), equality (=
and <> ), inclusion (<, < =, >, > =) and membership (in) are defined
on such sets. Difficulties arise in specifying set constants: The element type
can, of course be determined by looking at the elements of the constant. But
if sets can be defined over a subrange of a type, it is not usually possible to
determine the appropriate subrange just by looking at the elements. In Pas-
cal the problem is avoided by regarding all sets made up of elements of a
particular scalar type to be of the same type, regardless of the subrange
specified as the index set. (Sets of integers are regarded as being over an
implementation-defined subrange.) In Ada the index set is determined by
the context.

Only a few programming languages provide operations (other than set
operations) that may be applied to a composite object as a whole. (APL has
the most comprehensive collection of such operations.) Processing of com-
posite objects is generally carried out componentwise, with field selection,
indexing and component assignment used as access operations on the com-
posite objects. It may also be possible to describe groups of array elements,
for example entire rows or columns or even arbitrary rectangular index
domains (a[i:i3, j,:j,] in ALGOL 68); this process is called slicing.

2.2.3. Strings  Strings are exceptional cases in most programming
languages. In ALGOL 60, strings are permitted only as arguments to pro-
cedures and can thus ultimately be used only as data for code procedures
(normally 1/0 routines). ALGOL 68 considers strings as flexible arrays, and
in FORTRAN 77 or PL/1 the size can increase only to a maximum value
fixed when the object is created. In both languages, single characters may
be extracted by indexing; in addition, comparison and concatenation may
be carried out on strings whose length is known. These latter operations
consider the entire string as a single unit. In SNOBOL4 strings are always
considered to be single units: Assignment, concatenation, conversion to a
pattern, pattern matching and replacement are elementary operations of the
language.

We omitted strings from LAX because they do not lead to any unique
problems in compiler construction.

2.24. Pointers  Records, arrays and strings are composite objects con-
structed as contiguous sequences of elements. Composition according to the
model of a directed graph is possible using pointers, with which one node
can point to another. In all languages providing arrays, pointers can be
represented by indices in an array. Some languages (such as ALGOL 68,
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Pascal and PL/1) define pointers as a new kind of type. In PL/1 the type of
the object pointed to is not specified, and hence one can place an arbitrary
interpretation upon the target node of the pointer. In the other languages
mentioned, however, the pointer type carries the type of the object pointed
to.

Pointers have the advantage of security over indices in an array: Indices
can be confused with other uses of integers, pointers cannot. Above all,
however, pointers can be used to reference anonymous objects that are
created dynamically. The number of objects thus created need not be
known ahead of time. With indices the array bounds fix the maximum
number of objects (except when the array is flexible).

Pascal pointers can reference only anonymous objects, whereas in
ALGOL 68 either named or anonymous objects may be referenced. When
named objects have at most a bounded lifetime, it is possible that a pointer
to an object could outlive the object to which it points. Such dangling refer-
ences will be discussed in Section 2.5.2.

In addition to the technical questions of pointer implementation, the
compiler writer should be concerned with special testing aids (such as print-
ing programs that can traverse a structure, outputting links in some reason-
able way). The reason is that programs containing pointers are usually more
difficult to debug than those not containing pointers.

2.25. Type Equivalence Whenever we use an object in a typed
language (e.g. as an operand of an operation), we must verify that the type
of the object satisfies the requirements of the context and is thus admissible.
To do this we need a technique to compare types with one another and to
determine whether they are equivalent.

The question of type equivalence is easy to answer as long as there are no
type declarations, and no subranges of a type are treated as types. Under
such circumstances we use fextual equivalence: Two types are equivalent if
their external representations are the same. Thus for the elementary types
Boolean, character, integer and real the same symbol is required. Array
types are equivalent if they have equivalent element types and the same
number of dimensions; the values of the bounds are compared only in
languages with static arrays. Pointers must point to objects of equivalent
type. Procedures must have the same number of parameters, and
corresponding parameter and result types must be equivalent. For records,
it is usually required that both types and field selectors be equivalent and
appear in the same order. Therefore the following records are all of
different types:

record a: real ; b integer end

record x : real; y: integer end

record y: integer ; x : real end

When type declarations and pointers are both allowed, textual
equivalence is no longer a useful criterion. Attempting to extend the above
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definitions to recursive types leads to a cycle in the test. For example, the
equivalence of the following types depends upon the equivalence of the
second field which, in turn, depends upon the equivalence of the original
types:

type

m =record x: real; y: Tm end;

p=record x:real;y: 1p end;
To break the cycle, we may generalize textual equivalence to either struc-
tural equivalence or name equivalence.

Structural equivalence is used in ALGOL 68. In this case, each type
identifier (mode indication) is assumed to be a shorthand notation for the
right side of the type declaration. Two types are equivalent if they are textu-
ally equivalent after all type identifiers have been replaced by the right hand
sides of their declarations. This process may introduce other type identifiers,
and the substitution must be repeated; clearly a recursive type has an infinite
textual representation. In order to test for structural equivalence, these
infinite representations must be compared. In Section 9.2 we shall see that a
practical decision procedure using finite representations and working in
polynomial time is available.

Name equivalence states that two types are equivalent if and only if they
are denoted by the same identifier, which identifies the same definition in
each case. M and p above are different types under this definition, since m
and p are distinct identifiers. The right hand sides of the declarations of m
and p are automatically different, since they are not type identifiers. Name
equivalence is obviously easy to check, since it only involves fixing the iden-
tity of type declarations.

Name equivalence seldom appears in pure form. On the one hand it
leads to a flood of type declarations, and on the other to problems in linking
to library procedures that have array parameters. However, name
equivalence is the basis for the definition of abstract data types, where type
declarations that carry the details of the representation are not revealed out-
side the declaration. This is exactly the effect of name equivalence, whereas
structural equivalence has the opposite result. Most programming languages
that permit type declarations use an intermediate strategy. Euclid uses
structural equivalence locally; as soon as a type is ‘exported’, it is known
only by a type identifier and hence name equivalence applies.

If the language allows subranges of the basic types (such as a subrange of
integers in Pascal) the question of whether or not this subrange is a distinct
type arises. Ada allows both: The subrange can be defined as a subtype or
as a new type. In the second case, the pre-defined operations of the base
type will be taken over but later procedures requiring parameters of the base
type cannot be passed arguments of the new type.

The type equivalence rules of LAX embody a representative comprom-
ise. They require textual equivalence as discussed above, but whenever a
type is denoted by an identifier it is considered elementary. (In other words,
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if the compiler is comparing two type specifications for equality and an
identifier appears in one then the same identifier must appear in the same
position in the other.) Implementation of these rules illustrate the compiler
mechanisms needed to handle both structure and name equivalence.

2.3. Expressions

Expressions (or formulas) are examples of composite operations. Their struc-
ture resernbles that of composite objects: They consist of a simple operation
with operands, which are either ordinary data objects or further expressions.
In other words, an expression is a tree with operations as interior nodes and
data objects as leaves.

An expression written in linear infix notation may lead to distinct trees
when interpreted according to different language definitions (Figure 2.2). In
low-level languages modeled upon PL/360, the operators are strictly left-
associative with no operator precedence, and parentheses are prohibited;
APL uses right-associativity with no precedence, but permits grouping by
parentheses. Most higher-level languages employ the normal precedence

¢) Normal precedence rules

Figure 2.2. Trees fora*b +c*d
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rules of mathematics and associate operators of the same precedence to the
left. FORTRAN 77 (Section 6.6.4) is an exception: ‘Once [a tree] has been
established in accordance with [the precedence, association and parenthesi-
zation] rules, the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.” The
phrase ‘mathematically equivalent’ implies that a FORTRAN compiler may
assume that addition is associative, even though this is not true for computer
implementation of floating point arithmetic. (The programmer can, how-
ever, always indicate the correct sequence by proper use of parentheses.)

The leaves of an expression tree represent activities that can be carried
out independently of all other nodes of the tree. Interior nodes, on the other
hand, depend upon the values returned by their descendants. The entire
tree may thus be evaluated by the following algorithm:

repeat
Select an arbitrary leaf and carry out its designated activity (access to
an object or execution of an operation);
if the selected leaf is the root then terminate;
Transmit the result to the parent of the leaf and delete the leaf;
until termination

This evaluation algorithm performs the operations in some sequence permit-
ted by the data flow constraints embodied in the tree, but does not specify
the order in which operands are evaluated. It is based upon a principle
known as referential transparency [Quine 1960] that holds in mathematics:
The value of an expression can be determined solely from the values of its
subexpressions, and if any subexpression is replaced by an arbitrary expres-
sion with the same value then the value of the entire expression remains
unchanged.

In programming languages, evaluation of an expression may additionally
alter the state of the underlying abstract machine through a side effect. If the
altered state is used in another part of the expression then the principle of
referential transparency does not hold, and different evaluation orders may
yield different results.

Side effects are generally undesirable because they complicate program
verification and optimization. Unfortunately, it is often impossible to
mechanically guarantee that no side effects are present. In Euclid an
attempt was made to restrict the possibilities to the point where the compiler
could perform such a check safely. These restrictions include prohibition of
assignments to result parameters and global variables in functions, and
prohibition of I/O operations in functions.

Some side effects do not destroy referential transparency, and are thus
somewhat less dangerous. Section 6.6 of the FORTRAN 77 Standard for-
mulates the weakest useful restrictions: ‘The execution of a function refer-
ence in a statement may not alter the value of any other entity within the
statement in which the function reference appears.’
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In some expressions the value of a subexpression determines that of the
entire expression. Examples are:

a and (- - ) when a =false
bor(---) whenb=true
c*(---) whenc=0

If the remainder of the expression has no side effect, only the subexpression
determining the value need be computed. The FORTRAN 77 Standard
allows this short circuit evaluation regardless of side effects; the description is
such that the program is undefined if side effects are present, and hence it is
immaterial whether the remainder of the expression is evaluated or not in
that case. The wording (Section 6.6.1) is: ‘If a statement contains a function
reference in a part of an expression that need not be evaluated, all entities
that would have become defined in the execution of that reference become
undefined at the completion of evaluation of the expression containing the
function reference.’

ALGOL 60, ALGOL 68 and many other languages require, in principle,
the evaluation of all operands and hence preclude such optimization unless
the compiler can guarantee that no side effects are possible. Pascal permits
short circuit evaluation, but only in Boolean expressions (User Manual, Sec-
tion 4a): ‘The rules of Pascal neither require nor forbid the evaluation of
the second part [of a Boolean expression, when the first part fixes the value]’.
Ada provides two sets of Boolean operators, one (and, or) prohibiting short
circuit evaluation and the other (and then, or else) requiring it.

LAX requires complete evaluation of operands for all operators except
and and or. The order of evaluation is constrained only by data flow con-
siderations, so the compiler may assume referential transparency. This
simplifies the treatment of optimization. By requiring a specific short circuit
evaluation for and and or, we illustrate other optimization techniques and
also show how the analysis of an expression is complicated by evaluation
order rules.

2.4. Control Structures

There are three possibilities for the composition of several actions: serial,
collateral and parallel. Serial execution is implied by any dependence of two
actions upon one another. Such dependence occurs when (say) one action
uses the result of another; more generally, it occurs in any case where the
outcome depends upon the sequence in which the actions occur. If the
actions may be carried out serially or in parallel, or can be interleaved in
time, then we speak of collateral execution. Finally, we use the term paral-
lel when either simultaneous or interleaved execution is required.

When actions are composed serially, the sequence may be prescribed
either implicitly or explicitly. Most programming languages use the
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sequence in which the statements are written as an implicit serial order. The
semicolon separating two successive statements in ALGOL 60 and its suc-
cessors is thus often called the ‘sequence operator’. For explicit control, we
have the following possibilities:

® Conditional clause

® Case clause

® Iteration (with or without a count)
® Jump, exit, etc.

® Procedure call

Conditional clauses make the execution of a component S dependent
upon fulfillment of a Boolean condition. In many languages S may only
take on one of a restricted number of forms — in the extreme case, S may
only be a jump.

The case clause is a generalization of the conditional clause in which the
distinct values of an expression are associated with distinct statements. The
correspondence is either implicit as in ALGOL 68 (the statements
correspond successively to the values 1,2,3,...), or explicit as in Pascal (the
value is used as a case label for the corresponding statement). The latter
construct allows one statement to correspond with more than one value and
permits gaps in the list of values. It also avoids counting errors and
enhances program readability.

Several syntactically distinct iteration constructs appear in many pro-
gramming languages: with or without counters, test at the beginning or end,
etc. The inefficient ALGOL 60 rules requiring the (arbitrarily complex) step
and limit expressions to be re-evaluated for each iteration have been
replaced in newer languages by the requirement that these expressions be
evaluated exactly once. Another interesting point is whether the value of the
counter may be altered by assignment within the body of the iteration (as in
ALGOL 60), or whether it must remain constant (as in ALGOL 68). This
last is important for many optimizations of iterations, as is the usual prohibi-
tion on jumps into an iteration.

Many programming languages allow jumps with variable targets. Exam-
ples are the use of indexing in an array of labels (the ALGOL 60 switch) and
the use of label variables (the FORTRAN assigned GOTO). While
COBOL or FORTRAN jumps control only the succession of statements,
Jjumps out of blocks or procedures in ALGOL-like languages influence the
program state (see Section 2.5). Procedure calls also influence the state.

The ALGOL 60 and ALGOL 68 definitions explain the operation of pro-
cedure calls by substitution of the procedure body for the call (copy rule).
This copying process could form the basis for an implementation (open sub-
routines), if the procedure is not recursive. Recursion requires that the pro-
cedure be implemented as a closed subroutine, a model on which many
other language definitions are based. Particular difficulties await the writer
of compilers for languages such as COBOL, which do not distinguish the
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beginning and end of the procedure body in the code. This means that, in
addition to the possibility of invoking the procedure by means of a call
(PERFORM in COBOL), the statements could be executed sequentially as a
part of the main program.

Parallel execution of two actions is required if both begin from the same
initial state and alter this state in incompatible ways. A typical example is
the parallel assignment x,y:=y, x, in which the values are exchanged. To
represent this in a sequential program, the compiler must first extend the
state so that the condition ‘identical starting states for both actions’ can be
preserved. This can be done here by introducing an auxiliary variable ¢, to
which x is assigned.

Another case of parallel execution of two actions arises when explicit syn-
chronization is embedded in these actions to control concurrent execution.
The compiler must fall back upon coroutines or parallel processing facilities
in the operating system in order to achieve such synchronization; we shall
not discuss this further.

Collateral execution of two actions means that the compiler need not fix
their sequence according to source language constraints. It can, for exam-
ple, exchange actions if this will lead to a more efficient program. If both
actions contain identical sub-actions then it suffices to carry out this sub-
action only once; this has the same effect as the (theoretically possible)
perfectly-synchronized parallel execution of the two identical sub-actions. If
a language specifies collateral evaluation, the question of whether the
evaluation of f(x) in the assignment a[i +1]: = f(x)+a[i +1] can influence
the address calculation for a[i +1] by means of a side effect is irrelevant.
The compiler need only compute the address of a[i +1] once, even if i were
the following function procedure:

function i : integer ; begin k : =k +1; i : =k end;

In this case k will be incremented only once.

2.5. Program Environments and Abstract Machine
States

The operations of a programming language are applied to states of the
abstract machine for this language and transform those states. The state is
represented by the combination of the data objects and values existing at a
particular point in time, the hierarchy of procedure calls not yet completed,
and the representation of the next operation in the program text. The set of
data objects belonging to a state (independent of their values), together with
the procedure call hierarchy, constitute the environment (present in that
state). We can thus distinguish three distinct schemata for state transitions:

® Specify a new successor operation (e.g. by means of a jump).
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® Change the value of an existing data object by means of an assignment.
® Change the size of the state.

We have already discussed the first possibility in Section 2.4.

2.5.1. Constants, Variables and Assignment The data objects in a
programming language either have constant values or are variable. Con-
stants are either specified by denotations (numbers, characters, strings) or
are made to correspond to identifiers by giving a declaration. The latter are
called symbolic constants, and contain the manifest constants as a subclass.
The value of a manifest constant is permanently fixed and can be deter-
mined at compile time. A compiler could replace each occurrence of a
manifest constant identifier by its value, and then forget the identifier com-
pletely. (The constant declarations of Pascal, for example, create manifest
constants.) In addition to manifest constants, a language may permit
dynamic constants. These can be treated by the compiler as variables to
which a value is assigned when the variable is declared, and to which further
assignments are prohibited. The following ALGOL 68 identity declaration
creates a dynamic constant ¢:
intc = if p then 3*x else y +1 fi;

(If p, x and y are really manifest constants then the compiler could optimize
by evaluating the conditional statement and then treating ¢ as a manifest
constant as well. This optimization is called folding — see Chapter 13.)

In the simplest case, variables are data objects with the following proper-
ties:
® They are identified either by an identifier or a composite access path such

as a pair (identifier, index).
® They possess a value (from a domain determined by their type).
® There exists an access function to use their value as an operand.
® There exists an access function/assignment to alter their value.

This model of an elementary variable explains the variable concepts in FOR-
TRAN, COBOL, ALGOL 60, and partially explains that of Pascal.

In many languages, the only assignment permitted to a variable of
composite type is an assignment to a component. For example, ALGOL 60
does not allow assignment of an entire composite object and also prohibits
composite objects as results of function procedures. A composite object
must, however, be considered basically as a unit. Thus any assignment to a
component is an assignment to the entire object.

A variable does not always retain the last assigned value until a new
value is assigned. Typical examples are the control variables in ALGOL 60
and FORTRAN iterations, whose values are undefined upon normal termi-
nation of the iteration. These rules permit the compiler to advance the con-
trol variable either before or after the termination test. (Clearly the two pos-
sibilities lead to different results and hence the value of the controlled vari-
able cannot be guaranteed. ALGOL 68 avoids this problem because the
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control variable is local to the iteration body.) Another example is the
undefinition of a COBOL record by the write operation. This permits
implementation of the write operation by either changing the buffer pointer
or by transferring data. The FORTRAN 66 Standard gives (in Section
10.2.3.1) a further list of situations in which variables become undefined. A
compiler writer should carefully examine the language definition for such
rules, since they normally lead to optimization possibilities.

The pointer objects discussed in Section 2.2.4 provide access paths to
other objects. By using pointers, an arbitrary number of access paths to a
given object can be created. In the special case of parameter transmission,
additional access paths can be created even without pointers (see Section
2.5.3). The following identity declaration from ALGOL 68 is an example of
the general case: \

refmx =---;

Here the right hand side must give an access path to an object; x then
identifies a new access path to this object. In contrast to the ALGOL 60
name parameter, the identity of the object is fixed at the time the identity
declaration is executed. Some languages permit creation of access paths
with limited access rights: Assignments may be forbidden over certain
access paths or in certain contexts. For example, assignments to global
parameters are forbidden in Euclid functions. If such restrictions exist,
adherence to them must be verified by the compiler during semantic
analysis.

Existence of several access paths to the same object complicates the data
flow analysis (analysis of assignment and use patterns) required to verify
certain semantic constraints and to check for the applicability of certain
optimizations. If the compiler writer wishes to delay an assignment, for
example, he must be certain that an access to the new value will not be
attempted over a different access path. This complication is termed the
aliasing problem.

The LAX identity declaration allows creation of an arbitrary number of
new access paths to any variable. It is, however, the only mechanism by
which new access paths can be created. This allows us to illustrate the alias-
ing problem in its full generality in one place, rather than having it appear
in several different constructs with possibly different constraints.

25.2. The Environment The environment of a program fragment
specifies not only which objects exist, but also the access paths by which they
may be reached. Changes in the accessibility (or visibility) of objects are
generally associated with procedure call and return, and for this reason the
procedure call hierarchy forms a part of the environment. We shall now
consider questions of lifetime and visibility; the related topic of procedure
parameter transmission will be deferred to Section 2.5.3.

That part of the execution history of a program during which an object
exists is called the extent of the object. The extent rules of most program-
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ming languages classify objects as follows:

o Static: The extent of the object is the entire execution history of the pro-
gram.

® Automatic: The extent is the execution of a specified syntactic construct
(usually a procedure or block).

® Unrestricted: The extent begins at a programmer-specified point and
ends (at least theoretically) at the end of the program’s execution.

® Controlled: The programmer specifies both the beginning and end of the
extent by explicit construction and destruction of objects.

Objects in COBOL and the blank common block of FORTRAN are
examples of static extent. Local variables in ALGOL 60 or Pascal, as well
as local variables in FORTRAN subprograms, are examples of automatic
extent. (Labeled common blocks in FORTRAN 66 also have automatic
extent, see Section 10.2.5 of the standard.) List elements in LISP and objects
created by the heap generator of ALGOL 68 have unrestricted extent, and
the anonymous variables of Pascal are controlled (created by new and dis-
carded by dispose ).

The possibility of a dangling reference arises whenever a reference can be
created to an object of restricted extent. To avoid errors, we must guarantee
that the referenced object exists at the times when references to it are actu-
ally attempted. A sufficient condition to make this guarantee is the ALGOL
68 rule (also used in LAX) prohibiting assignment of references or pro-
cedures in which the extent of the right-hand side is smaller than the refer-
ence to which it is assigned. It has the advantage that it can be checked by
the compiler in many cases, and a dynamic run-time check can always be
made in the absence of objects with controlled extent. When a language
provides objects with controlled extent, as do PL/1 and Pascal, then the bur-
den of avoiding dangling references falls exclusively upon the programmer.

LAX constants are the only objects having static extent. Variables are
generally automatic, although it is possible to generate unrestricted vari-
ables. The language has no objects with controlled extent, because such
objects do not result in any new problems for the compiler. Static variables
were omitted because the techniques used to deal with automatic variables
apply to them essentially without change.

By the scope of an identifier definition we understand the region of the
program within which we can use the identifier with the defined meaning.
The scope of an identifier definition is generally determined statically by the
syntactic construct of the program in which it is directly contained. A range
is a syntactic construct that may have identifier definitions associated with it.
In a block-structured language, inner ranges are not part of outer ranges.
Usually any range may contain at most one definition of an identifier.
Exceptions to this rule may occur when a single identifier may be used for
distinct purposes, for example as an object and as the target of a jump. In
ALGOL-like languages the scope of a definition includes the range in which
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it occurs and all enclosed ranges not containing definitions of the same
identifier.

Consider the field selection p.f. The position immediately following the
dot belongs to the scope of the declaration of p’s record type. In fact, only
the field selectors of that record type are permitted in this position. On the
other hand, although the statement s of the Pascal (or SIMULA) inspection
withp dos also belongs to the scope of p’s record type declaration, the
definitions from the inspection’s environment remain valid in s unless over-
ridden by field selector definitions. In COBOL and PL/I, f can be written
in place of p.f ( partial qualification) if there is no other definition of f in the
surrounding range.

The concept of static block structure has the consequence that items not
declared in a procedure are taken from the static surrounding of the pro-
cedure. A second possibility is that used in APL and LISP: Nonlocal items
of functions are taken from the dynamic environment of the procedure call.

In the case of recursive procedure calls, identically-declared objects with
nested extents may exist at the same time. Difficulties may arise if an object
is introduced (say, by parameter transmission) into a program fragment
where its original declaration is hidden by another declaration of the same
identifier. Figure 2.3 illustrates the problem. This program makes two
nested calls of p, so that two incarnations, ¢, and g, of the procedure ¢ and
two variables i, and /, exist at the same time. The program should print the
values 1, 4 and 1 of iy, i, and k. This behavior can be explained by using
the contour model.

The contour model captures the state of the program execution as a com-
bination of the (invariant) program text and the structured set of objects
(state) existing at respective points in time. Further, two pointers, ip and ep
belong to the state. Ip is the instruction pointer, which indicates the position
in the program text. For block-structured languages the state consists of a
collection of nested local environments called contours. Each contour
corresponds to a range and contains the objects defined in that range. If the
environment pointer ep addresses a contour ¢, then all of the objects
declared in ¢ and enclosing contours are accessible. The contour addressed
by ep is called the local contour. The object identified by a given identifier is
found by scanning the contours from inner to outer, beginning at the local
contour, until a definition for the specified identifier is found.

The structure of the state is changed by the following actions:

® Construction or removal of an object.
® Procedure call or range entry.

® Procedure return or range exit.

® Jump out of a range.

When an object with automatic extent is created, it lies in a contour
corresponding to the program construct in which it was declared; static
objects behave exactly like objects declared in the main program with
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procedure outer ;
var n,k: integer ;
procedure p (procedure f'; var j : integer ),
label 1;
var i: integer;
procedure ¢ ;
label 2;
begin (* ¢ *)
n:=n+1;ifn=4thengq;
n:=n+lifn=Tthen2: j:=j +1;
i=i+1;
end; (* ¢ *)
begin (* p *)
i:=0;
n:=n+l;ifn=2thenp(qg,i)elsej:=j+1;
ifn=3thenl: f;

i=i+1;
writeln('i =',i:1);
end; (*p ¥)

procedure empty; begin end;
begin (* outer *)
n:=1;k:=0;
plempy,k);
writeln 'k =,k :1);
end; (* outer *)

Figure 2.3. Complex Procedure Interactions in Pascal

automatic extent. Objects with unrestricted extent and controlled objects lie
in their own contours, which do not correspond to program constructs.

Upon entry into a range, a new contour is established within the local
contour and the environment pointer ep is set to point to it. Upon range exit
this procedure is reversed: the local contour is removed and ep set to point
to the immediately surrounding contour.

Upon procedure call, a new contour ¢ is established and ep set to point to
it. In contrast to range entry, however, ¢ is established within the contour ¢’
addressed by ep at the time of procedure declaration. We term ¢’the static
predecessor of ¢ to distinguish it from ¢ the dynamic predecessor, to which ep
pointed immediately before the procedure call. The pointer to ¢’must be
stored in ¢ as a local object. Upon return from a procedure the local con-
tour of the procedure is discarded and the environment pointer reset to its
dynamic predecessor.

To execute a jump into an enclosing range b, blocks and procedures are
exited and the corresponding contours discarded until a contour ¢
corresponding to b is reached such that ¢ contained the contour of the jump.
C becomes the new local contour, to which ep will point, and ip is set to the
jump target. If the jump target is determined dynamically as a parameter or
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the content of a label variable, as is possible in ALGOL 60, then that
parameter or variable must specify both the target address and the contour
that will become the new local contour.

Figures 2.4 and 2.5 show the contour model for the state existing at two
points during the execution of the program of Figure 2.3. Notice that
several contours correspond to the same range when a procedure is called
recursively. Further, the values of actual parameters of a procedure call
should be computed before the environment pointer is altered. If this is not
done, the pointer for parameter computation must be restored (as is neces-
sary for name parameters in ALGOL 60).

In order to unify the state manipulation, procedures and blocks are often
processed identically. A block is then a parameterless procedure called ‘on
the spot’. The contour of a block thus has a dynamic predecessor identical
with its static predecessor. The lifetimes of local objects in blocks can be
determined by the compiler, and a static overlay structure for them can be
set up within the contour of the enclosing procedure. The main program is
counted as a procedure for this purpose. The scope rules are not altered by
this transformation. Contours for blocks can be dispensed with, and all
objects placed in the contour of the enclosing procedure. Arrays with
dynamic bounds lead to difficulties with this optimization, since the bounds
can be determined only at the time of actual block entry.

The rules discussed so far do not permit description of either LISP or
SIMULA. In LISP a function f may have as its result a function g that

Contour for procedure outer
n:3
k:0
empty | Contour for procedure p
2 J =empty
j=k
i 1+ 1
91
Contour for procedure p
f=4
J=h
i 2¢ 0
)
p

Note: Arrows show dynamic predecessor

Figure 2.4. Contours Existing When Control Reaches Label 1 in Figure 2.3
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Contour for procedure outer
n:7
k:0
empty | Contour for procedure p
p [ =empty
j=k
i;: 2 | Contour for procedure ¢
9 fi
Contour for procedure p
f=a
J=h
i 0
92

Figure 2.5. Contours Existing When Control Reaches Label 2 in Figure 2.3

accesses the local storage of f. Since this storage must also exist during the
call of g, the contour of f must be retained at least until g becomes inacces-
sible. Analogously, a SIMULA class k (an object of unrestricted extent)
may have name parameters from the contour in which it was instantiated.
This contour must therefore be retained at least until k& becomes inaccessi-
ble.

We solve these problems by adopting a uniform retention strategy that dis-
cards an object only when that object becomes inaccessible. Accessibility is
defined relative to the current contour. Whenever an object in a contour ¢
references another object in a different contour, ¢, we implement that refer-
ence by an explicit pointer from ¢ to ¢! (Such references include the
dynamic predecessors of the contour, all reference parameters, and any
explicit pointers established by the user.) A contour is accessible if it can be
reached from the current contour by following any sequence of pointers or
by a downhill walk. The dangling reference problem vanishes when this
retention strategy is used.

2.53. Binding An identifier b is termed bound (or local) in a range if this

range contains a definition for b ; otherwise b is free (or global) in this range.

As definitions we have:

® Declarations of object identifiers (including procedure identifiers).

® Definitions: Label definitions, type definitions, FORTRAN labeled com-
mon blocks, etc.

® Formal parameter definitions.
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In the first and second cases the defined value along with all of its attri-
butes is obvious from the definition. In the third case only the identifier and
type of the defined value are available via the program text. The actual
parameter, the argument, will be associated with the identifier by parameter
transmission at the time of the procedure call. We distinguish five essen-
tially different forms of parameter transmission:

1. Value (as in ALGOL 60, SIMULA, Pascal, Ada, for example): The for-
mal parameter identifies a local variable of the procedure, which will be
initialized with the argument value at the procedure call. Assignment to
the parameter does not affect the caller.

2. Result (Ada): The formal parameter identifies a local variable of the
procedure with undefined initial value. Upon return from the procedure
the content of this local variable is assigned to the argument, which must
be a variable.

3. Value/Result (FORTRAN, Ada): The formal parameter identifies a
local variable of the procedure, which will be initialized with the argu-
ment value at the procedure call. Upon return from the procedure the
content of this local variable is assigned to the argument if the argument
is a variable. The argument variable may be fixed prior to the call or
redetermined upon return.

4. Reference (FORTRAN, Pascal, Ada): A reference to the argument is
transmitted to the procedure. All operations on the formal parameter
within the procedure are carried out via this reference. (If the argument
is an expression but not a variable, then the result is placed in a tem-
porary variable for which the reference is constructed. Some languages,
such as Pascal, do not permit use of an expression as an argument in this
case.)

5. Name (ALGOL 60): A parameterless procedure p, which computes a
reference to the argument, is transmitted to the procedure. (If the argu-
ment is an expression but not a variable then p computes the value of the
expression, stores it in a temporary variable 4, and yields a reference to
h.) All operations on the formal parameter first invoke p and then
operate via the reference yielded by p.

Call by value is occasionally restricted to a strict value transmission in which
the formal parameter identifies not a local variable, but rather a local con-
stant. Call by name is explained in many language definitions by textual
substitution of the argument for the parameter. ALGOL 60 provides for
argument evaluation in the environment of the caller through a consistent
renaming.

The different parameter mechanisms can all be implemented in terms of
(strict) call by value, if the necessary kinds of data are available. For cases
(2)-(4), the language must provide the concept of arbitrary references as
values. Call by name also requires the concept of procedures as values (of
procedure variables). Only when these concepts are unavailable are the
transmission mechanisms (2)-(5) important. This is clear in the language
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SIMULA, which (in addition to the value and name calls inherited from
ALGOL 60) provides call by reference for classes and strings. A more care-
ful study shows that in truth this could be handled by an ordinary value call
for references. In ALGOL 68 the call by reference is stated in terms of the
strict call by value, by using an identity declaration to make the formal
parameter fp an alias of the argument ap :

refint fp =ap
Expressions that do not yield references are not permitted as arguments if
this explanation of call by reference is used, since the right hand side of the
identity declaration must yield a reference.

LAX follows the style of ALGOL 68, explaining its argument bindings in
terms of identity declarations. This provides a uniform treatment of all
parameter mechanisms, and also eliminates the parameter mechanism as a
distinct means of creating new access paths. Finally, the identity declaration
gives a simple implementation model.

Many language definitions do not specify parameter transmission
mechanisms explicitly. The compiler writer must therefore attempt to del-
ineate the possibilities by a careful consideration of their effects. For exam-
ple, both case (3) and case (4) satisfy the conditions of the FORTRAN 66
Standard, but none of the others do. Ada generally requires case (1), (2) or
(3). For composite objects, however, case (4) is permitted as an alternative.
Use of this alternative is at the discretion of the implementor, and the pro-
grammer is warned that any assumptions about the particular transmission
mechanism invalidates the program.

Programs whose results depend upon the parameter transmission
mechanism are generally difficult to understand. The dependencies arise
when an object has two access paths, say via two formal parameters or via a
global variable and a formal parameter. This can be seen in the program of
Figure 2.6a, which yields the results of Figure 2.6b for the indicated param-
eter mechanisms.

In addition to knowing what value an identifier is bound to, it is
important to know when the binding takes place. The parameter transmis-
sion differences discussed above can, to a large extent, be explained in terms
of binding times. In general, we can distinguish the following binding times
(explained in terms of the identity declaration ref real x =afi, j +3]):

1. Binding at each access (corresponding to call by name): Upon each
access to x the identity of a[i, j +3] is re-determined.

2. Binding at first access: Upon the first access to x the identity of
ali,j +3] will be determined. All assignments to i and j up to that point
will have an effect.

3. Binding upon declaration (corresponding to call by reference): After ela-
boration of the identity declaration the identity of a[i,j +3] is fixed. In
several languages the identifiers on the right-hand side must not be
declared in the same range, to avoid circular definitions.
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begin
intm:=1,n;
proc p =(???int j, 7?? int k ) int:
beginj:=j +1;m:=m +k; j +k end,
n:=p(m,m+3)
end
Note: ‘7?7’ depends upon the parameter mechanism.

a) An ALGOL 68 program

Mechanism m n j k Comment
Value 5 6 | 2| 4 | Strict value is not possible due to
the assignment to j .
Value/Result 2] 6 | 2| 4 | Pureresultisunreasonable in this
example.
Reference 6| 10 6 | 4 | Only; is a reference parameter

because an expression is illegal as
a reference parameter in ALGOL
68. Hence k is a value parame-
ter.

Name 7 171 71 10

Note: m and n were evaluated at the end of the main program, j and k at
the end of p.

b) The effect of different parameter mechanisms

Figure 2.6. Parameter Transmission

4. Static binding: The identity of a[i,j +3] is fixed throughout the entire
program. In this case @ must have static extent and statically-determined
size. The values of i and j must be defined prior to program execution
and be independent of it (hence they must be constants).

In this spectrum, call by result would be classified as binding after access.
Call by value is a binding of the value, not of the reference.

Determination of identity is least costly at run time for static binding and
most costly for binding at access. During the analysis of the program, the
compiler writer is most concerned with gathering as much information as
possible, to bind as early as he can. For this reason static binding breaks
into two subcases, which in general depend not upon the language but upon
other considerations:

4a. Binding at compilation time. The identity of the bound values is deter-
mined during compilation.

4b. Binding at program initialization: The identity of files or of external
procedures will be determined during a pre-process to program execu-
tion.

In case 4a the knowledge of the bound values can be used in optimization.
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Case 4b permits repeated execution of the program with different bindings
without re-compilation.

Free identifiers, which are not defined in a procedure, must be explained
in the context of the procedure so that their meaning can be determined.
The definitions of standard identifiers, which may be used in any program
without further declaration, are fitted into this scheme by assuming that the
program is embedded in a standard environment containing definitions for
them.

By an external entity we mean an entity identified by a free identifier with
no definition in either the program or the standard environment. A program
with external entities cannot be compiled and then directly executed.
Another step, which obtains the objects associated with external entities
from a program library, must be introduced. We shall discuss this step, the
binding of programs, in Chapter 11. In the simplest case the binding can be
separated from the compilation as an independent terminal step. This
separation is normally chosen for FORTRAN implementations. One conse-
quence is that the compiler has no complete overview of the properties of
external entities and hence cannot verify that they are used consistently.
Thus in FORTRAN it is not usually possible for the compiler to determine
whether external subprograms and functions are called with the correct
number and type of parameters. For such checking, but also to develop the
correct accesses, the compiler must have specifications like those for formal
parameters for every external entity. Many implementations of ALGOL 60,
Pascal, etc. provide that such specifications precede or be included in
independently compiled procedures. Since in these languages, as in many
others, separate compilation of language units is not specified by the
language definition, the compiler writer himself must design the handling of
external values in conjunction with introduction of these possibilities. Ada
contains a far-reaching specification scheme for external entities.

2.6. Notes and References

We draw our examples from a number of languages. In order to avoid the
necessity for referencing the proper definition each time a language property
is discussed, we give an exhaustive list of the languages we use and their
defining documents at the beginning of the Bibliography.

Descriptions of languages in the ALGOL family are interpretive, as are
those of FORTRAN and COBOL. The description of PL/1 with the help of
the Vienna definition method (VDL [Lucas 1969, Wegner 1972]) is likewise
interpretive. Other definition methods are the axiomatic [Hoare 1973} and
the denotational [Gordon 1979, Tennent 1981].

Many languages are described by a given implementation. We have
nothing against this, provided that the implementation is stated in an
abstract form such as that of EVALQUOTE, the function that implements
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the kernel of LISP interpretively. Often, however, it is never defined in a
high-level manner and a new implementation of the same language is very
difficult. The macro implementation of SNOBOL4 [Griswold 1972],
although highly successful, exhibits this problem.

We have associated the concept of type with the set of operations possible
on a value. This led us to conclude that size was a distinct property. Both
ALGOL 68 and Pascal, however, treat values of distinct sizes as having dis-
tinct types. Habermann [1973] gives a critical assessment of this philosophy
and its effect in Pascal.

We have only skimmed the properties of numeric types. Knuth [1969]
presents the general view of floating point numbers and shows how floating
point operations relate to the corresponding mathematical operations on
real numbers. A machine-oriented model that relates the parameters of the
number system to specific characteristics of the target machine is given by
Brown [1977, 1981].

The contour model was originally described by Dijkstra [1960, 1963] as
an implementation technique for ALGOL 60. Johnston [1971] coined the
name and introduced the graphical representation used here. A formal
proof that the contour model is equivalent to consistent renaming and the
copy rule as used in the definition of ALGOL 60 was given by Jones and
Lucas [1971].

Parallel processing, exception handling and some other features of
modern languages have been intentionally omitted from the overview given
in this chapter.

EXERCISES

2.1. [Housden 1975, Morrison 1982] Consider the manipulation of character string
data in a general purpose programming language.
a. What set of operations should be available on strings?
b. Should strings be regarded as elementary or composite objects? Why?
c. Should strings be regarded as objects of a separate type (or types), or as
arrays of characters? Support your position.

2.2. Suppose that Pascal were changed so that the structural equivalence rule (Sec-
tion 2.2.5) held for types and so that “ 1 could precede any type constructor.
Show that the types m and p given in the text are equivalent, and that they are
also equivalent to the type ¢ defined as follows:

type ¢ = record x: real; y: Trecord x: real; y: 1 q end end;
2.3. Why is the Boolean expression (x > —1) and (sqr(1 +x)>y) meaningless in
Pascal, FORTRAN or ALGOL 60? Consider only structurally equivalent

expressions in the various languages, making any necessary syntactic changes.
Give a similar expression in Ada that is meaningful.

2.4. Give the rules for contour creation and destruction necessary to support the
module concept in Ada.

2.5. Consider a block-structured language such as SIMULA, in which coroutines
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2.6.

2.7

2.8.

are allowed. Generalize the contour model with a retention strategy to handle
the following situation: If n coroutines are started in block 5, all have contour ¢
as dynamic predecessor. By means of call-by-name parameters, a coroutine
can obtain access to an object o belonging to ¢; on the other hand, contour ¢
can disappear (because execution of b has terminated) long before termination
of the coroutine. o is then nonexistent, but the access path via the name
parameter remains. What possible solutions do you see for this problem?

The retention strategy discussed in connection with SIMULA in Exercise 2.5
could be used to support parallel processing in ALGOL 68. Quote sections of
the ALGOL 68 Report to show that a simpler strategy can be used.

What problems arise from result parameters in a language that permits jumps
out of procedures?

Consider a program in which several procedures execute on different proces-
sors in a network. Each processor has its own memory. What parameter
mechanisms are appropriate in such a program?



CHAPTER 3

Properties of Real and Abstract
Machines

In this chapter we shall discuss the target machine properties relevant for
code generation, and the mapping of the language-oriented objects and
operations onto objects and operations of the target machine. Systematic
code generation must, of course, take account of the peculiarities and
weaknesses of the target computer’s instruction set. It cannot, however,
become bogged down in exploitation of these special idiosyncrasies; the
payoff in code efficiency will not cover the implementation cost. Thus the
compiler writer endeavors to derive a model of the target machine that is not
distorted by exceptions, but is as uniform as possible, to serve as a base for
code generator construction. To this end some properties of the hardware
may be ignored, or gaps in the instruction set may be filled by subroutine
invocations or inline sequences treated as elementary operations. In partic-
ular, the instruction set is extended by the operations of a run-time system
that interfaces input/output and similar actions to the operating system, and
attends to storage management.

Further extension of this idea leads to construction of abstract target
machines implemented on a real machine either interpretively or by means
of a further translation. (Interpretive abstract machines are common targets
of code generation for microprocessors due to the need for space efficiency.)
We shall not attempt a systematic treatment of the goals, methods and cri-
teria for the design of abstract target machines here; see the Notes and
References for further guidance.

46
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3.1. Basic Characteristics

Most computers have machine languages that are typeless in the sense of
Section 2.2: The interpretation of an object is determined by the operations
applied to it. Exceptions are computers like the Burroughs 5000 and its des-
cendants that associate ‘tag bits’ with each word. The extra bits reduce the
number of possible interpretations of the word, or even make that interpre-
tation unique.

Objects reside in storage of various classes. Access paths, characteristic of
the particular storage class, are used to access these objects as operands or
results of operations. Storage classes, access paths and operations together
constitute a model defining the computer for code generation purposes.

In this section we shall survey typical storage classes, access paths and
operations, and indicate how instructions may be encoded. The remainder
of the chapter will show how these facilities can be used to implement the
source language concepts presented in Chapter 2.

3.1.1. Storage Classes Computer storage can usually be classified as

follows for code generation purposes:

® Main Storage: Randomly-accessible array of identically-sized locations.

® Stack: Storage accessed in a last-in, first-out manner.

® Integer Accumulator: Storage on which integer arithmetic instructions
operate.

® Floating point Accumulator: Storage on which floating point arithmetic
instructions operate.

® Base Register: Storage used in operand access functions to hold
addresses.

® Index Register: Storage used in operand access functions to hold integer
offsets.

® Program Counter: Storage used to hold the address of the next instruc-
tion to be executed.

® Condition Code: Storage used to hold the result of a comparison or test
instruction.

® Other Special Register (¢.g. Stack Pointer, Programmable Boolean Flag).

Examples of this classification applied to typical machines are given in Fig-

ure 3.1.

Every computer provides at least the main storage and program counter
classes. (Whether main storage is virtual or real is of no concern.) A partic-
ular storage component may belong to more than one class. For example,
the base register and index register classes are identical on most computers.
On the IBM 370 these are the ‘general-purpose registers’, which also serve as
integer accumulators. Storage classes may also overlap without being ident-
ical, as in the case of the Univac 1100 series. These computers have sixteen
‘index registers’ belonging to the index and base register classes and sixteen
‘general-purpose registers’ belonging to the integer accumulator and floating
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Main storage.

General registers R0,...,R15 serving as integer accumulators, base
registers or index registers.

Register pairs (RO,R1),(R2,R3),...(R14,R15) serving as integer ac-
cumulators.

Floating point registers F0,F2,F4,F6 serving as floating point accu-
mulators.

Program counter

Condition code

a) IBM 370

Main storage
Data registers DO0,....D7 serving as integer accumulators or index
registers.
Address registers A0,...,A7 serving as base or index registers.
Program counter PC
Condition code
Stack pointer A7
b) Motorola 68000

Figure 3.1. Storage Classes

point accumulator classes. However, the two storage classes overlap, with
four registers belonging to both. These four registers may be accessed as
index registers or as general-purpose registers, and their properties depend
upon the access path used.

Whether a particular storage class exists, and if so what its properties are,
is partially a decision of the compiler writer. If, for example, he chooses to
access a specific portion of the main memory of the Motorola 68000 only via
stack operations relative to register A7 then this portion of the memory
belongs to the storage class ‘stack’ and not the class ‘main storage’. (Such a
decision can be made differently for the generated code and the run-time
system, implying that the memory belongs to one class as far as the gen-
erated code is concerned and another for the run-time system.) Also, since
the properties of a storage class depend to a certain extent upon the avail-
able access paths, a Motorola 68000 stack will differ from that of a Bur-
roughs 6700/7700.

Most storage classes consist of a sequence of numbered elements, the
storage cells. (The numbering may have gaps.) The number of a storage cell
is called its address. Every access path yields an algorithm, the effective
address of the access path, for computing the address of the storage cell
being accessed. We speak of byte-oriented computers if the cells in the main
storage class have a size of 8 bits, otherwise (e.g. 16, 24, 32, 48 or 60 bits per
cell) we term the computer word-oriented. For a word-oriented computer the
cell sizes in the main storage and register classes are usually identical,
whereas the registers of a byte-oriented computer (except for some
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microprocessors) are 2, 4 or possibly 8 bytes long. In this case the storage
cell of the integer accumulator class is usually termed a word.

All storage is ultimately composed of bits. Some early computers (such
as the IBM 1400 series) used decimal arithmetic and addressing, and many
current computers provide a packed decimal (4 bits per digit) encoding.
None of these architectures, however, consider decimal digits to be atoms of
storage that cannot be further decomposed; all have facilities for accessing
the individual bits of the digit in some manner.

Single bits and bit sequences such as the decimal digits discussed above
cannot be accessed directly on most machines. Instead, the bit sequence is
characterized by a partial-word access path specifying the address of a storage
cell containing the sequence, the position of the sequence from the left or
right boundary of this unit, and the size of the sequence. Often this partial
word access path must be simulated by means of shifts and logical opera-
tions.

Aggregates hold objects too large for a single storage cell. An aggregate
will usually be specified by the address of its first storage cell, and the cells
making up the aggregate by their addresses relative to that point. Often the
address of the aggregate must be divisible by a given integer, called the
alignment. Figure 3.2 lists main storage operand sizes and alignments for
typical machines.

Aggregates also appear in classes other than main storage. For example,
the 16 general purpose registers of the IBM 370 form a storage class of 4-
byte cells addressed by the numbers O through 15. Every register whose
address is even forms the first element of a larger entity (a register pair) used
in multiplication, division and shift operations. When a single-length

Operand Size (bits) Alignment
Byte 8 1
Halfword 16 2
Word 32 4
Doubleword 64 8
String up to 256x8 1
a) IBM 370 - Storage cell is an 8-bit byte
Operand Size (bits) Alignment
Bit 1 -
Digit 4 -
Byte 8 1
Word 16 2
Longword 32 2

b) Motorola 68000 - Storage cell is an 8-bit byte

Figure 3.2. Operand Sizes



50 Chapter 3. Properties of Real and Abstract Machines

operand for such an operation is supplied, it should be placed in the proper
register of a pair rather than in an arbitrary register. The other register of
the pair is then automatically reserved for the operation, and cannot be used
for other purposes.

The entities of a particular level in a hierarchy of aggregates may overlap.
This occurs, for example, for the segments in the main storage class of the
Intel 8086 (65536-byte blocks whose addresses are divisible by 16) or the
4096-byte blocks addressable via a base or index register in the IBM 370.

Operations on registers usually involve the full register contents. When
an object whose size is smaller than that of a register is moved between a
register and storage of some other class, a change of representation may
occur. The value of the object must, however, remain invariant. Depending
upon the type of the object, it may be lengthened by inserting leading or
trailing zeros, or by inserting leading or trailing copies of the sign. When it
is shortened, we must guarantee that no significant information is lost. Thus
the working length of an object must be distinguished from the storage length.

3.1.2. Access Paths An access path describes the value or location of an
operand, result or jump target. We classify an instruction as a 0-, 1-, 2-, or
3-address instruction according to the number of access paths it specifies.
Very seldom are there more than three access paths per instruction, and if
more do exist then they are usually implicit. (For example, in the MVCL
instruction of the IBM 370 the two register specifications R1 and R2 actually
define four operands in registers R1, R1+ 1, R2 and R2+ 1 respectively.)
Each access path specifies the initial element of an operand or result in a
storage class. Access paths to some of the storage classes (such as the stack,
program counter, condition code and special registers) are not normally
explicit in the instruction. They will appear only when there is some degree
of freedom associated with their use, as in the PDP11 where any register can
be used as a stack pointer.
The most common explicit access paths involve one of the following
computations:
® Constant. The value appears explicitly in the instruction.
® Register. The content of the register is taken as the value.
® Register+constant. The sum of the content of the register and a constant
appearing explicitly in the instruction is taken as the value.
® Register +register. The sum of the contents of two registers is taken as the
value.
® Register + register +constant. The sum of the contents of two registers
and a constant appearing in the instruction is taken as the value.
The computed value may itself be used as the operand (immediate), it may
be used as the effective address of the operand in main storage (direct), or it
may be used as the address of an address (indirect). On some machines the
object fetched from main storage in the third case may specify another com-
putation and further indirection, but this feature is rarely used in practice.
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i: Operand is the byte i from the instruction.

d(m,n): Operand is the 24-bit value obtained by (Rm)+ (Rn)+d.
Only the low-order 24 bits of each register are used, and the
value is interpreted as positive. Overflow in the addition is ig-
nored. If m or n is O then the content of the register is assumed
to be 0; the actual content of general register 0 is not used.

m: Operand is the content of general register Rm.

m: Operand is the content of general register pair (Rm,Rm + 1).

m: Operand is the content of floating point register Fm.

d(m,n): Operand is the content of a memory area whose address is
the value computed as discussed above.

Implicit access to the condition code and program counter.

Note: 0<i<?2?, 0<d<2"%, 0<m,n<2*
a) IBM 370

=i16: Operand is the word following the instruction.

=132: Operand is the doubleword following the instruction.

i16: Operand is the value (PC)+il6.

18(Am): Operand is the value (PC)+ (Am)+i8.

i8(Dn): Operand is the value (PC)+ (Dn)+i8.

Am: Operand is the content of address register Am.

Dn: Operand is the content of data register Dn.

