

COMPILER CONSTRUCTION

 This page is intentionally left blank.

COMPILER CONSTRUCTION

K. V. N. Sunitha
Principal

BVRIT Hyderabad
College of Engineering for Women

Bachupally, Hyderabad

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd.
Licensees of Pearson Education in South Asia

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher’s
prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher
reserves the right to remove any material in this eBook at any time.

ISBN 9789332500297
eISBN 9789332520127

Head Office: A-8(A), Sector 62, Knowledge Boulevard, 7th Floor, NOIDA 201 309, India
Registered Office: 11 Local Shopping Centre, Panchsheel Park, New Delhi 110 017, India

Dedicated to

My parents

Late Sri K. Subbaiah and Smt. K. Subba Lakshmamma for inculcating the thirst for knowledge in me

My husband

Sri M. Chidambara Moorthy for his inspiration and motivation

And my sons

Charan and Uday for their love and cooperation

 This page is intentionally left blank.

BRIEF CONTENTS

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: LEXICAL ANALYZER 31

CHAPTER 3: SYNTAX DEFINITION – GRAMMARS 79

CHAPTER 4: SYNTAX ANALYSIS—TOP-DOWN
PARSERS 125

CHAPTER 5: BOTTOM-UP PARSERS 171

CHAPTER 6: SYNTAX-DIRECTED TRANSLATION 241

CHAPTER 7: SEMANTIC ANALYSIS 291

CHAPTER 8: INTERMEDIATE CODE GENERATION 309

CHAPTER 9: SYMBOL TABLE 337

CHAPTER 10: CODE OPTIMIZATION 375

CHAPTER 11: CODE GENERATION 425

RECOMMENDED READINGS AND WEBSITES 447

INDEX 449

 This page is intentionally left blank.

CONTENTS

Preface xvii

1. INTRODUCTION 1
1.1 What Is a Compiler—2

1.1.1 History 2
1.1.2 What Is the Challenge? 3

1.2 Compiler vs. Interpreter—4
1.3 Typical Language Processing System—6

1.3.1 Preprocessor 6
1.3.2 Loader/Linker 9

1.4 Design Phases—10
1.4.1 The Lexical Analysis 10
1.4.2 Intermediate Code Generator 13
1.4.3 Code Optimizer 13
1.4.4 Target Code Generator 14
1.4.5 Symbol Table Manager and Error Handler 15
1.4.6 Compiler Front End 16
1.4.7 Compiler Back End 17

1.5 Design Passes—19
1.6 Retargeting—20
1.7 Bootstrapping—20

1.7.1 T-diagram 21
1.7.2 Advantages of Bootstrapping 22

1.8 Compiler Design Tools—23
1.9 Modern Compilers—Design Need for Compilers—24

1.10 Application of Compiler Design Principles—24
Solved Problems 25
Summary 27
Fill in the Blanks 28
Objective Question Bank 29
Exercises 30
Key for Fill in the Blanks 30
Key for Objective Question Bank 30

x Contents

2. LEXICAL ANALYZER 31
2.1 Introduction—32
2.2 Advantages of Separating Lexical Analysis from Syntax Analysis—33
2.3 Secondary Tasks of a Lexical Analyzer—33
2.4 Error Recovery in Lexical Analysis—33
2.5 Tokens, Patterns, Lexemes—34
2.6 Strategies for Implementing a Lexical Analyzer—37
2.7 Input Buffering—38
2.8 Specifi cation of Tokens—40

2.8.1 Operations on Language 40
2.9 Recognition of Tokens—42

2.10 Finite State Machine—43
2.10.1 Finite Automaton Model 44
2.10.2 Properties of the Transition Function “δ” 45
2.10.3 Transition Diagram 45
2.10.4 Transition Table 45
2.10.5 Language Acceptance 46
2.10.6 Finite Automation Is of Two Types 47
2.10.7 Deterministic Finite Dutomaton (DFA) 48
2.10.8 Nondeterministic Finite Automaton (NFA) 49
2.10.9 Equivalence of DFAs and NFAs 50
2.10.10 Converting NFA (MN) to DFA (MD)—Subset Construction 51
2.10.11 NFA with Epsilon (ε)-Transitions 54
2.10.12 Epsilon Closure (ε-closure) 54
2.10.13 Eliminating ε-Transitions 55
2.10.14 Converting NFA with ε-Transition to NFA Without ε-Transition 55
2.10.15 Converting NFA with ε-Transition to DFA 56
2.10.16 Comparison Method for Testing Equivalence of Two FAs 57
2.10.17 Reduction of the Number of States in FA 58
2.10.18 Minimization of DFA 59
2.10.19 Minimization of DFA Using the Myhill Nerode Theorem 61

2.11 Lex Tool: Lexical Analyzer Generator—63
2.11.1 Introduction 63

Solved Problems 64
Summary 66
Fill in the Blanks 66
Objective Question Bank 67
Exercises 68
Key for Fill in the Blanks 70
Key for Objective Question Bank 70

3. SYNTAX DEFINITION – GRAMMARS 79
3.1 Introduction—79
3.2 Types of Grammars—Chomsky Hierarchy—81

Contents xi

3.3 Grammar Representations—84
3.4 Context Free Grammars—87
3.5 Derivation of CFGs—89
3.6 Language Defi ned by Grammars—91

3.6.1 Leftmost and Rightmost Derivation 92
3.6.2 Derivation Tree 93
3.6.3 Equivalence of Parse Trees and Derivations 94

3.7 Left Recursion—96
3.8 Left-Factoring—98
3.9 Ambiguous Grammar—100

3.10 Removing Ambiguity–—103
3.11 Inherent Ambiguity—105
3.12 Non-context Free Language Constructs—106
3.13 Simplifi cation of Grammars—106
3.14 Applications of CFG—112

Solved Problems 112
Summary 116
Fill in the Blanks 116
Objective Question Bank 117
Exercises 120
Key for Fill in the Blanks 123
Key for Objective Question Bank 123

4. SYNTAX ANALYSIS—TOP-DOWN PARSERS 125
4.1 Introduction—126
4.2 Error Handling in Parsing—126

4.2.1 Panic Mode Error Recovery 127
4.2.2 Phrase Level Recovery 127
4.2.3 Error Productions 127
4.2.4 Global Correction 127

4.3 Types of Parsers—128
4.3.1 Universal Parsers 128
4.3.2 Top-Down Parsers (TDP) 128
4.3.3 Bottom-Up Parsers 130

4.4 Types of Top-Down Parsers—131
4.4.1 Brute Force Technique 131

4.5 Predictive Parsers—133
4.5.1 Recursive Descent Parser 134
4.5.2 Nonrecursive Descent Parser—LL(1) Parser 136
4.5.3 Algorithm for LL(1) Parsing 137
4.5.4 First(α), Where α Is Any String of Grammar Symbols 139
4.5.5 Follow(A) Where ‘A’ is a Nonterminal 141

4.6 Construction of Predictive Parsing Tables—144
4.7 LL(1) Grammar—145

xii Contents

4.8 Error Recovery in Predictive Parsing—150
Solved Problems 152
Summary 157
Fill in the Blanks 158
Objective Question Bank 158
Exercises 161
Key for Fill in the Blanks 163
Key for Objective Question Bank 164

5. BOTTOM-UP PARSERS 171
5.1 Bottom-Up Parsing—172
5.2 Handle—173
5.3 Why the Name SR Parser—174
5.4 Types of Bottom-Up Parsers—175
5.5 Operator Precedence Parsing—176

5.5.1 Precedence Relations 177
5.5.2 Recognizing Handles 177
5.5.3 Parsing Algorithm for Operator Precedence Parser 178
5.5.4 Construction of the Precedence Relation Table 179
5.5.5 Mechanical Method of Constructing Operator Precedence Table 181
5.5.6 Calculating Operator Precedence Relation <· ·> = 182
5.5.7 Error Recovery in Operator Precedence Parser 184
5.5.8 Procedure for Converting Precedence Relation Table to
 Precedence Function Table 186

5.6 LR Grammar—187
5.7 LR Parsers—187
5.8 LR Parsing Algorithm—188

5.8.1 Task of LR Parser: Detect Handle and Reduce Handle 188
5.9 Construction of the LR Parsing Table—191

5.9.1 Augmented Grammar 192
5.9.2 LR(0) Item 192
5.9.3 Closure(I) 193
5.9.4 Goto(I,X) 194
5.9.5 Creating Canonical Collection “C” of LR(0) Items 195
5.9.6 Construction of DFA with a Set of Items 195

5.10 LR(0) Parser—197
5.10.1 Advantages of the LR(0) Parser 199
5.10.2 Disadvantages of the LR(0) Parser 199
5.10.3 LR(0) Grammar 199
5.10.4 Confl icts in Shift-Reduce Parsing 200

5.11 SLR(1) Parser—204
5.12 Canonical LR(1) Parsers CLR(1)/LR(1)—209

5.12.1 Closure(I) Where I Is a Set of LR(1) Items 209
5.12.2 Goto(I,X) 210

Contents xiii

5.12.3 Creating Canonical Collection “C” of LR(1) Items 211
5.12.4 Constructing CLR(1) Parsing Table 212
5.12.5 CLR(1) Grammar 213

5.13 LALR(1) Parser—215
5.14 Comparison of Parsers: Top-Down Parser vs. Bottom-Up Parser—223
5.15 Error Recovery in LR Parsing—224
5.16 Parser Construction with Ambiguous Grammars—225

Solved Problems 227
Summary 233
Fill in the Blanks 234
Objective Question Bank 235
Exercises 237
Key for Fill in the Blanks 239
Key for Objective Question Bank 239

6. SYNTAX-DIRECTED TRANSLATION 241
6.1 Introduction—241
6.2 Attributes for Grammar Symbols—242
6.3 Writing Syntax-Directed Translation—243
6.4 Bottom-Up Evaluation of SDT—250
6.5 Creation of the Syntax Tree—260
6.6 Directed Acyclic Graph (DAG)—262
6.7 Types of SDTs—264
6.8 S-Attributed Defi nition—265
6.9 Top-Down Evaluation of S-Attributed Grammar—265

6.10 L-Attributed Defi nition—269
6.11 Converting L-Attributed to S-Attributed Defi nition—276
6.12 YACC—278

Solved Problems 284
Summary 288
Fill in the Blanks 289
Objective Question Bank 289
Key for Fill in the Blanks 290
Key for Objective Question Bank 290

7. SEMANTIC ANALYSIS 291
7.1 Introduction—291
7.2 Type Systems—293
7.3 Type Expressions—293
7.4 Design of Simple Type Checker—295
7.5 Type Checking of Expressions—296
7.6 Type Checking of Statements—296
7.7 Type Checking of Functions—297

xiv Contents

7.8 Equivalence of Type Expressions—297
7.8.1 Structural Equivalence 297
7.8.2 Encoding of Type Expressions 298
7.8.3 Name Equivalence 299
7.8.4 Type Graph 300

7.9 Type Conversion—302
7.10 Overloading of Functions and Operators—302
7.11 Polymorphic Functions—303

Solved Problems 304
Summary 305
Fill in the Blanks 306
Objective Question Bank 306
Exercises 307
Key for Fill in the Blanks 308
Key for Objective Question Bank 308

8. INTERMEDIATE CODE GENERATION 309
8.1 Introduction—309
8.2 Intermediate Languages—309

8.2.1 Syntax Trees 310
8.2.2 Directed Acyclic Graph (DAG) 312
8.2.3 Postfi x Notation 312
8.2.4 Three Address Code 313

8.3 Types of Three Address Statements—314
8.4 Representation of Three Address Code—315

8.4.1 Quadruple 316
8.4.2 Triple 316
8.4.3 Indirect Triples 317
8.4.4 Comparison of Representations 318

8.5 Syntax-Directed Translation into Three Address Code—318
8.5.1 Assignment Statement 318
8.5.2 Addressing Array Elements 320
8.5.3 Logical Expression 322
8.5.4 Control Statements 324

Solved Problems 327
Summary 332
Fill in the Blanks 333
Objective Question Bank 333
Exercises 334
Key for Fill in the Blanks 335
Key for Objective Question Bank 335

 9. SYMBOL TABLE 337
9.1 Introduction—337

Contents xv

9.2 Symbol Table Entries—339
9.3 Operations on the Symbol Table—340
9.4 Symbol Table Organization—341
9.5 Non-block Structured Language —342

9.5.1 Linear List in Non-block Structured Language 342
9.5.2 Linked List or Self-organizing Tables 344
9.5.3 Hierarchical List 347
9.5.4 Hash Tables 352

9.6 Block Structured Language—356
9.6.1 Stack Symbol Tables 358
9.6.2 Stack-Implemented Tree-structured Symbol Tables 363
9.6.3 Stack-Implemented Hash-structured Symbol Table 365

Summary 368
Fill in the Blanks 368
Objective Question Bank 369
Exercises 371
Key for Fill in the Blanks 374
Key for Objective Question Bank 374

10. CODE OPTIMIZATION 375
10.1 Introduction—375
10.2 Where and How to Optimize—377
10.3 Procedure to Identify the Basic Blocks—378
10.4 Flow Graph—380
10.5 DAG Representation of Basic Block—381
10.6 Construction of DAG—381

10.6.1 Algorithm for Construction of DAG 382
10.6.2 Application of DAG 384

10.7 Principle Source of Optimization—386
10.8 Function-Preserving Transformations—386

10.8.1 Common Sub-expression Elimination 386
10.8.2 Copy Propagation 389
10.8.3 Dead Code Elimination 394
10.8.4 Constant Propagation 397

10.9 Loop Optimization—397
10.9.1 A Loop Invariant Computation 398
10.9.2 Induction Variables 399

10.10 Global Flow Analysis—403
10.10.1 Points and Paths 404
10.10.2 Reaching Defi nition 405
10.10.3 Use Defi nition Chains 405
10.10.4 Live Variable Analysis 405
10.10.5 Defi nition Use Chains 406
10.10.6 Data Flow Analysis of Structured Programs 406
10.10.7 Representation of Sets 406

xvi Contents

10.10.8 Iterative Algorithm for Reaching Defi nition 408
10.11 Machine-Dependent Optimization—411

10.11.1 Redundant Loads and Stores 411
10.11.2 Algebraic Simplifi cation 412
10.11.3 Dead Code Elimination 412
10.11.4 Flow-of-Control Optimization 413
10.11.5 Reduction in Strength 413
10.11.6 Use of Machine Idioms 413

Solved Problems 414
Summary 419
Fill in the Blanks 420
Objective Question Bank 420
Exercises 421
Key for Fill in the Blanks 424
Key for Objective Question Bank 424

11. CODE GENERATION 425
11.1 Introduction—425
11.2 Issues in the Design of a Code Generator—425

11.2.1 Input to the Code Generator 426
11.2.2 Target Programs 426
11.2.3 Memory Management 427
11.2.4 Instruction Selection 427
11.2.5 Register Allocation 428
11.2.6 Choice of Evaluation Order 429

11.3 Approach to Code Generation—429
11.3.1 Algorithm for Code Generation Using Three Address Code 430

11.4 Instruction Costs—432
11.5 Register Allocation and Assignment—433

11.5.1 Fixed Registers 434
11.5.2 Global Register Allocation 434
11.5.3 Usage Count 434
11.5.4 Register Assignment for Outer Loop 435
11.5.5 Graph Coloring for Register Assignment 436

11.6 Code Generation Using DAG—436
Solved Problems 439
Summary 442
Fill in the Blanks 442
Objective Question Bank 443
Exercises 444
Key for Fill in the Blanks 445
Key for Objective Question Bank 445

Recommended Readings and Websites 447
Index 449

PREFACE

Every computing device built today needs a compiler. It enables us to use a programming language
by translating programs into machine code. It is essential for a good programmer to understand how
a compiler works. The study of compilers entails an analysis of theoretical ideas in translation and
optimization with sparse resources. The purpose of this book is to cover the underlying concepts and
techniques used in compiler design. Some of these techniques can also be used in software design and
natural language processing.

Intended as an introductory reading material in the subject, the book uses enough examples and
algorithms to effectively explain the various phases in compiler design, besides covering the design of
each component of a compiler in detail. As part of the course, students can implement each phase of a
compiler. The programming languages used in the examples are in C.
The eleven chapters in the book are organized as explained below:

 • Chapter 1 gives an overview of compiler design and covers all the phases in a compiler.
 • Chapter 2 covers lexical analysis, formal language theory, regular expressions and fi nite-state

machines and the automated tool LEX.
 • Chapter 3 discusses syntax defi nition. The basic notations and concepts of grammars and

languages such as ambiguity, left recursion and left factoring are unraveled. This is useful in
the design of parsers.

 • Chapter 4 on syntax analysis elaborates on the types of parsing and types of top-down parsers
and its design.

 • Chapter 5 describes bottom-up parsers and their design. Problems and solution in each design
are explained.

 • Chapter 6 delineates syntax-directed translation. Methods to perform top-down translation
and bottom-up translations are examined.

 • Chapter 7 based on semantic analysis provides the main ideas for static type checking, typing
rules, type expressions and the design of simple type checker.

 • Chapter 8 expounds on intermediate code generation and the translation of different language
constructs into their address code. It also elucidates runtime support required for design of
compilers and the different storage allocations.

 • Chapter 9 analyzes symbol tables. The important functions of a symbol table and symbol
table organization for block-structured and non-block structured languages are spelt out in
detail.

 • Chapter 10 on optimization reveals the various machine-dependent and machine-independent
optimization techniques. It also depicts register allocation using graph coloring and data fl ow
equations.

xviii Preface

 • Chapter 11 rationalizes target code generation, enumerates the methods to design a simple
code generator and points out the issues in design.

The problems denoted by asterisks in the examples and exercises have appeared in GATE
 examinations.

Acknowledgements

I sincerely thank my management—the Chairman Sri K. V. Vishnu Raju, the Vice-Chairman Sri Ravi
Chandran Raja Gopal and the Director Sri Ram Kumar of Sri Vishnu Educational Society—for their
encouragement and support in completing this book. I thank my research scholar Dr N. Kalyani for her
review comments. I also thank the publisher Pearson Education for their best efforts in bringing out this
book in time.

K. V. N. Sunitha

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 1

C H A P T E R 1

CHAPTER OUTLINE

 1.1 What Is a Compiler?

 1.2 Compiler vs. Interpreter

 1.3 Typical Language-Processing System

 1.4 Design Phases

 1.5 Design of Passes

 1.6 Retargeting

 1.7 Bootstrapping

 1.8 Compiler Design Tools

 1.9 Modern Compilers—Design Need for Compilers

 1.10 Application of Compiler Design Principles

A compiler is a translator that translates programs written in one language to another language, that
is, translates a high-level language program into a functionally equivalent low-level language program
that can be understood and later executed by a computer. Designing an effective compiler for a
computer system is also one of the most complex areas of system development.

Compiler construction is a broad fi eld. The demand for compilers will always remain
as long as there are programming languages. In early compilers, little was understood
about the underlying principles and techniques and all tasks were done by hand. Hence,
compilers were messy and complex systems. As programming languages started evolv-
ing rapidly, more compilers were in demand; so people realized the importance of com-
pilers and started understanding the principles and introduced new tools for designing
a compiler.

In early days, much of the effort in compilation was focused on how to imple-
ment high-level language constructs. Then, for a long time, the main emphasis was on
improving the effi ciency of generated codes. These topics remain important even today,
but many new technologies have caused them to become more specialized. Compiler
writing techniques can be used to construct translators for a wide variety of languages.
The process of compilation is introduced in this chapter. The importance of a compiler
in a typical language-processing system and the challenges in designing a compiler are
discussed in detail. The design phases of a compiler along with the modern compiler
tools are explained.

Introduction

2 Introduction

1.1 What Is a Compiler?
The software that accepts text in some language as input and produces text in another lan-
guage as output while preserving the actual meaning of the original text is called a translator.
The input language is called the source language; the output language is called the target or
object language. A compiler is basically a translator. It translates a source program written in
some high-level programming language such as Pascal/C/C++ into machine language for
computers, such as the Intel Pentium IV/AMD processor machine, as shown in Figure 1.1.
The generated machine code can be used for execution as many times as needed. In addition
to this, a compiler even reports about errors in the source program.

1.1.1 History
In the early days of computers, programmers had to be exceptionally skilled since all the
coding was done in machine language. Machine language code is written in binary bit pat-
terns (or hexadecimal patterns). With the evolution of assembly language, programming
was made simpler. These languages used mnemonics, which has a close resemblance with
symbolic instructions and executable machine codes. A programmer must pay attention to
far more detail and must have complete knowledge of the processor in use.

Toward the end of the 1950s, machine-independent languages were introduced. These
languages had a high level of abstraction. Typically, a single high-level instruction is trans-
lated into several (sometimes dozens or in rare cases even hundreds) executable machine
language instructions. Grace Murray Hopper conceptualized the fi rst translator for the
A-0 programming language from his experimental studies. This was coined as a compiler
in the early 1950s. John Backus at IBM took 18 man years to introduce the fi rst complete
compiler for FORTRAN in 1957.

In many application domains, the idea of using a higher-level language quickly caught
on for various reasons.

 � High-level programming languages are much easier to learn and understand. No back-
ground knowledge in hardware is necessary.

 � They can be easily debugged.
 � They are relatively machine independent.
 � While writing programs, programmers need not consider the internal structure of a system.

Figure 1.1 Compiler Input and Output

Compiler

Issues Error Messages

Low-level
Language

High-level
Language

 What Is a Compiler? 3

 � High-level languages (HLL) offer more powerful control and data structure facilities
than low-level languages.

 � High-level languages allow faster development than in assembly language, even with
highly skilled programmers. Development time increases and it becomes 10 to 100
times faster.

 � Programs written in high-level languages are much easier and less expensive to maintain
than similar programs written in assembly language or low-level languages.

Computers only understand machine language. As people started writing programs in
high-level languages, to translate them into machine understandable form, compilers were
invented. Hence, knowledge of compilers became the basic necessity for any programmer.

Initially compilers were written in the assembly language. In 1962, Tim Hart and Mike
Levin at MIT created the fi rst self-hosting compiler for Lisp. A self-hosting compiler is capable
of compiling its own source code in a high-level language. The initial C compiler was written
in C at AT & T Bell labs. Since the 1970s, it has become common practice to implement a com-
piler in the language it compiles. Building a self-hosting compiler is a bootstrapping problem.

1.1.2 What Is the Challenge?
The complexity of compilers is increasing day by day because of the increasing complexity
of computer architectures and expanding functionality supported by newer programming
languages.

So to design a compiler, the main challenge lies with variations in issues like:
 � Programming languages (e.g., FORTRAN, C++, Java)
 � Programming paradigms (e.g., object-oriented, functional, logic)
 � Computer architectures (e.g., MIPS, SPARC, Intel, alpha)
 � Operating systems (e.g., Linux, Solaris, Windows)

Qualities of a Compiler (in the order of importance)

1. The compiler itself must be bug-free.
2. It must generate the correct machine code.
3. The generated machine code must run fast.
4. The compiler itself must run fast (compilation time must be proportional to program size).
5. The compiler must be portable (i.e., modular, supporting separate compilation).
6. It must print good diagnostics and error messages.
7. The generated code must work well with existing debuggers.
8. The compiler must have consistent and predictable optimization.

Building a compiler requires knowledge of

 � Programming languages (parameter passing techniques supported, scope of variables,
memory allocation techniques supported, etc.)

 � Theory (automata, context-free languages, grammars, etc.)
 � Algorithms and data structures (hash tables, graph algorithms, dynamic programming, etc.)
 � Computer architecture (assembly programming)
 � Software engineering.

4 Introduction

The fi rst compiler was built for FORTRAN at IBM in the 1950s. It took nearly 18 man years
to do this. Today, with automated tools, we can build a simple compiler in just a few months.
Crafting an effi cient and a reliable compiler is always a challenging task.

1.2 Compiler vs. Interpreter
An interpreter is another way of implementing a programming language. An interpreter
works similar to a compiler in most of the phases like Lexical, Syntax, and Semantic. This
analysis is performed for each single statement and when the statement is error free, instead
of generating the corresponding code, that statement is executed and the result of execution
is displayed. In an interpreter, since every time the program has to be processed for and
has to be checked for errors, it is slower than the compiler program. Writing an interpreter
program is a simpler task than writing a compiler program because a compiler processes the
program as a whole, whereas an interpreter processes a program one line at a time. If speed
is not a constraint, an interpreter can be moved on to any machine easily.

An interpreter fi rst reads the source program line by line, written in a high-level pro-
gramming language; it also reads the data for this program; then it runs or executes the
program directly against the data to produce results. This is shown in Figure 1.2. It does not
produce machine code or object code. One example is the Unix shell interpreter, which runs
operating system commands interactively.

Some languages, like Java, combine both compiler and interpreter. The Java program
was fi rst compiled by a compiler to produce a byte code. This byte code is interpreted while
execution. In some systems, the compiler may generate a syntax tree and syntax tree may
be interpreted directly. The choice of compiler and interpreter depends on the compromise
made on speed and space. The compiled code is bigger than the syntax tree, but the running
speed is less for the compiled code than for the syntax tree.

The interpreter is a good choice, if the program has to be modifi ed while testing. It
starts to run the program quickly and works on the representation that is close to the source
code. When an error occurs, it displays informative messages and allows users to correct the
errors immediately.

Figure 1.2 Interpreter

Source
Program

Results

Interpreter

Data

 Compiler vs. Interpreter 5

Note that both interpreters and compilers (like any other program) are written in some high-
level programming language (which may be different from the language they accept) and
they are translated into machine code. For example, a Java interpreter can be completely
written in C or C++ or even in Java. Because an interpreter does not generate machine code
as output for the input source code, it is machine independent.

 � C, C++, Fortran, Pascal, C#
 � Usually compiled

 � Basic, JavaScript, Lisp, LOGO, Perl, Python, SMALL TALK, APL
 � Usually interpreted

Generally a compiler is faster than an interpreter because interpreter reads and interprets
each statement in a program as many times as the number of evaluations of the statement.
For example, when a for/while loop is interpreted, the statements inside the body of the loop
will be analyzed and evaluated on every iteration. Some languages, such as Java and Lisp,
are provided with both an interpreter and a compiler. Java programs are generally compiled
and interpreted. Java compiler (javac) converts programs written in java , that is, Java classes
with .java extension into byte-code fi les with .class extension. The Java Virtual Machine,
which is known as JVM is a java interpreter. It may internally compile the byte code into
machine code or interpret the byte code directly and then execute the resulting code.

Advantages of Interpreters

1. If a program is simple and is to be executed once, an interpreter is preferred.

For example, let us suppose that there is a program with 5000 statements. For a test run,
only 50 lines need to be visited. The time taken by a compiler and then an interpreter to
run the program is as follows:

Compiler 5000 tc + 50 te
Interpreter 50 ti

where tc is time taken to compile, te is time taken for execution, and ti is time taken for
interpreting.
Hence, if it is single execution, an interpreter is preferred to a compiler.
To execute a database, OS commands interpreter is preferred to a compiler.

2. Interpreters can be made portable than compilers.

To understand the portability of an interpreter, consider the following scenario. Assume
that we are writing an interpreter in some high-level language (like Java), which supports
portability. Whatever you write using that language is portable. Hence, the interpreter is
also portable. However, if a compiler is written in the same language, then it is not port-
able. Because the output of a compiler (whatever may be the implementation language)
is always machine language, it runs only on a specifi c machine.

3. Certain language features are supported by interpreters.

For example, consider a language feature like dynamic types. In SNOBOL, the type of a
variable is dependent on a value that is assigned to it anytime.

6 Introduction

If x = 20, then x is of the integer type.

If x = 2.5, then x is real type.

If x = “hai,” then x is literal type.

In languages like FORTRAN, the variables are assigned the type based on fi rst character. If
variable name starts with i, j, k, l, m, n, it is treated as an integer and otherwise as real. All
compilers do not support dynamic types but can be supported by interpreters.

Therefore, in the above situation, we prefer an interpreter rather than a compiler.
Compilers and interpreters are not the only examples of translators. There are many other

translators. Here are a few more examples:

Table 1.1 List of translators

Translator Source code Target code

Text editors English text Meaningful sentence

LEX Regular expression A scanner

YACC SDT Parser generator

Javac compiler Java Java byte code

Cross compiler Java C++ code

Database query optimizer SQL Query evaluation plan

Text formater LaTeX PostScript

This book discusses the design of a compiler for programs in high-level languages. But
the same techniques can also be applied to design interpreters.

1.3 Typical Language-Processing System
To understand the importance of a compiler, let us take a typical language-processing sys-
tem shown in Figure 1.3. Given a high-level language program, let us see how we get the
executable code. In addition to a compiler, other programs (translators) are needed to gener-
ate an executable code. The different software required in this process are shown below in the
fi gure. The fi rst translator needed here is the preprocessor.

1.3.1 Preprocessor
A source program may be divided into modules stored in separate fi les and may consist of
macros. A preprocessor produces input to a compiler. A preprocessor processes the source
code before the compilation and produces a code that can be more effi ciently used by the
compiler. It is not necessary to consider a preprocessor as part of a compiler as preprocessing
requires a complete pass. It cannot be included as part of a single pass compiler.

 Typical Language-Processing System 7

A preprocessor performs the following functions:

a. Macro processing: Macros are shorthands for longer constructs. A macro processor has to
deal with two types of statements––macro defi nition and macro expansion. Macro defi ni-
tions have the name of the macro and a body defi ning the macro. They contain formal
parameters. During the expansion of the macro, these formal parameters are substituted
for the actual parameters. All macros (i.e., #defi ne statements) are identifi ed and substituted
with their respective values.

b. File inclusion: Code from all fi les is appended in text while preserving line numbers
from individual fi les.

c. Rational preprocessor: They augment older languages with modern fl ow of control and
data-structuring facilities.

d. Language extensions: A preprocessor can add new functionalities to extend the language
by built-in macros––for example, adding database query facilities to the language.

Figure 1.3 Typical Language Processing System

High-level Language

Language Processor

Compiler

Preprocessor

 Exe Code/Absolute Machine Code

Loader/Linker

Assembler

Source Code

Relocatable Machine Code

Pure Source Code

Assembly Code

8 Introduction

Figure 1.4 shows an example of a code before and after preprocessing.

If the C language program is an input for a preprocessor, then it produces the output
as a C program where there are no #includes and macros, that is, a C program with only
C statements (pure HLL). This phase/translator is not mandatory for every high-level
language program. For example, if the source code is a Pascal program, preprocessing
is not required. This is an optional phase. So the output of this translator is a pure HLL
program.

Compiler: To convert any high-level language to machine code, one translator is manda-
tory and that is nothing but a compiler. A compiler is a translator that converts a high-level
language to a low-level language (e.g., assembly code or machine code).

Assembler: Assembly code is a mnemonic version of machine code in which names rather
than binary values for machine instructions and memory addresses are used. An assem-
bler needs to assign memory locations or addresses to symbols/identifi ers. It should use
these addresses in generating the target language, that is, the machine language. The
assembler should ensure that the same address must be used for all the occurrences of
a given identifi er and no two identifi ers are assigned with the same address. A simple
mechanism to accomplish this is to make two passes over the input. During the fi rst pass
whenever a new identifi er is encountered, assign an address to it. Store the identifi er along
with the address in a symbol table. During the second pass, whenever an identifi er is seen,
then its address is retrieved from the symbol table and that value is used in the generated
machine code.

Consider the following example:
Example 1: Consider the following C code for adding two numbers:

main()
 {
 int x,y,z;
 scanf(“%d, %d”,&x,&y);

 z=x+y;
}

Preprocessor output

#include <stdio.h>
#define min(x, y)((x)<(y))?(x):(y).. other

 declarations…

void fun()
{
int a = 1;
int b = 2;
int c;
c = min(a,b);
}

extern intprintf (char *,...);
/* ... many more declarations from stdio.h */
.. other declarations…

void fun()
{
int a = 1;
int b = 2;
int c;
c = ((a)<(b))?(a):(b);
}

Sample C program

Figure 1.4 Preprocessor Example

The equivalent assembly code for adding two numbers is as follows:

.BEGIN
IN X
LOAD X
IN Y
ADD Y
STORE Z
HALT
.END
X: .DATA 0
Y: .DATA 0
Z: .DATA 0

Assembler is a translator that converts assembly code to machine code. Machine code is
of two types. One is absolute machine code and other is relocatable machine code. The
machine code with actual memory addresses is called the absolute machine code. Generally,
the assembler produces the machine code with relative addresses, which is called the relo-
catable machine code since it needs to be relocated in memory for execution.

The equivalent machine relocatable code for adding two numbers is as follows:

Address Machine Code
0000 1101 0110
0001 0000 0110
0010 1101 0111
0011 0011 0111
0100 0001 1000
0101 1111 0000

0110 0000 0000
0111 0000 0000
1000 0000 0000

1.3.2 Loader/Linker
To convert the relocatable machine code to the executable code, one more translator is
required and this is called the loader/linker.

A loader/linker or link editor is a translator that takes one or more object modules gener-
ated by a compiler and combines them into a single executable program called the exe code.

The terms loader and linker are used synonymsly on Unix environments. This program
is known as a linkage editor in IBM mainframe OS. However, in some operating systems, the
same program handles both the tasks of object linking and physical loading of a program.
Some systems use linking for the former and loading for the latter. The defi nitions of linking
and loading are as follows:

Linking: This is a process where a linker takes several object fi les and libraries as input and
produces one executable object fi le shown in Figure 1.5. It retrieves from the input fi les (and

 Typical Language-Processing System 9

10 Introduction

Figure 1.5 Linker

lib

lib dll exe

obj obj

linker

combines them in the executable code) the code of all the procedures that are referenced and
resolves all external references to actual machine addresses. The libraries include language-
specifi c libraries, operating system libraries, and user-defi ned libraries.

Loading: This is a process where a loader loads an executable fi le into memory, initializes
the registers, heap, data, etc., and starts the execution of the program.

If we look at the design of all these translators, designing a preprocessor or assembler or
loader/linker is simple. It can be taken up as a one-month project. But among all, the most
complex translator is the compiler. The design of the fi rst FORTRAN compiler took 18 man
years. The complexity of the design of a compiler mainly depends on the source language.
Currently, many automated tools are available. With modern compiler tools like YACC (yet
another compiler compiler), LEX (lexical analyzer), and data fl ow engines, the design of a
compiler is made easy.

1.4 Design Phases
Designing a compiler is a complex task; the design is divided into simpler subtasks called
“phases.” A phase converts one form of representation to another form. The task of a com-
piler can be divided into six phases as shown in Figure 1.6.

1.4.1 The Lexical Analysis
Lexical analyzer is also called scanner. The scanner groups the input stream of characters
into a stream of tokens and constructs a symbol table, which is used later for contextual
analysis. The tokens in any high-level language can include

 � key words,
 � identifiers,
 � operators,
 � constants: numeric, character and special characters
 � comments,
 � punctuation symbols.

 Design Phases 11

Figure 1.6 Phases of a Compiler

Target Code Generation

Code Optimization

Intermediate Code Generation

Semantic Analysis

Syntax Analysis

Lexical Analysis

Compiler Construction

High-level Language

Tokens

Parse Tree

Semantic Parse Tree

Intermediate Code

Optimized Code

Assembly Code

Error HandlerSymbol Table

The lexical analyzer groups input stream of characters into logical units called tokens. The
input to the lexical analysis is a character stream and the output is a stream of tokens. The lexi-
cal analysis is shown in Figure 1.7. Regular expressions are used to defi ne the rules for recog-
nizing the tokens by a scanner (or lexical analyzer). The scanner is implemented as a fi nite state
automata. Automated scanner generators tools are Lex and Flex. Flex is a faster version of Lex.

Figure 1.7 Lexical Analysis

Lexical Analyzer

if (x >= y) x = 200=yelse100 ;

Stream of Characters

Stream of Tokens

kw op id op id op id op num kw id op num op

id: identifier, op: operator, num: number, kw: keyword
id, op, num, and kw are the tokens.

Totally 14 tokens are identified and sent to the next phase.

12 Introduction

Ex: If (x > = y) x = 100 else y = 200;
Syntax Analysis: Syntax Analyzer checks the syntax of a given statement. This is also called
parser. The parser groups stream of tokens into a hierarchical structure called the parse
tree. In order to check the syntax, fi rst the standard syntax of all such statements is to be
known. Generally the syntax rules for any HLL are given by context-free grammars (CFG)
or Backus-Naur Form (BNF). The CFG, which describes all assignment statements with
arithmetic expressions, is as follows:

Example 2: To check the syntax of the statement 6 × (8 + 4)
CFG is

Expr → Expr op Expr
 | (expr)
 | num
op → + | - | * | /

Using this grammar, the syntax of the given statement is verifi ed by deriving the state-
ment from grammar. This is shown in Figure 1.8.

So the output of the parser is a parse tree representation of the program. The parser is
generally implemented as a push-down automaton.

Many automated tools are available for designing parsers. YACC and Bison are widely
used tools. They are used for generating bottom-up parsers in C language. Bison is a faster
version of YACC.

Semantic Analysis: Checks are performed to ensure that parts of a program fi t together
meaningfully. The semantic analyzer checks semantics, that is, whether the language con-
structs are meaningful.

For example, given a statement A + B, let us see how a parser and a semantic analyzer
work.

Figure 1.8 Parser tree for 6 (8 + 4)

<expr>

<expr>

<expr>

<expr>

<expr> <expr>

<op>

<op>

)(*
num

num num+

8

6

4

 Design Phases 13

On seeing the above expression, parsers look at binary addition and check whether two
operands are present. The presence of two operands confi rms that the syntax is right. How-
ever, it does not recognize the operand type, whether it is A or B. Even if A is an array and B
is a function, it says that the syntax is right. It is the semantic analyzer that checks whether
the two operands are type-compatible or not. Static type checking is the basic function of
the semantic analyzer. The output of the semantic analysis phase is an annotated parse tree.
Attribute grammars are used to describe the semantics of a program.

This phase is often combined with the syntax analysis. During parsing, information
concerning variables and other objects is stored in a symbol table. This information is used
to perform the context-sensitive checking in the semantic analysis phase.

1.4.2 Intermediate Code Generator
This phase converts the hierarchical representation of source text, that is, this phase con-
verts the parse tree into a linear representation called Intermediate Representation (IR)
of the program. A well-designed intermediate representation of source text facilitates the
independence of the analysis and syntheses (front- and back-end) phases. Intermediate rep-
resentations may be the assembly language or an abstract syntax tree.

An intermediate language/code is often used by many compilers for analyzing and
optimizing the source program. Intermediate language should have two important prop-
erties: (a) it should be simple and easy to generate and (b) it should be easy to translate to
the target program.

IR can be represented in different ways: (1) as a syntax tree, (2) as a directed acyclic
graph (DAG), (3) as a postfi x notation, and (4) as a three-address code.

Example of IR in three-address code is as follows:

temp1 = int2float(sqr(t));
temp2 = g * temp1;
temp3 = 0.5 * temp2;
 dist = temp3;

The main purpose of IR is to make target code generation easier.

1.4.3 Code Optimizer
Compile time code optimization involves static analysis of the intermediate code to remove
extraneous operations. The main goal of a code optimizer is to improve the effi ciency.
Hence, it always tries to reduce the number of instructions. Once the number of instructions
is reduced, the code runs faster and occupies less space.

Examples of code optimizations are as follows:

Constant folding

I := 4 + J – 5; can be optimized as I := J – 1;
or
I = 3; J = I + 2; can be optimized as I = 3; J = 5

14 Introduction

while (COUNT < MAX) do
 INPUT SALES;
 SVALUE := SALES * (PRICE + TAX);
 OUTPUT := SVALUE;
 COUNT := COUNT + 1;
end;

can be optimized as

T :=PRICE + TAX;
while (COUNT < MAX) do
 INPUT SALES;
 SVALUE := SALES * T;
 OUTPUT := SVALUE;
 COUNT := COUNT + 1;
end;

Common sub-expression elimination
From:

 A := 100 * (B + C);
 D := 200 + 8 * (B + C);
 E := A * (B + C);

can be optimized as:

TEMP := B + C;
 A := 100 * TEMP;
 D := 200 + 8 * TEMP;
 E := A * TEMP;

 E := A * TEMP;

Strength reduction

2 * x can be optimized as x + x
2 * x can be optimized as shift left x

Mathematical identities

a * b + a * c can be optimized as a*(b + c)
a - b can be optimized as a + (-b)

1.4.4 Target Code Generator
The code generator’s main function is to translate the intermediate representation of the
source code to the target machine code. The machine code may be an executable binary
or assembly code, or another high-level language. To design a target code generator, the

 Design Phases 15

designer should have the complete knowledge about the target machine. Producing low-
level code requires familiarity with machine-level issues such as

 � data handling
 � machine instruction syntax
 � variable allocation
 � program layout
 � registers
 � instruction set

This phase takes each IR statement and generates an equivalent machine instruction.
For the following source text

if (x <= 3) then y := 2 * x;
else y := 5;

The target code generated is
Address Instruction
10 CMP x 3
11 JG 14
12 MUL 2 x temp
13 JMP 16
14 MOV y 5

To design a compiler, all the above phases are necessary; additionally, two more routines are
also important. They are symbol table manager and error handler.

1.4.5 Symbol Table Manager and Error Handler
In addition to passing the data from one phase to other, additional information acquired
during a phase may be needed by a later phase. The symbol table manager is used to store
the record for each identifi er, procedure encountered in the source program with relevant
attributes. The attributes of identifi er can be name, token, type, address, and so on. For
procedures, a record is stored in the symbol table with attributes like return type, number
of parameters, type of each parameter, and so on. Whenever any phase encounters new
information, records are stored in the symbol table and whenever any phase requires any
information, records are retrieved from the symbol table. Syntax analyzer stores the type
of information; this is later used by the semantic analyzer for type checking.

The error handler is used to report and recover from errors encountered in the source pro-
gram. A good compiler should not stop on seeing the very fi rst error. Each phase may encounter
errors, so to deal with errors and to continue further, error handlers are required in each phase.

The process of compilation can be viewed in the analysis and synthesis model shown
in Figure 1.9.

Two-Stage Model of Compilation

1. Analysis: The analysis part of compiler analyses breaks up the source program into con-
stituent pieces and creates an intermediate representation of source text.

16 Introduction

2. Synthesis: Synthesis part of compiler constructs the desired target machine code from the
intermediate representation.

Most compilers are designed as two-stage systems. The fi rst stage focuses on analyzing
the source program and transforming it into intermediate representation. This is also called
the front end of the system. The second stage focuses on the synthesis part where the inter-
mediate code is converted to the target code.

The two-pass model simplifi es the design of the compiler and helps in generating a new
compiler for a new source language or to a new target machine with ease. The front end is
designed with a focus on the source language to check for errors and generate a common
intermediate representation that is error free to the back end. The back end can be designed
to take the intermediate code that may be from any source language and generate the target
code that is effi cient and correct. Both front end and back end can use the common opti-
mizer, which works on intermediate representation.
Analysis of the Source Program
Analysis deals with analyzing the source program and preparing the intermediate form.

 � Lexical Analysis
 � Syntax Analysis
 � Semantic Analysis

Synthesis
Synthesis concerns issues involving generating code in the target language. It usually con-
sists of the following phases:

 � Intermediate code generation
 � Code optimization
 � Final code generation

1.4.6 Compiler Front End
The compiler front end shown in Figure 1.10 consists of multiple phases, each provided by
the formal language theory:

1. Lexical analysis––breaking the source code text into small pieces called tokens, each
representing a single atomic unit of the language, for instance, a keyword, identifi er, or
symbol name. The tokens are specifi ed typically as regular expressions. From a regular

Figure 1.9 Phases of a Compiler Compilation

Analysis Synthesis

Analyze the source program
and convert to intermediate

representation

Generate the target
program from intermediate

representation

 Design Phases 17

expression, a fi nite state machine is constructed. This machine can be used to recognize
tokens. This phase is also called scanner or lexical analysis.

2. Syntax analysis––Syntax analyzer checks the syntactic structures of the source code. It
focuses only on the form or structure. In other words, it identifi es the order of tokens and
builds hierarchical structure called parse tree. This phase is also called parsing.

3. Semantic analysis is to recognize the meaning of programming constructs and start to
prepare for output. In that phase, static type checking is done and most of the compilers
show these semantic errors as incompatible types.

4. Intermediate representation––source program is transformed to an equivalent of the
original program called intermediate representation (IR). This IR makes the target code
generation easier. Intermediate code can be a data structure (typically a tree or graph) or
an intermediate language.

1.4.7 Compiler Back End
Compiler front end alone is necessary for a few applications like language verifi cation tools.
A real compiler carries the intermediate code produced by the front end to the back end,
which produces a functional equivalent program in the output language. This is done in
multiple steps.

