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To all who know more than one language 



Preface 

Compilers and operating systems constitute the basic interfaces between a 
programmer and the machine for which he is developing software. In this 
book we are concerned with the construction of the former. Our intent is to 
provide the reader with a firm theoretical basis for compiler construction 
and sound engineering principles for selecting alternate methods, imple
menting them, and integrating them into a reliable, economically viable 
product. The emphasis is upon a clean decomposition employing modules 
that can be re-used for many compilers, separation of concerns to facilitate 
team programming, and flexibility to accommodate hardware and system 
constraints. A reader should be able to understand the questions he must 
ask when designing a compiler for language X on machine Y, what tradeoffs 
are possible, and what performance might be obtained. He should not feel 
that any part of the design rests on whim; each decision must be based upon 
specific, identifiable characteristics of the source and target languages or 
upon design goals of the compiler. 

The vast majority of computer professionals will never write a compiler. 
Nevertheless, study of compiler technology provides important benefits for 
almost everyone in the field . 

• It focuses attention on the basic relationships between languages and 
machines. Understanding of these relationships eases the inevitable tran
sitions to new hardware and programming languages and improves a 
person's ability to make appropriate tradeoft's in design and implementa
tion . 

• It illustrates application of software engineering techniques to the solution 
of a significant problem. The problem is understandable to most users of 
computers, and involves both combinatorial and data processing aspects. 
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• Many of the techniques used to construct a compiler are useful in a wide 
variety of applications involving symbolic data. In particular, every 
man-machine interface constitutes a form of programming language and 
the handling of input involves these techniques. 
We believe that software tools will be used increasingly to support many 

aspects of compiler construction. Much of Chapters 7 and 8 is therefore de
voted to parser generators and analyzers for attribute grammars. The details 
of this discussion are only interesting to those who must construct such tools; 
the general outlines must be known to all who use them. We also realize 
that construction of compilers by hand will remain an important alternative, 
and thus we have presented manual methods even for those situations where 
tool use is recommended. 

Virtually every problem in compiler construction has a vast number of 
possible solutions. We have restricted our discussion to the methods that are 
most useful today, and make no attempt to give a comprehensive survey. 
Thus, for example, we treat only the LL and LR parsing techniques and 
provide references to the literature for other approaches. Because we do not 
constantly remind the reader that alternative solutions are available, we may 
sometimes appear overly dogmatic although that is not our intent. 

Chapters 5 and 8, and Appendix B, state most theoretical results without 
proof. Although this makes the book unsuitable for those whose primary in
terest is the theory underlying a compiler, we felt that emphasis on proofs 
would be misplaced. Many excellent theoretical texts already exist; our 
concern is reduction to practice. 

A compiler design is carried out in the context of a particular 
language/machine pair. Although the principles of compiler construction 
are largely independent of this context, the detailed design decisions are not. 
In order to maintain a consistent context for our major examples, we there
fore need to choose a particular source language and target machine. The 
source language that we shall use is defined in Appendix A. We chose not to 
use an existing language for several reasons, the most important being that a 
new language enabled us to control complexity: Features illustrating 
significant questions in compiler design could be included while avoiding 
features that led to burdensome but obvious detail. It also allows us to illus
trate how a compiler writer derives information about a language, and pro
vides an example of an informal but relatively precise language definition. 

We chose the machine language of the IBM 370 and its imitators as our 
target. This architecture is widely used, and in many respects it is a difficult 
one to deal with. The problems are representative of many computers, the 
important exceptions being those (such as the Intel 8086) without a set of 
general registers. As we discuss code generation and assembly strategies we 
shall point out simplifications for more uniform architectures like those of 
the DEC PDPII and Motorola 68000. 

We assume that the reader has a minimum of one year of experience with 
a block-structured language, and some familiarity with computer organiza-
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tion. Chapters 5 and 8 use notation from logic and set theory, but the ma
terial itself is straightforward. Several important algorithms are based upon 
results from graph theory summarized in Appendix B. 

This book is based upon many compiler projects and upon the lectures 
given by the authors at the U niversitat Karlsruhe and the University of 
Colorado. For self-study, we recommend that a reader with very little back
ground begin with Section 1.1, Chapters 2 and 3, Section 12.1 and Appendix 
A. His objective should be to thoroughly understand the relationships 
between typical programming languages and typical machines, relationships 
that define the task of the compiler. It is useful to examine the machine 
code produced by existing compilers while studying this material. The 
remainder of Chapter 1 and all of Chapter 4 give an overview of the organi
zation of a compiler and the properties of its major data structures, while 
Chapter 14 shows how three production compilers have been structured. 
From this material the reader should gain an appreciation for how the vari
ous subtasks relate to one another, and the important characteristics of the 
interfaces between them. 

Chapters 5, 6 and 7 deal with the task of determining the structure of the 
source program. This is perhaps the best-understood of all compiler tasks, 
and the one for which the most theoretical background is available. The 
theory is summarized in Chapter 5, and applied in Chapters 6 and 7. 
Readers who are not theoretically inclined, and who are not concerned with 
constructing parser generators, should skim Chapter 5. Their objectives 
should be to understand the notation for describing grammars, to be able to 
deal with finite automata, and to understand the concept of using a stack to 
resolve parenthesis nesting. These readers should then concentrate on 
Chapter 6, Section 7.1 and the recursive descent parse algorithm of Section 
7.2.2. 

The relationship between Chapter 8 and Chapter 9 is similar to that 
between Chapter 5 and Chapter 7, but the theory is less extensive and less 
formal. This theory also underlies parts of Chapters 10 and 11. We suggest 
that the reader who is actually engaged in compiler construction devote 
more effort to Chapters 8-11 than to Chapters 5-7. The reason is that parser 
generators can be obtained "off the shelf' and used to construct the lexical 
and syntactic analysis modules quickly and reliably. A compiler designer 
must typically devote most of his effort to specifying and implementing the 
remainder of the compiler, and hence familiarity with Chapters 8-11 will 
have a greater effect on his productivity. 

The lecturer in a one-semester, three-hour course that includes exercises 
is compelled to restrict himself to the fundamental concepts. Details of pro
gramming languages (Chapter 2), machines (Chapter 3) and formal 
languages and automata theory (Chapter 5) can only be covered in a cursory 
fashion or must be assumed as background. The specific techniques for 
parser development and attribute grammar analysis, as well as the whole of 
Chapter 13, must be reserved for a separate course. It seems best to present 
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theoretical concepts from Chapter 5 in close conjunction with the specific 
methods of Chapters 6 and 7, rather than as a single topic. A typical outline 
is: 
I. The Nature of the Problem 

l.l. Overview of compilation (Chapter 1) 
l.2. Languages and machines (Chapters 2 and 3) 

2. Compiler Data Structures (Chapter 4) 
3. Structural Analysis 

3.1. Formal Systems (Chapter 5) 
3.2. Lexical analysis (Chapter 6) 
3.3. Parsing (Chapter 7) 

Review and Examination 
4. Consistency Checking 

4.1. Attribute grammars (Chapter 8) 
4.2. Semantic analysis (Chapter 9) 

4 hours 

4 hours 
10 hours 

2 hours 
10 hours 

5. Code Generation (Chapter 10) 8 hours 
6. Assembly (Chapter II) 2 hours 
7. Error Recovery (Chapter 12) 3 hours 
Review 2 hours 
The students do not write a compiler during this course. For several years it 
has been run concurrently with a practicum in which the students implement 
the essential parts of a LAX compiler. They are given the entire compiler, 
with stubs replacing the parts they are to write. In contrast to project courses 
in which the students must write a complete compiler, this approach has the 
advantage that they need not be concerned with unimportant organizational 
tasks. Since only the t:entral problems need be solved, one can deal with 
complex language properties. At the same time, students are forced to read 
the environment programs and to adhere to interface specifications. Finally, 
if a student cannot solve a particular problem it does not cause his entire 
project to fail since he can take the solution given by the instructor and 
proceed. 
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CHAPTER 1 

I ntrod uction and Overview 

The term compilation denotes the conversion of an algorithm expressed in a 
human-oriented source language to an equivalent algorithm expressed in a 
hardware-oriented target language. We shall be concerned with the engineer
ing of compilers - their organization, algorithms, data structures and user 
interfaces. 

1.1. Translation and Interpretation 
Programming languages are tools used to construct formal descriptions of 
finite computations (algorithms). Each computation consists of operations 
that transform a given initial state into some final state. A programming 
language provides essentially three components for describing such compu
tations: 

• Data types, objects and values with operations defined upon them. 
• Rules fixing the chronological relationships among specified operations. 
• Rules fixing the (static) structure of a program. 
These components together constitute the level of abstraction on which we 
can formulate algorithms in the language. We shall discuss abstractions for 
programming languages in detail in Chapter 2. 

The collection of objects existing at a given point in time during the com
putation constitutes the state, s, of the computation at that time. The set, S, 
of all states that could occur during computations expressed in the language 
is called the state space of the language. The meaning of an algorithm is the 
(partially-defined) function f: S -+S by which it transforms initial states to 
final states. 

1 
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Figure 1.1 illustrates the concept of a state. Figure 1.1 a is a fragment of a 
program written in Pascal. Since this fragment does not declare the 
identifiers i and j, we add the fact that both are integer variables. The 
values of i and j before the given fragment begins to execute constitute the 
initial state; their values after execution ceases constitute the final state. Fig
ure 1.1 b illustrates the state transformations carried out by the fragment, 
starting from a particular initial state. 

Let I be the function defined by the state transformation of some partic
ular algorithm A. If we are to preserve the meaning of A when compiling it 

while i * j do 
ifi>j theni:=i-j elsej:=j-i; 

a) An algorithm 

Initial: 

Final: 

i = 36 
i = 12 
i = 12 

j = 24 
j = 24 
j = 12 

b) A particular sequence of states 

Figure 1.1 Algorithms and States 

to a new language then the state transformation function I f of the translated 
algorithm A f must, in some sense, 'agree' with I. Since the state space, Sf, 
of the target language may differ from that of the source language, we must 
first decide upon a function, M, to map each state s E S to a subset M (s) of 
Sf. The function!, then preserves the meaning ofl if!,(M(s)) is a subset 
of M(J (s)) for all allowable initial states s ES. 

For example, consider the language of a simple computer with a single 
accumulator and two data locations called I and J respectively (Exercise 
1.3). Suppose that M maps a particular state of the algorithm given in Fig
ure l.la to a set of machine states in which I contains the value of the vari
able i, J contains the value of the variable j, and the accumulator contains 
any arbitrary value. Figure 1.2a shows a translation of Figure 1.1 a for this 
machine; a partial state sequence is given in Figure 1.2b. 

In determining the state sequence of Figure 1.1 b, we used only the con
cepts of Pascal as specified by the language definition. For every program
ming language, PL, we can define an abstract machine: The operations, data 
structures and control structures of PL become the memory elements and 
instructions of the machine. A 'Pascal machine' is therefore an imaginary 
computer with Pascal operations as its machine instructions and the data 
objects possible in Pascal as its memory elements. Execution of an algo
rithm written in PL on such a machine is called interpretation; the abstract 
machine is an interpreter. 

A pure interpreter analyzes the character form of each source language 
instruction every time that instruction is executed. If the given instruction is 
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only to be executed once, pure interpretation is the least expensive method 
of all. Hence it is often used for job control languages and the 'immediate 
commands' of interactive languages. When instructions are to be executed 

LOOP 

SUBI 

EXIT 

LOAD 
SUB 
JZERO 
JNEG 
STORE 
JUMP 
LOAD 
SUB 
STORE 
JUMP 

I 
J 
EXIT 
SUBI 
I 
LOOP 
J 
I 
J 
LOOP 

a) An algorithm 

Initial: 

Final: 

1=36 
1=36 
1=36 

1= 12 

J = 24 
J = 24 
J = 24 

J = 12 

ACC =? 
ACC = 36 
ACC = 12 

ACC = 0 

b) A sequence of states corresponding to Figure l.l b 

Figure 1.2 A Translation of Figure 1.1 

repeatedly, a better approach is to analyze the character form of the source 
program only once, replacing it with a sequence of symbols more amenable 
to interpretation. This analysis is simply a translation of the source language 
into some target language, which is then interpreted. 

The translation from the source language to the target language can take 
place as each instruction of the program is executed for the first time 
(intepretation with substitution). Thus only that part of the program actually 
executed will be translated; during testing this may be only a fraction of the 
entire program. Also, the character form of the source program can often be 
stored more compactly than the equivalent target program. The disadvan
tage of interpretation with substitution is that both the compiler and inter
preter must be available during execution. In practice, however, a system of 
this kind should not be significantly larger than a pure interpreter for the 
same language. 

Examples may be found of virtually all levels of interpretation. Atone 
extreme are the systems in which the compiler merely converts constants to 
internal form, fixes the meaning of identifiers and perhaps transforms infix 
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notation to postfix (APL and SNOBOL4 are commonly implemented this 
way); at the other are the systems in which the hardware, assisted by a small 
run-time system, forms the interpreter (FORTRAN and Pascal implementa
tions usually follow this strategy). 

1.2. The Tasks of a Compiler 

A compilation is usually implemented as a sequence of transformations 
(SL, L 1), (Lb L2), ... , (Lk> TL), where SL is the source language and TL is 
the target language. Each language Li is called an intermediate language. 
Intermediate languages are conceptual tools used in decomposing the task 
of compiling from the source language to the target language. The design of 
a particular compiler determines which (if any) intermediate language pro
grams actually appear as concrete text or data structures during compilation. 

Any compilation can be broken down into two major tasks: 

• Analysis: Discover the structure and primitives of the source program, 
determining its meaning . 

• Synthesis: Create a target program equivalent to the source program. 

This breakdown is useful because it separates our concerns about the source 
and target languages. 

The analysis concerns itself solely with the properties of the source 
language. It converts the program text submitted by the programmer into 
an abstract representation embodying the essential properties of the algo
rithm. This abstract representation may be implemented in many ways, but 
it is usually conceptualized as a tree. The structure of the tree represents the 
control and data flow aspects of the program, and additional information is 
attached to the nodes to describe other aspects vital to the compilation. In 
Chapter 2 we review the general characteristics of source languages, point
ing out the properties relevant for the compiler writer. Figure 1.3 illustrates 
the general idea with an abstraction of the algorithm of Figure l.la. 

Figure l.3a describes the control and data flow of the algorithm by means 
of the 'eh descendant of' relation. For example, to carry out the algorithm 
described by a subtree rooted in a while node we first evaluate the expres
sion described by the subtree that is the first descendant of the while node. If 
this expression yields true then we carry out the algorithm described by the 
subtree that is the second descendant. Similarly, to evaluate the expression 
described by an expression subtree, we evaluate the first and third descen
dants and then apply the operator described by the second descendant to the 
results. 

The algorithm of Figure l.la is not completely characterized by Figure 
l.3a. Information must be added (Figure 1.3b) to complete the description. 
Note that some of this information (the actual identifier for each idn) is 
taken directly form the source text. The remainder is obtained by process-
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a) Control and data flow 

Node Additional Information 

identifier 
corresponding declaration 

idn 

name type of the variable 

exp type of the expression value 

b) Additional information about the source program 

Node Additional Information 

name corresponding data location 

if address of code to carry out the else part 

while address of the expression evaluation code 

c) Additional information about the target program 

Figure 1.3 An Abstract Program Fragment 

ing the tree. For example, the type of the expression value depends upon 
the operator and the types of the operands. 

Synthesis proceeds from the abstraction developed during analysis. It 
augments the tree by attaching additional information (Figure l.3c) that 
reflects the source-to-target mapping discussed in the previous section. For 
example, the access function for the variable i in Figure 1.1a would become 
the address of data location I according to the mapping M assumed by Fig
ure 1.2. Similarly, the address of the else part of the conditional was 
represented by the label SUBI. Chapter 3 discusses the general characteris
tics of machines, highlighting properties that are important in the develop
ment of source-to-target mappings. 
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Formal definitions of the source language and the source-to-target map
ping determine the structure of the tree and the computation of the addi
tional information. The compiler simply implements the indicated transfor
mations, and hence the abstraction illustrated in Figure 1.3 forms the basis 
for the entire compiler design. In Chapter 4 we discuss this abstraction in 
detail, considering possible intermediate languages and the auxiliary data 
structures used in transforming between them. 

Analysis is the more formalized of the two major compiler tasks. It is 
generally broken down into two parts, the structural analysis to determine the 
static structure of the source program, and the semantic analysiS to fix the 
additional information and check its consistency. Chapter 5 summarizes 
some results from the theory of formal languages and shows how they are 
used in the structural analysis of a program. Two subtasks of the structural 
analysis are identified on the basis of the particular formalisms employed: 
Lexical analysis (Chapter 6) deals with the basic symbols of the source 
program, and is described in terms of finite-state automata; syntactic 
analysis, or parsing, (Chapter 7) deals with the static structure of the pro
gram, and is described in terms of pushdown automata. Chapter 8 extends 
the theoretical treatment of Chapter 5 to cover the additional information 
attached to the components of the structure, and Chapter 9 applies the 
resulting formalism (attribute grammars) to semantic analysis. 

There is little in the way of formal models for the entire synthesis process, 
although algorithms for various subta~ks are known. We view synthesis as 
consisting of two distinct subtasks, code generation and assembly. Code gen
eration (Chapter 10) transforms the abstract source program appearing at 
the analysis/synthesis interface into an equivalent target machine program. 
This transformation is carried out in two steps: First we map the algorithm 
from source concepts to target concepts, and then we select a specific 
sequence of target machine instructions to implement that algorithm. 

Assembly (Chapter 11) resolves all target addressing and converts the tar
get machine instructions into an appropriate output format. We should 
stress that by using the term 'assembly' we do not imply that the code gen
erator will produce symbolic assembly code for input to the assembly task. 
Instead, it delivers an internal representation of target instructions in which 
most addresses remain unresolved. This representation is similar to that 
resulting from analysis of symbolic instructions during the first pass of a nor
mal symbolic assembler. The output of the assembly task should be in the 
format accepted by the standard link editor or loader on the target machine. 

Errors may appear at any time during the compilation process. In order 
to detect as many errors as possible in a single run, repairs must be made 
such that the program is consistent, even though it may not reflect the 
programmer's intent. Violations of the rules of the source language should 
be detected and reported during analysis. If the source algorithm uses con
cepts of the source language for which no target equivalent has been defined 
in a particular implementation, or if the target algorithm exceeds limitations 
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of a specific target language interpreter (e.g. requires more memory than a 
specific computer provides), this should be reported during synthesis. 
Finally, errors must be reported if any storage limits of the compiler itself 
are violated. 

In addition to the actual error handling, it is useful for the compiler to pro
vide extra information for run-time error detection and debugging. This 
task is closely related to error handling, and both are discussed in Chapter 
12. 

A number of strategies may be followed in an attempt to improve the tar
get program relative to some specified measure of cost. (Code size and exe
cution speed are typical cost measures.) These strategies may involve deeper 
analysis of the source program, more complex mapping functions, and 
transformations of the target program. We shall treat the first two in our dis
cussions of analysis and code generation respectively; the third is the subject 
of Chapter 13. 

1.3. Data Management in a Compiler 

As with other large programs, data management and access account for 
many of the problems to be solved by the design of a compiler. In order to 
control complexity, we separate the functional aspects of a data object from 
the implementation aspects by regarding it as an instance of an abstract data 
type. (An abstract data type is defined by a set of creation, assignment and 
access operators and their interaction; no mention is made of the concrete 
implementation technique.) This enables us to concentrate upon the rela
tionships between tasks and data objects without becoming enmeshed in 
details of resource allocation that reflect the machine upon which the com
piler is running (the compiler host) rather than the problem of compilation. 

A particular implementation is chosen for a data object on the basis of 
the relationship between its pattern of usage and the resources provided by 
the compiler host. Most of the basic issues involved become apparent if we 
distinguish three classes of data: 

• Local data of compiler tasks 
• Program text in various intermediate representations 
• Tables containing information that represents context-dependence in the 

program text 

Storage for local data can be allocated statically or managed via the normal 
stacking mechanisms of a block-structured language. Such strategies are not 
useful for the program text, however, or for the tables containing contextual 
information. Because of memory limitations, we can often hold only a small 
segment of the program text in directly-accessible storage. This constrains 
us to process the program sequentially, and prevents us from representing it 
directly as a linked data structure. Instead, a linear notation that represents 
a specific traversal of the data structure (e.g. prefix or postfix) is often 
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employed. Information to be used beyond the immediate vicinity of the 
place where it was obtained is stored in tables. Conceptually, this informa
tion is a component of the program text; in practice it often occupies 
different data structures because it has different access patterns. For exam
ple, tables must often be accessed randomly. In some cases it is necessary to 
search them, a process that may require a considerable fraction of the total 
compilation time. For this reason we do not usually consider the possibility 
of spilling tables to a file. 

The size of the program text and that of most tables grows linearly with 
the length of the original source program. Some data structures (e.g. the 
parse stack) only grow with the complexity of the source program. (Com
plexity is generally related to nesting of constructs such as procedures and 
loops. Thus long, straight-line programs are not particularly complex.) 
Specification of bounds on the size of any of these data structures leads 
automatically to restrictions on the class of translatable programs. These 
restrictions may not be onerous to a human programmer but may seriously 
limit programs generated by pre-processors. 

1.4. Compiler Structure 

A decomposition of any problem identifies both tasks and data structures. 
For example, in Section 1.2 we discussed the analysis and synthesis tasks. 
We mentioned that the analyzer converted the source program into an 
abstract representation and that the synthesizer obtained information from 
this abstract representation to guide its construction of the target algorithm. 
Thus we are led to recognize a major data object, which we call the structure 
tree, in addition to the analysis and synthesis tasks. 

We define one module for each task and each data structure identified 
during the decomposition. A module is specified by an interface that defines 
the objects and actions it makes available, and the global data and opera
tions it uses. It is implemented (in general) by a collection of procedures 
accessing a common data structure that embodies the state of the module. 
Modules fall into a spectrum with single procedures at one end and simple 
data objects at the other. Four points on this spectrum are important for our 
purposes: 

• Procedure: An abstraction of a single 'memoryless' action (i.e. an action 
with no internal state). It may be invoked with parameters, and its effect 
depends only upon the parameter values. (Example - A procedure to 
calculate the square root of a real value.) 

• Package: An abstraction of a collection of actions related by a common 
internal state. The declaration of a package is also its instantiation, and 
hence only one instance is possible. (Example - The analysis or structure 
tree module of a compiler.) 
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• Abstract data type: An abstraction of a data object on which a number 
of actions can be performed. Declaration is separate from instantiation, 
and hence many instances may exist. (Example - A stack abstraction 
providing the operations push, pop, top, etc.) 

• Variable: An abstraction of a data object on which exactly two opera
tions,fetch and store, can be performed. (Example - An integer variable 
in most programming languages.) 

Abstract data types can be implemented via packages: The package defines 
a data type to represent the desired object, and procedures for all operations 
on the object. Objects are then instantiated separately. When an operation 
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is invoked, the particular object to which it should be applied is passed as a 
parameter to the operation procedure. 

The overall compiler structure that we shall use in this book is outlined in 
Figures 1.4 through 1.8. Each of these figures describes a single step in the 
decomposition. The central block of the figure specifies the problem being 
decomposed at this step. To the left are the data structures from which 
information is obtained, and to the right are those to which information is 
delivered. Below is the decomposition of the problem, with boxes represent-
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ing subtasks. Data structures used for communication among these subtasks 
are listed at the bottom of the figure. Each box and each entry in any of the 
three data lists corresponds to a module of the compiler. It is important to 
note that Figures 1.4 through 1.8 reflect only the overall structure of the 
compiler; they are not flowcharts and they do not specify module interfaces. 

Our decomposition is based upon our understanding of the compilation 
problem and our perception of the best techniques currently available for its 
solution. The choice of precise boundaries is driven by control and data 
flow considerations, primarily minimization of flow at interfaces. Specific 
criteria that influenced our decisions will be discussed throughout the text. 

The decomposition is virtually independent of the underlying implemen
tation, and of the specific characteristics of the source language and target 
machine. Clearly these factors influence the complexity of the modules that 
we have identified, in some cases reducing them to trivial stubs, but the 
overall structure remains unchanged. 

Independence of the modules from the concrete implementation is 
obtained by assuming that each module is implemented on its own abstract 
machine, which provides the precise operations needed by the module. The 
local data structures of Figures 1.4-1.8 are thus components of the abstract 
machine on which the given subproblem is solved. 

One can see the degree of freedom remaining in the implementation by 
noting that our diagrams never prescribe the time sequence of the subprob
lem solutions. Thus, for example, analysis and synthesis might run sequen
tially. In this case the structure tree must be completely built as a linked 
data structure during analysis, written to a file if necessary, and then pro
cessed during synthesis. Analysis and synthesis might, however, run con-
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currently and interact as coroutines: As soon as the analyzer has extracted 
an element of the structure tree, the synthesizer is activated to process this 
element further. In this case the structure tree will never be built as a con
crete object, but is simply an abstract data structure; only the element being 
processed exists in concrete form. 

In particular, our decomposition has nothing to do with the possible divi
sion of a compiler into passes. (We consider a pass to be a single, sequential 
scan of the entire text in either direction. A pass either transforms the pro
gram from one internal representation to another or performs specified 
changes while holding the representation constant.) The pass structure com
monly arises from storage constraints in main memory and from 
input/output considerations, rather than from any logical necessity to divide 
the compiler into several sequential steps. One module is often split across 
several passes, and/or tasks belonging to several modules are carried out in 
the same pass. Possible criteria will be illustrated by concrete examples in 
Chapter 14. Proven programming methodologies indicate that it is best to 
regard pass structure as an implementation question. This permits develop
ment of program families with the same modular decomposition but 
different pass organization. The above consideration of coroutines and 
other implementation models illustrates such a family. 

l.5. Notes and References 

Compiler construction is one of the areas of computer science that early 
workers tried to consider systematically. Knuth [1962] reports some of those 
efforts. Important sources from the first half of the 60's are an issue of the 
Communications of the ACM [1961], the report of a conference sponsored by 
the International Computing Centre [ICC 1962] and the collection of papers 
edited by Rosen [1967]. Finally, Annual Review in Automatic Programming 
contains a large number of fundamental papers in compiler construction. 

The idea of an algorithmic conversion of expressions to a machine
oriented form originated in the work of Rutishauser [1952]. Although most 
of our current methods bear only a distant resemblance to those of the 50's 
and early 60's, we have inherited a view of the description of programming 
languages that provides the foundation of compiler construction today: 
Intermediate languages were first proposed as interfaces in the compilation 
process by a SHARE committee [Mock 1958]; the extensive theory of for
mal languages, first developed by the linguist N oam Chomsky [1956], was 
employed in the definition of ALGOL 60 [Naur 1963]; the use of pushdown 
automata as models for syntax analysis appears in the work of Samelson and 
Bauer [1960]. 

The book by Randell and Russell [1964] remains a useful guide for a 
quick implementation of ALGOL 60 that does not depend upon extensive 
tools. Grau, Hill and Langmaack [1967] describe an ALGOL 60 implemen-
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tation in an extended version of ALGOL 60. The books by Gries [1971], 
Aho and Ullman [1972, 1977a] and Bauer and Eickel [1976] represent the 
state of the art in the mid 1970's. 

Recognition that parsing can be understood via models from the theory 
of formal languages led to a plethora of work in this area and provided the 
strongest motivation for the further development of that theory. From time 
to time the impression arises that parsing is the only relevant component of 
compiler construction. Parsing unquestionably represents one of the most 
important control mechanisms of a compiler. However, while just under 
one third of the papers collected in Pollack's 1972 bibliography are devoted 
to parsing, there was not one reference to the equally important topic of 
code generation. Measurements [Lalonde 1972] have shown that parsing 
represents approximately 9% of a compiler's code and II % of the total com
pilation time. On the other hand, code generation and optimization account 
for 50-70% of the compiler. Certainly this discrepancy is due, in part, to the 
great advances made in the theory of parsing; the value of this work should 
not be underestimated. We must stress, however, that a more balanced 
viewpoint is necessary if progress is to be maintained. 

Modular decomposition [Parnas 1972, Parnas 1976] is a design technique 
in which intermediate stages are represented by specifications of the external 
behavior (interfaces) of program modules. The technique of data-driven 
decomposition was discussed by Liskov and Zilles [1974], and a summary of 
program module characteristics was given by Goos and Kastens [1978]. 
This latter paper shows how the various kinds of program modules are con
structed in several programming languages. Our diagrams depicting single 
decompositions are loosely based upon some ideas of Stevens, Myers and 
Constantine [1974]. 

EXERCISES 

1.1. Consider the Pascal algorithm of Figure l.la. 
a. What are the elementary objects and operations? 
b. What are the rules for chronological relations? 
c. What composition rules are used to construct the static program? 

1.2. Determine the state transformation function, f, for the algorithm of Figure 
l.la. What initial states guarantee termination? How do you characterize the 
corresponding final states? 

1.3. Consider a simple computer with an accumulator and two data locations. The 
instruction set is: 

LOAD d: 
STORE d: 

SUB d: 

JUMP i: 

Copy the contents of data location d to the accumulator. 
Copy the contents of the accumulator to data location d. 

Subtract the contents of data location d from the accu
mulator, leaving the result in the accumulator. (Ignore 
any possibility of overflow.) 
Execute instruction i next. 
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JZERO i: 

JNEG i: 

Chapter 1. Introduction and Overview 

Execute instruction i next if the accumulator contents are 
zero. 
Execute instruction i next if the accumulator contents are 
less than zero. 

a. What are the elementary objects? 
b. What are the elementary actions? 
c. What composition rules are used? 
d. Complete the state sequence of Figure 1.2b. 



CHAPTER 2 

Properties of Programming Languages 

Programming languages are often described by stating the meaning of the 
constructs (expressions, statements, clauses, etc.) interpretively. This de
scription implicitly defines an interpreter for an abstract machine whose 
machine language is the programming language. 

The output of the analysis task is a representation of the program to be 
compiled in terms of the operations and data structures of this abstract 
machine. By means of code generation and the run-time system, these ele
ments are modeled by operation sequences and data structures of the com
puter and its basic software (operating system, etc.) 

In this chapter we explore the properties of programming languages that 
determine the construction and possible forms of the associated abstract 
machines, and demonstrate the correspondence between the elements of the 
programming language and the abstract machine. On the basis of this dis
cussion, we select the features of our example source language, LAX. A 
complete definition of LAX is given in Appendix A. 

2.1. Overview 

The basis of every language implementation is a language definition. (See 
the Bibliography for a list of the language definitions that we shall refer to in 
this book.) Users of the language read the definition as a user manual: 
What is the practical meaning of the primitive elements? How can they be 
meaningfully used? How can they be combined in a meaningful way? The 
compiler writer, on the other hand, is interested in the question of which 
constructions are permitted. Even if he cannot at the moment see any useful 
application of a construct, or if the construct leads to serious implementation 
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difficulties, he must implement it exactly as specified by the language 
definition. Descriptions such as programming textbooks, which are oriented 
towards the meaningful applications of the language elements, do not 
clearly define the boundaries between what is permitted and what is prohi
bited. Thus it is difficult to make use of such descriptions as bases for the 
construction of a compiler. (Programming textbooks are also informal, and 
often cover only a part of the language.) 

2.1.1. Syntax, Semantics and Pragmatics The syntax of a language 
determines which character strings constitute well-formed programs in the 
language and which do not. The semantics of a language describe the 
meaning of a program in terms of the basic concepts of the language. Prag
matics relate the basic concepts of the language to concepts outside the 
language (to concepts of mathematics or to the objects and operations of a 
computer, for example). 

Semantics include properties that can be deduced without executing the 
program as well as those only recognizable during execution. Following 
Griffiths [1973], we denote these properties static and dynamic semantics 
respectively. The assignment of a particular property to one or the other of 
these classes is partially a design decision by the compiler writer. For exam
ple, some implementations of ALGOL 60 assign the distinction between 
integer and real to the dynamic semantics, although this distinction can 
normally be made at compile time and thus could belong to the static 
semantics. 

Pragmatic considerations appear in language definitions as unelaborated 
statements of existence, as references to other areas of knowledge, as appeals 
to intuition, or as explicit statements. Examples are the statements 
'[Boolean] values are the truth values denoted by the identifiers true and 
false' (Pascal Report, Section 6.1.2), 'their results are obtained in the sense of 
numerical analysis' (ALGOL 68 Revised Report, Section 2.l.3.l.e) or 
'decimal numbers have their conventional meaning' (ALGOL 60 Report, 
Section 2.5.3). Most pragmatic properties are hinted at through a suggestive 
choice of words that are not further explained. Statements that certain con
structs only have a defined meaning under specified conditions also belong 
to the pragmatics of a language. In such cases the compiler writer is usually 
free to fix the meaning of the construct under other conditions. The richer 
the pragmatics of a language, the more latitude a compiler writer has for 
efficient implementation and the heavier the burden on the user to write his 
program to give the same answers regardless of the implementation. 

We shall set the following goals for our analysis of a language definition: 

• Stipulation of the syntactic rules specifying construction of programs . 
• Stipulation of the static semantic rules. These, in conjunction with the 

syntactic rules, determine the form into which the analysis portion of the 
compiler transforms the source program. 
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• Stipulation of the dynamic semantic rules and differentiation from prag
matics. These determine the objects and operations of the language
oriented abstract machine, which can be used to describe the interface 
between the analysis and synthesis portions of the compiler: The analyzer 
translates the source program into an abstract target program that could 
run on the abstract machine . 

• Stipulation of the mapping of the objects and operations of the abstract 
machine onto the objects and operations of the hardware and operating 
system, taking the pragmatic meanings of these primitives into account. 
This mapping will be carried out partly by the code generator and partly 
by the run-time system; its specification is the basis for the decisions 
regarding the partitioning of tasks between these two phases. 

2.1.2. Syntactic Properties The syntactic rules of a language belong to 
distinct levels according to their meaning. The lowest level contains the 
'spelling rules' for basic symbols, which describe the construction of key
words, identifiers and special symbols. These rules determine, for example, 
whether keywords have the form of identifiers (begin) or are written with 
special delimiters ('BEGIN', .BEGIN), whether lower case letters are per
mitted in addition to upper case, and which spellings « =, .LE., 'NOT' 
'GREATER') are permitted for symbols such as < that cannot be repro
duced on all I/O devices. A common property of these rules is that they do 
not affect the meaning of the program being represented. (In this book we 
have distinguished keywords by using boldface type. This convention is 
used only to enhance readability, and does not imply anything about the 
actual representation of keywords in program text.) 

The second level consists of the rules governing representation and 
interpretation of constants, for example rules about the specification of 
exponents in floating point numbers or the allowed forms of integers 
(decimal, hexadecimal, etc.) These rules affect the meanings of programs 
insofar as they specify the possibilities for direct representation of constant 
values. The treatment of both of these syntactic classes is the task of lexical 
analysis, discussed in Chapter 6. 

The third level of syntactic rules is termed the concrete syntax. Concrete 
syntax rules describe the composition of language contructs such as expres
sions and statements from basic symbols. Figure 2.la shows the parse tree (a 
graphical representation of the application of concrete syntax rules) of the 
Pascal statement 'if a or band c then ... else .. , '. Because the goal of 
the compiler's analysis task is to determine the meaning of the source pro
gram, semantically irrelevant complications such as operator precedence 
and certain keywordS can be suppressed. The language constructs are 
described by an abstract syntax that specifies the compositional structure of a 
program while leaving open some aspects of its concrete representation as a 
string of basic symbols. Application of the abstract syntax rules can be illus
trated by a structure tree (Figure 2.1 b). 
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Figure 2.1. Concrete and Abstract Syntax 

2.1.3. Semantic Properties Most current programming languages 
specify algorithms operationally, in contrast to 'very high level' languages 
that allow the user to formally describe a problem and leave the implemen
tation to the compiler. Essential semantic elements of operational languages 
are -
• Data objects and structures upon which operations take place 
• Operations and construction rules for expressions and other operative 

statements 
• Constructs providing flow of control, the dynamic composition of pro-

gram fragments 

Data objects appear as explicit constants, as values of variables and as 
results of operations. At any point in the execution of a program the totality 
of variable values represents the state of the abstract machine. This state 
constitutes the environment for execution of further operations. 

Included in the set of operations are the access functions such as indexing 
of an array or selection of a field of a record, and operations such as the 
addition or comparison of two values. These operations do not alter the 
state of the abstract machine. Assignment is an example of an operation 
with a side effect that alters the contents of a variable, a component of the 
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state of the abstract machine. Most programming languages contain a large 
number of such state-changing operations, all of which may be regarded as 
assignment combined with other operations. Usually these operations are 
formulated as statements without results. Most COBOL 'verbs' designate 
such statements. Finally, operations include block entry and exit, procedure 
call and return, and creation of variables. These operations, which we asso
ciate with control of the state, change the state by creating and deleting 
objects (variables, parameters, etc.) and altering the allowable access func
tions. 

Flow of control includes conditional expressions or statements, case 
selection, iteration, jumps and so forth. These elements appear in various 
forms in most programming languages, and frequently take into account 
some special implementation possibility or practice. For example, the con
ditional statement 

if truth _ value then s 1 else s 2 ; 

and the case selection 

case truth_value of true: s 1 ;false: S2 end; 

have identical effects in Pascal. As we shall see later, however, the two con
structs would probably be implemented differently. 

In considering semantic properties, it is important for the compiler writer 
to systematically collect the countless details such as properties of data 
objects, operations and side effects, possibilities for iteration, and so forth, 
into some schema. The clarity and adequacy of this schema determines the 
quality of the compiler because the compiler structure is derived from it. A 
shoddy schema makes well-nigh impossible a convincing argument that the 
compiler translates the source language fully and completely. 

For many languages, including ALGOL 60, ALGOL 68, Pascal and Ada, 
good schemata are comparatively easy to obtain because the language 
definitions are suitably structured. Other language definitions take the form 
of a collection of language element descriptions with many exception rules; 
a systematic treatment of such languages is often impossible. 

2.2. Data Objects and Operations 

The most important characteristics of a programming language are the 
available data objects and the operations that may be executed upon them. 
The term 'object' means a concrete instance of an abstract value. Many 
such instances of the same value may exist at the same time. The set of 
values possible in a language, such as numbers, character strings, records 
and so forth, is usually infinite although a given program naturally uses only 
a finite number of them. 

Objects and values may be classified according to many criteria. For 
example, their internal (to the computer) or external representation, the 
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algorithm used to access them, or the access rights might be used. Each such 
classification leads to an attribute of the object. The most important 
classification is a partition of the set of values according to the applicable 
operations; the corresponding attribute is called the type or mode of the 
value. Examples are the numeric types integer and real, to which the basic 
arithmetic operations may be applied. (The special role of zero in division is 
not covered by this classification.) 

A rough subdivision of object types can be made on the basis of the possi
ble access functions. If an object can be accessed only in its entirety we say 
that its type is elementary. If, however, the object consists of a collection of 
distinct components, which may be altered individually, then we say that its 
type is composite. Thus if a programming language were to explain floating 
point operations in terms of updating operations on fraction and exponent 
individually, floating point values would be composite. This is not usually 
done; the floating point operations can only yield complete floating 
numbers, and hence real is an elementary type. 

Every operation interprets its operands in a specified manner. The 
assignment of a type to a value fixes this interpretation and admits only 
those operations for which this interpretation is meaningful. As usual with 
such attributes, there are many possible choices for the binding time - the 
point at which a particular attribute is ascribed to a particular object: If the 
type is first fixed upon execution of an operation, and if practically any 
operation can be applied to any object (so long as its length is appropriate), 
then we term the language typeless or typejree; otherwise it is called a typed 
language. If the type of an object can be determined explicitly from the 
program text, we speak of manifest type; the type is latent if it cannot be 
determined until the program is executed. (A language whose types are 
manifest throughout is sometimes called a strongly-typed language, while one 
whose types are latent is called weakly-typed.) Objects with latent types must 
be provided with an explicit type indication during execution. Most assem
bly languages are examples of typeless languages. In contrast, ALGOL 60, 
FORTRAN and COBOL are languages with manifest types: All variables 
are declared (either explicitly or implicitly) to have values of a certain type, 
and there are different forms of denotation for constants of different types. 
SNOBOL4 has neither declarations nor implied type specifications for its 
variables; on the contrary, the type may change during execution. Thus 
SNOBOL4 has latent types. The union modes in ALGOL 68 and the vari
ant records of Pascal and Ada take an intermediate position. A variable of 
such a 'discriminated union' has a latent type, but the possible value types 
may only be drawn from an explicitly-stated set. 

In a typeless language, the internal representation ('coding') of an object 
is the concern of the programmer; the implementor of a typed language can 
fix the coding because he is fully aware of all desired interpretations. 
Erroneous coding by the programmer is thus impossible. Further, incon
sistent creation or use of a data object can be detected automatically and 
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hence the class of automatically-detected errors is broadened. With mani
fest types such errors appear during compilation, with latent types they are 
first detected during execution. Moreover, in a language with latent types 
the erroneous creation of an object is only detected upon subsequent use 
and the necessary dynamic type checking increases the computation time. 

2.2.1. Elementary Types Our purpose in this section and the next is to 
give an overview of the types usually found in programming languages and 
explore their 'normal' properties. The reader should note in particular how 
these properties may be deduced from the language definition. 

The elementary types can be partitioned according to the (theoretical) 
size of their value sets. A type is called finite if only a fixed number of values 
of this type exist; otherwise the type is (potentially) infinite. 

Finite types can be defined by enumeration of all of the values of the 
type. Examples are the type Boolean whose value set is {true ,false} and the 
type character, with the entire set of characters permitted by an implementa
tion as its value set. Almost all operations and properties of a type with n 
values can be defined giving a I-I correspondence with the natural numbers 
0, ... ,n -I and then defining operations using these ordinal numbers. This 
possibility does not imply that such a mapping is actually specified in every 
language; on the contrary, finite types are introduced primarily to represent 
value sets for which a numerical interpretation is meaningless. For exam
ple, the revised ALGOL 68 report defines no correspondence between truth 
values and the integers ° and l. It asserts that such a correspondence exists 
for character values, but leaves its precise specification to the implementor: 
' ... this relationship is defined only to the extent that different characters 
have different integral equivalents, and that there exists a "largest integral 
equivalent'" (Section 2. 1.3. l.g). This specification permits gaps in the 
sequence of corresponding integers, an important point in many implemen
tations. 

In principle the value set of a finite type is unordered. If an ordering is 
needed, say to define relational operators or a successor function, the order
ing induced by the mapping to natural numbers is used. For example, Pas
cal specifies that the relation false< true holds and thus demands the map
ping false-+O, true -+ I (although the ordering of Boolean values is really 
irrelevant). Often the mere existence of an ordering is sufficient. For exam
ple, the ALGOL 68 specification of character values permits the use of 
sorted tables or trees to speed up searching, even though the user could not 
guarantee a particular ordering. Many applications demand that some par
ticular ordering (collating sequence) be defined on the set of characters; the 
task of lexicographic ordering in a telephone book is a common example. 
Different collating sequences may be appropriate for different problems. 
COBOL recognizes this fact by allowing the user to provide different collat
ing sequences for different programs or for different operations within the 
same program. 
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The integers and floating point numbers belong to the class of infinite 
types. Most language definitions rely upon the mathematical intuition of the 
reader for the definition of these types. Some of our mathematical intuition 
is invalidated, however, because the machine representations of these types 
are necessarily finite. 

The important characteristics of integer type are that a successor function 
is defined on the values, and that exact arithmetic is available. In contrast, a 
real value has no defined successor (although a total ordering is defined) and 
arithmetic is inexact. Some of the familiar axioms fail - for example, asso
ciativity is lost. In the representation of a floating point number as a pair 
(s, e) such that v =s*be is stored in a single word, additional range is 
obtained at the cost of decreased precision. In comparison to the integer 
representation, the number of significant digits in s has been shortened to 
obtain space for the exponent e. The radix b is usually 2,8, 10 or 16. Both 
a range and a precision must be specified to characterize the floating point 
domain, while a range alone suffices for the integer domain. The spec
ifications for the two domains are independent of one another. In particu
lar, it is often impossible to represent all valid integers exactly as floating 
point numbers because s is not large enough to hold all integer values. 

The number of significant digits and the size of the exponent (and similar 
properties of other types) vary from computer to computer and implementa
tion to implementation. Since an algorithm's behavior may depend upon 
the particular values of such parameters, the values should be accessible. 
For this purpose many languages provide environment inquiries; some 
languages, Ada for example, allow specifications for the range and precision 
of numbers in the form of minimum requirements. 

Restriction of the integer domain and similar specification of subranges 
of finite types is often erroneously equated to the concept of a type. 
ALGOL 68, for example, distinguishes an infinity of 'sizes' for integer and 
real values. Although these sizes define different modes in the ALGOL 68 
sense, the Standard Environment provides identical operators for each; thus 
they are indistinguishable according to the definition of type given at the 
beginning of Section 2.2. The distinction can only be understood by exami
nation of the internal coding. 

The basic arithmetic operations are usually defined by recourse to the 
reader's mathematical intuition. Only integer division involving negative 
operands requires a more exact stipulation in a language definition. 
Number theorists recognize two kinds of integer division, one truncating 
toward zero (-3 divided by 2 yields -1) and the other truncating toward nega
tive infinity (-3 divided by 2 yields -2). ALGOL 60 uses the first definition, 
which also forms the basis for most hardware realizations. 

We have already seen that a correspondence between the values of a 
finite type and a subset of the natural numbers can be defined. This 
correspondence may be specified by the language definition, or it may be 
described but its definition left to the implementor. As a general principle, 
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similar relationships are possible between the value sets of other types. For 
example, the ALGOL 68 Revised Report asserts that for every integer of a 
given length there is an equivalent real of that length; the FORTRAN Stan
dard implies a relation between integer and real values by its definition of 
assignment, but does not define it precisely. 

Even if two values of different types (say 2 and 2.0) are logically 
equivalent, they must be distinguished because different operations may be 
applied to them. If a programmer is to make use of the equivalence, the 
abstract machine must provide appropriate transfer (conversion) operations. 
This is often accomplished by overloading the assignment operator. For 
example, Section 4.2.4 of the ALGOL 60 Report states that 'if the the type 
of the arithmetic expression [in an assignment] differs from that associated 
with the variables and procedure identifiers [making up the left part list], 
appropriate transfer functions are understood to be automatically invoked'. 
Another way of achieving this effect is to say that the operator indication 
': =' stands for one of a number of assignment operations, just as '+' stands 
for either integer or real addition. 

The meaning of ': =' must be determined from the context in the above 
example. Another approach to the conversion problem is to use the context 
to determine the type of value directly, and allow the compiler to insert a 
transfer operation if necessary. We say that the compiler coerces the value to 
a type appropriate for the context; the inserted transfer operation is a coer
cion. 

Coercions are most frequently used when the conversion is defined for all 
values of the type being converted. If this is not the case, the programmer 
may be required to write an explicit transfer function. In Pascal, for exam
ple, a coercion is provided from integer to real but not from real to integer. 
The programmer must use one of the two explicit transfer functions trunc or 
round in the latter case. 

Sometimes coercions are restricted to certain syntactic positions. 
ALGOL 68 has elaborate rules of this kind, dividing the complete set of 
available coercions into four classes and allowing different classes in 
different positions. The particular rules are chosen to avoid ambiguity in the 
program. Ada provides a set of coercions, but does not restrict their use. 
Instead, the language definition requires simply that each construct be 
unambiguously interpretable. 

LAX provides Boolean, integer and real as elementary types. We omit
ted characters and programmer-defined finite types because they do not 
raise any additional significant issues. Integer division is defined to truncate 
towards zero to match the behavior of most hardware. Coercion from 
integer to real is defined, but there is no way to convert in the opposite direc
tion. Again, the reason for this omission is that no new issues are raised by it. 

2.2.2. Composite Types Composite objects are constructed from a finite 
number of components, each of which may be accessed by a selector. A com-
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posite type is formed from the types of the components by a type constructor, 
which also defines the selectors. Programming languages usually provide 
two sorts of composite objects: records (also known as structures) and arrays. 

Records are composite objects with a fixed number of components called 
fields. Identifiers, which cannot be computed by the program, are used as 
field selectors. The type of the composite object is given by enumeration of 
the types and selectors of the fields. In some languages (such as COBOL 
and PL/ I) the description of a record type is bound to a single object. 

A record is used to collect related items, for example the name, address, 
profession and other data about a single person. Often the number or form 
of the data may vary in such cases. For example, the location of a point in 
space could be given in terms of rectangular (x, y, z) or cylindrical (r,phi, z) 
coordinates. In a record of type 'point', variations in the form of the data 
are thus possible. Pascal allows such a record with variants to be constructed: 

type 
coordinates = (rectangular, cylindrical); 
point = record 

z:real; 
case c : coordinates of 

rectangular: (x,y: real); 
cylindrical: (r,phi: real); 

end; 

The fields appearing in every record of the type are written first, followed by 
alternative sets of fields; the c appearing in the case construct describes 
which alternative set is actually present. 

A union mode in ALGOL 68 is a special case of a variant record, in 
which every variant consists of exactly one field and the fixed part consists 
only of the variant selector. Syntactically, the construct is not described as a 
record and the variant selector is not given explicitly. In languages such as 
APL or SNOBOL4, essentially all objects are specified in this manner. An 
important question about such objects is whether the variant is fixed for the 
lifetime of a particular object, or whether it forms a part of the state and 
may be changed. 

Arrays differ from records in that their components may be selected via a 
computable, one-to-one function whose domain is some finite set (such as 
any finite type or a subrange p ~ i ~ q of the integers). In languages with 
manifest types, all elements of an array have the same type. The operation 
a [e 1 ('select the component of a corresponding to e ') is called indeXing. 
Most programming languages also permit multi-dimensional rectan
gular arrays, in which the index set represents a Cartesian product 
I I Xl 2 X . .. X In over a collection of index domains. Depending upon the 
time at wh'ich the number of elements is bound, we speak of static (fixed at 
compile time), dynamic (fixed at the time the object is created) or flexible 
(variable by assignment) arrays (cf. Section 2.5.3). 
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One-dimensional arrays of Boolean values (bit vectors) may also be 
regarded as tabular encodings of characteristic functions over the index set 
I. Every value of an array c corresponds to (i I c [i) = true }. In Pascal 
such arrays are introduced as 'sets' with type set of index Jet; in Ada they 
are described as here, as Boolean arrays. In both cases, the operations union 
(represented by + or or), intersection (*, and), set difference (-), equality ( = 
and < > ), inclusion «, < =, >, > =) and membership (in) are defined 
on such sets. Difficulties arise in specifying set constants: The element type 
can, of course be determined by looking at the elements of the constant. But 
if sets can be defined over a subrange of a type, it is not usually possible to 
determine the appropriate subrange just by looking at the elements. In Pas
cal the problem is avoided by regarding all sets made up of elements of a 
particular scalar type to be of the same type, regardless of the subrange 
specified as the index set. (Sets of integers are regarded as being over an 
implementation-defined subrange.) In Ada the index set is determined by 
the context. 

Only a few programming languages provide operations (other than set 
operations) that may be applied to a composite object as a whole. (APL has 
the most comprehensive collection of such operations.) Processing of com
posite objects is generally carried out componentwise, with field selection, 
indexing and component assignment used as access operations on the com
posite objects. It may also be possible to describe groups of array elements, 
for example entire rows or columns or even arbitrary rectangular index 
domains (a[i I :i 2,j I :hl in ALGOL 68); this process is called slicing. 

2.2.3. Strings Strings are exceptional cases in most programming 
languages. In ALGOL 60, strings are permitted only as arguments to pro
cedures and can thus ultimately be used only as data for code procedures 
(normally I/O routines). ALGOL 68 considers strings as flexible arrays, and 
in FORTRAN 77 or PL/I the size can increase only to a maximum value 
fixed when the object is created. In both languages, single characters may 
be extracted by indexing; in addition, comparison and concatenation may 
be carried out on strings whose length is known. These latter operations 
consider the entire string as a single unit. In SNOBOL4 strings are always 
considered to be single units: Assignment, concatenation, conversion to a 
pattern, pattern matching and replacement are elementary operations of the 
language. 

We omitted strings from LAX because they do not lead to any unique 
problems in compiler construction. 

2.2.4. Pointers Records, arrays and strings are composite objects con
structed as contiguous sequences of elements. Composition according to the 
model of a directed graph is possible using pointers, with which one node 
can point to another. In all languages providing arrays, pointers can be 
represented by indices in an array. Some languages (such as ALGOL 68, 
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Pascal and PL 11) define pointers as a new kind of type. In PL /1 the type of 
the object pointed to is not specified, and hence one can place an arbitrary 
interpretation upon the target node of the pointer. In the other languages 
mentioned, however, the pointer type carries the type of the object pointed 
to. 

Pointers have the advantage of security over indices in an array: Indices 
can be confused with other uses of integers, pointers cannot. Above all, 
however, pointers can be used to reference anonymous objects that are 
created dynamically. The number of objects thus created need not be 
known ahead of time. With indices the array bounds fix the maximum 
number of objects (except when the array is flexible). 

Pascal pointers can reference only anonymous objects, whereas in 
ALGOL 68 either named or anonymous objects may be referenced. When 
named objects have at most a bounded lifetime, it is possible that a pointer 
to an object could outlive the object to which it points. Such dangling refer
ences will be discussed in Section 2.5.2. 

In addition to the technical questions of pointer implementation, the 
compiler writer should be concerned with special testing aids (such as print
ing programs that can. traverse a structure, outputting links in some reason
able way). The reason is that programs containing pointers are usually more 
difficult to debug than those not containing pointers. 

2.2.5. Type Equivalence Whenever we use an object in a typed 
language (e.g. as an operand of an operation), we must verify that the type 
of the object satisfies the requirements of the context and is thus admissible. 
To do this we need a technique to compare types with one another and to 
determine whether they are equivalent. 

The question of type equivalence is easy to answer as long as there are no 
type declarations, and no subranges of a type are treated as types. Under 
such circumstances we use textual equivalence: Two types are equivalent if 
their external representations are the same. Thus for the elementary types 
Boolean, character, integer and real the same symbol is required. Array 
types are equivalent if they have equivalent element types and the same 
number of dimensions; the values of the bounds are compared only in 
languages with static arrays. Pointers must point to objects of equivalent 
type. Procedures must have the same number of parameters, and 
corresponding parameter and result types must be equivalent. For records, 
it is usually required that both types and field selectors be equivalent and 
appear in the same order. Therefore the following records are all of 
different types: 

record a : real; b: integer end 
record x : real; y: integer end 
record y: integer; x : real end 
When type declarations and pointers are both allowed, textual 

equivalence is no longer a useful criterion. Attempting to extend the above 
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definitions to recursive types leads to a cycle in the test. For example, the 
equivalence of the following types depends upon the equivalence of the 
second field which, in tum, depends upon the equivalence of the original 
types: 

type 
m = record x: real; y: i mend; 
p = record x: real; y: i pend; 

To break the cycle, we may generalize textual equivalence to either struc
tural equivalence or name equivalence. 

Structural equivalence is used in ALGOL 68. In this case, each type 
identifier (mode indication) is assumed to be a shorthand notation for the 
right side of the type declaration. Two types are equivalent if they are textu
ally equivalent after all type identifiers have been replaced by the right hand 
sides of their declarations. This process may introduce other type identifiers, 
and the substitution must be repeated; clearly a recursive type has an infinite 
textual representation. In order to test for structural equivalence, these 
infinite representations must be compared. In Section 9.2 we shall see that a 
practical decision procedure using finite representations and working in 
polynomial time is available. 

Name equivalence states that two types are equivalent if and only if they 
are denoted by the same identifier, which identifies the same definition in 
each case. M and p above are different types under this definition, since m 
and p are distinct identifiers. The right hand sides of the declarations of m 
and p are automatically different, since they are not type identifiers. Name 
equivalence is obviously easy to check, since it only involves fixing the iden
tity of type declarations. 

Name equivalence seldom appears in pure form. On the one hand it 
leads to a flood of type declarations, and on the other to problems in linking 
to library procedures that have array parameters. However, name 
equivalence is the basis for the definition of abstract data types, where type 
declarations that carry the details of the representation are not revealed out
side the declaration. This is exactly the effect of name equivalence, whereas 
structural equivalence has the opposite result. Most programming languages 
that permit type declarations use an intermediate strategy. Euclid uses 
structural equivalence locally; as soon as a type is 'exported', it is known 
only by a type identifier and hence name equivalence applies. 

If the language allows subranges of the basic types (such as a subrange of 
integers in Pascal) the question of whether or not this sub range is a distinct 
type arises. Ada allows both: The subrange can be defined as a subtype or 
as a new type. In the second case, the pre-defined operations of the base 
type will be taken over but later procedures requiring parameters of the base 
type cannot be passed arguments of the new type. 

The type equivalence rules of LAX embody a representative comprom
ise. They require textual equivalence as discussed above, but whenever a 
type is denoted by an identifier it is considered elementary. (In other words, 
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if the compiler is comparing two type specifications for equality and an 
identifier appears in one then the same identifier must appear in the same 
position in the other.) Implementation of these rules illustrate the compiler 
mechanisms needed to handle both structure and name equivalence. 

2.3. Expressions 

Expressions (or formulas) are examples of composite operations. Their struc
ture resembles that of composite objects: They consist of a simple operation 
with operands, which are either ordinary data objects or further expressions. 
In other words, an expression is a tree with operations as interior nodes and 
data objects as leaves. 

An expression written in linear infix notation may lead to distinct trees 
when interpreted according to different language definitions (Figure 2.2). In 
low-level languages modeled upon PL/360, the operators are strictly left
associative with no operator precedence, and parentheses are prohibited; 
APL uses right-associativity with no precedence, but permits grouping by 
parentheses. Most higher-level languages employ the normal precedence 

a) Left-associative (e.g. PL/360) 

b) Right-associative (e.g. APL) 

c) Normal precedence rules 

Figure 2.2. Trees for a *b +c *d 
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rules of mathematics and associate operators of the same precedence to the 
left. FORTRAN 77 (Section 6.6.4) is an exception: 'Once [a tree] has been 
established in accordance with [the precedence, association and parenthesi
zation] rules, the processor may evaluate any mathematically equivalent 
expression, provided that the integrity of parentheses is not violated.' The 
phrase 'mathematically equivalent' implies that a FORTRAN compiler may 
assume that addition is associative, even though this is not true for computer 
implementation of floating point arithmetic. (The programmer can, how
ever, always indicate the correct sequence by proper use of parentheses.) 

The leaves of an expression tree represent activities that can be carried 
out independently of all other nodes of the tree. Interior nodes, on the other 
hand, depend upon the values returned by their descendants. The entire 
tree may thus be evaluated by the following algorithm: 

repeat 
Select an arbitrary leaf and carry out its designated activity (access to 

an object or execution of an operation); 
if the selected leafis the root then terminate; 
Transmit the result to the parent of the leaf and delete the leaf; 

until termination 

This evaluation algorithm performs the operations in some sequence permit
ted by the data flow constraints embodied in the tree, but does not specify 
the order in which operands are evaluated. It is based upon a principle 
known as referential transparency [Quine 1960] that holds in mathematics: 
The value of an expression can be determined solely from the values of its 
subexpressions, and if any subexpression is replaced by an arbitrary expres
sion with the same value then the value of the entire expression remains 
unchanged. 

In programming languages, evaluation of an expression may additionally 
alter the state of the underlying abstract machine through a side effect. If the 
altered state is used in another part of the expression then the principle of 
referential transparency does not hold, and different evaluation orders may 
yield different results. 

Side effects are generally undesirable because they complicate program 
verification and optimization. Unfortunately, it is often impossible to 
mechanically guarantee that no side effects are present. In Euclid an 
attempt was made to restrict the possibilities to the point where the compiler 
could perform such a check safely. These restrictions include prohibition of 
assignments to result parameters and global variables in functions, and 
prohibition of I /0 operations in functions. 

Some side effects do not destroy referential transparency, and are thus 
somewhat less dangerous. Section 6.6 of the FORTRAN 77 Standard for
mulates the weakest useful restrictions: 'The execution of a function refer
ence in a statement may not alter the value of any other entity within the 
statement in which the function reference appears.' 



30 Chapter 2. Properties of Programming Languages 

In some expressions the value of a subexpression determines that of the 
entire expression. Examples are: 

a and ( ... ) when a =false 
b or ( ... ) when b = true 

c *( ... ) when c = 0 

If the remainder of the expression has no side effect, only the subexpression 
determining the value need be computed. The FORTRAN 77 Standard 
allows this short circuit evaluation regardless of side effects; the description is 
such that the program is undefined if side effects are present, and hence it is 
immaterial whether the remainder of the expression is evaluated or not in 
that case. The wording (Section 6.6.1) is: 'If a statement contains a function 
reference in a part of an expression that need not be evaluated, all entities 
that would have become defined in the execution of that reference become 
undefined at the completion of evaluation of the expression containing the 
function reference.' 

ALGOL 60, ALGOL 68 and many other languages require, in principle, 
the evaluation of all operands and hence preclude such optimization unless 
the compiler can guarantee that no side effects are possible. Pascal permits 
short circuit evaluation, but only in Boolean expressions (User Manual, Sec
tion 4a): 'The rules of Pascal neither require nor forbid the evaluation of 
the second part [of a Boolean expression, when the first part fixes the value)'. 
Ada provides two sets of Boolean operators, one (and, or) prohibiting short 
circuit evaluation and the other (and then, or else) requiring it. 

LAX requires complete evaluation of operands for all operators except 
and and or. The order of evaluation is constrained only by data flow con
siderations, so the compiler may assume referential transparency. This 
simplifies the treatment of optimization. By requiring a specific short circuit 
evaluation for and and or, we illustrate other optimization techniques and 
also show how the analysis of an expression is complicated by evaluation 
order rules. 

2.4. Control Structures 

There are three possibilities for the composition of several actions: serial, 
collateral and parallel. Serial execution is implied by any dependence of two 
actions upon one another. Such dependence occurs when (say) one action 
uses the result of another; more generally, it occurs in any case where the 
outcome depends upon the sequence in which the actions occur. If the 
actions may be carried out serially or in parallel, or can be interleaved in 
time, then we speak of collateral execution. Finally, we use the term paral
lel when either simultaneous or interleaved execution is required. 

When actions are composed serially, the sequence may be prescribed 
either implicitly or explicitly. Most programming languages use the 
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sequence in which the statements are written as an implicit serial order. The 
semicolon separating two successive statements in ALGOL 60 and its suc
cessors is thus often called the 'sequence operator'. For explicit control, we 
have the following possibilities: 

• Conditional clause 
• Case clause 
• Iteration (with or without a count) 
• Jump, exit, etc. 
• Procedure call 

Conditional clauses make the execution of a component S dependent 
upon fulfillment of a Boolean condition. In many languages S may only 
take on one of a restricted number of forms - in the extreme case, S may 
only be a jump. 

The case clause is a generalization of the conditional clause in which the 
distinct values of an expression are associated with distinct statements. The 
correspondence is either implicit as in ALGOL 68 (the statements 
correspond successively to the values 1,2,3, ... ), or explicit as in Pascal (the 
value is used as a case label for the corresponding statement). The latter 
construct allows one statement to correspond with more than one value and 
permits gaps in the list of values. It also avoids counting errors and 
enhances program readability. 

Several syntactically distinct iteration constructs appear in many pro
gramming languages: with or without counters, test at the beginning or end, 
etc. The inefficient ALGOL 60 rules requiring the (arbitrarily complex) step 
and limit expressions to be re-evaluated for each iteration have been 
replaced in newer languages by the requirement that these expressions be 
evaluated exactly once. Another interesting point is whether the value of the 
counter may be altered by assignment within the body of the iteration (as in 
ALGOL 60), or whether it must remain constant (as in ALGOL 68). This 
last is important for many optimizations of iterations, as is the usual prohibi
tion on jumps into an iteration. 

Many programming languages allow jumps with variable targets. Exam
ples are the use of indexing in an array oflabels (the ALGOL 60 switch) and 
the use of label variables (the FORTRAN assigned GOTO). While 
COBOL or FORTRAN jumps control only the succession of statements, 
jumps out of blocks or procedures in ALGOL-like languages influence the 
program state (see Section 2.5). Procedure calls also influence the state. 

The ALGOL 60 and ALGOL 68 definitions explain the operation of pro
cedure calls by substitution of the procedure body for the call (copy rule). 
This copying process could form the basis for an implementation (open sub
routines), if the procedure is not recursive. Recursion requires that the pro
cedure be implemented as a closed subroutine, a model on which many 
other language definitions are based. Particular difficulties await the writer 
of compilers for languages such as COBOL, which do not distinguish the 
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beginning and end of the procedure body in the code. This means that, in 
addition to the possibility of invoking the procedure by means of a call 
(PERFORM in COBOL), the statements could be executed sequentially as a 
part of the main program. 

Parallel execution of two actions is required if both begin from the same 
initial state and alter this state in incompatible ways. A typical example is 
the parallel assignment x ,y: = y, x, in which the values are exchanged. To 
represent this in a sequential program, the compiler must first extend the 
state so that the condition 'identical starting states for both actions' can be 
preserved. This can be done here by introducing an auxiliary variable t, to 
which x is assigned. 

Another case of parallel execution of two actions arises when explicit syn
chronization is embedded in these actions to control concurrent execution. 
The compiler must fall back upon coroutines or parallel processing facilities 
in the operating system in order to achieve such synchronization; we shall 
not discuss this further. 

Collateral execution of two actions means that the compiler need not fix 
their sequence according to source language constraints. It can, for exam
ple, exchange actions if this will lead to a more efficient program. If both 
actions contain identical sub-actions then it suffices to carry out this sub
action only once; this has the same effect as the (theoretically possible) 
perfectly-synchronized parallel execution of the two identical sub-actions. If 
a language specifies collateral evaluation, the question of whether the 
evaluation off (x) in the assignment a [i + 1]: = f (x) +a [i + 1] can influence 
the address calculation for ali + 1] by means of a side effect is irrelevant. 
The compiler need only compute the address of a [i + 1] once, even if i were 
the following function procedure: 

function i: integer; begin k: =k + I; i: =k end; 

In this case k will be incremented only once. 

2.5. Program Environments and Abstract Machine 
States 

The operations of a programming language are applied to states of the 
abstract machine for this language and transform those states. The state is 
represented by the combination of the data objects and values existing at a 
particular point in time, the hierarchy of procedure calls not yet completed, 
and the representation of the next operation in the program text. The set of 
data objects belonging to a state (independent of their values), together with 
the procedure call hierarchy, constitute the environment (present in that 
state). We can thus distinguish three distinct schemata for state transitions: 

• Specify a new successor operation (e.g. by means of a jump). 
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• Change the value of an existing data object by means of an assignment. 
• Change the size of the state. 
We have already discussed the first possibility in Section 2.4. 

2.5.1. Constants, Variables and Assignment The data objects in a 
programming language either have constant values or are variable. Con
stants are either specified by denotations (numbers, characters, strings) or 
are made to correspond to identifiers by giving a declaration. The latter are 
called symbolic constants, and contain the manifest constants as a subclass. 
The value of a manifest constant is permanently fixed and can be deter
mined at compile time. A compiler could replace each occurrence of a 
manifest constant identifier by its value, and then forget the identifier com
pletely. (The constant declarations of Pascal, for example, create manifest 
constants.) In addition to manifest constants, a language may permit 
dynamic constants. These can be treated by the compiler as variables to 
which a value is assigned when the variable is declared, and to which further 
assignments are prohibited. The following ALGOL 68 identity declaration 
creates a dynamic constant c : 

int c = if P then 3*x else y + 1 fi; 

(If p, x and yare really manifest constants then the compiler could optimize 
by evaluating the conditional statement and then treating c as a manifest 
constant as well. This optimization is called folding - see Chapter 13.) 

In the simplest case, variables are data objects with the following proper
ties: 
• They are identified either by an identifier or a composite access path such 

as a pair (identifier, index). 
• They possess a value (from a domain determined by their type). 
• There exists an access function to use their value as an operand. 
• There exists an access function/assignment to alter their value. 
This model of an elementary variable explains the variable concepts in FOR
TRAN,.COBOL, ALGOL 60, and partially explains that of Pascal. 

In many languages, the only assignment permitted to a variable of 
composite type is an assignment to a component. For example, ALGOL 60 
does not allow assignment of an entire composite object and also prohibits 
composite objects as results of function procedures. A composite object 
must, however, be considered basically as a unit. Thus any assignment to a 
component is an assignment to the entire object. 

A variable does not always retain the last assigned value until a new 
value is assigned. Typical examples are the control variables in ALGOL 60 
and FORTRAN iterations, whose values are undefined upon normal termi
nation of the iteration. These rules permit the compiler to advance the con
trol variable either before or after the termination test. (Clearly the two pos
sibilities lead to different results and hence the value of the controlled vari
able cannot be guaranteed. ALGOL 68 avoids this problem because the 
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control variable is local to the iteration body.) Another example is the 
undefinition of a COBOL record by the write operation. This permits 
implementation of the write operation by either changing the buffer pointer 
or by transferring data. The FORTRAN 66 Standard gives (in Section 
10.2.3.1) a further list of situations in which variables become undefined. A 
compiler writer should carefully examine the language definition for such 
rules, since they normally lead to optimization possibilities. 

The pointer objects discussed in Section 2.2.4 provide access paths to 
other objects. By using pointers, an arbitrary number of access paths to a 
given object can be created. In the special case of parameter transmission, 
additional access paths can be created even without pointers (see Section 
2.5.3). The following identity declaration from ALGOL 68 is an example of 
the general case: . 

refm x = ... ; 
Here the right hand side must give an access path to an object; x then 
identifies a new access path to this object. In contrast to the ALGOL 60 
name parameter, the identity of the object is fixed at the time the identity 
declaration is executed. Some languages permit creation of access paths 
with limited access rights: Assignments may be forbidden over certain 
access paths or in certain contexts. For example, assignments to global 
parameters are forbidden in Euclid functions. If such restrictions exist, 
adherence to them must be verified by the compiler during semantic 
analysis. 

Existence of several access paths to the same object complicates the data 
flow analysis (analysis of assignment and use patterns) required to verify 
certain semantic constraints and to check for the applicability of certain 
optimizations. If the compiler writer wishes to delay an assignment, for 
example, he must be certain that an access to the new value will not be 
attempted over a different access path. This complication is termed the 
aliasing problem. 

The LAX identity declaration allows creation of an arbitrary number of 
new access paths to any variable. It is, however, the only mechanism by 
which new access paths can be created. This allows us to illustrate the alias
ing problem in its full generality in one place, rather than having it appear 
in several different constructs with possibly different constraints. 

2.5.2. The Environment The environment of a program fragment 
specifies not only which objects exist, but also the access paths by which they 
may be reached. Changes in the accessibility (or visibility) of objects are 
generally associated with procedure call and return, and for this reason the 
procedure call hierarchy forms a part of the environment. We shall now 
consider questions of lifetime and visibility; the related topic of procedure 
parameter transmission will be deferred to Section 2.5.3. 

That part of the execution history of a program during which an object 
exists is called the extent of the object. The extent rules of most program-
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ming languages classify objects as follows: 

• Static: The extent of the object is the entire execution history of the pro
gram. 

• Automatic: The extent is the execution of a specified syntactic construct 
(usually a procedure or block). 

• Unrestricted: The extent begins at a programmer-specified point and 
ends (at least theoretically) at the end of the program's execution. 

• Controlled: The programmer specifies both the beginning and end of the 
extent by explicit construction and destruction of objects. 

Objects in COBOL and the blank common block of FORTRAN are 
examples of static extent. Local variables in ALGOL 60 or Pascal, as well 
as local variables in FORTRAN subprograms, are examples of automatic 
extent. (Labeled common blocks in FORTRAN 66 also have automatic 
extent, see Section 10.2.5 of the standard.) List elements in LISP and objects 
created by the heap generator of ALGOL 68 have unrestricted extent, and 
the anonymous variables of Pascal are controlled (created by new and dis
carded by dispose ). 

The possibility of a dangling reference arises whenever a reference can be 
created to an object of restricted extent. To avoid errors, we must guarantee 
that the referenced object exists at the times when references to it are actu
ally attempted. A sufficient condition to make this guarantee is the ALGOL 
68 rule (also used in LAX) prohibiting assignment of references or pro
cedures in which the extent of the right-hand side is smaller than the refer
ence to which it is assigned. It has the advantage that it can be checked by 
the compiler in many cases, and a dynamic run-time check can always be 
made in the absence of objects with controlled extent. When a language 
provides objects with controlled extent, as do PLII and Pascal, then the bur
den of avoiding dangling references falls exclusively upon the programmer. 

LAX constants are the only objects having static extent. Variables are 
generally automatic, although it is possible to generate unrestricted vari
ables. The language has no objects with controlled extent, because such 
objects do not result in any new problems for the compiler. Static variables 
were omitted because the techniques used to deal with automatic variables 
apply to them essentially without change. 

By the scope of an identifier definition we understand the region of the 
program within which we can use the identifier with the defined meaning. 
The scope of an identifier definition is generally determined statically by the 
syntactic construct of the program in which it is directly contained. A range 
is a syntactic construct that may have identifier definitions associated with it. 
In a block-structured language, inner ranges are not part of outer ranges. 
Usually any range may contain at most one definition of an identifier. 
Exceptions to this rule may occur when a single identifier may be used for 
distinct purposes, for example as an object and as the target of a jump. In 
ALGOL-like languages the scope of a definition includes the range in which 
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it occurs and all enclosed ranges not containing definitions of the same 
identifier. 

Consider the field selection pJ. The position immediately following the 
dot belongs to the scope of the declaration of p's record type. In fact, only 
the field selectors of that record type are permitted in this position. On the 
other hand, although the statement s of the Pascal (or SIMULA) inspection 
with p do s also belongs to the scope of p's record type declaration, the 
definitions from the inspection's environment remain valid in sunless over
ridden by field selector definitions. In COBOL and PL/I,j can be written 
in place of pj(partial qualification) if there is no other definition off in the 
surrounding range. 

The concept of static block structure has the consequence that items not 
declared in a procedure are taken from the static surrounding of the pro
cedure. A second possibility is that used in APL and LISP: Nonlocal items 
of functions are taken from the dynamic environment of the procedure call. 

In the case of recursive procedure calls, identically-declared objects with 
nested extents may exist at the same time. Difficulties may arise if an object 
is introduced (say, by parameter transmission) into a program fragment 
where its original declaration is hidden by another declaration of the same 
identifier. Figure 2.3 illustrates the problem. This program makes two 
nested calls ofp, so that two incarnations, ql and q2, of the procedure q and 
two variables i I and i 2 exist at the same time. The program should print the 
values 1, 4 and I of i2, i I and k. This behavior can be explained by using 
the contour model. 

The contour model captures the state of the program execution as a com
bination of the (invariant) program text and the structured set of objects 
(state) existing at respective points in time. Further, two pointers, ip and ep 
belong to the state. Ip is the instruction pointer, which indicates the position 
in the program text. For block-structured languages the state consists of a 
collection of nested local environments called contours. Each contour 
corresponds to a range and contains the objects defined in that range. If the 
environment pointer ep addresses a contour c, then all of the objects 
declared in c and enclosing contours are accessible. The contour addressed 
by ep is called the local contour. The object identified by a given identifier is 
found by scanning the contours from inner to outer, beginning at the local 
contour, until a definition for the specified identifier is found. 

The structure of the state is changed by the following actions: 

• Construction or removal of an object. 
• Procedure call or range entry. 
• Procedure return or range exit. 
• Jump out of a range. 

When an object with automatic extent is created, it lies in a contour 
corresponding to the program construct in which it was declared; static 
objects behave exactly like objects declared in the main program with 
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procedure outer; 
var n , k : integer; 
procedure p (procedure /; var j : integer); 

label 1; 
var i : integer; 
procedure q; 

label 2; 
begin (* q *) 
n : = n + 1; if n = 4 then q ; 
n:=n +1; ifn =7 then 2:j:=j + 1; 
i:=i+l; 
end; (* q *) 

begin (* p *) 
i:=O; 
n : = n + 1; if n = 2 then p (q , i) else j : = j + 1; 
ifn =3 then 1:/; 
i:=i+l; 
writeln('j =',i:l); 
end; (* p *) 

procedure empty; begin end; 
begin (* outer *) 
n:= 1; k:=O; 
p(empty,k); 
writeln ('k =', k: 1); 
end; (* outer *) 

Figure 2.3. Complex Procedure Interactions in Pascal 
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automatic extent. Objects with unrestricted extent and controlled objects lie 
in their own contours, which do not correspond to program constructs. 

Upon entry into a range, a new contour is established within the local 
contour and the environment pointer ep is set to point to it. Upon range exit 
this procedure is reversed: the local contour is removed and ep set to point 
to the immediately surrounding contour. 

Upon procedure call, a new contour c is established and ep set to point to 
it. In contrast to range entry, however, c is established within the contour c' 
addressed byep at the time of procedure declaration. We term c'the static 
predecessor of c to distinguish it from c: the dynamic predecessor, to which ep 
pointed immediately before the procedure call. The pointer to c' must be 
stored in c as a local object. Upon return from a procedure the local con
tour of the procedure is discarded and the environment pointer reset to its 
dynamic predecessor. 

To execute a jump into an enclosing range b, blocks and procedures are 
exited and the corresponding contours discarded until a contour c 
corresponding to b is reached such that c contained the contour of the jump. 
C becomes the new local contour, to which ep will point, and ip is set to the 
jump target. If the jump target is determined dynamically as a parameter or 
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the content of a label variable, as is possible in ALGOL 60, then that 
parameter or variable must specify both the target address and the contour 
that will become the new local contour. 

Figures 2.4 and 2.5 show the contour model for the state existing at two 
points during the execution of the program of Figure 2.3. Notice that 
several contours correspond to the same range when a procedure is called 
recursively. Further, the values of actual parameters of a procedure call 
should be computed before the environment pointer is altered. If this is not 
done, the pointer for parameter computation must be restored (as is neces
sary for name parameters in ALGOL 60). 

In order to unify the state manipulation, procedures and blocks are often 
processed identically. A block is then a parameterless procedure called 'on 
the spot'. The contour of a block thus has a dynamic predecessor identical 
with its static predecessor. The lifetimes of local objects in blocks can be 
determined by the compiler, and a static overlay structure for them can be 
set up within the contour of the enclosing procedure. The main program is 
counted as a procedure for this purpose. The scope rules are not altered by 
this transformation. Contours for blocks can be dispensed with, and all 
objects placed in the contour of the enclosing procedure. Arrays with 
dynamic bounds lead to difficulties with this optimization, since the bounds 
can be determined only at the time of actual block entry. 

The rules discussed so far do not permit description of either LISP or 
SIMULA. In LISP a function / may have as its result a function g that 

Contour for procedure outer J~ 
n: 3 I k: 0 
empty Contour for procedure p 
p J=empty 

j=k 
i I : I 
ql 

t 
Contour for procedure p 

/=ql 
j=i l 
i 2: 0 
q2 

ep 

I 
Note: Arrows show dynamic predecessor 

Figure 2.4. Contours Existing When Control Reaches Label I in Figure 2.3 
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Contour for procedure outer J~ n: 7 
k: 0 J 

empty Contour for procedure p 
p f=empty 

j=k 
i I: 2 Contour for procedure q 
ql ep , , . ~ , 

Contour for procedure p 
f=ql 
j =i l 
i 2: 0 
q2 

Figure 2.5. Contours Existing When Control Reaches Label 2 in Figure 2.3 

accesses the local storage off. Since this storage must also exist during the 
call of g, the contour off must be retained at least until g becomes inacces
sible. Analogously, a SIMULA class k (an object of unrestricted extent) 
may have name parameters from the contour in which it was instantiated. 
This contour must therefore be retained at least until k becomes inaccessi
ble. 

We solve these problems by adopting a uniform retention strategy that dis
cards an object only when that object becomes inaccessible. Accessibility is 
defined relative to the current contour. Whenever an object in a contour c 
references another object in a different contour, c: we implement that refer
ence by an explicit pointer from c to c: (Such references include the 
dynamic predecessors of the contour, all reference parameters, and any 
explicit pointers established by the user.) A contour is accessible if it can be 
reached from the current contour by following any sequence of pointers or 
by a downhill walk. The dangling reference problem vanishes when this 
retention strategy is used. 

2.5.3. Binding An identifier b is termed bound (or local) in a range if this 
range contains a definition for b; otherwise b is free (or global) in this range. 
As definitions we have: 
• Declarations of object identifiers (including procedure identifiers). 
• Definitions: Label definitions, type definitions, FORTRAN labeled com

mon blocks, etc. 
• Formal parameter definitions. 
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In the first and second cases the defined value along with all of its attri
butes is obvious from the definition. In the third case only the identifier and 
type of the defined value are available via the program text. The actual 
parameter, the argument, will be associated with the identifier by parameter 
transmission at the time of the procedure call. We distinguish five essen
tially different forms of parameter transmission: 

1. Value (as in ALGOL 60, SIMULA, Pascal, Ada, for example): The for
mal parameter identifies a local variable of the procedure, which will be 
initialized with the argument value at the procedure call. Assignment to 
the parameter does not affect the caller. 

2. Result (Ada): The formal parameter identifies a local variable of the 
procedure with undefined initial value. Upon return from the procedure 
the content of this local variable is assigned to the argument, which must 
be a variable. 

3. Value/Result (FORTRAN, Ada): The formal parameter identifies a 
local variable of the procedure, which will be initialized with the argu
ment value at the procedure call. Upon return from the procedure the 
content of this local variable is assigned to the argument if the argument 
is a variable. The argument variable may be fixed prior to the call or 
redetermined upon return. 

4. Reference (FORTRAN, Pascal, Ada): A reference to the argument is 
transmitted to the procedure. All operations on the formal parameter 
within the procedure are carried out via this reference. (If the argument 
is an expression but not a variable, then the result is placed in a tem
porary variable for which the reference is constructed. Some languages, 
such as Pascal, do not permit use of an expression as an argument in this 
case.) 

5. Name (ALGOL 60): A parameterless procedure p, which computes a 
reference to the argument, is transmitted to the procedure. (If the argu
ment is an expression but not a variable then p computes the value of the 
expression, stores it in a temporary variable h, and yields a reference to 
h .) All operations on the formal parameter first invoke p and then 
operate via the reference yielded by p . 

Call by value is occasionally restricted to a strict value transmission in which 
the formal parameter identifies not a local variable, but rather a local con
stant. Call by name is explained in many language definitions by textual 
substitution of the argument for the parameter. ALGOL 60 provides for 
argument evaluation in the environment of the caller through a consistent 
renaming. 

The different parameter mechanisms can all be implemented in terms of 
(strict) call by value, if the necessary kinds of data are available. For cases 
(2)-(4), the language must provide the concept of arbitrary references as 
values. Call by name also requires the concept of procedures as values (of 
procedure variables). Only when these concepts are unavailable are the 
transmission mechanisms (2)-(5) important. This is clear in the language 
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SIMULA, which (in addition to the value and name calls inherited from 
ALGOL 60) provides call by reference for classes and strings. A more care
ful study shows that in truth this could be handled by an ordinary value call 
for references. In ALGOL 68 the call by reference is stated in terms of the 
strict call by value, by using an identity declaration to make the formal 
parameter jp an alias of the argument ap : 

refintjp =ap 
Expressions that do not yield references are not permitted as arguments if 
this explanation of call by reference is used, since the right hand side of the 
identity declaration must yield a reference. 

LAX follows the style of ALGOL 68, explaining its argument bindings in 
terms of identity declarations. This provides a uniform treatment of all 
parameter mechanisms, and also eliminates the parameter mechanism as a 
distinct means of creating new access paths. Finally, the identity declaration 
gives a simple implementation model. 

Many language definitions do not specify parameter transmission 
mechanisms explicitly. The compiler writer must therefore attempt to del
ineate the possibilities by a careful consideration of their effects. For exam
ple, both case (3) and case (4) satisfy the conditions of the FORTRAN 66 
Standard, but none of the others do. Ada generally requires case (1), (2) or 
(3). For composite objects, however, case (4) is permitted as an alternative. 
Use of this alternative is at the discretion of the implementor, and the pro
grammer is warned that any assumptions about the particular transmission 
mechanism invalidates the program. 

Programs whose results depend upon the parameter transmission 
mechanism are generally difficult to understand. The dependencies arise 
when an object has two access paths, say via two formal parameters or via a 
global variable and a formal parameter. This can be seen in the program of 
Figure 2.6a, which yields the results of Figure 2.6b for the indicated param
eter mechanisms. 

In addition to knowing what value an identifier is bound to, it is 
important to know when the binding takes place. The parameter transmis
sion differences discussed above can, to a large extent, be explained in terms 
of binding times. In general, we can distinguish the following binding times 
(explained in terms of the identity declaration refreal x =a[i ,j +3]): 

1. Binding at each access (corresponding to call by name): Upon each 
access to x the identity of ali ,j +3] is re-determined. 

2. Binding at first access: Upon the first access to x the identity of 
ali ,j +3] will be determined. All assignments to i and j up to that point 
will have an effect. 

3. Binding upon declaration (corresponding to call by reference): After ela
boration of the identity declaration the identity of ali ,j +3] is fixed. In 
several languages the identifiers on the right-hand side must not be 
declared in the same range, to avoid circular definitions. 
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begin 
int m: = 1, n; 
proc p = (??? int j, ??? int k) int: 

beginj: =j + 1; m: =m +k;j +k end; 
n:=p(m,m +3) 
end 

Note: '???' depends upon the parameter mechanism. 

a) An ALGOL 68 program 

Mechanism m n j k Comment 

Value 5 6 2 4 Strict value is not possible due to 
the assignment to j . 

Val ue IResult 2 6 2 4 Pure result is unreasonable in this 
example. 

Reference 6 10 6 4 Only j is a reference parameter 
because an expression is illegal as 
a reference parameter in ALGOL 
68. Hence k is a value parame-
ter. 

Name 7 17 7 10 

Note: m and n were evaluated at the end of the main program, j and k at 
the end ofp. 

b) The effect of different parameter mechanisms 

Figure 2.6. Parameter Transmission 

4. Static binding: The identity of ali ,j +3] is fixed throughout the entire 
program. In this case a must have static extent and statically-determined 
size. The values of i and j must be defined prior to program execution 
and be independent of it (hence they must be constants). 

In this spectrum, call by result would be classified as binding after access. 
Call by value is a binding of the value, not of the reference. 

Determination of identity is least costly at run time for static binding and 
most costly for binding at access. During the analysis of the program, the 
compiler writer is most concerned with gathering as much information as 
possible, to bind as early as he can. For this reason static binding breaks 
into two subcases, which in general depend not upon the language but upon 
other considerations: 

4a. Binding at compilation time. The identity of the bound values is deter
mined during compilation. 

4b. Binding at program initialization: The identity of files or of external 
procedures will be determined during a pre-process to program execu
tion. 

In case 4a the knowledge of the bound values can be used in optimization. 
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Case 4b permits repeated execution of the program with different bindings 
without re-compilation. 

Free identifiers, which are not defined in a procedure, must be explained 
in the context of the procedure so that their meaning can be determined. 
The definitions of standard identifiers, which may be used in any program 
without further declaration, are fitted into this scheme by assuming that the 
program is embedded in a standard environment containing definitions for 
them. 

By an external entity we mean an entity identified by a free identifier with 
no definition in either the program or the standard environment. A program 
with external entities cannot be compiled and then directly executed. 
Another step, which obtains the objects associated with external entities 
from a program library, must be introduced. We shall discuss this step, the 
binding of programs, in Chapter II. In the simplest case the binding can be 
separated from the compilation as an independent terminal step. This 
separation is normally chosen for FORTRAN implementations. One conse
quence is that the compiler has no complete overview of the properties of 
external entities and hence cannot verify that they are used consistently. 
Thus in FORTRAN it is not usually possible for the compiler to determine 
whether external subprograms and functions are called with the correct 
number and type of parameters. For such checking, but also to develop the 
correct accesses, the compiler must have specifications like those for formal 
parameters for every external entity. Many implementations of ALGOL 60, 
Pascal, etc. provide that such specifications precede or be included in 
independently compiled procedures. Since in these languages, as in many 
others, separate compilation of language units is not specified by the 
language definition, the compiler writer himself must design the handling of 
external values in conjunction with introduction of these possibilities. Ada 
contains a far-reaching specification scheme for external entities. 

2.6. Notes and References 

We draw our examples from a number of languages. In order to avoid the 
necessity for referencing the proper definition each time a language property 
is discussed, we give an exhaustive list of the languages we use and their 
defining documents at the beginning of the Bibliography. 

Descriptions of languages in the ALGOL family are interpretive, as are 
those of FORTRAN and COBOL. The description ofPL/1 with the help of 
the Vienna definition method (VOL [Lucas 1969, Wegner 1972]) is likewise 
interpretive. Other definition methods are the axiomatic [Hoare 1973] and 
the denotational [Gordon 1979, Tennent 1981]. 

Many languages are described by a given implementation. We have 
nothing against this, provided that the implementation is stated in an 
abstract form such as that of EV ALQUOTE, the function that implements 
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the kernel of LISP interpretively. Often, however, it is never defined in a 
high-level manner and a new implementation of the same language is very 
difficult. The macro implementation of SNOBOL4 [Griswold 1972], 
although highly successful, exhibits this problem. 

We have associated the concept of type with the set of operations possible 
on a value. This led us to conclude that size was a distinct property. Both 
ALGOL 68 and Pascal, however, treat values of distinct sizes as having dis
tinct types. Habermann [1973] gives a critical assessment of this philosophy 
and its effect in Pascal. 

We have only skimmed the properties of numeric types. Knuth [1969] 
presents the general view of floating point numbers and shows how floating 
point operations relate to the corresponding mathematical operations on 
real numbers. A machine-oriented model that relates the parameters of the 
number system to specific characteristics of the target machine is given by 
Brown [1977, 1981]. 

The contour model was originally described by Dijkstra [1960, 1963] as 
an implementation technique for ALGOL 60. Johnston [1971] coined the 
name and introduced the graphical representation used here. A formal 
proof that the contour model is equivalent to consistent renaming and the 
copy rule as used in the definition of ALGOL 60 was given by Jones and 
Lucas [1971]. 

Parallel processing, exception handling and some other features of 
modem languages have been intentionally omitted from the overview given 
in this chapter. 

EXERCISES 

2.1. [Housden 1975, Morrison 1982) Consider the manipulation of character string 
data in a general purpose programming language. 
a. What set of operations should be available on strings? 
b. Should strings be regarded as elementary or composite objects? Why? 
c. Should strings be regarded as objects of a separate type (or types), or as 

arrays of characters? Support your position. 

2.2. Suppose that Pascal were changed so that the structural equivalence rule (Sec
tion 2.2.5) held for types and so that' i ' could precede any type constructor. 
Show that the types m and p given in the text are equivalent, and that they are 
also equivalent to the type q defined as follows: 

type q = record x: real; y: i record x: real; y: i q end end; 

2.3. Why is the Boolean expression (x > - I) and (sqrt( I + x) > y) meaningless in 
Pascal, FORTRAN or ALGOL 60? Consider only structurally equivalent 
expressions in the various languages, making any necessary syntactic changes. 
Give a similar expression in Ada that is meaningful. 

2.4. Give the rules for contour creation and destruction necessary to support the 
module concept in Ada. 

2.5. Consider a block-structured language such as SIMULA, in which coroutines 
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are allowed. Generalize the contour model with a retention strategy to handle 
the following situation: If n coroutines are started in block b, all have contour c 
as dynamic predecessor. By means of call-by-name parameters, a coroutine 
can obtain access to an object 0 belonging to c; on the other hand, contour c 
can disappear (because execution of b has terminated) long before termination 
of the coroutine. 0 is then nonexistent, but the access path via the name 
parameter remains. What possible solutions do you see for this problem? 

2.6. The retention strategy discussed in connection with SIMULA in Exercise 2.5 
could be used to support parallel processing in ALGOL 68. Quote sections of 
the ALGOL 68 Report to show that a simpler strategy can be used. 

2.7. What problems arise from result parameters in a language that permits jumps 
out of procedures? 

2.8. Consider a program in which several procedures execute on different proces
sors in a network. Each processor has its own memory. What parameter 
mechanisms are appropriate in such a program? 



CHAPTER 3 

Properties of Real and Abstract 
Machines 

In this chapter we shall discuss the target machine properties relevant for 
code generation, and the mapping of the language-oriented objects and 
operations onto objects and operations of the target machine. Systematic 
code generation must, of course, take account of the peculiarities and 
weaknesses of the target computer's instruction set. It cannot, however, 
become bogged down in exploitation of these special idiosyncrasies; the 
payoff in code efficiency will not cover the implementation cost. Thus the 
compiler writer endeavors to derive a model of the target machine that is not 
distorted by exceptions, but is as uniform as possible, to serve as a base for 
code generator construction. To this end some properties of the hardware 
may be ignored, or gaps in the instruction set may be filled by subroutine 
invocations or inline sequences treated as elementary operations. In partic
ular, the instruction set is extended by the operations of a run-time system 
that interfaces input/output and similar actions to the operating system, and 
attends to storage management. 

Further extension of this idea leads to construction of abstract target 
machines implemented on a real machine either interpretively or by means 
of a further translation. (Interpretive abstract machines are common targets 
of code generation for microprocessors due to the need for space efficiency.) 
We shall not attempt a systematic treatment of the goals, methods and cri
teria for the design of abstract target machines here; see the Notes and 
References for further guidance. 

46 
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3.1. Basic Characteristics 

Most computers have machine languages that are typeless in the sense of 
Section 2.2: The interpretation of an object is determined by the operations 
applied to it. Exceptions are computers like the Burroughs 5000 and its des
cendants that associate 'tag bits' with each word. The extra bits reduce the 
number of possible interpretations of the word, or even make that interpre
tation unique. 

Objects reside in storage of various classes. Access paths, characteristic of 
the particular storage class, are used to access these objects as operands or 
results of operations. Storage classes, access paths and operations together 
constitute a model defining the computer for code generation purposes. 

In this section we shall survey typical storage classes, access paths and 
operations, and indicate how instructions may be encoded. The remainder 
of the chapter will show how these facilities can be used to implement the 
source language concepts presented in Chapter 2. 

3.1.1. Storage Classes Computer storage can usually be classified as 
follows for code generation purposes: 

• Main Storage: Randomly-accessible array of identically-sized locations. 
• Stack: Storage accessed in a last-in, first-out manner. 
• Integer Accumulator: Storage on which integer arithmetic instructions 

operate. 
• Floating point Accumulator: Storage on which floating point arithmetic 

instructions operate. 
• Base Register: Storage used in operand access functions to hold 

addresses. 
• Index Register: Storage used in operand access functions to hold integer 

offsets. 
• Program Counter: Storage used to hold the address of the next instruc

tion to be executed. 
• Condition Code: Storage used to hold the result of a comparison or test 

instruction. 
• Other Special Register (e.g. Stack Pointer, Programmable Boolean Flag). 
Examples of this classification applied to typical machines are given in Fig
ure 3.1. 

Every computer provides at least the main storage and program counter 
classes. (Whether main storage is virtual or real is of no concern.) A partic
ular storage component may belong to more than one class. For example, 
the base register and index register classes are identical on most computers. 
On the IBM 370 these are the 'general-purpose registers', which also serve as 
integer accumulators. Storage classes may also overlap without being ident
ical, as in the case of the Univac 1100 series. These computers have sixteen 
'index registers' belonging to the index and base register classes and sixteen 
'general-purpose registers' belonging to the integer accumulator and floating 
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Main storage. 
General registers RO, ... ,RI5 serving as integer accumulators, base 

registers or index registers. 
Register pairs (RO,RI),(R2,R3), ... ,(RI4,RI5) serving as integer ac

cumulators. 
Floating point registers FO,F2,F4,F6 serving as floating point accu

mulators. 
Program counter 
Condition code 

Main storage 

a) IBM 370 

Data registers 00, ... ,07 serving as integer accumulators or index 
registers. 

Address registers AO, ... ,A 7 serving as base or index registers. 
Program counter PC 
Condition code 
Stack pointer A 7 

b) Motorola 68000 

Figure 3.1. Storage Classes 

point accumulator classes. However, the two storage classes overlap, with 
four registers belonging to both. These four registers may be accessed as 
index registers or as general-purpose registers, and their properties depend 
upon the access path used. 

Whether a particular storage class exists, and if so what its properties are, 
is partially a decision of the compiler writer. If, for example, he chooses to 
access a specific portion of the main memory of the Motorola 68000 only via 
stack operations relative to register A 7 then this portion of the memory 
belongs to the storage class 'stack' and not the class 'main storage'. (Such a 
decision can be made differently for the generated code and the run-time 
system, implying that the memory belongs to one class as far as the gen
erated code is concerned and another for the run-time system.) Also, since 
the properties of a storage class depend to a certain extent upon the avail
able access paths, a Motorola 68000 stack will differ from that of a Bur
roughs 6700 /7700. 

Most storage classes consist of a sequence of numbered elements, the 
storage cells. (The numbering may have gaps.) The number of a storage cell 
is called its address. Every access path yields an algorithm, the effective 
address of the access path, for computing the address of the storage cell 
being accessed. We speak of byte-oriented computers if the cells in the main 
storage class have a size of 8 bits, otherwise (e.g. 16,24,32,48 or 60 bits per 
cell) we term the computer word-oriented. For a word-oriented computer the 
cell sizes in the main storage and register classes are usually identical, 
whereas the registers of a byte-oriented computer (except for some 
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microprocessors) are 2, 4 or possibly 8 bytes long. In this case the storage 
cell of the integer accumulator class is usually termed a word. 

All storage is ultimately composed of bits. Some early computers (such 
as the IBM 1400 series) used decimal arithmetic and addressing, and many 
current computers provide a packed decimal (4 bits per digit) encoding. 
None of these architectures, however, consider decimal digits to be atoms of 
storage that cannot be further decomposed; all have facilities for accessing 
the individual bits of the digit in some manner. 

Single bits and bit sequences such as the decimal digits discussed above 
cannot be accessed directly on most machines. Instead, the bit sequence is 
characterized by a partial-word access path specifying the address of a storage 
cell containing the sequence, the position of the sequence from the left or 
right boundary of this unit, and the size of the sequence. Often this partial 
word access path must be simulated by means of shifts and logical opera
tions. 

Aggregates hold objects too large for a single storage cell. An aggregate 
will usually be specified by the address of its first storage cell, and the cells 
making up the aggregate by their addresses relative to that point. Often the 
address of the aggregate must be divisible by a given integer, called the 
alignment. Figure 3.2 lists main storage operand sizes and alignments for 
typical machines. 

Aggregates also appear in classes other than main storage. For example, 
the 16 general purpose registers of the IBM 370 form a storage class of 4-
byte cells addressed by the numbers 0 through 15. Every register whose 
address is even forms the first element of a larger entity (a register pair) used 
in multiplication, division and shift operations. When a single-length 

Operand Size (bits) Alignment 

Byte 8 I 
Halfword 16 2 
Word 32 4 
Doubleword 64 8 
String up to 256x8 I 
a) IBM 370 - Storage cell is an 8-bit byte 

Operand Size (bits) Alignment 

Bit I 
Digit 4 
Byte 8 I 
Word 16 2 
Longword 32 2 

b) Motorola 68000 - Storage cell is an 8-bit byte 

Figure 3.2. Operand Sizes 
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operand for such an operation is supplied, it should be placed in the proper 
register of a pair rather than in an arbitrary register. The other register of 
the pair is then automatically reserved for the operation, and cannot be used 
for other purposes. 

The entities of a particular level in a hierarchy of aggregates may overlap. 
This occurs, for example, for the segments in the main storage class of the 
Intel 8086 (65536-byte blocks whose addresses are divisible by 16) or the 
4096-byte blocks addressable via a base or index register in the IBM 370. 

Operations on registers usually involve the full register contents. When 
an object whose size is smaller than that of a register is moved between a 
register and storage of some other class, a change of representation may 
occur. The value of the object must, however, remain invariant. Depending 
upon the type of the object, it may be lengthened by inserting leading or 
trailing zeros, or by inserting leading or trailing copies of the sign. When it 
is shortened, we must guarantee that no significant information is lost. Thus 
the working length of an object must be distinguished from the storage length. 

3.1.2. Access Paths An access path describes the value or location of an 
operand, result or jump target. We classify an instruction as a 0-, 1-,2-, or 
3-address instruction according to the number of access paths it specifies. 
Very seldom are there more than three access paths per instruction, and if 
more do exist then they are usually implicit. (For example, in the MVeL 
instruction of the IBM 370 the two register specifications R 1 and R2 actually 
define four operands in registers RI, RI + I, R2 and R2+ I respectively.) 

Each access path specifies the initial element of an operand or result in a 
storage class. Access paths to some of the storage classes (such as the stack, 
program counter, condition code and special registers) are not normally 
explicit in the instruction. They will appear only when there is some degree 
of freedom associated with their use, as in the PDP}} where any register can 
be used as a stack pointer. 

The most common explicit access paths involve one of the following 
computations: 
• Constant. The value appears explicitly in the instruction. 
• Register. The content of the register is taken as the value. 
• Register + constant. The sum of the content of the register and a constant 

appearing explicitly in the instruction is taken as the value. 
• Register+register. The sum of the contents of two registers is taken as the 

value. 
• Register+register+constant. The sum of the contents of two registers 

and a constant appearing in the instruction is taken as the value. 
The computed value may itself be used as the operand (immediate), it may 
be used as the effective address of the operand in main storage (direct), or it 
may be used as the address of an address (indirect). On some machines the 
object fetched from main storage in the third case may specify another com
putation and further indirection, but this feature is rarely used in practice. 



3.1. Basic Characteristics 

i: Operand is the byte i from the instruction. 
d(m,n): Operand is the 24-bit value obtained by (Rm) + (Rn) + d. 

Only the low-order 24 bits of each register are used, and the 
value is interpreted as positive. Overflow in the addition is ig
nored. If m or n is 0 then the content of the register is assumed 
to be 0; the actual content of general register 0 is not used. 

m: Operand is the content of general register Rm. 
m: Operand is the content of general register pair (Rm,Rm + I). 
m: Operand is the content of floating point register Fm. 
d(m,n): Operand is the content of a memory area whose address is 

the value computed as discussed above. 
Implicit access to the condition code and program counter. 