(Am): Operand is the content of a memory area whose address is
the content of address register Am.

i16(Am): Operand is the content of a memory area whose address
is the value of (Am)+il6.

i8(Am,Dn): Operand is the content of a memory area whose ad-
dress is the value of (Am)+ (Dn)+ i8.

(Am)+: Operand is the content of a memory area whose address
is the content of Am. Am is then incremented by the operand
length. The increment is never less than 2 for A7.

-(Am): Am is decremented by the operand length. Operand is
then the content of a memory area whose address is the content
of Am. The decrement is never less than 2 for A7.

Implicit access to the condition code and program counter.

b) Motorola 68000

Figure 3.3. Access Paths

Figure 3.3 illustrates these concepts for typical machines.

The addresses of registers must almost always appear explicitly as con-
stants in the instruction. In special cases they may be supplied implicitly, as
when the content of the (unspecified) program counter is added to a constant
given in the instruction (relative addressing). If the computed value is used as
an address then the registers must belong to the base register or index regis-
ter class; the sum of the (unsigned) base address and (signed) index is often
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interpreted modulo the address size. The values of constants in instructions
are frequently restricted to nonnegative values, and often their maximum
values are far less than the maximum address. (An example is the restriction
to the range [0,4095] of the IBM 370.)

Not all computers allow every one of the access paths discussed above;
restrictions in the combination (operation, access path) can also occur.
Many of these restrictions arise from the properties of the machine’s regis-
ters. We distinguish five architectural categories based upon register struc-
ture:
® Storage-to-storage. All operands of a computational operation are taken

from main storage, and the result is placed into main storage (IBM 1400

series, IBM 1620). Storage-to-storage operations appear as a supplemen-

tary concept in many processors.

® Stack. All operands of a computational operator are removed from the
top of the stack, and the result is placed onto the top of the stack (Bur-
roughs 5000, 6000 and 7000 series, ICL 2900 family). The stack appears
as a supplementary concept in many processors.

® Single Accumulator. One operand of a computational operator is taken
from the accumulator, and the result is placed into the accumulator; all
other registers, including any accumulator extension, have special tasks or

cannot participate in all operations (IBM 7040/7090, Control Data 3000

series, many process-control computers, Intel 8080 and microprocessors

derived from it).

® Multiple Accumulator. One operand of a computational operator is
taken from one of the accumulators, and the result is returned to that
accumulator; long operands and results are accommodated by pairing the

accumulators (DEC PDP11, Motorola 68000, IBM 370, Univac 1100)
® Storage Hierarchy. All operands of a computational operator are taken

from accumulators, and the result is returned to an accumulator (Control

Data 6000, 7000 and Cyber series). This architecture is identical to the

storage-to-storage architecture if we view the accumulators as primary

storage and the main storage as auxiliary storage.

3.1.3. Operations  Usually the instruction set of a computer provides

four general classes of operation:

® Computation: Implements a function from n-tuples of values to m-tuples
of values. The function may affect the state. Example: A divide instruc-
tion whose arguments are a single-length integer divisor and a double-
length integer dividend, whose results are a single-length integer quotient
and a single-length integer remainder, and which may produce a divide
check interrupt.

® Data transfer: Copies information, either within one storage class or from
one storage class to another. Examples: A move instruction that copies
the contents of one register to another; a read instruction that copies
information from a disc to main storage.
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® Sequencing: Alters the normal execution sequence, either conditionally
or unconditionally. Examples: A halt instruction that causes execution to
terminate; a conditional jump instruction that causes the next instruction
to be taken from a given address if a given register contains zero.

® Environment control: Alters the environment in which execution is car-
ried out. The alteration may involve a transfer of control. Examples: An
interrupt disable instruction that prohibits certain interrupts from occur-
ring; a procedure call instruction that updates addressing registers, thus
changing the program’s addressing environment.

It is not useful to attempt to assign each instruction unambiguously to one of
these classes. Rather the classes should be used as templates to evaluate the
properties of an instruction when deciding how to implement language
operations (Section 3.2.3)

It must be possible for the control unit of a computer to determine the
operation and all of the access paths from the encoding of an instruction.
Older computer designs usually had a single instruction size of, say, 24 or 36
bits. Fixed subfields were used to specify the operation and the various
access paths. Since not all instructions require the same access paths, some
of these subfields were unused in some cases. In an information-theoretic
sense, this approach led to an inefficient encoding.

Coding efficiency is increased in more modern computers by using
several different instruction sizes. Thus the IBM 370 has 16, 32 and 48 bit
(2, 4 and 6 byte) instructions. The first byte is the operation code, which
determines the length and layout of the instruction as well as the operation
to be carried out. Nearly all microprocessors have variable-size operation
codes as well. In this case the encoding process carried out by the assembly
task may require larger tables, but otherwise the compiler is not affected.
Variable-length instructions may also lead to more complex criteria of
optimality.

On some machines one or more operation codes remain unallocated to
hardware functions. Execution of an instruction specifying one of these
operation codes results in an interrupt, which can be used to activate a sub-
program. Thus these undefined operations can be given meaning by
software, allowing the compiler writer to extend the instruction set of the
target machine. Such programmable extension of the instruction set is
sometimes systematically supported by the hardware, in that the access
paths to operands at specific positions are placed at the disposal of the sub-
program as parameters. The XOP instruction of the Texas Instruments 990
has this property. (TRAP allows programmable instruction set extension on
the PDP11, but does not make special access path provisions.)

3.2. Representation of Language Elements

In this and following sections we shall discuss the mapping of the language
elements of Chapter 2 onto the machine elements of Section 3.1. This map-
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ping is really the specification of the tasks of the code generator and the
run-time system, and must be performed for each language /machine pair.

3.2.1. Elementary Objects A combination of space and instruction
questions must be answered in order to determine the mapping of elemen-
tary types such as integer, real, character, Boolean and other enumerations.
Implementation of the relevant basic operations is particularly important for
Boolean values.

For integers, the first decision is whether to use a decimal (4 bits/digit) or
binary encoding. Decimal encoding implies that decimal operations exist
(as on the IBM 370), or at least that there is a facility to detect a carry (result
digit > 9) and to increment the next higher position (as on many micropro-
cessors). The values of variables have varying size with this encoding, which
complicates assignment operations. Decimal encoding is worth considering
if very few operations take place on each value (the cost of the translation
from decimal to binary on input and the reverse translation on output is
greater than the expected gain from using binary operations internally), or if
the numeric incompatibility of binary and decimal arithmetic is a significant
problem (as with some financial applications).

Binary encodings are normally fixed-length, and hence when a binary
encoding is chosen we must fix the length of the representation in terms of
the maximum source language integer. Since most programming languages
leave the range of integer values unspecified, we fall back upon the rule of
thumb that all addresses be representable as integers. This causes us to con-
sider integer representations of 16, 24 or 32 bits. The representation must at
least include all conceivable indexes; 16 bits will suffice for this purpose on
small machines. We must also consider available instructions. For exam-
ple, on the IBM 370 we would rule out 16 bits because no divide instruction
is included for 16 bit operands and because the test to determine whether
intermediate 32-bit results could be represented in 16 bits would slow execu-
tion considerably. The extra instructions would, in many cases, wipe out the
savings resulting from the 16-bit representation. Similar reasoning would
eliminate the 24-bit representation on most computers.

A binary encoding with n bits can represent 2" distinct values, an even
number. Any range of integers symmetric about 0, however, contains an odd
number of values. This basic mismatch leads to anomalous behavior of
machine arithmetic. The exact nature of the anomaly depends upon the
representation chosen for negative numbers. A sign-magnitude or
diminished-radix complement (e.g. 1’s-complement) representation results
in two zero values, one positive and the other negative; a radix complement
(e.g- 2’s-complement) representation results in a ‘most negative’ number that
has no positive counterpart. The extra-zero anomaly is usually the more
difficult of the two for the compiler writer. It may involve additional
instructions to ensure that comparisons yield the correct result, or compli-
cated analysis to prove that these instructions need not be generated.
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Comparisons may prove difficult if they are not provided as machine
instructions. Arithmetic instructions must then be used, and precautions
taken against erroneous results due to over- and underflow. For example,
consider a machine with integers in the range [-32767,32767]. If a > b is
implemented as (¢ —b) > 0 then an overflow will occur when comparing
values a =16384 and b = —16384. The comparison code must either antici-
pate and avoid this case, or handle the overflow and interpret the result
properly. In either case, a long instruction sequence may be required.
Underflow may occur in floating point comparisons implemented by a sub-
traction when the operand difference is small. Since many machines deliver
0 as a result, without indicating that an underflow has occurred, anticipation
and avoidance are required.

Actually, the symptom of the floating point underflow problem is that a
comparison asserts the equality of two numbers when they are really
different. We could argue that the inherent inaccuracy of floating point
operations makes equality testing a risky business anyway. The program-
mer must thoroughly understand the algorithm and its interaction with the
machine representation before using equality tests, and hence we can inform
him of the problem and then forget about it. This position is defensible pro-
vided that we can guarantee that a comparison will never yield an incorrect
relative magnitude (i.e. it will never report a > b when a is less than b, or
vice-versa).

If, as in Pascal, subranges m..n of integers can be specified as types, the
compiler writer must decide what use to make of this information. When
the usual integer range can be exceeded (not possible in Pascal) this forces
the introduction of higher-precision arithmetic (in the extreme case, of
variable-length arithmetic). For small subranges the size of the range can
be used to reduce the number of bits required in the representation, if neces-
sary by replacing the integer i by (i —lower _bound ), although this last is not
recommended. The important question is whether arithmetic operations
exist for the shorter operands, or at least whether the conversion between
working length and storage length can easily be carried out. (Recall that no
significant bits may be discarded when shortening the representation.)

The possibilities for mapping real numbers are constrained by the float-
ing point operations of the hardware or the given subroutine package. (If
neither is available on the target machine then implementation should fol-
low the IEEE standard.) The only real choice to be made involves the preci-
sion of the significand. This decision must be based upon the milieu in
which the compiler will be used and upon numeric problems whose discus-
sion is beyond the scope of this book.

For characters and character strings the choice of mapping is restricted to
the specification of the character code. Assuming that this is not fixed by the
source language, there are two choices: either a standard code such as the
ISO 7-bit code (ASCII), or the code accepted by the target computer’s
operating system for input/output of character strings (EBCDIC or other 6-
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1 Bit The bit position is specified by two masks, MO=B’ 0...010...0' and
M1=B’1..101...1".
1 Byte Let O represent false, K represent true.

a) Possible representations for Boolean values

Construct Code, depending on representation

Byte Bit
™ MO,p
BO LI
NI MI,
q:=p MVC q,p B L2 9
L1 Ol MO,q
L2 continuation
p:=notp XI K,p XI MO,p
™ Mo,
BZ L1
g:=qorp oC q.p o Mog
L1 continuation
™ Mo,
BO LI
g:=qandp | NC q.p NI Mo,q
L1  continuation

(The masks MO and M1 are those appropriate to the second operand of the
instruction in which they appear.)

b) Code using the masks from (a)

Figure 3.4. Boolean Operations on the IBM 370

or 8-bit code; note that EBCDIC varies from one manufacturer to another).
Since most computers provide quite efficient instructions for character trans-
lation, use of the standard code is often preferable.

The representation of other finite types reduces to the question of suitably
representing the integers 0.n — 1, which we have already discussed. One
exception is the Boolean values false and true. Only a few machines are pro-
vided with instructions that access single bits. If these instructions are
absent, bit operations must be implemented by long sequences of code (Fig-
ure 3.4). In such cases it is appropriate to implement Boolean variables and
values as bytes or words. Provided that the source language has not con-
strained their coding, the choice of representation depends upon the realiza-
tion of operations with Boolean operands or Boolean results. In making this
decision, note that comparison and relational operations occur an order of
magnitude more frequently than all other Boolean operations. Also, the
operands of and and or are much more frequently relations than Boolean
variables. In particular, the implementation of and and or by jump cascades
(Section 3.2.3) introduces the possibilities (false=0, true 7= 0) and (false > 0,
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true < 0) or their inverses in addition to the classical (false=0,true =1).
These possibilities underscore the use of more than one bit to represent a
Boolean value.

3.2.2. Composite Objects For composite objects, we are interested in
the properties of the standard representation and the possibilities for reduc-
ing storage requirements.

An object a:array [m.n]of M will be represented by a sequence of
(n —m +1) components of type M. The address of element a[i ] becomes:

address (a[m])+(@ —m)* | M | = address(a[0))+i* | M |

Here | M | is the size of an element in address units and address (a[0]) is the
‘fictitious starting address’ of the array. The address of a[0] is computed
from the location of the array in storage; such an element need not actually
exist. In fact, address (a[0]) could be an invalid address lying outside of the
address space.

The usual representation of an object b: array [m..n\,...,m,.n.]of M
occupies k*ky*--*k,* |M | contiguous memory cells, where k;=
nj—m; +1, j=1,...,r. The address of element b[i,,...,i] is given by
the following storage mapping function when the array is stored in row-
major order:

address (b[m, ... ,m, )+ 1—m)*ky*- - *k,* | M |
+ 4+ —-m)* | M|
=address (B[O, . ..,0D)+i *ko*.. %k, * | M | + - +i,* | M |
By appropriate factoring, this last expression can be rewritten as:
address (B[O, . . ., O +((- -+ (i 1*ka+i)*ks+ +i,)* | M |

If the array is stored in column-major order then the order of the indices in
the polynomial is reversed:

address ([0, ..., O)+((- G *ky 1 +ir 1)K, o+ +i)* | M |

The choice of row-major or column-major order is a significant one.
ALGOL 60 does not specify any particular choice, but many ALGOL 60
compilers have used row-major order. Pascal implicitly requires row-major
order, and FORTRAN explicitly specifies column-major order. This means
that Pascal arrays must be transposed in order to be used as parameters to
FORTRAN library routines. In the absence of language constraints, make
the choice that corresponds to the most extensive library software on the tar-
get machine.

Access to b[iy, ..., i ] is undefined if the relationship m; <i; <n; is not
satisfied for some j=1,...,r. To increase reliability, this relationship
should be checked at run time if the compiler cannot verify it in other ways
(for example, that i; is the controlled variable of a loop and the starting and
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ending values satisfy the condition). To make the check, we need to evalu-
ate a storage mapping function with the following fixed parameters (or its
product with the size of the single element):

raddress(b[0, .. .,0), m,,...,m,, n;,...,n

Together, these parameters constitute the array descriptor. The array
descriptor must be stored explicitly for dynamic and flexible arrays, even in
the trivial case r = 1. For static arrays the parameters may appear directly as
immediate operands in the instructions for computing the mapping function.
Several array descriptors may correspond to a single array, so that in addi-
tion to questions of equality of array components we have questions of
equality or identity of array descriptors.

An r dimensional array b can also be thought of as an array of r —1
dimensional arrays. We might apply this perception to an object
c:array [l.m,l..n] of integer, representing it as m one-dimensional arrays
of type ¢ =array [1..n] of integer. The fictitious starting addresses of these
arrays are then stored in an object a: array [l.m]of 1¢. To be sure, this
descriptor technique raises the storage requirements of ¢ from m*n to
m*n +m locations for integers or addresses; in return it speeds up access on
many machines by replacing the multiplication by » in the mapping func-
tion address (c[0,0])+(i *n +j)* | integer | by an indexed memory reference.
The saving may be particularly significant on computers that have no
hardware multiply instruction, but even then there are contraindications:
Multiplications occurring in array accesses are particularly amenable to
elimination via simple optimizations.

The descriptor technique is supported by hardware on Burroughs
6700/7700 machines. There, the rows of a two-dimensional array are stored
in segments addressed by special segment descriptors. The segment descrip-
tors, which the hardware can identify, are used to access these rows. Actual
allocation of storage to the rows is handled by the operating system and
occurs at the first reference rather than at the declaration. The allocation
process, which is identical to the technique for handling page faults, is also
applied to one-dimensional arrays. Each array or array row is divided into
pages of up to 256 words. Huge arrays can be declared if the actual storage
requirements are unknown, and only that portion actually referenced is ever
allocated.

Character strings and sets are usually implemented as arrays of character
and Boolean values respectively. In both cases it pays to pack the arrays. In
principle, character string variables have variable length. Linked lists pro-
vide an appropriate implementation; each list element contains a segment of
the string. List elements can be introduced or removed at will. Character
strings with fixed maximum length can be represented by arrays of this
length. When an array of Boolean values is packed, each component is
represented by a single bit, even when simple Boolean variables are
represented by larger storage units as discussed above.
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A record is represented by a succession of fields. If the fields of a record
have alignment constraints, the alignment of the entire record must be con-
strained also in order to guarantee that the alignment constraints of the
fields are met. An appropriate choice for the alignment constraint of the
record is the most stringent of the alignment constraints of its fields. Thus a
record containing fields with alignments of 2, 4 and 8 bytes would itself have
an alignment of 8 bytes. Whenever storage for an object with this record
type is allocated, its starting address must satisfy the alignment constraint.
Note that this applies to anonymous objects as well as objects declared
explicitly.

The amount of storage occupied by the record may depend strongly upon
the order of the fields, due to their sizes and alignment constraints. For
example, consider a byte-oriented machine on which a character variable is
represented by one byte with no alignment constraint and an integer vari-
able occupies four bytes and is constrained to begin at an address divisible
by 4. If a record contained an integer field followed by a character field fol-
lowed by a second integer field then it would occupy 12 bytes: There would
be a 3-byte gap following the character field, due to the alignment constraint
on integer variables. By reordering the fields, this gap could be eliminated.
Most programming languages permit the compiler to do such reordering.

Records with variants can be implemented with the variants sharing
storage. Ifitis known from the beginning that only one variant will be used
and that the value of the variant selector will never change, then the storage
requirement may be reduced to exactly that for the specified variant. This
requirement is often satisfied by anonymous records; Pascal distinguishes
the calls new(p) and new(p,variant _selector) as constructors for anonymous
records. In the latter case the value of the variant selector may not change,
whereas in the former all variants are permitted.

The gaps arising from the alignment constraints on the fields of a record
can be eliminated by simply ignoring those constraints and placing the fields
one after another in memory. This packing of the components generally
increases the cost in time and instructions for field access considerably. The
cost almost always outweighs the savings gained from packing a single
record; packing pays only when many identical records are allocated simul-
taneously. Packing is often restricted to partial words, leaving objects of
word length (register length) or longer aligned. On byte-oriented machines
it may pay to pack only the representation of sets to the bit level.

Packing alters the access function of the components of a composite
object: The selector must now specify not only the relative address of the
component, but also its position within the storage cell. On some computers
extraction of a partial word can be specified as part of an operand address,
but usually extra instructions are required. This has the result that packed
components of arrays, record and sets may not be accessible via normal
machine addresses. They cannot, therefore, appear as reference parameters.

Machine-dependent programs sometimes use records as templates for
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hardware objects. For example, the assembly phase of a compiler might use
a record to describe the encoding of a machine instruction. The need for a
fixed layout in such cases violates the abstract nature of the record, and
some additional mechanism (such as the representation specification of Ada)
is necessary to specify this. If the language does not provide any special
mechanism, the compiler writer can overload the concept of packing by
guaranteeing that the fields of a packed record will be allocated in the order
given by the programmer.

Addresses are normally used to represent pointer values. Addresses rela-
tive to the beginning of the storage area containing the objects are often
sufficient, and may require less storage than full addresses. If, asin ALGOL
68, pointers have bounded lifetime, and the correctness of assignments to
reference variables must be checked at run time, we must add information
to the pointer from which its lifetime may be determined. In general the
starting address of the activation record (Section 3.3) containing the refer-
ence object serves this purpose; reference objects of unbounded extent are
denoted by the starting address of the stack. A comparison of these
addresses for relative magnitude then represents inclusion of lifetimes.

3.2.3. Expressions Because of the diversity of machine instruction sets,
we can only give the general principles behind the mapping of expressions
here. An important point to remember throughout the discussion, both here
and in Section 3.2.4, is that the quality of the generated code is determined
by the way it treats cases normally occurring in practice rather than by its
handling of the general case. Moreover, local code characteristics have a
greater impact than any optimizations on the overall quality. Table 3.5
shows the static frequencies of operations in a large body of Pascal text.
Note the preponderance of memory accesses over computation, but
remember that indexing generally involves both multiplication and addition.
Remember also that these are static frequencies; dynamic frequencies might
be quite different because a program usually spends about 90% of its time in
heavily-used regions accounting for less than 10% of the overall code.

Single target machine instructions directly implement operations appear-
ing in the structure tree only in the simplest cases (such as integer arith-
metic). A node of the structure tree generally corresponds to a sequence of
machine instructions, which may appear either directly in the generated
code or as a subroutine call. If subroutines are used then they may be gath-
ered together into an interpreter consisting of a control loop containing a
large case statement. The operations are then simply selectors used to
choose the proper case, and may be regarded as instructions of a new
(abstract) machine. This approach does not really answer the question of
realizing language elements on a target machine; it merely changes the tar-
get machine, hopefully simplifying the problem.

A closed sequence is invariably slower than the corresponding open
sequence because of the cost of the transfers in and out. It would therefore
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Table 3.5. Static Frequencies of Pascal Operators [Carter 1982]

Structure Tree Operator Percent of All Operators

Access a variable 27

Assign 13

Select a field of a record 9.7
Access a value parameter 8.1
Call a procedure 7.8
Index an array (each subscript) 6.4
Access an array 6.1
Compare for equality (any operands) 2.7
Access a variable parameter 2.6
Add integers 2.3
Write a text line 1.9
Dereference a pointer variable 1.9
Compare for inequality (any operands) 1.3
Write a single value 1.2
Construct a set 1.0
not 0.7
and 0.7
Compare for greater (any operands) 0.5
Test for an element in a set 0.5
or 0.4
All other operators 38

be used only if commensurate savings in space were possible. Some care
must be taken in evaluating the tradeoffs, because both open and closed
sequences usually involve setup code for the operands. It is easy to overlook
this code, making erroneous assumptions about the operand locations, and
thereby arrive at the wrong decision. Recall from Section 3.1.3 that it is
sometimes possible to take advantage of unused operation codes to access
closed instruction sequences. Depending upon the details of the hardware,
the time overhead for this method may be either higher or lower than that of
a conventional call. It is probably most useful for implementing facilities
that might be provided by hardware. The typical example is floating point
arithmetic on a microprocessor with integer operations only. A floating
point operation usually involves a long sequence of instructions on such a
machine (which may not even be capable of integer multiplication or divi-
sion), and thus the entry/exit overhead is negligible. If the user later adds a
floating-point chip, and controls it with the previously unused operation
codes, no changes to the code generator are required. Even when different
operation codes are used the changes are minimal.

An object, label or procedure is addressable if its effective address can be
expressed by the relevant access path of an instruction. For entities that are
not addressable, additional operations and temporary storage are required
to compute the effective address. The allowable combinations of operation
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L RI1I
A RI1J Resultin R1
M ROK Multiplicand from R1, product to (RO,R1)
D ROL Dividend from (RO,R1)
a) Code for the expression ((i +/)*k /1)
L RO,I
A RO,J
A RO K  Resultin RO
SRDA R0,32 Extend to double, result in (RO,R1)
D RO,L Dividend from (RO,R1)

b) Code for the expression ((i +j +k)/I)
Figure 3.6. Optimum Instruction Sequences for the IBM 370

and access function exert a very strong influence upon the code generation
process because of this. On the Motorola 68000, for example, specification
of the operation can be largely separated from selection of the access path,
and operand addressability is almost independent of the operator. Many
IBM 370 instructions, on the other hand, work only when the second
operand is in a register. In other cases memory access is possible, but only
via a base register without indexing. This leads to the problem that an
operand may be addressable in the context of one operation but not in the
context of another.

When an instruction set contains such asymmetries, the simplest solution
is to define the abstract machine for the source-to-target mapping with a
uniform access function, reserving the resources (usually one or two regis-
ters) needed to implement the uniform access function for any instruction.
Many code sequences require additional resources internally in any event.
These can often be standardized across the code sequences and used to pro-
vide the uniform access function in addition. The only constraint on
resources reserved for the uniform access function is that they have no
inter-sequence meaning; they can be used arbitrarily within a sequence.

Consider the tree for an expression. The addressability of entities
described by leaves is determined by the way in which the environment is
encoded in the machine state. (We shall discuss possibilities for environ-
ment encoding in Section 3.3.) For entities described by interior nodes,
however, the addressability depends upon the code sequence that imple-
ments the node. It is often possible to vary a code sequence, without chang-
ing its cost, to meet the addressability requirements of another node. Figure
3.6 shows a typical example. Here the constraints of the IBM 370 instruc-
tion set require that a multiplicand be in the odd-numbered register of a
pair, and that the even-numbered register of that pair be free. Similarly, the
optimum mechanism for converting a single-length value to double-length
requires its argument to be in the even register of the pair used to hold its
result. An important part of the source-to-target mapping design is the
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determination of the information made available by a node to its neighbors
in the tree, and how this information affects the individual code sequences.

Interior nodes whose operations yield addresses, such as indexing and
field selection nodes, may or may not result in code sequences. Addressabil-
ity is the key factor in this decision: No code is required if an access func-
tion describing the node’s result can be built, and if that access function is
acceptable to the instruction using the result. The richer the set of access
functions, the more nodes can be implemented simply by access function
restructuring. In fact, it is often possible to absorb nodes describing normal
value operations into access functions that use their result. Figure 3.7 is a
tree for b[i +12]. As we shall see in Section 3.3, the local byte array b might
have access function 36(13) on an IBM 370 (here register 13 gives the base
address of the local contour, and 36 is the relative byte location of b within
that contour). After loading the value of i into register 1, the effects of the
index and addition nodes can be combined into the access function 48(13,1).
This access function (Figure 3.3a) can be used to obtain the second argu-
ment in any RX-format instruction on the IBM 370.

Some machines incorporate automatic incrementing or decrementing of a
register content into certain access functions. These facilities are easy to use
in source-to-target mappings for special purposes such as stack manipula-
tion. Their general use, for example in combining the increment of a loop
control variable with the last use of that variable as an index, is much more
difficult because it leads to ‘combinatorial explosion’ in the number of cases
that the code generator must examine. Such optimizations should be pro-
vided by a separate process (peephole optimization), rather than being
incorporated into the source-to-target mapping.

Many Boolean expressions occur in contexts such as conditional state-
ments and loops, where the result is used only to determine the flow of con-
trol. Moreover, most of these expressions either are relations themselves or
are composed of relations. On the majority of computers a relation is

INDEX

Figure 3.7. Tree for a Typical Array Access



64 Chapter 3. Properties of Real and Abstract Machines

if (a <b) and (c =d) or (e >f ) then statement ;
a) A conditional

L Rl,a
C RLb
BNL LI0O Note condition reversal here
L Rl,c
C Rl,d
BEQ L1 Condition is not reversed here
LI10 L Rle
C RLf
BNH L2 Reversed
L1 Code for statement
L2 . Code following the conditional

b) IBM 370 code corresponding to (a)

Figure 3.8. Jump Cascades

evaluated by performing a comparison or arithmetic operation and then
executing a transfer of control based upon the result. The upshot is that
such expressions can be implemented most conveniently by omitting
Boolean computations completely! Figure 3.8 illustrates the concept, which
is called a jump cascade.

The concept of a jump cascade is completely independent of the concept
of short-circuit evaluation discussed in Section 2.3. It appears that Figure
3.8 is performing short-circuit evaluation because, for example, ¢ is not
fetched unless the value of a is less than that of b. But fetching a simple
variable has no side effect, and hence the short-circuit evaluation is not
detectable. If ¢ were a parameterless function with a side effect then it
should be invoked prior to the start of the code sequence of Figure 3.8b, and
the ¢ in that code sequence would represent temporary storage holding the
function result. Thus we see that questions of short-circuit evaluation affect
only the relative placement of code belonging to the jump cascade and code
for evaluating the operands of the relations.

3.24. Control Structures A node representing a control structure gen-
erally results in several disjoint code sequences rather than a single code
sequence. The meanings of and relationships among the sequences depend
primarily upon the source language, and hence general schemata can be
used to specify them. Each of the disjoint sequences then can be thought of
as an abstract machine operation with certain defined properties and imple-
mented individually.

The goto statement is implemented by an unconditional jump instruction.
If the jump leaves a block or procedure then additional operations, dis-
cussed in Section 3.3, are needed to adjust the state. In expression-oriented
languages, a jump out of an expression may require adjustment of a
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Ll1: clause
L2:
a) if e then clause ;
condition(e,L1,L.2)
Ll1: clause |
GOTOL
L2: clause,
L:
b) if e then clause | else clause,;
select(e, k,L1,...,k,,Ln,L0)
LI1: clause |
GOTO L
Ln: clause,
GOTOL
LO: clause
L:
c) case e of k:clause; - - - ; k, :clause, else clause;
GOTOL
L1: clause
L: condition(e,L1,L2)
L2:
d) while e do clause;
Ll1: clause
condition(e,L2,L.1)
L2:

Figure 3.9. Implementation Schemata for Common Control Structures

condition(e,L1,L2)

¢) repeat clause until e

forbegin(i, e}, ey, e3)
clause
forend(i, e,,e3)

f)fori:=e, by e; to e3 do clause ;
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hardware stack used for temporary storage of intermediate values. This
adjustment is not necessary when the stack is simply an area of memory that
the compiler manages as a stack, computing the necessary offsets at compile
time. (Unless use of a hardware stack permits cheaper access functions, it
should be avoided for this reason.)

Schemata for common control structures are given in Figure 3.9. The
operation ‘condition(expression,true_label,false_label)’ embodies the jump
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target : array [kmin..kmax | of address

k : integer,

k:=e;

if k > kmin and k < kmax then goto target [k ] else goto L 0;
a) General schema for ‘select’ (Figure 3.9¢)

LA le, e, = constant < 22
LOOP ST 1,i

Body of the clause

L 1,i

LA 2,e, e, = constant < 2'?

LA 3,e3 ey = constant < 212

BXLE 1,2,LOOP
b) IBM 370 code for special-case forbegin ... forend

i:=e;t:=e;3;

if i > ¢ then goto /3 else goto /2;
Il:i:=i+1;

12: --- (* Body of the clause *)
ifi < t thengoto /1;

13:

¢) Schema for forbegin...forend when the step is |

Figure 3.10. Implementing Abstract Operations for Control Structures

cascade discussed in Section 3.2.3. The precise mechanism used to imple-
ment the analogous ‘select’ operation depends upon the set {k,- - - k,, }. Let
k i be the smallest and k,,, the largest values in this set. If ‘most’ of the
values in the range [k ., k..c] are members of the set then ‘select’ is imple-
mented as shown in Figure 3.10a. Each element of target that does not
correspond to an element of {k - - - k,, } is set to ‘L0’. When the selector set
is sparse and its span is large (for example, the set 0, 5000, 10000), a decision
tree or perfect hash function should be used instead of an array. The choice
of representation is strictly a space/time tradeoff, and must be made by the
code generator for each case clause. The source-to-target mapping must
specify the parameters to be used in making this choice.

By moving the test to the end of the loop in Figure 3.9d, we reduce by
one the number of jumps executed each time around the loop without
changing the total number of instructions required. Further, if the target
machine can execute independent instructions in parallel, this schema pro-
vides more opportunity for such parallelism than one in which the test is at
the beginning.

‘Forbegin’ and ‘forend’ can be quite complex, depending upon what the
compiler can deduce about the bounds and step, and how the language
definition treats the controlled variable. As an example, suppose that the
step and bounds are constants less than 2'%, the step is positive, and the
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language definition states that the value of the controlled variable is
undefined on exit from the loop. Figure 3.10b shows the best IBM 370
implementation for this case, which is probably one of the most common.
(We assume that the body of the loop is too complex to permit retention of
values in registers.) Note that the label LOOP is defined within the ‘forbe-
gin’ operation, unlike the labels used by the other iterations in Figure 3.9. If
we permit the bounds to be general expressions, but specify the step to be 1,
the general schema of Figure 3.10c holds. This schema works even if the
value of the upper bound is the largest representable integer, since it does
not attempt to increment the controlled variable after reaching the upper
bound. More complex cases are certainly possible, but they occur only
infrequently. It is probably best to implement the abstract operations by
subroutine calls in those cases (Exercise 3.9).

Procedure and function invocations are control structures that also mani-
pulate the state. Development of the instruction sequences making up these
invocations involves decisions about the form of parameter transmission,
and the construction of the activation record — the area of memory contain-
ing the parameters and local variables.

A normal procedure invocation, in its most general form, involves three
abstract operations:
® Callbegin: Obtain access to the an activation record of the procedure.
® Transfer: Transfer control to the procedure.
® Callend: Relinquish access to the activation record of the procedure.
Argument computation and transmission instructions are placed between
‘callbegin’ and ‘transfer’; instructions that retrieve and store the values of
result parameters lie between ‘transfer’ and ‘callend’. The activation record
of the procedure is accessible to the caller between ‘callbegin’ and ‘callend’.

In simple cases, when the procedure calls no other procedures and does
not require complex parameters, the activation record can be deleted
entirely and the parameters treated as local variables of the environment
statically surrounding the procedure declaration. The invocation then
reduces to a sequence of assignments to these variables and a simple subrou-
tine jump. If, as in the case of elementary functions, only one or two param-
eters are involved then they can be passed in registers. Note that such
special treatment leads to difficulties if the functions are invoked as formal
parameters. The identity of the procedure is not fixed under those cir-
cumstances, and hence special handling of the call or parameter transmis-
sion is impossible.

Invocations of formal procedures also cause problems if, as in ALGOL
60, the number and types of the parameters is not statically specified and
must be verified at execution time. These dynamic checks require addi-
tional instructions not only at the call site, but also at the procedure entry.
The latter instructions must be avoided by a normal call, and therefore it is
useful for the procedure to have two distinct entry points — one with and
one without the tests.
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Declarations of local variables produce executable code only when some
initialization is required. For dynamic arrays, initialization includes bounds
computation, storage allocation, and construction of the array descriptor.
Normally only the bounds computation would be realized as in-line code; a
library subroutine would be invoked to perform the remaining tasks.

At least for test purposes, every variable that is not explicitly initialized
should be implicitly assigned an initial value. The value should be chosen
so that its use is likely to lead to an error report; values recognized as illegal
by the target machine hardware are thus best. Under no circumstances
should 0 be used for implicit initialization. If it is, the programmer will too
easily overlook missing explicit initialization or assume that the implicit ini-
tialization is a defined property of the language and hence write incorrect
programs.

Procedure and type declarations do not usually lead to code that is exe-
cuted at the site of the declaration. Type declarations only result in machine
instructions if array descriptors or other variables must be initialized. As
with procedures, these instructions constitute a subprogram that is not called
at the point of declaration.

ALGOL 68 identity declarations of the form m id =expression are con-
sistently replaced by initialized variable declarations m id’:=expression .
Here id’ is a new internal name, and every applied occurrence of id is con-
sistently replaced by id’ 1. The initialization remains the only assignment
to id’. Simplification of this schema is possible when the expression can be
evaluated at compile time and all occurrences of id replaced by this value.

The same schema describes argument transmission for the reference and
strict value mechanisms, in particular in ALGOL 68. Transmission of a
reference parameter is implemented by initialization of an internal reference
variable: ref m parameter =argument becomes ref m variable : =argument .

We have already met the internal transformation used by the value and
name mechanisms in Section 2.5.3. In the result and value/result mechan-
isms, the result is conveniently assigned to the argument after return. In this
way, transmission of the argument address to the procedure is avoided.
When implementing value/result transmission for FORTRAN, one should
generate the result assignment only in the case that the argument was a vari-
able. (Note that if the argument address is transmitted to the procedure then
the caller must always treat the argument as a variable. If the programmer
uses a constant, the compiler must either flag it as an error or move the con-
stant value to a temporary storage location and transmit the address of that
temporary.)

For function results, the compiler generally produces temporaries of suit-
able type at the call site and in the function. Within the function, the result
is assigned to the local temporary. Upon return, as in the case of a result
parameter, the local temporary is copied into the global temporary. The
global temporary is only needed if the result cannot be used immediately.
(An example of this case is the value of cos(x ) in cos(x )+sin( y).)
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Results delivered by function procedures can, in simple cases, be returned
in registers. (For compatibility with jump cascades, it may be useful for a
Boolean function to encode its result by returning to two different points.)
Transmission of composite values as function results can be difficult, espe-
cially when these are arrays whose sizes are not known to the caller. This
means that the caller cannot reserve storage for the result in his own
environment a priori; as a last resort such objects may be left on the heap
(Section 3.3.3).

3.3. Storage Management

Until now we have dealt with the representation of single objects in

memory; in this section we shall discuss management of storage for collec-

tions of objects, including temporary variables, during their lifetimes. The

important goals are the most economical use of memory and the simplicity

of access functions to individual objects. Source language properties govern

the possible approaches, as indicated by the following questions (see also

Section 2.5.2):

® Is the exact number and size of all objects known at compilation time?

® [s the extent of an object restricted, and what relationships hold between
the extents of distinct objects (e.g. are they nested)?

® Does the static nesting of the program text control a procedure’s access to
global objects, or is access dependent upon the dynamic nesting of calls?

3.3.1. Static Storage Management We speak of static storage manage-
ment if the compiler can provide fixed addresses for all objects at the time
the program is translated (here we assume that translation includes binding),
i.e. we can answer the first question above with ‘yes’. Arrays with dynamic
bounds, recursive procedures and the use of anonymous objects are prohi-
bited. The condition is fulfilled for languages like FORTRAN and BASIC,
and for the objects lying on the outermost contour of an ALGOL 60 or Pas-
cal program. (In contrast, arrays with dynamic bounds can occur even in
the outer block of an ALGOL 68 program.)

If the storage for the elements of an array with dynamic bounds is
managed separately, the condition can be forced to hold in this case also.
That is particularly interesting when we have additional information that
certain procedures are not recursive, for example because recursivity must
be noted specially (as in PL/1) or because we have determined it from
analysis of the procedure calls. We can then allocate storage statically for
contours other than the outermost.

Static storage allocation is particularly valuable on computers that allow
access to any location in main memory via an absolute address in the
instruction. Here, static storage corresponds exactly to the class of objects
with direct access paths in the sense of Section 3.2.2. If, however, it is un-
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known during code generation whether or not an object is directly address-
able (as on the IBM 370) because this depends upon the final addressing
carried out during binding, then we must also access statically-allocated
objects via a base register. The only advantage of static allocation then con-
sists of the fact that no operations for storage reservation or release need be
generated at block or procedure entry and exit.

3.3.2. Dynamic Storage Management Using a Stack As we have
already noted in Section 2.5.2, all declared values in languages such as Pas-
cal and SIMULA have restricted lifetimes. Further, the environments in
these languages are nested: The extent of all objects belonging to the con-
tour of a block or procedure ends before that of objects from the dynami-
cally enclosing contour. Thus we can use a stack discipline to manage these
objects: Upon procedure call or block entry, the activation record contain-
ing storage for the local objects of the procedure or block is pushed onto the
stack. At block end, procedure return or a jump out of these constructs the
activation record is popped off of the stack. (The entire activation record is
stacked, we do not deal with single objects individually!)

An object of automatic extent occupies storage in the activation record of
the syntactic construct with which it is associated. The position of the object
is characterized by the base address, b, of the activation record and the rela-
tive location (offset), R, of its storage within the activation record. R must
be known at compile time but b cannot be known (otherwise we would have
static storage allocation). To access the object, b must be determined at run
time and placed in a register. R is then either added to the register and the
result used as an indirect address, or R appears as the constant in a direct
access function of the form ‘register +constant’.

Every object of automatic extent must be decomposable into two parts,
one of which has a size that can be determined statically. (The second part
may be empty.) Storage for the static parts is allocated by the compiler, and
makes up the static portion of the activation record. (This part is often
called the first order storage of the activation record.) When a block or pro-
cedure is activated, the static part of its activation record is pushed onto the
stack. If the activation record contains objects whose sizes must be deter-
mined at run time, this determinatign is carried out and the activation
record extended. The extension, which may vary in size from activation to
activation, is often called the second order storage of the activation record.
Storage within the extension is always accessed indirectly via information
held in the static part; in fact, the static part of an object may consist solely
of a pointer to the dynamic part.

An array with dynamic bounds is an example of an object that has both
static and dynamic parts. In most languages, the number of dimensions of
an array is fixed, so the size of the array descriptor is known at compile time.
Storage for the descriptor is allocated by the compiler in the static part of the
activation record. On encountering the declaration during execution, the
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bounds are evaluated and the amount of storage needed for the array ele-
ments is determined. The activation record is extended by this amount and
the array descriptor is initialized appropriately. All accesses to elements of
the array are carried out via the array descriptor.

We have already noted that at compile time we do not know the base
address of an activation record; we know only the range to which it belongs.
From this we must determine the base address, even in the case where recur-
sion leads to a number of activation records belonging to the same range.
The range itself can be specified by its block nesting depth, bnd, defined
according to the following rules based on the static structure of the program:
® The main program has bnd =1.
® A range is given bnd =t +1 if and only if the immediately enclosing range

has bnd =t.

Bnd =t indicates that during execution of the range the state consists of a
total of ¢ nested contours.

If, as in all ALGOL-like languages, the scopes of identifiers are statically
nested then at every point in the execution history of a program there is at
most one activation record accessible at a given nesting depth. The base
address of a particular activation record can then be found by noting the
corresponding nesting depth at compile time and setting up a mapping
s :nesting depth —base address during execution. The position of an object
in the fixed part of the activation record is fully specified by the pair (bnd,
R); we shall therefore speak of ‘the object (bnd, R)’.

The mapping s changes upon range entry and exit, procedure call and
return, and jumps out of blocks or procedures. Updating s is thus one of the
tasks (along with stack pointer updating and parameter or result transmis-
sion) of the state-altering operations that we met in Section 2.5.2. We shall
describe them semi-formally below, assuming that the stack is described by:

k : array [0..upper _limit ] of storage _cell ; k _top : O..upper _limit ,

We assume further that a storage cell can hold exactly one address, and we
shall treat address variables as integer variables with which we can index k.
The contour nesting and pointer to dynamic predecessor required by the
contour model are represented by address values stored in each activation
record. Together with the return address, and possibly additional informa-
tion depending upon the implementation, they constitute the ‘administrative
overhead’ of the activation record. A typical activation record layout is
shown in Figure 3.11; the corresponding state change operations are given
in Figure 3.12. We have omitted range entry/exit operations. As noted in
Section 2.5.2, procedures and blocks can be treated identically by regarding
a block as a parameterless procedure called ‘on the spot’, or contours
corresponding to blocks can be eliminated and objects lying upon them can
be placed on the contour of the enclosing procedure. If blocks are to be
given separate activation records, the block entry/exit operations are identi-
cal to those for procedures except that no return address is saved on entry
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Second-order storage

Return Address First-order storage

Pointer to Dynamic Predecessor

Pointer to Static Predecessor

Figure 3.11. Typical Activation Record Layout

k[k _top]:=(* static predecessor of the procedure *);
klk_top +1]:=ep; (* dynamic predecessor *)
k[k_top +2]:=ip; (* return address *)
ep.=k_top; (* current environment *)
k_top:=k_top +size;  (* first free location *)

ip .= (* procedure code address *)

a) Procedure entry

k_top:=ep;
ep:=k[k_top +1];  (* back to the dynamic predecessor *)
ip:=klk_top +2];

b) Procedure exit

k_top:=ep;
ep : =(* target environment of the jump *);
while k [k _top + 1] ep do
k_top:=k[k _top +1];  (*leave all intermediate environments *)
ip 1 =(* target address of the jump *);

) Jump out of a procedure

Figure 3.12. Environment Change Operations

and ip is not set on exit. Jumps out of blocks are treated exactly as shown in
Figure 3.12c in any case.

The procedure and jump addresses indicated by the comments in Figures

3.12a and c are supplied by the compiler; the environment pointers must be
determined at run time. If a procedure is invoked directly, by stating its
identifier, then it must lie within the current environment and its environ-
ment pointer can be obtained from the stack by following the chain of static
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predecessors until the proper block nesting depth is reached:

environment : =ep
for i : =bndcaller downto bndprocedure do
environment : =k [environment |;

The value (bndcaller —bndprocedure ) is known at compile time and is usually
small, so the loop is sometimes ‘unrolled’ to a fixed sequence of
environment : =k [environment ] operations.

When a procedure is passed as a parameter and then the parameter is
called, the static predecessor cannot be obtained from the stack because the
called procedure may not be in the environment of the caller. (Figures 2.3
and 2.5 illustrate this problem.) Thus a procedure parameter must be
represented by a pair of addresses: the procedure entry point and the activa-
tion record address for the environment statically enclosing the procedure
declaration. This pair is called a closure. When a procedure parameter is
invoked, the address of the static predecessor is obtained from the closure
that represents the parameter. Figure 3.13 shows the stack representing the
contours of Figure 2.5; note the closures appearing in the activation records
for procedure p.

Jumps out of a procedure also involve changing the state (Figure 3.12c).
The mechanism is essentially the same as that discussed above: If the label
is referenced directly then it lies in the current environment and its environ-
ment pointer can be obtained from the stack. A label variable or label
parameter, however, must be represented by a closure and the environment
pointer obtained from that closure.

Access to any object in the environment potentially involves a search
down the chain of static predecessors for the pointer to the activation record
containing that object. In order to avoid the multiple memory accesses
required, a copy of the addresses can be kept in an array, called a display,
indexed by the block nesting depth. Access to the object (bnd, R) is there-
fore provided by display[bnd ]+ R ; we need only a single memory access,
loading display [bnd ] into a base register, to set up the access function.

The Burroughs 6000/7000 series computers have a 32-register display
built into the hardware. This limits the maximum block nesting depth to 32,
which is no limitation in practice. Even a restriction to 16 is usually no
problem, but 8 is annoying. Thus the implementation of a display within
the register set of a multiple-register machine is generally not possible,
because it leads to unnatural restrictions on the block nesting depth. The
display can be allocated to a fixed memory location, or we might keep only
a partial display (made up of the addresses of the most-frequently accessed
activation records) in registers. Which activation record addresses should be
kept is, of course, program-dependent. The current activation record
address and that of the outermost activation record are good choices in Pas-
cal; the latter should probably be replaced with that of the current module
in an implementation of any language providing modules.
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22

location after 1:f
12 Activation record for procedure ¢
19 5

i=0
11 (reference to i)

5 (g’s environment)

entry point address for ¢ Activation record for procedure p
location after p(g, i)

5

12 0

i=2
4 (reference to k)
0 (empty’s environment)
entry point address for empty | Activation record for procedure p
location after p(empty, k)
0
5 0

S| A
i

Activation record for procedure
outer

olojol

Note:

k_top =22
ep =19
ip = address of label 2

Figure 3.13. Stack Configuration Corresponding to Figure 2.5

If any sort of display, partial or complete, is used then it must be kept up
to date as the state changes. Figure 3.14 shows a general procedure for
bringing the display into synchronism with the static chain. It will alter only
those elements that need alteration, halting when the remainder is
guaranteed to be correct. In many cases the test for termination takes more



3.3. Storage Management 75

procedure update _display (bndnew, bndold : integer ; a : address ).
(* Make the display consistent with the static chain
On entry -
bndnew = nesting depth of the new activation record
a = address of the new activation record
bndold = nesting depth of the current activation record
On exit -
The display specifies the environment of the new contour
*)
var
i: integer;
h: address ;
begin (* update_display *)
i:=bndnew
h:=a;
while display[i }= h or i > bndold do
begin
displayli]:=h;
ir=i—1;h:=k[h]
end
end; (* update_display *)

Figure 3.14. Setting the Display

time than it saves, however, and a more appropriate strategy may be simply
to reload the entire display from the static chain.

Note that the full generality of update_display is needed only when
returning from a procedure or invoking a procedure whose identity is unk-
nown. If a procedure at level bndnew in the current addressing environment
is invoked, the single assignment display [bndnew]:=a suffices. (Here a is
the address of the new activation record.) Display manipulation can become
a significant overhead for short procedures operating at large nesting depths.
Recognition of special cases in which this manipulation can be avoided or
reduced is therefore an important part of the optimization of such pro-
cedures.

In SIMULA and Ada, as in all languages that contain coroutines and
concurrently-executing tasks, activation record creation and destruction
need not follow a strict stack discipline. Each coroutine or task corresponds
to a set of activation records, and these sets are growing and shrinking
independently. Thus each coroutine or task requires an independent stack,
and these stacks themselves follow a stack discipline. The result is called a
tree or cactus stack and is most easily implemented in a segmented virtual
memory. Implementation in a linear memory is possible by fixing the sizes
of the component stacks, but this can only be done when limitations can be
placed upon recursion depth and spawning of further tasks.
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3.3.3. Dynamic Storage Management Using a Heap If none of the
questions stated at the beginning of Section 3.3 lead to sufficient reduction in
the lifetime and visibility of objects, the last resort is to allocate storage on a
heap: The objects are allocated storage arbitrarily within an area of memory.
Their addresses are determined at the time of allocation, and they can only
be accessed indirectly. Examples of objects requiring heap storage are
anonymous objects such as those created by the Pascal new function and
objects whose size changes unpredictably during their lifetime. (Linked lists
and the flexible arrays of ALGOL 68 belong to the latter class.)

Notice that the static and dynamic chain pointers were the only intercon-
nections among the activation records discussed in Section 3.3.2. The use of
a stack storage discipline is not required, but simply provides a convenient
mechanism for reclaiming storage when a contour is no longer relevant. By
storing the activation records on a heap, we broaden the possibilities for
specifying the lifetimes of objects. This is the way in which the uniform
retention strategy mentioned at the end of Section 2.5.2 is implemented.
Storage for an activation record is released only if the program fragment
(block, procedure, class) to which it belongs has been left and no pointers to
objects within this activation record exist.

Heap allocation is particularly simple if all objects required during exe-
cution can fit into the designated area at the same time. In most cases, how-
ever, this is not possible. Either the area is not large enough or, in the case
of virtual storage, the working set becomes too large. A detailed discussion
of heap storage management policies is beyond the scope of this book (see
Section 3.5 for references to the relevant literature). We shall only sketch
three possible recycling strategies for storage and indicate the support
requirements placed upon the compiler by these strategies.

If a language provides an explicit ‘release’ operation, such as Pascal’s
dispose or PL/1’s free, then heap storage may be recycled by the user. This
strategy is simple for the compiler and the run-time system, but it is unsafe
because access paths to the released storage may still exist and be used even-
tually to access recycled storage with its earlier interpretation. The release
operation, like the allocation operation, is almost invariably implemented as
a call on a support routine. Arguments that describe the size and alignment
of the storage area must be supplied to these calls by the compiler on the
basis of the source type of the object.