1. Compiler—The process of collecting program information from the intermediate repre-
sentation of the source code is called compiler analysis. Typical analysis includes variable
u-d (use-defi ne) and d-u (defi ne-use) chains, alias analysis, dependency analysis, and so
on. The best possible way for any compiler optimization is an accurate variable analysis.
During the analysis phase call graph and control fl ow graph are usually built.

2. Optimization—The optimizer optimizes the code. It transforms the intermediate lan-
guage representation into functionally equivalent faster and smaller code.

3. Code generation—This is the transformation from intermediate code to the target/
machine code. This involves the proper usage of registers, memory, and resources and
proper selection of the machine instructions and addressing modes that reduce the run-
ning cost.

Prerequisite for any compiler optimization is compiler analysis and they tightly work
together. The dependency of compiler front end and back end is shown in Figure 1.11(a).

Figure 1.10 The Front End of a Compiler

Program
Source

Token
Sequence

Parse
Tree

Abstract
Syntax
Tree

Symbol Table

Compiler Front End

Lexical
Analysis

Syntax
Analysis

Semantical
Analysis

18 Introduction

Figure 1.11(a) Compiler Front End and Back End

Source Program

Analysis

Synthesis

Language-Dependent
 Front End

Target-Dependent
Back End

 Lexical
Analyzer

 Syntax
Analyzer

Semantic
 Analyzer

Code
Optimizer

Code
Generator

Intermediate
Code

Generator

Target Program

Example 3: Compiler phases:

Int a,b,c;
Real d;

a = b * c + d

output of each phase is shown below in Figure 1.11(b).

 Design of Passes 19

1.5 Design of Passes
Reading the source text once is called a pass. All translators are designed in passes.

For example, the assembler is designed in two passes. Suppose there is a program as
follows:

 Add R1,R2
 Jmp L

 L:

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code

Code optimization

id = id2 *id 3 +id4

id +

id

*

id

id

=

id +

id

*

id

real

id

t1 = real(id

t2 = id

t3 = t2 + t1

id1 = t3

t2 = id2 *id3

id1 = t 2 + real(id4)

Code generation

Movf id2,

Mul

Add

Movf r1,id

c + d

1

+

=

1 +

2 3

4

id +1 +

2 3
4

4)

2 *id3

t

r

a = b*

1

id3, r1
*id4 , r1

1

Figure 1.11(b) Result of Each Phase

20 Introduction

Here Jmp L cannot be translated in fi rst pass as address of L is not known. It is defi ned later. This
is called forward reference problem. Because of this forward reference, the assembler is designed
in two passes. In the fi rst pass, the assembler collects all the labels and stores their addresses in
the symbol table. In the second pass, the assembler completes the translation to machine code.

The assembler can be designed even in one pass. The process is to scan the input text
line by line and translate. If the statement is seen with a forward reference, store it in some
table-“not_yet_assembled” and continue with next statement. While doing so, if any label
is seen, store it in the symbol table. At the end, since all the labels are available in the table,
take each statement in the “not_yet_assembled” table and translate. But the problem here is
if every statement has a forward reference, the size of the table becomes a problem. This is
the reason why generally the assembler is designed in two passes.

A macro processor or loader is also designed in two passes.
Coming to the compiler, if we want to complete all the phases in one pass, it requires too

much of space. This is the reason why a compiler is designed in two passes. Lexical analysis
to intermediate code generation, that is, lexical analysis, syntax analysis, semantic analysis,
and intermediate code generation is carried out in the fi rst pass and target code generation
and optimization in the second pass. This is how we can group phases into passes.

1.6 Retargeting
Creating more and more compilers for the same source language but for different machines
is called retargeting. Retargetable compiler, also called cross compiler, is a compiler that can be
modifi ed easily to generate code for different architecture. The code generated is less effi cient.

For example: If there is a C compiler that produces code for poor machine T800, 8 bit pro-
cessor machine, then we want a compiler for a better machine, that is, i860–64 bit processor
machine. To design a C compiler for i860, we do not have to start the design from lexi-
cal analysis. As front end is independent of target machine and completely dependent on
source language, take the front end of T800 and design the back end for i860 machine. Add
these two to get the C compiler for i860. This is the advantage of retargeting.

Typically the design of a compiler divides the functionality so that the code generation is
separate from parsing and semantic checking. Polymorphism in the code-generating section
is used in the design and implementation of a re-targetable compiler, so that a code can be
generated for a processor of any type.
Examples of retargetable compilers:

 � GCC
 � lcc
 � vbcc

1.7 Bootstrapping
A compiler is a complex program and it is not desirable to use the assembly language for its
development. Rather, a high-level language is used for writing compilers.

The process by which a simple language is used to translate a more complicated pro-
gram, which in turn may handle an even more complicated program and so on, is known

 Bootstrapping 21

as bootstrapping. Using the facilities offered by a language to compile itself is the essence
of bootstrapping.

1.7.1 T-d iagram
For bootstrapping purposes, a compiler is characterized by three languages: the source language
that it compiles (S), the target language it generates code for (N), and the implementation/host
language (I). This characteristic can be represented by using a diagram known as the T-diagram.

S

I

N

A compiler may run on one machine and produce code for another machine. Such a
compiler is called a cross compiler.

Suppose we write a cross compiler in S in implementation language I to generate code
for machine N, i.e., we create S I N. If an existing compiler for I runs on machine M and gen-
erates code for M, it is characterized by I M M. If S I N runs on I M M, we get a compiler S M N,
that is, a compiler from S to N runs on M. This is illustrated by putting T-Diagrams together
as shown in Figure 1.12.

S I N + I M M = S M N

Note that the implementation language I of the source compiler and the source language
of the running compiler must be the same.

Figure 1.12 Cross Compiler

S N NS

MM

M

II

Example 4: Suppose we have a Pascal translator written in C, which takes pascal code and
produces C as output.

If we want to have the same Pascal compiler in C++, then run the Pascal compiler under
the C compiler, which produces C++ as output. Implementation language can be any lan-
guage like Java. Once we run the Pascal compiler under the C compiler, we get Pascal com-
piler in C++. This is shown as a T diagram in Figure 1.13.

Figure 1.13 Pascal Compiler in C++

Pas C

java

C++

C

CC C++

Pas

22 Introduction

1.7.2 Advantages of Bootstrapping
1. It builds up a compiler for larger and larger subsets of a language.
 Suppose we write a compiler LNN for language L in L to generate code for machine N.

Development takes place on machine M, where an existing compiler LLM for L runs and
generates code for M. By fi rst compiling LLM with LNN, we obtain a cross compiler LNM
that runs on N, but produces code for M.

L M

L L N

N

L M

N

 The compiler LNM can be compiler second time, this time using generated cross com-
piler. The result of second compilation is a compiler LMM that runs on N and generates
code for M.

L M

L L M

N

L M

M

The two steps can be combined as shown in the fi gure below.

L M

LL M

L L N

N

L M

N

L M

MLL

NN

MM

2. Using bootstrapping an optimizing compiler can optimize itself.
 Suppose all development is done on machine Q. We have SSQ, a good optimizing com-

piler for language S written in S for machine Q. We want SQQ a good optimizing compiler
for S written in Q.

 We create SQ#Q#, a quick and dirty compiler for S on Q that not only generates poor code
but also takes a long time to do so. (Q# indicates poor implementation in Q. SQ#Q# is a
poor implementation of the compiler that generates poor code.) However, we can use
the compiler SQ#Q# to obtain a good compiler for S in two steps shown in the following
T diagram.

 Compiler Design Tools 23

S Q

SS Q

S S Q#

Q#

S Q

Q#

S Q

Q

Example 5:
Let us see how the process of bootstrapping gives us a clean implementation of Pascal. A
fresh compiler was written in 1972 for CDC 6000 series machines by revising Pascal. In the
following diagram, O represents “old Pascal “ and P represents “revised Pascal.”

P

6000

P
P 6000

O
O

 6000#

6000#

P 6000

6000#

P 6000

6000

A compiler for revised Pascal language was written in old Pascal and translated into CDC as
6000#, that is, P6000#6000#. The old compiler did not generate effi cient code. Therefore, the
compiler speed of 6000#, that is, P6000#6000# was rather moderate and its storage require-
ments were high. Revisions to Pascal were small enough that compiler P06000 and run
through the ineffi cient compiler P6000#6000#. This gives a clean implementation of a com-
piler for the required language.

1.8 Compiler Design Tools
Many automated tools are available to design and enhance the performance of a compiler.
Some of them are as follows:

1. Automatic Parser Generators

 With the help of CFG, these generators produce syntax analyzers (parse tree). Out of all
phases of a compiler, the most complex is parsing. In old compilers, syntax analysis con-
sumed not only a fraction of the running time of a compiler but also a large fraction of the
intellectual effort of writing a compiler.

 For example, YACC, Bison

2. Scanner Generators

 These generators automatically generate lexical analyzers (the stream of tokens), nor-
mally from a specifi cation based on regular expression.

 For example, Lex, Flex

24 Introduction

3. Syntax-Directed Translation Engines

 These engines take the parse tree as input and produce intermediate code with the three-
address format.

4. Automatic Code Generators

 These take a collection of rules that defi ne the translation of each operation of the inter-
mediate language for the target machine.

5. Data-Flow Engines

 To perform good code optimization, we need to understand how information fl ows across
different parts of a program. The “data fl ow engines” gather the information about how
values are transmitted from one part to other parts of the program. This is very useful for
good code optimization.

6. Global Optimizers

 Global optimizer is language and compiler independent. It can be retargeted and it sup-
ports a number of architectures. It is useful if you need a back end for the compiler that
handles code optimization,

These are the various compiler construction tools, which are widely used.

1.9 Modern Compilers—Design Need for Compilers
A compiler is one of the most important system software that translates the programs written
in high-level language to low-level language. Most of the techniques are for procedure-ori-
ented languages like C, Pascal and so on. Researchers are working in the direction of generat-
ing compilers for new paradigms of the language and generating an effi cient code in terms
of execution time, power consumption, and space requirement. Modern compilers have to
be designed with different orientation as the languages are object based or object oriented. It
becomes essential for the compiler designer to focus on the following issues:

 � Focus on essential traditional and advanced techniques common to all language
paradigms

 � Consider programming types—procedural, object oriented, functional, logic and distrib-
uted languages

 � Understand different optimizing techniques and tools available
 � Understand various computer architectures and formats

1.10 Application of Compiler Design Principles
The important component of programming is language processing. Many application soft-
ware and systems software require structured input. Few examples are databases (query lan-
guage processing), OS (command line processing), Equation editors, XML- and html-based

systems, typesetting systems like Troff, Latex, editors like vi,Emacs, Awk, Sed, Form pro-
cessing, extracting information automatically from forms. If input of any application has a
structure, then language processing can be done on the input. The whole spectrum of the
language-processing technology is used by compilers.

By studying the complete structure of compilers and how various parts are composed
together to get a compiler, one can become confi dent of using the language-processing technol-
ogy for various software developments. This knowledge helps to design, develop, understand,
modify/enhance, and maintain compilers for (even complex!) programming languages.

Solved Problems

1. Show the output of each phase of compiler on the following input.

int gcd(int a, int b)
{
while (a != b) {
 if (a > b) a =b;
 else b =a;
}
return a;
}

Solution:

The fi rst phase: Lexical Analysis Gives Tokens
Input to LA:

int gcd ,)int

{

aint

(

(

aWhile

else

!= b)

a =a ;

b

b

}

return

}

= a ;

a ;

bif > b

{

 Solved Problems 25

26 Introduction

A stream of tokens. Whitespace, comments are removed.

The second phase: Syntax Analysis Gives the Syntax Tree

Func

int

int ifint !=

= =

a a

a

a

b

b a b b a

>

b

gcd arags

argarg

seq

while return
 int gcd(int a, int b)
 {
 while (a != b) {
 if (a > b) a = b;

 else b =a;
 }

 return a;
}

Abstract syntax tree built from parsing rules.

The third phase: Semantic Analysis Resolves Symbols

Func

int gcd args seq

arg arg while return

int a int b

a b

!= if a

> = =

a b a b b a

a

b

Symbol Table

 Summary 27

Translation into Three-Address Code

If (a !=b) go to L1
 go to Last
L1: if a > b goto L2
 goto L3
L2: a=b
 goto Last
L3: b=a
Last: goto calling program

Code optimization phase also will have the same output as there is no scope for any optimi-
zation. Now target code generator generates instructions as follows:

Translation into Target Code

mov a, R0 % Load a from stack
mov b, R1 % Load b from stack
cmp, !=, R0,R1
jmp .L1 % while (a != b)
jne .L5 % if (a < b)
subl %edx,%eax % a =b
jmp .L8
.L5: subl %eax,%edx % b =a
jmp .L8
.L3: leave % Restore SP, BP
ret

Idealized assembly language with infi nite registers

Summary
 � A compiler is a program that translates a source program written in some high-level pro-

gramming language (such as C++) into machine code.
 � An interpreter reads source text line by line and executes without producing machine

code.
 � A preprocessor processes the source code before compilation and produces a code that

can be more efficiently used by the compiler.
 � An assembler is a translator that converts assembly code to machine code.
 � A loader/linker or link editor is a program that takes one or more objects generated by a

compiler and combines them into a single executable program.
 � A phase is one which converts one form of representation to another form.
 � The task of a compiler can be divided into six phases––lexical analysis, parsing, semantic

analysis, intermediate code generation, code optimization, target code generation.

28 Introduction

 � The lexical analyzer or scanner groups the input stream (of characters) into a stream of
tokens.

 � The parser groups tokens into hierarchical structure called the parse tree.
 � The semantic analyzer checks semantics, that is, whether the language constructs are

meaningful.
 � Intermediate Code Generator converts hierarchical representation of source text, that

is, parse tree into a linear representation called intermediate representation (IR) of the
program.

 � Intermediate Code Generator can be represented in different ways (1) as a syntax tree,
(2) DAG (directed acyclic graph), (3) postfix notation, and (4) Tree address code.

 � Code optimizer tries to improve the efficiency of the code.
 � Target code generator takes each IR statement and generates equivalent machine

instruction.
 � The symbol table manager is used to store record for each identifier and for every proce-

dure encountered in the source program with relevant attributes.
 � The error handler is used to report and recover from errors encountered in the source.
 � A retargetable compiler is a compiler that can relatively easily be modified to generate

code for different CPU architectures.
 � A compiler that runs on one machine and produces code for another machine is called a

cross compiler.

Fill in the Blanks
1. A compiler is a translator that converts source program to _________________.
2. _______________ reads source text line by line and executes the source text without

producing machine code.
3. A preprocessor processes the _______________ and produces a code that can be more

effi ciently used by the compiler.
4. An assembler is a translator that converts assembly code to _______________.
5. _______________ is a program that takes one or more objects generated by a compiler

and combines them into a single executable program.
6. A phase is one that converts_______________.
7. The task of a compiler can be divided into _______________ phases.
8. The lexical analyzer or scanner groups the input stream into_______________.
9. The parser groups tokens into a hierarchical structure called the _______________.
10. The semantic analyzer checks _______________.
11. Intermediate Code Generator can be represented in a tree form as _______________,

_______________.
12. _______________ is an optional phase in a compiler.
13. Information in the symbol table is fi lled by ________________ phases.
14. The error handler is used to report and recover from errors encountered in the source.

It is required in the _______________ phase.

 Objective Question Bank 29

15. A retargetable compiler is a compiler that can easily be modifi ed to generate code for
_______________.

16. A compiler that runs on one machine and produces code for another machine is called
_______________.

Objective Question Bank
1. Consider line number three of the following C program.

int main()
{ int I,N;
fro(I=0; I<N; I++);
}

 Identify the compiler response about this line while creating the object module.
 (a) No compilation error (b) only lexical error

(c) only syntactic error (d) both lexical and syntactic errors.

2. Output of an interpreter is

 (a) HLL (b) Exe code (c) assembly code (d) machine code

3. Syntax analyzer verifi es syntax and produces

 (a) syntax tree (b) parse tree
 (c) DAG (d) none

4. Intermediate Code Generator prepares IR as

 (a) polish notation (b) dependency graph
(c) parse tree (d) all

5. Cross compiler uses which technique?

 (a) backtracking (b) bootstrapping
(c) reverse engg (d) forward engg

6. Retargeting is useful for creating compilers for more and more

 (a) CPU architectures (b) high-level languages
(c) assembly languages (d) none

7. Code optimization can be performed on

 (a) source text (b) IR
 (c) assembly code (d) all

8. Assembler can be designed in

 (a) one pass (b) two pass
 (c) many pass (d) all

These questions have appeared in GATE examinations.

30 Introduction

9. YACC is

 (a) scanner (b) parser generator
(c) Intermediate Code Generator (d) none

10. Lex is a

 (a) scanner (b) parser generator
(c) Intermediate Code Generator (d) none

Exercises
 1. Explain the difference between a compiler and an interpreter.
 2. What is the difference between pass and a phase? Explain the design of a compiler

with phases.
 3. Explain the different translators required for converting a high-level language to an

executable code.
 4. Give the output of each phase of compiler for the following source text
 for (i = 0; i < 10; i++) a = a + 10;
 5. What is a cross compiler? What is the advantage of the bootstrapping technique

with compilers?
 6. What is retargeting? What is its use?
 7. Give the output of each phase of compiler for the following source text:
 while (i < 10) a = a + 10;
 8. What are the tools available for compiler construction?
 9. Explain the analysis and synthesis model of a compiler.
10. What is the front end and the back end of a compiler? Explain them in detail.

 1. machine code
 2. Interpreter
 3. source code before the compilation
 4. machine code
 5. Link edit or
 6. one form of representation to another

form
 7. 6
 8. a stream of tokens

 9. parse tree
10. semantics
11. DAG, Syntax tree
12. Code optimizer
13. all
14. all
15. different CPU architectures
16. cross compiler

Key for Fill in the Blanks

 1. c 2. b 3. b 4. a 5. b
 6. a 7. a 8. d 9. b 10. a

Key for Objective Question Bank

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 0 0 00 0 0 111 01 01 01 011 01 01 01 01 01 0 1 0 1 0 1 01 0 11 0 1 01 01 01 01 011 0 0 10 10 10 10 1 1111110 1 0 10 1 0 10 10 1 0 10 10 10 0 10 0 0 10 0 000000 0 1 0 1 0 1 0 1 0 1
0 1 11 11 1 00000 10 10 100 100 10 10 10 10 10 11 0 10 100 1000 10 10 10 10 10 1111111 0 10 10 10 10 10 1000 1100 100 10 100 0 0 10 10 10 10 10 10 10 100 10 100 0 100 100 10 10 10 1 0 10 10 10 10 1100 10 10 10 10 10 0 0 0 0000 0 1000 0 0000 00 000 0 0 1 0 1 0 1 0
1 0000 00000000 00 0 0 1 0 1 0 1 01 01 0000001 01 001 000 1 01 0 00000000 1 0 000000000 1 0 1 01 01 01 0 1 01 01 001 0001 01 001 01 0000 1 001 00000 0000000 1 1 01 01 1 1 00000000 1 1 0000 111 0 1 0 1 0 1 0 1 0
11111 1 000000 001 011 1 0 0 0 1 0 01 011 0111111 1 0 1 0 1 01 01 1 01 01 01 001 001 01 1 01 0 0 10 10 100 10 0 10 10 10 10000000 0 10 10 100 10 10 1100000 000 0 10 10 10 10 10 10 110 10 10 10 10 100 10 100 1 0 10 10 110 10 10 110 110 0 0 0 00 100 0 1 0 1 0 1
1111 01 0 0 00000 1 1 11 0 000 1 01 0 1 01 01 0 1 0 1 01 01 01 01 01 01 01 01 01 01 01 0 1 01 00 1 0 0000 1 0 0000 1 0 1 0 1 01 0 01 01 01 0 1 0 1 0 01 01 0 1 01 0 0 0 11 0 1 0 1 0 1 0 0 0 0 000 00 0000 1000 0 1 0 1 0 1
11111 00 0 0 0 0 00 0 0 0 111 1 01 0 11 00 1 0 1 0 1 0 1 0 1 0 1 0 1 1 00 0 1 01 000 000 00 01 000 0 0 0 0 1 0 1 0 1 0 1 0
0 00 000 00 00 00 00 0 00 00 000 00 00 000 00 1 1 01 1 0 1 0 1 01 01 0 1 0 1 01 01 0 1 0 1 0 1 0 1 0 1 1 01 01 01 0 1 0 1 0 1 01 01 0 1 01 01 0 1 0 1 01 01 01 01 0 1 0 01 0 1 01 01 001 0 1 01 0 1 01 01 01 011 01 00001 0 1 01 01 0 1 0 1 01 01 01 0 1 0 1 0 1 0 1 0 1 1 01 0 01 0 1 0 1 01 01 0 1 01 01 001 01 0001 0 0 1 0 1 0 1 001 0 1 001 001 0 1 0 1 01 01 01 01 01 0001 001 01 01 00 01 00 1 00 0 1 0 1 0 1 0 1 0 1
0 1 00 00 00 0 0 0 0 0 0000 00 00 0 00 000 0 0 0 0 000 11 011 001 01 0 1 01 0 0 1 0 11111 1 01 00000001 001 0 1 01 01 0 1 01 01 01 001 0011 011 0 0 0 1 0 0 00 1 0 1 0 1 01 0 1 01 0 1 0 1 0 0 1 0 1 0 1 0 000 11111111111 0 1111 1 0 1 0 1 0 1 0 1
1 0 1 0 1 01 01 01 01 01 01 01 01 01 01 0 00000 0 10 10 10 10 10 10 100000 10 1000000 10 1 0 10 10 10 10 10 10 10 10 10 10 10 1000 10 10 10 10 1 000000000 1 0 0 10 10 10 10 100000 10 10 10 00 100 10 0 100000000000000 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 000 0 0 000 1 01 00001 0 1 0 1 0 1 0 1 0 001 0 000 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 10 10 10 1000 0 10 10 10 0 10 1000 10 10 11100 10 10 110 1 0 1 0 1 0
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 000000000 1 11 1 0 1 0 1 0 1 0 1 0 1 0001 00000 1 0 11111111111111 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 00 1 000001 0 1 01 0 1 0 00001 0 001 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 01 01 01 0 1 0 111 1 11 01 01 0 0 0 1 1 1 001 1 011 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 00000 1 1 0 1 0 1 0 1 0 0 0 0 00000001 00 1111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 10 1 0

 31

CHAPTER OUTLINE

 2.1 Introduction

 2.2 Advantages of Separating Lexical Analysis from Syntax Analysis

 2.3 Secondary Tasks of a Lexical Analyzer

 2.4 Error Recovery in Lexical Analysis

 2.5 Tokens, Patterns, Lexemes

 2.6 Strategies for Implementing a Lexical Analyzer

 2.7 Input Buffering

 2.8 Specifi cation of Tokens

 2.9 Recognition of Tokens

 2.10 Finite State Machine

 2.11 Lex Tool: Lexical Analyzer Generator

This is the fi rst phase of a compiler. The compiler spends most of its time (20–30% of compile time)
in this phase because reading character by character is done only in this phase. If a lexical analyzer
is implemented effi ciently, the overall effi ciency of the compiler improves. Lexical analyzers are used
in text processing, query processing, and pattern matching tools.

The scanner or lexical analyzer (LA) performs the task of reading a source text as a fi le of
characters and dividing them up into tokens. Tokens are like words in natural language.
This chapter deals with issues to be taken care of in the design of a lexical analyzer. Here
we shall discuss how to specify tokens using regular expressions, how to design LA using
Finite Automata (FA) or Lex tool. It is easy to design a pattern recognizer as Nondetermin-
istic Finite Automata (NFA). But NFA is slower than Deterministic Finite Automata (DFA).
Hence NFA, NFA with ε-transitions, inter conversions of NFA and DFA, and minimal DFA
are also discussed. A software tool that automates the construction of a lexical analyzer, that
is, LEX is also discussed. This tool allows people with different backgrounds to use pattern
matching in their own application areas.

Lexical Analyzer

C H A P T E R 2

32 Lexical Analyzer

2.1 Introduction
Lexical analysis is the act of breaking down source text into a set of words called tokens.
Each token is found by matching sequential characters to patterns. In general, program-
ming languages are defi ned using Context-free grammars, and these include the regular lan-
guages. All the tokens are defi ned with regular grammar and the lexical analyzer identifi es
strings as tokens and sends them to a syntax analyzer for parsing. A typical lexical analyzer
or scanner is shown in Figure 2.1.

Don’t think that a lexical analyzer reads the complete text and sends stream of tokens. It
is not so. The interaction of a lexical analyzer with a parser is shown in Figure 2.2. Only on
getting a request from the parser, the lexical analyzer reads the next token and sendsand sends the next the next
tokentoken to parser. If the token is an identifi er or a procedure, then the lexical analyzer stores
that token in the symbol table.

For example, if there is a source text A + B, LA does not read A + B at once and sends
tokens: id, +, id. On getting the fi rst request from the parser, the LA reads the fi rst string A,
recognizes that as the token id, stores it in the symbol table, and sends the token id to the
parser. On the next request, it only reads + and sends the operator as it is as a token. On the
third request, it reads string B, recognizes that as token id, stores it in the symbol table and
sends the token id to the parser.

Out of all the phases, a compiler spends much time in lexical analysis. Hence, if this
phase is implemented effi ciently, this contributes to the overall effi ciency of the compiler.

Lexical analysis and parsing can be combined in one phase but there are some advan-
tages for doing it separately.

Figure 2.1 A Typical Lexical Analyzer

Lexical Specification
(regular expressions)

Scanner/Tokanizar
(finite automata)

�������������	
����
�������
������	
����
�������

IF, LP, ID, ReLOp, NUM, RP, LB
ID, ASSGN, ID, AddOp, ID, SC
RB, ELSE, LB,
ID, ASSGN, ID, SubOp, ID, SC
RB

Figure 2.2 Interaction between a Lexical Analyzer and a Parser

Lexical
analyzer

Tokens

Source
program

Parser

Symbol
table

manager

 Error Recovery in Lexical Analysis 33

2.2 Advantages of Separating Lexical Analysis from
Syntax Analysis

There are several reasons for separating the analysis phase into lexical analysis and parsing.

1. Simplicity: By having LA as a separate phase, the compiler design is simplifi ed. Tech-
niques of DFA are suffi cient for lexical analysis and techniques of PDA can be used for
syntax analysis. Designing them together is a complex process. By dividing that complex
task into simpler subtasks, design is simplifi ed. Separation also simplifi es the syntax ana-
lyzer and allows us to use independent tools.

2. Effi ciency: Separating lexical analysis from syntax analysis increases design effi ciency.
Separation into different modules makes it easier to perform simplifi cations and optimi-
zations unique to the different paradigms. For example, a compiler spends much time
in LA. If this module is implemented effi ciently, then this contributes to the overall effi -
ciency of a compiler.

3. Portability: Portability is enhanced. Due to input/output and character set variations,
lexical analyzers are not always machine independent. We can take care of input alphabet
peculiarities at this level.

The most important advantage is that separation of these phases helps in designing special
tools to automate the construction of lexical analyzers and parsers.

2.3 Secondary Tasks of a Lexical Analyzer
The main task of LA is to read the source text and break it to stream of tokens. In addition to
this it even performs the following secondary tasks.

1. Filtering comment lines and white space characters.
White space characters like tab, space, newline characters, and comment lines are not

required during the translation of a source code. Hence, a lexical analyzer stripes them
off the code.

2. Associating the error messages in other phases.
A lexical analyzer reads the source code character by character. While reading it even

remembers the line numbers. If an error is seen by any other phase, then the lexical ana-
lyzer helps other phases in giving error diagnostics properly.

2.4 Error Recovery in Lexical Analysis
Generally, errors often detected in a lexical analysis are as follows:

1. Numeric literals that are too long
2. Long identifi ers (often a warning is given)
3. Ill-formed numeric literals
4. Input characters that are not in the source language

34 Lexical Analyzer

How to recover from errors?

There are four approaches to recover from lexical errors:

 � Delete: This is the simplest and most important operation. If there is an unknown charac-
ter, simply delete it. Deletion of character is also called panic-mode. This is used by many
compilers. However, it has certain disadvantages:
 The meaning of the program may get changed.
 The whole input may get deleted in the process.

Example: “charr” can be corrected as “char” by deleting “r”

 � Insert: Insert an extra or missing character to group into a meaningful token.
Example: “cha” can be corrected as “char” by inserting “r”

 � Transpose: Based on certain rules, we can transpose two characters. Like “whiel” can be
corrected to “while” by the transpose method.

 � Replace: In some cases, it may require replacing one character by another.
Example: “chrr” can be corrected as “char” by replacing “r” with “a”.

Let us consider an example here.

Example:

if a statements;
 else statements;

Here, to recover from the error, we need to insert a blank between “if” and “a.” However,
if we use the delete approach, then since ‘ifa’ is an identifi er, it can’t be followed just by an
identifi er, so statements is deleted. Next, else can’t occur without an “if” preceding it, so this
else is also deleted. So in this way we end up deleting a substantial portion of the program.

We can have different error handlers to handle different errors that occur at various
stages. The error handler need not be totally generic. In lexical, the above four operations are
based on characters, while in syntactical, these operations are based on tokens.

Certain desired goals for error recovery:
 � Error recovery should be accurate.
 � Location of error reported should be precise.
 � Error recovery should be quick (the algorithm shouldn’t look into the whole code for

error recovery).
 � Error recovery should not lead to error cascade (i.e., you recover from one error and get

trapped into other errors and so on).

2.5 Tokens, Patterns, Lexemes
When talking about lexical analysis, most often we use the following terms: lexeme, token,
and pattern. It is important to understand these terms.

Token: It is a group of characters with logical meaning. Token is a logical building block of
the language.

Example: id, keyword, Num etc.

 Tokens, Patterns, Lexemes 35

Pattern: It is a rule that describes the character that can be grouped into tokens. It is expressed
as a regular expression. Input stream of characters are matched with patterns and tokens are
identifi ed.

Example: Pattern/rule for id is that it should start with a letter followed by any number
of letters or digits. This is given by the regular expression: [A – Za – z][A – Za – z 0 – 9]*.

Using this pattern, the given input strings “xyz, abcd, a7b82” are recognized as token id.
Lexeme: It is the actual text/character stream that matches with the pattern and is recog-
nized as a token.

For example, “int” is identifi ed as token keyword. Here “int” is lexeme and keyword is
token.

For example, consider the following statement.

fl oat key = 1.2;

Lexeme Token Pattern
fl oat
key
=
1.2
;

fl oat
id
relop
num
;

Float
A letter followed by any number of letters or digits
< | > | <= | >= | = | != | ==
Any numeric constant
;

Design complexity of a lexical analyzer is mainly dependent on language conventions.
A popular example that illustrates the potential diffi culty of LA design is that in many

languages certain strings are reserved, that is, the meaning is predefi ned and cannot be
changed by the user. If keywords are not reserved, then lexical analyzer must distinguish
between a keyword and identifi er. Example: Keywords are not reserved in PL/I. Thus, the
rules for recognizing keywords from identifi ers are quite complicated; it is understood by
the following statement:

If then then then=else; else else=then;

Attributes for Tokens
When a token represents many lexemes, additional information must be provided by the
scanner or lexical analyzer about the particular lexeme of a token that matched with the
subsequent phases of the compiler.

For example, the token id matches with x or y or z. But it is essential for the code genera-
tor to know which string is actually matched.

The lexical analyzer accumulates information about tokens into their associated attributes.
The tokens control parsing decisions, whereas the attributes show signifi cance in translation of
tokens. Generally, tokens will have only one attribute, that is, pointer to the symbol table entry in
which information about the token is available. Suppose we want the type of id, token, lexeme,
line number, all these information can be stored in the symbol table entry of that identifi er.

Example 1:
Consider the statement:

distance = 0.5 * g * t * t;

36 Lexical Analyzer

When the lexical analyzer invokes getnexttoken() function for the next token, the
sequence of tokens returned are as follows:

 • id --------- (distance)
 • =
 • Const ------ (0.5)
 • *
 • id ----------- (g)
 • *
 • id ------------- (t)
 • *
 • Id -----------(t)

Example 2:

Divide the following C code into tokens:

 int Square(a) int a {
 /* returns square of a, but is less than 100 */
 return(a<=-10||a>=10)?100:a*a;
 }

Which of the following is NOT one of the tokens?
a. ?: b. /* c. never d. = e. /* returns……*/ f. <= g. 100 h.)

Solution:

a. ?:—is not a token. Although these symbols form one C operator, they are separated
in the text, and need to be recognized separately by the lexical analyzer. Notice that,
although they are fairly close in this example, there could be an arbitrarily long expres-
sion between them in the legal C code.

b. /* ––is not a token. This symbol introduces the comment, but it is normal to strip out
comments before tokenizing the source code.

c. never––is not a token. The word “never” looks like an identifi er, but it is within a com-
ment. Normally, comments are stripped out before tokenizing, but we would never
separate a comment into parts during lexical analysis at any event.

d. = ––is not a token. Although = might be a token by itself in some code, each use of = here
is as part of a larger token.

e. /* returns x-squared but never more than 100*/– is not a token. The comment is nor-
mally stripped out before tokenizing the source code. It would not be returned as a
token to the parser, because its presence does not affect the structure of the code; neither
does it affect the object code to be produced.

f. <=––is a token.<= is the two-character “less-than-or-equals” operator, and is normally
recognized as a single token.

 Strategies for Implementing a Lexical Analyzer 37

g. 100—is a token. “100” is a constant. It would normally be returned as the token CONST,
with a lexical value indicating that the actual value is 100.

h.)—is a token. Parentheses are always treated as tokens by themselves.

The list of tokens would be:

 � float
 ID --------(limitedSquare)
 (
 ID --------(x)
)
 float
 ID --------(x)
 {
 return
 (
 ID --------(x)
 <=
 CONST --------(-10.0)

 ID --------(x)
 >=
 CONST --------(10.0)
 ?
 CONST --------(100)
 :
 ID --------(x)
 *
 ID --------(x)
 ;
 }

2.6 Strategies for Implementing a Lexical Analyzer
Lexical analyzer can be designed in the following ways:
1. Use a scanner generator tool like Lex/Flex to produce a lexical analyzer. The specifi ca-

tion can be given using a regular expression, which on compilation generates a scanner
capable of identifying tokens. The generator provides routines for reading and buffering
the input. This is easy to implement but least effi cient.

2. Design a lexical analyzer in a high-level programming language like C and use the input
and buffering techniques provided by the language. This approach is intermediate in
terms of effi ciency.

3. Writing a lexical analyzer in assembly language is the most effi cient method. It can explic-
itly manage input and buffering. This is a very complex approach to implement.

The above details provided for a lexical analyzer are in increasing order of complexity and
effi ciency.

� float
ID --------(limitedSquare)
(
ID --------(x)
)
float
ID --------(x)
{
return
(
ID --------(x)
<=
CONST --------(-10.0)

ID --------(x)
>=
CONST --------(10.0)
?
CONST --------(100)
:
ID --------(x)
*
ID --------(x)
;
}

38 Lexical Analyzer

Designing a lexical analyzer either by hand or automated tools mainly involves two steps:
1. Describe rules for tokens using regular expressions.
2. Design a recognizer for such rules, that is, for tokens. Designing a recognizer corresponds

to converting regular expressions to Finite Automata. The processing can be speeded if
the regular expression is represented in Deterministic Finite Automata. This involves the
following steps:

 • Convert regular expression to NFA with ε
 • Convert NFA with ε to NFA without ε
 • Convert NFA to DFA

2.7 Input Buffering
In order to recognize a token, a scanner has to look ahead several characters from the current
character many times. For example, “char” is a keyword in C, while the term “chap” may be a
variable name. When the character “c” is encountered, the scanner cannot decide whether it is
a variable, keyword, or function name until it reads three more characters. It takes a lot of time
to read character by character from a fi le, and so specialized buffering techniques are developed.
These buffering techniques, makes the reading process easy and also reduces the amount of
overhead required to process. There are many buffering schemes that can be used; since these
techniques are somewhat dependent on system parameters, we shall discuss one scheme here.

Look ahead with 2N buffering
We use a buffer divided into two N-Character halves as shown in Figure 2.3. Typically, N
is the number of characters on one disk block, for example, 1024 or 4096. We read N input
characters into each half of the buffer with one system read command, rather than invoking
a read command for each input character. If less than N characters remain in the input, then
special characters EOF is read into the buffer after the input characters, as in Figure 2.3. eof
marks end of source fi le and is different from any input character.

Two pointers “lexeme” and “fwd” to the input buffer are maintained. The string of
characters enclosed between the two pointers is the current lexeme. To fi nd the lexeme, fi rst
initialize both the pointers with the fi rst character of the input. Keep incrementing the fwd
pointer until a match for the pattern is found. Once a character not matching is found, stop
incrementing the pointer and extract the string between the “lexeme” and “fwd” pointers.
This string is required the lexeme and process it and set both the pointer to the next character
to identify the next lexeme. With this scheme, comments and white space can be treated as
patterns that yield no token.

(+x=x eof)1+y

lexeme fwd

N

Figure 2.3 Interaction of Lexical Analyzer and Parser

 Input Buffering 39

While the fwd pointer is being incremented, if it is about to move past the halfway mark,
the right half is fi lled with N new input characters. Else if the fwd pointer is about to move
past the right end of buffer, not only the left half is fi lled with N new characters but also the
fwd pointer wraps around the beginning of the buffer.

Most of the time this buffering scheme works quite well, but the amount of look ahead
is limited with it. This limited look ahead may make it diffi cult to recognize tokens in cases
where the distance that the fwd pointer must travel is more than the length of the buffer. For
example, in PL/I program, consider the statement

DECLARE (ARG1, ARG2, ARG3……..ARGn)
Until we see what character follows the right parenthesis, we cannot determine whether
DECLARE is a function name, keyword, or an array name. In all the cases, the lexeme ends
at second E, but the amount of look ahead needed is proportional to the number of argu-
ments, which in principle is unbounded.

Algorithm for moving the forward pointer “fwd”

If fwd is at end of fi rst half
reload second half;
set fwd to point to beginning of second half;

Else if fwd is at end of second half
load fi rst half;
set fwd to point to beginning of fi rst half;

Else
increment fwd pointer

This algorithm takes two tests each time to advance the fwd pointer. The performance can
be improved by using other methods.

Buffer pairs
Sentinels
In order to optimize the number of tests to one for each advance of fwd pointer, sentinels are used with
buffer. This is shown in Figure 2.4. The idea is to extend each buffer half to hold a sentinel at the end.

 � One of the special characters that cannot occur in a program is Sentinel (e.g., EOF).
 � It indicates the need for some special action (terminate processing or fill other buffer-half).

Algorithm for incrementing the forward pointer “fwd” that uses sentinels

increment fwd
If fwd is EOF
 If fwd is at end of fi rst half
 reload second half
 set fwd to point to beginning of second half;
 Else if fwd is at end of second half
 reload fi rst half;
 set fwd to point to beginning of fi rst half;
 otherwise
 terminate the process.

40 Lexical Analyzer

This algorithm needs only one test per character.

2.8 Specifi cation of Tokens
Patterns are specifi ed using regular expressions. Each pattern matches a set of strings; so
regular expressions will serve as names for sets of strings.

Strings and Languages
A language is a dynamic set of visual, auditory, or tactile symbols of communication and
the elements used to manipulate them. Language can also refer to the use of such systems as
a general phenomenon.

Symbol and Alphabet
A symbol is an abstract entity. It cannot be formerly defi ned as points in geometry.

Example: Letters, digits, or special symbols like $, @, # etc.

 Alphabet: Finite collection of symbols denoted by ∑.

Example: English alphabet ∑ = {a, b,……z}
Binary alphabet ∑ = {0, 1}

 String/word: Set of symbols from the set of alphabets

Example: 1101, 1111, 01010101 strings from binary alphabet.
 0a1 is not a string from binary alphabet.

A word over an alphabet can be any fi nite sequence, or string, or group of letters. The set
of all words over an alphabet Σ is usually denoted by Σ*. For any alphabet, there is only one
word of length 0, the empty word, which is often denoted by e, ε, or Λ. An empty string can
be denoted by €.

 � Any string with any number of leading symbols of string is called Prefix.
 � Any string with any number of trailing symbols of string is Suffix.
 � Any substring except the string itself is Proper substring.

Example 1: String: “ramu”
 Prefi x: ε, r, ra, ram
 Suffi x: u, mu, amu
 Substring: ε, r, ra, ram, ramu

2.8.1 Operations on Language
If L1 and L2 are two languages, then

 i. Union of two languages is denoted as L1 + L2 or L1 U L2

By union we get the words from both languages.

UC +T eof+

lexeme fwd

O N

Figure 2.4 Sentinels in Input Buffering

 Specifi cation of Tokens 41

 ii. Concatenation of two languages is denoted as L1L2
 Concatenation is a process of combining a word with other words to form a new word,

whose length is the sum of the lengths of the original words. If we concatenate a word
with an empty word, the result is the original word.

iii. Kleene’s closure ∑* is the language consisting of all words that are concatenations of 0 or
more words in the original language (including null string €).

Example 2:

 (i) ∑ = {x} ∑* = {∑0 U ∑1 U ∑2 U ∑3 ………………….}
 ∑* = {ε, x, xx, xxx …………}
 (ii) ∑ = {a, b} ∑* = {ε, a, b, aa, ab, bb, ba, aaa, aab,……… }
 (iii) Positive closure ∑+ = ∑* – {ε}
 ∑* = ∑+ + ε

 L1 = {smart, ugly} L2 = {boy, girl}
 L1 ∪ L2 = {smart, ugly, boy, girl}
 L1L2 {smart boy, smart girl, ugly boy, ugly girl}

Regular Expressions
1. Any atom (character) is a regular expression.
2. If r and s are regular expressions, then so are r. s, r + s, r* and (r).

The language described by a regular expression is called a regular set. The operators + and *
are called regular operators.

Properties of Regular Expressions
If r and s are two regular expressions then

 � r + s = s + r (union is commutative)
 � r(s + t) = rs + rt, (s + t)r = sr + tr (concatenation distributes over union)
 � r + (s + t) = (r + s) + t (union is associative)
 � εr = r, rε = r (ε is the identity element for concatenation)
 � r** = r* (closure is idempotent)

Regular Defi nitions: It is often desirable to name regular expression groupings for being
able to recognize tokens at different levels.

Example: Identifi ers in C are defi ned as a letter or underscore followed by zero or
 More letters or underscores or digits.
Regular defi nition for id is as follows:

letter A + B + C + : : : + Z + a + b : : : + z

digit 0 + 1 + 2 + : : : + 9

id (letter+)(letter+ +digit)_

Note: Be careful with recursive regular defi nitions! They may not be regular.

42 Lexical Analyzer

2.9 Recognition of Tokens
Lexical analysis can be performed with pattern matching through the use of regular expres-
sions. Therefore, a lexical analyzer can be defi ned and represented as a DFA. Recognition of
tokens implies implementing a regular expression recognizer. This entails implementation
of a DFA.

Example of a lexical analyzer
Suppose that we want to build a lexical analyzer for the recognizing identifi er, > =, >, integer
const. The corresponding DFA that recognizes the above tokens is shown below in Figure 2.5.

How much should we match?
In general, fi nd the longest match possible.
For example, given an input 123.45, should match with oken num_const(123.45) rather than
num_const(123), “.”, num_const(45).
The DFA for matching such numbers is shown below in Figure 2.6.

Implementing fi nite automata: We can hand code DFA as each state corresponds to a labeled
code fragment and state transitions represented as control transfers as follows.

Figure 2.6 DFA That Recognizes Floating Point Numbers

digit digit

This transition is taken
only if ‘.’ is not seen

‘.’

digit digit

other

other

letter | digit | _

other

other

other

return ’identifier’

digit

digit

>

=

let
ter

 | _

return ’identifier_const

return ’op_ge’

return ’op_gt’

.

.

.

Figure 2.5 DFA That Recognizes Tokens id, integer_const, etc.

 Finite State Machine 43

1

2

a

a

b

b a

3

int scanner ()
{ char c;
 while (TRUE){
 c = getchar();
 state1: switch (c) { /*initial state*/
 case ‘a’: goto state2;
 case ‘b’ goto state3;
 default: Error();
 }
 state2: switch (c){
 case ‘a’: goto state2;
 case‘b': goto state3;
 default: return SUCCESSFUL;
 }
 state3: switch (c){
 case ‘a’: goto state2;
 default: return SUCCESSFUL;
 }
}/*while*/
}

When the current state of automaton is a fi nal state, then a match is found in DFA and
no transition is enabled on the next input character.