Note: 0<i<28, 0<d<212, 0<m,n<24 

a) IBM 370 

==iI6: Operand is the word following the instruction. 
==i32: Operand is the doubleword following the instruction. 
i16: Operand is the value (PC)+iI6. 
is(Am): Operand is the value (PC) + (Am) + is. 
is(Dn): Operand is the value (PC) + (Dn)+iS. 
Am: Operand is the content of address register Am. 
On: Operand is the content of data register On. 
(Am): Operand is the content of a memory area whose address is 

the content of address register Am. 
iI6(Am): Operand is the content of a memory area whose address 

is the value of(Am)+iI6. 
is(Am,On): Operand is the content of a memory area whose ad

dress is the value of (Am) + (Dn)+ is. 
(Am) + : Operand is the content of a memory area whose address 

is the content of Am. Am is then incremented by the operand 
length. The increment is never less than 2 for A7. 

-(Am): Am is decremented by the operand length. Operand is 
then the content of a memory area whose address is the content 
of Am. The decrement is never less than 2 for A7. 

Implicit access to the condition code and program counter. 
b) Motorola 6S000 

Figure 3.3. Access Paths 

Figure 3.3 illustrates these concepts for typical machines. 
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The addresses of registers must almost always appear explicitly as con
stants in the instruction. In special cases they may be supplied implicitly, as 
when the content of the (unspecified) program counter is added to a constant 
given in the instruction (relative addressing). If the computed value is used as 
an address then the registers must belong to the base register or index regis
ter class; the sum of the (unsigned) base address and (signed) index is often 
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interpreted modulo the address size. The values of constants in instructions 
are frequently restricted to nonnegative values, and often their maximum 
values are far less than the maximu!fl address. (An example is the restriction 
to the range [0,4095] of the IBM 370.) 

Not all computers allow every one of the access paths discussed above; 
restrictions in the combination (operation, access path) can also occur. 
Many of these restrictions arise from the properties of the machine's regis
ters. We distinguish five architectural categories based upon register struc
ture: 
• Storage-to-storage. All operands of a computational operation are taken 

from main storage, and the result is placed into main storage (IBM 1400 
series, IBM 1620). Storage-to-storage operations appear as a supplemen
tary concept in many processors. 

• Stack. All operands of a computational operator are removed from the 
top of the stack, and the result is placed onto the top of the stack (Bur
roughs 5000, 6000 and 7000 series, ICL 2900 family). The stack appears 
as a supplementary concept in many processors. 

• Single Accumulator. One operand of a computational operator is taken 
from the accumulator, and the result is placed into the accumulator; all 
other registers, including any accumulator extension, have special tasks or 
cannot participate in all operations (IBM 7040/7090, Control Data 3000 
series, many process-control computers, Intel 8080 and microprocessors 
derived from it). 

• Multiple Accumulator. One operand of a computational operator is 
taken from one of the accumulators, and the result is returned to that 
accumulator; long operands and results are accommodated by pairing the 
accumulators (DEC PDPll, Motorola 68000, IBM 370, Univac 1100) 

• Storage Hierarchy. All operands of a computational operator are taken 
from accumulators, and the result is returned to an accumulator (Control 
Data 6000, 7000 and Cyber series). This architecture is identical to the 
storage-to-storage architecture if we view the accumulators as primary 
storage and the main storage as auxiliary storage. 

3.13. Operations Usually the instruction set of a computer provides 
four general classes of operation: 
• Computation: Implements a function from n-tuples of values to m-tuples 

of values. The function may affect the state. Example: A divide instruc
tion whose arguments are a single-length integer divisor and a double
length integer dividend, whose results are a single-length integer quotient 
and a single-length integer remainder, and which may produce a divide 
check interrupt. 

• Data transfer: Copies information, either within one storage class or from 
one storage class to another. Examples: A move instruction that copies 
the contents of one register to another; a read instruction that copies 
information from a disc to main storage. 
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• Sequencing: Alters the normal execution sequence, either conditionally 
or unconditionally. Examples: A halt instruction that causes execution to 
terminate; a conditional jump instruction that causes the next instruction 
to be taken from a given address if a given register contains zero . 

• Environment control: Alters the environment in which execution is car
ried out. The alteration may involve a transfer of control. Examples: An 
interrupt disable instruction that prohibits certain interrupts from occur
ring; a procedure call instruction that updates addressing registers, thus 
changing the program's addressing environment. 

It is not useful to attempt to assign each instruction unambiguously to one of 
these classes. Rather the classes should be used as templates to evaluate the 
properties of an instruction when deciding how to implement language 
operations (Section 3.2.3) 

It must be possible for the control unit of a computer to determine the 
operation and all of the access paths from the encoding of an instruction. 
Older computer designs usually had a single instruction size of, say, 24 or 36 
bits. Fixed subfields were used to specify the operation and the various 
access paths. Since not all instructions require the same access paths, some 
of these subfields were unused in some cases. In an information-theoretic 
sense, this approach led to an inefficient encoding. 

Coding efficiency is increased in more modem computers by using 
several different instruction sizes. Thus the IBM 370 has 16, 32 and 48 bit 
(2, 4 and 6 byte) instructions. The first byte is the operation code, which 
determines the length and layout of the instruction as well as the operation 
to be carried out. Nearly all microprocessors have variable-size operation 
codes as well. In this case the encoding process carried out by the assembly 
task may require larger tables, but otherwise the compiler is not affected. 
Variable-length instructions may also lead to more complex criteria of 
optimality. 

On some machines one or more operation codes remain unallocated to 
hardware functions. Execution of an instruction specifying one of these 
operation codes results in an interrupt, which can be used to activate a sub
program. Thus these undefined operations can be given meaning by 
software, allowing the compiler writer to extend the instruction set of the 
target machine. Such programmable extension of the instruction set is 
sometimes systematically supported by the hardware, in that the access 
paths to operands at specific positions are placed at the disposal of the sub
program as parameters. The XOP instruction of the Texas Instruments 990 
has this property. (TRAP allows programmable instruction set extension on 
the PDPll, but does not make special access path provisions.) 

3.2. Representation of Language Elements 
In this and following sections we shall discuss the mapping of the language 
elements of Chapter 2 onto the machine elements of Section 3.1. This map-
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ping is really the specification of the tasks of the code generator and the 
run-time system, and must be performed for each language/machine pair. 

3.2.1. Elementary Objects A combination of space and instruction 
questions must be answered in order to determine the mapping of elemen
tary types such as integer, real, character, Boolean and other enumerations. 
Implementation of the relevant basic operations is particularly important for 
Boolean values. 

For integers, the first decision is whether to use a decimal (4 bits/digit) or 
binary encoding. Decimal encoding implies that decimal operations exist 
(as on the IBM 370), or at least that there is a facility to detect a carry (result 
digit> 9) and to increment the next higher position (as on many micropro
cessors). The values of variables have varying size with this encoding, which 
complicates assignment operations. Decimal encoding is worth considering 
if very few operations take place on each value (the cost of the translation 
from decimal to binary on input and the reverse translation on output is 
greater than the expected gain from using binary operations internally), or if 
the numeric incompatibility of binary and decimal arithmetic is a significant 
problem (as with some financial applications). 

Binary encodings are normally fixed-length, and hence when a binary 
encoding is chosen we must fix the length of the representation in terms of 
the maximum source language integer. Since most programming languages 
leave the range of integer values unspecified, we fall back upon the rule of 
thumb that all addresses be representable as integers. This causes us to con
sider integer representations of 16, 24 or 32 bits. The representation must at 
least include all conceivable indexes; 16 bits will suffice for this purpose on 
small machines. We must also consider available instructions. For exam
ple, on the IBM 370 we would rule out 16 bits because no divide instruction 
is included for 16 bit operands and because the test to determine whether 
intermediate 32-bit results could be represented in 16 bits would slow execu
tion considerably. The extra instructions would, in many cases, wipe out the 
savings resulting from the 16-bit representation. Similar reasoning would 
eliminate the 24-bit representation on most computers. 

A binary encoding with n bits can represent 2n distinct values, an even 
number. Any range of integers symmetric about 0, however, contains an odd 
number of values. This basic mismatch leads to anomalous behavior of 
machine arithmetic. The exact nature of the anomaly depends upon the 
representation chosen for negative numbers. A sign-magnitude or 
diminished-radix complement (e.g. I's-complement) representation results 
in two zero values, one positive and the other negative; a radix complement 
(e.g. 2's-complement) representation results in a 'most negative' number that 
has no positive counterpart. The extra-zero anomaly is usually the more 
difficult of the two for the compiler writer. It may involve additional 
instructions to ensure that comparisons yield the correct result, or compli
cated analysis to prove that these instructions need not be generated. 
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Comparisons may prove difficult if they are not provided as machine 
instructions. Arithmetic instructions must then be used, and precautions 
taken against erroneous results due to over- and underflow. For example, 
consider a machine with integers in the range [-32767,32767]. If a > b is 
implemented as (a -b) > 0 then an overflow will occur when comparing 
values a = 16384 and b = -16384. The comparison code must either antici
pate and avoid this case, or handle the overflow and interpret the result 
properly. In either case, a long instruction sequence may be required. 
Underflow may occur in floating point comparisons implemented by a sub
traction when the operand difference is small. Since many machines deliver 
o as a result, without indicating that an underflow has occurred, anticipation 
and avoidance are required. 

Actually, the symptom of the floating point underflow problem is that a 
comparison asserts the equality of two numbers when they are really 
different. We could argue that the inherent inaccuracy of floating point 
operations makes equality testing a risky business anyway. The program
mer must thoroughly understand the algorithm and its interaction with the 
machine representation before using equality tests, and hence we can inform 
him of the problem and then forget about it. This position is defensible pro
vided that we can guarantee that a comparison will never yield an incorrect 
relative magnitude (i.e. it will never report a > b when a is less than b, or 
vice-versa). 

If, as in Pascal, subranges m .. n of integers can be specified as types, the 
compiler writer must decide what use to make of this information. When 
the usual integer range can be exceeded (not possible in Pascal) this forces 
the introduction of higher-precision arithmetic (in the extreme case, of 
variable-length arithmetic). For small subranges the size of the range can 
be used to reduce the number of bits required in the representation, if neces
sary by replacing the integer i by (i -lower _bound), although this last is not 
recommended. The important question is whether arithmetic operations 
exist for the shorter operands, or at least whether the conversion between 
working length and storage length can easily be carried out. (Recall that no 
significant bits may be discarded when shortening the representation.) 

The possibilities for mapping real numbers are constrained by the float
ing point operations of the hardware or the given subroutine package. (If 
neither is available on the target machine then implementation should fol
low the IEEE standard.) The only real choice to be made involves the preci
sion of the significand. This decision must be based upon the milieu in 
which the compiler will be used and upon numeric problems whose discus
sion is beyond the scope of this book. 

F or characters and character strings the choice of mapping is restricted to 
the specification of the character code. Assuming that this is not fixed by the 
source language, there are two choices: either a standard code such as the 
ISO 7-bit code (ASCII), or the code accepted by the target computer's 
operating system for input/output of character strings (EBCDIC or other 6-
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1 Bit The bit position is specified by two masks, MO= B' 0 ... 010 ... 0' and 
Ml =B' 1...101...1'. 

1 Byte Let ° representfalse, K represent true. 
a) Possible representations for Boolean values 

Construct Code, depending on representation 
Byte Bit 

TM MO,p 
BO Ll 

MVC 
NI Ml,q 

q:=p q,p 
B L2 

Ll OJ MO,q 
L2 continuation 

p:= notp XI K,p XI MO,p 
TM MO,p 

OC 
BZ Ll 

q:=q orp q,p 
OJ MO,q 

Ll continuation 
TM MO,p 

q:=q andp NC BO Ll 
q,p 

NI MO,q 
Ll continuation 

(The masks MO and Ml are those appropriate to the second operand of the 
instruction in which they appear.) 

b) Code using the masks from (a) 

Figure 3.4. Boolean Operations on the IBM 370 

or 8-bit code; note that EBCDIC varies from one manufacturer to another). 
Since most computers provide quite efficient instructions for character trans
lation, use of the standard code is often preferable. 

The representation of other finite types reduces to the question of suitably 
representing the integers Ooon -I, which we have already discussed. One 
exception is the Boolean values false and true. Only a few machines are pro
vided with instructions that access single bits. If these instructions are 
absent, bit operations must be implemented by long sequences of code (Fig
ure 3.4). In such cases it is appropriate to implement Boolean variables and 
values as bytes or words. Provided that the source language has not con
strained their coding, the choice of representation depends upon the realiza
tion of operations with Boolean operands or Boolean results. In making this 
decision, note that comparison and relational operations occur an order of 
magnitude more frequently than all other Boolean operations. Also, the 
operands of and and or are much more frequently relations than Boolean 
variables. In particular, the implementation of and and or by jump cascades 
(Section 3.2.3) introduces the possibilities (false = 0, true=ft 0) and (false> 0, 
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true<O) or their inverses in addition to the classical (jalse=O,true=l). 
These possibilities underscore the use of more than one bit to represent a 
Boolean value. 

3.2.2. Composite Objects For composite objects, we are interested in 
the properties of the standard representation and the possibilities for reduc
ing storage requirements. 

An object a: array [m .. n] of M will be represented by a sequence of 
(n -m + 1) components of type M. The address of element ali] becomes: 

address(a[mD+(i -m)* I M I = address(a[OD+i* I M I 
Here I M I is the size of an element in address units and address (a [OD is the 
'fictitious starting address' of the array. The address of a[O] is computed 
from the location of the array in storage; such an element need not actually 
exist. In fact, address (a [OD could be an invalid address lying outside of the 
address space. 

The usual representation of an object b: array [m I .. n], ... ,mr .. nr] of M 
occupies k l *k2*'" *kr * 1M I contiguous memory cells, where kj = 
nj -mj + 1, j = 1, ... ,r. The address of element b[i], ... ,ir] is given by 
the following storage mapping function when the array is stored in row
major order: 

address (b [m 1> ••• , mr D+(i I-m 1)*k2*' .. *kr * I M I 
+ ... +(ir-mr)* 1M I 

=address(b[O, ... ,O])+i l *k2* ... *kr* I M 1+'" +ir* I M I 
By appropriate factoring, this last expression can be rewritten as: 

address (b[O, ... ,0])+«· .. (i 1 *k2 +i2)*k3 + ... +ir)* I M I 
If the array is stored in column-major order then the order of the indices in 
the polynomial is reversed: 

address (b [0, ... ,0])+«- .. (ir *kr _I +ir-I)*kr- 2 + ... +i 1)* I M I 
The choice of row-major or column-major order is a significant one. 

ALGOL 60 does not specify any particular choice, but many ALGOL 60 
compilers have used row-major order. Pascal implicitly requires row-major 
order, and FORTRAN explicitly specifies column-major order. This means 
that Pascal arrays must be transposed in order to be used as parameters to 
FORTRAN library routines. In the absence of language constraints, make 
the choice that corresponds to the most extensive library software on the tar
get machine. 

Access to b[i I> ••• ,ir] is undefined if the relationship mj <,ij <,nj is not 
satisfied for some j = 1, ... ,r. To increase reliability, this relationship 
should be checked at run time if the compiler cannot verify it in other ways 
(for example, that ij is the controlled variable of a loop and the starting and 
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ending values satisfy the condition). To make the check, we need to evalu
ate a storage mapping function with the following fixed parameters (or its 
product with the size of the single element): 

r,address(b [0, ... ,0)), mI> . .. ,mr , n 1, ... ,nr 

Together, these parameters constitute the O"oy descriptor. The array 
descriptor must be stored explicitly for dynamic and flexible arrays, even in 
the trivial case r= 1. For static arrays the parameters may appear directly as 
immediate operands in the instructions for computing the mapping function. 
Several array descriptors may correspond to a single array, so that in addi
tion to questions of equality of array components we have questions of 
equality or identity of array descriptors. 

An r dimensional array b can also be thought of as an array of r -1 
dimensional arrays. We might apply this perception to an object 
c: array [l..m ,l..n ] of integer, representing it as m one-dimensional arrays 
of type t =array [l..n] of integer. The fictitious starting addresses of these 
arrays are then stored in an object 0: array [l..m ] of it. To be sure, this 
descriptor technique raises the storage requirements of c from m *n to 
m *n +m locations for integers or addresses; in return it speeds up access on 
many machines by replacing the multiplication by n in the mapping func
tion address (c [0,0]) +(i *n + j)* I integer I by an indexed memory reference. 
The saving may be particularly significant on computers that have no 
hardware multiply instruction, but even then there are contraindications: 
Multiplications occurring in array accesses are particularly amenable to 
elimination via simple optimizations. 

The descriptor technique is supported by hardware on Burroughs 
670017700 machines. There, the rows of a two-dimensional array are stored 
in segments addressed by special segment descriptors. The segment descrip
tors, which the hardware can identify, are used to access these rows. Actual 
allocation of storage to the rows is handled by the operating system and 
occurs at the first reference rather than at the declaration. The allocation 
process, which is identical to the technique for handling page faults, is also 
applied to one-dimensional arrays. Each array or array row is divided into 
pages of up to 256 words. Huge arrays can be declared if the actual storage 
requirements are unknown, and only that portion actually referenced is ever 
allocated. 

Character strings and sets are usually implemented as arrays of character 
and Boolean values respectively. In both cases it pays to pack the arrays. In 
principle, character string variables have variable length. Linked lists pro
vide an appropriate implementation; each list element contains a segment of 
the string. List elements can be introduced or removed at will. Character 
strings with fixed maximum length can be represented by arrays of this 
length. When an array of Boolean values is packed, each component is 
represented by a single bit, even when simple Boolean variables are 
represented by larger storage units as discussed above. 
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A record is represented by a succession of fields. If the fields of a record 
have alignment constraints, the alignment of the entire record must be con
strained also in order to guarantee that the alignment constraints of the 
fields are met. An appropriate choice for the alignment constraint of the 
record is the most stringent of the alignment constraints of its fields. Thus a 
record containing fields with alignments of 2, 4 and 8 bytes would itself have 
an alignment of 8 bytes. Whenever storage for an object with this record 
type is allocated, its starting address must satisfy the alignment constraint. 
Note that this applies to anonymous objects as well as objects declared 
explicitly. 

The amount of storage occupied by the record may depend strongly upon 
the order of the fields, due to their sizes and alignment constraints. For 
example, consider a byte-oriented machine on which a character variable is 
represented by one byte with no alignment constraint and an integer vari
able occupies four bytes and is constrained to begin at an address divisible 
by 4. If a record contained an integer field followed by a character field fol
lowed by a second integer field then it would occupy 12 bytes: There would 
be a 3-byte gap following the character field, due to the alignment constraint 
on integer variables. By reordering the fields, this gap could be eliminated. 
Most programming languages permit the compiler to do such reordering. 

Records with variants can be implemented with the variants sharing 
storage. If it is known from the beginning that only one variant will be used 
and that the value of the variant selector will never change, then the storage 
requirement may be reduced to exactly that for the specified variant. This 
requirement is often satisfied by anonymous records; Pascal distinguishes 
the calls new (p) and new (p, variant .....selector) as constructors for anonymous 
records. In the latter case the value of the variant selector may not change, 
whereas in the former all variants are permitted. 

The gaps arising from the alignment constraints on the fields of a record 
can be eliminated by simply ignoring those constraints and placing the fields 
one after another in memory. This packing of the components generally 
increases the cost in time and instructions for field access considerably. The 
cost almost always outweighs the savings gained from packing a single 
record; packing pays only when many identical records are allocated simul
taneously. Packing is often restricted to partial words, leaving objects of 
word length (register length) or longer aligned. On byte-oriented machines 
it may pay to pack only the representation of sets to the bit level. 

Packing alters the access function of the components of a composite 
object: The selector must now specify not only the relative address of the 
component, but also its position within the storage cell. On some computers 
extraction of a partial word can be specified as part of an operand address, 
but usually extra instructions are required. This has the result that packed 
components of arrays, record and sets may not be accessible via normal 
machine addresses. They cannot, therefore, appear as reference parameters. 

Machine-dependent programs sometimes use records as templates for 
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hardware objects. For example, the assembly phase of a compiler might use 
a record to describe the encoding of a machine instruction. The need for a 
fixed layout in such cases violates the abstract nature of the record, and 
some additional mechanism (such as the representation specification of Ada) 
is necessary to specify this. If the language does not provide any special 
mechanism, the compiler writer can overload the concept of packing by 
guaranteeing that the fields of a packed record will be allocated in the order 
given by the programmer. 

Addresses are normally used to represent pointer values. Addresses rela
tive to the beginning of the storage area containing the objects are often 
sufficient, and may require less storage than full addresses. If, as in ALGOL 
68, pointers have bounded lifetime, and the correctness of assignments to 
reference variables must be checked at run time, we must add information 
to the pointer from which its lifetime may be determined. In general the 
starting address of the activation record (Section 3.3) containing the refer
ence object serves this purpose; reference objects of unbounded extent are 
denoted by the starting address of the stack. A comparison of these 
addresses for relative magnitude then represents inclusion oflifetimes. 

3.2.3. Expressions Because of the diversity of machine instruction sets, 
we can only give the general principles behind the mapping of expressions 
here. An important point to remember throughout the discussion, both here 
and in Section 3.2.4, is that the quality of the generated code is determined 
by the way it treats cases normally occurring in practice rather than by its 
handling of the general case. Moreover, local code characteristics have a 
greater impact than any optimizations on the overall quality. Table 3.5 
shows the static frequencies of operations in a large body of Pascal text. 
Note the preponderance of memory accesses over computation, but 
remember that indexing generally involves both multiplication and addition. 
Remember also that these are static frequencies; dynamic frequencies might 
be quite different because a program usually spends about 90% of its time in 
heavily-used regions accounting for less than 10% of the overall code. 

Single target machine instructions directly implement operations appear
ing in the structure tree only in the simplest cases (such as integer arith
metic). A node of the structure tree generally corresponds to a sequence of 
machine instructions, which may appear either directly in the generated 
code or as a subroutine call. If subroutines are used then they may be gath
ered together into an interpreter consisting of a control loop containing a 
large case statement. The operations are then simply selectors used to 
choose the proper case, and may be regarded as instructions of a new 
(abstract) machine. This approach does not really answer the question of 
realizing language elements on a target machine; it merely changes the tar
get machine, hopefully simplifying the problem. 

A closed sequence is invariably slower than the corresponding open 
sequence because of the cost of the transfers in and out. It would therefore 
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Table 3.5. Static Frequencies of Pascal Operators [Carter 1982] 

Structure Tree Operator Percent of All Operators 

Access a variable 27 
Assign 13 
Select a field of a record 9.7 
Access a value parameter 8.1 
Call a procedure 7.8 
Index an array (each subscript) 6.4 
Access an array 6. I 
Compare for equality (any operands) 2.7 
Access a variable parameter 2.6 
Add integers 2.3 
Write a text line 1.9 
Dereference a pointer variable 1.9 
Compare for inequality (any operands) 1.3 
Write a single value 1.2 
Construct a set 1.0 
not 0.7 
and 0.7 
Compare for greater (any operands) 0.5 
Test for an element in a set 0.5 
m M 
All other operators 3.8 

be used only if commensurate savings in space were possible. Some care 
must be taken in evaluating the tradeoffs, because both open and closed 
sequences usually involve setup code for the operands. It is easy to overlook 
this code, making erroneous assumptions about the operand locations, and 
thereby arrive at the wrong decision. Recall from Section 3.1.3 that it is 
sometimes possible to take advantage of unused operation codes to access 
closed instruction sequences. Depending upon the details of the hardware, 
the time overhead for this method may be either higher or lower than that of 
a conventional call. It is probably most useful for implementing facilities 
that might be provided by hardware. The typical example is floating point 
arithmetic on a microprocessor with integer operations only. A floating 
point operation usually involves a long sequence of instructions on such a 
machine (which may not even be capable of integer multiplication or divi
sion), and thus the entry/exit overhead is negligible. If the user later adds a 
floating-point chip, and controls it with the previously unused operation 
codes, no changes to the code generator are required. Even when different 
operation codes are used the changes are minimal. 

An object, label or procedure is addressable if its effective address can be 
expressed by the relevant access path of an instruction. For entities that are 
not addressable, additional operations and temporary storage are required 
to compute the effective address. The allowable combinations of operation 
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L RI,I 
A RI,] Result in RI 
M RO,K Multiplicand from RI, product to (RO,RI) 
D RO,L Dividend from (RO,RI) 

L 
A 
A 
SRDA 
D 

a) Code for the expression «i + j )*k /1) 

RO,I 
RO,] 
RO,K Result in RO 
RO,32 Extend to double, result in (RO,RI) 
RO,L Dividend from (RO,R 1) 

b) Code for the expression «i +j +k)/l) 

Figure 3.6. Optimum Instruction Sequences for the IBM 370 

and access function exert a very strong influence upon the code generation 
process because of this. On the Motorola 68000, for example, specification 
of the operation can be largely separated from selection of the access path, 
and operand addressability is almost independent of the operator. Many 
IBM 370 instructions, on the other hand, work only when the second 
operand is in a register. In other cases memory access is possible, but only 
via a base register without indexing. This leads to the problem that an 
operand may be addressable in the context of one operation but not in the 
context of another. 

When an instruction set contains such asymmetries, the simplest solution 
is to define the abstract machine for the source-to-target mapping with a 
uniform access function, reserving the resources (usually one or two regis
ters) needed to implement the uniform access function for any instruction. 
Many code sequences require additional resources internally in any event. 
These can often be standardized across the code sequences and used to pro
vide the uniform access function in addition. The only constraint on 
resources reserved for the uniform access function. is that they have no 
inter-sequence meaning; they can be used arbitrarily within a sequence. 

Consider the tree for an expression. The addressability of entities 
described by leaves is determined by the way in which the environment is 
encoded in the machine state. (We shall discuss possibilities for environ
ment encoding in Section 3.3.) For entities described by interior nodes, 
however, the addressability depends upon the code sequence that imple
ments the node. It is often possible to vary a code sequence, without chang
ing its cost, to meet the addressability requirements of another node. Figure 
3.6 shows a typical example. Here the constraints of the IBM 370 instruc
tion set require that a multiplicand be in the odd-numbered register of a 
pair, and that the even-numbered register of that pair be free. Similarly, the 
optimum mechanism for converting a single-length value to double-length 
requires its argument to be in the even register of the pair used to hold its 
result. An important part of the source-to-target mapping design is the 
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determination of the information made available by a node to its neighbors 
in the tree, and how this information affects the individual code sequences. 

Interior nodes whose operations yield addresses, such as indexing and 
field selection nodes, mayor may not result in code sequences. Addressabil
ity is the key factor in this decision: No code is required if an access func
tion describing the node's result can be built, and if that access function is 
acceptable to the instruction using the result. The richer the set of access 
functions, the more nodes can be implemented simply by access function 
restructuring. In fact, it is often possible to absorb nodes describing normal 
value operations into access functions that use their result. Figure 3.7 is a 
tree for b[i + 12]. As we shall see in Section 3.3, the local byte array b might 
have access function 36(13) on an IBM 370 (here register 13 gives the base 
address of the local contour, and 36 is the relative byte location of b within 
that contour). After loading the value of i into register 1, the effects of the 
index and addition nodes can be combined into the access function 48(13,1). 
This access function (Figure 3.3a) can be used to obtain the second argu
ment in any RX-format instruction on the IBM 370. 

Some machines incorporate automatic incrementing or decrementing of a 
register content into certain access functions. These facilities are easy to use 
in source-to-target mappings for special purposes such as stack manipula
tion. Their general use, for example in combining the increment of a loop 
control variable with the last use of that variable as an index, is much more 
difficult because it leads to 'combinatorial explosion' in the number of cases 
that the code generator must examine. Such optimizations should be pro
vided by a separate process (peephole optimization), rather than being 
incorporated into the source-to-target mapping. 

Many Boolean expressions occur in contexts such as conditional state
ments and loops, where the result is used only to determine the flow of con
trol. Moreover, most of these expressions either are relations themselves or 
are composed of relations. On the majority of computers a relation is 

Figure 3.7. Tree for a Typical Array Access 
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if (a <b) and (c =d) or (e >!) then statement; 
a) A conditional 

L 
C 
BNL 
L 
C 
BEQ 

LlO L 
C 
BNH 

RI,a 
RI,b 
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RI,c 
RI,d 
Ll 
RI,e 
RI,! 
L2 

Note condition reversal here 

Condition is not reversed here 

Reversed 
L I Code for statement 
L2 Code following the conditional 

b) IBM 370 code corresponding to (a) 

Figure 3.8. Jump Cascades 

evaluated by performing a comparison or arithmetic operation and then 
executing a transfer of control based upon the result. The upshot is that 
such expressions can be implemented most conveniently by omitting 
Boolean computations completely! Figure 3.8 illustrates the concept, which 
is called a jump cascade. 

The concept of a jump cascade is completely independent of the concept 
of short-circuit evaluation discussed in Section 2.3. It appears that Figure 
3.8 is performing short-circuit evaluation because, for example, c is not 
fetched unless the value of a is less than that of b. But fetching a simple 
variable has no side effect, and hence the short-circuit evaluation is not 
detectable. If c were a parameterless function with a side effect then it 
should be invoked prior to the start of the code sequence of Figure 3.8b, and 
the c in that code sequence would represent temporary storage holding the 
function result. Thus we see that questions of short-circuit evaluation affect 
only the relative placement of code belonging to the jump cascade and code 
for evaluating the operands of the relations. 

3.2.4. Control Structures A node representing a control structure gen
erally results in several disjoint code sequences rather than a single code 
sequence. The meanings of and relationships among the sequences depend 
primarily upon the source language, and hence general schemata can be 
used to specify them. Each of the disjoint sequences then can be thought of 
as an abstract machine operation with certain defined properties and imple
mented individually. 

The goto statement is implemented by an unconditional jump instruction. 
If the jump leaves a block or procedure then additional operations, dis
cussed in Section 3.3, are needed to adjust the state. In expression-oriented 
languages, a jump out of an expression may require adjustment of a 
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condition( e, LI ,L2) 
LI: clause 
L2: 

a) if e then clause; 

condition( e,L 1 ,L2) 
LI: clausel 

GOTOL 
L2: clause 2 

L: 
b) if e then clause 1 else clause 2 ; 

select( e, k 1 ,L I, ... , kn ,Ln,LO) 
LI: clausel 

GOTOL 

Ln: clausen 
GOTOL 

LO: clause 0 

L: 
c) case e of kl :clausel; ... ; kn :clausen else clauseo; 

GOTOL 
LI: clause 
L: condition(e,LI,L2) 
L2: 

d) while e do clause; 

LI: clause 

L2: 
condition( e, L2,L 1) 

e) repeat clause until e 

forbegin(i, e l, e2, e3) 
clause 
forend(i, e2, e3) 

f) for i : =e 1 by e2 to e3 do clause; 

Figure 3.9. Implementation Schemata for Common Control Structures 
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hardware stack used for temporary storage of intermediate values. This 
adjustment is not necessary when the stack is simply an area of memory that 
the compiler manages as a stack, computing the necessary offsets at compile 
time. (Unless use of a hardware stack permits cheaper access functions, it 
should be avoided for this reason.) 

Schemata for common control structures are given in Figure 3.9. The 
operation 'condition( expression,true.-iabel,false.-iabel), embodies the jump 
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target: array [kmin .. kmax] of address; 
k: integer; 
k:=e; 
if k > kmin and k < kmax then goto target [k] else goto L 0; 

a) General schema for 'select' (Figure 3.9c) 

LA 
LOOP ST 

L 
LA 
LA 
BXLE 

1, e I 
l,i 

1, i 
2,e2 
3,e3 
1,2,LOOP 

el = constant < 212 

Body of the clause 

e2 = constant < 212 
e3 = constant < 212 

b) IBM 370 code for special-case forbegin ... forend 

i:=el; t:=e3; 
if i > t then goto 13 else goto 12; 
lI:i:=i+l; 
12: ... (* Body of the clause *) 
if i < t then goto II ; 
13: 

c) Schema for forbegin ... forend when the step is I 

Figure 3.10. Implementing Abstract Operations for Control Structures 

cascade discussed in Section 3.2.3. The precise mechanism used to imple
ment the analogous 'select' operation depends upon the set {kl ... km }. Let 
k min be the smallest and k max the largest values in this set. If 'most' of the 
values in the range [kmin' kmaxl are members of the set then 'select' is imple
mented as shown in Figure 3.l0a. Each element of target that does not 
correspond to an element of {k I ... km } is set to 'LO'. When the selector set 
is sparse and its span is large (for example, the set 0, 5000, 10000), a decision 
tree or perfect hash function should be used instead of an array. The choice 
of representation is strictly a space/time tradeoff, and must be made by the 
code generator for each case clause. The source-to-target mapping must 
specify the parameters to be used in making this choice. 

By moving the test to the end of the loop in Figure 3.9d, we reduce by 
one the number of jumps executed each time around the loop without 
changing the total number of instructions required. Further, if the target 
machine can execute independent instructions in parallel, this schema pro
vides more opportunity for such parallelism than one in which the test is at 
the beginning. 

'Forbegin' and 'forend' can be quite complex, depending upon what the 
compiler can deduce about the bounds and step, and how the language 
definition treats the controlled variable. As an example, suppose that the 
step and bounds are constants less than 212, the step is positive, and the 



3.2. Representation of Language Elements 67 

language definition states that the value of the controlled variable is 
undefined on exit from the loop. Figure 3.lOb shows the best IBM 370 
implementation for this case, which is probably one of the most common. 
(We assume that the body of the loop is too complex to permit retention of 
values in registers.) Note that the label LOOP is defined within the 'forbe
gin' operation, unlike the labels used by the other iterations in Figure 3.9. If 
we permit the bounds to be general expressions, but specify the step to be I, 
the general schema of Figure 3.lOc holds. This schema works even if the 
value of the upper bound is the largest representable integer, since it does 
not attempt to increment the controlled variable after reaching the upper 
bound. More complex cases are certainly possible, but they occur only 
infrequently. It is probably best to implement the abstract operations by 
subroutine calls in those cases (Exercise 3.9). 

Procedure and function invocations are control structures that also mani
pulate the state. Development of the instruction sequences making up these 
invocations involves decisions about the form of parameter transmission, 
and the construction of the activation record - the area of memory contain
ing the parameters and local variables. 

A normal procedure invocation, in its most general form, involves three 
abstract operations: 
• Callbegin: Obtain access to the an activation record of the procedure. 
• Transfer: Transfer control to the procedure. 
• Callend: Relinquish access to the activation record of the procedure. 
Argument computation and transmission instructions are placed between 
'callbegin' and 'transfer'; instructions that retrieve and store the values of 
result parameters lie between 'transfer' and 'callend'. The activation record 
of the procedure is accessible to the caller between 'callbegin' and 'callend'. 

In simple cases, when the procedure calls no other procedures and does 
not require complex parameters, the activation record can be deleted 
entirely and the parameters treated as local variables of the environment 
statically surrounding the procedure declaration. The invocation then 
reduces to a sequence of assignments to these variables and a simple subrou
tine jump. If, as in the case of elementary functions, only one or two param
eters are involved then they can be passed in registers. Note that such 
special treatment leads to difficulties if the functions are invoked as formal 
parameters. The identity of the procedure is not fixed under those cir
cumstances, and hence special handling of the call or parameter transmis
sion is impossible. 

Invocations of formal procedures also cause problems if, as in ALGOL 
60, the number and types of the parameters is not statically specified and 
must be verified at execution time. These dynamic checks require addi
tional instructions not only at the call site, but also at the procedure entry. 
The latter instructions must be avoided by a normal call, and therefore it is 
useful for the procedure to have two distinct entry points - one with and 
one without the tests. 
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Declarations of local variables produce executable code only when some 
initialization is required. For dynamic arrays, initialization includes bounds 
computation, storage allocation, and construction of the array descriptor. 
Normally only the bounds computation would be realized as in-line code; a 
library subroutine would be invoked to perform the remaining tasks. 

At least for test purposes, every variable that is not explicitly initialized 
should be implicitly assigned an initial value. The value should be chosen 
so that its use is likely to lead to an error report; values recognized as illegal 
by the target machine hardware are thus best. Under no circumstances 
should 0 be used for implicit initialization. If it is, the programmer will too 
easily overlook missing explicit initialization or assume that the implicit ini
tialization is a defined property of the language and hence write incorrect 
programs. 

Procedure and type declarations do not usually lead to code that is exe
cuted at the site of the declaration. Type declarations only result in machine 
instructions if array descriptors or other variables must be initialized. As 
with procedures, these instructions constitute a subprogram that is not called 
at the point of declaration. 

ALGOL 68 identity declarations of the form m id = expression are con
sistently replaced by initialized variable declarations m id': = expression. 
Here id' is a new internal name, and every applied occurrence of id is con
sistently replaced by id' i. The initialization remains the only assignment 
to id'. Simplification of this schema is possible when the expression can be 
evaluated at compile time and all occurrences of id replaced by this value. 

The same schema describes argument transmission for the reference and 
strict value mechanisms, in particular in ALGOL 68. Transmission of a 
reference parameter is implemented by initialization of an internal reference 
variable: ref m parameter =argument becomes ref m variable: =argument. 

We have already met the internal transformation used by the value and 
name mechanisms in Section 2.5.3. In the result and value/result mechan
isms, the result is conveniently assigned to the argument after return. In this 
way, transmission of the argument address to the procedure is avoided. 
When implementing value/result transmission for FORTRAN, one should 
generate the result assignment only in the case that the argument was a vari
able. (Note that if the argument address is transmitted to the procedure then 
the caller must always treat the argument as a variable. If the programmer 
uses a constant, the compiler must either flag it as an error or move the con
stant value to a temporary storage location and transmit the address of that 
temporary.) 

For function results, the compiler generally produces temporaries of suit
able type at the call site and in the function. Within the function, the result 
is assigned to the local temporary. Upon return, as in the case of a result 
parameter, the local temporary is copied into the global temporary. The 
global temporary is only needed if the result cannot be used immediately. 
(An example of this case is the value ofcos(x) in cos(x)+sin(y).) 
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Results delivered by function procedures can, in simple cases, be returned 
in registers. (For compatibility with jump cascades, it may be useful for a 
Boolean function to encode its result by returning to two different points.) 
Transmission of composite values as function results can be difficult, espe
cially when these are arrays whose sizes are not known to the caller. This 
means that the caller cannot reserve storage for the result in his own 
environment a priori; as a last resort such objects may be left on the heap 
(Section 3.3.3). 

3.3. Storage Management 

Until now we have dealt with the representation of single objects in 
memory; in this section we shall discuss management of storage for collec
tions of objects, including temporary variables, during their lifetimes. The 
important goals are the most economical use of memory and the simplicity 
of access functions to individual objects. Source language properties govern 
the possible approaches, as indicated by the following questions (see also 
Section 2.5.2): 
• Is the exact number and size of all objects known at compilation time? 
• Is the extent of an object restricted, and what relationships hold between 

the extents of distinct objects (e.g. are they nested)? 
• Does the static nesting of the program text control a procedure's access to 

global objects, or is access dependent upon the dynamic nesting of calls? 

3.3.1. Static Storage Management We speak of static storage manage
ment if the compiler can provide fixed addresses for all objects at the time 
the program is translated (here we assume that translation includes binding), 
i.e. we can answer the first question above with 'yes'. Arrays with dynamic 
bounds, recursive procedures and the use of anonymous objects are prohi
bited. The condition is fulfilled for languages like FORTRAN and BASIC, 
and for the objects lying on the outermost contour of an ALGOL 60 or Pas
cal program. (In contrast, arrays with dynamic bounds can occur even in 
the outer block of an ALGOL 68 program.) 

If the storage for the elements of an array with dynamic bounds is 
managed separately, the condition can be forced to hold in this case also. 
That is particularly interesting when we have additional information that 
certain procedures are not recursive, for example because recursivity must 
be noted specially (as in PL/l) or because we have determined it from 
analysis of the procedure calls. We can then allocate storage statically for 
contours other than the outermost. 

Static storage allocation is particularly valuable on computers that allow 
access to any location in main memory via an absolute address in the 
instruction. Here, static storage corresponds exactly to the class of objects 
with direct access paths in the sense of Section 3.2.2. If, however, it is un-
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known during code generation whether or not an object is directly address
able (as on the IBM 370) because this depends upon the final addressing 
carried out during binding, then we must also access statically-allocated 
objects via a base register. The only advantage of static allocation then con
sists of the fact that no operations for storage reservation or release need be 
generated at block or procedure entry and exit. 

33.2. Dynamic Storage Management Using a Stack As we have 
already noted in Section 2.5.2, all declared values in languages such as Pas
cal and SIMULA have restricted lifetimes. Further, the environments in 
these languages are nested: The extent of all objects belonging to the con
tour of a block or procedure ends before that of objects from the dynami
cally enclosing contour. Thus we can use a stack discipline to manage these 
objects: Upon procedure call or block entry, the activation record contain
ing storage for the local objects of the procedure or block is pushed onto the 
stack. At block end, procedure return or a jump out of these constructs the 
activation record is popped off of the stack. (The entire activation record is 
stacked, we do not deal with single objects individually!) 

An object of automatic extent occupies storage in the activation record of 
the syntactic construct with which it is associated. The position of the object 
is characterized by the base address, b, of the activation record and the rela
tive location (offset), R, of its storage within the activation record. R must 
be known at compile time but b cannot be known (otherwise we would have 
static storage allocation). To access the object, b must be determined at run 
time and placed in a register. R is then either added to the register and the 
result used as an indirect address, or R appears as the constant in a direct 
access function of the form 'register + constant'. 

Every object of automatic extent must be decomposable into two parts, 
one of which has a size that can be determined statically. (The second part 
may be empty.) Storage for the static parts is allocated by the compiler, and 
makes up the static portion of the activation record. (This part is often 
called the first order storage of the activation record.) When a block or pro
cedure is activated, the static part of its activation record is pushed onto the 
stack. If the activation record contains objects whose sizes must be deter
mined at run time, this determinatiQn is carried out and the activation 
record extended. The extension, which may vary in size from activation to 
activation, is often called the second order storage of the activation record. 
Storage within the extension is always accessed indirectly via information 
held in the static part; in fact, the static part of an object may consist solely 
of a pointer to the dynamic part. 

An array with dynamic bounds is an example of an object that has both 
static and dynamic parts. In most languages, the number of dimensions of 
an array is fixed, so the size of the array descriptor is known at compile time. 
Storage for the descriptor is allocated by the compiler in the static part of the 
activation record. On encountering the declaration during execution, the 
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bounds are evaluated and the amount of storage needed for the array ele
ments is determined. The activation record is extended by this amount and 
the array descriptor is initialized appropriately. All accesses to elements of 
the array are carried out via the array descriptor. 

We have already noted that at compile time we do not know the base 
address of an activation record; we know only the range to which it belongs. 
From this we must determine the base address, even in the case where recur
sion leads to a number of activation records belonging to the same range. 
The range itself can be specified by its block nesting depth, bnd, defined 
according to the following rules based on the static structure of the program: 
• The main program has bnd = I . 
• A range is given bnd = t + I if and only if the immediately enclosing range 

has bnd =t. 

End = t indicates that during execution of the range the state consists of a 
total of t nested contours. 

If, as in all ALGOL-like languages, the scopes of identifiers are statically 
nested then at every point in the execution history of a program there is at 
most one activation record accessible at a given nesting depth. The base 
address of a particular activation record can then be found by noting the 
corresponding nesting depth at compile time and setting up a mapping 
s :nesting depth .... base address during execution. The position of an object 
in the fixed part of the activation record is fully specified by the pair (bnd, 
R); we shall therefore speak of 'the object (bnd, R)'. 

The mapping s changes upon range entry and exit, procedure call and 
return, and jumps out of blocks or procedures. Updating s is thus one of the 
tasks (along with stack pointer updating and parameter or result transmis
sion) of the state-altering operations that we met in Section 2.5.2. We shall 
describe them semi-formally below, assuming that the stack is described by: 

k: array [0 .. upper _limit 1 of storagLcell; k_top: 0 .. upper _limit; 

We assume further that a storage cell can hold exactly one address, and we 
shall treat address variables as integer variables with which we can index k. 

The contour nesting and pointer to dynamic predecessor required by the 
contour model are represented by address values stored in each activation 
record. Together with the return address, and possibly additional informa
tion depending upon the implementation, they constitute the 'administrative 
overhead' of the activation record. A typical activation record layout is 
shown in Figure 3.11; the corresponding state change operations are given 
in Figure 3.12. We have omitted range entry lexit operations. As noted in 
Section 2.5.2, procedures and blocks can be treated identically by regarding 
a block as a parameterless procedure called 'on the spot', or contours 
corresponding to blocks can be eliminated and objects lying upon them can 
be placed on the contour of the enclosing procedure. If blocks are to be 
given separate activation records, the block entry lexit operations are identi
cal to those for procedures except that no return address is saved on entry 



72 Chapter 3. Properties of Real and Abstract Machines 

Second-order storage 

2 Return Address First-order storage 

I Pointer to Dynamic Predecessor 
o Pointer to Static Predecessor 

Figure 3.11. Typical Activation Record Layout 

k [kJop]: =(* static predecessor of the procedure *); 
k [k JOp + I]: = ep ; (* dynamic predecessor *) 
k[kJop +2]: =ip; (* return address *) 
ep : = k JOp ; (* current environment *) 
k JOp : = k JOp +size; (* first free location *) 
ip: =(* procedure code address *) 

a) Procedure entry 

kJop:=ep; 
ep: =k[kJop + I]; (* back to the dynamic predecessor *) 
ip: =k[kJop +2]; 

b) Procedure exit 

kJop:=ep; 
ep: =(* target environment of the jump *); 
while k[kJop + l]:f: ep do 

kJop: =k[kJop + 1]; (* leave all intermediate environments *) 
ip : = (* target address of the jump *); 

c) Jump out of a procedure 

Figure 3.12. Environment Change Operations 

and ip is not set on exit. Jumps out of blocks are treated exactly as shown in 
Figure 3.l2c in any case. 

The procedure and jump addresses indicated by the comments in Figures 
3.12a and c are supplied by the compiler; the environment pointers must be 
determined at run time. If a procedure is invoked directly, by stating its 
identifier, then it must lie within the current environment and its environ
ment pointer can be obtained from the stack by following the chain of static 
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predecessors until the proper block nesting depth is reached: 

environment: =ep ; 
for i : =bndcaller downto bndprocedure do 

environment: =k [environment]; 
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The value (bndcaller -bndprocedure ) is known at compile time and is usually 
small, so the loop is sometimes 'unrolled' to a fixed sequence of 
environment: =k [environment] operations. 

When a procedure is passed as a parameter and then the parameter is 
called, the static predecessor cannot be obtained from the stack because the 
called procedure may not be in the environment of the caller. (Figures 2.3 
and 2.5 illustrate this problem.) Thus a procedure parameter must be 
represented by a pair of addresses: the procedure entry point and the activa
tion record address for the environment statically enclosing the procedure 
declaration. This pair is called a closure. When a procedure parameter is 
invoked, the address of the static predecessor is obtained from the closure 
that represents the parameter. Figure 3.13 shows the stack representing the 
contours of Figure 2.5; note the closures appearing in the activation records 
for procedure p. 

Jumps out of a procedure also involve changing the state (Figure 3.12c). 
The mechanism is essentially the same as that discussed above: If the label 
is referenced directly then it lies in the current environment and its environ
ment pointer can be obtained from the stack. A label variable or label 
parameter, however, must be represented by a closure and the environment 
pointer obtained from that closure. 

Access to any object in the environment potentially involves a search 
down the chain of static predecessors for the pointer to the activation record 
containing that object. In order to avoid the multiple memory accesses 
required, a copy of the addresses can be kept in an array, called a display, 
indexed by the block nesting depth. Access to the object (bnd, R) is there
fore provided by display [bnd] + R; we need only a single memory access, 
loading display [bnd] into a base register, to set up the access function. 

The Burroughs 600017000 series computers have ·a 32-register display 
built into the hardware. This limits the maximum block nesting depth to 32, 
which is no limitation in practice. Even a restriction to 16 is usually no 
problem, but 8 is annoying. Thus the implementation of a display within 
the register set of a multiple-register machine is generally not possible, 
because it leads to unnatural restrictions on the block nesting depth. The 
display can be allocated to a fixed memory location, or we might keep only 
a partial display (made up of the addresses of the most-frequently accessed 
activation records) in registers. Which activation record addresses should be 
kept is, of course, program-dependent. The current activation record 
address and that of the outermost activation record are good choices in Pas
cal; the latter should probably be replaced with that of the current module 
in an implementation of any language providing modules. 
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location after l:f 

12 

5 

;=0 

11 (reference to i) 

5 (q's environment) 
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entry point address for empty 
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0 
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0 

Activation record for procedure q 

Activation record for procedure p 

Activation record for procedure p 

Activation record for procedure 
outer 

Note: 

k_top = 22 
ep = 19 
ip = address of label 2 

Figure 3.13. Stack Configuration Corresponding to Figure 2.5 

If any sort of display, partial or complete, is used then it must be kept up 
to date as the state changes. Figure 3.14 shows a general procedure for 
bringing the display into synchronism with the static chain. It will alter only 
those elements that need alteration, halting when the remainder is 
guaranteed to be correct. In many cases the test for termination takes more 
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procedure update --tiisplay (bndnew, bndold : integer; a : address): 
(* Make the display consistent with the static chain 

On entry-
bndnew = nesting depth of the new activation record 
a = address of the new activation record 
bndold = nesting depth of the current activation record 

On exit-
The display specifies the environment of the new contour 

*) 
var 

i: integer; 
h: address; 

begin (* update _display *) 
i:=bndnew; 
h:=a; 
while display [i]* h or i > bndold do 

begin 
display[i]: =h; 
i:=i-l;h:=k[h] 
end 

end; (* updatLdisplay *) 

Figure 3.14. Setting the Display 
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time than it saves, however, and a more appropriate strategy may be simply 
to reload the entire display from the static chain. 

Note that the full generality of update _display is needed only when 
returning from a procedure or invoking a procedure whose identity is unk
nown. If a procedure at level bndnew in the current addressing environment 
is invoked, the single assignment disp/ay[bndnew]: =a suffices. (Here a is 
the address of the new activation record.) Display manipulation can become 
a significant overhead for short procedures operating at large nesting depths. 
Recognition of special cases in which this manipulation can be avoided or 
reduced is therefore an important part of the optimization of such pro
cedures. 

In SIMULA and Ada, as in all languages that contain coroutines and 
concurrently-executing tasks, activation record creation and destruction 
need not follow a strict stack discipline. Each coroutine or task corresponds 
to a set of activation records, and these sets are growing and shrinking 
independently. Thus each coroutine or task requires an independent stack, 
and these stacks themselves follow a stack discipline. The result is called a 
tree or cactus stack and is most easily implemented in a segmented virtual 
memory. Implementation in a linear memory is possible by fixing the sizes 
of the component stacks, but this can only be done when limitations can be 
placed upon recursion depth and spawning of further tasks. 
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3.3.3. Dynamic Storage Management Using a Heap If none of the 
questions stated at the beginning of Section 3.3 lead to sufficient reduction in 
the lifetime and visibility of objects, the last resort is to allocate storage on a 
heap: The objects are allocated storage arbitrarily within an area of memory. 
Their addresses are determined at the time of allocation, and they can only 
be accessed indirectly. Examples of objects requiring heap storage are 
anonymous objects such as those created by the Pascal new function and 
objects whose size changes unpredictably during their lifetime. (Linked lists 
and the flexible arrays of ALGOL 68 belong to the latter class.) 

Notice that the static and dynamic chain pointers were the only intercon
nections among the activation records discussed in Section 3.3.2. The use of 
a stack storage discipline is not required, but simply provides a convenient 
mechanism for reclaiming storage when a contour is no longer relevant. By 
storing the activation records on a heap, we broaden the possibilities for 
specifying the lifetimes of objects. This is the way in which the uniform 
retention strategy mentioned at the end of Section 2.5.2 is implemented. 
Storage for an activation record is released only if the program fragment 
(block, procedure, class) to which it belongs has been left and no pointers to 
objects within this activation record exist. 

Heap allocation is particularly simple if all objects required during exe
cution can fit into the designated area at the same time. In most cases, how
ever, this is not possible. Either the area is not large enough or, in the case 
of virtual storage, the working set becomes too large. A detailed discussion 
of heap storage management policies is beyond the scope of this book (see 
Section 3.5 for references to the relevant literature). We shall only sketch 
three possible recycling strategies for storage and indicate the support 
requirements placed upon the compiler by these strategies. 

If a language provides an explicit 'release' operation, such as Pascal's 
dispose or PL /I's free, then heap storage may be recycled by the user. This 
strategy is simple for the compiler and the run-time system, but it is unsafe 
because access paths to the released storage may still exist and be used even
tually to access recycled storage with its earlier interpretation. The release 
operation, like the allocation operation, is almost invariably implemented as 
a call on a support routine. Arguments that describe the size and alignment 
of the storage area must be supplied to these calls by the compiler on the 
basis of the source type of the object. 

Automatic reclamation of heap storage is possible only if the designers of 
a language have considered this and made appropriate decisions. The key is 
that it must be possible to determine whether or not a variable contains an 
address. For example, only a variable of pointer type may contain an 
address in a Pascal program. A special value, nil, indicates the absence of a 
pointer. When a pointer variable is created, it could be initialized to nil. 
Unfortunately, Pascal also provides variant records and does not require 
such records to have a tag field indicating which variant is in force. If one 
variant contains a pointer and another does not, it is impossible to determine 
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whether or not the corresponding variable contains a pointer. Detailed dis
cussion of the tradeoffs involved in such a decision by a language designer is 
beyond the scope of this text. 

Storage can be recycled automatically by a process known as garbage col
lection, which operates in two steps: 
• Mark. All accessible objects on the heap are marked as being accessible. 
• Collect. All heap storage is scanned. The storage for unmarked objects is 

recycled, and all marks are erased. 
This has the advantage that no access paths can exist to recycled storage, but 
it requires considerable support from the compiler and leads to periodic 
pauses in program execution. In order to carry out the mark and collect 
steps, it must be possible for the run-time system to find all pointers into the 
heap from outside, find all heap pointers held within a given object on the 
heap, mark an object without destroying information, and find all heap 
objects on a linear sweep through the heap. Only the questions of finding 
pointers affect the compiler; there are three principal possibilities for doing 
this: 
1. The locations of all pointers are known beforehand and coded into the 

marking algorithm. 
2. Pointers are discovered by a dynamic type check. (In other words, by 

examining a storage location we can discover whether or not it contains a 
pointer.) 

3. The compiler creates a template for each activation record and for the 
type of every object that can appear on the heap. Pointer locations and 
(if necessary) the object length can be determined from the template. 

Pointers in the stack can also be indicated by linking them together into a 
chain, but this would certainly take too much storage on the heap. 

Most LISP systems use a combination of (I) and (2). For (3) we must 
know the target type of every pointer in order to be able to select the proper 
template for the object referenced. This could be indicated in the object 
itself, but storage would be saved if the template carried the number or 
address of the proper template as well as the location of the pointer. In this 
manner we also solve the problem of distinguishing a pointer to a record 
from the pointer to its first component. Thus the template for an ALGOL 
68 structure could have the following structure: 

• Length of the structure (in storage units) 
• For each storage unit, a Boolean value 'reference' 
• For each reference, the address of the template of the referenced type. 

If dynamic arrays or variants are allowed in records then single Boolean 
values indicating the presence of pointers are no longer adequate. In the first 
case, the size and number of components are no longer known statically. 
The template must therefore indicate the location of descriptors, so that they 
can be interpreted by the run-time system. In the second case the position of 
the variant selector and the different interpretations based upon its value 
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must be known. If, as in Pascal, variant records without explicit tag fields 
are allowed, then garbage collection is no longer possible. 

Garbage collection also requires that all internal temporaries and regis
ters that can contain references must be identified. Because this is very 
difficult in general it is best to arrange the generated code so that, whenever 
a garbage collection might occur, no references remain in temporaries or 
registers. 

The third recycling strategy requires us to attach a counter to every object 
in the heap. This counter is incremented whenever a reference to the object 
is created, and decremented whenever a reference is destroyed. When the 
counter is decremented to its initial value of 0, storage for the object can be 
recycled because the object is obviously inaccessible. Maintenance of the 
counters results in higher administrative and storage costs, but the overheads 
are distributed. The program simply runs slower overall; it does not period
ically cease normal operation to reclaim storage. Unfortunately, the refer
ence counter method does not solve all problems: 
• Reference counts in a cyclic structure will not become 0 even after the 

structure as a whole becomes inaccessible . 
• If a counter overflows, the number of references to the object is lost. 

A complete solution requires that the reference counters be backed up by a 
garbage collector. 

To support storage management by reference counting, the compiler 
must be able to identify all assignments that create or destroy references to 
heap objects. The code generated for such assignments must include 
appropriate updating of the reference counts. Difficulties arise when variant 
records may contain references, and assignments to the tag field identifying 
the variant are allowed: When such an assignment alters the variant, it des
troys the reference even though no direct manipulation of the reference has 
taken place. Similar hidden destruction occurs when there is a jump out of a 
procedure that leads to deletion of a number of activation records contain
ing references to heap objects. Creation of references is generally easier to 
keep track of, the most difficult situation probably being assignment of a 
composite value containing references as minor components. 

3.4. Mapping Specifications 
The results of the analysis discussed in the earlier sections of this chapter 
should be embodied in a document called a mapping specification (Figure 
3.15) for the particular source language/target machine pair. It should not 
only give the final results, but also the reasoning that led to them. Even 
when a particular choice was obvious, a brief statement of its basis should be 
made. For example, one normally chooses the representation of integer 
values to be that assumed by the hardware 'add integer' instruction; a single 
sentence stating this fact should appear in the specification. 
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L TO M MAPPING SPECIFICATION 

1. The Abstract M 
1.1. Storage Classes 

One subsection per storage class (see Section 3.1.1). 
1.2. Access Paths 

One subsection per access path (see Section 3.1.2). 
1.3. Instructions 

One subsection per operation class (see Section 3.1.3). 

2. Storage Mapping 
2.1. Primitive Data Types 

One subsection per primitive data type of L (see Section 3.2.1). 
2.2. Composite Data Types 

One subsection per composite data type of L (see Section 3.2.2). 
2.3. Computation State 
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One subsection describing register usage, one describing the use of 
space for code and constants, and one per storage area type (e.g. 
static, stack, heap - see Section 3.3) required by L. 

3. Operation Mapping 
3.1. Routine Invocation 

One subsection per operation (e.g. procedure call, procedure entry, 
formal call, jump out of a procedure) required by L. Block 
entry lexit should also be covered when L requires that these opera
tions manipulate the computation state. 

3.2. Control Structures 
One subsection per control structure of L (see Section 3.2.4). 

3.3. Expressions 
3.3.1. Attributes 

Information to be exchanged among the nodes of an expres
sion (see Section 3.2.3). 

3.3.2. Encodings 
Encoding of each L operation as a sequence of instructions 
and access paths from the abstract M, as a function of the 
information exchanged among expression nodes. 

Figure 3.15. Outline ofa Mapping Specification 

Section 1 of the mapping specification relies heavily on the manu
facturer's manual for the target machine. It describes the machine as it will 
be seen by the code generator, with anomalies smoothed out and omitted 
operations (to be implemented by code sequences or subroutines) in place. 
The actual details of realizing the abstraction might be included, or this 
information might be the subject of a separate specification. We favor the 



80 Chapter 3. Properties of Real and Abstract Machines 

latter approach, because the abstraction should be almost entirely language
independent. It is clear that the designer must decide which facilities to 
include in the abstract machine and which to implement as part of the 
operation mapping. We cannot give precise criteria for making this choice. 
(The problem is one of modular decomposition, with the abstraction consti
tuting a module and the operation encoding using the facilities of that 
module.) 

The most difficult part of Section 2 of the mapping specification is Section 
2.3, which is tightly coupled to Section 3.1. Procedure mechanisms advo
cated by the manufacturer are often ill-suited to the requirements of a given 
language. Several alternative mechanisms should be explored, and detailed 
cost estimates prepared on the basis of some assumptions about the relative 
numbers of calls at various static nesting depths and accesses to variables. It 
is imperative that these assumptions be carefully stated, even though there is 
only tenuous justification for them; unstated assumptions lead to conflicting 
judgements and usually to a suboptimal design. Also, if measurements later 
indicate that the assumptions should be changed, the dependence of the 
design upon them is clearly stated. 

Control structure implementation can be described adequately using 
notation similar to that of Figure 3.9. When a variety of information is 
exchanged among nodes of an expression, however, description of the 
encoding for each node is complicated. The best notation available seems to 
be the extended-entry decision table, which we discuss in this context in Sec
tion 10.3.2. 

A mapping specification is arrived at by an iterative process, one that 
should be allotted sufficient time in scheduling a compiler development pro
ject. The cost is dependent upon the complexities of both the source 
language and the target machine. In one specific case, involving a Pascal 
implementation for the Motorola 68000, two man-months of effort was 
required over a six-month period. One person should be responsible for the 
specification, but at least one other (and preferably several) should be 
involved in frequent critical reviews. The objective of these reviews should 
be to test the reasoning based upon the stated assumptions, making certain 
that it has no flaws. Challenging the assumptions is less important unless 
specific evidence against them is available. 

Sections 2.1 and 2.2 of the mapping specification should probably be 
written first. They are usually straightforward, and give a basis on which to 
build. Sections 2.3 and 3.l should be nnt. As indicated earlier, these sec
tions interact strongly and involve difficult decisions. The remainder of Sec
tion 3 is tedious, but should be carried out in full detail. It is only by being 
very explicit here that one learns the quirks and problems of the machine, 
and discovers the flaws in earlier reasoning about storage mapping. Section 
1 should be done last, not because it is the least important, but because it is 
basically a modification of the machine manual in the light of the needs 
generated by Section 3. 
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3.5. Notes and References 

The question of mapping programming language constructs onto hardware 
has been considered piecemeal by a number of authors. Tanenbaum [1976] 
gives a good overview of the issues involved, and further information can be 
gleaned from specific abstract machine designs [Richards 1971, Tanenbaum 
1978, Waite 1977]. Floating point abstractions are discussed by Brown 
[1977, 1981] and Cody [1980], and a standard has been defined by a commit
tee of IEEE [IEEE 1981]. McLaren [1970] provides a comprehensive dis
cussion of data structure packing and alignment. Randell and Russell 
[1964] detail the implementation of activation record stacks and displays in 
the context of ALGOL 60; Hill [1976] updates this treatment to handle the 
problems of ALGOL 68. 

Static storage management is not the only possible strategy for FOR
TRAN implementations. Both the 1966 and 1978 FORTRAN standards 
restrict the extent of objects, and thus permit dynamic storage management 
via a stack. We have not pursued the special storage allocation problems of 
COMMON blocks and EQUIVALENCE statements here; the interested 
reader is referred to Chapter to of the book by Aho and Ullman [1977a] and 
the original literature cited there. 

Our statements about the probability of access to objects at various nest
ing depths are debatable because no really good statistics exist. These pro
babilities are dependent upon the hierarchical organization of the program, 
and may vary considerably between applications and system programs. 

The fact that a procedure used as a parameter must carry its environment 
with it appears in the original treatment of LISP [McCarthy 1960]. Landin 
[1964] introduced the term 'closure' in connection with his mechanization of 
Lambda expressions. More detailed discussions are given by Moses [1970] 
and Waite [l973a]. Hill [1976] applied the same mechanism to the problem 
of dynamic scope checking in ALGOL 68. 

An overall treatment of storage management is beyond the scope of this 
book. Knuth [l968b] provides an analysis of the various general strategies, 
and a full discussion of most algorithms known at the time. A general 
storage management package that permits a wide range of adaptation was 
presented by Ross [1967]. The most important aspect of this package is the 
interface conventions, which are suitable for most storage management 
modules. 

Both general principles of and algorithms for garbage collection and 
compaction (the process of moving blocks under the user's control to conso
lidate the free space into a single block) are covered by Waite [l973a]. 
Wegbreit [1972] discusses a specific algorithm with an improved worst-case 
running time. 

Several authors [Deutsch 1976, Barth 1977, Morris 1978] have shown how 
to reduce the cost of reference count systems by taking special cases into 
account. Clark and Green [1977] demonstrated empirically that over 90% of 
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the objects in typical LISP programs never have reference counts greater 
than I, a situation in which the technique operates quite efficiently. 

EXERCISES 

3.1. List the storage classes and access paths available on some machine with 
which you are familiar. Did you have difficulty in classifying any of the 
machine's resources? Why? 

3.2. Consider access to data occupying a part of a word on some machine with 
which you are familiar. Does the best code depend upon the bit position 
within the word? Upon the size of the accessed field? Try to characterize the 
set of 'best' code sequences. What information would you need to choose the 
proper sequence? 

3.3. [Steele 1977] Consider the best code for implementing multiplication and 
division of an integer by a power of 2 on some machine with which you are 
familiar. 
a. Would multiplication by 2 best be implemented by an add, a multiply or a 

shift? Give a detailed analysis, taking into account the location and possi
ble values of the multiplicand. 

b. If you chose to use a shift for division, would the proper result be obtained 
when the dividend was negative? Explain. 

c. If your machine has a condition code that is set as a side effect of arith
metic operations, would it be set correctly in all of the cases discussed 
above? 

3.4. For some computer with which you are familiar, design encodings for the ele
mentary types boolean, integer, real of Pascal. Carefully defend your choice. 

3.5. Consider the representation of a multi-dimensional array. 
a. In what manner can a user of ALGOL, FORTRAN or Pascal determine 

whether the elements are stored in row- or column-major order? 
b. Write optimum code for some computer with which you are familiar that 

implements the following doubly-nested loop over an object of type 
array [l..m ,l..n] of integer stored in row-major order. Do not alter the 
sequence of assignments to array elements. Compare the result with the 
same code for an array stored in column-major order. 
for i : = I to m do 

for j : = I to n do 
a[i,j]:=O; 

c. Explain why a test that the affective address of an array element falls 
within the storage allocated to the array is not sufficient to guarantee that 
the access is defined. 

3.6. Carefully describe the implementation of the access function for an array ele
ment (Section 3.2.2) in each of the following cases: 
a. The fictitious starting address lies outside of the address space of the com

puter. 
b. The computer provides only base registers (i.e. the registers involved in the 

access computation of Section 3.1.3 cannot hold signed values). 



3.5. Notes and References 83 

3.7. Consider a computer requiring certain data items to be stored with alignment 
2, while others have no alignment constraints. Give an algorithm that will 
rearrange any arbitrary record to occupy minimum storage. Can this algo
rithm be extended to a machine whose alignment constraints require 
addresses divisible by 2, 4 and 8? 

3.8. Give a mapping of a Pascal while statement that places the condition at the 
beginning and has the same number of instructions as Figure 3.9d. Explain 
why there is less opportunity for parallel execution in your mapping than in 
Figure 3.9d. Under what circumstances would you expect your expansion to 
execute in less time than Figure 3.9d? What information would the compiler 
need in order to decide between these schemata on the basis of execution 
time? 

3.9. Consider the mapping of a BASIC FOR statement with the general form: 

FOR I=e 1 TO e2 STEP e3 

NEXT I 

Give implementations of forbegin and forend under each of the following 
conditions: 

a. e 1= 1, e2= 10, e3= 1 

b. e 1 = I, e2= 10, e3=7 

c. el= 10, e2= I, e3=-3 

e. e 1 =A, e2=B, e3=C 

Does your answer to (e) work when A is the largest negative integer 
representable on the target machine? When B is the largest positive 
representable integer? If not, what is the cost of repairing this defect? Would 
you consider this cost acceptable in the light of the probability of such 
bounds? 

3.10. For some machine with which you are familiar, compare the cost of access to 
statically-allocated objects, objects allocated at fixed locations in an activation 
record, elements of dynamic arrays and objects allocated on the heap. Be 
sure to account for any necessary base register loads. 

3.11. The state change operations summarized in Figure 3.2 are actually imple
mented by a combination of code at the call site, code in the procedure or 
block, and common code in system subprograms. Consider their realization 
on some machine with which you are familiar. 
a. Operations at the call site should be minimized, at least when the pro

cedure is called directly. What is the minimum code you can use? (You 
may change the activation record layout of Figure 3.11 arbitrarily to suit 
your implementation.) 

b. How do you handle the fact that a given procedure may be called either 
directly or as a parameter? Show that the environment is properly initial
ized in both cases. 
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c. Compare the cost of using a display with that of using simply static and 
dynamic pointers. On the basis of your answer to Exercise 3.8, determine 
the break -even point for a display in terms of number of variable accesses. 

3.12. Code the display update routine of Figure 3.4 for some machine with which 
you are familiar. What average nesting depth constitutes the break-even 
point for the early termination test? On the basis of your own experience, 
should the test be included or not? 

3.13. Under what circumstances is it impossible to compare the extents of two 
objects by comparing their addresses? 

3.14. For some machine with which you are familiar, design a schema for 
representing type templates. Be sure to handle variant records and dynamic 
arrays. 

3.15. Suppose that a machine provides no 'undefined' value. What values would 
you propose to use as implicit initializations for Pascal boolean, integer and 
real variables? Explain your choices. 

3.16. Under what circumstances would you consider transmitting arguments and 
results in registers? Illustrate your answer with several real machines. 

3.17. Consider the following LAX fragment: 

declare 
procedure p (a: array [] of integer); ... ; 
procedure q: array [J of integer; ... 
begin p (q) end; 

a. Explain why this fragment is illegal. 
b. Suppose that the fragment were legal, and had the obvious effect: Pro

cedure q creates an array, which is then passed to procedure p. Discuss a 
storage management strategy for the array elements. Where should the 
storage be allocated? Can we avoid copying the array? What tradeoffs are 
involved? 



CHAPTER 4 

Abstract Program Representations 

Decomposition of the compilation process leads to interfaces specified by 
abstract data types, and the basic purposes of these interfaces are largely 
independent of the source language and target machine. Information cross
ing an interface between major compilation tasks constitutes a representa
tion of the program in an intermediate language. This representation may 
or may not be embodied in a concrete data structure, depending upon the 
structure and goals of a particular compiler. Similarly, the characteristics of 
a particular compiler may make it useful to summarize the properties of 
objects in tables stored separately from the program text. 

The general characteristics of each interface stem from the modular 
decomposition of the compiler discussed in Chapter 1. In this chapter we 
consider several important intermediate languages and tables in detail. By 
determining the content and possible realization of these interfaces, we 
place more concrete requirements upon the major compilation tasks. 

4.1. Intermediate Languages 
Our decomposition leads to four intermediate languages: the token 
sequence, the structure tree, the computation graph and the target tree. A 
program is transformed from one to the other in the order given, and they 
will be presented here in that order. 

4.1.1. Token Sequence Chapter 2 pointed out that a source program is 
composed of a sequence of basic symbols. These basic symbols, rather than 
the characters from which they are formed, are the relevant units of the 
source text. We shall use the term symbol to denote the external representa-
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tion of a basic symbol (or an encoding thereof); a token is the internal 
representation. 

LAX symbols are described in Section AI. Production AI.O.l classifies 
them as identifiers, denotations and delimiters respectively. Comments are 
not basic symbols, and therefore do not appear in the token sequence. 

We can characterize the information carried by one token in terms of the 
type declarations shown in Figure 4.1. Location encodes the information 
required to relate an error message to the source language listing. Section 
12.1.3 discusses error reporting mechanisms in detail, and hence we leave 
the specification of the type coordinates open until then. 

Most syntactic classes (encoded by members of the enumerated type 
tokens) contain only a single symbol. Tokens representing such symbols 
need specify only the syntactic class. Only identifiers and denotations 
require additional information. 

A LAX identifier has no intrinsic meaning that can be determined from 
the character string constituting that identifier. As a basic symbol, therefore, 
the only property distinguishing one identifier from another is its external 
representation. This property is embodied in the sym field of the token. 
Section 4.2.1 will consider the type symbol, and explain how the external 
representation is encoded. 

The field intv orfptv is a representation of the value denoted by the source 
language denotation that the token abstracts. There are several possibilities, 
depending upon the goals of the particular compiler; Section 4.2.2 considers 
them in detail. 

4.1.2. Structure Tree A structure tree is a representation of a compila
tion unit in terms of source concepts. It is an ordered tree (in the sense of 
Section B.l) whose structure is that of an abstract syntax of the source 

type 
tokens =( 

identifier, 
integer_denotation, 
fIoating_point-denotation, 
plus, ... , equivalent, 
and _kw, ... , whilLkw); 

abstract _token = record 

(* classification of LAX tokens *) 
(* A 1.0.2 *) 
(* A 1.0.6 *) 
(* A 1.0. 7 *) 
(* specials: A 1.0. 10 *) 
(* keywords: Al.O.ll *) 

location: coordinates; (* for error reports *) 
case classification: tokens of 

identifier: (sym : symbol); 
integer _denotation: (intv : integer _value); 
fIoating_point-denotation: (jptv: reaL value); 

end; 

Figure 4.1. LAX Abstract Token 
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language. Additional information is attached to the nodes during semantic 
analysis and the beginning of code generation. We call this information 
attributes, and, to emphasize the attribution, the augmented tree is some
times termed an attributed structure tree. Important attributes are the iden
tity of the internal object corresponding to an identifier, the types of the 
operands and result of an expression, or the operation corresponding to an 
operator indication (e.g. the distinction between integer and real addition, 
both originally specified by , + '). 

Each node of the structure tree corresponds to a rule of the language 
definition. Because the structure tree follows the abstract rather than the 
concrete syntax, some rules will never have corresponding nodes in any 
structure tree. Furthermore, the concrete syntax may use several names for 
a single construct of the abstract syntax. Figure 4.2 illustrates these concepts 
with an example from LAX. The nodes of the tree have been labelled in 
Figure 4.2a with the corresponding rules from Appendix A. A single rule in 
Appendix A may incorporate many definitions for the same construct, and 
we have appended lower-case letters to the rule number in order to distin-

A.4.0.2 

~~ 
A.4.0.16a A.4.0.9b 

I ~I~ 
A.1.0.2 A.4.0.ISb A.4.0.IOa A.4.0.ISb 

I I 
A.4.0.16a A.4.0.16a 

I I 
A.I.O.2 A.I.O.2 

a) Structure 

expression, assignment, disjunction, conjunction, 
comparison, relation, sum, term, factor, primary: 

prim ode, postmode: entity 

name: 

mode: entity 

eqop, relop, addop, mulop, unop: 
rator: operation 

identifier: 
sym: symbol 
ent: entity 

b) Attributes 
Figure 4.2. Structure Tree for x : = y + z 
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guish these definitions. Thus 'A.4.0.9b' is the second alternative for rule 
A.4.0.9 - sum :: = sum addop term. Expression, assignment, disjunction, and 
so forth are different names appearing in the concrete syntax for the expres
sion construct of the abstract syntax. This means that any node correspond
ing to a rule defining any of these will have the attributes of an expression 
attached to it. Figure 4.2b indicates which of the names defined by rules 
used in Figure 4.2a are associated with the same abstract syntax construct. 

The sym attribute of an identifier is just the value of the sym field of the 
corresponding token (Figure 4.1). This attribute is known as soon as the 
node to which it is attached is created. We call such attributes intrinsic. All 
of the other attributes in the tree must be computed. The details of the com
putations will be covered in Chapters 8 and 9; here we merely sketch the 
process. 

Ent characterizes the object (for example, a particular integer variable) 
corresponding to the identifier sym. It is determined by the declarations 
valid at the point where the identifier is used, and gives access to all of the 
declarative information. Section 4.2.3 discusses possible representations for 
an entity. 

The mode attribute of a name is the type of the object named. In our 
example it can be obtained directly from the declarative information made 
accessible by the ent attribute of the descendant node. In any case, it is 
computed on the basis of attributes appearing in the 'A.4.0.l6a' node and its 
descendants. The term synthesized is used to describe such attributes. 

Two types are associated with each expression node in the tree. The first, 
primode, is the type determined without regard to the context in which the 
expression is embedded. This is a synthesized attribute, and in our example 
the prim ode of an expression defined by an 'AA.O.1Sb' node is simply the 
mode of the name below it. The second type, postmode, is the type demand
ed by the context in which the expression is embedded. It is computed on 
the basis of attributes of the expression node, its siblings, and its ancestors. 
Such attributes are called inherited. 

If primode =l=postmode then either a semantic error has occurred or a coer
cion is necessary. For example, if y and z in Figure 4.2 were declared to be 
of types boolean and real respectively then there is an error, whereas if they 
were declared to be integer and real then a coercion would be necessary. 

Three classes of operation, creation, access and assignment are necessary to 
manipulate the structure tree. A creation operation establishes a new node 
of a specified type. Assignment operations are used to interconnect nodes 
and to set attribute values, while access operations are used to extract this 
information. With these operations we can build trees, traverse them com
puting attribute values, and alter their structure. Structure tree operations 
are invoked as the source program is parsed, constructing the tree and set
ting intrinsic attribute values. One or more additional traversals of the com
pleted tree may be necessary to establish all attribute values. In some cases 
the structure of the tree may be altered during attribute computation. 
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process node A; 
if node A is not a leaf then 

process all subtrees of A from left to right; 

a) Prefix traversal 

if node A is not a leaf then 
process all subtrees of A from left to right; 

process node A; 
b) Postfix Traversal 

process node A; 
while subtrees of A remain do 

begin 
process next (to the right) subtree of A; 
process node A; 
end; 

c) Hybrid traversal 

Figure 4.3. Traversal Strategies 
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Chapter 8 explains how the necessary traversals of the structure tree can be 
derived from the dependence relations among the attributes. (Figure 4.3 
shows some basic traversal strategies.) 

The result of processing a structure tree is a collection of related informa
tion. It may be possible to produce this result without ever actually con
structing the tree. In that case, the structure and attributes of the tree were 
effectively embedded in the processing code. Another possibility is to have 
an explicit data structure representing the tree. Implementation constraints 
often prevent the compiler from retaining the entire data structure in pri
mary memory, and secondary storage must be used. If the secondary 
storage device is randomly-addressable, only the implementation of the 
structure tree operations need be changed. If it is sequential, however, con
straints must be placed upon the sequences of invocations that are permit
ted. An appropriate set of constraints can usually be derived rather easily 
from a consideration of the structure tree traversals required to compute the 
attributes. 

Any of the traversal strategies described by Figure 4.3 could be used with 
a sequential storage device: In each case, the operation 'process node A' 
implies that A is the currently-accessible element of the device. It may be 
read, altered, and written to another device. The remaining operations 
advance the device's 'window', making another element accessible. Figure 
4.4 illustrates the correspondence between the tree and the sequential file. 
The letters in the nodes of Figure 4.4a stand for the attribute information. 
In Figures 4.4b and 4.4c, the letters show the position of this information on 
the file. Figure 4.4d differs from the others in that each interior node is asso
ciated with several elements of the file. These elements correspond to the 
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a) A tree 

debghfca 

b) Postfix linearization 

abdecfgh 

c) Prefix linearization 

a b d b e b a c 
( ( ) ( 

f g f h 
( 

d) Hybrid linearization 

Figure 4.4. Linearization by Tree Traversal 

f c 
) 

a 

prefix encounter of the node during the traversal (flagged with 'C), some 
number of infix encounters (flagged with ','), and the postfix encounter 
(flagged with ')'). Information from the node could be duplicated in several 
of these elements, or divided among them. 

The most appropriate linearization of the tree on the basis of tree traver
sals and tree transformations is heavily dependent upon the semantic 
analysis, optimization and code generation tasks. We shall return to these 
questions in Chapter 14. Until then, however, we shall assume that the 
structure tree may be expressed as a linked data structure. 

4.1.3. Computation Graph A computation graph is an abstract 
representation of a compilation unit in terms of target concepts. It is a 
directed graph whose nodes correspond to target operations and whose 
edges describe control and data flow. The access to identified variables and 
intermediate results is not represented. 

Each node of the computation graph specifies a single abstract target 
machine operation. In addition to the operation, the node specifies its 
successor(s) and an appropriate set of operands. An operand may be 
another computation graph node (indicating the result of that node's com
putation), an identified variable (indicating the address of that variable) or a 
constant (indicating the value of that constant). Figure 4.5 is a computation 
graph describing the algorithm of Figure l.la in terms of an abstract target 
machine based on Exercise 1.3. 

Note that the accumulator is never mentioned in Figure 4.5. This is indi
cative of the abstract nature of the computation graph: It uses target opera
tions, but not target instructions, separating operations from access paths. 
Moreover, the concept of a value has been separated from that of a variable. 
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Figure 4.5. A Computation Graph 
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Figure 4.6. Constant Operations and Array Access 
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Triple Operation Operands 

I VAL 
2 VAL j 
3 SUB (I) (2) 
4 JZERO (3) ( 19) 
5 VAL 
6 VAL 
7 SUB (5) (6) 
8 JNEG (7) (14) 
9 VAL j 

10 VAL 
II SUB (9) (10) 
12 STORE J (II) 
13 JMP (I) 
14 VAL 
15 VAL J 
16 SUB (14) ( 15) 
17 STORE (16) 
18 JMP (I) 

Note: (t) is a reference to triple t 

Figure 4.7. Triple Representation of Figure 4.5 

As we shall see in Chapter 13, this is a crucial point for common subexpres
sion recognition. 

Figure 4.6 describes the array assignment aU]: =a[j], assuming a byte
addressed target machine and an array with 4-byte elements. The address 
computation described at the beginning of Section 3.2.2 appears explicitly. 
Address(a[O]) is represented by the identifier a and the PA operation adds 
an integer to im address, yielding an address. 

Computation graphs are often linearized as sequences of tuples. The 
tuples are implicitly linked in the order of the sequence, and hence the last 
field of the nodes in Figures 4.5 and 4.6 caq be dropped. An explicit JMP 
operation is introduced to allow arbitrary linkage. 'Triples' (Figure 4.7) and 
'quadruples' are examples of this technique. The only difference between 
them is that in the latter the node identification is given explicitly while in 
the former it is assumed to be the index of the node in the sequence. Figure 
4.8 shows a more convenient notation for human consumption. 

4.1.4. Target Tree The target tree forms the interface between code 
generation and assembly. Its structure and most of the attribute values for 
its nodes are established during code generation; some attribute values may 
be added during assembly. The structure of the tree embodies code 
sequence information, while the attributes specify particular machine 
instructions and address computations. These characteristics are largely 
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t,:i i 
t2: t ,*4 

t3:a +t2 

t4:j i 
t5:t4 *4 
t6: a +t5 
t7:t3: =t6 

Figure 4.8. Human-Readable Representation of Figure 4.6 

independent of both the source language and the target computer. 
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The operations necessary to manipulate the target tree fall into the same 
classes as those necessary to manipulate the structure tree. As with the struc
ture tree, memory constraints may require that the target tree be placed in 
secondary memory. The most reasonable linearization to use in this case is 
one corresponding closely to the structure of a normal symbolic assembly 
language. 

Figure 4.9 gives a typical layout for a target tree node. Machine _op 
would be a variant record that could completely describe any target comput
er instruction. This record might have fields specifying the operation, one or 
more registers, addresses and addressing modes. Similarly, 
constanL.specification must be capable of describing any constant represent
able on the target computer. For example, the specification of a literal con
stant would be similar to that appearing in a token (Figure 4. I and Section 
4.2.2); an address constant would be specified by a pointer to an expression 
node defining the address. In general, the amount of space to be occupied 
by the constant must also be given. 

type 
instructions = ( 

operation, 
constant, 
label, 
sequence, 
expression) ; 

(* Classification of target abstractions *) 
(* machine instruction *) 
(* constant value *) 
(* address definition *) 
(* code sequence *) 
(* address expression *) 

target _node = it_node _block; 
t _node _block = record 

link: target _node; 
case classification: instructions of 

operation: (instr: machine _op ); 
constant: (value: constant -specification); 
label: (addr: address); 
sequence: (seq, origin: targeLnode); 
expression: (rator : expr _op ; rand _2: target _node); 

end; 

Figure 4.9. Target Code Node 
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A label is an address constant. The label node is placed in a code 
sequence at some arbitrary point, and represents the address at that point. 
When this address is used as an operand in an address expression, one of the 
operands of the expression node is a pointer to the label node. The addr 
field is an example of an attribute whose value is established during assem
bly: It specifies the actual machine address, in a form that can be used as an 
expression operand. It is important to stress that this attribute is not set by 
the code generator; the code generator is responsible only for establishing 
the label node and any linkages to it. 

A target program may consist of an arbitrary number of code sequences, 
each of which consists of instructions and/or data placed contiguously in the 
target computer memory. Each sequence appears in the target tree as a list 
of operation, constant and label nodes rooted in a sequence node. If the ori
gin field of the sequence node specifies an address expression then the 
sequence begins at the address which is the value of that expression. Thus 
the placement of a sequence can be specified relative to another sequence or 
absolutely in the target computer memory. In the absence of an origin 
expression, a sequence will be placed in an arbitrary position that guaran
tees no overlap between it and any other sequence not based upon it. (A 
sequence s 1 is based upon a sequence s 2 when the origin expression of s 1 

depends upon a label node in S2 or in some sequence based upon S2') 

Related code sequences whose origin expressions result in gaps between 
them serve to reserve uninitialized storage, while overlapping sequences 
indicate run-time overlays. 

Address expressions may contain integers and machine addresses, com
bined by the four basic integer operations with the normal restrictions for 
subexpressions having machine addresses as operands. The code generator 
must guarantee that the result of an address expression will actually fit into 
the field in which it is being used. For some machines, this guarantee can
not be made in general. As a result, either restrictions must be placed upon 
the expressions used by the code generator or the assembler must take over 
some aspects of the code generation task. Examples of the latter are the 
final selection of an instruction from a set whose members differ only in 
address field size (e.g. short vs. long jumps), and selection of a base register 
from a set used to access a block of memory. Chapter 11 will consider such 
problems in detail. 

4.2. Global Tables 

We extract specific information from the token sequence, structure tree, 
computation graph or target tree and represent it in special tables to simplify 
the program representation, to speed up search processes, or to avoid many 
repetitions of the same data. In particular, we often replace variable-length 
data by fixed-length keys and thereby simplify storage management. 
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4.2.1. Symbol Table The purpose of the symbol table is to provide a 
unique, fixed-length encoding for the identifiers (and possibly the keywords) 
occurring in a program. In most programming languages the number of 
possible identifiers, and hence the length of the encoding, is very large. 
Since only a tiny fraction of the possible identifiers occur in any particular 
program, a much shorter encoding suffices and the symbol table must 
uniquely map the identifiers into this encoding. If the entire set of identifiers 
is not known a priori then such a mapping can be achieved only by compar
ing each input character string against those already encountered. 

A symbol table module provides three basic operations: 

• initialize: Enter the standard identifiers. 
• give--symbol (identi.fier--string) symbol: Obtain the encoding of a specified 

identifier. 
• give--string(symbol}identifier--string: Obtain the identifier having a 

specified encoding. 

Additional operations for delivering identifiers in alphabetical order are 
necessary if cross-reference tables are to be produced. 

Although the symbol table is used primarily for identifiers, we advocate 
inclusion of keywords as well. No separate recognition procedure is then 
required for them. With this understanding, we shall continue to speak of 
the symbol table as though its only contents were identifiers. 

The symbol is used later as a key to access the identifier's attributes, so it 
is often encoded as a pointer to a table containing those attributes. A 
pointer is satisfactory when only one such table exists and remains in main 
storage. Positive integers provide a better encoding when several tables 
must be combined (as for separate compilation in Ada) or moved to secon
dary storage. In the simplest case the integers chosen would be 1,2, ... 

Identifiers may be character strings of any length. Since it may be awk
ward to store a table of strings of various lengths, many compilers either fix 
the maximum length of an identifier or check only a part of the identifier 
when computing the mapping. We regard either of these strategies as unac
ceptable. Clearly the finite size of computer memory will result in limita
tions, but these should be placed on the total number of characters rather 
than the length of an individual identifier. Failure to check the entire 
identifier may result in incorrect analysis of the source program with no 
indication to the programmer. 

The solution is to implement the symbol table as two distinct com
ponents: a string table and a lookup mechanism. The string table is simply a 
very large, packed array of characters, capable of holding all of the distinct 
identifiers appearing in a program. It is implemented using a conventional 
virtual storage scheme (Exercise 4.4), which provides for allocation of 
storage only as it is needed. The string forms of the identifiers are stored 
contiguously in this array, and are specified by initial index and length. 

In view of the large number of entries in the symbol table (often resulting 
mainly from standard identifiers), hash techniques are preferable to search 
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trees for implementing the lookup mechanism. The length of the hash table 
must be specified statically, before the number of identifiers is known, so we 
choose the scheme known as 'open hashing' or 'hash with chaining': A 
computation is performed on the string to select one of M lists, which is then 
searched sequentially. If the computation distributes the strings uniformly 
over the lists, then the length of each will be approximately (number of dis
tinct identifiers)/M. By making M large enough the lengths of the lists can 
be reduced to one or two items. 

The first decision to be made is the choice of hash function. It should 
yield a relatively smooth distribution of the strings across the M lists, 
evaluation should be rapid, and it must be expressible in the implementation 
language. One computation that gives good results is to express the string as 
an integer and take the residue modulo M. M should be a prime number 
not close to a power of the number of characters in the character set. For 
example, M = 127 would not be a good choice if we were dealing with a 
128-character set; M =401, on the other hand, should prove quite satisfac
tory. 

There are two problems with the division method: It is time-consuming 
for strings whose integer representations exceed the single-length integer 
range of the implementation language, and it cannot be expressed at all if 
the implementation language is strongly typed. To solve the former, we 
generally select some substring for the hash computation. Heads or tails of 
the string are poor choices because they tend to show regularities (SUMI, 
SUM2, SUM3 or REDBALL, BLUEBALL, BLACKBALL) that cause the 
computation to map too many strings into the same list. A better selection is 
the center substring: 

if I s I <,n then s else substr(s, ( I s I -n) div 2, n) ; 

(Here s is the string, I s I is the length of sand n is the length of the longest 
string representable as a single-length integer. The function substr(s, t l) 
yields the I-character substring of s beginning at the ph character.) 

The constraints of a strongly-typed implementation language could be 
avoided by providing a primitive transfer function to convert a sufficiently 
short string into an integer for type checking purposes. It is important that 
this transfer function not involve computation. For example, if the language 
provides a transfer function from characters to integers, a transfer function 
from strings to integers could be synthesized by a loop. This approach 
defeats the whole purpose of the hashing function, however, by introducing 
a time-consuming computation. It would probably be preferable to use a 
single character to select the list in this case and accept a longer search! 

Comparison of the input identifier with the symbols already present in the 
table can be speeded up by a variety of quick checks, the simplest of which 
is comparison of string lengths. Whether or not such checks are useful 
depends upon the precise costs of string comparison and string table access. 

In a multi-pass compiler, the lookup mechanism may be discarded after 
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the lexical analysis has converted identifiers to symbols. The string table 
must, however, be retained for later tasks such as module linking. 

4.2.2. Constant Table Literal constant values appearing in the program 
must be retained and possibly manipulated during compilation. Compile
time computation involving numeric operations must be carried out using 
the semantics of the target machine. In other words, integer operations must 
conform to the range of the target machine's integer arithmetic, and floating 
point operations must conform to its radix, range, precision and rounding 
characteristics. Because of this, we regard the constant table as an abstract 
data type: It defines a set of values, and any computations involving these 
values must be carried out by operations that the constant table provides. 

We distinguish three conceptually distinct representations of a constant: 
the character representation appearing in the source program, the internal 
representation defined by the constant table, and the representation required 
by the target machine. The constant table module provides conversion 
operations to accept source representations and return internal representa
tions, and to accept internal representations and return target representa
tions. Source-to-internal conversions are invoked during lexical analysis, 
while internal-to-target conversions are invoked during assembly. Although 
the three representations are conceptually distinct, two or more of them may 
be physically identical in a particular compiler. For example, a LAX float
ing point constant might have identical internal and target representations. 

The constant table module could use a string table of the form introduced 
in the previous section to store string constants. Since identical string con
stants occur rarely in a program, no search is needed to enter strings into the 
table; each is simply inserted as it is encountered. A fixed-length encoding 
then consists of a string table index and length, which the constant table 
module delivers as the internal value of the constant. In a multi-pass com
piler the string table could reside in secondary storage except during lexical 
analysis and assembly. 

In addition to conversions, the constant table module must provide com
putational and comparison operations for the internal representations. 
These operations are used not only for manipulating denotations that 
appear in the source program, but also for carrying out all computations and 
comparisons of program-defined values during semantic analysis and code 
generation. F or example, consider the Pascal type constructor 
array [Lu] of m. During semantic analysis, constant table operations are 
used to verify that the lower bound does not exceed the upper; during code 
generation they are used to compute the size and alignment of the array. 

The requirements of semantic analysis and code generation determine the 
set of operations that must be provided. In general, these operations should 
duplicate the behavior of the equivalent operations on the target machine. 
For example, a character comparison should follow the target machine col
lating sequence. The range of integer values, however, must normally be 
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larger than that of the target machine. Suppose that we compile a program 
containing the type constructor of the previous paragraph for the PDPII 
(maxint =32767). Suppose further that 1= -5000, U =5000 and m is real. 
This is a perfectly legal declaration of an array that will easily fit into the 
65536-byte memory of the PDPII, but computation of its size in bytes 
(40004) overflows the PDPII's integer range. 

If the compiler is being executed on the target machine, this requirement 
for increased range implies that the computational and comparison opera
tions of the constant table must use a multiple-precision representation. 
Knuth [1969] describes in detail how to implement such a package. 

Although, as shown above, overflow of the target machine's arithmetic 
range is legitimate in some cases, it is often forbidden. When the user writes 
an expression consisting only of constants, and that expression overflows the 
range of the target machine, the overflow must be detected if the expression 
is evaluated by the compiler. This leads to a requirement that the constant 
table module provide an overflow indicator that is set appropriately by each 
computational operator to indicate whether or not the computation would 
overflow on the target machine. Regardless of the state of the overflow indi
cator, however, the constant table should yield the (mathematically) correct 
result. 

In most programming languages, a particular numeric value can be 
expressed in many different ways. For example, each of the following LAX 
floating point numbers expresses the value 'one thousand': 

lOOOOOOE-3 l.OE3 .001E6 1000.0 

The source-to-internal conversion operators of the constant module should 
accept only a standardized input format. Nonzero integers are normally 
represented by a sequence of digits, the first of which is nonzero. A suitable 
representation for nonzero floating point numbers is the pair (significand, 
exponent), in which the significand is a sequence of digits without leading or 
trailing zeros and the exponent is suitably adjusted. The significand can be 
interpreted either as an integer or a normalized decimal fraction. 'One 
thousand' would then be represented either as (' I ',3) or as (' I ',4) respec
tively. A fractional significand is preferable because it can be truncated or 
rounded without changing the exponent. Zero is represented by ('0',0). In 
Section 6.2 we shall show how the standardized format is obtained by the 
lexical analyzer. 

If no floating point arithmetic is provided by the constant table then the 
significand can be stored in a string table. The internal representation is the 
triple (string table index, significand length, adjusted exponent). When 
compile-time floating point operations are available, floating point numbers 
are converted to an internal representation of appropriate accuracy for 
which the arithmetic of the target machine can be simulated exactly. (Note 
that decimal arithmetic is satisfactory only if the target machine also uses 
decimal arithmetic.) 
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4.2.3. Definition Table Types, variables, procedures and parameters are 
examples of entities: components of the program whose attributes are esta
blished by declaration. Most of the leaves of the structure tree represent 
uses of entities, at which the entity's attributes must be made available. A 
definition table abstracts the entities, avoiding the need to explicitly repro
duce all of the attributes of an entity at each of the leaves representing its 
uses. There is one definition table entry for each declared entity, and this 
entry holds all attributes of that entity. A leaf representing the use of an 
entity contains a reference to the definition table. 

We must emphasize that a definition table merely restates structure tree 
information in a more compact and accessible form. (Section 8.3.2 will 
show how to partially automate the choice of information to be included in 
a definition table.) Thus each form of the structure tree has, at least concep
tually, an associated definition table. Transformations of the structure tree 
imply corresponding transformations of the definition table. Whether the 
definition table is actually transformed, or a new definition table is built 
from the transformed tree, is an implementation decision that depends upon 
two factors: 
• The relative costs of transformation and reconstruction . 
• The relationship between the traversal needed to reconstruct the informa

tion and the traversal using that information. 

When assessing the relative costs, we must be certain to consider the extra 
storage required during the transformation as well as the code involved. 

The second factor mentioned above may require some elaboration: Con
sider the definition table used during semantic analysis and that used during 
code generation. Although the structure tree may be almost the same for 
these two processes, the interesting attributes of defined objects are usually 
quite different. During semantic analysis we are concerned with source pro
perties; during code generation with target properties. Thus the definition 
tables for the two processes will differ. Suppose further that our code gen
eration strategy requires a single depth-first, left-to-right traversal of the 
structure tree given that the definition table is available. 

If the definition table can be rebuilt during a single depth-first, left-to
right traversal of the structure tree, and every attribute becomes available 
before it is needed for code generation, then rebuilding can be combined 
with code generation and the second factor noted above does not lead to 
increased costs. When this condition is not satisfied, the second factor does 
increase the rebuilding cost and this must be taken into account. It may 
then be cheaper to transform the definition table between the last semantic 
analysis traversal and the first code generation traversal. (The attribute 
dependency analysis presented in Section 8.2 is used to decide whether the 
condition is satisfied.) 

A definition table is generally an unstructured collection of entries. Any 
arbitrary entry can be accessed via a pointer in order to read an attribute or 
assign a new value. In a one-pass compiler, a stack strategy could also be 
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used: At every definition a new entry is pushed onto the top of the stack, 
and at the end of a range all definitions found in the range are popped. This 
organization has the advantage that only relevant entries must be held in 
storage. 

Copies of some of the more-frequently accessed attributes of an entity 
may be included in each leaf representing a use of that entity. The choice of 
such attributes depends upon the particular compiler design; we shall return 
to this question several times, in Chapters 9, 10 and 14. It may be that these 
considerations lead to including all attributes in the leaf. The definition 
table then ceases to exist as a separate data structure. 

4.3. Notes and References 

Postfix, triples, and quadruples are often discussed in isolation as 'internal 
forms' of the program, without reference to the structures they represent (see 
Gries [1971] for example). Such discussions tend to bog down in a morass of 
special cases and extensions once they move beyond the treatment of arith
metic expressions. We believe that thinking in terms of a tree helps the 
compiler designer to concentrate on the important relationships present in 
the text and to arrive at a more coherent representation. Once this has been 
derived, a variety of linearizations may be used depending upon the particu
lar compiler design. 

Most authors lump the various tables discussed in Section 4.2 into a single 
dictionary, which they often call 'the symbol table' [Gries 1971, Bauer 1976, 
Aho 1977a]. The concept of separate tables seems to be restricted to 
descriptions of mUlti-pass compilers, as a mechanism for reducing main 
storage requirements [Naur 1964). This is not invariably true, however, 
especially when one considers the literature on ALGOL 68 [Peck 1971]. In 
his description of a multi-pass Pascal compiler, Hartmann [1977] uses 
separate tables both to reduce core requirements and to provide better com
piler structure. 

Lookup mechanisms have concerned a large number of authors; the most 
comprehensive treatment is that of Knuth [1973). He gives details of a 
variety of mechanisms, including hashing, and shows how they compare for 
different applications. It appears that hashing is the method of choice for 
symbol table implementation, but there may be some circumstances in 
which binary trees are superior [Palmer 1974]. For symbol tables with a 
fixed number of known entries (e.g. keywords) Cichelli [1980] and Cercone 
[1982] describe a way of obtaining a hash function that does not have any 
collisions and hence requires no collision resolution. 
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Exercises 
4.1. [Sale 1971, McIlroy 1974] Specify abstract tokens for FORTRAN 66. 

4.2. Specify a target _node (Figure 4.6) suitable for some machine with which you 
are familiar. 

4.3. Is a symbol table needed to map identifiers in a compiler for Minimal Standard 
BASIC? Explain. 

4.4. Implement a string table module, using a software paging scheme: Statically 
allocate an array of pointers (a 'page table') to blocks of fixed size (,pages'). 
Initially no additional blocks are allocated. When a string must be stored, try 
to fit it into a currently-allocated page. If this cannot be done, dynamically 
allocate a new page and place a pointer to it in the page table. Carefully define 
the interface to your module. 

4.5. Implement a symbol table module that provides a lookup mechanism, and uses 
the module of Exercise 4.4 to store the identifier string. 

4.6. Identifier strings are specified in the module of Exercise 4.5 by the pair (string 
table index, length). On a computer like the DEC PDPII, this specification 
occupies 8 bytes. Comment on the relative merits of this scheme versus one in 
which identifier strings are stored directly if they are no longer than k bytes, 
and a string table is used for those whose length exceeds k. What should the 
value of k be for the PDPll? Would this scheme be appropriate for a mul
tipass compiler? 

4.7. Consider the FORTRAN expression 'X * 3.1415926535897932385 * Y'. 
Assume that no explicit type has been given for X, and that Y has been 
declared DOUBLE PRECISION. 
a. Should the constant be interpreted as a single or double precision value? 

Explain. 
b. For some machine with which you are familiar, estimate the relative errors 

in the single and double precision representations of the constant. 
c. Explain the relevance of this example to the problem of selecting the inter

nal representation to be provided by the constant table for floating point 
numbers. 



CHAPTER 5 

Elements of Formal Systems 

Formal grammars, in particular context-free grammars, are the tools most 
frequently used to describe the structure of programs. They permit a lucid 
representation of that structure in the form of parse trees, and one can (for 
the most part mechanically) specify automata that will accept all correctly
structured programs (and only these). The automata are easy to modify so 
that they output any convenient encoding of the parse tree. 