Automatic reclamation of heap storage is possible only if the designers of
a language have considered this and made appropriate decisions. The key is
that it must be possible to determine whether or not a variable contains an
address. For example, only a variable of pointer type may contain an
address in a Pascal program. A special value, nil/, indicates the absence of a
pointer. When a pointer variable is created, it could be initialized to nil.
Unfortunately, Pascal also provides variant records and does not require
such records to have a tag field indicating which variant is in force. If one
variant contains a pointer and another does not, it is impossible to determine
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whether or not the corresponding variable contains a pointer. Detailed dis-

cussion of the tradeoffs involved in such a decision by a language designer is

beyond the scope of this text.

Storage can be recycled automatically by a process known as garbage col-
lection, which operates in two steps:
® Mark. All accessible objects on the heap are marked as being accessible.
® Collect. All heap storage is scanned. The storage for unmarked objects is

recycled, and all marks are erased.

This has the advantage that no access paths can exist to recycled storage, but
it requires considerable support from the compiler and leads to periodic
pauses in program execution. In order to carry out the mark and collect
steps, it must be possible for the run-time system to find all pointers into the
heap from outside, find all heap pointers held within a given object on the
heap, mark an object without destroying information, and find all heap
objects on a linear sweep through the heap. Only the questions of finding
pointers affect the compiler; there are three principal possibilities for doing
this:

1. The locations of all pointers are known beforehand and coded into the
marking algorithm.

2. Pointers are discovered by a dynamic type check. (In other words, by
examining a storage location we can discover whether or not it contains a
pointer.)

3. The compiler creates a template for each activation record and for the
type of every object that can appear on the heap. Pointer locations and
(if necessary) the object length can be determined from the template.

Pointers in the stack can also be indicated by linking them together into a

chain, but this would certainly take too much storage on the heap.

Most LISP systems use a combination of (1) and (2). For (3) we must
know the target type of every pointer in order to be able to select the proper
template for the object referenced. This could be indicated in the object
itself, but storage would be saved if the template carried the number or
address of the proper template as well as the location of the pointer. In this
manner we also solve the problem of distinguishing a pointer to a record
from the pointer to its first component. Thus the template for an ALGOL
68 structure could have the following structure:
® Length of the structure (in storage units)
® For each storage unit, a Boolean value ‘reference’
® For each reference, the address of the template of the referenced type.

If dynamic arrays or variants are allowed in records then single Boolean
values indicating the presence of pointers are no longer adequate. In the first
case, the size and number of components are no longer known statically.
The template must therefore indicate the location of descriptors, so that they
can be interpreted by the run-time system. In the second case the position of
the variant selector and the different interpretations based upon its value
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must be known. If, as in Pascal, variant records without explicit tag fields
are allowed, then garbage collection is no longer possible.

Garbage collection also requires that all internal temporaries and regis-
ters that can contain references must be identified. Because this is very
difficult in general it is best to arrange the generated code so that, whenever
a garbage collection might occur, no references remain in temporaries or
registers.

The third recycling strategy requires us to attach a counter to every object
in the heap. This counter is incremented whenever a reference to the object
is created, and decremented whenever a reference is destroyed. When the
counter is decremented to its initial value of 0, storage for the object can be
recycled because the object is obviously inaccessible. Maintenance of the
counters results in higher administrative and storage costs, but the overheads
are distributed. The program simply runs slower overall; it does not period-
ically cease normal operation to reclaim storage. Unfortunately, the refer-
ence counter method does not solve all problems:
® Reference counts in a cyclic structure will not become 0 even after the

structure as a whole becomes inaccessible.
® If a counter overflows, the number of references to the object is lost.

A complete solution requires that the reference counters be backed up by a
garbage collector.

To support storage management by reference counting, the compiler
must be able to identify all assignments that create or destroy references to
heap objects. The code generated for such assignments must include
appropriate updating of the reference counts. Difficulties arise when variant
records may contain references, and assignments to the tag field identifying
the variant are allowed: When such an assignment alters the variant, it des-
troys the reference even though no direct manipulation of the reference has
taken place. Similar hidden destruction occurs when there is a jump out of a
procedure that leads to deletion of a number of activation records contain-
ing references to heap objects. Creation of references is generally easier to
keep track of, the most difficult situation probably being assignment of a
composite value containing references as minor components.

3.4. Mapping Specifications

The results of the analysis discussed in the earlier sections of this chapter
should be embodied in a document called a mapping specification (Figure
3.15) for the particular source language/target machine pair. It should not
only give the final results, but also the reasoning that led to them. Even
when a particular choice was obvious, a brief statement of its basis should be
made. For example, one normally chooses the representation of integer
values to be that assumed by the hardware ‘add integer’ instruction; a single
sentence stating this fact should appear in the specification.
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L TO M MAPPING SPECIFICATION

1. The Abstract M

1.1

1.2

13.

Storage Classes

One subsection per storage class (see Section 3.1.1).
Access Paths

One subsection per access path (see Section 3.1.2).
Instructions

One subsection per operation class (see Section 3.1.3).

2. Storage Mapping

2.1

22.

23.

Primitive Data Types

One subsection per primitive data type of L (see Section 3.2.1).
Composite Data Types

One subsection per composite data type of L (see Section 3.2.2).
Computation State

One subsection describing register usage, one describing the use of
space for code and constants, and one per storage area type (e.g.
static, stack, heap - see Section 3.3) required by L.

3. Operation Mapping

3.1

3.2

33.

Routine Invocation
One subsection per operation (e.g. procedure call, procedure entry,
formal call, jump out of a procedure) required by L. Block
entry/exit should also be covered when L requires that these opera-
tions manipulate the computation state.
Control Structures
One subsection per control structure of L (see Section 3.2.4).
Expressions
3.3.1. Auributes
Information to be exchanged among the nodes of an expres-
sion (see Section 3.2.3).
3.3.2. Encodings
Encoding of each L operation as a sequence of instructions
and access paths from the abstract M, as a function of the
information exchanged among expression nodes.

Figure 3.15. Outline of a Mapping Specification

Section 1 of the mapping specification relies heavily on the manu-
facturer’s manual for the target machine. It describes the machine as it will
be seen by the code generator, with anomalies smoothed out and omitted
operations (to be implemented by code sequences or subroutines) in place.
The actual details of realizing the abstraction might be included, or this
information might be the subject of a separate specification. We favor the
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latter approach, because the abstraction should be almost entirely language-
independent. It is clear that the designer must decide which facilities to
include in the abstract machine and which to implement as part of the
operation mapping. We cannot give precise criteria for making this choice.
(The problem is one of modular decomposition, with the abstraction consti-
tuting a module and the operation encoding using the facilities of that
module.)

The most difficult part of Section 2 of the mapping specification is Section
2.3, which is tightly coupled to Section 3.1. Procedure mechanisms advo-
cated by the manufacturer are often ill-suited to the requirements of a given
language. Several alternative mechanisms should be explored, and detailed
cost estimates prepared on the basis of some assumptions about the relative
numbers of calls at various static nesting depths and accesses to variables. It
is imperative that these assumptions be carefully stated, even though there is
only tenuous justification for them; unstated assumptions lead to conflicting
judgements and usually to a suboptimal design. Also, if measurements later
indicate that the assumptions should be changed, the dependence of the
design upon them is clearly stated.

Control structure implementation can be described adequately using
notation similar to that of Figure 3.9. When a variety of information is
exchanged among nodes of an expression, however, description of the
encoding for each node is complicated. The best notation available seems to
be the extended-entry decision table, which we discuss in this context in Sec-
tion 10.3.2.

A mapping specification is arrived at by an iterative process, one that
should be allotted sufficient time in scheduling a compiler development pro-
ject. The cost is dependent upon the complexities of both the source
language and the target machine. In one specific case, involving a Pascal
implementation for the Motorola 68000, two man-months of effort was
required over a six-month period. One person should be responsible for the
specification, but at least one other (and preferably several) should be
involved in frequent critical reviews. The objective of these reviews should
be to test the reasoning based upon the stated assumptions, making certain
that it has no flaws. Challenging the assumptions is less important unless
specific evidence against them is available.

Sections 2.1 and 2.2 of the mapping specification should probably be
written first. They are usually straightforward, and give a basis on which to
build. Sections 2.3 and 3.1 should be nrxt. As indicated earlier, these sec-
tions interact strongly and involve difficult decisions. The remainder of Sec-
tion 3 is tedious, but should be carried out in full detail. It is only by being
very explicit here that one learns the quirks and problems of the machine,
and discovers the flaws in earlier reasoning about storage mapping. Section
1 should be done last, not because it is the least important, but because it is
basically a modification of the machine manual in the light of the needs
generated by Section 3.
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3.5. Notes and References

The question of mapping programming language constructs onto hardware
has been considered piecemeal by a number of authors. Tanenbaum [1976]
gives a good overview of the issues involved, and further information can be
gleaned from specific abstract machine designs [Richards 1971, Tanenbaum
1978, Waite 1977). Floating point abstractions are discussed by Brown
[1977, 1981] and Cody [1980], and a standard has been defined by a commit-
tee of IEEE [IEEE 1981]. McLaren [1970] provides a comprehensive dis-
cussion of data structure packing and alignment. Randell and Russell
[1964] detail the implementation of activation record stacks and displays in
the context of ALGOL 60; Hill [1976] updates this treatment to handle the
problems of ALGOL 68.

Static storage management is not the only possible strategy for FOR-
TRAN implementations. Both the 1966 and 1978 FORTRAN standards
restrict the extent of objects, and thus permit dynamic storage management
via a stack. We have not pursued the special storage allocation problems of
COMMON blocks and EQUIVALENCE statements here; the interested
reader is referred to Chapter 10 of the book by Aho and Ullman [1977a) and
the original literature cited there.

Our statements about the probability of access to objects at various nest-
ing depths are debatable because no really good statistics exist. These pro-
babilities are dependent upon the hierarchical organization of the program,
and may vary considerably between applications and system programs.

The fact that a procedure used as a parameter must carry its environment
with it appears in the original treatment of LISP [McCarthy 1960]. Landin
[1964] introduced the term ‘closure’ in connection with his mechanization of
Lambda expressions. More detailed discussions are given by Moses [1970]
and Waite [1973a]. Hill [1976] applied the same mechanism to the problem
of dynamic scope checking in ALGOL 68.

An overall treatment of storage management is beyond the scope of this
book. Knuth [1968b] provides an analysis of the various general strategies,
and a full discussion of most algorithms known at the time. A general
storage management package that permits a wide range of adaptation was
presented by Ross [1967). The most important aspect of this package is the
interface conventions, which are suitable for most storage management
modules.

Both general principles of and algorithms for garbage collection and
compaction (the process of moving blocks under the user’s control to conso-
lidate the free space into a single block) are covered by Waite [1973a).
Wegbreit [1972] discusses a specific algorithm with an improved worst-case
running time.

Several authors [Deutsch 1976, Barth 1977, Morris 1978] have shown how
to reduce the cost of reference count systems by taking special cases into
account. Clark and Green [1977] demonstrated empirically that over 90% of
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the objects in typical LISP programs never have reference counts greater
than 1, a situation in which the technique operates quite efficiently.

EXERCISES

3.L

3.2

33.

34.

3.5.

3.6.

List the storage classes and access paths available on some machine with
which you are familiar. Did you have difficulty in classifying any of the
machine’s resources? Why?

Consider access to data occupying a part of a word on some machine with
which you are familiar. Does the best code depend upon the bit position
within the word? Upon the size of the accessed field? Try to characterize the
set of ‘best’ code sequences. What information would you need to choose the
proper sequence?

[Steele 1977] Consider the best code for implementing multiplication and
division of an integer by a power of 2 on some machine with which you are
familiar.

a. Would multiplication by 2 best be implemented by an add, a multiply or a
shift? Give a detailed analysis, taking into account the location and possi-
ble values of the multiplicand.

b. If you chose to use a shift for division, would the proper result be obtained
when the dividend was negative? Explain.

c. If your machine has a condition code that is set as a side effect of arith-
metic operations, would it be set correctly in all of the cases discussed
above?

For some computer with which you are familiar, design encodings for the ele-
mentary types boolean, integer, real of Pascal. Carefully defend your choice.

Consider the representation of a multi-dimensional array.

a. In what manner can a user of ALGOL, FORTRAN or Pascal determine
whether the elements are stored in row- or column-major order?

b. Write optimum code for some computer with which you are familiar that
implements the following doubly-nested loop over an object of type
array [1..m ,l..n] of integer stored in row-major order. Do not alter the
sequence of assignments to array elements. Compare the result with the
same code for an array stored in column-major order.

fori := 1tom do
forj := lton do
afi,jl:=0;

c. Explain why a test that the affective address of an array element falls
within the storage allocated to the array is not sufficient to guarantee that
the access is defined.

Carefully describe the implementation of the access function for an array ele-

ment (Section 3.2.2) in each of the following cases:

a. The fictitious starting address lies outside of the address space of the com-
puter.

b. The computer provides only base registers (i.e. the registers involved in the
access computation of Section 3.1.3 cannot hold signed values).
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37

3.8.

3.9.

3.10.

31

Consider a computer requiring certain data items to be stored with alignment
2, while others have no alignment constraints. Give an algorithm that will
rearrange any arbitrary record to occupy minimum storage. Can this algo-
rithm be extended to a machine whose alignment constraints require
addresses divisible by 2, 4 and 8?

Give a mapping of a Pascal while statement that places the condition at the
beginning and has the same number of instructions as Figure 3.9d. Explain
why there is less opportunity for parallel execution in your mapping than in
Figure 3.9d. Under what circumstances would you expect your expansion to
execute in less time than Figure 3.9d? What information would the compiler
need in order to decide between these schemata on the basis of execution
time?

Consider the mapping of a BASIC FOR statement with the general form:
FOR I:€1 TO €y STEP€3

NEXT I

Give implementations of forbegin and forend under each of the following
conditions:

a.e;=1,e,=10,e3=1
b.ej=1,e,=10,e3=7
c.e;=10,ey=1€3=-3
d.e;=10,e,=1,e3=1
e.e1=A,e)=B,e;=C

Does your answer to (e) work when A is the largest negative integer
representable on the target machine? When B is the largest positive
representable integer? If not, what is the cost of repairing this defect? Would
you consider this cost acceptable in the light of the probability of such
bounds?

For some machine with which you are familiar, compare the cost of access to
statically-allocated objects, objects allocated at fixed locations in an activation
record, elements of dynamic arrays and objects allocated on the heap. Be
sure to account for any necessary base register loads.

The state change operations summarized in Figure 3.2 are actually imple-

mented by a combination of code at the call site, code in the procedure or

block, and common code in system subprograms. Consider their realization
on some machine with which you are familiar.

a. Operations at the call site should be minimized, at least when the pro-
cedure is called directly. What is the minimum code you can use? (You
may change the activation record layout of Figure 3.11 arbitrarily to suit
your implementation. )

b. How do you handle the fact that a given procedure may be called either
directly or as a parameter? Show that the environment is properly initial-
ized in both cases.
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3.12.

3.13.

3.14.

3.15.

3.16.

3.17.
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c. Compare the cost of using a display with that of using simply static and
dynamic pointers. On the basis of your answer to Exercise 3.8, determine
the break-even point for a display in terms of number of variable accesses.

Code the display update routine of Figure 3.4 for some machine with which
you are familiar. What average nesting depth constitutes the break-even
point for the early termination test? On the basis of your own experience,
should the test be included or not?

Under what circumstances is it impossible to compare the extents of two
objects by comparing their addresses?

For some machine with which you are familiar, design a schema for
representing type templates. Be sure to handle variant records and dynamic
arrays.

Suppose that a machine provides no ‘undefined’ value. What values would
you propose to use as implicit initializations for Pascal boolean, integer and
real variables? Explain your choices.

Under what circumstances would you consider transmitting arguments and
results in registers? Illustrate your answer with several real machines.

Consider the following LAX fragment:

declare

procedure p(a: array [] of integer); ...;
procedure g : array [] of integer; ...
begin p (¢) end;

a. Explain why this fragment is illegal.

b. Suppose that the fragment were legal, and had the obvious effect: Pro-
cedure g creates an array, which is then passed to procedure p. Discuss a
storage management strategy for the array elements. Where should the
storage be allocated? Can we avoid copying the array? What tradeoffs are
involved?



CHAPTER 4
Abstract Program Representations

Decomposition of the compilation process leads to interfaces specified by
abstract data types, and the basic purposes of these interfaces are largely
independent of the source language and target machine. Information cross-
ing an interface between major compilation tasks constitutes a representa-
tion of the program in an intermediate language. This representation may
or may not be embodied in a concrete data structure, depending upon the
structure and goals of a particular compiler. Similarly, the characteristics of
a particular compiler may make it useful to summarize the properties of
objects in tables stored separately from the program text.

The general characteristics of each interface stem from the modular
decomposition of the compiler discussed in Chapter 1. In this chapter we
consider several important intermediate languages and tables in detail. By
determining the content and possible realization of these interfaces, we
place more concrete requirements upon the major compilation tasks.

4.1. Intermediate Languages

Our decomposition leads to four intermediate languages: the token
sequence, the structure tree, the computation graph and the target tree. A
program is transformed from one to the other in the order given, and they
will be presented here in that order.

4.1.1. Token Sequence Chapter 2 pointed out that a source program is
composed of a sequence of basic symbols. These basic symbols, rather than
the characters from which they are formed, are the relevant units of the
source text. We shall use the term symbol to denote the external representa-
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tion of a basic symbol (or an encoding thereof); a token is the internal
representation.

LAX symbols are described in Section A.1. Production A.1.0.1 classifies
them as identifiers, denotations and delimiters respectively. Comments are
not basic symbols, and therefore do not appear in the token sequence.

We can characterize the information carried by one token in terms of the
type declarations shown in Figure 4.1. Location encodes the information
required to relate an error message to the source language listing. Section
12.1.3 discusses error reporting mechanisms in detail, and hence we leave
the specification of the type coordinates open until then.

Most syntactic classes (encoded by members of the enumerated type
tokens) contain only a single symbol. Tokens representing such symbols
need specify only the syntactic class. Only identifiers and denotations
require additional information.

A LAX identifier has no intrinsic meaning that can be determined from
the character string constituting that identifier. As a basic symbol, therefore,
the only property distinguishing one identifier from another is its external
representation. This property is embodied in the sym field of the token.
Section 4.2.1 will consider the type symbol, and explain how the external
representation is encoded.

The field intv or fptv is a representation of the value denoted by the source
language denotation that the token abstracts. There are several possibilities,
depending upon the goals of the particular compiler; Section 4.2.2 considers
them in detail.

4.1.2. Structure Tree A structure tree is a representation of a compila-
tion unit in terms of source concepts. It is an ordered tree (in the sense of
Section B.1) whose structure is that of an abstract syntax of the source

type
tokens =( (* classification of LAX tokens *)
identifier, (*A.1.02 %)
integer_denotation, (* A.1.0.6 %)
Sfloating_point_denotation, (*A.1.0.7%
plus, . .., equivalent, (* specials: A.1.0.10 *)

and _kw, . .., while_kw); (* keywords: A.1.0.11 *)

abstract _token =record
location : coordinates ; (* for error reports *)
case classification: tokens of
identifier: (sym : symbol );
integer _denotation : (intv : integer _value);
Sloating_point_denotation: (fptv: real_value);
end;

Figure 4.1. LAX Abstract Token
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language. Additional information is attached to the nodes during semantic
analysis and the beginning of code generation. We call this information
attributes, and, to emphasize the attribution, the augmented tree is some-
times termed an attributed structure tree. Important attributes are the iden-
tity of the internal object corresponding to an identifier, the types of the
operands and result of an expression, or the operation corresponding to an
operator indication (e.g. the distinction between integer and real addition,
both originally specified by ‘+°).

Each node of the structure tree corresponds to a rule of the language
definition. Because the structure tree follows the abstract rather than the
concrete syntax, some rules will never have corresponding nodes in any
structure tree. Furthermore, the concrete syntax may use several names for
a single construct of the abstract syntax. Figure 4.2 illustrates these concepts
with an example from LAX. The nodes of the tree have been labelled in
Figure 4.2a with the corresponding rules from Appendix A. A single rule in
Appendix A may incorporate many definitions for the same construct, and
we have appended lower-case letters to the rule number in order to distin-

A.4.0.2
\
A.4.0.]6a/ A.4.0.9b
A.II.0.2 A.4.0.15b A.4.0.10a A.4.0.15b
A.4.0.16a A.4.0.16a
A.1.0.2 A 1.0.2

a) Structure

expression, assignment, disjunction, conjunction,
comparison, relation, sum, term, factor, primary:
primode, postmode: entity

name:
mode: entity

eqop, relop, addop, mulop, unop:

rator: operation

identifier:
sym: symbol
ent: entity

b) Attributes
Figure 4.2. Structure Tree forx:=y +z
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guish these definitions. Thus ‘A.4.0.9b’ is the second alternative for rule
A4.0.9 — sum ::= sum addop term . Expression, assignment, disjunction, and
so forth are different names appearing in the concrete syntax for the expres-
sion construct of the abstract syntax. This means that any node correspond-
ing to a rule defining any of these will have the attributes of an expression
attached to it. Figure 4.2b indicates which of the names defined by rules
used in Figure 4.2a are associated with the same abstract syntax construct.

The sym attribute of an identifier is just the value of the sym field of the
corresponding token (Figure 4.1). This attribute is known as soon as the
node to which it is attached is created. We call such attributes intrinsic. All
of the other attributes in the tree must be computed. The details of the com-
putations will be covered in Chapters 8 and 9; here we merely sketch the
process.

Ent characterizes the object (for example, a particular integer variable)
corresponding to the identifier sym. It is determined by the declarations
valid at the point where the identifier is used, and gives access to all of the
declarative information. Section 4.2.3 discusses possible representations for
anentity .

The mode attribute of a name is the type of the object named. In our
example it can be obtained directly from the declarative information made
accessible by the ent attribute of the descendant node. In any case, it is
computed on the basis of attributes appearing in the ‘A.4.0.16a’ node and its
descendants. The term synthesized is used to describe such attributes.

Two types are associated with each expression node in the tree. The first,
primode, is the type determined without regard to the context in which the
expression is embedded. This is a synthesized attribute, and in our example
the primode of an expression defined by an ‘A.4.0.15b’ node is simply the
mode of the name below it. The second type, postmode, is the type demand-
ed by the context in which the expression is embedded. It is computed on
the basis of attributes of the expression node, its siblings, and its ancestors.
Such attributes are called inherited.

If primode #postmode then either a semantic error has occurred or a coer-
cion is necessary. For example, if y and z in Figure 4.2 were declared to be
of types boolean and real respectively then there is an error, whereas if they
were declared to be integer and real then a coercion would be necessary.

Three classes of operation, creation, access and assignment are necessary to
manipulate the structure tree. A creation operation establishes a new node
of a specified type. Assignment operations are used to interconnect nodes
and to set attribute values, while access operations are used to extract this
information. With these operations we can build trees, traverse them com-
puting attribute values, and alter their structure. Structure tree operations
are invoked as the source program is parsed, constructing the tree and set-
ting intrinsic attribute values. One or more additional traversals of the com-
pleted tree may be necessary to establish all attribute values. In some cases
the structure of the tree may be altered during attribute computation.
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process node A;
if node A is not a leaf then
process all subtrees of A from left to right;

a) Prefix traversal

if node A is not a leaf then
process all subtrees of A from left to right;
process node A;

b) Postfix Traversal

process node A;
while subtrees of A remain do
begin
process next (to the right) subtree of A;
process node A;
end;

¢) Hybrid traversal

Figure 4.3. Traversal Strategies

Chapter 8 explains how the necessary traversals of the structure tree can be
derived from the dependence relations among the attributes. (Figure 4.3
shows some basic traversal strategies.)

The result of processing a structure tree is a collection of related informa-
tion. It may be possible to produce this result without ever actually con-
structing the tree. In that case, the structure and attributes of the tree were
effectively embedded in the processing code. Another possibility is to have
an explicit data structure representing the tree. Implementation constraints
often prevent the compiler from retaining the entire data structure in pri-
mary memory, and secondary storage must be used. If the secondary
storage device is randomly-addressable, only the implementation of the
structure tree operations need be changed. If it is sequential, however, con-
straints must be placed upon the sequences of invocations that are permit-
ted. An appropriate set of constraints can usually be derived rather easily
from a consideration of the structure tree traversals required to compute the
attributes.

Any of the traversal strategies described by Figure 4.3 could be used with
a sequential storage device: In each case, the operation ‘process node A’
implies that A is the currently-accessible element of the device. It may be
read, altered, and written to another device. The remaining operations
advance the device’s ‘window’, making another element accessible. Figure
4.4 illustrates the correspondence between the tree and the sequential file.
The letters in the nodes of Figure 4.4a stand for the attribute information.
In Figures 4.4b and 4.4c, the letters show the position of this information on
the file. Figure 4.4d differs from the others in that each interior node is asso-
ciated with several elements of the file. These elements correspond to the
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a) A tree

debghfca
b) Postfix linearization

abdecfgh
c) Prefix linearization

a b d b e b a ¢ f g f h f ¢ a
« C ) . ( ,

d) Hybrid linearization

-
N
-’

Figure 4.4. Linearization by Tree Traversal

prefix encounter of the node during the traversal (flagged with ‘(’), some
number of infix encounters (flagged with °), and the postfix encounter
(flagged with °)). Information from the node could be duplicated in several
of these elements, or divided among them.

The most appropriate linearization of the tree on the basis of tree traver-
sals and tree transformations is heavily dependent upon the semantic
analysis, optimization and code generation tasks. We shall return to these
questions in Chapter 14. Until then, however, we shall assume that the
structure tree may be expressed as a linked data structure.

4.1.3. Computation Graph A computation graph is an abstract
representation of a compilation unit in terms of target concepts. It is a
directed graph whose nodes correspond to target operations and whose
edges describe control and data flow. The access to identified variables and
intermediate results is not represented.

Each node of the computation graph specifies a single abstract target
machine operation. In addition to the operation, the node specifies its
successor(s) and an appropriate set of operands. An operand may be
another computation graph node (indicating the result of that node’s com-
putation), an identified variable (indicating the address of that variable) or a
constant (indicating the value of that constant). Figure 4.5 is a computation
graph describing the algorithm of Figure 1.1a in terms of an abstract target
machine based on Exercise 1.3.

Note that the accumulator is never mentioned in Figure 4.5. This is indi-
cative of the abstract nature of the computation graph: It uses target opera-
tions, but not target instructions, separating operations from access paths.
Moreover, the concept of a value has been separated from that of a variable.
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SUB

JZERO

exit

JNEG

SUB SUB

STORE STORE

ADR  je— ADR 4—‘
a a
VAL VAL
4 4
MUL MUL
i j
P—
PA PA
e
STI LD
b

Note: PA adds an integer to an address, yielding an address

Figure 4.6. Constant Operations and Array Access
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Triple Operation  Operands

1 VAL i
2 VAL j
3 SUB 1 Q@
4 JZERO  (3) (19
5 VAL j
6 VAL i
7 SUB 5)  (6)
8 INEG () (14)
9 VAL j
10 VAL i
11 SUB ©) (10

12 STORE i oan
13 JMP (1)

14 VAL i
15 VAL j
16 SUB (14)  (15)
17 STORE (16)

18 JMP (D
Note: (¢) is a reference to triple ¢

Figure 4.7. Triple Representation of Figure 4.5

As we shall see in Chapter 13, this is a crucial point for common subexpres-
sion recognition.

Figure 4.6 describes the array assignment a[i ]: =a[j], assuming a byte-
addressed target machine and an array with 4-byte elements. The address
computation described at the beginning of Section 3.2.2 appears explicitly.
Address (a[0]) is represented by the identifier a and the PA operation adds
an integer to an address, yielding an address.

Computation graphs are often linearized as sequences of tuples. The
tuples are implicitly linked in the order of the sequence, and hence the last
field of the nodes in Figures 4.5 and 4.6 can be dropped. An explicit JMP
operation is introduced to allow arbitrary linkage. ‘Triples’ (Figure 4.7) and
‘quadruples’ are examples of this technique. The only difference between
them is that in the latter the node identification is given explicitly while in
the former it is assumed to be the index of the node in the sequence. Figure
4.8 shows a more convenient notation for human consumption.

4.1.4. Target Tree The target tree forms the interface between code
generation and assembly. Its structure and most of the attribute values for
its nodes are established during code generation; some attribute values may
be added during assembly. The structure of the tree embodies code
sequence information, while the attributes specify particular machine
instructions and address computations. These characteristics are largely
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t]:i T t4:j T

it ¥4 tsit,*4

ty:a+ty, tga+is
1ty =t

Figure 4.8. Human-Readable Representation of Figure 4.6

independent of both the source language and the target computer.

The operations necessary to manipulate the target tree fall into the same
classes as those necessary to manipulate the structure tree. As with the struc-
ture tree, memory constraints may require that the target tree be placed in
secondary memory. The most reasonable linearization to use in this case is
one corresponding closely to the structure of a normal symbolic assembly
language.

Figure 4.9 gives a typical layout for a target tree node. Machine _op
would be a variant record that could completely describe any target comput-
er instruction. This record might have fields specifying the operation, one or
more  registers, addresses and addressing modes.  Similarly,
constant_specification must be capable of describing any constant represent-
able on the target computer. For example, the specification of a literal con-
stant would be similar to that appearing in a token (Figure 4.1 and Section
4.2.2); an address constant would be specified by a pointer to an expression
node defining the address. In general, the amount of space to be occupied
by the constant must also be given.

type
instructions =( (* Classification of target abstractions *)
operation , (* machine instruction *)
constant (* constant value *)
label , (* address definition *)
sequence , (* code sequence *)
expression ); (* address expression *)

target _node = 1t _node _block ;
t_node _block =record
link : target _node;
case classification: instructions of
operation . (instr : machine _op);
constant : (value : constant _specification);
label : (addr: address);
sequence: (seq, origin: target_node);
expression: (rator . expr__op ; rand _2: target _node);
end;

Figure 4.9. Target Code Node
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A label is an address constant. The label node is placed in a code
sequence at some arbitrary point, and represents the address at that point.
When this address is used as an operand in an address expression, one of the
operands of the expression node is a pointer to the label node. The addr
field is an example of an attribute whose value is established during assem-
bly: It specifies the actual machine address, in a form that can be used as an
expression operand. It is important to stress that this attribute is not set by
the code generator; the code generator is responsible only for establishing
the label node and any linkages to it.

A target program may consist of an arbitrary number of code sequences,
each of which consists of instructions and/or data placed contiguously in the
target computer memory. Each sequence appears in the target tree as a list
of operation, constant and label nodes rooted in a sequence node. If the ori-
gin field of the sequence node specifies an address expression then the
sequence begins at the address which is the value of that expression. Thus
the placement of a sequence can be specified relative to another sequence or
absolutely in the target computer memory. In the absence of an origin
expression, a sequence will be placed in an arbitrary position that guaran-
tees no overlap between it and any other sequence not based upon it. (A
sequence s is based upon a sequence s, when the origin expression of s,
depends upon a label node in s, or in some sequence based upon s,.)
Related code sequences whose origin expressions result in gaps between
them serve to reserve uninitialized storage, while overlapping sequences
indicate run-time overlays.

Address expressions may contain integers and machine addresses, com-
bined by the four basic integer operations with the normal restrictions for
subexpressions having machine addresses as operands. The code generator
must guarantee that the result of an address expression will actually fit into
the field in which it is being used. For some machines, this guarantee can-
not be made in general. As a result, either restrictions must be placed upon
the expressions used by the code generator or the assembler must take over
some aspects of the code generation task. Examples of the latter are the
final selection of an instruction from a set whose members differ only in
address field size (e.g. short vs. long jumps), and selection of a base register
from a set used to access a block of memory. Chapter 11 will consider such
problems in detail.

4.2. Global Tables

We extract specific information from the token sequence, structure tree,
computation graph or target tree and represent it in special tables to simplify
the program representation, to speed up search processes, or to avoid many
repetitions of the same data. In particular, we often replace variable-length
data by fixed-length keys and thereby simplify storage management.
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4.2.1. Symbol Table The purpose of the symbol table is to provide a
unique, fixed-length encoding for the identifiers (and possibly the keywords)
occurring in a program. In most programming languages the number of
possible identifiers, and hence the length of the encoding, is very large.
Since only a tiny fraction of the possible identifiers occur in any particular
program, a much shorter encoding suffices and the symbol table must
uniquely map the identifiers into this encoding. If the entire set of identifiers
is not known a priori then such a mapping can be achieved only by compar-
ing each input character string against those already encountered.
A symbol table module provides three basic operations:

® initialize: Enter the standard identifiers.

® give_symbol (identifier_string) symbol. Obtain the encoding of a specified
identifier.

® give_string(symbol)identifier_string: Obtain the identifier having a
specified encoding.

Additional operations for delivering identifiers in alphabetical order are
necessary if cross-reference tables are to be produced.

Although the symbol table is used primarily for identifiers, we advocate
inclusion of keywords as well. No separate recognition procedure is then
required for them. With this understanding, we shall continue to speak of
the symbol table as though its only contents were identifiers.

The symbol is used later as a key to access the identifier’s attributes, so it
is often encoded as a pointer to a table containing those attributes. A
pointer is satisfactory when only one such table exists and remains in main
storage. Positive integers provide a better encoding when several tables
must be combined (as for separate compilation in Ada) or moved to secon-
dary storage. In the simplest case the integers chosen would be 1,2,...

Identifiers may be character strings of any length. Since it may be awk-
ward to store a table of strings of various lengths, many compilers either fix
the maximum length of an identifier or check only a part of the identifier
when computing the mapping. We regard either of these strategies as unac-
ceptable. Clearly the finite size of computer memory will result in limita-
tions, but these should be placed on the fotal number of characters rather
than the length of an individual identifier. Failure to check the entire
identifier may result in incorrect analysis of the source program with no
indication to the programmer.

The solution is to implement the symbol table as two distinct com-
ponents: a string table and a lookup mechanism. The string table is simply a
very large, packed array of characters, capable of holding all of the distinct
identifiers appearing in a program. It is implemented using a conventional
virtual storage scheme (Exercise 4.4), which provides for allocation of
storage only as it is needed. The string forms of the identifiers are stored
contiguously in this array, and are specified by initial index and length.

In view of the large number of entries in the symbol table (often resulting
mainly from standard identifiers), hash techniques are preferable to search
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trees for implementing the lookup mechanism. The length of the hash table
must be specified statically, before the number of identifiers is known, so we
choose the scheme known as ‘open hashing’ or ‘hash with chaining’: A
computation is performed on the string to select one of M lists, which is then
searched sequentially. If the computation distributes the strings uniformly
over the lists, then the length of each will be approximately (number of dis-
tinct identifiers)/M. By making M large enough the lengths of the lists can
be reduced to one or two items.

The first decision to be made is the choice of hash function. It should
yield a relatively smooth distribution of the strings across the M lists,
evaluation should be rapid, and it must be expressible in the implementation
language. One computation that gives good results is to express the string as
an integer and take the residue modulo M. M should be a prime number
not close to a power of the number of characters in the character set. For
example, M =127 would not be a good choice if we were dealing with a
128-character set; M =401, on the other hand, should prove quite satisfac-
tory.

There are two problems with the division method: It is time-consuming
for strings whose integer representations exceed the single-length integer
range of the implementation language, and it cannot be expressed at all if
the implementation language is strongly typed. To solve the former, we
generally select some substring for the hash computation. Heads or tails of
the string are poor choices because they tend to show regularities (SUMI,
SUM2, SUM3 or REDBALL, BLUEBALL, BLACKBALL) that cause the
computation to map too many strings into the same list. A better selection is
the center substring:

if |5 | <n thens else substr(s,(|s | —n)div2,n);

(Here s is the string, | s | is the length of s and n is the length of the longest
string representable as a single-length integer. The function substr (s, f; I)
yields the /-character substring of s beginning at the f* character.)

The constraints of a strongly-typed implementation language could be
avoided by providing a primitive transfer function to convert a sufficiently
short string into an integer for type checking purposes. It is important that
this transfer function not involve computation. For example, if the language
provides a transfer function from characters to integers, a transfer function
from strings to integers could be synthesized by a loop. This approach
defeats the whole purpose of the hashing function, however, by introducing
a time-consuming computation. It would probably be preferable to use a
single character to select the list in this case and accept a longer search!

Comparison of the input identifier with the symbols already present in the
table can be speeded up by a variety of quick checks, the simplest of which
is comparison of string lengths. Whether or not such checks are useful
depends upon the precise costs of string comparison and string table access.

In a multi-pass compiler, the lookup mechanism may be discarded after
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the lexical analysis has converted identifiers to symbols. The string table
must, however, be retained for later tasks such as module linking.

4.2.2. Constant Table Literal constant values appearing in the program
must be retained and possibly manipulated during compilation. Compile-
time computation involving numeric operations must be carried out using
the semantics of the target machine. In other words, integer operations must
conform to the range of the target machine’s integer arithmetic, and floating
point operations must conform to its radix, range, precision and rounding
characteristics. Because of this, we regard the constant table as an abstract
data type: It defines a set of values, and any computations involving these
values must be carried out by operations that the constant table provides.

We distinguish three conceptually distinct representations of a constant:
the character representation appearing in the source program, the internal
representation defined by the constant table, and the representation required
by the target machine. The constant table module provides conversion
operations to accept source representations and return internal representa-
tions, and to accept internal representations and return target representa-
tions. Source-to-internal conversions are invoked during lexical analysis,
while internal-to-target conversions are invoked during assembly. Although
the three representations are conceptually distinct, two or more of them may
be physically identical in a particular compiler. For example, a LAX float-
ing point constant might have identical internal and target representations.

The constant table module could use a string table of the form introduced
in the previous section to store string constants. Since identical string con-
stants occur rarely in a program, no search is needed to enter strings into the
table; each is simply inserted as it is encountered. A fixed-length encoding
then consists of a string table index and length, which the constant table
module delivers as the internal value of the constant. In a multi-pass com-
piler the string table could reside in secondary storage except during lexical
analysis and assembly.

In addition to conversions, the constant table module must provide com-
putational and comparison operations for the internal representations.
These operations are used not only for manipulating denotations that
appear in the source program, but also for carrying out all computations and
comparisons of program-defined values during semantic analysis and code
generation. For example, consider the Pascal type constructor
array [l.u]of m. During semantic analysis, constant table operations are
used to verify that the lower bound does not exceed the upper; during code
generation they are used to compute the size and alignment of the array.

The requirements of semantic analysis and code generation determine the
set of operations that must be provided. In general, these operations should
duplicate the behavior of the equivalent operations on the target machine.
For example, a character comparison should follow the target machine col-
lating sequence. The range of integer values, however, must normally be



98 Chapter 4. Abstract Program Representations

larger than that of the target machine. Suppose that we compile a program
containing the type constructor of the previous paragraph for the PDP11
(maxint =32767). Suppose further that / = —5000, ¥ =5000 and m is real.
This is a perfectly legal declaration of an array that will easily fit into the
65536-byte memory of the PDPI11, but computation of its size in bytes
(40004) overflows the PDP11’s integer range.

If the compiler is being executed on the target machine, this requirement
for increased range implies that the computational and comparison opera-
tions of the constant table must use a multiple-precision representation.
Knuth [1969] describes in detail how to implement such a package.

Although, as shown above, overflow of the target machine’s arithmetic
range is legitimate in some cases, it is often forbidden. When the user writes
an expression consisting only of constants, and that expression overflows the
range of the target machine, the overflow must be detected if the expression
is evaluated by the compiler. This leads to a requirement that the constant
table module provide an overflow indicator that is set appropriately by each
computational operator to indicate whether or not the computation would
overflow on the target machine. Regardless of the state of the overflow indi-
cator, however, the constant table should yield the (mathematically) correct
result.

In most programming languages, a particular numeric value can be
expressed in many different ways. For example, each of the following LAX
floating point numbers expresses the value ‘one thousand’:

1000000E-3 1.0E3 .001E6 1000.0

The source-to-internal conversion operators of the constant module should
accept only a standardized input format. Nonzero integers are normally
represented by a sequence of digits, the first of which is nonzero. A suitable
representation for nonzero floating point numbers is the pair (significand,
exponent), in which the significand is a sequence of digits without leading or
trailing zeros and the exponent is suitably adjusted. The significand can be
interpreted either as an integer or a normalized decimal fraction. ‘One
thousand’ would then be represented either as ('1°,3) or as ('1’,4) respec-
tively. A fractional significand is preferable because it can be truncated or
rounded without changing the exponent. Zero is represented by (°0°,0). In
Section 6.2 we shall show how the standardized format is obtained by the
lexical analyzer.

If no floating point arithmetic is provided by the constant table then the
significand can be stored in a string table. The internal representation is the
triple (string table index, significand length, adjusted exponent). When
compile-time floating point operations are available, floating point numbers
are converted to an internal representation of appropriate accuracy for
which the arithmetic of the target machine can be simulated exactly. (Note
that decimal arithmetic is satisfactory only if the target machine also uses
decimal arithmetic.)
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4.2.3. Definition Table Types, variables, procedures and parameters are
examples of entities: components of the program whose attributes are esta-
blished by declaration. Most of the leaves of the structure tree represent
uses of entities, at which the entity’s attributes must be made available. A
definition table abstracts the entities, avoiding the need to explicitly repro-
duce all of the attributes of an entity at each of the leaves representing its
uses. There is one definition table entry for each declared entity, and this
entry holds all attributes of that entity. A leaf representing the use of an
entity contains a reference to the definition table.

We must emphasize that a definition table merely restates structure tree
information in a more compact and accessible form. (Section 8.3.2 will
show how to partially automate the choice of information to be included in
a definition table.) Thus each form of the structure tree has, at least concep-
tually, an associated definition table. Transformations of the structure tree
imply corresponding transformations of the definition table. Whether the
definition table is actually transformed, or a new definition table is built
from the transformed tree, is an implementation decision that depends upon
two factors:
® The relative costs of transformation and reconstruction.
® The relationship between the traversal needed to reconstruct the informa-

tion and the traversal using that information.

When assessing the relative costs, we must be certain to consider the extra
storage required during the transformation as well as the code involved.

The second factor mentioned above may require some elaboration: Con-
sider the definition table used during semantic analysis and that used during
code generation. Although the structure tree may be almost the same for
these two processes, the interesting attributes of defined objects are usually
quite different. During semantic analysis we are concerned with source pro-
perties; during code generation with target properties. Thus the definition
tables for the two processes will differ. Suppose further that our code gen-
eration strategy requires a single depth-first, left-to-right traversal of the
structure tree given that the definition table is available.

If the definition table can be rebuilt during a single depth-first, left-to-
right traversal of the structure tree, and every attribute becomes available
before it is needed for code generation, then rebuilding can be combined
with code generation and the second factor noted above does not lead to
increased costs. When this condition is not satisfied, the second factor does
increase the rebuilding cost and this must be taken into account. It may
then be cheaper to transform the definition table between the last semantic
analysis traversal and the first code generation traversal. (The attribute
dependency analysis presented in Section 8.2 is used to decide whether the
condition is satisfied.)

A definition table is generally an unstructured collection of entries. Any
arbitrary entry can be accessed via a pointer in order to read an attribute or
assign a new value. In a one-pass compiler, a stack strategy could also be
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used: At every definition a new entry is pushed onto the top of the stack,
and at the end of a range all definitions found in the range are popped. This
organization has the advantage that only relevant entries must be held in
storage.

Copies of some of the more-frequently accessed attributes of an entity
may be included in each leaf representing a use of that entity. The choice of
such attributes depends upon the particular compiler design; we shall return
to this question several times, in Chapters 9, 10 and 14. It may be that these
considerations lead to including all attributes in the leaf. The definition
table then ceases to exist as a separate data structure.

4.3. Notes and References

Postfix, triples, and quadruples are often discussed in isolation as ‘internal
forms’ of the program, without reference to the structures they represent (see
Gries [1971] for example). Such discussions tend to bog down in a morass of
special cases and extensions once they move beyond the treatment of arith-
metic expressions. We believe that thinking in terms of a tree helps the
compiler designer to concentrate on the important relationships present in
the text and to arrive at a more coherent representation. Once this has been
derived, a variety of linearizations may be used depending upon the particu-
lar compiler design.

Most authors lump the various tables discussed in Section 4.2 into a single
dictionary, which they often call ‘the symbol table’ [Gries 1971, Bauer 1976,
Aho 1977a]. The concept of separate tables seems to be restricted to
descriptions of multi-pass compilers, as a mechanism for reducing main
storage requirements [Naur 1964]. This is not invariably true, however,
especially when one considers the literature on ALGOL 68 [Peck 1971]. In
his description of a multi-pass Pascal compiler, Hartmann [1977] uses
separate tables both to reduce core requirements and to provide better com-
piler structure.

Lookup mechanisms have concerned a large number of authors; the most
comprehensive treatment is that of Knuth [1973]. He gives details of a
variety of mechanisms, including hashing, and shows how they compare for
different applications. It appears that hashing is the method of choice for
symbol table implementation, but there may be some circumstances in
which binary trees are superior [Palmer 1974]. For symbol tables with a
fixed number of known entries (e.g. keywords) Cichelli [1980] and Cercone
[1982] describe a way of obtaining a hash function that does not have any
collisions and hence requires no collision resolution.
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Exercises

4.1.
42.

43.

4.4,

4.5.

4.6.

4.7.

[Sale 1971, Mcllroy 1974] Specify abstract tokens for FORTRAN 66.

Specify a target _node (Figure 4.6) suitable for some machine with which you
are familiar.

Is a symbol table needed to map identifiers in a compiler for Minimal Standard
BASIC? Explain.

Implement a string table module, using a software paging scheme: Statically
allocate an array of pointers (a ‘page table’) to blocks of fixed size (‘pages’).
Initially no additional blocks are allocated. When a string must be stored, try
to fit it into a currently-allocated page. If this cannot be done, dynamically
allocate a new page and place a pointer to it in the page table. Carefully define
the interface to your module.

Implement a symbol table module that provides a lookup mechanism, and uses
the module of Exercise 4.4 to store the identifier string.

Identifier strings are specified in the module of Exercise 4.5 by the pair (string
table index, length). On a computer like the DEC PDPII, this specification
occupies 8 bytes. Comment on the relative merits of this scheme versus one in
which identifier strings are stored directly if they are no longer than k bytes,
and a string table is used for those whose length exceeds k. What should the
value of k be for the PDP11? Would this scheme be appropriate for a mul-
tipass compiler?

Consider the FORTRAN expression ‘X * 3.1415926535897932385 * Y’

Assume that no explicit type has been given for X, and that Y has been

declared DOUBLE PRECISION.

a. Should the constant be interpreted as a single or double precision value?
Explain.

b. For some machine with which you are familiar, estimate the relative errors
in the single and double precision representations of the constant.

¢. Explain the relevance of this example to the problem of selecting the inter-
nal representation to be provided by the constant table for floating point
numbers.



CHAPTER5
Elements of Formal Systems

Formal grammars, in particular context-free grammars, are the tools most
frequently used to describe the structure of programs. They permit a lucid
representation of that structure in the form of parse trees, and one can (for
the most part mechanically) specify automata that will accept all correctly-
structured programs (and only these). The automata are easy to modify so
that they output any convenient encoding of the parse tree.

We limit our discussion to the definitions and theorems necessary to
understand and use techniques explained in Chapters 6 and 7, and many
theorems are cited without proof. In the cases where we do sketch proofs,
we restrict ourselves to the constructive portions upon which practical algo-
rithms are based. (We reference such constructions by giving the number of
the associated theorem.) A formally complete treatment would exceed both
the objectives of and size constraints on this book. Readers who wish to
delve more deeply into the theoretical aspects of the subject should consult
the notes and references at the end of this chapter.

5.1. Descriptive Tools

In this section we first review the standard mathematical notation used to
describe sets of strings. We then introduce some formal systems for the pro-
duction of such sets and with these define certain classes of languages.
Finally, we discuss the representation of the structure of strings by means of
trees and give a complete example.

5.1.1. Strings and Rewriting Systems We begin with a vocabulary (or
alphabet), V: A finite, nonempty set of symbols having no discernible struc-
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ture. (At least we take no notice of further structure on the level of abstrac-
tion we are considering.) One example of a vocabulary is the set of charac-
ters available on a particular computer, others are the set of basic symbols
defined by a particular language (e.g. identifier, integer, +, begin) and the
set of syntactic terms we use to describe the structure of a program. We may
attach semantic significance to some of the symbols in the vocabulary,
without explaining them further by meams of the formal systems introduced
in this chapter.

The set of all finite strings x, - - - x,, n >> 1, formed by concatenating ele-
ments of ¥ is denoted by ¥*. ¥’ denotes ¥+ augmented by adding the
empty string (which contains no symbols). We shall denote the empty string
by € it is both a left and right identity for concatenation: ex =xe=x,
X € V'. The count, n, of symbols in a string x =x; - * - x, is called the length
of x,and is denoted by | x |. Thus |e| =0.

Definition 5.1. Let x —aw, a, 0 € V" The string a is called a head, and the
string w a fail, of x. If a%¢€ (w5 ¢) then it is a proper head (tail) of x.

Each subset of V" is called a language over vocabulary V. The elements
of a language are called sentences. Interesting languages generally contain
infinitely many sentences, and hence cannot be defined by enumeration.
We therefore define each such language, L, by specifying a process that
generates all of its sentences, and no other elements of V". This process may
be characterized by a binary, transitive relation =" over V', such that
L ={x | { =7 x) for a distinguished string { in ¥". We term the rela-
tion = * a derivative relation.

Definition 5.2. A pair (¥, =") consisting of a vocabulary ¥ and a deriva-
tive relation = *, is called a formal system.

A derivative relation usually cannot be defined by enumeration either.
We shall concern ourselves only with relations that can be described by a
finite set of pairs (o, 7) of strings from V. We call such pairs productions,
and write them as o—1. The transitive closure of the finite relation
described by these productions yields a derivative relation. More precisely:

Definition 5.3. A pair (V,P), consisting of a vocabulary V and a finite set, P,
of productions 67 (a,7EV") is called a general rewriting (or Semi-Thue)
system.

Definition 5.4. A string x is directly derivable from a string = (symbolically
7=>x) by a general rewriting system (¥, P) if there exist strings o, 7, p, » in

V" such that w=pov, x =p7v and 6 -1 is an element of P.

Definition 5.5. A string x is derivable from a string = (symbolically 7= *x)
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by a general rewriting system (¥, P) if there exist strings py, ..., p, in V'
(n > 1) such that #=p,, p, =x and p; ;=>p,;,i=1,..., n. The sequence
Pos - - -» Pn is called a derivation of length n.