Actions on fi nding a match:

 � If the lexeme is valid, then copy it in an appropriate place where the parser can access it.
 � Save any necessary scanner state so that scanning can subsequently resume at the right place.
 � Return a value indicating the token found.

So the concept of fi nite automaton is essential for the design of a lexical analyzer. Hence, let
us discuss about fi nite automata, its types, and inter conversions.

2.10 Finite State Machine
The fi nite state system is a mathematical model of a system with certain input and gives
certain output fi nally. The input given to an FSM is processed by various states. These states
are called intermediate states.

A good example of fi nite state systems is a control mechanism of elevator. This mechanism
remembers only the current fl oor number pressed and it does not remember all the previously
pressed numbers. The fi nite state systems are useful in design of text editors, lexical analyzers,
and natural language processing. The word “automaton” is singular and “automata” is plural.

Defi nition: A fi nite automaton is formerly defi ned as a 5-tuple (Q, ∑, δ, q0, F) where
 Q – is a fi nite set of states which is non empty
 ∑ – is input alphabet
 q0 – is initial state
 F – is a set of fi nal states and F ⊆ Q
 δ – is a transition function or mapping function Qx ∑ Q using this the next state

can be determined depending on the current input.

44 Lexical Analyzer

2.10.1 Finite Automaton Model
The fi nite automaton can be represented as in Figure 2.7.

 i. Input tape is a linear tape having some cells that can hold an input symbol from .
ii. Finite control is the fi nite control that indicates the current state and decides the next state

on receiving particular input from input tape. The tape reader reads the cells one by one
from left to right and at any instance only one input symbol is read.

The reading head examines the read symbol and the head moves to the right side with
or without changing the state. When the entire string is read and if fi nite control is in the
fi nal state then the string is accepted or else rejected. Finite automaton can be represented by
a transition diagram in which the vertices represent the states and edges represent the tran-
sitions. We can model the real-world problems as fi nite automaton which helps in under-
standing the behavior and analyzing the behavior.

Example 3:
Lexical analyzer behavior can be shown as FA. Consider the lexical analyzer that matches
words like “the”, “this”, “that”, and “to”. This is shown in Figure 2.8.

These systems are called Finite Automaton as the number of possible states and the
number of letters in the alphabet are both fi nite. It is automaton because the change of state
is totally governed by the input.

Figure 2.8 DFA that recognizes strings to, the, this, and that

Start
q0

t 0
to

h e

i

a

s

t

this

that

the

Figure 2.7 Finite Automaton

Input Tape

a b a b a B

Reading Head

Finite Control
q

 Finite State Machine 45

2.10.2 Properties of the Transition Function “δ”

1. δ (q, ε) = q. The states of FA are changed only by an input symbol.

2. For all strings w and i/p symbol a, δ (q, aw) = δ (δ (q, a), w)
 An FA can be represented by a
 a. transition diagram

 b. transition table

2.10.3 Transition Diagram
A transition graph contains
a. Set of states as circles

Start state qo with arrow

Final state by double circle

b. A fi nite set of transitions (edges | labels) that show how to go from some state to other.

2.10.4 Transition Table
Following is a tabular representation where rows correspond to states and columns corre-
spond to input. The start state is given by → and the fi nal state by *

Example: M={{ q0, q1, q2},{a, b}, δ, q0, {q2}}

 δ (q0, a) = q1 δ (q0, b) = q2

 δ (q1, a) = q2 δ (q1, b) = q0

 δ (q2, a) = q2 δ (q2, b) = q2

Δ/∑ a b

q0 q1 q2

q1 q2 q0

* q2 q2 q2

q

q

46 Lexical Analyzer

This able can be shown as a transition diagram as seen below.

a

b

q0 q1

q2

b a

a, b

2.10.5 Language Acceptance
A string w is accepted by Finite Automaton U given as
U = {Q, ∑, δ, q0, F} if δ (q0, w) = P for some P in F. This concludes that the string is accepted
when it enters into the fi nal state on the last input element.

Example:

1

1

1

1 0

0

0

0
q0

q1

q3

q2

Let us check if input string 1010 is accepted or not

a. δ (q0, 1010) = δ (q2, 010) = δ (q3, 10)= δ (q1, 0) = q0

q0
1

 q2
0 q3

1 q1
0 q0

 Finite State Machine 47

Here q0 is the fi nal state. Hence, the string is accepted.
b. Check 11111

q0
1

 q2
1

 q0
1

 q2
1

 q0
1

 q2

q2 F. Hence, the string is rejected.

Example 4:
Give the language defi ned by the following FA.

 1 1

0

0

q0 q1

If we list different strings accepted by this automaton, we get

 {1, 01, 0001, 10101, 011111………………}

If we observe, all strings that are accepted always end with 1.

 L(M) = {w /w ends with 1 on ∑ = {0, 1} }.

Language accepted by machine M is L(M), which is the set of strings that are ending with 1.

Example 5:
Defi ne language accepted by the following machine.

q0

aa

a a

ab

b b

b b

q1 q2

q4q3

L(m) = {w/w contains all strings that start and end with the same symbol}

2.10.6 Finite Automation Is of Two Types

a. Deterministic fi nite automaton

b. Nondeterministic fi nite automaton

48 Lexical Analyzer

In DFA there will be unique transition in any state on an input symbol, whereas in NFA there
can be more than one transition on an input symbol. Hence, DFA is faster than NFA. The
above fi gure is an example of DFA. The following fi gure is an example of NFA.

1, 00

0

q0 q1

1, 0

In the above fi gure, in state q0 on 0 it is either in state q0 or in state q1. Hence NFA.

2.10.7 Deterministic Finite Dutomaton (DFA)

Deterministic fi nite automation can be defi ned as quintuple

 M = (Q, ∑, δ, q0, F)
Where Q = Non empty fi nite set of states
 ∑ = input alphabet
 q0 = initial start state
 F = set of fi nal states
 δ = transition function that takes two arguments a state and input symbol and

returns output as state i.e., δ: Q Σ → Q

Example: δ(q1, a) = q1 DFA can be used as finite acceptor because its sole job is to accept cer-
tain input strings and reject other strings.

It is also called language recognizer because it merely recognizes whether the input
strings are in the language or not.

Example 5:
Design a DFA that accepts only input 101 over the set {0, 1}.

q0
q1

q2 q3

qtrap

1 0 1

0 1
0 0,1

Here qtrap is called trap state/dummy state where unnecessary transitions are thrown away.

Example 6:
Design a DFA that accepts even number of 0’s and even number of 1’s.

Solution: This FA will have four different possibilities while reading 0’s & 1’s as input. The
possibilities could be

 Finite State Machine 49

Even number of 0’s and even number of 1’s–q0
Odd number of 0’s and even number of 1’s–q1
Even number of 0’s and odd number of 1’s–q2
Odd number of 0’s and odd number of 1’s–q3

where states are q0, q1, q2 and q3. Since the state q0 indicates the condition of even number of
0’s and even number of 1’s this state is made as fi nal state. The DFA is given by

1

1

1

1 0

0

0

0

q0

q1

q3

q2

2.10.8 Nondeterministic Finite Automaton (NFA)
For a given input symbol, there can be more than one transition from a state. Such automaton
is called Nondeterministic Finite Automaton. NFA is mathematically described as quintuple.
Nondeterministic fi nite automaton can be defi ned as quintuple

 M = (Q, ∑, δ, q0, F)

Where Q = Non empty fi nite set of states

 ∑ = input alphabet

 q0 = initial start state

 F = set of fi nal states

 δ = transition function that takes two arguments a state and input symbol and
returns output as state i.e., δ: Q ∑ 2Q

Acceptance of NFA
Acceptance of a string is defi ned as reaching to the fi nal states on processing the input
string.

50 Lexical Analyzer

0, 1

q0

q1 q2

0

0

Check 0100 is accepted or not

q0 q0 q0 q0

q0

q0

q1

q1

q1

0

0

0

0

q2
01

Since q2 is in the fi nal state, there is at least one path from the initial state to one of the
fi nal state. Hence the given string is accepted.
Note: It is easy to construct NFA than DFA, but the processing time of the string is more
than DFA.

 � Every language that can be described by NFA can be described by some DFA.
 � DFA in practice has more states than NFA.
 � Equivalent DFA can have at most 2n states, whereas NFA has only ‘n’ states.

Example 7:
Design NFA accepting all string ending with 01 over ∑ = {0, 1}.
We can have any string on 0 or 1 but should end with 0 followed by 1.

0, 1

q0

q1 q2

0

1

Corresponding DFA is

q0 q1 q2

1

0

1

1

0

00

So drawing NFA is simple than DFA.

2.10.9 Equivalence of DFAs and NFAs
Let L be a set accepted by a NFA. Then there exists a DFA that accepts L.

Proof: Let M = (Q, ∑, δ, q0, F) be an NFA accepting L.

 Finite State Machine 51

Defi ne DFA M1 = (Q1, ∑ 1, δ1, q0
1, F1) as follows.

The states of M1 are all the subsets of the set of states of M. i.e., Q1 = 2Q

Example: If Q = {A, B} then Q1 = {[ε], [A], [B], [AB]}
F1 is the set of all states in Q1 containing a fi nal state of M.

Example: If F= {B} then F1 = {[B], [AB]}
An element of Q1 will be denoted by [q1, q2,……………qi] where q1, q2,……………qi are in Q.

Note: [q1, q2,………qi]
 is a single state of DFA corresponding to set of states of NFA. q0

1 = [q0]
 we defi ne δ1 ([q1, q2,……………qi]a) = [P1, P2,………………..Pi]
 iff δ ({q1, q2,……………qi}a) = { P1, P2,…………..…..Pi}

that is, δ1 applied to an element [q1, q2,……………qi] of Q1 is computed by applying δ to each
state of Q represented by [q1, q2,……………qi]. It is easy to show by induction on length of
input string x that
 δ1 (q0

1, x) = [q1, q2,……………qi]
 iff δ (q0, x) = {q1, q2,……………qi}
Basis: The result is trivial for |x| = 0 q0

1 = [q0]
Induction: Suppose that the hypothesis is true for inputs of length m or less. Let “xa” be a
string of length m+1 with a in ∑. Then

δ1(q0, xa) = δ1(δ1(q0, x), a)

By inductive hypothesis
 δ1(q0, x) = [P1, P2,………………..Pj]
 iff δ (q0, x) = {P1, P2,………………..Pj}

But by def of δ1

 δ1([P1, P2,………………..Pj]a) = [r1, r2,………….rk}

Thus
 δ1 (q0

1, xa) = [r1, r2,………….rk]

 iff δ (q0, xa) = {r1, r2,………….rk}

This establishes the inductive hypothesis.
To prove that L(M) = L(M1)
The string x is accepted by NFA or DFA only if it is in one of the fi nal state.
Let for a string x in NFA δ (q0, x) = P where P € F. Then δ1(q0, x) = [P] where [P] € F1. Hence,
the string x is accepted iff it is accepted by the NFA.

2.10.10 Converting NFA (MN) to DFA (MD)—Subset Construction
Let MN = (QN, ∑N, δN, qON, FN) be the given NFA to construct the equivalent DFA MD,
MD = { QD, ZD, δD, qD, FD } where

52 Lexical Analyzer

 i. QD = 2Q
N. If NFA has n states, DFA at most can have 2n states.

 ii. ∑D = ∑N

 iii. [q0] ={qo}
 iv. FD = Set of all states of QD that contains at least one fi nal state of FN.
 v. δD ((q1, q2, q3), a) = δn(q1, a) δn (q2, a) δn(q3, a) = {P1, P2, P3} say

Add state [P1, P2, P3] to QD if it is not there.

Example 8:
Convert the following NFA to DFA

0, 1

q0

q1 q2

0
1

Solution:
 Q = 23 = 8 states = all subsets of q0, q1, q2

 = {Ø, [q0], [q1], [q2], [q0, q1], [q0, q2], [q1, q2], [q0, q1, q2]}
 ∑ = 0, 1
 q0 = [q0]
 F = {[q2], [q0, q2], [q1, q2], [q0, q1, q2]}

 δ = is given by δD([q1 q2], a) = δn (q1, a) U δn (q2, a)
when δn is transition function of NFA

0 1

Ø Ø Ø

→[q0] [q0, q1] [q0]

[q1] Ø [q2]

[q2] Ø Ø

*[q0, q1] [q0, q1] [q0, q2]

*[q0, q2] [q0, q1] [q0]

[q1, q2] Ø [q2]

[q0, q1, q2] [q0, q1] [q0, q2]

The states [Ø], [q1], [q2], [q1, q2] and [q0, q1, q2] are not reachable from start stated and hence
cannot defi ne any strings. So they can be ignored. Hence, the DFA can be simplifi ed as
follows:

 Finite State Machine 53

1

1

1

0

0

0

q0

q0

q0

q1

q2

To get this Simplifi ed DFA construct the states of DFA as follows:
 i. Start with the initial state. Do not add all subsets of states as there may be unnecessary

states.
 ii. After fi nding the transition on this initial state, include only the resultant states into the

list until no new state is added to the list. For example, if δ(q0, a) = {q0, q1}, then add this
as new state in DFA. Then fi nd transition from this state on input symbol.

 iii. Declare the states as fi nal if it has at least one fi nal state of NFA.
Example 9:
Convert the following NFA to DFA.

δ 0 1

→q0 {q1 q2} { q0 }

q1 {q0 q1} Ø

*q2 q1 { q0 q1 }

DFA is

δ 0 1
→[q0] [q1 q2] [q0]

*[q1 q2] [q0 q1] [q0 q1]

[q0 q1] [q0 q1 q2] [q0]

*[q0 q1 q2] [q0 q1 q2] [q0 q1]

The transition diagram of DFA is as shown below.

1

1

1

1

0

0

0
0,

q0

q0

q1

q1

q2

q2q0q1

54 Lexical Analyzer

2.10.11 NFA with Epsilon (ε)-Transitions
We can extend an NFA by introducing a “ε-moves” that allows us to make a transition on
the empty string. There would be an edge labeled ε between two states, which allows the
transition from one state to another even without receiving an input symbol. This is another
mechanism that allows NFA to be in multiple states at once. Constructing such NFA is easier,
but is not that powerful. The NFA with ε-moves is given by M = (Q, ∑, δ, q0, F) where δ is
defi ned as Q × ∑ {ε} 2Q.

Example 10:

Design NFA for language L = {0K | K is multiple of 2 or 3 }
 NFA for that set of strings that has a number of 0’s, which are multiples of 2.

0

0

q1q0

NFA for the set of strings that has a number of 0’s, which are multiples of 3.

0

00

q4

q5

q3

Combining these two NFAs,

0

00

q4

q5

q3

0

q1

S

q0

0
ε

ε

2.10.12 Epsilon Closure (ε-closure)
Epsilon closure or ε-closure of a state is simply the set of all states reachable on ε. This can be
expressed as either ε(q) or ε-closure (q). In the above example,

 Finite State Machine 55

 ε-closure (q0) = {q0, q1, q2}
 ε-closure (q1) = {q1, q2}
 ε-closure (q2) = {q2}

Let us defi ne the extended transition function for an NFA with ε-transitions. For a regular
NFA we used the induction step as follows.

Let
 ̂(q, w) = {p1, p2, ... pk}
 ̂ (pi, a) = Si for i=1, 2,...k

Then ̂(q, wa) = S1 S2 ... Sk

For an NFA with ε, we change for ̂(q, wa) as
 ̂(q, wa) = ε-closure(S1 S2 ... Sk)
This includes the original set S1, S2... Sk as well as any states we can reach via ε-transitions.

2.10.13 Eliminating ε-Transitions
ε-Transitions are used for convenience in some cases, but do not increase the power of the
NFA. To eliminate them we can convert an NFA—with ε into an equivalent NFA—without ε
by eliminating the ε edges and replacing them with the edged labeled with the symbol pre-
sent in Σ. We can also convert NFA—with ε into an equivalent DFA, which is quite similar
to the steps we took for converting a normal NFA to a DFA, except we must now follow all
ε-transitions and add those to our set of states.

2.10.14 Converting NFA with ε-Transition to NFA
Without ε-Transition

For each state, compute ε-closure(q) on each input symbol a Σ. If the ε-closure of a state
contains a fi nal state then make the state as fi nal.

Let the following be NFA with ε-transitions.

0 1 2

q0

q1 q2

ε
ε

The transition table is

a = 0 a = 1 a = 2 a = ε

q0 q0 Ø Ø q1

q1 Ø q1 Ø q2

*q2 Ø Ø q2 Ø

56 Lexical Analyzer

NFA without ε-transitions is

a = 0 a = 1 a = 2

→*q0 {q0, q1, q2 } {q1, q2 } {q2 }

*q1 Ø {q1, q2 } {q2 }

*q2 Ø Ø {q2 }

Transition diagram of NFA without ε-transitions

q2
q1q0

0 1

0,1, 2

0,1

2

1, 2

2.10.15 Converting NFA with ε-Transition to DFA

1. Compute ε∗ for the current state, resulting in a set of states S.

2. (S, a) is computed for all a ∈ Σ by

 a. Let S = {p1, p2, ... pk}
 b. Compute R = δ(S, a) as

 R = (,)ip a
p s
 δ
∈

 = {r1, r2, r3... rm}

This set is achieved by following input a, not by following any ε-transitions.
 c. Add the ε-transitions by computing ε-closure(R).
3. Make a state an accepting state if it includes any fi nal states in the NFA.

Note: The epsilon transition refers to moving from one state to another without reading an
input symbol. These transitions can be inserted between any states.

 Consider the NFA-epsilon move machine M = {Q, Σ, δ, q0, F}
 Q = { q0, q1, q2}
 Σ = {a, b, c} and ε moves

a = 0 a = 1 a = 2 a = ε

q0 q0 Ø Ø q1

q1 Ø q1 Ø q2

*q2 Ø Ø q2 Ø

 Finite State Machine 57

DFA construction

Step 1: Compute ε – closure of each state.

 ε̂ (q0) = {q0, q1, q2}

 ε̂ (q1) = {q1, q2}

 ε̂ (q2) = {q2}

Step 2: Explore the states that are valid states in DFA using the above step 2 and step 3.
 DFA transition table

a = 0 a = 1 a = 2

→ε*(q0)
=* [q0q1q2] [q0q1q2] [q1q2] [q2]

*[q1q2] [Ø] [q1q2] [q1q2]

*[q2] [Ø] [Ø] [q2]

[Ø] [Ø] [Ø] [Ø]

q0q1 q 2 q1q2

0 1
0

0, 1

[Ø]

2

0, 1, 2

21

2

q2

2.10.16 Comparison Method for Testing Equivalence of Two FAs
Let M and M1 be two FAs over ∑. We construct a comparison table consisting of n + 1 col-
umns where n is the number of i/p symbols.

1. The fi rst column consisting of pair of nodes of form (q, q1) where q € M and q1€ M1.
2. If (q, q1) appears in the same row of the fi rst columns, then the corresponding entry in a

column (a € ∑) is (qa, qa1), where (qa, qa1) are reachable from q and q1 on a.

58 Lexical Analyzer

3. The table is constructed by starting with a pair of initial vertices qin, qn
1 of M and M1.

We complete construction by considering the pairs in second and subsequent columns,
which are not in the fi rst column.

 i. If we reach a pair (q, q1) such that q is fi nal states of M1 and q1 is nonfi nal state of M1 = >
terminate construction and conclude that M and M1 are not equivalent.

 ii. If construction is terminated, then no new element appears in second and subsequent
columns which are not on the fi rst column. Hence, M and M1 are equivalent.

q0

q3
q5

q4
q7

q6

q1

d

d

d
d

d

c

c

c c
c

By looking at the number of states we cannot conclude

c d

→[q0, q4] [q3, Ø] [q1, q5
]

Since we do not have a pair (qM1 qM2) for input c, M1 and M2 are not equivalent.

2.10.17 Reduction of the Number of States in FA

 � Any DFA defines a unique language but the converse is not true, that is, for any language
there is unique DFA is not always true.

 � For the same language there can exist many DFAs. So there can be considerable differ-
ence in the number of states. By using the comparison method we can test this.

Indistinguishable states:
Two states p and q of a DFA are said to be indistinguishable if

δ*(p, w) F implies δ*(q, w) F

and δ*(p, w) F implies δ*(q, w) F
Or for some strong w ∑* if δ*(p, w) F and δ*(q, w) F or vice versa, then states p and q are
said to be distinguishable by a string w.

Equivalent classes: The concept of equivalent class is used in minimizing the number of
states. States that are equivalent can be combined as one class called equivalent class. Let us
see the defi nition of equivalent states.

Defi nition 1
Two states q1 and q2 are equivalent (q1 ≡ q2) if both δ (q1, a) and (q2, a) are fi nal states or both
of them are non fi nal states for all a ∑. These states are said to be 0-equivalent.

 Finite State Machine 59

Defi nition 2
Two states q1 and q2 are K-equivalent (K ≥ O) if both δ(q1, x) and δ(q2, x) are fi nal states or
both non fi nal states for all strong × of length K or less.

Therefore, any two fi nal states are K-equivalent if they belong to same set in K-1 step
otherwise they are not K-equivalent.

Properties:
 P1: If the relation (q1 & q2) is reflexive, symmetric and transitive, then it is said to be

equivalent relation (i.e., K – Equivalence relation).
 P2: Every equivalence relation partition set. is K- Equivalence relation partition set Q.
 P3: If (q1 and q2) are K-equivalent for all, K ≥ O, then they are equivalent.
 P4: If q1 and q2 are (K + 1) – Equivalent, then they are K-Equivalent.

2.10.18 Minimization of DFA
For any given Deterministic Automation with more number of states, we can construct its
equivalent DFA with minimum number of states.

Construction of minimum automation

1. Initially construct 0 – equivalence class as o = { Q1
O, Q2

O} Where Q1
O is set of fi nal states

and Q2
O = Q – Q1

O is set of non fi nal states.
2. Construct K+1 from K further partitioning as follows:
 a. Let Q1

K be any subset in K. if q1 and q2 are in Q1
K they are (K + 1) equivalent provided

δ(q1, a) and δ(q2, a) are K-equivalent.
 b. Find out whether δ(q1, a) and δ(q2, a) are in the same equivalence class in K for every

a ∑. If so, q1 and q2 are (k + 1) equivalence. This way Qi
k is further divided into (K + 1)

equivalence classes. Repeat this for every Qi
K in K to get all the elements of K+1.

3. Construct n for n = 1, 2, 3,……………until n = n+1.
4. For required minimum state automation, states are equivalent classes obtained fi nally.

First approach

Example 11:
Find the minimum fi nite state automaton for the following DFA.

A

E F G H

B
0

1

1 1

1

1

1

1

10

0

0

0 0

0

0

C D

0 1
→ a b f

b g c
c a c
d c g
e h f
f c g
g g e

h g c

60 Lexical Analyzer

Any two fi nal states are 0 – equivalent and any two non fi nal states are also 0 – equivalent.

0 (1, 2) = {{c},{a, b, d, e, f, g, h}}

a b d e f g h

0 2 2 1 2 1 2 2

1 2 1 2 2 2 2 1

From the above table, we fi nd a, e, and g are 1– equivalent and b and h are 1– equivalent and
d, f are 1 – equivalent. Hence 1 is as follows:

1 (1, 3, 4, 5) = {{a, e, g}{b, h} {d, f} {c}}

Using the new classes we fi nd whether they are 2– equivalent.

a b d e f g h

0 4 3 1 4 1 3 3

1 5 1 3 5 3 3 1

2 (1, 6, 7, 8, 9) = {{a, e},{b, h}, {d, f}, {g},{c}}

a b d e f g h

0 7 9 1 7 1 9 9

1 8 1 9 8 9 6 1

3 (1, 6, 7, 8, 9) = {{a, e}, {b, h}, {d, f}, {g}, {c}}

a b d e f g h

0 7 9 1 7 1 9 9

1 8 1 9 8 9 6 1

From the above two relations, 2 and 3 are the same. Hence, the fi nal set of states are the
sets 1, 6, 7, 8, 9 where {a, e}, {b, h}, {d, f}, {g},{c} are all 3 – equivalent. The minimized DFA is
as follows:

A, E

D, F G

B, H

0

0

0

0

0

1

1

1

1
1

C

Second approach

0 1
→ {A, E} {B, H} {D, F}

{B, H} {G} {C}
*{C} {A, E} {C}

{D, F} {C} {G}
{G} {G} {A, E}

 Finite State Machine 61

2.10.19 Minimization of DFA Using the Myhill Nerode Theorem
The Myhill Nerode theorem that is used to prove the given language is not regular and also
to eliminate useless states in the given DFA. The theorem is stated as

 � The language L accepted by a DFA is regular if and only if the number of equivalence
classes of RL is finite.

 � The number of states in the smallest automaton accepting L is equal to the number of
equivalence classes in RL. Therefore, RL is of finite index.

Let ≡ equivalence on the states in M such that
 P ≡ q if and only if for each input string x
 δ(p, x) = δ(q, x) = qa where qa is accepting state.
 ⇒ p is equivalent to q.
 If δ(p, x) = qa and δ(q, x) = qn for some qa F and qn F.
 ⇒ p is distinguishable from q.

Algorithm for fi nding distinguishable states:

 � For each pair [p, q] where p F and q {Q – F}, mark (p, q) = X

 � For each pair of distinct states [p, q] in F × F or (Q – F) X (Q – F) do
 • If for some input symbol a δ([p, q], a) = [r, s], if [r, s] = X then
 Mark [p, q]
 Recursively mark all unmarked pairs which lead to [p, q] on input for all a Σ.

 � Else
 for all input symbols ‘a’ do
 put [p, q] on the list for δ([p, q], a) unless δ([p, q], a)=[r, r].

 � For each pair [p, q], which is unmarked are the states which are equivalent.

Example 12:
Find minimum-state automaton equivalent to the transition diagram given.

ba c fe g h

0

0

0

0

1

1

1

1
0

0

0 0

1

1 1

1

d

Solution: The distinguishable states are marked with symbol x. The relation of all states are
represented as a matrix of size n × n. since if p is distinguishable to q, it implies that q is dis-
tinguishable to p. Therefore, it is suffi cient to have a lower matrix to represent the relation of
one state with all the other states.

Step 1: First mark for all states (p, q) where p is the fi nal state and q is the non-fi nal state.
 (d, a) = x (d, b) = x (d, c) = x (d, e) = x (d, f) = x
 (d, g) = x (d, h) = x

62 Lexical Analyzer

Step 2: Find the states that are distinguishable with a.
 δ([a,b],0) = [b,a] δ([a,b],1) = [a,c]
 δ([a,c],0) = [b,d] δ([a,c],1) = [a,b] mark[a,c] = x as [b,d] = x
 mark[a,b] = x as [a,c] = x

 δ([a,e],0) = [b,d] δ([a,e],1) = [a,f] mark[a,e] = x as [b,d] = x
 δ([a,f],0) = [b,g] δ([a,f],1) = [a,e] mark[a,f] = x as [a,e] = x
 δ([a,g],0) = [b,f] δ([a,g],1) = [a,g]
 δ([a,h],0) = [b,g] δ([a,h],1) = [a,d] mark[a,h] = x as [a,d] = x

 Find the states that are distinguishable with b
 δ([b,c],0) = [a,d] δ([b,c],1) = [c,b] mark[b,c] = x as [a,d] = x
 δ([b,e],0) = [a,d] δ([b,e],1) = [c,f] mark[b,e] = x as [a,d] = x
 δ([b,f],0) = [a,g] δ([b,f],1) = [c,e]
 δ([b,g],0) = [a,f] δ([b,g],1) = [c,g] mark[b,g] = x as [a,f] = x
 δ([b,h],0) = [a,g] δ([b,h],1) = [c,d] mark[b,h] = x as [c,d] = x

 Find the states that are distinguishable with c
 δ([c,e],0) = [d,d] δ([c,e],1) = [b,f]
 δ([c,f],0) = [d,g] δ([c,f],1) = [b,e] mark[c,f] = x as [d,g] = x
 δ([c,g],0) = [d,f] δ([c,g],1) = [b,g] mark[c,g] = x as [d,f] = x
 δ([c,h],0) = [d,g] δ([c,h],1) = [b,d] mark[c,h] = x as [d,g] = x

 Find the states that are distinguishable with e
 δ([e,f],0) = [d,g] δ([e,f],1) = [f,e] mark[e,f] = x as [d,g] = x
 δ([e,g],0) = [d,f] δ([e,g],1) = [f,g] mark[e,g] = x as [d,f] = x
 δ([e,h],0) = [d,g] δ([e,h],1) = [f,d] mark[e,h] = x as [d,g] = x

 Find the states that are distinguishable with f
 δ([f,g],0) = [g,f] δ([f,g],1) = [e,g] mark[f,g] = x as [e,g] = x
 δ([f,h],0) = [g,g] δ([f,h],1) = [e,d] mark[f,h] = x as [e,d] = x

 Find the states that are distinguishable with g
 δ([g,h],0) = [f,g] δ([g,h],1) = [g,d] mark[g,h] = x as [g,d] = x

gfedcba

xxxxxxxh

xxxxxg

xxxxf

xxxe

xxxd

xxc

xb

gfedcba

xxxxxxxh

xxxxxg

xxxxf

xxxe

xxxd

xxc

xb

 Lex Tool: Lexical Analyzer Generator 63

From the lower triangle of the matrix it is clear that state [a,g], [b,f], and [c,e] belong to the
same class. These states can be merged and the minimized DFA is

a=0 a=1

→[a,g] [b,f] [a,g]

[b,f] [c,e] [a,g]

[c,e] [d] [b,f]

*[d] [d] [a,g]

[h] [a,g] [d]

 2.11 Lex Tool: Lexical Analyzer Generator
2.11.1 Introduction
Lex is a language for specifying lexical analyzers.

Lex generates programs that can be used in simple lexical analysis of text. The input fi les
contain regular expressions for recognizing tokens to be searched for and actions written in
C to be executed when expressions are found.

Lex converts the regular expression into table-driven DFA. This deterministic fi nite
automaton generated by Lex performs the recognition of the regular expressions. The order
in which the program fragments written by the user are executed is the same as that in
which the regular expressions are matched in the input stream.

The general form of a Lex source fi le is:

 Declarations
 %%
 Regular expressions {actions}
 %%
 Subroutines

Lex program contains three sections—declarations, regular expressions, and subroutines
where the declaration and the user subroutines are often omitted. The second section, that
is, the regular expressions part is compulsory. The declarations part contains ‘c’ declarations
and lex declarations. ‘c’ declarations are embedded between % {and %}. Lex declarations
contain token defi nitions. Token rules, that is, patterns are defi ned as regular expressions in
the second part. When the given input matches with this pattern, action to be performed is
described against that regular expression. Lex program is stored with an extension “.l” like
x.l. Lex turns the user’s expressions and actions into the host general-purpose language. The
generated program is named yylex() in the lex.yy.c fi le. This lex.yy.c is the lexer in C. To run
this c fi le, fi rst compile lex.yy.c with cc then use the exe fi le a.out to test the output.

Expressions in a stream will be recognized by the yylex and it performs the specifi ed
actions for each expression whenever they are matched. See the following fi gure.

Assume that lex specifi cation is prepared in fi le x.l. Run this input fi le x.l with lex, that
gives lex.yy.c as output. Run lex.yy.c under the C compiler that gives a.out as output.

Declarations
%%
Regular expressions {actions}
%%
Subroutines

64 Lexical Analyzer

Lex / Flex
Compiler

Source
Program

x.l
lex.yy.c

C
CompilerLex.yy.c a.out

a.outInput text
Sequence of

tokens

Regular expressions in Lex use the following operators:

 a the character “a”
 “a” an “a”, even if a is an operator
 \a an “a”, even if a is an operator
 [ab] the character a or b
 [a-c] the characters a, b, or c
 [^a] any character but a
 . any character but newline
 ^a an a at the beginning of a line
 <a>b a b when Lex is in start condition a
 a$ an a at the end of a line
 a? an optional a
 a* 0, 1, 2, ... instances of a
 a+ 1, 2, 3, ... instances of a
 a|b an a or a b
 (a) an a
 a/b an a but only if followed by b
 {aa} the translation of aa from the defi nitions section
 a{m,n} m through n occurrences of a

Solved Problems
1. Write a lexical analyzer for input

void main()
{
 int a = 10;
}

 Solved Problems 65

Lex Code:

%{
#include<stdio.h>
%}
letter [_a – z A – Z]
digit [0–9]
id {letter}({letter}|{digit})*
%%
{digit}* printf(“%d---- Number\n”,yytext);
“int”|”void”|”main”| printf(“%s ---- keyword\n”,yytext);
{id} printf(“%s ---- identifi er\n”,yytext);
“=” printf(“%c ---- assignment operator\

 n”,yytext);
[)}({] printf(“%c ---- Braces\n”,yytext);
“,”|”;” printf(“%c ---Punctuation symbol
\n”,yytext);
%%
int main(void)
{
 yylex();
}
 int yywrap()
{
 return 1;
}

 Output:
 void ----keyword
 main---- identifi er
 (---- Braces
)---- Braces
 {---- Braces
 int---- keyword
 a---- identifi er
 =---- assignment operator
 10---- integer
 }---- Braces
 ;---- Punctuation symbol

2. Here is a program in Lex to convert lowercase to uppercase. Ignore the blanks, and replace
multiple blanks by a single blank.

 %%
 [a-z] {putchar(yytext[0]+’A’);}

66 Lexical Analyzer

 []+ { }
 []+ {putchar(‘ ‘);}

The following program copies an input fi le while adding 10 to every positive number
divisible by 7.

%%
 int a;
[0-9]+ {
 a = atoi(yytext);
 if (a%7 == 0)
 printf(“%d”, a + 10);
 else
 printf(“%d”,a);
 }

In this program, the rule [0–9]+ recognizes strings of digits. The atoi() function converts
the digits to binary and stores the result in “a.” The modulus operator % is used to check
whether “a” is divisible by 7. If it is divisible then “a” is incremented by 10, else written as
it is to the output.

Summary
 � A lexical analyzer reads the input text and divides it in to a stream of tokens.
 � Token is a group of characters with logical meaning.
 � Pattern is a rule that describes tokens. Usually it is a regular expression.
 � Lexeme is actual text that matches the pattern and is recognized as token.
 � A lexical analyzer removes comment lines and white space characters.
 � Lex is an automated tool for generating scanners.
 � There are three different sections of LEX program: definitions, translation rules, and

subroutines.
 � The output of the Lex compiler is in the lex.yy.c file.
 � Finite automaton is used for recognizing tokens.
 � Tokens are described by regular expressions.

Fill in the Blanks
1. The lexical analyzer reads source text and divides them into__________________.
2. Pattern is a rule that describes a __________________.
3. In “if a != b” Lexeme is for token id is__________________
4. __________________ and __________________ are the routines compulsory in the

subroutine section.
5. The lex code that deletes all blanks or tabs at the ends of lines is __________________.
6. The lex code to count number of lines is __________________.

 Objective Question Bank 67

7. __________________ is the default ‘c’ fi le name Lex produces after compiling the Lex
program to c program.

8. __________________ is an example of non token in C language.

9. Can we combine lexical analysis phase with parsing? Yes or No.__________________

10. __________________ is the advantage of having lexical analysis as a separate phase.

11. __________________ is the regular expression that generates all and only the strings
over alphabet {0, 1} that ends in 1.

Objective Question Bank
1. The example of lexical error is

 (a) Xyz (b) _xyz (c) x2yz (d) $xyz

2. Which of the following is an example of non tokens in C program?

 (a) if (b) #ifdef (c) rate (d) none

3. Which of the following is a regular expression for patterns, integer numbers, and real
numbers with scientifi c notation? Let D is [0–9]*

 (a) D+(.D+)?(E(+|–)?D+) (b) (.D+)?(E(+|–)?D+)
 (c) D+(.D+)?(E(+|–)?D*) (d) D+(.D+)|(E(D+)

4. What are the tasks performed by a lexical analyzer?

 (a) Removes comment lines and white space characters

 (b) Correlates error messages. (c) dividing text into tokens (d) all

5. Find the number of tokens in the following code

 if (x > y) z=0;

 (a) 8 (b) 9 (c) 10 (d) 7

6. Find the number of tokens in following code
printf(“&i = % x i = %d”, & i, i);

 (a) 7 (b) 8 (c) 9 (d)10

7. Following is the function of a lexical analyzer:

 (a) Giving errors (b) removing blanks

 (c) correlating err messages (d) all

8. Following is a regular expression for the set of all strings over the alphabet {a} that has
an even number of a’s.

 (a) aa* (b) (aa)* (c) aa*a (d) a(aa)*

68 Lexical Analyzer

9. Find the number of tokens in the following C code

 int max(int x, int y) {

 /* fi nd max */

 return (x > y:? x : y); }

 (a) 25 (b) 26 . (c) 22 (d) 21

10. Which of the following best describes the output of LEX?

 (a) DFA (b) Tokens (c) parser (d) lexemes

11. Which of the following strings can defi nitely be said to be tokens without looking at the
next input characters while compiling a Pascal program?

 (I) begin (II) Programs (III) < >

 (a) I (b) II (c) III (d) all

12. In a compiler, the module that checks every char of source text is called

 (a) Code generation (b) Code optimization
 (c) Lexical analysis (d) Syntax analysis.

13. Match pairs
 (a) Lexical analysis (p) DAGS
 (b) Code optimization (q) Syntax Tree
 (c) Code generation (r) PDA
 (d) Abelian Group. (s) FA

 (a) a – s, b – q, c – p, d – r (b) a – s, b – p, c – q, d – r
 (c) a – s, b – p, c – r, d – q (d) none

14. Tables created during lexical analysis are

 (a) terminal table (b) identifi er table
 (c) literal table (d) non uniform symbol table

15. Find the number of tokens in the following code:

 if (x >= y) z = 0;

 (a) 8 (b) 9 (c) 10 (d) 11

Exercises
1. Write regular defi nitions for specifying a fl oating point number in a programming lan-

guage like C.

2. Write regular defi nitions for specifying an integer array declaration in a language like
C.

int max(int x, int y) {

 /* fi nd max */

 return (x > y:? x : y); }

 Exercises 69

3. Convert the following regular expressions into NFA with ε.
 (a) 0 + (1 + 0)*00
 (b) zero0; one1; bitzero + one; bitsbit*
 (c) (011 + 101 + 110 + 111)*
 (d) (000 + 111)* + (101 + 010)+

4. Write a lex program to scan an input C source fi le and replace all “fl oat” with “double.”

5. Write a lex program that scans an input C source fi le and produces a table of all macros
(#defi nes) and their values.

6. Write a lex program that reads an input fi le containing numbers (either integers or fl oat-
ing-point numbers) separated by one or more white spaces and adds all the numbers.

7. Write a lex program that scans an input C source fi le and recognizes identifi ers and
keywords. The scanner should output a list of pairs of the form (token; lexeme), where
token is either “identifi er” or “keyword” and lexeme is the actual string matched.

8. Run the lexical analyzer for the following C program and comment on tokens/output.

 main()
 {
 int a[3], t1t2;
 t1=2;
 a[0]=1; a[1]=2; a[t1]=3;
 t2 = -(a[2]+t1*6)/(a[2]-t1);
 if t2>5

print(t2);
 else

{
int t3; t3=99; t2=-25;
print(-t1 +t2*t3); /*this is a comment on 2 lines */

 } endif
 }

9. Write a program for the lexical analyzer to divide the following C program to tokens.

main()
{
int x, y, z;
x=10;
y=20;
z=30;

}

10. Run the lexical analyzer for the following C program and comment on tokens/output.

main()
{
int i, j;

main()
{
int x, y, z;
x=10;
y=20;
z=30;

}

 main()
{
int a[3], t1t2;

 t1=2;
 a[0]=1; a[1]=2; a[t1]=3;
 t2 = -(a[2]+t1*6)/(a[2]-t1);
 if t2>5

print(t2);
 else

{
int t3; t3=99; t2=-25;
print(-t1 +t2*t3); /*this is a comment on 2 lines */

 } endif
}

main()
{
int i, j;

70 Lexical Analyzer

CODING:
Design a lexical analyzer generator that can handle the following sample input. The lexical
analyzer should ignore redundant spaces, tabs, newlines, and comments.

 Input:
 main()
 {

 int x, y;
 if (x > y)
 printf(“x is greater”);
 else
 y=10; /* this is just a comment */
 }

Logic of the program:

 � Read the input text from the file input_text.dat.
 � Read the text, line by line and divide it into different words.
 � Match words with tokens like “opr” for operator, “num” for numeric constant, “id” for

identifier, etc.

1. d 2. b 3. a 4. d 5. c 6. d 7. d
8. b 9. c 10. a 11. c 12. c 13. b 14. d 15. c

Key for Objective Question Bank

Key for Fill in the Blanks
 1. stream of tokens
 2. Tokens
 3. a or b
 4. main(), yywrap()
 5. [\t]+$;
 6. [\n] {lno++;}

 7. lex.yy.c
 8. #include, #defi ne, /*
 9. yes
 10. Design simplifi ed.
 11. (0+1)*1+

while(i<100)
{
i=i+10;
printf(“%d\n”,&i);
}

}

while(i<100)
{
i=i+10;
printf(“%d\n”,&i);
}

}

Input:
main()

 {
 int x, y;
 if (x > y)

printf(“x is greater”);
 else

y=10; /* this is just a comment */
 }

 Key for Objective Question Bank 71

 � To distinguish between keyword and id, compare the word with the keyword list first, if
it does not match then treat it as an id.

 � Print token along with lexeme and line number.