We limit our discussion to the definitions and theorems necessary to 
understand and use techniques explained in Chapters 6 and 7, and many 
theorems are cited without proof. In the cases where we do sketch proofs, 
we restrict ourselves to the constructive portions upon which practical algo
rithms are based. (We reference such constructions by giving the number of 
the associated theorem.) A formally complete treatment would exceed both 
the objectives of and size constraints on this book. Readers who wish to 
delve more deeply into the theoretical aspects of the subject should consult 
the notes and references at the end of this chapter. 

5.1. Descriptive Tools 

In this section we first review the standard mathematical notation used to 
describe sets of strings. We then introduce some formal systems for the pro
duction of such sets and with these define certain classes of languages. 
Finally, we discuss the representation of the structure of strings by means of 
trees and give a complete example. 

5.1.1. Strings and Rewriting Systems We begin with a vocabulary (or 
alphabet), V: A finite, nonempty set of symbols having no discernible struc-
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ture. (At least we take no notice of further structure on the level of abstrac
tion we are considering.) One example of a vocabulary is the set of charac
ters available on a particular computer, others are the set of basic symbols 
defined by a particular language (e.g. identifier, integer, +, begin) and the 
set of syntactic terms we use to describe the structure of a program. We may 
attach semantic significance to some of the symbols in the vocabulary, 
without explaining them further by meams of the formal systems introduced 
in this chapter. 

The set of all finite strings Xl· .. X n , n ;;. I, formed by concatenating ele
ments of V is denoted by V+. V* denotes V+ augmented by adding the 
empty string (which contains no symbols). We shall denote the empty string 
by (; it is both a left and right identity for concatenation: q =X(=x, 
X E V*. The count, n, of symbols in a string X = Xl· .. Xn is called the length 
of X, and is denoted by 1 X I. Thus 1 ( 1 =0. 

Definition 5.1. Let X =aw, a, wE V*. The string a is called a head, and the 
string w a tail, of X. If a-=j=.( (w-=j=.() then it is a proper head (tail) of X. 

Each subset of V* is called a language over vocabulary V. The elements 
of a language are called sentences. Interesting languages generally contain 
infinitely many sentences, and hence cannot be defined by enumeration. 
We therefore define each such language, L, by specifying a process that 
generates all of its sentences, and no other elements of V*. This process may 
be characterized by a binary, transitive relation =? + over V*, such that 
L = {X 1 t =? + X} for a distinguished string tin V*. We term the rela
tion =? + a derivative relation. 

Definition 5.2. A pair (V, =? +) consisting of a vocabulary V and a deriva
tive relation =? +, is called aformal system. 

A derivative relation usually cannot be defined by enumeration either. 
We shall concern ourselves only with relations that can be described by a 
finite set of pairs (a, 'T) of strings from V*. We call such pairs productions, 
and write them as a-"'T. The transitive closure of the finite relation 
described by these productions yields a derivative relation. More precisely: 

Definition 5.3. A pair (V,P), consisting of a vocabulary V and a finite set, P, 
of productions a-"'T (a,'TE V) is called a general rewriting (or Semi-Thue) 
system. 

Definition 5.4. A string X is directly derivable from a string 7T (symbolically 
7T=? X) by a general rewriting system (V, P) if there exist strings a, 'T, /L, p in 
V such that 7T= /Lap, X = /L'TP and a -"'T is an element of P. 

Definition 5.5. A string X is derivable from a string 7T (symbolically 7T=? +x) 
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by a general rewriting system (~ P) if there exist strings Po, ... , Pn in v* 
(n > 1) such that 11' = Po, Pn = X and Pi _ I => Pi' i = 1 , ... , n. The sequence 
Po, ... , Pn is called a derivation of length n. 

We write 11'=> * X to indicate that either 11'=x or 11'=> +X. If X is (directly) 
derivable from 11', we also say that X is (directly) reducible to 11'. Without 
loss of generality, we shall assume that derivations 11' => +11' of a string from 
itself are impossible. 

5.1.2. Grammars Using the general rewriting system defined by Figure 
5.1, it is possible to derive from E every correct algebraic expression consist
ing of the operators + and *, the variable i, and the parentheses (). Many 
other strings can be derived also, as shown in Figure 5.2. In the remainder 
of this chapter we shall concentrate on rewriting systems in which the voca
bulary is made up of two disjoint subsets: T, a set of terminals, and N, a set 
of nonterminals (syntactic variables). We will ultimately be interested only in 
those strings derivable from a distinguished nonterminal (the axiom or start 
symbol) and consisting entirely of terminals. (Thus we speak of generative 
systems. One could instead consider analytic systems in which the axiom is 
derived from a string of terminals. We shall return to this concept with 
Definitions 5.12 and 5.20.) 

{E,T,F,+,*,(,),i} 
a) The vocabulary V 

{E~T, 

T~F, 

F~i, 

E~E+T, 

T~T*F, 

F ~(E) } 

b) The productions P 

Figure 5.1. A General Rewriting System (v,P) 

E=>T 
T=>T*F 

T*F=>T*i 

a) Some immediate derivations 

E;;;;, * T*i 
E => * i + i*i 
TiE ;;;;, * iii 
TiE=> * TiE 
E=>* T 

(length 3) 
(length 8) 
(length 5) 
(length 0) 
(length I) 

b) Additional derivations 

Figure 5.2. Derivations 
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Definition 5.6. A quadruple G = (T,N,P,Z) is called a grammar for the 
language L(G) = {X E T* I Z:::>*X} ifT and N are disjoint, (TuN,P) is 
is a general rewriting system, and Z is an element of N. We say that two 
grammars G and G'are equivalent if L (G) = L (G '). 

Figure 5.3 illustrates these concepts with two grammars that generate alge
braic expressions in the variable i. These grammars are equivalent 

T = { +,*,(,),i} 

N = {E,T,F} 

P = {E~T, E~E+T, 
T~F, T~T*F, 

F~i, F~(E)} 

Z=E 

a) A grammar incorporating (V,P) from Figure 5.1 

T = {+, * ,(,),i} 

N = {E,E' ,T,T',F} 

P = { E~T, E~TE', 

E'~+T, E'~+TE', 

T~F, T~FT', 

T'~*F, T'~*FT, 

F~i, F ~(E) } 

Z=E 

b) A grammar incorporating another general rewriting system 

Figure 5.3. Equivalent Grammars 

according to Definition 5.6. 
Grammars may be classified by the complexity of their productions: 

Definition 5.7. (Chomsky Hierarchy). The grammar G = (T,N,P,Z) is a 

• type 0 grammar if each production has the form (J ~ 'T, (J E V+ and 'T E v". 
• type 1 (context-sensitive) grammar if each production has the form 

p.A P~p.xp, p., pE v", A EN and X E V+. 
• type 2 (context-free) grammar if each production has the form A ~x, 

A EN and X EV·. 
• type 3 (regular) grammar if each production has either the form A ~a, 

A EN and a ETu {t:} or the formA ~aB, A,BEN and a ET. 
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If a grammar that generates a language is context-sensitive (context-free, 
regular), then we also term the language itself context-sensitive (context
free, regular). Regular and context-free grammars are the most interesting 
to compiler writers. The former are usually used to describe the basic sym
bols (e.g. identifiers, constants) of a language, while the latter describe the 
structure of a program. From now on, we restrict our attention to these two 
grammar classes. 

Although we admit f-productions (productions whose right-hand side 
consists of the empty string) in context-free grammars, we are interested 
only in languages that do not include the empty string. Such languages can 
always be described by ffree grammars - grammars without f-productions. 
Therefore f-productions will only be used when they result in more con
venient descriptions. 

We assume further that every symbol in the vocabulary will appear in the 
derivation of at least one sentence. Thus the grammar will not contain any 
useless symbols. (This is not always true for actual descriptions of program
ming languages, as illustrated by the LAX definition of Appendix A.) 

5.1.3. Derivations and Parse Trees Each production in a regular gram
mar can have at most one nonterminal on the right-hand side. This property 
guarantees-in contrast to the context-free grammars-that each sentence of 

T = {n,.,+,-,E} 

N = {C,F,J,X,S, U} 

p = {C ...... n, C ...... nF, C ....... J, 
F ....... I,F ...... ES, 
J ...... n,J ...... nX, 
X ...... ES, 
S ...... n, S ...... +U, S ...... -U, 
U ...... n} 

Z=C 
a) A grammar for real constants 

C C C 
n .J nF 

.n n.I 
n.nX 
n.nES 
n.nE +U 
n.nE +n 

b) Three derivations according to the grammar of (a) 

Figure 5.4. Derivations According to a Regular Grammar 
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E 
E+T 
T+T 
F+T 
i+T 
i+T*F 
i+F*F 
i +i*F 
i +i*i 

E 
E+T 
E+T*F 
T+T*F 
T+F*F 
T+F*i 
F+F*i 
i +F*i 
i +i*i 

E 
E+T 
E+T*F 
E+T*i 
E+F*i 
E+i*i 
T+i*i 
F+i*i 
i +i*i 

Figure 5.5. Derivations According to a Context-Free Grammar 
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the language has exactly one derivation when the grammar is unambiguous 
(Definition 5.11). 

Figure 5.4a is a regular grammar that generates the integers and real 
numbers if n represents an arbitrary sequence of digits. Three derivations 
according to this grammar are shown in Figure 5.4b. Each string except the 
last in a derivation contains exactly one nonterminal, from which a new 
string must be derived in the next step. The last string consists only of termi
nals. The sequence of steps in each derivation of this example is determined 
by the derived sentence. 

The situation is different for context-free grammars, which may have any 
number of nonterminals on the right-hand side of each production. Figure 
5.5 shows that several derivations, differing only in the sequence of applica
tion of the productions, are possible for a given sentence. (These derivations 
are constructed according to the grammar of Figure 5.3a.) 

In the left-hand column, a leftmost derivation was used: At each step a 
new string was derived from the leftmost nonterminal. Similarly, a rightmost 
derivation was used in the right-hand column. A nonterminal was chosen 
arbitrarily at each step to produce the center derivation. 

A grammar ascribes structure to a string not by giving a particular 
sequence of derivation steps but by showing that a particular substring is 
derived from a particular nonterminal. For example, in Figure 5.5 the sub
string i*i is derived from the single nonterminal T. We interpret this pro
perty of the derivation to mean that i*i forms a single semantic unit: an 
instance of the operator * applied to the i's as operands. It is important to 
realize that the grammar was constructed in a particular way specifically to 
ascribe a semantically relevant structure to each sentence in the language. 
We cannot be satisfied with any grammar that defines a particular language; 
we must choose one reflecting the semantic structure of each sentence. For 
example, suppose that the rules E-+E+T and T-+T*F of Figure 5.3a had 
been replaced by E -+E*T and T -+T +F respectively. The modified gram
mar would describe the same language, but would ascribe a different struc
ture to its sentences: It would imply that additions should take precedence 
over multiplications. 

Substrings derived from single nonterminals are called phrases: 
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Definition 5.8. Consider a grammar G = (T,N,P,Z). The string X E V+ is a 
phrase (for X) of /LXV if and only if Z =>' /LXV => + /LXV (/L,vE V, X EN). 
It is a simple phrase of /L X V if and only if Z =>' /LX V => /L X v. 

Notice that a phrase need not consist solely of terminals. 
Each of the three derivations of Figure 5.5 identifies the same set of sim

ple phrases. They are therefore equivalent in the sense that they ascribe 
identical phrase structure to the string i +i*i. In order to have a single 
representation for the entire set of equivalent derivations, one that makes 
the structure of the sentence obvious, we introduce the notion of a parse tree 
(see Appendix B for the definition of an ordered tree): 

Definition 5.9. Consider an ordered tree (K, D) with root ko and label func
tion f:K ->M. Let k I, ... , kn' (n > 0) be the immediate successors of k o. 
(K, D) is a parse tree according to the grammar (T, N, P, Z) if the following 
conditions hold: 

(a)MCVu{£} 
(b)f(ko)=Z 
(c)Z->f(kl) "'f(kn)EP 
( d) iff (k; ) E T, or if n = I and f (k; ) = £, then k; is a leaf 
( e) iff (k; ) EN then k; is the root of a parse tree according to the grammar 

(T,N,P,f (k; » 

Figure 5.6 is a tree for i +i*i according to the grammar of Figure 5.3a, as 
can be shown by recursive application of Definition 5.9. 

Figure 5.6. The Parse Tree for i +i *i 

We can obtain any string in any derivation of a sentence from the parse 
tree of that sentence by selecting a minimum set of nodes, removal of which 
will break all root-to-Ieaf paths. (Such a set of nodes is called a cut - see 
Definition B.S.) For example, in Figure 5.6 the set {T, +, T, *, F} (the third 
row of nodes, plus '+' from the second row) has this property and T+T*F 
is the fourth step in the center derivation of Figure 5.5. 

Theorem 5.10. In a parse tree according to a grammar G= (T,N,P,Z), a set of 
nodes (k l , .. . ,kn) is a cut ifand only ifZ => *f(k l)' .. f(kn). 
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A parse tree specifies the phrase structure of a sentence. With the gram
mars given so far, only one parse tree corresponds to each sentence. This 
may not always be true, however, as illustrated by Figure 5.7. The grammar 
of Figure 5.7a describes the same language as that of Figure 5.3a, but many 
sentences have several parse trees. 

Definition 5.11. A sentence is ambiguous if its derivations may be described 
by at least two distinct parse trees (or leftmost derivations or rightmost 
derivations). A grammar is ambiguous if there is at least one ambiguous 
sentence in the language it defines; otherwise the grammar is unambiguous. 

Figure 5.7b shows two parse trees for i +i*i that are essentially different 
for our purposes because we associate two distinct sequences of operations 
with them. If we use an ambiguous grammar to describe the language (and 
this may be a useful thing to do), then either the ambiguity must involve 
only phrases with no semantic relevance or we must provide additional rules 
for removing the ambiguity. 

T = { +, *, i} 

N = {E} 

Z=E 
a) An ambiguous grammar 

b) Two parse trees for i +i *i 

Figure 5.7. Ambiguity 

5.1.4. Extended Backus-Naur Fonn Appendix A uses a notation 
known as extended Backus-Naur form (EBNF) to describe LAX. This nota
tion allows us to describe a grammar in a more compact form. Moreover, as 
we shall see in Chapter 7, a parser can be derived easily from the 
specification of a language written in EBNF. In this section we illustrate the 
techniques we have been discussing by giving a formal definition of EBNF; 
an informal description appears at the beginning of Appendix A. 
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Figure 5.8a is the grammar for EBNF. When a specification is written in 
EBNF, character strings are used to represent the elements of T as indicated 
in Figure 5.8b. A complete specification for EBNF itself appears in Figure 
5.8c. Given a specification such as that of Figure 5.8c, we can derive one or 
more grammars that define the same language. In this manner we establish 
the 'meaning' of the specification. 

The derivation proceeds from a parse tree (K,D) of the given 
specification according to the grammar of Figure 5.8a. In addition to the 
label function f from Definition 5.9, we define h:K -L U I, where L is 
the set of identifiers and literals appearing in the specification and I is a set 
of unique identifiers. L and I are disjoint; h associates an element of L 
with every leaf of K and an element of I with every non-leaf node. An ele-

T = {identifier,literal,is,or,lpn,rpn,lbk,rbk,plus,star,period,separator} 

N = {specification,rule,expression,tertiary,secondary,primary, unit, atom } 

p = {specification -rule, specification -specification rule, 
rule-identifier is expression period 
expression _ tertiary, expression -expression separator atom, 
tertiary -secondary, tertiary _ tertiary or secondary, 
secondary-primary, secondary-secondary primary, 
primary-unit, primary-unit star, primary-unit plus, 
primary-lbk expression rbk, 
unit -atom, unit -lpn expression rpn, 
atom -+identifier, atom -+literal} 

Z = specification 
a) Grammar for EBNF 

identifier: Sequence ofletters, digits and underscores. 
literal: String delimited by apostrophes. 
lpn : ( rpn : ) lbk : [ rbk: ] is: :: = 
or: I star: * plus: + period: . separator: II 

b) Representation used in this book for EBNF terminals 

specification: : = rule + . 
rule:: = identifier':: =' expression '.'. 
expression:: = (primary + I I ' I' I expression ' I I' atom . 
primary:: = unit ['*' I ' +'] I '[' expression']' . 
unit :: = atom I '(' expression ')'. 
atom :: = identifier I literal . 

c) A possible EBNF specification for EBNF 

Figure 5.8. Extended Backus-Naur Form 
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ment of L may be associated with any number of leaves, but there is a 1-1 
correspondence between non-leaf nodes and elements of I . 

LuI is the vocabulary of the grammar that we shall derive from the 

EBNF specification. All elements of I are nonterminals of the grammar, as 
are identifiers appearing on the left of ':: =' in an EBNF rule. All literals 
and identifiers not appearing on the left of ':: =' are terminals. Formally: 

R = {h(k) I (k',k)ED, f (k')=rule, f(k)=identifter} 

T=L-R 

N = R uI 

Here R is the set of rule identifiers. If the EBNF specification is well-formed 
then there will be exactly one element of R that does not appear on the right 
of ':: = ' in any rule. This element is the axiom of the derived grammar: 

Z =rE(R - {h(k) I (k~k)ED,f(k')=atom}) 
A set of productions can be derived from every non-leaf node of the parse 

tree, and P is the union of those sets. Consider each subtree formed from a 
non-leaf node ko and its ordered immediate successors k 1> k 2, ... , kn • The 
derived productions depend upon the structure of the subtree (given by a 
production of Figure 5.8a) and the labels of the nodes in the subtree as fol
lows: 

For subtree 

rule~identifter is expression period 
expression ..... expression separator atom 

tertiary ..... tertiary or secondary 
secondary ..... secondary primary 
primary ~unit star 
primary ..... unit plus 
primary ..... lbk expression rbk 
unit ..... lpn expression rpn 

derive the production set 

{h(kl) ..... h(k3)} 
{h(ko) ..... h(k l), h(ko) ..... 

h(ko) h(k3) h(k l)} 
{h(ko) ..... h(k l ), h(ko) ..... h(k3)} 

{h (ko) ..... h (k I) h (k 2)} 

{h(ko) ..... t:, h(ko) ..... h(ko) h(k l )} 

{h(ko) ..... h(k l ), h(ko) ..... h(ko) h(k l )} 

{h (ko) ..... t:, h (ko) ~h (k 2)} 

{h(k o) ..... h(k2)} 

Derive the empty set of productions for any subtree with h (ko) = 
specification, and derive {h (ko) ..... h (k I)} for any subtree not yet mentioned. 

The grammar derived from Figure 5.8c by this process will have more 
productions than Figure 5.8a. The extra productions can be removed by a 
simple substitution: If B EN occurs exactly twice in a grammar, once in a 
production of the form A ..... p.B" and once in a production of the form B ..... p 
(p., p, " E V*), then B can be eliminated and the two productions replaced by 
A ..... p.p". After all such substitutions have been made, the resulting grammar 
will differ from Figure 5.8a only in the representation of vocabulary sym
bols. 
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5.2. Regular Grammars and Finite Automata 

A grammar specifies a process for generating sentences, and thus allows us 
to give a finite description of an infinite language. The analysis phase of the 
compiler, however, must recognize the phrase structure of a given sentence: 
It must parse the sentence. Assuming that the language has been described 
by a grammar, we are interested in techniques for automatically generating 
a recognizer from that grammar. There are two reasons for this require
ment: 

• It provides a guarantee that the language recognized by the compiler is 
identical to that defined by the grammar . 

• It simplifies the task of the compiler writer. 

We shall use automata, which we introduce as special cases of general 
rewriting systems, as models for the parsing process. In this section we 
develop a theoretical basis for regular languages and finite automata, and 
then extend the concepts and algorithms to context-free languages and 
pushdown automata in Section 5.3. The implementation of the automata is 
covered in Chapters 6 and 7. 

5.2.1. Finite Automata 

Definition 5.12. A finite automaton (finite state acceptor) is a quintuple A 
(T,Q,R.qo,F), where Q is a nonempty set, (T u Q,R) is a general rewriting 
system, qo is an element of Q and F is a subset of Q. The sets T and Q are 
disjoint. Each element of R has the form qt -+q', where q and q' are ele
ments of Q and t is an element of T. We say that A accepts a set of strings 
L(A) = {TET· I qoT~·q,qEF}. Two automata, A and A' are 
equivalent if and only if L (A ) = L (A '). 

We can conceive of the finite automaton as a machine that reads a given 
input string out of a buffer one symbol at a time and changes its internal 
state upon absorbing each symbol. Q is the set of internal states, with qo 
being the initial state and F the set of final states. We say that a finite auto
maton is in state q when the current string in the derivation has the form qT. 
It makes a transition from state q to state q' if T=tx and qt -+q' is an element 
of R. Each state transition removes one symbol from the input string. 

Theorem 5.13. For every regular grammar, G, there exists a finite automaton, 
A, such that L (A )=L (G). 

The proof of this theorem is an algorithm to construct A, given G = 
(T,N,P,Z). LetA = (T,Nu{/},R,Z,F),/fi-N. R is constructed from P by 
the following rules: 
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1. If X -'>t (X EN, t E T) is a production of P then let Xt -'> f be a produc
tion of R. 

2. If X -'>tY (X, YEN, t E T) is a production of P then let Xt -'> Y be a pro
duction of R . 

Further, F = {f} U {X I X -'>( EP}. Figure 5.9 is an automaton constructed 
by this process from the grammar of Figure 5.4a. 

T = {n,.,+,-,E} 

Q = {C,F,I,X,S,U,q} 

R = { Cn -'>q, Cn -'>F, C. -'>1, 
F. -,>1, FE -'>S, 

qo = C 

In -'>q, In -'>X, 
XE -'>S, 
Sn -'>q, S + -'> U, S - -'> U, 
Un -'>q } 

F = {q} 

Figure 5.9. An Automaton Corresponding to Figure 5.4a 

One can show by induction that the automaton constructed in this 
manner has the following characteristic: For any derivation 
Z'TX =? * X X=?* q ('T, X E T*, X EN, 'TX EL (A ), q EF), the state X specifies 
the nonterminal symbol of G that must have been used to derive the string 
X. Clearly this statement is true for the initial state Z if'TX belongs to L (G). 
It remains true until the final state q, which does not generate any further 
symbols, is reached. With the help of this interpretation it is easy to prove 
that each sentence of L ( G) also belongs to L (A ) and vice-versa. 

Figure 5.9 is an unsatisfactory automaton in practice because at certain 
steps - for example in state I with input symbol n - several transitions are 
possible. This is not a theoretical problem since the automaton is capable of 
producing a derivation for any string in the language. When implementing 
this automaton in a compiler, however, we must make some arbitrary deci
sion at each step where more than one production might apply. An 
incorrect decision requires backtracking in order to seek another possibility. 
There are three reasons why backtracking should be avoided if possible: 

• The time required to parse a string with backtracking may increase 
exponentially with the length of the string . 

• If the automaton does not accept the string then it will be recognized as 
incorrect. A parse with backtrack makes pinpointing the error almost 
impossible. (This is illustrated by attempting to parse the string 
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n.nE + +n with the automaton of Figure 5.9 trying the rules in the 
sequence in which they are written.) 

• Other compiler actions are often associated with state transitions. Back
tracking then requires unraveling of actions already completed, generally 
a very difficult task. 

In order to avoid backtracking, additional constraints must be placed upon 
the automata that we are prepared to accept as models for our recognition 
algorithms. 

Definition 5.14. An automaton is deterministic if every derivation can be 
continued by at most one move. 

A finite automaton is therefore deterministic if the left-hand sides of all 
rules are distinct. It can be completely described by a state table that has one 
row for each element of Q and one column for each element of T. Entry 
(q,t) contains q' if and only if the production qt -+q' is an element of R. The 
rows corresponding to qo and to the elements of F are suitably marked. 

Backtracking can always be avoided when recognizing strings in a regu
lar language: 

Theorem 5.15. For every regular grammar, G, there exists a deterministic finite 
automaton, A, such that L (A ) = L (G). 

Following construction 5.13, we can derive an automaton from a regular 
grammar G = (T,N,P,Z) such that, during acceptance of a sentence in L (G), 
the state at each point specifies the element of N used to derive the 
remainder of the string. Suppose that the productions X -+tU and X -+tV 
belong to P. When t is the next input symbol, the remainder of the string 
could have been derived either from U or from V. If A is to be determinis
tic, however, R must contain exactly one production of the form Xt -+q'. 
Thus the state q' must specify a set of nonterminals, anyone of which could 
have been used to derive the remainder of the string. This interpretation of 
the states leads to the following inductive algorithm for determining Q, R 
and F of a deterministic automaton A =(T,Q,R.qo,F). (In this algorithm, q 
represents a subset Nq of N U {f },f fiN): 

l. Initially let Q = {qo} and R = 0, with Nqo = {Z}. 

2. Let q be an element of Q that has not yet been considered. Perform steps 
(3)-(5) for each t ET. 

3. Letnext(q,t) = {U 1:3 XENq such that X -+tUEP}. 

4. If there is an X ENq such that X -+t EP or X -+f.EP then add f to 
next (q, t) if it is not already present. 

5. If next(q,t)=F0 then let q' be the state representing Nq,=next(q,t). 
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Add q' to Q and qt -+q' to R if they are not already present. 

6. If all states of Q have been considered then let F = {q I f ENq } and 
stop. Otherwise return to step (2). 

You can easily convince yourself that this construction leads to a deter
ministic finite automaton A such that L (A ) = L (G). In particular, the algo
rithm terminates: All states represent subsets of N u {f}, of which there 
are only a finite number. 

To illustrate this procedure, consider the construction of a deterministic 
finite automaton that recognizes strings generated by the grammar of Figure 
5.4a. The state table for this grammar, showing the correspondence between 
states and sets of nonterminals, is given in Figure 5.lOa. You should derive 

n 

q] 

q4 

qs 

qs 

+ 

q2 

q2 

q6 

a) The state table 

T = {n,.,+,-,E} 

p = { qon -+q], qo· -+q2, 
q]. -+q2, q]E -+q3, 
q2n -+q4, 

q6 

q3n -+qs, q3 + -+q6, q3 - -+q6, 
q4E -+q3, 
q6n -+qs } 

F = {q].q4,qS} 

b) The complete automaton 

E 

q3 

q3 

{C} 

{f,F} 

{I} 

{S} 

{f,X} 

{f} 

{U} 

Figure 5.10. A Deterministic Automaton Corresponding to Figure 5.4a 
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this state table for yourself, following the steps of the algorithm. Begin with 
a single empty row for qo and work across it, filling in each entry that 
corresponds to a valid transition. Each time a distinct set of nonterminal 
symbols is generated, add an empty row to the table. The algorithm ter
minates when all rows have been processed. 

Theorem 5.16. For every finite automaton, A, there exists a regular grammar, 
G, such that L (G)=L (A). 

Theorems 5.l5 and 5.16 together establish the fact that finite automata and 
regular grammars are equivalent. To prove Theorem 5.16 we construct the 
production set P of the grammar G = (T,Q,P,qo) from the automaton 
(T,Q,R,qo,F) as follows: 

P = {q -+tq' I qt -+q'ER} u {q -+£ I q EF} 

5.2.2. State Diagrams and Regular Expressions The phrase structure 
of the basic symbols of the language is usually not interesting, and in fact 
may simply make the description harder to understand. Two additional for
malisms, both of which avoid the need for irrelevant structuring, are avail
able for regular languages. The first is the representation of a finite automa
ton by a directed graph: 

Definition 5.17.: Let A =(T,Q,R,qo,F) be a finite automaton, D = 
{(q,q') I 3 t ,qt-+q'ER}, andJ:(q,q')-+{t I qt-+q'ER} be a mapping 
from D into the powerset of T. The directed graph (Q,D) with edge labels 
J « q ,q'» is called the state diagram of the automaton A . 

Figure 5.lla is the state diagram of the automaton described in Figure 
5. lOb. The nodes corresponding to elements of F have been represented as 
squares, while the remaining nodes are represented as circles. Only the state 
numbers appear in the nodes: 0 stands for qo, 1 for qb and so forth. 

a) State diagram 

n .n n.n 
nEn nE + n nE-n 
n.nEn n.nE + n n.nE-n 

b) Paths 

Figure 5.11. Another Description of Figure 5.1 Db 
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In a state diagram, the sequence of edge labels along a path beginning at 
qo and ending at a state in F is a sentence of L (A). Figure 5.lla has exactly 
12 such paths. The corresponding sentences are given in Figure 5.11 b. 

A state diagram specifies a regular language. Another characterization is 
the regular expression: 

Definition 5.1S. Given a vocabulary V, and the symbols E, t:, +, *, ( and) 
not in V. A string p over V U {E ,t:, +, * ,(,)} is a regular expression over V if 
I. p is a single symbol of V or one of the symbols E or t:, or if 
2. p has the form (X + Y), (XY) or (X) * where X and Yare regular 

expressions. 

Every regular expression results from a finite number of applications of 
rules (1) and (2). It describes a language over V: The symbol E describes 
the empty language, t: describes the language consisting only of the empty 
string, v E V describes the language {v}, (X + Y) = {w I w EX or wE Y}, 
(XY) = {Xy I X EX,yE Y}. The closure operator (*) is defined by the fol
lowing infinite sum: 

X* =t:+X +XX + XXX + ... 

As illustrated in this definition, we shall usually omit parentheses. Star is 
unary, and takes priority over either binary operator; plus has a lower prior
ity than concatenation. Thus W +XY* is equivalent to the fully
parenthesized expression (W +(X(Y*))). 

Figure 5.12 summarizes the algebraic properties of regular expressions. 
The distinct representations for X· show that several regular expressions can 
be given for one language. 

The main advantage in using a regular expression to describe a set of 
strings is that it gives a precise specification, closely related to the 'natural 
language' description, which can be written in text form suitable for input to 
a computer. For example, let I denote any single letter and d any single 
digit. The expression I (I +d) * is then a direct representation of the natural 
language description 'a letter followed by any sequence ofletters and digits'. 

The equivalence of regular expressions and finite automata follows from: 

Theorem 5.19. Let R be a regular expression that describes a subset, S, of T*. 
There exists a deterministic finite automaton, A =(T,Q,P,qo,F) such that 
L(A )=S. 

The automaton is constructed in much the same way as that of Theorem 
5.15: We create a new expression R' by replacing the elements of T occur
ring in R by distinct symbols (multiple occurrences of the same element will 
receive distinct symbols). Further, we prefix another distinct symbol to the 
altered expression; if R =E, then R' consists only of this starting symbol. 
(As symbols we could use, for example, natural numbers with 0 as the start
ing symbol.) The states of our automaton correspond to subsets of the sym-
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X+Y = Y+X (commutative) 

(X + Y)+Z = X +(Y +Z) (associative) 
(XY)Z = X(YZ) 

X(Y +Z) = XY +XZ (distributive) 
(X + Y)Z = XZ + yz 

X +E = E +X = X (identity) 
Xf.=£X=X 

XE = EX = E (zero) 

X +X = X (idempotent) 

(X·>* =X· 
X· = f.+XX· 
X· = X+X· 

• 
f. =f. 

E' = f. 
Figure 5.12. Algebraic Properties of Regular Expressions 

R = 1 (l + d) * 
R' = 0 1 (2 + 3)* 

a) Modifying the Regular Expression 

d 

ql {O} 

q2 q3 {l} (final) 

q2 q3 {2} (final) 

q2 q3 {3} (final) 

b) The resulting state table 

Figure 5.13. Regular Expressions to State Tables 

bol set. The set corresponding to the initial state qo consists solely of the 
starting symbol. We inspect the states of Q one after another and add new 
states as required. For each q EQ and each t ET, let q' correspond to the 
set of symbols in R' that replace t and follow any of the symbols of the set 
corresponding to q. If the set corresponding to q' is not empty, then we add 
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qt -"q' to P and add {q'} to Q if it is not already present. The set F of final 
states consists of all states that include a possible final symbol of R'. 

Figure 5.13 gives an example of this process. Starting with qo= {O}, we 
obtain the state table of Figure 5.13b, with states qlo ql and q3 as final states. 
Obviously this is not the simplest automaton which we could create for the 
given language; we shall return to this problem in Section 6.2.2. 

5.3. Context-Free Grammars and Pushdown 
Automata 

Regular grammars are not sufficiently powerful to describe languages such 
as algebraic expressions, which have nested structure. Since most program
ming languages contain such structures, we must change to a sufficiently 
powerful descriptive method such as context-free grammars. Because regu
lar grammars are a subclass of context-free grammars, one might ask why 
we bother with regular languages at all. As we shall see in this section, the 
analysis of phrase structure by means of context-free grammars is so much 
more costly that one falls back upon the simpler methods for regular gram
mars whenever possible. 

Here, and also in Chapter 7, we assume that all context-free grammars 
(T,N,P,Z) contain a production Z --S. This is the only production in 
which the axiom Z appears. (Any grammar can be put in this form by addi
tion of such a production.) We assume further that the terminator # fol
lows each sentence. This symbol identifies the condition 'input text com
pletely consumed' and does not belong to the vocabulary. Section 5.3.3 
assumes further that the productions are consecutively numbered. The 
above production has the number 1, n is the total number of productions 
and the ith production has the form X; -"Xi, Xi =Xi, l' .. Xi,m' The length, 
m, of the right-hand side is also called the length of the production. We 
shall denote a leftmost derivation X :::;/ Y by X =;;, L Y and a rightmost 
derivation by X =;;,R Y. 

We find the following notation convenient for describing the properties of 
strings: The k-head k:w of w gives the first min(k, I w I + 1) symbols of 
w#. FIRSTk(w) is the set of all terminal k-heads of strings derivable from 
w. The set EFFk (w) ('t:-free first') contains all strings from FIRSTk (w) for 
which no t:-production A -"t: was applied at the last step in the rightmost 
derivation. The set FOLLO~ (w) comprises all terminal k -heads that could 
followw. By definition FOLLOWdZ) = {# } foranyk. Formally: 

k . w _ {w# when I w I < k 
. - a when w = ay and I a I = k 

FIRSTk(w) = {'T I :3 vET' such that w=;;,'v, 'T=k:v} 

EFFk(W) = {'TEFIRSTk(w) I :3 A EN, vET' such that w =;;,R A 'TV ~ 'Tv} 
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FOLLO~(w) = {T 1:3 JlEV' such that Z ~. p.6JJI, T=k:JI} 

We omit the index k when it is 1. These functions may be.applied to sets of 
strings, in which case the result is the union of the results of applying the 
function to the elements of its argument. Finally, if a is a string and 0 is a 
set of strings, we shall define aO = {aw I wEO}. 

5.3.1. Pushdown Automata For finite automata, we saw that the state 
specifies the set of nonterminal symbols of G that could have been used to 
derive the remainder of the input string. Suppose that a finite automaton 
has reached the first right parenthesis of the following expression (which can 
be derived using a context-free grammar): 

(al +(a2+(··· +(am )'" » 
It must then be in a state specifying some set of nonterminal symbols that 
can derive exactly m right parentheses. Clearly there must be a distinct state 
for each m. But if m is larger than the number of states of the automaton 
(and this could be arranged for any given number of states) then there can
not be a distinct state for each m. Thus we need a more powerful automa
ton, which can be obtained by providing a finite automaton with a stack as 
an additional storage structure. 

Definition 5.20. A pushdown automaton is a septuple A =(T.Q,R,qo,F,S,so), 
where (T U Q U S ,R) is a general rewriting system, q 0 is an element of Q, F 
is a subset of Q, and So is an element of S or SO=f. The sets T and Q are 
disjoint. Each element of R has the form aqaT-+a'q'T, where a and a' are 
elements of S~ q and q' are elements of Q, a is an element of T or a = f, 

and T is an element of r*. 

Q, qo and F have the same meaning as the corresponding components of a 
finite automaton. S is the set of stack symbols, and So is the initial content of 
the stack. The pushdown automaton accepts a string TET' ifsoqoT ~*q for 
some q in F. If each sentence is followed by #, the pushdown automaton A 
defines the language L(A) = {T I soqoT#~*q#,qEF,TEr*}. (In the 
literature one often finds the requirement that a be an element of S rather 
than S*; our automaton would then be termed a generalized pushdown auto
maton. Further, the definition of 'accept' could be based upon either the 
relation SoqoT~ *aq, aES',q EF, or the relation soqoT~ *q, q arbitrary. 
Under the given assumptions these definitions prove to be equivalent in 
power.) 

We can picture the automaton as a machine with a finite set Q ofintemal 
states and a stack of arbitrary length. If we have reached the configuration 
s I ... Sn q T in a derivation, then the automaton is in state q, T is the unread 
part of the input text being analyzed, and s I ... Sn is the content of the stack 
(s I is the bottom item and Sn the top). The transitions of the automaton 
either read the next symbol of the input text (symbol-controlled) or are spon-
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taneous and do not shorten the input text. Further, each transition may alter 
the topmost item of the stack; it is termed a stacking, unstacking or replacing 
transition, respectively, if it only adds items, deletes items, or changes them 
without altering their total number. 

The pushdown automaton can easily handle the problem of nested 
parentheses: When it reads a left parenthesis from the input text, it pushes a 
corresponding symbol onto the stack; when it reads the matching right 
parenthesis, that symbol is deleted from the stack. The number of states of 
the automaton plays no role in this process, and is independent of the 
parenthesis nesting depth. 

Theorem 5.21. For every context free grammar, G, there exists a pushdown 
automaton, A, such that L (A ) = L (G). 

As with finite automata, one proves this theorem by construction of A . 
There are two construction procedures, which lead to distinct automata; we 
shall go into the details of these procedures in Sections 5.3.2 and 5.3.3 
respectively. The automata constructed by the two procedures serve as the 
basic models for two fundamentally different parsing algorithms. 

A pushdown automaton is not necessarily deterministic even if the left 
sides of all productions are distinct. For example, suppose that a\q'T-Hlq''T' 
and a2q'T~a"q"'T" are two distinct productions and a2 is a proper tail of al' 

Thus al = aa2 and both productions are applicable to the configuration 
aa2q'TX. If we wish to test formally whether the productions unambiguously 
specify the next transition, we must make the left-hand sides the same 
length. Determinism can then be tested, as in the case of finite automata, by 
checking that the left-hand sides of the productions are distinct. We shall 
only consider cases in which the state q and k lookahead symbols of the 
input string are used to determine the applicable production. 

Unfortunately, it is not possible to sharpen Theorem 5.21 so that the 
pushdown automaton is always deterministic; Theorem 5.15 for regular 
grammars cannot be generalized to context-free grammars. Only by addi
tional restrictions to the grammar can one guarantee a deterministic auto
maton. Most programming languages can be analyzed deterministically, 
since they have grammars that satisfy these restrictions. (This has an obvi
ous psychological basis: Humans also find it easier to read a 
deterministically-analyzable program.) The restrictions imposed upon a 
grammar to obtain a deterministic automaton depend upon the construction 
procedure. We shall discuss the details at the appropriate place. 

5.3.2. Top-Down Analysis and LL(k) Grammars Let G=(T,N,P,Z) 
be a context-free grammar, and consider the pushdown automaton A = 
(T, {q},R,q, {q}, V,Z) with V=T u Nand R defined as follows: 

R = {tqt ~q I t ET} u {Bq ~bn ... blq 

B ~bl'" bn EP, n? 0, BEN, bi EV} 
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This automaton accepts a string in L (G) by constructing a leftmost deriva
tion of that string and comparing the symbols generated (from left to right) 
with the symbols actually appearing in the string. 

Figure 5.14 is a pushdown automaton constructed in this manner from 
the grammar of Figure 5.3a. In the left-hand column of Figure 5.15 we 
show the derivation by which this automaton accepts the string i +i*i. The 
right-hand column is the leftmost derivation of this string, copied from Fig
ure 5.5. Note that the automaton's derivation has more steps due to the 
rules that compare a terminal symbol on the stack with the head of the input 

T = { +, * ,(,),i) 

Q = {q} 

R = { Eq ~ Tq, Eq ~ T + Eq, 
Tq ~Fq, Tq ~F*Tq, 
Fq ~iq, Fq ~)E(q, 
+q+~q,*q*~q,(q(~q, )q)~q,iqi~q} 

qo = q 

F = {q} 

s = {+,*,(,),i,E, T,F} 

So = E 

Figure 5.14. A Pushdown Automaton Constructed from Figure 5.3a 

Stack Input Leftmost derivation 

E q i +i*i E 
T+E q i +i*i E+T 
T+T q i +i*i T+T 
T+F q i +i *i F+T 
T+i q i +i *i i+T 
T+ q +i*i 

Tq i *i 
F*T q i *i i+T*F 
F*F q i *i i+F*F 
F*i q i *i i +i*F 
F* q *i 
Fq 

q i i +i *i 
q 

Figure 5.15. Top-Down Analysis 
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string and delete both. Figure 5.16 shows a reduced set of productions com
bining some of these steps with those that precede them. 

R' = { Eq -+ Tq , Eq -+ T + Eq , 
Tq -+Fq, Tq -+F*Tq, 
Fqi-+q, Fq( -+ )Eq, 
+q + -+q, *q*-+q, )q)-+q } 

Figure 5.16. Reduced Productions for Figure 5.14 

The analysis performed by this automaton is called a top-down (or predic
tive) analysis because it traces the derivation from the axiom (top) to the sen
tence (bottom), predicting the symbols that should be present. For each 
configuration of the automaton, the stack specifies a string from v* used to 
derive the remainder of the input string. This corresponds to construction 
5.13 for finite automata, with the stack content playing the role of the state 
and the state merely serving to mark the point reached in the input scan. 

We now specify the construction of deterministic, top-down pushdown 
automata by means of the LL(k) grammars introduced by Lewis and 
Steams [1969]: 

Definition 5.22. A context-free grammar G = (T,N,P,Z) is LL (k) for given 
k ;> 0 if, for arbitrary derivations 

Z ~L /LA X ~/LwX ~ '/LY' y'ET', wE V' 

(k :y=k :y') implies p=w. 

Theorem 5.23. For every LL(k) grammar, G, there exists a deterministic push
down automaton, A, such that L (A ) = L (G). 

A reads each sentence of the language L (G) from left to right, tracing a left
most derivation and examining no more than k input symbols at each step. 
(Hence the term 'LL(k) prime .) 

In our discussion of Theorem 5.13, we noted that each state of the finite 
automaton corresponding to a given grammar specified the nonterminal of 
the grammar that must have been used to derive the string being analyzed. 
Thus the state of the automaton characterized a step in the grammar's 
derivation of a sentence. We can provide an analogous characterization of a 
step in a context-free derivation by giving information about the production 
being applied and the possible right context: Each state of a pushdown 
automaton could specify a triple (p,j,O), where O~ j ~ np gives the 
number of symbols from the right-hand side of production 
Xp -+Xp, 1 ••• xp , np already analyzed and 0 is the set of k -heads of strings 
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that could follow the string derived from Xp. This triple is called a situation, 
and is written in the following descriptive form: 

[XJ, ~p:JI;O] JL=Xp,I'" Xp,j, JI=xp,j+I'" xp,np 

The dot (which is assumed to be outside of the vocabulary) marks the posi
tion of the analysis within the right-hand side. (In most cases 0 contains a 
single string. We shall then write it without set brackets.) 

Given a grammar (T,N,P,Z), we specify the states Q and transitions R of the 
automaton inductively as follows: 
1. Initially let Q = {qo} and R = 0, with qo=[Z ~·S;#]. (Note that 
FOLLO~(Z)= {# }.) The initial state is qo, which is also the initial 
stack content of A. (We could have chosen an arbitrary state as the ini
tial stack content.) The automaton halts if this state is reached again, the 
stack is empty, and the next input symbol is the terminator # . 

2. Let q = [X ~ JL' JI; 0] be an element of Q that has not yet been considered. 
3. If JI=f. then add qf.~f. to R if it is not already present. (The notation 

q'T~'T is shorthand for the set of spontaneous unstacking transitions 
q'q'T~q''T with arbitrary q'.) 

4. IfJl=ty for some t ET and yE V', let q'=[X ~JLt·y;O]. Add q' to Q and 
qt ~q' to R if they are not already present. 

5. If JI=By for some BEN and yEV: let q'=[X~JLB'y;O] and H = 
HB ~'P; ;FIRSTk(yO)] I B ~P; EP}. Set Q : = Q u {q'} u Hand R 
:= R U {q'T; ~q'h;'T; I h; EH, 'T; EFIRSTk(P;yO)}. 

6. If all states in Q have been examined, stop. Otherwise, return to step (2). 

The construction terminates in all cases, since the set of situations is finite. 
One can show that the resulting automaton is deterministic if and only if G 
is an LL(k) grammar, and therefore the construction provides a test for the 
LL(k) property. 

Consider the grammar of Figure 5.l7a. We can apply Construction 5.23 
with k = 3 to show that this grammar is LL(3), obtaining the states of Figure 
5.l7b and the transitions of Figure 5.l7c. 

With k =2 the construction leads to identical states. In state q7, however, 
we obtain the following transitions: 

q7ca ~qlOqllca, q7ca ~qlOqI2ca 

The automaton is therefore nondeterministic and hence the grammar is 
LL(3), but not LL(2). The example also shows that the lookahead symbols 
are examined only at spontaneous, stacking transitions that correspond to 
entry into a new production. As soon as such a transition is executed, the 
reading of terminal symbols and the decision to terminate the production 
with an unstacking transition proceeds without further lookahead. 

There exist grammars that do not have the LL(k) property for any k. 
Among the possible reasons is the occurrence of left recursive nonterminals 
- nonterminals A for which a derivation A ~ A w, w-=l= f., is possible. In a 



5.3. Context-Free Grammars and Pushdown Automata 

P = { Z -->X, 
X --> Y, X -->b Ya, 
Y -->c, Y -->ca } 

a) An LL(3) grammar 

qo=[Z -->'X;# 1 
ql =[Z -->X';# 1 
q2=[X -->. Y;# 1 
q3=[X -->·bYa;# 1 
q4=[X --> y.;# 1 
q5=[Y -->'c;# 1 
q6=[Y -->'ca;# 1 
q7=[X -->b'Ya;# 1 
q8=[Y -->c·;# 1 

q9=[Y -->c'a;# 1 
qlO=[X -->bY'a;# 1 
qll =[Y -->·c ;a# 1 
ql2=[Y -->'ca;a# 1 
q13=[Y -->ca';# 1 
qI4=[X -->bYa';# 1 
qI5=[Y -->c';a# 1 
qI6=[Y -->c'a;a# 1 
q17=[Y -->ca';a# 1 

b) States of the automaton, with the situations they represent 

R = { qoc # -->qlq2c #, q7ca # -->qlOqllca #, 
qoca # -->qlq2ca #, q7caa -->q IOq l2caa , 
qolx:a -->qIq3lx:a, q8 -->(, 
q I -->(, q9a -->qI3, 
q2c # -->q4q5c #, q lOa -->q 14, 
q2ca # -->Q4q6ca #, Q II C -->q 15, 
q3b -->Q7, Q 12C -->Q 16, 

Q13 -->(, 
Q 4 -->(, Q 14 -->(, 
Q5c -->Q8, Q 15 -->(, 
Q6c -->Q9, Q 16a -->Q 17, 

Q17-->( } 

c) Production set of the Automaton 

Figure 5.17. Constructing a Deterministic Top-Down Automaton 
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predictive automaton, left recursive nonterminals lead to cycles that can be 
broken only by examining a right context of arbitrary length. They can, 
however, be eliminated through a transformation of the grammar. 

Theorem 5.24. An LL(k) grammar can have no left recursive nonterminal sym
bols. 

Theorem 5.25. For every contextfree grammar G = (T,N,P,Z) with left recur
sive nonterminals, there exists an equivalent grammar G' = (T,N ~P ~Z) with no 
left recursive nonterminals. 

Let the elements of N be numbered consecutively: N = {XI, ... , Xn }. If 
we choose the indices such that the condition i <j holds for all productions 
Xi -->J0 w then G has no left recursive nonterminals. If such a numbering is 
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not possible for G, we can guarantee it for G' through the following con
struction: 

1. Let N'=N, P'=P. Perform steps (2) and (3) for i = I, ... , n. 

2. For j = I, ... , i-I replace all productions X; ..... Xj wEP' by {Xi ..... Xj w I 
J0 ..... Xj EP'}. (After this step, X;:::;:, + J0 Y implies i <; j.) 

3. Replace the entire set of productions of the form X; ..... XiwEP' (if any 
exist) by the productions {Bi ..... wBi I Xi ..... XiwEP'}U {Bi ..... (}, adding a 
new symbol Bi to N'. At the same time, replace the entire set ofproduc
tions Xi ..... X, X =1= X; y, by Xi ..... XBi· The symbols added during this step 
will be given numbers n + I, n +2, ... , 

If the string w in the production X; ..... X; w does not begin with Xj ' j <; i 
then we can replace X; ..... X;w by {Bi ..... w, Bi ..... wB;} and X; ..... X by {X; ..... X, 
X; ..... XB;} in step (3). This approach avoids the introduction of (
productions; it was used to obtain the grammar of Figure 5.3b from that of 
Figure 5.3a. 

Note that left recursion such as E ..... T, E ..... E + T is used in the syntax of 
arithmetic expressions to reflect the left-association of the operators. This 
semantic property can also be seen in the transformed productions 
E ..... TE', E' ..... +TE: E' ..... (, but not in E ..... T,E ..... T+E. In EBNF the left 
associativity of an expression can be conveniently represented by 
E :: = T (,+'T)*. 

One of the constructions discussed above results in (-productions, while 
the other does not. We can always eliminate (-productions from an LL(k) 
grammar, but by doing this we may increase the value of k : 

Theorem 5.26. Given an LL(k) grammar G with (-productions. There exists an 
LL(k + I) grammar without (-productions that generates the language 
L(G)-{(}. 

Conversely, k can be reduced by introducing (-productions: 

Theorem 5.27. For every (free LL(k +1) grammar G, k>O, there exists an 
equivalent LL(k) grammar with (-productions. 

The proof of Theorem 5.27 rests upon a grammar transformation known 
as leftfactoring, illustrated in Figure 5.18. In Figure 5.l8a, we cannot distin
guish the productions X ..... Yc and X ..... Yd by examining any fixed number 
of symbols from the input text: No matter what number of symbols we 
choose, it is possible for Y to derive a string of that length in either produc
tion. 

We avoid the problem by deferring the decision. Since both productions 
begin with Y, it is really not necessary to distinguish them until after the 
string derived from Y has been scanned. The productions can be combined 
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P = { z -+X, 
X -+Yc,X -+Yd, 
Y -+a, Y -+bY } 

a) A grammar that is not LL(k) for any k 

P = { Z -+X, 
X -+ YX', 
X'-+c,X'-+d, 
Y -+a, Y -+bY } 

b) An equivalent LL(l) grammar 

Figure 5.18. Left Factoring 
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by 'factoring out' the common portion, as shown in Figure 5.18b. Now the 
decision is made at exactly the position where the productions begin to 
differ, and consequently it is only necessary to examine a single symbol of 
the input string. 

In general, by deferring a decision we obtain more information about the 
input text we are analyzing. The top-down analysis technique requires us to 
decide which production to apply before analyzing the string derived from 
that production. In the next section we shall present the opposite technique, 
which does not require a decision until after analyzing the string derived 
from a production. Intuitively, this technique should handle a larger class of 
grammars because more information is available on which to base a deci
sion; this intuition can be proven correct. The price is an increase in the 
complexity of both the analysis procedure and the resulting automaton, but 
in practice the technique remains competitive. 

5.3.3. Bottom-Up Analysis and LR(k) Grammars Again let G 
=(T,N,P,Z) be a context-free grammar, and consider the pushdown auto
matonA =(T,{q },R,q,{q}, v,t:) with V = TuN, and R defined as follows: 

R = {Xl'" xnq -+Xq I X -+Xl'" Xn EP} U {qt -+tq I t ET} u {Zq -+q} 

This automaton accepts a string in L (G) by working backward through a 
rightmost derivation of the string. 

Figure 5.19 is a pushdown automaton constructed in this manner from 

T = { +, * ,(,),i} 

R = { Tq -+Eq, E +Tq -+Eq, 
Fq -+Tq, T*Fq -+Tq, 
iq -+Fq, (E)q -+Fq, 
q + -+ +q, q* -+ *q, q( -+(q, q) -+)q, qi -+iq, 
Eq -+q } 

S = {+, * ,(,),i ,E,T,F} 

Figure 5.19. A Pushdown Automaton Constructed from Figure 5.3a 
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Stack 

q 
i q 
Fq 
T q 
Eq 

E+ q 
E+i q 
E+F q 
E+T q 

E+T* q 
E +T*i q 
E+T*F q 

E+T q 
E q 

q 
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Input Reverse rightmost derivation 

i +i*i i +i*i 
+i*i 
+i*i F+i*i 
+i*i T+i*i 
+i*i E+i*i 
i*i 
*i 
*. I E+F*i 
*. I E+T*i 

E+T*F 
E+T 
E 

Figure 5.20. Bottom-Up Analysis 

R'= { Tq~Eq,E+Tq~Eq, 
Fq ~Tq, T*Fq ~Tq, 
qi ~Fq, (Eq)~Fq, 
q + ~+q, q* ~*q, q( ~(q, 
Eq~q } 

Figure 5.21. Reduced Productions for Figure 5.17 

the grammar of Figure 5.3a. In the left-hand column of Figure 5.20, we 
show the derivation by which this automaton accepts the string i +i *i. The 
right-hand column is the reverse of the rightmost derivation of this string, 
copied from Figure 5.5. The number of steps required for the automaton's 
derivation can be decreased by combining productions as shown in Figure 
5.21. (This reduction is analogous to that of Figure 5.16.) 

The analysis performed by this automaton is called a bottom-up analysis 
because of the fact that it traces the derivation from the sentence (bottom) to 
the axiom (top). In each configuration of the automaton the stack contains a 
string from S , from which the portion of the input text already read can be 
derived. The state merely serves to mark the point reached in the input 
scan. The meaningful information is therefore the pair (p,o), where pES' 
denotes the stack contents and 0 E T* denotes the remainder of the input 
text. 

The pairs (p, 0) that describe the configurations of an automaton tracing 
such a derivation may be partitioned into equivalence classes as follows: 

Definition S.28. For p = I, ... , n let Xp ~Xp be the pth production of a 
context-free grammar G = (T, N, P, Z). The reduction classes, Rj , 

j =0, ... , n are defined by: 
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Ro= {(p, a) I p=p.y, a=pw such that Z ~Rp.A w, A ~R'yv, V =F £} 

Rp = {(p, a) I P=P.Xp' Z ~Rp.Xpa} 

'A ~R'a' denotes the relation 'A ~R a and the last step in the derivation 
does not take the form B a ~ a'. 

The reduction classes contain all pairs of strings that could appear during 
the bottom-up parse of a sentence in L (G) by the automaton described 
above. Further, the reduction class to which a pair belongs characterizes the 
transition carried out by the automaton when that pair appears as a 
configuration. There are three possibilities: 

1. (p. a) ERo. The simple phrase X is not yet completely in the stack; the 
transition qt -+tq with t = l:a is applied (shift transition). 

2. (p. a) ERp ' 1< P < n. The simple phrase X is complete in the stack and 
the reduce transition Xp q --+ Xp q is applied. (For p = I the transition 
Zq -+q occurs and the automaton halts.) 

3. (p,a) fiRj , 0< j < n. No further transitions are possible; the input text 
does not belong to L (G). 

A pushdown automaton that bases its decisions upon the reduction 
classes is obviously deterministic if and only if the grammar is unambiguous. 

Unfortunately the definition of the sets Rj uses the entire remainder of 
the input string in order to determine the reduction class to which a pair 
(p. a) belongs. That means that our bottom-up automaton must inspect an 
arbitrarily long lookahead string to make a decision about the next transi
tion, if it is to be deterministic. If we restrict the number of lookahead sym
bols to k, we arrive at the following definition: 

Definition 5.29. For some k ~ 0, the sets Rj , k , j = 0, ... , n, are called k
stack classes of a grammar G if: 

Rj,k={(p,T) 1:3 (p,a)ERj such that T=k:a} 

If the k -stack classes are pairwise-disjoint, then the pushdown automaton 
is deterministic even when the lookahead is restricted to k symbols. This 
property characterizes a class of grammars introduced by D. E. Knuth 
[1965]: 

Definition 5.30. A context-free grammar G = (T,N,P,Z) is LR(k) for given 
k ~ ° if, for arbitrary derivations 

Z~Rp.Aw~p.xw p.EV,wET*,A -+XEP 

Z =>R p.'B w' =>p.'yw' p.' E V*, w' E T*, B --+yEP 

( I p.x I +k):p.xw = (I p.'y I +k):p.'yw'implies p.=p.', A =B and X =y. 
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The automaton given at the beginning of this section scans the input text 
from left to right, tracing the reverse of a rightmost derivation and examin
ing no more than k input symbols at each step. (Hence the term "LR(k )".) 

Theorem 5.31. A context free grammar is LR(k) if and only if its k -stack 
classes are pairwise-disjoint. 

On the basis of this theorem, we can test the LR(k) property by determin
ing the intersection of the k-stack classes. Unfortunately the k-stack classes 
can contain infinitely many pairs (p, '1'): The length restriction permits only a 
finite number of strings '1', but the lengths of the stack contents are unres
tricted. However, we can give a regular grammar Gj for each k -stack class 
Rj,k such that L(Gj )= {(p&'T) I (p,'T)ERj,d. Since algorithms exist for 
determining whether two regular languages are disjoint, this construction 
leads to a procedure for testing the LR(k) property. 

Theorem 5.32. Let G = (T,N,P,Z) be a contextftee grammar, and let k > O. 
Assume that & is not an element of the vocabulary V = TuN. There exists a set 
of regular grammars Gj,j =0, ... , n such that L (Gj )= {p&'T I (p,'T) ERj,k}' 

The regular grammars that generate the k -stack classes are based upon 
the situations introduced in connection with Theorem 5.23: 

W = ([X ~IL'P;W) I X ~lLpEP, wEFOLLOWdX)} 

These situations are the nonterminal symbols of the regular grammars. To 
define the grammars themselves, we first specify a set of grammars that gen
erate the k -stack classes, but are not regular: 

G'j = (Vu {&,#}, W,plu P"u Pj ,[Z ~·s ;#]) 

The productions in P' U P" build the p components of the k-stack class. 
They provide the finite description of the infinite strings. Productions in Pj 

attach the 'I' component, terminating the k -stack class: 

P' = ([X ~lL'vY;w) ~v[X ~lLv"y;w) I v E V} 

P" = ([X ~IL'By;w]~[B ~',8;'T] I B ~,8EP, 'TEEFFk(yw)} 

Po = ([X ~IL'P;W]~& 'I' I P=/= t:, 'TEEFFk(pw)} 

Pp = {[xp ~Xp';w]~& w} P = I, ... , n 

Remember that the lengths of 'I' and ware limited to k symbols, so the 
number of possible strings & 'I' and & w is finite. If we regard these strings as 
single terminal symbols, productions in P I and Pj , j = 0, ... , n, are allow
able in a regular grammar. Productions in P" are not allowable, however, 
since they are of the form A ~ B , A, B EN. Thus G j is not regular. 

It is always possible to rewrite a grammar so that it contains no produc-
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tions such as those in pIt. The key is the closure of a nonterminal: 

H(A) = {A} u {B I C -+B EP,C EH(A)} 

The procedure for rewriting the grammar is: 

1. Select anA EN forwhichH(A)#: {A}. 
2. SetP = P - {A -+B I BEN}. 
3. Set P = P u {A -+/3 I B -+/3EP, B EH(A), /3f!.N}. 

The algorithm terminates when no selection can be made in step (1). 
We obtain Gj from Gj by applying this algorithm. The strings /3 are all 

of the form v [ ... ], & T or & w, and therefore all introduced productions 
satisfy the conditions for a regular grammar. 

Theorem 5.33. For every LR(k) grammar G there exists a deterministic push
down automaton A such that L (A ) = L (G). 

Let G = (T,N,P,Z). We base construction of the automaton on the 
grammars Gj , effectively building a machine that simultaneously generates 
the k -stack classes and checks them against the reverse of a rightmost 
derivation of the string. Depending upon the particular k -stack class, the 
automaton pushes the input symbol onto the stack or reduces some number 
of stacked symbols to a nonterminal. The construction algorithm generates 
the necessary situations as it goes, and uses the closure operation discussed 
above 'on the fly' to avoid considering productions from P". As in the con
struction associated with Theorem 5.15, a state of the automaton must 
specify a set of situations, anyone of which might have been used in deriv
ing the current k -stack class. It is convenient to restate the definition of a 
closure directly in terms of a set of situations M: 

H(M)=MU HB .... ·/3;T] I :3 [X .... p.-By;w]EH(M), 

B -+/3EP, TEFIRSTk(yw)} 

The elements of Q and R are determined inductively as follows: 

1. Initially let Q = {qo} and R = 0, with qo=H({[Z -+·S;#]}). 

2. Let q be an element of Q that has not yet been considered. Perform 
steps (3)-(5) for each v E V. 

3. Let basis (q,v) = {[X -+p.v--y;w] I [X -+p;vy;w]Eq}. 

4. If basis(q,v) #: 0, then let next(q,v)=H(basis(q,v». Add q'=next(q, v) 
to Q if it is not already present. 

5. Ifbasis(q,v)#: 0 and v ET then set 

{
{qv-+qq'} ifk~ 1 

R := R U {qvT-+qq'T I [X -+1.&"Vy;w]Eq, TEFlRSTk_1(yW)} otherwise 
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[2 -+'X;#] q4: [Y -+C·;#] 
[X -+. Y;#] [Y-+c'a;#] 
[X -+·bYa;# ] 
[Y -+·c;# ] q5: [X -+bY·a;#] 
[Y-+·ca;#] q6: [Y -+c·;a#] 
[2 -+K;#] [Y-+c·a;a#] 
[X -+ y.;#] q7: [Y -+ca·;#] 
[X -+b· Ya;# ] qg: [X -+bYa·;#] 
[Y -+·c ;a#] q9: [Y -+ca·;a# ] 
[Y -+·ca ;a# ] 

a) States 

R = { qobc -+qOq3c, 
qoc # -+qOq4#' 

q3ca -+q3q6a, 
q4a # -+q4q7#' 
q5a # -+q5qg#, 
q6aa -+q6q9a, 
qoq2 # -+qoq 1 #, 
qOq4 # -+qOq2 #, 
q3q6a # -+q3q5a #, 
qOq4q7# -+qOq2#, 
QOQ3Q5Qg# -+QoQI #, 
Q3Q6Q9a # -+Q3Q5a # } 

b) Transitions 

Figure 5.22. A Deterministic Bottom-Up Automaton for Figure 5.17a 

6. If all elements of Q have been considered, perform step (7) for each 
Q E Q and then stop. Otherwise return to step (2). 

7. For each [X-+X·;w]EQ, where X=XI···Xn, set R := R u 
{Ql ... qnqW-+qlq'w I [X -+·x ;w] Eqhqi +1 = next (qi, Xi)(i = I, ... , n -I), 
q =next(qn, xn), q'= next(ql,X)} 

The construction terminates in all cases, since only a finite number of 
situations [X -+X·y;w] exist. 

Figure 5.22 illustrates the algorithm by applying it to the grammar of 
Figure 5.17a with k = 2. In this example k = I would yield the same set of 
states. (For k =0, q4 and q7 would be coalesced, as would q7 and q9.) 
Nevertheless, a single look ahead symbol is not sufficient to distinguish 
between the shift and reduce transitions in state 6. The grammar is thus 
LR(2), but not LR(l). 

We shall conclude this section by quoting the following theoretical 
results: 
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Theorem 5.34. For every LR(k) grammar with k> I there exists an equivalent 
LR (I) grammar. 

Theorem 535. Every LL (k) grammar is also an LR (k ) grammar. 

Theorem 536. There exist LR (k) grammars that are not LL (k ') for any k '. 

Theorem 537. There exists an algorithm that, when given an LR(k) grammar 
G, will decide in a finite number of steps whether there exists a k' such that G is 
LL (k'). 

As a result of Theorem 5.34 we see that it might possibly be sufficient to 
concern ourselves only with LR(l) grammars. (As a matter of fact, the 
transformation underlying the proof of this theorem is unsuitable for 
practical purposes.) The remaining theorems support our intuitive thoughts 
at the end of Section 5.3.2. 

5.4. Notes and References 

The basic symbols of a programming language are often described by arbi
trary context-free productions, as illustrated by the LAX definition of 
Appendix A.I. This description does not provide a suitable starting point 
for mechanical construction of a lexical analyzer, and must therefore be 
recast by hand in terms of a regular set or regular grammar. 

Our interpretation of finite automata and pushdown automata as special 
cases of general rewriting systems follows Salomaa [1973]. By this means we 
avoid a special definition of concepts such as configurations or transitions of 
an automaton. 

BNF notation was first used to describe ALGOL 60 [Naur 1963]. Many 
authors have proposed extensions similar to our EBNF, using quoted termi
nals rather than bracketed nonterminals and having a regular expression 
capability. EBNF definitions are usually shorter than their BNF 
equivalents, but the important point is that they are textual representations 
of syntax charts [Jensen 1974, ANSI 1978]. This means that the context-free 
grammar can actually be developed and described to the user by means of 
pictures. 

Pushdown automata were first examined by Samelson and Bauer [1960] 
and applied to the compilation of a forerunner of ALGOL 60. Theoretical 
mastery of the concepts and the proofs of equivalence to general context
free grammars followed later. Our introduction of LR(k) grammars via 
reduction classes follows the work of Langmaack [1971]. 

Aho and Ullman [1972] (and many other books dealing with formal 
languages) cover essentially the same material as this chapter, but in much 
greater detail. The proofs that are either outlined here or omitted entirely 
can be found in those texts. 
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EXERCISES 

5.1. Prove that there is no loss of generality by prohibiting formal systems in which 
a derivation 'TT=i;> + 'TT of a string from itself is possible. 

5.2. Choose some useless nonterminal from the LAX definition and briefly justify 
its inclusion in Appendix A. 

5.3. Give an intuitive justification of Theorem 5.lD. 

5.4. Write a program to examine a finite automaton A and return the accepted 
language L (A) in closed form as a regular expression. 

5.5. Regular expressions X I, ... , X. can also be defined implicitly via systems of 
regular equations of the form: 

Here the ajj are known regular expressions. State the conditions under which 
such a system has a unique solution, and give an algorithm to compute this 
solution. (Hint: For b * (, the equation X =aX +b has the solution b 'a.) 

5.6. Give an explanation of the need for '-;;?RI' in Definition 5.28. 

5.7. Prove that the algorithm for rewriting G to remove productions of the form 
A ->B,A,B EN results in a grammar G such that L(G)=L(G). 



CHAPTER 6 

Lexical Analysis 

Lexical analysis converts the source program from a character string to a 
sequence of semantically-relevant symbols. The symbols and their encoding 
form the intermediate language output from the lexical analyzer. 

In principle, lexical analysis is a subtask of parsing that could be carried 
out by the normal parser mechanisms. To separate these functions, the 
source language grammar G must be partitioned into subgrammars 
Go, GJ, G2 , ... such that GJ, G2 , .•. describe the structure of the basic sym
bols and Go describes the structure of the language in terms of the basic 
symbols. L(G) is then obtained by replacing the terminal symbols of Go by 
strings from L (G I ), L (G 2) , ... 

The separation of lexical analysis from parsing gives rise to higher organ
izational costs that can be justified only by realizing greater savings in other 
areas. Such savings are possible in table-driven parsers through reduction in 
table size. Further, basic symbols usually have such a simple structure that 
faster procedures can be used for the lexical analysis than for the general 
parsing. 

We shall first discuss the partitioning of the grammar and the desired 
results oflexical analysis, and then consider implementation with the help of 
finite automata. 

6.1. Modules and Interfaces 
In this section we devote ourselves to the 'black box' aspects of lexical 
analysis: Decomposition of the grammar and with it the definition of the 
tasks of lexical analysis, arriving at the interface between the lexical 
analyzer and the remainder of the compiler. 

135 
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6.1.1. Decomposition of the Grammar Delimiters (keywords, mean
ingful special characters and combinations of special characters), identifiers 
and constants together are termed basic symbols. In sharp contrast to other 
language elements, their structure and representation may be arbitrarily 
changed (say by introducing French or German keywords or by represent
ing '<' by '.L T.') without altering the power of the language. Further, the 
structure of the basic symbols can generally be described with regular gram
mars or regular expressions. 

The productions of Section A.l describe the basic symbols of LAX. 
(Conversion to a regular grammar is left to the reader.) The productions 
A. 1.0.1 , A.1.0.9-12 are superfluous because only the nonterminals identifier 
and constant, single keywords, special characters and special character com
binations (other than '(*') occur in the remainder of the grammar. 

In many languages the grammar for basic symbols (symbol grammar) is 
not so easily determined from the language definition, or it results in addi
tional difficulties. For example, the ALGOL 60 Report defines keywords, 
letters, digits, special characters and special character combinations as basic 
symbols; it does not include identifiers, numbers and strings in this category. 
This description must be transformed to meet the requirements of compiler 
construction. In PL/l, as in other languages in which keywords are lexically 
indistinguishable from identifiers, context determines whether an identifier 
(e.g. IF) is to be treated as a keyword or a freely-chosen identifier. Two 
symbol grammars must therefore be distinguished on the basis of context; 
one accepts identifiers and not keywords, the other does the converse. An 
example of similar context-dependence in FORTRAN is the first identifier 
of a statement: In an assignment it is interpreted as the identifier of a data 
object, while in most other cases it is interpreted as a keyword. (Statement 
classification in FORTRAN is not an easy task - see the discussion by Sale 
[1971] for details.) 

Even if it is necessary to consult context in order to determine which sym
bols are possible at the given point in the input text, a finite automaton often 
suffices. The automaton in this case has several starting states corresponding 
to the distinct symbol grammars. We shall not pursue this point further. 

6.1.2. Lexical Analyzer Interface The lexical analyzer is organized as 
a module with several local state variables and implements the following 
elementary operations: 

• initialize _lexical_analysis 

• next _token 

• wrapup _lexical-tmalysis 

The central operation nexLtoken is used by the parser to obtain the next 
token in the token sequence (Section 4.1.1). (A coroutine, activated for each 
token, might be used instead of a procedure.) If the parser does not interact 



6.1. Modules and Interfaces 137 

directly with the lexical analyzer, then a file of tokens must be constructed 
by calls to next _token. The parser obtains the tokens by reading this file. 
Even if direct calls are possible, such a file is necessary when the parsing is 
done in several passes (as for ALGOL 68). 

The lexical analyzer itself uses the following elementary operations: 

• next _character 
• report _lexical_error 
• identifyJymbol 
• enter _constant 

(Source program input module) 
(Error module) 
(Symbol table module) 
(Constant table module) 

The information flow involving the lexical analyzer module is shown in Fig
ure 6.1. 

Source program 
Symbol table input 

I -Lexical analyzer Constant table 

t -
Parser Error handler 

Figure 6.1. Lexical Analyzer Interfaces 

The lexical analyzer reads the input text one character at a time by exe
cuting the next _character operation. Both the transition to a new line (if it is 
significant) and the encounter with the end of the input text are represented 
by characters in order to preserve the uniformity of the interface. (If 
next _character is executed again after the end of the input text has been 
encountered then it continues to deliver the termination character.) Usually 
next _character is the most frequently executed operation in the entire com
piler, and thus strongly influences the speed of compilation. We shall con
sider the implementation of this operation in detail in Section 6.2.3. 

The error reporting module is invoked when lexical errors (unrecognized 
input characters and violations of the basic symbol grammar) are encoun
tered. This module will then determine the continuation of lexical analysis 
(Section 12.2.3). 

When a sequence of characters has been identified as a basic symbol, the 
lexical analyzer will either create a token describing it or will restart in a 
new state. Different representations of the same basic symbol are resolved 
at this point. For example, if we were to allow the symbol' < ' to be written 
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'LESS' or 'L T' also, all three would lead to creation of the same token. The 
operation identify-.Symbol is used during token creation to perform the map
ping discussed in Section 4.2.1. If the basic symbol is a literal constant, rath
er than an identifier, the enter_constant operation is used instead of 
identify-.Symbol (Section 4.2.2). 

6.2. Construction 

We assume that the basic symbols are described by some set of regular 
grammars or regular expressions as discussed in Section 6.1.1. According to 
Theorem 5.15 or Theorem 5.19 we can construct a set of finite automata that 
accept the basic symbols. Unfortunately, these automata assume the end of 
the string to be known a priori; the task of the lexical analyzer is to extract 
the next basic symbol from the input text, determining the end of the symbol 
in the process. Thus the automaton only partially solves the lexical analysis 
problem. To enhance the efficiency of the lexical analyzer we should use 
the automaton with the fewest states from the set of automata that accept the 
given language. Finally, we consider implementation questions. 

In order to obtain the classification for the basic symbol (Figure 4.1) we 
partition the final states of the automaton into classes. Each class either pro
vides the classification directly or indicates that it must be found by using 
the operation identify-.Symbol. The textual representation of constants, and 
the strings used to interrogate the symbol table, are obtained from the input 
stream. The automaton is extended for this purpose to a finite-state trans
ducer that emits a character on each state transition. (In the terminology of 
switching theory, this transducer is a special case of a Mealy machine.) The 
output characters are collected together into a character string, which is then 
used to derive the necessary information. 

6.2.1. Extraction and Representation A semicolon is an ALGOL 60 
basic symbol, and is not a head of any other basic symbol. When an 
ALGOL 60 lexical analysis automaton reaches the final state corresponding 
to semicolon, it can halt and accept the semicolon. The end of the accepted 
string has been determined, and the input pointer is positioned for the next 
symbol. A colon is also an ALGOL 60 basic symbol, but it is a head of : =. 
Therefore the automaton must look ahead when it reaches the final state 
corresponding to colon. A more complex lookahead is required in the case 
of FORTRAN, where a digit sequence d is a basic symbol and also a head 
of the basic symbol d .E1. Since .EQ. is also a basic symbol, the automaton 
must look ahead three characters (in certain cases) before it can determine 
the end of the symbol string. 

By applying the tests of Section 5.3.3 to the original grammar G, we 
could determine (for fixed k) whether a k -character look ahead is sufficient 
to resolve ambiguity. Because of the effort involved, this is usually not done. 
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Instead, we apply the principle o/the longest match: The automaton continues 
to read until it reaches a state with no transition corresponding to the current 
input character. If that state is a final state, then it accepts the symbol 
scanned to that point; otherwise it signals a lexical error. The feasibility of 
the principle of the longest match is determined by the representation of the 
symbols (the grammars GJ, G2, ••• ) and by the sequences of symbols permit
ted (the grammar Go). 

The principle of the longest match in its basic form as stated above is 
unsuitable for a large number of grammars. For example, an attempt to 
extract the next token from '3.EQ.4' using the rules of FORTRAN would 
result in a lexical error when 'Q' was encountered. The solution is to retain 
information about the most-recently encountered final state, thus providing 
a 'fall-back' position. If the automaton halts in a final state, then it accepts 
the symbol; otherwise it restores the input stream pointer to that at the 
most-recently encountered final state. A lexical error is signaled only if no 
final state had been encountered during the scan. 

We have tacitly assumed that the initial state of the automaton is 
independent of the final state reached by the previous invocation of 
next-token. If this assumption is relaxed, permitting the state to be retained 
from the last invocation, then it is sometimes possible to avoid even the lim
ited backtracking discussed above (Exercise 6.3). Whether this technique 
solves all problems is still an open question. 

The choice of a representation for the keywords of a language plays a 
central role in determining the representations of other basic symbols. This 
choice is largely a question of language design: The definitions of COBOL, 
FORTRAN and PL/I (for example) prescribe the representations and their 
relationship to freely-chosen identifiers. In the case of ALGOL 60 and its 
descendants, however, these characteristics are not discussed in the language 
definitions. Here we shall briefly review the possibilities and their conse
quences. 

The simplest possibility is the representation of keywords by reserved 
words - ordinary identifiers that the programmer is not permitted to use for 
any other purpose. This approach requires that identifiers be written 
without gaps, so that spaces and newlines can serve as separators between 
identifiers and between an identifier and a number. Letters may appear 
within numbers, and hence they must not be separated from the preceding 
part of the number by spaces. The main advantage of this representation is 
its lucidity and low susceptibility to typographical errors. Its main disadvan
tage is that the programmer often does not remember all of the reserved 
words and hence incorrectly uses one as a freely-chosen identifier. Further, 
it is virtually impossible to modify the language by adding a new keyword 
because too many existing programs might have used this keyword as a 
freely-chosen identifier. 

If keywords are distinguished lexically then it is possible to relax the res
trictions on placement of spaces and newlines. There is no need for the pro-
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grammer to remember all of the keywords, and new ones may be introduced 
without affecting existing programs. The rules for distinguishing keywords 
are known as stropping conventions; the most common ones are: 

• Underlining the keyword. 

• Bracketing the keyword by special delimiters (such as the apostrophes 
used in the DIN 66006 standard for ALGOL 60) . 

• Prefixing the keyword with a special character and terminating it at the 
first space, newline or character other than a letter or digit. 

• Using upper case letters for keywords and lower case for identifiers (or 
vice-versa). 

All of these conventions increase the susceptibility of the input text to typo
graphical errors. Some also require larger character sets than others or rela
tively complex line-imaging routines. 

6.2.2. State Minimization Consider a completely-specified finite auto
maton A = (T,Q,R,qo,F) in which a production qt -->q' exists for every 
pair (q, t), q EQ, t ET. Such an automaton is termed reduced when there 
exists no equivalent automaton with fewer states. 

Theorem. For every completely-specified finite automaton A = (T,Q,R,qo,F) 
there exists a reduced finite automaton A' = (T,Q',R',qo',F') with 
L (A') = L (A ). 

To construct A I we first delete all states q for which there exists no string 
w such that qow=;;' *q. (These states are termed unreachable.) We then apply 
the refinement algorithm of Section B.3.2 to the state diagram of A , with the 
initial partition {q I q EF}, {q I q eF}. Let Q'be the set of all blocks in 
the resulting partition, and let [q] denote the block to which q E Q belongs. 
The definition of A' can now be completed as follows: 

R'= {[q]t-->[q1 I qt-->q'tiR} 

qo' = [qo] 

F' = {[q] I q EF} 

As an example, consider the automaton of Figure 5.13, which recognized 
the regular expression I (I +d)*. The initial partition consists of two blocks 
{qo} and {q" q2, q3} and is not refined, leading to the automaton of Figure 
6.2. We would have achieved the same result if we had begun with the regu
lar expression (A +B + ... +Z)(A +B + ... +Z +0+· .. +9)*. 

Figure 6.2. Reduced Automaton Accepting /(l +d)* 
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In order to apply the algorithm of Section B.3.2 to this example we must 
complete the original automaton, which permits only I as an input character 
in state qo. To do this we introduce an 'error state', qe, and transitions qt ~qe 
for all pairs (q, t 1 q E Q, t E T, not corresponding to transitions of the given 
automaton. (In the example, qod ~qe suffices.) In practice, however, it is 
easier to modify the algorithm so that it does not require explicit error tran
sitions. 

If c denotes any character other than the quote, then the regular expres
sion "" + "(c + "")(c + "")*" describes the characters and strings of Pascal. 
Figure 6.3a shows the automaton constructed from this expression according 
to the procedure of Theorem 5.19, and the reduced automaton is shown in 
Figure 6.3b. 

a) Unreduced 

o~----------------~ 

b) Reduced 

Figure 6.3. Finite Automata Accepting ",,, + "(c + ")(c + ")*' 

In our application we must modify the equivalence relation still further, 
and only treat final states as equivalent when they lead to identical subse
quent processing. For an automaton recognizing the symbol grammar of 
LAX, we divide the final states into the following classes: 

• Identifiers or keywords 

• Special characters 

• Combinations of special characters 

• Integers 

• Floating point numbers 

• Floating point numbers with exponents 
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This results in the reduced automaton of Figure 6.4. Letters denote the fol
lowing character classes: 

• a = all characters other than '.' 

• a' = all characters other than '.' or ')' 

• c = all characters other than quote 

• d = digits 

• I = letters 

• s = '+' '.' '*' '<' '>' , i ' ';' ',' ')' '[' ']' 
Figure 6.4 illustrates several methods of obtaining the code correspond

ing to a basic symbol. States, I, 6, 7, 9, and 12-18 all provide the code 
directly. IdentifyJymbol must be used in state 4 to distinguish identifiers 
from keywords. In state 19 we might also use identifyJymbol, or we might 
use some other direct computation based on the character codes. 

Figure 6.4. Finite Automaton Accepting LAX Basic Symbols 
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The state reduction in these examples could be performed by hand with 
no display of theory, but the theory is required if we wish to mechanically 
implement a lexical analyzer based upon regular expressions. 

6.2.3. Programming the Lexical Analyzer In order to extract the basic 
symbol that follows a given position p in the input stream we must recognize 
and delete irrelevant characters such as spaces and newlines, use the auto
maton to read the symbol, and fix the terminal position p'. 

Superfluous spaces can be deleted by adding transitions q" ..... q to all 
states q in which such spaces are permitted. Since newlines (card boun
daries or carriage returns) are input characters if they are significant, we can 
handle them in the same way as superfluous spaces in many languages. 

There are two possibilities from which to choose when programming the 
automaton: 

• Representing the transition table as a matrix, so that the program for the 
automaton has the general form: 

while bask...symboLnoLyeLcomplete do 
state: = table [state,nexLcharacter]; 

• Programming the transition table as a case clause for each state. 

The first method is generally expensive in terms of memory. For LAX we 
need a 20 X 57 matrix, even without considering characters that may occur 
only in comments. We can reduce the size of this matrix by grouping 
together all characters that are treated uniformly by the lexical analyzer and 
provide one column for each such character class. The class to which a char
acter belongs is then obtained from an array indexed by the character. This 
array makes the remainder of the compiler relatively independent of chang
ing character sets and their encoding, thus increasing its machine
independence. For LAX the classes are: {letters other than E}, {E}, 
{digits}, L}, {O' OJ, {*}, {+ -}, {;}, {=}, {I}, {"}, {.}, {:}, {< > j, [ 
]}, {space tab newline}, {terminator (#)}, {characters allowed only in com
ments}; the matrix size is then 20 X 18. The storage requirements can often 
be reduced still further, possibly by means of techniques introduced in the 
next chapter. 

In contrast to the matrix representation, mechanical implementation of 
the transition table by case clauses can be carried out only at great cost. 
Hand coding is rather simple, however, and one usually obtains a much 
smaller lexical analyzer. Steps can also be taken to speed up execution of the 
most-frequently performed transitions. 

The simplest way to provide output from the automaton is to add the 
input character to a string - empty at the start of the basic symbol - during 
each state transition. This strategy is generally inadequate. For example, 
the quotes bounding a Pascal character or string denotation should be omit
ted and any doubled internal quote should be replaced by a single quote. 
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Thus more general actions may need to be taken at each state transition. It 
usually suffices, however, to provide the following four options: 

• Add (some mapping of) the input character to the output string. 

• Add a given character to the output string. 

• Set a pointer or index to the output string. 

• Do nothing. 

Figure 6.5 illustrates three of these actions applied to produce output from 
the automaton of Figure 6.3b. A slash separates the output action from the 
input character; the absence of a slash indicates the 'do nothing' action. 

In order to produce the standard representation of floating point numbers 
(see Section 4.2.2), we require three indices to the characters of the 
significand: 

beg: Initially indexes the first character of the significand, finally indexes 
the first nonzero digit. 

pnt: Indexes the first position to the right of the decimal point. 

lim: Initially indexes the first position to the right of the significand, finally 
indexes the first position to the right of the last nonzero digit. 

By moving the indices beg and lim, the leading and trailing zeros are 
removed so that the significand is left over in standard form. If e is the 
value of the explicit exponent, then the adjusted exponent e' is given by: 

e':=e +(beg -pnt) 
e': =e +(pnt -lim) 

significand interpreted as a fraction 
significand interpreted as an integer 

The standard representation of a floating point zero is the pair ('0',0). 
This representation is obtained by taking a special exit from the standardi
zation algorithm if beg becomes equal to lim during the zero-removal pro
cess. 

Many authors suggest that the next...character operation be implemented 
by a procedure. We have already pointed out that the implementation of 
next-character strongly influences the overall speed of the compiler; in 
many cases simple use of a procedure leads to significant inefficiency. For 

Or---------------~ 

Figure 6.5. Finite Transducer for Pascal Strings 
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Table 6.6. Lexical Analysis on a Control Data 6400 [Dunn 1974] 

Lexical Analysis Time 
Translator Program Microseconds Fraction of 

per character total compile time 

Page Formatter 3.56 14% 

without comments 3.44 9% 

Flowchart Generator 3.3 11.5% 

COMPASS 2.0 I/O Package 5.1 21 % 
Pascal 3.4 Pascal Compiler 35.6 39.6% 

example, Table 6.6 shows the results of measuring lexical analysis times for 
three translators running on a Control Data 6400 under KRONOS 2.0. 
RUN 2.3 is a FORTRAN compiler that reads one line at a time, storing it in 
an array; the next-.character operation is implemented as a fetch and index 
increment in-line. The COMPASS 2.0 assembler implements some in
stances of next-character by procedure calls and others by in-line refer
ences, while the Pascal compiler uses a procedure call to fetch each charac
ter. The two test programs for the FORTRAN compiler had similar charac
teristics: Each was about 5000 lines long, composed of 30-40 heavily
commented subprograms. The test program for COMPASS contained 900 
lines, about one-third of which were comments, and that for Pascal (the 
compiler itself) had 5000 lines with very few comments. 

Further measurements on existing compilers for a number of languages 
indicate that the major subtasks of lexical analysis can be rank-ordered by 
amount of time spent as follows: 

1. Skipping spaces and comments. 
2. Collecting identifiers and keywords. 
3. Collecting digits. 
4. All other tasks. 

In many cases there are large (factor of at least 2) differences in the amount 
of time spent between adjacent elements in this hierarchy. Of course the 
precise breakdown depends upon the language, compiler, operating system 
and coding technique of the user. For example, skipping a comment is 
trivial in FORTRAN; on the other hand, an average non-comment card in 
FORTRAN has 48 blank columns out of the 66 allocated to code [Knuth 
1971 ]. 

Taken together, the measurements discussed in the two paragraphs above 
lead to the conclusion that the lexical analyzer should be partitioned further: 
Tasks 1-3 should be incorporated into a scanner module that implements the 
next _character operation, and the finite automaton and its underlying regu
lar grammar (or regular expression) should be defined in terms of the char
acters digit -string, identifier, keyword, etc. This decomposition drastically 
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reduces the number of invocations of next _character, and also the influence 
of the automaton implementation upon the speed of the lexical analyzer. 

Tasks 1-3 are trivial, and can be implemented 'by hand' using all of the 
coding tricks and special instructions available on the target computer. 
They can be carefully integrated with the 110 facilities provided by the 
operating system to minimize overhead. In this way, serious inefficiencies in 
the lexical analyzer can be avoided while retaining systematic construction 
techniques for most of the implementation. 

6.3. Notes and References 

The fact that the basic symbols are regular was first exploited to generate a 
lexical analyzer mechanically in the RWORD System [Johnson 1968, Gries 
1971]. More recently, DeRemer [1974] has proposed the use of a modified 
LR technique (Section 5.3.3) for this generation. Lesk [1975] describes how 
such a system can be linked to the remainder of a compiler. 

Lexical analyzer generators are still the exception rather than the rule. 
The analyzers used in practice are simple, and hand coding is not prohibi
tively expensive. There are also many indications that the hand-coded pro
duct provides significant savings in execution time over the products of 
existing generators. Many of the coding details (table formats, output 
actions, limited backtrack and character class tradeoffs) are discussed by 
Waite [1973a] in his treatment of string-directed pattern matching. 

Two additional features, macros and compiler control commands (com
piler options, compile-time facilities) complicate the lexical analyzer and its 
interface to the parser. Macro processing can usually be done in a separate 
pre-pass. If, however, it is integrated into the language (as in PL/M or Bur
roughs Extended ALGOL) then it is a task of the lexical analyzer. This 
requires additional information from the parser regarding the scope of 
macro definitions. 

We recommend that control commands always be written on a separate 
line, and be easily recognizable by the lexical analyzer. They should also be 
syntactically valid, so that the parser can process them if they are not 
relevant to lexical analysis. Finally, it is important that there be only one 
form of control command, since the user should not be forced to learn 
several conventions because the compiler writer decides to process com
mands in several places. 

EXERCISES 

6.1. Derive a regular grammar from the LAX symbol grammar of Appendix A.1. 
Derive a regular expression. 
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6.2. [Sale 1971, McIlroy 1974] Consider the definition of FORTRAN 66. 
a. Partition the grammar as discussed in Section 6.1.1. Explain why you dis

tinguished each of the symbol subgrammars Gi . 

b. Carefully specify the lexical analyzer interface. How do you invoke 
different symbol subgrammars? 

6.3. Consider the following set of tokens, which are possible in a FORTRAN 
assignment statement [McIlroy 1974] (identifier is constructed as usual, d 
denotes a nonempty sequence of digits, and s denotes either' +' or ,-,): 

+-*/**(),= 
.TRUE. .F ALSE . 
. AND. .OR. .NOT. 
.L T. .LE. .EQ. .NE. .GE. .GT. 
identifier 
d d. d.d .d 
dEd d.Ed d.dEd .dEd 
dEsd d .Esd d .dEsd .dEsd 

Assume that any token sequence is permissible, and that the ambiguity of ,***, 
may be resolved in any convenient manner. 
a. Derive an analysis automaton using the methods of Section 5.2, and minim

ize the number of states by the method of Section B.3.3. 
b. Derive an analysis automaton using the methods given by Aho and 

Corasick [1975], and minimize the number of states. 
c. Describe in detail the interaction between the parser and the automaton 

derived in (b). What information must be retained? What form should that 
information take? 

d. Can you generalize the construction algorithms of Aho and Cora sick to 
arbitrary regular expression inputs? 

6.4. Write a line-imaging routine to accept an arbitrary sequence of printable char
acters, spaces and backspace characters and create an image of the input line. 
You should recognize an extended character set which includes arbitrary 
underlining, plus the following overstruck characters: 

c overstruck by / interpreted as 'cents' 
= overstruck by / interpreted as 'not equal' 

(Note: Overstrikes may occur in any order.) Your image should be an integer 
array, with one element per character position. This integer should encode the 
character (e.g. 'cents') resulting in that position from the arbitrary input 
sequence. 

6.5. Write a program to implement the automaton of Figure 6.4 as a collection of 
case clauses. Compile the program and compare its size to the requirements 
for the transition table. 

6.6. Attach output specifications to the transitions of Figure 6.4. How will the 
inclusion of these specifications affect the program you wrote for Exercise 6.5? 
Will their inclusion change the relationship between the program size and tran
sition table size significantly? 

6.7. Consider the partition of a lexical analyzer for LAX into scanner and an auto
maton. 
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a. Restate the symbol grammar in terms of identifier, digitJtring, etc. to reflect 
the partition. Show how this change affects Figure 6.4. 

b. Carefully specify the interface between scanner and automaton. 
c. Rewrite the routine of Exercise 6.5, using the interface defined in (b). Has 

the overall size of the lexical analyzer changed? (Don't forget to include the 
scanner size!) Has the relationship between the two possible implementa
tions of the automaton (case clauses or transition tables) changed? 

d. Measure the time required for lexical analysis, comparing the implementa
tion of (c) with that of Exercise 6.5. If they differ, can you attribute the 
difference to any specific feature of your environment (e.g. an expensive 
procedure mechanism)? If they do not differ, can you explain why? 

6.8. Suppose that LAX is being implemented on a machine that supports both 
upper and lower case letters. How would your lexical analyzer change under 
each of the following assumptions: 
a. Upper and lower case letters are indistinguishable. 
b. Upper and lower case may be mixed arbitrarily in identifiers, but all 

occurrences of a given identifier must use the same characters. (In other 
words, if an identifier is introduced as ArraySize then no identifier such as 
arraysize can be introduced in the same range.) Keywords must always be 
lower case. 

c. As (b), except that upper and lower case may be mixed arbitrarily in key
words, and need not always be the same. 

d. Choose one of the schemes (a)-(c) and argue in favor of it on grounds of 
program portability, ease of use, documentation value, etc. 
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Parsing 

The parsing of a source program determines the semantically-relevant 
phrases and, at the same time, verifies syntactic correctness. As a result we 
obtain the parse tree of the program, at first represented implicitly by the 
sequence of productions employed during the derivation from (or reduction 
to) the axiom according to the underlying grammar. 

In this chapter we concern ourselves with the practical implementation of 
parsers. We begin with the parser interface and the appropriate choice of 
parsing technique, and then go into the construction of deterministic parsers 
from a given grammar. We shall consider both the top-down and bottom
up parsing techniques introduced in Section 5.3.2 and 5.3.3. Methods for 
coding parsers by hand and for generating them mechanically will be dis
cussed. 

7.1. Design 

To design a parser we must define the grammar to be processed, augment it 
with connection points (points at which information will be extracted) and 
choose the parsing algorithm. Finally, the augmented grammar must be 
converted into a form suited to the chosen parsing technique. After this 
preparation the actual construction of the parser can be carried out mechan
ically. Thus the process of parser design is really one of grammar design, in 
which we derive a grammar satisfying the restrictions of a particular parsing 
algorithm and containing the connection points necessary to determine the 
semantics of the source program. 

Even if we are given a grammar for the language, modifications may be 
necessary to obtain a useful parser. We must, of course, guarantee that the 
modified grammar actually describes the same language as the original, and 
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that the semantic structure is unchanged. Structural syntactic ambiguity 
leading to different semantic interpretations can only be corrected by alter
ing the language. Other ambiguities can frequently be removed by deleting 
productions or restricting their applicability depending upon the parser 
state. 

7.1.1. The Parser Interface A parser accepts a sequence of basic sym
bols, recognizes the extant syntactic structure, and outputs that structure 
along with the identity of the relevant symbols. If the syntactic structure is 
not error-free, the parser invokes the error handler to report errors and to 
aid in recovery so that processing can continue. (The details of the recovery 
mechanism will be discussed in Section 12.2.2.) Figure 7.1 shows the infor
mation flow involved in the parsing process. 

Three possible interface specifications are suggested by Figure 7.1, 
depending upon the overall organization of the compiler. The most com
mon is for the parser module to provide the operation parse _program. It 
invokes the lexical analyzer's next -symbol operation for each basic symbol, 
and reports each connection point by invoking an appropriate operation of 
some other module. (We term this invocation a parser action.) Control of 
the entire transduction process resides within the parser in this design. By 
moving the control out of the parser module, we obtain the two alternative 
designs: The parser module provides either an operation parse -symbol that 
is invoked with a token as an argument, or an operation next _connection 
that is invoked to obtain a connection point specification. 

It is also possible to divide the parsing over more than one pass. Proper
ties of the language and demands of the parsing algorithm can lead to a 
situation where we need to know the semantics of certain symbols before we 
can parse the context of the definitions of these symbols. ALGOL 68, for 
example, permits constructs whose syntactic structure can be recognized by 
deterministic left-to-right analysis only if the complete set of type identifiers 

Connection 
Lexical Tokens 

Parser 
points Semantic 

analyzer analyzer 

Error Synthesized 
reports tokens 

Error 
handler 

Figure 7.1. Parser Information Flow 
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is known beforehand. When the parsing is carried out in several passes, the 
sequence of symbols produced by the lexical analyzer will be augmented by 
other information collected by parser actions during previous passes. The 
details depend upon the source language. 

We have already considered the interface between the parser and the lex
ical analyzer, and the representation of symbols. The parser looks ahead 
some number of symbols in order to control the parsing. As soon as it has 
accepted one of the lookahead symbols as a component of the sentence 
being analyzed, it reads the next symbol to maintain the supply of looka
head symbols. Through the use of LL or LR techniques, we can be certain 
that the program is syntactically correct up to and including the accepted 
symbol. The parser thus need not retain accepted symbols. If the code for 
these symbols, or their values, must be passed on to other compiler modules 
via parser actions, these actions must be connected directly to the accep
tance of the symbol. We shall term connection points serving this purpose 
symbol connections. 

We can distinguish a second class of connection point, the structure con
nection. It is used to connect parser actions to the attainment of certain sets 
of situations (in the sense of Section 5.3.2) and permits us to trace the 
phrases recognized by the parser in the source program. Note carefully that 
symbol and structure connections provide the only information that a com
piler extracts from the input text. 

In order to produce the parse tree as an explicit data structure, it suffices 
to provide one structure connection at each reduction of a simple phrase and 
one symbol connection at acceptance of each symbol having a symbol 
value; at the structure connections we must know which production was 
applied. We can fix the connection points for this process mechanically 
from the grammar. This process has proved useful, particularly with 
bottom-up parsing. 

Parser actions that enter declarations into tables or generate code directly 
cannot be fixed mechanically, but must be introduced by the programmer. 
Moreover, we often know which production is to be applied well before the 
reduction actually takes place, and we can make good use of this 
knowledge. In these cases we must explicitly mark the connection points 
and parser actions in the grammar from which the parser is produced. We 
add the symbol encoding (code and value) taken from the lexical analyzer 
as a parameter to the symbol connections, whereas parser actions at 
structure connections extract all of their information from the state of the 
parser. 

Figure 7.2a illustrates a grammar with connection points. The character 
% marks structure connections, the character & symbol connections. Fol
lowing these characters, the parser action at that point is specified. 
Definitions of the parser actions are given in Figure 7.2b. The result of these 
specifications is a translation of arithmetic expressions from infix to postfix 
form. 
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Expression :: = Term (' +' Term %Addop) * . 
Term :: = Factor ('*' Factor %Mulop)* . 

Chapter 7. Parsing 

Factor :: = 'Identifier' &Ident I '(' Expression ')'. 

Addop: 
Mulop: 
Ident: 

a) A grammar for expressions 

Output "+" 
Output "*" 
Output the identifier returned by the lexical analyzer 

b) Parser actions to produce postfix 

Figure 7.2. Connection Points 

The processes for parser generation to be described in Sections 7.2 and 
7.3 can interpret symbol and structure connections introduced explicitly into 
the grammar as additional nonterminals generating the null string. Thus the 
connection points do not require special treatment; only the generated pars
ing algorithm must distinguish them from symbols of the grammar. In addi
tion, none of the transformations used during the generation process alters 
the invocation sequence of the associated parser actions. 

The introduction of connection points can alter the properties of the 
grammar. For example, the grammar whose productions are {Z --S, 
S --abc, S --ahd} is LR(O). The modified grammar {Z --S, S --a&Abc, 
S --a&Bbd} no longer possesses this property: After reading a it is not yet 
clear which of the parser actions should be carried out. 

If a grammar does not have a desired property before connection points 
are introduced, then their inclusion will not provide that property. This does 
not, however, prohibit a parser action from altering the state of the parser 
and thus simulating some desirable property. For example, one can occa
sionally distinguish among several possible state transitions through the use 
of semantic information and in this manner establish an LL property not 
previously present. More problems are generally created than avoided by 
such ad hoc measures, however. 

7.1.2. Selection ofthe Parsing Algorithm The choice of which parsing 
technique to use in a compiler depends more upon the economic and imple
mentation viewpoint than upon the source language and its technical pro
perties. Experience with a particular technique and availability of a pro
gram to construct the parser (or the cost of developing such a program) are 
usually stronger criteria than the suitability of the technique for the given 
source language. The reason is that, in many cases, the grammar for a 
language can be modified to satisfy the restrictions of several parsing tech
niques. 

As we have previously stressed, the parser should work deterministically 
under all circumstances. Only in this way can we parse correct programs in 
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a time linearly dependent upon program length, avoiding backtrack and the 
need to unravel parser actions. We have already pointed out the LL and LR 
algorithms as special cases of deterministic techniques that recognize a syn
tactic error at the first symbol, t, that cannot be the continuation of a correct 
program; other algorithms may not discover the error until attempting to 
reduce the simple phrase in which t occurs. Moreover, LR(k) grammars 
comprise the largest class whose sentences can be parsed using deterministic 
pushdown automata. In view of these properties we restrict ourselves to the 
discussion of LL and LR parsing algorithms. Other techniques can be 
found in the literature cited in Section 7.4. 

Usually the availability of a parser generator is the strongest motive for 
the choice between LL and LR algorithms: If one has such a generator at 
one's disposal, then the technique it implements is given preference. If no 
parser generator is available, then an LL algorithm should be selected 
because the LL conditions are substantially easier to verify by hand. Also a 
transparent method for obtaining the parser from the grammar exists for LL 
but not for LR algorithms. By using this approach, recognizers for large 
grammars can be programmed relatively easily by hand. 

LR algorithms apply to a larger class of grammafs than LL algorithms, 
because they postpone the decision about the applicable production pntil 
the reduction takes place. The main advantage of LR algorithms is that 
they permit more latitude in the representation of the grammar. As the 
example at the end of Section 7.1.1 shows, however, this advantage may be 
neutralized if distinct structure connections that frustrate deferment of a 
parsing decision must be introduced. (Note that LL and LR algorithms 
behave identically for all language constructs that begin with a special key
word.) 

We restrict our discussion to parsers with only one-symbol lookahead, 
and thus to LL(l) and LR(l) grammars. Experience shows that this is not a 
substantial restriction; programming languages are usually so simply con
structed that it is easy to satisfy the necessary conditions. In fact, to a large 
extent one can manage with no lookahead at all. The main reason for the 
restriction is the considerable increase in cost (both time and space) that 
must be invested to obtain more lookahead symbols in the parser generator 
and in the generated parser. 

When dealing with LR grammars, not even the restriction to the LR(l) 
case is sufficient to obtain practical tables. Thus we use an LR(l) parse 
algorithm, but control it with tables obtained through a modification of the 
LR(O) analyzer. 

7.1.3. Parser Construction LL and LR parsers are pushdown auto
mata. Given a grammar G =(T,N,P,Z), we can use either construction 5.23 
(LL) or construction 5.33 (LR) to derive a parsing automaton 
A =(T,Q,R.qo,{qo},Q,qo). To implement this automaton, we must represent 
the transitions of R in a convenient form so that we can determine the next 
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transition quickly and at the same time keep the total storage requirement 
reasonable. 