We write 7=>"x to indicate that either 7=x or #=>+x. If x is (directly)
derivable from «, we also say that x is (directly) reducible to . Without
loss of generality, we shall assume that derivations 7=> ¥« of a string from
itself are impossible.

5.1.2. Grammars Using the general rewriting system defined by Figure
5.1, it is possible to derive from E every correct algebraic expression consist-
ing of the operators + and *, the variable /, and the parentheses (). Many
other strings can be derived also, as shown in Figure 5.2. In the remainder
of this chapter we shall concentrate on rewriting systems in which the voca-
bulary is made up of two disjoint subsets: T, a set of terminals, and N, a set
of nonterminals (syntactic variables). We will ultimately be interested only in
those strings derivable from a distinguished nonterminal (the axiom or start
symbol) and consisting entirely of terminals. (Thus we speak of generative
systems. One could instead consider analytic systems in which the axiom is
derived from a string of terminals. We shall return to this concept with
Definitions 5.12 and 5.20.)

{E’T’F’+,*’(’),i}
a) The vocabulary V

{E-T, E-E+T,
T->F, T-T*F,
F-i, F-(E)}

b) The productions P

Figure 5.1. A General Rewriting System (V,P)

E=>T
T=T*F
T*F = T*i
a) Some immediate derivations

E=" T (length 3)
E="i+i% (length8)
TiE =" iii (length 5)
TiE =" TiE  (length 0)
E="T (length 1)
b) Additional derivations

Figure 5.2. Derivations
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Definition 5.6. A quadruple G=(T,N,P,Z) is called a grammar for the
language L(G) = {x € T* | Z=>*x}if T and N are disjoint, (T UN,P) is
is a general rewriting system, and Z is an element of N. We say that two

grammars G and G’ are equivalent if L (G)=L (G").

Figure 5.3 illustrates these concepts with two grammars that generate alge-
braic expressions in the variable i. These grammars are equivalent

T = {+,*’(,)ai}

N = (ETF)

P={E-T, E-E+T,
T->F, T->T*F,
F i, F—)(E) }

Z=E

a) A grammar incorporating (V,P) from Figure 5.1

T ={+,* ()i}

N={EE'TTF)

P={ E-T, E-STE',
E'-+T, E'->+TFE/,
T —F, T-FT',
T'->*F, T ->*FT,
F i, F-(E) }

Z=E

b) A grammar incorporating another general rewriting system

Figure 5.3. Equivalent Grammars

according to Definition 5.6.

Grammars may be classified by the complexity of their productions:

Definition 5.7. (Chomsky Hierarchy). The grammar G = (T.N,P,.Z) is a

® type 0 grammar if each production has the form 67, 6€V* and r€ V",
® type 1 (context-sensitive) grammar if each production has the form

pAvopxr, p,vEV,AEN and x EVT.

® yype 2 (context-free) grammar if each production has the form 4 -x,

A€ENandx €V,

® type 3 (regular) grammar if each production has either the form 4 —a,
AEN anda €T U {¢} or the form 4 »aB, A,BEN anda €T
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If a grammar that generates a language is context-sensitive (context-free,
regular), then we also term the language itself context-sensitive (context-
free, regular). Regular and context-free grammars are the most interesting
to compiler writers. The former are usually used to describe the basic sym-
bols (e.g. identifiers, constants) of a language, while the latter describe the
structure of a program. From now on, we restrict our attention to these two
grammar classes.

Although we admit e-productions (productions whose right-hand side
consists of the empty string) in context-free grammars, we are interested
only in languages that do not include the empty string. Such languages can
always be described by e-free grammars — grammars without e-productions.
Therefore e-productions will only be used when they result in more con-
venient descriptions.

We assume further that every symbol in the vocabulary will appear in the
derivation of at least one sentence. Thus the grammar will not contain any
useless symbols. (This is not always true for actual descriptions of program-
ming languages, as illustrated by the LAX definition of Appendix A.)

5.1.3. Derivations and Parse Trees Each production in a regular gram-

mar can have at most one nonterminal on the right-hand side. This property
guarantees—in contrast to the context-free grammars—that each sentence of

T = {n7‘9+9_3E}
N = (GELXS,U)

P = {C-n,C->nF,C-.1,

F-.I,F-ES,
I-n,I->nX,
X -»ES,
S-n,S-+U,5--U,
U-n}
Z=C
a) A grammar for real constants
cC C ¢
n d  nF
n nl
nnX
n.nES
nnE +U
nnE +n

b) Three derivations according to the grammar of (a)

Figure 5.4. Derivations According to a Regular Grammar
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E E FE
E+T E+T E+T
T+T E+T*F EA+T*F
F+T T+T*F E4+T%
i+T T+F¥F E+4F%
i+T*F T+F% E+i%
i+F*F F+F% T+i%
i+i*F i+F* F+i%
i+i* i+i% i+i%
Figure 5.5. Derivations According to a Context-Free Grammar

the language has exactly one derivation when the grammar is unambiguous
(Definition 5.11).

Figure 5.4a is a regular grammar that generates the integers and real
numbers if n represents an arbitrary sequence of digits. Three derivations
according to this grammar are shown in Figure 5.4b. Each string except the
last in a derivation contains exactly one nonterminal, from which a new
string must be derived in the next step. The last string consists only of termi-
nals. The sequence of steps in each derivation of this example is determined
by the derived sentence.

The situation is different for context-free grammars, which may have any
number of nonterminals on the right-hand side of each production. Figure
5.5 shows that several derivations, differing only in the sequence of applica-
tion of the productions, are possible for a given sentence. (These derivations
are constructed according to the grammar of Figure 5.3a.)

In the left-hand column, a lefimost derivation was used: At each step a
new string was derived from the leftmost nonterminal. Similarly, a rightmost
derivation was used in the right-hand column. A nonterminal was chosen
arbitrarily at each step to produce the center derivation.

A grammar ascribes structure to a string not by giving a particular
sequence of derivation steps but by showing that a particular substring is
derived from a particular nonterminal. For example, in Figure 5.5 the sub-
string i* is derived from the single nonterminal 7. We interpret this pro-
perty of the derivation to mean that i* forms a single semantic unit: an
instance of the operator * applied to the i’s as operands. It is important to
realize that the grammar was constructed in a particular way specifically to
ascribe a semantically relevant structure to each sentence in the language.
We cannot be satisfied with any grammar that defines a particular language;
we must choose one reflecting the semantic structure of each sentence. For
example, suppose that the rules E -E +T and T - T*F of Figure 5.3a had
been replaced by E - E*T and T > T +F respectively. The modified gram-
mar would describe the same language, but would ascribe a different struc-
ture to its sentences: It would imply that additions should take precedence
over multiplications.

Substrings derived from single nonterminals are called phrases:
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Definition 5.8. Consider a grammar G = (T,N,P,Z). The string x €V ' is a
phrase (for X) of pxvifandonly if Z =" pX» =+ ux» (uvEV’, X EN).
It is a simple phrase of pxvif and only if Z =" pXv = pxv.

Notice that a phrase need not consist solely of terminals.

Each of the three derivations of Figure 5.5 identifies the same set of sim-
ple phrases. They are therefore equivalent in the sense that they ascribe
identical phrase structure to the string i +i*. In order to have a single
representation for the entire set of equivalent derivations, one that makes
the structure of the sentence obvious, we introduce the notion of a parse tree
(see Appendix B for the definition of an ordered tree):

Definition 5.9. Consider an ordered tree (K, D) with root k and label func-
tion f:K-M. Letky,..., k,, (n>0) be the immediate successors of k.
(K, D) is a parse tree according to the grammar (T, N, P, Z) if the following
conditions hold:

(a)M C VU({e}

(b) f(k)=Z

(©)Z~f(ky) -~ f(ky)EP

(d)if f(k;)ET,orif n=1and f (k;)=¢, then k; is a leaf

(e) if f(k;) EN then k; is the root of a parse tree according to the grammar
(TNPf (k)

Figure 5.6 is a tree for i +i* according to the grammar of Figure 5.3a, as
can be shown by recursive application of Definition 5.9.

Figure 5.6. The Parse Tree for i +i*i

We can obtain any string in any derivation of a sentence from the parse
tree of that sentence by selecting a minimum set of nodes, removal of which
will break all root-to-leaf paths. (Such a set of nodes is called a cur — see
Definition B.8.) For example, in Figure 5.6 the set (T, +, T, *, F} (the third
row of nodes, plus ‘+’ from the second row) has this property and T+ T*F
is the fourth step in the center derivation of Figure 5.5.

Theorem 5.10. In a parse tree according to a grammar G=(T,N,P,Z), a set of
nodes (ky, ..., k,)isacutifand only if Z ="f (k\)- - - f(k,).
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A parse tree specifies the phrase structure of a sentence. With the gram-
mars given so far, only one parse tree corresponds to each sentence. This
may not always be true, however, as illustrated by Figure 5.7. The grammar
of Figure 5.7a describes the same language as that of Figure 5.3a, but many
sentences have several parse trees.

Definition 5.11. A sentence is ambiguous if its derivations may be described
by at least two distinct parse trees (or leftmost derivations or rightmost
derivations). A grammar is ambiguous if there is at least one ambiguous
sentence in the language it defines; otherwise the grammar is unambiguous.

Figure 5.7b shows two parse trees for i +i* that are essentially different
for our purposes because we associate two distinct sequences of operations
with them. If we use an ambiguous grammar to describe the language (and
this may be a useful thing to do), then either the ambiguity must involve
only phrases with no semantic relevance or we must provide additional rules
for removing the ambiguity.

T = {+,*i}
N = {E}
P={(E-E+E,E-E*E,E~i}

Z=E
a) An ambiguous grammar

(E) 0
& ® B (B @ ©®
O O ©® ONORCHO

® ® ® O

b) Two parse trees for i +i *i

Figure 5.7. Ambiguity

5.14. Extended Backus-Naur Form Appendix A uses a notation
known as extended Backus-Naur form (EBNF) to describe LAX. This nota-
tion allows us to describe a grammar in a more compact form. Moreover, as
we shall see in Chapter 7, a parser can be derived easily from the
specification of a language written in EBNF. In this section we illustrate the
techniques we have been discussing by giving a formal definition of EBNF;
an informal description appears at the beginning of Appendix A.
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Figure 5.8a is the grammar for EBNF. When a specification is written in
EBNF, character strings are used to represent the elements of T as indicated
in Figure 5.8b. A complete specification for EBNF itself appears in Figure
5.8c. Given a specification such as that of Figure 5.8c, we can derive one or
more grammars that define the same language. In this manner we establish
the ‘meaning’ of the specification.

The derivation proceeds from a parse tree (K,D) of the given
specification according to the grammar of Figure 5.8a. In addition to the
label function f from Definition 5.9, we define h:K ~L UlI, where L is
the set of identifiers and literals appearing in the specification and I is a set
of unique identifiers. L and I are disjoint; h associates an element of L
with every leaf of K and an element of I with every non-leaf node. An ele-

T = {identifier,literal,is,or,lpn,rpn,Ibk,rbk,plus,star,period,separator }
N = {specification,rule,expression,tertiary,secondary,primary,unit,atom

P = ({specification —rule, specification— specification rule,
rule - identifier is expression period
expression —tertiary, expression »expression separator atom,
tertiary —secondary, tertiary - tertiary or secondary,
secondary - primary, secondary —secondary primary,
primary - unit, primary - unit star, primary - unit plus,
primary - Ibk expression rbk,
unit -atom, unit —Ipn expression rpn,
atom —identifier, atom - literal}

Z = specification
a) Grammar for EBNF

identifier: Sequence of letters, digits and underscores.

literal: String delimited by apostrophes.

Ipn: ( rpn:) Ibk - | rbk : ] is: =

or: | star: * plus: + period : . separator : | |
b) Representation used in this book for EBNF terminals

specification ::= rule + .
rule .. = identifier ' :: ="' expression '.".
expression ::= (primary + | | " |’ | expression'| |’ atom .
primary ::= unit ['*" | "+’ | |’ expression ']’ .
unit ::= atom | '(’ expression ')’ .
atom :: = identifier | literal .
¢) A possible EBNF specification for EBNF

Figure 5.8. Extended Backus-Naur Form
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ment of L may be associated with any number of leaves, but there is a I-1
correspondence between non-leaf nodes and elements of /.
L Ul is the vocabulary of the grammar that we shall derive from the

EBNF specification. All elements of ] are nonterminals of the grammar, as

are identifiers appearing on the left of ‘::=" in an EBNF rule. All literals
and identifiers not appearing on the left of ‘::=" are terminals. Formally:
R = {h(k) | (kK k)ED, f (k")=rule, f (k)= identifier}
T=L-R
N =Rul

Here R is the set of rule identifiers. 1f the EBNF specification is well-formed
then there will be exactly one element of R that does not appear on the right
of *::="in any rule. This element is the axiom of the derived grammar:

Z=reR - {h(k) | (k' k)ED, f (k') =atom })

A set of productions can be derived from every non-leaf node of the parse
tree, and P is the union of those sets. Consider each subtree formed from a
non-leaf node k and its ordered immediate successors kK, k, ..., k,. The
derived productions depend upon the structure of the subtree (given by a
production of Figure 5.8a) and the labels of the nodes in the subtree as fol-
lows:

For subtree derive the production set

rule —identifier is expression period {h(ky)—h(ks3)}
expression —»expression separator atom  {h(kg)—=h(k,), h(ko) >
h(ko) h(k3) h(ky)}

lertiary —tertiary or secondary {h(ko)—h(k1), h(ko)—h(k3)}
secondary —secondary primary {h(ko)—=h(k)) h(ky)}

primary —unit star {h(ko)—€, h(ko)—>h(ko) h(ky)}
primary —unit plus {h(ko)—>h(ky), h(ko)>h(ko) h(ky)}
primary —Ibk expression rbk {h(kg) =€, h(ko)—h(k,)}

unit -Ipn expression rpn {h(ko)—h(ky)}

Derive the empty set of productions for any subtree with h(kg)=
specification, and derive {h (ko) —~h(k,)} for any subtree not yet mentioned.

The grammar derived from Figure 5.8c by this process will have more
productions than Figure 5.8a. The extra productions can be removed by a
simple substitution: If B EN occurs exactly twice in a grammar, once in a
production of the form 4 -»uBv and once in a production of the form B -8
(B, vEV"), then B can be eliminated and the two productions replaced by
A —>pBr. After all such substitutions have been made, the resulting grammar
will differ from Figure 5.8a only in the representation of vocabulary sym-
bols.
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5.2. Regular Grammars and Finite Automata

A grammar specifies a process for generating sentences, and thus allows us
to give a finite description of an infinite language. The analysis phase of the
compiler, however, must recognize the phrase structure of a given sentence:
It must parse the sentence. Assuming that the language has been described
by a grammar, we are interested in techniques for automatically generating
a recognizer from that grammar. There are two reasons for this require-
ment:

® It provides a guarantee that the language recognized by the compiler is
identical to that defined by the grammar.
® It simplifies the task of the compiler writer.

We shall use automata, which we introduce as special cases of general
rewriting systems, as models for the parsing process. In this section we
develop a theoretical basis for regular languages and finite automata, and
then extend the concepts and algorithms to context-free languages and
pushdown automata in Section 5.3. The implementation of the automata is
covered in Chapters 6 and 7.

5.2.1. Finite Automata

Definition 5.12. A finite automaton (finite state acceptor) is a quintuple 4 =
(T.Q.Rq,F), where Q is a nonempty set, (TUQ,R) is a general rewriting
system, ¢ is an element of Q and F is a subset of Q. The sets T and Q are
disjoint. Each element of R has the form gt -q’, where ¢ and ¢’ are ele-
ments of O and ¢ is an element of 7. We say that 4 accepts a set of strings
L(A) = {t€T" | qyr=>"¢q,q EF}. Two automata, 4 and A’ are
equivalent if and only if L(4)=L(A").

We can conceive of the finite automaton as a machine that reads a given
input string out of a buffer one symbol at a time and changes its internal
state upon absorbing each symbol. Q is the set of internal states, with g,
being the initial state and F the set of final states. We say that a finite auto-
maton is in state ¢ when the current string in the derivation has the form g .
It makes a transition from state g to state ¢’if r=rx and gt -¢’is an element
of R. Each state transition removes one symbol from the input string.

Theorem 5.13. For every regular grammar, G, there exists a finite automaton,
A, such that L(A)=L (G).

The proof of this theorem is an algorithm to construct 4, given G =
(TNPZ). LetA = (LNU{f},RZF), f &N. R is constructed from P by
the following rules:
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1. If X >t (XEN, t €T) is a production of P then let Xt »f be a produc-
tion of R.

2. If X >tY (X,YEN, t €T) is a production of P then let X - Y be a pro-
duction of R.

Further, F={ f}U {X | X -e€P}. Figure 5.9 is an automaton constructed
by this process from the grammar of Figure 5.4a.

T = {n"5+s_—'aE}
Q = {CELX,S,Ug)

R={Cn-q,Cn->F C -1,
F >I1,FE-S,
In »q,In X,
XE -8,
Sn-q,S+-U,S—--U,
Un-q}

go=C

F={q}

Figure 5.9. An Automaton Corresponding to Figure 5.4a

One can show by induction that the automaton constructed in this
manner has the following characteristicc For any derivation
Zrx=>"Xx=>"q (,xET, XEN, 17x EL(A), q EF), the state X specifies
the nonterminal symbol of G that must have been used to derive the string
X Clearly this statement is true for the initial state Z if rx belongs to L (G).
It remains true until the final state 4, which does not generate any further
symbols, is reached. With the help of this interpretation it is easy to prove
that each sentence of L (G) also belongs to L (4 ) and vice-versa.

Figure 5.9 is an unsatisfactory automaton in practice because at certain
steps — for example in state J with input symbol n — several transitions are
possible. This is not a theoretical problem since the automaton is capable of
producing a derivation for any string in the language. When implementing
this automaton in a compiler, however, we must make some arbitrary deci-
sion at each step where more than one production might apply. An
incorrect decision requires backtracking in order to seek another possibility.
There are three reasons why backtracking should be avoided if possible:

® The time required to parse a string with backtracking may increase
exponentially with the length of the string.

® If the automaton does not accept the string then it will be recognized as
incorrect. A parse with backtrack makes pinpointing the error almost
impossible. (This is illustrated by attempting to parse the string
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n.nE++n with the automaton of Figure 59 trying the rules in the
sequence in which they are written.)

® Other compiler actions are often associated with state transitions. Back-
tracking then requires unraveling of actions already completed, generally
a very difficult task.

In order to avoid backtracking, additional constraints must be placed upon

the automata that we are prepared to accept as models for our recognition

algorithms.

Definition 5.14. An automaton is deterministic if every derivation can be
continued by at most one move.

A finite automaton is therefore deterministic if the left-hand sides of all
rules are distinct. It can be completely described by a state table that has one
row for each element of Q and one column for each element of 7. Entry
(¢.) contains ¢’ if and only if the production ¢f »¢’ is an element of R. The
rows corresponding to ¢, and to the elements of F are suitably marked.

Backtracking can always be avoided when recognizing strings in a regu-
lar language:

Theorem 5.15. For every regular grammar, G, there exists a deterministic finite
automaton, A, such that L (A)=L(G).

Following construction 5.13, we can derive an automaton from a regular
grammar G =(T,N,P,Z) such that, during acceptance of a sentence in L (G),
the state at each point specifies the element of N used to derive the
remainder of the string. Suppose that the productions X »tU and X -tV
belong to P. When ¢ is the next input symbol, the remainder of the string
could have been derived either from U or from V. If 4 is to be determinis-
tic, however, R must contain exactly one production of the form Xz »gq’.
Thus the state ¢” must specify a ser of nonterminals, any one of which could
have been used to derive the remainder of the string. This interpretation of
the states leads to the following inductive algorithm for determining Q, R
and F of a deterministic automaton 4 =(7,Q,R,q,F). (In this algorithm, ¢
represents a subset Ny of NU{ f'}, f &N):

1. Initially let @ = {g¢} and R = @, with N, = {Z}}.

2. Let g be an element of Q that has not yet been considered. Perform steps
(3)-(5)foreach ¢t €T.

3. Letnext(q,t) = {U | 4 X €N, such that X >tU€EP}.

4. If there is an X €N, such that X >t EP or X >e¢€P then add f to
next(q, t) if it is not already present.

5. If next(q,t)# @ then let ¢’ be the state representing Ny =next(q,t).
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Add g’to Q and gt —q’to R if they are not already present.

6. If all states of Q have been considered then let F = {q | f €N, } and
stop. Otherwise return to step (2).

You can easily convince yourself that this construction leads to a deter-
ministic finite automaton 4 such that L (4 )=L(G). In particular, the algo-
rithm terminates: All states represent subsets of N U{f}, of which there
are only a finite number.

To illustrate this procedure, consider the construction of a deterministic
finite automaton that recognizes strings generated by the grammar of Figure
5.4a. The state table for this grammar, showing the correspondence between
states and sets of nonterminals, is given in Figure 5.10a. You should derive

n : + - E
90 - q£ ”qz - {C}
q 9 9 | {/:F}
92 9a {1}
'E qs 9s 9s {$}
44 9 | {fX}
qs {1
9s gs {U}

a) The state table

T={n,,+,—.E}
Q = {4091.92,93:94:95:96 )

P ={ qon~q1,90 9>
q1- 92 .1 E ~q3,
qrn >4y,
q3n —qs, 43+ =4s, 43— >4,
44E ->q3,
qsn >qs }

F ={41.9495}
b) The complete automaton

Figure 5.10. A Deterministic Automaton Corresponding to Figure 5.4a
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this state table for yourself, following the steps of the algorithm. Begin with
a single empty row for go and work across it, filling in each entry that
corresponds to a valid transition. Each time a distinct set of nonterminal
symbols is generated, add an empty row to the table. The algorithm ter-
minates when all rows have been processed.

Theorem 5.16. For every finite automaton, A, there exists a regular grammar,
G, such that L(G)=L(A).

Theorems 5.15 and 5.16 together establish the fact that finite automata and
regular grammars are equivalent. To prove Theorem 5.16 we construct the
production set P of the grammar G =(T,Q,P,q;) from the automaton
(T,0,R q,,F) as follows:

P = {q—-)tq' I qt—»q'ER} U] {q—>( I qEF}

5.2.2. State Diagrams and Regular Expressions The phrase structure
of the basic symbols of the language is usually not interesting, and in fact
may simply make the description harder to understand. Two additional for-
malisms, both of which avoid the need for irrelevant structuring, are avail-
able for regular languages. The first is the representation of a finite automa-
ton by a directed graph:

Definition 5.17.: Let 4 =(T,Q,R,q¢,F) be a finite automaton, D =
{(99) | J1.9¢ >9’ER}, and f:(¢9.49)~{t | gt >q’ER} be a mapping
from D into the powerset of T. The directed graph (Q,D) with edge labels
S ((q.9")) is called the state diagram of the automaton A4 .

Figure 5.11a is the state diagram of the automaton described in Figure
5.10b. The nodes corresponding to elements of F have been represented as
squares, while the remaining nodes are represented as circles. Only the state
numbers appear in the nodes: 0 stands for gy, 1 for ¢;, and so forth.

a) State diagram

n .n n.n
nEn nE+n nE-n
nnEn nnE+n nnE-n

b) Paths

Figure 5.11. Another Description of Figure 5.10b
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In a state diagram, the sequence of edge labels along a path beginning at
go and ending at a state in F is a sentence of L (4). Figure 5.11a has exactly
12 such paths. The corresponding sentences are given in Figure 5.11b.

A state diagram specifies a regular language. Another characterization is
the regular expression:

Definition 5.18. Given a vocabulary V, and the symbols E, ¢, +, *, (and )

notin V. Astring p over V U {E e, +,*(,)} is a regular expression over V if

1. pis a single symbol of ¥ or one of the symbols E or ¢, or if

2. p has the form (X +7Y), (XY) or (X )’ where X and Y are regular
expressions.

Every regular expression results from a finite number of applications of
rules (1) and (2). It describes a language over V: The symbol E describes
the empty language, ¢ describes the language consisting only of the empty
string, v EV describes the language {v}, (X +Y) = {0 | wEX or w€Y},
(XY) = {xy | X EX,yEY}. The closure operator (*) is defined by the fol-
lowing infinite sum:

X =e+ X +XX +XXX +---

As illustrated in this definition, we shall usually omit parentheses. Star is
unary, and takes priority over either binary operator; plus has a lower prior-
ity than concatenation. Thus W+XY is equivalent to the fully-
parenthesized expression (W +(X (YY)

Figure 5.12 summarizes the algebraic properties of regular expressions.
The distinct representations for X~ show that several regular expressions can
be given for one language.

The main advantage in using a regular expression to describe a set of
strings is that it gives a precise specification, closely related to the ‘natural
language’ description, which can be written in text form suitable for input to
a computer. For example, let I denote any single letter and 4 any single
digit. The expression /(! +d)’ is then a direct representation of the natural
language description ‘a letter followed by any sequence of letters and digits’.

The equivalence of regular expressions and finite automata follows from:

Theorem 5.19. Let R be a regular expression that describes a subset, S, of T".
There exists a deterministic finite automaton, A =(T,Q,P,q¢,F) such that
L(4)=S.

The automaton is constructed in much the same way as that of Theorem
5.15: We create a new expression R’ by replacing the elements of T occur-
ring in R by distinct symbols (multiple occurrences of the same element will
receive distinct symbols). Further, we prefix another distinct symbol to the
altered expression; if R =E, then R’ consists only of this starting symbol.
(As symbols we could use, for example, natural numbers with 0 as the start-
ing symbol.) The states of our automaton correspond to subsets of the sym-
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X+Y=Y+X

X+Y)+Z =X+(Y+2)
(XY)Z = X(YZ)

X(Y+Z) = XY +XZ
X+Y)Z = XZ+YZ

X+E=E+X =X
Xe=eX=X

XE =EX = E
X+X =X
(X*)‘:X* )

X =e+XX

X =x+Xx
E':(

E =¢

Chapter 5. Elements of Formal Systems

(commutative)

(associative)

(distributive)

(identity)

(zero)

(idempotent)

Figure 5.12. Algebraic Properties of Regular Expressions

R=1I1(0+d)*

R" =01(2 + 3)*
a) Modifying the Regular Expression

I d
90 9 {0}
91 9> q3 {1}
92 92 9 | {2}
q3 9> q3 (3}

(final)
(final)

(final)

b) The resulting state table

Figure 5.13. Regular Expressions to State Tables

bol set. The set corresponding to the initial state g, consists solely of the
starting symbol. We inspect the states of Q one after another and add new
states as required. For each ¢ €Q and each 1 €T, let ¢’ correspond to the
set of symbols in R’ that replace ¢ and follow any of the symbols of the set
corresponding to ¢. If the set corresponding to ¢’ is not empty, then we add



5.3. Context-Free Grammars and Pushdown Automata 119

gt »q’to P and add {q’} to Q if it is not already present. The set F of final
states consists of all states that include a possible final symbol of R".

Figure 5.13 gives an example of this process. Starting with go={0}, we
obtain the state table of Figure 5.13b, with states q,, ¢; and g3 as final states.
Obviously this is not the simplest automaton which we could create for the
given language; we shall return to this problem in Section 6.2.2.

5.3. Context-Free Grammars and Pushdown
Automata

Regular grammars are not sufficiently powerful to describe languages such
as algebraic expressions, which have nested structure. Since most program-
ming languages contain such structures, we must change to a sufficiently
powerful descriptive method such as context-free grammars. Because regu-
lar grammars are a subclass of context-free grammars, one might ask why
we bother with regular languages at all. As we shall see in this section, the
analysis of phrase structure by means of context-free grammars is so much
more costly that one falls back upon the simpler methods for regular gram-
mars whenever possible.

Here, and also in Chapter 7, we assume that all context-free grammars
(TIN,P,Z) contain a production Z —S. This is the only production in
which the axiom Z appears. (Any grammar can be put in this form by addi-
tion of such a production.) We assume further that the terminator # fol-
lows each sentence. This symbol identifies the condition ‘input text com-
pletely consumed’ and does not belong to the vocabulary. Section 5.3.3
assumes further that the productions are consecutively numbered. The
above production has the number 1, n is the total number of productions
and the i th production has the form X; »x;, x; =x; 1-** X;,». The length,
m, of the right-hand side is also called the length of the production. We
shall denote a leftmost derivation X ="Y by X =Y and a rightmost
derivation by X =*y.

We find the following notation convenient for describing the properties of
strings: The k-head k:w of w gives the first min(k, | w | +1) symbols of
w# . FIRST) (w) is the set of all terminal k -heads of strings derivable from
w. The set EFF; (w) (‘e-free first’) contains all strings from FIRST, (w) for
which no e-production 4 —¢ was applied at the last step in the rightmost
derivation. The set FOLLOW, (w) comprises all terminal k -heads that could
follow w. By definition FOLLOW, (Z)={# } for any k. Formally:

w# when |w]| <k
kiw=15  when w=ayand |a| =k

FIRST; (0) = {r | J »€T suchthat w="y, r=k:»)

EFFy(w) = {TEFIRST,(0) | JA EN,vET" suchthat w =% A > ™}
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FOLLOW, (w) = {r | 9 v€V suchthat Z =" pww, =k :»}

We omit the index k when itis 1. These functions may be applied to sets of
strings, in which case the result is the union of the results of applying the
function to the elements of its argument. Finally, if a is a string and Q is a
set of strings, we shall define aQ = {aw | WEQ}.

53.1. Pushdown Automata For finite automata, we saw that the state
specifies the set of nonterminal symbols of G that could have been used to
derive the remainder of the input string. Suppose that a finite automaton
has reached the first right parenthesis of the following expression (which can
be derived using a context-free grammar):

@ +@+( - +@n) )

It must then be in a state specifying some set of nonterminal symbols that
can derive exactly m right parentheses. Clearly there must be a distinct state
for each m. But if m is larger than the number of states of the automaton
(and this could be arranged for any given number of states) then there can-
not be a distinct state for each m. Thus we need a more powerful automa-
ton, which can be obtained by providing a finite automaton with a stack as
an additional storage structure.

Definition 5.20. A pushdown automaton is a septuple 4 =(T,Q,Rq,,F.S,s),
where (TUQ US,R) is a general rewriting system, g, is an element of Q, F
is a subset of Q, and s is an element of S or so=e. The sets 7 and Q are
disjoint. Each element of R has the form ogat—d'q’r, where o and o are
elements of S”, ¢ and ¢’ are elements of Q, a is an element of T or a =¢,
and 7 is an element of T".

Q. qo and F have the same meaning as the corresponding components of a
finite automaton. S is the set of stack symbols, and s is the initial content of
the stack. The pushdown automaton accepts a string €T if soqo7 =g for
some ¢ in F. If each sentence is followed by #, the pushdown automaton A
defines the language L(4) = {r | soqo7# ='q#,qEF,r€T"}). (In the
literature one often finds the requirement that o be an element of S rather
than S”; our automaton would then be termed a generalized pushdown auto-
maton. Further, the definition of ‘accept’ could be based upon either the
relation soqo7=>"0q, 6€S',g EF, or the relation $0goT="q, q arbitrary.
Under the given assumptions these definitions prove to be equivalent in
power.)

We can picture the automaton as a machine with a finite set Q of internal
states and a stack of arbitrary length. If we have reached the configuration
§1° " S,q7in a derivation, then the automaton is in state q, 7 is the unread
part of the input text being analyzed, and s - - - 5, is the content of the stack
(s1 is the bottom item and s, the top). The transitions of the automaton
either read the next symbol of the input text (symbol-controlled) or are spon-
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taneous and do not shorten the input text. Further, each transition may alter
the topmost item of the stack; it is termed a stacking, unstacking or replacing
transition, respectively, if it only adds items, deletes items, or changes them
without altering their total number.

The pushdown automaton can easily handle the problem of nested
parentheses: When it reads a left parenthesis from the input text, it pushes a
corresponding symbol onto the stack; when it reads the matching right
parenthesis, that symbol is deleted from the stack. The number of states of
the automaton plays no role in this process, and is independent of the
parenthesis nesting depth.

Theorem 5.21. For every context-free grammar, G, there exists a pushdown
automaton, A, such that L (A)=L (G).

As with finite automata, one proves this theorem by construction of 4.
There are two construction procedures, which lead to distinct automata; we
shall go into the details of these procedures in Sections 5.3.2 and 5.3.3
respectively. The automata constructed by the two procedures serve as the
basic models for two fundamentally different parsing algorithms.

A pushdown automaton is not necessarily deterministic even if the left
sides of all productions are distinct. For example, suppose that 0,97 —0'q'r’
and o,qT—0"g"7" are two distinct productions and o, is a proper tail of o).
Thus ¢;=00, and both productions are applicable to the configuration
o0yq7x. If we wish to test formally whether the productions unambiguously
specify the next transition, we must make the left-hand sides the same
length. Determinism can then be tested, as in the case of finite automata, by
checking that the left-hand sides of the productions are distinct. We shall
only consider cases in which the state ¢ and k lookahead symbols of the
input string are used to determine the applicable production.

Unfortunately, it is not possible to sharpen Theorem 5.21 so that the
pushdown automaton is always deterministic; Theorem 5.15 for regular
grammars cannot be generalized to context-free grammars. Only by addi-
tional restrictions to the grammar can one guarantee a deterministic auto-
maton. Most programming languages can be analyzed deterministically,
since they have grammars that satisfy these restrictions. (This has an obvi-
ous psychological basis: Humans also find it easier to read a
deterministically-analyzable program.) The restrictions imposed upon a
grammar to obtain a deterministic automaton depend upon the construction
procedure. We shall discuss the details at the appropriate place.

5.3.2. Top-Down Analysis and LL(k) Grammars Let G=(T,N,P,Z)
be a context-free grammar, and consider the pushdown automaton A4 =
(T,{q},R,q.{q}, V,Z)with V=T u N and R defined as follows:
R ={tqgt-q | t€T} U {Bg-b, - byq |
B-by---b,€P,n>0,BEN,bEV)
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This automaton accepts a string in L (G') by constructing a leftmost deriva-
tion of that string and comparing the symbols generated (from left to right)
with the symbols actually appearing in the string.

Figure 5.14 is a pushdown automaton constructed in this manner from
the grammar of Figure 5.3a. In the left-hand column of Figure 5.15 we
show the derivation by which this automaton accepts the string i +i*. The
right-hand column is the leftmost derivation of this string, copied from Fig-
ure 5.5. Note that the automaton’s derivation has more steps due to the
rules that compare a terminal symbol on the stack with the head of the input

T = {+’*a(’),i}
0 =1{q)
R = { Eq~Tq,Eq~T+Ey,
Tq-Fq,Tq -F*Ty,
Fg -ig, Fq -)E(q,
+9+-9.*9*>q,(q(~q, )9)~q,igi >q }
do =4
F={q}
S ={+%0)i,ETF)
So = E

Figure 5.14. A Pushdown Automaton Constructed from Figure 5.3a

Stack  Input Leftmost derivation
E qgi+i*i E
T+E q i+i*i E+T
T+T q i+i* T+T
T+F q i+i*i F+T
T+i g i+i*i i+T
T+ q +iti
T qi*i
F*T q i*i i+T*F
F*F q i*i i+F*F
F*i q i*i i+i*F
F* g *i
Fgqi
iqi i+
9

Figure 5.15. Top-Down Analysis
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string and delete both. Figure 5.16 shows a reduced set of productions com-
bining some of these steps with those that precede them.

R'={ Eq-Tq,Eq-T+Eq,
Tqg-Fq,Tq -F*1q,
Fqi—»q, Fq(—»)Eqs
t4+-9."9%>9,)9)~q }
Figure 5.16. Reduced Productions for Figure 5.14

The analysis performed by this automaton is called a top-down (or predic-
tive) analysis because it traces the derivation from the axiom (top) to the sen-
tence (bottom), predicting the symbols that should be present. For each
configuration of the automaton, the stack specifies a string from V" used to
derive the remainder of the input string. This corresponds to construction
5.13 for finite automata, with the stack content playing the role of the state
and the state merely serving to mark the point reached in the input scan.

We now specify the construction of deterministic, top-down pushdown
automata by means of the LL(k) grammars introduced by Lewis and
Stearns [1969]:

Definition 5.22. A context-free grammar G = (T,N,P,Z) is LL (k) for given
k > 0if, for arbitrary derivations

Z>lpdx>prx>"py pYET,vXEV,AEN

Z>Lpdx >pox=>"wy YET,weV
(k:y=k:y) implies r=w.

Theorem 5.23. For every LL(k ) grammar, G, there exists a deterministic push-
down automaton, A, such that L (A)=L (G).

A reads each sentence of the language L (G) from /eft to right, tracing a left-
most derivation and examining no more than k input symbols at each step.
(Hence the term ‘LL(k ) prime .)

In our discussion of Theorem 5.13, we noted that each state of the finite
automaton corresponding to a given grammar specified the nonterminal of
the grammar that must have been used to derive the string being analyzed.
Thus the state of the automaton characterized a step in the grammar’s
derivation of a sentence. We can provide an analogous characterization of a
step in a context-free derivation by giving information about the production
being applied and the possible right context: Each state of a pushdown
automaton could specify a triple (p,j, ), where 0< j < n, gives the
number of symbols from the righthand side of production
Xy, =>xp 1 Xp,n, already analyzed and Q is the set of k-heads of strings
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that could follow the string derived from X,,. This triple is called a situation,
and is written in the following descriptive form:

[)(p S RY B=Xp, 1" " Xp js V=Xp j41° " xp,np

The dot (which is assumed to be outside of the vocabulary) marks the posi-
tion of the analysis within the right-hand side. (In most cases © contains a
single string. We shall then write it without set brackets.)

Given a grammar (7,N,P,Z ), we specify the states Q and transitions R of the

automaton inductively as follows:

1. Initially let Q={q0} and R= g, with go=[Z > S;# ). (Note that
FOLLOW, (Z)={# }.) The initial state is ¢, which is also the initial
stack content of 4. (We could have chosen an arbitrary state as the ini-
tial stack content.) The automaton halts if this state is reached again, the
stack is empty, and the next input symbol is the terminator # .

2. Letq =[X —»p'»;Q] be an element of O that has not yet been considered.

3. If v=¢ then add ge—e to R if it is not already present. (The notation
g7-7 is shorthand for the set of spontaneous unstacking transitions
q’q7—q’7 with arbitrary ¢’.)

4. Ify=tyforsomer €T and yEV' letq'=[X -»pt-y;Q]. Add g’ to Q and
gt »q’ to R if they are not already present.

5. If v=By for some BEN and yEV, let q'=[X->pBy;Q and H =
{[B »B;;FIRST, (yQ)] | B~B; EP}. SetQ := Q U {¢’} U H and R
=R U {q7,»q'hy7; | h €H, 1, EFIRST; (B;YQ)}.

6. If all states in Q have been examined, stop. Otherwise, return to step (2).

The construction terminates in all cases, since the set of situations is finite.
One can show that the resulting automaton is deterministic if and only if G
is an LL(k ) grammar, and therefore the construction provides a test for the
LL(k ) property.

Consider the grammar of Figure 5.17a. We can apply Construction 5.23
with k =3 to show that this grammar is LL(3), obtaining the states of Figure
5.17b and the transitions of Figure 5.17c.

With k£ =2 the construction leads to identical states. In state q7, however,
we obtain the following transitions:

qica ->q10411€a, g4 >q10q912¢ca

The automaton is therefore nondeterministic and hence the grammar is
LL(3), but not LL(2). The example also shows that the lookahead symbols
are examined only at spontaneous, stacking transitions that correspond to
entry into a new production. As soon as such a transition is executed, the
reading of terminal symbols and the decision to terminate the production
with an unstacking transition proceeds without further lookahead.

There exist grammars that do not have the LL(k) property for any k.
Among the possible reasons is the occurrence of left recursive nonterminals
— nonterminals 4 for which a derivation 4 = 4 w, ws ¢, is possible. In a
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P ={2Z-X,
X-Y, X -bYa,
Y e, Y>ca)
a) An LL(3) grammar

qo=I[Z > X;#] qo=[Y »c-a;#]
1=[Z->X;#] q=[X-bY-a;# |
2=[X~>Y;#] qu=[Y »ca#]
q3=[X —>bYa;# ] qn=[Y —>ca;a# ]
qs=[X Y #] qui3=[Y »ca;# ]
gs=[Y »c;#] qu=[X ->bYa ;#]
qo=[Y »ca;# ] qi5=[Y ->c;a#]
g1=[X-bYa;#] qi=[Y-caa#]
gs=[Y »c;#] qur7=[Y »ca-;a# |

b) States of the automaton, with the situations they represent

R={ gqoc#-q9:xx# qrca # >qioq11ca #,
qoca # »>q,q,ca ¥, qqcaa »q,qrcaa,
qobca —q,q;bca, qs—¢
91 —€, 99‘1 "913,
q2¢ & >qaqsc #, q104 >4 14
grca # >quqeca #, g1 >41s,

q3b ~>q7, 412¢ ~>4165
q13 ¢
q4—¢€, qia—e
qsC >gs, q15—6
q6C —q9, 9162 2417,
g€}

c) Production set of the Automaton

Figure 5.17. Constructing a Deterministic Top-Down Automaton

predictive automaton, left recursive nonterminals lead to cycles that can be
broken only by examining a right context of arbitrary length. They can,
however, be eliminated through a transformation of the grammar.

Theorem 5.24. An LL(k ) grammar can have no left recursive nonterminal sym-
bols.

Theorem 5.25. For every context-free grammar G =(T,N,P,Z) with left recur-
sive nonterminals, there exists an equivalent grammar G'=(T,N'’,P’Z) with no
left recursive nonterminals.

Let the elements of N be numbered consecutively: N={X,, ..., X, }. If
we choose the indices such that the condition i <j holds for all productions
X; > X; w then G has no left recursive nonterminals. If such a numbering is
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not possible for G, we can guarantee it for G’ through the following con-
struction:

1. Let N'=N, P'=P. Perform steps (2) and (3) fori =1, ..., n.

2. Forj=1,...,i~1 replace all productions X; »X;wEP’by {X; >x,w |
X; >x; EP’}. (After this step, X; = * X;y implies i < )

3. Replace the entire set of productions of the form X; -X;wEP’ (if any
exist) by the productions {B; »wB; | X; >X,wEP’'}U {B; »¢}, adding a
new symbol B; to N’. At the same time, replace the entire set of produc-
tions X; »x, x7 X; v, by X; >xB;. The symbols added during this step
will be given numbersn +1,n +2, .. .,

If the string w in the production X; »X; w does not begin with X;, j < i
then we can replace X; -X;w by {B; »w, B, >wB; } and X; ->x by {X; ->x,
X, ->xB;} in step (3). This approach avoids the introduction of -
productions; it was used to obtain the grammar of Figure 5.3b from that of
Figure 5.3a.

Note that left recursion such as E T, E -E +T is used in the syntax of
arithmetic expressions to reflect the left-association of the operators. This
semantic property can also be seen in the transformed productions
E-TE', E'>+TE’, E’»¢, but notin E-T,E ->T+E. In EBNF the left
associativity of an expression can be conveniently represented by
E::=T(+'T)*.

One of the constructions discussed above results in e-productions, while
the other does not. We can always eliminate e-productions from an LL(k)
grammar, but by doing this we may increase the value of k :

Theorem 5.26. Given an LL(k ) grammar G with e-productions. There exists an
LL(k +1) grammar without e-productions that generates the language
L(G)—{e}.

Conversely, k can be reduced by introducing e-productions:

Theorem 5.27. For every e-free LL(k +1) grammar G, k >0, there exists an
equivalent LL(k ) grammar with e-productions.

The proof of Theorem 5.27 rests upon a grammar transformation known
as lefi-factoring, illustrated in Figure 5.18. In Figure 5.18a, we cannot distin-
guish the productions X - Yc and X - Yd by examining any fixed number
of symbols from the input text: No matter what number of symbols we
choose, it is possible for Y to derive a string of that length in either produc-
tion.

We avoid the problem by deferring the decision. Since both productions
begin with Y, it is really not necessary to distinguish them until affer the
string derived from Y has been scanned. The productions can be combined



5.3. Context-Free Grammars and Pushdown Automata 127

P={2Z-X,
X-Yc,X->Yd,
Y-a, Y-bY }

a) A grammar that is not LL(k) for any k

P={2Z-X,
X-YX',
X'»c,X'>d,
Y -a,Y-bY }
b) An equivalent LL(1) grammar

Figure 5.18. Left Factoring

by ‘factoring out’ the common portion, as shown in Figure 5.18b. Now the
decision is made at exactly the position where the productions begin to
differ, and consequently it is only necessary to examine a single symbol of
the input string.

In general, by deferring a decision we obtain more information about the
input text we are analyzing. The top-down analysis technique requires us to
decide which production to apply before analyzing the string derived from
that production. In the next section we shall present the opposite technique,
which does not require a decision until after analyzing the string derived
from a production. Intuitively, this technique should handle a larger class of
grammars because more information is available on which to base a deci-
sion; this intuition can be proven correct. The price is an increase in the
complexity of both the analysis procedure and the resulting automaton, but
in practice the technique remains competitive.

53.3. Bottom-Up Analysis and LR(k) Grammars Again let G
=(I'N,P,Z) be a context-free grammar, and consider the pushdown auto-
maton 4 =(T,{q },R.,q,{q },V;e) with V=T U N, and R defined as follows:

R={x""x,q-Xq |X>x;--x,EP}U {qt>1q | tET} U {Zq ~>q}
This automaton accepts a string in L (G) by working backward through a

rightmost derivation of the string.
Figure 5.19 is a pushdown automaton constructed in this manner from

T ={+"0)i}

R={Tq-Eq,E+Tq~Eq,
Fq-Tq,T*Fg 13,
iq~Fq,(E)q ~Fq,
q+-+4,9*~>%,9(~(q, 9)~). 9 ~iq,
Eq-q)

S = {+,*,()i.E,TF}

Figure 5.19. A Pushdown Automaton Constructed from Figure 5.3a
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Stack  Input Reverse rightmost derivation
q i+i% i+i%
iq +i%
F q +i% F+i%
T q +i% T +i*
E g +i% E +i*
E+ g i%
E+iqg %
E+F q % E +F%
E+T q % E+T%
E+T* q i
E+T*% ¢q
E+T*F q E +T*F
E+T g E+T
E g E
q

Figure 5.20. Bottom-Up Analysis

R'={ Tq-Eq,E+Tq-Eq,
Fq-Tq, T*Fq - Ty,
qi »Fq,(Eq)-Fq,
q+-+49.9*~>*,q9(-(q,
Eq -q }

Figure 5.21. Reduced Productions for Figure 5.17

the grammar of Figure 5.3a. In the left-hand column of Figure 5.20, we
show the derivation by which this automaton accepts the string i +i*i. The
right-hand column is the reverse of the rightmost derivation of this string,
copied from Figure 5.5. The number of steps required for the automaton’s
derivation can be decreased by combining productions as shown in Figure
5.21. (This reduction is analogous to that of Figure 5.16.)

The analysis performed by this automaton is called a bottom-up analysis
because of the fact that it traces the derivation from the sentence (bottom) to
the axiom (top). In each configuration of the automaton the stack contains a
string from S, from which the portion of the input text already read can be
derived. The state merely serves to mark the point reached in the input
scan. The meaningful information is therefore the pair (p, 0), where pES”
denotes the stack contents and 0 €T denotes the remainder of the input
text.

The pairs (p, o) that describe the configurations of an automaton tracing
such a derivation may be partitioned into equivalence classes as follows:

Definition 5.28. For p=1, ..., n let X, >x, be the p” production of a
context-free grammar G=(T,N,P,Z). The reduction classes, R;,
J =0, ..., n are defined by:
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Ro={(p,0) | p=py, o=vw suchthat Z =" pdw, A >Ry, v # ¢}
R, ={(p.0) | p=px;, Z >"pX,0)

‘4 =R’ denotes the relation ‘4 =%« and the last step in the derivation
does not take the form Ba =-a’.

The reduction classes contain all pairs of strings that could appear during
the bottom-up parse of a sentence in L(G) by the automaton described
above. Further, the reduction class to which a pair belongs characterizes the
transition carried out by the automaton when that pair appears as a
configuration. There are three possibilities:

1. (p, 0)ER,. The simple phrase x is not yet completely in the stack; the
transition gt —tq with t = 1:0 is applied (shift transition).

2. (p,0)ER,, 1< p< n. The simple phrase x is complete in the stack and
the reduce transition x,q -X,q is applied. (For p=1 the transition
Zq —-q occurs and the automaton halts.)

3. (p,0)€R;, 0< j < n. No further transitions are possible; the input text
does not belong to L (G).

A pushdown automaton that bases its decisions upon the reduction
classes is obviously deterministic if and only if the grammar is unambiguous.

Unfortunately the definition of the sets R; uses the entire remainder of
the input string in order to determine the reduction class to which a pair
(p, o) belongs. That means that our bottom-up automaton must inspect an
arbitrarily long lookahead string to make a decision about the next transi-
tion, if it is to be deterministic. If we restrict the number of lookahead sym-
bols to k, we arrive at the following definition:

Definition 5.29. For some k > 0, the sets R; ;, j =0, ..., n, are called k-
stack classes of a grammar G if:
R; i ={(p,7) | J (p,0)ER; suchthat r=k:0}
If the k -stack classes are pairwise-disjoint, then the pushdown automaton
is deterministic even when the lookahead is restricted to k symbols. This

property characterizes a class of grammars introduced by D. E. Knuth
[1965]:

Definition 5.30. A context-free grammar G = (T,N,P,Z) is LR (k) for given
k > 0/if, for arbitrary derivations
Z>Rpdw=>pxw pEV,wET, A >xEP
Z>RyBo >p'ye' p'EV,W'ET,B>yEP
(| px | +k)pxew = (| 'y | +k):p'ye’ implies p=p’, 4 =B and x =.
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The automaton given at the beginning of this section scans the input text
from Jeft to right, tracing the reverse of a rightmost derivation and examin-
ing no more than k input symbols at each step. (Hence the term “LR(k)”.)

Theorem 5.31. A context-free grammar is LR(k) if and only if its k-stack
classes are pairwise-disjoint.

On the basis of this theorem, we can test the LR(k ) property by determin-
ing the intersection of the k -stack classes. Unfortunately the k -stack classes
can contain infinitely many pairs (p, 7): The length restriction permits only a
finite number of strings 7, but the lengths of the stack contents are unres-
tricted. However, we can give a regular grammar G; for each k-stack class
R; . such that L(G;)={(p&7) | (o, T)ER; «}. Since algorithms exist for
determining whether two regular languages are disjoint, this construction
leads to a procedure for testing the LR(k ) property.