Lexical analyzer developed in C language

 /* Lexical Analyzer for any C program as input */
 #include<stdio.h>
 #include<string.h>
 #include<ctype.h>

 int main()
 {
 int l, i, j, k, m, sno=1;
 char *keys[5]={“main”,”int”,”printf”,”fl oat”,”if”,”else”};
 char line[100]={0}, str[20];
 FILE *fptr;
 clrscr();
 fptr=fopen(“input_txt.dat”,”r”); /* input fi le input_txt*/
 printf(“S.no Lexeme Token Line no.\n”); /* output format */
 printf(“__________________________________”);
 for(l=1;!feof(fptr);l++)
 {
 fgets(line, 100, fptr);
 for(i=0; line [i]!=’\0’;)
 {
 if(line [i]==’ ‘) /* skip blank spaces */
 i++;
 else if(line [i]==’\n’)
 line [i]=’\0’;
 else if(isalpha(line [i]))
 {
 j=0;
 while(isalnum(line [i]))
 {
 str[j]= line [i];
 j++;
 i++;
 } /* check for arrays */
 if(line [i]==’[‘)
 {
 str[j]=’\0’;
 printf(“%d. %s array %d\n”, sno, str, l);sno++;
 i++; j=0;
 while(line [i]!=’]’)

/* Lexical Analyzer for any C program as input */
#include<stdio.h>
#include<string.h>
#include<ctype.h>

int main()
{
int l, i, j, k, m, sno=1;
char *keys[5]={“main”,”int”,”printf”,”fl oat”,”if”,”else”};
char line[100]={0}, str[20];
FILE *fptr;
clrscr();
fptr=fopen(“input_txt.dat”,”r”); /* input fi le input_txt*/
printf(“S.no Lexeme Token Line no.\n”); /* output format */
printf(“__________________________________”);
for(l=1;!feof(fptr);l++)
{
 fgets(line, 100, fptr);
 for(i=0; line [i]!=’\0’;)
 {
 if(line [i]==’ ‘) /* skip blank spaces */
 i++;
 else if(line [i]==’\n’)
 line [i]=’\0’;
 else if(isalpha(line [i]))
 {
 j=0;
 while(isalnum(line [i]))
 {
 str[j]= line [i];
 j++;
 i++;
 } /* check for arrays */
 if(line [i]==’[‘)
 {
 str[j]=’\0’;
 printf(“%d. %s array %d\n”, sno, str, l);sno++;
 i++; j=0;
 while(line [i]!=’]’)

72 Lexical Analyzer

 {
 str[j]= line [i];
 j++;
 i++;
 }
 str[j]=’\0’;
 printf((“%d. %s index %d\n”, sno,str, l);sno++;
 i++;
 }
 else /* check for keyword or id */
 {
 str[j]=’\0’;
 for(k=0;k<5;k++)
 {
 if(!strcmp(keys[k],str))
 break;
 }
 if(k==5)
 printf((“%d. %s identifi er %d\n”,sno,str,l);sno++;
 else
 printf((“%d. %s keyword %d\n”,sno,str,l);sno++;
 }
 } /* check for Number constants */
 else if(isdigit(line [i]))
 {
 j=0;
 while(isdigit(line [i]))
 {
 str[j]= line [i];
 j++;
 i++;
 }
 str[j]=’\0’;
 printf((“%d. %s const %d\n”,sno,str,l);sno++;
 } /* check for comment lines */
 else if((line [i]==’/’)&&(line [i+1]==’*’))
 {
 printf((“%d. /* start of comment %d “,sno,l);sno++;
 i=i+2;
 while(line [i]!=’*’ && line [i+1]!=’/’&& line [i]!=’\n’)
 {
 i=i+1;
 if(line [i]==’\n’)
 {

 Key for Objective Question Bank 73

 fgets(line,100,fptr);
 l++;
 }
 }
 i=i+2;
 printf(“ %d\n”,l);
 } /* check for operators */
 else
 {
 j=0;
 str[j]= line [i];
 j++;
 switch(line [i])
 {
 case ‘+’:
 case ‘-’:
 case ‘*’:
 case ‘/’:
 case ‘=’:
 case ‘>’:
 case ‘<’:
 case ‘<=’:
 case ‘>=’:
 case ‘%’:{
 if(line[i]==’%’&&(line[i+1]==’d’||line[i+1]==’f’||

line[i+1]==’c’))
 {
 str[j]=line[++i];
 i++;j++;
 str[j]=’\0’;
 printf((“%d. %s special symbol %d \n “,sno,str,l);sno++;
 j=0;
 break;
 }
 else
 {
 str[j]=’\0’;
 printf((“%d. %s operator %d\n”,sno,str,l);sno++;
 j=0;
 i++; break;
 }
 }
 case ‘(‘:
 case ‘)’:

74 Lexical Analyzer

 case ‘{‘:
 case ‘}’:{
 str[j]=’\0’;
 printf((“%d. %s parenthesis %d\n”,sno,str,l);sno++;
 j=0;
 i++;
 break;
 }
 case ‘;’:{
 str[j]=’\0’;
 printf((“%d. %s psymbol %d\n”,sno,str,l);sno++;
 j=0;
 i++;
 break;
 }
 default: {
 str[j]=’\0’;
 j=0;
 i++;
 printf((“%d. %s special symbol %d\n”,sno,str,l);sno++;
 break;
 }
 }
 }
 }
 }
 getch();
 return 1;
 }

Output:

S.no Lexeme Token Line no

1. main keyword 1

2. (parenthesis 1

3.) parenthesis 1

4. { parenthesis 2

5. int keyword 3

6. x identifi er 3

7. , special symbol 3

8. y identifi er 3

 Key for Objective Question Bank 75

9. ; psymbol 3

10. if keyword 4

11. (parenthesis 4

12. x identifi er 4

13. > operator 4

14. y identifi er 4

15.) parenthesis 4

16. printf keyword 5

17. (parenthesis 5

18. “ psymbol 5

19. x is greater identifi er 5

20. ” psymbol 5

21.) parenthesis 5

22. ; psymbol 5

23. else keyword 6

24. y identifi er 7

25. = operator 7

26. 10 const 7

27. ; p symbol 7

28. /*this is just a comment*/ comment 7

29. } parenthesis 8

Lexical analyzer using the LEX tool

Program: Write the lexical analyzer using the ‘lex’ tool that can handle the following sample
input.

 Input:
 main()
 {

 int x,y;
 if (x > y)
 printf(“x is greater”);
 else
 y=10; /* this is just a comment */
 }

Input:
 main()
 {

 int x,y;
 if (x > y)

printf(“x is greater”);
 else

y=10; /* this is just a comment */
 }

76 Lexical Analyzer

Logic

 � Define regular expressions for all tokens-constants, keywords, ids, operators, etc.
 � When input matches with that pattern, define the action to be performed against each

regular expression.
 � Include main () that calls yylex () function that is created by the lex tool.
 � Include the yywrap () function that deals with EOF.

Lex Program

%{
#include<stdio.h>
#include<ctype.h>
int lno=1;
%}
letter [a-zA-Z]
digit [0-9]
id {letter}({letter}|{digit})*
num {digit}+
keywd “main”|”while”|”fl oat”|”printf”|”int”|”if”|”else”|”then”
arry ({id}”[“({num}|{id})”]”)
commt (“/*”({id}|”\n”)*”*/”)
sp [.,;”“”]
%% /* Pattern matching rules */
[\n] {lno++;}
{ws} { }
{sp} {printf(“special symbol=%c lineno=%d\n”,yytext, lno);}
“>”|”<”|”<=”|”>=” {printf(“relational opr=%s lineno=%d\n”,yytext,

 lno);}
{commt} {printf(“comment=%s lineno=%d\n”,yytext, lno);}
“=” {printf(“assignment opr=%s lineno=%d\n”,yytext,

 lno);}
“+”|”-”|”*”|”/” {printf(“Arithmetic opr=%s lineno=%d\

 n”,yytext, lno);}
“[“|”]”|”{“|”}”|”(“|”)” {printf(“parenthesis=%s lineno=%d\

 n”,yytext, lno);}
{keywd} {printf(“keyword=%s lineno=%d\n”,yytext, lno);}
{arry} {printf(“array=%s lineno=%d\n”,yytext, lno);}
{id} {printf(“identifi er=%s lineno=%d\n”,yytext, lno);}
{num} {printf(“number constant=%s lineno=%d\n”,yytext,

 lno);}
%% /* subroutines Section*/
main(int argc,char **argv)
{
 if(argc > 1)
 yyin=fopen(argv[1],”r”);

%{
#include<stdio.h>
#include<ctype.h>
int lno=1;
%}
letter [a-zA-Z]
digit [0-9]
id {letter}({letter}|{digit})*
num {digit}+
keywd “main”|”while”|”fl oat”|”printf”|”int”|”if”|”else”|”then”
arry ({id}”[“({num}|{id})”]”)
commt (“/*”({id}|”\n”)*”*/”)
sp [.,;”“”]
%% /* Pattern matching rules */
[\n] {lno++;}
{ws} { }
{sp} {printf(“special symbol=%c lineno=%d\n”,yytext, lno);}
“>”|”<”|”<=”|”>=” {printf(“relational opr=%s lineno=%d\n”,yytext,

 lno);}
{commt} {printf(“comment=%s lineno=%d\n”,yytext, lno);}
“=” {printf(“assignment opr=%s lineno=%d\n”,yytext,

 lno);}
“+”|”-”|”*”|”/” {printf(“Arithmetic opr=%s lineno=%d\

n”,yytext, lno);}
“[“|”]”|”{“|”}”|”(“|”)” {printf(“parenthesis=%s lineno=%d\

 n”,yytext, lno);}
{keywd} {printf(“keyword=%s lineno=%d\n”,yytext, lno);}
{arry} {printf(“array=%s lineno=%d\n”,yytext, lno);}
{id} {printf(“identifi er=%s lineno=%d\n”,yytext, lno);}
{num} {printf(“number constant=%s lineno=%d\n”,yytext,

 lno);}
%% /* subroutines Section*/
main(int argc,char **argv)
{
 if(argc > 1)
 yyin=fopen(argv[1],”r”);

 Key for Objective Question Bank 77

 else
 yyin= stdin;
 yylex();
}

yywrap()
{
 exit(0);
}

After executing the above program for the given input, the OUTPUT of lex is as follows:

Lexeme Token Line no

main keyword 1

(parenthesis 1

) parenthesis 1

{ parenthesis 2

int keyword 3

x identifi er 3

, special symbol 3

y identifi er 3

; special symbol 3

if keyword 4

(parenthesis 4

x identifi er 4

> relational opr 4

y identifi er 4

) parenthesis 4

printf keyword 5

(parenthesis 5

“ special symbol 5

x is greater comment 5

” special symbol 5

) parenthesis 5

; special symbol 5

else keyword 6

y identifi er 7

= Assignment opr 7

else
 yyin= stdin;
yylex();
}

yywrap()
{
exit(0);
}

78 Lexical Analyzer

10 number constant 7

; special symbol 7

/* this is just a comment */ comment 7

} parenthesis 8

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 79

C H A P T E R 3

CHAPTER OUTLINE

 3.1 Introduction

 3.2 Types of Grammars—Chomsky Hierarchy

 3.3 Grammar Representations

 3.4 Context Free Grammars

 3.5 Derivation of CFGs

 3.6 Language Defi ned by Grammars

 3.7 Left Recursion

 3.8 Left-Factoring

 3.9 Ambiguous Grammar

 3.10 Removing Ambiguity

 3.11 Inherent Ambiguity

 3.12 Non-context Free Language Constructs

 3.13 Simplifi cation of Grammars

 3.14 Applications of CFG

The syntax of high-level language is defi ned with context free grammar. Hence, these are used as a
powerful tool by parsers in verifying the syntax of any high-level language.

Syntax Defi nition — Grammars

The structure of a sentence in any language is defi ned with grammars. Hence, we will dis-
cuss what grammar is, how many types of grammar there are, and what are the different
representations of grammar. We mainly focus on Context Free Grammars (CFG). What is
CFG? How is a language defi ned with CFG? What are derivation tree, left-most derivation,
and right-most derivation? These are all explained in detail in this chapter. We shall also
discuss the problems with CFG like left recursion, left factoring, ambiguous grammars, and
how to simplify grammars.

3.1 Introduction
Grammar is a set of rules and examples dealing with the syntax and word structures of a
language, usually intended as an aid to the learning of that language.

80 Syntax Defi nition — Grammars

These productions or rules defi ne the strings belonging to the language. The motivation
for these grammars was from the description of natural language. Let us examine the rules
used to defi ne a sentence in the English language.

<sentence> → <noun> <verb>
<noun> → <com–noun> | <prop–noun>
<verb> → ate | sat | ran
<com–noun > → Rama | Bhama
<prop–noun > → She | He

Grammar is basically defi ned as a set of 4-tuple (V, T, P, S),
where V is set of nonterminals (variables),

T is set of terminals (primitive symbols),
 P is set of productions (rules), which govern the relationship between nonter-
 minals and terminals,

And S is start symbol with which strings in grammar are derived.

Using these set of rules many sentences can be derived by substituting for variables.

1. Rama ate.
2. Bhama sat.
3. She ran.
4. He sat.

Language defi ned by a grammar G is denoted by L(G). Here L(G) represents a set of
strings w derived from G. Start symbol S in one or more steps derives the strings or sen-
tences of grammar that is represented by S + w. The sentential form of grammar is a combi-
nation of terminals and nonterminals. It is derived from S using one or more derivations. It
is represented by S + α. Two grammars G1 and G2 are equivalent if L(G1) = L(G2).

Some of the notations used to represent the grammar are:

1. Terminals symbols: these are represented by
 � Lower case letters of alphabet like a, c, z, etc.
 � Operator symbols like +, –, etc.
 � Punctuation symbols like (, } , , etc.
 � Digits like 0…9, etc.
 � Bold face strings like int, main, if, else etc.

2. Nonterminal symbols: these are represented by
 � Upper case letters of alphabet like A, C, Z, etc.
 � Letter S is the start symbol.
 � Lower case strings like expr, stmt, etc.

3. Grammar symbols can be terminals or nonterminals. They can be represented by Greek
letters α, β.

4. Lower case letters u, v, w, x, y, z are generally used to represent a string of terminals.

 Types of Grammars—Chomsky Hierarchy 81

Language acceptance:
The language starts with the start symbol; at every step, replace the nonterminal by the right
hand side of the rule. Continue this until a string of terminals is derived. The string of termi-
nals gives the language accepted by grammar.

Consider the language represented by a+, represented by a set {a, aa, aaa, ….}. To gener-
ate strings of this language we defi ne grammar as S → a and S → aS. Now we get strings as
follows:
Strings starting with S:
 Sa {a}
 S aS aa {aa}
 S aS aaS aaa {aaa}

3.2 Types of Grammars—Chomsky Hierarchy
Linguist Noam Chomsky defi ned a hierarchy of languages, in terms of complexity. This
four-level hierarchy, called the Chomsky hierarchy, corresponds to four classes of machines.
Each higher level in the hierarchy incorporates the lower levels, that is, anything that can be
computed by a machine at the lowest level can also be computed by a machine at the next
highest level.

The Chomsky hierarchy classifi es grammars according to the form of their productions
into the following levels:

a. Type 0 Grammars—Unrestricted Grammars (URG): These grammars include all formal
grammars. In URG, all the productions are of the form →, where and may have any
number of terminals and nonterminals, that is, no restrictions on either side of productions.
Every grammar is included in it if it has at least one nonterminal on the left hand side.
Example:
 The language specifi ed by L(G) = {a2i | I > = 1} is an unrestricted grammar. This grammar
is also called phrase structured grammar. The grammar is represented by the following
productions:

 S → A C a B
 C a → a a C
C B → D B
C B → E
 a D → D a
 A D → A C
 a E → E a
A E → ε

The string “aa” can be derived from the above grammar as follows:
S ⇒ ACaB ⇒ AaaCB ⇒ AaaE ⇒ AaEa ⇒ AEaa ⇒ aa

 They generate exactly all languages that can be recognized by a turing machine. The lan-
guage that is recognized by a turing machine is defi ned as all the strings on which it halts.
These languages are also known as the recursively enumerable languages.

82 Syntax Defi nition — Grammars

b. Type 1 Grammars—Context Sensitive Grammars (CSG): These grammars defi ne the
context sensitive languages. In CSG, all the productions of the form α → β where |α| |
β|, α and β may have any number of terminals and nonterminals.
 These grammars can have rules of the form αAβ → αγβ with A as nonterminal and α,
β and γ are strings of terminals and nonterminals. We can replace A by γ, where A lies
between α and β. Hence, the name context sensitive grammar. The strings α and β may
be empty, but γ must be nonempty. It cannot include the rule S → ε. These languages are
exactly all languages that can be recognized by a Linear Bound Automata.
Example:

 The language specifi ed by L(G) = {anbn | n > = 1} is a context sensitive gram-
mar. The grammar is represented by the following productions.

 S → S B C | a C
 B → a
C B → B C
 Ba → aa
 C → b
The string “aaabbb” can be derived from the above grammar as follows:

 S SBC SBCBC aCBCBCaBCCBC aaCCBC aaCBCC aaBCC
aaaCCC aaabbb

c. Type 2 Grammars—Context Free Grammars (CFG): These grammars defi ne the context
free languages. These are defi ned by rules of the form α → β with |α| | β where
|α| = 1 and is a nonterminal and β is a string of terminals and nonterminals. We can replace
α by β regardless of where it appears. Hence, the name context free grammars. These lan-
guages are exactly those languages that can be recognized by a nondeterministic pushdown
automaton. Context free languages defi ne the syntax of all programming languages.
Example:
 The language specifi ed by L(G) = {anbn | n >= 1} is a context free grammar. The grammar
is represented by the following productions.

S → aSb | ε
The string “aabb” can be derived from the above grammar as follows:

S aSb aaSbb aaεbbaabb
d. Type 3 Grammars—Regular Grammars (RG): These grammars generate the regular lan-

guages. Such a grammar restricts its rules to a single nonterminal on the left hand side.
The right hand side consists of either a single terminal or a string of terminals with a sin-
gle nonterminal on the left or the right end. Here rules can be of the form A → a B | a or A
→ Ba | a. The rule S → ε is also allowed here. These languages are exactly those languages
that can be decided by a fi nite state automaton. This family of formal languages can be
obtained even by regular expressions (RE). Regular languages are used to defi ne search
patterns and the lexical structure of programming languages.
Example:

Right linear grammar: A → a A | a
Left linear grammar: A → A a | a
 An example of a regular grammar G with V = {S, A}, Σ = {a, b, c}, P consists of
the following rules:

 Types of Grammars—Chomsky Hierarchy 83

S → aS, S → bA, A → ε, A → cA
 and S is the start symbol. This grammar describes the same language as the regular
expression a*bc*.
 Every regular language is context free since it is a subset of context free language; every
context free language is context sensitive since it is a subset of context sensitive language
and every context sensitive language is recursively enumerable. These are all proper

Unrestricted languages

Context sensitive
languages

Context free
languages

Regular
languages

inclusions, meaning that there exist recursively enumerable languages that are not con-
text sensitive; context sensitive languages are not context free and context free languages
are not regular languages.

RG ⊆ Context Free ⊆ Context sensitive ⊆ Recursively enumerable
Table 3.1 summarizes each of Chomsky’s four types of grammars, the class of languages

it generates, the type of automaton that recognizes it, and the form of rules it must have.
Here α and β represent a string of grammar symbols, that is, the string can be terminals or
nonterminals.

Table 3.1 Chomsky’s Hierarchy of Grammars

Type of grammar Form Language it
defi nes

Corresponding
automaton

Type 0 or Unrestricted
Grammar

α → β
No restrictions

Recursively
Enumerable

Turing Machine

Type 1 or Context Sensi-
tive Grammar

α → β,
|α| | β|

Context Sensitive Linear Bounded
Automaton

Type 2 or Context Free
Grammar

α → β, |α| |
β|, |α| =1,

Context Free Pushdown
Automaton

Type 3 or Regular
Grammar

α → β, α ={V}
and β=V{T}* or
{T}*V or T*

Regular Finite Automaton

84 Syntax Defi nition — Grammars

Example 1:
Give a CSG but not CFG for (an | n 1)

 S → aS | X
aS → aa
 X → a

Give a CFG but not regular for (an | n 1)
 S → A S | a
 A → a

Give a regular grammar for (an | n 1)
 S → aS | a

Every regular grammar is context free, every CFG is context sensitive, and
every CSG is unrestricted.

3.3 Grammar Repr esentations
We need a way to represent grammars so that we can talk about them in general. For this, we
have some standard representations.
1. Backus-Naur Form (BNF): A metalanguage, BNF is widely used as a notation for the gram-

mars of computer programming languages, command sets and communication protocols,
as well as a notation for representing parts of natural language grammars.

BNF is the most general representation scheme.

 Example:
 <syntax> ::= <rule>

We use symbols like :=, |, <,>, (,) etc.
The main operators here are:
 1. Alteration “|”
 2. Concatenation .”
 3. Grouping “()”
 4. Production Sign “ → ” or “::=”
For example A:= | and B:= a | b is in BNF.
Some more examples are:

<simpl.e_expr> ::= <term> | <sign><term> | <simple_expr> <opr> <term>
<opr> ::= + | - | or
<unsign int> ::= <digit> | <unsign int><digit>

where:

 � ‘::=’ means “is defined as”
 � ‘|’ means “or”
 � Terms enclosed in angle brackets, such as <term>, are nonterminal symbols.
 � All other symbols (shown in boldface above [although it’s not obvious for some charac-

ters, such as ‘-’, in some browsers]) are terminal symbols.
 � The concatenation of strings is represented by the juxtaposition of their descriptions.

(In the example above, note that there is no space between <sign> and <term>.)

<simpl.e_expr> ::= <term> | <sign><term> | <simple_expr> <opr> <term>
<opr> ::= + | - | or
<unsign int> ::= <digit> | <unsign int><digit>

 Grammar Representations 85

 Note the recursive defi nition in the last example above. This is the standard way of
specifying sequences of elements in BNF, and for describing nested syntax, as in:

<stmt> ::= <uncond_stmt>
 | if <expr> then < uncond_stmt >
 | if <expr> then < uncond_stmt > else < stmt >

BNF was fi rst used in the Algol-60 Report.
2. Extended Backus-Naur Form (EBNF): This improves the readability and conciseness of

BNF through extensions:

 � Kleene cross—a sequence of one or more elements of the class marked.
<unsign int> ::= <digit>+

 � Kleene star—a sequence of zero or more elements of the class marked.
<id> : = <letter><alphanumeric>*

 � Braces can be used for grouping elements, allowing us to avoid having to define interme-
diate classes such as <alphanumeric>.

<id> : = <letter>{<letter>|<digit>}*
 Note: We generally use braces to mean zero or more repetitions of the enclosed elements
(i.e., a Kleene star is assumed).

 � Square brackets may be used to indicate optional elements (i.e., zero or one occurrence
of the enclosed elements).

<integer> : = [+ | –]<unsigned integer>
Do not use a Kleene cross or star with square brackets.
Stacking alternatives result in an even more pictorial representation of the syntax.

 <digit>

<identifi er> : = <letter> { <letter> }*

<integer> : = [+ –]<unsigned integer>
EBNF is a simple extension of BNF, which tries to extend BNF and makes it easier to

represent complex forms.
We add two new symbols to our original BNF symbol set viz.

1. {}—Repetition or Closure: Used when one pattern is repeated more than once.

2. []—Optional: Used to represent optional patterns whose inclusion is not necessary.
Example, to represent A → A |
The corresponding RE is A : *
We can represent this in EBNF format as A → { }
Another example is:
Consider the BNF form as follows:

stmt → if (expr) stmt | if (expr) stmt else stmt

The equivalent EBNF form is:

stmt → if (expr) stmt [else stmt]

Note: An advantage of EBNF is that it is very easy to write the corresponding parser for it.

<stmt> ::= <uncond_stmt>
 | if <expr> then < uncond_stmt >
 | if <expr> then < uncond_stmt > else < stmt >

86 Syntax Defi nition — Grammars

3. Syntax Diagrams: They are also called railroad diagrams. Syntax diagrams are a way
to represent a context free grammar. They represent a graphical alternative to Backus-
Naur Form BNF or EBNF. Figure 3.1 shows syntax diagrams of the conditional state-
ment “if.”

Syntax diagrams were fi rst used in the Pascal User Manual and Report by Jensen and
Wirth. The grammar can be represented as a set of syntax diagrams. Each diagram defi nes a
variable or nonterminal. There is a main diagram that defi nes the language in the following
way: to belong to the language, a word must describe a path in the main diagram.

Each diagram has an entry point and an end point. The diagram describes possible
paths between these two points by going through other nonterminals and terminals. Termi-
nals are represented by round boxes, while non terminals are represented by square boxes.

Example 2:
 We use grammar that defi nes arithmetic expressions as an example. Following

is the simplifi ed BNF grammar for arithmetic expressions:
 <Expr> ::= <Term> | <Term> “+” <Expr>
 <Term> ::= <Fact> | <Fact> “*” <Term>
 <Fact> ::= <num> | <id> | “(“ <Expr> “)”
 <id> ::= “x” | “y” | “z”
 <num> ::= <digit> | <digit> <num>
 <digit> ::= “0”|“1”|“2”|“3”|“4”|”5”|“6”|“7”|“8”|“9”

 This grammar can also be expressed in EBNF:
 Expr = Term, {“+”, Term};
 Term = Fact, {“*”, Fact};
 Fact = num | id | “(“, Expr, “)”;
 id = “x” | “y” | “z”;
 num = digit, {digit};
 digit = “0”|“1”|“2”|“3”|“4”|“5”|“6”|“7”|“8”|“9”;

 The set of rail road diagrams or syntax diagrams for this grammar are shown in
Figure 3.2.

Nonterminals are represented by rectangular boxes, whereas terminals are represented
by circles or ellipses.

If Stmt

Elseif

if cond

cond

then

then

stmts

stmtselseElseif

Else
if

;

stmts

Figure 3.1 Syntax Diagrams

<Expr> ::= <Term> | <Term> “+” <Expr>
 <Term> ::= <Fact> | <Fact> “*” <Term>
 <Fact> ::= <num> | <id> | “(“ <Expr> “)”
 <id> ::= “x” | “y” | “z”
 <num> ::= <digit> | <digit> <num>
 <digit> ::= “0”|“1”|“2”|“3”|“4”|”5”|“6”|“7”|“8”|“9”

Expr = Term, {“+”, Term};
 Term = Fact, {“*”, Fact};
 Fact = num | id | “(“, Expr, “)”;
 id = “x” | “y” | “z”;
 num = digit, {digit};
 digit = “0”|“1”|“2”|“3”|“4”|“5”|“6”|“7”|“8”|“9”;

 Context Free Grammars 87

3.4 Context Free Grammars
For a regular grammar, the productions are restricted in two ways: The left side must be a sin-
gle variable and the right side can be any string of terminals and nonterminals. To create gram-
mars that are more powerful, we must ease off some of the restrictions. By permitting anything
on the right side, but retaining restrictions on the left side, we get context free grammars.

A grammar G = (V, T, P, S) is said to be context free if all production in P have the form
A x where A € V and x € (V ∪ T)*.

Figure 3.2 Syntax Diagrams for Expressions

Expr Term

+

*

)

Fact id

Expr(

NUM

x

y

z

id

0

1

2

digit

3

9

digit num

Term Fact

*

88 Syntax Defi nition — Grammars

V, T, P, S are the four important components in the grammatical description of a language.

V— the set of variables, also called nonterminals. Each variable represents a set of strings,
simply a language.

T— the set of terminals, which are a set of symbols that forms the strings of the language,
also called terminal symbols.

P— the fi nite set of productions or rules that represent the recursive defi nition of language.
Each production consists of a variable, production symbol → , and a string of terminals
and nonterminals. The string is called body of production.

S—the start symbol. It is one of the variables that represent the language being defi ned.

The language generated (defi ned, derived, produced) by a CFG is the set of all strings
of terminals that can be produced from the start symbol S using the productions as substitu-
tions. A language generated by a CFG is called a context free language (CFL).
Example 3:

 terminal: a
 nonterminal: S

 productions: S → aS
 S → ε
 is a simple CFG that defi nes L(G) = a*.
 where V = {S} T = {a}

Example 4:
 The CFG for defi ning palindrome over {a or b}.
 The productions P are:
 S → ε | a | b
 S → aSa
 S → bSb
 And the grammar is G = ({S}, {a,b}, P, S)

Example 5:
 The CFG for set of strings with equal no of a’s and b’s.

 The productions P are:
 S → SaSbS | SbSaS | ε
 And the grammar is G = ({S}, {a,b}, P, S)

Example 6:
 The context free grammar for syntactically correct infi x algebraic expressions in

the variables x, y, and z:
 And the grammar is G = ({S,T}, {+,*,(,),–,x,y,z}, P, S)

 S → T + S | T – S | T
 T → T * T | T | T
 T → (S)
 T → x | y | z

 This grammar can generate the string (x + y) * x – z * y|(x + x).
Example 7:
 A context free grammar for the language consisting of all strings over {a, b}

which contain a different number of a’s than b’s is

 Derivation of CFGs 89

 S → U | V
 U → T a U | T a T
 V → T b V | T b T
 T → a T b T | b T a T | ε

 Here, ‘T’ can generate all strings with the same number of a’s as b’s, ‘U’ generates
all strings with more a’s than b’s and ‘V’ generates all strings with less a’s than b’s.

Example 8:
 a. Give the CFG for RE (011 +1)*(01)*
Solution:
 CFG for (011 + 1)* is A → CA | ε
 C → 011 | 1
 CFG for (01)* is B → DB | ε
 D → 01
 Hence, the fi nal CFG is S → AB
 A → CA | ε
 C → 011 | 1
 B → DB | ε
 D → 01
 b. Give the CFG for language L(G) = anb2n where n 1.
 Give the CFG for RE (011 + 1)*(01)*
Solution:
 The given language is a*(bb)*.
 Hence, it can be defi ned as
 S → aSbb | abb
 c. Give the CFG for language containing all the strings of different fi rst and last

symbols over = {0,1}
Solution:
 The strings should start and end with different symbols 0, 1. But in

between we can have any string on 0,1 i.e., (0 + 1)*. Hence, the lan-
guage is

 0(0 + 1)*1 | 1(0 + 1)*0. The grammar can be given by
 S → 0A1 | 1A0
 A → 0A | 1A|ε

3.5 Derivation of CFGs
It is a process of defi ning a string out of a grammar by application of the rules starting from
the starting symbol. We can derive terminal strings, beginning with the start symbol, by
repeatedly replacing a variable or nonterminal by the body of the production. The language
of CFG is the set of terminal symbols we can derive; so it’s called context free language.
Example 9:

Derive ‘a4’ from the grammar given below
 Terminal: a

90 Syntax Defi nition — Grammars

 Nonterminal: S
 Productions: S → aS
 S → ε

Solution:
The derivation for a4 is:

 S aS
 aaS
 aaaS
 aaaaS
 aaaaε aaaa

The language has strings as {ε, a, aa, aaa, …….}
Example 10:

Derive “a2” from grammar
Terminal: a
Nonterminal: S
Productions: S → SS
 S → a
 S → ε

Solution:
Derivation of a2 is as follows:

 S SS
SSS
SSa
SSSa
SaSa
eaSa
eaea = aa

The string can also be derived as
 S SS

Sa
aa

Example 11:
Find L(G) and derive “abbab.”

Terminals: a, b
Nonterminals: S
Productions:
 S aS
 S bS
 S a
 S b

Solution:
More compact notation:

 S → aS | bS | a | b
Derive abbab as follows:

 Language Defi ned by Grammars 91

 S aS
abS
abbS
abbaS
abbab

L(G) is (a + b)+

Example 12:
Find the language and derive ‘abbaaba’ from the following grammar:

Terminals: a, b
Nonterminals: S, X
Productions:
 S → XaaX
 X → aX | bX |ε

Solution:
CFL is (a + b) * aa(a + b)*
Derive ‘abbaaba’ as follows:

 S XaaX
aXaaX
abXaaX
abbXaaX
abbεaaX abbaaX
abbaabX
abbaabaX
abbaaba abbaaba

3.6 Language Defi ned by Grammars
The only way to recognize the language is to try out various strings from the given produc-
tion rules. Simply by observing the derived strings, one can fi nd out the language generated
from the given CFG.
Example 13:

Give the language defi ned by grammar G.
G = {{S}, {a},{S → SS},S}
Solution: L(G) =

Example 14:
Give the language defi ned by grammar G.
G= {{S,C},{a,b}, P, S} where P is given by
 S → aCa
 C → aCa | b

Solution:
 S aCa
 aaCaa

92 Syntax Defi nition — Grammars

 aaaCaaa
L(G) = anban for n 1

Example 15:
Give the language defi ned by grammar G.
G= {{S},{0,1},P,S} where P is given by
 S → 0S1 | ε

Solution:
S 0S1 00S11 0011
L(G) = 0n1n for n 0

3.6.1 Leftmost and Rightmost Derivation
The leftmost nonterminal in a working string is the fi rst nonterminal that we encounter
when we scan the string from left to right.

For example, in the string “bbabXbaY SbXbY,” the leftmost nonterminal is X.

If a word w is generated by a CFG by a certain derivation and at each step in
the derivation, a rule of production is applied to the leftmost nonterminal in the
working string, then this derivation is called a leftmost derivation (LMD).

Practically, whenever we replace the leftmost variable fi rst in a string, then the resulting
derivation is the leftmost derivation. Similarly, replacing rightmost variable fi rst at every
step gives rightmost derivation RMD.
Example 16:

Consider the CFG:({S,X},{a,b),P,S)
where productions are:

S → baXaS | ab
X → Xab | aa
Find LMD and RMD for string w = baaaababaab.

Solution:
The following is an LMD:
S baXaS
 baXabaS
 baXababaS
 baaaababaS
 baaaababaab
The following is an RMD:
S baXaS
 baXaab
 baXabaab
 baXababaab
 baaaababaab

Any word that can be generated by a given CFG can have LMD|RMD.

 Language Defi ned by Grammars 93

Example 17:
Consider the CFG:

 S → aB | bA
A → a | aS | bAA
B → b | bS | aBB

Find LMD and RMD for string w = aabbabba.
Solution:

The following is an LMD:
 S aB aaBB

 aabSB
 aabbAB
 aabbaB
 aabbabS
 aabbabbA
 aabbabba

The following is an RMD:
 S aB aaBB

 aaBbS
 aaBbA
 aaBbba
 aabSbba
 a abbAbba
 aaabbabba

3.6.2 Derivation Tree
The process of derivation can be shown pictorially as a tree called derivation tree to illustrate
how a word is derived from a CFG. These trees are called syntax trees, parse trees, derivation
trees. These trees clearly depict how the symbols of terminal strings are grouped into sub-
strings, each of which belongs to a language defi ned from one of the variables of grammar.
For constructing a parse tree for a grammar G = (V, T, P, S)

 � the start symbol S becomes root for the derivation tree
 � variable or nonterminal in set V is marked as interior node
 � Leaf node can be a terminal, or ε.
 � For each production in P like A → Y1, Y2, . . . ,Yk , if an interior node is labeled A, and its

children are labeled Y1, Y2, . . . , Yk respectively, from the left to right.
Example 18:

CFG:
Terminals: a, b
Nonterminals: S, B
Production A → BBB | BB
 B → BB | bB | Ba | a | b
String “ababa” has the following derivation tree:

94 Syntax Defi nition — Grammars

A

B B B

B B

b aB
a b a

By concatenating the leaves of the derivation tree from left to right, we get a string which
is known as yield of the derivation tree. The yield is a string that is always derived from the
root of the tree. There are derivation trees whose yields are in the language of underlying
grammar. Such trees are important because of the following reasons:

 � The root is labeled by the start symbol.
 � The terminal string is yield. All leaves are labeled with a terminal “b” or ε.
 � The strings we get in the intermediate step are called the sentential form.

3.6.3 Equivalence of Parse Trees and Derivations
A terminal string is in the language of a grammar iff it is the yield of at least one parse tree.
The existence of leftmost derivation, rightmost derivation, and parse trees are equivalent
conditions that defi ne exactly the strings in the language of a CFG.

There are some CFGs for which it is possible to fi nd a terminal string with more than one
parse tree, or equivalently, more than one leftmost derivation and one rightmost derivation.
Such a grammar is called ambiguous.

High-level programming languages are generally the class of languages that can be
parsed with a CFG.
Example 19:

 The parse tree below represents a leftmost derivation according to the grammar
S → AB, A → aS|a, B → bA.

s

A

a

A

a

S

B

b A

a

b A

B

a

Give the left-sentential forms in this derivation.
Solution:

To construct a leftmost derivation from a parse tree, we always replace the
leftmost nonterminal in a left-sentential form. It helps to remember that each
symbol of each left-sentential form corresponds to a node N of the parse tree.

 Language Defi ned by Grammars 95

When a nonterminal is replaced by a production body, the introduced symbols
correspond to the children of node N, in order from the left.
 Thus, we start with the left-sentential form S, where the symbol S corresponds
to the root of the parse tree. At the fi rst step, S is replaced by AB, the children
of the root; A corresponds to the left child of the root, and B to the right child.
Since A is the leftmost nonterminal of AB, it is replaced by the string “aS,”
formed by the labels of the two children of the left child of the root. The next
left-sentential form is thus aSB. We proceed in this manner, next replacing the
S. The complete leftmost derivation is:

S AB aSB aABB aaBB aabAB aabaB aababA
aababa.

So S, AB, aSB, aABB, aaBB, aabAB, aabaB, aababA are left-sentential forms,
whereas “aSbA” is not left-sentential form.
 This is actually a sentential form, but neither rightmost nor leftmost. One
derivation according to this parse tree is S AB aSB aSbA. Remember, in
a leftmost derivation, we must replace the leftmost nonterminal at every step.

Example 20:
Draw the derivation tree for the following natural language grammar.

 <sentence> → <noun phrase> <verb phrase>
 <noun phrase> → <article> <noun>
 <verb phrase> → <verb> <noun phrase>
 <article> → an | a
 <noun> → <adjective> <noun>
 <verb> → is | was
 <noun> → Tiger | Cat | elephant | animal
 <adjective> → small | huge | dangerous

 The parse tree for the sentence “An elephant is a huge animal” is given by

 <sentence> → <noun phrase> <verb phrase>
 <noun phrase> → <article> <noun>
 <verb phrase> → <verb> <noun phrase>

<article> → an | a
 <noun> → <adjective> <noun>
 <verb> → is | was
 <noun> → Tiger | Cat | elephant | animal
 <adjective> → small | huge | dangerous

Sentence

Noun phrase

Article

huge animal

 verb phrase

noun verb noun phrase

 elephant is
 article noun

An

a
 adjective noun

96 Syntax Defi nition — Grammars

 Issues to resolve when writing a CFG for a programming language:
1. Left recursion
2. Indirect left recursion
3. Left factoring
4. Ambiguity

3.7 Left Recursion
A grammar is left recursive if it has a nonterminal A such that there is a derivation.

A + Aα for some string α. If this grammar is used in some parsers (top-down parser),
parser may go into an infi nite loop. Consider the following left recursive grammar

A → A b | a
To derive a string “abbb,” there is an ambiguity as to how many times the nonterminal

“A” has to be expanded. As grammar is left recursive, the tree grows toward left.

A

a

A b

A b

A b

Top-down parsing techniques cannot handle left-recursive grammars. So, we have to
convert our left-recursive grammar into an equivalent grammar, which is not left-recursive.
The left-recursion may appear in a single step of the derivation (immediate left-recursion), or
may appear in more than one step of the derivation.

Immediate Left-Recursion:
A grammar G is left recursive if there is rule of the form
A → A α | β where β does not start with A, that is, leftmost nonterminal on the right

hand side is same as the nonterminal on the left hand side.
To eliminate immediate left recursion rewrite the grammar as
A → β A A → α A | ε. This is an equivalent grammar G , which is free of left recursion.
L(G) is β α * and L(G) is also β α * if α, β are assumed as nonterminals.
In general,
A → A α1 | ... | A αm | β1 | ... | βn where β1 ... βn do not start with A
 Eliminate immediate left recursion
 A → β1 A | ... | βn A
 A → α1 A | ... | αm A | ε an equivalent grammar

 Left Recursion 97

Immediate Left-Recursion – Example

 E → E+T | T
 T → T*F | F
 F → id | (E)

After eliminating immediate left recursion, we get grammar as

 E → T E
 E → + T E | ε
 T → F T
 T → *F T | ε
 F → id | (E)

Left-Recursion – Problem
A grammar cannot be immediately left-recursive, but it still can be left-recursive. By
just eliminating the immediate left-recursion, we may not get a grammar that is not
left-recursive.

 S → Aa | b
 A → Sc | d This grammar is not immediately left-recursive, but it is still left-recursive.
 S Aa Sca or
 A Sc Aac causes to a left-recursion

So, we have to eliminate all left-recursions from our grammar

Eliminate Left-Recursion – Algorithm

Arrange nonterminals in some order: A1 ... An

for i from 1 to n do {
 for j from 1 to i–1 do {
 replace each production
 A

i
 → A

j

 by
 A

i
 →

1
 | ... |

k

 where A
j
 →

1
 | ... |

k

 }
 eliminate immediate left-recursions among A

i
 productions

}

Example 21:
Eliminate left-recursion in the following grammar:

S → Aa | b
A → Ac | Sd | f

Order of nonterminals: S, A
for S:
 We do not enter the inner loop.
 There is no immediate left recursion in S.

for i from 1 m to n do {
for j from 1m to i–1 do {

 replace each production
 A

i
 → A

j

 by
 A

i
 →

1
 | ... |

k

 where A
j
→

1
 | ... |

k

 }
 eliminate immediate left-recursions among A

i
 productions

}

98 Syntax Defi nition — Grammars

For A:
 Replace A → Sd with A → Aad | bd
 So, we will have A → Ac | Aad | bd | f
 Eliminate the immediate left-recursion in A

A → bdA | fA
A → cA | adA | ε

So, the resulting equivalent grammar, which is not left-recursive is:
S → Aa | b
A → bdA | fA
A → cA | adA | ε

Example 22:
Eliminate left-recursion in the following grammar

S → Aa | b
A → Ac | Sd | ε
Order of nonterminals: A, S

For A:
 We do not enter the inner loop.
 Eliminate the immediate left-recursion in A

A → SdA | A
A→ cA | ε

For S:
 Replace S → Aa with S → SdAa | Aa
 So, we will have S → SdAa | Aa | b
 Eliminate the immediate left-recursion in S

S → AaS | bS
S → dAaS | ε

So, the resulting equivalent grammar, which is not left-recursive is:
S → AaS | bS
S → dAaS | ε
A → SdA | A
A → cA | ε

So by eliminating left recursion we can avoid top-down parser to go into infi nite loop.

3.8 Left-Factoring
Sometimes we fi nd common prefi x in many productions like A → αβ1 | αβ2 | αβ3, where
α is common prefi x. While processing α we cannot decide whether to expand A by αβ1
or by αβ2. So this needs back tracking. To avoid such problem, grammar can be left
factoring.

Left factoring is a process of factoring the common prefi xes of the alternatives of gram-
mar rule. If the production of the form A → αβ1 | αβ2 | αβ3 has α as common prefi x, by left
factoring we get the equivalent grammar as

A → αA
A → β1 | β2 | β3

So, we can immediately expand A to αA.

 Left-Factoring 99

One can also perform left factoring to avoid backtracking or for factoring the common
prefi xes. If the end result has no look ahead or backtracking needed, the resulting CFG can
be solved by a “predictive parser” and coded easily in a conventional language. If backtrack-
ing is needed, a recursive descent parser takes more work to implement, but is still feasible.
As a more concrete example:

S → if E then S
S → if E then S

1
 else S

2

can be factored to:
S → if E then S S’
S’ → else S

2
 | e

A predictive parser (a top-down parser without backtracking) insists that the grammar
must be left-factored.
Example:

Consider the following grammar
stmt → if expr then stmt else stmt
 | if expr then stmt

When we see “if,” we cannot know which production rule to choose to rewrite
stmt in the derivation. To left factor the above grammar, take out the common
prefi x and rewrite the grammar as follows:

stmt → if expr then stmt stmt
stmt → else stmt | ε

Left-Factoring – Algorithm
 � For each nonterminal A with two or more alternatives (production rules) with a common

nonempty prefix, let us say
A → αβ1 | ... | αβn | γ1 | ... | γm

Convert it into
A → αA | γ1 | ... | γm
A → β1 | ... | βn

Example 23:
Left-factor the following grammar

A → abB | aB | cdg | cdeB | cdfB
Solution:

Here common prefi xes are “a” and “cd.” So fi rst takeout ‘a’ and rewrite the
grammar as

A → aA | cdg | cdeB | cdfB
A → bB | B

Now take out the common prefi x ‘cd’ and rewrite the grammar as
A → aA | cdA
A → bB | B
A → g | eB | fB

Example 24:
Left-factor the following grammar

A → ad | a | ab | abc | b
 ⇓

100 Syntax Defi nition — Grammars

Solution:
Here common prefi xes are “a” and “ab.” So fi rst take out “a.”

A → aA | b
A → d | ε | b | bc

Now take out the common prefi x “b” and rewrite the grammar as
 ⇓
A → aA | b
A → d | ε | bA
A → ε | c

The above problem can also be solved by taking the longest match “ab” fi rst.
A → ad | a | ab | abc | b
 ⇓
A → abA | b| ad | a
A → ε | c

Now there is a common prefi x “a.” So take that out now
A → a A | b
A → ε | c
A → ε | bA | d

Finally, both ways we get the same solution.
So by left factoring we can avoid backtracking.

3.9 Ambiguous Grammar

A CFG is ambiguous if there exists more than one parse tree or equivalently, more than
one leftmost derivation and one rightmost derivation for at least one word in its CFL.

Remember that there is no algorithm that automatically checks whether a grammar is ambig-
uous or not. The only way to check ambiguity is “to choose an appropriate input string and
by trial and error fi nd the number of parse trees.” If more than one parse tree exists, the gram-
mar is ambiguous.

Ambiguous grammar

• There exists more than one LMD or
 RMD for a string

• LMD and RMD represent different
 parse trees

• More than one parse tree for a string

Unambiguous grammar

• Unique LMD/ RMD

• LMD and RMD represent the same parse
 tree

• Unique parse tree

GRAMMAR

 Ambiguous Grammar 101

There is no algorithm that converts an ambiguous grammar to its equivalent unambigu-
ous grammar.

Example 25:
Show that the following grammar is ambiguous.

E → id | E + E
 | E * E |E – E

Solution:
LMD: for string id + id * id is

E E + E
 id + E
 id + E * E
 id + id * E
 id + id * id

RMD: for string id + id * id is
E E * E
 E * id
 E + E * id
 E + id * id
 id + id * id

Parse trees represented by above LMD and RMD are as follows:

E

E + E

id
E * E

id id

E

E * E

id
E + E

id id

As there is more than one parse tree, the grammar is ambiguous.

Example 26:
The grammar G: S → SS | a | b is ambiguous. This means at least some of the
strings in its language have more than one leftmost derivation. However, it
may be that some strings in the language have only one derivation. Identify the
string that has exactly two leftmost derivations in G.

Solution:
A string of length 1 has only one leftmost derivation, for example, S a. A
string of length 2 has only one derivation, for example, S SS aS ab.
 However, a string of length 3 has exactly two derivations, for example, S
SS SSS aSS abS aba and S SS aS aSS abS aba. In general,
we can decide whether the fi rst S generates a single terminal or two S's.
 On the other hand, strings of length four or more have more than two deriva-
tions. We can either start S SS SSS SSSS or S SS SSS aSS aSSS
or S SS aS aSS, and there are other options as well.
 Hence, strings like “aaa,” “bbb,” “aba,” “bab,” etc., has only two derivations.