For this purpose we derive a transition function,f (q, v), from the produc
tion set R. It specifies which of the possible actions (e.g. read a symbol, 
reduce according to a production from P, report an error) should be taken 
in state q when the input string begins with the element vET. In the LR 
case we also define f (q, v) for v EN; it then specifies the action to be taken 
in state q after a reduction to v. The transition function may be represented 
by a (transition) matrix. 

Some of the entries off (q, v) may be unreachable, regardless of the ter
minal string input to the parser. (We shall give examples in Section 7.3.1.) 
Because these entries can never be reached, the actions they specify are 
irrelevant. In the terminology of sequential machines, these entries are 
don't-cares and the transition function is incompletely specified. The presence 
of don't-cares leads to possible reduction in table size by combining rows or 
columns that differ only in those elements. 

The transition function may be stored as program fragments rather than 
as a matrix. This is especially useful in an LL parser, where there are simple 
rules relating the program fragments to the original grammar. 

Parser generation is actually compilation: The source program is a gram
mar with embedded connection points, and the target program is some 
representation of the transition function. Like all compilers, the parser gen
erator must first analyze its input text. This analysis phase tests the grammar 
to ensure that it satisfies the conditions (LL(l), LR(l), etc.) assumed by the 
parser. Some generators, like 'error correcting' compilers, will attempt to 
transform a grammar that does not meet the required conditions. Other 
transformations designed to optimize the generated parser may also be 
undertaken. In Sections 7.2 and 7.3 we shall consider some aspects of the 
'semantic analysis' (condition testing) and optimization phases of parser 
generators. 

Table 7.3 summarizes the computational complexity of the parser genera
tion algorithms presented in the remainder of this chapter. (The parameter 
n is the sum of the lengths of the right-hand sides of all productions.) It 
should be emphasized that the expressions of Table 7.3 represent asymptotic 

Table 7.3. Computational Complexity of 
Parser Generation [Hunt 1975] 

Grammar Type 

LL(l) 
Strong LL(k) 
LL(k) 
SLR(l) 
SLR(k) 
LR(k) 

Test Parser generation 

n2 

nk +1 

2nk +(k + I) log n 

2n +Iogn 

2n +k logn 

2nk+1+k logn 
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bounds on execution time. All of the bounds given are sharp, since in every 
case grammars exist whose parsers require an amount of table space propor
tional to the time bound specified for parser construction. 

7.2. LL(l) Parsers 

LL(l) parsers are top-down pushdown automata that can be obtained by 
construction 5.23. We shall first sharpen the definition of an LL grammar 
and thereby simplify the construction of the automaton. Next we explain 
the relationship between a given LL(l) grammar and the implementation of 
the pushdown automaton. Finally we develop the algorithms for an LL(I) 
parser generator. We defer the problem of error handling until Section 
12.2.2. 

7.2.1. Strong LL(k) Grammars Consider an LL(k) grammar G = 
(T,N,P,Z) and a left derivation: 

Z =,,;>L J-tA v=";> J-ty J-t,yET*,A EN,vE v* 

According to Definition 5.22, we can predict the next applicable production 
A ..... x if p. and k :y are given. The dependence upon p. is responsible for the 
fact that, in construction 5.23, we must carry along the right context w in the 
situation [A ..... a· fl;w]. Without this dependence we could use the following 
in place of step 5 of the construction algorithm: 

5' If v=By for some BEN and yEV*, let q'=[X ..... p.B·y;n] and 
H = {[B ..... ·Pi ;FOLLOWk (B)] I B ..... Pi EP}. Set Q : = Q u {q'} u H, 
andR := R U {q'T ..... q'hi'T I hi EH,'TEFIRSTdP;FOLLO~(B»}. 

In this way, situations distinct only in the right context always belong to the 
same state. This simplification is made possible by the strong LL(k) gram
mars introduced by Rosenkrantz and Steams [1970]: 

Definition 7.1. A context free grammar G = (T,N,P,Z) is called a strong 
LL (k) grammar for given k > 0 if, for arbitrary derivations 

p.,yET: v,x E V:A EN 

Z :::;::,L p.'AX':::;::, p.'wx'=,,;> * p.'y' p.',y'ET: w,X'EV* 

(k :y=k :y') implies v=w. 

The grammar with P = {Z ..... aAab, Z ..... bAbb, A ..... a, A ..... (} is LL(2), as 
can be seen by writing down all derivations. On the other hand, the deriva
tions Z =,,;>aAab =,,;>aab and Z =,,;>bAbb =,,;>babb violate the conditions for 
strong LL(2) grammars. 

The dependence upon J-t, the stack contents of the automaton, is reflected 
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in the fact that two distinct states q =[X ~Wp;w] and q' =[X ~Wp;w'], ident
ical except for the right context, can occur in construction 5.23 and lead to 
distinct sequences of transitions. Without this dependence the further course 
of the parse is determined solely by X ~WP, and FOLLOWdX) cannot dis
tinguish the right contexts w,w'. 

Theorem 7.2. (LL (I) condition) A context free grammar G is LL ( I) if for two 
productiOns X ~X, X ~X', X =1= X' implies that FIRST(X FOLLOW(X» and 
FIRST(X' FOLLOW(X» are disjoint. 

To prove Theorem 7.2 we assume atE T that is an element of both 
FIRST(X FOLLOW(X» and FIRST(X' FOLLOW(X». 
Then one of the following cases must hold: 

1. t EFIRST(X), t EFIRST(X') 
2. f.EFIRST(X), t EFIRST(X'), t EFOLLOW(X) 
3. f.EFIRST(X'), t EFIRST(X), t EFOLLOW(X) 
4. f.EFIRST(X), f.EFIRST(X'), t EFOLLOW(X) 

With the aid of the definition of FOLLOW we can easily see that each of 
these cases contradicts Definition 5.22 for k = 1. Thus G is not an LL(l) 
grammar; in fact, in case (4) the grammar is ambiguous. If, on the other 
hand, the grammar does not fulfill the specifications of Definition 5.22, then 
one of the above cases holds and the grammar does not satisfy the LL( I) 
condition. (Note that Theorem 5.24 may be derived directly from the LL( I) 
condition.) 

If the grammar is f.-free, the LL( 1) condition can be simplified by omit
ting FOLLOW(X). Obviously it is fulfilled if and only if G is a strong 
LL(k) grammar. Thus Theorem 7.3 follows from Theorem 7.2: 

Theorem 7.3. Every LL( 1) grammar is a strong LL( 1) grammar. 

Theorem 7.3 cannot be generalized to k> I, as illustrated by the LL(2) 
grammar with P = {Z ~aAab, Z ~bAbb, A ~a, A ~f.} cited above. The 
simplification of pushdown automata mentioned at the beginning of the sec
tion thus applies only to the LL(l) case; it is not applicable to LL(k) gram
mars with k > I. 

7.2.2. The Parse Algorithm A matrix representation of the transition 
function for the LL(l) case does not provide as much insight into the parsing 
process as does the conversion of the productions of the grammar to recur
sive procedures. We shall thus begin our treatment by discussing the tech
nique known as recursive descent. 

In a recursive descent parser we use a position in the parser to reflect the 
state of the automaton. The stack therefore contains locations at which exe-
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Transition set Program schema 

q ->f q:end 
ql ->q' q: if symbol = I then next -..symbol else error; q': ... 

q:X;q': ., . 
.. . 
procX: 

begin 
qII->q'qI/I case symbol of 
... II: begin qI: ... end; 
qlm ->q'qm 1m ... 

1m : begin qm: '" end 
otherwise error 
end 

end; 

Figure 7.4. Program Schemata for an LL(l) Parser 

cution of the parser may resume. When a state represents a situation 
[X ->WBv;w), B EN, we must enter information into the stack about the fol
lowing state [X ->p.B·v;w) before proceeding to the consideration of the pro
duction B -> /1 If we are using a programming language that permits recur
sive procedures, we may associate a procedure with each nonterminal Band 
use the standard recursion mechanism of the language to implement the 
automaton's stack. 

With this approach, the individual steps in construction 5.23 lead to the 
program schemata shown in Figure 7.4. These schemata assume the 
existence of a global variable symbol containing the value of the last symbol 
returned by the lexical analyzer, which is reset by a call to next -..symbol. 

Consider the grammar of Figure 7.5a, which, like the grammar of Figure 
5.3b, satisfies the LL(l) condition. By construction 5.23, with the 
simplification discussed in Section 7.2.1, we obtain the pushdown automaton 
whose states are shown in Figure 7.5b and whose transitions appear in Fig
ure 7.5c. Figure 7.6 shows a parser for this grammar implemented by recur
sive descent. As suggested, the procedures correspond to the nonterminals 
of the grammar. We have placed the code to parse the axiom on the end as 
the main program. The test of the lookahead symbol in state qI guarantees 
that the input has been completely processed. 

This systematically-constructed program can be simplified, also systemat
ically, as shown in Figure 7.7a. The correspondence between the produc
tions of Figure 7.5a and the code of Figure 7.7a results from the following 
transformation rules: 

1. Every nonterminal X corresponds to a procedure X; the axiom of the 
grammar cOITesponds to the main program. 
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Z -+E 
E-+FEI 
E 1-+£ I +FEI 
F -+i I (E) 

a) The grammar 

qo: [Z -+·E] 
ql: [Z -+£0] 
q2: [E -+·FEd 
q3: [E -+F-Ed 
q4: [F -+·i] 
q5: [F -+·(E)] 
q6: [E -+FEd 
q7: [E 1 -+·e] 

qs: [E 1-+· +FEd 
q9: [F -+i·] 
qlO: [F -+(·E)] 
qll: [E 1-+ +·FEd 
q12: [F -+(E·)] 
q13: [E 1-+ +F·Ed 
q14: [F -+(Er] 
qls: [E 1-+ +FEd 

b) The states of the parsing automaton 

qoi -+qlq2i ,qO-+qlq2(' 
ql-+£, 

q2i -+q3q4i ,q2 -+q3q5(, 
q3 # -+q6q7 #,q3 -+q6q7,q3 + -+q6qg +, 
q4i -+q9, 
q5 -+qlO, 
q6-+£, 
q7-+£, 
qg+-+qll, 
q9-+£, 
qlOi -+Q12Q2i ,QIO-+Q12q2(, 
Qlli -+QI3Q4i ,Qll( -+Q13Qs(, 
Ql2 -+QI4, 
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Q13# -+QISQ7#,Q13) -+QISQ7),Q 13 + -+QlsQg +, 
QI4-+£, 

qls -+£ 

c) The transitions of the parsing automaton 

Figure 7.5. A Sample Grammar and its Parsing Automaton 

2. The body of procedure X consists of a case clause that distinguishes the 
productions with X as left-hand side. Every nonterminal on the right
hand side of a production is converted to a call of the corresponding pro
cedure. Every terminal leads to a call of next -symbol, after the presence 
of the terminal has been verified. 



procedure parser; 

procedure E ;forward; 

procedure F; 
begin (* F *) 
case symbol of 

'j ': 

begin 
(* q4: *) if symbol = 'i 'then next-symbol else error; 
(* q9: *) end; 

begin 
(* q 5: *) if symbol = '( , then next -symbol else error; 
(* qlO: *) E; 
(* q 12: *) if symbol = ')' then next -symbol else error; 
(* q14: *) end 

otherwise error 
end; 

end; (* F *) 

procedure E 1 ; 
begin (* E 1 *) 
case symbol of 

'#', ')': 

'+': 
begin 
(* q8:*) if symbol = '+ 'then next-symbol else error; 
(*qll:*)F; 
(* q13:*) E 1; 

(* qI5:*) end 
otherwise error 
end; 

end; (* E 1 *) 

procedure E; 
begin (* E *) 
(* q2: *) F; 
(* q3: *) El; 
(* q6: *) end; (* E *) 

begin (* parser *) 
(* qo: *) E; 
(* ql: *) if symbol < > '# 'then error; 
end; (* parser *) 

Figure 7.6. A Recursive Descent Parser for the Grammar of Figure 7.5 

159 
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procedure parser; 

procedure E ; forward; 

procedure F; 
begin (* F *) 
case symbol of 

'j ': 

next -symbol; 
'(': 

begin 
next -symbol; 
E; 
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if symbol = ~' then next -symbol else error; 
end 

otherwise error 
end; 

end; (* F *) 

procedure E 1; 
begin (* E 1 *) 
case symbol of 

'#', ')': 

'+': 
begin next -symbol; F; E 1 end 

otherwise error 
end; 

end; (* EI *) 

procedure E; 
begin F; E 1 end; 

begin (* parser *) 
E; 
if symbol < > '# ' then error; 
end; (* parser *) 

a) Errors detected within E 1 

procedure E 1; 
begin (* E 1 *) 
if symbol = '+ ' then begin next -symbol; F; E end; 
end; (* El *) 

b) Errors detected after exit from E 1 

Figure 7.7. Figure 7.6 Simplified 
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3. In case none of the expected terminals is present, the error handler is 
invoked. 

If an empty production occurs for a nonterminal, this alternative can, in 
principle, be deleted. Thus the procedure corresponding to E I could also be 
written as shown in Figure 7.7b. Any errors would then be detected only 
after return to the calling procedure. In Section 12.2.2 we shall see that the 
quality of error recovery is degraded by this strategy. 

If we already know that a grammar satisfies the LL( 1) condition, we can 
easily use these transformations to write a parser (either by mechanical 
means or by hand). With additional transformation rules we can generalize 
the technique sufficiently to convert our extended BNF (Section 5.1.3) and 
connection points. Some of the additional rules appear in Figure 7.S. Fig
ure 7.9 illustrates the use of these rules. 

Element Program schema 

Option [x] if symbol in FIRST(x ) then x ; 

x+ repeat x until not(symbol in FIRST(x» 
Closure 

x* while symbol in FIRST(x) do x; 

x I I d x; 
List while symbol in FIRST(d) do 

begin d; x end; 

t&Y if Symbol = t then 
begin Y; next Jymbol end 

Connection else error; 

%Z Z 

Figure 7.8. Extension of Figure 7.4 

Recursive descent parsers are easy to construct, but are not usually very 
efficient in either time or storage. Most grammars have many nonterminals, 
and each of these leads to the dynamic cost associated with the call of and 
return from a recursive procedure. The procedures that recognize nontermi
nals could be implemented substantially more efficiently than arbitrary 
recursive procedures because they have no parameters or local variables, 
and there is only a single global variable. Thus the alteration of the 
environment pointer on procedure entry and exit can be omitted. 

An interpretive implementation of a recursive descent parser is also possi
ble: The control program interprets tables generated from the grammar. 
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expression :: = term ('+' term %addop )*. 
term :: = 'i' &ident I '(' expression ~ '. 

a) Grammar (compare Figure 7.2a) 

procedure parser; 

procedure term ;forward; 

procedure expression; 
begin (* expression *) 

term; 
while symbol = '+ 'do 

begin next-symbol; term; addop end; 
end; (* expression *) 

procedure term ; 
begin (* term *) 
case symbol of 

'; ': 
begin ident; next -symbol end; 

'(': 
begin 
next -symbol; 
expression; 
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if symbol = ~'then next-symbol else error; 
end 

otherwise error 
end; 

end; (* term *) 

begin (* parser *) 
expression; 
if symbol < > '# 'then error; 
end (* parser *) 

b) Parser 

Figure 7.9. Parser for an Extended BNF Grammar 

Every table entry specifies a basic operation of the parser and the associated 
data. For example, a table entry might be described as follows: 

type parse _table _entry = record 
operation: integer; 
lookahead : set of symbol_code; 
next: integer 
end; 

(* Transition *) 

(* Input or lookahead symbol *) 
(* Parse table index *) 
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States corresponding to situations that follow one another in a single pro
duction follow one another in the table. Figure 7.10 specifies a recursive 

procedure parser; 
var 

current: integer; 
stack: array [l..max -.Stack] of integer; 
stack _pointer: 0 .. max Jtack ; 

begin (* parser *) 
current: = I; stack _pointer: = 0; 
repeat 

with parse _table [current] do 
case operation of 

I: (* X ...... p:tv*) 
if symbol in lookahead then 

begin next Jymbol; current: = current + I end 
else error; 

2: (* X ...... X·*) 
begin 
current: = stack [stack_pointer ]; 
stack _pointer: = stack _pointer - I; 
end; 

3: (* X ...... p:Bv *) 
begin 
if stack -pointer = max -.Stack then abort; 
stack _pointer: = stack _pointer + I; 
stack [stack _pointer]: = current + I; 
current: = next; 
end; 

4: (* X ...... ·Xi (not the last alternative) *) 
if symbol in lookahead then 

current: = current + I 
else current: = next; 

5: (* X ...... ·Xm (last alternative) *) 
if symbol in lookahead then 

current: = current + I 
else error; 

6: (* X ...... ·tVi (not the last alternative) *) 
if symbol in lookahead then 

begin next Jymbol; current: = current + I end 
else current: = next 

end; 
until current = I; 
if symbol < > '# 'then error; 
end; (* Parser *) 

Figure 7.10. An Interpretive LL(l) Parser 
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descent interpreter assuming that parse _table is an array of 
parse _table _entry . 

Alternatives (1)-(5) of the case clause in Figure 7.10 supply the program 
schemata for qt -+q', q -+£ and qtj -+q'qjtj introduced in Figure 7.4. As 
before, the transition qt; -+q'q;ti is accomplished in two steps (alternative 3 
followed by either 4 or 5). The situations represented by the alternatives are 
given as comments. Alternative 6 shows one of the possible optimizations, 
namely the combination of selecting a production X -+Xi (alternative 4) with 
acceptance of the first symbol of Xi (alternative I). Further optimization is 
possible (Exercise 7.6). 

7.2.3. Computation of FIRST and FOLLOW Sets The first step in 
the generation of an LL( I) parser is to ensure that the grammar 
G = (T,N,P'Z) satisfies the LL(l) condition. To do this we compute the 
FIRST and FOLLOW sets for all X EN. For each production X -+X EP 
we can then determine the director set W =FIRST(X FOLLOW(X». The 
director sets are used to verify the LL(l) condition, and also become the 100-

kahead sets used by the parser. With the computation of these sets, the task 
of generating the parser is essentially complete. If the grammar does not 
satisfy the LL(l) condition, the generator may attempt transformations 
automatically (for example, left recursion removal and simple left factoring) 
or it may report the cause of failure to the user for correction. 

The following algorithm can be used to compute FIRST(X) and initial 
values for the director set W of each production X -+ X. 

1. Set FIRST(X) empty and repeat steps (2)-(5) for each production X -+X. 
2. Let X = x I ... Xn , i = 0 and W = { # }. If n = 0, go to step 5. 
3. Set i: =i + 1 and W: = WU FIRST(Xi). (If Xi is an element of T, 

FIRST(Xj) = {Xi}; if FIRST(x;) is not available, invoke this algorithm 
recursively to compute it.) Repeat step 3 until either i =n or # is not an 
element of FIRST(Xi ). 

4. If # is not an element of FIRST(Xi), set W: = W - {#}. 
5. Set FIRST(X): =FIRST(X) u W. 

Note that if the grammar is left recursive, step (3) will lead to an endless 
recursion and the algorithm will fail. This failure can be avoided by mark
ing each X when the computation of FIRST(X) begins, and clearing the 
mark when that computation is complete. If step (3) attempts to invoke the 
algorithm with a marked nonterminal, then a left recursion has been 
detected. 

This algorithm is executed exactly once for each X EN. If # is not in W 
at the beginning of step 5 then W is the complete director set for the produc
tion X -+X. Otherwise the complete director set for X -+X is 
(W -{#})UFOLLOW(X). 

Efficient computation of FOLLOW(X) is somewhat trickier. The prob
lem is that some elements can be deduced from single rules, while others 
reflect interactions among rules. For example, consider the grammar of Fig-
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ure 7.5a. We can immediately deduce that FOLLOW(F) includes 
FIRST(E I), because of the production E 1 --+ + FE 1 Since E I::;> * £, 

FOLLOW(F) also contains FOLLOW(E 1), which includes FOLLOW(E) 
because of the production E --+ FE I. 

Interaction among the rules can be represented by the relation LAST: 

Definition 7.4. Given a context free grammar G = (T,N,P,Z). For any two 
nonterminals A, B, A LAST B if B --+/LA pEP and v=? \. 

This relation can be described by a directed graph F = (N, D), with D 
{(A, B) I A LAST B}. If there is a path from node A to node B in F, then 
FOLLOW(A) is a subset of FOLLOW(B); all nodes in a strongly connected 
region of F have identical follow sets. The general strategy for computing 
follow sets is thus to compute provisional sets FOL (X) = {t I A --+ /LX v EP , 
t EFIRST(v)} - {#} based only upon the relationships among symbols 
within productions, and then use F to combine these sets. 

We can easily compute the graph F and the set FOL (X) by scanning the 
production backward and recalling that A=?* £ if # is in FIRST(A). Since 
F is sparse ( I D I < < IN XN I ), it must be represented by an edge list 
rather than an adjacency matrix if the efficiency of the remaining 
computation is to be maintained. 

The next step is to form the strongly connected regions of F and derive 
the directed acyclic graph F' =(N',D') of these regions: 

D'={(A',B') I (A,B)ED such that A is in the strongly connected region 
A 'and B is in the region B' } 

F' can be constructed efficiently by using the algorithm of Section B.3.2 to 
form the regions and then constructing the edges in one pass over F. At the 
same time, we can compute the initial follow sets FOL (A ') of the strongly 
connected regions A' EN' by taking the union of all FOL (A) such that A is 
a nonterminal in the region A'. 

The final computation of FOLLOW(A ') is similar to our original compu
tation of FIRST(A): 

1. Initially, FOLLOW(A ') =FOL (A ') for A' =1= Z', and 
FOLLOW(Z') = {#}. 

2. For each immediate successor, B', of A' add FOLLOW(B') to 
FOLLOW(A '). If FOLLOW(B') is not already available, then invoke 
this algorithm recursively to compute it. 

This algorithm also operates upon each element of N' exactly once. For 
each production X --+x with # in W, we now obtain the final director sets by 
setting W:=(W-{#})UFOLLOW(X') (X' is the strongly connected 
region containing X). 
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7.3. LR Parsers 

Using construction 5.33, we can both test whether a grammar is LR(l) and 
construct a parser for it. Unfortunately, the number of states of such a 
parser is too large for practical use. Exactly as in the case of strong LL(k) 
grammars, many of the transitions in an LR(l) parser are independent of the 
look ahead symbol. We can utilize this fact to arrive at a parser with fewer 
states, which implements the LR(l) analysis algorithm but in which reduce 
transitions depend upon the lookahead symbol only if it is absolutely neces
sary. 

We begin the construction with an LR(O) parser, which does not examine 
lookahead symbols at all, and introduce lookahead symbols only as 
required. The grammars that we can process with these techniques are the 
simple LR(J) (SLR(l» grammars of DeRemer [1969]. (This class can also 
be defined for arbitrary k> 1.) Not all LR(l) grammars are also SLR(l) 
(there is no equivalence similar to that between ordinary and strong LL(l) 
grammars), but the distinction is unimportant in practice except for one 
class of problems. This class of problems will be solved by sharpening the 
definition ofSLR(l) to obtain lookahead LR(J) (LALR(l» grammars. 

The verifications of the LR(l), SLR(l) and LALR(l) conditions are more 
laborious than verification of the LL(l) condition. Also, there exists no sim
ple relationship between the grammar and the corresponding LR pushdown 
automaton. LR parsers are therefore employed only if one has a parser gen
erator. We shall first discuss the workings of the parser and in that way 
derive the SLR(l) and LALR(l) grammars from the LR(O) grammars. Next 
we shall show how parse tables are constructed. Since these tables are still 
too large in practice, we investigate the question of compressing them and 
show examples in which the final tables are of feasible size. The treatment 
of error handling will be deferred to Section 12.2.2. 

7.3.1. The Parse Algorithm Consider an LR( k ) grammar 
G = (T,N,P,Z) and the pushdown automaton A =(T,Q,R,qo,{qo},Q,qo) of 
construction 5.33. The operation of the automaton is most easily explained 
using the matrix form of the transition function: 

if v = vyET* and qvy~qq'yERor 
if v EN and q' = next (q, v) (shift transition) 

q' 

f (q, v) = X ~x if[X ~X';v] Eq (reduce transition) 

HALT if v = # and [Z ~S·;# ]Eq 

ERROR otherwise 

This transition function is easily obtained from construction 5.33: All of 
the transitions defined in step (2) deliver shift transitions with one terminal 
symbol, which will be accepted; the remaining transitions result from step 



7.3. LR Parsers 167 

(3) of the construction. We divide the transition Pl·· ·PmqW--+Plq'w 
referred to in step (3) into two steps: Because [X --+X·;v] is in q we know 
that we must reduce according to the production X --+x and remove 
m = I X I states from the stack. Further we define f (p bX) 
=next(PbX)=q' to be the new state. Ifw=# and [Z--+S·;#]Eq then 
the pushdown automaton halts. 

Figure 7.11 gives an example of the construction of a transition function 
for k =0. We have numbered the states and rules consecutively. '+ 2' indi
cates that a reduction will be made according to rule 2; ,*, marks the halting 
of the pushdown automaton. Because k = 0, the reductions are independent 
of the following symbols. 

Figure 7.11c shows the transition function as the transition diagram of a 
finite automaton for the grammars of Theorem 5.32. The distinct grammars 
correspond to distinct final states. As an LR parser, the automaton operates 
as follows: Beginning at the start state 0, we make a transition to the succes
sor state corresponding to the symbol read. The states through which we 
pass are stored on the stack; this continues until a final state is reached. In 
the final state we reduce by means of the given production X --+x, delete 
I X I states from the stack and proceed as though X had been 'read'. 

(1) Z--+E 
(2)E--+E+F (3)E --+F 
(4) F--+i (5) F --+(E) 

a) The grammar 

( + # E F 
0 3 4 2 
1 5 * 
2 +3 +3 +3 +3 +3 
3 +4 +4 +4 +4 +4 
4 3 4 6 2 
5 3 4 7 
6 8 5 
7 +2 +2 +2 +2 +2 
8 +5 +5 +5 +5 +5 

b) The transition table 

c) The transition diagram 

Figure 7.11. An Example of an LR(O) Grammar 
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The only distinction between the mode of operation of an LR(k) parser 
for k > 0 and the LR(O) parser of the example is that the reductions may 
depend upon lookahead symbols. In the final states of the automaton, 
reductions will take place only if the context allows them. 

Don't-care entries with ! (q, v) = ERROR, i.e. entries such that there 
exists no word X with qoqoX # =? 'wqvy# with suitable stack contents w, 
may occur in the matrix representation of the transition function. Note that 
all entries (q,X), XEN, with !(q,X)=ERROR are don't-cares. By the 
considerations in step (3) of construction 5.33, no error can occur in a transi
tion on a nonterminal; it would have been recognized at the latest at the 
preceding reduction. (The true error entries are denoted by'.', while don't
cares are empty entries in the matrix representation of! (q, v).) 

7.3.2. SLR(l) and LALR(l) Grammars Figure 7.12a is a slight exten
sion of that of Figure 7.11a. It is not an LR(O) grammar, as Figure 7.13 
shows. (A star before a situation means that this situation belongs to the 
basis of the state; the look ahead string is omitted.) In states 2 and 9 we must 
inspect the lookahead symbols to decide whether to reduce or not. Figure 
7.12b gives a transition matrix that performs this inspection. 

The operation of the parser can be seen from the example of the reduc
tion ofi +i*(i +i)# (Figure 7.14). The 'Next Symbol' column is left blank 
when the parser does not actually examine the lookahead symbol. This 
example shows how, by occasional consideration of a lookahead symbol, we 

(l)Z-+E 
(2)E -+ E+T (3) E -+ T 
(4) T -+ T*F (5) T -+ F 
(6) F -+ i (7) F -+ (E) 

a) The grammar 

( + * # E T F 
0 4 5 2 3 
1 6 * 
2 +3 +3 7 +3 
3 +5 +5 +5 +5 +5 +5 
4 +6 +6 +6 +6 +6 +6 
5 4 5 8 2 3 
6 4 5 9 3 
7 4 5 10 
8 11 6 
9 +2 +2 7 +2 

10 +4 +4 +4 +4 +4 +4 
II +7 +7 +7 +7 +7 +7 

b) The transition table 

Figure 7.12. A Non-LR(O) Grammar 
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State Situation v f(q, v) 

0 * [2 -+'E] E I 
[E -+·E +T] 
[E -+'T] T 2 
[T -+'T*F] 
[T -+'F] F 3 
[F -+'i] 4 
[F -+'(E)] ( 5 

* [2 -+E'] # HALT 

* [E -+E' +T] + 6 
2 * [E -+T'] #,), + reduce 3 

* [T -+T'*F] * 7 
3 * [T -+F'] reduce 5 
4 * [F -+i'] reduce 6 
5 * [F -+(-E)] E 8 

[E -+'E +T] 
[E -+'T] T 2 
[T -+'T*F] 
[T -+'F] F 3 
[F -+'i] i 4 
[F -+'(E)] ( 5 

6 * [E -+E +'T] T 9 
[T -+'T*F] 
[T -+'F] F 3 
[F-+'i] 4 
[F -+'(E)] ( 5 

7 * [T -+T*'F] F 10 
[F-+'i] 4 
[F -+'(E)] ( 5 

8 * [F -+(E')] ) 11 
* [E -+E' +T] + 6 

9 * [E -+E +T·] #,), + reduce 2 
* [T -+T'*F] * 7 

10 * [T -+T*F'] reduce 4 
11 * [F -+(E)·] reduce 7 

Figure 7.13. Derivation of the Automaton of Figure 7.12b 

can also employ an LR(O) parser for a grammar that does not satisfy the 
LR(O) condition. States in which a look ahead symbol must be considered 
are called inadequate. They are characterized by having a situation [X -+X·] 
that leads to a reduction, and also a second situation. This second situation 
leads either to a reduction with another production or to a shift transition. 

DeRemer [1971] investigated the class of grammars for which these 
modifications lead to a parser: 
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Definition 7.5. A context free grammar G = (T,N,P,Z) is SLR(l) if the fol
lowing algorithm leads to a deterministic pushdown automaton. 

The pushdown automaton A = (T, Q, R, qo, {qo}, Q, qo) will be defined 
by its transition function f (q, v) rather than the production set R. The con
struction follows that of construction 5.33. We use the following as the clo
sure of a set of situations: 

H(M)=M U ([Y -+./L] I :t [X -+x· Yy]EH(M)} 

1. Initially let Q = {qo}, with qo=H( ([Z -+·S]}). 
2. Let q be an element of Q that has not yet been considered. Perform steps 

(3)-(4) for each v E V. 
3. Letbasis(q,v) = {[X -+/Lv·y] I [X -+wvy]Eq}. 
4. If basis(q,v)-=I= 0, then let next(q,v)=H(basis(q,v». Add q'= 

next (q,v ) to Q ifit is not already present. 
5. If all elements of Q have been considered, perform step (6) for each 

q EQ and then stop. Otherwise return to step (2). 

Right derivation 
before transition 

.i +i *(i +i)# 
i. +i *(i +i)# 
F. +i *(i +i)# 
T. +i *(i +i)# 
E. +i *(i +i)# 
E +.i *(i +i)# 
E +i. *(i +i)# 
E +F.*(i +i)# 
E +T.*(i +i)# 
E +T*.(i +i)# 
E + T*(.i +i)# 
E +T*(i. +i)# 
E +T*(F. +i)# 
E +T*(T. +i)# 
E +T*(E. +i)# 
E +T*(E +.i)# 
E +T*(E +i.)# 
E +T*(E +F.)# 
E +T*(E +T.)# 
E +T*(E.)# 
E +T*(E).# 
E +T*F.# 
E+T.# 
E.# 
z.# 

Stack 

° 0,4 
0,3 
0,2 
0,1 

0,1,6 
0,1,6,4 
0,1,6,3 
0,1,6,9 

0,1,6,9,7 
0,1,6,9,7,5 

0,1,6,9,7,5,4 
0,1,6,9,7,5,3 
0,1,6,9,7,5,2 
0,1,6,9,7,5,8 

0,1,6,9,7,5,8,6 
0,1,6,9,7,5,8,6,4 
0,1,6,9,7,5,8,6,3 
0,1,6,9,7,5,8,6,9 

0,1,6,9,7,5,8 
0,1,6,9,7,5,8,11 

0,1,6,9,7,10 
0,1,6,9 

0,1 

Next 
Symbol 

+ 
+ 

* 

+ 
+ 

) 
) 

# 
# 

Reduce by 
Production 

6 
5 
3 

6 
5 

6 
5 
3 

6 
5 
2 

7 
4 
2 

Figure 7.14. A Sample Parse by the Automaton of Figure 7.12b 

Next 
State 

4 
3 
2 
I 
6 
4 
3 
2 
7 
5 
4 
3 
2 
8 
6 
4 
3 
9 
8 

II 
10 
9 
1 

HALT 
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(1) Z ~A 
(2)A ~aBb (3)A ~adc (4)A ~bBc (5)A ~bdd 
(6) B ~d 

a) The grammar 

HALT 

+2 +3 +4 

b) The SLR(I) transition diagram 

abc 
o 2 3 
I 
2 
3 
4 8 
5 +6 9 
6 10 
7 +6 
8 +2 +2 +2 
9 +3 +3 +3 

10 +4 +4 +4 
II +5 +5 +5 

d # A 

5 
7 

II 

* 

+2 +2 
+3 +3 
+4 +4 
+5 +5 

c) The LALR(l) transition table 

Figure 7.15. A Non-SLR(l) Grammar 

6. ForaH v EV,definej(q,v) by: 

next(q, v) if[X ~p:vy]Eq 

+5 

+6 
on b, C 

B 

4 
6 

j(q, v) = 
X ~x if[X ~X·] Eq and v EFOLLOW(X) 

HALT if v = # and [Z ~S']Eq 

ERROR otherwise 

171 

This construction is almost identical to construction 5.33 with k =0. The 
only difference is the additional restriction v EFOLLOW(X) for the reduc
tion (second case). 

SLR(1) grammars cover many practically important language constructs 
not expressible by LR(O) grammars. Compared to the LR(I) construction, 
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the given algorithm leads to substantially fewer states in the automaton. 
(For the grammar of Figure 7.12a the ratio is 22: 12). Unfortunately, even 
SLR( 1) grammars do not suffice for all practical requirements. The problem 
arises whenever there is a particular sequence of tokens that plays different 
roles in different places. In LAX, for example, an identifier followed by a 
colon may be either a label (A.2.0.6) or a variable serving as a lower bound 
(A.3.0.4). For this reason the LAX grammar is not SLR(l), because the 
lookahead symbol ':' does not determine whether identifier should be 
reduced to name (A.4.0.16), or a shift transition building a label-definition 
should take place. 

If the set of lookahead symbols for a reduction could be partitioned 
according to the state then we could solve the problem, as can be seen from 
the example of Figure 7.15. The productions of Figure 7.15a do not fulfill 
the SLR(I) condition, as we see in the transition diagram of Figure 7.15b. 
In the critical state 5, however, a reduction with look ahead symbol c need 
not be considered! If c is to follow B then b must have been read before, 
and we would therefore have had the state sequence 0, 3, 7 and not 0, 2, 5. 
The misjudgement arises through states in which all of the symbols that 
could possibly follow B are examined to determine whether to reduce 
B -+d, without regard to the symbols preceding B. We thus refine the con
struction so that we do not admit all lookahead symbols in FOLLOW(X) 
when deciding upon a reduction X -+x, but distinguish on the basis of 
predecessor states look ahead symbols that can actually appear. 

We begin by defining the kernel of an LR(l) state to be its LR(O) situa-
tions: 

kernel(q) = {[X -+p:v] I [X -+p:v;Q]Eq} 

Construction 7.5 above effectively merges states of the LR(l) parser that 
have the same kernel, and hence any look ahead symbol that could have 
appeared in any of the LR(I) states can appear in the LR(O) state. The set 
of all such symbols forms the exact right context upon which we must base 
our decisions. 

Definition 7.6. Let G =(T, N, P, Z) be a context free grammar, Q be the 
state set of the pushdown automaton formed by construction 7.5, and Q' be 
the state set of the pushdown automaton formed by construction 5.33 with 
k = 1. The exact right context of an LR(O) situation [X -+p:v] in a state 
q E Q is defined by: 

ERC(q,[X-+p:v]) = {tET I :3q'EQ"suchthatq 
=kernel(q~ and [X -+JL·v;t] Eq'} 

Theorem 5.31 related the LR(k) property to non-overlapping k -stack 
classes, so it is not surprising that the definition of LALR(l) grammars 
involves an analogous condition: 
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Definition 7.7. Let G = (T,N,P,Z) be a context free grammar and Q be the 
state set of the pushdown automaton formed by construction 7.5. G is 
LALR(l) if the following sets are pairwise disjoint for all q E Q, p EP: 

. Sq,O = {t I [X ->p:p] Eq, P=f= £, t EEFF(pERC(q, [X ->p:p]))} 

Sq,p = ERC(q, [Xp ->Xp'j) 

Although Definition 7.6 implies that we need to carry out construction 
5.33 to determine the exact right context, this is not the case. The following 
algorithm generates only the LR(O) states, but may consider each of those 
states several times in order to build the exact right context. Each time a 
shift transition into a given state is discovered, we propagate the right con
text. If the propagation changes the third element of any triple in the state 
then the entire state is reconsidered, possibly propagating the change 
further. Formally, we define a merge operation on sets of situations as fol
lows: 

merge(A,B) = {[X->IL'P;~uQ]1 [X->IL'P;~]EA,[X->/L'P;Q]EB} 

The LALR( I) construction algorithm is then: 
1. Initially let Q = {qo}, with qo = H ({[Z ->. S; {#}]}). 
2. Let q be an element of Q that has not yet been considered. Perform steps 

(3)-(5) for each v E V. 
3. Letbasis(q,v) = {[X ->/LV'y;Q] I [X ->/L'vy;Q]Eq}. 
4. If basis (q, v) =f= 0 and there is a q' E Q such that kernel (q ') = 

kerne/(H(basis(q,v))) then let next(q,v) = merge (H(basis(q,v»,q'). If 
next (q, v) =f= q' then replace q' by next (q, v) and mark q' as not yet con
sidered. 

5. If basis(q,v)=f= 0 and there is no q'EQ such that kernel(q') = 
kernel(H(basis(q,v))) then let next (q,v) = H(basis(q,v». Add 
q"=next(q,v) to Q. 

6. If all elements of Q have been considered, perform step (7) for each 
q EQ and then stop. Otherwise return to step (2). 

7. For all v E V define f (q,v) as follows: 

next (q, v) if basis (q, v)=f= 0 

f(q,v)= 
X ->X if[X ->X';Q]Eq, v EQ 

HALT ifv=# and [Z->S·;{# }]Eq 

ERROR otherwise 

Figure 7.l5c shows the LALR(l) automaton derived from Figure 7.l5a. 
Note that we can only recognize a B by reducing production 6, and this can 
be done only with b or c as the look ahead symbol (see rows 5 and 7 of Fig
ure 7.15c). States 4 and 6 are entered only after recognizing a B, and hence 
the current symbol must be b or c in these states. Thus Figure 7.15c has 
don't-care entries for all symbols other than band c in states 4 and 6. 
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( ) + * # E T F 

0 -6 5 2 -5 
1 6 * 
2 +3 +3 7 +3 
5 -6 5 8 2 -5 
6 -6 5 9 -5 
7 -6 5 -4 
8 -7 6 
9 +2 +2 7 +2 

Figure 7.16. The Automaton of Figure 7.12 Recast for Shift-Reduce Transitions 

7.3.3. Shift-Reduce Transitions For most programming languages 30-
50% of the states of an LR parser are LR(O) reduce states, in which reduc
tion by a specific production is determined without examining the context. 
In Figure 7.13 these states are 3, 4, 10 and 11. We can combine these reduc
tions with the stacking of the previous symbol to obtain a new kind of trans i
tion - the shift-reduce transition - specifying both the stacking of the last 
symbol of the right-hand side and the production by which the next reduc
tion symbol is to be made. Formally: 

If j(q: v)=X ..... X (or j(q', v)=HALT) is the only possible action (other 
than ERROR) in state q' then redefine j (q, v) to be 'shift reduce X ..... X' for 
all states q withj(q, v )=q' and for all v E V. Then delete state q'. 

With this simplification the transition function of Figure 7.12 can be writ
ten as shown in Figure 7.16. (The notation remains the same, with the addi
tion of - p to indicate a shift-reduce transition that reduces according to the 
i h production.) 

Introduction of shift-reduce transitions into a parsing automaton for LAX 
reduces the number of states from 131 to 70. 

7.3.4. Chain Production Elimination A chain production A ..... B is a 
semantically meaningless element of P with a right-hand side of length 1. 
In this section we shall denote chain productions by A ..... C B and derivations 
using only chain productions by A =>c B (instead of A=> *B). Any produc
tions not explicitly marked are not chain productions. Chain productions 
are most often introduced through the description of expressions by rules 
like sum :: = term I sum addop term. They also frequently arise from the 
collection of single concepts into some all-embracing concept (as in A.3.0.1, 
for example). 

Reductions according to chain productions are completely irrelevant, and 
simply waste time. Thus elimination of all chain productions may speed up 
the parsing considerably. During the parse of the statement A: =B in LAX, 
for example, we must reduce 11 times by productions of length 1 before 
reaching the form name ': = ' expression, which can be recognized as an 
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assignment. Of these reductions, only the identification of an identifier as a 
name (A.4.0.l6) has relevant semantics. All other reductions are semanti
cally meaningless and should not appear in the structure tree. 

We could remove chain productions by substitution, a process used in 
conjunction with Theorem 5.25. The resulting definition of the LR parser 
would lead to far too many states, which we must then laboriously reduce to 
a manageable number by further processing. A more satisfactory approach 
is to try to eliminate the reductions by chain productions from the parser 
during construction. In many cases this technique will also lower the 
number of states in the final parser. 

The central idea is to simultaneously consider all chain productions that 
could be introduced in a given parser state. Suppose that a state q contains 
a situation [X ..... WAv;t I and A ~ + B. We must first reduce to B, then to A . 
If however, the derivation A ~ + B consists solely of chain productions then 
upon a reduction to B we can immediately reduce to A without going 
through any intermediate steps. 

Construction 7.7, when applied to Figure 7.17a (a simplified version of 
Figure 7.12a), yields a parser with the state diagram given in Figure 7.17b. 
If we reach state 2, we can reduce to E given the lookahead symbol #, but 
we could also reduce to Z immediately. We may therefore take either the 

+4 
on #, +, * 

(1) Z ..... E 
(2)E ..... E+T (3)£ ..... T 
(4) T ..... T*i (5) T ..... i 

a) The grammar 

+3 
on #,+ 

on# 

* 
b) The transition diagram 

HALT 
on# 

* 
on# 

+5 
on #, +, * 

+4 
on #, +, * 7 I..---=----( ~----*----r6 +2 

on#.+ 

c) After elimination of the chain production (3) E ..... T 

Figure 7.17. A Simple Case of Chain Production Elimination 
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actions of state 1 or those of state 2. Figure 7.17c shows the parser that 
results from merging these two states. 

Note that in Figure 7.17b the actions for states I and 2 do not conflict 
(with the exception of the reduction E ..... T being eliminated). This property 
is crucial to the reduction; fortunately it follows automatically from the 
LR(I) property of the grammar: Suppose that for A of=. B, A =>c C and 
B =>C C. Suppose further that some state q contains situations [X ""'/L"A y;f] 
and [Y ""'(J·Bc5;~). The follower condition 'FIRST(YT) and FIRST(M) dis
joint' must then hold, since otherwise it would be impossible to decide 
whether to reduce C to A or B in state f (q, C). Consideration of state 0 in 
Figure 7.l7b with A = E, B = C = T illustrates that the follower condition is 
identical to the absence of conflict required above. 

Situations involving chain productions are always introduced by a closure 
operation. Instead of using these chain production situations when estab
lishing a new state, we use the situations that introduced them. This is 
equivalent to saying that reduction to the right-hand side of the chain pro
duction should be interpreted as reduction to the left-hand side. Thus the 
only change in construction 7.7 comes in computation of basis (q, v): 

3'. Letbasis(q,v) = {[y""'(Ja·c5;~] I [x""'/L"vy;r],[y""'(Tac5;~]Eq, a=>cv} 
- {[A ..... B· ;Q] I A ..... C B}. 

As an example of the process, assume that the productions E ..... T and 
T ..... F in the grammar of Figure 7.l2a are chain productions. Figure 7.18 
shows the derivation of an LALR(l) automaton that does not reduce by 
these productions. (Compare this derivation with that of Figure 7.13.) 

7.3.5. Implementation In order to carry out the parsing practically, a 
table of the left sides and lengths of the right sides of all productions (other 
than chain productions), as well as parser actions to be invoked at connec
tion points, must be known to the transition function. The transition func
tion is partitioned in this way to ease the storage management problems. 
Because of cost we store the transition function as a packed data structure 
and employ an access routine that locates the value f (q, v) given (q, v). 
Some systems work with a list representation of the (sparse) transition 
matrix; the access may be time consuming if such a scheme is used, because 
lists must be searched. 

The access time is reduced if the matrix form of the transition function is 
retained, and the storage requirements are comparable to those of the list 
method if as many rows and columns as possible are combined. In perform
ing this combination we take advantage of the fact that two rows can be 
combined not only when they agree, but also when they are compatible 
according to the following definition: 

Definition 7.8. Consider a transition matrix f (q, v). Two rows q, q' E Q are 
compatible if, for each column v, either f (q, v) = f (q', v) or one of the two 
entries is a don't-care entry. 
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State Situation v f(q, v) 
0 • [Z .... ·E;{# }] E 1 

[E .... ·E +T;{# +}] 
[E .... ·T;{# +}] T 2 
[T .... -r·F;{# +.}] 
[T .... ·F;{# +.}] F 2 
[F .... ·i ;{# +.}] 3 
[F .... ·(E);{# +.}] ( 4 

• [Z .... E·;{# }] # HALT 
• [E .... E-+T;{# +}] + 5 

2 • [Z .... E·;{# }] # HALT 
• [E .... E· +T;{# +}] + 5 
• [T .... T··F;{# +.}] • 6 

3 • [F .... i·;{# +.)}] reduce 6 
4 • [F .... (·E);{# +.)}] E 7 

[E .... ·E +T;{)+}] 
[E .... ·T;{)+}] T 8 
[T .... -r·F;{)+·}] 
[T .... ·F;{)+·}] F 8 
[F .... ·i ;{)+.}] i 3 
[F .... ·(E);{)+·}] ( 4 

5 • [E .... E +·T;{# +)}] T 9 
[T .... -r·F;{# +.)}] 
[T .... ·F;{# +.)}] F 9 
[F .... ·i ;{# +.)}] 3 
[F .... ·(E);{# +.)}] ( 4 

6 • [T .... T··F;{# +.)}] F 10 
[F .... ·i;{# +.)}] 3 
[F .... ·(E);{# +.)}] ( 4 

7 • [F .... (E·);{# +.)}] ) 11 
• [E .... E-+T;{)+}] + 5 

8 • [F .... (E·); {# +.)}] ) 11 
• [E .... E· +T;{)+}] + 5 
• [T .... T··F;{)+·}] • 6 

9 • [E .... E +T·;{# +)}] #)+ reduce 2 
• [T .... T··F;{# +.)}] • 6 

10 • [T .... T·P.;{# +.)}] reduce 4 
11 • [F .... (E};{# +.)}] reduce 7 

Figure 7.18. Chain Production Elimination Applied to Figure 7.12 
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Compatibility is defined analogously for two columns v, v'E V. We shall 
only discuss the combination of rows here. 

We inspect the terminal transition matrix, the submatrix of f (q, v) with 
vET, separately from the nonterminal transition matrix. Often different 
combinations are possible for the two submatrices, and by exploiting them 
separately we can achieve a greater storage reduction. This can be seen in 
the case of Figure 7.l9a, which is an implementation of the transition matrix 
of Figure 7.18. In the terminal transition matrix rows 0, 4, 5 and 6 are com
patible, but none of these rows are compatible in the nonterminal transition 
matrix. 

In order to increase the number of compatible rows, we introduce a 
Boolean failure matrix, F[ q, t], q E Q, t E T. This matrix is used to filter the 
access to the terminal transition matrix: 

f(q, t)= if F[q, t] then error else entry_in_the_transition_matrix; 

For this purpose we define F[q, t] as follows: 

F[q,t] = {true iff(q,~) = ERROR 
false otherwise 

Figure 7.19b shows the failure matrix derived from the terminal transition 
matrix of Figure 7.19a. Note that the failure matrix may also contain 
don't-care entries, derived as discussed at the end of Section 7.3.2. Rowand 
column combinations applied to Figure 7.l9b reduce it from 9 X 6 to 4 X 4. 

With the introduction of the failure matrix, all previous error entries 
become don't-care entries. Figure 7.l9c shows the resulting compression of 
the terminal transition matrix. The nonterminal transition matrix is not 
affected by this process; in our example it can be compressed by combining 
both rows and columns as shown in Figure 7.19d. Each matrix requires an 
access map consisting of two additional arrays specifying the row (column) 
of the matrix to be used for a given state (symbol). For grammars of the size 
of the LAX grammar, the total storage requirements are generally reduced 
to 5-10% of their original values. 

We have a certain freedom in combining the rows of the transition 
matrix. For example, in the terminal matrix of Figure 7.19a we could also 
have chosen the grouping {(0,4,5,6,9),(l,2,7,8)}. In general these groupings 
differ in the final state count; we must therefore examine a number of possi
ble choices. The task of determining the minimum number of rows reduces 
to a problem in graph theory: We construct the (undirected) incompatibility 
graph I =(Q, D) for our state set Q, in which two nodes q and q' are con
nected if the rows are incompatible. Minimization of the number of rows is 
then equivalent to the task of coloring the nodes with a minimum number of 
colors such that any pair of nodes connected by a branch are of different 
colors. (Graph coloring is discussed in Section B.3.3.) Further compression 
may be possible as indicated in Exercises 7.12 and 7.13. 
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+ * # E T F 

0 -6 4 2 2 
1 5 * 
2 5 6 * 
4 -6 4 7 8 8 
5 -6 4 9 9 
6 -6 4 -4 
7 -7 5 
8 -7 5 6 
9 +2 +2 6 +2 

a) Transition matrix for Figure 7.18 with shift-reduce transitions 

( ) + * # 

0 false false true true true true 
I true false false 
2 true true true false false false 
4 false false true true true true 
5 false false true true true true 
6 false false true true true true 
7 false false true 
8 true true false false false true 
9 true true false false false false 

b) Uncompressed failure matrix for (a) 

( ) + * # 

0,1,2,4, 
-6 4 -7 5 6 * 5,6,7,8 

9 +2 +2 6 +2 

c) Compressed terminal transition matrix 

E TF 

0,1,2 if-l 4 7 8 
5 9 

6,7,8,9 -4 

d) Compressed nonterminal transition matrix 

Figure 7.19. Table Compression 
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7.4. Notes and References 

LL(l) parsing in the form of recursive descent was, according to McClure 
[1972], the most frequently-used technique in practice. Certainly its flexibil
ity and the fact that it can be hand-coded contribute to this popularity. 

LR languages form the largest class of languages that can be processed 
with deterministic pushdown automata. Other techniques (precedence 
grammars, (m, n )-bounded context grammars or Floyd-Evans Productions, 
for example) either apply to smaller language classes or do not attain the 
same computational efficiency or error recovery properties as the techniques 
treated here. Operator precedence grammars have also achieved significant 
usage because one can easily construct parsers by hand for expressions with 
infix operators. Aho and Ullman [1972] give quite a complete overview of 
the available parsing techniques and their optimal implementation. 

Instead of obtaining the LALR(l) parser from the LR(I) parser by merg
ing states, one could begin with the SLR(l) parser and determine the exact 
right context only for those states in which the transition function is ambigu
ous. This technique reduces the computation time, but unfortunately does 
not generalize to an algorithm that eliminates all chain productions. 

Construction 7.7 requires a redundant effort that can be avoided in prac
tice. For example, the closure of a situation [X ..... p:By;O] depends only 
upon the nonterminal B if the look ahead set is ignored. The closure can 
thus be computed ahead of time for each B EN, and only the lookahead sets 
must be supplied during parser construction. Also, the repeated construc
tion of the follower state of an LALR( I) state that develops from the combi
nation of two LR(l) states with distinct lookahead sets can be simplified. 
This repetition, which results from the marking of states as not yet exam
ined, leaves the follower state (specified as a set of situations) unaltered. It 
can at most add lookahead symbols to single situations. This addition can 
also be accomplished without computing the entire state anew. 

Our technique for chain production elimination is based upon an idea of 
Pager [1974]. 

Use of the failure matrix to increase the number of don't-care entries in 
the transition matrix was first proposed by 10liat [1973,1974]. 

EXERCISES 
7.1. Consider a grammar with embedded connection points. Explain why 

transformations of the grammar can be guaranteed to leave the invocation 
sequence of the associated parser actions invariant. 

7.2. State the LL(I) condition in terms of the extended BNF notation of Section 
5.1.3. Prove that your statement is equivalent to Theorem 7.2. 

7.3. Give an example of a grammar in which the graph of LAST contains a cycle. 
Prove that FOLLOW(A ) = FOLLOW(B) for arbitrary nodes A and B in the 
same strongly connected subgraph. 
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7.4. Design a suitable internal representation of a grammar and program the gen
eration algorithm of Section 7.2.3 in terms of it. 

7.5. Devise an LL(l) parser generation algorithm that accepts the extended BNF 
notation of Section 5.1.3. Will you be able to achieve a more efficient parser 
by operating upon this form directly, or by converting it to productions? 
Explain. 

7.6. Consider the interpretive parser of Figure 7.10. 
a. Define additional operation codes to implement connection points, and 

add the appropriate alternatives to the case statement. Carefully explain 
the interface conventions for the parser actions. Would you prefer a 
different kind of parse table entry? Explain. 

b. Some authors provide special operations for the situations [X --'p:B] and 
[X --'p:tB]. Explain how some recursion can be avoided in this manner, 
and write appropriate alternatives for the case statement. 

c. Once the special cases of (b) are recognized, it may be advantageous to 
provide extra operations identical to 4 and 5 of Figure 7.10, except that the 
conditions are reversed. Why? Explain. 

d. Recognize the situation [X --.p:t] and alter the code of case 4 to absorb the 
processing of the 2 operation following it. 

e. What is your opinion of the value of these optimizations? Test your pred
ictions on some language with which you are familiar. 

7.7. Show that the following grammar is LR(l) but not LALR(I): 
Z --.A , 
A --.aBcB, A --.B, A --.D, 
B --.b, B --.Ff, 
D --.dE, 
E --.FcA, E --.FcE, 
F --.b 

7.8. Repeat Exercise 7.5 for the LR case. Use the algorithm of Section 7.3.4. 

7.9. Show that FIRST(A) can be computed by any marking algorithm for directed 
graphs that obtains a 'spanning tree', B, for the graph. B has the same node 
set as the original graph, G, and its branch set is a subset of that of G. 

7.10. Consider the grammar with the following productions: 
Z --.AXd, Z --.BX, Z --.C, 
A --.B,A --.C, 
B--.CXb, 
C --.c, 
X --.£ 

a. Derive an LALR(l) parser for this grammar. 
b. Delete the reductions by the chain productions A --. B and A --. C . 

7.11. Use the techniques discussed in Section 7.3.5 to compress the transition 
matrix produced for Exercise 7.8. 

7.12. [Anderson 1972] Consider a transition matrix for an LR parser constructed by 
one of the algorithms of Section 7.3.2. 
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a. Show that for every state q there is exactly one symbol z (q) such that 
I(q', a) implies a =z (q). 

b. Show that, in the case of shift-reduce transitions introduced by the algo
rithms of Sections 7.3.3 and 7.3.4, an unambiguous symbol z (A ~X) exists 
such that I (q, a) = 'shift and reduce A ~ X' implies a = z (A ~ X). 

c. The states (and shift-reduce transitions) can be numbered in such a way 
that all states in column c have sequential numbers co+i, i =0,1, ... 
Thus it suffices to store only the relative number i in the transition matrix; 
the base Co is only given once for each column. In exactly the same 
manner, a list of the reductions in a row can be assigned to this row and 
retain only the appropriate index to this list in the transition matrix. 

d. Make these alterations in the transition matrix produced for Exercise 7.8 
before beginning the compression of Exercise 7.11, and compare the result 
with that obtained previously. 

7.13. [Bell 1971] Consider an m Xn transition matrix, t, in which all unspecified 
entries are don't-cares. Show that the matrix can be compressed into a p X q 
matrix c, two length-m arrays I and u, and two length-n arrays g and v by 
the following algorithm: Initially Ij =gj = 00, I';;; i';;; m, I';;; j';;; n, and 
k = I. If all occupied columns of the j Ih row of t uniformly contain the value 
r, then set/j:=k, k:=k+l, Uj:=r and delete the jlh row oft. Ifthe/h 

column is uniformly occupied, delete it also and set g/ =k, k: =k + I, v/ =r. 
Repeat this process until no uniformly-occupied row or column remains. The 
remaining matrix is the matrix c. We then enter the row (column) number in 
c of the former jlh row (jlh column) into Uj (Vj)' The following relation then 
holds: 

tj,j = if Ij <gj then Uj 
else if Ij > gj then v j 
else (* Ij =gj = 00 *) cu., •. ; 

I ] 

(Hint: Show that the size of c is independent of the sequence in which the 
rows and columns are deleted.) 



CHAPTER 8 

Attribute Grammars 

Semantic analysis and code generation are based upon the structure tree. 
Each node of the tree is 'decorated' with attributes describing properties of 
that node, and hence the tree is often called an attributed structure tree for 
emphasis. The information collected in the attributes of a node is derived 
from the environment of that node; it is the task of semantic analysis to 
compute these attributes and check their consistency. Optimization and 
code generation can be also described in similar terms, using attributes to 
guide the transformation of the tree and ultimately the selection of machine 
instructions. 

Attribute grammars have proven to be a useful aid in representing the 
attribution of the structure tree because they constitute a formal definition of 
all context-free and context-sensitive language properties on the one hand, 
and a formal specification of the semantic analysis on the other. When 
deriving the specification, we need not be overly concerned with the 
sequence in which the attributes are computed because this can (with some 
restrictions) be derived mechanically. Storage for the attribute values is also 
not reflected in the specification. We begin by assuming that all attributes 
belonging to a node are stored within that node in the structure tree; optimi
zation of the attribute storage is considered later. 

Most examples in this chapter are included to show constraints and 
pathological cases; practical examples can be found in Chapter 9. 

8.1. Basic Concepts of Attribute Grammars 

An attribute grammar is based upon a context-free grammar G = (N,T,P,Z). 
It associates a set A (X) of attributes with each symbol, X, in the vocabulary 
of G. Each attribute represents a specific (context-sensitive) property of the 
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symbol X, and can take on any of a specified set of values. We write Xa to 
indicate that attribute a is an element of A (X). 

Each node in the structure tree of a sentence in L (G) is associated with a 
particular set of values for the attributes of some symbol X in the vocabu
lary of G. These values are established by attribution rules R (p) = 
{~.a +-f(J0.b, ... , Xk·c)} for the productions P:XO-->Xl··· Xn used to 
construct the tree. Each rule defines an attribute ~.a in terms of attributes 
J0.b, ... , Xk·c of symbols in the same production. (Note that in this 
chapter we use upper-case letters to denote vocabulary symbols, rather than 
using case to distinguish terminals from nonterminals. The reason for this is 
that any symbol of the vocabulary may have attributes, and the distinction 
between terminals and nonterminals is generally irrelevant for attribute 
computation. ) 

rule assignment:: = name ': =' expression. 
attribution 

name. environment +- assignment. environment ; 
expression.environment +- assignment. environment ; 
name.postmode +- name.primode ; 
expression.postmode +-

if name.primode = ref _int _type then int _type else real_type 6; 

rule expression :: = name addop name . 
attribution 

name [I ].environment +- expression.environment ; 
name[2].environment +- expression.environment; 
expression.primode +-

if coercible (name [1 ].primode, int _type) and 
coercible (name [2].primode, int _type) then int _type else real_type 6; 

addop.mode +- expression.primode; 
name [ I ].postmode +- expression.primode ; 
name [2 ].postmode <- expression.primode ; 

condition coercible (expression.primode, expression.postmode); 

rule addop :: = '+'. 
attribution 

addop.operation +-

if addop.mode =inLtype then inLaddition else reaLaddition 6; 

rule name :: = identifier. 
attribution 

name.primode +- defined..1ype (identifier.symbol ,name. environment ); 
condition coercible (name.primode, name.postmode); 

Figure 8.1. Simplified LAX Assignment 
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In addition to the attribution rules, a condition B ()(.a , ... , Xj.b) involv
ing attributes of symbols occurring in p may be given. B specifies the con
text condition that must be fulfilled if a syntactically correct sentence is 
correct according to the static semantics and therefore translatable. We 
could also regard this condition as the computation of a Boolean attribute 
consistent, which we associate with the left-hand side of the production. 

As an example, Figure 8.1 gives a simplified attribute grammar for LAX 
assignments. Each pEP is marked by the keyword rule and written using 
EBNF notation (restricted to express only productions). The elements of 
R(p) follow the keyword attribution. We use a conventional expression
oriented programming language notation for the functions f, and terminate 
each element with a semicolon. Particular instances of an attribute are dis
tinguished by numbering multiple occurrences of symbols in the production 
(e.g. name[l), name [2]) from left to right. Any condition is also marked by a 
keyword and terminated by a semicolon. 

In order to check the consistency of the assignment and to further identify 
the + operator, we must take the operand types into account. For this pur
pose we define two attributes, prim ode and postmode, for the symbols expres
sion and name, and one attribute, mode, for the symbol addop. Primode 
describes the type determined directly from the node and its descendants; 
postmode describes the type expected when the result is used as an operand 
by other nodes. Any difference between prim ode and postmode 

identifier2 '+' 

a) Syntactic structure tree 

assignment. environment 
identifierj .symbol 

identifier3 

b) Attribute values given initially (i = I, ... , 3) 

name I.environment expression. environment 
name; . environment name Jprimode 
name I.postmode expression.postmode name; prim ode 
expression.primode name J condition 
addop.mode name; .postmode expression condition 
addop.operation name; condition 

c) Attribute values computed (i =2,3) 

Figure 8.2. Analysis of x: = y +z 
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assignment 

environment 

identifier 
name 

addop 

identifier identifier 

Figure 8.3. Attribute Dependencies in the Tree for x: = y +z 

must be resolved by coercions. The Boolean function coercible (t f, t 2) tests 
whether type t 1 can be coerced to t 2. 

Figure 8.2 shows the analysis of x: = y +z according to the grammar of 
Figure 8.1. (Assignment. environment would be computed from the declara
tions of x, y and z, but here we show it as given in order to make the exam
ple self-contained.) Attributes on the same line of Figure 8.2c can be 
computed collaterally; every attribute is dependent upon at least one attri
bute from the previous line. These dependency relations can be expressed 
as a graph (Figure 8.3). Each large box represents the production whose 
application corresponds to the node of the structure tree contained within it. 
The small boxes making up the node itself represent the attributes of the 
symbol on the left-hand side of the production, and the arrows represent the 
dependency relations arising from the attribution rules of the production. 
The node set of the dependency graph is just the set of small boxes 
representing attributes; its edge set is the set of arrows representing depen
dencies. 

We must know all of the values upon which an attribute depends before 
we can compute the value of that attribute. Clearly this is only possible if 
the dependency graph is acyclic. Figure 8.3 is acyclic, but consider the fol
lowing LAX type definition, which we shall discuss in more detail in Sec
tions 9.1.2 and 9.1.3: 

type t = record x :real; p :ref tend 

We must compute a type attribute for each of the identifiers t, x and p so that 
the associated type is known at each use of the identifier. The type attribute 
of t consists of the keyword record plus the types and identifiers of the fields. 
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Now, however, the type of p contains an application of t, implying that the 
type identified by t depends upon which type a use of t identifies. Thus the 
type t depends cyclically upon itself. (We shall show how to eliminate the 
cycle from this example in Section 9.1.3.) 

Let us now make the intuition gained from these examples more precise. 
We begin with the grammar G, a set of attributes A (X) for each X in the 
vocabulary of G, and a set of attribution rules R (p) (and possibly a condi
tion B (p )) for each p in the production set of G . 

Definition 8.1. An attribute grammar is a 4-tuple, AG = (G,A,R,B). 
G = (T,N,P,Z) is a reduced context free grammar, A = u A (X) is a 

XETuN 

finite set of attributes, R = u R (p) is a finite set of attribution rules, and 
pEP 

B=uB(p) is a finite set of conditions. A(X)nA(Y)*0 
pEP 

implies X = Y. For each occurrence of X in the structure tree correspond-
ing to a sentence of L (G), at most one rule is applicable for the computa
tion of each attribute a EA (X). 

Definition 8.2. For each p :X 0 -> X I ... Xn E P the set of defining occurrences 
of attributes isAF(p) = {Xi.a I Xi·a <-f(··· )ER(p)}. An attribute Xa 
is called derived or synthesized if there exists a production p:X ->x and Xa , 
in AF(p); it is called inherited if there exists a production q: Y ->/LX v ana 
x'a EAF(q). 

Synthesized attributes of a symbol represent properties resulting from 
consideration of the subtree derived from the symbol in the structure tree. 
Inherited attributes result from consideration of the environment. In Figure 
8.1, the name.primode and addop.operation attributes were synthesized; 
name. environment and addop.mode were inherited. 

Attributes such as the value of a constant or the symbol of an identifier, 
which arise in conjunction with structure tree construction, are called intrin
sic. Intrinsic attributes reflect our division of the original context-free gram
mar into a parsing grammar and a symbol grammar. If we were to use the 
entire grammar of Appendix A as the parsing grammar, we could easily 
compute the symbol attribute of an identifier node from the subtree rooted in 
that node. No intrinsic attributes would be needed because constant values 
could be assigned to left-hand side attributes in rules such as letter:: = 'a '. 
Thus our omission of intrinsic attributes in Definition 8.2 results in no loss of 
generality. 

Theorem 8.3. The following sets are disjOint for all X in the vocabulary of G : 

AS (X) = {Xa I 3p:X ->x EP and Xa EAF(p)} 
A/(X) = {X.a I 3q:Y ->/LXV EP andXa EAF(q)} 
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Further, there exists at most one rule Xa .... f ( ... ) in R (p ) for each p EP and 
a EA(X). 

Suppose that an attribute a belonged to both AS(X) and A/(X). Some 
derivation Z =>* aYT => ap,XPT => ap,XPT =>* w (wEL(G» would then 
have two different rules for computing the value of attribute a at node X. 
But this situation is prohibited by the last condition of Definition 8.1. It can 
be shown that Theorem 8.3 is equivalent to that condition. 

Definition 8.1 does not guarantee that a synthesized attribute a EA (X) 
will be computable in all cases, because it does not require that Xa be an 
element of AF(p) for every production p:X ->X. A similar statement holds 
for inherited attributes. 

Definition 8.4. An attribute grammar is complete if the following statements 
hold for all X in the vocabulary of G : 

For all p:X ->X EP, AS(X) C.AF(p) 
For all q: Y ->p,Xv EP, A/(X) C.AF(q) 
AS(X)uA/(X)= A (X) 

Further, if Z is the axiom of G then A/(Z) is empty. 

ii\ As compiler writers, we are only interested in attribute grammars that 
ailow us to compute all of the attribute values in any structure tree. 

Definition 8.5. An attribute grammar is well ... defined if, for each structure tree 
corresponding to a sentence of L (G), all attributes are effectively comput ... 
able. A sentence of L (G) is correctly attributed if, in addition, all conditions 
yield true. 

It is clear that a well ... defined attribute grammar must be complete. A 
complete attribute grammar is well ... defined, however, only if no attribute 
can depend upon itself in any structure tree. We therefore need to formalize 
the dependency graph introduced in Figure 8.3. 

Definition 8.6. For each p:Xo->X,··· Xn EP the set of direct attribute 
dependencies is given by 

DDP(p) = {(Xi·a,xj.b) I Xj.b ~f('" Xi·a··· )ER(p)} 

The grammar is locally acyclic if the graph of DDP(p) is acyclic for each 
pEP. 

We often write (X;.a,~.b) EDDP(p) as X;.a ->~.b EDDP(p), and follow 
the same convention for the relations defined below. If no misunderstand ... 
ing can occur, we omit the specification of the relation. In Figure 8.3 the 
arrows lying inside each large box are the edges of DDP(p) for a particular 
p. 
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We obtain the complete dependency graph for a structure tree by 'pasting 
together' the direct dependencies according to the syntactic structure of the 
tree. 

Definition 8.7. Let S be the attributed structure tree corresponding to a sen
tence in L (G), and let Ko' .. Kn be the nodes corresponding to application 
ofp:Xo->X\'" Xn . We write Kj.a ->Kj.b ifX;.a ->~.b EDDP(p). The set 
DT(S) = {K;.a ->Kj.b}, where we consider all applications of productions 
in S, is called the dependency relation over the tree S. 

Theorem 8.8. An attribute grammar is well-defined if and only if it is complete 
and the graph of DT(S) is acyclic for each structure tree S corresponding to a 
sentence of L (G). 

If AG is a well-defined attribute grammar (WAG) then a nondeterministic 
algorithm can be used to compute all attribute values in the attributed struc
ture tree for a sentence in L (G): We provide a separate process to compute 
each attribute value, which is started after all operands of the attribution 
rule defining that value have been computed. Upon completion of this pro
cess, the value will be available and hence other processes may be started. 
Computation begins with intrinsic attributes, which become available as 
soon as the structure tree has been built. The number of processes depends 
not upon the grammar, but upon the number of nodes in the structure tree. 
Well-definedness guarantees that all attributes will be computed by this sys
tem without deadlock, independent of the precise construction of the attri
bute rules. 

Before building a compiler along these lines, we should verify that the 
grammar on which it is based is actually WAG. Unfortunately, exponential 
time is required to verify the conditions of Theorem 8.8. Thus we must 
investigate subclasses of WAG for which this cost is reduced. 

It is important to note that the choice of subclass is made solely upon 
practical considerations; all well-defined attribute grammars have the same 
formal descriptive power. The proof of this assertion involves a 'hoisting' 
transformation that is sometimes useful in molding a grammar to a pre
specified tree traversal: An inherited attribute of a symbol is removed,. 
along with all synthesized attributes depending upon it, and replaced by a 
computation in the parent node. We shall see an example of this transfor
mation in Section 8.2.3. 

8.2. Traversal Strategies 

A straightforward implementation of any attribute evaluation scheme will 
fail in practice because of gigantic storage requirements for attribute values 
and correspondingly long computation times. Only by selecting an evalua-
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tion scheme that permits us to optimize memory usage can the attribute 
grammar technique be made practical for compiler construction. Section 
8.3.2 will discuss optimizations based upon the assumption that we can 
determine the sequence of visits to a particular node solely from the symbol 
corresponding to that node. We shall require that each production 
P:XO~Xl'" Xn EP be associated with a fixed attribution algorithm made 
up of the following basic operations: 

• Evaluate an element of R(p). 
• Move to child node i (i = I, ... , n). 
• Move to parent node. 

Conceptually, a copy of the algorithm for p is attached to each node 
corresponding to an application of p. Evaluation begins by moving to the 
root and ends when the algorithm for the root executes 'move to parent'. 

We first discuss algorithms based upon these operations - what they look 
like and how they interact - and characterize the subclass of WAG for 
which they can be constructed. We then examine two different construction 
strategies. The first uses the attribute dependencies to define the tree 
traversal, while the second specifies a traversal a priori. We only discuss the 
general properties of each strategy in this section; implementation details 
will be deferred to Section 8.3. 

8.2.1. Partitioned Attribute Grammars Because of the properties of 
inherited and synthesized attributes, the algorithms for two productions 
p :X"",X and q: Y ..... p.X p must cooperate to evaluate the attributes of an 
interior node of the structure tree. Inherited attributes would be computed 
by rules in R (q), synthesized attributes by rules in R (p). The attribution of 
X represents the interface between the algorithms for p and q. In Figure 
8.3, for example, the algorithms for expression :: = name addop name and 
assignment :: = name ': =' expression are both involved in computation of 
attributes for the expression node. Because all computation begins and ends 
at the root, the general pattern of the (coroutine) interaction would be the 
following: The algorithm for q computes values for some subset of AI (X) 
using a sequence of evaluation instructions. It then passes control to the 
algorithm for p by executing 'move to child i'. After using a sequence of 
evaluation operations to compute some subset of AS (X), the algorithm for p 
returns by executing 'move to parent'. (Of course both algorithms could 
have other attribute evaluations and moves interspersed with these; here we 
are considering only computation of X's attributes.) This process continues, 
alternating computation of subsets of AI(X) and AS(X) until all attribute 
values are available. The last action of each algorithm is 'move to parent'. 

Figure 8.4 gives possible algorithms for the grammar of Figure 8.1. 
Because a symbol like expression can appear in several productions on the 
left or right sides, we always identify the production for the child node by 
giving only the left-hand-side symbol. We do not answer the question of 
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Evaluate name. environment 
Move to name 
Evaluate expression.environment 
Move to expression 
Evaluate name.postmode 
Move to name 
Evaluate expression.postmode 
Move to expression 
Move to parent 

a) Procedure for assignment :: = name ' =' expression 

Evaluate name [I J.environment 
Move to name [I J 
Evaluate name[2J.environment 
Move to name [2J 
Evaluate expression.primode 
Move to parent 
Evaluate name [IJ.postmode 
Move to name [I J 
Evaluate addop.mode 
Move to addop 
Evaluate name[2J.postmode 
Move to name[2J 
Evaluate condition 
Move to parent 

b) Procedure for expression :: = name addop name 

Evaluate name.primode 
Move to parent 
Evaluate condition 
Move to parent 

c) Procedure for name :: = identifier 

Figure 8.4. Attribution Algorithms for Figure 8.1 
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which production is really used because in general we cannot know. For the 
same reason we do not specify the parent production more exactly. 

The attributes of X constitute the only interface between the algorithms 
for p and q. When the algorithm for q passes control to the algorithm for p 
by executing 'move to child i', it expects that a particular subset of AS(X) 
will be evaluated before control returns. Since the algorithms must work for 
all structure trees, this subset must be evaluated by every algorithm 
corresponding to a production of the form X -+x. The same reasoning holds 
for subsets of AI (X) evaluated by algorithms corresponding to productions 
of the form Y -+"x". 

Definition 8.9. Given a partition of A (X) into disjoint subsets Ai (X), 
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i = 1, ... , m (X) for each X in the vocabulary of G, the resulting partition of 
the entire attribute set A is admissible if, for all X, Ai (X) is a subset of 
AS(X) for i = m, m -2, ... and Ai (X) is a subset of AI(X) for 
i =m -1, m -3, ... Ai (X) may be empty for any i. 

Definition 8.10. An attribute grammar is partitionable if it is locally acyclic 
and an admissible partition exists such that for each X in the vocabulary of 
G the attributes of X can be evaluated in the order A I (X), ... , Am (X). An 
attribute grammar together with such a partition is termed partitioned. 

Since all attributes can be evaluated, a partitionable grammar must be well
defined. 

A set of attribution algorithms satisfying our constraints can be 
constructed if and only if the grammar is partitioned. The admissible parti
tion defines a partial ordering on A (X) that must be observed by every algo
rithm. Attributes belonging to a subset Ai (X) may be evaluated in any order 
permitted by DDP(p), and this order may vary from one production to 
another. No context switch across the X interface occurs while these attri
butes are being evaluated, although context switches may occur at other 
interfaces. A move instruction crossing the X interface follows evaluation of 
each subset. 

The grammar of Figure 8.1 is partitioned, and the admissible partition 
used to construct Figure 8.4 was: 

A I (expression) = {environment} 
A 2( expression) = {prim ode } 
A 3 (expression ) = {postmode} 
A 4{ expression) = {} 

A I (addop ) = {mode} 
A z(addop) = {operation} 

A I (name) = {environment} 
A2(name) = {primode} 
A 3 (name) = {postmode} 
Ainame) = {} 

A4 is empty in the cases of both expression and name because the last 
nonempty subset in the partition consists of inherited attributes, while 
Definition 8.9 requires synthesized attributes. At this point the algorithm 
actually contains a test of the condition, which we have already noted can be 
regarded as a synthesized attribute of the left-hand-side symbol. With this 
interpretation, it would constitute the single element of A4 for each symbol. 

8.2.2. Derived Traversals Let us now tum to the questions of how to 
partition an attribute grammar and how to derive algorithms from an admis
sible partition that satisfies Definition 8.10, assuming no a priori constraints 
upon the tree traversal. For this purpose we examine dependency graphs, 
with which the partitions and algorithms must be compatible. 

Suppose that Xa is an element of Ai (X) and Xb is an element of Aj (X) 



8.2. Traversal Stategies 193 

p 

q 

Figure 8.5. A Cycle Involving More Than One Production 

in an admissible partition, and i > j. Clearly Kx.a ~Kx.b cannot be an 
element of DT(S) for any structure tree S, because then Xb could not be 
calculated before Xa as required by the fact that i > j. DDP(p) gives direct 
dependencies for all attributes, but the graph of DT(S) includes indirect 
dependencies resulting from the interaction of direct dependencies. These 
indirect dependencies may lead to a cycle in the graph of DT(S) as shown in 
Figure 8.5. We need a way of characterizing these dependencies that is 
independent of the structure tree. 

In a locally acyclic grammar, dependencies between attributes belonging 
to AF(p) can be removed by rewriting the attribution rules: 

X;.a ~f(oo.,xj.b,oo.) 
~.b~g("·) 

becomes 
X;.a ~ f(oo.,g(· .. ),00') 
Xj.b ~g(" . ) 

In Figure 8.3 this transformation would, among other things, replace the 
dependency expression.primode ~addop.mode by name [I ].primode ~ 
addop.mode and name [2].primode ~ addop.mode. Dependencies that can be 
removed in this way may require that the attributes within a partition ele
ment Ai (X) be computed in different orders for different productions, but 
they have no effect on the usability of the partition itself (Exercise 8.3). 

Definition 8.11. For each p :Xo ~Xl ... Xn EP, the normalized transitive clo
sure of DDP (p ) is 

NDDP(p) = DDP(p)+ - {(X;.a,Xj.b) I Xi.a,Xj.b EAF(p)} 

The dependencies arising from interaction of nodes in the structure tree 
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are summarized by two collections of sets, IDP and IDS. IDP(p) shows all 
of the essential dependencies between attributes appearing in production p, 
while IDS (X) shows those between attributes of symbol X. 

Definition 8.12. The induced attribute dependencies of an attribute grammar 
(G,A,R,B) are defined as follows: 

l. Forallp EP,IDP(p):=NDDP(p). 
2. For all X in the vocabulary of G, 

IDS(X):={(Xa,Xb) I 3q such that (Xa,Xb)EIDP(q)+} 

3. Forallp:Xo ...... X(··· Xn EP, 

IDP(p):=IDP(p)uIDS(Xo)u", uIDS(Xn) 

4. Repeat (2) and (3) until there is no change in any lOP or IDS. 

IDP(p) and IDS (X) are pessimistic approximations to the desired depen
dency relations. Any essential dependency that could be present in any 
structure tree is included in IDP(p) and IDS (X), and all are assumed to be 
present simultaneously. The importance of this point is illustrated by the 
grammar of Figure 8.6, which is well-defined but not partitioned. Both c ...... e 
and d ...... f are included in IDS(y) even though it is clear from Figure 8.7 
that only one of these dependencies could occur in any structure tree. A 
similar situation occurs for e ...... d and f ...... c. The result is that IDS(Y) indi
cates a cycle that will never be present in any DT. 

The pessimism of the indirect dependencies is crucial for the existence of 
a partitioned grammar. Remember that it must always be possible to evalu
ate the attributes of X in the order specified by the admissible partition. 
Thus the order must satisfy all dependency relations simultaneously. 

Theorem 8.13. If an attribute grammar is partitionable then the graph of 
IDP(p) is acyclic for every pEP and the graph of IDS (X) is acyclic for every 
X in the vocabulary of G. Further, if a ...... b is in IDS (X) then a EA; (X) and 
b EAj (X) implies i < j. 
Note that Theorem 8.13 gives a necessary, but not sufficient, condition for a 
partitionable grammar. The grammar of Figure 8.8 illustrates the reason, 
and provides some further insight into the properties of partitionable gram
mars. 

Given the rules of Figure 8.8, a straightforward computation yields 
IDS (X) = {a ...... b, c ...... d}. Three of the five admissible partitions of 
{a, b, c, d} satisfy Theorem 8.13: 

{a} {b} {c} {d} {c} {d} {a} {b} {a,c} {b,d} 
Figure 8.9 gives the dependency graphs for the two structure trees that can 
be derived according to this grammar. Simple case analysis shows that none 
of the three partitions can be used to compute the attributes of X in both 
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ruleZ ::= X 
attribution 

Xa <- 1; 

(* Production 1 *) 

rule X :: = s Y. (* Production 2 *) 
attribution 

Xb <- Y.f; 
Y.c <- Xa; 
Y.d <- Y.e; 

rule X :: = t Y. (* Production 3 *) 
attribution 

Xb <- Y.e; 
Y.c <- Y.f; 
Y.d <- Xa; 

rule Y ::= u. 
attribution 

Y.e <- 2; 
Y.f <- Y.d; 

rule Y ::= v. 
attribution 

Y.e <- Y.c; 
Y.f <- 3; 

(* Production 4 *) 

(* Production 5 *) 

a) Rules 

IDS(X) = {a --+b} 
IDS(Y) = {c --+e, d --+f, e --+d,f --+c} 

b) Induced dependencies for symbols 

Figure 8.6. A Well-Defined Grammar 
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trees. For example, consider the first partition. Attribute a must be com
puted before attribute d. In the first tree X[ 1].d must be known for the 
computation of X[2].a, so the sequence must be X[ 1].a, X[l].d, X[2].a, 
X[2].d. This is inadmissible, however, because X[2].d ..... X[ 1].a is an element 
of NDDP(Z --+sXX). 

When we choose a partition, this choice fixes the order in which certain 
attributes may be computed. In this respect the partition acts like a set of 
dependencies, and its effect may be taken into account by adding these 
dependencies to the ones arising from the attribution rules. 

Definition 8.14. Let A I(X), ... , Am (X) be an admissible partition of A (X). 
F or each p :X 0 --+ X I ... Xn in P the set of dependencies over the production p 
IS: 

DP(p)=IDP(pPu {(Xi.a,Xi.b) laEAj(X;),bEAdXi),O< i< n,j<k} 
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Z: : = X Z: : = X 

X: : = sY X: : = sY 

Y: : = u Y: : = v 

Z: : = X 

X: : = tY X: : = tY 

Y: : = u Y: : = v 

Figure 8.7. Dependency Graphs DT(s) 

Theorem 8.15. Given an admissible partition for an attribute grammar, the 
grammar is partitioned if and only if the graph of DP (p) is acyclic for each 
pEP. 

Unfortunately, Theorem 8.15 does not lead to an algorithm for partition
ing an attribute grammar. Figure 8.10 is a partitioned grammar, but the 
obvious partition A \(X) = {b}, A 2(X) = {a} causes cyclic graphs for both 
DP(l) and DP(2). In order to avoid the problem we must use A \(X) = {a}, 
A 2(X) = {b}, A 3(X) = D. A backtracking procedure for constructing the 
partition begins with the dependency relations of IDS (X) and considers 
pairs of independent attributes (a, b ), one of which is inherited and the other 
synthesized. It adds a ->b to the dependencies currently assumed and 
immediately checks all DP graphs for cycles. If a cycle is found then the 
dependency b ->a is tested. If this also results in a cycle then the procedure 
backtracks, reversing a previously assumed dependency. Because this pro
cedure involves exponential cost, it is of little practical interest. 
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ruleZ::=sXX. 
attribution 

X[ I ].a .... X[2].d ; 
X[I].c .... 1; 
X[2].a +- X[ l].d ; 
X[2].c .... 2; 

rule Z :: = t X X . 
attribution 

X[l].a .... 3; 
X[l].c .... X[2].b; 
X[2].a .... 4; 
X[2].c .... X[ l].b ; 

rule X ::= u. 
attribution 

Xb .... Xa; 
Xd .... Xc; 

Figure 8.8. An Attribute Grammar That Is Not Partitioned 

Z: : = sXX 

X: : = u X: : = u 

Z: : = tXX 

X:: =u X:: = u 

Figure 8.9. Dependency Graphs for Figure 8.8 

197 
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As in the case of parser construction, where pragmatic considerations 
forced us to use subclasses of the LL(k) and LR(k) grammars, the cost of 
obtaining an appropriate partition forces us to consider a subclass of the 
partitioned grammars. The following definition yields a non backtracking 
procedure for obtaining a partition that evaluates each attribute at the latest 
point consistent with IDS (X). 

Definition 8.16. An attribute grammar is ordered if the following partition of 
A results in a partitioned grammar: 

Ai(X) = Tm-i+l(X)-Tm-i-l(X) (;=1, ... , m) 

Here m is the smallest k such that Tk_1(X)U Tk(X)=A(X), T _1(X)= 
To(X)= 0, and for k >0 
T2k - 1(X) = {aEAS(X) I a~bEIDS(X)impliesbE1j(X),j<.(2k-l)} 
T2k (X) = {a EAI (X) I a ~b EIDS (X) implies b E 1j (X), j <. 2k} 

This definition requires that all 1j (X) actually exist. Some attributes remain 
unassigned to any 1j (X) if (and only if) the grammar is locally acyclic and 
some IDS contains a cycle. 

For the grammar of Figure 8.10, construction 8.16 leads to the 'obvious' 
partition discussed above, which fails. Thus the grammar is not ordered, 
and we must conclude that the ordered grammars form a proper subclass of 
the partitionable grammars. 

rule Z ::= s X Y. (* Production 1 *) 
attribution 

Xb <- Y.d; 
Y.c <- 1; 
Y.e <- Xa; 

rule Z :: = t X Y . (* Production 2 *) 
attribution 

Xb <- Y.f; 
Y.c <- Xa; 
Y.e <- 2; 

rule X ::= u. 
attribution 

Xa <- 3; 

rule Y :: = v . 
attribution 

Y.d <- Y.c; 
Y.f <- Y.e; 

(* Production 3 *) 

(* Production 4 *) 

Figure 8.10. A Partitioned Grammar 
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Suppose that a partitioned attribute grammar is given, with partitions 
A I(X), ... , Am (X) for each X in the vocabulary. In order to construct an 
attribution algorithm for a production p:X 0 ~ X I ... Xn , we begin by 
defining a new attribute Cj,j corresponding to each subset Ai (~) of attri
butes not computed in the context of p. (These are the inherited attributes 
Aj(Xo), j =m -I, m -3, ... of the left-hand side and the synthesized attri
butes Aj(~), ;=1= 0, j =m,m -2, ... of the right-hand side symbols.) For 
example, the grammar of Figure 8.1 is partitioned as shown at the end of 
Section 8.2.1. In order to construct the attribution algorithm of Figure 8.4b, 
we must define new attributes as shown in Figure 8.11 a. 

Every occurrence of an attribute from Aj (Xj) is then replaced by Cj ,j in 
DP(p)uDDP(p), as illustrated by Figure 8.11b. DP(p) alone does not 
suffice in this step because it was derived (via IDP(p» from NDDP(p), and 
thus does not reflect all dependencies of DDP(p). In Figure 8.11b, for 
example, the dependencies expression.primode ~name[i].postmode (i = 1,2) 
are in DDP but not DP. 

Figure 8.1Ib has a single node for each Cj,j because each partition con
tains a single attribute. In general, however, partitions will contain more 
than one attribute. The resulting graph still has only one node for each Cj,j' 
This node represents all of the attributes in Ai (Xj ), and hence any relation 
involving an attribute in Aj (~ ) is represented by an edge incident upon this 
node. 

The graph of Figure 8.11 b describes a partial order. To obtain an attri
bution algorithm, we augment the partial order with additional dependen
cies, consistent with each other and with the original partial order, until the 
nodes are totally ordered. Figure 8.IIc shows such additional dependencies 
for Figure 8.11 b. The total order defines the algorithm: Each element that 
is an attribute in AF(p ) corresponds to a computation of that attribute, each 
element Cj,O corresponds to a move to the parent, and each element Ci,j 
(j > 0) corresponds to a move to the ith child. Finally, a 'move to parent' 
operation is added to the end of the algorithm. Figure 8Ab is the algorithm 
resulting from the analysis of Figure 8.11. 

The construction sketched above is correct if we can show that all attri
bute dependencies from IDP(p) and DDP(p) are accounted for and that 
the interaction with the moves between nodes is proper. Since IDP(p) is a 
subset of DP(p), problems can only arise from the merging of attributes that 
are not elements of AF(p). We distinguish five cases: 

X;.a ~X;.b EIDP(p), 
X;.a ~X;.b EIDP(p), 
Xj.a ~Xj.b EIDP(p), 
X;.a ~~.b EIDP(p), 
Xj.a ~Xj.b EIDP(p), 

a fi,AF(p), b fi,AF(p) 
a EAF(p), b fi,AF(p) 
a fi,AF(p), b EAF(p) 
i =1= j, a fi,AF(p) 
; =1= j, b fi,AF(p) 

In the first case the dependency is accounted for in all productions q for 
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which a and b are elements of AF(q). In the second and third cases ~.a 
and ~.b must belong to different subsets Ar (~) and As (~). The depen
dency manifests itself in the ordering condition r < s or s < r, and will not 
be disturbed by collapsing either subset. In the fourth case we compute ~.b 
only after all of the attributes in the subset to which Xi.a belongs have been 
computed; this is simply an additional restriction. The fifth case is excluded 
by Definition 8.l1: ~.a -+Xj.b cannot be an element of DDP(p) because 
~.b is not in AF(p); it cannot be an element of any IDS because i -=1= j. 

When an algorithm begins with a visit Cj, i' this visit mayor may not actu
ally be carried out. Suppose that the structure tree has been completed 

C I, 0 = {expression. environment } 
C3, 0 = {expression.postmode } 
C2, 1 = {name [I ].primode } 
C4, 1 = {} 
C2, 2 = {addop.operation } 
C2,3 = {name [2].primode } 
C4,3={} 

a) New attributes 

condition 

b) Graph defining DP(p) u DDP(p) 

C2,1 -+name[2].environment 
C3, 0 -+name [l].postmode 
C4,1 -+addop.mode 
C2,2 -+name [2].postmode 
C 4,3 -+ condition 

c) Additional dependencies used to establish a total order 

Figure 8.11. Deriving the Algorithm of Figure 8.4b 
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before the attribution is attempted. The traversal then begins at the root, 
and every algorithm will be initiated by a 'move to child i '. Now if the first 
action of the algorithm is c 1,0, i.e. a move to the parent to compute inherited 
attributes, this move is superfluous because the child is only invoked if these 
attributes are available. Hence the initial CI,O should be omitted. The situa
tion is reversed if the tree is being processed bottom-up, as when attribution 
is merged with a bottom-up parse: An initial Ci,} that causes a move to the 
leftmost subtree should be omitted. 

Semantic conditions are taken care of in this schema by treating them as 
synthesized attributes of the left-hand side of the production. They can be 
introduced into an algorithm at any arbitrary point following computation 
of the attributes upon which they depend. In practice, conditions should be 
evaluated as early as possible to enhance semantic error recovery and 
reduce the lifetime of attributes. 

8.23. Pre-Specified Traversals Overall compiler design considerations 
may indicate use of one or more depth-first, left-to-right and/or right-to-Ieft 
traversals for attribute evaluation. This allows us to linearize the structure 
tree as discussed in Section 4.1.2 and make one or more passes over the 
linearized representation. (For this reason, attribute grammars that specify 
such traversals are called multi-pass attribute grammars.) We shall discuss 
the left-to-right case in detail here, leaving the analogous right-to-left case to 
the reader. 

Definition 8.17. An attribute grammar is LAG(J) if, for every node 
corresponding to an application of p :Xo -4X1 ••• Xn EP, the attributes in 
AI (Xo), AI(X1), AS(X1), AI(X2)' ... , AS(Xn ), AS(Xo) can be computed in 
that order. 

An LAG(l) grammar is partitioned, with the partition being 
A I(X)=AI(X), A 2(X)=AS(X) for all X. Further constraints on the order 
of evaluation within a production are introduced to force processing of the 
symbols from left to right. 

Theorem 8.18. A n attribute grammar is LA G( 1) if and only if it is locally acy
clic and, for all p :X0 -4X1 ••• Xn EP, Xi.a -4X}.b EDDP(p) implies one of 
the following conditions: 

• j=O 
• i =0 and a EAI(Xo) 

• 1< i <j 
• I < i = j and a EAI (~ ) 

Note that Theorem 8.18 makes use only of DDP(p); it does not consider 
induced attribute dependencies. This is possible because every induced 
dependency that would affect the computation must act over a path having a 
'top' node similar to that in Figure 8.5: An inherited attribute of a symbol 
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depends directly upon a synthesized attribute of the same symbol. This case 
is prohibited, however, by the conditions of the theorem. 

LAG(l) grammars are inadequate even in comparatively simple cases, as 
can be seen by considering the grammar of Figure 8.1. The production for 
assignment satisfies the conditions of Theorem 8.18, but that for expression 
does not because both name[l].postmode and name[2].postmode depend 
upon expression.primode. We can repair the problem in this example by 
applying the 'hoisting' transformation mentioned at the end of Section 8.1: 
Delete the inherited attribute postmode and move the condition using it 
upward. A similar change is required to move the operator identification 
upward (Figure 8.12). 

If one tree traversal does not suffice to compute all attributes, a sequence 
of several traversals might be used. This idea is actually much older and 
more general than that of attribute grammars. We have already met it in 
Section 1.3: 'Any language requires at least one pass over the source text, 
but certain language characteristics require more.' (The procedure 

rule assignment :: = name ': =' expression . 
attribution 

name. environment ~ assignment. environment ; 
expression. environment ~ assignment. environment ; 

condition 
coercible ( 

expression.primode, 
if name.primode = ref _inLtype then inLtype else reaLtype fi); 

rule expression :: = name addop name . 
attribution 

name [I].environment ~ expression.environment; 
name [2]. environment ~ expression. environment ; 
expression.primode ~ 

if coercible (name [1 ].primode, int _type) and 
coercible (name [2].primode , int _type) then int _type else real_type fi; 

addop.operation ~ 
if expression.primode =inLtype then inLaddition else reaLaddition fi; 

condition 
coercible (name [I].primode, expression.primode ) and 
coercible (name [2].primode, expression.primode ); 

rule addop :: = '+'. 

rule name :: = identifier. 
attribution 

name.primode ~ definedJype (identifier. symbol ,name. environment ); 

Figure 8.12. Transformation of Figure 8.1 
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determine _traversals discussed below describes, in terms of attributes, the 
fundamental mechanism by which the number of passes of a compiler is 
determined.) The difference between LAG and RAG appears in the same 
section as the distinction between forward and backward passes. 

All attributes in the structure tree of a sentence derived from any arbi
trary well-defined attribute grammar can be evaluated with an unlimited 
number of traversals, but the cost of determining dynamically whether 
another traversal is necessary is roughly as high as that of the nondeter
ministic evaluation procedure in Section 8.1. Here we are interested in cases 
for which the number of traversals can be determined from the grammar 
alone, independent of any structure tree. 

Definition 8.19. An attribute grammar is LAG(k) if and only if for each X 
in the vocabulary a partition 

AI(X) = AI\(X)u ... uAh(X) 
AS(X) = AS\(X)u ... uASdX) 

exists such that for all productions p:X 0 -'> X \ ... Xn, the attributes in 
AIl(XO), AIl(Xl), ... , AS\(Xn), AS\(Xo), Ah(Xo), ... , Ah(Xo), ... , 
ASk (Xo) can be computed in that order. 

Note that this reduces to Definition 8.17 for k = 1. 
The set of partitions taken together form an admissible partition of the 

attribute set A with m (X) = 2k for every X. We can think of the sets Ali (X) 
and AS;(X) as belonging to an LAG(l) grammar with AIj (X) and 
ASj (X)(j < i) as intrinsic attributes. This reasoning leads to the following 
LAG(k) condition which closely parallels Theorem 8.18: 

Theorem 8.20. An attribute grammar is LA G(k) if and only if it is locallyacy
clic and a partition A =A \ u ... uAk exists such that for all 
p:Xo-'>X\'" Xn EP, X;.a -'>Xj.b EDDP(p), a EAu(Xi ), b EAv(Xj ) implies 
one of the following conditions: 

.u<v 

.u=vandj=O 
• u=v andi=OandaEAI(Xo) 
• u = v and 1:( i <j 
• u = v and 1:( i = j and a EAI (X;) 

Theorem 8.20 leads directly to a procedure for determining the partition 
and the value of k from a locally acyclic grammar (Figure 8.13). For 
k = 1,2,... this procedure assumes that all remaining attributes belong to Ak 
and then deletes those for which this assumption violates the theorem. 
There are two distinct stopping conditions: 

• No attribute is deleted. The number of traversals is k and the partition is 
A \, ... , Ak . 
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function determine _traversals : integer; 
(* Test an attribute grammar for the LAG(k) property 

On entry-
Attribute grammar (G,A, R, B) is defined as in Section 8.1 
Sets A ,AS (X) and AF(p ) are defined as in Section 8.1 
Set DDP(p) is defined as in Section 8.2.2 

If the grammar is LAG(k) then on exit
determine _traversals = k 

Else on exit-
determine _traversals = - 1 

*) 
var 

k: integer; (* current traversal number *) 
candidates, (* possibly evaluable in the current traversal *) 
later: attribute Jet; (* not evaluable in the first k traversals *) 
candidates _unchanged: boolean; 

begin (* determine _traversals *) 
k: =0; later: =A; (* no attributes evaluable in 0 traversals *) 
repeat (* determine the next Ak *) 

k : = k + 1; candidates: = later; later: = 0; 
repeat (* delete those unevaluable in traversal k *) 

candidates _unchanged: = true ; 
for all productions p:X 0 -+ X I ••• Xn do 

for all Xj.b E(AF(p) n candidates) do 
for all Xi.a EA(p) do 

if Xi.a -+Xj.b ENDDP (p) then 
if Xi.a Elater or} =1= 0 and (i >) or (i =0 or i = j) 

and a EAS(Xi » then 
begin 
candidates: = candidates - {Xj.b}; 
later: = later U {Xj.b}; 
candidates _unchanged: = false; 
end; 

until candidates _unchanged; 
Ak : = candidates; 

until later = 0 or candidates = 0 
if later = 0 then determine _traversals: = k else determine _traversals: = - 1 ; 
end; (* determine_traversals *) 

Figure 8.13. Testing the LAG(k) Property 

• All attributes are deleted. The conditions of Theorem 8.20 cannot be met 
and hence the attribute grammar is not LAG(k) for any k. 
Analogous constructions are possible for RAG(k) grammars and for the 

alternating evaluable attribute grammars (AAG(k ». With the latter class, 
structure tree attributes are evaluated by traversals that alternate in direc
tion: The first is left-to-right, the second right-to-left, and so forth. We 
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leave the derivation of these definitions and theorems, plus the necessary 
processing routines, to the reader. 

It is important to note that the algorithm of Figure 8.13 and its analogs 
for RAG(k) and AAG(k) assign attributes to the first traversal in which they 
might be computed. These algorithms give no indication that it might also 
be possible to evaluate an attribute in a later traversal without delaying 
evaluation of other attributes or increasing the total number of traversals. 

Figure 8.14 is RAG(l) but not LAG(k) for any k. Each left-to-right 
traversal can only compute the value of one Xa because of the dependency 
relation involving the preceding nonterminal W. Hence the number of 
traversals is not fixed, but is the depth of the recursion. A single right-to-Ieft 
traversal suffices to compute all Xa, however, because traversal of W's sub
tree follows traversal of X[2]'s. If we combine two such attribute relation
ships with opposite dependencies then we obtain an AAG(2) grammar that 
is neither LAG(k) nor RAG(k) for any k (Figure 8.15). 

It is, of course, possible to construct an appropriate partition for a multi
pass grammar by hand. The development usually proceeds as follows: On 
the basis of given properties of the language one determines the minimum 
number of traversals required, partitions the attributes accordingly, and then 
constructs the attribute definition rules to make that partition valid. The 
'hoisting' transformation referred to earlier is often used implicitly during 
rule construction. 

The disadvantage of this technique is that it is based upon an initial opin
ion about the number of traversals and the assignment of attributes to 
traversals that may tum out to be wrong. For example, one may discover 
when constructing the rules that an attribute can only be computed if addi
tional arguments are available, or even that important attributes are missing 

ruleZ ::= X. 
attribution 

Xb <-- 1; 

rule X ::= W X. 
attribution 

X[l ).a <-- We; 
X[2).b <-- X[I).b; 
Wd <- X[2).a ; 

rule X ::= 's'. 
attribution 

Xa <-- Xb; 

rule W:: = 't'. 
attribution 

We <-- Wd; 

Figure 8.14. An RAG(I) Grammar That Is Not LAG(k) 
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rule Z ::= X. 
attribution 

Xb <- 1; 

rule X :: = W X Y . 
attribution 

X[l).a <- Wd; 
X[l].e <- Yg; 
X(2).b <- X[l).b; 
We <- X(2).a ; 
Yj <- X(2).e; 

rule X ::= 's'. 
attribution 

Xa <- Xb; 
Xe <- Xb; 

ruleW::='t'. 
attribution 

We <- Wd; 

rule Y ::= 'u'. 
attribution 

Yg<-Yj; 

Chapter 8. Attribute Grammars 

Figure 8.15. An AAG(2) Grammar That Is Neither LAG(k) Nor RAG(k) 

entirely. Experience shows that small changes of this kind often have disas
trous effects on the basic structure being built. Considering the cost 
involved in developing a semantic analyzer - an attribute grammar for 
LAX is barely 30 pages, but specifications for complex languages can easily 
grow to well over 100 pages - such effects cannot be tolerated. It is more 
advisable to construct an attribute grammar without regard to the number of 
traversals. Only when it is certain that all aspects of the language have been 
covered correctly should substitutions and other alterations to meet a con
straint upon the number of traversals be undertaken. The greater part of the 
grammar will usually be unaffected by such changes. 