Theorem 5.32. Let G =(T,N,P,Z) be a context-free grammar, and let k > 0.
Assume that & is not an element of the vocabulary V=T U N. There exists a set
of regular grammars G;, j =0, ..., n such that L (G;)={p&t | (p,7)ER, s }.

The regular grammars that generate the k-stack classes are based upon
the situations introduced in connection with Theorem 5.23:

W = (X >pr;e] | X >pvE€P, wEFOLLOW; (X))

These situations are the nonterminal symbols of the regular grammars. To
define the grammars themselves, we first specify a set of grammars that gen-
erate the k -stack classes, but are not regular:

G, =(VU{&.#},W.P'UP"UP, |Z >S;#])

The productions in P’ U P” build the p components of the k-stack class.
They provide the finite description of the infinite strings. Productions in P;
attach the r component, terminating the k -stack class:

P’ = {[X spvy,w]->v[X >pv-yie] | vEV}

P” = {[X >wBv;w]-[B - B;1] | B-BEP, r€EFF(yw)}
Py = {[X »pviw]>& 7 | v~ ¢ TEEFF; (vw))

P, = {lx, »xps0l & w} p=1,...,n

Remember that the lengths of 7 and w are limited to k symbols, so the
number of possible strings & r and & w is finite. If we regard these strings as
single terminal symbols, productions in P’ and P;, j =0, ..., n, are allow-
able in a regular grammar. Productions in P” are not allowable, however,
since they are of the form 4 -B, A, BEN. Thus G’; is not regular.

It is always possible to rewrite a grammar so that it contains no produc-
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tions such as those in P”. The key is the closure of a nonterminal:
HA)={A}u {B | C-BEPCEH(A)}
The procedure for rewriting the grammar is:

1. Selectan 4 €N for which H(4 ) {4 }.
2.8¢tP=P-{4A-B | BEN}.
3.SetP=PuU {A-B8| B-BEP,BEH(A),B&N}.

The algorithm terminates when no selection can be made in step (1).

We obtain G; from G’; by applying this algorithm. The strings 8 are all
of the form v[-:-], & r or & w, and therefore all introduced productions
satisfy the conditions for a regular grammar.

Theorem 5.33. For every LR(k ) grammar G there exists a deterministic push-
down automaton A such that L (A)=L (G).

Let G=(T,N,P,Z). We base construction of the automaton on the
grammars G;, effectively building a machine that simultaneously generates
the k-stack classes and checks them against the reverse of a rightmost
derivation of the string. Depending upon the particular k -stack class, the
automaton pushes the input symbol onto the stack or reduces some number
of stacked symbols to a nonterminal. The construction algorithm generates
the necessary situations as it goes, and uses the closure operation discussed
above ‘on the fly’ to avoid considering productions from P”. As in the con-
struction associated with Theorem 5.15, a state of the automaton must
specify a set of situations, any one of which might have been used in deriv-
ing the current k -stack class. It is convenient to restate the definition of a
closure directly in terms of a set of situations M:

HM)=MU{[B ~B;7] |  [X >pBy;w]EH (M),
B »>BEP, rEFIRST; (yw))
The elements of Q and R are determined inductively as follows:
1. Initially let Q ={go} and R = @, with go=H ({[Z > S; # ]}).

2. Let g be an element of Q that has not yet been considered. Perform
steps (3)-(5) foreachv EV.

3. Letbasis(q,v) = {[X »pv-v;0] | [X >pvy;0]€q ).

4. If basis(q,v) # &, then let next(q,v)=H (basis(q,v)). Add q’=next(q, v)
to Q if it is not already present.

5. If basis(q,v) # @ and v €T then set

{qv-qq’} ifk<1

Ri=k v {{q"‘fﬁqq"r | [X >pvy;0]€q, TEFIRST, _|(yw)} otherwise
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q: [Z-X;#] qs:  [Y -c#]
[X->Y;#] [Y -ca;#]
[X >-bYa;# ]
[Y>c;#] gs: [X-bY-a;#]
[Y >ca;# ] q¢:  [Y »ca# ]
9 [Z-X;#] [Y >c-a;a# ]
g [X->Y#] q1:  [Y »ca;#]
qs: [X-bYa;#)] gqs: [X-obYa;#]
[Y >c;a# ] qo:  [Y —ca a# ]
[Y >ca;a# ]

a) States

R = { qobc »qoqsc,
qoc # >qoqq#,

q3ca - q3q¢a,

qaa # >qaqq#,

qsa # ‘*‘15‘18#’

qeda —>q¢q9a,

9092 % —qoq, #,
qoqa¥ —>qoqr #,
9396a # ~q3qsa #,
qoq491% ~q0q2 %,
90939595 % ~qoq:1 %,
43q¢q9a # —>q3qsa # }

b) Transitions

Figure 5.22. A Deterministic Bottom-Up Automaton for Figure 5.17a

6. If all elements of Q have been considered, perform step (7) for each
q €0 and then stop. Otherwise return to step (2).

7. For each [X-x-;w]€q, where x=x;---x,, set R := R U
{ql'--q,,qweqlq’w|[X-»-x;w]qu,qu:next(qi,x,-)(i:1,...,n-—l),
q =next(q,, xn ), ¢'=next(q1,X)}

The construction terminates in all cases, since only a finite number of
situations [X —x-y;w)] exist.

Figure 5.22 illustrates the algorithm by applying it to the grammar of
Figure 5.17a with k =2. In this example k =1 would yield the same set of
states. (For k=0, g4 and g7 would be coalesced, as would ¢; and ¢.)
Nevertheless, a single lookahead symbol is not sufficient to distinguish
between the shift and reduce transitions in state 6. The grammar is thus
LR(2), but not LR(1).

We shall conclude this section by quoting the following theoretical
results:
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Theorem 5.34. For every LR(k) grammar with k > 1 there exists an equivalent
LR(1) grammar.

Theorem 5.35. Every LL (k) grammar is also an LR (k ) grammar.
Theorem 5.36. There exist LR (k) grammars that are not LL (k’) for any k’.

Theorem 5.37. There exists an algorithm that, when given an LR (k) grammar
G, will decide in a finite number of steps whether there exists a k' such that G is
LL(k").

As a result of Theorem 5.34 we see that it might possibly be sufficient to
concern ourselves only with LR(1) grammars. (As a matter of fact, the
transformation underlying the proof of this theorem is unsuitable for
practical purposes.) The remaining theorems support our intuitive thoughts
at the end of Section 5.3.2.

5.4. Notes and References

The basic symbols of a programming language are often described by arbi-
trary context-free productions, as illustrated by the LAX definition of
Appendix A.1. This description does not provide a suitable starting point
for mechanical construction of a lexical analyzer, and must therefore be
recast by hand in terms of a regular set or regular grammar.

Our interpretation of finite automata and pushdown automata as special
cases of general rewriting systems follows Salomaa [1973]. By this means we
avoid a special definition of concepts such as configurations or transitions of
an automaton.

BNF notation was first used to describe ALGOL 60 [Naur 1963]. Many
authors have proposed extensions similar to our EBNF, using quoted termi-
nals rather than bracketed nonterminals and having a regular expression
capability. EBNF definitions are usually shorter than their BNF
equivalents, but the important point is that they are textual representations
of syntax charts [Jensen 1974, ANSI 1978]. This means that the context-free
grammar can actually be developed and described to the user by means of
pictures.

Pushdown automata were first examined by Samelson and Bauer [1960]
and applied to the compilation of a forerunner of ALGOL 60. Theoretical
mastery of the concepts and the proofs of equivalence to general context-
free grammars followed later. Our introduction of LR(k) grammars via
reduction classes follows the work of Langmaack [1971].

Aho and Ullman [1972] (and many other books dealing with formal
languages) cover essentially the same material as this chapter, but in much
greater detail. The proofs that are either outlined here or omitted entirely
can be found in those texts.
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EXERCISES

5.1. Prove that there is no loss of generality by prohibiting formal systems in which
a derivation 7=+ & of a string from itself is possible.

5.2. Choose some useless nonterminal from the LAX definition and briefly justify
its inclusion in Appendix A.

5.3. Give an intuitive justification of Theorem 5.10.

5.4. Write a program to examine a finite automaton 4 and return the accepted
language L (4) in closed form as a regular expression.

5.5. Regular expressions X, ..., X, can also be defined implicitly via systems of
regular equations of the form:

Xi=ajotai ( Xi+ - +a;,,X,, i=1.n

Here the g;; are known regular expressions. State the conditions under which
such a system has a unique solution, and give an algorithm to compute this
solution. (Hint: For b+~ ¢, the equation X =aX +b has the solution b'a.)

5.6. Give an explanation of the need for ‘=>®"" in Definition 5.28.

5.7. Prove that the algorithm for rewriting G to remove productions of the form
A >BA,B €N results in a grammar G such that L(G)=L(G).



CHAPTER 6
Lexical Analysis

Lexical analysis converts the source program from a character string to a
sequence of semantically-relevant symbols. The symbols and their encoding
form the intermediate language output from the lexical analyzer.

In principle, lexical analysis is a subtask of parsing that could be carried
out by the normal parser mechanisms. To separate these functions, the
source language grammar G must be partitioned into subgrammars
Gy, Gy, G4, ... such that G|, G,, ... describe the structure of the basic sym-
bols and G, describes the structure of the language in terms of the basic
symbols. L(G) is then obtained by replacing the terminal symbols of G, by
strings from L (Gy), L (G3),...

The separation of lexical analysis from parsing gives rise to higher organ-
izational costs that can be justified only by realizing greater savings in other
areas. Such savings are possible in table-driven parsers through reduction in
table size. Further, basic symbols usually have such a simple structure that
faster procedures can be used for the lexical analysis than for the general
parsing.

We shall first discuss the partitioning of the grammar and the desired
results of lexical analysis, and then consider implementation with the help of
finite automata.

6.1. Modules and Interfaces

In this section we devote ourselves to the ‘black box’ aspects of lexical
analysis: Decomposition of the grammar and with it the definition of the
tasks of lexical analysis, arriving at the interface between the lexical
analyzer and the remainder of the compiler.

135
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6.1.1. Decomposition of the Grammar Delimiters (keywords, mean-
ingful special characters and combinations of special characters), identifiers
and constants together are termed basic symbols. In sharp contrast to other
language elements, their structure and representation may be arbitrarily
changed (say by introducing French or German keywords or by represent-
ing ‘<’ by “LT.’) without altering the power of the language. Further, the
structure of the basic symbols can generally be described with regular gram-
mars or regular expressions.

The productions of Section A.l describe the basic symbols of LAX.
(Conversion to a regular grammar is left to the reader.) The productions
A.1.0.1, A.1.0.9-12 are superfluous because only the nonterminals identifier
and constant, single keywords, special characters and special character com-
binations (other than ‘(*’ ) occur in the remainder of the grammar.

In many languages the grammar for basic symbols (symbol grammar) is
not so easily determined from the language definition, or it results in addi-
tional difficulties. For example, the ALGOL 60 Report defines keywords,
letters, digits, special characters and special character combinations as basic
symbols; it does not include identifiers, numbers and strings in this category.
This description must be transformed to meet the requirements of compiler
construction. In PL/1, as in other languages in which keywords are lexically
indistinguishable from identifiers, context determines whether an identifier
(e.g. IF) is to be treated as a keyword or a freely-chosen identifier. Two
symbol grammars must therefore be distinguished on the basis of context;
one accepts identifiers and not keywords, the other does the converse. An
example of similar context-dependence in FORTRAN is the first identifier
of a statement: In an assignment it is interpreted as the identifier of a data
object, while in most other cases it is interpreted as a keyword. (Statement
classification in FORTRAN is not an easy task — see the discussion by Sale
[1971] for details.)

Even if it is necessary to consult context in order to determine which sym-
bols are possible at the given point in the input text, a finite automaton often
suffices. The automaton in this case has several starting states corresponding
to the distinct symbol grammars. We shall not pursue this point further.

6.1.2. Lexical Analyzer Interface The lexical analyzer is organized as
a module with several local state variables and implements the following
elementary operations:

® initialize _lexical _analysis
® next _token
® wrapup _lexical _analysis

The central operation next_token is used by the parser to obtain the next
token in the token sequence (Section 4.1.1). (A coroutine, activated for each
token, might be used instead of a procedure.) If the parser does not interact
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directly with the lexical analyzer, then a file of tokens must be constructed
by calls to next_token. The parser obtains the tokens by reading this file.
Even if direct calls are possible, such a file is necessary when the parsing is
done in several passes (as for ALGOL 68).

The lexical analyzer itself uses the following elementary operations:

® next_character (Source program input module)
® report_lexical _error (Error module)

® identify_symbol (Symbol table module)

® enter _constant (Constant table module)

The information flow involving the lexical analyzer module is shown in Fig-
ure 6.1.

Source program
input Symbol table
Y
Lexical analyzer - Constant table
Y
Parser Error handler

Figure 6.1. Lexical Analyzer Interfaces

The lexical analyzer reads the input text one character at a time by exe-
cuting the next_character operation. Both the transition to a new line (if it is
significant) and the encounter with the end of the input text are represented
by characters in order to preserve the uniformity of the interface. (If
next_character is executed again after the end of the input text has been
encountered then it continues to deliver the termination character.) Usually
next_character is the most frequently executed operation in the entire com-
piler, and thus strongly influences the speed of compilation. We shall con-
sider the implementation of this operation in detail in Section 6.2.3.

The error reporting module is invoked when lexical errors (unrecognized
input characters and violations of the basic symbol grammar) are encoun-
tered. This module will then determine the continuation of lexical analysis
(Section 12.2.3).

When a sequence of characters has been identified as a basic symbol, the
lexical analyzer will either create a token describing it or will restart in a
new state. Different representations of the same basic symbol are resolved
at this point. For example, if we were to allow the symbol ‘<.’ to be written
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‘LESS’ or ‘LT’ also, all three would lead to creation of the same token. The
operation identify_symbol is used during token creation to perform the map-
ping discussed in Section 4.2.1. If the basic symbol is a literal constant, rath-
er than an identifier, the enter_constant operation is used instead of
identify_symbol (Section 4.2.2).

6.2. Construction

We assume that the basic symbols are described by some set of regular
grammars or regular expressions as discussed in Section 6.1.1. According to
Theorem 5.15 or Theorem 5.19 we can construct a set of finite automata that
accept the basic symbols. Unfortunately, these automata assume the end of
the string to be known a priori; the task of the lexical analyzer is to extract
the next basic symbol from the input text, determining the end of the symbol
in the process. Thus the automaton only partially solves the lexical analysis
problem. To enhance the efficiency of the lexical analyzer we should use
the automaton with the fewest states from the set of automata that accept the
given language. Finally, we consider implementation questions.

In order to obtain the classification for the basic symbol (Figure 4.1) we
partition the final states of the automaton into classes. Each class either pro-
vides the classification directly or indicates that it must be found by using
the operation identify_symbol. The textual representation of constants, and
the strings used to interrogate the symbol table, are obtained from the input
stream. The automaton is extended for this purpose to a finite-state trans-
ducer that emits a character on each state transition. (In the terminology of
switching theory, this transducer is a special case of a Mealy machine.) The
output characters are collected together into a character string, which is then
used to derive the necessary information.

6.2.1. Extraction and Representation A semicolon is an ALGOL 60
basic symbol, and is not a head of any other basic symbol. When an
ALGOL 60 lexical analysis automaton reaches the final state corresponding
to semicolon, it can halt and accept the semicolon. The end of the accepted
string has been determined, and the input pointer is positioned for the next
symbol. A colon is also an ALGOL 60 basic symbol, but it is a head of : =.
Therefore the automaton must look ahead when it reaches the final state
corresponding to colon. A more complex lookahead is required in the case
of FORTRAN, where a digit sequence d is a basic symbol and also a head
of the basic symbol d.E1. Since .EQ. is also a basic symbol, the automaton
must look ahead three characters (in certain cases) before it can determine
the end of the symbol string.

By applying the tests of Section 5.3.3 to the original grammar G, we
could determine (for fixed k) whether a k -character lookahead is sufficient
to resolve ambiguity. Because of the effort involved, this is usually not done.
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Instead, we apply the principle of the longest match: The automaton continues
to read until it reaches a state with no transition corresponding to the current
input character. If that state is a final state, then it accepts the symbol
scanned to that point; otherwise it signals a lexical error. The feasibility of
the principle of the longest match is determined by the representation of the
symbols (the grammars G, G,,...) and by the sequences of symbols permit-
ted (the grammar Gy).

The principle of the longest match in its basic form as stated above is
unsuitable for a large number of grammars. For example, an attempt to
extract the next token from ‘3.EQ.4’ using the rules of FORTRAN would
result in a lexical error when ‘Q’ was encountered. The solution is to retain
information about the most-recently encountered final state, thus providing
a ‘fall-back’ position. If the automaton halts in a final state, then it accepts
the symbol; otherwise it restores the input stream pointer to that at the
most-recently encountered final state. A lexical error is signaled only if no
final state had been encountered during the scan.

We have tacitly assumed that the initial state of the automaton is
independent of the final state reached by the previous invocation of
next_token . If this assumption is relaxed, permitting the state to be retained
from the last invocation, then it is sometimes possible to avoid even the lim-
ited backtracking discussed above (Exercise 6.3). Whether this technique
solves all problems is still an open question.

The choice of a representation for the keywords of a language plays a
central role in determining the representations of other basic symbols. This
choice is largely a question of language design: The definitions of COBOL,
FORTRAN and PL/I (for example) prescribe the representations and their
relationship to freely-chosen identifiers. In the case of ALGOL 60 and its
descendants, however, these characteristics are not discussed in the language
definitions. Here we shall briefly review the possibilities and their conse-
quences.

The simplest possibility is the representation of keywords by reserved
words — ordinary identifiers that the programmer is not permitted to use for
any other purpose. This approach requires that identifiers be written
without gaps, so that spaces and newlines can serve as separators between
identifiers and between an identifier and a number. Letters may appear
within numbers, and hence they must not be separated from the preceding
part of the number by spaces. The main advantage of this representation is
its lucidity and low susceptibility to typographical errors. Its main disadvan-
tage is that the programmer often does not remember all of the reserved
words and hence incorrectly uses one as a freely-chosen identifier. Further,
it is virtually impossible to modify the language by adding a new keyword
because too many existing programs might have used this keyword as a
freely-chosen identifier.

If keywords are distinguished lexically then it is possible to relax the res-
trictions on placement of spaces and newlines. There is no need for the pro-
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grammer to remember all of the keywords, and new ones may be introduced
without affecting existing programs. The rules for distinguishing keywords
are known as stropping conventions; the most common ones are:

® Underlining the keyword.

® Bracketing the keyword by special delimiters (such as the apostrophes
used in the DIN 66006 standard for ALGOL 60).

® Prefixing the keyword with a special character and terminating it at the
first space, newline or character other than a letter or digit.

® Using upper case letters for keywords and lower case for identifiers (or
vice-versa).

All of these conventions increase the susceptibility of the input text to typo-

graphical errors. Some also require larger character sets than others or rela-

tively complex line-imaging routines.

6.2.2. State Minimization Consider a completely-specified finite auto-
maton 4 = (T,Q,R.q¢,F) in which a production gr —q’ exists for every
pair (¢,¢), g €Q, t ET. Such an automaton is termed reduced when there
exists no equivalent automaton with fewer states.

Theorem. For every completely-specified finite automaton A = (T,Q,R.qo.F)
there exists a reduced finite automaton A’ = (T,Q’,R’qy,F’) with
L(A")=L(A).

To construct 4’ we first delete all states ¢ for which there exists no string
w such that gow=>"q. (These states are termed unreachable.) We then apply
the refinement algorithm of Section B.3.2 to the state diagram of 4, with the
initial partition {q¢ | § EF}, {q | ¢ €F). Let Q’be the set of all blocks in
the resulting partition, and let [¢] denote the block to which ¢ EQ belongs.
The definition of 4’ can now be completed as follows:

R’ =(lqlt >[q1 | ¢t ~q'&R}
g0’ = [q0l

F'={lq] | gE€F}

As an example, consider the automaton of Figure 5.13, which recognized
the regular expression /(! +d)*. The initial partition consists of two blocks
{90} and {q,, 92, g3} and is not refined, leading to the automaton of Figure
6.2. We would have achieved the same result if we had begun with the regu-
lar expression (A +B + -+ +Z¥A +B+ -+ +Z 40+ - +9)*.

| 1d
@©— 1

Figure 6.2. Reduced Automaton Accepting /(! +-d)*
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In order to apply the algorithm of Section B.3.2 to this example we must
complete the original automaton, which permits only / as an input character
in state go. To do this we introduce an ‘error state’, ¢, , and transitions gt >,
for all pairs (q,¢), 4 €Q, t ET, not corresponding to transitions of the given
automaton. (In the example, god —¢, suffices.) In practice, however, it is
easier to modify the algorithm so that it does not require explicit error tran-
sitions.

If ¢ denotes any character other than the quote, then the regular expres-
sion "" + "(c +"")c +"")*" describes the characters and strings of Pascal.
Figure 6.3a shows the automaton constructed from this expression according
to the procedure of Theorem 5.19, and the reduced automaton is shown in
Figure 6.3b.

b) Reduced

Figure 6.3. Finite Automata Accepting ‘""" + "(¢c + ")}c + '")*

In our application we must modify the equivalence relation still further,
and only treat final states as equivalent when they lead to identical subse-
quent processing. For an automaton recognizing the symbol grammar of
LAX, we divide the final states into the following classes:

® Identifiers or keywords

® Special characters

® Combinations of special characters
® Integers

® Floating point numbers

® Floating point numbers with exponents
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This results in the reduced automaton of Figure 6.4. Letters denote the fol-
lowing character classes:

® g = all characters other than ‘*’

® o’ = all characters other than “*’ or ‘)’
® ¢ = all characters other than quote

® 4 = digits

® | = Jetters

. s — ‘+"_9 ‘*"<’ $>"T";",’$),‘[, ‘]’

Figure 6.4 illustrates several methods of obtaining the code correspond-
ing to a basic symbol. States, 1, 6, 7, 9, and 12-18 all provide the code
directly. Identify_symbol must be used in state 4 to distinguish identifiers

from keywords. In state 19 we might also use identify_symbol, or we might
use some other direct computation based on the character codes.

Figure 6.4. Finite Automaton Accepting LAX Basic Symbols
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The state reduction in these examples could be performed by hand with
no display of theory, but the theory is required if we wish to mechanically
implement a lexical analyzer based upon regular expressions.

6.2.3. Programming the Lexical Analyzer In order to extract the basic
symbol that follows a given position p in the input stream we must recognize
and delete irrelevant characters such as spaces and newlines, use the auto-
maton to read the symbol, and fix the terminal position p”.

Superfluous spaces can be deleted by adding transitions ¢’’—»q to all
states g in which such spaces are permitted. Since newlines (card boun-
daries or carriage returns) are input characters if they are significant, we can
handle them in the same way as superfluous spaces in many languages.

There are two possibilities from which to choose when programming the
automaton:

® Representing the transition table as a matrix, so that the program for the
automaton has the general form:

while basic_symbol_not_yet_complete do
state: = table [state,next_character],

® Programming the transition table as a case clause for each state.

The first method is generally expensive in terms of memory. For LAX we
need a 20X 57 matrix, even without considering characters that may occur
only in comments. We can reduce the size of this matrix by grouping
together all characters that are treated uniformly by the lexical analyzer and
provide one column for each such character class. The class to which a char-
acter belongs is then obtained from an array indexed by the character. This
array makes the remainder of the compiler relatively independent of chang-
ing character sets and their encoding, thus increasing its machine-
independence. For LAX the classes are: {letters other than E}, {E},
(digits}, { }, {0 O} (*) {+=% 63 (=1 I/ (" {1 G (<> 1
1}, {space tab newline}, {terminator (# )}, {characters allowed only in com-
ments}; the matrix size is then 20X 18. The storage requirements can often
be reduced still further, possibly by means of techniques introduced in the
next chapter.

In contrast to the matrix representation, mechanical implementation of
the transition table by case clauses can be carried out only at great cost.
Hand coding is rather simple, however, and one usually obtains a much
smaller lexical analyzer. Steps can also be taken to speed up execution of the
most-frequently performed transitions.

The simplest way to provide output from the automaton is to add the
input character to a string — empty at the start of the basic symbol — during
each state transition. This strategy is generally inadequate. For example,
the quotes bounding a Pascal character or string denotation should be omit-
ted and any doubled internal quote should be replaced by a single quote.
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Thus more general actions may need to be taken at each state transition. It
usually suffices, however, to provide the following four options:

® Add (some mapping of) the input character to the output string.
® Add a given character to the output string.
® Set a pointer or index to the output string.

® Do nothing.

Figure 6.5 illustrates three of these actions applied to produce output from
the automaton of Figure 6.3b. A slash separates the output action from the
input character; the absence of a slash indicates the ‘do nothing’ action.

In order to produce the standard representation of floating point numbers
(see Section 4.2.2), we require three indices to the characters of the
significand:

beg: Initially indexes the first character of the significand, finally indexes
the first nonzero digit.

pnt: Indexes the first position to the right of the decimal point.

lim: Initially indexes the first position to the right of the significand, finally
indexes the first position to the right of the last nonzero digit.

By moving the indices beg and lim, the leading and trailing zeros are
removed so that the significand is left over in standard form. If e is the
value of the explicit exponent, then the adjusted exponent e’ is given by:

e:=e +(beg —pnt) significand interpreted as a fraction
e’:=e +(pnt —lim) significand interpreted as an integer

The standard representation of a floating point zero is the pair (‘0’,0).
This representation is obtained by taking a special exit from the standardi-
zation algorithm if beg becomes equal to lim during the zero-removal pro-
cess.

Many authors suggest that the next_character operation be implemented
by a procedure. We have already pointed out that the implementation of
next_character strongly influences the overall speed of the compiler; in
many cases simple use of a procedure leads to significant inefficiency. For

Figure 6.5. Finite Transducer for Pascal Strings
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Table 6.6. Lexical Analysis on a Control Data 6400 [Dunn 1974]
Lexical Analysis Time

Translator Program Microseconds Fraction of
per character  total compile time
Page Formatter 3.56 14%
without comments 3.44 9%
Flowchart Generator 33 11.5%
COMPASS 2.0  1/0 Package 5.1 21%
Pascal 3.4 Pascal Compiler 35.6 39.6%

example, Table 6.6 shows the results of measuring lexical analysis times for
three translators running on a Control Data 6400 under KRONOS 2.0.
RUN 2.3 is a FORTRAN compiler that reads one line at a time, storing it in
an array; the next_character operation is implemented as a fetch and index
increment in-line. The COMPASS 2.0 assembler implements some in-
stances of next_character by procedure calls and others by in-line refer-
ences, while the Pascal compiler uses a procedure call to fetch each charac-
ter. The two test programs for the FORTRAN compiler had similar charac-
teristics: Each was about 5000 lines long, composed of 30-40 heavily-
commented subprograms. The test program for COMPASS contained 900
lines, about one-third of which were comments, and that for Pascal (the
compiler itself) had 5000 lines with very few comments.

Further measurements on existing compilers for a number of languages
indicate that the major subtasks of lexical analysis can be rank-ordered by
amount of time spent as follows:

1. Skipping spaces and comments.

2. Collecting identifiers and keywords.
3. Collecting digits.

4. All other tasks.

In many cases there are large (factor of at least 2) differences in the amount
of time spent between adjacent elements in this hierarchy. Of course the
precise breakdown depends upon the language, compiler, operating system
and coding technique of the user. For example, skipping a comment is
trivial in FORTRAN; on the other hand, an average non-comment card in
FORTRAN has 48 blank columns out of the 66 allocated to code [Knuth
1971].

Taken together, the measurements discussed in the two paragraphs above
lead to the conclusion that the lexical analyzer should be partitioned further:
Tasks 1-3 should be incorporated into a scanner module that implements the
next_character operation, and the finite automaton and its underlying regu-
lar grammar (or regular expression) should be defined in terms of the char-
acters digit_string, identifier, keyword, etc. This decomposition drastically
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reduces the number of invocations of next _characier , and also the influence
of the automaton implementation upon the speed of the lexical analyzer.

Tasks 1-3 are trivial, and can be implemented ‘by hand’ using all of the
coding tricks and special instructions available on the target computer.
They can be carefully integrated with the 1/0 facilities provided by the
operating system to minimize overhead. In this way, serious inefficiencies in
the lexical analyzer can be avoided while retaining systematic construction
techniques for most of the implementation.

6.3. Notes and References

The fact that the basic symbols are regular was first exploited to generate a
lexical analyzer mechanically in the RWORD System [Johnson 1968, Gries
1971]. More recently, DeRemer [1974] has proposed the use of a modified
LR technique (Section 5.3.3) for this generation. Lesk [1975] describes how
such a system can be linked to the remainder of a compiler.

Lexical analyzer generators are still the exception rather than the rule.
The analyzers used in practice are simple, and hand coding is not prohibi-
tively expensive. There are also many indications that the hand-coded pro-
duct provides significant savings in execution time over the products of
existing generators. Many of the coding details (table formats, output
actions, limited backtrack and character class tradeoffs) are discussed by
Waite [1973a] in his treatment of string-directed pattern matching.

Two additional features, macros and compiler control commands (com-
piler options, compile-time facilities) complicate the lexical analyzer and its
interface to the parser. Macro processing can usually be done in a separate
pre-pass. If, however, it is integrated into the language (as in PL/M or Bur-
roughs Extended ALGOL) then it is a task of the lexical analyzer. This
requires additional information from the parser regarding the scope of
macro definitions.

We recommend that control commands always be written on a separate
line, and be easily recognizable by the lexical analyzer. They should also be
syntactically valid, so that the parser can process them if they are not
relevant to lexical analysis. Finally, it is important that there be only one
form of control command, since the user should not be forced to learn
several conventions because the compiler writer decides to process com-
mands in several places.

EXERCISES

6.1. Derive a regular grammar from the LAX symbol grammar of Appendix A.1.
Derive a regular expression.
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6.2.

6.3.

6.4.

6.5.

6.6.

6.7.
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[Sale 1971, Mcllroy 1974] Consider the definition of FORTRAN 66.

a. Partition the grammar as discussed in Section 6.1.1. Explain why you dis-
tinguished each of the symbol subgrammars G;.

b. Carefully specify the lexical analyzer interface. How do you invoke
different symbol subgrammars?

Consider the following set of tokens, which are possible in a FORTRAN
assignment statement [Mcllroy 1974] (identifier is constructed as usual, d
denotes a nonempty sequence of digits, and s denotes either ‘+ or *=):

o * /() =

.TRUE. .FALSE.

.AAND. .OR. .NOT.

.LT. LE. .EQ. .NE. .GE. .GT.

identifier

dd. dd d

dEd d.Ed d.dEd dEd

dEsd d.Esd d.dEsd dEsd

Assume that any token sequence is permissible, and that the ambiguity of ***’

may be resolved in any convenient manner.

a. Derive an analysis automaton using the methods of Section 5.2, and minim-
ize the number of states by the method of Section B.3.3.

b. Derive an analysis automaton using the methods given by Aho and
Corasick [1975], and minimize the number of states.

c. Describe in detail the interaction between the parser and the automaton
derived in (b). What information must be retained? What form should that
information take?

d. Can you generalize the construction algorithms of Aho and Corasick to
arbitrary regular expression inputs?

Write a line-imaging routine to accept an arbitrary sequence of printable char-
acters, spaces and backspace characters and create an image of the input line.
You should recognize an extended character set which includes arbitrary
underlining, plus the following overstruck characters:

c overstruck by / interpreted as ‘cents’
= overstruck by / interpreted as ‘not equal’

(Note: Overstrikes may occur in any order.) Your image should be an integer
array, with one element per character position. This integer should encode the
character (e.g. ‘cents’) resulting in that position from the arbitrary input
sequence.

Write a program to implement the automaton of Figure 6.4 as a collection of
case clauses. Compile the program and compare its size to the requirements
for the transition table.

Attach output specifications to the transitions of Figure 6.4. How will the
inclusion of these specifications affect the program you wrote for Exercise 6.5?
Will their inclusion change the relationship between the program size and tran-
sition table size significantly?

Consider the partition of a lexical analyzer for LAX into scanner and an auto-
maton.
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. Restate the symbol grammar in terms of identifier, digit_string, etc. to reflect

the partition. Show how this change affects Figure 6.4.

b. Carefully specify the interface between scanner and automaton.

Rewrite the routine of Exercise 6.5, using the interface defined in (b). Has
the overall size of the lexical analyzer changed? (Don’t forget to include the
scanner size!) Has the relationship between the two possible implementa-
tions of the automaton (case clauses or transition tables) changed?

. Measure the time required for lexical analysis, comparing the implementa-

tion of (c) with that of Exercise 6.5. If they differ, can you attribute the
difference to any specific feature of your environment (e.g. an expensive
procedure mechanism)? If they do not differ, can you explain why?

Suppose that LAX is being implemented on a machine that supports both
upper and lower case letters. How would your lexical analyzer change under
each of the following assumptions:

a.
b.

Upper and lower case letters are indistinguishable.

Upper and lower case may be mixed arbitrarily in identifiers, but all
occurrences of a given identifier must use the same characters. (In other
words, if an identifier is introduced as ArraySize then no identifier such as
arraysize can be introduced in the same range.) Keywords must always be
lower case.

. As (b), except that upper and lower case may be mixed arbitrarily in key-

words, and need not always be the same.

. Choose one of the schemes (a)-(c) and argue in favor of it on grounds of

program portability, ease of use, documentation value, etc.



CHAPTER 7
Parsing

The parsing of a source program determines the semantically-relevant
phrases and, at the same time, verifies syntactic correctness. As a result we
obtain the parse tree of the program, at first represented implicitly by the
sequence of productions employed during the derivation from (or reduction
to) the axiom according to the underlying grammar.

In this chapter we concern ourselves with the practical implementation of
parsers. We begin with the parser interface and the appropriate choice of
parsing technique, and then go into the construction of deterministic parsers
from a given grammar. We shall consider both the top-down and bottom-
up parsing techniques introduced in Section 5.3.2 and 5.3.3. Methods for
coding parsers by hand and for generating them mechanically will be dis-
cussed.

7.1. Design

To design a parser we must define the grammar to be processed, augment it
with connection points (points at which information will be extracted) and
choose the parsing algorithm. Finally, the augmented grammar must be
converted into a form suited to the chosen parsing technique. After this
preparation the actual construction of the parser can be carried out mechan-
ically. Thus the process of parser design is really one of grammar design, in
which we derive a grammar satisfying the restrictions of a particular parsing
algorithm and containing the connection points necessary to determine the
semantics of the source program.

Even if we are given a grammar for the language, modifications may be
necessary to obtain a useful parser. We must, of course, guarantee that the
modified grammar actually describes the same language as the original, and
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that the semantic structure is unchanged. Structural syntactic ambiguity
leading to different semantic interpretations can only be corrected by alter-
ing the language. Other ambiguities can frequently be removed by deleting
productions or restricting their applicability depending upon the parser
state.

7.1.1. The Parser Interface A parser accepts a sequence of basic sym-
bols, recognizes the extant syntactic structure, and outputs that structure
along with the identity of the relevant symbols. If the syntactic structure is
not error-free, the parser invokes the error handler to report errors and to
aid in recovery so that processing can continue. (The details of the recovery
mechanism will be discussed in Section 12.2.2.) Figure 7.1 shows the infor-
mation flow involved in the parsing process.

Three possible interface specifications are suggested by Figure 7.1,
depending upon the overall organization of the compiler. The most com-
mon is for the parser module to provide the operation parse_program . It
invokes the lexical analyzer’s next _symbol operation for each basic symbol,
and reports each connection point by invoking an appropriate operation of
some other module. (We term this invocation a parser action.) Control of
the entire transduction process resides within the parser in this design. By
moving the control out of the parser module, we obtain the two alternative
designs: The parser module provides either an operation parse _symbol that
is invoked with a token as an argument, or an operation next_connection
that is invoked to obtain a connection point specification.

It is also possible to divide the parsing over more than one pass. Proper-
ties of the language and demands of the parsing algorithm can lead to a
situation where we need to know the semantics of certain symbols before we
can parse the context of the definitions of these symbols. ALGOL 68, for
example, permits constructs whose syntactic structure can be recognized by
deterministic left-to-right analysis only if the complete set of type identifiers

Connection
ics Tokens oints i
Lexical —!  Parser poin - Semantic
analyzer analyzer
A
Error Synthesized
reports tokens
Y
Error
handler

Figure 7.1. Parser Information Flow
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is known beforehand. When the parsing is carried out in several passes, the
sequence of symbols produced by the lexical analyzer will be augmented by
other information collected by parser actions during previous passes. The
details depend upon the source language.

We have already considered the interface between the parser and the lex-
ical analyzer, and the representation of symbols. The parser looks ahead
some number of symbols in order to control the parsing. As soon as it has
accepted one of the lookahead symbols as a component of the sentence
being analyzed, it reads the next symbol to maintain the supply of looka-
head symbols. Through the use of LL or LR techniques, we can be certain
that the program is syntactically correct up to and including the accepted
symbol. The parser thus need not retain accepted symbols. If the code for
these symbols, or their values, must be passed on to other compiler modules
via parser actions, these actions must be connected directly to the accep-
tance of the symbol. We shall term connection points serving this purpose
symbol connections.

We can distinguish a second class of connection point, the structure con-
nection. It is used to connect parser actions to the attainment of certain sets
of situations (in the sense of Section 5.3.2) and permits us to trace the
phrases recognized by the parser in the source program. Note carefully that
symbol and structure connections provide the only information that a com-
piler extracts from the input text.

In order to produce the parse tree as an explicit data structure, it suffices
to provide one structure connection at each reduction of a simple phrase and
one symbol connection at acceptance of each symbol having a symbol
value; at the structure connections we must know which production was
applied. We can fix the connection points for this process mechanically
from the grammar. This process has proved useful, particularly with
bottom-up parsing.

Parser actions that enter declarations into tables or generate code directly
cannot be fixed mechanically, but must be introduced by the programmer.
Moreover, we often know which production is to be applied well before the
reduction actually takes place, and we can make good use of this
knowledge. In these cases we must explicitly mark the connection points
and parser actions in the grammar from which the parser is produced. We
add the symbol encoding (code and value) taken from the lexical analyzer
as a parameter to the symbol connections, whereas parser actions at
structure connections extract all of their information from the state of the
parser.

Figure 7.2a illustrates a grammar with connection points. The character
% marks structure connections, the character & symbol connections. Fol-
lowing these characters, the parser action at that point is specified.
Definitions of the parser actions are given in Figure 7.2b. The result of these
specifications is a translation of arithmetic expressions from infix to postfix
form.
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Expression ::= Term ('+' Term %Addop)* .
Term ::= Factor ("*' Factor %Mulop)* .
Factor ::='ldentifier’ &Ident | '(" Expression )’ .

a) A grammar for expressions

Addop:  Output "+"
Mulop:  Output "*"
Ident Output the identifier returned by the lexical analyzer

b) Parser actions to produce postfix

Figure 7.2. Connection Points

The processes for parser generation to be described in Sections 7.2 and
7.3 can interpret symbol and structure connections introduced explicitly into
the grammar as additional nonterminals generating the null string. Thus the
connection points do not require special treatment; only the generated pars-
ing algorithm must distinguish them from symbols of the grammar. In addi-
tion, none of the transformations used during the generation process alters
the invocation sequence of the associated parser actions.

The introduction of connection points can alter the properties of the
grammar. For example, the grammar whose productions are {Z -S,
S —»abc, S —abd} is LR(0). The modified grammar {Z -S, S »a&Abc,
S —a&Bbd } no longer possesses this property: After reading a it is not yet
clear which of the parser actions should be carried out.

If a grammar does not have a desired property before connection points
are introduced, then their inclusion will not provide that property. This does
not, however, prohibit a parser action from altering the state of the parser
and thus simulating some desirable property. For example, one can occa-
sionally distinguish among several possible state transitions through the use
of semantic information and in this manner establish an LL property not
previously present. More problems are generally created than avoided by
such ad hoc measures, however.

7.1.2. Selection of the Parsing Algorithm The choice of which parsing
technique to use in a compiler depends more upon the economic and imple-
mentation viewpoint than upon the source language and its technical pro-
perties. Experience with a particular technique and availability of a pro-
gram to construct the parser (or the cost of developing such a program) are
usually stronger criteria than the suitability of the technique for the given
source language. The reason is that, in many cases, the grammar for a
language can be modified to satisfy the restrictions of several parsing tech-
niques.

As we have previously stressed, the parser should work deterministically
under all circumstances. Only in this way can we parse correct programs in
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a time linearly dependent upon program length, avoiding backtrack and the
need to unravel parser actions. We have already pointed out the LL and LR
algorithms as special cases of deterministic techniques that recognize a syn-
tactic error at the first symbol, ¢, that cannot be the continuation of a correct
program; other algorithms may not discover the error until attempting to
reduce the simple phrase in which ¢ occurs. Moreover, LR(k) grammars
comprise the largest class whose sentences can be parsed using deterministic
pushdown automata. In view of these properties we restrict ourselves to the
discussion of LL and LR parsing algorithms. Other techniques can be
found in the literature cited in Section 7.4.

Usually the availability of a parser generator is the strongest motive for
the choice between LL and LR algorithms: If one has such a generator at
one’s disposal, then the technique it implements is given preference. If no
parser generator is available, then an LL algorithm should be selected
because the LL conditions are substantially easier to verify by hand. Also a
transparent method for obtaining the parser from the grammar exists for LL
but not for LR algorithms. By using this approach, recognizers for large
grammars can be programmed relatively easily by hand.

LR algorithms apply to a larger class of grammars than LL algorithms,
because they postpone the decision about the applicable production until
the reduction takes place. The main advantage of LR algorithms is that
they permit more latitude in the representation of the grammar. As the
example at the end of Section 7.1.1 shows, however, this advantage may be
neutralized if distinct structure connections that frustrate deferment of a
parsing decision must be introduced. (Note that LL and LR algorithms
behave identically for all language constructs that begin with a special key-
word.)

We restrict our discussion to parsers with only one-symbol lookahead,
and thus to LL(1) and LR(1) grammars. Experience shows that this is not a
substantial restriction; programming languages are usually so simply con-
structed that it is easy to satisfy the necessary conditions. In fact, to a large
extent one can manage with no lookahead at all. The main reason for the
restriction is the considerable increase in cost (both time and space) that
must be invested to obtain more lookahead symbols in the parser generator
and in the generated parser.

When dealing with LR grammars, not even the restriction to the LR(1)
case is sufficient to obtain practical tables. Thus we use an LR(1) parse
algorithm, but control it with tables obtained through a modification of the
LR(0) analyzer.

7.13. Parser Construction LL and LR parsers are pushdown auto-
mata. Given a grammar G =(T,N,P,Z), we can use either construction 5.23
(LL) or construction 533 (LR) to derive a parsing automaton
A =(T,O.Rq0,{90},Q+90)- To implement this automaton, we must represent
the transitions of R in a convenient form so that we can determine the next
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transition quickly and at the same time keep the total storage requirement
reasonable.

For this purpose we derive a transition function, f (q, v), from the produc-
tion set R. It specifies which of the possible actions (e.g. read a symbol,
reduce according to a production from P, report an error) should be taken
in state ¢ when the input string begins with the element v €T. In the LR
case we also define f (g, v) for v EN; it then specifies the action to be taken
in state ¢ after a reduction to v. The transition function may be represented
by a (transition) matrix.

Some of the entries of f (¢, v) may be unreachable, regardless of the ter-
minal string input to the parser. (We shall give examples in Section 7.3.1.)
Because these entries can never be reached, the actions they specify are
irrelevant. In the terminology of sequential machines, these entries are
don’t-cares and the transition function is incompletely specified. The presence
of don’t-cares leads to possible reduction in table size by combining rows or
columns that differ only in those elements.

The transition function may be stored as program fragments rather than
as a matrix. This is especially useful in an LL parser, where there are simple
rules relating the program fragments to the original grammar.

Parser generation is actually compilation: The source program is a gram-
mar with embedded connection points, and the target program is some
representation of the transition function. Like all compilers, the parser gen-
erator must first analyze its input text. This analysis phase tests the grammar
to ensure that it satisfies the conditions (LL(1), LR(1), etc.) assumed by the
parser. Some generators, like ‘error correcting’ compilers, will attempt to
transform a grammar that does not meet the required conditions. Other
transformations designed to optimize the generated parser may also be
undertaken. In Sections 7.2 and 7.3 we shall consider some aspects of the
‘semantic analysis’ (condition testing) and optimization phases of parser
generators.

Table 7.3 summarizes the computational complexity of the parser genera-
tion algorithms presented in the remainder of this chapter. (The parameter
n is the sum of the lengths of the right-hand sides of all productions.) It
should be emphasized that the expressions of Table 7.3 represent asymptotic

Table 7.3. Computational Complexity of
Parser Generation [Hunt 1975]

Grammar Type Test Parser generation
LL(1) n* n*

Strong LL(k) nk+1 nk +1

LL(k) n2k gk +(k +1)logn
SLR(I) n2 2" +lOgIl

SLR(k) nk+2 P +k logn

LR(k) p2k+1) 2nk+l+k logn
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bounds on execution time. All of the bounds given are sharp, since in every
case grammars exist whose parsers require an amount of table space propor-
tional to the time bound specified for parser construction.

7.2. LL(1) Parsers

LL(1) parsers are top-down pushdown automata that can be obtained by
construction 5.23. We shall first sharpen the definition of an LL grammar
and thereby simplify the construction of the automaton. Next we explain
the relationship between a given LL(1) grammar and the implementation of
the pushdown automaton. Finally we develop the algorithms for an LL(1)
parser generator. We defer the problem of error handling until Section
12.2.2.

7.2.1. Strong LL(k) Grammars Consider an LL(k) grammar G =
(T,N,P,Z) and a left derivation:

Z =>Lpdv=>py  pyET,AENyeV

According to Definition 5.22, we can predict the next applicable production
A —-x if p and k :y are given. The dependence upon p is responsible for the
fact that, in construction 5.23, we must carry along the right context w in the
situation [4 —»a-B;w]. Without this dependence we could use the following
in place of step 5 of the construction algorithm:

5 If v=By for some BEN and YEV', let ¢'=[X -uBy;Q] and
H={[B B ;FOLLOW,(B)] | B~B, EP}. Set Q := Q U {¢'} U H,
and R := RU {qr—q'h7 | h €H,r EFIRST, (B, FOLLOW, (B))).

In this way, situations distinct only in the right context always belong to the
same state. This simplification is made possible by the strong LL(k) gram-
mars introduced by Rosenkrantz and Stearns [1970]:

Definition 7.1. A context free grammar G =(T,N,P,Z) is called a strong
LL (k) grammar for given k > 0 if, for arbitrary derivations

Z>Lpdx > prx 2> py  pYET,vxEV,AEN
Z LAy => pox'=>"pY W YET, wx' €V’
(k:y=k:y') implies r= .

The grammar with P ={Z —adab, Z -bAbb, A -a, A —»¢} is LL(2), as
can be seen by writing down all derivations. On the other hand, the deriva-
tions Z =>aAab =>aab and Z =>bAbb =>babb violate the conditions for
strong LL(2) grammars.

The dependence upon p, the stack contents of the automaton, is reflected
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in the fact that two distinct states ¢ =[X »p-v;w] and ¢’ =[X —p'»;w’], ident-
ical except for the right context, can occur in construction 5.23 and lead to
distinct sequences of transitions. Without this dependence the further course
of the parse is determined solely by X -pu-», and FOLLOW, (X) cannot dis-
tinguish the right contexts w,w’.

Theorem 7.2. (LL (1) condition) A context free grammar G is LL (1) if for two
productions X >x, X >x', x 7 x' implies that FIRST(x FOLLOW (X)) and
FIRST (x' FOLLOW (X)) are disjoint.

To prove Theorem 7.2 we assume a ¢t €T that is an element of both
FIRST (x FOLLOW(X)) and FIRST (x' FOLLOW(X)).
Then one of the following cases must hold:

. t EFIRST(x), t EFIRST(x’)

. ¢€FIRST(x), t EFIRST(x'), t EFOLLOW(X)
. €¢€FIRST(x"), t EFIRST(x), t EFOLLOW(X)
€EFIRST(x), ¢ EFIRST(x'), t EFOLLOW (X)

S W~

With the aid of the definition of FOLLOW we can easily see that each of
these cases contradicts Definition 5.22 for k =1. Thus G is not an LL(1)
grammar; in fact, in case (4) the grammar is ambiguous. If, on the other
hand, the grammar does not fulfill the specifications of Definition 5.22, then
one of the above cases holds and the grammar does not satisfy the LL(1)
condition. (Note that Theorem 5.24 may be derived directly from the LL(1)
condition.)

If the grammar is e-free, the LL(1) condition can be simplified by omit-
ting FOLLOW(X). Obviously it is fulfilled if and only if G is a strong
LL(k) grammar. Thus Theorem 7.3 follows from Theorem 7.2:

Theorem 7.3. Every LL(1) grammar is a strong LL(1) grammar.

Theorem 7.3 cannot be generalized to k > 1, as illustrated by the LL(2)
grammar with P = {Z »adab, Z -bAbb, A »a, A —¢} cited above. The
simplification of pushdown automata mentioned at the beginning of the sec-
tion thus applies only to the LL(1) case; it is not applicable to LL(k) gram-
mars with &k > 1.

7.2.2. The Parse Algorithm A matrix representation of the transition
function for the LL(1) case does not provide as much insight into the parsing
process as does the conversion of the productions of the grammar to recur-
sive procedures. We shall thus begin our treatment by discussing the tech-
nique known as recursive descent.

In a recursive descent parser we use a position in the parser to reflect the
state of the automaton. The stack therefore contains locations at which exe-
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Transition set Program schema
q ¢ q:end
qt -q’ q: if symbol =t then next_symbol else error; q" - - -
q:X;q" -
proc X:
begin
qti—q'qit, case symbol of
t:beging: - end;
Gt =G G T
t, :beging,: - - end
otherwise error
end
end;

Figure 7.4. Program Schemata for an LL(1) Parser

cution of the parser may resume. When a state represents a situation
[X »wBv,»], BEN, we must enter information into the stack about the fol-
lowing state [X »uB-v;w] before proceeding to the consideration of the pro-
duction B —»B. If we are using a programming language that permits recur-
sive procedures, we may associate a procedure with each nonterminal B and
use the standard recursion mechanism of the language to implement the
automaton’s stack.