102 Syntax Defi nition — Grammars

Example 27:
Consider the grammar ‘G’ with

terminals: a, b
nonterminals: S
productions: S → aS | Sa | a.

Show that G is ambiguous.
Solution:

The word “aa” can be generated by two different trees:

S

S

a

a

S

S

a

a

Therefore, this grammar is ambiguous.
Example 28:

Consider the grammar “G” with
terminals: a, b
nonterminals: S, X
productions: S → aS | aSb | X
 X → Xa | a
Show that G is ambiguous.

Solution:
The word “aa” has two different derivations that correspond to different syn-
tax trees:
 S X Xa aa S aS aX aa

X

X

a

a

S

a S

X

a

Hence, the grammar is ambiguous.
Example 29:

The grammar ‘G’ for ‘PALINDROMES’ is
S → aSa | bSb | a | b | ε. Check if G is ambiguous.

Solution:
The grammar can generate the word “babbab” as follows:

 Removing Ambiguity 103

S bSb
baSab
babSbab
babbab

which has the following derivation tree:

b S

S

S

S

b

a a

b b

Since there is only one parse tree, the grammar is unambiguous.
Example 30:

Check whether the given grammar is ambiguous or not.
S → i C t S | i C t S e S | a
C → b

Solution:
To check the ambiguities take an input string. Let us say the input string is “ibtibtaea.”
Let us draw the derivation trees.

S

i C t S

b

i C t S e S

b a a

S

i C t S

b
i C t S

b a

e S

a

Hence, grammar is ambiguous.

3.10 Removing Ambiguity
There is no algorithm that straightaway converts an ambiguous grammar to equivalent
unambiguous grammar. But on analyzing the grammar, if we identify what is missing in the
grammar and why it is unambiguous, then we can write equivalent unambiguous grammars.

104 Syntax Defi nition — Grammars

For example, consider the expression grammar given below:
Expr → Expr + Expr | Expr * Expr | id

If we take a string id + id * id or id + id + id, we get two parse trees.
So if we analyze the grammar with the above two strings, we can understand the

following.

1. Precedence of operators is not taken care of. Hence, you can derive the string replacing
either Expr with Expr + Expr or with Expr * Expr.

2. Associative property is also not taken care of.
 If we take a string id + id + id, we can replace Expr Expr + Expr.
 Now we can replace either left Expr or right Expr.

So write equivalent unambiguous grammar by taking care of precedence and associativity.
To take care of precedence rewrite the grammar by defi ning rules starting with lowest

precedence to highest precedence.
For example, in the given grammar ‘id’ has highest precedence, next is * and least is for +.
So do not defi ne all of them at the same level but separate them into different levels by

introducing extra nonterminals. Start defi ning the rules with +, then *, and fi nally with id as
shown below.

 E E + T | T
 T T * F | F
 F id

For example, now we want to add operator unary. As unary has the highest precedence
than * or +, add rule for – after * by introducing the new nonterminal P. So the resulting
grammar is

 E E + T | T
 T T * F | F
 F -P | P
 P id

To ensure associativity, defi ne the rule as left recursive if the operator is left associative.
Defi ne the rule as right recursive if the operator is right associative. In the given grammar, +
and * are left associative. So the rules must be left recursive, that is, AAa| b. The equivalent
unambiguous grammar is

 E E + T | T
 T T * F | F
 F id

This procedure can be used for any expression grammars.
Example:

Convert the following grammar to equivalent unambiguous grammar.
 bExpr bExpr and bExpr
 | bExpr or bExpr
 | not bExpr
 |true
 |false

 Inherent Ambiguity 105

Solution:
This is the grammar that defi nes Boolean expressions with basic operators ‘and’,
‘or,’ and ‘not’. Here priority of operators is highest for ‘not’, then for ‘and’ and
then the least for ‘or.’ So start defi ning ‘or’ then ‘and, next ‘not.’ So the resulting
grammar is

 E E or T | T
 T T and F | F
 F not F | true | false
Example:

Convert the following grammar to equivalent unambiguous grammar.
 R R + R | RR |R* |a|b
Solution:

This is the grammar that defi nes regular expressions with basic operations union,
concatenation, and Kleenes closure. Here, priority of operators is the highest for
closure, next highest for concatenation, and least or union.
So start defi ning least to highest. So the resulting grammar is

 E E + T | T
 T T F | F
 F F* | a | b

So given a grammar, by using the above procedure we can get precedence and
associativity of operators. For example,

 A A # B | B
 B C $ B | C
 C C @ D | D
 D a|b

Here “#,” “$,” and “@” are “unknown” binary operators. From the grammar, we
can get precedence and associativity of operators as follows:

 “@” has the highest precedence and is left associative
 “$” has the next highest precedence and is right associative
 “#” has the least precedence and is left associative

3.11 Inherent Ambiguity
A CFL is said to be inherently ambiguous if it is defi ned only with ambiguous Grammar. It
cannot be defi ned with unambiguous grammar. Following is a grammar for an inherently
ambiguous language: L = (ai bj ck | i = j or j = k}

Here L = {ai bi ck | ai bk ck}
Grammar for the above language is given by
 S S1 | S2
 S1 S1 c |A S2 a S2 | B
 A aAb | ε B b Bc | ε
For example, consider a string “abc” from the language; it can be derived in two ways.

106 Syntax Defi nition — Grammars

S

S1

S

S2

S2S1 c

ca

a

ε ε

b bA B

A CFG can be used to specify the syntax of programming languages.

3.12 Non-context Free Language Constructs
There are some language constructs found in many programming languages, which are not
context free. This means that, we cannot write a context free grammar for these constructs.
Following are a few examples:

 � L1 = { ωcω | ω is in (a|b)*} is not context free
 L1 abstracts the problem of declaring an identifi er and checking whether it is declared

or not before being used. We cannot do this with a context free language. We need
semantic analyzer (which is not context free), which checks that identifi ers are declared
before use.

 � L2 = {anbmcndm | n 1 and m ≥ 1 } is not context free
 L2 is declaring two functions (one with n parameters, the other one with m parameters),

and then calling them with actual parameters.
 It is interesting to note that languages close to L1 and L2 are context free. For example,

 � L1 = { ωcωR | ω is in (a|b)*} is context free
It is generated by grammar

 S → aSa | bSb | c.
 � L2 = {anbmcmdn | n ≥ 1 and m ≥ 1} is context free.

It is generated by grammar
 S → aSd | aAd
 A → bAc | bc

 � Also L2 = {anbncmdm | n ≥ 1 and m ≥ 1} is context free.
It is generated by grammar

 S → AB
 A → aAb | ab
 B → cBd | cd

3.13 Simplifi cation of Grammars
As we have seen, various languages can be represented effectively by CFG. All the gram-
mars are not always optimized. That means grammar may contain some extra symbols

 Simplifi cation of Grammars 107

(unnecessary symbols). These will increase the length of the grammar. Simplifi cation of the
grammar involves removing all these unnecessary symbols. For example, look at following
grammar
 S → AB
 A → a
 B → b | C
 E → c | ε

Here C never defi nes any terminal.
E and C do not appear in any sentential form.
E → ε is a null production.
B → C simply replaces B by C.
Hence, if we simplify the grammar as follows

 S → AB
 A → a
 B → b
Simplifi cation of the grammar generally includes the following:

1. Elimination of useless symbols
2. Elimination of ε productions
3. Elimination of unit productions of the form A → B

a. Elimination of useless symbols

A symbol is useless if it cannot derive a terminal or it is not reachable from the start
symbol.

 To check if the symbol is reachable from the start symbol, we can use the dependency
graph or the following lemma.

 Lemma 1: If the grammar G = (V,T,P,S) with L(G) Φ, we can effectively fi nd an equivalent
grammar G = (V,T,P,S) such that for each A in V there is some w in T* for which A*w.

 If A → w is a production where w ∈ T*, then A is in V. If A → X1X2…Xn is a production
where each X1 is in V then A is also in V. The set V can be computed by the following
algorithm:

 1. Initialize V1 = Φ.
 2. Include A to V2 where A → w for some w in T*.
 3. Repeat 4 and 5 while V1 V2.
 4. V1 = V2
 5. V2 = V1 ∪ {A} where A → α for some α in (T ∪ V1)*
 6. V = V2

 From the above algorithm, fi nd all A ∈ V; now include only those productions that
include V∪ T.

 Lemma 2: Given a grammar G = (V,T,P,S) we can effectively fi nd an equivalent grammar
G = (V,T,P,S) such that for each X in V∪ T there exist α and β in (V∪ T)* for which
S * α × β.

108 Syntax Defi nition — Grammars

1. Initially place S in V.
2. For all productions A → α1| α2|..|αn then add the variables α1, α2,…αn to V and all

terminals to T.
3. P is the set of productions, which includes symbols of V ∪ T.

Example 31:
Eliminate useless symbols and productions from the following grammar.

S → ABa | BC, A → aC | BCC, C → a, B → bcc,
D → E, E → d, F → e

Solution:
Step 1: Eliminate nongenerating symbols: All variables are generating.
Step 2: Elimination of nonreachable variables: Draw the dependency graph.

S A B C D E F

 � D, E, and F are nonreachable from S.
 � After removing useless symbols

S → ABa | BC
A → aC | BCC
C → a
B → bcc

Example 32:
Eliminate useless symbols in G.

S → AB | CA
S → BC | AB
A → a
C → aB | b

Solution:
Here B is not defi ned; hence B is a useless symbol.
C and A are reachable and are deriving terminals. Hence, useful.
So reduced grammar isone without useless symbols.

S → CA
A → a
C → b

Example 33:
Eliminate useless symbols in G.

S → aAa
A → bBB
B → ab
C → a b

Solution:
Here C is useless as it is not reachable from the start symbol.

 Simplifi cation of Grammars 109

So reduced grammar is one without useless symbols.
S → aAa
A → bBB
B → ab

Example 34:

Eliminate useless symbols in G.
S → aS | A | BC
A → a
B → aa
C → aCb

Solution:
Here C is useless as it is not deriving any string. B is not reachable.
So reduced grammar is the one without useless symbols.

S → aS | A
A → a

b. Elimination of d-Productions
If some CFL contains the word ε, then the CFG must have a ε-production. How-
ever, if a CFG has a ε-production, then the CFL does not necessarily contain ε.

e.g.,
S → aX
X → ε

which defi nes the CFL {a}.

Nullable Variable: In a given CFG, a nonterminal X is nullable if

 1. there is a production X → ε
 2. there is a derivation that starts at X and leads to ε:

 X => . . . =>ε i.e., X =>ε.

For any language L, defi ne the language L0 as follows:

1. If L ε, then L0 is the entire language L, i.e., L0 = L.
2. If ε L, then L0 is the language L – {ε}, so L0 is all words in L except ε.

If L is a CFL generated by a CFG G1 that includes ε-productions, then there is
another CFG G2 with no ε-productions that generates L0.

Procedure for eliminating e productions:

a. Construct Vn set of all nullable variables.
b. For each production B → A, if A is nullable variable, replace nullable variable by

ε and add with all possible combinations on the RHS.
c. Do not add the production

A → ε

110 Syntax Defi nition — Grammars

Example 35:
Eliminate null production in the grammar

S → ABaC
A → BC
B → b | ε
C → D | ε
D → d

Solution:
 Nullable variables are Vn = {B,C,A}
 Hence, equivalent grammar without null productions is

S → ABaC | BaC | AaC | ABa |aC | Aa |Ba|a
A → BC | B | C
B → b
C → D
D → d

Example 36:
Eliminate null production in the grammar

S → aA
A → BB
B → aBb | ε

Solution:
 Nullable variables are Vn = {A,B}
 Hence, equivalent grammar without null productions is

S → aA | a
A → BB | B
B → aBb | ab

c. Eliminating unit productions

A unit production is a production of the form A → B

If a language L is generated by a CFG G1 that has no ε-productions, then there is also a CFG G2 for L
with no ε-productions and no unit productions.

Procedure for eliminating unit productions:

 � For each pair of nonterminals A and B such that there is a production
A → B and the non unit productions from B are
B → s1 | s2 | . . . | sn

 where the si ε (+ N)* are strings of terminals and nonterminals, then create the new
productions as

A → s1 | s2 | . . . | sn
 –Do the same for all such pairs A and B simultaneously.
 –Remove all unit productions.
Example 37:

Eliminate unit productions in the grammar

 Simplifi cation of Grammars 111

S → A | bb
A → B | b
B → S | a

Solution:
After eliminating unit productions S → A, A → B, B → S, we get

S → a | b | bb, A → a | b | bb, B → a | b | bb
Example 38:

Eliminate unit production from the grammar below:
S → Aa | B, B → A | bb, A → a | bc | B

Solution:
Unit productions are S → B, B → A, and A → B
– A, B, and S are derivable
– Eliminating B in the A production gives A → a | bc | bb.
– Eliminating A in the B production gives B → a | bc | bb.
– Eliminating B in the S production gives S → Aa | a | bc | bb.

 � The final set of productions after eliminating unit productions is given below:
S → Aa | a | bc | bb
B → a | bc | bb
A → a | bc | bb

Example 39:
Simplify the following grammar.

S → aA | aBB
A → aAA | ε
B → bB | bbC
C → B

Solution:
Here it is better to eliminate null productions as this may introduce useless
symbols and unit productions. Next, eliminate unit productions and at the end
eliminate useless symbols.
 Removing ε-productions gives resulting grammar as

S → aA | a | aBB
A → aAA | aA | a
B → bB | bbC
C → B

 Eliminating unit productions we get the resulting grammar as
S → aA | a | aBB
A → aAA | aA | a
B → bB | bbC
C → bB | bbC

 B and C are identifi ed as useless symbols. Eliminating these we get
S → aA | a
A → aAA | aA | a

 Finally, the reduced grammar is S → aA | a, A → aAA | aA | a, which defi nes
any number of a’s.

112 Syntax Defi nition — Grammars

3.14 Applications of CFG
 � Grammars are useful in specifying syntax of programming languages. They are mainly
used in the design of programming languages.

 � They are also used in natural language processing.

 � Tamil poetry called “Venpa” is described by context free grammar.

 � Efficient parsers can be automatically constructed from a CFG.

 � CFGs are also used in speech recognition in processing the spoken word.

 � The expressive power of CFG is too limited to adequately capture all natural lan-
guage phenomena. Therefore, extensions of CFG are of interest for computational
linguistics.

Example 40:

As in example, CFG for Pascal statements are given below.

 Stmt → begin optional_stmts end
 optional_stmts → list_of_stmt |
 list_of_stmt → list_of_stmt; Stmt | Stmt
 Stmt → if Expr then Stmt
 |if Expr then Stmt else Stmt
 |while Expr do Stmt
 |id = Expr
 Expr → Expr + Term | Term
 Term → Term * Fctr | Fctr
 Fctr → id | num

Solved Problems
1. Give the CFG, which generates all positive even integers up to 998.

Solution:
We need to generate positive integers with 1 digit, or 2 digits, or 3 digits.
One digit numbers are 0, 2, 4, 6, 8
 Two-digit and three-digit positive integers can have any number in 10’s or
100’s place. Hence, we can defi ne grammar as follows

S → A single-digit numbers
 | BA ……double-digit numbers
 |BBA ……Three-digit numbers
B → 0 | 1|2|3…….9
A → 0 | 2|4|6|8

2. Give CFG for RE (a +b)*cc(a+b)*

Stmt → begin optional_stmts end
 optional_stmts → list_of_stmt |
 list_of_stmt → list_of_stmt; Stmt | Stmt

Stmt → if Expr then Stmt
 |if Expr then Stmt else Stmt
 |while Expr do Stmt
 |id = Expr

Expr → Expr + Term | Term
Term → Term * Fctr | Fctr
Fctr → id | num

 Solved Problems 113

Solution:
The grammar for all the strings on a, b i.e., (a + b)* is A → aA |bA | ε
In the middle of any string of a, b on either side, string “cc” is occurring.
So the grammar for the given regular expression is

S → AccA
A → aA |bA | ε

3. Give CFG for RE {0m1n m, n 0}
Solution:

The regular expression is 0* 1*.
The grammar for strings a* is A → aA | ε
Hence the grammar for the given regular expression is:

S → AB
A → 0A | ε
B → 1B | ε

4. Give CFG for RE 02m1n m, n 0
Solution:

The given RE has zero or more strings of two zeros and one 1’s.
The language is (00)*1*. So the fi nal grammar is

S → AB
A → 00A | ε
B → 1B | ε

5. Find the language defi ned by CFG.
S → aB | bA
A → a |aS|bAA
B → b | bS |aBB

Solution:
To fi nd the language defi ned by grammar, list the words defi ned by grammar.

S aB ab
S bAba
S aB abS abaB abab
S bA bbAA bbaSA bbabAa bbabaa

Hence, the language defi ned by the given grammar is equal no of a’s and b’s.

6. Find LMD and RMD for string 00101 in the grammar given below:
S → B |A
A → 0 A| ε
B → 1B | 0B| ε

Solution:
LMD, RMD are the same.

S B 0B 00B 001B 0010B 00101B
 00101ε
 00101

114 Syntax Defi nition — Grammars

7. Find LMD, RMD, and derivation tree for string 00110101 in the grammar given below.
S → 0B |1A
A → 0 | 0S |1AA
B → 1 | 1S | 0BB

Solution:
LMD

S 0B 00BB 001SB 0011AB
 00110SB
 001101AB
 0011010B
 00110101

RMD

8. Check whether the following grammar is ambiguous.
S → 0S1 | SS | ε

Solution:
Let us consider the string 01. This string can be generated in two ways.
 i. S 0S1 01
 ii. S SS 0S1S 01S 01
Hence, the given grammar is ambiguous grammar.

9. Check whether the following grammar is ambiguous for w = ab
S → aB | ab
A → aAB | a
B → AB b| b

Solution:
The string “ab” can be derived using LMD as follows:
 1. S ab
 2. S aB ab
Since there are two possible ways to derive the string, it is ambiguous for w.

10. Check whether the following grammar is ambiguous for w = aab.
S → AB | aaB
A → a | Aa
B → b

Solution:
The string “aab” can be derived using LMD as follows:
 1. S AB AaB aaB aab
 2. S aaB aab
Since there are two possible ways to derive the string, it is ambiguous for w.

11. Check whether the following grammar is ambiguous for w = abababa.
S → SbS | a

Solution:
The string “aab” can be derived using LMD as follows:
 1. S SbS SbSbS SbSbSbS
 abSbSbS ababSbS abababS abababa

S

0 B

0 B B

1 S 1

1 A

0 S

1 A

0

 Solved Problems 115

 2. S SbS abS abSbS ababS ababSbS
 abababS abababa
Since there are two possible ways to derive the string, it is ambiguous for w.

12. Eliminate useless symbols in G.

S → a Aa
A → Sb | bCc |DaA
C → abb | DD
E → a C
D → a DA

Solution:
Here D is useless as it is not deriving any string. E is not reachable.
So reduced grammar is the one without useless symbols.

S → aAa
A → Sb | bCc
C → abb

13. Eliminate useless symbols in G.
S → a A |bB
A → aA | a
B → bB
D → ab | Ea
E → aC | d

Solution:
Here B is useless as it is in loop, not deriving any string. There is no rule for
C. So C is also useless. E and D are not reachable from S.
Hence, the reduced grammar is the one without useless symbols.

S → a A
A → aA | a

14. Left factor of the grammar S → abc | abd |ae |f
Solution:

Here common prefi x are “ab” and “a.” So fi rst take out the longest match
“ab” from S.

S → abS|ae|f
S → c | d

Now take out the common prefi x “a” and rewrite the grammar as
 ⇓
S → aS | f
S → bS | e
S → c | d

15. Left factor of the grammar S → AaS | AaA, A → a| ab
Solution:

Here common prefi x are “Aa” and “a.” So fi rst take out “Aa” from S.

116 Syntax Defi nition — Grammars

S → AaA
A → S | A

Now take out the common prefi x “a” from A and rewrite the grammar as
 ⇓
A → aA

A → ε | b

16. Eliminate left recursion and left factor of the grammar
E → aba | abba|Ea |EbE

Solution:
Here fi rst eliminate left recursion; then we get equivalent grammar as

E → abaE| abbaE
E → bE | bEE |

Now left factor the grammar and rewrite the grammar as
 ⇓
E → abA
A → aE|b aE
E → bB
B → E | EE|

Summary
 � Context free grammar mainly defines the syntax of the programming language and

push-down automata is used to recognize the language.
 � A context free grammar can be simplified by eliminating useless symbols or null produc-

tions or unit productions.
 � An equivalent grammar can be constructed for any language without null by eliminating

null productions.
 � Context free grammars can be represented in standard form using Chomsky or Greibach

normal forms.

Fill in the Blanks
1. _________verifi es if the tokens are properly sequenced in accordance with the

grammar of the language.
2. The language defi ned by S → SS is _________.
3. A nonterminal is useless if it is _________.
4. A variable that derives e is called the _________ variable.
5. Left linear grammars are _________ of CFG.
6. CFGs are _________ of CSG.
7. If there is a unique LMD, then the grammar is _________.
8. The grammar is CFG. (True|False)
9. S → bbba | ε

 Objective Question Bank 117

10. A → ε
11. Context free languages are described by type _________ grammars.
12. In Type 1 grammars, if → , then relation between and is _________.
13. To simplify the grammar S → ST | , T → abT | ab we apply elimination of _________.
14. _________ is a context free grammar to generate expression with balanced

parenthesis.
15. Grammar S S | SS | is _________ grammar.
16. For every ambiguous grammar there is equivalent grammar for the same language

which is unambiguous. (True|False)
17. _________ languages are the subset of context free languages.
18. Every context free language is a context sensitive language. (True|False)
19. Elimination of null productions results in simplifi ed grammar with no unit produc-

tions and useless symbols. (True|False)
20. If a grammar has different LMD or RMD, then it is ambiguous. (True|False)

Objective Question Bank
1. A context free grammar is ambiguous if

(a) The grammar contains useless nonterminals.
(b) It produces more than one parse tree for some sentence.
(c) Some production has two nonterminals side by side on the right-hand side.
(d) None of the above

2. Find the number of parse trees for an input string “aaa” in S Sa |aS | a
(a) 2 (b) 3 (c) 4 (d) infi nite

3. Find the number of parse trees for an input string “abab” in S aSbS |bSaS | ε
(a) 2 (b) 3 (c) 4 (d) infi nite

 4. What is the language generated by the CFG?
 S → aSb
 S → aAb
 S → aBb
 A → aA | a
 B → Bb | b

 Here V = { S, A, B) and T = {a, b}
 (a) {anbm, m > 0, |n – m| > 2}
 (b) {anbm, m > 1, |n – m| > 1}
 (c) {anbm, m > 0, |n – m| > 1}
 (d) {anbm, m > 0, |n – m| > 0}

 5. Consider the grammar
 Stmt → if id then stmt
 | if id then stmt else stmt
 | id = id

118 Syntax Defi nition — Grammars

 Which of the following is not true?
 (a) The string “if a then if b then c=d” has two parse trees.
 (b) The LMD, RMD of “if a then if b then c=d” represent different parse trees.
 (c) The string “if a then if b then c = d else e = f” has more than two parse trees.
 (d) The string “if a then if b then c=d else e=f” has two parse trees.

 6. Let L denote the language generated by the grammar S 0S0| 00. Which of the follow-
ing is true?

 (a) L = 0+ (b) L is regular but not 0+
 (c) L is context free but not regular (d) L is not context free

 7. Aliasing in the context free programming languages refers to
 (a) multiple variables having the same memory location
 (b) multiple variables having the same values
 (c) multiple variables having the same memory identifi er
 (d) multiple uses of the same variable

 8. Let G = ({s}), {a,b}, R, s) be a context free grammar where the rule set R
 S a S b | S S |ε

 Which of the following is true?
 (a) G is not ambiguous
 (b) There exist x, y L(G) such that xy L(G).
 (c) There is a deterministic PDA that accepts L(G).
 (d) We can fi nd a DFA that accepts L(G).

 9. The grammar S Sa |aS | a is
 (a) left recursive (b) right recursive
 (c) unambiguous grammar (d) ambiguous

10. The following CFG S aS| bS | a | b is equivalent to the regular expression
 (a) (a * + b)* (b) (a+b)* (c) (a + b)(a+b)* (d) (a+b)*(a+b)

11. Any string of terminals that can be generated by the following CFG
 S xy, X ax |bx |a, Y ya| yb| a
 (a) has at least one b (b) should end in a ‘a’
 (c) has no consecutive a’s or b’s (d) has at least two a’s

12. The following CFG
 S aB|bA, A a| aS| bAA, B b| bS| aBB
 Generates strings of terminals that have
 (a) Equal number of a’s and b’s
 (b) odd number of a’s and odd number of b’s
 (c) even number of a’s and even number of b’s
 (d) odd number of a’s and even number of b’s

13. The set {an bn | n = 1,2,3….} can be generated by the CFG
 (a) S ab |aSb (b) S aaSbb| ab
 (c) S ab| aSb| ε (c) S aaSbb| ab| aabb

 Objective Question Bank 119

14. Choose the correct statements.
 (a) All languages can be generated by CFG.
 (b) Any regular language has an equivalent CFG.
 (c) Some non-regular languages can’t be generated by any CFG.
 (d) Some regular languages can’t be generated by any CFG.

15. Here is a context free grammar G:
 S → AB

 A → 0A1 | 2
 B → 1B | 3A

 Which of the following strings is in L(G)?
 (a) 021300211 (b) 00213021 (c) 002111300211 (d) 0211300021

16. The grammar
 A B A / A * B | B
 B B - B / C / B | C
 C i
 (a) refl ects that - has high precedence than - (b) refl ects that - has high precedence than /
 (c)refl ects that - has high precedence than (d) none of the above

17. Consider the following four grammars:
 1. S → abS | ab
 2. S → SS | ab
 3. S → aB; B → bS | b
 4. S → aB | ab; B → bS

 The initial symbol is S in all cases. Determine the language of each of these grammars.
Then, fi nd, in the list below, the pair of grammars that defi ne the same language.

 (a) G1: S → aB, B → bS, B → ab G2: S → SS, S → ab
 (b) G1: S → SS, S → ab G2: S → aB, B → bS, B → b
 (c) G1: S → abS, S → ab G2: S → aB, B → bS, S → a
 (d) G1: S → aB, B → bS, B → ab G2: S → aB, B → bS, S → ab

18. Consider the grammar S a S b| b S a |
 The number of parse trees the grammar generates for an input string “abab” is
 (a) 1 (b) 2 (c) 3 (d) 4

19. Consider the grammar R RR | R + R| R* |a|b is
 (a) ambiguous (b) unambiguous
 (c) inherently ambiguous (d) None of the above

20. Consider the following CFG. G is defi ned by productions
 S → aSbS | bSaS |ε
 The language generated by this CFG is
 (a) the set of all strings which contains even number of a’s and even number

of b’s
 (b) the set of all strings which contains odd number of a’s and even number of b’s

120 Syntax Defi nition — Grammars

 (c) the set of all strings which contains odd number of a’s and odd number of b’s
 (d) the set of all strings with an equal number of a’s and equal number of b’s

21. Consider the following grammar productions
 S → AB,
 A → BB | a,
 B → AB | b,

 Choose the incorrect statement.
 (a) aabbb can be derived from the above grammar.
 (b) aabb can be derived from the above grammar.
 (c) ababab can be derived from the above grammar.
 (d) aaabb can be derived from the above grammar.

22. Consider the following context free grammars
 1. S → aSbb | a
 2. S → aSA | a, A → bB, B → b
 Which of the following is correct?
 (a) The language generated by ‘1’ is subset of ‘2’.
 (b) The language generated by ‘2’ is subset of ‘1’.
 (c) The language generated by both the grammars ‘1’ and ‘2’ is one and the same.
 (d) None of the above

23. The grammar
 S → a S b / SS | is ambiguous as “ab” has
 (a) one LMD and one RMD (b) two LMD
 (c) No RMD (d) all true

24. A context free grammar is said to be ambiguous if it has
 (a) w L(G) which has at least two distinct derivative trees
 (b) w L(G) which has at least two left-most derivations
 (c) w L(G) which has at least two right-most derivations
 (d) Any one of the above

25. Consider the grammar G with the start symbol S:
 S → bS | aA | b
 A → bA | aB
 B → bB | aS | a

 Which of the following is a word in L(G)?
 (a) ababba (b) bbaabb (c) babbbabaaaa (d) aabb

Exercises
 1. Defi ne leftmost and rightmost derivations. Give example.

 2. Consider the grammar G. S → S+S|S*S|(S)|a. Show that the string “a + a * a” has
 a. Parse trees
 b. Left most derivations

 Exercises 121

 3. Find the unambiguous grammar G’ equivalent to G and show that L(G) = L(G’) and
G’ is unambiguous.

 4. Convert the following CFG to equivalent unambiguous grammar.
E → E + E
E → E * E
E → a|b|(E)

 5. Check whether the grammar is ambiguous or not.
 a. S → 0S1|SS|ε w=’0011’
 b. S → AB | aaB, A → a | AA, B → b w = “aab”
 c. S → SbS | a w = “abababa”
 d. S → aSb | ab
 e. R → R + R | RR | R* |a|b|c w = a + b * c

 6. Construct the reduced grammar from regular grammar given below.
S → Aa | bs | ε
A → aA | bB | ε
B → aA | bc | ε
C → aC | bc

 7. Find a CFG, without ε productions, unit production, and useless productions
equivalent to the grammar defi ned by

S → ABaC
A → BC
B → b | e
C → D | e
D → d.

 8. Left factor the given grammar
S → aSSbS | aSaSb|abb|b

 9. Left factor the given grammar
S → 0SS1S| 0SS0S|01|1

 10. Remove ε productions from the following grammar:
S → XYX
X → 0X |ε
Y → 1Y |ε

 11. Eliminate useless symbols and productions from the following grammar:
 G = (V, T, P, S) where V = {S, A, B, C}, T = {a,b} and productions P given below:
S → ab | A | C, A → a, B → ac, C → aCb

 12. Remove ε productions from the following grammar:
S → A0B | BB | 0C | CBA
A → C 0 | 1C | CC | CBA
B → B 0 | AB | ε
C → 0A |BBB

122 Syntax Defi nition — Grammars

 13. Remove unit productions from the grammar
S → 0A |1B|C
A → 0S |00
B → 1 |A
C → 01

 14. Remove unit productions from the grammar
S → AB
A → a
B → C |b
C → D
D → E | bC
E → d | Ab

 15. Optimize the following grammar.
S → A | 0C1
A → B | 01|10
C → CD | ε

 16. Optimize the following grammar.
S → aAa
A → Sb |bCc|DaA
C → abb | DD
E → aC
D → aDA

 17. Write equivalent unambiguous for the following CFG.
R → R + R | RR |R* | a|b

 18. Write equivalent unambiguous for the following CFG.
bExpr → bExpr and bExpr | bExpr or bExpr | not R bExpr | a | b

 19. Eliminate left recursion in the grammar.
S → Aa b
A → Ac Sd | e

 20. Check whether the grammar.
S → AaAb BaBb
A →
B → is ambiguous or unambiguous

 21. Eliminate left recursion from the following grammar:
A → Bd
 | Aff
 | CB
B → Bd
 | Bf
 | df
C → h
 | g

 Key for Objective Question Bank 123

 1. Syntax anlyzer
 2. Ø
 3. not deriving any terminal
 4. nullable
 5. Subset
 6. Subset
 7. unambiguous
 8. True
 9. Type 2
 10. | | <= | | & | | =1.
 11. Null rule

 12. False
 13. S → CaA | b, A → CaA | CaCb

Ca → a, Cb → b
 14. S → (S) | ε
 15. Ambiguous
 16. False
 17. RG
 18. True
 19. False
 20. True

Key for Fill in the Blanks

 1. b 2. a 3. c 4. b 5. c 6. b 7. a 8. c 9. d 10. b

 11. d 12. a 13. a 14. b,c 15. a 16. c 17. b 18. a 19. a 20. d

 21. d 22. a 23. b 24. d 25. a

Key for Objective Question Bank

 This page is intentionally left blank.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 0 0 00 0 0 111 01 01 01 011 01 01 01 01 01 0 1 0 1 0 1 01 0 11 0 1 01 01 01 01 011 0 0 10 10 10 10 1 1111110 1 0 10 1 0 10 10 1 0 10 10 10 0 10 0 0 10 0 000000 0 1 0 1 0 1 0 1 0 1
0 1 11 11 1 00000 10 10 100 100 10 10 10 10 10 11 0 10 100 1000 10 10 10 10 10 1111111 0 10 10 10 10 10 1000 1100 100 10 100 0 0 10 10 10 10 10 10 10 100 10 100 0 100 100 10 10 10 1 0 10 10 10 10 1100 10 10 10 10 10 0 0 0 0000 0 1000 0 0000 00 000 0 0 1 0 1 0 1 0
1 0000 00000000 00 0 0 1 0 1 0 1 01 01 0000001 01 001 000 1 01 0 00000000 1 0 000000000 1 0 1 01 01 01 0 1 01 01 001 0001 01 001 01 0000 1 001 00000 0000000 1 1 01 01 1 1 00000000 1 1 0000 111 0 1 0 1 0 1 0 1 0
11111 1 000000 001 011 1 0 0 0 1 0 01 011 0111111 1 0 1 0 1 01 01 1 01 01 01 001 001 01 1 01 0 0 10 10 100 10 0 10 10 10 10000000 0 10 10 100 10 10 1100000 000 0 10 10 10 10 10 10 110 10 10 10 10 100 10 100 1 0 10 10 110 10 10 110 110 0 0 0 00 100 0 1 0 1 0 1
1111 01 0 0 00000 1 1 11 0 000 1 01 0 1 01 01 0 1 0 1 01 01 01 01 01 01 01 01 01 01 01 0 1 01 00 1 0 0000 1 0 0000 1 0 1 0 1 01 0 01 01 01 0 1 0 1 0 01 01 0 1 01 0 0 0 11 0 1 0 1 0 1 0 0 0 0 000 00 0000 1000 0 1 0 1 0 1
11111 00 0 0 0 0 00 0 0 0 111 1 01 0 11 00 1 0 1 0 1 0 1 0 1 0 1 0 1 1 00 0 1 01 000 000 00 01 000 0 0 0 0 1 0 1 0 1 0 1 0
0 00 000 00 00 00 00 0 00 00 000 00 00 000 00 1 1 01 1 0 1 0 1 01 01 0 1 0 1 01 01 0 1 0 1 0 1 0 1 0 1 1 01 01 01 0 1 0 1 0 1 01 01 0 1 01 01 0 1 0 1 01 01 01 01 0 1 0 01 0 1 01 01 001 0 1 01 0 1 01 01 01 011 01 00001 0 1 01 01 0 1 0 1 01 01 01 0 1 0 1 0 1 0 1 0 1 1 01 0 01 0 1 0 1 01 01 0 1 01 01 001 01 0001 0 0 1 0 1 0 1 001 0 1 001 001 0 1 0 1 01 01 01 01 01 0001 001 01 01 00 01 00 1 00 0 1 0 1 0 1 0 1 0 1
0 1 00 00 00 0 0 0 0 0 0000 00 00 0 00 000 0 0 0 0 000 11 011 001 01 0 1 01 0 0 1 0 11111 1 01 00000001 001 0 1 01 01 0 1 01 01 01 001 0011 011 0 0 0 1 0 0 00 1 0 1 0 1 01 0 1 01 0 1 0 1 0 0 1 0 1 0 1 0 000 11111111111 0 1111 1 0 1 0 1 0 1 0 1
1 0 1 0 1 01 01 01 01 01 01 01 01 01 01 0 00000 0 10 10 10 10 10 10 100000 10 1000000 10 1 0 10 10 10 10 10 10 10 10 10 10 10 1000 10 10 10 10 1 000000000 1 0 0 10 10 10 10 100000 10 10 10 00 100 10 0 100000000000000 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 000 0 0 000 1 01 00001 0 1 0 1 0 1 0 1 0 001 0 000 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 10 10 10 1000 0 10 10 10 0 10 1000 10 10 11100 10 10 110 1 0 1 0 1 0
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 000000000 1 11 1 0 1 0 1 0 1 0 1 0 1 0001 00000 1 0 11111111111111 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 00 1 000001 0 1 01 0 1 0 00001 0 001 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 01 01 01 0 1 0 111 1 11 01 01 0 0 0 1 1 1 001 1 011 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 00000 1 1 0 1 0 1 0 1 0 0 0 0 00000001 00 1111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 10 1 0

 125

CHAPTER OUTLINE

 4.1 Introduction

 4.2 Error Handling in Parsing

 4.3 Types of Parsers

 4.4 Types of Top-Down Parsers

 4.5 Predictive Parsers

 4.6 Construction of Predictive Parsing Tables

 4.7 LL(1) Grammar

 4.8 Error Recovery in Predictive Parsing

The second phase in the process of compilation of a source program is syntax analysis.
This phase comes after the lexical analysis phase. While lexical analyzer reads an input
source program and produces an output—a sequence of tokens—the syntax analyzer veri-
fi es whether the tokens are properly sequenced in accordance with the grammar of the lan-
guage. If not, the syntax analyzer detects the errors and produces proper sequence of error
messages to the user and if possible recovers from the errors. The output of syntax analyzer
is a parse tree, which is used in the subsequent phases of compilation. This process of ana-
lyzing the syntax of the language is done by a module in the compiler called parser. For
performing syntax analysis, the grammar of the language has to be specifi ed. Context Free
Grammars (CFGs) are used to defi ne standard syntax rules for the language. This process of
verifying whether an input string matches the grammar of the language is called parsing.
This chapter describes the process of parsing, error handling, types of parsers, and top-
down parsing in detail.

Syntax Analysis —
Top-Down Parsers

C H A P T E R 4

Syntax analysis or parsing recognizes the syntactic structure of a programming language and trans-
forms a string of tokens into a tree of tokens. Top-down parsers are simple to construct. Parsers are
also used in natural language applications.

126 Syntax Analysis — Top-Down Parsers

4.1 Introduction
The syntax analyzer obtains a string of tokens from the lexical analyzer. It then verifi es
the syntax of the input string by verifying whether the input string can be derived from
the grammar or not. If the input string is derivable from the grammar, then the syntax
is correct; if the input string is not derivable, then the syntax is wrong. This is shown in
Figure 4.1. The parser should also report syntactical errors in a manner that is easily under-
stood by the user. It should also have procedures to recover from these errors and to con-
tinue parsing action.

The output of a parser is a parse tree for the set of tokens produced by the lexical ana-
lyzer. In practice, there are a number of tasks that are carried out during syntax analysis,
such as collecting information about various tokens and storing into symbol table, perform-
ing type checking and semantic checking, and generating intermediate code. These tasks
will be discussed in detail in syntax-directed translations.

Figure 4.1 Syntax Analysis

Syntax Specification
(context free grammars)

IF, LP, ID, RelOp, num, RP, LB
ID, ASSGN, ID, AddOp, ID,SC
RB, ELSE, LB,
ID, ASSGN, ID, AddOp, ID, SC
RB

Parser
(push-down automata,
top-down, bottom-up)

4.2 Error Handling in Parsing
Compiler construction would be very simple if it has to process only correct programs. But
most of the programmers write incorrect programs; hence, a good compiler should always
assist a programmer in identifying and detecting errors. Generally, programming languages
do not specify how a compiler should respond to errors. The response is left to the compiler
designer.

Generally, errors in programs are detected at different levels.

 � At lexical analysis: Unrecognized group of characters like &abc, $abc, etc., which cannot
be a keyword or identifier

 � At syntax analysis: Missing operator/operands in expression
 � At semantic analysis: Incompatible types of operands to an operator
 � Logical errors: Infinite loop. Detecting logical errors at compile time is a tedious task.

In the compilation process, 90% of errors are captured during the syntax and semantic analy-
sis phase.

That’s why error detection and recovery in compiler are centered on parsing. The main
reason for this is that many errors are syntactic in nature or are captured when a stream

 Error Handling in Parsing 127

of tokens from the lexer does not match with the grammar of the programming language.
Another reason is the precision of modern parsing methods. They can detect the presence
of syntax errors very effi ciently. In this section, we shall discuss a few techniques for syntax
error recovery.

Error-Recovery Strategies
There are four different error-recovery strategies generally used by parsers.

 � Panic Mode
 � Phrase Level
 � Error Production
 � Global Correction

4.2.1 Panic Mode Error Recovery
This is a simple method used by most of the parsers. On an error, the recovery strategy used
by the parser is to skip input symbols one at a time until one of the designated synchroniz-
ing tokens is found. The synchronizing tokens can be ‘end’,’}’,’)’, ‘;’ whose role in the source
program is well defi ned. The compiler designer must select the appropriate set of synchro-
nizing tokens from the source language. For example, in “C” language, on detecting an error,
it simply skips all characters till “;” since “;” is at the end of every statement.

4.2.2 Phrase Level Recovery
On detecting an error, the parser may perform some local corrections on the remaining
input. It could be replacing an incorrect character with a correct one or swapping two adja-
cent characters such that the parser can continue with the process. The local correction is a
choice left to the compiler designer. A token can be replaced, deleted, or inserted as a prefi x
to the input; this will enable the parser to continue with the process. We must be very careful
while doing replacements. Sometimes, replacements may lead to infi nite loops.

4.2.3 Error Productions
If the compiler designer has a good idea about possible errors, then he can add rules with
the grammar of the programming language to handle erroneous constructs. A parser is
constructed for this new grammar such that it handles errors. The error productions are
used by the parser to issue appropriate error diagnostics on erroneous constructs in the
input. Automatic parser generator “YACC”––yet another compiler compiler––uses this
strategy.

4.2.4 Global Correction
Generally, it is preferred to have minimum changes, that is, corrections in the input string.
There are algorithms to obtain a globally least cost corrections that help in choosing a
minimal sequence of changes.

128 Syntax Analysis — Top-Down Parsers

4.3 Types of Parsers
Parsers can broadly be classifi ed into three types as shown in Figure 4.2.

4.3.1 Universal Parsers
Universal parsers perform parsing with any grammar. That’s why they are called universal
parsers. They use parsing algorithms like Cocke-, Younger-, Kasami-algorithm or Earley’s
algorithm. It uses the Chomsky Normal form of the CFG. This method is ineffi cient. So it is
not used in commercial compilers.

Parsers that are commonly used in compilers are top-down parsers or bottom-up parsers.

4.3.2 Top-Down Parsers (TDP)
Top-down parsing involves generating the string starting from the start symbol repeatedly
applying production rules for each nonterminal until we get a set of terminals. The output
of any parser is a parse tree. A top-down parser constructs the parse tree starting with root
and proceeds toward the children. Here it uses Left Most Derivation (LMD) in deriving the
string. The task of a top-down parser at any time is to replace a nonterminal by the right
hand side of the rule.

Consider the following example:

Example 1:
Grammar and input string

 S → a A B e
 A → b | b c
 B → d

 w = “abcde”

Figure 4.2 Types of Parsers

Bottom-Up

Parsers

Top-DownUniversal

With Back-
tracking

Without Back-
tracking

Operator
Precedence LR Parsers

CLRLALRSLRLL(1)Recursive
DescentBrute Force

 Types of Parsers 129

The construction of the top-down parser is shown in Figures 4.3 and 4.4. A top-down parser
starts the parse tree with the start symbol, S.

Replace S by the right hand side, that is, “aABe”.
Now, in the expanded string there are two nonterminals, A and B. Which one do we

expand fi rst? This is resolved by the parser as follows. A TDP uses LMD in recognizing a
sentence. Hence, the parser fi rst selects “A” for expansion. Now nonterminal A has two
alternative rules. Which one do we choose fi st? This is the primary problem. Here, if we
expand A by fi rst alternative, that is, “b,” we cannot get the required string. The right
choice here is the second alternative, that is, “bc.” So a top-down parser is constructed as
follows:

Though the task of the top-down parser is very simple––replacing nonterminal by right hand side
of rule––the primary problem in design is if a nonterminal has more than one alternative, then there
should be some mechanism to decide the right choice for expansion. How can this problem be handled
by the different types of top-down parsers? This is what we will discuss in the remaining topics.

Figure 4.3 Top-Down Parser Construction

S

B eAa

Figure 4.4 Top-Down Parser Construction

S

B eA

b c d

a

130 Syntax Analysis — Top-Down Parsers

4.3.3 Bottom-Up Parsers
Bottom-up parsing is not simple like top-down parsing. Bottom-up parsing involves repeat-
edly reducing the input string until it ends up in the fi rst nonerminal, that is, the start sym-
bol of the grammar.