As soon as a partition of the attribute set satisfying Definition 8.17 or 8.19 
is available, it is simple to derive an algorithm via the technique discussed at 
the end of the last section. 

8.3. Implementation Considerations 

Section 8.2 showed methods for constructing attribute evaluation algorithms 
from attribute grammars. Here we concern ourselves with the implementa
tion of these algorithms. First we assume that the structure tree appears as a 
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linked data structure providing storage for the attributes, and later we show 
how to reduce the storage requirements. 

8.3.1. Algorithm Coding Our attribution algorithms are coroutines that 
transfer control among themselves by executing the basic operations 'move 
to child i' and 'move to parent'. They might be coded directly, transformed 
to a collection of recursive procedures, or embodied in a set of tables to be 
interpreted. We shall discuss each of these possibilities in tum. 

The coroutines can be coded directly in SIMULA as classes, one per 
symbol and one per production. Each symbol class defines the attributes of 
the symbol and serves as a prefix for classes representing productions with 
that symbol on the left side. This allows us to obtain access to a subtree hav
ing a particular symbol as its root without knowing the production by which 
it was constructed. Terminal nodes t are represented only by the class t. 
Each production class contains pointer declarations for all of its descendants 
X I ... Xn . A structure tree is built using statements of the form 
node: - new P (or node: - new t) to create nodes and assignments of the 
form node. Xi : -subnode to link them. Since a side effect of new is execution 
of the class body, the first statement of each class body is detach (return to 
caller). (Intrinsic attributes could be initialized by statements preceding this 
first detach.) Figure 8.16 gives the SIMULA coding of the procedure from 
Figure 8.4b. 

Figure 8.17 gives an implementation using recursive procedures. The 
tree is held in a data structure made up of the nodes defined in Figure 8.17a. 
When a node corresponding to application of p :Xo --XI' .. Xn is created, its 
fields are initialized as follows: 

symb = Xo 
XO-P = P 
X -Pi = pointer to node representing X;, i = I, ... , n 

The body of a coroutine is broken at the detach statements, with each seg
ment forming one branch of the case statement in the corresponding pro
cedure. Then detach is implemented by simply returning; resume (X;) is 
implemented by sproc _s (x -pi' k ), where sproc _s is the procedure 
corresponding to symbol Xi and k is the segment of that procedure to be 
executed. Figure 8.18 shows the result of applying the transformation to Fig
ure 8.16. We have followed the schema closely in constructing this example, 
but in practice the implementation can be greatly simplified. 

A tabular implementation, in which the stack is explicit, can be derived 
from Figure 8.17. It involves a pushdown automaton that walks the struc
ture tree, invoking evaluate in much the same way that the parsing automata 
of Chapter 7 invoke parser actions to report connection points. In each case 
the automaton communicates with another processor via a sequence of 
simple data items. Thus the implementations of the automaton and the 
communicating processor are quite distinct, and different techniques may be 



208 Chapter 8. Attribute Grammars 

class expression; 
begin comment Declarations of prim ode ,postmode and environment end; 

class name; 
begin comment Declarations of prim ode ,postmode and environment end; 

class addop ; 
begin comment Declarations of mode and operation end; 

expression class p 2; 
begin ref(name) X I; ref(addop) X2; ref(name) X3; 
comment Initialization of X I , X2 and X3 needed here; 
detach; 
X I. environment : = environment; 
resume (X I); 
X3.environment: = environment ; 
resume (X3); 
prim ode : = if· .. ; 
detach; 
X l.postmode : = prim ode ; 
resume (X I); 
X2.mode: =primode; 
resume (X2); 
X3.postmode: =primode; 
resume (X3); 
if· .. ; comment Evaluate the condition; 
detach; 
end; 

Figure 8.16. SIMULA Implementation of Figure 8.4b 

used to carry them out. The number of actions is usually very large, and 
when deciding how to handle them one must take account of any restrictions 
imposed by the implementation language and its compiler. 

Figure 8.19 shows how the pushdown automaton is implemented. Each 
entry in the table corresponds to an element of some algorithm and there is 
an auxiliary function, segment, such that segment (k, p) is the index of the 
first entry for the eh segment of the algorithm for production p. If the ele
ment corresponds to ~.a then it specifies the computation in some 
appropriate manner (perhaps as a case index or procedure address); other
wise it simply contains the pair of integers defining the visit. Because the 
selectors for a visit must be extracted from the table, rather than being built 
into the procedure, the tree node must be represented as shown in Figure 
8.l9b. 

Simplifications in the general coding procedure are possible for LAG(k ), 
RAG(k) and AAG(k) grammars. When k = I the partition for each X is 
A I(X)=AI(X), A 2(X)=AS(X), so no intermediate detach operations occur 
in the coroutines. This, in turn, means that no case statement is required in 
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type 
tree -pointer = i tree _node; 
tree _node = record 

case symbols of 
s: (* one per symbol in the vocabulary *) 

(. . . (* storage for attributes of S *) 
case s -p : integer of 

p : (* one per production p : S ~ X I ... Xn *) 
(x _p : alTay [l..n ] tree -pointer); 

) 
end; 

a) General structure ofa node 

procedure pproLp (t: treLpointer; k: integer); 
(* one procedure per production *) 
begin (* pproc _p *) 
case k of 

0: 

end; 

(* actions up to the first detach * ) 
(* successive segments *) 

end; (* pproc-p *) 

b) General structure of a production procedure 

procedure sproc -s (t: tree _pointer; k: integer); 
(* one procedure per symbol *) 
begin (* sproc -s *) 
case t.s -p of 

p: pproc_p(t, k); (* one case element per production *) 

end; 
end; (* sproc-s *) 

c) General structure of a symbol procedure 

Figure 8.17. Transformation of Coroutines to Procedures 

209 

the production procedures or in the interpretive model. For k > I there are 
k + I segments in each procedure proc _p, corresponding to the initialization 
and k traversals. It is best to gather together the procedures for each traver
sal as though dealing with a grammar for which k = I, and then run them 
sequentially. When parsing by recursive descent, the tree construction, the 
calculation of intrinsic attributes and the first tree traversal can be combined 
with the parsing. 
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type 
tree _pointer = i tree _node; 
tree _node = record 

case symbols of 
expression: 

(expression_environment: environment; 
expression _prim ode , expression _postmode: type ....specification; 
case expression_p: integer of 

I: (x_l:array [1..3] of tree_pointer); 
name: 

(name _environment: environment; 
name -prim ode , name -postmode : type ....specification); 

addop: 
(addop -»Jode: type ....specification; 
addop _operation: operations); 

end; 
procedure sproc _expression (t: tree _pointer; k : integer); 

begin (* sproc _expression *) 
case t i .expression _p of 

I:pprocl(t,k); 
end; 

end;(* sproc_expression *) 
procedurepprocl(t: tree-pointer; k: integer); 

begin (* pproc 1 *) 
case k of 

0: (* construction of subtrees *); 
1 : 

begin 
t i.x _1[1] i .expression..1nvironment: =t i .expression..1nvironment; 
sprocname(t i .x-l[lll); 
t i .x_I[3] i .expression_environment:=t i .expression_environment; 
sprocname(t i .x_l(311); 
t i . expression _primode : = if· .. ; 
end; . 

2: 
begin 
t i .x_l[I].name-postmode:=t i .expression_primode; 
sprocname(t i .x-l[112); 
t i .x_I[2].namLpostmode:=t i .expression-primode; 
sproc_addop(t i .x_l[2], 1); 
t i .x_I[3].addop-postmode: =t i .expression_primode; 
sproc_name(t i .x_l[312); 
if· .. ; 
end; 

end; 
end; (* pproc _1 *) 

Figure 8.18. Transformation of Figure 8.16 
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type 
table _entry = record 

case is _computation: boolean of 
true: (* R . *) ~'P,X .. a 

(rule: attribute _computation ); 
false: (* Csegment ~number, child *) 

(segment _number, child: integer) 
end; 

a) Structure of a table entry 

type 
tree _pointer = i tree _node; 
tree _node = record 

production: integer; 
X: array [ l .. max _right _hand --side] of tree _pointer 
end; 

b) Structure of a tree node 

procedure interpret; 
label I; 
var 

t : tree _pointer; 
state, next: integer; 

begin (* interpret *) 
t : = root _of _the _tree; 
state: = segment (0, t i .production); 
repeat 

next: = state + I; 
with table [state] do 

if is _computation then evaluate (t, rule) 
else if segment _number < > 0 then 

begin 
stack _push (t , next); 
t: =t i .x[child]; 
next: = segment (segment _number, t i .production); 
end 

else if stack _empty then goto I 
else stack-pop (t, next); 

state: = next; 
until false; (* forever *) 

I: end; (* interpret *) 

c) Table interpreter 

Figure 8.19. Tabular Implementation of Attribution Algorithms 
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8.3.2. Attribute Storage So far we have assumed that all attributes of a 
structure tree node were stored within the node itself. Applying this 
assumption in practice usually leads to a gigantic storage requirement. 
Several remedies are possible: 
• Overlaying of attributes. 
• Use of local temporaries of evaluation procedures. 
• Storage of specified attributes only at designated nodes. 
• Use of global variables and data structures. 

Because these optimizations cannot be automated completely (given the 
present state of the art), the question of attribute storage represents an 
important part of the development of an attribute grammar implementation. 

We classify the attributes of a node as final or intermediate. Final attri
butes are necessary in later phases of the compilation and must be available 
in the structure tree following attribution. Intermediate attributes are used 
only as aids in computing other attributes or testing conditions; they have a 
bounded lifetime. The largest intermediate attribute, which we shall discuss 
in Chapter 9, is the environment used to obtain the meaning of an identifier 
at a particular point. 

Distinct storage must be assigned to final attributes, but this storage can 
be used earlier to hold one or more intermediate attributes if their lifetimes 
do not overlap. Minimization of overlap (not minimization of lifetimes for 
simple attributes) is thus one of the most important uses of our freedom to 
specify the sequence of attribute evaluations. Usually it is best to begin with 
the final attributes and work backwards, fixing the sequence so that attri
butes can take one another's place in storage. 

We often discover that two attribute lifetimes overlap, but only briefly. 
The overlap can be eliminated by defining a new attribute whose lifetime is 
just this overlap, assigning the first attribute to it, and freeing the first 
attribute's storage. The second attribute is then computed into that storage. 
In this manner we reduce the overlap among 'long lived' attributes and 
increase the number of 'short lived' attributes. The new attributes generally 
have little overlap among themselves, but even if they had we have gained 
something: This transformation usually makes other optimizations applica
ble. 

In many cases we can implement short-lived attributes as local variables 
of the evaluation procedures, thus avoiding the need for space within the 
node entirely. If the attributes are referenced by other procedures (for the 
parent or children of the node to which they belong) then their values can be 
passed as extra parameters. This strategy only works for implementations 
like that of Figure 8.17, where distinct processing procedures are provided. 
The tabular implementation discussed at the end of Section 8.2.1 requires 
stacks instead of procedure parameters or local variables to realize the same 
strategy. 

An attribution rule can only access attributes of the nodes corresponding 
to the symbols of the associated production. Many of the attributes in a typ
ical grammar are therefore concerned with transmission of information from 
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one part of the tree to another. Since attribute values do not change, they 
may be transmitted by reference instead of by value. Thus we might store 
the value of a large attribute at a single node, and replace this attribute in 
other nodes by a pointer to the stored information. The node at which the 
value is stored is usually the root of a subtree to which all nodes using this 
information belong. For example, the environment attribute of a block or 
procedure node is formed by combining the lists generated by local 
definitions with the inherited environment. The result is passed to all nodes 
in the subtree rooted in the block or procedure node. If a pointer to the next 
enclosing block or procedure node is given during the processing of the 
nodes in the subtree, then we obtain the same environment: First we reach 
the local definitions in the innermost enclosing block and, in the same 
manner, the next outermost, etc. The search of the environment for a suit
able definition thus becomes a search of the local definition lists from inner 
to outer. 

Attributes should often be completely removed from the corresponding 
nodes and represented by global variables or linked structures in global 
storage. We have already noted that it is usually impossible to retain the 
entire structure tree in memory. Global storage is used to guarantee that an 
attribute accessible by a pointer is not moved to secondary storage with the 
corresponding node. Global storage is also useful if the exact size of an 
attribute cannot be determined a priori. Finally, global storage has the 
advantage that it is directly accessible, without the need to pass pointers as 
parameters to the evaluation procedures. 

If the environment is kept as a global attribute then it is represented by a 
list of local definitions belonging to the nested blocks or procedures. In 
order to be certain that the 'correct' environment is visible at each node we 
alter the global attribute during the traversal of the structure tree: When we 
move to a block or procedure node from its parent, we copy the local 
definition set to this environment variable; when we return to the parent we 
delete it. 

The description in the previous paragraph shows that in reality we are 
using a global data structure to describe several related attribute values. 
This situation usually occurs with recursive language elements such as 
blocks. The environment attribute shows the typical situation for inherited 
attributes: Upon descent in the tree we alter the attribute value, for example 
increasing its size; the corresponding ascent in the tree requires that the 
previous state be restored. Sometimes, as in the case of the nesting depth 
attribute of a LAX block, restoration is a simple inverse of the computation 
done on entry to the substructure. Often there is no inverse, however, and 
the old value of the attribute must be saved explicitly. (The environment 
represents an intermediate situation that we shall consider in Section 9.3.) 
By replacing the global variable with a global stack, we can handle such 
cases directly. 

Global variables and stacks are also useful for synthesized attributes, and 
the analysis parallels that given above. Here we usually find that attribute 
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values replace each other at successive ascents in the tree. An example is the 
primode computation in a LAX case _clause: 

rule case :: = case_label ':'statement_list . attribution 
case.primode .- statement _list.primode ; 

rule cases :: = case . 
rule cases :: = cases ':' statement .Jist . attribution 

cases [I ].primode .- balance (cases [2].primode, case.primode ); 

The value of cases [2].primode becomes irrelevant as soon as 
cases[I].primode has been evaluated. A case may, however, contain another 
case _clause. Hence a stack must be used rather than a variable. 

By changing the attribution rules, we can often increase the number of 
attributes implementable by global variables or stacks. A specific change 
usually fixes a specific traversal strategy, but anyone of several changes 
(each implying a different traversal strategy) could be used to achieve the 
desired effect. Thus the designer should avoid such changes until the last 
possible time, when they can be coordinated with the 'natural' traversal stra
tegies determined by the basic information flow. 

8.4. Notes and References 

Attribute grammars stern from the 'syntax-directed compilers' introduced by 
Irons [1961, 1963a]. Irons' grammars had a single, synthesized attribute 
attached to each nonterminal. This attribute provided the 'meaning' of the 
subtree rooted in the nonterminal. Knuth [l968a, 1971aJ proved that such a 
scheme was sufficient to define the meaning associated with any structure 
tree, but pointed out that the description could be simplified considerably 
through the use of inherited attributes in addition. (Sufficiency of syn
thesized attributes leads immediately to the conclusion that all well-defined 
attribute grammars have the same descriptive power.) Intrinsic attributes 
were first characterized by Schulz [1976], although Lewis, Rosenkrantz and 
Steams [1974] had previously allowed certain terminal symbols to have 
'attributes whose values are not given by rules'. The affix grammars of 
Koster [1971, 1974] are similar to attribute grammars, the main difference 
being that affixes are considered to be variables while attributes are con
stants. Riiihii [1980] provides a good overview of the attribute grammar 
literature as it existed in 1979. 

Our treatment of attribute classification differs from that of many authors 
because we do not begin with disjoint sets of synthesized, inherited and 
intrinsic attributes. Instead, Definition 8.2 classifies the attributes based 
upon the placement of the attribution rules. Tienari [1980] has derived 
results similar to Theorems 8.3 and 8.8 from a definition allowing more than 
one attribution rule per attribute in a single production. His analog of 
Theorem 8.8, however, includes the restriction to a single attribution rule as 
a part of the hypothesis. 

Theorem 8.8 assumes 'value semantics' for the attribution rules: The 
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operands of the rule are evaluated before the rule itself, and hence the fol
lowing represents a circularity: 

a <- if P then b else 16; b <- ifnot p then a else 2 6; 

'Lazy evaluation', in which an operand is not evaluated until its value is 
required, would not lead to circularity in this case. The attendant broaden
ing of the acceptable grammars is not interesting for us because we are 
attempting to define the evaluation sequence statically. Whenever there is a 
difference between value semantics and lazy evaluation, the evaluation 
sequence must be determined dynamically. 

Dynamic attribute evaluators based on cooperating sequential processes 
have been reported by Fang [1972] and Banatre [1979]. Borowiec [1977] 
described a fragment of COBOL in this manner. The process scheduling 
overhead can be avoided by deriving a dependency graph from the specific 
tree being processed, and then converting this graph to a partial order. Gal
lucci [1981] implemented such a system, adding dependency links to the tree 
and using reference counts to derive the partial order. 

One of the major arguments given in support of a dynamic evaluator is 
that it is simple to implement. The actual evaluation algorithm is simple, 
but it will fail on certain programs if the grammar is not well-defined. We 
have already pointed out that WAG testing is exponential [Jazayeri 1975a, 
1981], and hence occasional failure of the dynamic evaluator is accepted by 
most authors advocating this strategy. Acyclicity of IDP(p) and IDS (X), a 
sufficient condition for WAG, can be tested in polynomial time [Kastens 
1980]. This test forms the basis of all systems that employ subclasses of 
WAG. Such systems are guaranteed never to fail during evaluation. 

Kennedy and Warren [1976] termed the subclass of WAG for which 
IDP(p) and IDS (X) are acyclic for all p and X 'absolutely non-circular 
attribute grammars' (ANCAG). They developed an algorithm for construct
ing ANCAG evaluators that grouped attributes together, avoiding indivi
dual dependency links for every attribute. The evaluation remains dynamic, 
but some decisions are shifted to evaluator construction time. In a later 
paper, Kennedy and Ramanathan [1979] retain the ANCAG subclass but 
use a pure dynamic evaluator. Their reasoning is that, although this strategy 
is less efficient at run time, it is easier to understand and simpler to imple
ment. 

Ordered attribute grammars were originated by Kastens [1976, 1980], 
who used the term 'arranged orderly' to denote a partitioned grammar. 
OAG is a subclass of ANCAG for which no decisions about evaluation 
order are made dynamically; all have been shifted to evaluator construction 
time. This means that attribute lifetimes can be determined easily, and the 
optimizations discussed in Section 8.3.2 can be applied automatically: In a 
semantic analyzer for Pascal, constructed automatically from an ALADIN 
description by the GAG [Kastens 1982] system, attributes occupied only 
about 20% of the total structure tree storage. 
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Lewis, Rosenkrantz and Stearns [1974] studied the problem of evaluating 
all attributes during a single depth-first, left-to-right traversal of the structure 
tree. Making no use of the local acyclicity of DDP(p), they derived the first 
three conditions we stated in Theorem 8.18. The same conditions were 
deduced independently by Bochmann [1976], who went on to point out that 
dependencies satisfying the fourth condition of Theorem 8.18 are allowed if 
the relationship NDDP(p) is used in place of DDP(p). There is no real need 
for this substitution, however, because if DDP (p) is locally acyclic then the 
dependency Xj.a ~~.b immediately rules out ~.b ~Xj.a. Thus depen
dencies satisfying the fourth condition of Theorem 8.18 cannot lead to any 
problem in left-to-right evaluation. Since local acyclicity is a necessary con
dition for well-definedness, this assumption does not result in any loss of 
generality. 

LAG(k) conditions similar to those of Theorem 8.20 were also stated by 
Bochmann [1976]. Again, he did not make use of local acyclicity to obtain 
the last condition of our result. Systems based upon LAG(k) grammars 
have been developed at the Universite de Montreal [Lecarme 1974] and the 
Technische Universitat Miinchen [Giegerich 1979]. The theoretical under
pinnings of the latter system are described by Ripken [1977], Ganzinger 
[1978] and Wilhelm [1977]. Wilhelm's work combines tree transformation 
with attribution. 

Alternating-evaluable grammars were introduced by Jazayeri and Walter 
[1975b] as a generalization of Bochmann's work. Their algorithm for testing 
the AAG(k) condition does not provide precise criteria analogous to those of 
Theorem 8.18, but rather uses specifications such as 'occur before [the 
current candidate] in the present pass' to convey the basic idea. A group at 
the University of Helsinki developed a compiler generator based upon this 
form of grammar [Riiihii 1977, Riiihii 1978]. 

Asbrock [1979] and Pozefsky [1979] both consider the question of attri
bute overlap minimization in more detail. 

Jazayeri and Pozefsky give a completely different method of representing 
a structure tree and evaluating a multi-pass attribute grammar [Jazayeri 
1977, Pozefsky 1979]. They propose that the parser create k sequential files 
Dj such that Dj contains the sequence of attribution rules with parameters 
for pass i of the evaluation. Thus Dj contains, in sequential form, the entire 
structure of the tree; only the attribute values, arbitrarily arranged and 
without pointers to subnodes, are retained in memory. Pozefsky also con
siders the question of whether the evaluation of a multi-pass grammar can 
be arranged to permit overlaying of the attributes in memory. 

EXERCISES 

8.1. Write an attribute grammar describing a LAX basic symbol as an identifier, 
integer or floating-point. (Section A.I describes these basic symbols.) Your 
grammar should compute the intrinsic attributes discussed in Section 4.1.1 for 



8.4. Notes and References 217 

8.1. Write an attribute grammar describing a LAX basic symbol as an identifier, 
integer or floating-point. (Section A.l describes these basic symbols.) Your 
each basic symbol (with the exception of location) as synthesized attributes. 
Use no intrinsic attributes in your grammar. Be sure to invoke the appropri
ate symbol and constant table operations during your computation. 

8.2. [Banatre 1979] Write a module for a given well-defined attribute grammar 
(G, A, R, B) that will build the attributed structure tree of a sentence of L (G). 
The interface for the module must provide creation, access and assignment 
operations as discussed in Section 4.1.2. The creation and assignment opera
tions will be invoked by parser actions to build the structure tree and set 
intrinsic attribute values; the access operation will be invoked by other 
modules to examine the structure of the tree and attribute values of the nodes. 
Within the module, access and assignment operations are used to implement 
attribution rules. You may assume that all invocations of creation and assign
ment operations from outside the module will precede any invocation of an 
access operation from outside. Invocations from within the module must, of 
course, be scheduled according to the dependencies of the attribute grammar. 
You may provide an additional operation to be invoked from outside the 
module to indicate the end of the sequence of external creation and assign
ment invocations. 

8.3. Consider the following attribute grammar: 
rule Z :: = s X . 
attribution 

X.a <- X.c; 
X.b <- X.a; 

rule Z :: = t X . 
attribution 

X.b <- X.d; 
x'a <- X.b; 

rule X ::= u . 
attribution 

X.d <- I; 
X.c <-X.d; 

rule X ::= v . 
attribution 

X.c <- 2; 
X.d <- X.c; 

a. Show that this grammar is partitionable using the admissible partition 
Al(X) = {c,d},A2(X) = {a,b},A3(X) = o. 

b. Compute lDP(p) and lDS(X) replacing NDDP(p) by DDP(p) in 
Definition 8.12. Explain why the results are cyclic. 

c. Modify the grammar to make IDP(p) and IDS(X) acyclic under the 
modification of Definition 8.12 postulated in (b). 

d. Justify the use of NDDP(p) in Definition 8.12 in terms of the modification 
of (c). 

8.4. Compute IDP and IDS for all p and X in the grammar of Figure 8.1. Apply 
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construction 8.16, obtaining a partition (different from that given at the end of 
Section 8.2.1), and verify that Theorem 8.13 is satisfied. Compute DP for all 
p, and verify that Theorem 8.15 is satisfied. 

8.5. Show that a partitionable grammar that is not ordered can be made into an 
ordered grammar by adding suitable 'artificial dependencies' Xa ~Xb to 
some IDS (X). (In other words, the gap between partitionable and ordered 
grammars can always be bridged by hand.) 

8.6. Define a procedure EvaluateP for each production of an LAO(l) grammar 
such that all attributes of a structure tree can be evaluated by applying 
EvaluateZ (where Z is the production defining the axiom) to the root. 

8.7. A right-to-Ieft attribute grammar may have both inherited and synthesized 
attributes. All of the attribute values can be obtained in some number of 
depth-first, right-to-Ieft traversals of the structure tree. State a formal 
definition for RAG(k) analogous to Definition 8.19 and prove a theorem 
analogous to Theorem 8.20. 

8.8. [Jazayeri 1975aj Define the class of alternating evaluable attribute grammars 
AAG(k) formally, state the condition they must satisfy, and give an analysis 
procedure for verifying this condition. (Hint: Proceed as for LAG(2k), but 
make some of the conditions dependent upon whether the traversal number is 
odd or even.) 

8.9. Extend the basic definitions for multi-pass attribute grammars to follow the 
hybrid linearization strategy of Figure 4.4d: Synthesized attributes can be 
evaluated not only at the last visit to a node but also after the visit to the i 'h 

subnode, I..;; i ..;; n, or even prior to the first subnode visit (i = 0). How does 
this change the procedure determine _traversals? 

8.10. Show that the LAG(k), RAG(k) or AAG(k) condition can be violated by a 
well-defined attribute grammar only when a syntactic rule leads to recursion. 

8.11. Complete the class definitions of Figure 8.16 and fill in the remaining details 
to obtain a complete program that parses an assignment statement by recur
sive descent and then computes the attributes. If you do not have access to 
SIMULA, convert the schema into MODULA2, Ada or some other language 
providing coroutines or processes. 

8.12. Under what conditions will the tabular implementation of an evaluator for a 
partitioned attribute grammar require less space than the coroutine imple
mentation? 

8.13. Give detailed schemata similar to Figure 8.17 for LAG(k) and AAG(k) 
evaluators, along the lines sketched at the end of Section 8.3.1. 

8.14. Consider the implementation strategies for attribution algorithms exemplified 
by Figures 8.17 and 8.19. 
a. Explain why the tree node of Figure 8.19b is less space-efficient than that 

of Figure 8.17a. 
b. Show that, by coding the interpreter of Figure 8.19c in assembly language 

and assigning appropriate values to the child field of Figure 8.19a, it is pos
sible to use the tree node of Figure 8.17 a and also avoid the need for the 
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sproc -oS procedures of Figure 8.17c. 

8.15. Modify Figure 8.1 by replacing name with expression everywhere, and chang
ing the second rule to expression :: = '(' expression addop expression ')'. Con
sider an interpretive implementation of the attribution algorithms that follows 
the model of Exercise 8.16. 
a. Show the memory layout of every possible node. 
b. Define another rule, addop :: = '-', with a suitable attribution procedure. 

What nodes are affected by this change, and how? 
c. Show that the addop node can be incorporated into the expression node 

without changing the attribution procedures for addop. What is the 
minimum change necessary to the interpreter and the attribution pro
cedure for expression? (Hint: Introduce a second interpretation for Ci,j') 



CHAPTER 9 

Semantic Analysis 

Semantic analysis determines the properties of a program that are classed as 
static semantics (Section 2.1.1), and verifies the corresponding context con
ditions - the consistency of these properties. 

We have already alluded to all of the tasks of semantic analysis. The first 
is name analysis, finding the definition valid at each use of an identifier. 
Based upon this information, operator identification and type checking 
determine the operand types and verify that they are allowable for the given 
operator. The terms 'operator' and 'operand' are used here in their broadest 
sense: Assignment is an operator whether the language definition treats it as 
such or not; we also speak of procedure parameter transmission and block 
end (end of extent) as operations. 

Section 9.1 is devoted to developing a formal specification of the source 
language from which analysis algorithms can be mechanically generated by 
the techniques of Chapters 5-8. Our goal for the specification is clarity, so 
that we can convince ourselves of its correctness. This is an important point, 
because the correspondence between the specification and the given source 
language cannot be checked formally. In the interest of clarity, we often use 
impractically inefficient descriptions that give the effect of auxiliary func
tions, but do not reflect their actual implementation. Section 9.2 discusses 
the practical implementation of these auxiliary functions by modules. 

9.1. Description of Language Properties via Attribute 
Grammars 

The description of a programming language by an attribute grammar pro
vides a formal definition of both its context-free syntax and its static seman
tics. (Dynamic semantics, such as expression evaluation, could be included 
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also; we shall not pursue that point, however.) We therefore approach the 
total problem of analysis via attribute grammars as follows: 

• First we develop an attribute grammar and replace the informal language 
description with it. 

• From the attribute grammar we extract the context-free syntax and 
transform it to a parsing grammar in the light of the chosen parsing tech
nique. 

• Finally we implement the attribution rules to obtain the semantic 
analyzer. 

The parsing grammar and implementation of the attribution rules can be 
derived individually from the informal language definition, as we have done 
implicitly up to this point. The advantage of using attribute grammars (or 
some other formal description tool such as denotational semantics) lies in 
the fact that one has a comprehensive and unified specification. This 
ensures that the parsing grammar, structure tree and semantic analysis 'fit 
together' without interface problems. 

Development of an attribute grammar consists of the following inter
dependent steps: 

• Development of the context-free syntax. 
• Determination of the attributes and specification of their types. 
• Development of the attribution rules. 
• Formulation of the auxiliary functions. 

Three major aspects of semantic analysis described via attribution are 
scope and name analysis, types and type checking, and operator 
identification in expressions. With a few exceptions, such as the require
ment for distinct case labels in a case clause (Section A.4.5), all of the static 
semantic rules of LAX fall into these classes. Sections 9.1.1 to 9.1.4 examine 
the relevant attribution rules in detail. 

Many of the attribution rules in a typical attribute grammar are simple 
assignments. To reduce the number of such assignments that must be writ
ten explicitly, we use the following conventions: A simple assignment to a 
synthesized attribute of the left-hand side of a production may be omitted 
when there is exactly one symbol on the right-hand side that has a syn
thesized attribute with the same name. Similarly, simple assignments of 
inherited attributes of the left-hand side to same-named inherited attributes 
of any number of right-hand side symbols may be omitted. In important 
cases we shall write these (semantic) transfers for emphasis. (Attribute 
grammar specification languages such as ALADIN [Kastens 1982] contain 
even more far-reaching conventions.) 

We assume for every record type R used to describe attributes the 
existence of a function N -R whose parameters correspond to the fields of 
the record. This function creates a new record of type R and sets its fields to 
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the parameter values. Further, we may define a list of objects by records of 
the form: 

type 
t -1ist = i t -1ist _element; 
t -1ist -'!Iement = record first: t; rest: t -1ist end; 

If e is an object of type t then we shall also regard e as a single element of 
type t -1ist wherever the context requires this interpretation. We write lJ&/2 

to indicate concatenation of two lists, and hence e&1 describes addition of 
the single element e to the front of the list I. 'Value semantics' are assumed 
for list assignment: A copy of the entire list is made and this copy becomes 
the value of the attribute on the left of the arrow. 

9.1.1. Scope and Name Analysis The scope of identifiers is specified in 
most languages by the hierarchical structure of the program. In block struc
tured languages the scopes are nested. Languages like FORTRAN have 
only a restricted number of levels in the hierarchy (level I contains the sub
program and COMMON names, level 2 the local identifiers of a subpro
gram including statement numbers). Further considerations are the use of 
implicit definition (FORTRAN), the admissibility (ALGOL 60) or inadmis
sibility (LIS) of new definitions in inner blocks for identifiers declared in 
outer blocks, and the restriction of scope to the portion of the block follow
ing the definition (Pascal). We shall consider the special properties of field 
selectors in Section 9.1.3. 

Every definition of an identifier is represented in the compiler by a vari
ant record. The types of Figure 9.la suffice for LAX; different variants 
would be required for other languages. For example, the variant 
type -.definition would be missing in a language without type identifiers and 
FORTRAN would require additional variants for subprograms and 
COMMON blocks because these are not treated as objects. The definition 
record could also specify further characteristics (such as the parameter pass
ing mechanism for ALGOL 60 parameters or the access rights to Ada 
objects) that are known at the defining occurrence and used at the applied 
occurrences. 

The definition class unknown-.definition is important because semantic 
functions must deliver a value under all circumstances. If no definition is 
available for an identifier, one must be supplied (with the variant 
unknown -.defini lion). 

Records of type definition are collected into linear lists referenced as the 
environment attribute by every construct that uses an identifier. The rules 
for this attribute describe the scope rules of the language. Figure 9.1 b gives 
the type of this attribute, and Figure 9.lc shows a typical example of its use. 
(Examples such as that of Figure 9.lc will normally contain only the attribu
tion rules necessary for the point that we are trying to make. Do not assume, 
therefore, that no additional attributes or attribution rules are associated 
with the given syntax rule.) 
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type 
definition_class = ( 

object --.definition, 
type --.definition, 
label --.definition, 
unknown --.definition); 

(* Section A.3.1 *) 
(* Section A.3.1 *) 
(* Section A.2.6 *) 
(* Undefined identifier *) 
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definition = record 
uid: interger; 
ident : symbol; 

(* Discussed in Section 9.1.3 *) 
(* Identifier being defined *) 

case k : definition_class of 
object --.definition: (object -1ype: mode); 
type --.definition: (defineLtype: mode); 
label --.definition, 
unknown--.definition: 0 

end; 

(* mode is discussed *) 
(* in Section 9.1.2 *) 

a) The attributes of an identifier 

definition-1able = i dt ~/ement ; 
dt _element = record first: definition; rest: definition-1able end; 

b) Type of the environment attribute 

rule name :: = identifier_use . 
condition 

identifier _use. corresponding --.definition.k = object -1iefinition; 

rule identifier_use :: = identifier. 
attribution 

identifier _use. corresponding --.definition <-

current -1iefinition( identifier.sym ,identifier -use. environment ); 

c) Use of an environment 

Figure 9.1. Environments 

The introduction of an additional nonterminal identifie,-use in Figure 
9.lc is necessary because we cannot attach the attribute corresponding _ 
definition to either the nonterminal name or the terminal identifier. For the 
former the attribute would be meaningless in the production 
name :: = name ' i', while for the latter we would have difficulty with 
defining occurrences of identifiers. 

In LAX, the environment attribute is changed only upon entry to ranges 
(A.2.0.2). Figure 9.2a shows the change associated with a statement _list. 
For language constructs that are not ranges, the environment attribute is 
simply passed along unchanged as illustrated in Figure 9.2b. (Figure 9.2b is 
an example of a 'transfer rule', where we would normally not write the attri
bute assignment.) 

The synthesized attribute statements.definitions is a definition-1able that 
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rule statement -.list :: = statements . 
attribution 

statements. environment <-

Chapter 9. Semantic Analysis 

statements.definitions & statement -.list. environment ; 
condition 

unambiguous (statements. definitions) ; 

a) Language construct that changes the environment 

rule unlabelled -statement :: = expression . 
attribution 

expression. environment <- unlabelled -statement. environment ; 

b) Language construct that does not change the environment 

Figure 9.2. Environment Manipulation 

has one entry for each label definition. It describes the identifiers given new 
meanings in the statement -.list. This attribute is constructed as shown in 
Figure 9.3. (Note that the rule statements:: = statement is simply a transfer, 
and hence the attribution rules are omitted.) The function gennum is a 
source of unique integers: Each invocation of gennum yields a new integer. 

Section A.2.2 gives the visibility rules for LAX. Implementation of these 
rules in the attribute grammar is illustrated by Figures 9.lc and 9.2a. The 
function unambiguous is used in Figure 9.2a to verify that 

rule statements :: = statement . 

rule statements :: = statements ';' statement. 
attribution 

statements [ 1 ). definitions <-

statements [2]. definitions & statement. definitions; 

rule statement :: = label--'.lefinition statement . 
attribution 

statement [1 ).definitions <-

label--'.lefinition.def & statement [2]. definitions; 

rule statement :: = unlabelled -statement . 
attribution 

statement.definitions <- nil; 

rule label--'.lefinition :: = identifier':' . 
attribution 

label--'.lefinition.de f <-

N --'.lefinition(gennum ,identifier.sym ,Iabel--'.lefinition); 

Figure 9.3. Label Definition 
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statements.definitions contains no more than one definition of any identifier. 
CurrenLdefinition (Figure 9.lc) searches the environment linearly from left 
to right and selects the first definition for the desired identifier. As shown in 
Figure 9.2a, the local definitions are placed at the front of the environment 
list; they therefore 'hide' any definitions of the same identifiers appearing in 
outer ranges because a linear search will find them first. 

We must reiterate that attributes belonging to different symbols in a pro
duction or to different nodes in a structure tree are different, even if they are 
identically named. Thus there is not just one attribute environment, but as 
many as there are nodes in the structure tree. The fact that these many 
environments will be represented by a single definition table in the imple
mentation discussed in Section 9.2 does not concern us in the specification. 
In the same way, it does not follow from the informal specification of 
current --.definition given above that the implementation must also use an 
inefficient linear search; this strategy is only a simple specification of the 
desired effect. 

If the scope of a definition begins at that definition, and not at the begin
ning of the range in which it appears (an important property for one-pass 
compilers), then the environment must be passed 'along the text' as shown in 
Figure 9.4. The right-recursive solution of Figure 9.4a requires the parser to 
accumulate entries for all of the declarations on its stack before it can begin 
reducing declaration lists. This can lead to excessive storage requirements. 
A better approach is to use left recursion, as shown in Figure 9.4b. In this 
case the parser will never have more than one declaration entry on its stack, 
no matter how many declarations appear in the declaration list. Figure 9.4b 
is easy to understand, but it has the unpleasant property that for each 
declaration the original environment is augmented by all of the definitions 
resulting from earlier declarations in the list. Figure 9.4c, where the 
environment is extended in a stepwise manner, is the best strategy. 

Figure 9.4c makes the passing of the environment 'along the text' explicit. 
Declaration-1ist has an (inherited) attribute environment.-in that describes 
the initial state and a (synthesized) attribute environment _out that describes 
the final state. The latter consists of the former augmented by the current 
definition. Although this solution appears to be quite costly because of the 
multiple environments, it is actually the most efficient: Simple analysis 
shows that all of the environments replace one another and therefore all of 
them can be represented by a single data structure. 

It is clear that all of the definitions of Figure 9.4 are equivalent from the 
standpoint of the language definition. If, however, we wish to specify the 
semantic analyzer then we prefer Figure 9.4c. Examining a given attribute 
grammar for optimizations of this kind often pays dividends. 

The implicit declarations of FORTRAN are described in a similar 
fashion, with each identifier_use a potential declaration (Figure 9.5). We 
pass the environment along the text of the expressions and statements, modi-



226 Chapter 9. Semantic Analysis 

rule declaration-.list :: = declaration ';' declaration -.list. 
attribution 

declaration. environment <- declaration -.list [I ].environment ; 
declaration -.list [2]. environment <-

declaration.definitions & declaration -.list [I ].environment ; 
declaration -.list [I ].definitions <-

declaration.definitions & declaration -.list [2]. definitions; 

a) Right-recursive solution 

rule declaration-.list :: = declaration-.list ';' declaration. 
attribution 

declaration -.list [2]. environment <- declaration -.list [I ].environment 
declaration. environment <-

declaration -.list [2]. definitions & declaration -.list [1 ].environment ; 
declaration -.list [I ].definitions <-

declaration -.list [2]. definitions & declaration.definitions; 

b) Left-recursive solution 

ruledeclaration-.list ::= declaration-.list ';' declaration. 
attribution 

declaration -.list [2]. environment _ E <- declaration -.list [I ].environment _ E; 
declaration. environment <- declaration -.list [2]. environment _out; 
declaration -.list [ I ]. environment _out <-

declaration -.list [2]. environment _out & declaration. definitions; 
declaration -.list [I ].definitions <-

declaration -.list [2].definitions & declaration. definitions; 

c) Stepwise environment construction 

Figure 9.4. Scope Beginning at the Declaration 

rule identifier -'JSe :: = identifier. 
attribution 

identifier _use.implicit .-definitions <-

if found (identifier.sym ,identifier _use. environment ) tben nil 
else 

N .-definition( 
gennum, 
identifier.sym, 
object .-definition, 
identifier. implici t ~ype ) ; 

identifier _use. corresponding .-definition <

current .-definition( 
identifier.sym, 
identifiecuse.implicit .-definitions & identifier _use. environment ); 

Figure 9.5. Implicit Declarations in FORTRAN 
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fying it at each operand, by rules analogous to those of Figure 9.4c. This 
strategy avoids the problem of double implicit declarations in expressions 
such as /*/. 

Greater difficulties arise from the fact that the Pascal fragment shown in 
Figure 9.6 is illegal because i is declared in p but used prior to its declara-

CORsti = 17; 
typet=· .. ; 
procedure p ; 

CORst 

j =i; 
i = 1; 

type 
tt=jt; 
t = ... ; 

(* First declaration of t *) 

(* Use of i illegal here *) 
(* This makes the previous line illegal *) 

(* Refers to second declaration of t *) 
(* Second declaration of t *) 

Figure 9.6. Definition Before Use in Pascal 

tion. This is not allowed, even though a declaration of i exists outside of p . 
On the other hand, the use of t in the declaration of It is correct and 
identifies the type whose declaration appears on the next line. This problem 
can be solved by a variant of the standard technique for dealing with 
declarations in a one-pass ALGOL 60 compiler (Exercise 9.5). 

9.1.2. Types A type specifies the possible operations on an entity and the 
coercions that can be applied to it. During semantic analysis this informa
tion is used to identify operators and verify the compatibility of constructs 
with their environment. We shall concentrate on languages with manifest 
types. Languages with latent types, in which type checking and operator 
identification occur during execution, are treated in the same manner except 
that these tasks are deferred. 

In order to perform the tasks outlined in the previous paragraph, every 
structure tree node that represents a value must have an attribute describing 
its type. These attributes are usually tree-valued, and are built of linked 
records. For uniformity, the compiler writer should define a single record 
format to be used in building all of them. The record format must therefore 
be capable of representing the type of any value that could appear in a 
source program, regardless of whether the language definition explicitly 
describes that value as being typed. For example, the record format used in 
a LAX compiler must be capable of representing the type of nil because nil 
can appear as a value. Section A.3.1 does not describe nil as having a 
specific type, but says that it 'denotes a value of type ref t , for arbitrary t'. 

Figure 9.7 defines a record that can be used to build attributes describing 
LAX types. Type class bad Jype is used to indicate that errors have made it 
impossible to determine the proper type. The type itself must be retained, 
however, since all attributes must be assigned values during semantic 
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type 
type _class = ( 

bad _type, nil_type, void _type, bool_type, int _type, real_type, 
ref _type, 
arr_type, 
ree_type, 
proc_type, 
unidentified-type , 
identified-type) ; 

mode = record 
case k : type _class of 

(* See Section 9.1.3 *) 
(* See Section 9.1.3 *) 

bad _type, nil_type, void _type, bool_type, int _type, real_type: 0; 
ref _type: (target: i mode); 
arr _type: (dimensions: integer; element: i mode ); 
ree _type: (fields: definition....1able); 
proc _type: (parameters: definition_table; result: i mode ); 
unidentified-type : (identifier: symbol); 
identified-type: (definition: integer) 

end; 

Figure 9.7. Representation of LAX Types 

analysis. Nil-type is the type of the predefined identifier nil. We also need 
a special mechanism for describing the result type of a proper procedure. 
Void -type specifies this case, and in fact is used whenever a result is to be 
discarded. 

For languages like ALGOL 60 and FORTRAN, which have only a fixed 
number of types, an enumeration similar to type _class serves to represent all 
types. Array types must also specify the number of dimensions, but the ele
ment type can be subsumed into the enumeration (e.g. integer _array_type or 
real--'JTray -type ). Pascal requires additional specifications for the index 
bounds; in LAX the bounds are expressions whose values do not belong to 
the static semantics, as illustrated by the rules of Figure 9.8. 

Figure 9.9 shows how procedure types are constructed in LAX. 
(Bad -.Symbol represents a nonexistent identifier.) Because parameter 
transmission is always by value (reference parameters are implemented by 
passing a ref value as discussed in Section 2.5.3) it is not necessary to give a 
parameter transmission mechanism. In Pascal or ALGOL 60, however, the 
transmission mechanism must be included for each parameter. For a 
language like Ada, in which keyword association of arguments and parame
ters is possible, the identifiers must be retained also. We retain the parame
ter identifiers, even though this is not required in LAX, to reduce the 
number of attributes for the common case of a procedure declaration 
(A.3.0.8). Here we can use the procedure type attribute both to validate the 
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rule type Jpecification :: = ' ref' type Jpecification . 
attribution 

type Jpecification[ 1 ].repr .... 
N ....mode (ref ..Jype ,type Jpecification[2). repr ); 

rule type Jpecification :: = ' ref' array..Jype . 
attribution 

typeJpecification.repr .... N....mode(ref ..Jype,array-1ype.repr); 

rule array..Jype :: = array '[' dimensions ']' 'of' type Jpecification . 
attribution 

array..Jype.repr .... 
N ....mode (arr ..Jype ,dimensions. count ,type Jpecification.repr); 

rule dimensions :: = . 
attribution 

dimensions. count .... 1; 

rule dimensions :: = dimensions ',' . 
attribution 

dimensions [1 ].count .... dimensions [2]. count + 1; 

rule record ..Jype :: = 'record' fields' end' . 
attribution 

record ..Jype.repr .... N ....mode (rec ..Jype fields. definitions) ; 
condition 

unambiguous (fields. definitions) ; 

rule fields :: = field. 

rule fields :: = fields ';' field. 
attribution 

fields[ 1 ].definitions .... fields(2).definitions & field. definitions; 

rule field:: = identifier ':' type Jpecification . 
attribution 

field. definitions .... 
N -tlefinition( 

gennum, 
identifier.sym, 
object -tlefinition, 
type Jpecification.repr); 

Figure 9.8. Type Definition 
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rule type Jpecification :: = 'procedure I parameter ...Jype -.list result ...Jype . 
attribution 

type Jpecification.repr <-

N -.mode (proc ...Jype,parameter _type -.list.dejinitions,result _type.repr ); 

rule parameter ...Jype -.list :: = . 
attribution 

parameter ...Jype -.list.dejinitions <- nil; 

rule parameter ...Jype -.list :: = '(' parameter ...Jypes ')' . 

rule parameter ...Jypes :: = type Jpecification . 
attribution 

parameter ...Jypes.dejinitions <-

N Jiejinition(gennum,bod Jymbol,type Jiejinition,type Jpecification.repr ); 

rule parameter ...Jypes :: = parameter ...Jypes ',' type Jpecification . 
attribution 

parameter ...Jypes [I ].dejinitions <

parameter ...Jypes [2].dejinitions & 
N Jiejinition(gennum,bod Jymbol,type Jiejinition,type Jpecification.repr ); 

Figure 9.9. Procedure Type Definition 

type compatibility and to provide the parameter definitions. If we were to 
remove the parameter identifiers from the procedure type this would not be 
possible. 

When types and definitions are represented by attributes, the complete set 
of declarations (other than procedure declarations) can, in principle, be 
deleted from the structure tree to avoid duplicating information both as 
attributes and as subtrees of the structure tree. Actually, however, this 
compression of the representation should only be carried out under extreme 
storage constraints; normally both representations should be retained. The 
main reason is that expressions (like dynamic array bounds) appearing 
within declarations cannot be abstracted as attributes because they are not 
evaluated until the program is executed. 

Context-sensitive properties of types lead to several relations that can be 
expressed as recursive functions over types (objects of type mode). These 
basic relations are: 

• Equivalent: Two types t and t I are semantically equivalent. 
• Compatible: Usually an asymmetric relation, in which an object of type t 

can be used in place of an object of type t I. 
• Coercible: A type t is coercible to a type t I if it is either compatible with t I 

or can be converted to t I by a sequence of coercions. 
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Type equivalence is defined in Section A.3.1 for LAX; this definition is 
embodied in the procedure type -.equivalent of Figure 9.10. Type -.equivalent 
must be used in all cases where two types should be compared. The direct 
comparison t I = t 2 may not yield true for equivalent composite types 
because the pointers contained in the type records may address equivalent 
types represented by different records. 

The test for equivalence of type identifiers is for the identity of the type 
declarations rather than for the equivalence of types they declare. This 
reflects the name equivalence rule of Section A.3.l. If structural 

function type -.equivalent(t l,t2: mode): boolean; 
(* Compare two types for equivalence *) 

function compare -Pflrameters (fl! 2: dejinition....table): boolean ; 
(* Compare parameter lists for equivalent types *) 
begin (* compare -Pfl'ameters *) 
if fl = nil then compare -parameters: = f 2 = nil 
else iff 2 = nil then compare -parameters: = false 
else 

compare -Pfl'ameters : = 
type -.equivalent(fl i .jirst.objecLJype,f2 i .jirst.objeCLJype) and 
compare -parameters (fl i . rest,f 2 i . rest) 

end; (* compare -parameters *) 

begin (* type -.equivalent *) 
if t I.k < > t 2.k then type -.equivalent: = false 
else 

case t I.k of 
ref ..Jype: 

type -.equivalent: = type -.equivalent (t l.target i ,t 2. target i); 
arr ..Jype: 

type -.equivalent: = 
I I.dimension = t 2. dimension and 
type -.equivalent (t I.element i ,t 2.element i); 

rec..Jype: 
type -.equivalent: = false; 

proc..Jype: 
type -.equivalenl : = 

compare -Pfl'ameters (I I.parameters ,t 2.parameters ) and 
type -.equi valent (t 1. result i ,t 2. resull i); 

identi.fted..Jype : 
Iype -.equivalent: = I I.dejinition = 12.dejinition 

otherwise Iype -.equivalent: = true 
end; 

end; (* type -.equivalent *) 

Figure 9.lD. Type Equivalence in LAX 
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function coercible(t 1,t2: mode): boolean; 
(* Verify that t 1 can be coerced to t2 *) 
begin (* coercible *) 

Chapter 9. Semantic Analysis 

if type --.equivalent (t l,t 2) or t 2.k = void -.lype or t 2.k = bad -.lype 
then coercible: = true 
else 

case t l.k of 
bad -.lype : coercible: = true 
nil -.lype : coercible: = t 2.k = ref -.lype ; 
inLtype: coercible: = t 2.k = reaLtype; 
ref -.lype : coercible: = coercible (t l.target i ,t 2) ; 
proc -.lype : coercible: = t l.parameters = nil and coercible (t l.result i ,t 2) 
otherwise coercible: = false 
end; 

end; (* coercible *) 

Figure 9.11. Coercibility in LAX 

equivalence is required, as in ALGOL 68, then we must compare the 
declared types instead. A simple implementation of this comparison leads to 
infinite recursion for types containing pointers to themselves. The recursion 
can, however, be stopped as soon as we attempt to compare two types whose 
comparison has been begun but has not yet terminated. During comparison 
we therefore hold such pairs in a stack. Since the only types that can partici
pate in infinite recursion are those of class identified_type, we enter pairs of 
identified-.lype types into the stack when we begin to compare them. The 
next pair is checked against the stack before beginning their comparison; if 
the pair is found then they are considered to be equivalent and no further 
comparison of them is required. (If they are not equivalent, this will be 
detected by the first comparison - the one on the stack.) 

Figure 9.10 compares exactly two types. If we wish to group all types of a 
block, procedure or program into classes of structurally equivalent types 
then it is better to use the refinement algorithm of Section B.3.2 as general
ized in Exercise B.7. This algorithm has the advantage of reducing the 
number of records that represent types, and therefore the amount of storage 
required to hold the attributes. 

The Pascal Standard proposes name equivalence for all types except sets 
and subranges, whose equivalence depends upon the equivalence of the base 
types. In addition, however, it defines the property of type compatibility 
and relies upon that property for assignments and parameter transmission. 
Among other things, two array types are compatible if they have the same 
bounds and compatible element types. Other languages also provide (expli
citly or implicitly) a somewhat weaker compatibility relation in addition to 
the strong type equivalence. There is no separate type compatibility rule in 
LAX. 

The allowable LAX coercions (Section A.4.2) are embodied in the 
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rule variable --.dec/aration :: = identifier ':' type -specification. 
attribution 

variable -lieclaration.definitions <-

N -liefinition( 
gennum, 
identifier.sym, 
object --.definition, 
N Jnode (ref -1ype ,type -specification.repr »; 

rule variable -lieclaration :: = . 
identifier I: I I array I '[' bounds '1' I of I type -specification. 

attribution 
variable --.declaration. definitions <-

N --.dejinition( 
gennum, 
identifier.sym, 
object --.definition, 
NJnode( 

ref -1ype, 
N Jnode (arr -1ype ,bounds. count ,type -specification.repr ))); 

rule bounds :: = bound -JXJir . 
attribution 

bounds. count : = 1; 

rule bounds :: = bounds ',' bound --[Jllir . 
attribution 

bounds [ 1 ]. count: = bounds [2]. count + 1 ; 
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rule identity --.dec/aration :: = identifier I is I expression I: I type -specification. 
attnbution 

identity --.declaration. definitions <-

N --.definition( 
gennum, 
identifier.sym , 
object --.definition, 
type -specification.repr); 

Figure 9.12. Variable and Identity Declarations 

function coercible (Figure 9.l1). Note that when the type class of a type is 
bad -1ype any coercion is allowed. The reason is that this class can only 
occur as the result of an error. If we did not allow the coercion, the use of 
an erroneous construct would lead to further (superfluous) error messages. 

9.1.3. Declarations Figure 9.12 shows the attribution rules for variable 
and identity declarations in LAX. A definition is created for each declara-
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tion, just as was done for label definitions in Figure 9.3. Note that the vari
able declaration creates a reference to the given type, while the identity 
declaration uses that type as it stands. This is because the variable declara
tion creates 'a variable referring to an undefined value (of the specified 
type)' (Section A.3.2) and the identity declaration creates 'a new instance of 
the value (of the specified type)' (Section A.3.3). 

The treatment of array variables in Figure 9.12 reflects the requirements 
of Section A.3.2. We construct the array type based only on the dimen
sionality and element type. The bounds must be integer expressions, but 
they are to be evaluated at execution time. 

Type declarations introduce apparent circularities into the declaration 

rule type ....specification :: = identifier. 
attribution 

type ....specification. repr <- N ....mode (unidentifieLtype,identifier.sym ); 

a) Reference to a type identifier 

rule type -ileclaration :: = 'type' identifier' =' record --1ype . 
attribution 

type -ileclaration.definitions +-

N -ilefinition(gennum ,identifier.sym ,type -ilefinition,record --1ype.repr); 

rule declaration :: = variable -ileclaration . 

rule declaration :: = identity -ileclaration . 

rule declaration :: = type -ileclaration . 

rule declarations :: = declarations ';' declaration . 
attribution 

declarations [1 ].definitions <-

declarations [2]. definitions & declaration. definitions; 

rule block :: = 'declare' declarations 'begin' statements 'end' . 
attribution 

declarations. environment <

complete --.env ( 
declarations. definitions, 
declarations. definitions & statements.definitions & block.environment ) & 

statements. definitions & 
block. environment ; 

statements. environment <- declarations. environment; 
condition 

unambiguous (declarations. definitions & statements. definitions) ; 

b) Completing the type declarations 

Figure 9.13. Type Declarations 
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function identify-..Jype (s : symbol; e : defini tion--1able ): mode; 
(* Find the type defined by an identifier *) 
begin (* identify--1ype *) 
if e = nil then identify--1ype : = N -»lode (bad --1ype ) 
else with e i, first do 

if s < >ident then identify--1ype: = identify--1ype (s,rest ) 
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else if def.k < > type --.definition then identify--1ype: =N -»lode (bad --1ype); 
else identify--1ype : = N -»lode (identified--1ype ,uid) 

end; (* identify--1ype *) 

Figure 9.14. Type Identification 

process: The definition of an identifier must be known in order to define 
that identifier. One obvious example, the declaration type t = record x: 
real; p : ref t end, was mentioned in Section 8.1. Another is the fact that the 
analysis process discussed in Section 9.1.1 assumes we can construct 
definitions for all identifiers in a range and then form an environment for 
that range. Unfortunately the definition of a variable identifier includes its 
type, which might be specified by a type identifier declared in the same 
range. Hence the environment must be available to obtain the type. We 
solve the problem in three steps, as shown in Figure 9.13, using the 
Unidentified-type and identified-type variants of mode: 

1. Collect all of the type declarations of a range into one attribute, of type 
definitionJable. Any type identifiers occurring in the corresponding 
types are not yet identified, but are given by the unidentified-type variant. 

2. As soon as step (I) has been completed, transform the entire attribute to 
another definition--1able in which each unidentified--1ype has been re
placed by an identified--1ype that identifies the proper definition. This 
transformation uses the environment inherited by the range as well as the 
information present in the type declarations. 

3. Incorporate the newly-created definition--1able into the range's environ
ment, and then process all of the remaining declarations (none of which 
are type declarations). 

Complete -'!nv is a recursive function that traverses the definitions seeking 
unidentified types. Whenever one is found, identify--1ype (Figure 9.14) is 
used to obtain the current definition of the type identifier. Note that 
identify--1ype must use a unique representation of the definition, not the 
definition itself, corresponding to the type identifier. The reason is that, if 
types involve recursive references, we cannot construct any of the definitions 
until we have constructed all of them! (Remember that attributes are not 
variables, so it is not possible to construct an 'empty' definition and then fill 
it in later.) 

9.1.4. Expressions and Statements The a priori type (prim ode ) of an 
expression is a synthesized attribute, and describes the type with which a 
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result is computed; the a posteriori type (postmode) is an inherited attribute, 
and describes the type required by the context. If these two types are 
different then a sequence of coercion operations must be used during execu
tion to convert the value from one to the other. 

The a posteriori type of a particular expression mayor may not depend 
upon its a priori type. If the expression is an operand of an operator indica
tion like +, which can stand for several operations (e.g. integer addition, 
real addition), then its postmode depends upon the prim ode attributes of 
both operands. If, on the other hand, the expression is an array index in 
LAX then postmode is integer independent of the expression's prim ode . 

Some constructs, like the LAX clause, may not yield a result of the same 
type every time they are executed. This does not lead to difficulty when the 
construct appears in a context where the a posteriori type is fixed, because 
each part of the construct simply inherits the fixed postmode. When the a 
posteriori type depends upon the a priori types of the operands, however, we 

function base -1ype (t : mode): mode; 
(* Remove all levels of reference and procedure call from a type *) 
begin (* base -1ype *) 
if t.k = ref -1ype then base -1ype : = base -1ype (t. target i) 
else if t.k =proc --.lype then 

if t.parameters < > nB then base -1ype : = t 
else base -1ype : = base -1ype (t. result i) 

else base -1ype : = t 
end; (* base -1ype *) 

function balance(t I,t2: mode): mode; 
(* Obtain the representative a priori type oftl,t2 *) 
begin (* balance *) 
if coercible (t l,t 2) then balance: = t 2 
else if coercible (t 2,t 1) then balance: = t 1 
else if coercible (t I,base -1ype (t 2» then 

case t2.k of 
ref --.lype : balance: = balance (t l,t 2. target i); 
proc -1ype : balance: = balance (t l,t 2.result i) 
end 

else if coercible. (t 2,base -1ype (t 1» then 
case t l.k of 

ref -1ype : balance: = balance (t l.target i ,t 2); 
proc -1ype: balance: = balance (t l.result i ,t 2) 
end 

else N .Jnode (void -1ype ); 
end; (* balance *) 

Figure 9.15. Balancing in LAX 
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need a type I to serve as a 'model a priori type' in place of the result types 
1\, ... , In. This type is obtained by balancing: A set of types 1\, . .. , tn , 
n> 1 can be balanced to a type t if each Ii is coercible to I, and there is no 
type I' coercible to t such that each Ii is coercible to t '. 

For LAX (and most other languages) balancing is commutative and 
'associative' (Exercise 9.11), so that we may restrict ourselves to the case 
n =2 (Figure 9.15). Three facts were used in constructing balance: 

• If I \ is coercible to but not equivalent to t 2, t 2 is not coercible to t \. 
• If not voided, the result has the same base type (type after all references 

and procedures have been removed) as one of the operands. 
• If I 1 is coercible to the base type of t 2 but not to t 2 itself, the result type is 

a dereferencing and/or deproceduring of t 2. 

If LAX types t 1 and t 2 are coerced to an a posteriori type t', then the type 
balance (t J, 12) always appears as an intermediate step. This may not be true 
in other languages, however. In ALGOL 68, for example, 
balance (integer,real) = real but both types can be coerced to union 
(integer,real) and in this case integer is not coerced to real first. 

Figure 9.16 illustrates the use of balancing. In addition to the attributes 

type 
case --..selectors = i cs --Element; 
cs _element = record first: integer; rest: case --..selectors end; 

a) Type of label_values 

rule case _clause :: = 'case' expression ' of' cases 'else' stalemenLlist 'end' . 
attribution 

clause.primode ...... balance (cases.primode ,statement _list.primode ); 
expression.poslmode ...... N ....mode (int _type ); 

condition 
values -unambiguous ( cases. label_ values) ; 

rule cases :: = case . 

rule cases :: = cases '/ I' case . 
attribution 

cases [1 ].primode ...... balance (cases [2].primode ,case.primode ); 
cases[l].labeLvalues ...... cases[2].labeLvalues & case.labeLvalues; 

rule case :: = case -.label ':' slatement -.lisl . 
attribution 

case. label_values ...... case -.label. value; 

b) Attribution rules 

Figure 9.16. Case Clauses 
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primode and postmode, this example uses labeLvalues (synthesized, type 
case -selectors). Postmode is simply passed through from top to bottom, so 
we follow our convention of not writing these transfers explicitly. 
Label_values collects the values of all case labels into a list so we can check 
that no label has occurred more than once (Section A.4.5). 

Note that there is no condition checking coercibility of the resulting a 
priori type of the case clause to the a posteriori type. Similarly, the a priori 
type of the selecting expression is not checked against its a posteriori type in 
these rules. Such tests appear only in those rules where the a priori type is 
determined by considerations other than balancing or transfer from adjacent 
nodes. 

Figure 9.17 illustrates some typical attribution rules for primode and post
mode in expressions. Table A.2 requires that the left operand of an assign
ment be a reference, and Section A.4.2 permits only dereferencing coercions 
of the left operand. Thus the assignment rule invokes deproc (Figure 9.18) 
to obtain an a posteriori type for the name. Note that there is no guarantee 
that the type obtained actually is a reference, so additional checks are 
needed. Coercible (Figure 9.11) is invoked to verify that the a priori type of 
the assignment itself can be coerced to the a posteriori type required by the 
context in which the assignment appears. As can be seen from the 
remainder of Figure 9.17, this check is made every time an object is created. 

Assignment is the only dyadic operator in Table A.2 whose left and right 
operands have different types. In all other cases, the types of the operands 
must be the same. The attribution rules for comparison show how balance 
can be used in this case to obtain a candidate operand type. The two rules 
for eqop illustrate placement of additional requirements upon this candi
date. 

The attribution for a simple name sets the a priori type to the type 
specified by the identifier's definition, and must also verify (via coercible) 
that the a priori type satisfies the requirements of the context as specified by 
the a posteriori type. Field selection is a bit trickier. Section AAA states 
that the name preceding the the dot may yield either an object or a reference 
to an object. This requirement, which also holds for index selection, is 
embodied in one .-ref (Figure 9.18). Note that the environment in which the 
field identifier is sought is that of the record type definition, not the one in 
which the field selection appears. We must therefore write the transfer of 
the environment attribute explicitly. Finally, the type yielded by the field 
selection is a reference if and only if the object yielded by the name to the 
left of the dot was a reference (Section A.4A). 

Figure 9.19 shows how the field definitions of the record are obtained. 
Section A.3 requires that every record type be given a name. The declara
tion process described in Figures 9.13 and 9.14 guarantees that if this name 
is associated with an identijied-1ype, the type definition will actually be in the 
current environment. Moreover, the type definition cannot specify anything 
but a record. Thus record ....env need not verify these conditions. 



rule assignment :: = name ': =' expression. 
attribution 

assignment.primode <- name.postmode ; 
name.postmode <- deproc (name.primode ); 
expression.postmode <-

if name.postmode.k < > ref --type then N Jrlode (bad --type) 
else name.postmode. target i ; 

condition 
coercible (assignment.primode ,assignment.postmode) and 
name.postmode.k = ref --type; 

rule comparison :: = relation eqop relation . 
attribution 

comparison.primode <- N Jrlode (bool --type); 
relation [I ].postmode <- eqop. operand -post; 
eqop. operand -pri <- balance (relation [ I ].primode ,relation [2 ].primode ); 
relation [2].postmode <- eqop.operand -post; 

condition 
coercible (comparison.primode ,comparison.postmode ); 

ruleeqop ::= '='. 
attribution 

eqop.operand -f'Ost <- dere f (eqop. operand -pri ); 
condition 

eqop.operand -post.k < > void --type; 

rule eqop :: =' , . 
attribution 

eqop.operand -post <- deproc (eqop.operand -pri); 
condition 

eqop. operand -f'Ost.k = ref --type; 

rule name :: = name '.' identifier_use . 
attribution 

name [I ].primode <-

if identifier _use. current ---1iefinition < > object ---1iefini tion then 
N Jrlode (bad --type) 

else if name [2].postmode.k = ref --type then 
N Jrlode (ref --type ,identifier _use. current ---1iefinition. object --type) 

else identifier -use. current ---1iefinition.object --type; 
name[2]'postmode <- oneJef(name[2].primode); 
name [2]. environment <- name [I ].environment ; 
identifier _use. environment <-

if deref (name [2].postmode ).k < >identified--type then nil 
else record -.en v (deref (name [2].postmode ).definition,name [I ].environment); 

condition 
coercible (name [I ].primode ,name [I ].postmode ) and 
identifier _use. current ---1iefinition. k = object ---1iefinition; 

Figure 9.17. Determining A Priori and A Posteriori Types 
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function deproc (t : mode): mode; 
(* Remove all levels of procedure call from a type *) 
begin (* deproc *) 
if t.k < > proc -.lype then deproc : = t 
else if t.parameters < > nil then deproc : = t 
else deproc : = deproc ( t. result i) 
end; (* deproc *) 

function dere f (t : mode): mode; 
(* Remove all levels of reference from a type *) 
begin (* deref *) 
ift.k < > ref -.lype then deref: =t 
else dere f : = dere f (t. target i); 
end; (* deref *) 

function one Je f (t : mode): mode; 
(* Remove all but one level of reference from a type *) 
begin (* one Jef *) 
case t.k of 

ref -.lype: 
if t. target i .k < > arr -.lype and t. target i .k < > rec -.lype then 

one Jef: = oneJef (t.target i) 
else oneJef: =t; 

prOC-.lype: 
if t.parameters < > nil then one Je f : = t 
else oneJef: = oneJef (t.result i) 

otherwise 
oneJef:=t 

end; 
end; (* one Je! *) 

Figure 9.18. Type Transformations in LAX 

function record -l?nv (i : integer; e: dejinition-.lahle): dejinition-.lable; 
(* Obtain the field definitions of a record type 

On entry-
t = type for which the fields are sought 
e = environment containing the type definition 

*) 
begin (* record -l?nv *) 
ife i jirst.uid<>i thenrecord-l?nv:=record-l?nv(i,e i.rest) 
else record -l?nv : = e i jirst.dejined-.lypejields; 
end; (* record -l?nv *) 

Figure 9.19. Obtaining a Record's Field Definitions 
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In most programming languages the specification of the operator and the 
a posteriori types of the operands uniquely determines the operation to be 
carried out, but usually no operation attribute appears in the language 
description itself. The reason is that semantic analysis does not make any 
further use of the operation, and the operation determined by the semantic 
analysis may be either an over- or underspecification for code generation 
purposes. For example, the distinction between integer and real assignment 
is usually an overspecification because only the length of the object being 
assigned is of interest. On the other hand, a record assignment operator is 
an underspecification because the code generator must decide between a 
load/store sequence, a block transfer and a closed subroutine on the basis of 
the record size. 

The situation is different for languages like ALGOL 68 and Ada, in 
which a user may define operations. There the semantic analyzer must iden
tify the operations, and there is scarcely any distinction between operators 
and functions of one or two operands. Which operations or functions are 
implemented with closed subprograms and which with open sequences of 
instructions is a decision made by the code generator. 

Operator identification for Ada depends not only upon the a priori types 
of the operands, but also upon the a posteriori type of the result. There is no 
coercion, so the a priori and a posteriori types must be compatible, but on 
the other hand the constant 2 (for example) could have any of the types 
'short integer', 'integer' and 'long integer'. Thus both the operand types 
and the result types must be determined by analysis of the tree. 

Each operand and result is given one inherited and one synthesized attri
bute, each of which is a set of types. We begin at the leaves of the tree and 
compute the possible (a priori) types of each operand. Moving up the tree, 
we specify the possible operations and result types based upon the possible 
combinations of operand types and the operator indication. Upon arriving 
at the root of the tree for the expression we have a synthesized attribute for 
every node giving the possible types for the value of this node. Moving 
down the tree, these type sets are now further restricted: An inherited attri
bute, a subset of the previous synthesized attribute, is computed for each 
node. It specifies the set of types permitted by the use of this value as an 
operand in operations further up the tree. At the beginning of the descent, 
the previously-computed set of possible result types at the root is used as the 
inherited attribute of the root. If this process leads to a unique type for 
every node of the tree, i.e. if the inherited attribute is always a singleton set, 
then the operations are all specified; otherwise at least one operator (and 
hence the program) is semantically ambiguous and hence illegal. 

Because LAX is an expression-oriented language, statements and 
statement-like constructs (statement- list, iteration, loop, etc.) also have pri
mode and postmode attributes. Most rules involving these constructs simply 
transfer those attributes. Figure 9.20 shows rules that embody the conditions 
given in Sections A.2.4 through A.2.6. 
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rule statements :: = statements ';' statement . 
attribution 

statements [I ).primode <- statement.primode ; 
statements [2].postmode <- N Jrlode (void -type); 
statement.postmode <- statements [I ].postmode ; 

rule iteration :: = 'while' expression loop. 
attribution 

iteration.primode <- N Jrlode (void -type); 
expression.postmode <- N Jrlode (bool-type ); 
loop.postmode <- N Jrlode (void -type); 

condition 
iteration.postmode. k = void -type; 
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rule iteration :: = 'for' identifier 'from' expression 'to' expression loop . 
attribution 

iteration.primode <- N Jrlode (void -type); 
expression [1 ).postmode <- N Jrlode (inLtype ); 
expression [2).postmode <- N Jrlode (int _type ); 
loop. environment <-

N --..definition(gennum,identifier.sym,ob jecL.definition,N Jrlode (int _type)) & 
iteration. environment ; 

loop.postmode <- N Jrlode (void -type); 
condition 

iteration.postmode.k = void -type; 

rule jump :: = 'goto' identifieLuse . 
attribution 

jump.primode <- N Jrlode (void -type); 
condition 

jump.postmode.k = void -type and 
(identifier _use. corresponding --..definition.k = label--..definition or 

identifier -.-USe. corresponding --..definition. k = unknown --..definition) ; 

Figure 9.20. A Priori and A Posteriori Types in Statements 

9.2. Implementation of Semantic Analysis 

If we have fully specified the semantic analysis with an attribute grammar 
and auxiliary functions, the implementation consists of the following steps: 

• Derive the abstract syntax for the structure tree. 
• Derive the attribution algorithms as discussed in Section 8.2. 
• Derive the attribute storage layout as discussed in Section 8.3. 
• Code the attribution rules and auxiliary functions. 
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As we noted in connection with Figure 4.2, the distinction between the 
concrete and abstract syntax is that groups of symbols appearing in the 
former are really different names for a single construct of the latter, and 
hence chain rules that simply transform one of these symbols into another 
are omitted. The abstract syntax is derived from the attribute grammar by 
identifying symbols whose attributes are the same, and deleting all rules 
whose attribution consists solely of transfers. 

We extract the context-free syntax directly from the attribute grammar 
for input to a parser generator. The only thing missing is the connection 
point specifications, which can be attached systematically as discussed in 
Section 7.1.1. If a rule does not belong to the abstract syntax, no connection 
points are attached to it. Thus the parser uses the concrete syntax for its 
analysis of the token sequence, but produces a connection sequence that is a 
linearization of a structure tree obeying the abstract syntax. 

The result of the attribution algorithm specification leads to the choice of 
analysis technique: multi-pass, ordered, etc. As with the selection of a pars
ing technique discussed in Chapter 7, this choice depends primarily upon 
the experience of the compiler writer and the availability of tools for 
automated processing. Tools are indispensable if ordered grammars are to 
be used; the evaluation sequence for mUlti-pass grammars can be obtained 
by hand. Further, the available memory plays a role. Roughly the same 
amount of memory suffices to store the attributes for any method, if inter
mediate attributes are suitably overlaid. In the case of multi-pass evalua
tion, however, the algorithm and attribution rules can be segmented and 
overlaid so that only the relevant part is required during each pass. 

The storage layout of the attributes is fixed last, based upon the discussion 
in Section 8.3.2. As noted there, particular attention must be paid to the 
interaction among attribute representation, algorithms and formulation of 
the attribution rules. Often one can influence the entire behavior of the 
semantic analysis through small (in terms of content) variations in the attri
bute representation or attribution rules. For example, a one-pass attribution 
for languages like Pascal is usually not obtained at first, but only after some 
modification of the original specification. This is not surprising, since the 
language description discussed in Section 9.l aims above all for a correct 
rendition of the language properties and does not consider implementability. 

One of the most common attributes in the structure tree is the environ
ment, which allows us to determine the meaning of an identifier at a given 
point in the program. In the simplest case, for example in several machine
oriented languages, each identifier has exactly one definition in the program. 
The definition entry can then be reached directly via a pointer in the symbol 
table. In fact, the symbol and definition table can be integrated into a single 
table in this case. 

Most languages permit an identifier to have several meanings. Figure 
9.21 shows a definition table organization that provides access to the current 
definition for an identifier, given its symbol table entry, in constant time: 
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Note: 'Entity' is a pointer to a definition. 

Figure 9.21. A Definition Table Structure 

The symbol table entry points to a stack of elements, the first of which con
tains a pointer to the current possession, and the current possession points to 
the definition. But this access is exactly the current ..1iejinition function of 
Figure 9.lc. Thus Figure 9.21 allows us to implement current ..1iejinition 
without using any list search at all. The access time is essentially the same as 
that in the simple case of the previous paragraph; only two additional 
memory accesses (to follow the possession pointer contained in the stack 
and the definition pointer contained in the possession) are required. 

At first glance, it may seem that there is too much indirection in Figure 
9.21. Why does the stack element contain a pointer to the possession instead 
of a pointer to the definition? Why does the possession contain a pointer to 
the definition instead of the definition itself? The answers to these questions 
become clear if we examine the operations that take place on entry to and 
exit from a range, when the set of currently-valid declarations changes and 
the definition table must be updated to reflect these changes. 

When a range is entered, the stack for each identifier defined in the range 
must be pushed down and an entry describing the definition valid in this 
range placed on top. Conversely, the stack for each identifier defined in a 
range must be popped when leaving that range. To simplify the updating, 



9.2. Implementation of Semantic Analysis 245 

we represent the range by a linear list of elements specifying a symbol table 
entry and a corresponding definition as shown at the top of Figure 9.2l. 
This gives constant-time access to the stacks to be pushed or popped, and 
means that the amount of time required to enter or leave a range is linear in 
the number of identifiers having definitions in it. 

We use a pointer to the definition rather than the definition itself in the 
range list because many identifiers in different ranges may refer to the same 
definition. (For example, in Pascal many type identifiers might refer to the 
same complex record type.) By using a pointer we avoid having to store 
multiple copies of the definition itself, and also we simplify equality tests on 
definitions. 

We stack a pointer to the appropriate range list entry instead of stacking 
the range list entry itself because it is possible to enter a range and then enter 
it again before leaving it. (Figure 9.22 is a Pascal fragment that has this pro
perty. The statement with j j enters the range of the record type one; the 
range will be left at the end of that statement. However, the nested state
ment with h j also enters the same range!) When a range is entered twice 
without being left, its definitions are stacked twice. If the (single) range list 
entry were placed on the stack twice, a cycle would be created and the com
piler would fail. 

Finally, we stack a pointer to the range list entry rather than a pointer to 
the definition to cater for languages (such as COBOL and PL/l) that allow 
partial qualification: In a field selection the specification of the containing 
record may be omitted if it can be determined unambiguously. (This 
assumes that, in contrast to LAX, exactly one object exists for each record 

type 
one = record f: integer; g: j two end; 
two = record f : boolean; h: i one end; 

var 
j: jone; 

with) j do 
begin 

withg j do 
begin 

with h j do 
begin 

end 
end 

end; 

Figure 9.22. Self-Nesting Ranges 
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type. In other words, the concepts of record and record type merge.) 
Figure 9.23 illustrates the problem of partial qualification, using an 

example from PL/l. Each qualified name must include sufficient identifiers 
to resolve any ambiguity within a single block; the reference is unambiguous 
if either or both of the following conditions hold: 

• The reference gives a valid qualification for exactly one declaration . 
• The reference gives the complete qualification for exactly one declaration. 

Most of the references in Figure 9.23 are unambiguous because the first of 
these conditions holds. The Q in W = Q, however, gives a valid 
qualification for either the major structure or the field Q.x. Q; it is unambi
guous because it gives the complete qualification of the major structure. 
References Z and Q.Z in procedure B would be ambiguous. 

In order to properly analyze Figure 9.23, we must add three items of 
structural information to each possession relation in Figure 9.21: The level 
is the number of identifiers in a fully-qualified reference to the entity 
possessed. If the level is greater than 1, containing -structure points to the 
possession relation for the containing structure. In any case, the range to 
which the possession belongs must be specified. Figure 9.24 shows the pos-

A: PROCEDURE; 
DECLARE 

1 W, 
.... , 

B: PROCEDURE; 
DECLARE 

P, 
1 Q, 

2R, 

2X, 

Y = R.z; 

3Z, 

3Y, 
3Z, 
3Q; 

W = Q, BY NAME; 
C: PROCEDURE 

DECLAREY, 
1 R, 

Z=Q.Y 
2Z; 

X = R, BY NAME; 
ENDC; 

ENDB; 
END A; 

/* Q.x.Y from B, Q.R.Z from B * / 
/* W from A, major Q from B * / 

/* R.Z from C, Q.x.Y from B * / 
/* Q.x from B, R from C * / 

Figure 9.23. Partial Qualification 
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Range header 

Z: 

Symbol stack 
headns 

Possession relations for the range 

Figure 9.24. Range Specification Including Structure 
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session relations for procedure B of Figure 9.23. Note that this range con
tains two valid possession relations for Q and two for Z. The symbol stack 
entries for Z have been included to show that this results in two stack entries 
for the same range. 

A reference is represented by an array of symbols. The stack correspond
ing to the last of these is scanned, and the test of Figure 9.25 applied to each 
possession relation. When a relation satisfying the test is found, no further 
ranges are tested; any other relations for the same symbol within that range 
must be tested, however. If more than one relation in a range satisfies the 
test, then the reference is ambiguous unless the level of one of the relations 
is equal to the number of symbols in the reference. 

A definition table module might provide the following operations: 

• New _range Orange: Establish a new range. 
• Add _possession (symbol,definition,range): Add a possession relation to a 

given range. 
• Enter _range (range ): Enter a given range. 
• Leave _range: Leave the current range. 
• CurrenLdefinition(symbol)definition: Identify the definition correspond

ing to a given identifier at the current point in the program. 
• Definition-in Jange (symbol,range )definition: Identify the definition 

corresponding to a given identifier in a given range. 
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type 
possession = record 

range: i range Jteader ; 
next: i possession; 
possessing --symbol: symbol; 
possessed -'!ntity: entity; 
level: integer; 
containing --structure: i possession 
end; 

symboL.array = amay [1.. max....quaifiersJ of symbol; 

function test (qualifier: symbol-'JITay ; i : integer; p : possession): boolean ; 
(* Check a qualified reference 

On entry-
qualifier= reference to be checked 
i = number of symbols in the reference 
p = possession to be checked 

If the reference describes the possession then on exit
test = true 

Else on exit-
test =false 

*) 
label I; 
begin (* test *) 
test: = true ; 
whUe i <p.level do 

begin 
if qualifier[ i ] = p.possessing --symbol then 

begin 
;:=i-I; 
if i =0 then goto I; 
end; 

p: =p.containing --structure 
end; 

if i = p.level then 
wbile qualifier[ i ] = p.possessing --symbol do 

begin 
i:=i-I; 
if i =0 then goto I; 
P : = p.containing --structure 
end; 

test: = false 
I: end; (* test *) 

Figure 9.25. Test for Partially Qualified Reference 

The first two of these operations are used to build the range lists. The next 
three have been discussed in detail above. The last is needed for field selec-
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tion in languages such as Pascal and LAX. Recall the treatment of field 
selection in Figure 9.17. There the environment in which the field identifier 
was sought consisted only of the field identifiers defined in the record yielded 
by name. This is exactly the function of definition..inJange. If we were to 
enter the range corresponding to the record and then use current -liefinition, 
we would not achieve the desired effect. If the identifier sought were not 
defined in the record's range, but was defined in an enclosing range, the 
latter definition would be found! 

Unfortunately, definition..inJange must perform a search. (Actually, the 
search is slightly cheaper than the incorrect implementation outlined in the 
previous paragraph.) It might linearly search the list of definitions for the 
range representing the record type. This technique is advantageous if the 
number of fields in the record is not too large. Alternatively, we could asso
ciate a list of pairs (record type, pointer to a definition entry for a field with 
this selector) with each identifier and search that. This would be advanta
geous if the number of record types in which an identifier occurred was, on 
the average, smaller than the number of fields in a record. 

9.3. Notes and References 

Many language definitions use context-free syntax rules to indicate proper
ties that are more easily checked with attribute computations. The compiler 
designer should not slavishly follow the language definition in this regard; 
checks should be apportioned between the context-free rules and attribution 
rules on the basis of simplicity. ' 

In many compilers the semantic analysis is not treated as a separate task 
but as a by-product of parsing or code generation. The result is generally 
that the static semantic conditions are not fully verified, so erroneous pro
grams are sometimes accepted as correct. We have taken the view here that 
semantic analysis is the fundamental target-independent task of the com
piler, and should be the controlling factor in the development of the analysis 
module. 

Many of the techniques presented here for describing specific language 
facilities were the result of experience with attribute grammars for PEARL 
[DIN 1980], Pascal [Kastep.s 1982] and Ada [Uhl 1982] developed at the 
Universitat Karlsruhe. The representation of arbitrarily many types by lists 
was first discussed in conjunction with ALGOL 68 compilers [Peck 1971]. 
Koster [1969] described the recursive algorithm for ALGOL 68 mode 
equivalence using this representation. 

The attribution process for Ada operator identification sketched in Sec
tion 9.1.4 is due to Persch and his colleagues [1979, 1980]. Baker [1982] has 
proposed a similar algorithm that computes attributes containing pointers to 
the operator nodes that must be identified. The advantage claimed by the 
author is that if the nodes can be accessed randomly, this means that a com-
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plete second traversal is unnecessary. Operator identification cannot be 
considered in isolation, however. It is not at all clear that a second complete 
traversal will not be required by other attribution, giving us the operator 
identification 'for free'. This illustrates the importance of constructing the 
complete attribute grammar without regard to number of traversals, and then 
processing it to determine the overall evaluation order. 

Most authors combine the symbol and definition tables into a single 'sym
bol table' [Gries 1971, Bauer 1976, Abo 1977]. Separate tables appear in 
descriptions of multi-pass compilers and serve above all to reduce the main 
storage requirements [Naur 1964a]; the literature on ALGOL 68 [Peck 1971] 
is an exception. In his description of a multi-pass compiler for 'sequential 
Pascal', Hartmann [1977] separates the tables both to reduce the storage 
requirement and simplify the compiler structure. 

The basic structure of the definition table was developed for ALGOL 60 
[Randell 1964, Grau 1967, Gries 1971]. We have refined this structure to 
allow it to handle record types and incompletely-qualified identifiers [Busam 
1971]. An algebraic specification of a module similar to that sketched at the 
end of Section 9.2 was given by Guttag [1975, 1977]. 

EXERCISES 

9.1. Determine the visibility properties of Pascal labels. Write attribution rules 
that embody these properties. Treat the prohibition against jumping into a 
compound statement as a restriction on the visibility of the label definition (as 
opposed to the label dec/aration, which appears in the declaration part of the 
block). 

9.2. Write the function current _ definition (Figure 9.lc). 

9.3. Write the function unambiguous (Figure 9.2a). 

9.4. Note that Figure 9.5 requires additional information: the implicit type of an 
identifier. Check the FORTRAN definition to find out how this information 
is determined. How would you make it available in the attribute grammar? 
Be specific, discussing the role of the lexical analyzer and parser in the pro
cess. 

9.5. [Sale 1979] Give attribution rules and auxiliary functions to verify the 
definition before use constraint in Pascal. Assume that the environment is 
being passed along the text, as illustrated by Figure 9.4. 
a. Add a depth field to the definition record, and provide attribution rules that 

set this field to the static nesting depth at which the definition occurred. 
b. Add attribution rules that check the definition depth at each use of an 

identifier. Maintain a list of identifiers that have been used at a depth 
greater than their definition. 

c. When an identifier is defined, check the list to ensure that the identifier has 
not previously been used at a level greater than or equal to the current 
level when it was defined at a level less than the current level. 

d. Demonstrate that your rules correctly handle Figure 9.6. 
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9.6. What extensions to the environment attribute are required to support modules 
as defined in MODULA2? 

9.7. Extend the representation of LAX types to handle enumerated types and 
records with variants, described as in Pascal. 

9.8. Develop type representations analogous to Figure 9.7 for FORTRAN, 
ALGOL 60 and Ada. 

9.9. Modify the procedure IypLequivalenl to handle the following alterations in 
the LAX definition: 
a. Structural type equivalence similar to that of ALGOL 68 is specified 

instead of the equivalence of A.3.1. 
b. Union types union(t I, ... ,tn ) similar to those of ALGOL 68. The 

sequence of types is arbitrary and union(l],union(12h» = union 
(union(llh),fJ) = union(tlhh)· 

9.10. Consider the case clause described in Figure 9.16. 
a. Formulate a procedure value_unambiguous to verify the uniqueness of the 

case labels. 
b. Alter the attribution rules to check the uniqueness at each label. 
c. Alter the attribution rules and extend the value_unambiguous procedure so 

that the labels may be constants of an enumerated type (see Exercise 9.7). 

9.11. Prove the following relations for types I], 12 and 13, using the coercion rules 
defined in A.4.1 : 
a. balance (II h) = balance (12,1 I) 
b. balance (balance (II h),fJ) = balance (t ],balance (t 2,fJ» 

9.12. Suppose that we chose to use the definition table discussed in Section 9.2 for a 
LAX compiler. 
a. [Guttag 1975, 1977] The definition table module operations were stated as 

operations of a package, with 'definition table' as an implied parameter. 
Restate them as operations of an abstract data type, making this depen
dence explicit. 

b. Two abstract data types, range and definition_table, are involved in this 
module. Which of the attributes in the LAX rules discussed in this chapter 
will be of type range, and which of type definition _table? 

c. Replace the computations of the attributes you listed in (b) with computa
tions involving the operations of the definition table module. Does this 
change affect the traversal strategy? 

d. Given the modified rules of (c), do any of the attributes you listed in (b) 
satisfy the conditions for implementation as global variables? As global 
stacks? How do your answers to these questions bear upon the implemen
tation of the definition table as a package vs. an abstract data type? 

9.13. Develop definition tables for BASIC, FORTRAN, COBOL and Pascal. 

9.14. Add the use before definition check of Exercise 9.5 to the definition table of 
Figure 9.21. 

9.15. Give a detailed explanation of the problems encountered when analyzing Fig
ure 9.22 if possession relation entries are stacked directly. 
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9.16. How must a Pascal definition table be set up to handle the with statement? 
(Hint: Build a stack of with expressions for each record type.) 

9.17. Show the development during compilation of the definition table for the pro
gram of Figure 9.23 by giving a sequence of snapshots. 



CHAPTER 10 

Code Generation 

The code generator creates a target tree from a structure tree. This task has, 
in principle, three subtasks: 

• Resource allocation: Determine the resources that will be required and 
used during execution of instruction sequences. (Since in our case the 
resources consist primarily of registers, we shall speak of this as register 
allocation.) 

• Execution order determination: Specify the sequence in which the des
cendants of a node will be evaluated. 

• Code selection: Select the final instruction sequence corresponding to the 
operations appearing in the structure tree under the mapping discussed in 
Chapter 3. 

In order to produce code optimum under a cost criterion that minimizes 
either program length or execution time, these subtasks must be intertwined 
and iterated. The problem is NP-complete even for simple machine archi
tectures, which indicates that in practice the cost will be exponential in the 
number of structure tree nodes. In view of the simple form of the expres
sions that actually occur in programs, however, it is usually sufficient to 
employ linear-cost algorithms that do not necessarily produce the optimum 
code in all cases. 

The approach taken in this chapter is to first map the source-language 
objects onto the memory of the target machine. An estimate of register 
usage is then made, and the execution order determined on the basis of that 
estimate. Finally, the behavior of the target machine is simulated during an 
execution-order traversal of the structure tree, driving the code selection and 
register assignment. The earlier estimate of register usage must guarantee 
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that all register requirements can actually be met during the final traversal. 
The code may be suboptimal in some cases because the final register assign
ment cannot affect the execution order. 

The computation graph discussed in Section 4.1.3 is implicit in the 
execution-order structure tree traversal. Chapter 13 will make the computa
tion graph explicit, and discuss optimizing transformations that can be 
applied to it. If a compiler writer follows the strategies of Chapter 13, some 
of the optimization discussed here becomes redundant. Nevertheless, the 
three code generation subtasks introduced above remain unchanged. 

Section 10.1 shows how the memory map is built up, starting with the 
storage requirements for elementary objects given by the implementor in the 
mapping specification of Section 3.4. We present the basic register usage 
estimation process in Section 10.2, and show how additional attributes can 
be used to improve the generated code. Target machine simulation and 
code selection are covered in Section 10.3. 

10.1. Memory Mapping 

Memory mapping determines the size and (relative) address of each object. 
In the process, it yields the sizes and alignments for all target types and the 
relative addresses of components of composite objects. This information is 
used to find access paths during the code selection and, in the case of static 
allocation, to generate storage reservation requests to the assembly module. 
It also constitutes most of the information needed to construct the type tem
plates discussed in Section 3.3.3, if these are required. 

The storage mapping process begins with elementary objects whose sizes 
and alignments are known. These are combined, step-by-step, into larger 
aggregates until an object is created whose base address cannot be deter
mined until run time. We term such an object allocatable. Examples of allo
catable objects are activation records and objects on the heap. Objects are 
characterized during this aggregation process by their size and relative 
address within the containing object. The sum of the base address deter
mined at run time and the sequence of relative addresses of aggregates in 
which an object is contained yields the effective address of that object. 

When the objects are combined, the compactness (packed/aligned) may 
be specified. This specification influences not only the relative address of a 
component, but also its size and the alignment of the composite object: If 
the source language permits value constraints (e.g. Pascal subranges), then a 
type can be characterized by both a size (for the unconstrained value set) 
and a minimum size (taking the constraint into account). For example, in 
Pascal an object defined to lie in a subrange 0 .. 10 would have a minimum 
size of 4 (if sizes are expressed in bits) or I (if sizes are expressed in bytes) 
and a size equal to that of an unconstrained integer. When this object is 
combined with others in a packed composite object, its minimum size is 
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assumed; when the composite object is not packed, the size is used. 
The alignment of a composite object that is not packed is the least com

mon multiple of the alignments of its components. When the object is 
packed, however, no alignment constraint is imposed. 

The storage mapping process can, of course, only use objects of known 
length as components of other objects. As noted in Chapter 3, this means 
that activation records containing arrays whose bounds are not known until 
run time must be split into two parts; only the array descriptor is held in the 
static part. For languages like FORTRAN, in which all objects have fixed 
size, and in which each procedure is associated with one and only one local 
storage area, the procedure and its activation record can be combined into a 
single allocatable object. This object then becomes the basis for planning 
run-time overlay structure. 

Figure 1O.l defines an interface for a memory mapping module. The 
module is independent of both source language and target machine. It can 
be used for packing to either the memory cell or the bit, depending upon the 
interpretation of the types size and location. 

The basic idea of the storage module is that one has areas that may grow 
by accretion of blocks (objects of known size). An area whose growth has 
ceased becomes a block and can itself be added to other areas. Areas may 
grow either upward or downward in memory, and the packing attribute is 
specified individually for each area. (Both properties are fixed at the time 
the area is established.) Each area has a growth point that summarizes the 
current amount of the area's growth. For example, at the beginning of the 
variant part of a Pascal record, the storage mapping module notes the 
growth point; for each alternative it resets to that point. Since variants may 
be nested, the growth points must be saved on stacks (one per area) within 
the memory mapping module. After all of the alternatives have been 
specified, the growth point is advanced by the maximum length over all 
alternatives. 

In Pascal, the size and alignment of each variant of a record must be kept 
so that new and dispose calls can be handled correctly. This requirement is 
most easily satisfied by adding two output parameters to both back and com
bine (Figure 10.1), making their calling sequences identical to that of 
end_area. 

In areas that will become activation records, storage must be reserved for 
pointers to static and dynamic predecessors, plus the return address and pos
sibly a template pointer. The size and alignment of this information is fixed 
by the mapping specification, which may also require space for saving regis
ters and for other working storage. It is usually placed either at the begin
ning of the record or between the parameters and local variables. (In the 
latter case, the available access paths must permit both negative and positive 
offsets.) Finally, it is convenient to leave an activation record area open 
during the generation of code for the procedure body, so that compiler
generated temporaries may be added. Only upon completion of the code 



type 
area 
size = ... 
location = ... 
direction = (up, down); 
strategy = (align, pack ); 

procedure new _area (d : direction; s: strategy; var a : area); 
(* Establish a new memory area 

On entry-
d = growth direction for this area 
s = growth strategy for this area 

On exit-
a specifies the new area 

*) 
.... , 

procedure add _block (a: area; s: size; alignment: integer; var I: location ); 
(* Allocate a block in an area 

On entry-
a specifies the area to which the block is to be added 
s = size of the block 
alignment = alignment of the block 

On exit-
I = relative location of the first cell of the block 

*) 
.... , 

procedure end _area (a: area; var s : size; var alignment: integer); 
(* Terminate an area 

On entry-
a specifies the area to be terminated 

On exit-
s = size of the resulting block 
alignment = alignment of the resulting block 

*) 
.... , 

procedure mark(a : area); 
(* Mark the current growth point of an area *) 
.... , 

procedure back(a : area); 
(* Reset the growth point of an area to the last outstanding mark *) 
.... , 

procedure combine (a : area); 
(* Erase the last outstanding mark in an area and 

reset the growth point to the maximum of all previous growths 
*) 
.... , 

Figure 10.1. Memory Mapping Module Interface 
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selection will the area be closed and the size and alignment of the activation 
record finally determined. 

In principle, the storage module is invoked at the beginning of code gen
eration to fix the length, relative address and alignment of all declared 
objects and types. For languages like Ada, integration with the semantic 
analyzer is essential because object size may be interrogated by the program 
and must be used in verifying semantic conditions. Even in this case, how
ever, we must continue to regard the storage module as a part of the syn
thesis task of the compiler; only the location of the calls, not the modular 
decomposition, is changed. 

10.2. Target Attribution 

In the simplest case we fix the execution order without regard to target 
machine register allocation. The code selector performs a depth-first, left
to-right traversal of the structure tree that corresponds directly to the postfix 
form of the expressions. It does not alter the left-to-right evaluation of the 
operands, since there is no additional information upon which to base such 
an alteration. If the number of registers available does not suffice to hold 
the intermediate results while computing the value of an expression then an 
ad hoc decision is made during the code generation about which intermedi
ate value(s) should be left in memory. In general this strategy leads to 
greater register requirements and longer code than necessary; hence some 
planning is recommended. This planning results in computation of addi
tional attributes. 

In this section we consider the computation of seven attributes: 
Register _count, store and operand _sequence are used to determine the exe
cution order, desire and target _labels provide information about the use of a 
result, cost and decision are used to modify the instruction sequence gen
erated from a node. These attributes are evaluated by three distinct kinds of 
computation, which we treat in the following subsections: Register alloca
tion (Section 10.2.1) is concerned with determining the temporary storage 
requirements of subtrees and hence the execution order. Targeting (Section 
10.2.2) specifies desirable placement of results. Finally, algebraic identities 
(Section 10.2.3) can be used to obtain equivalent computations having better 
properties. 

10.2.1. Register Allocation We distinguish global register allocation, 
which holds over an entire procedure, from local register allocation, which 
controls the use of registers within expressions and influences the execution 
order. Further, we partition the task into allocation, by which we plan the 
register usage, and asSignment, by which we fix the registers actually used for 
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a specific purpose. Register assignment takes place during code selection, 
and will be discussed in Section 10.3.1; here we concern ourselves only with 
allocation. 

Global register allocation begins with values specified by the implemen
tation as being held permanently in registers. This might result in the follow
ing allocations for the IBM 370: 

Register 15: Subprogram entry address 
Register 14: Return address 
Register 13: Local activation record base address 
Register 12: Global activation record base address 
Register I I: Base address for constants 
Register 10: Code base address 
Register 9: Code offset (Section 11.1.3) 

Only two registers are allocated globally as activation record bases; registers 
for access to the activation records of intermediate contours are obtained 
from the local allocation, as are registers for stack and heap pointers. 

Most compilers use no additional global register allocation. Further glo
bal allocation might, for example, be appropriate because most of a 
program's execution time is spent in the innermost loops. We could there
fore stretch the register usage considerably and shorten the code if we 
reserved a fixed number of registers (say, 3) for the most-frequently used 
values of the innermost loops. The controlled variable of the loop is often 
one of these values. The simple approach of assigning the controlled vari
ables of the innermost loops to the reserved registers gives very good results 
in practice; more complex analysis is generally unnecessary. 

Upon completion of the global allocation, we must ensure that at least n 
registers always remain for local allocation. Here n is the maximum 
number of registers used in a single instruction. (For the IBM 370, n =4 in 
the MVCL instruction.) A rule of thumb says that we should actually 
guarantee that n + I registers remain for local allocation, which allows at 
least one additional intermediate result or base address to be held in a regis
ter. 

Pre-planning of local register allocation would be unnecessary if the 
number of available registers always sufficed for the number of 
simultaneously-existing intermediate results of an expression. Given a lim
ited number of registers, however, we can guarantee this only for some sub
trees. Outside of these, the register requirement is not fixed unambiguously: 
Altering the sequence of operations may change the number of registers 
required. Figure 10.2 shows an example. 

The general strategy for local register allocation is to seek subtrees evalu
able, possibly with rearrangement, using only the number of registers avail
able to hold intermediate results. These subtrees can be coded without addi
tional store instructions. We choose the largest, and generate code to evalu-



10.2. Target Attribution 259 

(x+y)/(a*b +c*d) 

a) A LAX expression 

LE O,x LE 2,a 
AE O,y ME 2,b 
LE 2,a LE O,c 
ME 2,b ME O,d 
LE 4,c AER 2,0 
ME 4,d LE O,x 
AER 2,4 AE OJ' 
DER 0,2 DER 0,2 
(uses 3 registers) (uses 2 registers) 

b) Two possible IBM 370 implementations 

Figure 10.2. Dependence of Register Usage on Evaluation Order 

ate it and store the result. All registers are then again available to hold 
intermediate results in the next subtree. 

Consider an expression represented as a structure tree and a machine 
with n identical registers rj. The machine's instructions have one of the 
following forms: 

• Load: rj : = memory _location 
• Store: memory _location : = rj 
• Compute: rj := 0p(Vj, ... , vd, where Vh may be either a register or a 

memory location. 

The machine has various computation instructions, each of which requires 
specific operands in registers and memory locations. (Note that a load 
instruction can be considered to compute the identity function, and require a 
single operand in a memory location.) 

We say that a program fragment is in normal form if it is written as 
P IJ I ... Ps -IJs _ IPs such that each J is a store instruction, each P is a 
sequence containing no store instructions, and all of the registers are free 
immediately after each store instruction. Let I I ... In be one of the 
sequences containing no stores. We term this sequence strongly contiguous if, 
whenever Ii is used to compute an operand of h (i < k) all I j such that 
i ~ j < k are also used in the computation of operands of h. The sequence 
P IJ I ... Ps is in strong normal form if Pq is strongly contiguous for all 
l~q~s. 

Aho [1976] shows that, provided no operand or result has a size exceed
ing the capacity of a single register, an optimal program to evaluate an 
expression tree on our assumed machine can be written in strong normal 
form. (The criterion for optimality is minimum program length.) Thus to 
achieve an optimal program it suffices to determine a suitable sequence in 
which to evaluate the operands of each operator and - in case the register 
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requirements exceed n - to introduce store operations at the proper points. 
The result can be described in terms of three attributes: register _count, store 
and operand Jequence. Register _count specifies the maximum number of 
registers needed simultaneously at any point during the computation of the 
subtree. Store is a Boolean attribute that is true if the result of this node 
must be stored. Operand Jequence is an array of integers giving the order in 
which the operands of the node should be evaluated. A Boolean attribute 
can be used if the maximum number of operands is 2. 