With this approach, the individual steps in construction 5.23 lead to the
program schemata shown in Figure 7.4. These schemata assume the
existence of a global variable symbol containing the value of the last symbol
returned by the lexical analyzer, which is reset by a call to next_symbol .

Consider the grammar of Figure 7.5a, which, like the grammar of Figure
5.3b, satisfies the LL(l) condition. By construction 5.23, with the
simplification discussed in Section 7.2.1, we obtain the pushdown automaton
whose states are shown in Figure 7.5b and whose transitions appear in Fig-
ure 7.5¢c. Figure 7.6 shows a parser for this grammar implemented by recur-
sive descent. As suggested, the procedures correspond to the nonterminals
of the grammar. We have placed the code to parse the axiom on the end as
the main program. The test of the lookahead symbol in state g, guarantees
that the input has been completely processed.

This systematically-constructed program can be simplified, also systemat-
ically, as shown in Figure 7.7a. The correspondence between the produc-
tions of Figure 7.5a and the code of Figure 7.7a results from the following
transformation rules:

1. Every nonterminal X corresponds to a procedure X; the axiom of the
grammar corresponds to the main program.
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2. The body of procedure X consists of a case clause that distinguishes the
productions with X as left-hand side. Every nonterminal on the right-
hand side of a production is converted to a call of the corresponding pro-
cedure. Every terminal leads to a call of next_symbol , after the presence
of the terminal has been verified.

Chapter 7. Parsing

Z->E

E -FE,
E1—>€| +FE1
F i |(E)

a) The grammar

qgo: [Z > E] qs: [E\~> +FE|]
qi: [Z-E"] qe: [F~i']

q2: [E~>FE\]  quo: [F~(E))
q3: [E-FE\] qu: [E\»+FE|]
qa: [F ] qi2: [F~(E")]
gs: [F~>(E)]  qu3: [E\»+F-E|]
gs: [E-FEy]  qua: [F-(E)]
q7: [E\~e] q15: [E\~>+FE]

b) The states of the parsing automaton

qoi 41921 .90 ~>9192(;

q1—¢

92i >q394i,92-9395(,

93% ~q691%.43>9697.93+ 9643+,
g4 —4q9,

q5 —)qIO’

/I 3ad

q1—¢

q8+ _)qll’

g9 €,

910! > 912928910 ~9 1292(

g1 ~q1394,911(~>q1395(,

9122914

q13% >q1597%.413) ~91597):9 13+ ~q15¢3 +,
q14 ¢,

qi15—¢

¢) The transitions of the parsing automaton

Figure 7.5. A Sample Grammar and its Parsing Automaton
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procedure E; forward;

procedure F;
begin (* F *)
case symbol of
%’
begin
(* g4: *) if symbol = ‘i’ then next _symbol else error;
(* go: *) end;
C:
begin
(* g5: *) if symbol = ‘(’ then next _symbol else error ;
(* q10: *) E;
(* g12: *) if symbol =)’ then next _symbol else error ;
(* g14: *) end
otherwise error
end;
end; (* F ¥)

procedure E'1;
begin (* E1 *)
case symbol of

Y
(*q1:%);
¢+7:
begin
(* gg:*) if symbol =+’ then next _symbol else error ;
(*qu*) F;
(*qi3:Y) EL
(* q|5:*) end
otherwise error
end;
end; (* E£1 %)

procedure F;
begin (* £ *)
(*q2: ") F;
(*q3: %) EL
(*ge: *)end; (* E )

begin (* parser *)
(*q0: %) E;

(* q.1: *) if symbol < > “# then error ;
end; (* parser *)

Figure 7.6. A Recursive Descent Parser for the Grammar of Figure 7.5
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procedure parser ;
procedure E ; forward;

procedure F;
begin (* F *)
case symbol of

S
next__symbol ;

«:

begin

next _symbol ;

E;

if symbol = )’ then next_symbol else error ,
end
otherwise error
end;
end; (* F *)

procedure E'1;
begin (* E1 %)
case symbol of
‘#,Y
‘4%
begin next_symbol ; F; E 1 end
otherwise error
end;
end; (*E1%)

procedure E;
begin F; E1 end,;

begin (* parser *)
E;
if symbol < > ‘# ’then error;
end; (* parser *)
a) Errors detected within E'1

procedure E'1;
begin (* E1 *)
if symbol = ‘4’ then begin next_symbol ; F; E end;
end; (*E1¥)
b) Errors detected after exit from E'1

Figure 7.7. Figure 7.6 Simplified
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3. In case none of the expected terminals is present, the error handler is
invoked.

If an empty production occurs for a nonterminal, this alternative can, in
principle, be deleted. Thus the procedure corresponding to E could also be
written as shown in Figure 7.7b. Any errors would then be detected only
after return to the calling procedure. In Section 12.2.2 we shall see that the
quality of error recovery is degraded by this strategy.

If we already know that a grammar satisfies the LL(1) condition, we can
easily use these transformations to write a parser (either by mechanical
means or by hand). With additional transformation rules we can generalize
the technique sufficiently to convert our extended BNF (Section 5.1.3) and
connection points. Some of the additional rules appear in Figure 7.8. Fig-
ure 7.9 illustrates the use of these rules.

Element Program schema
Option [x] if symbol in FIRST (x ) then x ;
x+ repeat x until not(symbol in FIRST (x))
Closure
x* while symbol in FIRST (x ) do x;
x| |d | x;
List while symbol in FIRST (d) do
begin d ; x end;
&Y if Symbol =t then
begin Y'; next_symbol end
Connection else error;
%Z z

Figure 7.8. Extension of Figure 7.4

Recursive descent parsers are easy to construct, but are not usually very
efficient in either time or storage. Most grammars have many nonterminals,
and each of these leads to the dynamic cost associated with the call of and
return from a recursive procedure. The procedures that recognize nontermi-
nals could be implemented substantially more efficiently than arbitrary
recursive procedures because they have no parameters or local variables,
and there is only a single global variable. Thus the alteration of the
environment pointer on procedure entry and exit can be omitted.

An interpretive implementation of a recursive descent parser is also possi-
ble: The control program interprets tables generated from the grammar.
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expression ::= term (‘+’term %addop)*.
term ::= i’ &ident | {(’expression °)’.
a) Grammar (compare Figure 7.2a)

procedure parser ;
procedure term ; forward;

procedure expression ;
begin (* expression *)
term ;
while symbol = ‘+’do
begin next_symbol ; term ; addop end;
end; (* expression *)

procedure term ;
begin (* term *)
case symbol of
S
begin ident ; next _symbol end;
‘(’:
begin
next_symbol ;
expression ;
if symbol = )’ then next_symbol else error ;
end
otherwise error
end;
end; (* term *)

begin (* parser *)

expression ;

if symbol < > “# ’then error ;
end (* parser *)

b) Parser

Figure 7.9. Parser for an Extended BNF Grammar

Every table entry specifies a basic operation of the parser and the associated
data. For example, a table entry might be described as follows:

type parse _table _entry =record

operation : integer ; (* Transition *)
lookahead : set of symbol_code;  (* Input or lookahead symbol *)
next : integer (* Parse table index *)

end;
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States corresponding to situations that follow one another in a single pro-
duction follow one another in the table. Figure 7.10 specifies a recursive

procedure parser ;
var
current . integer ,
stack : array [1..max _stack ] of integer ;
stack _pointer : 0..max _stack ;
begin (* parser *)
current : = 1; stack _pointer : =0;
repeat
with parse_table|[current | do
case operation of
I (* Xoptv*)
if symbol in lookahead then
begin next _symbol ; current : = current +1 end
else error ;
2:(* X>x*)
begin
current : = stack [stack _pointer ;
stack _pointer : = stack _pointer —1;
end;
3:(* X>pBr*)
begin
if stack _pointer = max _stack then abort ;
stack _pointer : = stack _pointer +1;
stack [stack _pointer |. = current +1;
current . = next ;
end;
4: (* X - x; (not the last alternative ) *)
if symbol in lookahead then
current : = current + 1
else current : =next ;
5: (* X - x,, (last alternative ) *)
if symbol in lookahead then
current : = current + 1
else error;
6: (* X >-ty; (not the last alternative ) *)
if symbol in lookahead then
begin next _symbol ; current : = current +1 end
else current : = next
end;
until current =1;
if symbol < > “# ’then error;
end; (* Parser *)

Figure 7.10. An Interpretive LL(1) Parser
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descent interpreter assuming that parse_table is an array of
parse_table__entry .

Alternatives (1)-(5) of the case clause in Figure 7.10 supply the program
schemata for ¢t —»q’, ¢ »¢ and qt; >q’q;t; introduced in Figure 7.4. As
before, the transition gt; >¢’q;¢; is accomplished in two steps (alternative 3
followed by either 4 or 5). The situations represented by the alternatives are
given as comments. Alternative 6 shows one of the possible optimizations,
namely the combination of selecting a production X »x; (alternative 4) with
acceptance of the first symbol of x; (alternative 1). Further optimization is
possible (Exercise 7.6).

7.2.3. Computation of FIRST and FOLLOW Sets The first step in
the generation of an LL(l) parser is to ensure that the grammar
G =(T,N,P,Z) satisfies the LL(1) condition. To do this we compute the
FIRST and FOLLOW sets for all X €EN. For each production X »x €P
we can then determine the director set W =FIRST(x FOLLOW(X)). The
director sets are used to verify the LL(1) condition, and also become the loo-
kahead sets used by the parser. With the computation of these sets, the task
of generating the parser is essentially complete. If the grammar does not
satisfy the LL(1) condition, the generator may attempt transformations
automatically (for example, left recursion removal and simple left factoring)
or it may report the cause of failure to the user for correction.

The following algorithm can be used to compute FIRST(X) and initial
values for the director set W of each production X —x.

1. Set FIRST(X) empty and repeat steps (2)-(5) for each production X —.

2. Letx=x; - x,,i=0and W={#}. Ifn =0, go to step 5.

3. Set i:=i+1 and W:=WUFIRST(x;). (If x; is an element of T,
FIRST(x;)={x; }; if FIRST(x;) is not available, invoke this algorithm
recursively to compute it.) Repeat step 3 until eitheri =» or # is not an
element of FIRST (x;).

4. If # is not an element of FIRST (x;), set W:=W —{#}.
5. Set FIRST(X):=FIRST(X)U W.
Note that if the grammar is left recursive, step (3) will lead to an endless
recursion and the algorithm will fail. This failure can be avoided by mark-
ing each X when the computation of FIRST(X) begins, and clearing the
mark when that computation is complete. If step (3) attempts to invoke the
algorithm with a marked nonterminal, then a left recursion has been
detected.

This algorithm is executed exactly once for each X EN. If # is notin W
at the beginning of step 5 then W is the complete director set for the produc-
tion X -x. Otherwise the complete director set for X -x is
(W—{#})UFOLLOW(X).

Efficient computation of FOLLOW (X)) is somewhat trickier. The prob-
lem is that some elements can be deduced from single rules, while others
reflect interactions among rules. For example, consider the grammar of Fig-
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ure 7.5a. We can immediately deduce that FOLLOW(F) includes
FIRST(E,), because of the production E,-+FE; Since E ;=
FOLLOW(F) also contains FOLLOW(E), which includes FOLLOW(E)
because of the production E - FE|.

Interaction among the rules can be represented by the relation LAST:

Definition 7.4. Given a context free grammar G =(T,N,P,Z). For any two
nonterminals A, B, A LASTBif B ->pAvEP and v=>"¢.

This relation can be described by a directed graph F=(N, D), with D =
{(4,B) | A LAST B}. If there is a path from node 4 to node B in F, then
FOLLOW(A) is a subset of FOLLOW (B); all nodes in a strongly connected
region of F have identical follow sets. The general strategy for computing
follow sets is thus to compute provisional sets FOL(X) = {t | A >pXvEP,
t EFIRST (v)} - {#} based only upon the relationships among symbols
within productions, and then use F to combine these sets.

We can easily compute the graph F and the set FOL (X) by scanning the
production backward and recalling that A = "¢ if # is in FIRST(A4). Since
F is sparse (| D | << | NXN |), it must be represented by an edge list
rather than an adjacency matrix if the efficiency of the remaining
computation is to be maintained.

The next step is to form the strongly connected regions of F and derive
the directed acyclic graph F'=(N’,D’) of these regions:

D’'={(4".B’') | (A,B)ED such that 4 is in the strongly connected region
A’and B is in the region B’ }

F’ can be constructed efficiently by using the algorithm of Section B.3.2 to
form the regions and then constructing the edges in one pass over F. At the
same time, we can compute the initial follow sets FOL (A4’) of the strongly
connected regions A’ €N’ by taking the union of all FOL (4 ) such that 4 is
a nonterminal in the region 4"

The final computation of FOLLOW/(A') is similar to our original compu-
tation of FIRST(A):

1. Initially, FOLLOW(A"Y=FOL(A") for A'£Z, and
FOLLOW(Z')={#}.

2. For each immediate successor, B’, of A’ add FOLLOW(B') to
FOLLOW(A'). If FOLLOW(B’) is not already available, then invoke
this algorithm recursively to compute it.

This algorithm also operates upon each element of N’ exactly once. For
each production X -x with # in W, we now obtain the final director sets by
setting W:=(W — {#})UFOLLOW(X’) (X’ is the strongly connected
region containing X').
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7.3. LR Parsers

Using construction 5.33, we can both test whether a grammar is LR(1) and
construct a parser for it. Unfortunately, the number of states of such a
parser is too large for practical use. Exactly as in the case of strong LL(k)
grammars, many of the transitions in an LR(1) parser are independent of the
lookahead symbol. We can utilize this fact to arrive at a parser with fewer
states, which implements the LR(1) analysis algorithm but in which reduce
transitions depend upon the lookahead symbol only if it is absolutely neces-
sary.

We begin the construction with an LR(0) parser, which does not examine
lookahead symbols at all, and introduce lookahead symbols only as
required. The grammars that we can process with these techniques are the
simple LR(1) (SLR(1)) grammars of DeRemer [1969]. (This class can also
be defined for arbitrary k >1.) Not all LR(1) grammars are also SLR(1)
(there is no equivalence similar to that between ordinary and strong LL(1)
grammars), but the distinction is unimportant in practice except for one
class of problems. This class of problems will be solved by sharpening the
definition of SLR(1) to obtain lookahead LR(1) (LALR(1)) grammars.

The verifications of the LR(1), SLR(1) and LALR(1) conditions are more
laborious than verification of the LL(1) condition. Also, there exists no sim-
ple relationship between the grammar and the corresponding LR pushdown
automaton. LR parsers are therefore employed only if one has a parser gen-
erator. We shall first discuss the workings of the parser and in that way
derive the SLR(1) and LALR(1) grammars from the LR(0) grammars. Next
we shall show how parse tables are constructed. Since these tables are still
too large in practice, we investigate the question of compressing them and
show examples in which the final tables are of feasible size. The treatment
of error handling will be deferred to Section 12.2.2.

73.1. The Parse Algorithm Consider an LR(k) grammar
G =(T,N,P,Z) and the pushdown automaton 4 =(7,Q,R,q0,{q0},Q.q0) of
construction 5.33. The operation of the automaton is most easily explained

using the matrix form of the transition function:
(

ifv = vyET and gvy->gq’yERor
ify EN and q’ = next(q, v) (shift transition)

fl@gv)=1yx -x if[X »x';v]E€q (reduce transition)

HALT ifyv = # and[Z -S";# ]€q
ERROR otherwise

This transition function is easily obtained from construction 5.33: All of
the transitions defined in step (2) deliver shift transitions with one terminal
symbol, which will be accepted; the remaining transitions result from step
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(3) of the construction. We divide the transition p;: ' p,qw-piq'w
referred to in step (3) into two steps: Because [X —x-;v] is in ¢ we know
that we must reduce according to the production X -»x and remove
m=|x | states from the stack. Further we define f(p;,X)
=next(p,X)=q’ to be the new state. If w=# and [Z >S-;#]Eq then
the pushdown automaton halts.

Figure 7.11 gives an example of the construction of a transition function
for k =0. We have numbered the states and rules consecutively. ‘+2’ indi-
cates that a reduction will be made according to rule 2; “*’ marks the halting
of the pushdown automaton. Because k =0, the reductions are independent
of the following symbols.

Figure 7.11c shows the transition function as the transition diagram of a
finite automaton for the grammars of Theorem 5.32. The distinct grammars
correspond to distinct final states. As an LR parser, the automaton operates
as follows: Beginning at the start state 0, we make a transition to the succes-
sor state corresponding to the symbol read. The states through which we
pass are stored on the stack; this continues until a final state is reached. In
the final state we reduce by means of the given production X -y, delete

| x | states from the stack and proceed as though X had been ‘read’.

()Z >E
QE-E+F (3)E-F
@) F >i (5) F >(E)

a) The grammar

i ( ) + # E F

+2 42 42 42 42
+5 +5 +5 45 45
b) The transition table

0 3 4 . . . 1 2
1 . . . 5 *

2 +3 +3 +3 +3 +3

3 1+4 +4 +4 +4 +4

4 3 4 . . . 6 2
5 3 4 . . 7
6 8 5

7

8

+5(8}

c) The transition diagram

Figure 7.11. An Example of an LR(0) Grammar
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The only distinction between the mode of operation of an LR(k) parser
for k>0 and the LR(0) parser of the example is that the reductions may
depend upon lookahead symbols. In the final states of the automaton,
reductions will take place only if the context allows them.

Don’t-care entries with f(q,v)=ERROR, ie. entries such that there
exists no word x with gogox # = wgvy# with suitable stack contents o,
may occur in the matrix representation of the transition function. Note that
all entries (¢, X), X €N, with f(q, X)=ERROR are don’t-cares. By the
considerations in step (3) of construction 5.33, no error can occur in a transi-
tion on a nonterminal; it would have been recognized at the latest at the
preceding reduction. (The true error entries are denoted by ., while don’t-
cares are empty entries in the matrix representation of £ (g, v).)

7.3.2. SLR(1) and LALR(1) Grammars  Figure 7.12a is a slight exten-
sion of that of Figure 7.11a. It is not an LR(0) grammar, as Figure 7.13
shows. (A star before a situation means that this situation belongs to the
basis of the state; the lookahead string is omitted.) In states 2 and 9 we must
inspect the lookahead symbols to decide whether to reduce or not. Figure
7.12b gives a transition matrix that performs this inspection.

The operation of the parser can be seen from the example of the reduc-
tion of i +i*(i +i)# (Figure 7.14). The ‘Next Symbol’ column is left blank
when the parser does not actually examine the lookahead symbol. This
example shows how, by occasional consideration of a lookahead symbol, we

MhHZ -E

RQE-E+T @QYE-T

4T ->T*F (5T ->F

6)VF -1 (MHF - (E)
a) The grammar

i ( ) 4+ * # E T F
2

0 4 5 . . . . 1 3
1 . 6 . *

2 . . +3  +3 7 43

31 +5 45 +5 45 45 +5

4 |46 +6 +6 +6 +6 +6

5 4 5 g8 2 3
6 4 5 9 3
7 4 5 . . 10
8 11 6 . .

9 . . +2 42 7 42

10 | +4 +4 +4 +4 +4 +4

1\ +7 +7 +7 +7 +7 +7

b) The transition table

Figure 7.12. A Non-LR(0) Grammar
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State Situation v f@q.v)
0 * [Z-FE] E 1
[E~E +T]
[E > T] T 2
[T > T*F]
[T - F] F 3
[F -] i 4
[F ~>(E)] ( 5
1 * [Z-E] # HALT
* [E-E-+T] + 6
2 * [E-T] #,),+ reduce3
* [T—)T'*F] * 7
3 * [T-F] reduce 5
4 * [F-i] reduce 6
5 * |[F-(E)] E 8
[E—~>E+T]
[E~T] T 2
[T > T*F]
[T - F] F 3
[F—i] i 4
[F > (E)] ( 5
6 * [E-E+T] T 9
[T > T*F]
[T~ F] F 3
[F -] i 4
[F >(E)] ( 5
7 * [T-T*F] F 10
[F-i] i 4
[F —>(E)] ( 5
8 * [F-(EY)] ) 11
[E->E-+T] + 6
9 * [E-E+T] #,),+ reduce2
* [T >T-*F] * 7
10 * [T-T*F] reduce 4
11 * [F-(E)] reduce 7

Figure 7.13. Derivation of the Automaton of Figure 7.12b

169

can also employ an LR(0) parser for a grammar that does not satisfy the
LR(0) condition. States in which a lookahead symbol must be considered
are called inadequate. They are characterized by having a situation [X - x-]
that leads to a reduction, and also a second situation. This second situation
leads either to a reduction with another production or to a shift transition.
DeRemer [1971] investigated the class of grammars for which these
modifications lead to a parser:
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Definition 7.5. A context free grammar G =(T,N,P,Z) is SLR(1) if the fol-
lowing algorithm leads to a deterministic pushdown automaton.

The pushdown automaton 4 =(T, Q, R, qo, {90}, @, qo) Will be defined
by its transition function f (g, v) rather than the production set R. The con-
struction follows that of construction 5.33. We use the following as the clo-
sure of a set of situations:

HM)=M | {[Y>p] | 3 [X-xYYEHM)}

1. Initially let Q ={q,}, with go=H ({[Z »-S]}).

2. Let g be an element of Q that has not yet been considered. Perform steps
(3)-(4) foreachvEV.

3. Letbasis(q,v) = {[X »pv-y] | [X »p-vy]Eq}.

4. If basis(q,v)7 @, then let next(q,v)=H (basis(q,v)). Add q’'=
next(q,v) to Q if it is not already present.

5. If all elements of Q have been considered, perform step (6) for each
q €Q and then stop. Otherwise return to step (2).

Right derivation Stack Next Reduce by =~ Next

before transition Symbol  Production  State
A +Hi)# 0 i 4
LI +Hi)#E 0,4 6 3
F+i*i+i)# 0,3 5 2
T +i*(i +i)# 0,2 + 3 1
E+i*(i+i)# 0,1 + 6
E+.i*i+i)# 0,1,6 i 4
E+i*i+i)# 0,1,6,4 6 3
E+F*(i+i)# 0,1,6,3 5 2
E+T*i+i)# 0,1,6,9 * 7
E+T*(+i)# 0,1,6,9,7 ( 5
E+T*(i+i)# 0,1,6,9,7,5 i 4
E+T*@ +i)# 0,1,6,9,7,5,4 6 3
E+T*F +i)# 0,1,6,9,7,5,3 5 2
E+TXT. +i)# 0,1,6,9,7,5,2 + 3 8
E+TYE +i)# 0,1,6,9,7,5,8 + 6
E+T*E+.0)# 0,1,6,9,7,5,8,6 i 4
E+THE+i)#  01,69758,6,4 6 3
E+THE+F)# 0,1,69,75.86,3 5 9
E+THE+T)# 0,1,69758,6,9 ) 2 8
E+T*E)# 0,1,6,9,7,5,8 ) 11
E+T*E).# 0,1,6,9,7,5,8,11 7 10
E+T*F# 0,1,6,9,7,10 4 9
E+T# 0,1,6,9 # 2 1
E# 0,1 # HALT
Z#

Figure 7.14. A Sample Parse by the Automaton of Figure 7.12b
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(1)Z -4

171

2)A »aBb (3)A »adc (4)A-bBc (5)A -bdd

(6) B ~d

HALT

a) The grammar

b) The SLR(1) transition diagram

a b c d # A B

—_ O D001V HAWN—O

I

2 3 . . . 1
*
5 4
. 7 6
8 .
+6 9
10
+6 11

+2 42 42 42 42
+3 43 43 43 43
+4 44 +4  +4 44
+5  +5 45 +5 45

¢) The LALR(1) transition table
Figure 7.15. A Non-SLR(1) Grammar

6. Forall v €V, define f(q,v) by:

fg.v)=

next(q,v) if[X »pvy]€q

X -x if[X »x']€q and v EFOLLOW(X)
HALT ifv = # and[Z->S']€q

ERROR  otherwise

This construction is almost identical to construction 5.33 with k =0. The
only difference is the additional restriction v EFOLLOW(X) for the reduc-

tion (second case).

SLR(1) grammars cover many practically important language constructs
not expressible by LR(0) grammars. Compared to the LR(1) construction,
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the given algorithm leads to substantially fewer states in the automaton.
(For the grammar of Figure 7.12a the ratio is 22:12). Unfortunately, even
SLR(1) grammars do not suffice for all practical requirements. The problem
arises whenever there is a particular sequence of tokens that plays different
roles in different places. In LAX, for example, an identifier followed by a
colon may be either a label (A.2.0.6) or a variable serving as a lower bound
(A.3.04). For this reason the LAX grammar is not SLR(1), because the
lookahead symbol ‘> does not determine whether identifier should be
reduced to name (A.4.0.16), or a shift transition building a label _definition
should take place.

If the set of lookahead symbols for a reduction could be partitioned
according to the state then we could solve the problem, as can be seen from
the example of Figure 7.15. The productions of Figure 7.15a do not fulfill
the SLR(1) condition, as we see in the transition diagram of Figure 7.15b.
In the critical state 5, however, a reduction with lookahead symbol ¢ need
not be considered! If ¢ is to follow B then b must have been read before,
and we would therefore have had the state sequence 0, 3, 7 and not 0, 2, 5.
The misjudgement arises through states in which all of the symbols that
could possibly follow B are examined to determine whether to reduce
B —d, without regard to the symbols preceding B. We thus refine the con-
struction so that we do not admit all lookahead symbols in FOLLOW(X)
when deciding upon a reduction X -»x, but distinguish on the basis of
predecessor states lookahead symbols that can actually appear.

We begin by defining the kernel of an LR(1) state to be its LR(0) situa-
tions:

kernel(q) = {[X »pv] | [X »pw;QE€q}

Construction 7.5 above effectively merges states of the LR(1) parser that
have the same kernel, and hence any lookahead symbol that could have
appeared in any of the LR(1) states can appear in the LR(0) state. The set
of all such symbols forms the exact right context upon which we must base
our decisions.

Definition 7.6. Let G=(T, N, P, Z) be a context free grammar, Q be the
state set of the pushdown automaton formed by construction 7.5, and Q' be
the state set of the pushdown automaton formed by construction 5.33 with
k =1. The exact right context of an LR(0) situation [X -»p-»] in a state
g €Q is defined by:

ERC(q,[X »pv]) = {t €T | §q'€Q"such thatg
=kernel(¢) and [X -p-vit]€Eq"}

Theorem 5.31 related the LR(k) property to non-overlapping k -stack
classes, so it is not surprising that the definition of LALR(1) grammars
involves an analogous condition:
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Definition 7.7. Let G =(T,N,P,Z) be a context free grammar and Q be the
state set of the pushdown automaton formed by construction 7.5. G is
LALR(1) if the following sets are pairwise disjoint forallg €Q,p EP:

Sp0={t | [X->wrlE€q, v+ ¢ t EEFFGERC(q, [X »pv])}
Sq,p = ERC(II, [‘Xp _)Xp])

Although Definition 7.6 implies that we need to carry out construction
5.33 to determine the exact right context, this is not the case. The following
algorithm generates only the LR(0) states, but may consider each of those
states several times in order to build the exact right context. Each time a
shift transition into a given state is discovered, we propagate the right con-
text. If the propagation changes the third element of any triple in the state
then the entire state is reconsidered, possibly propagating the change
further. Formally, we define a merge operation on sets of situations as fol-
lows:

merge (A,B) = {[X »pv;AUQ] | [X >p-v;A] €A, [X >p-v;Q)EB}

The LALR(1) construction algorithm is then:

1. Initially let Q ={q,}, with go=H ({[Z - S;{# }]}).

2. Let g be an element of Q that has not yet been considered. Perform steps
(3)-(5) foreachveV.

3. Letbasis(q,v) = {[X »pv-v;Q] | [X »pvy;Q]Eq}.

4. If basis(qv)# @ and there is a ¢’€Q such that kernel(q’) =
kernel (H (basis(q,v))) then let next(q,v) = merge(H (basis(q.,v)).q"). If
next(q,v)# q’ then replace ¢’ by next(q,v) and mark ¢’ as not yet con-
sidered.

5. If basis(q,v)# @ and there is no q’€Q such that kernel(q’) =
kernel (H (basis(q,v))) then let next(q,v) = H(basis(q,v)). Add
q""=next(q,v) to Q.

6. If all elements of Q have been considered, perform step (7) for each
q €0 and then stop. Otherwise return to step (2).

7. Forall v €V define f (q,v) as follows:

next(q,v) if basis(q, v)# &

X ->x if[X->x:Q]€q, vEQ
HALT ifv=# and[Z-S";{# }]€gq
ERROR otherwise

fq,v)=

Figure 7.15¢ shows the LALR(1) automaton derived from Figure 7.15a.
Note that we can only recognize a B by reducing production 6, and this can
be done only with b or ¢ as the lookahead symbol (see rows 5 and 7 of Fig-
ure 7.15¢). States 4 and 6 are entered only after recognizing a B, and hence
the current symbol must be b or ¢ in these states. Thus Figure 7.15¢ has
don’t-care entries for all symbols other than b and ¢ in states 4 and 6.
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i () + * # E T F

0]-6 5 . . . . 1 2 5
1 . 6 . *

2 . . +3  +3 7 43

516 5 . . . . g8 2 5
6 |6 5 . . . . 9 5
716 5 . . . . -4
8 -7 6 . .

9 +2 +2 7 42

Figure 7.16. The Automaton of Figure 7.12 Recast for Shift-Reduce Transitions

7.3.3. Shift-Reduce Transitions For most programming languages 30-
50% of the states of an LR parser are LR(0) reduce states, in which reduc-
tion by a specific production is determined without examining the context.
In Figure 7.13 these states are 3, 4, 10 and 11. We can combine these reduc-
tions with the stacking of the previous symbol to obtain a new kind of transi-
tion — the shift-reduce transition — specifying both the stacking of the last
symbol of the right-hand side and the production by which the next reduc-
tion symbol is to be made. Formally:

If f(q,v)=X->x (or f(q’,v)=HALT) is the only possible action (other
than ERROR) in state ¢’ then redefine f(q, v) to be ‘shift reduce X -x’ for
all states g with f(gq,v)=q’and for all v EV. Then delete state ¢".

With this simplification the transition function of Figure 7.12 can be writ-
ten as shown in Figure 7.16. (The notation remains the same, with the addi-
tion of —p to indicate a shift-reduce transition that reduces according to the
p™ production.)

Introduction of shift-reduce transitions into a parsing automaton for LAX
reduces the number of states from 131 to 70.

7.34. Chain Production Elimination A chain production A >B is a
semantically meaningless element of P with a right-hand side of length 1.
In this section we shall denote chain productions by 4 - B and derivations
using only chain productions by 4 =>¢B (instead of 4 ="B). Any produc-
tions not explicitly marked are not chain productions. Chain productions
are most often introduced through the description of expressions by rules
like sum ::= term | sum addop term. They also frequently arise from the
collection of single concepts into some all-embracing concept (as in A.3.0.1,
for example).

Reductions according to chain productions are completely irrelevant, and
simply waste time. Thus elimination of all chain productions may speed up
the parsing considerably. During the parse of the statement 4 : =B in LAX,
for example, we must reduce 11 times by productions of length 1 before
reaching the form name “=’expression, which can be recognized as an
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assignment. Of these reductions, only the identification of an identifier as a
name (A.4.0.16) has relevant semantics. All other reductions are semanti-
cally meaningless and should not appear in the structure tree.

We could remove chain productions by substitution, a process used in
conjunction with Theorem 5.25. The resulting definition of the LR parser
would lead to far too many states, which we must then laboriously reduce to
a manageable number by further processing. A more satisfactory approach
is to try to eliminate the reductions by chain productions from the parser
during construction. In many cases this technique will also lower the
number of states in the final parser.

The central idea is to simultaneously consider all chain productions that
could be introduced in a given parser state. Suppose that a state ¢ contains
a situation [X -p-Av;t] and 4 = *B. We must first reduce to B, then to 4.
If however, the derivation A = * B consists solely of chain productions then
upon a reduction to B we can immediately reduce to 4 without going
through any intermediate steps.

Construction 7.7, when applied to Figure 7.17a (a simplified version of
Figure 7.12a), yields a parser with the state diagram given in Figure 7.17b.
If we reach state 2, we can reduce to E given the lookahead symbol #, but
we could also reduce to Z immediately. We may therefore take either the

(1)Z -E

QE-E+T QR)E-T

@ T-T* (S)T-i
a) The grammar

+4 i
on#,+,*@* . Sre . @+2

on#,+
c) After elimination of the chain production 3) E -»T

Figure 7.17. A Simple Case of Chain Production Elimination
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actions of state 1 or those of state 2. Figure 7.17c shows the parser that
results from merging these two states.

Note that in Figure 7.17b the actions for states 1 and 2 do not conflict
(with the exception of the reduction E - T being eliminated). This property
is crucial to the reduction; fortunately it follows automatically from the
LR(1) property of the grammar: Suppose that for 4 % B, 4 =°C and
B =>¢C. Suppose further that some state g contains situations [X -»pu-4 ;T
and [Y —o°B§;A). The follower condition ‘FIRST(yr) and FIRST(84) dis-
joint’ must then hold, since otherwise it would be impossible to decide
whether to reduce C to 4 or B in state f(q, C). Consideration of state 0 in
Figure 7.17b with A =E, B =C =T illustrates that the follower condition is
identical to the absence of conflict required above.

Situations involving chain productions are always introduced by a closure
operation. Instead of using these chain production situations when estab-
lishing a new state, we use the situations that introduced them. This is
equivalent to saying that reduction to the right-hand side of the chain pro-
duction should be interpreted as reduction to the left-hand side. Thus the
only change in construction 7.7 comes in computation of basis(q, v):

3. Let basis(q,v) = {[Y »0a-8;A] | [X »pvy;T1[Y -cadAl€q, a=>cv}
— {[4->B;Q] | 4 ->‘B}.

As an example of the process, assume that the productions E -7 and
T >F in the grammar of Figure 7.12a are chain productions. Figure 7.18
shows the derivation of an LALR(1) automaton that does not reduce by
these productions. (Compare this derivation with that of Figure 7.13.)

7.3.5. Implementation In order to carry out the parsing practically, a
table of the left sides and lengths of the right sides of all productions (other
than chain productions), as well as parser actions to be invoked at connec-
tion points, must be known to the transition function. The transition func-
tion is partitioned in this way to ease the storage management problems.
Because of cost we store the transition function as a packed data structure
and employ an access routine that locates the value f(q,v) given (g, v).
Some systems work with a list representation of the (sparse) transition
matrix; the access may be time consuming if such a scheme is used, because
lists must be searched.

The access time is reduced if the matrix form of the transition function is
retained, and the storage requirements are comparable to those of the list
method if as many rows and columns as possible are combined. In perform-
ing this combination we take advantage of the fact that two rows can be
combined not only when they agree, but also when they are compatible
according to the following definition:

Definition 7.8. Consider a transition matrix f(g,v). Two rows q,q'€Q are
compatible if, for each column v, either f(g,v)=/(q’,v) or one of the two
entries is a don’t-care entry.
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State Situation v f(q,v)
0 * [Z->E;{#}] E 1
[E~>E+T;{# +}]
[E~>T;{# +}] T 2
[T > T*F;{# +*}]
[T > F;{# +*}] F 2
[F-i;{# +*}] i 3
[F>(E){# +*}] ( 4
1 * [Z-E;{#)] # HALT
* [E-E-+T;{# +}] + 5
2 * [Z-E;{#)] # HALT
* [E-E+T;{# +}] + 5
* [T-T*F;{# +*}] * 6
3 [F-is{#+%)] reduce 6
4 * [F-(CE);{# +Y}] E 7
[E->E+T;{)+}]
[E->T;)+}] T 8
[T > T*F;{)+*}]
[T >Fi{)+*}] F 8
[F>i;{)+*}] i 3
[F>(E){+*)] ( 4
5 * [E-E+T;{# +))] T 9
[T > T*F;{# +%)}]
[T F;{# +%)}] F 9
[F-i;{# +%)}] i 3
[F—>(E){# +%)}] ( 4
6 * [T-THF;{# +%))] F 10
[F—=i;{# +%)}] i 3
[F>(E){# +")}] ( 4
T * [Fo(E){# +%)] ) 11
* [E-E+T;{)+}] + 5
8 * [F-(E){# +%)] ) 11
* [E-E+T;)+}] + 5
* [T_)T*F;{)+*}] * 6
9 * [E-E+T{# +)})] #)+ reduce?
* [T-T*F;{# +%)}] * 6
10 * [T-T*F{# +%)}] reduce 4
11 * [F>(E);{# +%}] reduce 7

Figure 7.18. Chain Production Elimination Applied to Figure 7.12
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Compatibility is defined analogously for two columns v,v'€V. We shall
only discuss the combination of rows here.

We inspect the terminal transition matrix, the submatrix of f (g, v) with
v €T, separately from the nonterminal transition matrix. Often different
combinations are possible for the two submatrices, and by exploiting them
separately we can achieve a greater storage reduction. This can be seen in
the case of Figure 7.19a, which is an implementation of the transition matrix
of Figure 7.18. In the terminal transition matrix rows 0, 4, 5 and 6 are com-
patible, but none of these rows are compatible in the nonterminal transition
matrix.

In order to increase the number of compatible rows, we introduce a
Boolean failure matrix, Flq,t],q €0, t €T. This matrix is used to filter the
access to the terminal transition matrix:

f(q,t)=if Flq,t] then error else entry_in_the _transition_matrix ;

For this purpose we define F(q, ] as follows:

true if f(q,t) = ERROR
false otherwise

F[q,t]:{

Figure 7.19b shows the failure matrix derived from the terminal transition
matrix of Figure 7.19a. Note that the failure matrix may also contain
don’t-care entries, derived as discussed at the end of Section 7.3.2. Row and
column combinations applied to Figure 7.19b reduce it from 96 to 4 X 4.

With the introduction of the failure matrix, all previous error entries
become don’t-care entries. Figure 7.19c shows the resulting compression of
the terminal transition matrix. The nonterminal transition matrix is not
affected by this process; in our example it can be compressed by combining
both rows and columns as shown in Figure 7.19d. Each matrix requires an
access map consisting of two additional arrays specifying the row (column)
of the matrix to be used for a given state (symbol). For grammars of the size
of the LAX grammar, the total storage requirements are generally reduced
to 5-10% of their original values.

We have a certain freedom in combining the rows of the transition
matrix. For example, in the terminal matrix of Figure 7.19a we could also
have chosen the grouping {(0,4,5,6,9),(1,2,7,8)}. In general these groupings
differ in the final state count; we must therefore examine a number of possi-
ble choices. The task of determining the minimum number of rows reduces
to a problem in graph theory: We construct the (undirected) incompatibility
graph I =(Q, D) for our state set Q, in which two nodes ¢ and ¢’ are con-
nected if the rows are incompatible. Minimization of the number of rows is
then equivalent to the task of coloring the nodes with a minimum number of
colors such that any pair of nodes connected by a branch are of different
colors. (Graph coloring is discussed in Section B.3.3.) Further compression
may be possible as indicated in Exercises 7.12 and 7.13.
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O 00 NNV hAN—O

a) Transition matrix for Figure 7.18 with shift-reduce transitions

O 0 OB —=O

i ) + * # E T F
6 4 . 1 2 2
5 *
. . . 5 6 *
6 4 . . . . 7 8 8
6 4 9 9
6 4 . . -4
-7 5
-7 5 6

+2 42 6 +2

i ( ) + * #
false  false  true  true  true  true
true  false false
true  true true false false  false
false  false  true  true  true  true
false  false  true  true  true  true
false  false  true  true  true  true
false  false true
true  true  false false false  true
true  true  false false false false
b) Uncompressed failure matrix for (a)
i ) + * #
0,1,2,4, R *
5678 6 4 7 5 6

9 +2 +2 6 42

¢) Compressed terminal transition matrix

E TF
012 |1 2
4 |7 8
5 9
6,7,8,9 -4

d) Compressed nonterminal transition matrix

Figure 7.19. Table Compression
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7.4. Notes and References

LL(1) parsing in the form of recursive descent was, according to McClure
[1972], the most frequently-used technique in practice. Certainly its flexibil-
ity and the fact that it can be hand-coded contribute to this popularity.

LR languages form the largest class of languages that can be processed
with deterministic pushdown automata. Other techniques (precedence
grammars, (m, n)-bounded context grammars or Floyd-Evans Productions,
for example) either apply to smaller language classes or do not attain the
same computational efficiency or error recovery properties as the techniques
treated here. Operator precedence grammars have also achieved significant
usage because one can easily construct parsers by hand for expressions with
infix operators. Aho and Ullman [1972] give quite a complete overview of
the available parsing techniques and their optimal implementation.

Instead of obtaining the LALR(1) parser from the LR(1) parser by merg-
ing states, one could begin with the SLR(1) parser and determine the exact
right context only for those states in which the transition function is ambigu-
ous. This technique reduces the computation time, but unfortunately does
not generalize to an algorithm that eliminates all chain productions.

Construction 7.7 requires a redundant effort that can be avoided in prac-
tice. For example, the closure of a situation [X - By;Q] depends only
upon the nonterminal B if the lookahead set is ignored. The closure can
thus be computed ahead of time for each B €N, and only the lookahead sets
must be supplied during parser construction. Also, the repeated construc-
tion of the follower state of an LALR(1) state that develops from the combi-
nation of two LR(1) states with distinct lookahead sets can be simplified.
This repetition, which results from the marking of states as not yet exam-
ined, leaves the follower state (specified as a set of situations) unaltered. It
can at most add lookahead symbols to single situations. This addition can
also be accomplished without computing the entire state anew.

Our technique for chain production elimination is based upon an idea of
Pager [1974].

Use of the failure matrix to increase the number of don’t-care entries in
the transition matrix was first proposed by Joliat [1973, 1974).

EXERCISES

7.1. Consider a grammar with embedded connection points. Explain why
transformations of the grammar can be guaranteed to leave the invocation
sequence of the associated parser actions invariant.

7.2. State the LL(1) condition in terms of the extended BNF notation of Section
5.1.3. Prove that your statement is equivalent to Theorem 7.2.

7.3. Give an example of a grammar in which the graph of LAST contains a cycle.
Prove that FOLLOW(A) = FOLLOW (B) for arbitrary nodes 4 and B in the
same strongly connected subgraph.
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74.

1.5.

7.6.

1.7.

7.8.
79.

7.10.

7.11.

7.12.

Design a suitable internal representation of a grammar and program the gen-
eration algorithm of Section 7.2.3 in terms of it.

Devise an LL(1) parser generation algorithm that accepts the extended BNF
notation of Section 5.1.3. Will you be able to achieve a more efficient parser
by operating upon this form directly, or by converting it to productions?
Explain.

Consider the interpretive parser of Figure 7.10.

a. Define additional operation codes to implement connection points, and
add the appropriate alternatives to the case statement. Carefully explain
the interface conventions for the parser actions. Would you prefer a
different kind of parse table entry? Explain.

b. Some authors provide special operations for the situations [X -p-B] and
[X »p-tB]. Explain how some recursion can be avoided in this manner,
and write appropriate alternatives for the case statement.

c. Once the special cases of (b) are recognized, it may be advantageous to
provide extra operations identical to 4 and 5 of Figure 7.10, except that the
conditions are reversed. Why? Explain.

d. Recognize the situation [X —»u-¢] and alter the code of case 4 to absorb the
processing of the 2 operation following it.

e. What is your opinion of the value of these optimizations? Test your pred-
ictions on some language with which you are familiar.

Show that the following grammar is LR(1) but not LALR(1):
Z-A,

A —-aBcB,A -B,A -D,

B-b,B-Ff,

D -dE,

E >FcA, E > FcE,

F-b

Repeat Exercise 7.5 for the LR case. Use the algorithm of Section 7.3.4.

Show that FIRST(A) can be computed by any marking algorithm for directed
graphs that obtains a ‘spanning tree’, B, for the graph. B has the same node
set as the original graph, G, and its branch set is a subset of that of G.

Consider the grammar with the following productions:

Z >AXd,Z ->BX,Z-C,

A-B,4-C,

B -CXb,

C -c,

X —e

a. Derive an LALR(1) parser for this grammar.

b. Delete the reductions by the chain productions 4 »B and 4 »C.

Use the techniques discussed in Section 7.3.5 to compress the transition
matrix produced for Exercise 7.8.

[Anderson 1972] Consider a transition matrix for an LR parser constructed by
one of the algorithms of Section 7.3.2.
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a. Show that for every state g there is exactly one symbol z(g) such that
f(q’,a)impliesa =z(q).

b. Show that, in the case of shift-reduce transitions introduced by the algo-
rithms of Sections 7.3.3 and 7.3.4, an unambiguous symbol z (4 —x) exists
such that f(q,a) = ‘shift and reduce 4 ->x’ impliesa =z(4 -x).

c. The states (and shift-reduce transitions) can be numbered in such a way
that all states in column ¢ have sequential numbers co+i, i =0,1, - - -
Thus it suffices to store only the relative number / in the transition matrix;
the base c¢ is only given once for each column. In exactly the same
manner, a list of the reductions in a row can be assigned to this row and
retain only the appropriate index to this list in the transition matrix.

d. Make these alterations in the transition matrix produced for Exercise 7.8
before beginning the compression of Exercise 7.11, and compare the result
with that obtained previously.

[Bell 1971] Consider an m Xn transition matrix, ¢, in which all unspecified
entries are don’t-cares. Show that the matrix can be compressed into a p X g
matrix ¢, two length-m arrays f and «, and two length-n arrays g and v by
the following algorithm: Initially f;=g;=c0, 1< i< m, 1< j< n, and
k =1. If all occupied columns of the i row of ¢ uniformly contain the value
r, then set f;i=k, k:=k +1, u;:=r and delete the i* row of r. If thej”'
column is uniformly occupied, delete it also and set gii=k,ki=k+1, vii=r.
Repeat this process until no uniformly-occupied row or column remains. The
remaining matrix is the matrix ¢. We then enter the row (column) number in
¢ of the former i row (j* column) into u; (v;). The following relation then
holds:

= iff,~<gjthenu,-
else if /;>g; then v;
else(*f,-:gjzoo *)Cui,vj;

l;

(Hint: Show that the size of ¢ is independent of the sequence in which the
rows and columns are deleted.)



CHAPTER 8
Attribute Grammars

Semantic analysis and code generation are based upon the structure tree.
Each node of the tree is ‘decorated’ with attributes describing properties of
that node, and hence the tree is often called an attributed structure tree for
empbhasis. The information collected in the attributes of a node is derived
from the environment of that node; it is the task of semantic analysis to
compute these attributes and check their consistency. Optimization and
code generation can be also described in similar terms, using attributes to
guide the transformation of the tree and ultimately the selection of machine
instructions.

Attribute grammars have proven to be a useful aid in representing the
attribution of the structure tree because they constitute a formal definition of
all context-free and context-sensitive language properties on the one hand,
and a formal specification of the semantic analysis on the other. When
deriving the specification, we need not be overly concerned with the
sequence in which the attributes are computed because this can (with some
restrictions) be derived mechanically. Storage for the attribute values is also
not reflected in the specification. We begin by assuming that all attributes
belonging to a node are stored within that node in the structure tree; optimi-
zation of the attribute storage is considered later.

Most examples in this chapter are included to show constraints and
pathological cases; practical examples can be found in Chapter 9.

8.1. Basic Concepts of Attribute Grammars

An attribute grammar is based upon a context-free grammar G =(N,T,P,Z).
It associates a set 4 (X) of attributes with each symbol, X, in the vocabulary
of G. Each attribute represents a specific (context-sensitive) property of the

183
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symbol X, and can take on any of a specified set of values. We write X.a to
indicate that attribute a is an element of 4 (X).

" Each node in the structure tree of a sentence in L (G) is associated with a
particular set of values for the attributes of some symbol X in the vocabu-
lary of G. These values are established by arttribution rules R(p) =
{Xi,a<f(X;.b, ..., X;.c)} for the productions p:Xo—X; - X, used to
construct the tree. Each rule defines an attribute X;.a in terms of attributes
X;.b, ..., Xi.c of symbols in the same production. (Note that in this
chapter we use upper-case letters to denote vocabulary symbols, rather than
using case to distinguish terminals from nonterminals. The reason for this is
that any symbol of the vocabulary may have attributes, and the distinction
between terminals and nonterminals is generally irrelevant for attribute
computation.)

rule assignment .= name "=’ expression .
attribution
name.environment < assignment.environment ;
expression.environment < assignment.environment ;
name.postmode < name.primode ;
expression.postmode <
if name.primode =ref _int_type then int_type else real _type fi,

rule expression ::= name addop name .
attribution
name|1).environment < expression.environment ;
name|2].environment < expression.environment ;
expression.primode «
if coercible (name|1].primode, int _type ) and
coercible (name[2].primode, int _type ) then int _type else real _type fi;
addop.mode < expression.primode ;
name[1].postmode < expression.primode ;
name|2].postmode < expression.primode ;
condition coercible (expression.primode, expression.postmode);

rule addop ::="4".
attribution
addop.operation «
if addop.mode = int _type then int_addition else real _addition fi;

rule name ::= identifier .
attribution

name.primode <« defined_type (identifier.symbol ,name.environment ),
condition coercible (name.primode , name.postmode ),

Figure 8.1. Simplified LAX Assignment
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In addition to the attribution rules, a condition B(X;.a, ..., X;.b) involv-
ing attributes of symbols occurring in p may be given. B specifies the con-
text condition that must be fulfilled if a syntactically correct sentence is
correct according to the static semantics and therefore translatable. We
could also regard this condition as the computation of a Boolean attribute
consistent , which we associate with the left-hand side of the production.

As an example, Figure 8.1 gives a simplified attribute grammar for LAX
assignments. Each p €P is marked by the keyword rule and written using
EBNF notation (restricted to express only productions). The elements of
R(p) follow the keyword attribution. We use a conventional expression-
oriented programming language notation for the functions f, and terminate
each element with a semicolon. Particular instances of an attribute are dis-
tinguished by numbering multiple occurrences of symbols in the production
(¢.g. name[1], name[2]) from left to right. Any condition is also marked by a
keyword and terminated by a semicolon.