Let us look at the complexity of reducing the input string to start symbol. The task of a
bottom up parser at any time is to identify a substring that matches with the right hand side.

Replace that string by the left hand side nonterminal.
Consider the following grammar and input string.

Example 2:
S → a A B e
A → b | b c
B → d

w = “abcde”

The construction of bottom-up parser is shown in Figure 4.5. A bottom-up parser looks at
reducing the string “abcde” to start the symbol S. Now let us understand the complexity of
reducing the string to the start symbol. If at all the string “abcde” is reduced to “a A B e,”
then we can replace “aABe” with S. To reduce “abcde” to “aABe,” after the fi rst “a,” “A” is
required. “A” can be either “b” or “bc.” Since the task of a bottom-up parser at any time is
to identify a substring that matches with right hand side, replace that string by the left hand
side nonterminal. Hence, we can take string “b” then replace it by “A.” But if we do so, it can-
not be reduced to the start symbol “S”. So this is not a valid reduction. How do we determine
valid reductions? This is resolved as follows.

A bottom-up parser uses the reverse of right most derivation in reducing the input string
to the start symbol. So whenever a substring is identifi ed and reduced, it should give one
step along the reverse of the right most derivation. So a bottom-up parser works as follows:

Figure 4.5 Bottom-up parser construction

a b

A B

S

c d e

 Types of Top-Down Parsers 131

So the task of a bottom-up parser at any time is to identify a substring that matches with
the right hand side; if that substring is replaced by the left hand side nonterminal, it should
give one step along the reverse of the right most derivation.

The main diffi culty in bottom-up parsing is identifying the substring that is called
handle.

Bottom-up parsing can be described as “detect the handle” and “reduce the handle.”
The main diffi culty is detecting the handle.

While discussing different top-down parsers and bottom-up parsers, we will see how
this problem is handled in the design of such parsers. Let us consider top-down parsers fi rst.

4.4 Types of Top-Down Parsers
Top-down parsing can be viewed as an attempt to construct a parse tree in a top-down man-
ner for the given input. The tree is created by starting from the root and creating the nodes
of the parse tree in preorder. It uses leftmost derivation.

In the above section, the process of top-down parsing and bottom-up parsing, the dif-
fi culties in design are introduced. Recall that top-down parsing is characterized as a pars-
ing method, which begins with the start symbol, attempts to produce a string of terminals
that is identical to a given source string. This matching process is executed by successively
applying the productions of the grammar to produce substrings from nonterminals. Here
we discuss several ways of performing top-down parsing.

The type of grammar that is used in parser construction is context free grammar. Empty
productions (ε - rules) are also allowed with grammar.

Top-down parsers are broadly classifi ed into two categories based on the design meth-
odology used—with full backtracking and without backtracking. With full backtracking we
have the Brute Force Technique.

4.4.1 Brute Force Technique
Top-down parsing with full backtracking is known as Brute Force Technique. Since it is
top-down parser, it attempts to create the parse tree starting with root and proceeds to chil-
dren. Whenever a nonterminal has more than one alternative, it follows the procedure given
below in choosing the production.

1. Whenever a nonterminal is to be expanded for the fi rst time, always substitute with the
fi rst alternative only, that is, fi rst time, fi rst rule.

2. Even in the newly expanded string the same procedure is repeated, i.e., fi rst time fi rst
alternative only for expansion.

3. This process continues until the nonterminal gets a string of terminals.
4. Once the nonterminal gets the string of terminals, it compares that with the input string;

if both of them match, it announces successful completion. Otherwise, it realizes that that
is not the desired string. So it backtracks and now tries with the second alternative at the
next level. Once all possibilities are exhausted at the lower level, and if too do not match,
then it backtracks to the next level and repeats the same procedure until all combinations
are verifi ed.

132 Syntax Analysis — Top-Down Parsers

As an example of the Brute Force Technique, consider the following grammar and input
string w.

Example 3:
S → r Ad | r B
A → y | z
B → zzd| ddz
String w is: “rddz”

Let us see how the brute force parser works. This is shown in Figure 4.6. Parser starts with
the root symbol S.

The parser replaces S by the fi rst alternative, that is, “rAd.” In the newly expanded
string “rAd,” A is to be replaced for the fi rst time; hence the parser replaces by the fi rst alter-
native only, that is, y. Now we get a string “ryd,” which is not the expected string.

So at the lower level, for A we have already tried the fi rst rule; now it goes with the sec-
ond rule, that is, z. Now we get a string “rzd,” which is not the expected string.

Since all the possibilities with “A” are exhausted, the parser now backtracks and goes
with the fi rst level, that is, S. With “S” all the possibilities with the fi rst alternative are veri-
fi ed; it then backtracks and goes with second alternative rule, that is, “rB.” In the expanded
string, “B” is to be expanded for the fi rst time; hence, it goes with the fi rst alternative only,
that is, “zzd.” It gets a string “rzzd,” which is not the expected string. So it backtracks and
goes with the second alternative, that is, “ddz.”. Then it gets the desired string “rddz.”

The main disadvantages of the Brute Force Technique are:

1. Too much of backtracking is involved; hence, such parsers are dead slow.
2. Error recovery is also diffi cult. Unless all the possibilities are verifi ed, we cannot say any-

thing about any error that could have occurred. Even if there is an error, we cannot say
when exactly the error has occurred.

3. Backtracking is costly.

That is why such parsers are not preferred for practical applications. Practically used parsers
are under the second category, that is, without backtracking. These parsers are even called
predictive parsers.

S S S

dA

y

rdAr

Figure 4.6(a) Brute Force Parser

 Predictive Parsers 133

4.5 Predictive Parsers
A predictive parser is capable of predicting the right choice for expanding a nonterminal.
Given a grammar and input string, to design a predictive parser, there is a restriction on
the grammar. The restriction is: The grammar should be free of left recursion and should
be left factored. A predictive parser tries to predict which production produces the least
chances of a backtracking and infi nite looping. Predictive parsing relies on information
about what fi rst symbols can be generated from a production. If the fi rst symbols of a
production can be a nonterminal, then the nonterminal has to be expanded till we get a
set of terminals.

Figure 4.6(b) Brute Force Parser

S

Ar d

z

Figure 4.6(c) Brute Force Parser

S

r B r B r B

zdddzz

S S

134 Syntax Analysis — Top-Down Parsers

There are two types of predictive parsers.

1. Recursive descent parser
2. Nonrecursive descent parser

The simplest is the recursive descent parser.

4.5.1 Recursive Descent Parser
The top-down parsing method given in the previous section is very general but can be very
time consuming. A more effi cient (but less general) method is recursive descent parsing. One
of the most straightforward forms of top-down parsing is recursive descent parsing.

Recursive descent parsing is writing recursive procedures for each nonterminal. This is
a top-down process in which the parser attempts to verify whether the syntax of the input
string is correct as it is read from left to right. A top-down parser always expands a nonter-
minal by the right hand side of the rule at any time until it gets a string of terminals. The
parser actually reads input characters from the input stream, symbol by symbol from left
to right, and matching them with terminals from the grammar that describes the syntax of
the input. Our recursive descent parsers will read one character at a time and advance the
input pointer when the proper match occurs. The routine presented in the following fi gures
accomplishes this matching and reading process.

Recursive descent parser actually performs a depth-fi rst search of the derivation tree for
the string being parsed; hence, the name “descent.” It uses a collection of recursive proce-
dures; hence, the name “recursive descent.”

As our fi rst example, consider the following simple grammar:

Example 4:
S → a + A
A → (S)
A → a

 and the derivation tree for the expression a + (a + a) is shown in Figure 4.7.

Figure 4.7 Derivation Tree for a + (a + a)

a

A

S

A+

S

a

a +

()

 Predictive Parsers 135

A recursive descent parser is a top-down parser and the parser works starting with the
start symbol. Hence, it traverses the tree by fi rst calling a procedure “S.” This procedure “S”
reads the symbol “a” and “+” and then calls a procedure “A.”

Let the token to be read in the input stream be next_token. The function match() is match-
ing the next token in the parsing with the current terminal derived in the grammar and advanc-
ing the input pointer, such that next_token points to the next token. match() is effectively a call
to the lexical analyzer to get the next token. This would look like the following routine:

char next_token;
next_token = getchar();
int match(char terminal)
 {if next_token == terminal then next_token = getchar();
 else error();
 }

Note that “error” is a procedure that notifi es the user that a syntax error has occurred and
then possibly terminates execution.

S → a +A

For this rule, procedure for “S” is defi ned as follows:

 Procedure S()
 {if next_token == ’a’ {
 match(‘a’);
 match(‘+’);
 A();
 }
 else error();

 }

A → (S) | a
In order to recognize “A,” the parser must decide which of the productions to execute. This
is not diffi cult and is done based on the next input symbol to be recognized. The procedure
can be defi ned as follows:

 Procedure A()
 {if next_token == ’(’ {
 match(‘(’);
 S();
 match(‘)’);
 }
 else
 if next == ’a’ {
 match(‘a’);
 }
 else error();
 }

136 Syntax Analysis — Top-Down Parsers

In the above routine, the parser must decide whether “A” can be (S) or a. If it does not
match these two then the error routine is called; otherwise, the respective symbols are
recognized.

Here both the procedures S() and A() are nonrecursive as the rules defi ned for
that nonterminal are nonrecursive. If the rules are recursive, procedures also become
recursive.

Generally, the grammar is a set of recursive rules. Only because of recursion, with fi nite
rules, we defi ne infi nite sentences. That’s why we say “recursive descent parsing is writing
recursive procedures for each nonterminal.” So, all one needs to write a recursive descent
parser is a nice grammar that is free of left recursion and is left factored.

Note that given a grammar, we can write a recursive descent parser without left factor-
ing the grammar. Then that becomes a recursive descent parser without backtracking. So a
recursive descent parser can be with backtracking or without backtracking. It depends on
the grammar. Remember though it is simple, this is also of restricted use. If the language is
simple, that is, if the grammar is simple, we can choose recursive descent parsing.

Out of all top-down parsers the most widely used parser is the nonrecursive descent
parser, which is also called the LL(1) parser. This does not use any procedures but uses a
table and a stack.

4.5.2 Nonrecursive Descent Parser—LL(1) Parser
It is possible to build a nonrecursive descent parser, also called LL (1) parser, by using a stack
explicitly, rather than implicitly via recursive calls. The key problem in the design of predic-
tive parser is that of determining the right production to be applied for a nonterminal. The
nonrecursive parser looks up the production to be applied in parsing table. We shall see how
the table can be constructed directly from the grammars. This is shown in Figure 4.8.

Figure 4.8 Nonrecursive Descent Parser/LL(1) Parser

Stack

X

Y

Z

$

LL (1) Parser

LL (1) Parsing Table

OUTPUT

a + b $

 Predictive Parsers 137

A table-driven nonrecursive predictive parser uses an input buffer, a stack, a parsing
table, and an output stream. The string to be parsed is read into the input buffer and “$”
is appended at end. “$” is a symbol used as a right-end marker to indicate the end of the
input string. The stack contains a sequence of grammar symbols at any time. Initially “$”
is pushed on to the stack, indicating the bottom of the stack. A top-down parser starts
working by pushing the start symbol of the grammar on to the stack. The parsing table is a
two-dimensional array M [S,a] where “S” is a nonterminal and “a” is a terminal or the input
right end marker “$.”

The parser works as follows: Suppose if “X” is the symbol on the top of the stack and
“a,” the current input symbol. The current symbol pointer by input pointer at any time is
called the look-ahead symbol. Parser always works by comparing the top of the stack ‘X’
with the look-ahead symbol “a.” These two symbols determine the action to be performed
by the parser.
Depending on the top of the stack (grammar symbol) there are three possibilities.

1. If X = = a = = $, that is, when the entire input string is read and by the time the stack
becomes empty, the parser halts and announces successful completion of parsing.

2. If ((X = = a) ! = $), that is, if the top of the stack is a terminal matching with the look ahead
symbol but it is not end of input, then the parser pops X off the stack and advances the
input pointer to the next input symbol.

3. If X is a nonterminal, the parser consults parsing table entry M[X,a]. This parsing
table entry will be either a production of the grammar or blank entry. If, for example,
M[X,a] = {X UVW}, the parser replaces nonterminal X on top of the stack by WVU
(with U on the top). If entry is blank then it is an error.

As output, we shall assume that the parser just prints the production used.
So the parser repeatedly uses step 2 or 3 until it reaches step 1. Coming to the error detec-

tion, in step 2, if the top of the stack is a terminal but does not match with the look ahead,
then it is an error.

Similarly in step 3, when the top of the stack is a nonterminal, the parser refers to the
parsing table for replacing X. If the respective entry in table is a blank entry, it announces
error. Remember blank entries in parsing table indicate errors. If M[X,a] = error, the parser
calls an error recovery routine.

The behavior of the parser can be well understood if we consider input with stack
confi gurations that give the stack contents. Let us understand the LL(1) parsing algorithm
with an example.

4.5.3 Algorithm for LL(1) Parsing
Input: An input string “w” and a parsing table M for grammar G.

Output: If w is in L(G), parse tree for string w; otherwise, an error.

Method: Initially, the parser has $S on the stack with start symbol “S” of Grammar “G” on
top, and w$ in the input buffer.

The program that uses the predictive parsing table M to parse the given input is as
follows:

138 Syntax Analysis — Top-Down Parsers

set the input pointer “iptr” to point to the fi rst look ahead symbol
of w$.
repeat
 let A be the top stack symbol and a the symbol pointed to by iptr.
 if A is a terminal of $ then
 if A == a then
 pop X from the stack and advance iptr
 else error()
 else
 if M[A,a] = A → Y1Y2...Yk then begin
 pop A from the stack;
 push Yk,Yk-1...Y1 onto the stack, with Y1 on top;
 output the production A → Y1Y2...Yk
 end
 else error()
until A = $

Example 5:
Given a grammar and an input string,

E → E + T | T
T → T * F | F
F → (E)|id and string w = ’id+id*id’

Let us understand how an LL(1) parser parses the input using the grammar.
Solution: Given a grammar, to construct LL(1) parser, there is a restriction on grammar. The
grammar should be free of left recursion and should be left factored. So if we eliminate left
recursion resulting grammar is as follows:

E → TE’
E’ → +TE’|e
T → FT’
T’ → *FT’|e
F → (E)|id

Use this grammar and construct the LL(1) parsing table. As we have not discussed the pro-
cedure of LL(1) table construction, let us take the table that is required for understanding the
parsing algorithm. Later we will discuss how to construct such a table.
LL(1) Table for the above grammar is:

Non-Terminal (id + *) $

E E → T E’ E → T E’

E’ E’ → +T E’ E’ → ε E’ → ε
T T → F T’ T → F T’

T’ T’ → ε T’ → *F T’ T’ → ε T’ → ε
F F → (E) F → id

 Predictive Parsers 139

With input string ‘i d + id * id’, the LL(1) parser makes a sequence of moves shown in
Figure 4.9. Initially, the input pointer points to the leftmost symbol.

The output of a parser is a parse tree. The last step in parsing algorithm, that is, step 4
helps in constructing the parse tree. The order in which different nonterminals are used in
parsing is listed in the above table. If we follow that order, that gives us a parse tree.

Given a grammar G to construct nonrecursive predictive parser, that is, LL(1), we use
two functions, First and Follow. These functions allow us to fi ll in the entries of a predic-
tive parsing table for G whenever possible. During panic-mode error recovery, set of tokens
given by the “Follow” set can be used as synchronizing tokens. Let us understand these two
functions now.

4.5.4 First(α), Where α Is Any String of Grammar Symbols
First(α) gives the set of terminals that begin the strings derived from α. If α*⇒ ε or α → ε
then ε is also in First(α).

To compute First(α) for all grammar symbols α, apply the following rules until no more
terminals or e can be added to the First set. ‘α’ is a grammar symbol. Hence, two possibilities
exist. “α” can be a terminal or nonterminal.

1. If α is a terminal, then First(α) is {α}.

Example:
First(+) = {+}, First(*) = {*}, First(id) = {id}

Stack Input Output

$E
$E’ T
$E’ T’ F
$E’ T’ id

$E’ T’
$E’
$E’ T +
$E’ T
$E’ T’ F
$E’ T’ id
$E’ T’
$E’ T’ F*
$E’ T’ F
$E’ T’ id
$E’ T’
$E’
$

id+id*id $
id+id*id $
id+id*id $
id+id*id $

 +id*id $
 +id*id $
 +id*id $
 id*id $
 id*id $
 id*id $
 *id $
 *id $
 id $
 id $
 $
 $
 $

E → TE’
T → FT’
F → id

T’ → ε
E’ → +TE’

T → FT’
F → id

T’ → *FT’

F → id

T’ → ε
E’ → ε

Figure 4.9 Sequence of Moves by the LL(1) Parser while Parsing “id + id * id”

140 Syntax Analysis — Top-Down Parsers

2. If “α” is a nonterminal, two possibilities exist: α may be defi ned with null production or
non null production.

If “α” is a nonterminal
 a. & is defi ned with the null rule, that is, α → ε is a production, then add ‘ε’ to First(α).
 b. If α is a nonterminal and is defi ned with non null production like X → Y1Y2...Yk is a

production, then
 First(X) = First(Y1Y2...Yk) = First (Y1) if Y1 ⇒ ε else
 First(X) = First(Y1) U First (Y2...Yk) if Y1 ⇒ ε

Consider the example

Example 6:
S → a A b
A → cd |ef
Find First(S) and First(A).

Solution: First(S) = First(aAd) = First(a) = {a}
 First(A) = First(cd) ∪ First(ef) =
 First(c) ∪ First(e) = {c,e}

Example 7:
E → TE’
E’ → +TE’|ε
T → FT’
T’ → *FT’|ε
F → (E)|id
Find fi rst of each nonterminal.

Solution: Apply the fi rst function for each nonterminal on the L.H.S. of rule.
First(E) = First(T) = First(F) = First(‘(‘) ∪ First(id) = {(,id}
First(E’) = First(+) ∪ First(ε) = {+, ε}
First(T) = First(E) = {(, id}
First(T’) = First(*) ∪ First(ε) = {*, ε}
First(F) = First(E) = {(, id}

Hence, fi rst of each nonterminal is
First(E) = {(, id}
First(E’) = {+, ε}
First(T) = {(, id}
First(T’) = {*, ε}
First(F) = {(, id}

Example 8:
S → ACB | CbB |Ba
A → da |BC
B → g | ε
C → h | ε

Find fi rst of each nonterminal.

 Predictive Parsers 141

Solution:

First(S) = First(ACB) ∪ First(CbB) ∪ First(Ba)
First(ACB) = First(A) = {d} ∪ First(BC)
 = {d} ∪ First(B) = {d} ∪{g}∪First(C) ……as fi rst(B) contains ε
 = {d,g,h, ε} ….here we add ε as First(A) is ε because of ‘BC’&First(C)&First(B)
also contains ε. Hence add ε in First(ACB) at end.
First(CbB) = First(C) = First(C) is {h, ε}.so add only ‘h’ and apply First on next
symbol ‘b’ i.e First(b) = {b}. Hence
First(CbB) = {h,b}

Similarly,

First(Ba) = First(B) which is {b,ε}. Because of ε continues with a .Hence
First(Ba) = {g,a}
So First(S) = {d,g,h,ε,b,a,}
First(A) = {d,g,h,ε}
First(B) = {g,ε}
First(C) = {h,ε}

First()

S {a,b,d,g,h,ε}
A {d,g,h,ε}
B {g,ε}
C {h,ε}

4.5.5 Follow(A) Where ‘A’ is a Nonterminal
Follow (A), where A is a nonterminal, gives a set of terminals as output. This output set of
terminals may appear immediately to the right of A in some sentential form. If A is the right-
most symbol in some sentential form, then $ is in Follow (A).

To compute the Follow(A) for all nonterminals A, apply the following rules until noth-
ing can be added to any Follow set.

1. If “A” is the start symbol and $ is the input right end marker, then place $ in Follow (A).
2. If there is a production S → a A where is the string of grammar symbols, then First()

except is placed in Follow(A).
3. If there is production S → aA or a production A → aAβ where First (β) contains ε, then

everything in Follow(S) is in Follow(A).

To fi nd the fi rst of nonterminal, we consider the rule that is defi ned for nonterminal. But
for fi nding the follow of nonterminal, search for nonterminal on the right hand side of a
rule.

If any rule contains that nonterminal, use that rule for evaluating Follow ().
Rule 2 says if there are some grammar symbols next to nonterminal A, then fi rst of that

string of grammar symbols is Follow (A).

142 Syntax Analysis — Top-Down Parsers

If follow of string of grammar symbols ends with terminal set, evaluation ends here. If
this fi rst set contains an ε, then rule 2 as well as rule 3 must be applied.

Rule 3 says if there are no symbols next to nonterminal A, that is, if “A” happens to be
rightmost on the right hand side, then the follow of the left hand side nonterminal, that is,
“S” is follow(A).

Consider the following example to understand First and Follow functions.

Example 9:
Find the fi rst and follow of all nonterminals in the Grammar-
E → TE’
E’ → +TE’|ε
T → FT’
T’ → *FT’|ε
F → (E)|id

Solution:
First(E) = {(, id}
First(E’) = {+, ε}
First(T) = {(, id}
First(T’) = {*, ε}
First(F) = {(, id}

Follow(E) = {$} by rule 1
 = {)} by rule 2 on production F → (E) | id
 = {$,)}

Follow(E’) = Follow(E) by rule 3 on production E → T E’
 = {$,)}

Follow(T) = First(E’) by rule 2
 = {+, ε}
 = Follow(E) by rule 3 on production E → T E’
 = {$,)}
 = {+,), $}

Follow(T’) = Follow(T) by rule 3 on production T → F T’
 = {+,), $}

Follow(F) = First(T’) by rule 2
 = {*}
 = Follow(T) by rule 3 on production T → F T’
 = {+,), $}
 = Follow(T’) by rule 3 on production T’ → F T’

 = {+,), $}
 = {+,), *, $}

Follow(E) = Follow(E’) = {),$}
Follow(T) = Follow(T’) = {+,),$}
Follow(F) = {+,*,),$}

 Predictive Parsers 143

Follow()

E {),$}
E’ {),$}
T {+,),$}
T’ {+,),$}
F {+,*,),$}

For example, by rule 3 First(E) = First(T) and First(T) = First(F); But First(F) is given by { id,
(} because First(id) = (id) and First(‘(‘) = {(} by rule 1.

To compute Follow, we add $ in Follow (E) by rule 1 as E is start symbol.By rule 2
applied to production F (E), right parenthesis is also in Follow (E). By rule 3 applied to
production E TE’, $ and right parenthesis are in Follow (E’).

Example 10:
S → aABb
A → c | ε
B → d| ε

Find the Follow of each nonterminal.

Solution:
Follow(S) = {$} by rule 1.
Follow(A) = First(Bb) by rule 2
 = {d, b} as First(B) contains ε continues with b in ‘Bb’
 = {d,b}
Follow(B) = {b} by rule 2

Follow()

S {$}
A {d,b}
B {b}

Example 11:
S → aBD h
B → c C
C → b C | ε
D → EF
E → g | ε
F → f| ε
Find Follow of each nonterminal.

Solution:
Follow(S) = {$} by rule 1.
Follow(B) = First(Dh)
First(D) = First(EF) since D → EF
First(E) = {g,ε}
since First(E) contains ε so continue with F for First(EF).

144 Syntax Analysis — Top-Down Parsers

First(EF) = {g,f,ε} since this set contains ε
First(Dh) = {g,f,h}

Follow(C) = Follow(B) = {g,f,h}
Follow(D) = First(h) = {h}
Follow(E) = First(F) = {f, ε} since there is ε, apply rule 3
 = {f} ∪ Follow(D) = {f,h}
Follow(F) = Follow(D) by rule 3
 = {h}
Hence

Follow()

S {$}
B {g,f,h}
C {g,f,h}
D {h}
E {f,h}
F {h}

Now let us see how to make use of these two functions in constructing the parsing table.

4.6 Construction of Predictive Parsing Tables
Given a grammar to construct LL(1) parsing table, use the following procedure:

The rows in the table are given by nonterminals and columns in the table are given
by terminals. For each nonterminal “A” there is a row “A” defi ned in the parsing table.
So the number of rows is equal to the number of nonterminals. Coming to the columns,
for each terminals, there a column defi ned in the parsing table and one extra column for
$, which is the input right-end marker. So the number of columns is equal to the number
of terminals +1. Construction of table mainly deals with determining the position of each
rule in the table. For each rule S → a, place the rule in the row given by the left hand
side nonterminal that is, S. So here without applying any procedure, we can determine
in which row a rule is to be placed. The only information that needs to be determined
is column information. For getting that information, we use fi rst and follow function as
follows.

For any grammar G, the following algorithm can be used to construct the predictive
parsing table. The algorithm is:

Input: Grammar G

Output: Parsing table M

Method

1. For each production S → a of the grammar, perform steps 2 and 3.
2. For each terminal a in First (a), add S → a, to M[S,a].

 LL(1) Grammar 145

3. If ‘ε’ is in First (a), add S → a to M[S,b] for each terminal b in Follow(S). If ‘ε’ is in First (a)
and $ is in Follow(S), add S → a to M[S,$].

The above algorithm can be applied to any grammar G to produce a parsing table M. If
G is left recursive or ambiguous, then there will be at least one multiply-defi ned entry in the
parsing table M. All undefi ned entries in symbol table are error entries.

4.7 LL(1) Grammar
When a predictive parsing table is constructed, if it doesn’t contain multiple entries, then
such grammars are said to be LL(1) grammars. Any grammar that is LL(1), is an unambigu-
ous grammar and does not have left recursion. Suppose the grammar has multiple-defi ned
entries; then to convert it to LL(1), fi rst eliminate left recursion and left factor it. This may
not convert all CFGs to LL(1) as there are some grammars that will not give an LL(1) gram-
mar after any kind of alteration. In general, there is no universal rule to convert multiple-
defi ned entries into single-valued entries without affecting the language recognized by the
parser.

Example 12:
Construct LL(1) parsing table for the following grammar.
S → a | (T)
T → T, S | S

Solution: First ensure that the grammar is free of left recursion and left factored. As there is
left recursion, fi rst eliminate left recursion.

S → a | (T)
T → S T’
T’ → , S T’ | ε

Find First and Follow sets

First(S) = {a,(}
First (T) = First(S) = {a, (}
First (T’) = {, , ε}
Follow(S) = {$}
Follow (T) = {)}
Follow (T’) = {)}

The LL(1) table is given by

Place S → a in row S and column fi rst(a) = a
Place S → (T) in row S and column fi rst((T)) = (
Place T → S T’ in row T and column fi rst(S) = {a,(}
Place T’ → ,S T’ in row T’ and column fi rst (,S T’) = {,}
Place T’ → ε in row T’ and column Follow(T’) = {)}

146 Syntax Analysis — Top-Down Parsers

A , () $

S S → a S → (T)

T T → S T’ T → S T’

T’ T’ → ,S T’ T’ → ε

Example 13:
Consider the grammar

S → a B C d | d C B e
B → b B | ε
C → c a | a c | ε

a. Compute the First sets and Follow sets for each of the nonterminals in the grammar.
b. Construct a recursive decent parser in C for the grammar. You may assume that functions

match() and error() are already available and global variable token is used to store the
current token read by function match().

c. Construct an LL(1) parsing table for the grammar.

Solution: a. FIRST(S) = {a, d}, FIRST(B) = {b, d}, FIRST(C) = {a, c, d}. FOLLOW(S) = {$},
FOLLOW(B) = {a, c, d, e}, FOLLOW(C) = {b, d, e}.

b.

void S() {
 switch(token) {
 case a: match(a); B(); C(); match(d); break;
 case d: match(d); C(); B(); match(e); break;
 default: error();
 }
 }
 void B() {
 switch(token) {
 case b: match(b); B(); break;
 case a: case c: case d: case e: break;
 default: error();
 }
 }
 void C() {
 switch(token) {
 case c: match(c); match(a); break;
 case a: match(a); match(c); break;
 case b: case d: case e: break;
 default: error();
}
}

 LL(1) Grammar 147

c. The parsing table is as follows:

a b c d e $

S S → a B Cd S → d C Be

B B → ε B → b B B → ε B → ε B → ε

C C → a c C → ε C → ca C → ε C → ε

Example 14:
Construct LL(1) parsing table.

E → TE’
E’ → +TE’ | ε
T → FT’
T’ → *F T’ | ε
F → (E)|id

Solution: We have discussed fi rst and follow sets for this grammar in Sections 4.5.4 and
4.5.5.

First() Follow()

E {(, id} {),$}
E’ {+, ε} {),$}
T {(, id} {+,),$}
T’ {*, ε} {+,),$}
F {(, id} {+,*,),$}

To construct LL(1) table, there has to be fi ve rows since there are fi ve nonterminals.

In the row E, place E → TE’ in the column given by First(TE’) = {(, id}
In the row E’, place E’ → +TE’ in the column given by First(+TE’) = {+}
In the row E’, place E’ → ε in the column given by Follow(E’) = {),$}
In the row T, place T → FT’ in the column given by First (FT’) = {(, id}
In the row T’, place T’ → *F T’ in the column given by First (*F T’) = {*}
In the row T’, place T’ → ε in the column given by Follow(T’) = {+,),$}
In the row F, place F → (E) in the column given by First ((E)) = {(}
In the row F, place F → id in the column given by First (id) = {id}
LL(1) Table for the above grammar is:

Non-Terminal (id + *) $

E E → T E’ E → T E’

E’ E’ → +T E’ E’ → ε E’ → ε
T T → F T’ T → F T’

T’ T’ → ε T’ → *F T’ T’ → ε T’ → ε
F F → (E) F → id

148 Syntax Analysis — Top-Down Parsers

Example 15:
Check whether the following grammar is LL(1) or not.

 S → aSbS | bSaS | ε
Solution: First construct the LL(1) table, then check for multiple entries.

To construct LL(1) table, there has to be only one row since there is only one
nonterminal.
In the row S, place S → aSbS in the column given by First(aSbS) = {a}
In the row S, place S → bSaS in the column given by First (bSaS) = {b}
In the row S, place S → ε in the column given by Follow(S) = {a,b,$}

So table is

a b $

S S → aSbS
S → ε

S → bSaS
S → ε

S → ε

As there are multiple entries in table at a and b, the grammar is not LL(1). In fact the gram-
mar is ambiguous grammar; hence, is not LL(1).

Example 16:
Check whether the following grammar is LL(1) or not.

S → AaAb | BbBa
A → ε
B → ε

Solution: First construct the LL (1) table, then check for multiple entries.
 To construct LL (1) table, there are three rows as there are three nonterminals.
 In the row S, place S → AaAb in the column given by First(AaAb) = {a} and place

S → BbBa in column given by First (BbBa) = {b}.
 In the row A, place A → ε in the column given by Follow (A) = {a,b}
 In the row B, place B → ε in the column given by Follow (B) = {b,a}

So the table is

a b $

S S → AaAb S → BbBa

A A → ε A → ε
B B → ε B → ε

As there are no multiple entries in table, the grammar is LL(1).
This method is an effi cient one and eliminates backtracking but it has some limitations like

 � Framing an unambiguous grammar for all possible constructs in the source language.
 � Left recursion elimination and left factoring are simple to apply but they make the result-

ing grammar complex.

It is always better to use a predictive parser for control structures and use operator prec-
edence for expression. However, if an LR parser generator is available, it is better choice as
it would provide the benefi ts of predictive parsing and operator precedence automatically.

 LL(1) Grammar 149

An LL(1) grammar indicates that grammar is suitable for LL(1) parser construction, that
is, if LL(1) table is constructed there will not be any multiple entries. So there is no confusion
for the parser. But given a grammar to check whether the grammar is LL(1) or not do we
have to construct the complete table?

No not required. Without constructing the table also we can check the possibility of
multiple entries as follows.

If every nonterminal in grammar is defi ned with one rule then there is no problem of
multiple entries because the rule is one, in worst case placed under every column. But the
possibility of multiple entry exists if each nonterminal is defi ned with more than one rule
like A → a1 | a2 as both rules are to be placed in the same row A. So this can be stated as a
rule as follows.

Rule 1:
A grammar without ε rules is LL(1) if for each production of the form
A → α1 | α2 | α3 | α4………… | αn, First(α1), First(α2), First(α3), First(α4),..are pair-
wise mutually disjoint.

i.e. First(αi) ∩ First(αk) = Ø for i ≠ k

Rule 2:
A grammar with ε rules is LL(1) if for each production of the form
A → α | ε, First(α) and Follow(A) must be mutually disjoint.

i.e. First(α) ∩ Follow(A) = Ø

Let us look at why left recursion is not preferred by LL(1) parsers.

For example, let us check A → Aα | β is LL(1). Assume α, β to be terminals.

If it is LL (1), condition to be satisfi ed is

First(Αα) ∩ First (β) = Ø

But First (Aα) contains β. So this condition can never be true.

Grammar is not LL(1).This can be generalized.

Rule 3:
Left recursive grammar cannot be LL(1).

Example 17:
Check whether the following grammar is LL(1) or not.

 S → A | a, A → a

Solution: If this is LL(1), condition to be satisfi ed is, First(A) ∩ First (a) = Ø.
But First(A) = {a} so condition is not satisfi ed. In fact, the given grammar is ambiguous

grammar. For string “a,” we get two parse trees. If grammar is ambiguous, condition will
not be satisfi ed.

Rule 4:
Ambiguous grammar cannot be LL(1).

150 Syntax Analysis — Top-Down Parsers

Example 18:
Check whether the following grammar is LL(1) or not.

 S → A#; A → Bb | Cd; B → aB | ε; C → cC | ε
Solution:
As “S” is defi ned with one rule, there is no danger of multiple entries in row S.
For row A, First(Bb) ∩ First(Cd) = Ø
 {a,b} ∩ {c,d} = Ø Condition satisfi ed so no problem.
For row B, First(aB) ∩ Follow(B) = Ø
 {a} ∩ {b} = Ø Condition satisfi ed so no problem.
For row C, First(cC) ∩ Follow(C) = Ø
 {c} ∩ {d} = Ø Condition satisfi ed so no problem.
Since condition is satisfi ed in each row, there are no multiple entries. Hence, grammar is
LL(1).

Example 19:
Check whether the following grammar is LL(1) or not.

 S → aSA | ∈
 A → c | ∈
Solution: For row S condition to be satisfi ed is First(aSA) ∩ Follow(S) = Ø
 i.e. {a} ∩ {$,First(A)} = Ø
 {a} ∩ {$,c} = Ø … satisfi ed.

 For row A condition to be satisfi ed is First(c) ∩ Follow(A) = Ø
 i.e. {c} ∩ {Follow(S)} = Ø
 {c} ∩ {$,c} ≠ Ø … is not satisfi ed.

A grammar in which every alternative production for a rule starts with a different terminal is called
simple grammar or S-Grammar. S-Grammar is suitable for LL(1).

For example,

S → aA |bB |cC A → dD|eE B → fF|gG C → hH|kK is a S-grammar.

4.8 Error Recovery in Predictive Parsing
An error is detected during predictive parsing in two ways. One is when the terminal on top
of the stack does not match with the next input symbol. Second is when nonterminal A is on
top of the stack, “a” is the next input symbol, and the parsing table entry M[A,a] is empty.
There are various techniques that can be applied when such an error occurs. One simple
method that is discussed is panic mode error recovery.

Panic Mode Error Recovery
In this technique, either skip symbols on the input or ignore the top symbol from the stack
until a synchronizing set of tokens appear on both input and stack top. The set should be
chosen so that the parser recovers quickly from errors that are likely to occur in practice. The
following are some heuristics that can be applied.

1. We can place all the symbols in Follow(A) into the synchronizing set for nonterminal A.
If an error occurs, then skip the tokens until an element of Follow(A) is seen; then pop the
top element from the stack to continue the parsing.

 Error Recovery in Predictive Parsing 151

2. Sometimes it may not be suffi cient to add the Follow(A) as the synchronizing set for A.
For example, if “;” terminate statements, as in C, then keywords that begin statements
may not appear in the Follow set of the nonterminal generating expressions. A missing
semicolon after an assignment may therefore result in the keyword beginning the next
statement being discarded. In general, any programming language specifi es the hierar-
chical structure on constructs; where expressions appear within statements, statements
appear within blocks and so on. We can add the symbols that begin the higher constructs
to the synchronizing set of a lower construct; Where expressions may occur within state-
ments, statements may occur within blocks and so on. We can add to the synchronizing
set of a lower construct symbols that begin the higher constructs.

3. Parsing can be resumed if symbols of First(A) are added to synchronizing set for A based
on A is a symbol in First(A) appears in the input.

4. If an empty string can be derived from a nonterminal, then use this as the default option.
By using this option, the error may be missed or may be postponed to some other point.
This approach reduces the number of nonterminals that have to be considered during
error recovery.

5. If the terminal on top of the stack cannot be matched, a simple solution is to pop the ter-
minal and issue a message saying extra terminal and continue parsing.

Let us take an example.

Example 20:
Consider error recovery with input string “+id*+id$”.
To parse this we need LL(1) table for arithmetic expressions given by grammar

 E → TE’
 E’ → +TE’|e
 T → FT’
 T’ → *FT’|e
 F → (E)|id

Solution:
Take the LL(1) table constructed in Example 13.
Let us use the above heuristics in a simple way with parsing algorithm as follows:

1. Add “synch” (as synchronizing set of symbol) to Follow (E) except for those whose fi rst(E)
has ε.

2. When parser looks up entry in table M, if entry is blank then input symbol is skipped.
3. If entry is synch, then the terminal on top of the stack is popped.
4. If terminal on top of the stack does not match, pop the stack.

Non-Terminal (Id + *) $
E E → T E’ E → T E’ e1 e1 synch synch
E’ E’ → +T E’ E’ → ε E’ → ε
T T → F T’ T → F T’ synch synch synch
T’ T’ → ε T’ → *F T’ T’ → ε T’ → ε
F F → (E) F → id synch synch synch synch

152 Syntax Analysis — Top-Down Parsers

Synch is added in Follow (E), Follow(T) and Follow(F) as fi rst of this nonterminals do
not have ε.

With input string “+ id * + id,” LL(1) parser makes sequence of moves shown in
Figure 4.10. Initially input pointer points to the leftmost symbol.

Solved Problems

1. Find fi rst () and follow () for each terminal.

S → ABCDE; A → a | ε; B → b |ε: C → c | ε; D → d | ε; E → e | ε

Solution: First(S) = First(ABCDE) = First(A) = {a,ε}
 Since fi rst(A) has ε, First(ABCDE) = {a} ∪ First(BCDE)
 First(BCDE) = First(B) = {b,ε}
 Since fi rst(B) has ε, First(ABCDE) = {a,b} ∪ First(CDE)
 First(CDE) = First(C) = {c,ε}
 Since fi rst(C) has ε, First(ABCDE) = {a,b,c} ∪ First(DE)
 First(DE) = First(D) = {d,ε}
 Since fi rst(D) has ε, First(ABCDE) = {a,b,c,d} ∪ First(E)
 First(E) = {e,ε}
 Since fi rst(E) has ε, First(ABCDE) = {a,b,c,d,e,ε}

Stack Input Output Action taken

$E
$E
$ E’ T
$E’ T’ F
$E’ T’ id
$E’ T’
$E’ T’ F*
$E’ T’ F
$E’ T’
$E’
$E’ T +
$E’ T
$E’ T’ F
$E’ T’ id
$E’ T’
$E’
$

+id*+id $
id*+id $
id*+id $
id*+id $

*+id $
*+id $
*+id $

 +id $
 +id $

 +id $
 + id $
 id $
 id $
 id $
 $
 $
 $

E → TE’
T → FT’
F → id
T’ → *FT’
T’ → ε
E’ → +T E’
T → FT’
F → id
T’ → ε
E’ → ε

e1- skip input, issue error msg
push TE’
push FT’
push id
pop id
push *FT’
pop *
pop non terminal F
erase T’
Push +T E’
Pop +
push FT’
push id
pop id
Erase T’
Erase E’
Successful Completion

Figure 4.10 Sequence of moves by LL(1) Parser while parsing “+ id * + id”

 Solved Problems 153

So First()

S {a,b,c,d,e,ε}
A {a,ε}
B {b,ε}
C {c,ε}
D {d,ε}
E {e,ε}

Follow(S) = {$} by rule 1.
Follow(A) = First(BCDE) by rule 2
 = {b,c,d,e,ε} .
As First set contains ε, apply rule 3 also. Add all symbols except ε to Follow(A).
So Follow(A) = {b,c,d,e} ∪ Follow(S) = {b,c,d,e,$}

Follow(B) = First(CDE) by rule 2
 = {c,d,e,ε} .
As First set contains ε, apply rule 3 also. Add all symbols except ε to Follow(B).
So Follow(B) = {c,d,e} ∪ Follow(S) = {c,d,e,$}

Follow(C) = First(DE) by rule 2
 = {d,e,ε} .
As First set contains ε, apply rule 3 also. Add all symbols except ε to Follow(C).
So Follow(C) = {d,e} ∪ Follow(S) = {d,e,$}

Follow(D) = First(E) by rule 2
 = {e,ε} .

As First set contains ε, apply rule 3 also. Add all symbols except ε to Follow(D).
So Follow(D) = {e} ∪ Follow(S) = {e,$}

Follow(E) = Follow(S) = {$]

So Follow()

S {$}
A {b,c,d,e,$}
B {c,d,e,$}
C {d,e,$}
D {e,$}
E {$}

2. Compute First and Follow for each nonterminal and LL(1) table.
E → a A | (E)
A → + E | * E | ε

Solution: First (E) = {a, (}
First(A) = {+, *,ε}
Follow(E) = {$,)} by rule 1 & rule 2.
Follow(A) = Follow(E) = {$,)}

To construct LL(1) table, rows are two as there are two nonterminals.
In the row E, place E → a A in the column given by First(aA) = {a}

154 Syntax Analysis — Top-Down Parsers

In the row E, place E → (E) in the column given by First((E)) = {(}
In the row A, place A → + E in the column given by First(+ E) = {+}
In the row A, place A → * E in the column given by First(* E) = {*}
In the row A, place A → ε in the column given by Follow(A) = {),$}

Now LL(1) table is

a + * () $

E E → a A E → (E)

A A → + E A → * E A → ε A → ε

3. Build an LL(1) parser for the following grammar
1. Program → begin d semi X end
2. X → d semi X | S Y
3. Y → semi S Y | ε

Solution: Place rule(1) in row ‘Program’ and column First(begin) = begin
Place rule(2) in row ‘X’ and column First(d) = d
Place rule(3) in row ‘Y’ and column First(semi) = semi
In parsing table let us place production numbers.

begin d semi S end $

Program 1

X 2 3

Y 4 5

4. Construct LL(1) parsing table.
S → qABC
A → a | bbD
B → a|ε
C → b|ε
D → c|ε

Solution: First fi nd fi rst and follow sets of each nonterminal.

 First() Follow()

S {q} {$}
A {a,b} {a,b,$}
B {a,ε} {b,$}
C {b,ε} {$}
D {c,ε} {a,b,$}

The LL(1) table is

q a b c $

S S → qABC

A A → a A → bbD

 Solved Problems 155

B B → a B → ε B → ε
C C → b C → ε
D D → ε D → ε D → c D → ε

As there are no multiple entries, the grammar is LL(1);

5. Construct LL(1) parsing table.
S → A, A → a B | Ad, B → bBC | f, C → g.

Solution: The given grammar is left recursive. So fi rst eliminate left recursion. The
resulting grammar is as follows:

S → A, A → a B A’, A’ → d A’ | ε, B → bBC | f, C → g.

Now fi nd fi rst and follow functions.
 First() Follow()

S {a} {$}
A {a} {$}
A’ {d,ε} {$}
B {b,f} {d,g,$}
C {g} {d,g,$}

The LL(1) table is

a b d f g $

S S → A

A A → a B A’

A’ A’ → d A’ A’ → ε
B B → bBC B → f

C C → g

6. Check whether the following grammar is LL(1) or not. If it is not LL(1) where do you
fi nd multiple entries in parsing table?

S → AB | C, A → Bb | Cd, B → aB, C → ad

Solution: For grammar to be LL(1)
For row S, condition to be satisfi ed is ---- First(AB) ∩ First(C) = Ø
 {a} ∩ {a} ≠ Ø ..condition is not satisfi ed
The multiple entries would be S → AB, S → C.
For row A, condition to be satisfi ed is ---- First(Bb) ∩ First(Cd) = Ø
 {a} ∩ {a} ≠ Ø condition is not satisfi ed. Hence grammar is not LL(1). We get multiple
entries in the row A under the column “a”;
The multiple entries would be A → Bb, A → Cd.
Anyway nonterminal C is defi ned with one rule. Hence, no multiple entries in row C.