The conditions for a strong normal form stated above are fulfilled on 
most machines by floating point expressions with single-length operands and 
results. For integer expressions they generally do not hold, since multiplica
tion of single-length values produces a double-length result and division 
requires a double-length dividend. Under these conditions the optimal 

Round nodes have single-length results 
Square nodes have double-length results 

a) An expression involving single- and double-length values 

MOV 
MUL 
MOV 
MUL 
ADD 
ADC 
ADD 
DIV 
MOV 
MUL 
MOV 
ADD 
DIV 
MUL 
DIV 

A,RO 
B,RO 
C,R2 
D,R2 
R3,RI 
R2 
R2,RO 
E,RO 
G,R2 
H,R2 
I,RI 
J,RI 
RI,R2 
F,RO 
R2,RO 

(RO,Rl): =A*B 

(R2,R3): = C*D 

(RO,R 1): = (RO,R 1) + (R2,R3) 

RO:=(RO,RI) DIV E 
(R2,R3): =G*H 

RI:=I+J 

R2: = (R2,R3) DIV RI 
(RO,R I): = RO*F 
RO: = (RO,R 1) DIV R2 

b) An optimal PDPII program to evaluate (a) 

Figure 10.3. Oscillation 
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instruction sequence may involve 'oscillation'. Figure IOJa shows a tree 
that requires oscillation in any optimal program. The square nodes produce 
double-length values, the round nodes single-length values. An optimal 
PDPII program to evaluate the expression appears as Figure IOJb. The 
PDPII is an 'even/odd machine' - one that requires double-length values 
to be held in a pair of adjacent registers, the first of which has an even regis
ter number. No polynomial algorithm that yields an optimal solution in this 
case is known. 

Under the conditions that the strong normal form theorem holds and, 
with the exception of the load instruction, all machine instructions take their 
operands from registers, the following register allocation technique leads to 
minimum register requirements: For the case of two operands with register 
requirements k (> k 2, always evaluate the one requiring k ( registers first. 
The result remains as an intermediate value in a register, so that while 
evaluating the other operand, k 2 + I registers are actually required. Since 
k (> k2 however, the total register requirement cannot exceed k (. 

When k( =k2' either operand may be evaluated first. The evaluation of 
the first operand will still require k ( registers and the result remains in a 
register. Thus k ( + I registers will be needed to evaluate the second 
operand, leading to an overall requirement for k ( + I registers. If k ( = n 
then it is not possible to evaluate the entire expression in the registers 
available, although either subexpression can be evaluated entirely in regis
ters. We therefore evaluate one operand (usually the second) and store the 
result. This leaves all n registers free to evaluate the other operand. Figure 
10.4 formalizes the computation of these attributes. 

If the second operand may be either in a register or in memory we apply 

rule expression :: = simple _operand . 
attribution 

expression. register _count <- I; 
expression. operand -sequence <- true, 

rule expression :: = expression operator expression . 
attribution 

expression [ I ]. operand -sequence <-

expression [2]. register _count> expression [3]. register _count; 
expression [ I ]. register _count <-

if expression [2]. register _count = expression [3]. register _count then 
min(expression [2]. register _count + I, n) 

else max(expression [2]. register _count, expression [3]. register _count) ; 
expression [2]. store <- false; 
expression [3].store <-

expression [2]. register _count = nand 
expression [3]. register _count =n; 

Figure 10.4. Local Register Allocation and Execution Order Determination 
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the same rules, but begin with simple operands having a register _count of 0; 
further, the left operand count is replaced by max (expression 
[2]. register _count ,1) since the first operand must always be loaded and 
therefore has a cost of at least one register. Extension to the case in which 
the second operand must be in memory (as for halfword arithmetic on the 
IBM 370) presents some additional problems (Exercise 10.3). For integer 
multiplication and division we must take account of the fact that the result 
(respectively the first operand) requires two registers. The resulting se
quence is not always optimal in this case. 

Several independent sets of registers can also be dealt with in this 
manner; examples are general registers and floating point registers or gen
eral registers and index registers. The problem of the Univac 1108, in which 
the index registers and general registers overlap, requires additional thought. 

On machines like the PDPII or Motorola 68000, which have stack 
instructions in addition to registers or the ability to execute operations with 
all operands and the result in memory, optimization of the local register 
allocation is a very difficult problem. The minimum register requirement in 
these cases is always 0, so that we must include the program length or execu
tion time as cost criteria. The result is that in general memory-to-memory 
operations are only reasonable if no operands are available in registers, and 
also the result does not appear in a register and will not be required in one. 
Operations involving the stack usually have longer execution time than 
operations of the same length involving registers. On the other hand, the 
operations to move data between registers and the stack are usually shorter 
and faster than register-memory moves. As a general principle, then, inter
mediate results that must be stored because of insufficient registers should be 
placed on the stack. 

10.2.2. Targeting Targeting attributes are inherited attributes used to 
provide information about the desired destination of a result or target of a 
jump. 

We use the targeting attribute desire to indicate that a particular operand 
must be in a register of a particular class. If a descendant can arrange to 
have its result in a suitable register at no extra cost, this should be done. 
Figure 10.5 gives the attribution rules for expressions containing the four 
basic arithmetic operations, assuming the IBM 370 as the target machine. 
This machine requires a multiplicand to be in an odd register, and a divi
dend to be in a register pair. We therefore target a single-length dividend to 
the even-numbered register of the pair, so that it can be extended to 
double-length with a simple shift. 

In the case of the commutative operators addition and multiplication, we 
target both operands to the desired register class. Then if the register alloca
tion can satisfy our preference for the second operand but not the first, we 
make use of commutativity (Section 10.2.3) and interchange the operands. 
If neither of the preferences can be satisfied, then an instruction to move the 
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type register _class = (donLcare, even, odd, pair); 

rule expression :: = expression operator expression . 
attribution 

expression [2].desire .... 
case operator. operator of 

plus, minus : 
if expression [I].desire = pair then even 
else expression [I ].desire ; 

times: odd; 
divided _by: even 
end; 

expression [3].desire .... 
case operator. operator of 

plus : 
if expression [I].desire = pair then even 
else expression [I].desire ; 

times: odd; 
otherwise dont _care 
end; 

Figure 10.5. Even/Odd Register Targeting for the IBM 370 
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information to the proper register will be generated as a part of the coding 
of the multiplication or division operator. No disadvantages arise from ina
bility to satisfy the stated preference. This example illustrates the impor
tance of the non-binding nature of targeting information. We propagate our 
desire to both branches in the hope it will be satisfied on one of them. If it is 
satisfied on one branch then it is actually spurious on the other, and no cost 
should be incurred by trying to satisfy it there. 

Many Boolean expressions can be evaluated using conditional jumps 
(Section 3.2.3), and it is necessary to specify the address at which execution 
continues after each jump. Figure 10.6 shows the attribution used to obtain 
short-circuit evaluation, in the context of a conditional jump. (If short
circuit evaluation is not permitted by the language, the only change is to 
delay generation of the conditional jumps until after all operands not con
taining Boolean operators have been evaluated, as discussed in Section 
3.2.3.) Labels (and procedure entry points) are specified by references to 
target tree elements, for which the assembler must later substitute addresses. 
Thus the type assembler --symbol is defined not by the code generator, but by 
the assembler (Section 11.1.1). 

Given the attribution of Figure 10.6, it is easy to see how code is 
generated: A conditional jump instruction is produced following the code to 
evaluate each operand that contains no further Boolean operators (e.g. a 
relation). The target of the jump is the label that does not immediately fol
low the operand, and the condition is chosen accordingly. Boolean operator 
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type boolean _labels = record 
false-.label, true -.label: assembler Jymbol ; 
immediate -successor: boolean; 
end; 

rule conditional_clause :: = 

Chapter 10. Code Generation 

'if' boolean -'!xpression 'then' statement -.list 'else' statement -.list 'end' . 
attribution 

boolean_expression. location <- N _assembler -symbol; 
conditional_clause. then _location <- N _assembler -symbol; 
conditional_clause. else _location <- N _assembler _symbol; 
boolean _expression.jump _target <-

N _boolean _labels ( 
conditional_clause. else _location, 
conditional_clause. then _location, 
true ); (* true target follows immediately *) 

rule boolean _expression :: = 
boolean _expression boolean _operator boolean _expression . 

attribution 
boolean _expression [2]. location <- boolean _expression [I].location ; 
boolean _expression [3]. location <- N _assembler -symbol ; 
boolean _expression [2].jump _target <-

if boolean_operator. operator = 'or' then 
N _boolean _labels ( 

boolean _expression [3 ].location, 
boolean _expression [ I].jump _target. true _label, 
false) (* false target follows immediately *) 

else (* operator must be and *) 
N _boolean _labels ( 

boolean _expression [I ].jump _targetjalse-.label, 
boolean _expression [3]. location , 

true ); 
boolean _expression [3 ].jump _target <- boolean _expression [I ].jump _target; 

rule boolean _expression :: = 'not' boolean -'!xpression . 
attribution 

boolean _expression [2]. location <- boolean _expression [ I]. location , 
boolean _expression [2].jump _target <-

N _boolean _labels ( 
boolean _expression [ I].jump _target. true _label, 

boolean _expression [ I].jump _target.f alse _label, 
not boolean _expression [ I].jump _target. immediate _successor ); 

Figure 10.6. Jump Targeting for Boolean Expression Evaluation 

nodes generate no code at all. Moreover, the execution order is fixed; no 
use of commutativity is allowed. 
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10.2.3. Use of Algebraic Identities The goal of the attribution dis
cussed in Section 10.2.1 was to reduce the register requirements of an 
expression, which usually leads to a reduction in the length of the code 
sequence. The length of the code sequence can often be reduced further 
through use of the algebraic identities summarized in Figure 1O.7a. We dis
tinguish two steps in this reduction: 

• Reduction of the number of computational instructions . 
• Reduction of the number ofload instructions. 

The number of computational instructions can be reduced by, for example, 
using the identities of Figure 1O.7a to remove a change of sign or combine it 
with a load instruction (unary complement elimination). Load operations 
can be avoided by applying commutativity when the right operand of a 
commutative operator is already in a register and the left operand is still in 
memory. Figures 10.7b-d give a simple example of these ideas. 

None of the identities of Figure 1O.7a involve the associative or distribu
tive laws of algebra. Computers do not obey these axioms, and hence 
transformations based upon them are not safe. Also, if the target machine 
uses a radix-complement representation for negative numbers then the iden-

x+y =y+x 
x-y =x+(-y)= -0'-x) 
-(-x)=x 
x*y = y*x = (-x)*(-y) 
-(x*y) = (-x)*y = x*(-y) 

a) Identities for integer and real operands 

L l,x 
LNR 1,1 
L 2,y 
S 2,z 
MR 0,2 

b) Computation of ( - x )*0' - z ) 

L 2,z 
S 2,y 
L l,x 
MR 0,2 

c) Computation of x *(z - y), which is equivalent to (b) 

L I,z 
S I,y 
M O,X 

d) Computation of (z - y)* x, which is equivalent to (c) 

Figure 10.7. Algebraic Identities 
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tity -( -x)=x fails when x is the most negative representable value, leav
ing commutativity of addition and multiplication as the only safe identities. 
As implementors, however, we are free to specify the range of values 
representable using a given type. By simply stating that the most negative 
value does not lie in that range, we can use all of the identities listed in Fig
ure W.7a. This does not unduly constrain the programmer, since its only 
effect is to make the range symmetric and thus remove an anomaly of the 
hardware arithmetic. (We normally remove the analogous anomaly of 
sign-magnitude representation, the negative zero, without debate.) 

Although use of algebraic identities can reduce the register requirement, 
the decisive cost criterion is the code size. Here we assume that every 
instruction has the same cost; in practical applications the respective instruc
tion lengths must be introduced. Let us also assume, for the moment, a 
machine that only provides register-register arithmetic instructions. All 
operands must therefore be loaded into registers before they are used. We 
shall restrict ourselves to addition, subtraction, multiplication and negation 
in this example and assume that multiplication yields a single-length result. 
The basic idea consists of attaching a synthesized attribute, cost, to each 
expression. Cost specifies the minimum costs (number of instructions) to 
compute the result of the expression in its correct and inverse (negated) 
form. It is determined from the costs of the operation, the operand compu
tations, and any complementing required. An inherited attribute, decision, 
is then computed on the basis of these costs and specifies the actual form 
(correct or inverse) that should be used. 

To generate code for a node, we must know which operation to actually 
implement. (In general this may differ from the operator appearing in the 
structure tree.) If the actual operation is not commutative then we have to 
know whether the operands are to be taken in the order given by the struc
ture tree or not. Finally, we need to know whether the result must be com
plemented. As shown in Table 10.8, all of this information can be deduced 
from the structure tree operator and the forms of the operands and result. 

The k column of Table 10.8 gives the cost of the operation, including any 
complementing. This information is used to obtain the minimum costs of 
the correct and inverse forms of the expression as shown in Figure 10.9: Best 
is invoked with the structure tree operator and the costs of all combinations 
of operand computations. It tests all of the possibilities, finding the combi
nation of operand forms that minimizes the cost of computing each of the 
possible result forms. Figure 10.10 gives the attribution rules. Note that the 
costs assessed to simple operands in Figure 10.10 do not include the cost of a 
load operation. Loads and stores are completely determined by the local 
register allocation process for a machine with only register-register instruc
tions. 

Let us now consider a machine that has an additional instruction for each 
binary arithmetic operation. These additional instructions require the left 
operand value to be in a register and the right operand value to be in 
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Table 10.8. Unary Complement Elimination 

Tree 
Node 

Result Operand 
Form Forms 

k 
Reverse 
Operands 

Negate 

a +b 

a -b 

a*b 

cc I false false 
ci I false false 

c 
ic I false true 
ii 2 false true 

cc 2 false true 
ci I true false 

i 
ic I false false 
ii I false false 

cc 1 false false 
ci I false false 

c 
ic 2 false true 
ii 1 true false 

cc 1 true false 
ci 2 false true 

i 
ic 1 false false 
ii I false false 

cc 1 false false 
ci 2 false true 

c 
ic 2 false true 
ii I false false 

cc 2 false true 
ci 1 false false 

i 
ic 1 false false 
ii 2 false true 

c means that the sign of the operand is not inverted 
i means that the sign of the operand is inverted 
k is a typical cost of the operation in instructions 

Actual 
Operation 

plus 
minus 
minus 
plus 

plus 
minus 
minus 
plus 

minus 
plus 
plus 
minus 

minus 
plus 
plus 
minus 

times 
times 
times 
times 

times 
times 
times 
times 

267 

Method 

a +b 
a-(-b) 
b-(-a) 
-(-a+(-b» 

-(a+b) 
-b -a 
-a-b 
-a+(-b) 

a -b 
a +( -b) 
-(-a+b) 
-b -( -a) 

b -a 
-(-a+(-b» 
-a+b 
-a-(-b) 

a*b 
-(a*(-b» 
-(-a*b) 
-a*(-b) 

-(a*b) 
a *( -b) 
-a*b 
-( -a*( -b» 

memory. Since the best choice of computation depends upon the operand 
locations, we must extend Table 10.8 to include this information. Table 
10.11 shows such an extension for the integer addition operator. The k 
column of Table 10.11 includes the cost of a load instruction when both 
operands are in memory. 

We took the operand location as fixed in deriving Table 10.11. This 
meant, for example, that when the correct left operand was in memory and 
the inverted right operand was in a register we used the sequence subtract, 
negate to obtain the correct value of the expression (Table 10.11, row 7). 
We could also have used the sequence load, subtract, but this would have 
increased the register requirements. If we allow the unary complement 
elimination to alter the register requirements then it must be integrated with 
the local register allocation, increasing the number of attribute dependencies 
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type 
/orm = (correct, inverse ); 
combination = (cc , ci, ic, ii); 

Chapter 10. Code Generation 

costJpeci/ication =array [correct .. inverse ) of record 
length: integer; 
operands: combination 
end; 

function best (op: operator; kcc, kci, kic, kii : integer ): cost -specification; 
(* Determine the cheapest combination 

On entry-
op = Structure tree operator 
kpq = Sum of the operand costs for combination pq 

On exit-

*) 

var 

best = Cost of the optimum instructions yielding, respectively, the 
correct and inverted values of the expression 

operand _length: array [cUi) of integer; 
cost: cost -specification; 
next: integer; 

begin (* best *) 
operand _length [ci ): = kci ; 
operand _length [ic ): = kic ; 
operand _length [ii): =kii; 
for / : = correct to inverse do 

begin 
cost [/ J. length: = kee + k [op,f,ee ]; cost [/ ]. operands: = ee ; 
for pq : = ci to ii do 

begin 
next :=operand-Iength[pq)+k[op,/,pq); (* k from Table to.8.*) 
if cost [f].length > next then 

begin 
cost [/ ).length : = next; cost [/ ].operands : = pq 
end 

end 
end; 

best: = cost 
end; (* best *) 

Figure 10.9. The Cost Attribute 

and possibly requiring a more complex tree traversal. Our approach is 
optimal provided that the cost of a load instruction is never less than the cost 
of negating a value in a register. 
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rule assignment :: = name I: = I expression . 
attribution 

expression.decision +- correct; 

rule expression :: = denotation . 
attribution 
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expression. cost +-

N --cost ....specification{ 
O,cc, 

(* Combination is a dummy value *) 
(* Load instruction only *) 

0, cc); 

rule expression :: = name . 
attribution 

expression. cost +-

N --cost ....specification{ 
0, cc, 
1, cc); 

(* Negative constant is stored *) 

(* Combination is a dummy value *) 
(* Load instruction only *) 
(* Load and complement *) 

rule expression :: = expression binary _operator expression . 
attribution 

expression[l).cost +-

best { 
binary _operator.op, 
expression [2). cost [correct ).length +expression [3 ).cost [correct ).length, 
expression [2). cost [correct ).length +expression [3). cost [inverse ).length , 
expression [2). cost [inverse ).length + expression [3). cost [correct ].length, 
expression [2]. cost [inverse ].length + expression [3]. cost [inverse ].length); 

expression [2].decision +-

if expression [ 1 ]. cost [expression [ 1 ]. decision ]. operands in fcc, ci J then correct 
else inverse; 

expression [3].decision +-

if expression [I ].cost [expression [I ].decision ]. operands in fcc, ic J then correct 
else inverse; 

rule expression :: = unary _operator expression . 
attribution 

expression [I).cost +-

best { 
unary _operator.op, 
expression [2]. cost [correct ].length , 
maxint, maxint, (* ci, ic are invalid in this case *) 
expression [2]. cost [inverse ].length ); 

expression [2]. decision +-

if expression [1 ].cost [expression [I ].decision ].operands = cc then correct 
else inverse; 

Figure 10.10. Unary Complement Costing 
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Table 10.11. Addition on a Machine with Both Memory 
and Register Operands 

Result 
Form 

Operand 
Forms 

Operand 
Locations 

k 
Reverse 
Operands 

Negate 

c 

i 

rr I false false 
rm I false false 

cc 
I true false mr 

mm 2 false false 

rr I false false 
rm I false false 

ci 
2 true true mr 

mm 2 false false 

rr I true false 
rm 2 false true 

ic 
mr I true false 
mm 2 true false 

" 2 false true 
rm 2 false true 

ii 
mr 2 true true 
mm 3 false true 

rr 2 false true 
rm 2 false true 

cc 
2 true true mr 

mm 3 false true 

rr I true false 

ci 
rm 2 false true 
mr I true false 
mm 2 true false 
rr I false false 

ic rm I false false 
mr 2 true true 
mm 2 false false 

rr I false false 

ii 
rm I false false 
mr I true false 
mm 2 false false 

c means that the sign of the operand is not inverted 
i means that the sign of the operand is inverted 
r means that the value of the operand is in a register 
m means that the value of the operand is in memory 
k is a typical cost of the operation in instructions 

Actual 
Operation 

plus 
plus 
plus 
plus 

minus 
minus 
minus 
minus 

minus 
minus 
minus 
minus 

plus 
plus 
plus 
plus 

plus 
plus 
plus 
plus 

minus 
minus 
minus 
minus 

minus 
minus 
minus 
minus 

plus 
plus 
plus 
plus 

Method 

a+b 
a+b 
b+a 
a+b 
a-(-b) 
a-(-b) 
-(-b-a) 
a-(-b) 

b -( -a) 
-(-a-b) 
b -( -a) 
b -( -a) 

-(-a +(-b» 
-(-a+(-b)) 
-(-b +(-a)) 
-(-a+(-b)) 

-(a +b) 
-(a +b) 
-(b +a) 
-(a +b) 

-b-a 
-(a-(-b)) 
-b-a 
-b-a 

-a-b 
-a-b 
-(b -( -a» 
-a-b 

-a +( -b) 
-a+(-b) 
-b +(-a) 
-a +( -b) 

When we apply algebraic identities on a machine with both register
register and register-memory instructions, the local register allocation pro
cess should assume that each computational instruction can accept any of its 
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operands either in a register or in memory, and returns its result to a register 
(the general model proposed in Section 10.2.1). This assumption leads to 
the proper register requirement, and allows complete freedom in applying 
the identities. Local register allocation decides the evaluation order of the 
operands, but leaves open the question of which operand is left and which is 
right. Algebraic identities, on the other hand, deal with the choice of left 
and right operands but make no decisions about evaluation order. 

10.3. Code Selection 

Although the techniques of the previous sections largely determine the 
shape of the generated code, a number of problems remain open. These 
include the final assignment of registers and the question of which instruc
tions will actually implement a previously-specified operation: On the IBM 
370, for example, can a constant be loaded with an LA instruction or must it 
be stored as a literal? Does an addition of two addresses require a separate 
add instruction, or can the addition be carried out during computation of the 
effective address of the following instruction? 

10.3.1. Machine Simulation The relationship between values com
puted by the program being compiled and the machine resources that will 
be used to represent them during execution can be characterized by a 
sequence of machine states. These states form the pre- and post-conditions 
for the generated instructions. We could include the machine state as an 
attribute in the structure tree and specify it in advance by attribution rules. 
This would mean, for example, that we would combine register assignment 
with local register allocation and thereby specify the final register numbers 
for operands and results. Such a strategy complicates a number of optimiza
tions, however. Examples are the re-use of intermediate results that remain 
in registers from previous computations in the same expression, and the 
delay of store instructions discussed below. Thus we assume that, during the 
execution-order traversal of the structure tree in which code selection takes 
place, a machine simulation is used to determine the run-time machine state 
as closely as possible. 

Every value computed by the program and every allocatable resource of 
the target machine is (conceptually) specified by a descriptor. The machine 
state consists of links between these descriptors, indicating the relationship 
between the values and the resources representing them at a given point in 
the execution sequence. Figure 10.12 shows typical descriptor layouts for 
implementing LAX on the IBM 370. 

Constants that might appear in the address field of the instruction, and 
constants whose values are to be processed further by the code generator, 
are described by the value class literaL value. Other constants, like strings 
and floating point numbers, will be placed in storage and consequently 
appear as memory values. 
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type 
main Jtorage _access = record 

base, index; i value _descriptor; 
displacement: internal_int ; 
end; 

value _class = ( 
literal_ value , 
label Jeference, 
procedure Jeference, 
general_register, 
register -[Xlir , 
floating -fJOint _register, 
memory _address, 
memory _ value ); 

value _descriptor = record 
tmode : target _type ; 
case class: value _class of 

literaL value : 
(Ivai: internal_int); 

(* Current access *) 
(* Manipulable integer constant *) 
(* Explicitly-referenced label *) 
(* Explicitly-referenced procedure *) 
(* Single general register *) 
(* Adjacent even/odd general registers *) 
(* Single floating point register *) 
(* Pointer to a memory location *) 
(* Contents of a memory location *) 

label Jeference, procedure Jeference: 
(code: assembler --symbol; 
environment: i value _descriptor); 

general_register, register _pair, floating _point _register: 
(reg: i register -tlescriptor); 

memory _address, memory _ value : 
(location: main --storage _access) 

end; 
register --state = ( 

free, 
copy, 
unique, 
locked); 

register _descriptor = record 
state: register --state; 
content: i value _descriptor; 

(* Current usage *) 
(* Unused *) 
(* A copy exists in memory *) 
(* No other copy available *) 
(* Not available for assignment *) 

memory _copy: main --storage _access; 
end; 

Figure 10.12. Descriptors for Implementing LAX on the IBM 370 

Label and procedure references are represented by closures (Section 
2.5.2), leaving the code location to be defined by the assembler and indicat
ing the proper environment by an execution-time value. Note that this 
representation is used only for an explicit label or procedure reference; the 
closure for a label or procedure-type variable or parameter is not known at 
compile time and must therefore appear as a memory or register value. 
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The value descriptors of Figure 10.12 contain no information for the 
storage classes 'program counter' and 'condition code' (Section 3.1.1), since 
these classes occur only implicitly in IBM 370 instructions. The situation 
could be different on the PDPll, where explicit assignments to the program 
counter are possible. Computers like the Motorola 68000 and PDPII, which 
provide stack instructions, also require information about the storage class 
'stack'. The actual representation in the descriptor depends upon how many 
stacks there are and whether only the top element or also lower elements can 
be accessed. We restrict ourselves here to two storage classes: 'main storage' 
and 'registers'. Similar techniques can be used for other storage classes. 

When an access function is realizable within a given addressing structure, 
we say that the accessed object is addressable within that structure. If an 
object required by the computation is not addressable then the code genera
tor must issue instructions to manipulate the state, making it addressable, 
before it can be used. These manipulations can be divided into two groups, 
those required by source language concepts and those required by limita
tions on the addressing structure of the target machine. Implementing a 
reference with a pointer variable would be an example of the former, while 
loading a value into an index register illustrates the latter. The exact divi
sion between the groups is determined by the structure of the main storage 
access function implemented in the descriptors. We assume that every non
literal leaf of the structure tree is addressable by this access function. The 
main storage access function of Figure 10.12 is stated in terms of a base, an 
index and a displacement. The base refers to an allocatable object (Section 
1O.l) whose address may, in general, be computed during execution. The 
index is an integer value computed during execution, while the displacement 
is fixed at compile time. Index and displacement values are summed to 
yield the relative address of the accessed location within the allocatable 
object referred to by the base. 

If the access is to statically-allocated storage then the 'allocatable object' 
to which the accessed object belongs is the entire memory. We indicate this 
special case by a nil base, and the displacement becomes the static address. 
A more interesting situation arises when the access is to storage in the 
activation record of a LAX procedure. Figure 1O.13a shows a LAX pro
gram with five static nesting levels. If we associate activation records only 
with procedures (Section 3.3.2) then we need consider only three levels. 
Value descriptors for the three components of the assignment in the body of 
q could be constructed as shown in Figure 1O.13b. 

The level array is built into the compiler with an appropriate maximum 
size. When the compiler begins to translate a procedure, it ensures one value 
descriptor for each level up to the level of the procedure. Initially, the 
descriptor at level I indicates that the global activation record base address 
can be found in register 12 and the descriptor at the procedure's level indi
cates that the local activation record base address can be found in register 
13. Base addresses for other activation records can be found by following 



o 
1 
2 
3 
4 

274 

. . 
Level 
Array 

Chapter 10. Code Generation 

declare 
a: integer; 
procedure p ; 

declare 
b: integer; 
procedure q(c: integer); a: =b +c 
begin 
b:=I;q(2) 
end 

begin 
p 
end 

a) A LAX program 

general 
register 

12 

memory 
value 

static chain 
offset 

general 
register 

13 

Value descriptors 
for activation 
record bases 

memory 
address 

a offset 

memory 
value 

b offset 

memory 
value 

c offset 

Value descriptors 
for operands 

b) Value descriptors for the IBM 370 

Figure 10.13. Referencing Dynamic Storage 

Value class 

Base 

Index 

Displacement 

the static chain, as indicated by the descriptor at level 2. This initial condi
tion is determined by the mapping specification. Weare assuming here that 
the LAX-to-IBM 370 mapping specification makes the global register allo
cation proposed at the beginning of Section 10.2.1. 

When a value descriptor is created for a variable, its base is simply a copy 
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of the level array element corresponding to the variable's static nesting 
depth. (The program is assumed at level 0 here.) The index field for a simple 
variable's access function is nil (indicated in Figure 1O.13b by an empty 
field) and the displacement is the offset of the variable within the activation 
record. For array variables, the index field points to the value descriptor of 
the index, and the displacement is the fictitious offset discussed in Section 
3.2.2. 

The access function for a value may change as instructions that manipu
late the value are generated. For example, suppose that we generate code to 
carry out the assignment in Figure 1O.l3a, starting from the machine state 
described by Figure 1O.13b. We might first consider generating a load 
instruction for b. Unfortunately, b is not addressable; the IBM 370 load 
instruction requires that the base be in a register. Thus we must first obtain a 
register (say, general register I) and load the base address for the activation 
record at level 2 into it. When this instruction has been generated, we 
change the value descriptor for the base to have a value class of 
general_register and indicate general register I. Generation of the load for 
b is now possible, and the value descriptor for b must be altered to reflect 
the fact that it is in (say) general register 3. 

There is one register descriptor for each register used by the code genera
tor. This includes both the registers controlled by the local register alloca
tion and globally-assigned registers with fixed interpretations. The local 
register allocation process discussed in Section 10.2.1 schedules movement 
of values into and out of registers. As we noted at the beginning of the 
chapter, however, only an estimate of the register requirements is possible. 
The code selection process, working with the machine state description, may 
be able to reduce the register count below that estimated by the local register 
allocator. As a consequence, it may be unnecessary to store an intermediate 
value whose node had been given the store attribute. For this reason, we 
defer the generation of store instructions requested by these attributes in the 
hope that the register holding the value will not actually be required before 
the value can be used again. Using this strategy, we may have to free the 
register 'unexpectedly' in a context where the value descriptor for the value 
is not directly accessible. This means that the register descriptor of a register 
containing a value must point to the value descriptor for the contained 
value. If the register must be freed, a store instruction can be emitted and 
the value descriptor updated to reflect the current location of the value. 

Immediately after a load or store instruction, the contents of a register are 
a copy of the contents of some memory location. This 'copy' relationship 
represents a condition that occurs during execution, and to specify it the 
register descriptor must be able to define a memory access function. This 
access function is copied into the register descriptor from a value descriptor 
at the time the two are linked; it might describe the location from which the 
register was loaded or that to which it was stored. Some care must be 
exercised in deciding when to establish such a relationship: The code gen-
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if/ree registers exist then choose one arbitrarily 
else if copy registers exist then choose the least-recently accessed 
else 

begin 
choose the least-recently accessed unique register; 
allocate a temporary memory location; 
emit a store instruction; 
end; 

if chosen register has an associated value descriptor then 
de-link the value descriptor; 

lock the chosen register; 

Figure 10.14. Register Management 

era tor must be able to guarantee that the value in memory will not be 
altered by side effects without explicitly terminating the relationship. Use of 
programmer-defined variables is particularly dangerous because of this 
requirement, but use of compiler-generated temporaries and activation 
record bases is safe. 

The register assignment algorithm should not make a random choice 
when asked to assign a register (Figure 10.14). If some register is in state 
free, it may be assigned without penalty. A register whose state is copy may 
be assigned without storing its value, but if this value is needed again it will 
have to be reloaded. The contents of a register whose state is unique must be 
stored before the register can be reassigned, and a locked register cannot be 
reassigned at all. All globally-allocated registers are locked throughout the 
simulation. The states of locally-allocated registers change during the simu
lation; they are always free at a label. 

As shown in Figure 10.14, the register assignment algorithm locks a regis
ter when it is assigned. The code selection routine requesting the register 
then links it to the proper value descriptor, generating any code necessary to 
place the value into the register. If the value is the result of a node with the 
store attribute then the register descriptor state is changed to unique. This 
makes the register available for reassignment, and guarantees that the value 
will be saved if the register is actually reassigned. When a value descriptor 
is destroyed, it is first de-linked from any associated register descriptor. The 
state of the register descriptor is changed to free if the register descriptor 
specifies no memory copy; otherwise it is changed to copy. In either case it 
is available for reassignment without any requirement to store its contents. 
The local register allocation algorithm of Section 10.2.1 guarantees that the 
simulator can never block due to all registers being locked. 

10.3.2. Code Transfonnation We traverse the structure tree in execu
tion order, carrying out a simulation of the target machine's behavior, in 
order to obtain the final transformation of the structure tree into a sequence 
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of instructions. When the traversal reaches a leaf of the tree, we construct a 
value descriptor for the object that the leaf represents. When the traversal 
reaches an interior node, a decision table specific to that kind of node is con
sulted. There is at least one decision table for every abstract operation, and 
if the traversal visits the node more than once then each visit may have its 
own decision table. The condition stubs of these decision tables involve 
attributes of the node and its descendants. 

Figure 10.15 shows a decision table for integer addition on the IBM 370 
that is derived from Table 10.11. The condition stub uses the form and loca
tion attributes discussed in Section 10.2.3 to select a single column, and the 
elements of the action stub corresponding to X's in that column are carried 
out in sequence from top to bottom. These actions are based primarily upon 
the value descriptors for the operands, but they may interrogate any of the 
node's attributes. They are basically of two kinds, machine state manipula
tion and instruction generation, although instructions must often be gen
erated as a side effect of manipulating the machine state. 

Four machine state manipulation actions appear in Figure 10.15: 
swap (I, r) simply interchanges the contents of the value descriptors for the 
left and right operands. A register is allocated by Ireg(l, desire), taking into 
account the preference discussed in Section 10.2.2. This action also gen
erates an instruction to load the allocated register with the value specified by 
value descriptor I, and then links that value descriptor to the register 

Result correct YYYYYYYYYYYYYYYYNNNNNNNNNNNNNNNN 
i correct YYYYYYYYNNNNNNNNYYYYYYYYNNNNNNNN 
It correct YYYYNNNNYYYYNNNNYYYYNNNNYYYYNNNN 
i in register YYNNYYNNYYNNYYNNYYNNYYNNYYNNYYNN 
It in register YNYNYNYNYNYNYNYNYNYNYNYNYNYNYNYN 

.6wap(i,lt} X X X XX X X X XX X X 
iJte.g (i, du.ur.e.) X X X X X X X X 
ge.n(A,i,lt} XXX XXX XXX XXX 
ge.n (AR, i, It) X X X X 
ge.n(S,i,lt} XXX XXX XXX XXX 
ge.n (SR, i, It) X X X X 
ge.n(LCR, t,t) X X XXXXXXXX X X 
6lte.e.(It) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
1te.6UU (i, "tOlte.) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

"correct" means the sign is not inverted 
1 = value descriptor of the left operand 
r = value descriptor of the right operand 
desire = desire attribute of the current node 
store = store attribute of the current node 
AR, A, S, SR and LNR are IBM 370 instructions 

Figure 10.15. IBM 370 Decision Table for +(integer,integer)integer 
Based on Table 10.11 
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descriptor of the allocated register. After the code to carry out the addition 
has been generated, registers that might have been associated with the right 
operand must be freed and the descriptor for the register holding the left 
operand must be linked to the value descriptor for the result. If the store 
attribute is true then the result register descriptor state is set to unique; other
wise it remains locked as discussed in Section 10.3.1. 

Figure 10.15 contains one action to generate the RR-format of the add 
instruction and another to generate the RX-format. A single action could 
have been used instead, deferring the selection to assembly. The choice 
between having the code generator select the instruction format and having 
the assembler select it is made on grounds of convenience. In our case the 
code generator possesses all of the information necessary to make the selec
tion; for machines with several memory addressing formats this is not 
always true because the proper format may depend upon the location 
assigned to an operand by the assembler. 

We must stress here a point made earlier: The code selection process, 
specified by the decision tables and the register assignment algorithm 
operating on the machine state, produces the final code. All previous attri
bution prepares for this process, gathering information but making no deci
sions. 

Decision tables occurring in the code generator usually have a 
comparatively small number of conditions (two to six), and well-known 
techniques for converting decision tables into programs can be applied to 
implement them. We can distinguish two essentially different methods: 
programmed decision trees and realization as data structures. The former 
method generally leads to long programs with large storage requirements. 
In the latter case the tables must be interpreted; the storage costs are smaller 
but the execution time is longer. Because each decision table is used infre
quently, we give priority to reduction of memory requirements over shorten
ing of execution time. Mixed-code approaches, based upon the frequency of 
use of the table, can also be followed. Programmed decision tables are most 
successful in small, simple compilers. The more cases and attributes that the 
code generator distinguishes, the more heavily the advantages of a data 
structure weigh. 

To represent the decision tables by data structures we first collect all of 
the possible actions into a large case statement. The actions can then be 
represented in the tables by their case selectors. In most cases the tables are 
(or are close to being) complete, so we can apply a method based upon the 
idea that the sequence of values for the conditions that characterize the pos
sible cases can be regarded as a mixed-radix number. The lower right qua
drant of the decision table (see Figure 10.15) is implemented as a Boolean 
matrix indexed by the action number (row) and the condition (column). An 
X corresponds to a true element, a blank to a false element. Instead of using 
a Boolean matrix, each column could also be coded as a list of the case 
labels that correspond to the actions which must be carried out. 
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10.4. Notes and References 

The memory _map module enters blocks into an area as they are delivered, 
regardless of whether or not gaps are introduced because of alignment con
straints. As noted in Chapter 3, such gaps can often be eliminated or 
reduced by rearrangement of the components of a composite object. Unfor
tunately, the problem of obtaining an optimum layout is a variant of the 
'knapsack problem' [Miller 1972], which is known to be NP-complete. 

The problem of optimal code generation for expression trees has been 
studied extensively. Proof that the problem is NP-complete was given by 
Bruno [1976]. Our treatment is derived from those of Bruno and Lassagne 
[1975] and Aho and Johnson [1976]. The basic method for estimating regis
ter usage is due to Sethi and Ullman [1970]. Multi-register machines were 
discussed by Aho, Johnson and Ullman [l977b], who showed that a polyno
mial algorithm for optimal code generation could be obtained if double
length values could occupy arbitrary pairs of registers. Unfortunately, most 
machines restrict double-length values to pairs of adjacent registers, and 
usually require that the first register of the pair have an even number. 

Targeting is a concept that is implicit in the notion of an inherited attri
bute. Wulf and his students [1975] were the first to make systematic use of 
targeting under that name, and our discussion of unary complement elimi
nation is based upon their work. 

Target attribution is described by an attribute grammar, and hence the 
semantic analysis and code generation tasks can be interfaced by merging 
their attribute grammars. If storage constraints require splitting of this com
bined attribution, the split should be made on the basis of traversals 
required by the combined attribute grammar. Thus each traversal may be 
implemented as a pass, and each pass may carry out both semantic analysis 
and code generation tasks. The specifications of the two tasks remain dis
tinct, however, their merging is an implementation decision that can be car
ried out automatically. 

'Peephole optimization' [McKeeman 1965] uses a machine simulation, 
and capitalizes upon relationships that arise when certain code fragments 
are joined together. Wilcox [197 I] proposed a code generator consisting of 
two components, a transducer (which essentially evaluates attributes) and a 
simulator (which performs the machine simulation and code selection). He 
introduced the concepts of value and register descriptors in a form quite 
similar to that discussed here. Davidson [1980] uses a simulation following a 
simple code selector based upon a depth-first, left-to-right traversal of the 
structure tree with no attempt to be clever about register allocation. He 
claims that this approach is easier to automate, and gives results approach
ing those of far more sophisticated techniques. 

Formulation of the code selection process in terms of decision tables is 
relatively rare in the literature, although they seem to be the natural vehicle 
for describing it. A number of authors [Elson 1970, Wilcox 1971, Waite 
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1974] have proposed special code generator description languages that 
effectively lead to programmed decision trees. Gries [1971] mentions deci
sion tables, but only in the context of a rather specialized implementation 
used by the IBM FORTRAN H compiler [Lowry 1969]. This technique, 
known as 'bit strips', divides the conditions into two classes. Conditions in 
the first class select a column of the table, while those in the second are sub
stituted into particular rows of the selected column. It is useful only when a 
condition applies to some (but not all) elements of a row. The technique 
precludes the use of a bit matrix because it requires each element to specify 
one of three possibilities (execute, skip and substitute) instead of two. 

Glanville and Graham [1978] use SLR(l) parse tables as a data structure 
implementation of the decision tables; this approach has also been used in 
the context of LALR(l) parse tables by lansohn and Landwehr [1982]. 

EXERCISES 

10.1. Complete the definition of the memory mapping module outlined in Figure 
10.1 for a machine of your choice. 

10.2. Devise a linear algorithm to rearrange the fields of a record to minimize 
waste space, assuming that the only possible alignments are I and 2. (The 
DEC PDPII and Inte18086 have this property.) 

10.3. [Aho 1976) Consider an expression tree attributed according to the rules of 
Figure lOA. 
a. State an execution-order traversal algorithm that will produce optimum 

code when arithmetic instructions are emitted at the postfix encounters of 
interior nodes. 

b. State the conditions under which LOAD and STORE instructions will be 
emitted during the traversal of (a). 

c. Show that the attribution of Figure 10.4 is inadequate in the case where 
some arithmetic operations can be carried out only by instructions that 
require one operand in memory. 

d. Show that optimum code can be produced in case (c) if it is possible to 
create a queue of pointers to the tree and use this queue to guide the 
execution-order traversal. 

lOA. Extend the attribution of Figure lOA to handle expression nodes with 
arbitrary numbers of operands, all of which must be in registers. 

10.5. [Bruno 1975) Suppose that the target computer has a stack of fixed depth 
instead of a set of registers. (This is the case for most floating point chips 
available for microprocessors.) Show that your algorithm of Exercise lOA 
will still work if extra constraints are placed upon the allowable permuta
tions. 

10.6. What changes would you make in your solution to Exercise lOA if some of a 
node's operands had to be in memory and others in registers? 

10.7. Show that the attribution rules of Figure 10.6 obey DeMorgan's law, i.e. that 
either member of the following pairs of LAX expressions leads to the same 
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set of attributes for a and b: 

not (a and b), not a or not b 
not (a or b), not a and not b 
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10.8. Modify Figure 10.6 for a language that does not permit short-circuit evalua
tion. What corresponding changes must be made in the execution-order 
determination? 

10.9. [Elson 19701 The PLiI LENGTH function admits optimizations of string 
expressions analogous to short-circuit evaluation of Boolean expressions: 
LENGTH (A I I B) becomes LENGTH (A) + LENGTH (B). (' I I' is the 
concatenation operator.) Devise targeting attributes to carry this informa
tion and show how they are propagated. 

10.10. Show that the unary complement elimination discussed in Section 10.2.3 also 
minimizes register requirements. 

10.11. Extend Table 10.8 to include division. 

10.12. Show that the following relation holds for the cost attribute (Figure 10.10) of 
any expression node: 

I cost [correct I. length - cost [inverse I. length I ,.:; L 

Where L is the length of a negation operator. (This condition must hold for 
all operations, not just those illustrated in Table 10.8.) What follows from 
this if register-memory instructions are also allowed? 

10.13. What changes would be required in Figure 10.10 for a machine with a 'load 
negative' instruction that places the negative of a memory value into a regis
ter? 

10.14. Modify Figure 10.9 for a machine with both register-register and register
memory instructions. Write a single set of attribution rules incorporating the 
tasks of both Figure 10.4 and Figure 10.10. 

10.15. Specify descriptors to be used in implementing LAX on some computer 
other than the IBM 370. Carefully explain any difference between your 
specification and that of Figure 10.12. 

10.16. Under what circumstances could a LAX code generator link register values 
to programmer-defined variables? Do you believe that the payoff would jus
tify the analysis required? 

10.17. There is no guarantee that the heuristic of Figure 10.14 will produce optimal 
code. Under what circumstances would the code improve when unique 
registers were chosen before copy registers? 

10.18. Give, for a machine of your choice, the remaining decision tables necessary 
to translate LAX trees involving simple integer operands and operators from 
Table A.2. 
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Assembly 

The task of assembly is to convert the target tree produced by the code gen
erator into the target code required by the compiler specification. This tar
get code may be a sequence of bit patterns to be interpreted by the control 
unit of the target machine, or it may be text subject to further processing by 
a link editor or loader. In either case, the assembler must determine 
operand addresses and resolve any issues left open by the code generator. 

Since the largest fraction of the compilers for most machines originate 
from the manufacturer, the manufacturer's target code format provides a de 
facto standard that the compiler writer should use: If the manufacturer's 
representation is abandoned then all access to the software already 
developed using other compilers, and probably all that will be developed in 
the future at other installations, is lost. For the same reason, it is best to use 
manufacturer-supplied link editors and loaders to carry out the external 
address resolution. Otherwise, if the target code format is extended or 
changed then we must alter not only the compilers, but also the resolution 
software that we had developed. We shall therefore assume that the output 
of the assembly task is a module rather than a whole program, and that 
external address resolution is to be provided by other software. (If this is not 
the case, then the encoding process is somewhat simplified.) 

Assembly is essentially independent of the source language, and should 
be implemented by a common module that can be used in any compiler for 
the given machine. To a large extent, this module can be made machine
independent in design. Regardless of the particular computer, it must be 
able to resolve operand addresses and encode instructions. The information 
required by different link editors and loaders does not vary significantly in 
content. In this chapter we shall discuss the two main subtasks of assembly, 

282 
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internal address resolution and instruction encoding, in some detail. We 
shall sketch the external address resolution problem briefly in order to indi
cate the kind of information that must be provided by the compiler; two 
specific examples of the way in which this information is represented can be 
found in Chapter 14. 

11.1. Internal Address Resolution 

Internal address resolution is the process of mapping the target tree onto a 
block of contiguous target machine memory locations, determining the 
addresses of all labels relative to the beginning of this block. We begin by 
assuming that the size of an instruction is fixed, and then show how this 
assumption can be relaxed. Special problems can arise from particular 
machine architectures, and we shall briefly discuss a representative example. 

11.1.1. Label Value Detennination We begin with the structure of the 
target tree discussed in Section 4.1.4, which can be characterized by the 
context-free rules of Figure 11.1. The attribution rules in Figure 11.1 gather 
information from the tree about the relationships among sequences 
(origin -..env) and the placement oflabels within the sequences (labeLenv). 
This information is exactly what is found in the 'symbol table' of a 
conventional symbolic assembler. It can easily be shown that Figure 11.1 is 
LAG( I), and the single traversal corresponds to 'pass l' of the conventional 
assembler. Clearly we could integrate this traversal with the code selection 
process in an implementation, but it remains conceptually distinct. 

The environments are lists whose elements have the types shown in Fig
ure 11.2a. A based origin element specifies an address expression stored as a 
tree, using linked records of the form shown in Figure 11.2h. This tree 
actually forms a part of the origin_env attribute; it is abstracted from the 
target tree by rules not shown in Figure 11.1, and delivered as the attribute 
expression.expr in the rule for sequence :: = expression nodes. We shall 
assume that all address computations either involve only absolute values or 
have the form relative ±absolute; situations requiring more complex calcu
lations can easily be avoided by the compiler. 

On the basis of the information in labeLenv and origin_env, every label 
can be assigned a value that is either absolute or relative to the origin of a 
sequence whose origin class is arbitrary. We could simply consider each 
arbitrary-origin sequence as a separate 'module' and terminate the internal 
address resolution process when the attribution of Figure 11.1 was complete. 
This is generally not done. Instead, we compute the overall length of each 
arbitrary -origin sequence and concatenate them, restating all but the first as 
based. The concatenated sequences form the relocatable portion of the pro
gram in which every label can be assigned a relocatable address - an 
address relative to the single arbitrary origin. 
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rule target _tree :: = sequences 

rule sequences :: = 
attribution 

sequences.labeLenv <- nil; 
sequences.origin_env <- nil; 

rule sequences :: = sequences sequence 
attribution 

sequences [l].label_env <-

sequences[2].labeLenv & sequence.origin-'!nv; 
sequences[I].origin_env <

sequences[2].origin_env & sequence.origin_env; 

rule sequence :: = nodes 
attribution 

nodes. base <- gennum; 
sequence.origin_env <-

Chapter 11. Assembly 

N _origin_element (nodes. base , nodes. length ,arbitrary) 

rule sequence :: = expression nodes 
attribution 

nodes.base <- gennum; 
sequence.origin_env <-

N _origin_element (nodes. base ,nodes. length, based, expression.expr); 

rule nodes :: = 
attribution 

nodes.labeLenv <- nil; 
nodes. length ..... 0; 

rule nodes :: = nodes operation 
attribution 

nodes[I).length <- nodes[2].length + instrJize(operation.instr); 

rule nodes :: = nodes constant 
attribution 

nodes[I).length <- nodes [2]. length + constJize(constant.value); 

rule nodes :: = nodes label 
nodes[I).labeLenv <

nodes[2].labeLenv & 
N _labeLelement (label. uid, nodes [I].base, nodes [2]./ength ); 

Figure 11.1. Target Tree Structure and Attribution 

Most programming languages do not offer the user a way to specify an 
absolute origin, and hence the compiler will create only relocatable target 
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type 
label_element = record 

uid : integer; 
base : integer; 
relative _address: integer 
end; 

(* Unique identification for the label *) 
(* Sequence to which the label belongs *) 
(* Address of the label in the sequence *) 

origin_element = record 
uid: integer; 
length: integer 
case k : origin_class of 

arbitrary: 0; 

(* Unique identification for the sequence *) 
(* Space occupied by the sequence *) 

based: (origin: addresLexp) 
end; 

a) Types used in the environments of Figure 11.1 

type 
address _exp = record 

case k : expr _class of 
absolute: 

(value: integer _value); (* Provided by the constant table *) 
relative: 

(label: integer); (* Unique identification of the referenced label *) 
computation: 

(rator: (add, sub); 
right, left: i address _exp ) 

end; 

b) Types used to represent address expressions 

Figure 11.2. The Environment Attributes 

code. If a particular implementation does require absolute sequences, there 
are two ways to proceed. The first is to fix the arbitrary origin and treat the 
entire program as absolute; the second is to resolve the addresses separately 
in the absolute and relocatable portions, resolving cross references between 
them by the methods of Section 11.2. The latter approach can also be taken 
when the source language allows the programmer to specify that portions of 
the program reside in read-only memory and others in read-write memory. 

11.1.2. Span-Dependent Instructions The assumption that the size of 
an instruction is fixed does not hold for all machines. For example, the con
ditional branch instructions of the PDPII use a single-byte address and can 
therefore transfer control a maximum of 127 words back or 128 words for
ward. If the branch target lies outside of this range then a sequence involv
ing a conditional branch over an unconditional jump must be used. The 
code generator cannot decide between these two possibilities, and hence it 
outputs an abstract conditional jump instruction for the assembler to 
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resolve. Clearly the size of the resulting code depends upon the relative 
locations of the target label and jump instruction. (A simple-minded assem
bler could always assume the worst case and generate the longest version of 
the jump.) 

A span-dependent instruction can be characterized by its location and the 
manner in which its length depends upon the label(s) appearing in its 
operand(s). For example, the length of a jump may depend upon the 
difference between the location of the jump and the location of its target; in 
rare cases the length of a constant-setting instruction may depend upon the 
value of an expression (LABEL I - LABEL 2). In the remainder of this sec
tion we shall consider only the former situation, and restrict the operand of 
the span-dependent instruction to a simple label. 

Span-dependence does not change the basic attribution of Figure ll.l, 
but it requires that an extra attribute be constructed. This attribute, called 
mod _list, consists of linked records whose form is given in Figure II.3a. 
Mod _list is initialized and propagated in exactly the same way as label_env . 
Elements are added to it at span-dependent instructions as shown in Figure 
11.3b. The function instr -size returns the minimum length of the span
dependent instruction, and this value is used to determine origin values as 
discussed in Section 11.1.1. 

The next step is to construct a relocation table that can be consulted when
ever a label value must be determined. Each relocation table entry specifies 

type 
mod _element = record 

base: integer; (* Sequence in which instruction appears *) 
relative _address: integer; (* Address of the instruction in the sequence *) 
operand: integer; (* Unique identification for the operand label *) 
ins!r: machine _op ; (* Characterization of the instruction *) 
end; 

a) Type used in mod _list 

rule nodes :: = nodes span _dependent _operation 
attribution 

nodes [I].length <-

nodes [2]. length + instr _size (span _dependent _operation. instr ); 
nodes [l].mod _list <-

nodes [2].mod _list& 
N .Jnod _element ( 

nodes [I]. base , 
nodes [2]. length , 
span _dependent _operation. operand _uid , 
span_dependent _operation.instr); 

b) Calculation of mod _list 

Figure 11.3. Span-Dependent Instructions 
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the total increase in size for all span-dependent instructions lying below a 
given address (relative or absolute). When the label address calculation of 
Section 11.1.1 indicates an address lying between two relocation table 
entries, it is increased by the amount specified in the lower entry. 

The properties of the span-dependent instructions are embodied in a 
module that provides two operations: 

Too --short (machine _op ,integer )boolean: Yields true if the instruction 
defined by machinLop cannot have its operand at the (signed) dis
tance from the instruction given by the integer. 

Lengthen (machine _op, integer )integer: Updates the given 
machine _op, if necessary, so that the instruction defined can have its 
operand at the (signed) distance given by the integer. Yields the 
increase in instruction size resulting from the change. 

The relocation table is built by the following algorithm: 
I. Establish an empty relocation table. 
2. Make the first element of mod _list current. 
3. Calculate the addresses of the span-dependent instruction represented by 

the current element of mod _list and its operand, using the current 
environments and relocation table. 

4. Apply too--short to the (signed) distance between the span-dependent 
instruction and its operand. If the result is false, go to step 6. 

5. Lengthen the instruction and update the relocation table accordingly. 
Go to step 2. 

6. If elements remain in mod _list, make the next element current and go to 
step 3. Otherwise stop. 

This algorithm has running time proportional to n2 in the worst case (n is 
the number of span-dependent instructions), even when each span
dependent instruction has more than two lengths. 

Span-dependency must be resolved separately in each portion of the pro
gram that depends upon a different origin (see the end of Section 11.1.1). If 
span-dependent instructions provide cross-references between portions 
based on different origins then either all analysis of span-dependence must 
be deferred to external address resolution or some arbitrary assumption 
must be made about the cross-referencing instructions. The usual approach 
is to optimize span-dependent instructions making internal references and 
use the longest version of any cross-referencing instruction. 

11.1.3. Special Problems The IBM 370 and its imitators have a short 
address field and do not permit addressing relative to the program counter. 
This is a design flaw that means the general-purpose registers must be used 
as base registers to provide addressability within the code sequence. Such 
addressability is required for two purposes: access to constants and 
specification of jump targets. The code generator could, as a part of the 
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memory mapping process, map all constants into a contiguous block of 
memory and determine the number of base registers required to provide 
addressability for this block. Given our decomposition of the compilation 
process, however, it is impossible to guarantee that the code generator can 
allocate the minimum number of base registers needed for jump target 
specification. 

The number of code base registers required for any procedure can be 
reduced to two, at the cost of increasing the size of a jump instruction from 4 
bytes to 8: One of the two registers holds the address of the procedure's first 
instruction. Any jump target is defined by its address, t, relative to this 
address. Let t = 4096q +d , such that 0 < d < 4096 will fit the displacement 
field of an RX-format instruction. Assuming that the address of the first 
instruction is in register 10 and the second register allocated for code basing 
is 9, a jump to t becomes 

LH 9,CONS+2*q(l0) 
BC MASK,d(9,1O) 

(Here 'CONS' is an array of halfword values for 4096q and 'MASK' is the 
condition code mask defining the branch condition.) 

By performing additional analysis of the code sequence, it may be possi
ble to avoid expanding some of the jumps. The value of q (and hence the 
contents of register 9) is easily determined at every point in the program. If 
the target of a jump has the same q as is in force at the location of the jump 
then no expansion is necessary. Effectively, jump becomes a span
dependent instruction. The problem of finding the minimum number of 
jumps that must be expanded is NP-complete, but a linear algorithm that 
never shortens a previously-generated jump gives adequate results in prac
tice. 

11.2. External Address Resolution 

External address resolution combines separately-compiled modules into a 
complete program or simply a larger module. Component modules may 
constitute a part of the input text, or may be extracted automatically from 
one or more libraries. They may have originally been coded in a variety of 
programming languages, and translated by different compilers. (This last is 
only possible when all of the compilers produce target code using a common 
representation. ) 

We restrict ourselves here to the basic problems of external address reso
lution and their solution. To do so we must assume a particular code for
mat, but this should in no way be taken as advice that the compiler writer 
should design his own representation! As noted at the beginning of the 
chapter, we strongly advocate use of manufacturer-supplied link editors and 
loaders for external address resolution. 
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11.2.1. Cross-Referencing In many respects, external address resolu
tion is analogous to internal address resolution: Each module is a single 
code sequence with certain locations (usually called entry points, although 
they may be either data or code addresses) distinguished. These locations 
are analogous to the label nodes in the internal address resolution case. The 
module may also contain address expressions that depend upon values (usu
ally called external references) not defined within that module. These values 
are analogous to the label references in the internal address resolution case. 
When the modules are combined, they can be considered to be a list of 
independent code sequences and all of the techniques discussed in Section 
11.1 can be carried over. 

There can be some benefit in going beyond the analogy discussed in the 
previous paragraph, and simply deferring the internal address resolution 
until all modules have been gathered together. Under those circumstances 
one could optimize the length of inter-module references as well as intra
module references (Section 11.1.2). We believe that the benefits are not 
commensurate with the costs, however, since inter-module references should 
be relatively rare. 

Two basic mechanisms are available for establishing inter-module refer
ences: transfer vectors and direct substitution. A transfer vector is best suited 
to references involving a transfer of control. It is a block of memory, 
included in each module that contains external references, consisting of one 
element for each distinct external symbol referenced (Figure 11.4). The 
internal address resolution process replaces every external reference with a 
reference to the corresponding element of the transfer vector, and the exter
nal address resolution process fills each transfer vector element with the 
address of the proper entry point. When the machine architecture permits 
indirect addressing, the initial reference is indirect and may be either a con-

procedure ex (x, y : real): real; 
var 

a, b: real; 
begin 
a: = sign (x )*sqrt(abs(x »; 
b: = sign (y )*sqrt(abs(y»; 
ex:=(a -b)/(a +b) 
end; (* ex *) 

a) External references 

abs 
sign 
sqrt 

b) Transfer vector for procedure ex 

Figure 11.4. Transfer Vectors 
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trol or a data reference. If the machine does not provide indirect addressing 
via main memory, the transfer vector address must be loaded into a base 
register for the access. When the address length permits jumps to arbitrary 
addresses, we might also place an unconditional jump to the entry point in 
the transfer vector and implement a call as a call to that transfer vector 
entry. 

Direct substitution avoids the indirection inherent in the transfer vector 
mechanism: The actual address of an entry point is determined during 
external address resolution and stored into the instruction that references it. 
Even with the transfer vector mechanism, direct substitution is required 
within the transfer vector itself. In the final analysis, we use a transfer vector 
because it reduces to one the number of changes that must be made when 
the address of an entry point changes, and concentrates these changes at a 
particular point in the program. Entry point addresses may change stati
cally, as when a module is newly compiled and bound without altering the 
program, or they may change dynamically, as when a routine resides in 
memory temporarily. For example, service routines in an operating system 
are often 'transient' - they are brought into memory only when needed. 
The operating system provides a transfer vector, and all invocations of ser
vice routines must go via this transfer vector. When a routine is not in 
memory, its transfer vector entry is replaced by a jump to a loader. Even if 
the service routines are not transient, a transfer vector is useful: When 
changes made to the operating system result in moving the service routine 
entry points, only the transfer vector is altered; there is no need to fix up the 
external references of all user programs. (Note that in this case the transfer 
vector is a part of the operating system, not of each module using the operat
ing system as discussed in the previous paragraph. If the vector occupies a 
fixed location in memory, however, it may be regarded either as part of the 
module or as part of the operating system.) 

In the remainder of this section we shall consider the details of the direct 
substitution mechanism. As pointed out earlier, this is analogous to internal 
address resolution. We shall therefore concern ourselves only with the 
differences between external and internal resolution. These differences lie 
mainly in the representation of the modules. 

A control dictionary is associated with each module to provide the follow
ing information: 

• Length of the module. 
• Locations of entry points relative to the beginning of the module. 
• Symbols used to denote entry points and external values. 
• Fields within the module that represent addresses relative to the begin-

ning of the module. 
• Fields within the module that represent external references. 

Additional information about the size of external areas may also be carried, 
to support external static data areas such as FORTRAN COMMON. 
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The module length, relative entry point addresses and symbols are used 
to establish an attribute analogous to labeLelement. Note that this requires 
a traversal of the list of modules, but not of the individual modules them
selves. After this attribute is known, the fields representing relative and 
external addresses must be updated. A relative address is updated by adding 
the address of the module origin; the only information necessary to charac
terize the field is the fact that it contains a relative address. One common 
way of encoding this information is to associate relocation bits with the 
module text. The precise relationship between relocation bits and fields 
depends upon the machine architecture. For example, on the PDP}} a 
relative address occurring in an instruction must occupy one word. We 
might therefore use one relocation bit per word, } indicating a relative 
address. Note that this encoding precludes other placement of relative 
addresses, and may therefore impose constraints upon the code generator's 
mapping of data structures to be initialized by the compiler. 

To characterize an external reference we must specify the particular 
external symbol involved in addition to the fact that an external reference 
occurs in the field. The concept of a relocation bit can be extended to cover 
the existence of an external reference by adding a third state: For a particu
lar field the possibilities are 'no change', 'relative' and 'external'. The field 
itself then contains an integer specifying the particular external symbol. 

There are two disadvantages to this strategy for characterizing external 
references. The most important is that it does not permit an address relative 
to an external symbol, since the field must be used to define the symbol 
itself. Data references, especially those to external arrays like FORTRAN 
COMMON, tend to violate this constraint. A second disadvantage is that 
the number of relocation bits for every field is increased, although only a 
small minority of the fields may actually contain external references. Both 
disadvantages may be overcome by maintaining a list of all fields containing 
external references relative to a particular symbol. The field itself contains 
the relative address and the symbol address is simply added to it, exactly as 
a relative address is updated. (This same strategy can be used instead of 
relocation bits for relative addresses on machines whose architectures tend 
to make relative addresses infrequent; the IBM 370 is an example.) 

The result of the cross-referencing process could be a ready-to-run pro
gram, with all addresses absolute, or it could be single module with relative 
addresses, entry points and external references that can be used as input to 
further linkage steps. In the latter case, the input must specify not only the 
modules to be linked but also the entry points to be retained after linkage. 
External references will be retained automatically if and only if they do not 
refer to entry points of other input modules. 

11.2.2. Library Search A language such as Ada requires that the 
semantic analyzer verify the correctness of all inter-module references. 
Thus during assembly all of the modules needed are already known. This is 
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not the case for languages such as FORTRAN. Mathematical subroutines, 
I/O procedures, environment inquiries and the like are almost always sup
plied by the installation and placed in a library in target code format. After 
the first traversal of the input module list, external references not 
corresponding to entry points may be looked up in this library. If a module 
in the library has one or more of these symbols as entry points then it is 
added to the list and processed just as though it had come from the input. 
Clearly more than one library may be searched in the process of satisfying 
external references; the particular libraries and order of search are specified 
by the user. 

A library is often quite large, so it would be inefficient to scan all of the 
modules in a search for entry points. The entry point information is there
fore normally gathered into a catalog during the process of constructing the 
library, and only the catalog is examined to select appropriate modules. 
Since the modules of a library may have a high degree of internal linkage, 
the catalog should also specify the external symbols referenced by each 
module. After the modules necessary to satisfy user external references have 
been determined, a transitive closure operation adds any others required by 
those already selected. 

11.3. Instruction Encoding 

After all attributes of target tree nodes have been computed, the information 
must be converted into target code suitable for execution. This process is 
similar to the code selection discussed in Section 10.3, but somewhat 
different specification techniques are appropriate. After discussing an 
appropriate interface for the target code converter, we shall present an 
encoding mechanism and a specification language. 

11.3.1. Target Code We regard the target code as an abstract data type 
defined by eight operations: 

Module JIOme (identifier --..String): Establish the name of the module being 
generated. 

Module --..Size (length): Specify the length of the block of contiguous 
memory locations required for the module being generated. 

Entry -point (identifier --..String): Establish an entry point to the module be
ing generated. 

Set-location (relative ...11d.dress ): Specify the load point at which subse
quent target code is to be placed in memory. 

Absolute -lext (target -lext,length ): Place encoded target text into memory 
at the current load point. The length argument gives the amount of text to 
be placed. After the text has been placed, the current load point is the point 
immediately beyond it. 
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InternaL.reference(relative.....address): Place an encoded relative address 
into memory at the current load point. After the address has been placed, 
the current load point is the point immediately beyond it. 

ExternaL.reference (offset, identifier --string): Place an external reference 
into memory at the current load point. The offset is the address relative to 
the external symbol identifier--string. After the reference has been placed, 
the current load point is the point immediately beyond it. 
These operations provide the information summarized in Section 11.2, and 
would constitute the interface for a module that actually produced a target 
code file. Some manufacturer's software may place restrictions upon 
parameter values, and some may provide facilities (such as repetitions of 
data values) that cannot be reached via these operations. 

Module _name, module --size and entry _point all provide specific infor
mation for the control dictionary. Set-location is used to reset the current 
load point at the beginning of a code sequence. It embodies the 'scatter 
loading' concept in which the target code is broken up into a number of 
compact blocks, each of which carries the address at which it is to be placed. 
These addresses need not be contiguous. We shall consider two specific 
implementations of this concept in Section 14.2. 

Only a small range of length parameters is possible for the absolute _text 
operation on any given machine: There is a fixed set of instruction and 
instruction fragment lengths, and most constants have a length dependent 
only upon their type and not upon their value. One notable exception is the 
string constant, which must be broken into smaller units to be used with the 
absolute _text operation. 

There is no length parameter specified for an internal or external refer
ence. On most computers, relative addresses are only useful as operands of 
a specific length, and hence that length is assumed. 

Absolute text, internal references and external references are dis
tinguished because they may be represented in very different ways by the 
manufacturer's software. For a particular target computer there may even 
be several operating systems with quite different target code formats. It is 
therefore wise for the compiler writer to design his target code module 
according to the abstract data type given here instead of attempting to 
merge absolute_text, internaLreference and external...Jeference into one 
operation and inserting relocation bits explicitly. 

11.3.2. The Encoding Process Each target tree node represents a label, 
storage reservation, constant or abstract machine instruction. Label nodes 
are ignored by the encoding process, and storage reservation nodes simply 
result in invocations of the set _location operation. The remaining nodes 
must be encoded by invoking one or more of the last three operations 
defined in the previous section. 

Constants may appear as literal values to be incorporated directly into the 
target code, or they may be components of address expressions. In the latter 
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case, the result of the expression could be used as data or as an operand of 
an instruction. Literal values must be converted using the internal-to-target 
conversion operations of the constant table (Section 4.2.2), and then inserted 
into the target code by absolute _text. An address expression is evaluated as 
outlined in Exercise 11.9. If the result is used as data then the appropriate 
target code operation is used to insert it; otherwise it is handled by the 
instruction encoding. 

In the simplest case the abstract instructions correspond to unique opera
tion codes of the real machine. In general, however, the correspondence is 
not so simple: One abstract operation can represent several instructions, or 
one of several operation codes could be appropriate depending upon the 
operand access paths. Decisions are thus made during instruction encoding 
on the basis of the abstract operator and the attributes of the operand(s) just 
as in the case of code generation. 

The basic instruction encoding operations are called formats. They are 
procedures that take sets of values and add them to the target code so that 
the result is a single instruction. These procedures sometimes correspond to 
the instruction formats recognized by the target machine's control unit, and 
hence their name. In many cases, however, the instruction format shows 
regularities that can be exploited to reduce the number of encoding formats. 
For example, the five instruction formats of the IBM 370 (Figure l1.5a) 
might correspond to only three encoding formats (Figure II.Sb). 

An instruction is encoded by calling a sequence of one or more format
encoding procedures. The process can be described in a language resem
bling a normal macro assembly language. Figure 11.6 shows a portion of a 
description of the IBM 370 instruction encoding cast in this form. Each 
macro body specifies the sequence of format invocations, using constants or 
macro parameters (denoted by the character '%' followed by the position of 
the parameter) as arguments. A separate directive, NAME, is used to asso
ciate the macro body with an instruction because many instructions can 
often use the same encoding procedure. NAME directives may specify an 
argument, which becomes parameter 0 of the macro. In Figure 11.6 the 
NAME directive has been used to supply the hexadecimal operation code 
for each instruction. (A hexadecimal constant begins with a digit and ends 
with 'H'.) We use the IBM mnemonics to denote the instructions; in prac
tice these macros would be represented by tables and the node type of an 
abstract operation would appear in place of the symbolic operation code. 

Formal parameters of the macros in Figure 11.6 are described by com
ments. (Strings following ';' on the same line are comments.) The 
corresponding actual parameters are the operands of the target tree node, 
and their values will have been established during code generation or 
address resolution. Note that a 'memory' operand includes its base register 
but not an index register. Thus the 'FM' format takes a single memory 
address and encodes it as a base and displacement. This reflects the fact that 
the index register is assigned by the code generator, while the base register is 
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RRI opcode RI I R21 

RXI opcode RI I X21 B2 02 

RS I opcode RI I R31 B2 02 

SI opcode 12 BI 01 

SS opcode Ll L2 BI 01 1 B21 02 

a) Instruction formats 

FRI opcode RI R2 

PI opcode I 

FMI B 0 

b) Encoding formats 

Figure 11.5. IBM 370 Formats 

determined during assembly. In other words, the abstract IBM 370 from 
which these macros were derived did not have the concept of a based access. 

Consider the LAX expression a +b i [c). If a were in register I, b i in 
register 2 and c (multiplied by the appropriate element length) in register 3 
then the addition could be performed by a single IBM 370 add instruction 
with R I = I, B2=2, X2=3 and D2 a displacement appropriate to the lower 
bound of the array being referenced. Given the macros of Figure 11.6, how
ever, this instruction could not be encoded because the abstract machine has 
no concept of a based access. Clearly one solution to this problem is to give 
FM two arguments and make the base register explicit in the abstract 
machine; another is to provide the abstract machine with two kinds of 
memory address: one in the code sequence and the other in data memory. 
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AR NAME 
SR NAME 

MACRO 
FR 
ENDM 

A NAME 
S NAME 

MACRO 
FR 
FM 
ENDM 

AP NAME 
SP NAME 

MACRO 
FR 
FM 
FM 
ENDM 

IAH 
IBH 

%0,%1,%2 

5AH 
5BH 

%0,%1,%3 
%2 

OFAH 
OFBH 

%0,%2,%4 
%1 
%3 

Chapter 11. Assembly 

; Register,Register 

; Register,Memory,Index 

; Memory,Length,Memory,Length 

Note: Suffix 'H' denotes hexadecimal. 

Figure 11.6. IBM 370 Instruction Encoding 

We favor the latter solution because these two kinds of memory address are 
specified differently. The code generator defines the former by a label and 
the latter by a base register and displacement. The assembler must pick a 
base register for the former but not the latter. Because of these differences it 
is probably useful to have distinct target node formats for the two cases. 

Figure 11.7 shows a modification of the macros of Figure 11.6 to allow 
our second solution. In Figure 11.7a the add instruction is associated with 
two macro bodies, and one of the parameters of the first is specified. The 
specification gives the attribute that the operand must possess if this macro is 
to be selected. By convention, the macros associated with a given name are 
checked in the order in which they appeared in the definition; parameters 
with no specified attributes match anything. Figure 11.7b combines the two 
bodies, using a conditional to select the proper format invocation. Here the 
operator '@' is used to select the attribute rather than the value of the param
eter. This emphasizes the fact that there are two components of an operand, 
attribute and value, which must be distinguished. 

What constitutes an attribute of an operand, and what constitutes a 
value? These questions depend intimately upon the design of the abstract 
machine and its relationship to the actual target instructions. We shall 
sketch a specific mechanism for defining and dealing with attributes as an 
illustration. 
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A NAME 
S NAME 

MACRO 
FR 
FMI 
ENDM 
MACRO 
FR 
FM2 
ENDM 

A NAME 
S NAME 

MACRO 
FR 
IF 
FMI 
ELSE 
FM2 
ENDIF 
ENDM 

5AH 
5BH 
,LABEL 
%0,% 1,%3 
%2 

%0,%1,%3 
%2,%4 

; Register, Memory, Index 

; Register,Base,Index,Displacement 

a) Selection of different macros 

5AH 
5BH 

%0,%1,%3 
@%2=foLABEL 
%2 

%2,%4 

; Either pattern 

b) Conditional within a macro 

Figure 11.7. Two Memory Operand Types 

The value and attribute of an operand are arbitrary bit patterns of a 
specified length. They may be accessed and manipulated individually, using 
the normal arithmetic and bitwise-logical operators. Any expression yields a 
value consisting of a single bit pattern. Two expressions may be formed into 
a value/attribute pair by using the quote operator: e 1 "e2. (See Figure 11.8 
for examples.) An operand is compatible with a parameter of a macro if the 
following expression yields true: 

(@operand and @parameter) = parameter 

Thus the operand R2 would be compatible with the parameters R2, 
EVENGR and GENREG in Figure 11.8; it would not be compatible with 
ODDGR or LABEL. Clearly any operand is compatible with ANY, and it is 
this object that is supplied when a parameter specification is omitted. 

Macro languages similar to the one sketched here have been used to 
specify instruction encoding in many contexts. Experience shows that they 
are useful, but if not carefully implemented can lead to very slow processors. 
It is absolutely essential to implement the formats by routines coded in the 
implementation language of the compiler. Macros can be interpreted, but 
the interpretive code must be compact and carefully tailored to the interpre
tation process. The normal implementation of a macro processor as a string 
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ANY 
LABEL 
EVENGR 
ODDGR 
GENREG 
RO 
RI 
R2 
R3 

Chapter 11. Assembly 

SET 0"0 ; Any operand 
SET 10H"lOH ; Code sequence memory operand 
SET 20H"21H ; Even-numbered general register 
SET 21H"21H ; Odd-numbered general register 
SET 20H"20H ; Any general register 
SET 0"20H ; General register 0 
SET 1"21 H ; General register I 
SET 2"22H ; General register 2 
SET 3"23H ; General register 3 

a) Symbol definitions 

LABEL 
@LABEL 
RO+I 
@RO-I 
RI+@LABEL 
@R3 and @EVENGR 
@R3 and @ODDGR 

b) Expressions 

= 10H 
= lOH 
= I 
= 17H 
= llH 
= 21H 
= 21H 

Figure 11.8. Values and Attributes 

manipulator is inadequate. Names should be implemented as a compact set 
of integers so that access to lists of macro bodies is direct. Since the number 
of bodies associated with a name is usually small, linear search is adequate. 
Note that a tradeoff is possible between selection on the basis of the name 
and selection on the basis of attributes. 

As a by-product of the encoding, it is possible to produce a symbolic 
assembly code version of the program to aid in the debugging and mainte
nance of the compiler itself. If the macro names are specified symbolically, 
as in Figures 11.6 and 11.7, these can be used as symbolic operation codes in 
the listing. The uid that appears as an intrinsic attribute of the label nodes 
can be converted into a normal identifier by prefixing a letter. Only con
stants need special treatment: a set of target value-to-character conversion 
procedures must be provided. 

11.4. Notes and References 

Assembly is seldom provided as a cleanly-separated module that can be 
invoked by any compiler. Exceptions to this rule are IBSYS [Talmadge 
1963] and EMAS [Stephens 1974], both of which contain standard assembly 
modules. The IBSYS assembler requires the target code tree to reside on a 
sequential file, while EMAS makes a collection of assembly procedures 
available as part of the standard library. IBM chose not to follow the IBSYS 
example in OS/360, probably because of complaints about performance 
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degradation due to the need to explicitly write the target code tree. 
The idea of using separate code sequences instead of specific storage 

reservation nodes in the target tree was discussed by Mealy [1963]. Tal
madge [1963] shows how complex addressing relationships among 
sequences can be implemented. His philosophy was to provide complete 
flexibility in the assembler (which was written once for each machine) in 
order to reduce effort that would otherwise be duplicated in every compiler. 
In practice, it seems that the duplicated effort is generally required to sup
port quality code generation. Thus the complexity does not occur in target 
code produced by a compiler, but it is often found in symbolic assembly 
code produced by human programmers. 

Several 'meta-assemblers' have been proposed and used to implement 
symbolic assembly languages. These systems provide mechanisms for speci
fying the instruction encoding process in terms of formats and macros as dis
cussed in Section 11.3.2. Most of the basic ideas are covered by Graham 
and Ingerman [1965], but the concept of including attributes in the pattern 
match does not occur until much later [Language Resources 1981]. 

The problem of span-dependence has been studied by a number of 
authors. Our treatment follows that of Hanglberger [1977] and Szymanski 
[1978], and is specially adapted for use in a compiler. In symbolic assem
blers, more complex address expressions may appear and the order of the 
algorithm may be altered thereby. 

EXERCISES 

11.1. Complete Figure 11.1 by adding rules to describe address expressions and 
construct the attribute expression. expr. 

11.2. [Galler 1964] Consider the problem of mapping storage described by FOR
TRAN COMMON, DIMENSION, EQUIVALENCE and DATA state
ments onto a sequence of contiguous blocks of storage (one for each COM
MON area and one for local variables). 
a. How can these statements be translated into a target tree of the form dis

cussed in Section 4.2.2 and Figure II.I? 
b. Will the translation you describe in (a) every produce more than one 

arbitrary-origin sequence? Carefully explain why or why not. 
c. Does your target tree require any processing by the assembler in addition 

to that described in Section 11.1.1? If so, explain why. 

11.3. [Talmadge 1963] Consider the concatenation of all arbitrary-origin sequences 
discussed in Section 11.1.1. 
a. Write a procedure to determine the length of an arbitrary-origin sequence. 
b. Write a procedure to scan origilLenv, finding two arbitrary-origin 

sequences and concatenating them by altering the origilLelement record 
for the second. 

11.4. Consider the implementation of the span-dependence algorithm of Section 
11.1.2. 
a. Show that the algorithm has running time proportional to n 2 in the worst 
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case, where n is the number of span -dependent instructions. 
b. Define a relocation table entry and write the update routine mentioned in 

step (5) of the algorithm. 

11.5. [Szymanski 1978] Modify the span-dependence analysis to allow target 
expressions of the form label ± constant. 

11.6. Consider the code basing problem of Section 11.1.3. 
a. Define any attributes necessary to maintain the state of q within a code 

sequence, and modify the rules of Figures 11.1 and IIJ to include them. 
b. Explain how the operations too_short and lengthen (Section 11.1.2. must 

be altered to handle this case. Would you prefer to define other opera
tions instead? Explain. 

11.7. [Robertson 1979] The Data General Nova has an 8-bit address field, 
addressing relative to the program counter is allowed, and any address may 
be indirect. Constants must be placed in the code sequence within 127 
words of the instruction that references them. If a jump target is further than 
127 words from the jump then the address must be placed in the code 
sequence as a constant and the jump made indirect. (The size of the jump 
instruction is the same in either case.) 
a. Give an algorithm for placing constants that takes advantage of any 

unconditional jumps already present in the code, placing constants after 
them. 

b. Indicate how the constant blocks might be considered span-dependent 
instructions, whose size varies depending upon whether or not they con
tain jump target addresses. 

c. Show that the problem of optimizing the span-dependence in (b) is NP
complete. 

11.8. [Talmadge 1963] Some symbolic assemblers provide 'multiple location 
counters', where each location counter defines a sequence in the sense of 
Section 11.1.1. Pseudo operations are available that allow the user to switch 
arbitrarily from one location counter to another. 
a. Show how a target tree could represet arbitrary sequence changes by 

using internally-generated labels to associate 'pieces' of the same 
sequence. 

b. Some computers (such as the Control Data Cyber series) have instruc
tions that are smaller than a single memory element, but an address refers 
only to an entire memory element. How could labels be represented for 
such a machine? How does the choice of label representation impact the 
solution to (a)? 

c. What changes to Figure ILl would be needed if we chose not to 
represent arbitrary sequence changes by internally-generated labels, but 
instead gave every 'piece' of the same sequence the same uid? 

d. If we used the representation for sequences suggested in (c), how would 
the answer to (b) change? 

11.9. The ultimate value of an address embedded in the target code must be either 
a number or a pair (external symbol, number). A number alone may 
represent either a numeric operand or a relative address. 
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a. Suppose that A, Band C are labels. What form does the value of 
(A+B)-C take? Why is (A+B)+C a meaningless address expression? 

b. Specify an attribute that could be used to distinguish the cases mentioned 
in (a). 

c. If A were an external symbol, would your answer to (a) change? Would 
your answer to (b) change? How? 

d. Would you allow the expression (A+B)-(A+C), A an external symbol, 
Band C labels? What form would its value take? 

e. Use an attribute grammar to define the language of legal address expres
sions. Make the value of the expression an attribute of the root. 

11.10. [Hedberg 1963] What requirements are placed upon the external address 
resolution process by FORTRAN COMMON blocks? Quote the FOR
TRAN standard to support your position, and then explain how these 
requirements might be satisfied. 

11.11. Suppose that the target machine provided an instruction to add an immedi
ate value to a register, but none to subtract an immediate value from a regis
ter. The addition is, however, a 2's complement addition so that subtraction 
can be accomplished by adding the complement of an immediate value. 
How would you provide the complement of a relative address as an immedi
ate operand? 

11.12. [GE 1965] Several utility modules may require the same support functions, 
but optimizations may arise from integrating these support functions with 
the utility modules. The result is that several modules may have identical 
entry points for the support functions but differ in other entry points. Devise 
a library catalog that will distinguish between primary and secondary entry 
points: A module will be selected only if one or more of its primary entry 
points corresponds to an unsatisfied external reference. Once a module has 
been selected, however, secondary entry points can be used to satisfy exter
nal references. Comment upon any user problems you foresee. 



CHAPTER 12 
Error Handling 

Error handling is concerned with failures due to many causes: errors in the 
compiler or its environment (hardware, operating system), design errors in 
the program being compiled, an incomplete understanding of the source 
language, transcription errors, incorrect data, etc. The tasks of the error 
handling process are to detect each error, report it to the user, and possibly 
make some repair to allow processing to continue. It cannot generally 
determine the cause of the error, but can only diagnose the visible symp
toms. Similarly, any repair cannot be considered a correction (in the sense 
that it carries out the user's intent); it merely neutralizes the symptom so that 
processing may continue. 

The purpose of error handling is to aid the programmer by highlighting 
inconsistencies. It has a low frequency in comparison with other compiler 
tasks, and hence the time required to complete it is largely irrelevant, but it 
cannot be regarded as an 'add-on' feature of a compiler. Its influence upon 
the overall design is pervasive, and it is a necessary debugging tool during 
construction of the compiler itself. Proper design and implementation of an 
error handler, however, depends strongly upon complete understanding of 
the compilation process. This is why we have deferred consideration of 
error handling until now. 

It is perhaps useful to make a distinction between the correctness of a sys
tem and its reliability. The former property is derived from certain assump
tions regarding both the primitives upon which the system is based and the 
inputs that drive it. For example, program verification techniques might be 
used to prove that a certain compiler will produce correct object programs 
for all source programs obeying the rules of the source language. This 
would not be a useful property, however, if the compiler collapsed whenever 
some illegal source program was presented to it. Thus we are more 
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interested in the reliability of the compiler: its ability to produce useful 
results under the weakest possible assumptions about the quality of the 
environment, input data and human operator. Proper error handling tech
niques contribute to the reliability of a system by providing it with a means 
for dealing with violations of some assumptions on which its design was 
based. (Theoretically, of course, this could be regarded simply as a relaxa
tion of those assumptions; pragmatically, techniques for achieving correct
ness and reliability are quite different.) 

We shall begin this chapter by considering some general principles of 
error handling. A distinction will be made between errors detectable at 
compilation time and errors whose symptoms do not appear until execution 
time. The compiler must deal with those in the former class directly, and 
must provide support for the run-time system that allows it to handle those 
in the latter class. Section 12.2 further classifies compiler-detected errors, 
and explains methods of recovering from erroneous input in order to obtain 
as much diagnostic information as possible from a single run. Support for 
run-time error handling is considered in Section 12.3. 

12.1. General Principles 

The class of detectable errors is determined by the design of the program
ming language, not the design of the compiler. An error handler should 
recognize and repair all detectable errors occurring in a program. Unfor
tunately, this goal often conflicts with the principle that a correct program 
should pay nothing for error handling. One compromise is to subdivide the 
detectable errors into several classes and proceed in a stepwise fashion: The 
detection of errors in different classes is provided for by distinct options in 
the compiler or controlled by additional monitoring code during execution. 

Almost by definition, error handling involves a mass of special cases and 
exceptions to rules. It is thus very difficult to provide any sort of clean, 
theoretical foundation for this aspect of the compilation process. What we 
shall try to do in this section is to classify errors and outline the broad stra
tegies useful in dealing with these classes. 

12.1.1. Errors, Symptoms, Anomalies and Limitations We distin
guish between the actual error and its symptoms. Like a physician, the error 
handler sees only symptoms. From these symptoms, it may attempt to diag
nose the underlying error. The diagnosis always involves some uncertainty, 
so we may choose simply to report the symptoms with no further attempt at 
diagnosis. Thus the word 'error' is often used when 'symptom' would be 
more appropriate. 

A simple example of the symptom/error distinction is the use of an unde
clared identifier in LAX. The use is only a symptom, and could have arisen 
in several ways: 



304 Chapter 12. Error Handling 

• The identifier was misspelled on this use. 

• The declaration was misspelled or omitted. 

• The syntactic structure has been corrupted, causing this use to fall 
outside of the scope of the declaration. 

Most compilers simply report the symptom and let the user perform the 
diagnosis. 

An error is detectable if and only if it results in a symptom that violates 
the definition of the language. This means that the error handling procedure 
is dependent upon the language definition, but independent of the particular 
source program being analyzed. For example, the spelling errors in an 
identifier will be detectable in LAX (provided that they do not result in 
another declared identifier) but not in FORTRAN, which will simply treat 
the misspelling as a new implicit declaration. 

Our goal in implementation should be to report each detectable error at 
the earliest opportunity. If the symptom can be noticed at compile time, 
then we should do so. Some care must be taken, however, not to report 
errors before their symptoms occur. For example, the LAX expression (1/0) 
conforms to the syntax and static semantics of the language; the symptom 
'division by zero' only occurs when the expression is actually evaluated dur
ing execution. It is important that the compiler not report an error in this 
case, even though it might detect the problem (say, while folding constants). 
The reason is that this expression may never actually be evaluated, and 
hence the program may not be incorrect at all. (Another possibility is that 
the programmer is attempting to force an execution-time error, perhaps to 
check out a new recovery mechanism.) 

We shall use the term anomaly to denote something that appears suspi
cious, but that we cannot be certain is an error. Anomalies cannot be 
derived mechanically from the language definition, but require some 
exercise of judgement on the part of the implementor. As experience is 
gained with users of a particular language, one can spot frequently
occurring errors and report them as anomalies before their symptoms arise. 
An example of such a case is the fragment of ALGOL 60 shown in Figure 
12.la. Since ALGOL 60 treats text following end as a comment (terminated 
by else, end or ;), there is no inconsistency here. However, the appearance 
of : = in the comment makes one suspicious that the user actually intended 
the fragment of Figure 12.1b. Many ALGOL 60 compilers will therefore 
report an anomaly in this case. 

Note that a detectable error may appear as an anomaly before its symp
toms arise: A LAX compiler could report the expression (l/O) as an ano
maly even though its symptoms would not be detected until execution time. 
Reports of anomalies therefore differ from error reports in that they are sim
ply warnings that the user may choose to suppress. 

Anomalies may be reported even though there is no reason whatever to 
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believe that they represent true errors; some compilers are quite prepared to 
simply comment on the programmer's style. The SIMULA compiler for the 
Univac 1108, for example, diagnoses Figure 12.lc as poor style because - as 
in ALGOL 60 - the upper limit of the iteration is evaluated 2n + 1 times 
even though its value probably does not change during execution of the 
loop. Such reports may also be used to call the programmer's attention to 
nonstandard constructs supported by the particular system on which he is 
running. 

A particular implementation normally places some limitations on the 
language definition, due to the finite resources at its disposal. (Examples 
include the limitation of finite-precision arithmetic, a limit on the number of 
identifiers in a program, the number of dimensions in an array or the max
imum depth of parentheses in an expression.) Although violations of 
implementation-imposed constraints are not errors in the sense discussed 
above, they have the same effect for the user. A major design goal is there
fore to minimize the number of such limitations, and to make them as 'rea
sonable' as possible. They should not be imposed lightly, simply to ease the 
task of the implementor, but should be based upon a careful analysis of the 
cost/benefit ratio for user programs. 

12.1.2. Responses We distinguish three possible levels of response to a 
symptom: 

I. Report: Provide the user with an indication that an error has occurred. 
Specify the symptom, locate its position precisely, and possibly attempt a 
diagnosis. 

2. Recover: Make the state of the process (compilation, execution) con
sistent and continue in an attempt to find further errors. 

3. Repair: On the basis of the observed symptom, attempt a diagnosis of 
the error. If confident that the diagnosis is correct, make an appropriate 
alteration in the program or data and continue. 

Both the compiler and the run-time system must at least report every symp-

end 
i: = I; 

a) A legal fragment of an ALGOL 60 program 

end; 
i: = I; 

b) The probable intent of (a) 

for i: = I step I until 2*n + I 
c) A probable inefficiency in SIMULA 

Figure 12.1. Anomalies 
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tom they detect (level I). Recovery (level 2) is generally provided only by 
the compiler, while repair may be provided by either. The primary criterion 
for recovery techniques is that the system must not collapse, since in so 
doing it may take the error message (and even the precise location of the 
symptom) with it. There is nothing more frustrating than a job that aborts 
without telling you why! 

A compiler that reports the first symptom detected and then terminates 
compilation is not useful in practice, since one run would be needed for 
each symptom. (In an interactive setting, however, it may be reasonable for 
the compiler to halt at the first symptom, requiring the programmer to deal 
with it before continuing.) The compiler should therefore recover from 
almost all symptoms, allowing detection of as many as possible in a single 
run. Some errors (or restrictions) make it impossible for the compiler to 
continue; in this case it is best to give a report and terminate gracefully. We 
shall term such errors deadly, and attempt to minimize their number by 
careful language and compiler design. 

Recovery requires that the compiler make some alteration of its state to 
achieve consistency. This alteration may cause spurious errors to appear in 
later text that is actually correct. Such spurious errors constitute an 
avalanche, and one of the major design criteria for a recovery scheme is to 
minimize avalanches. We shall discuss this point in more detail in Section 
12.2. 

If the compiler is able to diagnose and repair all errors with a high proba
bility of success, then the program could safely be executed to permit detec
tion of further errors. We must, however, be quite clear that a repair is not a 
correction. Much of the early literature on this subject used these terms 
interchangeably. This has unfortunate connotations, particularly for the 
novice, indicating that the compiler is capable of actually determining the 
programmer's intent. 

Repair requires some circumspection, since the cost of execution could be 
very high and the particular nature of the repair could render that execution 
useless or could cause it to destroy important data files. In general, repair 
should not be attempted unless the user specifically requests it. 

As in the case of recovery, we may classify certain errors as uneconomic 
or impossible to repair. These are termed fatal, and may cause us to refuse 
to execute the program. If a program containing a fatal error is to be exe
cuted, the compiler should produce code to abort the program when the 
error location is reached. 

12.13. Communication with the User The program listing is the pri
mary document linking the user and the compiler. At a minimum, the list
ing reproduces the source program that the compiler translated; it may also 
provide indexes and cross-references to data items, labels and procedures. 
All error reports must indicate the relevant position of the symptom on the 
listing in addition to describing the symptom. 
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As indicated in Figure 1.3, the compiler itself should not produce the pro
gram listing. A separate listing editor uses the original source text and a 
compiler-generated error report file to create the listing. Each error report 
specifies the error number and a source text position. The reports are sorted 
according to source text position either by the compiler or by the listing edi
tor. As the listing editor creates the listing, it inserts the full text of the error 
message at the error location. A standard format, which causes the message 
to stand out in the listing, should be used: Special characters, printed in 
some part of the print line that is normally blank, act as a flag. The position 
of the symptom is clearly marked, and the remainder of the line contains a 
brief description. This description should be readable (in the user's natural 
language), restrained and polite. It should be stated in terms of what the user 
has done (or not done) rather than in terms of the compiler's internal state. 
If the compiler has recovered from the error, the nature of the recovery 
should be made clear so that any resulting avalanche will be understand
able. 

Ideally, error reports should occur in two places: at the point where the 
compiler noticed the symptom, and in a summary at the end of the program. 
By placing a report at the point of detection, the compiler can identify the 
coordinates of the symptom in a simple manner and spare the programmer 
the task of switching his attention from one part of the listing to another. 
The summary report directs the programmer to the point of error without 
requiring him to scan the entire listing, reducing the likelihood that errors 
will be missed. 

Compiler error reports may be classified into several levels according to 
severity: 

l. Note 
2. Comment 
3. Warning 
4. Error 
5. Fatal error 
6. Deadly error 

Levels 1-3 are reports of anomalies: Notes refer to nonstandard constructs, 
and are only important for programs that will be transported to other imple
mentations; comments criticize programming style; warnings refer to possi
ble errors. The remaining levels are reports of actual errors or violations of 
limits. Errors at level 4 can be repaired, fatal errors suppress production of 
an executable program (but the compiler will recover from them), and 
deadly errors cause compilation to terminate. 

The user should be able to suppress messages below a given severity 
level. Both the default severity cutoff and the number of reports possible on 
each level will vary with the design goals of the compiler. A compiler for 
use in introductory programming courses should probably have a default 
cutoff of 0 or I, and produce a plethora of comments and warnings; one for 
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use in a production operation with a single type of computer should prob
ably have a cutoff of 3, and do very little repair. The ability to vary these 
characteristics is a key component in the adaptability of a compiler. 

The programmer's ability to cope with errors seems to be inversely pro
portional to the density of errors. If the error density becomes very large, the 
compiler should probably abandon the program and let the programmer 
deal with those errors found so far. (There is always the chance that a job 
control error has been made, and the 'program' is really a data file or a pro
gram in another language!) It is difficult to state a precise criterion for 
abandonment, but possibly one should consider this response when the 
number of errors exceeds one-tenth of the number of lines processed and is 
greater than 10. 

The error report file is maintained by a module that provides a single 
operation: 

Error(position,severity, code ) 
position: The source text position for the message. 
severity: One of the numbers 1-6, as discussed above. 
code: An integer defining the error. 

There is no need to supply additional information, such as symbols or con
text, in the error report. For example, if the symptom is that a particular 
symbol is undefined, we do not need to include the symbol. This is because 
the position is located precisely, and the message points directly to the sym
bol for which there is no definition. Further, the position given by the report 
need not be the position reached by the lexical analyzer at the time the error 
was detected. We can retain position information for certain constructs and 
then use that information later when we have sufficient context to diagnose 
an error. For example, suppose that a label was declared in a Pascal pro
gram and then never used. The error would be diagnosed at the end of the 
procedure declaring the label, but we would give the position of the declara
tion in the report and therefore the message 'label never used' would point 
directly to the declaration. 

12.2. Compiler Error Recovery 

All errors detected at compile time are detected during analysis of the source 
program. During program synthesis, we can detect only compiler errors or 
violations of limits; these are invariably fatal, and do not interest us in this 
section. Errors detected during analysis can be classified by the analysis task 
being carried out at the time: 

• Lexical. Errors in token formation, such as illegal characters or 
misspelled keywords . 

• Syntactic. Errors in structure formation, such as missing operators or 
parentheses. 
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• Semantic. Errors in agreement, such as operands whose types are 
incompatible with their operator, or undeclared variables. 

If recovery is to be achieved, each analysis task must repair the errors it 
detects and pass a consistent result to the next task. Unfortunately, this 
repair may be less than perfect; it usually leads to a local repair, rather than 
a repair in the sense of Section 12.1.2 and often results in detection of 
related errors by subsequent tasks that have more contextual information. 

Any recovery scheme must be based upon redundant information present 
in the program. The higher the redundancy, the easier and more certain 
recovery will be. Since the amount of structure available to the error 
recovery procedure increases significantly from the lexical level to the 
semantic level, competent semantic error recovery is considerably easier 
than competent recovery from lexical errors. We shall therefore begin by 
discussing recovery from semantic errors and work our way back through 
syntactic errors to lexical errors. 

12.2.1. Semantic Errors Semantic errors are detected when conditions 
embedded in the attribute grammar of the language yield false. Recovery 
from semantic errors is simply a function of the attribute grammar itself. In 
Chapter 8 we emphasized the importance of guaranteeing that all attributes 
are defined under all circumstances, and noted that this implied the intro
duction of special error values for some attributes. 

If the attributes of an item can be determined unambiguously then the 
compiler can work with the correct attributes after an error has been detect
ed. This occurs in LAX with multiple definitions of an identifier in a range, 
possibly as a field selector or formal parameter. Operands on the right hand 
sides of identity declarations and assignments provide another example, as 
do situations in which the operator fully determines the type of the required 
operand(s). Finally, we have type declarations for which the storage re
quirements cannot be determined: type t = record a : integer;b:t end. 

The recovery is more difficult if several attributes influence the choice, or 
if the erroneous symbol is not unambiguously determined. Consider the 
case of a binary operator indication, none of whose associated operators is 
consistent with the pattern of operand types given. This symptom could 
result from an error in one of the operand expressions, or from an erroneous 
operator indication. There is no way to be certain which error has occurred, 
although the probability of the former is enhanced if one of the operands is 
consistent with some operator associated with the indication. In this case, 
the choice of operator should be based upon the consistent operand, and 
might take into account the use of the result. If this choice is not correct, 
however, spurious errors may occur later in the analysis. To prevent an 
avalanche in this case, we should carry along the information that a seman
tic error has been repaired. Further error messages involving type 
mismatches of this result should then be suppressed. 
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Another important class of semantic error is the undeclared identifier. 
We have already noted (Section 12.1.1) that this error may arise in several 
ways. Clearly we should produce an error message if the problem was that 
the identifier was misspelled on this use, but if the declaration were 
misspelled or omitted the messages attached to each use of the variable con
stitute an avalanche, and should be suppressed. 

In order to distinguish between these cases, we might set up a definition 
table entry for the undeclared identifier specifying as many properties as 
could be determined from the context of the use. Subsequent occurrences 
could then be used to refine the properties, but error messages would not be 
issued unless the properties were inconsistent. This strategy attempts to dis
tinguish the cases on the basis of frequency of use of an identifier: At the 
first use an error will be reported; thereafter we assume that the declaration 
is missing or erroneous and do not make further reports. This method works 
well in practice. It breaks down when the programmer chooses an identifier 
susceptible to a consistent misspelling, or when the text is entered into the 
machine by a typist prone to a certain type of error (usually a character 
transposition or replacement). 

The specific details of the consistency check are language dependent. As 
a concrete example, consider the algorithm used by the Whetstone Compiler 
for ALGOL 60 [Randell 1964]. (There the algorithm is not used to suppress 
avalanches, but rather to resolve forward references to declared identifiers in 
a one-pass compilation.) The Whetstone Compiler created a property set 
upon the first use of an (as yet) undeclared identifier, with each element 
specifying a distinct property that could be deduced from local context 
(Table 12.2). The first three elements of Table 12.2 determine the form of 
the use, while the remaining nine elements retain information about its con
text. For each successive occurrence, a new set A' was established and 
checked for consistency with the old one, A: The union of the two must be 

Table 12.2. Identifier Properties in the Whetstone ALGOL Compiler 

Property 

simple 
array 
proc 
value 
variable 
arithmetic 
Boolean 
integer 
location 
normal 
string 
nopar 

Meaning 

The use takes the form of a simple variable. 
The use takes the form of an array reference. 
The use takes the form of a procedure call. 
The object may be used in a context where a value is required. 
The object is a variable to which assignments can be made. 
The object has an arithmetic (i.e. integer or real) value. 
The object has a Boolean value. 
The object has an integer value. 
The object is either a label or a switch. 
The object is not a label, switch or string. 
The object is a string. 
The object is a parameterless procedure. 
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identical to either set (e.g. A must be a subset of A' or A' must be a subset of 
A). If A ' is a superset of A , then the new use provides additional informa
tion. 

Suppose that we encounter the assignment p : = q where neither p nor q 
have been seen before. We deduce that both p and q must have the form of 
simple variables, and that values could be assigned to each; the type must 
therefore be real, integer or Boolean. If the assignment r: =p +s; were 
encountered later, we could deduce that p must possess an arithmetic (i.e. 
real or integer) value. This use of p is consistent with the former use, and 
provides additional information. (Note that the same deduction can be 
applied to q, but this relationship is a bit too devious to pursue.) Figures 
12.3a and 12.3b show the sets established for the first and second 
occurrences of p. If the statement p [i 1 : = 3; were now encountered, the 
union of Figure 12.3c with Figure 12.3b would indicate an inconsistency. 

If a declaration is available, we are usually not able to accept additional 
information about the variable. There is one case in ALGOL 60 (and in 
many other languages) in which the declaration does not give all of the 
necessary information: A procedure used as a formal parameter might or 
might not have parameters of its own, so the declaration does not specify 
which of the properties {simple,proc} should appear (Figure 12.3d). That 
decision must be deferred until a call of the procedure is encountered. 

12.2.2. Syntactic Errors A syntactic error is one resulting in a program 
that is not a sentence in the (context-free) language being compiled. 
Recovery from syntactic errors can change the structure of the program and 
the entire semantic analysis. (Lexical errors with such far-reaching conse
quences are considerably rarer.) 

Consider the grammar G =(N, T, P, Z) for the source language L. Ifwe 
think of the elements of T* as being points in space, we might ask which 
sentence is 'closest' to the erroneous program. We would then take this sen
tence as the correct version of the program, and define the error as the 

{simple, value, variable} 

a) Property set for both p and q derived from p : = q 

{simple, value, variable, arithmetic} 

b) Property set for p derived from r: =p +s; 

{array, value, variable} 

c) Property set for p derived from p [i 1: = 3; 

procedure x (p ); procedure p ; 
d) A declaration that leaves properties unspecified 

Figure 12.3. Consistency Checks 
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transformation that carries the correct program into the incorrect one. This 
approach is called minimum-dislance correction, and it requires that we 
define a metric on the T* space. One way of defining this metric is to regard 
every transformation as a sequence of elementary transformations, each 
corresponding to a distance of I. The usual elementary transformations are: 

• Insert one symbol 
• Delete one symbol 
• Replace one symbol by another 

Global minimum-distance correction, which examines the entire pro
gram, is currently impractical. Moreover, a minimum-distance correction is 
often not the best: The minimum-distance correction for an ALGOL 60 
statement containing more than one error would be to precede it with com
ment! For ALGOL-like languages simpler methods that can change more 
symbols are often superior. On the other hand, global minimum-distance 
correction minimizes avalanches. 