In order to check the consistency of the assignment and to further identify
the + operator, we must take the operand types into account. For this pur-
pose we define two attributes, primode and postmode, for the symbols expres-
sion and name, and one attribute, mode, for the symbol addop. Primode
describes the type determined directly from the node and its descendants;
postmode describes the type expected when the result is used as an operand
by other nodes. Any difference between primode and postmode

assignment
/ \

name, /expression\
identifier name, addop names;
identifier, + identifier,

a) Syntactic structure tree

assignment.environment
identifier; .symbol

b) Attribute values given initially G =1, ..., 3)

name.environment  expression.environment
name; .environment  name;.primode

name |.postmode expression.postmode name; .primode
expression.primode  name condition

addop.mode name; .postmode expression condition
addop.operation name; condition

¢) Attribute values computed (i =2, 3)

Figure 8.2. Analysis of x:=y +z
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Figure 8.3. Attribute Dependencies in the Tree for x :=y +z

must be resolved by coercions. The Boolean function coercible(t |, t;) tests
whether type ¢, can be coerced to #,.

Figure 8.2 shows the analysis of x:=y +z according to the grammar of
Figure 8.1. (Assignment.environment would be computed from the declara-
tions of x, y and z, but here we show it as given in order to make the exam-
ple self-contained.) Attributes on the same line of Figure 8.2c can be
computed collaterally; every attribute is dependent upon at least one attri-
bute from the previous line. These dependency relations can be expressed
as a graph (Figure 8.3). Each large box represents the production whose
application corresponds to the node of the structure tree contained within it.
The small boxes making up the node itself represent the attributes of the
symbol on the left-hand side of the production, and the arrows represent the
dependency relations arising from the attribution rules of the production.
The node set of the dependency graph is just the set of small boxes
representing attributes; its edge set is the set of arrows representing depen-
dencies.

We must know all of the values upon which an attribute depends before
we can compute the value of that attribute. Clearly this is only possible if
the dependency graph is acyclic. Figure 8.3 is acyclic, but consider the fol-
lowing LAX type definition, which we shall discuss in more detail in Sec-
tions 9.1.2 and 9.1.3:

type t = record x :real ; p:ref t end

We must compute a type attribute for each of the identifiers #, x and p so that
the associated type is known at each use of the identifier. The type attribute
of 1 consists of the keyword record plus the types and identifiers of the fields.
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Now, however, the type of p contains an application of ¢, implying that the
type identified by ¢ depends upon which type a use of ¢ identifies. Thus the
type ¢ depends cyclically upon itself. (We shall show how to eliminate the
cycle from this example in Section 9.1.3.)

Let us now make the intuition gained from these examples more precise.
We begin with the grammar G, a set of attributes 4 (X) for each X in the
vocabulary of G, and a set of attribution rules R(p) (and possibly a condi-
tion B(p)) for each p in the production set of G.

Definition 8.1. An artribute grammar is a 4-tuple, AG = (GA,RB).

G = (TN,PZ) is a reduced context free grammar, 4 = L; A(X) is a
XeTuN

finite set of attributes, R= U R(p) is a finite set of attribution rules, and

pEP

B=uU B(p) is a finite set of conditions. A(X)NA(Y)# @
pEP

implies X =Y. For each occurrence of X in the structure tree correspond-

ing to a sentence of L (G), at most one rule is applicable for the computa-

tion of each attribute a €4 (X).

Definition 8.2. For each p:X,-X,--- X, EP the set of defining occurrences
of attributes is AF(p) = {X;.a | X;.a<f(---)ER(p)}. An attribute X.a
is called derived or synthesized if there exists a production p:X —x and X.a
in AF(p); it is called inherited if there exists a production ¢:Y -»uX» and
Xa€AF(q).

Synthesized attributes of a symbol represent properties resulting from
consideration of the subtree derived from the symbol in the structure tree.
Inherited attributes result from consideration of the environment. In Figure
8.1, the nameprimode and addop.operation attributes were synthesized;
name.environment and addop.mode were inherited.

Autributes such as the value of a constant or the symbol of an identifier,
which arise in conjunction with structure tree construction, are called intrin-
sic. Intrinsic attributes reflect our division of the original context-free gram-
mar into a parsing grammar and a symbol grammar. If we were to use the
entire grammar of Appendix A as the parsing grammar, we could easily
compute the symbol attribute of an identifier node from the subtree rooted in
that node. No intrinsic attributes would be needed because constant values
could be assigned to left-hand side attributes in rules such as letter::=a’.
Thus our omission of intrinsic attributes in Definition 8.2 results in no loss of
generality.

Theorem 8.3. The following sets are disjoint for all X in the vocabulary of G :

AS(X) = {Xa | dp:X >x €EP and X.a EAF(p)}
AI(X) = {Xa | 9q:Y->pXv €EP and X.a EAF(q)}
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Further, there exists at most one rule X.a «<f (- ) in R(p) for each p €EP and
a€A(X).

Suppose that an attribute a belonged to both AS(X) and AI(X). Some
derivation Z =" oY1 = ouX»1 = ouxvt =" w (wEL(G)) would then
have two different rules for computing the value of attribute a at node X.
But this situation is prohibited by the last condition of Definition 8.1. It can
be shown that Theorem 8.3 is equivalent to that condition.

Definition 8.1 does not guarantee that a synthesized attribute a €4 (X)
will be computable in all cases, because it does not require that X.a be an
element of AF(p) for every production p:X —»x. A similar statement holds
for inherited attributes.

Definition 8.4. An attribute grammar is complete if the following statements
hold for all X in the vocabulary of G

Forallp:X -x €EP,AS(X)CAF(p)
Forallq:Y -pXv €P, AI(X)CAF(q)
AS(X)uAl(X)=A(X)

Further, if Z is the axiom of G then A1 (Z) is empty.

& As compiler writers, we are only interested in attribute grammars that
allow us to compute all of the attribute values in any structure tree.

Definition 8.5. An attribute grammar is well-defined if, for each structure tree
corresponding to a sentence of L(G), all attributes are effectively comput-
able. A sentence of L (G) is correctly attributed if, in addition, all conditions
yield true.

It is clear that a well-defined attribute grammar must be complete. A
complete attribute grammar is well-defined, however, only if no attribute
can depend upon itself in any structure tree. We therefore need to formalize
the dependency graph introduced in Figure 8.3.

Definition 8.6. For each p:X,—~X, -+ X, EP the set of direct attribute
dependencies is given by

DDP(p) = {(X.a.X;.b) | X;.b<f(--- X,.a---)ER(p))

The grammar is locally acyclic if the graph of DDP(p) is acyclic for each
pEP.

We often write (X;.a,X;.b) EDDP(p) as X;.a »X;.b EDDP(p), and follow
the same convention for the relations defined below. If no misunderstand-
ing can occur, we omit the specification of the relation. In Figure 8.3 the
arrows lying inside each large box are the edges of DDP(p) for a particular

P
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We obtain the complete dependency graph for a structure tree by ‘pasting
together’ the direct dependencies according to the syntactic structure of the
tree.

Definition 8.7. Let S be the attributed structure tree corresponding to a sen-
tence in L (G), and let K- - - K, be the nodes corresponding to application
of p:Xo-X,- -+ X,. We write K;.a »K;.b if X;.a >X;.b EDDP(p). The set
DT(S) = {K;.a—K;.b}, where we consider all applications of productions
in S, is called the dependency relation over the tree S .

Theorem 8.8. An attribute grammar is well-defined if and only if it is complete
and the graph of DT (S) is acyclic for each structure tree S corresponding to a
sentence of L (G).

If AG is a well-defined attribute grammar (WAG) then a nondeterministic
algorithm can be used to compute all attribute values in the attributed struc-
ture tree for a sentence in L (G): We provide a separate process to compute
each attribute value, which is started after all operands of the attribution
rule defining that value have been computed. Upon completion of this pro-
cess, the value will be available and hence other processes may be started.
Computation begins with intrinsic attributes, which become available as
soon as the structure tree has been built. The number of processes depends
not upon the grammar, but upon the number of nodes in the structure tree.
Well-definedness guarantees that all attributes will be computed by this sys-
tem without deadlock, independent of the precise construction of the attri-
bute rules.

Before building a compiler along these lines, we should verify that the
grammar on which it is based is actually WAG. Unfortunately, exponential
time is required to verify the conditions of Theorem 8.8. Thus we must
investigate subclasses of WAG for which this cost is reduced.

It is important to note that the choice of subclass is made solely upon
practical considerations; all well-defined attribute grammars have the same
formal descriptive power. The proof of this assertion involves a ‘hoisting’
transformation that is sometimes useful in molding a grammar to a pre-
specified tree traversal: An inherited attribute of a symbol is removed,
along with all synthesized attributes depending upon it, and replaced by a
computation in the parent node. We shall see an example of this transfor-
mation in Section 8.2.3.

8.2. Traversal Strategies

A straightforward implementation of any attribute evaluation scheme will
fail in practice because of gigantic storage requirements for attribute values
and correspondingly long computation times. Only by selecting an evalua-
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tion scheme that permits us to optimize memory usage can the attribute
grammar technique be made practical for compiler construction. Section
8.3.2 will discuss optimizations based upon the assumption that we can
determine the sequence of visits to a particular node solely from the symbol
corresponding to that node. We shall require that each production
p:Xo—X -+ X, EP be associated with a fixed attribution algorithm made
up of the following basic operations:

® Evaluate an element of R(p).
® Move tochildnodei (i=1, ..., n).
® Move to parent node.

Conceptually, a copy of the algorithm for p is attached to each node
corresponding to an application of p. Evaluation begins by moving to the
root and ends when the algorithm for the root executes ‘move to parent’.

We first discuss algorithms based upon these operations — what they look
like and how they interact — and characterize the subclass of WAG for
which they can be constructed. We then examine two different construction
strategies. The first uses the attribute dependencies to define the tree
traversal, while the second specifies a traversal a priori. We only discuss the
general properties of each strategy in this section; implementation details
will be deferred to Section 8.3.

8.2.1. Partitioned Attribute Grammars Because of the properties of
inherited and synthesized attributes, the algorithms for two productions
p:X-x and q:Y - pX» must cooperate to evaluate the attributes of an
interior node of the structure tree. Inherited attributes would be computed
by rules in R(q), synthesized attributes by rules in R(p). The attribution of
X represents the interface between the algorithms for p and ¢. In Figure
8.3, for example, the algorithms for expression ::= name addop name and
assignment ::= name ":=' expression are both involved in computation of
attributes for the expression node. Because all computation begins and ends
at the root, the general pattern of the (coroutine) interaction would be the
following: The algorithm for ¢ computes values for some subset of A7 (X)
using a sequence of evaluation instructions. It then passes control to the
algorithm for p by executing ‘move to child i’. After using a sequence of
evaluation operations to compute some subset of 4S5(X), the algorithm for p
returns by executing ‘move to parent’. (Of course both algorithms could
have other attribute evaluations and moves interspersed with these; here we
are considering only computation of Xs attributes.) This process continues,
alternating computation of subsets of AI(X) and AS(X) until all attribute
values are available. The last action of each algorithm is ‘move to parent’.
Figure 8.4 gives possible algorithms for the grammar of Figure 8.1.
Because a symbol like expression can appear in several productions on the
left or right sides, we always identify the production for the child node by
giving only the left-hand-side symbol. We do not answer the question of
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Evaluate name.environment
Move to name

Evaluate expression.environment
Move to expression

Evaluate name.postmode

Move to name

Evaluate expression.postmode
Move to expression

Move to parent

a) Procedure for assignment ::= name '=' expression

Evaluate name/[1].environment
Move to name[1]

Evaluate name|[2].environment
Move to name|2]

Evaluate expression.primode
Move to parent

Evaluate name[1].postmode
Move to name(1]

Evaluate addop.mode

Move to addop

Evaluate name|2].postmode
Move to name[2]

Evaluate condition

Move to parent

b) Procedure for expression ::= name addop name

Evaluate name.primode
Move to parent
Evaluate condition
Move to parent

¢) Procedure for name ::= identifier

Figure 8.4. Attribution Algorithms for Figure 8.1

which production is really used because in general we cannot know. For the
same reason we do not specify the parent production more exactly.

The attributes of X constitute the only interface between the algorithms
for p and g. When the algorithm for ¢ passes control to the algorithm for p
by executing ‘move to child i’, it expects that a particular subset of AS(X)
will be evaluated before control returns. Since the algorithms must work for
all structure trees, this subset must be evaluated by every algorithm
corresponding to a production of the form X -x. The same reasoning holds
for subsets of A1(X) evaluated by algorithms corresponding to productions
of the form Y -pXv.

Definition 8.9. Given a partition of 4(X) into disjoint subsets A4;(X),
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i=1,..., m(X) for each X in the vocabulary of G, the resulting partition of
the entire attribute set 4 is admissible if, for all X, 4;(X) is a subset of
AS(X) for i =m,m—2, .. and A,(X) is a subset of AI(X) for
i=m—1,m-3,.. A;(X) may be empty for any i.

Definition 8.10. An attribute grammar is partitionable if it is locally acyclic
and an admissible partition exists such that for each X in the vocabulary of
G the attributes of X can be evaluated in the order 4 (X), ..., 4,,(X). An
attribute grammar together with such a partition is termed partitioned.

Since all attributes can be evaluated, a partitionable grammar must be well-
defined.

A set of attribution algorithms satisfying our constraints can be
constructed if and only if the grammar is partitioned. The admissible parti-
tion defines a partial ordering on 4 (X) that must be observed by every algo-
rithm. Attributes belonging to a subset 4; (X') may be evaluated in any order
permitted by DDP(p), and this order may vary from one production to
another. No context switch across the X interface occurs while these attri-
butes are being evaluated, although context switches may occur at other
interfaces. A move instruction crossing the X interface follows evaluation of
each subset.

The grammar of Figure 8.1 is partitioned, and the admissible partition
used to construct Figure 8.4 was:

A (expression) = {environment} A |(name) = {environment }

A,(expression) = { primode } A,(name) = {primode }
As(expression) = {postmode } As(name) = {postmode }
A (expression) = {} Ay(name) = {}

A (addop) = {mode }
Ay(addop) = {operation }

A4 is empty in the cases of both expression and name because the last
nonempty subset in the partition consists of inherited attributes, while
Definition 8.9 requires synthesized attributes. At this point the algorithm
actually contains a test of the condition, which we have already noted can be
regarded as a synthesized attribute of the left-hand-side symbol. With this
interpretation, it would constitute the single element of A4 for each symbol.

8.2.2. Derived Traversals Let us now turn to the questions of how to
partition an attribute grammar and how to derive algorithms from an admis-
sible partition that satisfies Definition 8.10, assuming no a priori constraints
upon the tree traversal. For this purpose we examine dependency graphs,
with which the partitions and algorithms must be compatible.

Suppose that X.a is an element of 4;(X) and X.b is an element of 4 i (X)
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Figure 8.5. A Cycle Involving More Than One Production

in an admissible partition, and i >j. Clearly Kxy.a »Kx.b cannot be an
element of DT'(S) for any structure tree S, because then X.b could not be
calculated before X.a as required by the fact thati > j. DDP(p) gives direct
dependencies for all attributes, but the graph of DT'(S) includes indirect
dependencies resulting from the interaction of direct dependencies. These
indirect dependencies may lead to a cycle in the graph of DT(S) as shown in
Figure 8.5. We need a way of characterizing these dependencies that is
independent of the structure tree.

In a locally acyclic grammar, dependencies between attributes belonging
to AF(p) can be removed by rewriting the attribution rules:

Xi.a«<f(..X;.b,.) Xiaf(.g(-).)
X.beg(-) becomes X.beg(-)

In Figure 8.3 this transformation would, among other things, replace the
dependency  expression.primode —»addop.mode by  name|l].primode -
addop.mode and name|2].primode — addop.mode . Dependencies that can be
removed in this way may require that the attributes within a partition ele-
ment A4; (X) be computed in different orders for different productions, but
they have no effect on the usability of the partition itself (Exercise 8.3).

Definition 8.11. For each p:X,>X, - - - X, €P, the normalized transitive clo-
sure of DDP(p) is
NDDP(p) = DDP(p)* — {(X;.a.X;.b) | X;.a,X;.b €EAF(p)}

The dependencies arising from interaction of nodes in the structure tree
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are summarized by two collections of sets, IDP and IDS. IDP(p) shows all
of the essential dependencies between attributes appearing in production p,
while IDS (X)) shows those between attributes of symbol X .

Definition 8.12. The induced attribute dependencies of an attribute grammar
(G,A,R,B) are defined as follows:

1. Forallp €P,IDP(p).=NDDP(p).
2. For all X in the vocabulary of G,

IDS(X):={(X.a,Xb) | ¢ such that (X.a, X.b)EIDP(q)"}
3. Forallp:Xy-X, - X, €EP,
IDP(p):=IDP(p)UIDS(Xy)U - UIDS(X,)
4. Repeat (2) and (3) until there is no change in any IDP or IDS.

IDP(p) and IDS(X) are pessimistic approximations to the desired depen-
dency relations. Any essential dependency that could be present in any
structure tree is included in IDP(p)and IDS(X), and all are assumed to be
present simultaneously. The importance of this point is illustrated by the
grammar of Figure 8.6, which is well-defined but not partitioned. Both ¢ —e
and d —»f are included in IDS(Y) even though it is clear from Figure 8.7
that only one of these dependencies could occur in any structure tree. A
similar situation occurs for e »d and f —c. The result is that IDS(Y) indi-
cates a cycle that will never be present in any DT .

The pessimism of the indirect dependencies is crucial for the existence of
a partitioned grammar. Remember that it must always be possible to evalu-
ate the attributes of X in the order specified by the admissible partition.
Thus the order must satisfy all dependency relations simultaneously.

Theorem 8.13. If an attribute grammar is partitionable then the graph of
IDP(p) is acyclic for every p EP and the graph of IDS (X) is acyclic for every
X in the vocabulary of G. Further, if a b is in IDS(X) then a €A,(X) and
b €A;(X)impliesi < j.

Note that Theorem 8.13 gives a necessary, but not sufficient, condition for a
partitionable grammar. The grammar of Figure 8.8 illustrates the reason,
and provides some further insight into the properties of partitionable gram-
mars.

Given the rules of Figure 8.8, a straightforward computation yields
IDS(X) = {a-b,c—>d}. Three of the five admissible partitions of
{a,b,c,d} satisfy Theorem 8.13:

(@) (b} {c) {d} {c) {d) {a} (b} {a.c} (b.d)

Figure 8.9 gives the dependency graphs for the two structure trees that can
be derived according to this grammar. Simple case analysis shows that none
of the three partitions can be used to compute the attributes of X in both
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rule Z ::= X (* Production 1 *)
attribution
Xa « l;

rule X ::=sY.  (* Production 2 *)
attribution

Xb <« Yf;

Yc « Xa;

Yd < Ye;

rule X ::=1tY. (* Production 3 *)
attribution

Xb « Ye,

Yo « Yf;

Yd « Xa;

rule Y ::=u (* Production 4 *)
attribution

Ye < 2;

Yf « Yd,

rule Y ::= v (* Production 5 *)
attribution
Ye « Yc;
Yf <3
a) Rules

IDS(X) = {a-b}
IDS(Y) = {c-e,d>f,e—-d, f -»c}

b) Induced dependencies for symbols
Figure 8.6. A Well-Defined Grammar

trees. For example, consider the first partition. Attribute 4 must be com-
puted before attribute d. In the first tree X[1].d must be known for the
computation of X[2].a, so the sequence must be X[1].a, X[1]d, X[2]a,
X[2]).d. This is inadmissible, however, because X[2].d -»X[1].a is an element
of NDDP(Z -sXX).

When we choose a partition, this choice fixes the order in which certain
attributes may be computed. In this respect the partition acts like a set of
dependencies, and its effect may be taken into account by adding these
dependencies to the ones arising from the attribution rules.

Definition 8.14. Let 4,(X), ..., 4, (X) be an admissible partition of A (X).
For each p:Xo—X, - X, in P the set of dependencies over the production p
is:

DP(p)=IDP(pP U {(X;.a,X,.b) | a €4;(X;), b E4,(X,),0< i< n,j <k}
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Z::=X ‘ X=:7 ‘
X::=tY a b X::=tY a b
s i
\ Y \ #V
Y::=u c d e f Y::=v c d e f
bt ﬂ

Figure 8.7. Dependency Graphs DT'(s)

Theorem 8.15. Given an admissible partition for an attribute grammar, the
grammar is partitioned if and only if the graph of DP(p) is acyclic for each
pEP.

Unfortunately, Theorem 8.15 does not lead to an algorithm for partition-
ing an attribute grammar. Figure 8.10 is a partitioned grammar, but the
obvious partition 4,(X) = {b}, A2(X) = {a} causes cyclic graphs for both
DP(1) and DP(2). In order to avoid the problem we must use 4,(X) = {a},
Ax(X) = {b}, A3(X) = {}. A backtracking procedure for constructing the
partition begins with the dependency relations of IDS(X) and considers
pairs of independent attributes (a, b), one of which is inherited and the other
synthesized. It adds a —»b to the dependencies currently assumed and
immediately checks all DP graphs for cycles. If a cycle is found then the
dependency b —a is tested. If this also results in a cycle then the procedure
backtracks, reversing a previously assumed dependency. Because this pro-
cedure involves exponential cost, it is of little practical interest.
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raleZ =5 X X.
attribution
X[l]la « X[2]d;
X(1l)e <« 1
X[2)a < X[1]d;
X[2)c «2;

rnuleZ 1=t X X.
attribution
X[1]a « 3;
X[1).c « X[2].b;
X[2)a < 4;
X[2).c « X[1].b;
rule X ::=u.
attribution

Xb « Xa;
Xd « Xc;

Figure 8.8. An Attribute Grammar That Is Not Partitioned

Z::=sXX

Z: . =tXX

X::=u X::=u

Figure 8.9. Dependency Graphs for Figure 8.8
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As in the case of parser construction, where pragmatic considerations
forced us to use subclasses of the LL(k) and LR(k) grammars, the cost of
obtaining an appropriate partition forces us to consider a subclass of the
partitioned grammars. The following definition yields a nonbacktracking
procedure for obtaining a partition that evaluates each attribute at the latest
point consistent with IDS (X).

Definition 8.16. An attribute grammar is ordered if the following partition of
A results in a partitioned grammar:

AiX) =Ty i n(X)—T,_;1(X) @(=1,...,m)

Here m is the smallest k£ such that 7, _(X)UT,(X)=4(X), T_(X)=
To(X)= @, and fork >0

Ty _1(X) = {a EAS(X) | a »b EIDS(X) implies b ET;(X), j < (2k —1)}
Ty (X) = {a EAI(X) | a—b EIDS(X)impliesb ET;(X), j < 2k}

This definition requires that all T; (X) actually exist. Some attributes remain
unassigned to any T;(X) if (and only if) the grammar is locally acyclic and
some IDS contains a cycle.

For the grammar of Figure 8.10, construction 8.16 leads to the ‘obvious’
partition discussed above, which fails. Thus the grammar is not ordered,
and we must conclude that the ordered grammars form a proper subclass of
the partitionable grammars.

ruleZ ::=s X Y. (*Production] *)
attribution

Xb « Yd;

Yec « 1;

Ye « Xa;

ruleZ :=¢t X Y. (* Production?2 *)
attribution

Xb <« Yf;

Y¢ « Xa;

Ye < 2;

rule X 1= u . (* Production 3 *)
attribution
Xa <3;

rule Y :i=v . (* Production 4 *)
attribution

Yd « Yc;

Yf < Ye;

Figure 8.10. A Partitioned Grammar
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Suppose that a partitioned attribute grammar is given, with partitions
A(X), ..., A, (X) for each X in the vocabulary. In order to construct an
attribution algorithm for a production p:Xo-X,; - X,, we begin by
defining a new attribute ¢; ; corresponding to each subset 4; (X;) of attri-
butes not computed in the context of p. (These are the inherited attributes
A;(Xo), j=m —1,m =3,... of the left-hand side and the synthesized attri-
butes 4;(X;), i#0, j=m,m —2,... of the right-hand side symbols.) For
example, the grammar of Figure 8.1 is partitioned as shown at the end of
Section 8.2.1. In order to construct the attribution algorithm of Figure 8.4b,
we must define new attributes as shown in Figure 8.11a.

Every occurrence of an attribute from 4; (X, is then replaced by c;, j in
DP(p)uDDP(p), as illustrated by Figure 8.11b. DP(p) alone does not
suffice in this step because it was derived (via IDP(p)) from NDDP(p), and
thus does not reflect all dependencies of DDP(p). In Figure 8.11b, for
example, the dependencies expression.primode —namei ].postmode (i =1,2)
are in DDP but not DP.

Figure 8.11b has a single node for each c; ; because each partition con-
tains a single attribute. In general, however, partitions will contain more
than one attribute. The resulting graph still has only one node for each ¢; ;.
This node represents all of the attributes in 4; (X;), and hence any relation
involving an attribute in 4; (X;) is represented by an edge incident upon this
node.

The graph of Figure 8.11b describes a partial order. To obtain an attri-
bution algorithm, we augment the partial order with additional dependen-
cies, consistent with each other and with the original partial order, until the
nodes are totally ordered. Figure 8.11c shows such additional dependencies
for Figure 8.11b. The total order defines the algorithm: Each element that
is an attribute in AF(p)corresponds to a computation of that attribute, each
element c; o corresponds to a move to the parent, and each element ¢; ;
G>0 corresponds to a move to the i” child. Finally, a ‘move to parent’
operation is added to the end of the algorithm. Figure 8.4b is the algorithm
resulting from the analysis of Figure 8.11.

The construction sketched above is correct if we can show that all attri-
bute dependencies from IDP(p) and DDP(p) are accounted for and that
the interaction with the moves between nodes is proper. Since IDP(p) is a
subset of DP(p), problems can only arise from the merging of attributes that
are not elements of AF(p). We distinguish five cases:

X;.a-X;.b€IDP(p), a&AF(p),beAF(p)
X;.a->X,.b€IDP(p), a€EAF(p),b&AF(p)
X;.a-X;.beIDP(p), ag&AF(p),bEAF(p)
X,.a-X,.beIDP(p), i+#j,a¢AF(p)
X;.a-X;.be€IDP(p), i+#j,b&AF(p)

In the first case the dependency is accounted for in all productions ¢ for
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which a and b are elements of AF(g). In the second and third cases X;.a
and X;.b must belong to different subsets 4,(X;) and A4;(X;). The depen-
dency manifests itself in the ordering condition r <s or s <r, and will not
be disturbed by collapsing either subset. In the fourth case we compute X;.b
only after all of the attributes in the subset to which X;.a belongs have been
computed; this is simply an additional restriction. The fifth case is excluded
by Definition 8.11: X;.a »X;.b cannot be an element of DDP(p) because
X;.b is notin AF(p); it cannot be an element of any IDS because i # j.
When an algorithm begins with a visit ¢; ;, this visit may or may not actu-
ally be carried out. Suppose that the structure tree has been completed

c1,0= {expression.environment }
c3, 0= {expression.postmode }
¢y 1= {name[1].primode }
ca1={}

¢, 2= {addop.operation }
c2,3={name|2] primode }
cs3={})

a) New attributes

/Cl’o\

name [1].environment €22 name [ 2].environment
A

addop. mode
| / ‘ \ Y

Ca1 Ca1

expresszon przmode

N

name [1]. postmode name |21, postmode

SN T

€4,1 condition C4,3

b) Graph defining DP(p)U DDP(p)

¢y, | >name|2].environment
c3 o —>name|1].postmode
¢4 ~»addop.mode

¢2,2 —>name|2].postmode
¢4, 3 ~condition

c) Additional dependencies used to establish a total order

Figure 8.11. Deriving the Algorithm of Figure 8.4b
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before the attribution is attempted. The traversal then begins at the root,
and every algorithm will be initiated by a ‘move to child i’. Now if the first
action of the algorithm is ¢ i.e. a move to the parent to compute inherited
attributes, this move is superfluous because the child is only invoked if these
attributes are available. Hence the initial ¢ ( should be omitted. The situa-
tion is reversed if the tree is being processed bottom-up, as when attribution
is merged with a bottom-up parse: An initial ¢; ; that causes a move to the
leftmost subtree should be omitted.

Semantic conditions are taken care of in this schema by treating them as
synthesized attributes of the left-hand side of the production. They can be
introduced into an algorithm at any arbitrary point following computation
of the attributes upon which they depend. In practice, conditions should be
evaluated as early as possible to enhance semantic error recovery and
reduce the lifetime of attributes.

8.2.3. Pre-Specified Traversals Overall compiler design considerations
may indicate use of one or more depth-first, left-to-right and/or right-to-left
traversals for attribute evaluation. This allows us to linearize the structure
tree as discussed in Section 4.1.2 and make one or more passes over the
linearized representation. (For this reason, attribute grammars that specify
such traversals are called multi-pass attribute grammars.) We shall discuss
the left-to-right case in detail here, leaving the analogous right-to-left case to
the reader.

Definition 8.17. An attribute grammar is LAG(Il) if, for every node
corresponding to an application of p:Xy—>X;--- X, €P, the attributes in
AI(Xy), AI(X 1), AS (X)), AI(X>), ..., AS(X,), AS(X,) can be computed in
that order.

An LAG(l) grammar is partitioned, with the partition being
A(X)=AI(X), Ay(X)=AS(X) for all X. Further constraints on the order
of evaluation within a production are introduced to force processing of the
symbols from left to right.

Theorem 8.18. An attribute grammar is LAG(1) if and only if it is locally acy-
clic and, for all p:Xo—~X," - X, €P, X;.a »X;.b EDDP(p) implies one of
the following conditions:

.]:O
® i =0anda €AI(Xy)
°I<i<

® 1< i=jandac€Al(X;)

Note that Theorem 8.18 makes use only of DDP(p); it does not consider
induced attribute dependencies. This is possible because every induced
dependency that would affect the computation must act over a path having a
‘top’ node similar to that in Figure 8.5: An inherited attribute of a symbol
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depends directly upon a synthesized attribute of the same symbol. This case
is prohibited, however, by the conditions of the theorem.

LAG(1) grammars are inadequate even in comparatively simple cases, as
can be seen by considering the grammar of Figure 8.1. The production for
assignment satisfies the conditions of Theorem 8.18, but that for expression
does not because both name[l).postmode and name[2].postmode depend
upon expression.primode. We can repair the problem in this example by
applying the ‘hoisting’ transformation mentioned at the end of Section 8.1:
Delete the inherited attribute postmode and move the condition using it
upward. A similar change is required to move the operator identification
upward (Figure 8.12).

If one tree traversal does not suffice to compute all attributes, a sequence
of several traversals might be used. This idea is actually much older and
more general than that of attribute grammars. We have already met it in
Section 1.3: ‘Any language requires at least one pass over the source text,
but certain language characteristics require more.’ (The procedure

rule assignment ::= name ":='expression .
attribution
name.environment <« assignment.environment ;
expression.environment « assignment.environment ;
condition
coercible (
expression.primode,
if name.primode —=ref _int _type then int_type else real _type fi);

rule expression :: = name addop name .
attribution
name|1).environment — expression.environment ;
name|[2).environment < expression.environment ;
expression.primode «
if coercible (name|[1}.primode, int_type ) and
coercible (name|2].primode, int _type ) then int _type else real _type fi;
addop.operation
if expression.primode =int _type then int _addition else real _addition fi;
condition
coercible (name[1).primode, expression.primode ) and
coercible (name(2).primode , expression.primode ),

rule addop ::="+'.

rule name ::= identifier .
attribution
name.primode < defined_type (identifier.symbol ,name.environment );

Figure 8.12. Transformation of Figure 8.1
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determine _traversals discussed below describes, in terms of attributes, the
fundamental mechanism by which the number of passes of a compiler is
determined.) The difference between LAG and RAG appears in the same
section as the distinction between forward and backward passes.

All attributes in the structure tree of a sentence derived from any arbi-
trary well-defined attribute grammar can be evaluated with an unlimited
number of traversals, but the cost of determining dynamically whether
another traversal is necessary is roughly as high as that of the nondeter-
ministic evaluation procedure in Section 8.1. Here we are interested in cases
for which the number of traversals can be determined from the grammar
alone, independent of any structure tree.

Definition 8.19. An attribute grammar is LAG(k) if and only if for each X
in the vocabulary a partition

AI(X) = AI(X)U - - UAL (X)
AS(X) = AS|(X)U - - - UAS,(X)

exists such that for all productions p:X,—X,---X,, the attributes in
Al(Xo), AI(Xy), ..., AS|(X,), AS|(Xo), AI(Xy), ..., AL(Xo),...,
ASy (Xo) can be computed in that order.

Note that this reduces to Definition 8.17 for k =1.

The set of partitions taken together form an admissible partition of the
attribute set A with m (X)=2k for every X. We can think of the sets AI; (X)
and AS;(X) as belonging to an LAG(l) grammar with AI;(X) and
AS;(X)(j <i) as intrinsic attributes. This reasoning leads to the following
LAG(k ) condition which closely parallels Theorem 8.18:

Theorem 8.20. An attribute grammar is LAG{(k ) if and only if it is locally acy-
clic and a partition A=A,V - - UA, exists such that for all
pXo~X, - X, €EP, X;.a~X;.b EDDP(p), a €A4,(X;), b €A, (X;) implies
one of the following conditions:

o yulv

® yu=vyandj=0

® yu=vandi=0and a EAI(X,)

® y=vand 1< i<j

® u=vand1<i=jand a€AI(X;)

Theorem 8.20 leads directly to a procedure for determining the partition
and the value of k from a locally acyclic grammar (Figure 8.13). For
k =1,2,... this procedure assumes that all remaining attributes belong to 4,
and then deletes those for which this assumption violates the theorem.
There are two distinct stopping conditions:

® No attribute is deleted. The number of traversals is k and the partition is
A, ..., A



204 Chapter 8. Attribute Grammars

function determine _traversals : integer ;
(* Test an attribute grammar for the LAG(k ) property

On entry-
Attribute grammar (G, 4, R, B) is defined as in Section 8.1
Sets A, AS(X)and AF(p)are defined as in Section 8.1
Set DDP(p) is defined as in Section 8.2.2

If the grammar is LAG(k ) then on exit-
determine _traversals = k

Else on exit-

determine _traversals = —1
*)
var
k : integer; (* current traversal number *)
candidates, (* possibly evaluable in the current traversal *)
later : attribute _set ; (* not evaluable in the first k traversals *)
candidates _unchanged : boolean ;
begin (* determine _traversals *)
k:=0; later:=A, (* no attributes evaluable in 0 traversals *)
repeat (* determine the next 4, *)
k:=k +1; candidates : = later ; later : = @,
repeat (* delete those unevaluable in traversal k *)

candidates _unchanged : =true ;
for all productions p:Xy-X,--- X, do
for all X;.b €(AF(p) N candidates) do
for all X;.a €A(p) do
if X;.a »X;.b ENDDP (p) then
if X;.a Elater or j~0and (i >j or (i =0ori =j)
and a €AS(X;)) then
begin
candidates : = candidates — {X;.b };
later : = later U {X;.b };
candidates _unchanged : = false ;
end;
until candidates _unchanged ;
Ay . =candidates
until later = @ or candidates = @
if later = @ then determine _traversals : =k else determine _traversals: = —1;
end; (* determine _traversals *)

Figure 8.13. Testing the LAG(k ) Property

® All attributes are deleted. The conditions of Theorem 8.20 cannot be met

and hence the attribute grammar is not LAG(k ) for any k.

Analogous constructions are possible for RAG(k) grammars and for the
alternating evaluable attribute grammars (AAG(k)). With the latter class,
structure tree attributes are evaluated by traversals that alternate in direc-
tion: The first is left-to-right, the second right-to-left, and so forth. We
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leave the derivation of these definitions and theorems, plus the necessary
processing routines, to the reader.

It is important to note that the algorithm of Figure 8.13 and its analogs
for RAG(k) and AAG(k) assign attributes to the first traversal in which they
might be computed. These algorithms give no indication that it might also
be possible to evaluate an attribute in a later traversal without delaying
evaluation of other attributes or increasing the total number of traversals.

Figure 8.14 is RAG(1) but not LAG(k) for any k. Each left-to-right
traversal can only compute the value of one X.a because of the dependency
relation involving the preceding nonterminal W. Hence the number of
traversals is not fixed, but is the depth of the recursion. A single right-to-left
traversal suffices to compute all X.a, however, because traversal of W’s sub-
tree follows traversal of X[2]’s. If we combine two such attribute relation-
ships with opposite dependencies then we obtain an AAG(2) grammar that
is neither LAG(k ) nor RAG(k ) for any k (Figure 8.15).

It is, of course, possible to construct an appropriate partition for a multi-
pass grammar by hand. The development usually proceeds as follows: On
the basis of given properties of the language one determines the minimum
number of traversals required, partitions the attributes accordingly, and then
constructs the attribute definition rules to make that partition valid. The
‘hoisting’ transformation referred to earlier is often used implicitly during
rule construction.

The disadvantage of this technique is that it is based upon an initial opin-
ion about the number of traversals and the assignment of attributes to
traversals that may turn out to be wrong. For example, one may discover
when constructing the rules that an attribute can only be computed if addi-
tional arguments are available, or even that important attributes are missing

ruleZ ;= X .
attribution
Xb «1;

ruleX .= WX.
attribution
X([1la « Wc;
X[2]b < X[1}).b;

rule X ::="s’.
attribution
Xa <« Xb;

rule W:="1".
attribution
We « Wd;

Figure 8.14. An RAG(1) Grammar That Is Not LAG(k)
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rnuleZ .= X.
attribution
Xb < 1;

ruleX :=WXY.
attribution
X[1l]la « Wd;
X[l]le « Y.g;
X[2]b « X[1].b;
W.e < X[2]a;
Yf < X[2)e;

rule X :="'s’.
attribution
Xa <« Xb;
Xe « Xb;

rule W .:="t’.
attribution
We « Wd;
rule Y ::="u’.
attribution
Y.g <Y f ;

Figure 8.15. An AAG(2) Grammar That Is Neither LAG(k) Nor RAG(k)

entirely. Experience shows that small changes of this kind often have disas-
trous effects on the basic structure being built. Considering the cost
involved in developing a semantic analyzer — an attribute grammar for
LAX is barely 30 pages, but specifications for complex languages can easily
grow to well over 100 pages — such effects cannot be tolerated. It is more
advisable to construct an attribute grammar without regard to the number of
traversals. Only when it is certain that all aspects of the language have been
covered correctly should substitutions and other alterations to meet a con-
straint upon the number of traversals be undertaken. The greater part of the
grammar will usually be unaffected by such changes.

As soon as a partition of the attribute set satisfying Definition 8.17 or 8.19
is available, it is simple to derive an algorithm via the technique discussed at
the end of the last section.

8.3. Implementation Considerations

Section 8.2 showed methods for constructing attribute evaluation algorithms
from attribute grammars. Here we concern ourselves with the implementa-
tion of these algorithms. First we assume that the structure tree appears as a
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linked data structure providing storage for the attributes, and later we show
how to reduce the storage requirements.

8.3.1. Algorithm Coding Our attribution algorithms are coroutines that
transfer control among themselves by executing the basic operations ‘move
to child i and ‘move to parent’. They might be coded directly, transformed
to a collection of recursive procedures, or embodied in a set of tables to be
interpreted. We shall discuss each of these possibilities in turn.

The coroutines can be coded directly in SIMULA as classes, one per
symbol and one per production. Each symbol class defines the attributes of
the symbol and serves as a prefix for classes representing productions with
that symbol on the left side. This allows us to obtain access to a subtree hav-
ing a particular symbol as its root without knowing the production by which
it was constructed. Terminal nodes ¢ are represented only by the class ¢.
Each production class contains pointer declarations for all of its descendants
X, -+ X,. A structure tree is built using statements of the form
node : —mew p (or node:—new t) to create nodes and assignments of the
form node.x; : — subnode to link them. Since a side effect of new is execution
of the class body, the first statement of each class body is detach (return to
caller). (Intrinsic attributes could be initialized by statements preceding this
first detach.) Figure 8.16 gives the SIMULA coding of the procedure from
Figure 8.4b.

Figure 8.17 gives an implementation using recursive procedures. The
tree is held in a data structure made up of the nodes defined in Figure 8.17a.
When a node corresponding to application of p: Xy - X, - - - X, is created, its
fields are initialized as follows:

symb = X,
Xop =p
x_p; =pointer to node representing X;,i =1,...,n

The body of a coroutine is broken at the detach statements, with each seg-
ment forming one branch of the case statement in the corresponding pro-
cedure. Then detach is implemented by simply returning; resume (X;) is
implemented by sproc_s(x_p;,k), where sproc_s is the procedure
corresponding to symbol X; and k is the segment of that procedure to be
executed. Figure 8.18 shows the result of applying the transformation to Fig-
ure 8.16. We have followed the schema closely in constructing this example,
but in practice the implementation can be greatly simplified.

A tabular implementation, in which the stack is explicit, can be derived
from Figure 8.17. It involves a pushdown automaton that walks the struc-
ture tree, invoking evaluate in much the same way that the parsing automata
of Chapter 7 invoke parser actions to report connection points. In each case
the automaton communicates with another processor via a sequence of
simple data items. Thus the implementations of the automaton and the
communicating processor are quite distinct, and different techniques may be
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class expression ;

begin comment Declarations of primode , postmode and environment end;
class name ;

begin comment Declarations of primode , postmode and environment end,;
class addop ;

begin comment Declarations of mode and operation end;

expression class p2;
begin ref(name ) X 1; ref(addop ) X 2; ref(name ) X 3;
comment Initialization of X1 , X2 and X 3 needed here;
detach;
X l.environment : = environment ;
resume (X 1);
X 3.environment : = environment ,
resume (X 3);
primode : =if - - - ;
detach;
X 1.postmode : = primode ;
resume (X 1);
X2.mode : =primode ;
resume (X 2);
X 3.postmode : = primode ;
resume (X 3);
if---; comment Evaluate the condition;
detach;
end;

Figure 8.16. SIMULA Implementation of Figure 8.4b

used to carry them out. The number of actions is usually very large, and
when deciding how to handle them one must take account of any restrictions
imposed by the implementation language and its compiler.

Figure 8.19 shows how the pushdown automaton is implemented. Each
entry in the table corresponds to an element of some algorithm and there is
an auxiliary function, segment, such that segment(k,p) is the index of the
first entry for the k" segment of the algorithm for production p. If the ele-
ment corresponds to X;.a then it specifies the computation in some
appropriate manner (perhaps as a case index or procedure address); other-
wise it simply contains the pair of integers defining the visit. Because the
selectors for a visit must be extracted from the table, rather than being built
into the procedure, the tree node must be represented as shown in Figure
8.19b.

Simplifications in the general coding procedure are possible for LAG(k ),
RAG(k) and AAG(k) grammars. When k =1 the partition for each X is
A(X)=AI(X), Ay(X)=AS(X), so no intermediate detach operations occur
in the coroutines. This, in turn, means that no case statement is required in
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type

tree _pointer = 1 tree _node ;
tree _node =record
case symbols of
s: (* one per symbol in the vocabulary *)
(--+  (* storage for attributes of S *)
case s_p: integer of
p:  (* one per production p:§ X - -+ X, *)
(x_p: array [1..n] tree _pointer);
)

end;
a) General structure of a node

procedure pproc_p (¢ : tree_pointer ; k : integer);
(* one procedure per production *)
begin (* pproc_p *)
case k of
0:
(* actions up to the first detach*)
(* successive segments *)
end;
end; (* pproc_p *)
b) General structure of a production procedure

procedure sproc_s (¢ : tree_pointer ; k : integer);
(* one procedure per symbol *)
begin (* sproc_s *)
case .s_p of
p:pproc_p(t,k), (* one case element per production *)

end;
end; (* sproc_s *)

¢) General structure of a symbol procedure

Figure 8.17. Transformation of Coroutines to Procedures

the production procedures or in the interpretive model. For k > 1 there are
k +1 segments in each procedure proc_p, corresponding to the initialization
and k traversals. It is best to gather together the procedures for each traver-
sal as though dealing with a grammar for which £ =1, and then run them
sequentially. When parsing by recursive descent, the tree construction, the
calculation of intrinsic attributes and the first tree traversal can be combined
with the parsing.
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type

tree _pointer = 1 tree_node ;
tree _node =record
case symbols of
expression
(expression _environment : environment ;
expression_primode, expression_postmode : type_specification;
case expression_p : integer of
1: (x_1:array [1..3] of tree_pointer);
name :
(name _environment : environment ,
name _primode , name _postmode : type _specification),
addop
(addop _mode : type _specification,
addop _operation : operations ),
end;
procedure sproc _expression (t : tree _pointer ; k : integer ),
begin (* sproc_expression *)
case t T.expression_p of
1: pproc _1(¢t, k);
end;
end;(* sproc _expression *)
procedure pproc _1(t : tree_pointer ; k : integer ),
begin (* pproc_1 *)
case k of
0: (* construction of subtrees *);
1:
begin
t T.x_1[1} 1 .expression _environment : =t 1 .expression_environment ,
sproc _name (t T.x_1[1], 1);
t T.x_1[3] 1 .expression_environment : =t | .expression_environment ;
sproc _name(t T.x_1[3], 1);
t 1 .expression_primode : =if - - - ;
end;
2
begin
t 1.x_1[1].name _postmode : =t | .expression_primode ;
sproc_name (t T .x_1[1],2);
t 1.x_1[2).name _postmode : =t 1 .expression_primode ;
sproc _addop (t T.x_1[2], 1);
t 1.x_1[3).addop _postmode : =t 1 .expression_primode ;
sproc _name (¢t T .x_1[3], 2);
if-
end;
end;
end; (* pproc_1*)

Figure 8.18. Transformation of Figure 8.16
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type
table _entry = record

case is_computation : boolean of
. * *
true: ( Rp X,.a )
(rule : attribute _computation );
f alse : (* Csegment_number, child *)
(segment _number, child : integer)
end;

a) Structure of a table entry

type

tree _pointer = 1 tree _node ;

tree_node =record
production : integer ;
X : array [1..max_right_hand _side ] of tree _pointer
end;

b) Structure of a tree node

procedure interpret ;
label 1;
var
t: tree_pointer ;
state, next: integer ;
begin (* interpret *)
t:=root_of _the _tree
state : =segment (0, t 1 .production);

repeat
next :=state +1;
with table[state ] do

if is_computation then evaluate (1, rule)

else if segment _number < >0 then
begin
stack _push (t, next);
t:=t 1.X[child];
next : =segment (segment _number, t 1 .production);
end

else if stack _empty then goto 1

else stack _pop (¢, next),

state : =next ;
until false ; (* forever *)
1: end; (* interpret *)

c) Table interpreter

Figure 8.19. Tabular Implementation of Attribution Algorithms

211
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8.3.2. Attribute Storage So far we have assumed that all attributes of a
structure tree node were stored within the node itself. Applying this
assumption in practice usually leads to a gigantic storage requirement.
Several remedies are possible:

® Overlaying of attributes.

® Use of local temporaries of evaluation procedures.

® Storage of specified attributes only at designated nodes.

® Use of global variables and data structures.

Because these optimizations cannot be automated completely (given the
present state of the art), the question of attribute storage represents an
important part of the development of an attribute grammar implementation.

We classify the attributes of a node as final or intermediate. Final attri-
butes are necessary in later phases of the compilation and must be available
in the structure tree following attribution. Intermediate attributes are used
only as aids in computing other attributes or testing conditions; they have a
bounded lifetime. The largest intermediate attribute, which we shall discuss
in Chapter 9, is the environment used to obtain the meaning of an identifier
at a particular point.

Distinct storage must be assigned to final attributes, but this storage can
be used earlier to hold one or more intermediate attributes if their lifetimes
do not overlap. Minimization of overlap (not minimization of lifetimes for
simple attributes) is thus one of the most important uses of our freedom to
specify the sequence of attribute evaluations. Usually it is best to begin with
the final attributes and work backwards, fixing the sequence so that attri-
butes can take one another’s place in storage.

We often discover that two attribute lifetimes overlap, but only briefly.
The overlap can be eliminated by defining a new attribute whose lifetime is
just this overlap, assigning the first attribute to it, and freeing the first
attribute’s storage. The second attribute is then computed into that storage.
In this manner we reduce the overlap among ‘long lived’ attributes and
increase the number of ‘short lived” attributes. The new attributes generally
have little overlap among themselves, but even if they had we have gained
something: This transformation usually makes other optimizations applica-
ble.

In many cases we can implement short-lived attributes as local variables
of the evaluation procedures, thus avoiding the need for space within the
node entirely. If the attributes are referenced by other procedures (for the
parent or children of the node to which they belong) then their values can be
passed as extra parameters. This strategy only works for implementations
like that of Figure 8.17, where distinct processing procedures are provided.
The tabular implementation discussed at the end of Section 8.2.1 requires
stacks instead of procedure parameters or local variables to realize the same
strategy.

An attribution rule can only access attributes of the nodes corresponding
to the symbols of the associated production. Many of the attributes in a typ-
ical grammar are therefore concerned with transmission of information from
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one part of the tree to another. Since attribute values do not change, they
may be transmitted by reference instead of by value. Thus we might store
the value of a large attribute at a single node, and replace this attribute in
other nodes by a pointer to the stored information. The node at which the
value is stored is usually the root of a subtree to which all nodes using this
information belong. For example, the environment attribute of a block or
procedure node is formed by combining the lists generated by local
definitions with the inherited environment. The result is passed to all nodes
in the subtree rooted in the block or procedure node. If a pointer to the next
enclosing block or procedure node is given during the processing of the
nodes in the subtree, then we obtain the same environment: First we reach
the local definitions in the innermost enclosing block and, in the same
manner, the next outermost, etc. The search of the environment for a suit-
able definition thus becomes a search of the local definition lists from inner
to outer.

Attributes should often be completely removed from the corresponding
nodes and represented by global variables or linked structures in global
storage. We have already noted that it is usually impossible to retain the
entire structure tree in memory. Global storage is used to guarantee that an
attribute accessible by a pointer is not moved to secondary storage with the
corresponding node. Global storage is also useful if the exact size of an
attribute cannot be determined a priori. Finally, global storage has the
advantage that it is directly accessible, without the need to pass pointers as
parameters to the evaluation procedures.

If the environment is kept as a global attribute then it is represented by a
list of local definitions belonging to the nested blocks or procedures. In
order to be certain that the ‘correct’ environment is visible at each node we
alter the global attribute during the traversal of the structure tree: When we
move to a block or procedure node from its parent, we copy the local
definition set to this environment variable; when we return to the parent we
delete it.

The description in the previous paragraph shows that in reality we are
using a global data structure to describe several related attribute values.
This situation usually occurs with recursive language elements such as
blocks. The environment attribute shows the typical situation for inherited
attributes: Upon descent in the tree we alter the attribute value, for example
increasing its size; the corresponding ascent in the tree requires that the
previous state be restored. Sometimes, as in the case of the nesting depth
attribute of a LAX block, restoration is a simple inverse of the computation
done on entry to the substructure. Often there is no inverse, however, and
the old value of the attribute must be saved explicitly. (The environment
represents an intermediate situation that we shall consider in Section 9.3.)
By replacing the global variable with a global stack, we can handle such
cases directly.