156 Syntax Analysis — Top-Down Parsers

7. Consider the grammar
 S → a B C d | d C B e
 B → b B | ε
 C → c a | a c | ε

a. What are the terminals, nonterminals, and the start symbol for the grammar?
b. Give the parse tree for the input string abbcad.
c. Compute the First sets and Follow sets for each of the nonterminals in the grammar.

Solution:

a. terminals: {a, b, c, d, e}, nonterminals: {S, B, C}, start symbol: S.
b.

S

a C d

b c a

b B

B

B

ε

c. FIRST(S) = {a, d}, FIRST(B) = {b, ε}, FIRST(C) = {a, c, ε}.
FOLLOW(S) = {$}, FOLLOW(B) = {a, c, d, e}, FOLLOW(C) = {b, d, e}.

8. Construct a recursive decent parser in C for the grammar in problem 7.

Solution: Assume that functions match() and error() are already available and the
global variable token is used to store the current token read by function match().

 void S() {
 switch(token) {
 case a: match(a); B(); C(); match(d); break;
 case d: match(d); C(); B(); match(e); break;
 default: error();
 }
 }
 void C() {
 switch(token) {
 case c: match(c); match(a); break;
 case a: match(a); match(c); break;
 case b: case d: case e: break;
 default: error();
 }
 }

 Summary 157

 9. Construct an LL(1) parsing table for the grammar in problem 7.

Solution:

a b c d e $

S S → a B C d S → d C B e

B B → ε B → b B B → ε B → ε B → ε
C C → a c C → ε C → c a C → ε C → ε

10. Consider the following grammar:
S → ScB | B
B → e | efg| efCg
C → SdC | S
Give an LL(1) grammar that generates the same lanuage.
First, eliminate left-recrsion:
S → BS’
S’ → cBS | ε
B → e | efg| efCg
C → SdC | S
Then, eliminate common prefi xes by left-recrsion:
S → BS’
S’ → cBS’ | ε
B → eB’
B’ → ε |f B”
B” → g |C g
C → SC’
C’ → dC | ε

Summary
 � The process of verifying whether an input string matches the grammar of the language

is called parsing.
 � The output of a parser is a parse tree for the set of tokens produced by the lexical analyzer.
 � Parsers are broadly classified into two categories––Top-down parser or bottom-up parser

based on the way the parse tree is constructed.
 � Top-down parsers are simple to construct.
 � Top-down parsing involves generating the string starting from the start symbol repeat-

edly applying production rules for each nonterminal until we get a set of terminals.
 � Top-down parsers are broadly classified into two categories based on the design method-

ology used, with full backtracking and without backtracking. With full backtracking, we
have Brute Force Technique.

 � Brute Force Technique is not preferred practically because it is very slow.
 � A predictive parser tries to predict which production produces the least chances of a

backtracking and infinite looping.

158 Syntax Analysis — Top-Down Parsers

 � The advantage of eliminating left recursion is it avoids parser going into infinite loop.
 � The advantage of left factoring is it avoids backtracking.
 � Recursive descent parsing is writing recursive procedures for each nonterminal.
 � Out of all top-down parsers the most widely used parser is nonrecursive descent parser,

which is also called LL(1) parser. This does not use any procedures but uses a table and
a stack.

 � First (α) gives the set of terminals that begin the strings derived from α.
 � Follow (A), for nonterminals A, gives a set of terminals that can appear immediately to

the right of A in some sentential form.
 � A grammar whose parsing table has no multiply defined entries is said to be LL(1)

grammar.

Fill in the Blanks
 1. In LL(1), First L indicates _______.
 2. In LL(1), Second L indicates _______.
 3. In LL(1), “1” indicates _______.
 4. The requirements for LL(1) parser is _______.
 5. Is LL(1) parser a top-down parser or bottom-up parser? _______
 6. Can every unambiguous grammar be parsed by LL(1)? Yes/No
 7. The number of procedures to be defi ned in recursive descent parser is _______.
 8. The advantage of eliminating left recursion is _______.
 9. The advantage of left factoring is _______.
 10. For A → A α | β, equivalent grammar without left recursion is _______.
 11. Left factor the grammar A → α β 1 | α β 2 | α β 3
 12. Is every LL(1) unambiguous? Yes/No._______
 13. Is left factoring compulsory in designing recursive descent parser? Yes/No_______
 14. _______is the advantage of recursive descent parser.
 15. _______is the disadvantage of recursive descent parser.
 16. Are the procedures in recursive descent parser recursive or nonrecursive?_______
 17. Can we design a recursive descent parser with ambiguous grammar? Yes/No

Objective Question Bank
 1. The Grammar A → AA | (A) | ε is not suitable for predictive parsing because, the

grammar is
 (a) ambiguous (b) left recursive (c) right recursive (d) None

 2. Which of the following derivation does a top-down parser use while parsing an
input string? The input is assumed to be in LR order.

 (a) LMD (b) Leftmost traced out in reverse
 (c) RMD (d) Rightmost traced out in reverse

 3. Consider the grammar shown below

 Objective Question Bank 159

 S → iEtSS’ | a
 S’ → eS | ε
 E → b

 In LL(1) table M of this grammar, the entries M[S’,e] and M[S’, $] are
 (a) S’ → eS & S’ → ε
 (b) S’ → eS &{}
 (c) S’ → ε & S’ → ε
 (d) {S’ → eS & S’ → ε} & S’ → ε

 4. Consider the grammar shown below
 S → FR, R → *S | ε, F → id
 In LL (1) table M of this grammar, the entries M[S, id] and M[R, $] are
 (a) S → FR, R → ε (b) S → FR & {}
 (c) S → FR & R → *S (d) F → id, R → ε

 5. Which of the following suffi ces to convert an arbitrary CFG to an LL(1) Grammar?
 (a) Removing left recursion alone
 (b) Factoring grammar alone
 (c) Removing left recursion and factoring the grammar
 (d) None

 6. Consider the following grammar over the alphabet {b, g, h, i}:
 A → B C D
 B → b B | ε
 C → C g | g | C h | i
 D → A B | ε

 Find follow(C)
 (a) {$,g,b,i}
 (b) {$,g,b}
 (c) {$,g,b,i,h}
 (d) None

 7. Consider the following grammar:
 S → ScB | B
 B → e | efg | efCg
 C → SdC | S

 Give an LL(1) grammar that generates the same language.
 (a) S → B S’ (b) S → B S’ (c) S → B S’ (d) none
 S’ → c B S’ | ε S’ → c B S’ | ε S’ → c B S’| ε
 B → e B’ B → e B’ B → e B’’
 B’ → ε | f B’’ B’ → ε | f B’’ B’ → ε | f B’’
 B’’ → g | C g B’’ → g | C g B’’ → g | C g
 C → S C’ C → S C’ C → d C | ε
 C’ → d C | ε

160 Syntax Analysis — Top-Down Parsers

 8. The following grammar is
 A → A x B
 | x
 B → x B
 | x
 (a) unambiguous (b) left recursive (c) right recursive (d) ambiguous

 9. Eliminate left recursion from the following grammar:
 A → Bd
 | Aff
 | CB
 B → Bd
 | Bf
 | df
 C → h
 | g

 (a) A → Bd AI | CB AI (b) A → Bd AI | CB AI

 A1 → ff AI |ε A → ff AI |ε
 B → df BI B → df BI

 B1 → d BI |fBI|ε BI → d BI |fBI|ε
 C → h C → h
 | g | g

 (c) A → Bd AI | CB AI (d) A → Bd AI | CB
 AI → ff AI AI → ff AI |ε
 B → df BI B → df BI

 BI → d BI |fBI BI → d BI |fBI|ε
 C → h C → h
 | g | g

 10. Give the Follow set for the nonterminal E in the grammar.
 EI → E
 E → num
 E → (+ A)
 A → A A
 A → E

 (a) {num, (,)} (b) {(,), num, $}
 (c) {(, num, $} (d) {), num, $}

 11. Give the Follow of B in the following grammar:
A → B C D
B → w
 | B x
C → y C z
 | m
D → D B
 | a

 Exercises 161

 (a) {x, y, m, $} (b) {x, y, w, $}
 (c) {x, w, m, $} (d) {x, y, m, w, $}

Exercises
1. Construct a recursive descent parser to parse the string “w” for the given grammar “G”

 a. w = id*id+id & grammar is E → E + T | T T → T * F | F F → id | (E)
 b. w = id+ id*id & grammar is E → E + T | T T → T F | F F → F * | a | b
 c. w = bdc & grammar is S → Aa | bAc | dc | bda A → d

2. Eliminate left recursion in the following grammar.

 S → aAb; S → Ac | Sd | ε

3. Eliminate left recursion in G.

 S → aAcBe; A → Ab | b; B → d

4. Eliminate left recursion in G.

 S → L; L | L; L → LB | B; B → 0 | 1

5. Eliminate left recursion in

 A → b | Bd; B → Bc | Ac

6. Left factor the grammar

 S → iE tS | a | iE SeS. E → b

7. Left factor the grammar

 S → aAd | aB
 A → b | c; B → ccd |ddc

8. Consider the following grammar, compute fi rst () and follow () for each terminal.
Check whether the grammar is LL (1).
 S → ACB | CbB| Ba;
 A → da | BC; B → g|e; C → h | ε

9. Consider the following grammar, computer fi rst () and follow () for each terminal.
Check whether the grammar is LL (1).

 S → ABCDE; A → a | ε; B → b |ε; C → c | ε; D → d | ε; E → e | ε

10. Construct LL(1) parsing table and verify whether it is LL (1).

S → ABDh
B → cC
C → bC | ε
D → EF
E → g |e
F → f | ε

162 Syntax Analysis — Top-Down Parsers

11. Construct LL(1) parsing table and verify whether it is LL (1).

 S → AaAb | BaBb is it LL (1)
 A → ε, B → ε

12. Construct LL (1) parsing table and verify whether it is LL (1).

S → a AB | ε
A → 1AC | 0C
B → 0S
C → 1

13. Construct an LL(1) parser to parse the string “w” for the given grammar “G.”

 id+ id*id & grammar is E → E + T | T T → T F | F F → F * | a | b

14. Check whether the following grammar is LL (1).

S → A, A → a B | Ad, B → bBC | f, C → g.

15. Check whether the following grammar is LL (1).

S → a SbS | bSaS | ε

16. Convert the following grammar to unambiguous grammar.
 Check whether the resulting grammar is LL (1).

R → R + R | RR | R * | (R) | a | b

17. Check whether the following grammar is LL (1).

bExpr → bExpr or bterm | bterm
bterm → bterm and bfactor | bfactor
bfactor → not bfactor | (bexpr) true | false.

18. Check whether the above grammar is LL (1).

S → A | a, A → a

19. Check whether the following grammar is LL (1).

S → iE tS S1 | a
S1 → ε | eS
E → b

20. Check whether the following grammar is LL (1).

E → aA | (E)
A → +E | *E | ε

21. Check whether the following grammar is LL (1).

S1 → S#
S → Aa | b | cB | d
A → a A | b
B → cB | d

 Key for Fill in the Blanks 163

22. Check whether the following grammar is LL (1).

S1 → S#
S → AB
A → a | ε
B → b | ε

23. Check whether the following grammar S-Grammar is LL (1).
S → aS | bA; A → ccA | d

24. Check whether the following grammar is LL (1).
S → aB | ε
B → bC | ε
C → cS | ε

25. Check whether the following grammar is LL (1).
S1 → S#
S → aAa | ε
A → abS | c

26. Check whether the following grammar is LL (1).
S1 → A#
A → Bb | Cd
B → aB | ε
C → cC | ε

27. Construct the LL (1) parsing table for following grammar.
Program → begin d semi X end
X → d semi X | s Y
Y → semi s Y | ε

Key for Fill in the Blanks
1. scanning of input from left to right
2. parser uses LMD in deriving the string
3. number of look ahead symbols used in

taking the parsing decisions.
4. Grammar should be free of left recur-

sion and should be left factored.
5. Top-down parser
6. No
7. Generally depends on number of

nonterminals. For every nonterminal
there should be a procedure.

8. Avoids parser going into infi nite loop

 9. Avoids backtracking
10. A → βA′, A′ → αA′ | ε
11. A → a A′, A′ → β 1 | β 2 | β 3
12. Yes
13. No
14. Simple to construct
15. Can be designed for small languages
16. It depends on the production that is

defi ned for the nonterminal. If pro-
duction is recursive then procedure
also will be recursive.

17. No

164 Syntax Analysis — Top-Down Parsers

Key for Objective Question Bank
1. a 2. a 3.d 4. a 5. c 6. c
7. a 8. d 9. a 10. b 11. d

Programming on Parsers
Parsers Code:
1. Write a C program for recursive descent parser for following grammar.

 E → T E’
 E’ → + TE’ | ε
 T → FT’
 T’ → *FT’ | ε
 F → i

 /* Recursive descent parser in C*/
 /* match()- is to match terminal derived from grammar with lookahead */

#include<stdio.h>
#include<conio.h>
void E();
void E’();
void T();
void T’();
void F();
void match(char);
 int fl ag = 1;
char l,t;

main()
{
Printf(“enter input string\n”);
scanf(“%c”,&l);
E();
}

/* Procedure for matching terminal with token */

void match(char t)
{
if(l == t)
scanf(“%c”,&l);
 else
{
 fl ag = 0;

 Programming on Parsers 165

 }
 }
/* Procedure for nonterminal E */

void E()
 {
 T();
 E’ ();
 if((l == ’$’)&&(fl ag ! = 0))
printf(“successful\n”);
else
printf(“unsuccessful\n”);
}

/* Procedure for nonterminal E΄ */

void E’ ()
{
 if(l == ’+’)
 {match(‘+’);
 T();
 E’();
 }
 else return;
}

/* Procedure for nonterminal T */

void T()
{
 F();
 T’ ();
}

/* Procedure for nonterminal T΄ */

void T΄ ()
{
if(l == ’*’)
 {match(‘*’);
 F();
 T’ ();
 }

166 Syntax Analysis — Top-Down Parsers

output:
Enter the input string:
i+i*i$
successful
i**i$
unsuccessful.

2. Design LL(1) parser

Program logic
 � Read LL(1) table and input string to be parsed.
 � Read terminals in array ‘ter’. This is used as columns of LL(1) table.
 � Read non terminals in array ‘nter’ This is used as rows of LL(1) table.
 � Now read table in two dimensional array of strings ‘table’.
 � Use LL(1) parsing algorithm to parse the input string.
 � Whenever top of the stack is a nonterminal, to replace that by corresponding produc-

tion––use two functions get_nt(), get_t() to get row and column in table.
 � Take the production from that row and column, reverse it and push symbol by symbol.

Coding:
/* LL(1) parser in C */

 else return;
}

/* Procedure for nonterminal F */

void F()
{
 match(‘i’);
}

#include<stdio.h>
#include<ctype.h>
#include<string.h>
char table[10][10][10], nter[10],ter[10],inp[20],stack[20];
int nut,nun,i = 0,top = 0;
int get_nter(char);
int get_ter(char);

 Programming on Parsers 167

void replace(char,char);

void main()
{
 int i,j;
 clrscr();

 /* read terminals and nonterminals */

 printf(“Enter number of terminals\n”);
 scanf(“%d”,&nut);
 printf(“Enter number of nonterminals\n”);
 scanf(“%d”,&nun);
 printf(“Enter all non terminals\n”);
 scanf(“%s”,nter);
 printf(“Enter all terminals\n”);
 scanf(“%s”,ter);
 for(i = 0;i<nut;i++) printf(“%c\t”,nter[i]);
 printf(”\n”);
 for(j = 0;j<nun;j++) printf(”%c\t”,t[j]);
 printf(“\n”);

 /* read table */
 for(i = 0;i<nun;i++)
 for(j = 0; j<nut;j++)
 {
 printf(“Enter for %c and %c”,nter[i],ter[j]);
 scanf(”%s”,table[i][j]);
 }

 / * print table */

 for(j = 0;j<nut;j++)
 printf(“\t %c”,ter[j]);
 printf(“\n”);
 for(i = 0;i<nun;i++)
 {
 printf(“%c \t”,nter[i]);
 for(j = 0;j<nut;j++)
 {
 printf(”%s \t”,table[i][j]);
 }
 printf(”\n”);
 }

168 Syntax Analysis — Top-Down Parsers

 /* read input string to parse */

 printf(“Enter the string to parse\n”);
 scanf(“%s”,inp);

 /* use LL(1) algoritm */

 stack[top++] = ’$’;
 stack[top++] = nter[0];
 i = 0;
 while(1)
 {
 if((stack[top-1] == ’$’)&&(inp[i] == ’$’))
 {
 printf(“String accepted\n”);
 return;
 }
 else if(!isupper(stack[top-1]))
 {
 if(stack[top-1] == inp[i])
 {
 i++; top--;
 }
 else
 {
 printf(“error not accepted\n”);
 return;
 }
 }
 else
 {
 replace(stack[top-1],inp[i]);
 }
 }

}

 /* get index of nonterminals in nonterminals array */

int get_nter(char x)
{
 int a;
 for(a = 0;a<nun;a++)
 if(x == nter[a]) return a;

 Programming on Parsers 169

 return 100;
}

/* get index of terminal in terminal array */

int get_ter(char x)
{
 int a;
 for(a = 0;a<nut;a++)
 if(x == ter[a]) return a;
 return 100;
}
void replace(char NT, char T)
{
 int in1,it1,len;
 char str[10];
 in1 = get_nter(NT);
 it1 = get_ter(T);
 if((in1! = 100)&&(it1! = 100))
 {
 strcpy(str,table[in1][it1]);
 if(strcmp(str,”#”) == 0)
 {
 printf(“Error\n”);
 exit();
 }
 if(strcmp(str,”@”) == 0)
 top--;
 else
 {
 top--;
 len = strlen(str);
 len--;
 do
 {
 stack[top++] = str[len--];
 }while(len> = 0);
 }
 }
 else
 {
 printf(”Not valid\n”);
 }
}

170 Syntax Analysis — Top-Down Parsers

Results

INPUT:
Enter number of terminals: 6

Enter number of non terminals: 5

Enter all non terminals: E E’ T T’ F

Enter all terminals: id + * () $

Enter table- # for blank, @ for ε:

 T E’ # # TE’ # #
 # +TE’ # # @ @
 FT’ # # FT’ # #
 # @ *FT’ # @ @
 id # # (E) # #

Enter the string to parse
 id+id*id$
output:
 String accepted

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 0 1 01 0 1 0 0 1 0 0 0 0 0 0 0 000 11 01 011 011 01 01 011 01 0 1 0 01 0 1 0 11 0 1 01 01 0 1 0 1 01 0001 0 0 10 10 10 1 0 1 0 10 10 10 1110 10 1 0 1 0 10 10 10 10 10 10 10 10 10 10 100 0000 000 0 1 0 1 0 1 0 1 0 1 0
1 0 1 11111111111111 0000000 10 10 10 10 110 10 0 10000000 10000 0 00 0 0 10 100 1000 10 100 10 10000 000 0 00 0 10 10 10 10 10 10 11100 10 10 110 10 100 10 10 0 10 10 110 10 100 10 10 10 10 10 100 000 00 00 00 10 10 10 11110 11100 11 0 0 1 0 1 0 1 0 1
0 1111111 01 0 1 1 1 01 0 1 0 1 01111 1 01 0 1 0 1 01 1 011 011 01 01 001 01 01 1 01111 0 111 1 0 1 0 000000 00 1 01 001 0 1 0 1 01 01 01 01 001 01 00 0 01 01 0 1 1 01 00 00000000000 1 01 0 0 0 0 000 0000 0000 1 0 11111 1 0 1 0 1 0 1
000 00 0 000 1 011 01 01 01 0 1 0 1111 0 1 11 0 1 01 0 0 1111 0 1111 1 0 1 01 01 01111 11 01 01 011 01 01 1 1 0 0 10 10 110 100 0 10 1000 0 10 10 110 10 0 10 10000 0 10 10 1111110 110 10 10 100 1 00 10 10 100 1110 11110 10 0000000 0 1000000000000 0 1 0 1 0 1 0
0000 0 0 0 11 1 1 0 11 11 01 11 1 01 01 0 1 01 0 1 0 1 00000 1 01 01 01 0 1 0 1 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 0 1 0 1 01 01 01 0 1 01 01 0 1 01 011 0011 1111 0 1 0 0 0 0 01111 01 01111 0 000000000 10 0000000 0 1 0 1 0 1 0
0 0 0 0 000000 11 111 0 1 1 0 11 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

11111 0 10 10 10 100 10 10 10 10 10 10 10 10 10 11100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 01 01 0 1 01 01 01 01 01 01 01 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0001 0 1 01 01 00 0 1 0 1 0 1 01 0 1 0 1 00 1 0 1 01 00 1 01 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 0 1 01 0 1 01 01 0 1 0 111 0 111111111 1 1 0 11111111 1 0 1 0 1 0 1 0
0 1 0 0000 0000000 000 0 1 01 01 01 01 01 01 01 0 1 01 0 1 0 1 01 011 1 01 111 01 0001 001 01 0 01 01 0 1 01 011 01 01 01 0001 01 011 01 001 0 111111 01 0 01 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 011 11 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 001 0000001 01 0 1 0 1 01 01 011 00001 01 01 01 01 01 01 01 01 001 0 0 1 01 01 01 01111 01 01 01 01 01 01 0 111 1 0 0 0 00 0000000000 0 000 1 01 01 01 011 01 01 00 1 01 01 00 00 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 0000000 0 10 10 10 0 10 10 10 10000 0 00 1 000 00 00000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 110 1 1 111 0 1000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 000000 100 10 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0000 0 10 10 0 10 10 10 10 1 000 000 1000 000 00000 0 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 0 00001 0 1 01 0 1 0 0001 0 0 1 0111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 01 0 1 0 0 1 11111111 1 00001 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 111 0

 171

C H A P T E R 5

CHAPTER OUTLINE

 5.1 Bottom-Up Parsing

 5.2 Handle

 5.3 Why the Name SR Parser

 5.4 Types of Bottom-Up Parsers

 5.5 Operator Precedence Parsing

 5.6 LR Grammar

 5.7 LR Parsers

 5.8 LR Parsing Algorithm

 5.9 Construction of the LR Parsing Table

 5.10 LR(0) Parser

 5.11 SLR(1) Parser

 5.12 Canonical LR(1) Parsers CLR(1)/LR(1)

 5.13 LALR(1) Parser

 5.14 Comparison of Parsers: Top-Down Parser vs. Bottom-Up Parser

 5.15 Error Recovery in LR Parsing

 5.16 Parser Construction with Ambiguous Grammars

Bottom-up parsing is a more general parsing technique when compared with top-down parsing. The
widely used method in practice is bottom-up parsing. Examples of bottom-up parsers are YACC and
Bison, which are automatic parser generators.

 Bottom-Up Parsers

Bottom-up parsing is the most widely used parsing technique used in most of the automatic
parser generators. In this chapter, we discuss what is shift reduce (SR) parsing and the types
of different SR parsers. We also discuss in detail parsing algorithms of different bottom-up
parsers. Given a grammar, how to test whether it is suitable for any type of SR parser is also
discussed. Finally, comparison of all the parsers is described.

172 Bottom-Up Parsers

5.1 Bottom-Up Parsing
Bottom-up parsing is an attempt to construct a parse tree for the given input string in the
bottom-up manner. It starts construction of the tree starting at the leaves (the bottom) and
working up toward the root (the top). Bottom-up parsing is defi ned as an attempt to reduce
the input string w to the start symbol of the grammar by tracing out the rightmost derivation
of w in reverse. This is analogous to constructing a parse tree for a given input string “w” in
bottom-up manner by starting with the leaves and proceeding toward the root.

Given a grammar “G” and an input string w, bottom-up parser starts construction of
parse tree with input string w. At any time, it identifi es a substring that matches with the
right hand side of a production of the grammar. This substring is replaced by the left-hand
side nonterminal of the grammar. If this replacement gives the generation of sentential form
that is one step along the reverse of the rightmost derivation. This process of detecting the
substring that matches with the right hand side of production and replacing that substring
by the left hand side nonterminal is continued until the given string is reduced to the start
symbol S. Let us understand the process with the following example.

Consider the grammar:
 S → aABe
A → Abc | b
 B → d

The sentence “abbcde” can be reduced to “S” as follows shown in Figure 5.1.
abbcde
aAbcde (replace b by A using A → b)
aAde (replace Abc by A using A → Abc)
aABe (replace d by B using B → d)
S (replace aABe by S using S → aABe)

The process of replacing a substring by a nonterminal in bottom-up parsing is called
reduction.

Bottom-up parsing can be viewed as tracing out the rightmost derivation in reverse.
Look at the reductions in the above example:

abbcde ⇐ aAbcde ⇐ aAde ⇐ aABe ⇐ S

Figure 5.1 Reducing the String “abbcde”

A

A

A A

A

A

A

S

BB

a b b c d e a b b c d e a b b c d e a b b c d e a b b c d e

 Handle 173

This is nothing but the reverse of the rightmost derivation. The reason why bottom-up
parser traces out the rightmost derivation in reverse but not leftmost is because the parser
scans the input string w from left to right, one symbol at a time. To trace out in reverse by
scanning from left to right, it is possible to reduce only with rightmost derivation.

So the task of a bottom-up parser at any time is to identify a substring that matches with
the right hand side of the production, if that substring is replaced by left hand side nontermi-
nal that should give one step along the reverse of rightmost derivation.

In bottom-up parsing, fi nding a substring that matches with the right hand side of a rule
as well as its position in the current sentential form is very important. In order to take care of
both factors into account, let us defi ne handle.

5.2 Handle
If S → α A β ⇒ αƴβ, then A → ƴ is a handle of αƴβ, in the position following ƴ. Hence, handle
can be defi ned as: A handle of a right sentential form ƴ is a production A → β and the position
of β in ƴ. The string β will be found and replaced by A to produce the previous right senten-
tial form in the rightmost derivation of ƴ. Handle is nothing but a substring that matches the
right hand side of a production, which when reduced to nonterminal gives one step along
the reverse of the rightmost derivation.

Consider the following example:

 Expr → Expr + Expr | Expr * Expr | id

The rightmost derivation for the string “id + id * id” is

 Expr ⇒ Expr + Expr
 ⇒ Expr + Expr * Expr
 ⇒ Expr + Expr * id
 ⇒ Expr + id * id
 ⇒ id + id * id

The handles of the sentential forms occurring in the above derivation are shown below
in Table 5.1.

Table 5.1 Handles of the Right Sentential Form

Sentential form Handle

id + id * id Expr → id at the fi rst id

Expr + id * id Expr → id at the position following +

Expr + Expr * id Expr → id at the position following *

Expr + Expr * Expr Expr → Expr * Expr at the position following +

Expr + Expr Expr → Expr * Expr at the position preceding the end marker

174 Bottom-Up Parsers

Bottom-up parsing can be described as an attempt to detect handle and reduce the han-
dle. Reducing the handle is even called handle pruning. The diffi culty in bottom-up parsing
is detecting the handle at any time in parsing.

5.3 Why the Name SR Parser
Bottom-up parsers are also called SR parsers. To understand why they are called SR parser,
let us look at the way a bottom-up parser works.

Given a grammar Expr → Expr + Expr | Expr * Expr | id & input string w = “id + id *
id,” let us look at bottom-up parsing. Parser takes the string w and reads, symbol by symbol
from left to right. Whatever it reads it should remember till a handle is recognized. So what-
ever is read will be stored on an auxiliary memory called “stack.” It reads symbol by symbol
and stores/pushes it on to the stack until a handle is detected. This process of reading the
symbol and pushing on to the stack is called “shift action.” Once a handle is detected, the
parser reduces the handle by nonterminal of the production. This is called “reduce action.”
So at any time, the task performed by a bottom-up parser is to read the symbol and shift the
symbol until a handle is detected, when a handle is detected it performs reduce action. So
the main actions performed by a parser are shift or reduce. That is why it is called SR parser.
This shift/reduce action is performed until the parser halts. Halting may occur in two situa-
tions––either on successful completion or on the occurrence of an error.

A simple bottom-up parsing technique using a stack based implementation is as follows:
1. Initially stack contains only the sentinel $, and input buffer contains the input string w$.
2. While stack not equal to $S do
 a. While there is no handle at the top of stack, do shift input buffer(read symbol from L-R)

and push the symbol onto stack
 b. if there is a handle on top of stack, then pop the handle and reduce the handle with its

nonterminal and push it onto stack
3. Halt.

Consider the grammar:
 S → aABe
A → Abc | b
 B → d

The action performed by parser while parsing the input string is shown in Table 5.2.

Table 5.2 Shift Reduce Parsing

Stack Input Action

$ abbcde$ shift a

$a bbcde$ shift b

$ab bcde$ reduce by A → b

$aA bcde$ shift b

$aAb cde$ shift c

 Types of Bottom-Up Parsers 175

canonical LR- CLR(1). Out of all LR parsers CLR(1)/LR(1) is the most powerful parser; it can
be used to parse almost all grammars.

Out of all bottom-up parsers, LR(0) is less powerful. It can be used to parse only a small
class of grammars; hence, it is practically not used. The preferred parsers are SLR(1), LALR(1),
and CLR(1). SLR(1) is simple to construct but once again least powerful. Canonical LR(1) is the
most powerful; hence its implementation is costly. The power and cost to construct LALR(1)
is intermediate between those of SLR(1) and LALR(1). Though LR(0) is not used, it is the basic
machine on which all the other three are built. Hence, we also discuss the design of LR(0)
parser. Let us look at the design of a simple SR parser, that is, operator precedence parser.

Figure 5.2 Types of Bottom-Up Parsers

Bottom-up Parsers

 Operator
Precedence Parser

LR Parser

LR(0) SLR(1) LALR(1) CLR(1)

5.4 Types of Bottom-Up Parsers
Bottom-up parsers are broadly classifi ed into two categories as shown in Figure 5.2––opera-
tor precedence parser and LR parser. Operator precedence parser is a simple parser, which
is preferred for parsing expressions. The most powerful parsers are under the LR category.
There are four types of LR parsers: LR(0), simple LR-SLR(1), look ahead LR-LALR(1), and

$aAbc de$ reduce by A → Abc

$aA de$ shift d

$aAd e$ reduce by B → d

$aAB e$ shift e

$aABe $ reduce by S →
aABe

$S $ accept

176 Bottom-Up Parsers

5.5 Operator Precedence Parsing
This is a technique for constructing shift-reduce parsers by hand for a small class of gram-
mars. To construct LL(1) parser, there is a restriction on the grammar; grammar should be
free of left recursion and should be left factored. Similarly, to construct operator precedence
parser, there is a restriction on the grammar, that is, the grammar must be operator grammar.
Let us look at what is operator grammar.

Operator grammar: The grammar that does not contain null production and two adjacent
nonterminals on the right hand side of any production is called operator grammar.

For example:

 E → E B E | id
 B → + | − | =

This is not operator grammar. There are no null productions but adjacent nonterminals
are not allowed. To construct operator grammar, expand the nonterminal B. Then the result-
ing grammar is operator grammar.

 E → E + E | E * E | E = E | id

The resulting grammar is ambiguous grammar since it is operator grammar; hence, it can
be used for parser construction. Operator precedence parser does not bother about whether
the grammar is ambiguous or not but it must be operator grammar. Operator precedence
parser is the only parser that can be constructed even if the given grammar is ambiguous.
All other parsers (LL, LR) are constructed only with unambiguous grammars. Now let us see
given an ambiguous grammar how to construct operator precedence grammar that parses
the string unambiguously.

Example 1: Convert the following grammar to operator grammar.

 S → S A S | a
 A → b S b | b assume S is the start symbol.

Solution: There are no null productions but adjacent nonterminals SAS is not allowed.
Hence expand the nonterminal A. By substituting for nonterminal A, we get the grammar
as follows

 S → S b S b S | S b S| a
 A → b S b | b

This is the resulting operator grammar. Here A is the useless symbol. So it can be
ignored.

Operator precedence parser mainly works by considering the precedence among the
operators. That is why it is called operator precedence parser. Though the given grammar
is ambiguous, the parser preserves the actual precedence among the operators in a table
called precedence relation table. Like LL(1) table used by LL(1) parser, operator precedence
parser uses precedence relation table for parsing the input string. In this table, the actual
precedence among two operators is preserved as precedence relation ⋖,⋗ or ≐. So let us
understand precedence relations.

 Operator Precedence Parsing 177

5.5.1 Precedence Relations
The following precedence relations are defi ned across terminals of an operator grammar.

a ⋗ b (a “takes precedence over” b) So a is reduced before b. Ex: * ⋗ +
a ⋖ b (a “yields precedence to” b). So b is reduced before a. Ex: + ⋖ *
a ≐ b (a “has the same precedence as” b). So both are reduced at the same time.
 Ex: (=).

For the sentinel symbol $ and any terminal b we defi ne $ < b and b < $.
The precedence relations looks similar to logical relations >, < and ==. But they are not

the same. With logical relations whenever a > b then b > a never exits. But with precedence
relations both may become true at the same time, that is, a > b and b > a are true at the same
time. Later we will discuss the situation where such a condition is satisfi ed.

5.5.2 Recognizing Handles
The main diffi culty in bottom-up parsing is identifying the handle. The precedence rela-
tions help the parser in recognizing the handle. Once the precedence information in stored
in the precedence table with precedence relations, let us see how to recognize the handle.
Let us understand with an example. Consider the grammar E → E + E | E * E | id and input
string

“ id + id * id.”

Parser constructs the parsing table fi rst. Assume that parsing table is available as shown
in Table 5.3.

Table 5.3 Precedence Relation Table

id + * $

id ⋗ ⋗ ⋗

+ ⋖ ⋗ ⋖ ⋗

* ⋖ ⋗ ⋗ ⋗

$ ⋖ ⋖ ⋖

To parse the given string, insert the string between two end markers $. Then read sym-
bol by symbol from left to right and insert the precedence relation between two terminals by
using the table. Then we get the string as follows:

$ ⋖ id ⋗ + ⋖ id⋗ * ⋖id ⋗ $.

Once precedence relations are inserted, recognition of handle is as follows:

1. Scan the string from the left end until the fi rst ⋗ is encountered.
2. Then scan backwards to the left over any ≐ until a ⋖ is encountered.

178 Bottom-Up Parsers

3. Everything to the left of the fi rst ⋗ and to the right of the encountered ⋖, including any
intervening or surrounding nonterminals is the handle.

We apply the above procedure on string $ ⋖ id ⋗ + ⋖ id ⋗ * ⋖ id ⋗ $.
Here handle is whatever is included between ⋖ and ⋗ at anytime. This is the main cri-

teria used for recognizing the handle. So in fi rst step of parsing, handles are id, id, id. Once
handle is recognized, it is reduced. So after reducing we get the string

 $ ⋖ id ⋗ + ⋖ id ⋗ * ⋖ id ⋗ $ ⇒ $E + E * E$.

The resulting string $E + E * E$ is viewed by the parser as $ + * $. That is, nonterminals
are ignored by the parser as they are not defi ned with any precedence. Once again the
parser repeats the above procedure on the string until it reduces to the start symbol. This
is shown below.

 $ ⋖ id ⋗ + ⋖ id ⋗ * ⋖ id ⋗ $ (reduces id by E; left out string is E + E * E)
 $ + * $.
 $ ⋖ + ⋖ * ⋗ $ (reduces E * E by E, then E+E by E; left out string is E)
 $ $ successful completion. (nonterminals are ignored)

The above procedure can be stated as an algorithm. The operator precedence parser uses
a stack. It reads the input string into a buffer and appends $ as right end marker. It then
pushes $ onto the stack. This is to identify the bottom of the stack. It mainly works by com-
paring the top of the stack with the look ahead symbol at anytime. Here comparison is in
terms of precedence relation and based on this the parsing decision is made by using the
following algorithm.

An SR parser mainly performs two actions at any time: shift or reduce until it halts. Halt-
ing can be either on successful completion or on an error. So to defi ne parsing algorithm for
any SR parser we need to defi ne only two steps––(1) when it prefers a shift action and how
it completes a shift action (2) when it prefers a reduce action and how it completes a reduce
action. The parsing algorithm of an operator precedence parser is given below.

5.5.3 Parsing Algorithm for Operator Precedence Parser
1. Initially, stack contains only $ and input buffer contains w$ where w is input string
2. Repeat forever

 a. Let “a” be the top element on stack and “b” is the current element pointed by the input
pointer, that is, the look ahead symbol

 b. if a ⋖ b or a ≐ b, push b onto the stack and increment input pointer. (Shift action)
 c. if a ⋗ b then (Reduce action) Repeat Pop the stack until the top of the stack is ⋖ to the

terminal most recently popped
 d. If a = b = $, announces successful completion

Example 2: Parse the input string a + b * c by using the above algorithm.

Solution: The result of each step is described in the following Table 5.4.

 Operator Precedence Parsing 179

5.5.4 Construction of the Precedence Relation Table
The actual precedence among the operators is used in constructing the precedence relation
table.

If θ1 and θ2 are two operators, the following heuristics are used in constructing the table.
1. If θ1 has higher precedence than θ2 then make the. entries as θ1 ⋗ θ2 and θ2 ⋖ θ1. For example, *

has higher precedence than + so defi ne the relations between them as * ⋗ + as well as + ⋖ *.
2. If θ1 and θ2 are of equal precedence, then consider associativity.
 i. If they are left associative, defi ne relation as θ1 ⋗ θ2 and θ2 ⋗ θ1.
 For example, take expression a + b − c + d. Both + & – are left associative. So here fi rst

+ is to be reduced. Whichever is to be reduced fi rst, insert that between ⋖ and ⋗.
Here to ensure left associativity, the relation must be θ1 ⋗ θ2 and θ2 ⋗ θ1, i.e. + ⋗ – ⋗
+ ⋗. Here θ1 is +ve and θ2 is – ve, i.e. θ1 ⋗ θ2 ⋗ θ1 ⋗. Unless we defi ne the relation as
θ1 ⋗ θ1 and θ2 ⋗ θ1, left associativity cannot be obtained.

 ii. If they are right associative, defi ne relation as θ1 ⋖ θ2 and θ2 ⋖ θ1.
 For example, consider the expression a ↑ b ↑ c ↑ d. Assume ↑ is right associative. So

here right ↑ is to be reduced then second ↑. Whichever is to be reduced fi rst, insert that
between ⋖ and ⋗. Here to ensure right associativity, the relation must be θ1 ⋖ θ2 and
θ2 ⋖ θ1 i.e.,⋖ ↑ ⋖ ↑ ⋖ ↑ ⋗. Here θ1 is ↑ and θ2 is ↑. Hence ⋖ θ1⋖ θ2⋖ θ1 ⋗. Unless we defi ne the
relation as θ1 ⋖ θ2 and θ2 ⋖ θ1 right associativity cannot be obtained.

3. In addition to operators, we fi nd other symbols in an expression like id, (,), $. The prec-
edence relation is defi ned based on actual precedence among the terminals. Some of the
relations are as follows.
 i. θ has less precedence than id. ⇒ θ ⋖ id and id ⋗ θ.
 ii. θ has high precedence than $. ⇒ θ ⋗$ and $ ⋖ θ.

Table 5.4 Parsing Actions of the Operator Precedence Parser

Stack Input Action taken

$ a + b * c$

$a + b * c$ shift a because $ ⋖ a

$ + b * c$ pop a because a ⋗ +

$+ b * c$ shift + because $ ⋖ +

$+b * c$ shift b because + ⋖ b

$+ * c$ pop b because b ⋖ *

$+ * c$ shift * because + ⋗ *

$+ * c $ Shift c because * ⋖ c

$+ * $ pop c because c ⋖ $

$+ $ pop * because * ⋖ $

$ $ pop + because + ⋖ $

$ $ Accept

180 Bottom-Up Parsers

iii. id has high precedence than $. ⇒ id ⋗ $ and $ ⋖ id
 iv. θ and (are right associative. ⇒ θ ⋖ (and (⋖ θ.
 v. θ and) are left associative. ⇒ θ ⋗) and) ⋗ θ.
 Other relations are $ ⋖ () ⋖ $ (=)

) ⋗) (⋖ id id ⋗), (⋖ (.
Example 3: Prepare precedence relation table for parsing the input string id + id * id.
Solution: The rows and columns of the table correspond to terminals. Here terminals are id,
+, * and $(input end marker). So there will be four rows and four columns for each terminal.
To defi ne relations in table, we need to know the actual relations among operators. Here we
assume that * has higher precedence than + and both are left associative. By using above
procedure we prepare Table 5.5 as shown below.

id + * $

id ⋗ ⋗ ⋗

+ ⋖ ⋗ ⋖ ⋗

* ⋖ ⋗ ⋗ ⋗

$ ⋖ ⋖ ⋖

Table 5.5 Precedence Relation Table

Example 4: Consider the following grammar
Para → Sentence Rp | Sentence
Rp → b/ Sentence Rp | Sentence
Sentence → word b/ Sentence | word
word → letter * word | letter
letter → id
Here “b/” is blank space
a. Convert the following grammar into operator form.
b. Defi ne precedence relations among the terminals and show how to use a

stack algorithm to parse the string “id * id b/ id * id.”

Solution: (a) In the given grammar, para and Rp are not in the operator form because they
contain adjacent nonterminals. The remaining productions are in the required form. So to
convert para and Rp into the operator form, we need to eliminate adjacent nonterminals
“Sentence Rp.” To do this, substitute for Rp in para; then we get the grammar as follows.

Para → Sentence b/ Sentence Rp | Sentence b/ Sentence | Sentence

Here once again we are getting adjacent nonterminals. So mere substitution may not work.
If you look at the grammar “para” is defi ned as “Sentence Rp” (Para → Sentence Rp). So in
the above grammar, replace “Sentence Rp” by “para.” The resulting grammar is

 Operator Precedence Parsing 181

Para → Sentence b/ para | Sentence b/ Sentence | Sentence
Sentence → word b/ Sentence | word
word → letter * word | letter
letter → id

Now this is operator grammar.

(b) To prepare the precedence relation table, we need to have the actual precedence among
operators. Look at the above grammar; here b/,* and id are terminals. id has highest prec-
edence. * has higher precedence than b/ as * is defi ned at a lower level. * and b/ are right
associative as the productions defi ning * and b/ are right recursive.
The precedence relation table will have 4 rows and 4 columns for id, *, +, and $. It is

shown in Table 5.6.

Table 5.6 Precedence Relation Table

id * b/ $

id ⋗ ⋗ ⋗

* ⋖ ⋖ ⋗ ⋗

b ⋖ ⋖ − ⋗

$ ⋖ ⋖ ⋖

No two ids appear in any expression. It is an error. So there is no relation between id on
id. The same is applicable for b on b also.

5.5.5 Mechanical Method of Constructing Operator
Precedence Table

There is another mechanical way of constructing the operator precedence table. This way
uses two functions Leading () and Trailing(). Let us look at the functions.

Leading(A) gives set of terminals “a” such that “a” is the leftmost terminal in some string
derived from A. It is evaluated by using following rule.

 If “a” is in Leading(A) if there is a production of the form A → αaβ where α is ε or single
nonterminal.

Leading(A) ={a |A ⇒ αaβ where α is ε or single nonterminal}.
Tailing(A) is set of terminals “a” such that “a” is rightmost in a string derived from A.
It is evaluated by using following rule.
If “a” is in Trailing(A) if there is a production of the form A → αaβ where β is ε or single

nonterminal.
Trailing(A) ={a | A ⇒ αaβ where β is ε or single nonterminal}.
For example, consider the following grammar:

AQ 1

182 Bottom-Up Parsers

 S → aABe
 A → Ab |d
 B → d
 Leading(S) = {a} Trailing(S) = {e}
 Leading(A) = {b, d} Trailing(A) = {b,d}
 Leading(B) = {d} Trailing(B) = {d}

5.5.6 Calculating Operator Precedence Relation ⋖ ⋗ =
Once leading and trailing of each nonterminal are computed, then the operator precedence
table is fi lled with the relations based on the following rules.

1. If there is a production A → αaBbβ, where α and β are some strings then set the relation
for a and b as a ≐ b.

2. If there is a production A → αaBβ, where α and β are some strings then set the relation for
a with the elements in leading (B) as a ⋖ leading(B).

3. If there is a production A → αBaβ, where α and β are some strings then set the relation for
elements in trailing (B) with a as trailing(B) ⋗ a.