The symptom of a syntactic error is termed a parser-defined error. Since 
we parse a program deterministically from left to right, the parser-defined 
error is the first symbol I such that w is a head of some string in the 
language, but wI is not. For example, the string w of Figure 12.4a is cer
tainly a head of a legal FORTRAN program, which might continue as 
shown in Figure 12.4b. If I is the end-of-statement marker, # ,then wI is 
not the head of any legal program. Hence # constitutes a parser-defined 
error. Possible minimum-distance corrections are shown in Figure 12.4d. 
From the programmer's point of view, the first has the highest probability of 
being a correct program. This shows that a parser-defined error may not 
always coincide with the point of the error in the user's eyes. This is espe
cially true for bracketing errors, which are generally the most difficult to 
repair. 

Ad hoc parsing techniques, and even some of the older formal methods, 

DO 10 I = J(K,L 
a) A head, w, of a FORTRAN program 

w) # X 

b) A possible continuation (# is end-of-statement) 

w# X 

c) A parser-defined error 

DO 10 I = J,K,L 
DO 10 I = J(K,L) 

d) Two minimum-distance corrections 

Figure 12.4. Syntax Errors 
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may fail to detect any errors at all in certain strings not belonging to the 
language. Other approaches (e.g. simple precedence) may delay the point of 
detection arbitrarily. The LL and LR algorithms will detect the error 
immediately, and fail to accept t. This not only simplifies the localization of 
the symptom in the listing, but also avoids the need to process any syntacti
cally incorrect text. Recovery is eased, since the immediate context of the 
error is still available for examination and alteration. 

If wt X E (T* - L) is an erroneous program with parser-defined error t, 
then to effect recovery the parser must alter either w or t X such that 
w'tx E L or wt'X'E L. Alteration of w is unpleasant, since it may involve 
undoing the effects of connection points. It will also slow the processing of 
correct programs to permit backtrack when an error is detected. Thus we 
shall only consider alteration of the erroneous symbol t and the following 
string x. 

Our basic technique will be to recover from each error by the following 
sequence of steps: 

I. Determine a continuation, p., such that wp. E L . 
2. Construct a set of anchors D = {d E T I v is a head of p. and wvd is a 

head of some string in L }. 
3. Find the shortest string 1jE T* such that tx = 1jt"p.', t"E D. 
4. Discard 1j from the input string and insert the shortest string v E T* such 

that wvt" is a head of some string in L . 
5. Resume the normal parse. 

This procedure can never cause the error recovery process to loop 
indefinitely, since at least one symbol (til) of the input string is consumed 
each time the parser is restarted. Note also that it is never necessary to actu
ally alter the input string during step (2); the parser is simply advanced 
through the required steps. A dummy symbol of the appropriate kind is 
created at each symbol connection encountered during this advance. 

The sequence of connection points reported by the parser is always con
sistent when this error recovery technique is used. Semantic analysis can 
therefore proceed without checking for inconsistent input. Generated sym
bols, however, must be recognized as having arbitrary attributes. This is 
guaranteed by using special 'erroneous' attribute values as discussed in the 
previous section. 

It is clear from the example of Figure 12.4 that we can make no claim 
regarding the 'correctness' of the continuation determined during step (I). 
The quality of the recovery in the eyes of the user depends upon the particu
lar continuation chosen, but it seems unlikely that we will find an algorithm 
that 'optimizes' this choice at acceptable cost. We therefore advocate a pro
cess that can be incorporated into a parser generator and applied automati
cally without any effort on the part of the compiler writer. The most impor
tant benefit is a guarantee that the parser will recover from all syntactic 
errors, presenting only consistent input to the semantic analyzer. This 
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guarantee cannot be made with ad hoc error recovery techniques. 
We begin by designating one production for each nonterminal, such that 

the set of designated productions contains no recursion. For example, in the 
production set of Figure 12.5a we would designate the productions listed in 
Figure 12.5b. (With this example the designation is unique, a condition sel
dom encountered in larger grammars.) We then reorder the productions for 
each nonterminal so that the designated production is first, and apply the 
parser generation algorithms of Chapters 5 and 7. As the transitions of the 
parsing automata are derived, certain of them are marked. When an error 
occurs during the parse, we choose a valid continuation by allowing the 
parsing automaton to carry out the marked transitions until it reaches its 
final state. No input is read during this process, but at each step the set of 
input symbols that could be accepted is added to the set of anchors. 

Construction 5.23, as modified in Section 7.2.1 for strong LL(I) gram-

p = { Z ~E#, 
E ~FE', 
E'~+FE',E'~t:, 

F ~i, F ~(E)} 

a) Productions of the grammar 

Z~E# 

E~FE' 

E'~t: 

F~i 

b) Designated productions 

*qoi ~qlq2i, qo( ~qlq2(, 
*ql ~(, 
*q2i ~q3q4i, q2( ~q3qS(, 
*q3# ~q6q7#' q3)~q6q7)' q3+ ~q6q8+, 
*q4i ~q9, 
*qs( ~qlO, 
*q6~t:, 

*q7~t:, 

*q8+~qll' 
*q9~t:, 

*qlOi ~qI2q2i, qlO( ~ql2q2(, 
*qlli ~ql3q4i, qll( ~qI3qS(, 
*ql2)~qI4' 
*ql3# ~qISq7#' ql3)~qISq7)' ql3+ ~qISq8+, 
*qI4~t:, 
*qls~£ 

c) The transitions of the parsing automaton (compare Figure 7.5) 

Figure 12.5. Adding Error Recovery to an LL(l) Parser 
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mars, was used to generate the automaton of Figure 12.5c. The transitions 
were marked as follows (marked transitions are preceded by an asterisk in 
Figure 12.5c): 

• Any transition introduced by step 3 or step 4 of the construction was 
marked . 

• The elements of H in step 5' are listed in the order discussed in the previ
ous paragraph. The first transition q w -">qh [l]w of a group introduced by 
step 5' was marked. 

To see the details of the recovery, consider the erroneous sentence i + # . 
Figure 12.6a traces the actions of the automaton up to the point at which the 
error is detected. The continuation is traced in Figure 12.6b. Note that the 
input is simply ignored, and the stack is updated as though the parser were 
reading symbols that caused it to make the marked transition. At each step, 
all terminal symbols that could be accepted are added to D. Figure 12.6c 
shows the remainder of the recovery. No symbols are deleted from the input 
string, since # is in the set of anchors. The parser now follows the con
tinuation again, generating any terminal symbols needed to cause it to make 
the marked transitions. When it reaches a point where the first symbol of 

qoi +# 
qlq2i +# 
qlq3q4i +# 
qlq3q9+# 
qlq3+# 
qlq6q8+# 
qlq6qll # 

a) Parse to the point of error detection 

qlq6qll D = {iO 
qlq6q13q4 
qlq6q13q9 
qlq6ql3 D = {i(# )+} 
qlq6ql5q7 
qlq6ql5 
qlq6 
ql 

b) Continuation to the final state 

qlq6qll# 
qlq6ql3q4# 
q)q6q13q9# 
qlq6ql3# 

i is generated by q4i -">q9 
the normal parse may now continue 

c) Continuation to the resume point 

Figure 12.6. Recovery Using Figure 12.5c 
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the input string can be accepted, the normal parse resumes. 
Let us now tum to the LR case. Figure 12.7a shows a left-recursive 

grammar for the same language as that defined by the grammar of Figure 
12.5a. The designated productions are 1,3 and 4. Ifwe reorder productions 
2 and 3 and then apply Construction 5.33, we obtain the states of Figure 
12.7b. The situations are given in the order induced by the ordering of the 
productions and the mechanics of Construction 5.33. Figure 12.7c shows the 
transition table of the automaton generated from Figure 12.7b, incorporat
ing shift-reduce transitions. The marked transition in each state (indicated 
by a prime) was the first shift, reduce or shift-reduce transition generated in 
that state considering the situations in order. 

An example of the LR recovery is given in Figure 12.8, using the same 

(1) Z --->E# 
(2) E --->E +F, 
(4) F --->i, 

(3) E--->F 
(5) F --->(E) 

a) The grammar 

0: Z--->.E; # 
E--->.F;# + 
E--->.E+F; # + 
F--->.i; # + 
F--->.(E); # + 

I: Z--->E.;# 
E--->E.+F; # + 

2: E --->F. ; # +) 

3: F --->i. ; # +) 

4: F--->(.E); # +) 
E--->.F ;)+ 
E--->.E+F;)+ 
F--->.i;)+ 
F --->.(E);)+ 

5: E--->E+.F; # +) 
F --->.i ; # +) 
F--->.(E); # +) 

6: F--->(E.); # +) 
E--->E.+F;)+ 

7: E--->E+F.; # +) 

8: F--->(E).; # +) 

b) States of the Automaton 

( 

o -4' 4 
I 
4 -4' 4 
5 -4' 4 

) 

6 -5' 

+ # E F 

-3 
5 * I' 

6 -3 
-2 

5 

c) The transition function for the parser 

Figure 12.7. Error Recovery in an LR(O) Parser 
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qoi + )i# 
qoql +)i# 
qoqlqs)i# 

a) Parse to the point of error detection 

D={i () 
D = {i ( + # } 

b) Continuation to the final state 

the normal parse may now continue 

c) Continuation to the resume point 

Figure 12.8. LR Error Recovery 
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format as Figure 12.6. The erroneous sentence is i + )i#. In this case, ) 
does not appear in the set of anchors and is therefore deleted. 

One obvious question raised by use of automatic syntactic error recovery 
is that of providing meaningful error reports for the user. Fortunately, the 
answer is also obvious: Describe the repair that was made! This description 
requires one error number per token class (Section 4.1.1) to report insertions, 
plus a single error number to report deletions. Since token classes are usu
ally denoted by a finite type, the obvious choice is to use the ordinal of the 
token class as the error number to indicate that a token of that class has been 
inserted. 

Missing or superfluous closing brackets always present the danger that 
avalanches will occur because brackets are inserted in (globally) unsuitable 
places. For this reason we must take cognizance of error recovery when 
designing the grammar. In particular, we wish to make bracketed constructs 
'visible' as such to the error recovery process. Thus the grammar should be 
written to ensure that closing brackets appear in the anchor sets for any 
errors that could cause them to be deleted from the input string. This condi
tion guarantees that an opening bracket will not be deleted by mistake and 
lead to an avalanche error at the matching closing bracket. It is easy to see 
that the grammar of Figure 12.5a satisfies the condition, but that it would 
not if F were defined as follows: 

F ~i, F ~(F', 
F'~E) 

12.2.3. Lexical Errors The lexical analyzer recognizes two classes of 
lexical error: Violations of the regular grammar for the basic symbols and 
illegal characters not belonging to the terminal vocabulary of the language 
or, in languages with stropping conventions, misspelled keywords. 

Violations of the regular grammar for the basic symbols (,structural' 
errors), such as the illegal LAX floating point number .E2, are recovered in 
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essentially the same way as syntax errors. Characters are not usually deleted 
from the input string, but insertions are made as required to force the lexical 
analyzer to either a final state or a state accepting the next input character. 
If a character can neither form part of the current token, nor appear as the 
first character of any token, then it must be discarded. A premature transi
tion to a final state can make two symbols out of one, usually resulting in 
syntactic avalanche errors. A third possibility is to skip to a symbol termina
tor like 'space' and then return a suitable symbol determined in an ad hoc 
manner. This is interesting because in most languages lexical errors occur 
primarily in numbers, where the kind of symbol is known. 

Invalid characters are usually deleted without replacement. Occasionally 
these characters are returned to the parser so it can give a more informative 
report. This behavior violates the important basic principle that each 
analysis task should cope with its own errors. 

When keywords are distinguished by means of underlines or bracketed 
by apostrophes, the compiler has sufficient information available to attempt 
a more complete recovery by checking for certain common misspellings. If 
we restrict ourselves to errors consisting of single-character substitutions, 
insertions, omissions or transpositions then the length of the basic symbol 
cannot change by more than one character. For each erroneous symbol 
there exists a (relatively small) set of correct keywords that are identical to it 
if one of these errors occurred. 

If a spelling-correction algorithm is used, it should form a distinct module 
that tests a pair of strings to determine whether they are equivalent under 
one of the four transformations listed in the previous paragraph. The two 
strings should be in a standard form, chosen to speed the test for 
equivalence. This module can be used in other cases also, such as to check 
whether an undefined identifier is misspelled. The spelling-correction algo
rithm should not be required to scan a list of candidate strings, since 
different callers will generate candidates in different ways. 

The decision to provide spelling correction usually has far-reaching 
effects on the compiler data structures: Searches for additional candidates 
to test against a misspelled word often have a pattern different from the nor
mal accesses. This entails additional linkage, as well as the additional infor
mation to facilitate 'quick checks'. Such increases in data storage violate 
our previously-stated principle that an error-free program should not be 
required to pay for error recovery. 

12.3. Run-Time Errors 

During execution of a program, the values of the data objects obey certain 
restrictions and relationships, so that the operations of the program can be 
carried out. Most relationships result either implicitly or explicitly from the 
language definition or implementation restrictions. When the validity of 
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these relationships cannot be determined from the context during compila
tion, they can be tested at run time with the help of the hardware or by code 
generated by the compiler. If such a test fails, then a symptom of a run-time 
error has been detected. 

Examples of such relationships are given in Figure 12.9. Since c** 2 can
not be less than 0, the compiler could prove that both the first and the third 
assertions in Figure 12.9b hold; in the case of I +c** 2 =1= 0, however, this 
would be costly. Frequently the first assertion will be tested again at run 
time (and consequently the test could be omitted at compile time), because 
the computation and test of the storage mapping function is done by a stan
dard library routine. 

A run-time error report should give the symptom and location in the 
source program. The compiler must therefore provide at least the informa
tion needed by the run-time system to locate the symptom of the error. If a 
more exact description or a diagnosis of the cause of the error is required, 
the compiler must prepare additional information about the neighborhood 
of the error and its dynamic environment. Debugging aids (like traces and 
snapshots) require similar information from the compiler's symbol and 
definition tables. 

In this section we shall not consider run-time error handling in detail. 
Our concern will be with the information that the compiler must provide to 
the run-time system to make competent error handling possible. 

a: array [l:4, 1 :4] of real; 

b:=a[3,i]/(l+c**2) 

a) A LAX fragment 

1~ 3~ 4 
1 ~ i ~ 4 
1 +c**2=1= ° 

b) Relationships implied by the LAX definition and (a) 

J = K * L 

c) A FORTRAN statement 

I K 1<248 

d) Relationship implied by the 
Control Data 6000 FORTRAN implementation and (c) 

ASSERT m = n 

e) Relationship explicitly stated by the programmer 

Figure 12.9. Implicit and Explicit Relationships 
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12.3.1. Static Error Location In order to specify the exact location of 
an error in the program, it must be possible to determine from the instruc
tion position, z, the position, f (z), of the corresponding source text in the 
program listing. This requires us to establish an appropriate coordinate sys
tem for the listing. The lines of the listing are usually chosen as the basis for 
this coordinate system, and are numbered in ascending order of appearance 
to facilitate location of a position in the program. The numbers may be 
chosen in various ways: One of the simplest is to use the address of the first 
instruction generated by the source line. (This numbering, like others dis
cussed below, may contain gaps.) The contents of the location counter pro
vides a direct reference to the program line if the compiler produces abso
lute code. If the compiler produces relocatable code and the final target 
program is drawn from several sources, then the conversion f (z) first 
requires identification of the (separately compiled) program unit by means 
of a load map produced when the units are linked. This map gives the abso
lute address of each program unit. The relative address appearing on the 
listing is obtained by subtracting the starting address from the address of the 
erroneous instruction. 

If the compiler has used several areas for instructions (Section 1l.l.4), the 
monotonicity of the (relative) addresses is no longer guaranteed and we 
must use arbitrary sequence numbers. These numbers could be provided by 
the programmer himself or supplied by the compiler. In the latter case the 
number could be incremented for each line or for each construct of a given 
class (for example, assignments). 

When arbitrary sequence numbers are used, the compiler must either 
store f (z) in tabular form accessible to the run-time system or insert instruc
tions into the target program to place the current sequence number into 
some specified memory location. If a table is given in a file, a relationship 
between the table and the program must be established by the run-time sys
tem; no further cost is incurred. In the second case all information is held 
within the program and a run-time overhead in both time and space is 
implied. 

The line number, and even the position within the line, can be given for 
each instruction if a table is used. For dynamic determination of line 
numbers, the line number must be set in connection with a suitable syntactic 
unit of the source program. The instructions making up an assignment, for 
example, do not always occur in the order in which they appear in the 
source program. This is noticeable when the assignment is spread over 
several source lines. Of course the numbering need only be updated at those 
syntactic units that might fail; it may be omitted for the empty statement in 
ALGOL 60, for example. 

12.3.2. Establishing the Dynamic Environment Run-time errors usu
ally lead to symptoms that can be described quite simply. Diagnosis of the 
error from these symptoms is considerably more difficult than diagnosis of 
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compile time errors because it must take account of the dynamic environ
ment of the error: the values of data objects being manipulated and the 
path by which control arrived at the failure point. Most of this information 
can be recovered from the contents of the memory at the failure point; the 
only difficulty lies in establishing the correct relationship to the source pro
gram. For this purpose, the compiler should at least provide sufficient infor
mation in the source program listing to enable the programmer to locate 
every data object in a printout of the memory contents. This information, in 
conjunction with that discussed in Section 12.3.1, we shall term cross
reference information; if it exists in tabular form, these tables are cross
reference tables. 

Analysis of a memory dump is always tedious. In order to provide a 
more convenient specification of the data objects, the compiler could gen
erate templates similar to those needed to support garbage collection (Sec
tion 3.3.3). These templates can then be used by a run-time support routine 
to print the object in a suitable form. Templates may be incorporated into 
the compiled program or written on an auxiliary file. Extra storage is 
required by the former approach, cooperation of the loader and the operat
ing system by the latter. 

A symbolic dump describes a single state of the computation-it is a 
'snapshot' of the program's execution. In order to achieve a full understand
ing of the symptom we often need information about how the program 
reached the failure point. There are two aspects of this execution history, 
the call hierarchy, which specifies the procedures whose invocation has not 
yet ended, and the jump history, which defines the path taken through the 
procedures. 

The call hierarchy is embodied in the current state as a chain of pro
cedure activation records. In order to represent it we extend the symbolic 
dump by attaching the procedure name and point of call to each procedure's 
activation record. (The former is obtained from the cross-reference tables, 
the latter from the return address.) 

The jump history, represented by the addresses of successful jumps, can
not be obtained from the environment of the symptom. It must be stored 
explicitly during execution. Either the compiler must generate specific 
instructions for this purpose, or the hardware must store the addresses of 
successful jumps automatically (EDSAC 2 [Barron 1963] and the Siemens 
7000 series are examples of such machines). The relevance of the jump his
tory diminishes with the 'age' of the jumps; to save memory we would there
fore retain only the most recent jump addresses. In some debugging systems 
for machine-oriented languages the number 4 is chosen, EDSAC 2 chose 41 
and the Siemens 7000 chose 64. Loops rapidly fill the jump history with use
less information. It is thus better to store a sequence of identical jumps as a 
single address with a cycle count. Cycles of length 2 can be represented in a 
similar manner, but recognition oflonger cycles does not seem worthwhile. 

In a language like LAX, which provides a variety of control structures, 
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source programs will usually contain no jumps at all. The jump history is 
thus understandable only if the sequence of source language constructs that 
created it can be recovered. For this purpose one can use the cross
referencing techniques of Section 12.3.1, augmented with information about 
the kind of jump (conditional, case clause, repetition of a loop, etc.) The 
source language constructs need be determined from the cross-reference 
tables only when the dump actually occurs, and then only for the jumps 
appearing in the jump history. 

We must always be aware of the possibility that the state of the memory 
may have been corrupted by the error, and that inconsistencies may be 
present that could cause the analysis routines to loop or make further errors. 
During the output of a symbolic dump or jump history all information must 
be carefully examined for consistency. The compiler may provide redun
dant information, for example special bit patterns in particular places, to aid 
in this process. 

12.3.3. Debugging Aids A program can be tested by following its pro
gress to normal termination or to some unusual event. This can be done by 
tracing the jump addresses and/or procedure calls, tracing the values of cer
tain data objects, or taking selective symbolic dumps. When working 
interactively, one can insert breakpoints to halt execution and permit exami
nation and resetting of variables. The program can then be restarted at a 
specified point, possibly after alteration of the call hierarchy. All of these 
techniques require the support of the compiler as discussed in Sections 
12.3.1 and 12.3.2. 

All supervision mechanisms other than those specific to interactive execu
tion can be provided by modification and recompilation of the program. 
With large programs this is quite costly; in addition, the modification can 
cause unrecognized side effects in the program's behavior. By concentrating 
the facilities in a test system independent of the compiler, this problem can 
be avoided. Such a solution increases the demands on the cross-reference 
tables, since the test system is now in the position of having to use them to 
modify the target program. If the same test system is to be used for several 
languages, then the structure and contents of the cross-reference tables 
becomes a standard interface for all compilers. 

12.4. Notes and References 

The user orientation of the error handling (understandable error reports, 
suppression of avalanches, run-time information in terms of the source pro
gram), and the principle that the cost of preventive tests should be as small 
as possible, obviously represent the main problems of error handling today. 
Koster [1972] gives a good overview of the demands placed upon the error 
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handler. The implementation of PL/C [Conway 1973] represents an 
attempt at extensive error recovery. 

Lyon [1974] gives an algorithm for global minimum-distance correction 
that requires 0 (n 2) space and 0 (n 3) time to correct an n -symbol input 
string. Theoretical results [Peterson 1972] indicate that improvement of 
these bounds is highly unlikely. A backtracking method for global repair of 
syntactic errors is given by Levy [1975]; our approach is based upon some 
ideas of Irons [1963 b] that were applied to top-down parsers by Gries [1971]. 
Rohrich [1978, 1980] formalized these ideas and extended them to LR 
parsers. The use of recovery sequences as error messages first appeared in 
the SP /k compiler [Holt 1977]. 

Damerau [1964] has observed that over 80% of all spelling errors in a par
ticular retrieval system consisted of single-character substitutions, insertions, 
omissions or transpositions. This observation serves as the basis for most 
spelling correction algorithms, of which the one described by Morgan [1970] 
is typical. 

Dynamic updating of a variable containing a line number may consume 
significant resources. Brinch-Hansen [1975] notes that up to 25% of the gen
erated code for a Sequential Pascal program may be devoted to line number 
bookkeeping. Kruseman-Aretz [1971] considers how this overhead can be 
minimized in the context of ALGOL 60, and Klint [1979] suggests that the 
information be obtained from a static analysis of the program rather than 
being maintained dynamically. 

Symbolic dumps in source language terms have been available since the 
early sixties. The papers by Seegmiiller [1963] and Bayer [1967] summarize 
the information the compiler must provide to support them. Other descrip
tions of this information can be found in the literature on symbolic debug
ging packages [Hall 1975, Pierce 1974, Satterthwaite 1972, Balzer 1969, 
Gaines 1969]. 

EXERCISES 

12.1. Define the class of detectable errors for some language available at your 
installation. Which of these are detected at compile time? At run time? Are 
any of the detectable errors left undetected? Have you made any such errors 
in your programming? 

12.2. We have classified the LAX expression (I/O) as a compile-time anomaly, 
rather than a compile-time error. Some authors disagree, arguing that if the 
expression is evaluated at run time it will lead to a failure and that if it can 
never be evaluated then the program is erroneous for other reasons. Write a 
cogent argument for or against (whichever you prefer) our classification. 

12.3. The definition of the programming language Euclid specifies minimum limi
tations that may be placed on programs by an implementation. For 
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example, the definition requires that any compiler accept expressions having 
parentheses nested to depth 7, and programs having environments nested to 
depth 31. The danger of setting such minimum limits is pointed out by Sale 
[1977), who demonstrates that the requirement for environments nested to 
depth 31 effectively precludes implementation of Euclid on Burroughs 6700 
and 7700 equipment. Comment on the advantages and disadvantages of 
Euclid approach, indicating the scope of the problem and possible 
compromise solutions. 

12.4. Consider some compiler running at your installation. How are its error mes
sages communicated to the user? If the result gives less information than the 
model we discussed in Section 12.1.3, argue for or against its adequacy. 
Were there any constraints on the implementor forcing him to his choice? 

12.5. Experiment with some compiler running at your installation, attempting to 
create an avalanche based upon a semantic error. If you succeed, analyze 
the cause of the avalanche. Could it have been avoided? How? At what 
cost to correct programs? If you do not succeed, analyze the cause of your 
failure. Is the language subject to avalanches from semantic errors? Is the 
implementation very clever, possibly at some cost to correct programs? 

12.6. Under what conditions might a simple preccdence analyzer [Gries 1971) 
delay detection of an error? 

12.7. [Rohrich 1980) Give an algorithm for designating productions of a grammar 
so that there is one production designated for each nonterminal, and the set 
of designated productions contains no recursion. 

12.8. Apply the syntactic error recovery technique of Section 12.2.2 to a recursive 
descent parser based upon extended BNF (Section 7.2.2). 

12.9. Apply both the automaton of Figure 12.5c and that of Figure 12.7c to the 
string (i (i +i #. Do you feel that the recovery is reasonable? 

12.10. [Dunn 1981] Consider the modification of Figure 7.10 to support automatic 
error recovery. 
a. Assuming that the form of the table entry remained unchanged, how 

would you incorporate the definition of the continuation into the tables? 
b. Based upon your answer to (a), write procedures parser_error, get-anchor 

and advance_parser to actually carry out the recovery. These procedures 
should be nested in parser as follows, and parser should be modified 
appropriately to invoke them: 
parser 

parser_error 
get-anchor 
advance_parser 

c. Carefully explain your mechanism for generating symbols. Does it 
require access to information known only to the lexical analysis module? 
If so, how do you obtain this information? 

12.11. [Morgan 1970) Design an algorithm for checking the equivalence of two 
strings under the transformations discussed in Section 12.2.3 .. How would 
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you interface this algorithm to the analysis process discussed in Chapters 6 

and 7? Be specific! 

12.12. Consider some compiler running at your installation. How is the static loca
tion of a run-time error determined when using that compiler? To what 
extent could the determination be automated without making any change to 
the compiler? What (if anything) would such automation add to the cost of 
running a correct program? 

12.13. [Kruseman-Aretz 1971] A run-time error-reporting system for ALGOL 60 
programs uses a variable Inc to hold the line number of the first basic symbol 
of the smallest statement whose execution has begun but not yet terminated. 
We wish to minimize the number of assignments to Inc. Give an algorithm 
that decides when assignments to Inc must be generated. 

12.14. Consider some compiler running at your installation. How is the dynamic 
environment of a run-time error determined when using that compiler? To 
what extent could the determination be automated without making any 
change to the compiler? What (if anything) would such automation add to 
the cost of running a correct program? 

12.15. [Bayer 1967] Consider some language and machine with which you are fami
liar. Define a reasonable symbolic dump format for that language, and 
specify the information that a compiler must supply to support it. Give a 
detailed encoding of the information for the target computer, and explain 
the cost increase (if any) for running a correct program. ed without making 
any change to the compiler? What (if anything) would such automation add 
to the cost of running a correct program? 



CHAPTER 13 

Optimization 

Optimization seeks to improve the performance of a program. A true 
optimum may be too costly to obtain because most optimization techniques 
interact, and the entire process of optimization must be iterated until there is 
no further change. In practice, therefore, we restrict ourselves to a fixed 
sequence of transformations that leads to useful improvement in 
commonly-occurring cases. The primary goal is to compensate for 
inefficiencies arising from the characteristics of the source language, not to 
lessen the effects of poor coding by the programmer. These inefficiencies 
are inherent in the concept of a high level language, which seeks to suppress 
detail and thereby simplify the task of implementing an algorithm. 

Every optimization is based upon a cost function, a meaning-preserving 
transformation, and a set of relationships occurring within some component 
of the program. Code size, execution time and data storage requirements are 
the most commonly used cost criteria; they may be applied individually, or 
combined according to some weighting function. 

The boundary between optimization and competent code generation is 
fuzzy. We have chosen to regard techniques based upon processing of an 
explicit computation graph as optimizations. A computation graph is impli
cit in the execution-order traversal of the structure tree, as pointed out at the 
beginning of Chapter 10, but the code generation methods discussed so far 
do not require that it ever appear as an explicit data structure. In this 
chapter we shall consider ways in which a computation graph can be mani
pulated to improve the performance of the generated code. 

Our treatment in this chapter differs markedly from that in the remainder 
of the text. The nature of most optimization problems makes computation
ally efficient algorithms highly unlikely, so the available techniques are all 
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heuristic. Each has limited applicability and many are quite complex. 
Rather than selecting a particular approach and exploring it in detail, we 
shall try to explain the general tasks and show how they fit together. Cita
tions to appropriate literature will be given along with the discussion. In 
Section 13.1 we motivate the characteristics of the computation graph and 
sketch its implementation. Section 13.2 focuses on optimization within a 
region containing no jumps, while Section 13.3 expands our view to a com
plete compilation unit. Finally, Section 13.4 gives an assessment of the 
gains to be expected from various optimizations and the costs involved. 

13.1. The Computation Graph 

Profitable optimizations usually involve the implementation of data access 
operations, and hence the target form of these operations should be made 
explicit before optimization begins. Moreover, many optimizations depend 
upon the execution order, and others may alter that order. These require
ments make the structure tree an unsuitable representation of the program 
being optimized. In the first place, the structure tree reflects the semantics of 
the source language and therefore suppresses detail. Secondly, execution
order tree traversals depend upon the values of specified attributes and 
hence cannot be generated mechanically by the tools of Chapter 8. 

Data access operations are often implicit in the target machine code as 
well: They are incorporated into the access paths of instructions, rather than 
appearing as separate computations. Because of this, it is difficult to isolate 
them and discover patterns that can be optimized. The target tree is thus 
also an unsuitable representation for use by an optimizer. 

To avoid these problems, we define the computation graph to have the 
following properties: 

• All source operations have been replaced by (sequences of) operations 
from the instruction set of the target machine. Coercions appear as 
machine operations only if they result in code. Other coercions, which 
only alter the interpretation of the binary representation of a value, are 
omitted. 

• Every operation appears individually, with the appropriate number of 
operands. Operands are either intermediate results or directly-accessible 
values. Each value has a specified target type. 

• All address computations are explicit. 
• Assignments to program variables are separated from other operations. 
• Control flow operations are represented by conditional and unconditional 

jumps. 

Although based upon target machine operations, the computation graph is 
largely machine-independent because the instruction sets of most Von Neu
mann machines are very similar. 
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We assume that every operation has no more than one result. To satisfy 
this assumption, we either ignore any side effects of the machine 
instruction(s) implementing the operation or we create a sequence of opera
tions making those side effects explicit. In both cases we rely upon subse
quent processing to generate the proper instructions. For example, the 
arithmetic operations of some machines set the condition code as a side 
effect. We ignore this, producing comparison operators (whose one result is 
placed in the condition code) where required. Peephole optimization (Sec
tion 13.2.3) will remove superfluous comparisons in cases where a preceding 
arithmetic operation has properly set the condition code. The second 
approach is used to deal with the fact that on many machines the integer 
division instruction yields both the quotient and the remainder. Here we 
create a sequence of two operations for both div and mod. The first opera
tion in each case is divmod; the second is a unary selector, div or mod respec
tively, that operates on the result of divmod. Common subexpression elimi
nation (Section 13.2.1) will remove any superfluous divmod operators. 

The atoms of the computation graph are tuples. A tuple consists of an 
operator of the (abstract) target machine and one or more operands, each of 
which is either a value known to the compiler or the result of a computation 
described by a tuple. Each appearance of a tuple in the computation graph 
is called a program point, and given an integer index greater than o. 

Let 0] and 02 be operands in a computation graph. These operands are 
congruent if they are the same known value, or if they are the results of 
tuples t] and t 2 with the same numbers of operands for which 
operator(t])=operator(t2) and operandi(t]) is congruent to operandi (t2) for 
all i. A unique operand identifier is associated with each set of congruent 
operands, and this identifier is used to denote all of the operands in the set. 

Figure 13.1 b has 12 program points and 9 distinct tuples. Values known 
to the compiler have the corresponding source language constructs as their 
operand identifiers. The full definition of a tuple is given only at its first 
occurrence; subsequent occurrences are denoted by the operand identifier 

V.i:=aa i *y+v.j;aa i :=aa i +v.j; 
a) A Pascal fragment 

t]: aa i 
t2: t] i 
t3:y i 
t4: t2*t3 
t5: v.j i 
t6: t4 +t5 
t7: V.i:=t6 

t] 

t2 
t5 
t8: t2 +t5 
t9: t]:=t8 

b) The tuple sequence resulting from (a) 

Figure 13.1. Tuples and Operands 
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alone. Note that each operand identifier denotes a single value. For 
example, Vj is the address of the j field of the record V, relative to the base 
of the activation record. This value is the sum of the offset of V from the 
base of the activation record and the offset of j from the base of the record. 
Both offsets are known to the compiler, and hence the sum is known. Also, 
contrast the representations of the two assignments. In the first, the target 
address (V.i) is known to the compiler, while in the second it is the content 
of a pointer variable. 

A module very similar to the symbol table acts as a source of unique 
operand identifiers. By analogy to section 4.2.1, this module provides three 
operations: 

• initialize: Enter the standard entities. 
• give_operand_identifier(tuple-spec)operand_identifier: Obtain the operand 

identifier for a specified tuple or known value. 
• give_tuple(operand_identijier)tuple-spec: Obtain the tuple or known value 

having a specified operand identifier. 

Tuple-spec is a variant record capable of describing any tuple or known 
value. One possible representation would be as two major variants, a value 
descriptor to specify a known value and an operator plus an array of 
operand identifiers to specify a tuple. 

A straight-line segment is a set of tuples, each of which will be executed 
exactly once whenever the first is executed. A straight-line segment of maxi
mal length is called a basic block. The flow graph of a compilation unit is a 
directed graph whose nodes are basic blocks and whose edges specify the 
possible execution sequences of those basic blocks. We also sometimes con
sider extended basic blocks, which are subtrees of the flow graph. (Extended 
basic blocks correspond to nested conditional clauses and to the bodies of 
innermost loops that contain no jumps.) 

The value of every tuple depends ultimately upon some set of variables. 
If the value of any of these variables changes, then the value computed by 
the tuple will also change. Figure l3.2c is a directed acyclic graph illustrat
ing such dependency for the tuples of Figure l3.2b. A tuple is dependent 
upon a variable if there is a directed path in the graph from the node 
corresponding to the variable to the node corresponding to the tuple. When 
the value of a variable is altered, any previously-computed value of a tuple 
depending upon that variable becomes invalid. Note that a is treated as a 
single variable, whose value directly influences the value of t4 but not the 
value Of/3. 

In general, evaluation of a particular tuple may use some operand values, 
define some operand values and invalidate some operand values. We can 
define the following dependency sels for each tuple 1 : 

~ = {o lois a tuple or program variable operand of t } 
D/ = {o lois an operand defined by t } 
~ = {o lois an operand invalidated by 1 } 
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I I 
12 
13 
t4 
15 
16 
17 
Is 
19 
110 
III 

1\2 
113 
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w: = a [i]; a [)]: = x; z : = a [i ] + z ; 
a) A Pascal fragment 

II: i i 
12: II *4 
13: a +/2 

14: /3i 
15: w:=/4 

16:) i 
17: 16*4 
Is: a +/7 

19: x i 
110: Is: =/9 

113: z: =/ 12 

b) Tuple sequence resulting from (a) 

c) Dependency graph for the tuples of (b) 

U D X 

{} {i j} {} 
{i j} {II *4} {} 
{II *4} {a +t2} {} 
{a+/c} {t3 i } {} 
{t3 i } {w j} {} 

{} Uj} {} 
Uj} {/6 *4} {} 
{/6 *4} {a +t7} {} 

{} {x i} {} 
{a +t7,x i} {Is i } {t 3 i,1 4 +t I d 

{} {z j} {} 
{/3i,zi} {/4 +tId {} 
{l4 +/ld {z j} {l4+ / 1I} 

d) Dependency sets for the tuples of (b) 

Figure 13.2. Analyzing Array References 

The rules of the language determine these sets. Figure l3.2d shows the sets 
for the tuples of Figure l3.2b. 
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The effect of an assignment to a pointer variable is similar to, but more 
extensive than, that of an assignment to an array element. Pointer variables 
in Pascal or Ada potentially access any anonymous target of any other 
pointer variable of the same type. In LAX or ALGOL 68, every object of 
the given target type is potentially accessible. A reference parameter of a 
procedure has the same properties as a LAX or ALGOL 68 pointer in most 
languages, except that the accessibility is limited to objects outside the 
current activation record. A procedure call must be assumed to use and 
potentially modify every variable visible to that procedure, as well as every 
variable passed to it as a reference parameter. 

To construct the computation graph, we apply the storage mapping, tar
get attribution and code selection techniques of Sections 10.1-10.3. These 
methods yield the tuples in an execution order determined by the target 
attributes, in particular the register estimate. The only changes lie in the 
code selection process (Section 10.3), where the abstract nature of the com
putation graph must be reflected. 

A new value_class, generated, must be introduced in Figure 10.12. If the 
class of a value descriptor is generated, the variant part contains a single id 
field specifying an operand identifier. Decision tables (such as Figure 10.15) 
do not have tests of operand value class in their condition stubs, nor do they 
generate different instructions for memory and register operands. The result 
is a significant reduction in the table size (Figure 13.3). Note that the gen 
routine calls in Figure 13.3 still specify machine operation codes, even 
though no instruction is actually being produced. This is done to emphasize 
the fact that the tuple'S operator is actually a machine operator. In this case 
we have chosen 'A' to represent IBM 370 integer addition. A tuple whose 
operator was A might ultimately be coded using an AR instruction or 
appear as an access path of an RX-format instruction, but it would never 
result in (say) a floating add. 

The gen routine's behavior is controlled by the operator and the operand 
descriptor classes. When the operands are literal values and the operator is 

Result correct Y Y Y Y N N N N 

t correct Y Y N N Y Y N N 

It correct Y N Y N Y N Y N 

<\wa.p(.e,It) X X 
gen(A,.e,It) X X X X 

gen(S,.e,It) X X X X 
gen(LCR,.e,.e) X X 

Figure 13.3. Decision Table for +(integer,integer) integer Based on Figure 10.15 
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one made available by the constant table, then the specified computation is 
performed and the appropriate literal value delivered as the result. In this 
case, nothing is added to the computation graph. Memory operands (either 
addresses or values) are checked to determine whether they are directly 
addressable. If not, tuples are generated to produce the specified results. In 
any case, the value descriptors are altered to class generated and an 
appropriate operand identifier is inserted. Finally a tuple is generated to 
describe the current operation and the proper operand identifier is inserted 
into the value descriptor for the left operand. 

Although we have not shown it explicitly, part of the input to the gen rou
tine specifies the program variables potentially used and destroyed. This 
information is used to derive the dependency sets. An example giving the 
flavor of the process can be found in the description of Bliss-II [Wulf 1975). 

13.2. Local Optimization 

The simplest approach to optimization is to treat each basic block as a 
separate unit, optimizing it without regard to its context. A computation 
graph is built for the basic block, transformed, and used to generate the final 
machine code. It is then discarded and the next basic block is considered. 

Our strategy for optimizing a basic block is to carry out the following 
steps in the order indicated: 

I. Value Numbering: Perform a 'symbolic execution' of the block, propagat
ing symbolic values and eliminating redundant computations. 

2. Coding: Collect access paths for program variables and combine them 
with operations to form valid target machine instructions, assuming an 
infinite set of registers. 

3. Peephole Optimization: Attempt to combine sequences of instructions into 
single instructions having the same effect. 

4. Register Allocation: Map the register set resulting from the coding step 
onto the available target machine registers, generating spill code (code to 
save and/or restore registers) as necessary. 

Throughout this section we assume that all program variables are poten
tially accessed after the end of the basic block, and that no tuple values are. 
The latter assumption fails for an expression-oriented language, and in that 
case we must treat the tuple representing the final value of the expression 
computed by the block as a program variable. Section 13.3 will consider the 
more general case occurring as a result of global optimization. 

13.2.1. Value Numbering Access computations for composite objects 
are rich sources of common subexpressions. One classic example is the code 
for the following FORTRAN statement, used in solving three-dimensional 
boundary value problems: 
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A(I,J,K) = (A(I,J,K-I)+A(I,J,K+I) + 
A(I,J-I,K)+A(I,J +1,K) + 
A(I-I,J,K) +A(I +1,J,K» / 6.0 

The expression I +d, *(J +d2*K), where d, and d 2 are the first two dimen
sions of A, is generated (in combination with various constants) seven times. 
The value of this expression cannot change during evaluation of the assign
ment statement if I, J and K are variables, and hence six of the seven 
occurrences are redundant. 

Value numbering is used to detect and eliminate common subexpressions 
in a basic block. The general idea is to simulate the computation described 
by the tuples, generating a new basic block that is no longer than the origi-

invalid: = initialize _ vn ; 
Set all elements of PV to invalid; 
for i : = first program point to last program point do 

if PV[ti ] = invalid then 
begin 
T: = evaluate (ti ); 
if T = II V : = 0 II then 

begin 
if PV[v i] * PV[o] then 

begin V: = new_value (T); for tuple E~. do PV[tuple]: = invalid end; 
V: =PV[o]; I 

end 
else if(T* "V i") and (T occurred earlier) then 

V: =value number of the previous occurrence of T 
else 

begin V: = new _value (T); for tuple E ~. do P V[ tuple]: = invalid end; 
• I 

for tuple EDt. do PV[tuple]: = V; 
end; I 

a) The algorithm 

Operation 

initialize _ vn : value Jlumber 

evaluate (tuple): tuple 

new _value (tuple): value _number 

Meaning 

Clear the output block and return 
the first value number. 

Create a new tuple by replacing each 
tuple reference t in the argument by 
PV[t]. Return the newly-created tuple. 

Add tuple to the output block, asso
ciating it with a new value number. 
Return the new value number. 

b) Operations of the output module 

Figure 13.4. Value Numbering 
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nal. In the new basic block, only fetch (v j) and assignment (v: =0) tuples 
may appear at more than one program point. Each such occurrence is given 
a unique identifier, so that every tuple appearing in the new basic block is 
associated with a distinct identifier. These new identifiers are called value 
numbers, since each denotes a particular value generated by the computa
tion. As the new basic block is being constructed, we use an array to keep 
track of the value numbers that currently denote the values generated by 
each tuple. A distinguished value number denotes an unknown value. 
Figure 13.4 defines the value numbering algorithm, and the example of Fig
ure 13.5 gives the flavor of the process. (Operand identifiers of the form Vi 

have been used in Figure 13.5c to emphasize the fact that a new set of tuples 
is being generated, and that the value numbers can be used as operand 
identifiers. ) 

Simulation of I I requires generation of an assignment, and as a result the 
value of a j is known to be 2. Tuple 12 then has a value known to the com
piler; no computation is required in the basic block being generated. No 
value is known for X j, so V2 must be generated. When we reach 17, the 

a:=2; 
b:=a*X +1; 
a: =2*X; 
c:=a+l+b; 

a) A sequence of assignments 
Tuple U D X 

II: a:=2 {} {a j} {t2 */3,14 + Ih +1,/9+1 1O } 
12: a j {} {a j} {} 
13: X j {} {X j} {} 
14: 12 *13 {a j,X j} {12 *13} {} 
Is: 14+ 1 {1 2 *13} {14 + I} {} 
16: b :=ls {/4 + l} {b j} {19+t1O} 
13 
17: 2*/3 {X j} {2 *13} {} 
Ig:a:=17 {2 *13} {a j} {t2 *13,14 + Ih + 1,19 +tlO} 
12 
19: /2+1 {a j} {t2 + l} {} 
110: b j {} {b j} {} 
111 :/9+/ 10 {t2+ 1,b j} {t9+t1O} {} 
112 :C:=111 {t9+t1O} {c j} {} 

b) Tuples and sets for (a) 

vI:a:=2 vS:b:=V4 
v2: X j V6: a :=V3 
V3: 2*V2 V7: V4 +V4 
V4: v3+ l VS: C:=V7 

c) Transformed computation graph 

Figure 13.5. Common Subexpression Elimination 
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value computed by 13 is known to be V2. The computation needed in the 
new basic block is therefore 2*v2. But a tuple for this computation will have 
already been executed, and we have called its result V3. Thus 2 *v2 is a com
mon subexpression that may be eliminated. The only result of the simulation 
is to note that the value Of/7 is V3. 

Execution of 18 may cause four earlier computations to yield new values if 
c~rried out again (the other three elements of ~8 correspond to computa
tIOns not yet performed). Thus we must treat the old values of those compu
tations as invalid at this point. In addition, the value of a i is set to V3 by 18. 

The values of 12,19 and llO are known. Finally, III and 112 result in the last 
two tuples of Figure l3.5c. As can be seen from this example, value 
numbering recognizes some common subexpressions even when they are 
written differently in the source program. 

In more complex examples than Figure 13.5, the precise identity of the 
accessed object may not be known. For example, the value of ali] in Figure 
13.2a might be altered even though none of the assignment tuples in the 
corresponding straight-line segment has a [i) as a target. The analysis uses 
X, to account for this phenomenon, yielding the basic block of Figure 13.6. 
N61e that the algorithm correctly recognizes the address of ali] as being a 
common subexpression. 

The last step in the value numbering process is to delete redundant 
assignments to program variables (such as VI in Figure 13.Sc) and, as a 
byproduct, to develop use counts for all of the tuples. Figure 13.7 gives the 
algorithm. Since each tuple value is defined exactly once, and never used 

VI: i i v6:j i VII: V3 i 
V2: VI *4 V7: v6*4 V12: z i 
v3: a + v 2 vs: a +V7 v13: VII +v12 

V4: V3 i v9: x i VI4: Z :=V13 

V5: W :=V4 vlO: vS:=v9 

Figure 13.6. Value Numbering Applied to Figure 13.2 

for 0 E U [Or u Dr] do USECOUNT[o]: =0; 
r 

for 0 E {Program variables} do USECOUNT[o i): = I; 
for i : = last program point downto first program point do 

begin 
c:=O; 
for 0 ED, do 

begin I 

c: =c + USECOUNT[o]; 
if 0 is a program variable then USECOUNT[o]: =0; 
end; 

if c =0 then delete tuple Ii 
else for 0 E Or do USECOUNT[o]: = USECOUNT[o] + I; 
end; I 

Figure 13.7. Redundant Assignment Elimination and Use Counting 
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before it is defined, USECOUNT[ v] will give the number of uses of v at the 
end of the algorithm. The entries for program variables, on the other hand, 
may not be accurate because they include potential uses by procedures and 
pointer assignments. 

The analysis discussed in this section can be easily generalized to 
extended basic blocks. Each path through the tree of basic blocks is treated 
as a single basic block; when the control flow branches, we save the current 
information in order to continue the analysis on the other branch. Should 
constant folding determine that the condition of a conditional jump is fixed, 
we replace this conditional jump by an unconditional jump or remove it. In 
either case one of the alternatives and the corresponding basic block is 
superfluous and its code can be deleted. These situations arise most fre
quently in automatically-generated code, or when the if··· then' .. else 
construct, controlled by a constant defined at the beginning of the program, 
is used for conditional compilation. 

To generalize Figure 13.7, we begin by analyzing the basic blocks at the 
leaves of the extended basic block. The contents of USECOUNT are saved, 
and analysis restarted on a predecessor block by resetting each element of 
USECOUNT to the maximum of the saved values for the successors. We 
cannot guarantee consistency in the use counts by this method, since not all 
of the use counts must reach their maxima along the same execution path. It 
turns out, however, that this inconsistency is irrelevant for our purposes. 

13.2.2. Coding The coding process is very similar to that of Section 10.3. 
We maintain a value descriptor for each operand identifier, and simulate the 
action of the target computer using these value descriptors as a data base. 
There is no need to maintain register descriptors, since we are assuming an 
infinite supply. 

Figure 13.8 gives two possible codings of Figure 13.la for the IBM 370. 
Our notation for describing the instructions is essentially that of Davidson 
[1980]: 'R["']' means 'contents of register ... ' and 'M["']' means 'con-
tents of the memory location addressed by ... '. Register numbers greater 
than 15 represent 'abstract registers' of the infinite-register machine, while 
those less than 15 represent actual registers whose usage is prescribed by the 
mapping specification. (As discussed in Section 10.2.1, register 13 is used to 
address the local activation record.) 

The register transfer notation of Figure 13.8 is independent of the target 
machine (although the particular descriptions of Figure 13.8b are specific to 
the IBM 370), and is useful for the peephole optimization discussed at the 
end of this section. Figure 13.8b is not a complete description of the register 
transfers for the given instructions, but it suffices for the current example. 
Later we shall show an example that uses a more complete description. 

The differences between the left and right columns of Figure 13.8b stem 
from the choice of the left operand of the multiply instruction, made when 
the second line was generated. Because the multiply is a two-address 
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instruction, the value of the left operand will be replaced by the value of the 
result. Wulf[1975] calls this operand the target path. 

In generating the left column of Figure 13.Sb, we used Wulfs criterion: 
Operand V2 has a use count greater than I, and consequently it cannot be 
destroyed by the operation because it will be needed again. It should not lie 
on the target path, because then an extra instruction would be needed to 
copy it. Since V3 is only used once, no extra instructions are required when 
it is chosen as the target path. Nevertheless, the code in the right column is 
two bytes shorter-why? The byte counts for the first six rows reflect the 
extra instruction required to preserve V2 when it is chosen as the target path. 
However, that instruction is an LR rather than an L and thus its cost is only 
two bytes. It happens that the last use of V2 involves an operation with two 
memory operands, one of which must be loaded at a cost of 4 bytes! If the 
last use involved an operation whose other operand was in a register, we 
could use an RR instruction for that operation and hence the byte counts of 
the two codings would be equal. 

This example points up the fact that the criteria for target path selection 
depend strongly upon the target computer architecture. Wulfs criterion is 

Tuple Use count 

vl:aa i 2 
V2:Vti 2 
v3:Y i I 
V4: V2 *V3 I 
v5:V,ji 2 
V6: V4+v5 1 
V7: V,i:=v6 
v8: v2+ vS 
Vy:Vl:=VS 

a) Result of value numbering 

R[16] : = M[R[ 13] +aa] 
R[17]:= M[R[l3]+y] 

R[l7]:= R[17]*M[R[16]+0] 
R[17] : = R[l7] +M[R[l3] + V, j] 
M[R[13]+v'i] : = R[17] 
R[lS] : = M[R[ 16] +0] 
R[lS]:= R[l8]+M[R[l3]+v'j] 
M[R[16]+0]:= R[18] 

R[16] : = M[R[13]+aa] 
R[l7] := M[R[l6]+0] 
R[l8] : = R[l7] 
R[l8] : = R[l8] *M[R[13] +y] 
R[18]:= R[18]+M[R[l3]+v'j] 
M[R[ 13] + V,i] : = R[l8] 

R[17]:= R[l7]+M[R[l3]+v'j] 
M[R[l6]+0] : = R[17] 

32 bytes 30 bytes 
3 registers 4 registers 

b) Two possible codings 

Figure 13.8. Coding Figure 13.1 for the IBM 370. 
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the proper one for the DEC PDPll, but not for the IBM 370. 
Figure 13.8b does not account for the fact that the IBM 370 multiply 

instruction requires the multiplicand to be in an odd register and leaves the 
product in a register pair. The register allocation process must enforce these 
conditions in any event, and it does not appear useful to introduce extra 
notation for them at this stage. We shall treat the problem in detail in Sec
tion 13.2.4. 

13.2.3. Peephole Optimization Every tuple of the computation graph 
corresponds to some instruction of the target machine. It may be, however, 
that a sequence of several tuples can be implemented as a single instruction. 
The purpose of peephole optimization is to combine such tuples, reducing 
the size of the basic block and the number of intermediate values. There are 
two basic strategies: 

• Each instruction of the target machine is defined in terms of register 
transfers. The optimizer determines the overall register transfer of a 
group of instructions and seeks a single instruction with the same effects 
[Davidson 1980] . 

• A set of patterns describing instruction sequences is developed, and a sin
gle instruction associated with each. When the optimizer recognizes a 
given pattern in the basic block, it performs the associated substitution 
[Tanenbaum 1982]. 

Figure 13.9 illustrates register transfer descriptions of PDPII and IBM 
370 instructions; no attempt at completeness has been made in either case. 
Upper-case identifiers and special characters are matched as they stand, 
while lower-case identifiers represent generic patterns as indicated. (Note 
that in Figure 13.9b the description of an add instruction fits both A and 
AR; there is no need to distinguish these instructions until assembly, when 
they could be encoded by the technique of Section 11.3.2.) Literal charac
ters in the patterns are chosen simply for their mnemonic value. The optim
izer needs no concept of machine operations; optimization is carried out 
solely on the basis of pattern matching and replacement. Thus the process is 
machine-independent-all machine dependence is concentrated in the regis
ter transfer descriptions themselves. 

In Section 13.1 we asserted that extra comparisons introduced to allow us 
to ignore the side effect of condition code setting in arithmetic instructions 
could easily be removed. The example of Figure 13.10 illustrates the steps 
involved. (Abstract registers have numbers larger than 7, and we assume 
that register 5 addresses the local activation record.) Note that the combined 
effect of the move and compare instructions (Figure 13.lOd) is identical to 
the effect of the move instruction (line 3 of Figure l3.lOc). The optimizer 
discovers this by pattern matching, and replaces the pair (move, compare) 
by the single move. 

A two-instruction 'window' was sufficient to detect the redundant com-
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parison in the example of Figure 13.10. When a computer provides memory 
updating instructions that are equivalent to simple load/operate/store 
sequences, the optimizer needs to examine instruction triples rather than 
pairs. Figure 13.11 shows how an increment instruction is generated. The 
' ... ' in Figure 13.lla stands for an arbitrarily complex address expression 
that appears on both sides of the assignment. This expression is recognized 
as common during value numbering, and the address it describes appears as 
an operand identifier (Figure 13.11 b). 

Davidson and Fraser [1980] assert that windows larger than 3 are not 
required. Additional evidence for this position comes from Tanenbaum's 
[1982] table of 123 optimization patterns. Only seven of these were longer 
than three instructions, and none of the seven resulted in just a single output 
instruction. Three of them converted addition or subtraction of 2 to two 
increments or decrements, the other four produced multi-word move 
instructions from successive single-word moves when the addresses were 
adjacent. All of these patterns were applied rather infrequently. 

The optimizations of Figures 13.10 and 13.II could be specified by the 
following patterns if we used the second peephole optimization method 
mentioned at the beginning of this section: 

MOYa,b CMP a,b 
MOYa,b ADD I,b 

Instruction 

MOY s,d 
ADD s,d 
CMP s,d 
Be ! 
INC d 

MOY b,a 

Register transfers 

d: =s; CC: =s?O 

MOYa,b 
INCa 

d: =d +s; CC: =d +s?O 
CC: =s?d 
ifCC=e then PC:=! 
d:=d +1; CC:=d +I?O 

d and s match any PDPII operand address. 
e matches any condition. 
! matches any label. 

a) DEC PDPII 

Instruction 

L r,x 
A r,x 
C r,x 
Be ! 

r matches any register. 

Register transfers 

r:=x; 
r:=r+x; CC:=r+x?O 
CC: =r?x 
ifCC=e then PC:=! 

x matches any RX-format operand. 
e matches any condition. 
! matches any label. 

b) IBM 370 

Figure 13.9. Register Transfer Descriptions. 
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a: = b +c ; if a> 0 then goto L ; 

a) A straight-line segment involving local variables 

tl: b i 
t2: c i 
t3: tl +t2 
14 :a:=13 
Is: 13&0 
t6: JGT(ts) L 

b) The tuple sequence for (a) after value numbering 

R[8] : = M[R[5]+b]; CC : = M[R[5]+b ]?O; 
R[8] : = R[8] +M[R[5]+c]; CC : = R[8]+M[R[5]+c ]?O; 
M[R[5] +a] : = R[8]; CC : = R[8]?0; 
CC : = R[8]?O; 
ifCC = GT then PC := L; 

c) Register transfers for instructions implementing (b) 

R[8] : = M[R[5] +b]; 
R[8] : = R[8] +M[R[5] +c]; 
M[R[5]+a]:= R(18]; 
CC : = R[8]?O; 
ifCC = GT then PC: = L; 

d) After eliminating redundant transfers from (c) 

M[R[ 5] +a] : = R[8]; CC : = R[8]?0; 

e) The combined effect oflines 3 and 4 in (d) 

Figure 13.10. Comparison. 

Any finite-state pattern matching technique, such as that of Aho and 
Corasick [1975], can be modified to efficiently match patterns such as these. 
(Modification is required to guarantee that the item matching the first 
occurrence of a or b also matches subsequent occurrences.) A complete 
description of a particular algorithm is given by Ramamoorthy and 
lahanian (1976]. 

As indicated earlier, an extensive set of patterns may be required. 
(Tanenbaum and his coauthors [1982] give a representative example.) The 
particular set of patterns that will prove useful depends upon the source 
language, compiler code generation and optimization strategies, and target 
machine. It is developed over time by examining the code output by the 
compiler and recognizing areas of possible improvement. There is never 
any guarantee that significant optimizations have not been overlooked, or 
that useless patterns have not been introduced. On the other hand, the pro
cessing is significantly faster than that for the first method because it is 
unnecessary to 'rediscover' the patterns for each pair of instructions. 
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... := ... +1 

a) Incrementing an arbitrary location 

Ii : Ij i t is the address ... 
Ik : Ii + I i'ncrement the value 
II : Ij : = Ik Store the result 

b) The tuple sequence for (a) after value numbering 

R[S] : = M[R[9]]; 
R[S] : = R[S] +1; 
M[R[9]]: = R[S]; 

c) Registers transfers for (b) after redundant transfer elimination 

M[R[9]] : = M[R[9]] + I; 

d) The overall effect of (c) 

Figure 13.11. Generating an Increment. 
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13.2.4. Local Register Allocation The classical approach to register 
allocation determines the register assignment 'on the fly' as the final code is 
being output to the assembler. This determination is based upon attributes 
calculated by previous traversals of the basic block, and uses value descrip
tors to maintain the state of the allocation. We solve the register pair prob
lem by computing a size and alignment for each abstract register. (Thus the 
abstract register becomes a block in the sense of Section 10.1.) In the right 
column of Figure 13.Sb, R[l6] and R[l7] each have size 1 and alignment I 
but R[IS] has size 2 and alignment 2 because of its use as a multiplicand. 
Other machine-specific attributes may be required. For example, R[l6] is 
used as a base register and thus cannot be assigned to register 0 on the IBM 
370. 

A register assignment algorithm similar to that described in Section 10.3.1 
can be used. The only modification lies in the choice of a register to free. In 
Figure 10.14 we chose the least-recently accessed register; here we should 
choose the one whose next access is furthest in the future. (Belady [1966] 
has shown this strategy to be optimal in the analogous problem of determin
ing which page to replace in a virtual memory system.) We can easily obtain 
this information at the same time we compute the other attributes mentioned 
in the previous paragraph. Note that all of the attributes used in register 
allocation must be computed after peephole optimization; the peephole 
optimizer, by combining instructions, may alter some of the attribute values. 

Figure 10.14 makes use of a register state copy that indicates existence of 
a memory copy of the register content. If it has been necessary to spill a 
register then the assignment algorithm knows that it is in the copy state. 
However, as the example of Figure 13.S shows, a register (e.g. R[ 16]) may 
be in the copy state because it has been loaded from a memory location 
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whose content will not be altered. In order to make use of this fact, we must 
guarantee that no side effect will invalidate the memory copy. The neces
sary information is available in the sets D and X associated with the original 
tuples, and must be propagated by the value numbering and coding 
processes. 

When we are dealing with a machine like the IBM 370, the algorithm of 
Figure 10.14 should make an effort to maximize the number of available 
pairs by appropriate choice of a free register to allocate. Even when this is 
done, however, we may reach a situation in which no pair is free but at least 
two registers are free. We can therefore free a pair by freeing one register, 
and we might free that register by moving its content to the second free 
register at a cost of two bytes. If the state of one of the candidate registers is 
copy, then it can be freed at a cost of two bytes if and only if its next use is 
the proper operand of an RR instruction (either operand if the operation is 
commutative). It appears that we cannot lose by using an LR instruction. 
However, suppose that the value being moved must ultimately (due to other 
conflicts) be saved in memory. In that case, we are simply paying to post
pone the inevitable! We conclude that the classical strategy cannot be 
guaranteed to produce an optimum assignment on a machine with double
length results. 

13.3. Global Optimization 

Code is ultimately produced by the methods discussed in Section 13.2, one 
basic block at a time. The purposes of global optimization are to perform 
global rearrangement of the computation graph and to provide contextual 
information at the basic block boundaries. For example, in Section 13.2 we 
assumed that all program variables were potentially accessed after the end 
of each basic block. Thus the algorithm of Figure 13.7 initialized 
USECOUNT[ v] to I for all program variables v. A global analysis of the 
program might show, however, that there was no execution path along 
which certain of these variables were used before being reset. 
USECOUNT[ v] could be initialized to ° for those variables, and this might 
result in eliminating more tuples. 

We shall first sketch the process by which information is .collected and 
disseminated over the computation graph, and then discuss two common 
global transformations. The last section considers ways of allocating regis
ters globally, thus increasing register utilization and avoiding mismatches at 
basic block boundaries. 

It is important to emphasize that none of the algorithms discussed in Sec
tion 13.2 should precede global optimization. Papers appearing in the 
literature often combine value numbering with the original generation of 
tuples, but doing so may prevent global optimization by destroying 
congruence of tuples in different basic blocks. 
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13.3.1. Global Data Flow Analysis The information derived by global 
data flow analysis consists of sets defined at particular program points. Two 
types of set may be interesting: a set of operand identifiers and a set of pro
gram points. For example, we might define a set LIVE(b) at the end of 
each basic block b as the set of operand identifiers that were used after the 
end of b before being reset. This set could then be used in initializing 
USECOUNT as discussed above. 

Sets of program points are useful when we need to find all the uses of an 
operand that could be affected by a particular definition of that operand, 
and vice-versa. Global constant propagation is a good example of this kind 
of analysis. As the computation graph is being built, we accumulate a list of 
all of the program points at which an operand is given a constant value. 
During global data flow analysis we define a set USES (o,p ) at each program 
point p as the set of program points potentially using the value of 0 defined 
at p. Similarly, a set DEFS (o,p) is the set of program points potentially 
defining the value of operand 0 used at program point p. For each element 
of the list of constant definitions, we can then find all of the potential uses. 
For each potential use, in turn, we can find all other potential definitions. If 
all definitions yield the same constant then this constant can be substituted 
for the operand use in question. Finally, if we substitute constants for all 
operand uses in a tuple then the tuple can be evaluated and its program 
point added to the list. The process terminates when the list is empty. 

For practical reasons, global data flow analysis is carried out in two parts. 
The first part gathers information within a single basic block, summarizing it 
in sets defined at the entry and/or exit points. This drastically reduces the 
number of sets that must be processed during the second part, which pro
pagates the information over the flow graph. The result of the second part is 
then again sets defined at the entry and/or exit points of basic blocks. These 
sets are finally used to distribute the information within the block. A com
plete treatment of the algorithms used to propagate information over the 
flow graph is beyond the scope of this book. Kennedy [1981] gives a good 
survey, and Hecht [1977] covers the subject in depth. 

As an example, consider the computation of LIVE(b). We characterize 
the flow graph for this computation by two sets: 

PRED(b) = h -h is an immediate predecessor of b in the flow graph 
SUCC (b) = h - h is an immediate successor of b in the flow graph 

An operand is then live on exit from a block b if it is used by any block in 
SUCC(b) before it is either defined or invalidated. Moreover, if a block 
h ESUCC(b) neither defines nor invalidates the operand, then it is live on 
exit from b ifit is live on exit from h. Symbolically: 

LIVE(b)= u [IN(h)uTHRU(h)nLIVE(h)] (I) 
h ESUCC(b) 

IN(h) is the set of operand identifiers used in h before being defined or 
invalidated, and THRU(h) is the set of operand identifiers neither defined 
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nor invalidated in h . 
We can solve the system of set equations (l) iteratively as shown in Fig

ure 13.12. This algorithm is O(n 2), where n is the number of basic blocks: 
At most n - I executions of the repeat statement are needed to make a 
change in a basic block b available to another arbitrary basic block b'. The 
actual number of iterations depends upon the sequence in which the basic 
blocks are considered and the complexity of the program. For programs 
without explicit jumps the cost can be reduced to two iterations, if the basic 
blocks are ordered so that inner loops are processed before the loops in 
which they are contained. 

Computation of the sets USES (o,p) and DEFS (o,p) provides a more 
complex example of global flow analysis. We begin by computing 
REA CHES(b ), the set of program points that define values valid at the entry 
point of basic block b. Let DEF(b) be the set of program points within b 
whose definitions remain valid at the end of b, and let VALID(b) be the set 
of program points whose definitions are not changed or invalidated in b. 
REACHES(b) is then defined by: 

REACHES(b) = u [DEF(h)u VALID(h)nREACHES(h)] (2) 
h EPRED(b) 

Note the similarity between (l) and (2). It is clear that essentially the same 
algorithm can be used to solve both sets of equations. Similar systems of 
equations appear in most global data flow analysis problems, and one can 
show that a particular problem can be handled by a standard algorithm 

for all basic blocks b do 
begin 
IN(b):= 0; THRU(b):= {all operand identifiers}; 
for i : = last program point of b downto first program point of b do 

begin 
IN(b): = (IN(b ) -Dt -Xr)u Or; 
THRU(b): = THRU(b)-Dt -Xr 
end; I I 

LIVE(b):= 0 
end; 

repeat 
changed: =false; 
for all basic blocks b do 

begin 
old: =LIVE(b); 
LIVE(b):= u [IN(h)u THRU(h)nLlVE(h)]; 

h ESUCC(b) 

changed: = changed or (LI VE (b) =1= old); 
end; 

until not changed; 

Figure 13.12. Computation of LIVE(b). 
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simply by showing that the sets and rules for combining them at junctions 
satisfy the axioms of the algorithm. 

The computation of DEF(b) and VALID (b) is described in Figure 
13.13a. It uses auxiliary sets DF(o) which specify, for each operand 
identifier 0, the program points whose definitions of 0 reach the ends of the 
basic blocks containing those program points. Once DEF(b) and 
VALID(b) are known for every basic block, REACHES(b) can be com-

C: array [operand _identifier] of program _point; 

for all operand identifiers 0 do DF(o): = 0; 
for all basic blocks b do 

begin 
for all operand identifiers 0 do C[o]: =0; 
for i : = first program point of b to last program point of b do 

begin 
for 0 E~ (i) do C[o]: =0; 
for 0 E Dr (i ) do C[ 0 ]: = i ; 
end; 

DEF(b):= 0; 
for all operand identifiers 0 do 

if C[o] =t= 0 then 
begin 
DEF(b):=DEF(b)u {C[o]}; 
DF(o): =DF(o)u {C[o]}; 
end; 

end; 
for all basic blocks b do 

begin 
VALID(b):= 0; 
for all operand identifiers 0 do 

ifo ETHRU(b) then VALID(b):= VALID(b)uDF(o); 
end; 

a) Computation of DEF(b) and VALID(b) 

TR: = REA CHES(b ); 
for i : = first program point of b to last program point of b do 

begin 
DEFS(i,o):= 0; 
for 0 E llr (i) do DEFS(i,o): = TR n DF(o); 
foro ED,(i)u~(i) do TR:=TR -DF(o); 
for 0 ED, (i) do TR : = TR u {i }; 
end; 

b) Computation of DEFS(P,o) 

Figure 13.13. Computing a Set of Program Points. 
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puted by solving the system of set equations (2). Finally, a simple scan 
(Figure 13.l3b) suffices to define DEFS(P,o) at each program point. 
USES (P,o) is computed by scanning the entire program and, for each tuple 
p that uses 0, addingp to USES (q,o ) for every q EDEFS(P,o). 

13.3.2. Code Motion The address expression for a [i,)] in the Pascal 
value remains unchanged. The second implementation of Figure 13.14b 
shows how we can move the computation, with the assignment, forming an 
epilogue to the conditional. This code motion transformation reduces the 
code size but leaves the execution time unchanged. In the third implemen
tation of Figure 13.14b we have moved a computation whose value does not 
change in the inner loop to the prologue of that loop. Here the execution 
time is reduced and the code size is increased slightly. 

A key consideration in code motion is safety: The transformation is 
allowed when the transformed program will deliver the same result as the 
original, and will terminate abnormally only if the original would have ter
minated abnormally. (Note that the abnormal termination may occur in a 
different place.) In Figure 13.14, the value oU div k does not change in the 
inner loop. Moving that computation to the prologue of the inner loop 
would be unsafe, however, because if k were zero the transformed program 
would terminate abnormally and the original would not. 

We can think of code motion as a combination of insertions and dele
tions. An insertion is safe if the expression being inserted is available at the 
point of insertion. An expression is available at a given point if it has been 
computed on every path leading to that point and none of its operands have 
been altered since the last computation. Clearly the program's result will 
not be changed by the inserted code if the inserted expression is available, 
and if the inserted code were to terminate abnormally then the original pro
gram would have terminated abnormally at one of the earlier computations. 
This argument guarantees the safety of the first transformation in Figure 
13.14b. We first insert the address computation and assignment to ali,)], 
making it an epilogue of the conditional. The original computations in the 
two branches are then redundant and may be removed. 

The second transformation in Figure 13.14b involves an insertion where 
the inserted expression is not available, but where it is anticipated. An 
expression is anticipated at a given point if it appears on every execution 
path leaving that point and none of its operands could be altered between 
the point in question and the first computation on each path. In our exam
ple, (i - 1) *n is anticipated in the prologue of the) loop, but i div k is not. 
Therefore it is safe to insert the former but not the latter. Once the insertion 
has been made, the corresponding computation in the epilogue of the condi
tional is redundant because its value is available. 

Let A VAIL (b) be the set of operand identifiers available on entry to 
basic block band ANTIC(b) be the set of operand identifiers anticipated on 
exit from b. These sets are defined by the following systems of equations: 
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for i : = I to n do 
for j : = I to n do 

ifj > k then ali .j]: = ° else ali .j]: = i div k: 

a) A Pascal fragment 

LA RO,I LA RO,I LA RO,I 

C RO,n (R 13) C RO,n(RI3) C RO,n(RI3) 

BH ENOl BH ENDI BH ENDI 

B BODI B BOD 1 B BODI 

INCI A RO,=I INCI A RO,=I INCI A RO,=I 

BODI ST RO,i (R 13) BODI ST RO,i(RI3) BODI ST RO,i (R13) 

C RO,n(RI3) C RO,n(RI3) C RO,n(RI3) 

BH ENOl BH END) BH END) 
L R5,i(RI3) 
S R5,=1 
M R4,n(RI3) 

B BOD] B BOD] B BOD) 

INCJ A RO,=I INC) A RO,=I INCJ A RO,=I 
BOOl ST RO,j(RI3) B001 ST RO,j(RI3) BOD) ST RO,j(R13) 

C RO,k(RI3) C RO,k(R13) C RO,k(R\3) 

BNH ELSE BNH ELSE BNH ELSE 
SR RI,RI SR RI,RI SR RI,RI 

L R3,i(RI3) 
S R3,=1 
M R2,n (R 13) 
A R3,j (R 13) 
SLA R3,2 
ST R I.a -4(R3,R 13) 
B ENOC B ENOC B ENOC 

ELSE L RO,i(RI3) ELSE L RO,i(RI3) ELSE L RO.i(RI3) 
SROARO,32 SROARO,32 SROARO,32 
0 RO,k(R13) 0 RO,k (R 13) D RO,k (R 13) 
L R3,i(RI3) ENOCL R3,i(RI3) 
S R3,=1 S R3.= I 
M R2,n(RI3) M R2,n(RI3) 
A R3J(RI3) A R3J(RI3) ENOCL R3,j(RI3) 

AR R3,R5 
SLA R3,2 SLA R3.2 SLA R3,2 
ST RI,a-4(R3,RI3) ST RI,a-4(R3,RI3) ST RI,a-4(R3,R13) 

ENOCL RO,j (R 13) L RO,j(R13) L RO,j(R13) 
C RO,n(R13) C RO.n(R\3) C RO,n (R \3) 
BL INC) BL INC] BL INC) 

END) L RO,i(RI3) END) L RO,i(R13) END) L RO,i(RI3) 
C RO,n(RI3) C RO,n (R (3) C RO,n(RI3) 
BL INC! BL INCI BL INCI 

ENDI ENOl ENDI 
(142 bytes) (118 bytes) (120 bytes) 

b) IBM 370 implementations 

Figure 13.14. Code Motion. 

AVAIL(b)= n [OUT(h)uTHRU(h)nAVAIL(h)] 
h EPRED(b) 

ANTIC(b) = n [ANLOC(h)u THRU(h)nANTIC(h)] 
h ESUCC(b) 

Here OUT(b) is the set of operand identifiers defined in b and not invali-
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dated after their last definition, and ANLOC(b) is the set of operand 
identifiers for tuples computed in b before any of their operands are defined 
or invalidated. 

The main task of the optimizer is to find code motions that are safe and 
profitable (reduce the cost of the program according to the desired measure). 
Wulf [197S] considers 'a - w' code motions that move computations from 
branched constructs to prologues and epilogues. (The center column of Fig
ure 13.14 illustrates an w motion; an a motion would have placed the com
putation of a [i,j] before the compare instruction.) He also discusses the 
fragment of Figure 13.14a is common to both branches of the conditional 
statement, although there is no path from one to the other over which the 
movement of invariant computations out of loops, as illustrated by the right 
column of Figure 13.14. If loops are nested, invariant code is moved out 
one region at a time. Morel and Renvoise [1979] present a method for mov
ing a computation directly to the entrance block of the outermost strongly
connected region in which it is invariant. 

13.3.3. Strength Reduction Figure 13.IS gives yet another implementa
tion of Figure 13.14a for the IBM 370. The code is identical to that of the 
right-hand column of Figure 13.14b, except that the expression (i -I)*n has 
been replaced by an initialization and increment of RS. It is easy to see that 
in both cases the sequence of values taken on by RS is 0, n, 2n, 3n,... This 
strength reduction transformation reduces the execution time, but its effect on 
the code size is unpredictable. 

Allen [1981] gives an extensive catalog of strength reductions. The major 
improvement in practice comes from simplifying access to arrays, primarily 
multidimensional arrays, within loops. We shall therefore consider only 
strength reductions involving expressions of this kind. All of these 
transformations are based upon the fact that multiplication is distributive 
over addition. 

Let S be a strongly-connected component of the computation graph. A 
region constant is an expression whose value is unchanged in S, and an induc
tion value is one defined only by tuples having one of the following forms: 

j ±k 
-j 

i:=j 

i i 
Here j and k are either induction values or region constants and i is an 
induction variable. The set of induction values is determined by assuming 
that all values defined in the region are induction values, and then deleting 
those that do not satisfy the conditions [Cocke 1977]. The induction values 
in Figure 13.16 are /, t2, t3 and t7. 

To perform a strength reduction transformation on Figure 13.16, we 
define a variable VI to hold the value t 9' An assignment must be made to 
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LA RO,I 
C RO,n(R13) 
BH ENOl 
SR R5,R5 (i - I) *n initially ° 
B BODI 

INCI A RO,=I 
A R5,=n Increment (i - I) *n 

BODI ST RO,i (RI3) 
LA RO,I 
C RO,n(RI3) 
BH END] 
B BOD] 

INC] A RO,= I 
BOD] ST RO,j(RI3) 

C RO,k(R13) 
BNH ELSE 
SR RI,RI 
B ENDIF 

ELSE L RO,i(RI3) 
SRDA RO,32 
0 RO,k(RI3) 

ENDIF L R3,j(R13) 
AR R3,R5 
SLA R3,2 
ST RI,a-4(R3,R13) 
L ROJ(R13) 
C RO,n(RI3) 
BL INC] 

END] L RO,i(RI3) 
C RO,n(RI3) 
BL INCI 

ENOl 
(ll8 bytes) 

Figure 13.15. Strength Reduction Applied to Figure l3.l4b. 

this variable prior to entering the strongly-connected region, and at program 
points where 19 has been invalidated and yet 12 *d I is anticipated. For exam
ple, 19 is invalidated by 18 in Figure 13.16, and yet 12*d l is anticipated at 
that point. An assignment VI: = 12 *d I should therefore be inserted just 
before 12, Since 12 is the value of Ii, 1:=/7; VI:=/2*d l is equivalent to 
VI:=(t2+1)*dl; 1:=/7, Using the distributive law, and recalling the 
invariant that VI always holds the value of 19 (= 12 *d I), this sequence can 
be written as VI:=VI+d l ; 1:=/7 , Figure 13.17 shows the result of the 
transformation, after appropriate decomposition into tuples. 

We could now apply exactly the same reasoning to Figure 13.17, noting 



350 

II: 

Chapter 13. Optimization 

for i: = I to n do a [j,i ]: =a[k,i] +a[m,i]; 

a) A Pascal fragment 

11:;:=1 12: 

12: ; i 
13: n i 
14: 12?/3 
15:JGT(t4) 13 
16:JMP 12 

12 
17: 12+1 
18:i:=/7 

12 
19: 12 *d I 

110: k i 
11I:/ IO +t9 
tl2: 111*4 
1l3: a +/ l2 
/ 14 : 113 i 
12 
19 
t15: m i 
/ 16 : 115 +/9 
117:116*4 

t18: a +/17 
/ 19: t l8 i 
120: /14 +/ 19 

b) Computation graph for (a) 

12 
19 
12l: j i 
122 : 12l +/9 
123 : 122 *4 
124 : a +/23 
125: 124 : = 120 
12 
13 
14 
126: JLT(/4) II 

Figure 13.16. Finding Induction Values. 

I I 12: 128 128 

12 110 /21 

13 /31: 110 +/28 140 : 121 +/28 

14 132 : 131*4 141:/40*4 

15 133: a +/32 142: a +/41 
127: VI:=d l 134: 133 i 143: 142: = 139 

16 128 12 
128: VI i /15 13 

129 : 128+d l t35: / 15 +128 14 
130: V I:=/29 136: 133 *4 126 

12 137: a +/36 13: 

17 138: 137 i 
18 139: 134 +138 

Figure 13.17. Figure 13.16b After One Strength Reduction. 

that VI' 128' 129, 131 , 135 and 140 are now induction values. The obvious vari
ables then hold 132, 136 and 141 . Unfortunately, none of these variables have 
simple recurrence relations. F our more variables, to hold 128 * 4, 110 * 4, 
/15 *4 and 121 *4 must be defined. Although tedious, the process is straight
forward; a complete algorithm is given by Allen [1981]. 

As can be seen from this simple example, the number of variables intro
duced grows rapidly. Many of these variables will later be eliminated 
because their functions have been effectively taken over by other variables. 
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This is the case after further processing of Figure 13.17, where the function 
of VI is taken over by the variable implementing t 28 * 4. In fact, the program 
variable I can be omitted in this loop if the test for termination is changed 
to use one of the derived induction variables. 

Clearly strength reduction must precede code motion. The strength 
reduction process generates many extra tuples that are constant within the 
strongly connected region and hence should be moved to its prologue. It is 
also clear that strength reduction must be iterated if it is to be effective. The 
proliferation of derived induction variables, with concomitant initialization 
and incrementing, may cause a significant increase in code size. Thus 
strength reduction is strictly an execution time optimization, and usually 
involves a time/space tradeoff. Scarborough and Kolsky [1980] advocate 
judicious preprocessing of subscript expressions in an effort to reduce the 
growth due to strength reduction. 

13.3.4. Global Register Allocation As discussed in Section 13.2.4, local 
register allocation considers each basic block in isolation. Values that live 
across basic block boundaries are generally program variables, and are 
stored in memory. Thus it is unnecessary to retain values in registers from 
one basic block to the next. The global optimizations discussed so far alter 
this condition. They tend to increase the number of operands whose life
times include more than one basic block, and if such operands must be kept 
in memory then much of the advantage is lost. It is absolutely essential that 
we take a more global view in allocating registers in order to minimize the 
number of additional fetch, store and copy register instructions. 

Most global register allocation strategies allow program variables to com
pete equally for registers with other operands. Some care must be taken, 
however, since program variables may be accessible over paths that are 
effectively concealed from the compiler. It is probably best to exclude pro
gram variables from the allocation when such paths are available. As indi
cated in Section 13.1, this is a property of the source language and the 
necessary restrictions will vary from compiler to compiler. 

Day [1970] discusses the general register allocation problem and gives 
optimal solutions for the basic strategies. These solutions provide standards 
for measuring the effectiveness of heuristics, but are themselves too expen
sive for use in a production compiler. Two faster, non-optimal procedures 
are also discussed. All of these algorithms assume a homogeneous set of 
registers. Late in the paper, Day mentions that the problem of register pairs 
might be solved by running the allocation twice. The first run would be 
given only the values that must be assigned to one register of a pair (or 
both). Input to the second run would include all items, but attach a very 
high profit to each assignment made by the first run. 

One of the problems with global register allocation is the large number of 
operands that must be considered. In spite of the previous global optimiza
tions, the majority of these operands have lifetimes contained within a basic 



352 Chapter 13. Optimization 

block. We would like to perform the expensive global allocation procedure 
on only those operands whose lifetimes cross a basic block boundary, allo
cating the remainder by the cheaper methods of Section 13.2.4. If we do 
this, however, we run the risk of allocating all registers globally and hence 
generating very poor local code. Beatty [1974] suggests that we divide the 
local register allocation process into two phases, determining the number of 
registers required ('allocation') and deciding which registers will be used 
('assignment'). The requirements set by the first phase are used in determin
ing global register usage, and then the unclaimed registers are assigned in 
each basic block individually. 

All data items that live across basic block boundaries are initially 
assumed to be in memory, but all instructions that can take either register or 
memory operands are assumed to be in their register-register form. Explicit 
loads and stores are inserted where required, and the processes of Sections 
13.2.1-13.2.3 are carried out. The methods of Section 13.2.4 are applied to 
determine the number of registers required locally. With this information, a 
global analysis [Beatty 1974] is used to guide load-store motion (code motion 
involving only the loads and stores of operands live across basic block boun
daries) and global register assignment. As the assignment proceeds, some 
(but not necessarily all) loads and stores will become redundant and be 
deleted. When the global analysis is complete, we apply the allocation of 
Section 13.2.4 to assign local registers. 

Real computers usually have annoying asymmetries in register capability 
that wreak havoc with uniform register allocation schemes. It is necessary to 
provide a mechanism for incorporating such asymmetries in order to avoid 
having to exclude certain registers from the allocation altogether. One allo
cation scheme [Chaitin 1981, Chaitin 1982] that avoids the problem is based 
on graph coloring (Section B.3.3). The constraints on allocation are 
expressed as an interference graph, a graph with one node for each register, 
both abstract and actual. An edge connects two nodes if they interfere (i.e. if 
they exist simultaneously). Clearly all of the machine registers interfere 
with each other. In the left column of Figure 13.8, R[l7] and R[l8] do not 
interfere with each other, although they both interfere with R[l6]; all 
abstract registers interfere with each other in the right column. If there are n 
registers, a register assignment is equivalent to an n-coloring (Section B.3.3) 
of the interference graph. 

Many asymmetry constraints are easily introduced as interferences. For 
example, any abstract register used as a base register on the IBM 370 inter
feres with machine register O. Similarly, we can solve a part of the 
multiplication problem by making the abstract multiplicand interfere with 
every even machine register and defining another abstract register that inter
feres with every odd machine register and every abstract register that exists 
during the multiply. This guarantees that the multiplicand goes into an odd 
register and that an even register is free, but it does not guarantee that the 
multiplicand and free register form a pair. 
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The coloring algorithm [Chaitin 1981] used for this problem differs from 
that of Section B.3.3 because the constraints are different: There we are try
ing to find the minimum number of colors, assuming that the graph is fixed; 
here we are trying to find an n -coloring, and the graph can be changed to 
make that possible. (Spilling a value to memory removes some of the 
interferences, changing the graph.) Any node with fewer than n interfer
ences does not affect the coloring, since there will be a color available for it 
regardless of the colors chosen for its neighbors. Thus it (and all edges 
incident upon it) can be deleted without changing whether the graph can be 
n-colored. If we can continue to delete nodes in this manner until the entire 
graph disappears, then the original was n-colorable. The coloring can be 
obtained by adding the nodes back into the graph in the reverse order of 
deletion, coloring each as it is restored. 

If the coloring algorithm encounters a node with n or more interferences, 
it must make a decision about which node to spill. A separate table is used 
to give the cost of spilling each register, and the register is chosen for which 
cost/(incident edges) is as small as possible. Some local intelligence is 
included: When a computation is local to a basic block, and no abstract 
register lifetimes end between its definition and last use, the cost of spilling it 
is set to infinity. The cost algorithm also accounts for the facts that some 
computations can be redone instead of being spilled and reloaded, and that 
if the source or target of a register copy operation is spilled then that opera
tion can be deleted. It is possible that a particular spill can have negative 
cost! 

Unfortunately, the introduction of spill code changes the conditions of 
the problem. Thus, after all spill decisions are made, the original program is 
updated with spill code and the allocation re-run. Chaitin claims that the 
second iteration usually succeeds, but it may be necessary to insert more 
spill code and try again. To reduce the likelihood of multiple iterations, one 
can make the first run with n - k registers instead of n registers. 

13.4. Efficacy and Cost 

We have discussed a number of transformations in this chapter. Do they 
provide an improvement commensurate with the cost of performing them? 
In some sense this is a meaningless question, because it is too broad. Each 
user has a definition of 'commensurate', which will vary from one program 
to another. The best we can do is to try to indicate the costs and benefits of 
some of the techniques we have discussed and leave it to the compiler writer 
to strike, under pressure from the marketplace, a reasonable balance. 

By halving the code size required to implement a language element that 
accounts for 1 % of a program we reduce the code size of that program by 
only 0.5%, which certainly does not justify a high compilation cost. Thus it 
is important for the compiler writer to know the milieu in which his com-
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piler will operate. For example, elimination of common subexpressions, 
code motion and strength reduction might speed up a numerical 
computation solving a problem in linear algebra by a factor of 2 or 3. The 
same optimizations often improve non-numeric programs by scarcely 10%. 
Carter's [1982] measurements of 95,000 lines of Pascal, primarily non
numeric code, shows that the compiler would typically be dealing with basic 
blocks containing 2-4 assignments, 10-15 tuples and barely 2 common 
subexpressions! 

Static analysis does not, of course, tell the whole story. Knuth [1971b] 
found in his study of FORTRAN that less than 4% of a program generally 
accounts for half of its running time. This phenomenon was exploited by 
Dakin and Poole [1973] to implement an interactive text editor as a mixture 
of interpreted and directly-executed code. Their measurements showed that 
in a typical editing session over 97% of the execution involved less than 10% 
of the code, and more than half of the code was never used at all. Finally, 
Knuth discovered that over 25% of the running times of the FORTRAN 
programs he profiled was spent performing input/output. 

Actual measurements of optimization efficacy and cost are rare in the 
literature, and the sample size is invariably small. It is thus very difficult to 
draw general conclusions. Table 13.18 summarizes a typical set of measure
ments [Cocke 1980]. PLllL, an experimental optimizing compiler for a 
PL/l-like language, was run over each of four programs several times. A 
different level of optimization was specified for each compilation of a given 
program, and measurements made of the compilation time, code space used 
for the resulting object program, and execution time of the resulting object 
program on a set of data. At every level the compiler allocated registers glo
bally by the graph coloring algorithm sketched in Section 13.3.4. No other 
optimizations were performed at the 'None' level. The 'Local' optimizations 
were those discussed in Section 13.2.1, and the 'Global' optimizations were 
those discussed in Sections 13.3.1 through 13.3.3. It is not clear what (if any) 
peephole optimization was done, although the global register allocation sup-

Table 13.18 Evaluation ofPLIlL [Cocke 1980] 

Measure 
Ratios 

Local/None Global/None Global/Local 

Min. 0.8 1.0 1.2 
Compilation time Avg. 0.9 1.4 1.4 

Max. 1.0 1.6 1.6 

Min. 0.42 0.38 0.89 
Code space Avg. 0.54 0.55 1.02 

Max. 0.69 0.66 1.19 

Min. 0.32 0.19 0.58 
Execution time Avg. 0.50 0.42 0.82 

Max. 0.72 0.61 0.94 
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posedly deleted redundant comparisons following arithmetic operations by 
treating the condition code as another allocatable register [Chaitin 1981]. 

The reduction in compilation time for local optimization clearly illus
trates the strong role that global register allocation played in the compilation 
time figures. Local optimization reduced the number of nodes in the 
interference graph, thus more than covering its own cost. One of the test 
programs was also compiled by the standard optimizing PL/I compiler in a 
bit less than half of the time required by the PL/IL compiler. OPT=O was 
selected for the PL/l compiler, and local optimization for the PL/IL com
piler. This ratio changed slightly in favor of the PL/l compiler (0.44 to 
0.38) when OPT=2 and 'global' were selected. When the same program 
was rewritten in FORTRAN and compiled using FORTRAN H, the ratios 
OPT=O/local and OPT=21g10bal were almost identical at 0.13. (Section 
14.2.3 discusses the internals of FORTRAN H.) 

In the late 1970's, Wulf and his students attempted to quantitatively 
evaluate the size of the object code produced by an optimizing compiler. 
They modeled the optimization process by the following equation: 

K ( C,P) = Ku ( C,P) X II 0i ( C) 

K(C,P) is the cost (code space) of program P compiled with compiler C, 
and Ku is the corresponding unoptimized cost. Each q ( C) is a measure of 
how effectively compiler C applies optimization i to reduce the code size of 
a typical program, assuming that all optimizations 1, ... ,i -1 have already 
been done. They were never able to validate this model to their satisfaction, 
and hence the work never reached publication. They did, however, measure 
the factors 0i (C) for Bliss-II [Wulf 1975] (Table 13.19). 

We have considered optimizations 1 and 4 of Table 13.19 to precede for
mation of the computation graph; the remainder of 1-6 constitute the local 

Table 13.19 Optimization Factors for Bliss-II [Wulf 1975] 

Index Description Factor 

I Evaluating constant expressions 0.938 
2 Dead code elimination 0.98 
3 Peephole optimization 0.88 
4 Algebraic laws 0.975 
5 CSE in statements 0.987 
6 CSE in basic blocks 0.973 
7 Global CSE 0.987 
8 Global register allocation 0.975 
9 Load/store motion 0.987 

10 Cross jumping 0.972 
II Code motion 0.985 
12 Strength reduction 
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optimizations of Section 13.2. Thus the product of these factors (roughly 
0.76) should approximate the effect of local optimization alone. Similarly, 
the product offactors 7-12 (roughly 0.91) should approximate the additional 
improvement due to global optimization. Comparing this latter figure with 
the last column of Table 13.15 shows the deleterious effect of strength reduc
tion on code space discussed in Section 13.3.3. 

The first column of Table 13.18 shows a code size improvement 
significantly better than 0.76, implying that the PL/lL compiler generates 
poorer initial code than Bliss-ll, leaving more to be gained by simple 
optimizations. This should not be taken as a criticism. After all, using a 
sophisticated code generator with an optimizer is a bit like vacuuming the 
office before the cleaning crew arrives! Davidson and Fraser [1980] take the 
position that code generation should be trivial, producing instructions to 
simulate a simple stack machine on an infinite-register analog of the target 
computer. They then apply the optimizations of Section 13.2, using a frag
ment bounded by labels (i.e. a path in an extended basic block) in lieu of a 
basic block. 

EXERCISES 

13.1. Show how the dependency sets would be derived when building a computa
tion graph that represents a LAX program for a target machine of your 
choice. 

13.2. Assume that the FORTRAN assignment statement 

A(I,J,K) = (A(I,J,K-l)+A(I,J,K+l) + 
A(I,J-l,K) +A(I,J + I,K) + 
A(I-l,J,K) +A(I + 1,J,K)) /6.0 

constitutes a single basic block. 
a. Write the initial tuple sequence for the basic block. 
b. Derive a new tuple sequence by the algorithm of Figure 13.4a. 
c. Code the results of (b), using register transfers that describe the instruc

tions of some machine with which you are familiar. 

13.3. Give" an example, for some machine with which you are familiar, of a com
mon subexpression satisfying each of the following conditions. If this is 
impossible for one or more of the conditions, carefully explain why. 
a. Always cheaper to recompute than save. 
b. Never cheaper to recompute than save. 
c. Cheaper to recompute iff it must be saved in memory. 

13.4. Explain how the first method of peephole optimization described in Section 
13.2.3 could be used to generate patterns for the second. Would it be feasible 
to combine the two methods, backing up the second with the first? Explain. 

13.5. Assume that the register management algorithm of Figure 10.14 is to be used 
in an optimizing compiler. Define precisely the conditions under which all 
possible changes in register state will occur. 
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13.6. Show how the D and X sets are propagated through the value numbering and 
coding processes to support the decisions of Exercise 13.5, as described in Sec
tion 13.2.4. 

13.7. Give examples of safe code motions in which the following behavior is 
observed: 
a. The transformed program terminates abnormally in a different place than 

the original, but with the same error. 
b. The transformed program terminates abnormally in a different place than 

the original, with a different error. 

13.8. Consider a Pascal for statement with integer constant bounds. Assume that 
the lower bound is smaller than the upper bound, which is smaller than max
int. Instead of using the schema of Figure 3.1 Dc, the implementor chooses the 
following: 

(* Body of the loop *) 

i:=i+l; 
if i ,;;; t then goto 11; 

a. Explain why no strength reduction can be carried out in this loop. 
b. Suppose that we ignore the explanation of (a) and carry out the transfor

mation anyway. Give a specific example in which the transformed pro
gram terminates abnormally but the original does not. Restrict the expres
sions in your example to those arising from array subscript calculations. 
Your array bounds must be reasonable (i.e. arrays with maxint elements 



CHAPTER 14 

Implementing the Compiler 

In earlier chapters we have developed a general framework for the design of 
a compiler. We have considered how the task and its data structures could 
be decomposed, what tools and strategies are available to the compiler 
writer, and what problems might be encountered. Given a source language, 
target machine and performance goals for the generated code we can design 
a translation algorithm. The result of the design is a set of module 
specifications. 

This chapter is concerned with issues arising out of the implementation of 
these specifications. We first discuss the decisions that must be made by the 
implementors and the criteria that guide these decisions. Unfortunately, we 
can give no quantitative relationship between decisions and criteria! Com
piler construction remains an art in this regard, and the successful compiler 
writer must simply develop a feel for the inevitable compromises. We have 
therefore included three case studies of successful compilers that make very 
different architectural decisions. For each we have tried to identify the deci
sions made and show the outcome. 

14.1. Implementation Decisions 

Many valid implementations can generally be found for a set of module 
specifications. In fact, an important property of a module is that it hides one 
or more implementation decisions. By varying these decisions, one obtains 
different members of a 'family' of related programs. All of the members of 
such a family carry out the same task (defined by the module specifications) 
but generally satisfy different performance criteria. In our case, we vary the 

358 
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pass structure and data storage strategies of the compiler to satisfy a number 
of criteria presented in Section 14.1.1. Despite this variation, however, the 
module specifications remain unchanged. This point is an extremely impor
tant one to keep in mind, especially since many implementation languages 
provide little or no support for the concept of a module as a distinct entity. 
With such languages it is very easy to destroy the modular decomposition 
during development or maintenance, and the only protection one has 
against this is eternal vigilance and a thorough understanding of the design. 

14.1.1. Criteria Maintainability, performance and portability are the three 
main criteria used in making implementation decisions. The first is heavily 
influenced by the structure of the program, and depends ultimately on the 
quality of the modular design. Unfortunately, given current implementation 
languages, it is sometimes necessary to sacrifice some measure of maintaina
bility to achieve performance goals. Such tradeoffs run counter to our basic 
principles. We do not lightly recommend them, but we recognize that in 
some cases the compiler will not run at all unless they are made. We do 
urge, however, that all other possibilities be examined before such a decision 
is taken. 

Performance includes memory requirements, secondary storage require
ments and processing time. Hardware constraints often place limits on per
formance tradeoffs, with time the only really free variable. In Sections 
14.1.2 and 14.1.3 we shall be concerned mainly with tradeoffs between pri
mary and secondary storage driven by such constraints. 

Portability can be divided into two sub-properties often called rehostabil
ity and retargetability. Rehosting is the process of making the compiler itself 
run on a different machine, while retargeting is the process of making it gen
erate code for a different machine. Rehostability is largely determined by 
the implementation language and the performance tradeoffs that have been 
made. Suppose, for example, that we produce a complete design for a Pas
cal compiler, specifying all modules and interfaces carefully. If this design 
is implemented by writing a FORTRAN program that uses only constructs 
allowed by the FORTRAN standard, then there is a good chance of its run
ning unchanged on a wide variety of computers. If, on the other hand, the 
design is implemented by writing a program in assembly language for the 
Control Data Cyber series then running it on another machine would 
involve a good deal of effort. 

Even when we fix both the design and the implementation language, per
formance considerations may affect rehostability. For example, consider the 
use of bit vectors (say as parser director sets or error matrices, or as code 
generator decision table columns) when the implementation language is 
Pascal. One possible representation is a set, another is a packed array of 
Boolean. Unfortunately, some Pascal implementations represent all sets 
with the same number of bits. This usually precludes large sets, and the bit 
vectors must be implemented as arrays of sets or packed arrays of Boolean. 
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Other implementations only pack arrays to the byte level, thus making a 
packed array of Boolean eight times as large as it should be. Clearly when 
the compiler is rehosted from a machine with one of these problems to a 
machine with the other, different implementations of bit vectors may be 
needed to meet performance goals. 

Neither of the situations in the two previous paragraphs affected the 
design (set of modules and interfaces). Rehostability is thus quite evidently 
a property of the implementation. Retargetability, on the other hand, is 
more dependent upon the design. It requires a clean separation between 
the analysis and synthesis tasks, since the latter must be redesigned in order 
to retarget the compiler. If the target machine characteristics have been 
allowed to influence the design of the analysis task as well as the synthesis 
task, then the redesign will be more extensive. For example, suppose that 
the design did not contain a separate constant table module. Operations on 
constants were carried out wherever they were needed, following the 
idiosyncrasies of the target machine. Retargeting would then involve 
redesign of every module that performed operations on constants, rather 
than redesign of a single module. 

Although the primary determinant of retargetability is the design, imple
mentation may have an effect in the form of tradeoffs between modularity 
and performance that destroy the analysis/synthesis interface. Such 
tradeoffs also degrade the maintainability, as indicated at the beginning of 
this section. This should not be surprising, because retargeting a compiler is, 
after all, a form of maintenance: The behavior of the program must be 
altered to fit changing customer requirements. 

14.1.2. Pass Structure It often becomes obvious during the design of a 
compiler that the memory (either actual or virtual) available to a user on the 
host machine will not be sufficient for the code of the compiler and the data 
needed to translate a typical program. One strategy for reducing the 
memory requirement is analogous to that of a dentist's office in which the 
patient sits in a chair and is visited in turn by the dentist, hygienist and x-ray 
technician: The program is placed in the primary storage of the machine 
and the phases of the compiler are 'passed by the program', each performing 
a transformation of the data in memory. This strategy is appropriate for sys
tems with restricted secondary storage capability. It does not require that 
intermediate forms of the program be written and then reread during compi
lation; a single read-only file to hold the compiler itself is sufficient. The 
size of the program that can be compiled is limited, but it is generally possi
ble to compile programs that will completely fill the machine's memory at 
execution time. (Source and intermediate encodings of programs are often 
more compact than the target encoding.) 

Another strategy is analogous to that of a bureau of motor vehicles in 
which the applicant first goes to a counter where application forms are 
handed in, then to another where written tests are given, and so on through 
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the eye test, driving test, cashier and photographer: The compiler 'passes 
over the program', repeatedly reading and writing intermediate forms, until 
the translation is complete. This strategy is appropriate for systems with 
secondary storage that can support several simultaneously-open sequential 
files. The size of the program that can be compiled is limited by the filing 
system rather than the primary memory. (Of course primary memory will 
limit the complexity of the program as discussed in Chapter 1.) 

Either strategy requires us to decompose the compilation into a sequence 
of transformations, each of which is completed before the next is begun. 
One fruitful approach to the decomposition is to consider relationships 
between tasks and large data structures, organizing each transformation 
around a single data structure. This minimizes the information flow 
between transformations, narrowing the interfaces. Table 14.1 illustrates the 
process for a typical design. Each row represents a transformation. The first 
column gives the central data structure for the tasks in the second column. 
It participates in only the transformation corresponding to its row, and hence 
no two of these data structures need be held simultaneously. 

Our second strategy places an extra constraint upon the intermediate 
representations of the program: They must be linear, and each will be pro
cessed sequentially. The transformations are carried out by passes, where a 
pass is a single scan, in either direction, of a linear intermediate representa
tion of the program. Each pass corresponds to a traversal of the structure 
tree, with forward passes corresponding to depth-first, left-to-right traversals 
and backward passes corresponding to depth-first, right-to-left traversals. 
Under this constraint we are limited to AAG(n) attribution; the attribute 
dependencies determine the number of passes and the tasks carried out in 
each. It is never necessary to build an explicitly-linked structure tree unless 
we wish to change traversals. (An example is the change from a depth-first, 
left-to-right traversal of an expression tree to an execution-order traversal 
based upon register counts.) 