Global variables and stacks are also useful for synthesized attributes, and
the analysis parallels that given above. Here we usually find that attribute
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values replace each other at successive ascents in the tree. An example is the
primode computation in a LAX case _clause :

rule case ::= case_label ''statement _list . attribution
case.primode « statement _list.primode ;

rule cases ::= case .

rule cases ::= cases '’ statement _list . attribution

cases 1] primode <« balance (cases (2] primode, case.primode ),

The value of cases[2]primode becomes irrelevant as soon as
cases[1].primode has been evaluated. A case may, however, contain another
case _clause . Hence a stack must be used rather than a variable.

By changing the attribution rules, we can often increase the number of
attributes implementable by global variables or stacks. A specific change
usually fixes a specific traversal strategy, but any one of several changes
(each implying a different traversal strategy) could be used to achieve the
desired effect. Thus the designer should avoid such changes until the last
possible time, when they can be coordinated with the ‘natural’ traversal stra-
tegies determined by the basic information flow.

8.4. Notes and References

Attribute grammars stem from the ‘syntax-directed compilers’ introduced by
Irons [1961, 1963a]. Irons’ grammars had a single, synthesized attribute
attached to each nonterminal. This attribute provided the ‘meaning’ of the
subtree rooted in the nonterminal. Knuth [1968a, 1971a] proved that such a
scheme was sufficient to define the meaning associated with any structure
tree, but pointed out that the description could be simplified considerably
through the use of inherited attributes in addition. (Sufficiency of syn-
thesized attributes leads immediately to the conclusion that all well-defined
attribute grammars have the same descriptive power.) Intrinsic attributes
were first characterized by Schulz [1976], although Lewis, Rosenkrantz and
Stearns [1974] had previously allowed certain terminal symbols to have
‘attributes whose values are not given by rules’. The affix grammars of
Koster [1971, 1974] are similar to attribute grammars, the main difference
being that affixes are considered to be variables while attributes are con-
stants. Raiha [1980] provides a good overview of the attribute grammar
literature as it existed in 1979.

Our treatment of attribute classification differs from that of many authors
because we do not begin with disjoint sets of synthesized, inherited and
intrinsic attributes. Instead, Definition 8.2 classifies the attributes based
upon the placement of the attribution rules. Tienari [1980] has derived
results similar to Theorems 8.3 and 8.8 from a definition allowing more than
one attribution rule per attribute in a single production. His analog of
Theorem 8.8, however, includes the restriction to a single attribution rule as
a part of the hypothesis.

Theorem 8.8 assumes ‘value semantics’ for the attribution rules: The
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operands of the rule are evaluated before the rule itself, and hence the fol-
lowing represents a circularity:

a < ifp then b else 1fi; b < if not p then a else 2 fi;

‘Lazy evaluation’, in which an operand is not evaluated until its value is
required, would not lead to circularity in this case. The attendant broaden-
ing of the acceptable grammars is not interesting for us because we are
attempting to define the evaluation sequence statically. Whenever there is a
difference between value semantics and lazy evaluation, the evaluation
sequence must be determined dynamically.

Dynamic attribute evaluators based on cooperating sequential processes
have been reported by Fang [1972] and Banatre [1979]. Borowiec [1977]
described a fragment of COBOL in this manner. The process scheduling
overhead can be avoided by deriving a dependency graph from the specific
tree being processed, and then converting this graph to a partial order. Gal-
lucci [1981] implemented such a system, adding dependency links to the tree
and using reference counts to derive the partial order.

One of the major arguments given in support of a dynamic evaluator is
that it is simple to implement. The actual evaluation algorithm is simple,
but it will fail on certain programs if the grammar is not well-defined. We
have already pointed out that WAG testing is exponential [Jazayeri 1975a,
1981], and hence occasional failure of the dynamic evaluator is accepted by
most authors advocating this strategy. Acyclicity of IDP(p) and IDS(X), a
sufficient condition for WAG, can be tested in polynomial time [Kastens
1980]. This test forms the basis of all systems that employ subclasses of
WAG. Such systems are guaranteed never to fail during evaluation.

Kennedy and Warren [1976] termed the subclass of WAG for which
IDP(p) and IDS(X)are acyclic for all p and X ‘absolutely non-circular
attribute grammars’ (ANCAG). They developed an algorithm for construct-
ing ANCAG evaluators that grouped attributes together, avoiding indivi-
dual dependency links for every attribute. The evaluation remains dynamic,
but some decisions are shifted to evaluator construction time. In a later
paper, Kennedy and Ramanathan [1979] retain the ANCAG subclass but
use a pure dynamic evaluator. Their reasoning is that, although this strategy
is less efficient at run time, it is easier to understand and simpler to imple-
ment.

Ordered attribute grammars were originated by Kastens [1976, 1980],
who used the term ‘arranged orderly’ to denote a partitioned grammar.
OAG is a subclass of ANCAG for which no decisions about evaluation
order are made dynamically; all have been shifted to evaluator construction
time. This means that attribute lifetimes can be determined easily, and the
optimizations discussed in Section 8.3.2 can be applied automatically: In a
semantic analyzer for Pascal, constructed automatically from an ALADIN
description by the GAG [Kastens 1982] system, attributes occupied only
about 20% of the total structure tree storage.



216 Chapter 8. Attribute Grammars

Lewis, Rosenkrantz and Stearns [1974] studied the problem of evaluating
all attributes during a single depth-first, left-to-right traversal of the structure
tree. Making no use of the local acyclicity of DDP(p), they derived the first
three conditions we stated in Theorem 8.18. The same conditions were
deduced independently by Bochmann [1976], who went on to point out that
dependencies satisfying the fourth condition of Theorem 8.18 are allowed if
the relationship NDDP(p) is used in place of DDP(p). There is no real need
for this substitution, however, because if DDP (p) is locally acyclic then the
dependency X;.a »X;.b immediately rules out X;.b »X;.a. Thus depen-
dencies satisfying the fourth condition of Theorem 8.18 cannot lead to any
problem in left-to-right evaluation. Since local acyclicity is a necessary con-
dition for well-definedness, this assumption does not result in any loss of
generality.

LAG(k ) conditions similar to those of Theorem 8.20 were also stated by
Bochmann [1976]. Again, he did not make use of local acyclicity to obtain
the last condition of our result. Systems based upon LAG(k) grammars
have been developed at the Université de Montreal [Lecarme 1974] and the
Technische Universitat Munchen [Giegerich 1979]. The theoretical under-
pinnings of the latter system are described by Ripken [1977], Ganzinger
[1978] and Wilhelm [1977]. Wilhelm’s work combines tree transformation
with attribution.

Alternating-evaluable grammars were introduced by Jazayeri and Walter
[1975b] as a generalization of Bochmann’s work. Their algorithm for testing
the AAG(k) condition does not provide precise criteria analogous to those of
Theorem 8.18, but rather uses specifications such as ‘occur before [the
current candidate] in the present pass’ to convey the basic idea. A group at
the University of Helsinki developed a compiler generator based upon this
form of grammar [Raiha 1977, Raiha 1978].

Asbrock [1979] and Pozefsky [1979] both consider the question of attri-
bute overlap minimization in more detail.

Jazayeri and Pozefsky give a completely different method of representing
a structure tree and evaluating a multi-pass attribute grammar [Jazayeri
1977, Pozefsky 1979]. They propose that the parser create k sequential files
D; such that D; contains the sequence of attribution rules with parameters
for pass i of the evaluation. Thus D; contains, in sequential form, the entire
structure of the tree; only the attribute values, arbitrarily arranged and
without pointers to subnodes, are retained in memory. Pozefsky also con-
siders the question of whether the evaluation of a multi-pass grammar can
be arranged to permit overlaying of the attributes in memory.

EXERCISES

8.1. Write an attribute grammar describing a LAX basic symbol as an identifier,
integer or floating_point. (Section A.l describes these basic symbols.) Your
grammar should compute the intrinsic attributes discussed in Section 4.1.1 for
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8.1.

8.2.

83.

8.4.

Write an attribute grammar describing a LAX basic symbol as an identifier,
integer or floating_point. (Section A.1 describes these basic symbols.) Your
each basic symbol (with the exception of location) as synthesized attributes.
Use no intrinsic attributes in your grammar. Be sure to invoke the appropri-
ate symbol and constant table operations during your computation.

[Banatre 1979] Write a module for a given well-defined attribute grammar
(G, 4, R, B) that will build the attributed structure tree of a sentence of L (G).
The interface for the module must provide creation, access and assignment
operations as discussed in Section 4.1.2. The creation and assignment opera-
tions will be invoked by parser actions to build the structure tree and set
intrinsic attribute values; the access operation will be invoked by other
modules to examine the structure of the tree and attribute values of the nodes.
Within the module, access and assignment operations are used to implement
attribution rules. You may assume that all invocations of creation and assign-
ment operations from outside the module will precede any invocation of an
access operation from outside. Invocations from within the module must, of
course, be scheduled according to the dependencies of the attribute grammar.
You may provide an additional operation to be invoked from outside the
module to indicate the end of the sequence of external creation and assign-
ment invocations.

Consider the following attribute grammar:
ruleZ :=s5s X .
attribution

Xa « Xc;

Xb « Xa;

ruleZ .=t X.
attribution
Xb « Xd;
Xa « Xb;

rule X :=u.

attribution
Xd «1;
XceXd;

ruleX ::=vy.
attribution
Xc «2;
Xd « Xc;
a. Show that this grammar is partitionable using the admissible partition
AX) = {c,d},AyX) = {a,b}, AX) = {}.
b. Compute IDP(p) and IDS(X) replacing NDDP(p) by DDP(p) in
Definition 8.12. Explain why the results are cyclic.
c. Modify the grammar to make /DP{p) and IDS(X) acyclic under the
modification of Definition 8.12 postulated in (b).
d. Justify the use of NDDP(p)in Definition 8.12 in terms of the modification
of (c).

Compute IDP and IDS for all p and X in the grammar of Figure 8.1. Apply
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8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8.12.

8.13.

8.14.
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construction 8.16, obtaining a partition (different from that given at the end of
Section 8.2.1), and verify that Theorem 8.13 is satisfied. Compute DP for all
P, and verify that Theorem 8.15 is satisfied.

Show that a partitionable grammar that is not ordered can be made into an
ordered grammar by adding suitable ‘artificial dependencies’ X.a -X.b to
some IDS(X). (In other words, the gap between partitionable and ordered
grammars can always be bridged by hand.)

Define a procedure EvaluateP for each production of an LAG(1) grammar
such that all attributes of a structure tree can be evaluated by applying
EvaluateZ (where Z is the production defining the axiom) to the root.

A right-to-left attribute grammar may have both inherited and synthesized
attributes. All of the attribute values can be obtained in some number of
depth-first, right-to-left traversals of the structure tree. State a formal
definition for RAG(k) analogous to Definition 8.19 and prove a theorem
analogous to Theorem 8.20.

{Jazayeri 1975a] Define the class of alternating evaluable attribute grammars
AAG(k) formally, state the condition they must satisfy, and give an analysis
procedure for verifying this condition. (Hint: Proceed as for LAG(2k), but
make some of the conditions dependent upon whether the traversal number is
odd or even.)

Extend the basic definitions for multi-pass attribute grammars to follow the
hybrid linearization strategy of Figure 4.4d: Synthesized attributes can be
evaluated not only at the last visit to a node but also after the visit to the ;"
subnode, 1< i < n, or even prior to the first subnode visit (i =0). How does
this change the procedure determine _traversals ?

Show that the LAG(k ), RAG(k) or AAG(k) condition can be violated by a
well-defined attribute grammar only when a syntactic rule leads to recursion.

. Complete the class definitions of Figure 8.16 and fill in the remaining details

to obtain a complete program that parses an assignment statement by recur-
sive descent and then computes the attributes. If you do not have access to
SIMULA, convert the schema into MODULA2, Ada or some other language
providing coroutines or processes.

Under what conditions will the tabular implementation of an evaluator for a
partitioned attribute grammar require less space than the coroutine imple-
mentation?

Give detailed schemata similar to Figure 8.17 for LAG(k) and AAG(k)
evaluators, along the lines sketched at the end of Section 8.3.1.

Consider the implementation strategies for attribution algorithms exemplified

by Figures 8.17 and 8.19.

a. Explain why the tree node of Figure 8.19b is less space-efficient than that
of Figure 8.17a.

b. Show that, by coding the interpreter of Figure 8.19¢ in assembly language
and assigning appropriate values to the child field of Figure 8.19a, it is pos-
sible to use the tree node of Figure 8.17a and also avoid the need for the
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sproc _s procedures of Figure 8.17c.

8.15. Modify Figure 8.1 by replacing name with expression everywhere, and chang-
ing the second rule to expression ::= (" expression addop expression’)’. Con-
sider an interpretive implementation of the attribution algorithms that follows
the model of Exercise 8.16.

a. Show the memory layout of every possible node.

b. Define another rule, addop ::= '-/, with a suitable attribution procedure.
What nodes are affected by this change, and how?

c. Show that the addop node can be incorporated into the expression node
without changing the attribution procedures for addop. What is the
minimum change necessary to the interpreter and the attribution pro-
cedure for expression? (Hint: Introduce a second interpretation for ¢, ;.)



CHAPTER 9
Semantic Analysis

Semantic analysis determines the properties of a program that are classed as
static semantics (Section 2.1.1), and verifies the corresponding context con-
ditions — the consistency of these properties.

We have already alluded to all of the tasks of semantic analysis. The first
is name analysis, finding the definition valid at each use of an identifier.
Based upon this information, operator identification and type checking
determine the operand types and verify that they are allowable for the given
operator. The terms ‘operator’ and ‘operand’ are used here in their broadest
sense: Assignment is an operator whether the language definition treats it as
such or not; we also speak of procedure parameter transmission and block
end (end of extent) as operations.

Section 9.1 is devoted to developing a formal specification of the source
language from which analysis algorithms can be mechanically generated by
the techniques of Chapters 5-8. Our goal for the specification is clarity, so
that we can convince ourselves of its correctness. This is an important point,
because the correspondence between the specification and the given source
language cannot be checked formally. In the interest of clarity, we often use
impractically inefficient descriptions that give the effect of auxiliary func-
tions, but do not reflect their actual implementation. Section 9.2 discusses
the practical implementation of these auxiliary functions by modules.

9.1. Description of Language Properties via Attribute
Grammars

The description of a programming language by an attribute grammar pro-
vides a formal definition of both its context-free syntax and its static seman-
tics. (Dynamic semantics, such as expression evaluation, could be included

220
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also; we shall not pursue that point, however.) We therefore approach the
total problem of analysis via attribute grammars as follows:

® First we develop an attribute grammar and replace the informal language
description with it.

® From the attribute grammar we extract the context-free syntax and
transform it to a parsing grammar in the light of the chosen parsing tech-
nique.

® Finally we implement the attribution rules to obtain the semantic
analyzer.

The parsing grammar and implementation of the attribution rules can be
derived individually from the informal language definition, as we have done
implicitly up to this point. The advantage of using attribute grammars (or
some other formal description tool such as denotational semantics) lies in
the fact that one has a comprehensive and unified specification. This
ensures that the parsing grammar, structure tree and semantic analysis “fit
together’ without interface problems.

Development of an attribute grammar consists of the following inter-
dependent steps:

® Development of the context-free syntax.

¢ Determination of the attributes and specification of their types.
® Development of the attribution rules.

® Formulation of the auxiliary functions.

Three major aspects of semantic analysis described via attribution are
scope and name analysis, types and type checking, and operator
identification in expressions. With a few exceptions, such as the require-
ment for distinct case labels in a case clause (Section A.4.5), all of the static
semantic rules of LAX fall into these classes. Sections 9.1.1 to 9.1.4 examine
the relevant attribution rules in detail.

Many of the attribution rules in a typical attribute grammar are simple
assignments. To reduce the number of such assignments that must be writ-
ten explicitly, we use the following conventions: A simple assignment to a
synthesized attribute of the left-hand side of a production may be omitted
when there is exactly one symbol on the right-hand side that has a syn-
thesized attribute with the same name. Similarly, simple assignments of
inherited attributes of the left-hand side to same-named inherited attributes
of any number of right-hand side symbols may be omitted. In important
cases we shall write these (semantic) transfers for emphasis. (Attribute
grammar specification languages such as ALADIN [Kastens 1982] contain
even more far-reaching conventions.)

We assume for every record type R used to describe attributes the
existence of a function N_R whose parameters correspond to the fields of
the record. This function creates a new record of type R and sets its fields to
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the parameter values. Further, we may define a list of objects by records of
the form:

type

t_list = Tt _list_element ;
t_list _element = record first: t ; rest : t _list end;

If e is an object of type ¢ then we shall also regard e as a single element of
type ¢ _list wherever the context requires this interpretation. We write /1 &/,
to indicate concatenation of two lists, and hence e&! describes addition of
the single element e to the front of the list /. ‘Value semantics’ are assumed
for list assignment: A copy of the entire list is made and this copy becomes
the value of the attribute on the left of the arrow.

9.1.1. Scope and Name Analysis The scope of identifiers is specified in
most languages by the hierarchical structure of the program. In block struc-
tured languages the scopes are nested. Languages like FORTRAN have
only a restricted number of levels in the hierarchy (level 1 contains the sub-
program and COMMON names, level 2 the local identifiers of a subpro-
gram including statement numbers). Further considerations are the use of
implicit definition (FORTRAN), the admissibility (ALGOL 60) or inadmis-
sibility (LIS) of new definitions in inner blocks for identifiers declared in
outer blocks, and the restriction of scope to the portion of the block follow-
ing the definition (Pascal). We shall consider the special properties of field
selectors in Section 9.1.3.

Every definition of an identifier is represented in the compiler by a vari-
ant record. The types of Figure 9.1a suffice for LAX; different variants
would be required for other languages. For example, the variant
type _definition would be missing in a language without type identifiers and
FORTRAN would require additional variants for subprograms and
COMMON blocks because these are not treated as objects. The definition
record could also specify further characteristics (such as the parameter pass-
ing mechanism for ALGOL 60 parameters or the access rights to Ada
objects) that are known at the defining occurrence and used at the applied
occurrences.

The definition class unknown_definition is important because semantic
functions must deliver a value under all circumstances. If no definition is
available for an identifier, one must be supplied (with the variant
unknown _definition).

Records of type definition are collected into linear lists referenced as the
environment attribute by every construct that uses an identifier. The rules
for this attribute describe the scope rules of the language. Figure 9.1b gives
the type of this attribute, and Figure 9.1c shows a typical example of its use.
(Examples such as that of Figure 9.1c will normally contain only the attribu-
tion rules necessary for the point that we are trying to make. Do not assume,
therefore, that no additional attributes or attribution rules are associated
with the given syntax rule.)
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type
definition_class = (
object _definition, (* Section A3.1 %)
type _definition, (* Section A.3.1 *)
label _definition, (* Section A.2.6 *)
unknown _definition); (* Undefined identifier *)
definition = record
uid : interger ; (* Discussed in Section 9.1.3 *)
ident : symbol ; (* Identifier being defined *)

case k : definition_class of
object _definition: (object _type : mode); (* mode is discussed *)
type _definition: (defined_type : mode); (* in Section 9.1.2 *)
label _definition,
unknown _definition: ()
end;
a) The attributes of an identifier

definition_table = 1 dt_element ;
dt _element = record first: definition; rest : definition_table end;

b) Type of the environment attribute

rule name ::= identifier_use .
condition
identifier_use.corresponding _definition.k = object _definition;

rule identifier_use ::= identifier .
attribution
identifier_use.corresponding _definition «
current _definition(identifier.sym jidentifier_use.environment );

c) Use of an environment

Figure 9.1. Environments

The introduction of an additional nonterminal identifier_use in Figure
9.1c is necessary because we cannot attach the attribute corresponding _
definition to either the nonterminal name or the terminal identifier. For the
former the attribute would be meaningless in the production
name ::= name ' 7', while for the latter we would have difficulty with
defining occurrences of identifiers.

In LAX, the environment attribute is changed only upon entry to ranges
(A.2.0.2). Figure 9.2a shows the change associated with a statement _list .
For language constructs that are not ranges, the environment attribute is
simply passed along unchanged as illustrated in Figure 9.2b. (Figure 9.2b is
an example of a ‘transfer rule’, where we would normally not write the attri-
bute assignment.)

The synthesized attribute statements.definitions is a definition_table that
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rule statement _list :: = statements .
attribution
statements.environment <«
statements.definitions & statement _list.environment ;
condition
unambiguous (statements.definitions);

a) Language construct that changes the environment

rule unlabelled _statement ::= expression .
attribution
expression.environment <« unlabelled _statement.environment ;

b) Language construct that does not change the environment

Figure 9.2. Environment Manipulation

has one entry for each label definition. It describes the identifiers given new
meanings in the statement _list. This attribute is constructed as shown in
Figure 9.3. (Note that the rule statements :: =statement is simply a transfer,
and hence the attribution rules are omitted.) The function gennum is a
source of unique integers: Each invocation of gennum yields a new integer.
Section A.2.2 gives the visibility rules for LAX. Implementation of these
rules in the attribute grammar is illustrated by Figures 9.1c and 9.2a. The
function wunambiguous is used in Figure 9.2a to verify that

rule statements :: = statement .
rule statements :: = statements ’;’ statement .
attribution

statements [1].definitions <
statements [2].definitions & statement.definitions;

rule statement :: = label _definition statement .
attribution
statement [1).definitions <
label _definition.def & statement[2).definitions;

rule statement :: = unlabelled _statement .
attribution
statement.definitions < nil;

rule label _definition :: = identifier "’ .
attribution
label _definition.def «
N _definition(gennum ,identifier.sym Jlabel _definition);

Figure 9.3. Label Definition
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statements.definitions contains no more than one definition of any identifier.
Current _definition (Figure 9.1c) searches the environment linearly from left
to right and selects the first definition for the desired identifier. As shown in
Figure 9.2a, the local definitions are placed at the front of the environment
list; they therefore ‘hide’ any definitions of the same identifiers appearing in
outer ranges because a linear search will find them first.

We must reiterate that attributes belonging to different symbols in a pro-
duction or to different nodes in a structure tree are different, even if they are
identically named. Thus there is not just one attribute environment, but as
many as there are nodes in the structure tree. The fact that these many
environments will be represented by a single definition table in the imple-
mentation discussed in Section 9.2 does not concern us in the specification.
In the same way, it does not follow from the informal specification of
current _definition given above that the implementation must also use an
inefficient linear search; this strategy is only a simple specification of the
desired effect.

If the scope of a definition begins at that definition, and not at the begin-
ning of the range in which it appears (an important property for one-pass
compilers), then the environment must be passed ‘along the text’ as shown in
Figure 9.4. The right-recursive solution of Figure 9.4a requires the parser to
accumulate entries for all of the declarations on its stack before it can begin
reducing declaration lists. This can lead to excessive storage requirements.
A better approach is to use left recursion, as shown in Figure 9.4b. In this
case the parser will never have more than one declaration entry on its stack,
no matter how many declarations appear in the declaration list. Figure 9.4b
is easy to understand, but it has the unpleasant property that for each
declaration the original environment is augmented by all of the definitions
resulting from earlier declarations in the list. Figure 9.4c, where the
environment is extended in a stepwise manner, is the best strategy.

Figure 9.4c makes the passing of the environment ‘along the text’ explicit.
Declaration _list has an (inherited) attribute environment _in that describes
the initial state and a (synthesized) attribute environment _out that describes
the final state. The latter consists of the former augmented by the current
definition. Although this solution appears to be quite costly because of the
multiple environments, it is actually the most efficient: Simple analysis
shows that all of the environments replace one another and therefore all of
them can be represented by a single data structure.

It is clear that all of the definitions of Figure 9.4 are equivalent from the
standpoint of the language definition. If, however, we wish to specify the
semantic analyzer then we prefer Figure 9.4c. Examining a given attribute
grammar for optimizations of this kind often pays dividends.

The implicit declarations of FORTRAN are described in a similar
fashion, with each identifier_use a potential declaration (Figure 9.5). We
pass the environment along the text of the expressions and statements, modi-
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rule declaration _list :: = declaration ’;’ declaration _list .
attribution
declaration.environment < declaration _list[1).environment ;
declaration_list|2).environment «
declaration.definitions & declaration _list[1).environment ;
declaration _list[1) definitions «
declaration.definitions & declaration _list[2).definitions;

a) Right-recursive solution

rule declaration _list ::= declaration _list ’;’ declaration .
attribution
declaration _list|2).environment <« declaration _list[1)].environment
declaration.environment «
declaration _list[2).definitions & declaration _list[1].environment ,
declaration _list [ 1).definitions
declaration _list[2) definitions & declaration.definitions;

b) Left-recursive solution

rule declaration _list ::= declaration _list ’;’ declaration .
attribution
declaration _list[2).environment _€ « declaration _list[1].environment _€;
declaration.environment « declaration _list|2).environment _out ;
declaration _list[1].environment _out «
declaration _list[2).environment _out & declaration.definitions;
declaration _list[1).definitions «
declaration _list[2]. definitions & declaration.definitions;

c) Stepwise environment construction

Figure 9.4. Scope Beginning at the Declaration

rule identifier_use :: = identifier .
attribution
identifier_use.implicit _definitions «
if found (identifier.sym ,identifier_use.environment ) then nil
else
N _definition(
gennum,
identifier.sym,
object _definition,
identifier.implicit_type);
identifier_use.corresponding _definition
current _definition(
identifier.sym,
identifier_use.implicit _definitions & identifier_use.environment );

Figure 9.5. Implicit Declarations in FORTRAN
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fying it at each operand, by rules analogous to those of Figure 9.4c. This
strategy avoids the problem of double implicit declarations in expressions
such as I *].

Greater difficulties arise from the fact that the Pascal fragment shown in
Figure 9.6 is illegal because i is declared in p but used prior to its declara-

consti = 17;
typet =---; (*First declaration of ¢ *)
procedure p ;
const
Jj=i; (* Use of i illegal here *)
i=1 (* This makes the previous line illegal *)
type
n =1t (* Refers to second declaration of ¢ *)
t = (* Second declaration of ¢ *)

Figure 9.6. Definition Before Use in Pascal

tion. This is not allowed, even though a declaration of i exists outside of p.
On the other hand, the use of ¢ in the declaration of #f is correct and
identifies the type whose declaration appears on the next line. This problem
can be solved by a variant of the standard technique for dealing with
declarations in a one-pass ALGOL 60 compiler (Exercise 9.5).

9.1.2. Types A type specifies the possible operations on an entity and the
coercions that can be applied to it. During semantic analysis this informa-
tion is used to identify operators and verify the compatibility of constructs
with their environment. We shall concentrate on languages with manifest
types. Languages with latent types, in which type checking and operator
identification occur during execution, are treated in the same manner except
that these tasks are deferred.

In order to perform the tasks outlined in the previous paragraph, every
structure tree node that represents a value must have an attribute describing
its type. These attributes are usually tree-valued, and are built of linked
records. For uniformity, the compiler writer should define a single record
format to be used in building all of them. The record format must therefore
be capable of representing the type of any value that could appear in a
source program, regardless of whether the language definition explicitly
describes that value as being typed. For example, the record format used in
a LAX compiler must be capable of representing the type of nil because nil
can appear as a value. Section A.3.1 does not describe nil as having a
specific type, but says that it ‘denotes a value of type ref ¢, for arbitrary ¢’.

Figure 9.7 defines a record that can be used to build attributes describing
LAX types. Type class bad _type is used to indicate that errors have made it
impossible to determine the proper type. The type itself must be retained,
however, since all attributes must be assigned values during semantic
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type
type_class = (
bad _type, nil_type, void _type, bool _type, int _type, real _type,
ref —type,
arr_type,
rec _type,

proc _type,
unidentified_type, (* See Section 9.1.3 *)

identified_type ); (* See Section 9.1.3 *)
mode = record
case k : type _class of
bad _type, nil_type, void _type, bool _type, int__type, real _type: ();
ref _type: (target: | mode);
arr_type : (dimensions : integer ; element : | mode );
rec _type : (fields: definition_table);
proc_type : (parameters : definition_table ; result: T mode );
unidentified_type : (identifier: symbol );
identified_type : (definition: integer )
end;

Figure 9.7. Representation of LAX Types

analysis. Nil _type is the type of the predefined identifier nil. We also need
a special mechanism for describing the result type of a proper procedure.
Void _type specifies this case, and in fact is used whenever a result is to be
discarded.

For languages like ALGOL 60 and FORTRAN, which have only a fixed
number of types, an enumeration similar to type_class serves to represent all
types. Array types must also specify the number of dimensions, but the ele-
ment type can be subsumed into the enumeration (e.g. integer _array _type or
real _array_type). Pascal requires additional specifications for the index
bounds; in LAX the bounds are expressions whose values do not belong to
the static semantics, as illustrated by the rules of Figure 9.8.

Figure 99 shows how procedure types are constructed in LAX.
(Bad _symbol represents a nonexistent identifier.) Because parameter
transmission is always by value (reference parameters are implemented by
passing a ref value as discussed in Section 2.5.3) it is not necessary to give a
parameter transmission mechanism. In Pascal or ALGOL 60, however, the
transmission mechanism must be included for each parameter. For a
language like Ada, in which keyword association of arguments and parame-
ters is possible, the identifiers must be retained also. We retain the parame-
ter identifiers, even though this is not required in LAX, to reduce the
number of attributes for the common case of a procedure declaration
(A.3.0.8). Here we can use the procedure type attribute both to validate the
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rule type _specification ::= "ref ' type _specification .
attribution
type _specification|1].repr «
N_mode (ref _type type _specification|2).repr ),

rule type _specification ::= 'ref’ array _type .
attribution
type _specification.repr — N_mode (ref _type.array_type.repr),

rule array_type ::= array '[’ dimensions '] 'of ' type _specification .
attribution
array _type.repr <
N_mode (arr _type dimensions.count type _specification.repr);

rule dimensions .:= .
attribution
dimensions.count « 1;

rule dimensions ::= dimensions ', .
attribution
dimensions|1).count « dimensions[2].count +1;

rule record _type ::= 'record’ fields ‘end’ .
attribution

record _type.repr « N_mode (rec _type fields.definitions);
condition

unambiguous (fields.definitions);

rule fields :: = field .

rule fields :: = fields ;' field .
attribution
fields| 1].definitions < fields[2).definitions & field.definitions;

rule field :: = identifier "’ type _specification .
attribution
field.definitions «
N _definition(
gennum,

identifier.sym,

object _definition,

type _specification.repr ),

Figure 9.8. Type Definition
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rule type _specification :: = 'procedure’ parameter _type _list result _type .
attribution
type _specification.repr «
N _mode (proc _type,parameter _type _list.definitionsresult _type.repr);

rule parameter _type _list ::= .
attribution
parameter _type _list.definitions « nil;

rule parameter _type _list ::= '(’ parameter _types ')’ .

rule parameter _types ::= type _specification .
attribution
parameter _types.definitions <
N _definition(gennum,bad _symbol,type _definitiontype _specification.repr);

rule parameter _types ::= parameter _types ', type _specification .
attribution
parameter _types [1).definitions «
parameter _types |2).definitions &
N _definition(gennum,bad _symbol,type _definitiontype _specification.repr);

Figure 9.9. Procedure Type Definition

type compatibility and to provide the parameter definitions. If we were to
remove the parameter identifiers from the procedure type this would not be
possible.

When types and definitions are represented by attributes, the complete set
of declarations (other than procedure declarations) can, in principle, be
deleted from the structure tree to avoid duplicating information both as
attributes and as subtrees of the structure tree. Actually, however, this
compression of the representation should only be carried out under extreme
storage constraints; normally both representations should be retained. The
main reason is that expressions (like dynamic array bounds) appearing
within declarations cannot be abstracted as attributes because they are not
evaluated until the program is executed.

Context-sensitive properties of types lead to several relations that can be
expressed as recursive functions over types (objects of type mode). These
basic relations are:

® Equivalent: Two types ¢ and ¢’ are semantically equivalent.

® Compatible: Usually an asymmetric relation, in which an object of type ¢
can be used in place of an object of type ¢’.

® Coercible: A type ¢ is coercible to a type ¢’ if it is either compatible with ¢’
or can be converted to ¢’ by a sequence of coercions.
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Type equivalence is defined in Section A.3.1 for LAX; this definition is
embodied in the procedure type_equivalent of Figure 9.10. Type _equivalent
must be used in all cases where two types should be compared. The direct
comparison {;={, may not yield true for equivalent composite types
because the pointers contained in the type records may address equivalent
types represented by different records.

The test for equivalence of type identifiers is for the identity of the type
declarations rather than for the equivalence of types they declare. This
reflects the name equivalence rule of Section A.3.1. If structural

function type _equivalent (¢ 1,t 2: mode ): boolean ;
(* Compare two types for equivalence *)

function compare _parameters (f1,f 2: definition_table): boolean ;

(* Compare parameter lists for equivalent types *)

begin (* compare _parameters *)

if f1=nil then compare _parameters : = f 2 =nil

else if /2 =nil then compare _parameters : = false

else

compare _parameters : =

type _equivalent (f1 1 first.object _type,f 2 1 first.object _type) and
compare _parameters (f1 1 .rest,f 2 1 .rest)

end; (* compare _parameters *)

begin (* type _equivalent *)
if t 1.k < >1t2.k then type _equivalent : = false
else
case t L.k of
ref _type:
type _equivalent : =type _equivalent (t 1.target 1, 2.target 1);
arr_type :
type _equivalent : =
t L.dimension =t 2.dimension and
type _equivalent (t 1.element 1 ,t2.element 1 );
rec_type :
type _equivalent : = false;
proc_type:
type _equivalent : =
compare _parameters (t 1.parameterst 2. parameters ) and
type _equivalent (t 1.result 7 ,t2.result 1);
identified_type :
type _equivalent : =t 1.definition=t 2.definition
otherwise type _equivalent : = true
end;
end; (* type_equivalent *)

Figure 9.10. Type Equivalence in LAX
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function coercible (¢t 1,t2: mode ): boolean ;
(* Verify that ¢ 1 can be coerced to 12 *)
begin (* coercible *)
if type _equivalent (¢ 1,t2) or t 2.k =void _type or t 2.k =bad _type
then coercible : = true
else
case 1.k of
bad _type : coercible : =true
nil _type : coercible : =t2.k =ref _type ;
int _type : coercible : =t2.k =real _type ;
ref _type : coercible : = coercible (t 1.target 1,2);
proc _type : coercible : =t 1. parameters =nil and coercible (¢ 1.result 1 ,t2)
otherwise coercible : = false
end;
end; (* coercible *)

Figure 9.11. Coercibility in LAX

equivalence is required, as in ALGOL 68, then we must compare the
declared types instead. A simple implementation of this comparison leads to
infinite recursion for types containing pointers to themselves. The recursion
can, however, be stopped as soon as we attempt to compare two types whose
comparison has been begun but has not yet terminated. During comparison
we therefore hold such pairs in a stack. Since the only types that can partici-
pate in infinite recursion are those of class identified_type, we enter pairs of
identified_type types into the stack when we begin to compare them. The
next pair is checked against the stack before beginning their comparison; if
the pair is found then they are considered to be equivalent and no further
comparison of them is required. (If they are not equivalent, this will be
detected by the first comparison — the one on the stack.)

Figure 9.10 compares exactly two types. If we wish to group all types of a
block, procedure or program into classes of structurally equivalent types
then it is better to use the refinement algorithm of Section B.3.2 as general-
ized in Exercise B.7. This algorithm has the advantage of reducing the
number of records that represent types, and therefore the amount of storage
required to hold the attributes.

The Pascal Standard proposes name equivalence for all types except sets
and subranges, whose equivalence depends upon the equivalence of the base
types. In addition, however, it defines the property of type compatibility
and relies upon that property for assignments and parameter transmission.
Among other things, two array types are compatible if they have the same
bounds and compatible element types. Other languages also provide (expli-
citly or implicitly) a somewhat weaker compatibility relation in addition to
the strong type equivalence. There is no separate type compatibility rule in

The allowable LAX coercions (Section A.4.2) are embodied in the



9.1. Description of Language Properties via Attribute Grammars 233

rule variable _declaration ::= identifier "' type _specification .
attribution
variable _declaration.definitions «
N _definition(
gennum,
identifier.sym,
object _definition,
N_mode (ref _type,type _specification.repr));

rule variable _declaration ::= .
identifier '’ 'array’ '[' bounds '|' 'of ' type _specification.
attribution
variable _declaration.definitions «
N _definition(
gennum,
identifier.sym,
object _definition,
N_mode(
ref _type,
N_mode (arr _type bounds.count type _specification.repr)));

rule bounds ::=bound _pair .
attribution
bounds.count : =1,

rule bounds ::= bounds '} bound _pair .
attribution
bounds[1).count : = bounds[2].count +1;

rule identity declaration :: = identifier 'is’ expression "’ type _specification .
attribution
identity _declaration.definitions
N _definition(
gennum,
identifier.sym,
object _definition,
type _specification.repr;

Figure 9.12. Variable and Identity Declarations

function coercible (Figure 9.11). Note that when the type class of a type is
bad _type any coercion is allowed. The reason is that this class can only
occur as the result of an error. If we did not allow the coercion, the use of
an erroneous construct would lead to further (superfluous) error messages.

9.1.3. Declarations Figure 9.12 shows the attribution rules for variable
and identity declarations in LAX. A definition is created for each declara-
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tion, just as was done for label definitions in Figure 9.3. Note that the vari-
able declaration creates a reference to the given type, while the identity
declaration uses that type as it stands. This is because the variable declara-
tion creates ‘a variable referring to an undefined value (of the specified
type)’ (Section A.3.2) and the identity declaration creates ‘a new instance of
the value (of the specified type)’ (Section A.3.3).

The treatment of array variables in Figure 9.12 reflects the requirements
of Section A.3.2. We construct the array type based only on the dimen-
sionality and element type. The bounds must be integer expressions, but
they are to be evaluated at execution time.

Type declarations introduce apparent circularities into the declaration

rule type__specification :: = identifier .
attribution
type _specification.repr — N_mode (unidentified_type,identifier.sym );
a) Reference to a type identifier

rule type _declaration ::= 'type’ identifier ' ="' record _type .
attribution
type _declaration.definitions «
N _definition(gennum identifier.sym ,type _definitionrecord _type.repr);

rule declaration :: = variable _declaration .

rule declaration :: = identity_declaration .

rule declaration ::= type _declaration .

rule declarations :: = declarations ’;’ declaration .
attribution

declarations [ 1].definitions <
declarations 2].definitions & declaration.definitions;

rule block ::= 'declare’ declarations 'begin’ statements 'end’ .
attribution
declarations.environment «
complete _env (
declarations.definitions,
declarations.definitions & statements.definitions & block.environment ) &
statements.definitions &
block.environment ;
statements.environment < declarations.environment ;
condition
unambiguous (declarations.definitions & statements.definitions);

b) Completing the type declarations

Figure 9.13. Type Declarations
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function identify_type (s : symbol ; e : definition_table): mode ;

(* Find the type defined by an identifier *)

begin (* identify_type *)

if e =nil then identify_type : = N_mode (bad _type)

else with ¢ T, first do
if s < >ident then identify_type . = identify_type (s,rest)
else if def.k < > type_definition then identify_type : = N_mode (bad _type);
else identify_type : = N_mode (identified_type,uid )

end; (* identify_type *)

Figure 9.14. Type Identification

process: The definition of an identifier must be known in order to define
that identifier. One obvious example, the declaration type ¢ = record x:
real ; p: ref t end, was mentioned in Section 8.1. Another is the fact that the
analysis process discussed in Section 9.1.1 assumes we can construct
definitions for all identifiers in a range and then form an environment for
that range. Unfortunately the definition of a variable identifier includes its
type, which might be specified by a type identifier declared in the same
range. Hence the environment must be available to obtain the type. We
solve the problem in three steps, as shown in Figure 9.13, using the
unidentified_type and identified_type variants of mode :

1. Collect all of the type declarations of a range into one attribute, of type
definition_table. Any type identifiers occurring in the corresponding
types are not yet identified, but are given by the unidentified_type variant.

2. As soon as step (1) has been completed, transform the entire attribute to
another definition_table in which each unidentified_type has been re-
placed by an identified_type that identifies the proper definition. This
transformation uses the environment inherited by the range as well as the
information present in the type declarations.

3. Incorporate the newly-created definition_table into the range’s environ-
ment, and then process all of the remaining declarations (none of which
are type declarations).

Complete _env is a recursive function that traverses the definitions seeking
unidentified types. Whenever one is found, identify_type (Figure 9.14) is
used to obtain the current definition of the type identifier. Note that
identify_type must use a unique representation of the definition, not the
definition itself, corresponding to the type identifier. The reason is that, if
types involve recursive references, we cannot construct any of the definitions
until we have constructed all of them! (Remember that attributes are not
variables, so it is not possible to construct an ‘empty’ definition and then fill
it in later.)

9.14. Expressions and Statements The a priori type (primode) of an
expression is a synthesized attribute, and describes the type with which a
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result is computed; the a posteriori type (postmode ) is an inherited attribute,
and describes the type required by the context. If these two types are
different then a sequence of coercion operations must be used during execu-
tion to convert the value from one to the other.

The a posteriori type of a particular expression may or may not depend
upon its a priori type. If the expression is an operand of an operator indica-
tion like +, which can stand for several operations (e.g. integer addition,
real addition), then its postmode depends upon the primode attributes of
both operands. If, on the other hand, the expression is an array index in
LAX then postmode is integer independent of the expression’s primode .

Some constructs, like the LAX clause, may not yield a result of the same
type every time they are executed. This does not lead to difficulty when the
construct appears in a context where the a posteriori type is fixed, because
each part of the construct simply inherits the fixed postmode. When the a
posteriori type depends upon the a priori types of the operands, however, we

function base _type (t : mode): mode ;
(* Remove all levels of reference and procedure call from a type *)
begin (* base _type *)
if .k =ref _type then base_type : =base _type (t.target 1)
else if .k =proc _type then
if 2. parameters < >> nil then base _type : =t
else base _type : = base _type (t.result 1)
else base _type:=t
end; (* base_type *)

function balance (t 1,t2: mode ): mode ;
(* Obtain the representative a priori type of t1,t2 *)
begin (* balance *)
if coercible (¢ 1,t 2) then balance : =12
else if coercible (12t 1) then balance : =t 1
else if coercible (¢ 1,base _type (12)) then
case 12.k of
ref _type : balance : = balance (¢ 1,t 2.target 1);
proc _type : balance : = balance (t 1,t 2.result 1)
end
else if coercible (t 2base _type(t 1)) then
case L.k of
ref _type : balance : =balance (t 1.1arget 1 ,t2);
proc_type : balance : = balance (¢ 1.result 1 ,t2)
end
else N_mode (void _type);
end; (* balance *)

Figure 9.15. Balancing in LAX
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need a type ¢ to serve as a ‘model a priori type’ in place of the result types
ty,...,t,. This type is obtained by balancing: A set of types ¢,,...,1,,
n>1 can be balanced to a type ¢ if each ¢; is coercible to ¢, and there is no
type ¢’ coercible to ¢ such that each ¢ is coercible to ¢'.

For LAX (and most other languages) balancing is commutative and
‘associative’ (Exercise 9.11), so that we may restrict ourselves to the case
n =2 (Figure 9.15). Three facts were used in constructing balance :

® If ¢, is coercible to but not equivalent to ¢,, ¢, is not coercible to ¢;.

® If not voided, the result has the same base type (type after all references
and procedures have been removed) as one of the operands.

® If ¢, is coercible to the base type of £, but not to 7, itself, the result type is
a dereferencing and/or deproceduring of ¢,.

If LAX types ¢, and ¢, are coerced to an a posteriori type ¢, then the type
balance (¢, t,) always appears as an intermediate step. This may not be true
in other languages, however. In ALGOL 68, for example,
balance (integer,real)=real but both types can be coerced to wunion
(integer,real’) and in this case integer is not coerced to real first.

Figure 9.16 illustrates the use of balancing. In addition to the attributes

type

case _selectors = 1 cs_element ;
cs_element = record first: integer ; rest : case _selectors end,;

a) Type of label _values

rule case _clause ::= 'case’ expression 'of ' cases 'else’ statement _list 'end’ .
attribution
clause.primode < balance (cases.primode statement _list.primode );
expression.postmode — N_mode (int _type ),
condition
values _unambiguous (cases.label _values );

rule cases ::= case .
rule cases ::= cases '//’ case .
attribution

cases[1].primode < balance (cases[2] primode ,case.primode );
cases[1).label _values < cases[2).label _values & case.label _values ;

rule case ::= case _label .’ statement _list .
attribution
case.label _values « case _label.value ;

b) Attribution rules

Figure 9.16. Case Clauses
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primode and postmode, this example uses label _values (synthesized, type
case _selectors). Postmode is simply passed through from top to bottom, so
we follow our convention of not writing these transfers explicitly.
Label _values collects the values of all case labels into a list so we can check
that no label has occurred more than once (Section A.4.5).

Note that there is no condition checking coercibility of the resulting a
priori type of the case clause to the a posteriori type. Similarly, the a priori
type of the selecting expression is not checked against its a posteriori type in
these rules. Such tests appear only in those rules where the a priori type is
determined by considerations other than balancing or transfer from adjacent
nodes.

Figure 9.17 illustrates some typical attribution rules for primode and post-
mode in expressions. Table A.2 requires that the left operand of an assign-
ment be a reference, and Section A 4.2 permits only dereferencing coercions
of the left operand. Thus the assignment rule invokes deproc (Figure 9.18)
to obtain an a posteriori type for the name. Note that there is no guarantee
that the type obtained actually is a reference, so additional checks are
needed. Coercible (Figure 9.11) is invoked to verify that the a priori type of
the assignment itself can be coerced to the a posteriori type required by the
context in which the assignment appears. As can be seen from the
remainder of Figure 9.17, this check is made every time an object is created.

Assignment is the only dyadic operator in Table A.2 whose left and right
operands have different types. In all other cases, the types of the operands
must be the same. The attribution rules for comparison show how balance
can be used in this case to obtain a candidate operand type. The two rules
for eqop illustrate placement of additional requirements upon this candi-
date.

The attribution for a simple name sets the a priori type to the type
specified by the identifier’s definition, and must also verify (via coercible)
that the a priori type satisfies the requirements of the context as specified by
the a posteriori type. Field selection is a bit trickier. Section A.4.4 states
that the name preceding the the dot may yield either an object or a reference
to an object. This requirement, which also holds for index selection, is
embodied in one _ref (Figure 9.18). Note that the environment in which the
field identifier is sought is that of the record type definition, not the one in
which the field selection appears. We must therefore write the transfer of
the environment attribute explicitly. Finally, the type yielded by the field
selection is a reference if and only if the object yielded by the name to the
left of the dot was a reference (Section A.4.4).

Figure 9.19 shows how the field definitions of the record are obtained.
Section A.3 requires that every record type be given a name. The declara-
tion process described in Figures 9.13 and 9.14 guarantees that if this name
is associated with an identified_type, the type definition will actually be in the
current environment. Moreover, the type definition cannot specify anything
but a record. Thus record _env need not verify these conditions.



rule assignment ::= name ":='expression .
attribution
assignment.primode <« name.postmode ;
name.postmode < deproc (name.primode );
expression.postmode «
if name.postmode.k < > ref _type then N_mode (bad _type )
else name.postmode.target 7 ;
condition
coercible (assignment.primode ,assignment.postmode ) and
name.postmode.k =ref _type;

rule comparison ::= relation eqop relation .
attribution
comparison.primode < N_mode (bool _type );
relation[1] postmode « eqop.operand _post ;
eqop.operand _pri < balance (relation[1].primode relation [2). primode);
relation[2] postmode < eqop.operand _post ;
condition
coercible (comparison.primode comparison.postmode );

ruleegop ::="'=".
attribution

eqop.operand _post < deref (eqop.operand _pri);
condition

eqop.operand _post.k <> void _type ;

ruleegop ::="=".
attribution

eqop.operand _post < deproc (eqop.operand _pri);
condition

eqop.operand _post.k =ref _type ;

rule name ::= name '’ identifier_use .
attribution
name|[1].primode «
if identifier_use.current _definition< > object _definition then
N_mode (bad _type )
else if name[2).postmode.k =ref _type then
N_mode (ref _type identifier_use.current _definition.object _type)
else identifier_use.current _definition.object _type ;
name2].postmode < one _ref (name(2].primode );
name [2).environment < name|l).environment ;
identifier_use.environment «
if deref (name[2).postmode ).k < >> identified_type then nil
else record _env(deref (name|2] postmode ).definition,name | 1).environment ),
condition
coercible (name|1). primode,name|1).postmode ) and
identifier_use.current _definition.k = object _definition;

Figure 9.17. Determining A Priori and A Posteriori Types
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function deproc (¢ : mode): mode ;
(* Remove all levels of procedure call from a type *)
begin (* deproc *)
if £.k <> proc _type then deproc : =t
else if . parameters <> nil then deproc : =t
else deproc : =deproc (t.result 1)
end; (* deproc *)

function deref (¢ : mode): mode ;
(* Remove all levels of reference from a type *)
begin (* deref *)
if tk < >ref _type then deref : =t
else deref : =deref (t.target 1);
end; (* deref *)

function one _ref (¢ : mode): mode ;
(* Remove all but one level of reference from a type *)
begin (* one_ref *)
case t.k of
ref _type:
if t.target 1 .k < >arr_type and t.target 1.k < > rec _type then
one _ref :=one_ref (t.target 1)
else one_ref :=t;
proc _type:
if t.parameters < > nil then one _ref : =t
else one_ref : =one _ref (t.result 1)
otherwise
one _ref 1=t
end;
end; (* one_ref *)
Figure 9.18. Type Transformations in LAX

function record _env (i : integer ; e : definition_table ): definition_table ;
(* Obtain the field definitions of a record type
On entry-
t =type for which the fields are sought
e =environment containing the type definition
*
)
begin (* record _env *)
if e 1.first.uid < >i then record _env:=record _env(i,e | .rest)
else record _env:=e 1 first.defined_type.fields;
end; (* record _env ¥)

Figure 9.19. Obtaining a Record’s Field Definitions
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In most programming languages the specification of the operator and the
a posteriori types of the operands uniquely determines the operation to be
carried out, but usually no operation attribute appears in the language
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