The basic Pascal file abstraction is a useful one for the linear intermediate 

Table 14.1 Decomposition via Major Data Structures 

Data 
Structure 

Symbol table 

Parse table 

Definition table 

Decision tables 

Address table 

Tasks 

Lexical analysis 

Parsing 

Name analysis 
Semantic analysis 
Memory mapping 
Target attribution 

Code selection 

Assembly 
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Chapter 6 

Chapter 7 
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Section 10.2 

Section 10.3 

Chapter I I 
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representations of the program. A module encapsulates the representation, 
providing an element type and a single window variable of that type. Opera
tions are available to empty the sequence, add the content of the window to 
the sequence, get the first element of the sequence into the window, get the 
next element of the sequence into the window, and test for the end of the 
sequence. This module acts as a 'pipeline' between the passes of the com
piler, with each operating directly on the window. By implementing the 
rnodule in different ways we can cause the communicating passes to operate 
as coroutines or to interact via a file. 

While secondary storage is larger than primary storage, constraints on 
space are not uncommon. Moreover, a significant fraction of the passes may 
be I/O-bound and hence any reduction in the size of an intermediate 
representation will be reflected directly in the compilation time. Our com
munication module, if it writes information to a file, should therefore encode 
that information carefully to avoid redundancy. In particular, the element 
will usually be a variant record and the communication module should 
transmit only the information present in the stated variant (rather than 
always assuming the largest variant). Further compression may be possible 
given a knowledge of the meanings of the fields. For example, in the token 
of Figure 4.1 the line number field of coordinates changes only rarely, and 
need be included only when it does change. The fact that the line number is 
present can be encoded by the classification field in an obvious way. 
Because most tokens are completely specified by the classification field 
alone, this optimization can reduce the size of a token file by 30%. 

14.1.3. Table Representation We have seen how the requirements for 
table storage are reduced by organizing each pass around a table and then 
discarding that table at the end of the pass. Further reduction can be based 
upon the restricted lifetime of some of the information contained in the 
table. For example, consider a block-structured language with a left-to-right 
attribute grammar (such as Pascal). The definition table entries for the enti
ties declared locally are not used after the range in which those entities were 
declared has been left. They can therefore be thrown away at that point. 

Pascal is admittedly a simple case, but even in languages with more com
plex attribute relationships definition table entities are only accessed during 
processing of a program fragment. One purpose of the definition table is to 
abstract information from the program, making it more accessible during 
processing. This purpose can only be served if the entry is, in fact, accessed. 
Thus it is often reasonable to destroy definition table entries when the frag
ment in which they are accessed has been left, and re-create them when that 
fragment is entered again. 

A table entry can only be destroyed if its information is no longer needed, 
can be recomputed from other information, or can be stored in the structure 
tree in a position where it can be recovered before it is needed next. The last 
condition is most easily satisfied if forward and backward passes alternate, 
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but it can also occur in other situations. We shall see several examples of 
this 'distribution' of attribute information in Section 14.2.1. 

Unfortunately, many implementation languages do not support freeing of 
storage. Even for those where it is nominally supported, the implementation 
is often poor. The compiler writer can avoid this problem by managing his 
own dynamic storage, only making requests for storage allocation and never 
returning storage to the system. The basic strategy for a block-structured 
language is quite simple: All storage allocated for a given table is held in a 
single one-way list. A pointer indicates the most-recently delivered element. 
When a program fragment that will add elements to the table is entered, this 
pointer is remembered; when the fragment is left, its value is restored. If a 
new element is needed then the pointer of the current element is checked. If 
it is nil, storage allocation is requested and a pointer to the resulting block 
placed in the current element. In any case the pointer to the most-recently 
delivered element is advanced along the list. Thus the list acts like a stack, 
and its final length is the maximum number of entries the table required at 
one point in the compilation. 

The disadvantage of this strategy is that the storage requirements are 
those that would obtain if all tables in each pass reached their maximum 
requirement simultaneously. Often this is not the case, and hence larger 
programs could have been accommodated if storage for unused entries had 
been returned to the operating system. 

Every pass that manipulates constant values must include the necessary 
operations of the abstract data type constanLtable discussed in Section 4.2.2. 
ConstanLtable defines an internal representation for each type of value. 
This representation can be used as an attribute value, but any manipulation 
of it (other than assignment) must be carried out by constant table opera
tions. We pointed out in Section 4.2.2 that the internal representation might 
simply describe an access function for a data structure within the constant 
table module. This strategy should be used carefully in a multipass compiler 
to avoid broadening the interface between passes: The extra data structure 
should usually not be retained intact and transmitted from one pass to the 
next via a separate file. Instead, all of the information about a constant 
should be added to the linearized form of the attributed structure tree at an 
appropriate point. The extra data structure is then reconstituted as the 
linearized tree is read in. 

The string table is a common exception to the approach suggested above. 
Careful design of the compiler can restrict the need for string table access to 
two tasks: lexical analysis and assembly. (This is true even though it may 
be used to store literal strings and strings representing the fractions of float
ing point numbers as well as identifiers.) Thus the string table is often writ
ten to a separate file at the completion oflexical analysis. It is only retrieved 
during assembly when the character representations of constants must be 
converted to target code, and identifiers must be incorporated into external 
symbol dictionaries. 
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14.2. Case Studies 

We have discussed criteria for making implementation decisions and indi
cated how the pass structure and table representation are affected by such 
decisions. This section analyzes three compilers, showing the decisions 
made by their implementors and the consequences of those decisions. Our 
interest is to explore the environment in which such decisions are made and 
to clarify their interdependence. We have tried to choose examples that 
illustrate the important points, and that have been used routinely in a pro
duction setting. Pragmatic constraints such as availability of design or 
maintenance documentation and understandability of the compiler itself 
were also influential. 

14.2.1. GIER ALGOL This compiler implements ALGOL 60 on GIER, 
a machine manufactured by Regnecentralen, Copenhagen. The decision to 
develop the compiler was taken in January, 1962 and the final product was 
delivered in February, 1963. It implemented all of ALGOL 60 except 
integer labels, arrays as value parameters, and own arrays. The compiler 
was intended to run on a minimum GIER configuration consisting of 1024 
40-bit words of 8.8 microsecond core memory and a 128,000 word drum 
(320 tracks of 40 words each). 

Previous experience with ALGOL compilers led the designers to predict 
a code size of about 5000 words for the GIER compiler. They chose to 
organize the compiler as a sequence of passes over linearized representa
tions of the program. Each intermediate representation consists of a 
sequence of 1O-bit bytes. The interpretation of this sequence depends upon 
the passes accessing it; it is a unique encoding of a specific data structure. 
Use of relatively small, uniform units improves the efficiency of the encod
ing and allows the implementors to use common basic 110 routines for all 
passes. The latter consideration is perhaps most important for compilers 
implemented in machine code. As we indicated in Section 14.1.2, however, 
a multi-pass compiler is often 1/0 bound and hence specially tailored 
machine code I/O routines might result in a significant performance 
improvement. We should emphasize that such a decision should only be 
made on the basis of careful measurement, but the implementor should 
make it possible by an appropriate choice of representation. 

Assuming that about half of the core memory would be used for code in 
each pass, simple arithmetic shows that 10 passes will be required. This 
value was not taken as a target to be met, but merely as an indication of the 
number to be expected. Passes were generally organized around major data 
structures, with the additional proviso that large tables should be combined 
with simple code and vice-versa. 

Table 14.2 shows the final structure, using the descriptions given by Naur 
[1964a] and the corresponding tasks discussed in this book. 

Lexical analysis is divided into two passes in order to satisfy the code 
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size/table size relationship mentioned in the last paragraph: Since up to 510 
identifiers are allowed, and there is no restriction on identifier length, it is 
clear that the maximum possible space must be made available for the sym
bol table. Thus the remainder of the lexical analysis was placed in another 
pass. Here we have a decision that should be validated by measurements 
made on the running compiler. In the final system, each pass had 769 words 
of core memory available (the remainder was occupied by the control code). 
Pass 1 used 501 words of program and 132 words of data, plus a 40-word 
buffer for long character strings; pass 2 used 89 words for program and 62 
words for data. Unless the pass 1 code could be reduced significantly by 
using a different algorithm or data structure, or the allowance of 510 
identifiers was found to be excessive, the decision to split the two tasks 
stands. 

Note the interdependence of the decisions about representation of tokens 
and form of the intermediate code. A lO-bit byte allows values in the range 
[0,1023]. By using the subrange [512,1022] for identifiers, one effectively 
combines the classification and symbol fields of Figure 4.1. Values less than 
512 classify non-identifier tokens, in most cases characterizing them com-

Table 14.2 Pass Structure for the GIER ALGOL Compiler 

Pass Task(s) Description 

I Lexical analysis Analysis and check of hardware representation.r 
Conversion to reference language. Strings are as-
sembled. I 

2 Lexical analysis Identifier matching. In the output, each distinct 
identifier is associated with an integer between 512 
and 1022. 

3 Syntactic analysis Analysis and check of delimiter structure. Delim-
iters of multiple meaning are replaced by distinc-
tive delimiters. Extra delimiters are inserted to fa-
cilitate later scanning. 

4 Collection of declarations and specifications at the 
begin of blocks and in procedure headings. Rear-
rangements of procedure calls. 

5 
Name analysis Distribution of identifier descriptions. 
Storage mapping Storage allocation for variables. 

6 Semantic analysis Check the types and kinds of identifiers and other 
operands. Conversion to reverse polish notation. 

7 Code generation Generation of machine instructions for expres-
sions. Allocation of working variables. 

8 Assembly Final addressing of the program. Segmentation 
into drum tracks. Production of final machine 
code. 

9 Rearrangement of the program tracks on the drum 
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pletely. Only constants need more than a single byte using this scheme, and 
we know that constants occur relatively infrequently. Interestingly, only 
string constants are handled in pass 1. Those whose machine representa
tions do not exceed 40 bits are replaced by a marker byte followed by 4 
bytes holding the representation. Longer strings are saved on the drum and 
replaced in the code by a marker byte followed by 4 bytes giving the drum 
track number and relative address. In the terminology of Section 4.2.2, the 
constant table has separate fixed-length representations for long and short 
strings. Numeric constants remain in the text as strings of bytes, one 
corresponding to each character of the constant. 

Pass 3 performs the normal syntactic analysis, and also converts numeric 
and logical constants to a flag byte followed by 4 bytes giving the machine 
representation. Again in the terminology of Section 4.2.2, the internal and 
target representations of numeric constants are identical. (The flag byte 
simply serves as the classification field of Figure 4.1; it is not part of the con
stant itself.) Naur's description of the compiler strongly suggests that pars
ing is carried out by the equivalent of a pushdown automaton while the lexi
cal analysis of pass 1 is more ad-hoc. As we have seen, numeric constants 
can be handled easily by a pushdown automaton. The decision to process 
numeric and logical constants in pass 3 rather than in pass 1 was therefore 
probably one of convenience. 

The intermediate output from pass 3 consists of the unchanged identifiers 
and constants, and a transformed set of delimiters that precisely describe the 
program's structure. It is effectively a sequence of connection point 
numbers and tokens, with the transformed delimiters specifying structure 
connections and each identifier or constant specifying a single symbol con
nection plus the associated token. 

Attribute flow is generally from declaration to use. Since declaration 
may follow use in ALGOL 60, reverse attribute flow may occur. Pass 4 is a 
reverse pass that collects all declarative information of a block at the head of 
the block. It merely simplifies subsequent processing. 

In pass 5, the definition table is actually distributed through the text. 
Each identifier is replaced by a 4-byte group that is the corresponding 
definition table entry. It gives the kind (e.g. variable, procedure), result 
type, block number, relative address and possibly additional information. 
Thus GIER ALGOL does not abstract entities as proposed in Section 4.2.3, 
but deposits the necessary information at the leaves of the structure tree. 
This example emphasizes the fact that possessions and definitions are 
separate. GIER ALGOL uses possessions virtually identical to those dis
cussed in connection with Figure 9.21 to control placement of the attributes 
during pass 5, but it has no explicit definition table at all. 

Given the attribute propagation performed by passes 4 and 5, the attribu
tion of pass 6 is LAG( 1). This illustrates the interaction between attribute 
flow and pass structure. Given an attribute grammar, we must attempt to 
partition the relationships and semantic functions so that they fall into 
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separable components that can be fit into the overall implementation model. 
This partitioning is beyond the current state of the art for automatic genera
tors. We can only carry out the partitioning by hand and then use analysis 
tools based upon the theorems of Chapter 8 to verify that we have not made 
any mistake. 

Address calculations are carried out during both pass 7 and pass 8. Back
ward references are resolved by pass 7; pass 8 is backward over the program, 
and hence can trivially resolve forward references. Literal pooling is also 
done during pass 7. All of the constants used in the code on one drum track 
appear in a literal pool on that track. 

14.2.2. Zurich Pascal The first Pascal compiler was developed during 
the years 1969-71 for Control Data 6000 series hardware at the Institut (ur 
Informatik, Eidgenossische Technische Hochschule, Zurich. Changes were 
made in Pascal itself as a result of experience with the system, and a new 
implementation was begun in July, 1972. This project resulted in a family of 
two compilers, Pascal-P and Pascal-6000, having a single overall design. 
Pascal-P is a portable compiler that produces code for a hypothetical stack 
computer; the system is implemented by writing an interpreter for this 
machine. Pascal-6000 produces relocatable binary code for Control Data 
6000 series machines. The two compilers were completed in March, 1973 
and July, 1974 respectively. Descendants of these two compilers comprised 
the bulk of the Pascal implementations in existence in 1982, ten years after 
their development was initiated. 

Written in Pascal itself, the Zurich compilers have a one-pass, recursive 
descent architecture that reflects the freedom from storage constraints 
afforded by the Control Data machine. 6000 series processors permit a user 
direct access to l31,072 60-bit words of I microsecond core memory. Even 
the more common configuration installed at the time Zurich Pascal was 
developed provided each user with a maximum of about 40,000 words. 
(This is almost 60 times the random-access memory available for the GIER 
ALGOL compiler.) 

Pascal provides no linguistic mechanisms for defining packages or 
abstract data types, and hence all explicit modules in the compilers are pro
cedures or variables. The effect of a package must be obtained by defining 
one or more variables at a given level and providing a collection of pro
cedures to manipulate them. Encapsulation can be indicated by comments, 
but cannot be enforced. Similarly, an abstract data type is implemented by 
defining a type and providing procedures to manipulate objects of that type. 
Lack of linguistic support for encapsulation encourages the designer to con
sider a program as a single, monolithic unit. Control of complexity is still 
essential, however, and leads to an approach known as stepwise refinement. 
This technique is particularly well-suited to the development of recursive 
descent compilers. 

Stepwise refinement is subtly different from modular decomposition as a 
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Table 14.3 Development Steps for the Zurich Pascal Compilers 

Step Task(s) Description 

I 
Lexical analysis Syntax analysis for syntactical-
Syntactic analysis Iy correct programs 

2 Syntactic error Treatment of syntactic errors 
recovery 

3 Semantic analysis Analysis of the declarations 

4 Semantic analysis Treatment of declaration errors 

5 Memory mapping Address allocation 

6 
Code selection 

Code generation 
Assembly 

7 Optimization Local improvement of the gen-
erated code 

design methodology. Instead of dividing the problem to be solved into a 
number of independent subproblems, it divides the solution into a number 
of development steps. A painter uses stepwise refinement when he first 
sketches the outlines of his subject and then successively fills in detail and 
adds color; an automobile manufacturer uses modular decomposition when 
he combines engine, power train and coachwork into a complete product. 
Table 14.3 lists the development steps used in the Zurich Pascal project, with 
the descriptions given by Ammann [1975] and the corresponding tasks dis
cussed in this book. 

The overall structure of the compiler was established in step 1; Figure 
14.4 shows this structure. Each line represents a procedure, and nesting is 
indicated by indentation. At this step the procedure bodies had the form 
discussed in Section 7.2.2, and implemented an EBNF description of the 
language. 

Lexical analysis is carried out by a single procedure that follows the out
line of Chapter 6. It has no separate scanning procedures, and it incor
porates the constant table operations for conversion from source to internal 
form. Internal form and target form are identical. No internal-to-target 
operators are used, and the internal form is manipulated directly via normal 
Pascal operations. 

There is no symbol table. Identifiers are represented internally as packed 
arrays of 10 characters-one 60-bit word. If the identifier is shorter than 10 
characters then it is padded on the right with spaces; if it is longer then it is 
truncated on the right. (We have already deplored this strategy for a 
language whose definition places no constraints upon identifier length.) 
Although the representation is fixed-length, it still does not define a small 
enough address space to be used directly as a pointer or table index. Name 
analysis therefore requires searching and, because there may be duplicate 
identifiers in different contexts, the search space may be larger than in the 
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case of a symbol table. Omission of the symbol table does not save much 
storage because most of the symbol table lookup mechanism must be 
included in the name analysis. 

Syntactic error recovery is carried out using the technique of Section 
12.2.2. A minor modification was needed because the stack is not accessible 
when an error is detected: Each procedure takes an anchor set as an argu
ment. This set describes the anchors after reduction of the nonterminal 
corresponding to the procedure. Symbols must be added to this set to 
represent anchors within the production currently being examined. Of 
course all of the code to update the anchors, check for errors, skip input 
symbols and advance the parse was produced by hand. This augmentation 
of the basic step I routines constituted step 2 of the compiler development. 

basic symbol 
program 

block 
constant 
type 

simple type 
field list 

label declaration 
constant declaration 
type declaration 
variable declaration 
procedure declaration 

parameter list 
body 

statement 
selector 
variable 
call 
expression 

simple expression 
term 

factor 
assignment 
compound statement 
goto statement 
if statement 
case statement 
while statement 
repeat statement 
for statement 
with statement 

Figure 14.4. The Structure of the Zurich Pascal Compilers. 
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The basic structure of Figure 14.4 remained virtually unchanged; common 
routines for error reporting and skipping to an anchor were introduced, with 
the former preceding the basic symbol routine (so that lexical errors could 
be reported) and the latter following it (so that the basic symbol routine 
could be invoked when skipping). 

Step 3 was concerned with building the environment attribute discussed 
in Section 9.1.1. Two record types, identree and struetree, were added to the 
existing compiler. The environment is a linked data structure made up of 
records of these types. There is one identree per declared identifier, and 
those for identifiers declared in the same range are linked as an unbalanced 
binary tree. An array of pointers to tree roots constitutes the definition of 
the current addressing environment. Three of the definition table operations 
discussed in Section 9.2 (add a possession to a range, search the current 
environment, search a given range) are implemented as common routines 
while the others are coded in line. Entering and leaving a range are trivial 
operations, involving pointer assignment only, while searching the current 
environment is complex. This is exactly the opposite of Figure 9.21, which 
requires complex behavior on entry to and exit from a range with simple 
access to the current environment. The actual discrepancy between the two 
techniques is reduced, however, when we recall that the Zurich compiler 
does not perform symbol table lookups. 

Each identree carries attribute information as well as the linkages used to 
implement the possession table. Thus the possessions and definitions are 
combined in this implementation. The type attribute of an identifier is 
represented by a pointer to a record of type struetree, and there is one such 
record for every defined type. Certain types (as for example scalar types) 
are defined in terms of identifiers and hence a struetree may point to an iden
tree. The identree contains an extra link field, beyond those used for the 
range tree, to implement lists of identifiers such as scalar constants, record 
fields and formal parameters. 

The procedures of Figure 14.4 can be thought of as carrying out a depth
first, left-to-right traversal of the parse tree even though that tree never has 
an explicit incarnation. Since only one pass is made over the source pro
gram, the attribution rules must meet the LAG( 1) condition. They were 
simply implemented by Pascal statements inserted into the procedures of 
Figure 14.4 at the appropriate points. Thus at the conclusion of step 3 the 
bodies of these procedures still had the form of Section 7.2.2, but contained 
additional Pascal code to calculate the environment attribute. As discussed 
in Section 8.3.2, attribute storage optimization led to the representation of 
the environment attribute as a linked, global data structure rather than an 
item stored at each parse tree node. The interesting part of the structure tree 
is actually represented by the hierarchy of activation records of the recursive 
descent procedures. Attribute values attached to the nodes are stored as 
values oflocal variables of these procedures. 

During step 4 of the refinement the remainder of the semantic analysis 
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was added to the routines of Figure 14.4. This step involved additional attri
bution and closely followed the discussion of Chapter 9. Type definitions 
were introduced for the additional attributes, global variables were declared 
for those attributes whose storage could be optimized, and local variables 
were declared for the others. The procedures of Figure 14.4 were aug
mented by the Pascal code for the necessary attribution rules, and functions 
were added to implement the recursive attribute functions. 

Ammann [1975] reports that steps 1-4 occupied a bit more than 6 months 
of the 24-month project and accounted for just over 2000 of the almost 7000 
lines in Pascal-6000. Steps 5 and 6 for Pascal-P were carried out in less than 
two and a half months and resulted in about 1500 lines of Pascal, while the 
corresponding numbers for Pascal-6000 were thirteen months and 4000 
lines. Step 7 added another three and a half months to the total cost of 
Pascal-6000, while increasing the number oflines by less than 1000. 

The abstract stack computer that is the target for the Pascal-P compiler is 
carefully matched to Pascal. Its elementary operators and data types are 
those of Pascal, as are its memory access paths. There are special instruc
tions for procedure entry and exit that provide exactly the effect of a Pascal 
procedure invocation, and an indexed jump instruction for implementing a 
case selection. Code generation for such a machine is clearly trivial, and we 
shall not consider this part of the project further. 

Section 10.1 describes storage allocation in terms of blocks and areas. A 
block is an object whose size and alignment are known, while an area is an 
object that is still growing. In Pascal, blocks are associated with 
completely-defined types, whereas areas are associated with types in the pro
cess of definition and with activation records. Thus Pascal-6000 represents 
blocks by means of a size field in every structrec. The actual form of this 
field varies with the type defined by the structrec; there is no uniform size 
attribute like that of Figure 10.1. Because of the recursive descent architec
ture and the properties of Pascal, the lifetime of an area coincides with the 
invocation of one of the procedures of Figure 14.4 in every case. For exam
ple, an area corresponding to a record type grows only during an invocation 
of the field list procedure. This means that the specification of an area can 
be held in local variables of a procedure. Step 5 added these local variable 
declarations and the code to process area growth to the procedures of Figure 
14.4. The size field was also added to structrec in this step. 

Step 6 was the first point at which a 'foreign' structure-the structure of 
the target machine-appeared. This refinement was thus the first that added 
a significant number of procedures to those of Figure 14.4. The added pro
cedures effectively act as modules for simulation and assembly. 

As we pointed out earlier, no explicit structure tree is ever created by 
Pascal-6000. This means that the structure tree cannot be decorated with 
target attributes used to determine an improved execution order and then 
traversed according to this execution order for code selection. Pascal-6000 
thus computes no target attributes other than the value descriptors of Section 
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1003.1. They are used in conjunction with a set of register descriptors and 
register allocation operations to perform a machine simulation exactly as 
discussed in Section 1003.1. The recursive descent architecture once again 
manifests itself in the fact that global storage is provided for only one value 
descriptor. Most value descriptors are held as local variables of procedures 
appearing in Figure 14.4, with the global variable describing the 'current' 
value-the one that would lie at the 'top of the stack'. 

The decision tables describing code selection are hand-coded as Pascal 
conditionals and case statements within the analysis procedures. Code is 
generated by invoking register allocation procedures, common routines such 
as load and store, and assembly interface procedures from Table 14.5. 

The first four operations of Table 14.5 assemble target code sequentially; 
Pascal-6000 does not have the concept of separate sequences discussed in 
Section 1l.l.1. A 'location counter' holds the current relative address, which 
may be accessed by any routine and saved as a label. The third operand of 
a 30-bit instruction may be either an absolute value or a relative address, 
and gen30 has a fourth parameter to distinguish these cases. Forward refer
ences are handled by ins, which allows a relative address to be stored at a 
given position in the code already assembled. 

In keeping with the one-pass architecture, Pascal-6000 retains all of the 
code for a single procedure. The assembly 'module' is initialized when the 
'body' procedure (Figure 14.4) is invoked, and a complete relocatable deck 
is output at the end of this invocation to finalize the 'module'. Pascal-6000 
uses Control Data's standard relocatable binary text as its target code, in 
keeping with our admonition at the beginning of Section 11.2. We shall dis
cuss the layout of that text here in some detail as an illustration; another 
example, the IBM 370 object module, will be given at the end of the next 
section. 

A relocatahle subprogram is a logical record composed of a sequence of 
tables (Figure 14.6), which are simply blocks of information with various 
purp8ses. The first word of each table contains an identifying code and 

Table 14.5 Pascal-6000 Assembly Operations 

Procedure Description 

noop Force code alignment to a word boundary 

genl5 Assemble a 15-bit instruction 

gen30 Assemble a 30-bit instruction 

gen60 Assemble a 60-bit constant 

searchextid Set up an external reference 

ins Satisfy a given forward reference 

19ohead Output PIDL and ENTR 

19otext Output TEXT 

19oend Output XFER and LINK 
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specifies the number of additional 60-bit words in the table. As with any 
record, a relocatable subprogram may be preceded by a prefix table contain
ing arbitrary information (such as the date compiled, version of the com
piler, etc.), but the first component of the subprogram proper is the program 
identification and length (PIDL) table. PIDL is conventionally followed by 
an entry point (ENTR) table that associates entry point symbols with the 
locations they denote (Section 11.2.1), but in fact the loader places no con
straints on either the number or the position(s) of any tables other than 
PIDL. 

The body of the subprogram is made up of TEXT tables. Each TEXT 
table specifies a block of up to 15 words, the first of which should be loaded 
at the specified address. Four relocation bits are used for each text word 
(hence the limit of 15 text words). References to external symbols are not 
indicated by the relocation bits, which only distinguish absolute and signed 
relative addresses. External references are specified by LINK tables: For 
each external symbol, a sequence of operand field definitions is given. The 
loader will add the address of the external symbol to each of the fields so 
defined. Thus a call of sqrt, for example, would appear in the TEXT table 
as an RJ (return jump) instruction with the absolute value 0 as its operand. 
This O-field would then be described in a LINK table by one of the operand 
field definitions following the symbol sqrt. When the loader had determined 
the address of sqrt it would add it to the O-field, thus changing the instruction 
into RJ sqrt. There is no restriction on the number of LINK tables, the 
number of times a symbol may appear or the number offield definitions that 
may follow a single symbol. As shown in Figure 14.6, each field definition 
occupies 30 bits, each symbol occupies 60 bits, and a symbol may be split 
between words. 

The transfer (XFER) table is conventionally associated with a main pro
gram. It gives the entry point to which control is transferred after the loader 
has completed loading the program. Again, however, the loader places no 
restriction on the number of XFER tables or the subprograms with which 
they are associated. An XFER table is ignored if its start symbol begins with 
a space, or if a new XFER whose start symbol does not begin with a space is 
encountered. The only requirement is that, by the time the load is com
pleted, a start symbol that is an entry point of some loaded subprogram has 
been specified. 

Internal and external references, either of which may occur in a 30-bit 
instruction, are represented quite differently in the target code. This is 
reflected at the assembly interface by the presence of searchextid. When a 
30-bit instruction is emitted, gen 30 checks a global pointer. If it is not nil 
then it points to an external symbol, and gen 30 adds the target location of 
the current instruction's third operand to a list rooted in that symbol. This 
list will ultimately be used by 19oend to generate a LINK table. The global 
pointer checked by gen 30 is set by searchextid and cleared to nil by gen 30. 
When the code generator emits a 30-bit instruction containing an external 
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reference it therefore first invokes searchextid with the external identifier and 
then invokes gen 30 with the absolute value 0 as the third operand. Section 
11.3.1 gives an alternative strategy. 

14.2.3. IBM FORTRAN H The major design goal for FORTRAN H 
was production of efficient object code. IBM began development of the 
compiler in 1963, using FORTRAN as the implementation language on the 
7094. The initial version was used to compile itself for System/360, produc
ing over half a million 8-bit bytes of code. Running on System/360, the 
compiler optimized itself, reducing its size by about 25%. It was then rewrit
ten to take advantage of language extensions permitting efficient bit mani
pulation and introducing a form of record access. This reduced compilation 
time by about 35% and allowed the compiler to compile itself on a 262,140 
byte configuration. Major development of FO R TRAN H was completed in 
1967, but modification and enhancement has been a continuous process 
since then. The details presented in this section correspond to release 17 of 
the compiler [IBM 1968]. 

The entire program unit being compiled is held in main storage by the 
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Figure 14.6. Control Data 6000 Series Relocatable Binary Code. 
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FORTRAN H compiler. This is done to simplify the optimizer, which 
accesses the program text randomly and rearranges it. It does imply limita
tions on the size of a compilable unit, but such limitations are less serious for 
FORTRAN than for ALGOL 60 or Pascal because the language design 
supports separate compilation of small units. 

As shown in Table 14.7, the compiler has five major phases. Code for 
these phases is overlaid, with a total of 13 overlay segments. A maximum of 
about 81,000 bytes of code is actually in the memory at anyone time (this 
maximum occurs during phase 20), and the minimum storage in which a 
compilation can be carried out is about 89,000 bytes. 

FORTRAN is a rather unsystematic language, and Phase 10 reflects this. 
The unit of processing is a complete statement, which is read into a buffer, 
packed to remove superfluous spaces, and then classified. Based upon the 
classification, ad hoc analysis routines are used to deal with the parts of the 
statement. All of these routines have similar structures: They scan the 
statement from left to right, extracting each operand and making an entry 
for it in the definition table if one does not already exist, and building a 
linear list of operator /operand pairs. The operator of the pair is the opera
tor that preceded the operand; for the first pair it is the statement class. An 
operand is represented by a pointer to the definition table plus its type and 
kind (constant, simple variable, array, etc.) The type and kind codes are 
also in the definition table entry, and are retained in the list solely to sim
plify access. 

Phase 10 performs only a partial syntactic analysis of the source program. 

Table 14.7 Phase Structure of the IBM FORTRAN H Compiler 

Phase Task(s) Description 

Lexical analysis . . 
10 S t t· I· Convert source text to operator-operand paIrs and mforma-

yn ac IC ana YSIS . bl . D . 
S . I· hon ta e entnes. etect syntactlc errors. 
emantlc ana YSIS 

Syntactic analysis . 
S t· I· Convert operator-operand palTS to quadruples. Operator 

IS eman IC ana YSls·d ·fi· d . h k C 
M . I entl cahon an conSIstency c ec s. onvert constants and 

emory mappmg. I· dd . bl 
T ·b . aSSIgn re atlve a resses to constants, vana es and arrays. 

arget attn utlOn 

Target attribution Eliminate common subexpressions, perform live/dead 
20 Optimization analysis and strength reduction, and move constant expres

sions out of loops. Assign registers and determine the sizes of 
code blocks. Optimize jump targets. 

25 Code selection 
Assembly 

30 Error reporting 

Convert quadruples into System/360 machine code. Create 
an object module. 

Record appropriate messages for errors encountered during 
previous phases. 
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It does not determine the tree structure within a statement, but it does 
extract the statement number and classify some delimiters that have multiple 
meaning. For example, it replaces '(' by 'left arithmetic parenthesis', 'left 
subscript parenthesis' or 'function parenthesis' as appropriate. 

Name analysis is rudimentary in FORTRAN because the meaning of an 
identifier is independent of the structure of a program unit. This means that 
no possessions are required, and the symbol and definition tables can be 
integrated without penalty. Symbol lookup uses a simple linear scan of the 
chained definition table entries, but the organization of the chains is 
FORTRAN-specific: There is one ordered chain for each of the six possible 
identifier lengths, and each chain is doubly-linked with the header pointing 
to the center of the chain. Thus a search on any chain only involves half the 
entries. (The header is moved as entries are added to a chain, in order to 
maintain the balance.) Constants, statement numbers and common block 
names also have entries in the definition table. Three chains are used for 
constants, one for each allowable length (4, 8 or 16 bytes), and one each for 
statement numbers and common block names. 

The only semantic analysis done during Phase 10 is 'declaration process
ing'. Type, dimension, common and equivalence statements are completely 
processed and the results summarized in the definition table. Because FOR
TRAN does not require that identifiers be declared, attribute information 
must also be gathered from applied occurrences. A minor use of the attri
bute information is in the classification of left parentheses (mentioned 
above), because FORTRAN does not make a lexical distinction between 
subscript brackets and function parentheses. 

Phase 15 completes the syntactic analysis, converting the lists of 
operator/operand pairs to lists of quadruples where appropriate. Each qua
druple consists of an operator, a target type and three pointers to the 
definition table. This means that phase 15 also creates a definition table 
entry for every anonymous intermediate result. Such 'temporary names' are 
treated exactly like programmer-defined variables in subsequent processing, 
and may be eliminated by various optimizations. The quadruples are 
chained in a correct (but not necessarily optimum) execution order and gath
ered into basic blocks. 

Semantic analysis is also completed during phase 15, with all operator 
identification and consistency checking done as the quadruples are built. 
The target type is expressed as a general type (logical, integer, real) plus an 
operand type (short, long) for each operand and for the result. 

The syntactic and semantic analysis tasks of phase 15 are carried out by 
an overlay segment known as PHAZ15, which also gathers defined/used 
information for common subexpression and dead variable analysis. This 
information is stored in basic block headers as discussed in Chapter 13. 
Finally, PHAZ15 links the basic block headers to both their predecessors 
and their successors, describing the flowgraph of the program and preparing 
for dominance analysis. 
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CORAL is the second overlay segment of phase 15, which carries out the 
memory mapping task. The algorithm is essentially that discussed in Sec
tion 10.1, but its only function is to assign addresses to constants and vari
ables (in other words, to map the activation record). There are no variant 
records, but equivalence statements cause variables to share storage. By 
convention, the activation record base is in register 13. The layout of the 
activation record is given in Figure 14.8. It is followed immediately by the 
code for the program unit. (Remember that storage allocation is static in 
FORTRAN.) The size of the save area (72 bytes) and its alignment (8) are 
fixed by the implementation, as is the size of the initial contents for register 
12 (discussed below). Storage for the computed GOTO tables and the 
parameter lists have already been allocated storage by Phase 10. CORAL 
allocates storage for constants first, then for simple variables and then for 
arrays. Local variables and arrays mentioned in equivalence statements 
come next, completing this part of the activation record. Finally the com
mon blocks specified by the program unit are mapped as separate areas. 

System/360 access paths limit the maximum displacement to 4095. 
When a larger displacement is generated during CORAL processing, the 
compiler defines an adcon variable-a new activation record base-and resets 
the displacement to O. The adcon is entered into the definition table and 
treated as a normal variable for further processing. CORAL does not place 
either adcons or temporaries into the activation record at this time, because 
they may be deleted during optimization. 

Phase 20 assigns operands to registers. If the user has specified optimiza
tion level 0, the compiler treats the machine as having one accumulator, one 
base register and one register for specifying jump addresses (Table 14.9). 
Machine simulation (Section 10.3.1) is used to avoid redundant loads and 
stores, but no change is made in the execution order of the quadruples. 
Attributes are added to the quadruples, specifying the register or base regis
ter used for each operand and for the result. 

Level I optimization makes use of a pool of general-purpose registers, as 
shown in Table 14.9. Register 13 is always reserved as the base of the 

Save area 
Initial contents for register 12 
Branch tables for computed GOTO's 
Parameter lists 
Constants and local variables 
Address values ('adcons') 
Namelist dictionaries 
Compiler-generated temporaries 
Label addresses 

Figure 14.8. FORTRAN H Activation Record. 
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activation record. A decision about whether to reserve some or all of regis
ters 9-12 is made on the basis of the number of quadruples output by phase 
15. This statistic is available prior to register allocation, and it predicts the 
size of the subprogram code. Once the register pool is fixed, phase 20 per
forms local register assignment within basic blocks and global assignment 
over the entire program unit. Again, the order of the quadruples is 
unchanged and attributes giving the registers used for each operand or 
memory access path are added to the quadruples. 

Common subexpression elimination, live/dead analysis, code motion and 
strength reduction are all performed at optimization level 2. The register 
assignment algorithms used on the entire program unit at level 1 are then 
applied to each loop of the modified program, starting with the innermost 
and ending with the entire program unit. This guarantees that the register 
assignment within an inner loop will be determined primarily by the activity 
of operands within that loop, whereas at level 1 it may be influenced by 
operand activity elsewhere in the program. 

The basic implementation used for a branch is to load the target address 
of the branch into a register and then execute an RR-format branch instruc
tion. This requires an adcon for every basic block whose first instruction is a 

Register 
Assignment at optimization level 

o 1) 

0 
Operands and results 

1 
2 
3 Not used 

4 

5 
Branch addresses Operands and results 
Selected logical operands 

6 Operands representing index 
values 

7 Base addresses 
8 
9 

Not used 
10 Code bases or operands 

11 and results 

12 Adcon base 
13 Activation record base 

14 Computed GOTO 
Logical results of comparisons Operands and results 

15 Computed GOTO 

Table 14.9. General-Purpose Register Assignment by FORTRAN H 
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branch target. If a register already happened to hold an address less than 
4096 bytes lower than the branch target, however, both the load and the 
adcon would be unnecessary. A single RX-format branch instruction would 
suffice. Thus the compiler reserves registers to act as code bases. To under
stand the mechanism involved, we must consider the layout of information 
in storage more carefully. 

We have already seen that phase 15 allocates activation record storage 
for constants and programmer-defined variables, generating adcons as 
necessary to satisfy the displacement limit of 4095. When register allocation 
is complete, all adcons and temporary variables that have not been elim
inated are added to the activation record. The adcons must all be directly 
addressable, since they must be loaded to provide base addresses for 
memory access. If they are not all within 4095 bytes of the activation record 
base then the reserved register 12 is assumed to contain either the address of 
the first adcon or (base address of the activation record +4096), whichever is 
larger. It is assumed that the number of adcons will never exceed 1024 
(although this is theoretically possible, given the address space of Sys
tem/360) and hence all adcons will be directly accessible via either register 
12 or register 13. (Note that a fail-safe decision to reserve register 12 can be 
made on the basis of the phase 15 output, without regard to the number of 
quadruples.) 

If the number of quadruples output from phase 15 is large enough, regis
ter 11 will be reserved and initialized to address the 4096th byte beyond that 
addressed by register 12. Similarly, for a larger number of quadruples, 
register 10 will be reserved and initialized to an address 4096 larger than 
register 11. Finally, register 9 will be reserved and initialized for an even 
larger number of quadruples. Phase 20 can calculate the maximum possible 
address of each basic block. Those lying within 4096 bytes of one of the 
reserved registers are marked with the register number and displacement. 
The adcon corresponding to the basic block label is then deleted. (These 
deletions, plus the ultimate shortening of the basic blocks due to optimiza
tion of the branch instructions, can never invalidate the addressability con
ditions on the basic blocks.) 

The branch optimization described in the previous paragraphs is carried 
out only at optimization levels 1 and 2. At optimization level 0 the basic 
implementation is used for all branches. 

Phase 25 uses decision tables to select the proper sequence of machine 
instructions. The algorithm is basically that of Section 10.3.2, except that 
the action stub of the decision table is simply a sequence of instruction tem
plates. Actions such as swap and [reg (Figure 10.15) have already been car
ried out during phase 20. There is conceptually one table for every quadru
ple operator. Actually, several tables are associated with families of opera
tors, and the individual operator modifies the skeletons as they are extracted. 
The condition is selected by a 4-bit status, which may have somewhat 
different meanings for different operators. It is used as an index to select the 
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proper column of the table, which in turn identifies the templates to be used 
in implementing the operator. 

FORTRAN H generates System/360 object modules, which are 
sequences of 80-character card images (Figure 14.10). Each card image is 
output by a normal FORTRAN formatted write statement. The first byte 
contains 2, which is the communication control character STX (start of text). 
All other fields left blank in Figure 14.10 are unused. Columns 2-4 and 73-
80 contain alphanumeric information as indicated, with the serial number 

2-4 5 6-8 9-10 11-12 13-14 15-16 17-72 73-80 

n 

n 

n 

IENDI I address I I esdid I I serial 

a) Object module card images 

1-8 9 10-12 13 14-16 
Deck I length characters 

1
0 

I 
offset I 

Entry II I characters address Idid 

External 
characters 

121 

b) Symbols 

1-2 3-4 5 6-8 

Position Location 
f address 

sdid esdid 

c) Relocations 

Figure 14.10. IBM System 1360 Relocatable Binary Code. 
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conslstmg of a four-character deck identifier and a four-digit sequence 
number. The remaining columns simply contain whatever character hap
pens to have the value of the corresponding byte as its EBCDIC code. Thus 
24-bit (3-byte) addresses occupy three columns and half word (2-byte) 
integers occupy two columns. Even though the length field n has a max
imum value of 56, it occupies a halfword because System/360 has no byte 
arithmetic. 

Comparing Figure 14.10 with Figure 14.6, we see that essentially the 
same elements are present. END optionally carries a transfer address, thus 
subsuming XFER. ESD plays the roles of both PIDL and ENTR, and also 
specifies the symbols from LINK. Its purpose is to describe the characteris
tics of the control sections associated with global symbols, and to define short, 
fixed-length representations (the esdid's) for those symbols. The esdid in 
columns 15-16 identifies a deck or external; only one symbol of these types 
may appear on an ESD card. Entry symbols identify the control sections to 
which they belong (ldid) , and therefore they may be placed on any ESD 
card where space is available. 

RLD provides the remaining function of LINK, and also that of the relo
cation bits in TEXT. Each item of relocation information modifies the field 
at the absolute location specified in the position esdid and address by either 
adding or subtracting the value identified by the relocation esdid. Byte f 
determines whether the value will be added or subtracted, and also specifies 
the width of the field being modified (which may be 1,2, 3 or 4 bytes). If a 
sequence of relocations involve the same esdid's then these specifications are 
omitted from the second and subsequent relocations. (The rightmost bit off 
is I if the following relocation does not specify esdid's, 0 otherwise.) 

The decision to use relocation bits on the Control Data machine and the 
RLD mechanism on System/360 reflects a fundamental difference in the 
instruction sets: 30-bit instructions on the 6000 Series often reference 
memory directly, and therefore relocatable addresses are common in the 
text. On System/360, however, all references to memory are via values in 
registers. Only the adcons are relocatable and therefore relocatable 
addresses are quite rare in the text. 

14.3. Notes and References 

Most implementation decisions are related to performance in one way or 
another, and must either be made on the basis of hard data or validated on 
that basis when the compiler is running. It is well known that performance 
problems are elusive, and that most programmers have incorrect ideas about 
the source of bottlenecks in their code. Measurement of critical parameters 
of the compiler as it is running is thus imperative. These parameters include 
the sizes of various data structures and the states of various allocation and 
lookup mechanisms, as well as an execution histogram [Waite 1973b]. 
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The only description of GIER ALGOL in the open literature is the paper 
by Naur [1964] cited earlier, but a very similar compiler for a variant of Pas
cal was discussed in great detail by Hartmann [1977]. 

Ammann [1975] gives an excellent account in German of the develop
ment of Zurich Pascal, and partial descriptions are available in English 
[Ammann 1974, Ammann 1977]. 

In addition to the Program Logic Manual [IBM 1968], descriptions of 
FORTRAN H have been given by Lowry [1969] and Scarborough [1980]. 
These treatments concentrate on the optimization performed by Phase 20, 
however, and give very little information about the compiler as a whole. 



APPENDIX A 

The Sample Programming Language LAX 

In this Appendix we define the sample programming language LAX 
(LAnguage eXample), upon which the concrete compiler design examples in 
this book are based. LAX illustrates the fundamental problems of compiler 
construction, but avoids uninteresting complications. 

We shall use extended Backus-Naur form (ERNF) to describe the form of 
LAX. The differences between EBNF and normal BNF are: 

• Each rule is terminated by a period. 
• Terminal symbols of the grammar are delimited by apostrophes. (Thus 

the metabrackets '<' and '>' ofBNF are superfluous.) 
• The following abbreviations are permitted: 

Abbreviation 
X :: = a(f3)y. 
X :: = a[f3]y. 
X ::= au +y. 
X::=au*y. 
X ::= a I It. 

Meaning 
X::=aYy. Y::=f3. 
X :: = ay I a(f3)y. 
X :: = a Y y. Y:: = u Yu . 
X ::= a[u+]y. 
X:: = a(ta)* . 

Here a, f3 and yare arbitrary right-hand sides of rules, Y is a symbol that 
does not appear elsewhere in the specification, u is either a single symbol 
or a parenthesized right-hand side, and t is a terminal symbol. 

For a more complete discussion ofEBNF see Section 5.1.4. 
The axiom of the grammar is program. EBNF rules marked with an 

asterisk in this Appendix are included to aid in the description of the 
language, but they do not participate in the derivation of any sentence. 
Thus they define useless nonterminals in the sense of Chapter 5. 

383 



384 Appendix A. The Sample Programming Language LAX 

A.I. Basic Symbols 

A. 1.0.1 
A. 1.0.2 
A. 1.0.3 

* basicJymbol :: = identifier I denotation I delimiter. 
identifier:: = letter (['_'] letter I digit) * . 
letter ::= 'a' I 'b' I 'c' I'd' I 'e' I 'f' I 'g' I 'h' I 'i' 

I ')' I 'k' I 'I' I 'm' I 'n' I '0' I 'p' I 'q' I 'r' 
I 's' I 't' I 'u' I 'v' I 'w' I 'x' I 'y' I 'z'. 

A. 1.0.4 digit :: = '0' I '1' I '2' I '3' I '4' I '5' I '6' I '7' I '8' I '9'. 
A. 1.0.5 denotation :: = integer I floating-point . 
A. 1.0.6 integer :: = digit + . 
A. 1.0.7 floating_point :: = digit + scale I digit* '.' digit + [scale]. 
A. 1.0.8 scale :: = 'e' [' +' I '-'] integer. 
A. 1.0.9 * delimiter:: = special I keyword . 
A. 1.0. 10 * special ::= '+' I '-' I '*' I 'I' I '<' I '>' I '=' I 'i' 

I ':' I ';' I '.' I ',' I '(' I ')' I '[' I ']' 
I 'II' I ':=' I '='. 

A.l.O.ll * keyword ::= 'and' I array' I 'begin' I 'case' 
I 'declare' I 'div' I 'do' I 'else' I 'end' 
I 'for' I 'from' I 'goto' I 'if' I 'is' 
I 'loop' I 'mod' I 'new' I 'not' I 'of' I 'or' 
I 'procedure' I 'record' I 'ref' I 'then' I 'to' 
I 'type' I 'while'. 

A.1.0.l2 * comment:: = '(*' arbitrary '*)'. 

Note: arbitrary does not contain '*)' 

An identifier is a freely-chosen representation for a type, label, object, 
procedure, formal parameter or field selector. It is given meaning by a con
struct of the program. The appearances at which an identifier is given a 
meaning are called defining occurrences of that identifier. All other appear
ances of the identifier are called applied occurrences. 

Integer and floating point denotations have the usual meaning. 
Keywords are reserved identifiers that can only be used as indicated by 

the rules of the EBNF specification. We have used boldface type to 
represent keywords in the book only to enhance readability. This conven
tion is not followed in the grammar, where the keywords are simply strings 
to be processed. 

Comments, spaces and newlines may not appear within basic symbols. 
Two adjacent basic symbols must be separated by one or more comments, 
spaces or newlines unless one of the basic symbols is a special. Otherwise 
comments, spaces and newlines are meaningless. 

An upper case letter is considered to be equivalent to the corresponding 
lower case letter. 
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A.2. Program Structure 

A.2.0. I program :: = block . 
A.2.0.2 * range :: = 

A.2.0J 
block I statement _list I iteration I record _type I procedure . 

block :: = 'declare' (declaration I I ';') 'begin' 

A.2.0.4 
A.2.0.5 
A.2.0.6 
A.2.0.7 

A.2.0.8 
A.2.0.9 

(statement I I ';') 'end'. 
statement-list :: = statement I I ';'. 
statement :: = labeLdefinition * (expression I iteration I jump). 
labeLdefinition :: = identifier':' . 
iteration :: = 'while' expression loop 

I 'for' identifier 'from' expression 'to' expression loop. 
loop :: = 'do' statement _list 'end' . 
jump :: = ' goto' identifier. 

See Section A.3 for declarations, record types and procedures, and Section 
AA for expressions. 

A.2.t. Programs A program specifies a computation by describing a 
sequence of actions. A computation specified in LAX may be realized by 
any sequence of actions having the same effect as the one described here for 
the given computation. The meaning of constructs that do not satisfy the 
rules given here is undefined. Whether, and in what manner, a particular 
implementation of LAX gives meaning to undefined constructs is outside the 
scope of this definition. 

Before translation, a LAX program is embedded in the following block, 
which is then translated and executed: 

declare standard _declarations begin program end 

The standard declarations provide defining occurrences of the predefined 
identifiers given in Table A.I. These declarations cannot be expressed in 
LAX. 

Table A.I Predefined Identifiers 

Identifier 

boolean 
false 
integer 
nil 
real 
true 

Meaning 
Logical type 
Falsity 
Integer type 
Reference to no object 
Floating point type 
Truth 

A.2.2. Visibility Rules The text of a range, excluding the text of ranges 
nested within it, may contain no more than one defining occurrence of a 
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given identifier. Every applied occurrence of an identifier must identify 
some defining occurrence of that identifier. Unless otherwise stated, the 
defining occurrence D identified by an applied occurrence A of the 
identifier I is determined as follows: 

1. Let R be the text of A, and let B be the block in which the LAX program 
is embedded. 

2. Let R' be the smallest range properly containing R. and let T be the text 
of R ' excluding the text of all ranges nested within it. 

3. If T does not contain a defining occurrence of I, and R' is not B, then let 
R be R' and go to step (2). 

4. If T contains a defining occurrence of I then that defining occurrence is 
D. 

Identifier is a defining occurrence in the productions for labeLdefinition 
(A.2.0.6),iteration(A.2.0.7),variable_declaration(AJ.O.2), identity_declaration 
(A.3.0.7), procedure_declaration (A.3.0.8), parameter (A.3.0.lO), 
type_declaration (A.3.0.l2) and field (AJ.O.l4). All other instances of 
identifier are applied occurrences. 

A.2.3. Blocks The execution of a block begins with a consistent renaming: 
If an identifier has defining occurrences in this block (excluding all blocks 
nested within it) then those defining occurrences and all applied occurrences 
identifying them are replaced by a new identifier not appearing elsewhere in 
the program. 

After the consistent renaming, the declarations of the block are executed 
in the sequence they were written and then the statements are executed as 
described for a statement list (Section A.2.4). The result of this execution is 
the result of the block. The extent of the result of a block must be larger 
than the execution of that block. 

A.2.4. Statement Lists Execution of a statement list is begun by execut
ing the first statement in the list. The remaining statements in the list are 
then executed in the sequence in which they were written unless the 
sequence is altered by executing a jump (Section A.2.6). If a statement is 
followed by a semicolon then its result (if any) is discarded when its execu
tion is finished. The result of the last statement in a statement list is the 
result of the statement list; if the last statement does not deliver a result then 
the statement list does not deliver a result. 

A.2.S. Iterations The iteration 

while expression do statement _list end 

is identical in meaning to the conditional clause: 

if expression then 
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The iteration 

statement _list; 

while expression do statement _list end 

end 

for identiJierfrom initiaL value to finaL value do statemenLlist end 

is identical in meaning to the block: 

declare a : integer; b : integer 
begin 
a: = initial_value ; b: = final_value; 
ifnot (a> b) then 

declare identifier is a: integer begin statement _list end; 
whilea<b do 

a:=a+l; 
declare identifier is a : integer begin statement _list end 
end (* while *) 

end (* if*) 
end 

Here a and b are identifiers not appearing elsewhere in the program. 
An iteration delivers no result. 

387 

A.2.6. Labels and Jumps If an identifier has an applied occurrence in a 
jump then the defining occurrence identified must be in a label definition. A 
jump breaks off the execution of the program at the point of the jump, and 
resumes execution at the labelled expression, iteration or jump. 

A jump delivers no result. 

A.3. Declarations 

A.3.0.1 

AJ.O.2 

A.3.0J 

AJ.O.4 

declaration :: = variable _declaration 
I identity _declaration 
I procedure _declaration 
I type _declaration . 

variable _declaration :: = identifier':' typeJpecijication 
I identifier':' 

'array"[' (bound_pair I I ',') ']' 'of' type-specification . 
type -specijication :: = identifier 

I 'ref'type-specification 
I ' ref' array _type 
I procedure _type . 

bound -pair:: = expression ':' expression. 
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AJ.O.5 
AJ.O.6 

AJ.O.7 

A.3.0.8 
AJ.O.9 

A.3.0.l0 
AJ.O.lI 
A.3.0.12 
AJ.O.l3 
AJ.O.l4 
A.3.0.l5 • 

Appendix A. The Sample Programming Language LAX 

array_type :: = 'array"[",'· ']' 'of' type_specification. 
procedure _type :: = 

'procedure' ['(' (type-specification I I ',') ')'] [result-type]. 
identity _declaration :: = 

identifier 'is' expression ':' type -specification. 
procedure _declaration :: = 'procedure' identifier procedure . 
procedure ::= ['(' (parameter I I ';') ')'] 

[result _type] ';' expression. 
parameter :: = identifier':' type -specification. 
result-type :: = ':' type-specification. 
type _declaration :: = 'type' identifier' =' record _type . 
record_type :: = 'record' (field I I';'),end' 
field :: = identifier':' type -specification. 
type :: = type -specification I array _type I procedure _type . 

See Section A.4 for Expressions. 

A.3.1. Values, Types and Objects Values are abstract entities upon 
which operations may be performed, types classify values according to the 
operations that may be performed upon them, and objects are the concrete 
instances of values that are operated upon. Two objects are equal if they are 
instances of the same value. Two objects are identical if references (see 
below) to them are equal. Every object has a specified extent, during which 
it can be operated upon. The extents of denotations, the value nil (see 
below) and objects generated by new (Section A.4J) are unbounded; the 
extents of other objects are determined by their aeclarations. 

The predefined identifiers boolean, integer and real represent the types of 
truth values, integers and floating point numbers respectively. Values of 
these types are called primitive values, and have the usual meanings. 

An instance of a value of type ref t is a variable that can refer to (or con
tain) an object of type t. An assignment to a variable changes the object to 
which the variable refers, but does not change the identity of the variable. 
The predefined identifier nil denotes a value of type ref t, for arbitrary t. Nil 
refers to no object, and may only be used in a context that specifies the refer
enced type t uniquely. 

Values and objects of array and record types are composite. The 
immediate components of an array are all of the same type, and the simple 
selectors are integer tuples. The immediate components of a record may be 
of different types, and the simple selectors are represented by identifiers. No 
composite object may have a component of its own type. 

Values of a procedure type are specifications of computations. If the 
result type is omitted, then a call of the procedure yields no result and the 
procedure is called a proper procedure; otherwise it is called a function pro
cedure. 

If two types consist of the same sequence of basic symbols and, for every 
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identifier in that sequence, the applied occurrences in one type identify the 
same defining occurrence as the applied occurrences in the other, then the 
two types are the same. In all other cases, the two types are different. 

A.3.2. Variable Declarations A variable referring to an undefined value 
(of the specified type) is created, and the identifier represents this object. 
The extent of the created variable begins when the declaration is executed 
and ends when execution of the smallest range containing the declaration is 
complete. 

If the variable declaration has the form 

identifier : t 

then the created variable is of type ref t, and may refer to any value of type t. 
If, on the other hand, it has the form 

identifier: array [/]:u], ... , In :un] of t 

then the created variable is of type ref array_type, and may only refer to 
values having the specified number of immediate components. The type of 
the array is obtained from the variable-tleclaration by deleting 'identifier:' 
and each bound pair e] :e2; array [I] :U], . .. , In :Un] of t specifies an array of 
this type with (u] -I] + 1) * ... *(Un -In + 1) immediate components of type 
t. The bounds Ii and Ui are integers with Ii < Ui' 

A.3.3. Identity Declarations A new instance of the value (of the 
specified type) resulting from evaluation of the expression is created, and the 
identifier represents this object. If the expression yields an array or refer
ence to an array, the new instance has the same bounds. The extent of the 
created object is identical to the extent of the result of the expression. 

A.3.4. Procedure Declarations A new instance of the value (of the 
specified procedure type) resulting from copying the basic symbol sequence 
of the procedure is created, and the identifier represents this object. The 
extent of the created object begins when the declaration is executed and 
ends when execution of the smallest block containing the declaration is 
complete. 

Evaluation of the expression of a function procedure must yield a value of 
the given resulLtype. 

The procedure type is obtained from the procedure_declaration by delet
ing 'identifier' and '; expression', and removing 'identifier:' from each 
parameter. 

A.3.5. Type Declarations The identifier represents a new record type 
defined according to the given specification. 



390 Appendix A. The Sample Programming Language LAX 

A.4. Expressions 

A.4.0.1 
A.4.0.2 
A.4.0J 
A.4.0.4 
A.4.0.5 
A.4.0.6 
A.4.0.7 
A.4.0.S 
A.4.0.9 
A.4.0.10 
A.4.0.11 
A.4.0.12 
A.4.0.l3 
A.4.0.l4 
A.4.0.15 

A.4.0.16 

A.4.0.17 
A.4.0.IS 
A.4.0.19 

A.4.0.20 

A.4.0.21 

A.4.0.22 

expression:: = assignment I disjunction. 
assignment :: = name ': =' expression. 
disjunction :: = conjunction I disjunction 'or' conjunction. 
conjunction :: = comparison I conjunction 'and' comparison . 
comparison :: = relation [eqop relation]. 
eqop :: = ' =' I ' - , . 
relation:: = sum [relop sum] . 
relop ::= '<' I '>'. 
sum :: = term I sum addop term . 
addop :: = '+' I '-'. 
term :: = factor I term mulop factor. 
mulop :: = '.' I ' /' I 'div' I 'mod'. 
factor: : = primary I unop factor. 
unop ::= '+' I '-' I'not'. 
primary:: = denotation I name I '(' expression ')' 

I block I clause . 
name :: = identifier 

I name '.' identifier 
I name '[' (expression I I ',') ']' 
I name' i' 
I 'new' identifier 
I procedure _call . 

procedure_call :: = name '(' (argument I I ',') ')'. 
argument :: = expression . 
clause :: = conditional_clause 

I case _clause . 
conditional_clause :: = 'if' expression 'then' 

statement _list 'end' 
I 'if' expression 'then' statement _list 

'else' statement _list 'end' . 
case _clause :: = 

'case' expression 'of' 
(case_label':' statement-list I I '//') 
'else' statement _list 'end' . 

case _label :: = integer . 

A.4.1. Evaluation of Expressions This grammar ascribes structure to an 
expression in the usual way. Every subexpression (asSignment, disjunction, 
conjunction, etc.) may be evaluated to yield a value of a certain type. The 
operands of an expression are evaluated collaterally unless the expression is 
a disjunction or a conjunction (see Section A.4.3). Each operator indication 
denotes a set of possible operations, with the particular one meant in a given 
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Indication 

'-.-
or 
and 

--
--

< 
> 
+ 
-

* 
div 

mod 

/ 
not 

+ 
-

Table A.2 Operator Identification 

Operand Type 
Left Right 

ref t t 

boolean boolean 

ref t ref t 
m m 

a a 

integer integer 

real real 
boolean 

a 

Result 
Type 

ref t 

boolean 

a 

integer 

real 
boolean 

a 

Operation 

assignment 

disjunction 
conjunction 

identity 

equality 

less than 

greater than 

addition 

subtraction 

multiplication 

division 
remainder 

division 

complement 

no operation 

negation 
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Here t denotes any type, m denotes any non-reference type and a denotes 
integer or real type. 

context being determined by the operand types according to Table A.2. 
When the type of value delivered by an operand does not satisfy the require
ments of a operation, a coercion sequence can be applied to yield a value that 
does satisfy the requirements. Any ambiguities in the process of selecting 
computations and coercions is resolved in favor of the choice with the shor
test total coercion sequence length. 

It must be possible to determine an operation for every operator indica
tion appearing in a program. 

A.4.2. Coercions The context in which a language element (statement, 
argument, expression, operand, name as a component of an indexed object, 
procedure call, etc.) appears may permit a stated set of types for the result 
of that element, prescribe a single type, or require that the result be dis
carded. When the a priori type of the result does not satisfy the require
ments of the context, coercion is employed. The coercion consists of a 
sequence of coercion operations applied to the result. If several types are 
permitted by the context then the one leading to the shortest coercion 
sequence will be selected. 

Coercion operations are: 
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• Widen: Convert from integer to floating point. 
• Deprocedure: Invoke a parameterless procedure (see Section A.4.5). This 

is the only coercion that can be applied to the left-hand side of an assign
ment. 

• Dereference: Replace a reference by the object to which it refers. Dere
ferencing may also be specified explicitly by using the content operation 
(see Section A.4.4). Nil cannot be dereferenced. 

• Void: Discard a computed value. If the value to be discarded is a param
eterless procedure or a reference to such a procedure, the procedure must 
be invoked and its result (if any) discarded. 

A.4.3. Operations An assignment causes the variable yielded by the left 
operand to refer to a new instance of the value yielded by the right operand. 
The result of the assignment is the reference yielded by the left operand. 
Assignments to nil are not permitted, nor are assignments of references or 
procedures in which the extent of the value yielded by the right operand is 
smaller than the extent of the reference yielded by the left operand. Assign
ment of composite objects is carried out by collaterally assigning the com
ponents of the value yielded by the right operand to the corresponding com
ponents of the reference yielded by the left operand. For array assignments, 
the reference and value must have the same number of dimensions and 
corresponding dimensions must have the same numbers of elements. 

The expression a or b has the meaning if a then true else b 
The expression a and b has the meaning if a then b else false. 
The expression not a has the meaning if a then false else true. 
Identity yields true if the operand values are identical variables. 

Equality has the usual meaning. Composite values are equal if each ele
ment of one is equal to the corresponding element of the other. Arrays can 
only be equal if they have the same dimensions, each with the same number 
of elements. Procedure values are equal if they are identical. 

Relational operators for integer and real types are defined as usual. 
The arithmetic operators +, - (unary and binary), *, / have the usual 

meaning as long as the values of all operands and results lie in the permitted 
range and division by zero does not occur. div (integer division) and mod 
(remainder) are defined only when the value of the right operand is not O. 
Their results are then the same as those of the following expressions: 

i div} 
} 

otherwise 

i mod} = (i - (i div j)*j) 
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Here I x I is the magnitude of x and lx j is the largest integer not larger 
than x. 

A.4.4. Names Identifiers name objects of specified types created by 
declarations. If an applied occurrence of an identifier is a name then the 
defining occurrence identified by it may not be in a type definition, label 
definition or selector specification. 

In the field selection name.identifier the name must (possibly after coer
cion) yield a record or reference to a record. The record type must contain a 
field that provides a defining occurrence of the identifier, and it is this 
defining occurrence which is identified by identifier. If the name yields a 
record then the result of the field selection is the value of the field selected; 
otherwise the result of the field selection is a reference to this field. 

In the index selection name [i 1, ••. ,in] the name must (possibly after 
coercion) yield an n-dimensional array or a reference to an n-dimensional 
array. The name and subscript expressions i; are evaluated collaterally. If 
the name yields an array then the result of the index selection is the value of 
the element selected; otherwise the result of the index selection is a reference 
to this element. 

In the content operation name i the name must (possibly after coercion) 
yield a variable. The result of the content operation is the value referred to. 

The generator new t yields a new variable that can reference objects of 
type t. 

A.4.S. Procedure Calls In the procedure call p (a 1, •.. ,an) the name p 
must (possibly after coercion) yield an object of procedure type having n 
parameters (n ~ 0). The name p and argument expressions a; are evaluated 
collaterally. Let P = (P]' . .. 'Pn ): expression be the result of evaluating the 
name, and let r; be the result of evaluating ll;. The procedure call is then 
evaluated as follows (copy rule): 

l. If n =0 then the procedure call is replaced by (expression), otherwise the 
procedure call is replaced by the block 

declare PI is r 1: t 1; ... ; Pn is rn : tn begin expression end 

2. The block (or parenthesized expression) is executed. If it is not left by a 
jump, the result is coerced to the result type of P (or voided, in the case 
of a proper procedure). 

3. As soon as execution is completed, possibly by a jump, the substitution of 
step I is reversed (i.e. the original call is restored). 

The value yielded by the coercion in step (2) is the result of the procedure 
call. 

A.4.6. Clauses The expression in a conditional clause must deliver a 
Boolean result. If this result is true then the first statement list will be exe-
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cuted and its result will be taken as the result of the conditional clause; oth
erwise the second statement list will be executed and its result will be taken 
as the result of the conditional clause. The first alternative of a one-sided 
conditional clause, in which the second alternative is omitted, is voided. 

The expression in a case clause must deliver an integer result. When the 
value of the expression is i and one of the case labels is i, the statement list 
associated with that case label will be executed and its result will be taken as 
the result of the case clause; otherwise the statement list following else will 
be executed and its result will be taken as the result of the case clause. All 
case labels in a case clause must be distinct. 

The component statement lists of a clause must be balanced to ensure that 
the type of the result yielded is the same regardless of which alternative was 
chosen. Balancing involves coercing the result of each component statement 
list to a common type. If there is no one type to which all of the result types 
are coercible then all the results are voided. When the type returned by the 
clause is uniquely prescribed by the context then this type is chosen as the 
common result type for all alternatives. If the context of the expression is 
such that several result types are possible, the one leading to the smallest 
total number of coercions is chosen. 



APPENDIX B 

Useful Algorithms for Directed Graphs 

The directed graph is a formalism well-suited to the description of syntactic 
derivations, data structures and control flow. Such descriptions allow us to 
apply results from graph theory to a variety of compiler components. These 
results yield standard algorithms for carrying out analyses and transforma
tions, and provide measures of complexity for many common tasks. In this 
appendix we summarize the terminology and algorithms most important to 
the remainder of the book. 

B.I. Terminology 

Definition B.l. A directed graph is a pair (K,D), where K is a finite, 
nonempty set and D is a subset of K X K. The elements of K are called the 
nodes of the graph, and the elements of D are the edges. 
Figure B.la is a directed graph, and Figure B.lb shows how this graph 
might be represented pictorially. 

In many cases, a label function ,f, is defined on the nodes and/or edges of 
a graph. Such a function associates a label, which is an element of a finite, 
nonempty set, with each node or edge. We then speak of a graph with node 
or edge labels. The labels serve as identification of the nodes or edges, or 
indicate their interpretation. This is illustrated in Figure B.I b, where a func
tion has been provided to map K into the set {I ,2,3,4}. 

Definition B.2. A sequence (ko,"" kn ) of nodes in a directed graph 
(K,D), n ~ 1, is called a path of length n if (k; -1 ,k; ) ED, i = I, ... ,n. A path 
is called a cycle if ko = kn . 

395 
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K = {1,2,3,4} 
D = {(1,2),(1,3),(4,4),(2,3),(3,2),(3,4)} 

a) The components of the graph 

b) Pictorial representation 

~~--------~.~~~--------__ t~ 
c) The condensation graph 

Figure B.t. A Directed Graph. 

An edge may appear more than once in a path: In the graph of Figure B.l, 
the sequence of edges (2,3), (3,2), (2,3), (3,4), (4,4), (4,4) defines the path 
(2,3,2,3,4,4,4) oflength 6. 

Definition B.3. Let (K,D) be a directed graph. Partition K into equivalence 
classes X; such that nodes u and v belong to the same class if and only if 
there is a cycle to which u and v belong. Let D; be the subset of edges con
necting pairs of nodes in X;. The directed graphs (X; ,D;) are the strongly 
connected components of (K,D). 

The graph of Figures B.la and B.l b has three strongly connected com
ponents: 

KI={l},DI ={} 
K2 = {4}, D2 = {(4,4)} 
K3 = {2,3}, D3 = {(2,3),(3,2)} 

Often we deal with graphs in which all nodes of a strongly connected com
ponent are identical with respect to some property of interest. When dealing 
with this property, we can therefore replace the original graph with a graph 
having one node for each strongly connected component. 

Definition B.4. Let P = {K I, ... , Kn} be a partition of node set of a 
directed graph (K,D). The reduction of(K,D) with respect to the partition P 
is the directed graph (K~D') such that K' = {k l , • .. , kn } and 
D' = {(k; ,kj) Ii =1= j, and (u,v) is an element of D for some u EX; and 
v EKj }. 
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We term the subsets K; of an (arbitrary) partition blocks. The reduction 
with respect to strongly connected components is the condensation graph. 

The condensation graph of Figure B.lb is shown in Figure B.lc. Since 
every cycle lies wholly within a single strongly connected region, the con
densation graph has no cycles. 

Definition B.S. A directed acyclic graph is a directed graph that contains no 
cycles. 

Definition B.6. A directed acyclic graph is called a tree with root ko if for 
every node k =1= ko there exists exactly one path (ko, ... , k). 

These two special classes of graphs are illustrated in Figure B.2. 
If a tree has an edge (k,k '), we say that k' is a child of k and k is the 

parent of k '. Note that Definition B.6 permits a node to have any number of 
children. Because the path from the root is unique, however, every node 
k =1= ko has exactly one parent. The root, ko, is the only node with no 
parent. A tree has at least one leaf, which is a node with no children. If 
there is a path in a tree from node k to node k', we say that k' is a descen
dant of k and k is an ancestor of k'. 

Definition B.7. A tree is termed ordered if, for every node, a linear order is 
defined on the children of that node. 

a) A directed acyclic graph 

b) A tree 

Figure B.2. Special Cases of Directed Graphs. 
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If we list the children of a node k' in an ordered tree, we shall always do so 
in the sense of the ordering; we can therefore take the enumeration as the 
ordering. The first child of k' is also called the left child; the child node that 
follows k in the order of successors of k' is called the right sibling of k. In 
Figure B.2b, for example, we might order the children of a node according 
to the magnitude of their labels. Thus 1 would be the left child of 0, 2 would 
be the right sibling of 1, and 3 the right sibling of 2. 3 has no right siblings 
and there is no relationship between 6 and 7. 

In an ordered tree, the paths leaving the root can be ordered lexicograph
ically: Consider two paths x = (xo, ... , Xm) and Y = (Yo, ... , Yn) with 
m < nand Xo = Yo being the root. Because both paths begin at the root, 
there exists some i > 0 such that Xj = Yj , j = 0, ... ,i. We say that x <y 
either if i =m and i < n, or if Xi +] <Yi +] according to the ordering of the 
children of Xi (= Yi)' Since there is exactly one path from the root to any 
node in the tree, this lexicographic ordering of the paths specifies a linear 
ordering of all nodes of the tree. 

Definition B.S. A cut in a tree (K,D) is a subset, C, of K such that for each 
leaf Ie", E(K,D) exactly one element of C lies on the path (ko, ... , km ) from 
the root ko to that leaf. 

Examples of cuts in Figure B.2b are {OJ, {l,2,3}, {l,2,7,8} and {4,5,6,7,8}. 
In an ordered tree, the nodes of a cut are linearly-ordered on the basis of 

the ordering of all nodes. When we describe a cut in an ordered tree, we 
shall always write the nodes of that cut in the sense of this order. 

Definition B.9. A spanning forest for a directed graph (K,D) is a set of trees 
{( K],D]), ... , (Kn ,Dn )} such that the K; 's partition K and each Di is a (pos
sibly empty) subset of D. 

All of the nodes of a directed graph can be visited by traversing the trees of 
some spanning forest. The spanning forest used for such a traversal is often 
the one corresponding to a depth-first search: 

procedure deptlLfirst...search(k:node); 
begin mark k as having been visited; 

for each immediate successor k' of k do 
if k' has not yet been visited then depth_firsLsearch(k ') 

end;( *deptlLfirsLsearch *) 

To construct a spanning forest, this procedure is applied to an arbitrary 
unvisited node and repeated so long as such nodes exist. 

A depth-first search can also be used to number the nodes in the graph: 

Definition B.I0. A depth-first numbering is a permutation (k], . .. , kn ) of the 
nodes of a directed graph (K,D) such that k] is the first node visited by a 
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particular depth-tirst search, k2 the second and so forth. 
Once a spanning forest {(K1,D1), ... ,(Kn ,Dn)} has been detined for a 

graph (K,D) the set D can be partitioned into four subsets: 

• Tree edges, elements of DIU . . . U Dn . 
• Forward edges, (kp ,kq) such that kp is an ancestor of kq in some tree K;, 

but (kp ,kq ) is not an element of Di . 
• Back edges, (kq ,kp) such that either kp is an ancestor of kq in some tree K; 

orp =q. 
• Cross edges, (kp ,kq) such that kp is neither an ancestor nor a descendant 

of kq in any tree K; . 

These detinitions are illustrated by Figure B.3. Figure B.3b shows a 
spanning forest and depth-tirst numbering for the graph of Figure B.3a. The 
forest has two trees, whose roots are nodes I and 7 respectively. All edges 
appearing in Figure B.3b are tree edges. In Figure B.3a, (1.4) is a forward 
edge, (3,2) and (6,6) are back edges, and (5,3), (6,4) and (6,5) are cross 
edges. 

a) A directed graph 

~----'-""{5 

b) A depth-tirst numbering and spanning forest for (a) 

Figure B.3. Depth-First Numbering. 
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B.2. Directed Graphs as Data Structures 

Directed graphs can be implemented as data structures in different ways. It 
can be shown that the efficiency of graph algorithms depends critically upon 
the representation chosen, and that some form of list is usually the appropri
ate choice for applications in compilers. We shall therefore use the abstract 
data type of Figure B.4 for the algorithms described in this Appendix. 

module graph(n,e:public integer); 
(* Representation of a directed graph 

n = Number of nodes in the graph 
e = Maximum number of edges in the graph 

*) 
var 

node: array [l..n ] of record inward,outward,next _in,next _out: integer end; 
edge: array [l..e] of record head,tail,next _in,next _out: integer end; 
i,edge _count: integer; 

procedure nexLsucc (n,e : integer): integer; 
(* Obtain the next successor of a node 

On entry-

*) 

n = Node for which a successor is desired 
e = First unexplored edge 

begin (* next JUCC *) 
if e = 0 then next JUCC : = 0 
else begin node[n ].nexLout: = edge [e ].nexLout; 

next JUcc: = edge [e ].tail end; 
end; (* next JUCC *) 

procedure next _pred (n,e : integer): integer; 
(* Obtain the next predecessor of a node 

On entry-

*) 

n = Node for which a predecessor is desired 
e = First unexplored edge 

begin ( * next _pred *) 
if e = 0 then next _pred : = 0 
else begin node[n ].nexLin: =edge[e ].next_in; 

nexLpred: = edge [e ].head end; 
end; (* nexLpred *) 

public procedure define_edge (hd,tl: integer); 
begin (* define_edge *) 
edge_count: = edge_count + 1; (* edge_count ~ maximum not tested *) 
with edge [edgLcount] do 

begin 
head: = hd ; tail: = tl ; nexLin : = node [tl].inward ; 
next _out: = node [hd ].outward 
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end; 
node[hd].outward: = node [tl].inward : =edgLcount; 
end; (* define_edge *) 

public function jirstJuccessor (n : integer): integer; 
begin firstJuccessor : = next JUCC (n,node [n ]. outward) end; 

public function next Juccessor (n : integer): integer; 
begin next Juccessor : = next JUCC (n,node [n ]. next _out) end; 

public function firsLpredecessor (n : integer): integer; 
begin firsLpredecessor : = next -pred (n,node [n ]. inward) end; 

public function next -predecessor (n : integer): integer; 
begin next-predecessor: = next _pred (n,node[n ].next_in) end; 

begin ( * graph *) 
for i : = I to n do with node [i ] do 

inward: = outward: = next _in: = next _out: = 0; 
edge_count: =0 
end; (* graph *) 

Figure B.4. Abstract Data Type for a Directed Graph. 
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A directed graph is instantiated by a variable declaration of the following 
form: 

g: graph (node_count,max_edges); 
The structure of the graph is then established by a sequence of calls 
g.define_edge(· .. ). Note that the module embodies only the structure of the 
graph; further properties, such as node or edge labels, must be stored 
separately. 

A directed graph that is a tree can, of course, be represented by the 
abstract data type of Figure B.4. In this case, however, a simpler representa
tion (Figure B.5) could also be used. This simplification is based upon the 
fact that any node in a tree can have at most one parent. Note that the edges 
do not appear explicitly, but are implicit in the node linkage. The abstract 
data structure is set up by instantiating the module with the proper number 
of nodes and then invoking define_edge once for each edge to specify the 
nodes at its head and tail. If it is desired that the order of the sibling list 
reflect a total ordering defined on the children of a node, then the sequence 
of calls on define_edge should be the opposite of this order. 

A partition is defined by a collection of blocks (sets of nodes) and a 
membership relation node Eblock The representation of the partition must 
be carefully chosen so that operations upon it may be carried out in constant 
time. Figure B.6 defines such a representation. 

When a partition module is instantiated, its block set is empty. Blocks 
may be created by invoking new_block, which returns the index of the new 
block. This block has no members initially. The procedure adLnode is 
used to make a given node a member of a given block. Since each node can 
be a member of only one block, this procedure must delete the given node 
from the block of which it was previously a member (if such exists). 
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Solid lines represent tree edges. Dashed lines represent actual links main
tained by the tree module. 

a) Pictorial representation 

module tree(n:public integer); 
( * Representation of a tree 

n = Number of nodes in the tree 
*) 

var 
node: array [l..n) ofrecord parent,child,sibling: integer end; 
i: integer; 

public procedure define_edge (hd,tl : integer); 
begin (* define_edge *) 
with node [ tl) do 

begin parent: =hd; sibling: = node [hd).child end; 
node [hd).child : =tl; 
end; (* definLedge *) 

public function parent (n : integer): integer; 
begin parent: = node [ n ) .parent end; 

public function child (n : integer): integer; 
begin child: = node [n ) .child end; 

public function sibling (n : integer): integer; 
begin sibling: = node [n ).sibling end; 

begin ( * tree *) 
for i : = I to n do with node [i) do parent: = child: = sibling: = 0; 
end; (* tree *) 

b) Abstract data type 

Figure B.S. Simplification for a Tree. 



B.2. Directed Graphs as Data Structures 

module partition(n:public integer); 
(* Representation of a partition on of a set of n nodes *) 

var 
p: array[0 .. 2 *n] of record member,/ast,next: integer end; 
i,number _of_blocks,next _node ---.State: integer; 

public function block . ..count:integer; 
begin block _count: = number _of_blocks end; 

public function new . .hlock:integer; 
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begin new_block: = number _of_blocks: = number _of_blocks + I end; 

public procedure addJlode(node,block:integer); 
begin ( * add _node *) 
with p [ node] do 

begin 
if member =F 0 then (* Remove node from its previous block *) 

begin 
p [member ]. member: = p [member ].member - I; 
p[/ast ].next: = next ; p [next ].Iast: = last; 
end; 

member: = block; 
p[block +n ].member: =p[block +n ].member + I; 
last: = member; next: = p [block + n ]. next; 
p[last].next: =p[next].last: = node ; 
end; 

end; (* add _node *) 

public function block-containing( node: integer) : integer; 
begin block _containing: = p [node ]. member end; 

public function node_count( block: integer) : integer; 
begin node_count: =p[block +n ].member end; 

public function jirstJlode( block: integer): integer; 
begin jirst-node : = next _node ---.State: = p [block + n ]. next end; 

public function nextJlode:integer; 
begin ( * next _node *) 
if next _node ---.State = 0 then next _node: = 0 
else next _node: = next _node ---.State: = p [next _node _state ].next ; 
end; (* next _node *) 

begin ( * partition *) 
for i: = I to 2 *n do with p[i] do member: = last : = next : =0; 
number _of_blocks: = next-node ---.State: = 0; 
end; (* partition *) 

Figure B.6. Abstract Data Type for a Partition. 
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The status of a partition can be determined by invoking 
number _of_blocks, block_containing, node_count, firsLnode and nexLnode. If 
a node does not belong to any block, then block_containing returns 0; 
otherwise it returns the number of the block of which the node is a member. 
Application of the function node_count to a block yields the number of 
nodes in that block. The procedures firsLnode and nexLnode work together 
to access all of the members of a block: A call of firsLnode returns the first 
member of a specific block. (If the block is empty then firsLnode returns 0.) 
Each subsequent invocation of nexLnode returns the next member of that 
block. When all members have been accessed, nexLnode returns O. 

The membership relation is embodied in a doubly-linked list. Each node 
specifies the block of which it is a member, and each block specifies the 
number of members. Figure B.6 uses a single array to store both node and 
block information. This representation greatly simplifies the treatment of 
the doubly-linked list, since the last and next fields have identical meanings 
for node and block entries. The member field specifies the number of 
members in a block entry, but the block of which the node is a member in a 
node entry. For our problems, the number of partitions can never exceed 
the number of nodes. Hence the array is allocated with twice as many ele
ments as there are nodes in the graph being manipulated. (Element 0 is 
included to avoid zero tests when accessing the next element in a node list.) 
The first half of the array is indexed by the node numbers; the second half is 
used to specify the blocks of the partition. Note that the user is not aware of 
this offset in block indices because all necessary translation is provided by 
the interface procedures. 

B.3. Partitioning Algorithms 

In this section we discuss algorithms for partitioning the node set of a graph 
according to three criteria that are particularly important in compiler con
struction: strong connectivity, compatibility of a partition and a function, 
and nonadjacency. All of the algorithms are defined in terms of the 
representations presented in Section B.2. 

8.3.1. Strongly Connected Components We begin the determination 
of the strongly connected components of a directed graph by using a depth
first search to obtain a spanning forest and a corresponding depth-first 
numbering of the nodes. Suppose that kz is the first node (in the depth-first 
numbering) that belongs to a strongly connected component of the graph. 
Then, by construction, all other nodes of the component must belong to the 
spanning forest subtree, ~, whose root is kz . We term kz the root of the 
strongly connected component (with respect to the given spanning forest). 
Every node, k, of ~ either belongs to the strongly connected component 
with root kz or it belongs to a subtree Tx of Tz , with root kx , and kx is the 
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root of another strongly connected component. (It is possible that k =kx .) 

These notions are illustrated by Figure B.l: Node 2 is the root of a 
strongly-connected component of Figure B.I. The only other node in this 
component is 3, which is a descendant of 2 in the spanning forest subtree 
rooted at 2. This subtree has three nodes. Nodes 2 and 3 belong to the 
strongly-connected region, and node 4 is the root of a strongly-connected 
region containing only itself. 

There must be a path from the root of a strongly-connected component to 
itself. Let kz be the root, and suppose that the path contained a node 
k < kz • If this were the case then k would be an ancestor of kz in the tree, 
contradicting the hypothesis that kz is the root of the strongly-connected 
region. This observation is the basis for recognizing a strongly-connected 
region: During the depth-first search that numbers the nodes of the spanning 
forest, we keep track of the lowest-numbered ancestor reachable from a 
node. (We assume that a node is reachable from itself.) As we back out of 
the search, we check each node to see whether any ancestors are reachable 
from it. If not, then it is the root of a strongly-connected component. 

The algorithm makes use of a fixed-depth stack (Figure B.7) for holding 
nodes. (No node is ever stacked more than once, and hence the stack depth 

module fixed _depth --stack ( public maximum _depth: integer); 
(* Representation of a stack no deeper than maximum _depth *) 

var 
stack: array [l..maximum -tiepth ] of integer; 
i ,top: integer; 

public procedure push(n:integer); 
begin stack [n 1: = top; top: = n end; 

public procedure pop: integer; 
var n : integer; 
begin n: = top ; top: =stack[n]; stack [n]: =0; pop: =n end; 

public function member(n:integer):boolean; 
begin member: =stack[n] =1= 0 end; 

public function empty:boolean; 
begin empty: = top < 0 end; 

begin ( * fixed_depth--Stack *) 
for i: = I to maximum _depth do stack [i): = 0; 
top:= -I; 
end; (* fixed_depth--Stack *) 

Figure B.7. Abstract Data Type for a Fixed-Depth Stack. 
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can never exceed the number of nodes.) The crucial property of this module 
is that it provides a constant-time test to discover whether a node is on the 
stack. 

Figure B.8 gives the complete algorithm for identifying strongly con
nected components. Note that strongly_connected_components has a graph as 
a parameter. This is not a variable declaration, so no new graph is instan-

procedure strongly _connected _components (g : graph; p : partition); 
(* Make p define the strongly-connected components of g *) 

var 
lowlink: array [l..g.n] of integer; 
i,counter,root : integer; 
s : fixeLdeptlLstack( g. n ) ; 

procedure deptlLfirsLsearch( node: integer); 
var 

serial,k,b,w: integer; 
begin ( * deptlLfirst..search *) 
serial: = lowlink [node]: = counter: = counter + 1 ; 
s.push (node) ; 
k : = g.firsLsuccessor (node); 
while k =1= 0 do 

begin 
if lowlink [k ] = 0 then deptlLfirsLsearch (k »; 
if s.member(k) then lowlink[node]: = min (lowlink [node ]lowlink[k D; 
k : = g. next Juccessor (node) 
end; 

if lowlink [node 1 = serial then 
begin 
b: =p.new_block; 
repeat s.pop (w); p.add _node (w,b ) until w = node; 
end 

end; (* deptlLfirstJearch *) 

begin ( * strongly_connected_components *) 
for i: = 1 to g.n do lowlink[i]: =0; 
counter: = 0; root: = 1; 
while counter =1= g.n do 

begin 
while lowlink [root] =1= 0 do root: = root + 1; 
deptlLfirstJearch( root) ; 
end; 

end; (* strongly_connected_components *) 

Figure B.8. Partitioning Into Strongly Connected Components. 
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tiated. The value of the parameter is a reference to the argument graph; the 
argument graph is not copied into the procedure. 

The algorithm traverses the nodes of the graph in the order of a depth
first numbering. Each activation of deptILfirsLsearch corresponds to a sin
gle node of the graph. Lowlink [i) specifies the lowest-numbered (in the 
depth-first numbering) node reachable from node i. (The lowlink array is 
also used to indicate the nodes not yet visited.) The fixed-depth stack con
tains all nodes from which it is possible to reach an ancestor of the current 
node. Note that all access to a node is in terms of its index in the graph g; 
the index of a node in the depth-first numbering appears only in lowlink and 
the local variable serial of deptILfirsLsearch. 

8.3.2. Refinement Consider a graph 
P = {Pp, ... ,Pd of Q with m>2. We 
R = {R I> ••• , Rr } with smallest r such that: 

(K,D) and a partition 
wish to find the partition 

• Each ~ is a subset of some Pj ('R is a refinement of P') 
• If a and b are elements of Rk then, for each (a,x) ED and (b,y) ED, x 

and yare elements of some one ~ ('R is compatible with D'). 

The state minimization problem discussed in Section 6.2.2 and the determi
nation of structural equivalence of types from Section 9.1.2 can both be cast 
in this form. 

The obvious strategy for making a refinement is to check the successors of 
all nodes in a single element of the current partition. This element must be 
split if two nodes have successors in different elements of the partition. To 
obtain the refinement, split the element so that these two nodes lie in 
different elements. The refined partition is guaranteed to satisfy condition 
(I). The process terminates when no element must be split. Since a parti
tion in which each element contains exactly one node must satisfy condition 
(2), the process of successive refinement must eventually terminate. It can 
be shown that this algorithm is quadratic in the number of nodes. 

By checking predecessors rather than successors of the nodes in an ele
ment, it is possible to reduce the asymptotic behavior of the algorithm to 
O(n log n), where n is the number of nodes. This reduction is achieved at 
the cost of a more complex algorithm, however, and may not be worthwhile 
for small problems. In the remainder of this section we shall discuss the 
O(n log n) algorithm, leaving the simpler approach to the reader (Exercise 
B.6). 

The refinement procedure of Figure B.9 accepts a graph G = (K,D) and 
a partition {P I, ... , Pm } of K with m > 2. The elements of D correspond 
to a mapping f:K -+K for which (k,k') is an element of D if f(k)=k'. 
Refine inspects the inverse mappings f-I(Pj ). A set Pk must be split into 
two subsets if and only if Pk n f-I(Pj ) is nonempty for some j, and yet Pk is 
not a subset of f-I(Pj ). The two subsets are then P'k = (Pk nf-I(Pj )) 

and P"k = Pk -P'k' This split must be carried out once for every Pj . If Pj 
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contributes to the splitting of Pk and is itself split later, both subsets must 
again be used to split other partitions. 

The first step in each execution of the split procedure is to construct the 
inverse of block Pj . Next the blocks Pk for which Pk n f-'(Pj ) is nonempty 
but Pk is not a subset of f-'(Pj ) are split and the smaller of the two com
ponents is returned to the stack of blocks yet to be considered. 

Figure B.IO defines an abstract data type that can be used to represent 
f-'(Pj ). When inverse is instantiated, it represents an empty set. Nodes are 
added to the set by invoking inv_node. After all nodes belonging to 
inverse(j) have been added to the set, we wish to consider exactly those 

procedure refine(p : partition; f : graph); 
(* Make p be the coarsest partition compatible with p and f *) 

var 
pending: fixed-depth _stack (f n ); 
i: integer; 

procedure split (block: integer); 
var 

inv: inverse (j,block,p ); (* Construct the inverse of block *) 
b,k,n : integer; 

begin ( * split *) 
k: =inv.nexLblock; 
while k =1= 0 do 

begin (* Pk U f- ' (block) =1= 0 but not Pk ~f-' (block) *) 
b : = p. new _block; 
while (n: =inv.common_node) =1= 0 do p.add_node(n,b); 
if pending. member (k ) or (p.element _count( k) > p.elemenLcount( b» 
then pending.push (b) 
else pending.push (k) 
k : = inv. next _block; 
end 

end; (* split *) 

begin ( * refine *) 
for i : = I to p. block _count do pending.push (i); 
repeat pending.pop (i); split (i) until pending. empty 
end; (* refine *) 

Figure B.9. Refinement Algorithm. 
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module inverse (f : graph; b : integer; p : partition); 
(* Representation off-1(b) with respect to partition p *) 

var 
node: array [1..f n ] of integer; 
block: array [l..p.block _count] of record first.....node,link,count:integer end; 
i ,j,block _list,node _list: integer; 

public procedure inv.....node(n:integer); 
var b: integer; 
begin ( * inv _node *) 
b: =p.block_containing(n); 
with block [b ] do 

begin 
if count = 0 then begin link: = block _list; block _list: = bend; 
node [n ]: = firsLnode ; firsLnode : = n ; 
count: = count + I 
end 

end; (* inv _node *) 
public function nexL.hlock:integer; 

begin ( * next _block *) 
while block _list =1= 0 and 

block [block _list ].count = p.node _count (block _list) do 
block _list: = block [block _list ].link ; 

if block _list = 0 then next _block: = 0 
else 

begin 
next -1Jlock : = block _list 
with block [block _list] do 

begin node _list: = firsLnode ; block _list: = link end; 
end 

end; (* next-block *) 
public function common.....node:integer); 

begin ( * common _node *) 
if node _list = 0 then common _node: = 0 
else begin common _node: = node _list; node _list: = node [node _list] end 
end; (* common _node *) 

begin ( * inverse *) 
for i: = I to p.block_count do with block[i] dofirsLnode: = count : =0; 
block _list: = 0; i : = p.firsLnode (b) ; 
while i =1= 0 do 

begin 
j: = ffirsLpredecessor (i); 
whilej =1= Odo begin inv_node(j);j: = fnext_predecessor(j) end; 
i: =p.nexLnode; 
end 

end; (* inverse *) 

Figure B.IO. Abstract Data Type for an Inverse. 
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blocks that contain elements of inverse (j) but are not themselves subsets of 
inverse(j). The module allows us to obtain a block satisfying these con
straints by invoking next-block. (If next-block returns 0, no more such 
blocks exist.) Once a block has been obtained, successive invocations of 
common-node yield the elements common to that block and inverse (j). 
Note that each of the operations provided by the abstract data type requires 
constant time. 

B.3.3. Coloring The problem of minimizing the number of rows in a 
parse table can be cast as a problem in graph theory as follows: Let each 
row correspond to a node. Two nodes k and k' are adjacent (connected by 
edges (k,k ') and (k:k) ) if the corresponding rows are incompatible and 
therefore cannot be combined. We seek a partition of the graph such that 
no two adjacent nodes belong to the same block of the partition. The rows 
corresponding to the nodes in a single block of the partition then have no 
incompatibilities, and can be merged. Clearly we would like to find such a 
partition having the smallest number of blocks, since this will result in max
imum compression of the table. 

This problem is known in graph theory as the coloring problem, and the 
minimum number of partitions is the chromatic number of the graph. It has 
been shown that the coloring problem is NP-complete, lind hence we seek 
algorithms that efficiently approximate the optimum partition. 

Most approximation algorithms are derived from backtracking algo
rithms that decide whether a given number of colors is sufficient for the 
specified graph. If such an algorithm is given a number of colors equal to 
the number of nodes in the graph then it will never need to backtrack, and 
hence all of the mechanism for backtracking can be removed. A good back
tracking algorithm contains heuristics designed to prune large portions of 
the search tree, which, in this case, implies using as few colors as possible for 
trial colorings. But it is just these heuristics that lead to good approxima
tions when there is no backtracking! 

A general approach is to make the most constrained decisions first. This 
can be done by sorting the nodes in order of decreasing incident edge count. 
The first node colored has the maximum number of adjacent nodes and 
hence rules out the use of its color for as many nodes as possible. We then 
choose the node with the most restrictive constraint on its color next, resolv
ing ties by taking the one with most adjacent nodes. At each step we color 
the chosen node with the lowest possible color. 

Figure B.ll gives the complete coloring algorithm. We assume that g 
contains no cycles of length 1. (A graph with cycles of length 1 cannot be 
colored because some node is adjacent to itself and thus, by definition, must 
have a different color than itself.) First we partition the nodes according to 
number of adjacencies, coloring any isolated nodes immediately. Because 



procedure coloring (g: graph; p : partition); 
( * Make p define a coloring of g *) 
var 

sort: partition (g. n ) ; 
choice: array [l..g.n) of integer; 
available: array [l..g.n,l..g.n) of boolean; 
i,},k,uncolored,min _choice,node,color: integer; 

begin ( * coloring *) 
for i : = 1 to g. n do 

begin 
}: = sort. new_block ; 
choice[ i): = g. n; 
for}: = 1 to g.n do available[i,}): = true ; 
end; 

uncolored: = 0; 
for i : = 1 to g. n do 

if g . .ftrsLsuccessor (i) = 0 then p.add _node (i, I) 
else 

begin 
} : = I; while g. next -successor =1= 0 do} : =} + 1 ; 
sort. add _block (i,}) 
end; 

for i : = 1 to uncolored do 
begin 
min_choice:=g.n +1; 
for}: =g.n downto 1 do 

begin 
k : = sort . .ftrsLnode (j ); 
while k =1= 0 do 

begin 
if choice [k ) < min _choice then 

begin node: = k ; min _choice: = choice [k ) end; 
k: =sort.nexLnode; 
end 

end; 
sort. add _node (node,g.n ); 
color: = 1; while not available [color,node ) do color: = color + 1 ; 
p.add _node (node,color ); 
} : = g . .ftrst-successor (node); 
while} =1= 0 do 

begin 
if available [ color,} ) then 

begin available [color,}): =false; choice[j): = choice [}) - 1 end; 
}: =g.next-successor(node); 
end 

end 
end; (* coloring *) 

Figure B. I I. Coloring Algorithm. 
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of our assumptions, block g.n of sort must be empty. The coloring loop then 
scans the nodes in order of decreasing adjacency count, seeking the most 
restrictive choice of colors. This node is then assigned the lowest available 
color, and that color is made unavailable to all of the node's neighbors. 
Note that we mark a node as having been colored by moving it to block g.n 
of the sort partition. 

B.4. Notes and References 

For further information about graph theory, the interested reader should 
consult the books by Berge [1962] or Harary [1969]. 

The representations of graphs and partitions discussed in Section B.2 are 
chosen to have the least impact on the complexity of the algorithms that fol
low. Further insight into the rationale underlying these representations can 
be obtained from the book by Aho, Hopcroft and Ullman [1974]. Both the 
algorithm for identifying strongly connected components and the partition
ing algorithm are drawn from this book. 

Proofs of the NP-completeness of the graph coloring problem are given 
by Karp [1972] and Aho [1974]. It can also be shown that most approxima
tion algorithms perform poorly on particular graphs. Johnson [1974] 
demonstrates that each of the popular algorithms has an associated class of 
graphs for which the ratio of the approximate to the true chromatic number 
grows linearly with the number of vertices. Further work by Garey and 
Johnson [1976] indicates that it is unlikely that any fast algorithm can 
guarantee good approximations to the chromatic number. The algorithm 
presented in Section B.3.3 has been proposed by a number of authors [Wells 
1971, Diirre 1973, Brelaz 1979]. It has been incorporated into an LALR(l) 
parser generator [Dencker 1977] and has proven satisfactory in practice. 
Further experimental evidence in favor of this algorithm has also been 
presented by Durre [1973]. 

EXERCISES 

B.l. The graph module of Figure B.4 is unpleasant when the number of edges is 
not known at the time the module is instantiated: If e is not made large 
enough then the program will fail, and if it is made too large then space will be 
wasted. 

a. Change the module definition so that the array edge is not present. Instead, 
each edge should be represented by a record allocated dynamically by 
define_edge. 

b. What is the lifetime of the edge storage in (a)? How can it be recovered? 

B.2. Modify the module of Figure B.5 to save space by omitting the parent field of 
each node. Provide access to the parent via the sibling pointer of the last child. 
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What additional information is required? If the two versions of the module 
were implemented on a machine with which you are familiar, would there be 
any difference in the actual storage requirements for a node? Explain. 

B.3. Consider the partition module of Figure B.6. 
a. Show that if array p is defined with lower bound 1, execution of adLnode 

may abort due to an illegal array reference. How can this error be avoided 
if the lower bound is made I? Why is initialization of plO] unnecessary? 

b. What changes would be required if we wished to remove a node from all 
blocks by using add_node to add it to a fictitious block O? 

c. Under what circumstances would the use of firsLnode and nexLnode to 
scan a block of the partition be unsatisfactory? How could this problem be 
overcome? 

B.4. Explain why the elements of stack are initialized to 0 in Figure B.7 and why 
the pop operation resets the element to O. Could top be set to 0 initially also? 

B.5. Consider the application of strongly_connecteLcomponents to the graph of Fig
ure B.3a. Assume that the indexes of the node in the graph were assigned 'by 
column': The leftmost node has number 1, the next three have numbers 2-4 
(from the top) and the rightmost three have numbers 5-7. Also assume that 
the lists of edges leaving a node are ordered clockwise from the 12 o'clock 
position. 
a. Show that the nodes will be visited in the order given by Figure B.3b. 
b. Give a sequence of snapshots showing the procedure activations and the 

changes in lowlink. 
c. Show that the algorithm partitions the graph correctly. 

B.6. Consider the refinement problem of Section B.3.2. 
a. Implement a Boolean procedure split(block) that will refine block according 

to the successors of its nodes: If all of the successors of nodes in block lie in 
the same block of p, then split(block) returns false and p is unchanged. Oth
erwise, suppose that the successors of nodes in block lie in n distinct blocks, 
n > I. Add n - I blocks to p and distribute the nodes of block among block 
and these new blocks on the basis of their successor blocks. Split(block) 
returns true in this case. 

b. Implement refine as a loop that cycles through the blocks of p, applying split 
to each. Repeat the loop so long as anyone of the applications of split 
yields true. (Note that for each repetition of the loop, the number of blocks 
in p will increase by at least one.) 

B.7. Consider the problem of structural equivalence of types discussed in Section 
9.1.2. We can solve this problem as follows: 
a. Define a graph. each of whose nodes represents a single type. There is an 

edge from node k I to node k 2 if type k I 'depends upon' type k 2. One type 
'depends upon' another if its definition uses that type. For example, if k I is 
declared to be of type ref k 2 then k I 'depends upon' k 2') 

b. Define a partition that groups all of the 'similarly defined' types. (Two 
types are 'similarly defined' if their type definitions have the same structure, 
ignoring any type specifications appearing in them. For example, ref k I 

and ref k2 are 'similarly defined'.) 
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c. Apply the refinement algorithm of Section B.3 .2. 
Assume that array types are 'similarly defined' if they have the same dimen
sions, and record types are 'similarly defined' if they have the same field 
identifiers in the same order. Apply the procedure outlined above to the 
structural equivalence problem of Exercise 2.2. 

B.B. Consider the problem of state minimization discussed in Section 6.2.2. The 
state diagram is a directed graph with node and edge labels. It defines a func
tion l(i,s), where i is an input symbol selected from the set of edge labels and 
s is a state selected from the set of node labels. 
a. Assume that the state diagram has been completed by adding an error state, 

so that there is an edge for every input symbol leaving every node. Define a 
three-block partition on the graph, with the error state in one block, all final 
states in the second and all other states in the third. Consider the edges of 
the state diagram to define a set of functions, Ih one per input symbol. 
Show that the states of the minimum automaton correspond to the nodes of 
the reduction (Definition 3.3) of the state diagram with respect to the 
refinement of the three block partition compatible with all Ii. 

b. Show that Definition B. I permits only a single edge directed from one 
specific node to another. Is this limitation enforced by Figure B.4? If so, 
modify Figure B.4 to remove it. 

c. Modify Figure B.4 to allow attachment of integer edge labels. 
d. Modify Figure B.9 to carry out the refinement of a graph with edge labels, 

treating each edge label as a distinct function. 
e. Modify the result of (d) to make completion of the state diagram unneces

sary: When a particular edge label is missing, assume that its destination is 
the error state. 
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Ichbiah [Ichbiah 1980]. 
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Euclid-[Lampson 1977] 
FORTRAN-We have drawn examples from both the 1966 [ANSI 1966] 

and 1978 [ANSI 1978b] standards. When we refer simply to 'FOR
TRAN', we assume the 1978 standard. If we are pointing out 
differences, or if the particular version is quite important, then we use 
'FORTRAN 66' and 'FORTRAN 77' respectively. (Note that the ver
sion described by the 1978 standard is named 'FORTRAN 77', due to 
an unforeseen delay in publication of the standard.) 
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