4. If S is the starting nonterminal then set the relation for $ with elements of leading(S) $ ⋖
leading(S).

5. If S is the starting nonterminal then set the relation for elements of leading(S) with $ as
trailing(S) ⋗ $.

The algorithm for setting the relation based on the production is given below. After applying
the algorithm apply rule 4 and 5 to fi ll the relation with respect to $.

For each A → X1 X2…Xn do
 For i = 1 to n – 1 do

 1. If Xi and Xi-1 are both terminals then set

 Xi ≐ Xi+1, ex: S→ ab a≐b

 Or if Xi and Xi+2 are terminals, Xi+1 is nonterminal then set

 Xi≐Xi+2, ex: S→ aAb a≐b

 2. If Xi is terminal and Xi+1 is nonterminal then set

 Xi ⋖ Leading(Xi+1), ex: S → aA a⋖ Leading(A)
 3. If Xi is nonterminal and Xi+1 is terminal then set

 Trailing(Xi) ⋗ Xi+1, ex: S → Aa Trailing(A) ⋗ a
Example 5: Construct precedence relation table for the following grammar.

 S → aAcBe
 A → Ab | b
 B → d

Solution: First calculate leading and trailing of nonterminals.
 Leading(S) = {a} Trailing(S) = {e}
 Leading(A) = {b,d} Trailing(A) = {b,d}
 Leading(B) = {d} Trailing(B) = {d}

 Operator Precedence Parsing 183

Now construct the table with the above algorithm.
 Consider the fi rst production S → aAcBe,
 Here using rule 1,
 Hence a ≐ c and c ≐ e
 According to rule 2, a ⋖ Leading(A), c ⋖ Leading(B)
 Hence a ⋖ {b,d}, c ⋖ d.
 According to rule 3, Trailing(A) ⋗ c, Trailing(B) ⋗ e
 Hence {b,d} ⋗ c, d ⋗ e
 According to rule 4, $ ⋖ leading(S).
 Hence $ ⋖ a.
 According to rule 5 trailing(S) ⋗ $
 Hence e ⋗ $.
Consider the second production A → Ab
 According to rule 3 trailing(A) ⋗ b
 Hence {b,d} ⋗ b
 The table is prepared as shown in Table 5.7.

Table 5.7 Precedence Relation Table

a b c d e $

a ⋖ ≐ ⋖
b ⋗ ⋗
c ⋖ ≐
d ⋗ ⋗ ⋗
e ⋗
$ ⋖

Example 6: Construct the precedence relation table for the following grammar.
 S → baXaS | ab
 X → Xab | aa

Solution:
 leading(S) = {b,a} trailing(S) = {a,b}
 leading(X) = {a} trailing(X) = {b,a}

Considering production S → baXaS we get the relations as
 using rule 1 we get a =. a
 a ⋖ leading(X) ⇒ a ⋖{a}
 a ⋖ leading(S) ⇒ a ⋖{a,b}
 trailing(X) ⋗ a ⇒ {a,b} ⋗ a

Considering production X → Xab we get the relations as
 trailing(X) ⋗ a ⇒ {a,b} ⋖ a

184 Bottom-Up Parsers

Applying rule 4 and 5 we get
 $ ⋖ leading(S) ⇒ $ ⋖ {a,b}
 Trailing(S) ⋗$ ⇒ {a,b} ⋗ $
Operator precedence table for the given grammar is shown in Table 5.8.

Table 5.8 Precedence Relation Table

a b $

a ≐,⋖,⋗ ⋖ ⋗
b ⋗,⋖ ⋗
$ ⋖ ⋖

Note: This grammar is ambiguous grammar as the parser has options to both shift and to
reduce.

5.5.7 Error Recovery in Operator Precedence Parser
Blank entries in any parsing table refer to errors. So for each blank entry, have a pointer
to subroutine. So that whenever a blank entry is referred, the corresponding subroutine is
called. For writing error recovery routines, the compiler designer should have good knowl-
edge about all possible errors. For example, look at the following Table 5.9. e1, e2, e3, and e4
are error recovery routines. They specify how to recover from the error.

Table 5.9 Error Recovery Routines in Precedence Relation Table

id () $

id e1 e1 ⋗ ⋗
(⋖ ⋖ ⋗ e4

) e1 e1 - ⋗
$ ⋖ ⋖ e2 e3

Here e1() tells that operator is missing between the terminals. So error recovery here can
be to insert an operator and issue error message.

e2() tells that expression is starting with). So error recovery here can be to delete input
symbol and issue an error message.

e3() tells that input expression is missing. So error recovery here can be to issue an error
message.

e4() tells that expression is ending with (. So error recovery here can be to pop the input
symbol and issue an error message.

The advantage of operator precedence parser is that it is simple to construct and can be
used for parsing expression grammar. It works by considering precedence among operators.

 Operator Precedence Parsing 185

Hence, if there is an operator that has different precedence (e.g., unary –), it cannot be han-
dled by this parser. To solve the problem at lexical analysis itself, separate them into two
different tokens instead of a single token of two precedence.

Another diffi culty with operator precedence parser is that, if operators supported in
grammar are more, more space is required for parsing table (as it is n * n table where n is the
number of operators/terminals). So to save space, a precedence relation table is converted
into another table called the precedence function table.

For example, consider the precedence relation Table 5.10.

Table 5.10 Precedence Relation Table

id + * $

id ⋗ ⋗ ⋗
+ ⋖ ⋗ ⋖ ⋗
* ⋖ ⋗ ⋗ ⋗
$ ⋖ ⋖ ⋖

Table 5.11 Precedence Function Table

id + * $

f 4 2 4 0

g 5 1 3 0

Here two integer mapping functions “f” and “g” are used for reducing each prece-
dence relation into a numerical value. The actual relation is given by numerical comparison
between the two entries.

For example,
If we want precedence relation between * and +.
“*” is a row element, function “f” is used for mapping row values, so take f(*) = 4.
Now “+” is a column element, function “g” is used for mapping column values, so take

g(+) = 1.
f(*) > g(+) hence relation is * ⋗+.
If we want precedence relation between + and id.
“+” is a row element, function “f” is used for mapping row values, so take f(+) = 2.
Now “id” is a column element, function “g” is used for mapping column values, so take

g(id) = 5.
f(+) < g(id); hence relation is + ⋖ id.

It can be reduced to a precedence function table as shown below in Table 5.11.

186 Bottom-Up Parsers

5.5.8 Procedure for Converting Precedence Relation Table to
Precedence Function Table

Input is precedence relational table.
Step 1: For every terminal, create two symbols fa and ga.
Step 2: Divide the symbols into groups by using ≐ relation.

For example, a ≐ b then fa and gb are combined into one group.
 In addition to the above relation, a ≐ c, then fa, gb, gc are combined into one group.

Step 3: Create a digraph with groups in Step 2 as nodes and edges given by ⋖ or ⋗.

 For example, a ⋗ b then add edge as fa
gb

 For example, a ⋖ b then add edge as fa gb

 Add an edge for each ⋖ or ⋗ relation in the table.
Step 4: Check the digraph for cycles. If there are any cycles, stop the procedure and conclude

that the table cannot be converted to a function table.
Step 5: If there are no cycles, that is, if digraph is acyclic, then length of the longest path from

 fa gives f(a) for each terminal a.

Example 7: Convert the following relation Table 5.12 to function table.

Table 5.12 Precedence Relation Table

id + * $

id ⋗ ⋗ ⋗
+ ⋖ ⋗ ⋖ ⋗
* ⋖ ⋗ ⋗ ⋗
$ ⋖ ⋖ ⋖

Solution: There are four terminals id,*,+, and $; hence, create 8 symbols fid, gid, f+, g+, f*, g*, f$
and g$. As there are no ≐ relations, each symbol is treated as a separate group. Now construct
digraph as shown in Figure 5.3 with each symbol as a node, that is, 8 nodes as follows.

To get the precedence function f(id), start from node fid, traverse all possible paths from
fid. The path must start with fid and can end anywhere (need not be f$ or g$).

For example, from node fid there are four possible paths as follows:

 fid – g$ where path length is 2
 fid – g* – f+ – g$ where path length is 3
 fi d – g* –f+ – g+ –f$ where path length is 4
 fi d – g+ –f$ where path length is 3

 LR Parsers 187

Longest is 4 hence f(id) is 4.
Hence the resulting table is shown below in Table 5.13.

Table 5.13 Precedence Function Table

id + * $

f 4 2 4 0

g 5 1 3 0

5.6 LR Grammar
A grammar for which we can construct LR parser is called LR grammar. A grammar that can
be parsed by a parser after examining k input symbols on each move is called LR(k) grammar.
There is a difference between LL and LR grammar. For a grammar to be LR(k) we must be able
to recognize the right side of the production having seen from what is derived with k look
ahead symbols. In LL(k), the task is simple. It should recognize the use of a production by
seeing only the fi rst k input symbol. LR parsers can describe more languages than LL parsers.

5.7 LR Parsers
LR parsers are the most effi cient bottom-up parsers and can be implemented for almost
any programming language. The class of grammars that can be parsed using LR parsers

Figure 5.3 Digraph for the Precedence Relation Table

fid gid

g* f*

f+ g+

g$ f$

188 Bottom-Up Parsers

is a proper superset of the class of grammars that can be parsed with predictive parsers.
It is diffi cult to write/trace LR parsers by hand. Usually a parser generator like yacc (bison)
is required to write LR parsers. With such tools, one can write context free grammar and
have the generator automatically produce a parser for the grammar. In LR(k) parsing, the
fi rst L stands for left-to-right scan of the input buffer, the second R stands for a right-most
derivation in reverse, and k stands for the maximum of lookaheads used for taking parsing
decisions. If k is omitted, it is assumed to be 1. To construct an LR parser, there is no restriction
on the grammar. Unlike LL(1), we do not have to worry about left recursion and left factoring, etc.
Even if it is left recursive, you still can start construction without eliminating it.

The LR parser is a bottom-up parser that makes use of DFA. The DFA is used to recog-
nize the set of all viable prefi xes by reading the stack from bottom to top. It determines what
handle is available. A viable prefi x of a right sentential form is a prefi x that contains a handle,
but no symbol to the right of the handle. Therefore, if a DFA that recognizes viable prefi xes
is constructed, it can be used to guide the handle selection in the bottom-up parser. Let us
understand how an LR parser works.

The LR parser uses a DFA that recognizes viable prefi xes to guide the selection of han-
dles. Hence, it must keep track of the states of the DFA. That is why the LR parser stack
contains two types of symbols: state symbols used to identify the states of the DFA and
grammar symbols. The state symbol on top of stack contains all the information it needs. The
parser starts with the initial state of the DFA, I0, on the stack. The parser operates by looking
at the next input symbol “a” and state symbol Ii on top of the stack. If there is a transition
from the state Ii on “a” in the DFA going to state Ij, then it shifts the symbol “a” followed by
the state symbol “j” onto the stack. If there is no transition from the state Ii on input symbol
“a” in the DFA and if the state Ii on the top of stack recognizes a viable prefi x that contains
the handle S, then the parser carries out the reduce action by popping off and pushing
S onto the stack. This is equivalent to making a backward transition from state Ii on in the
fi nite automata and then making a forward transition on A. Every shift action of the parser
corresponds to a transition on terminal symbol in the DFA. Therefore, the current state of
the DFA and the next input symbol determine whether the parser performs a shifts action
or reduce action. Now let us defi ne the LR parsing algorithm. An LR parser or an SR parser
mainly performs two actions at any time: shift or reduce until it halts. Halting can be either
on successful completion or on an error.

5.8 LR Parsing Algorithm

5.8.1 Task of LR Parser: Detect Handle and Reduce Handle
An LR parser shown in Figure 5.4 uses a stack and input buffer and parsing table. The
parsing table is divided into two parts––action and goto. The rows in parsing table cor-
respond to states of DFA that is used in recognizing the handle. What action an LR parser
is supposed to take at any state is defi ned under the action part. The entries in action part
would be shift given by Si or reduce ri, or accept. The Goto part contains state number under
the nonterminals. Try to understand the structure of the LR parsing table. We shall discuss
the procedure for construction later. Look at the example of LR parsing Table 5.14 shown
below.

 LR Parsing Algorithm 189

Table 5.14 LR Parsing Table

State

 Action Goto

a b $ A B

0 S3 1 2

1 r2 accept

2 S2 3

3 S1

4 r1 4

Stack is used to store grammar symbols surrounded by state symbols like smamsm-1Xm-1sm-2
am-2…s0 where sm sm-1sm-2…s0 are state symbols and am..Xm-1..am-2 are grammar symbols. To take
the parsing decisions, always the top of the stack should be a state because rows in parsing
table are defi ned with states. So to start with, the LR parser pushes the start state on to the
stack.

Given a grammar and input string to be parsed, the fi rst parser constructs a parsing table.
The input string to be parsed is read into the input buffer. An end marker “$” is appended
at the end. Initially “$” is pushed on to the stack; this is to identify the bottom of the stack.
It then pushes the start state of DFA, that is, 0 onto the stack. The input pointer “ip” points
to the fi rst symbol in the input buffer.

Parsing algorithm:
Let “X” be the state on top of the stack and “a” be the symbol pointed by “ip.”
Action part of parsing table is used to take parsing decisions as follows.

Figure 5.4 Model of LR Parser

INPUT

OUTPUT

STACK

Sm

id id id $∗+

Xm

Sm-1

Xm-1

.

.

.

So

 LR
 Parsing algorithm

Action Goto

190 Bottom-Up Parsers

Repeat for ever

 1. If action[X,a] = Si, then (Shift action)
 Push “a” then state I onto stack. Advance the input pointer to the next symbol.

 2. If action[X,a] = ri, then (Reduce action)
{

Take ri, that is, the ith production from the grammar. Let ri is A → β.
Pop 2 * |β| symbols from stack and replace them by nonterminal A.
If Xi is the state below the nonterminal A, then push
goto[Xi,A] onto the stack. Output the production A →

Now continue parsing.

 3. If action[X,a] = accept, then (Successful completion)

All the LR parsers use the same parsing algorithm. Let us understand the algorithm
with an example.

Example 8: Parse the input string “aabb” using the grammar

 S → AA, A → aA | b
Solution: The LR parsing is shown in Table 5.15 using the given grammar.

Table 5.15 SLR(1) Parsing Table

State

 Action Goto

a b $ S A

0 S3 S4 1 2

1 acc

2 S3 S4 5

3 S3 S4 6

4 r 3 r 3 r 3 8

5 r 1

6 r 2 r 2 r 2

Parser compares the top stack state “s” with the look ahead symbol “a.” It refers to
action part of parsing table, and performs action defi ned under terminal “a” and state “s.”

The set of actions performed by the parser is shown in Table 5.16.
All the four LR parsers––LR(0), SLR(1), LALR(1), and CLR(1)––use the algorithm men-

tioned above for parsing. They differ only in construction of the parsing table. Let us look
at the parsing table construction. Most of the procedure for the construction of the parsing
table is common for all the four parsers. Hence, we fi rst discuss the common procedure, then
we take up specifi c parser design separately. The general procedure for all four LR parsers
parsing table construction is as follows:

 Construction of the LR Parsing Table 191

5.9 Construction of the LR Parsing Table
1. Given grammar, take augmented grammar.
2. Create canonical collection of LR items.
3. Draw DFA and prepare table.

Here the term LR items are different for different types of the LR parser.

 LR(0)
 LR(0)items

 SLR(1)

 LALR(1)
 LR(1)items

 CLR(1)

If you want to defi ne the construction of the SLR(1)/LR(0) parsing table, in the above
procedure, change the word “LR items” by LR(0) items.

 1. Given grammar, take augmented grammar.
 2. Create canonical collection of LR(0)items.
 3. Draw DFA with the set of items and the prepare table.

If it is CLR(1) /LALR(1), change the word “LR items” by “LR(1) items.”

 1. Given grammar, take augmented grammar.
 2. Create canonical collection of LR(1)items.
 3. Draw DFA and the prepare table.

Since most of the procedure is common, let us look at the common procedure step by
step.

Table 5.16 LR Parsing Actions

Stack Input Action performed

$ aabb$ Push state 0

$0 aabb$ S3: shift “a” then 3, increment ip.

$0a3 abb$ S3: shift “a” then 3, increment ip.

$0a3a3 bb$ S4: shift “b” then 4, increment ip.

$0a3a3b4 b$ reduce by r 3, i.e., A → b.pop 2 symbol, replace by A, push goto[3,A] = 6

$0a3a3A6 b$ reduce by r 2, i.e., A → aA.pop 4 symbol, replace by A, push goto[3,A] = 6

$0a3A6 $ reduce by r 2, i.e., A → aA.pop 4 symbol, replace by A, push goto[0,A] = 2

$0A2 $ S4: shift “b” then 4, increment ip.

$0A2b4 $ reduce by r 3, i.e., A → b.pop 2 symbol, replace by A, push goto[2,A] = 5

$0A2A5 $ reduce by r 1, i.e., S → AA.pop 4 symbol, replace by A, push goto[0,S] = 1

$0S1 accept

192 Bottom-Up Parsers

5.9.1 Augmented Grammar
Given a grammar “G” with “S” as the start symbol, if we want to change start symbol “S” to
“S,” then add a rule to the grammar as S” → S. The grammar with the newly augmented pro-
duction is called augmented grammar. So writing augmented grammar is easy. But a question
may rise––what is the use for augmented production. This rule helps the parser to understand
when to stop parsing and announce the successful completion of the process. LR parsing is a
bottom-up parsing where it starts with the input string, performs a series of reductions until
the string is reduced to start symbol. So ultimate reduction is reducing by start symbol. If
we take reducing by the start symbol as fi nal reduction, sometimes there is confusion for the
parser because of two reasons. (1) The start symbol may appear on the right hand side of any
rule also because of which reduction by S can be used in between not only at the end. (2) There
is no restriction that the start symbol should be defi ned with only one string. It can have more
than one alternative defi nition; in such a case, there is a dilemma in which one to consider
fi nal reduction. That’s why whether the start symbol has one or more rules or is occurring
on the right hand side of any rule, there is no loss in appending augmented production like
S” → S, which unambiguously determines when to stop parsing and announce successful
completion.

Hence, given a grammar “G” with “E” as start symbol, write the augmented grammar
as G together with E” → E.

Here, we fi rst discuss the construction of LR(0) and SLR(1). The next step in parsing
table construction is creating canonical collection of LR(0) items. First let us look at what is
LR(0) item or item in simple.

5.9.2 LR(0) Item
A production with “dot” at any point on the right hand side of a rule is called LR(0) item. So
with “dot,” a production is called LR(0) item and without dot as production. “dot” makes
the difference between the two. So let us understand the signifi cance of “dot.”

A bottom-up parser, starts with the input string and reads symbol by symbol from
left to right until a handle is detected; once handle is found, it reduces. Handle is
nothing but the right hand side of any rule. Until complete handle is read, reduction
cannot be performed. So “dot” tells us how far the right hand side is seen by the parser
at any time.

For example, if there is a production X → abc. Here handle is “abc.” Parser will not read
“abc” at once. It fi rst reads “a,” which will be indicated by item X → a•bc. Once it reads b
then it is indicated by item X → a . bc. So the sequence of items generated while recognizing
handle “abc” is as follows:

 X → •abc ………………not yet read anything
 X → a•bc ……………..read “a” yet to read “bc”
 X → ab•c ……………..read “b” yet to read “c”
 X → abc• ……………..read “c” ready for reducing.

An item with “•” at the end is called complete item/fi nal item. Similarly, a production
S → ABC yields items as follows:

 Construction of the LR Parsing Table 193

 S → •ABC
 S → A•BC
 S → AB•C
 S → ABC•

The production A generates fi nal item A . An item can be represented by a pair
of integers (a,b) where a is the number of the production and b is the position of the dot.

We have so far studied what is item or a set of items; now, let us see how to construct the
LR parser. For constructing the LR(0) parser or SLR(1) parser, we have to create canonical col-
lection of LR(0) items. To create canonical collection of LR(0) items, we use two functions––
Closure(0) and “Goto().” Let us understand these functions.

5.9.3 Closure(I)
I is set of LR(0) items like A→α•Bβ, C→a•. The function closure takes input as a set of
items and produces set of LR(0) as output. The function is evaluated using the following
two rules.

1. Initially add every item from input to output.
2. If A→α•Bβ is in I where B is nonterminal & B → ૪ is the rule for B, then add B → •૪ to

Closure (I). Repeat this for every newly added item.

To evaluate Closure (I), we fi rst add all items from input I to output. With this we get
the initial items. In these initial items, verify the grammar symbol that follows “•.” If it is
a terminal, there is no need to add any new items. But if it is a nonterminal, then take the
production for nonterminal and add it to Closure(I) with dot at the beginning.

Example 9: Find Closure (E” → • E) for the following grammar:

 E” → E
 E → E + T | T
 T → T * F | F
 F → id |(E)

Solution: First add E” → • E. In the newly added item, the grammar symbol that follows dot
is a nonterminal, ie., E; so take the rules for E and add dot at the beginning.

We get

 E” → • E
 E → • E + T | • T

Now repeat rule 2 for the newly added item. “T” is a nonterminal, hence add rule for T
with dot at the beginning.

 E” → • E
 E → • E + T | • T
 T → • T * F | • F

Now repeat rule 2 for the newly added item. “F” is a nonterminal, hence add rule for F
with dot at the beginning.

194 Bottom-Up Parsers

 E” → • E
 E → • E + T | • T
 T → • T * F | • F
 F → • id | • (E) This is closure(E” → • E).

5.9.4 Goto(I,X)
Where I is a set of item and X is the grammar symbol.

The Goto function basically defi nes what is the transition/change in the set of items I on
seeing the grammar symbol X. This is formally defi ned as

 goto(I,X) = Closure({A → aX•b |A → a•Xb is in I}),
that is, closure of all the productions of the form A → aX•b such that A → a•Xb is in I.

If I = A → a•Xb, then goto(A → a•Xb,X) is, fi rst fi nd transition in I on X. The grammar
symbol X matches with the symbol that follows dot in I, hence change is new item where dot
is moved next to X, that is, A → aX•b. Now fi nd the closure of such resulting items. Suppose
I is A → aX•A then goto(A → aX•A,X) = , that is, no new item is generated. Because the
grammar symbol that follows dot in item is A and argument is X, both do not match. Hence,
no new item is produced. The evaluation of goto function involves two steps:

 1. Find transition
 2. Apply Closure() on resulting items.

Consider the following example:

Example 10: If I = {E” → •E, E → E • + T} and G is
 E → E + T | T, T → T * F | F, F → id |(E)
 Find goto (I, +).

Solution: First fi nd transition on seeing the symbol “+” in each item. In the fi rst item “E” →
•E,” there is no match with “+.” In second item, that is, “E → E • + T” there is a match with
“+”; so the result is E → E +• T. Now apply closure on this. “T” is a nonterminal; so add rules
for “T” with dot at the beginning. The result therefore is as follows:

 I1: E → E +• T
 T → • T * F |• F
 F → • id | • (E)

Let us see one more example. Find goto(I1,T).
First fi nd transition on seeing “T” in each item. In the fi rst item “E → E +• T,” there is a

match so result is E → E +T•. In second the item, that is, “T → • T * F” there is a match; so
result is T → T• * F. So after fi nding the transition, we get items as follows:

 E → E +T•
 T → T • * F
Now apply closure on this. “*” is a terminal and so there is no need to add rules. The

result therefore is as follows
 E → E + T•
 T → T • * F

 Construction of the LR Parsing Table 195

As we have understood closure and goto functions, let us discuss how to create canoni-
cal collection of LR(0) items by using these two functions.

5.9.5 Creating Canonical Collection “C” of LR(0) Items
C = {I0,I1,I2,I3…..In}

1. The initial item in C is I0 = closure(augmented production with dot at the beginning).
For example, in the above grammar, I0 = closure(E” → •E)

2. For each Ii in C and each grammar symbol X in G
Repeat

 while goto(I,X) is not in set C and not a empty set
 add goto(I,X) to C
 until no more new set of items can be added to set C.

The initial item in C is obtained using the closure function. The remaining elements in
set C are obtained by the goto function.

Example 11: Construct canonical collection of LR(0) items for grammar.
 S” → S, S → AA, A → aA | b

Solution: I0 = closure(S” → • S,) = S” → • S
 S → • AA
 A → • aA | • B
 I1 = Goto(I0,S) = S” → S•
 I2= Goto(I0,A) = S →A •A
 A → • aA | •b
 I3= Goto(I0,a) = A → a • A

 A → • aA | • b
 I4= Goto(I0,b) = A → b •

That’s all the transitions from I0. Now apply the goto function on I1. Since I1 has only one
fi nal item, there is no need to apply the goto function. Now consider I2

I5 = Goto(I2,A) = S →AA •
 Goto(I2,a) =I3, Goto(I2,b) = I4
I6 = Goto(I3,A) = A →aA •
 Goto(I3,a) = I3, Goto(I3,b) = I4

As I4, I5 and I6 have only fi nal items, this completes canonical collection.

5.9.6 Construction of DFA with a Set of Items
Now after creating the canonical collection, we draw DFA with a set of items as fi nal states––
I0 as the initial state and edges as goto transitions. This deterministic fi nite automaton rec-
ognizes the viable prefi xes of G. The state symbol stored on top of the stack is the state the
handle recognizing fi nite automaton would be in if it had read the grammar symbols of the
stack from bottom to top. From the canonical collection in the above Example 11, we can
draw the DFA as shown in Figure 5.5.

196 Bottom-Up Parsers

If each state, Ii of DFA is a fi nal state and I0 is the initial state, then DFA recognizes exactly
the viable prefi xes of grammar.

The fi nal step in the construction of the LR parsing table is preparing the table from
DFA. To prepare the LR parsing table, we fi rst need to know the number of rows and col-
umns. For each state “Ii” in DFA, we defi ne a row “i” in the parsing table. For example, con-
sider the above DFA, for that the number of rows in LR table, there are 7 as there are 7 states
I0 to I6. Columns are given by terminal in the action part and nonterminals in the goto part.
One additional column is defi ned for “$” in the action part. For the above example, the LR
table will have 7 rows, that is, 0 to 6 and 5 columns, that is, a, b, $, S, A. Coming to the table
preparation, we need to know how to enter shift entries, goto states, and reduce entries. All
the parsers basically differ only in placing reduce entries. The remaining procedure is the
same, that is, placing shift entries and goto states are also common for all the parsers. Now
let us see how to prepare shift entries and goto information using DFA. In the DFA, transi-
tion in any state on terminals yields to shift entries and nonterminal yields to the goto state.

Consider the following transition on terminal ‘a’,

I5 I6
a

The corresponding shift entry is

a

5 S6

Figure 5.5 DFA for Grammar in Example 11

S

A

a a

a

b

b

A

A

b

S’ → • S
S → • AA
A → • aA | • b

S → A • A
A → • aA | • b

A → a • A
A → • aA | • b

S’ → S •

S → AA •

A → aA •
A → b •

I0

I1

I2

I3
I6

I4

I5

I4

 LR(0) Parser 197

Consider the following transition on nonterminal A,

I5 I6
A

The corresponding goto state entry is

A

5 6

The procedure we have discussed thus far is the common procedure used for all LR
parsers except item type. To complete the table the left out part is reduce entries, this is
where all the four parsers differ. Hence, let us consider each parser separately for discussing
the preparation of reduce entries. Let us start with the simplest of all, that is, LR(0) parser.

5.10 LR(0) Parser
The main characteristic of this parser is that it does not use any look ahead in making the
parsing decisions. If you recollect, in LR parsing, parsing decisions (when to go for shift
action/reduce action) are made by looking at the top stack state and the look ahead symbol.
In LR(0) parser, the top stack state unambiguously determines the action to be performed at
anytime without looking at the look ahead symbol.

To enter the reduce entries, once again DFA is used by the parser. In the DFA, it checks for
states that contain the fi nal item (an item with dot at the right end). The fi nal item indicates
that the entire right hand side is seen by the parser; hence, it is ready for reduce action. Hence,
it checks for states that contains fi nal items. If a state Ii contains the fi nal item, then place the
reduce entries in the corresponding row “i.” If state Ii has a fi nal item A → α• the produc-
tions in given grammar is numbered. If the rule A → α is jth rule, then in the row “i” place
the reduce entry as rj under all the columns because the columns in the table are look ahead
symbols. LR(0) makes parsing decisions independent of look ahead. Hence, place the reduce
entry under every column in the action part. For example, consider the following state of DFA:

S → AA•
 I5

The corresponding reduce entry in table is

a b $

5 r1 r1 r1

If the fi nal item is S” → S•, then place the entry as “acc” instead of reduce. Because
reducing by S” → S• is the accepting state. For example, consider the following state of DFA:

S” → S•
 I1

198 Bottom-Up Parsers

The corresponding reduce entry in table is

a b $

1 acc acc acc

or

a b $

1 acc

When the top of the stack is state 1, without looking at the input symbol it announces
successful completion.

Example 12: Consider the grammar:

 1. S → (L)
 2. S → a
 3. L → S
 4. L → L, S

Prepare the LR(0) parsing table for the above grammar.

Solution: Step 1: Take the augmented grammar as follows:

S” → S, S → (L),S → a
L → S, L → L, S

 Step 2: Create canonical collection and draw DFA. DFA is shown in Figure 5.6.
 Step 3: Table is prepared and is shown in Table 5.17.

Figure 5.6 DFA for Grammar in Example 12

S’→ • S
S → • a

S → •(L)

S0:

S1:

S

S

S
L

 ,

a

a

a

(

(

(

(

S3:

S’ → S •

S → (• L)

S5:

L → S •

S2:

S → a •

L → • L, S
L → •S

S7:
L → L, • S
S → • (L)

S4:
S → (L •)

S6:
S → (L) •

S8:
L → L, S •

L → (L •, S)

S → • a

S → • a
S → •(L)

 LR(0) Parser 199

5.10.1 Advantages of the LR(0) Parser

 � It is very simple to construct the LR(0) Parser compared to other LR parsers.
 � Each row in the table defines unique action, that is, either shift action or reduce action or

accept.

5.10.2 Disadvantages of the LR(0) Parser

 � The LR(0) Parser can be used to parse a small class of grammars.
 � Look ahead is not used in making parsing decisions.

5.10.3 LR(0) Grammar
The grammar for which there are no multiple entries in the LR(0) parsing table is called
LR(0) Grammar. An LR(0) grammar indicates that this grammar is suitable for constructing
the LR(0) parser.

Given a grammar, let us see how to check whether it is LR(0) or not. The straightforward
method is to construct the LR(0) parsing table for the grammar and check whether there are
any multiple entries in the table. No multiple entry in the table indicates that the grammar
is LR(0). For example, if grammar has 100 nonterminals and 100 terminals, then to check
whether it is LR(0) or not, we need to construct a table with 100 × 100, which is a tedious
task. Hence, let us see a simple way of checking whether the grammar is LR(0) or not. The
basic criterion used is checking the multiple entries in the table. Let us see how to check the
possibility of multiple entries without constructing the table.

Table 5.17 LR Parsing Table for Example 12

States

Action Goto

() a , $ S L

0 s3 s2 1

1 Accepting state

2 r2 r2 r2 r2 r2

3 s3 s2 5 4

4 s6 s7

5 r3 r3 r3 r3 r3

6 r1 r1 r1 r1 r1

7 s3 s2 8

8 r4 r4 r4 r4 r4

200 Bottom-Up Parsers

5.10.4 Confl icts in Shift-Reduce Parsing
After constructing the DFA, check if any state contains a combination of fi nal and nonfi nal
item. For example, assume that state I5 has items as follows.

S → α • bβ
A → b •
 I5

If we prepare the corresponding parsing table entries, we get a table as shown below:

a B $

5 r s/r r

On seeing the input symbol “b,” there is a confl ict. The nonfi nal item in state I5 indicates that
on seeing “b” it may enter to some other state, which may lead to shift action. At the same
time, the fi nal item in the same state indicates reduce action. So the same state is indicating
two different actions—shift/reduce, that confuses the parser. This confl ict is called shift/
reduce confl ict. Here, the parser is not able to decide whether to shift or to reduce. Hence, by
checking out shift/reduce confl icts, we can check for multiple entries in the table.

For example, the following LR(0) items
 A → α • Aβ

 B → ૪ • do not have an SR confl ict because there is no shift action. The symbol next to dot
in nonfi nal item is “A” which is a nonterminal. On seeing “A,” it enters to another state that
corresponds to the goto state but not shift action. There is only reduce action. Hence, no SR
confl ict at all. So to test SR confl ict we test each state of DFA as follows:

 If there is a combination of fi nal and nonfi nal items where grammar symbol next to dot in nonfi nal
item is a terminal such as

A → • b
→ γ •

Another way of checking the possibility of multiple entries without constructing the table
is as follows. After constructing the DFA, check if any state contains a combination of more
than one fi nal item. For example assume that state I5 has items as follows:

S → a •
A → b •
 I5

If we prepare the corresponding parsing table entries, we get a table as shown below:

Let r1: S → a and r2: A → b

b

 LR(0) Parser 201

a b $

5 r
1
/r

2
r

1
/r

2
r

1
/r

2

There are two fi nal items in the state I5. A fi nal item indicates reduce action. So same
state is indicating two different reduce actions, that confuses the parser. This confl ict is called
reduce/reduce confl ict. Here, the parser is not able to decide whether to reduce by r1 or r2.
Hence, by checking out reduce/reduce confl icts, we can check for multiple entries in the
table. To test RR confl ict we test each state of DFA as: If there is a combination of more than one
fi nal item in any state.

There are two kinds of confl icts:
Shift/reduce confl ict: Here, the parser is not able to decide whether to shift or to reduce.
Reduce/reduce confl ict: Here, the parser cannot decide which sentential form to use for
reduction.

To verify whether the given grammar is LR(0) or not, check each state of DFA for shift/
reduce or reduce/reduce confl icts. The necessary condition for confl icts is there should be
at least one fi nal item. In any state of DFA, with the fi nal item if there is one more nonfi nal
item (where grammar symbol next to dot must be terminal), then it is shift/reduce con-
fl ict. In any state of DFA, if there is more than one nonfi nal item then it is reduce/reduce
confl ict.

Example 13: Check whether the following grammar is LR(0)

 S → AA, A → aA | b

Solution: Look at the DFA constructed for the above grammar in the previous example.
Check each state for confl icts. None of the states has a fi nal item along with fi nal item or
nonfi nal item; hence, no confl icts. So the grammar is LR(0).

Example 14: Check whether the following grammar is LR(0)

 S→ a | A, A → a

Solution: Take augmented grammar G” as follows:

 S”→S, S→ a | A, A → a

Draw the DFA with LR(0) items by using the procedure described in 5.9.6.
State I2 has reduce-reduce confl ict as shown in Figure 5.7. On reading input symbol “a,”

it may not be able to decide whether to reduce by fi rst rule or second rule. Hence, it is not
LR(0).

In fact, the grammar is ambiguous grammar. No ambiguous grammar can be LR(0).

Example 15: Check whether the following grammar is LR(0)

 E → E + T | T, T → a

Solution: Take augmented grammar G” as follows:

 E” → E, E→ E + T | T, T → a

202 Bottom-Up Parsers

Figure 5.8 Confusion in State I
2
 for the LR Parser

E’ → • E

E → • E + T | • T

T → • a

E’ → E •

E → T •

I1

T → a •

I3

I0

I2

E

T

a

E → E • + T

Figure 5.7 RR Confl icts in DFA

S’ → • S

S → • a | • A

A → • a

S → a •

S’ → S •

I1

S → A •

A → a •

I3

I0

I2

S

a

A

Draw the DFA with LR(0) items by using the procedure described in 5.9.6.
Look at Figure 5.8. Does state I2 has shift-reduce confl ict? No, this is not shift reduce

confl ict. A shift-reduce confl ict means same state specifying different actions. In state I2, the

 LR(0) Parser 203

nonfi nal item is specifying the shift action. But the fi nal item is not for reduce action. It indi-
cates accept action. There are only shift-reduce or reduce–reduce confl ict; accepting state
itself should not be a confusion. Remember augmented production is not present in original
grammar. This is what we have added. So to avoid such confusion with augmented produc-
tion, we can append a special symbol at the right end of augmented production like E” → E#.
Now let us construct DFA with this. It is shown in Figure 5.9.

Figure 5.9 DFA with LR(0) Items for Grammar in Example 15

E’ → • E #

E → • E + T | • T

T → • a

E’ → E • #

E’ → E # •

E → E + • T

E → E + T •

E → T •

I1

T → a •

E → E • + T

I3

I0

I2

I5

I6

I4

I3

E

+

#

TT

a

T → • a
a

Now there are no confl icts. Hence, it is LR(0).
Now let us understand the power of the LR(0) parser. Consider a simple unambiguous

grammar given below. Here the difference between previous example and this grammar is,
the operator “+” is right associative.

Example 16: Check whether the following grammar is LR(0) or not
 E → T + E | T, T → a

Solution: Take augmented grammar G” as follows:
 E” → E, E→ T + E | T, T → a

Draw the DFA with LR(0) items by using the procedure described in 5.9.
Look at Figure 5.10. State S2 has shift-reduce confl ict. In this state it may not be able to

decide whether to shift or reduce. Hence, it is not LR(0).
Remember, to avoid such confl ict, if you add “#” in augmented production as added

in previous example, the confl ict will not be resolved. Here confusion is not because of
augmented production. It is in the original grammar. The above example demonstrates the

204 Bottom-Up Parsers

power of the LR(0) parser. Such a simple unambiguous grammar cannot be parsed by the
parser. LR(0) can parse only a very small class of grammars.

Now let us examine why LR(0) is failing here. The main drawback of LR(0) is “0” that
is, it does not use any lookaheads (0 look aheads) in making parsing decisions. Hence, while
constructing the parsing table, if a state has a fi nal item, we place reduce action under every
column. One entry is already placed in each column because of which the possibility of
multiple entries will be increased. Hence, the LR(0) parser can parse only few grammars.
To overcome this disadvantage, the better parser, that is, simple LR parser, SLR(1) is con-
structed with one look ahead symbol.

5.11 SLR(1) Parser
The SLR(1) parser is a simple LR parser, which is easy to construct. This is better than LR(0)
as it uses a look ahead symbol. The “1” in SLR(1) indicates the number of lookaheads used
by the parser. It uses a look ahead given by the follow set. The procedure for SLR(1) parsing
table is the same as LR(0); the only difference is in reduce entries. To place reduce entries once
again, SLR(1) uses the DFA. It checks if a state has the fi nal item. The state that contains a fi nal
item indicates in which row the reduce entries are to be placed. This procedure is the same as
LR(0). For example, if state Ii has a fi nal item, we place reduce entries in row “i.” But in row
“i,” fi nding out columns is different for SLR(1). If it is LR(0), we place under every column, but
for SLR(1) it is under the columns given by the follow set. For example, consider the following
state of DFA:

S →AA•
I5

Assume follow(S) is {$}

Figure 5.10 SR Confl icts in DFA of Grammar in Example 16

E

T +

E

a

In state S2, should we shift or do we reduce? We need to look ahead (or do we?)

S0:
E’ → • E

E → • T + E

E → • T
T → • a

S1:

E’→ E •

S3 :

T → a •

S2:

E → T • + E

E → T •

S4:

E → T + • E

E → • T + E

E → • T
T → • a

S5:

E → T + E •

 SLR(1) Parser 205

The corresponding reduce entry in table is

State a + $

LR(0) parser 5 r1 r1 r1

SLR(1) parser 5 r1

SLR(1) determines the columns by follow of the left hand side nonterminal. To under-
stand how SLR(1) is better than LR(0), consider the above example where LR(0) is
failing. Let us construct the SLR(1) parsing table for the same grammar. E’→ E, E → T + E
| T, T → a (Figure 5.11).

Figure 5.11 DFA for Grammar in Example 16

E’ → • E

E → • T + E | • T

T → • a

E → E • + T
E → E + T •

E → E + • T

E’ → E •

I1

T→ a •

I3

I0

I2

I5

I4

E
+

T

T

a

T → • a

 | T •

a

I3

Consider state 2, the entry in table is as follows

State a + $

LR(0) parser 2 r2 s4/r2 r2

SLR(1) parser 2 s4 r2

There is a Shift-Reduce (SR) confl ict in state I2. If this confl ict is resolved by SLR(1) parser,
then the grammar is SLR(1). To verify if the confl ict is resolved or not, let us construct the
SLR(1) parsing table.

206 Bottom-Up Parsers

Follow(E”) = Follow (E) = {$}, Follow(T) = {+,$}
Look at the Table 5.18, row 2; though there is an SR confl ict in state I2, there are no multi-

ple entries in row 2. That means confl icts are resolved by the SLR(1) parser. Hence, the given
grammar cannot be parsed by LR(0) but can be parsed by SLR(1). That is the power of SLR(1).

Table 5.18 SLR(1) Parsing Table

a + $ E T

0 S3 1 2

1 acc

2 S4 r2

3 r3 r3

4 S3 5

5 r1

Example 17: Check whether the following grammar is SLR(1) or not.
 E→ E + T | T, T → TF | F, F → F* | a| b

Solution: Take augmented grammar G” as follows:
 E” → E, E → E + T | T, T → TF | F, F → F* | a| b
Draw the DFA with LR(0) items by using the procedure described in 5.9.6. Look at Figure 5.12.

Figure 5.12 DFA for Grammar in Example 17

E’→ • E
E → • E + T | • T
T → • TF | • F

 E → E • + T

E → T •

F → F ∗ •

E → E + • TE’ → E •

I1

F → a •

T → T • F

I4
F → b •

I5

T → F •
F → F • ∗

I3

I0

I2

I9

I5 I4
I9

I6

I4
I5

I7

I4

I5

E

T

+

b

F

a

a

F F

b

 *

 *

T

F

b

a

b a

T → • TF | • F

E → TF •

I7

F → • F∗ | • a | • b
F → • F∗ | • a | • b

F → • F∗ | • a | • b

F → F • ∗ | • a | • b

E → E + T •
T → T • F

I8

F → • F∗ | • a | • b

 SLR(1) Parser 207

Observe that there are confl icts in states 2, 3, 7, and 8. The states of LR parser with con-
fl icts are called inadequate states. Because of the confl icts, the grammar is not LR(0). To test
whether it is SLR(1) or not, we need to test whether the confl icts are resolved by SLR(1) or
not. For this we need not have to construct the complete SLR(1) table. Construct the rows
for inadequate states. If there are no multiple entries in that rows, then we can say that the
grammar is SLR(1). So let us construct rows for inadequate states, that is, 2, 3, 7, and 8. It is
shown in Table 5.19.

Table 5.19 SLR(1) Parsing Table for Inadequate States

State

Action

a b + * $

2 S4 S5 r2 r2

3 r4 r4 r4 S9 r4

7 r3 r3 r3 S9 r3

8 S4 S5 r1 r1

Follow(E) = {$, +}, Follow(T)={$, +, a, b}, Follow(F) = {$, +, a, b, *},
As there are no multiple entries in any row, the grammar is SLR(1).

Example 18: Check whether the following grammar is SLR(1) or not.
S → A a A b | B b B a
A → ε
B → ε

Solution: Take augmented grammar G” as follows:
S” → S, S → AaAb | BbBa, A → ε, B → ε

Create canonical collection of LR(0) items

I0 = {S” → • S, S → • A a A b, S → • B b B a, A → •, B → • },
I1 = goto(I0, S) = {S” → S •},
I2 = goto(I0, A) = {S → A • a A b }
I3 = goto(I0, B) = {S → B • b B a }
I4 = goto(I2, a) = {S → A a • A b, A → • }
I5 = goto(I3, b) = {S → B b • B a, B → • }
I6 = goto(I4, A) = {S → A a A • b }
I7 = goto(I5, B) = {S → B b B • a }
I8 = goto(I6, b) = {S → A a A b • }
I9 = goto(I7, a) = {S → B b B a • }

Draw the DFA with LR(0) items by using the procedure described in 5.9.6.
This is a simple unambiguous grammar, which is LL(1) but not LR(0). Look at Figure 5.13.

State I0 has RR confl ict. There are no confl icts in states I2 or I6. Let us check for SLR(1) by con-
structing table.

208 Bottom-Up Parsers

Figure 5.13 DFA for Grammar in Example 18

I2

A

B

B

b

a

a

b

A
S → A • a Ab

S’→ • S
S → • AaAb
S → • BbBa
A → •
B → •

I1

I2
I4

S → Aa • Ab
A → •

I6

S → Aa A • b

I8

S → AaAb •

I3

S → B • bBa

I5

S → Bb • Ba
B → •

I7

S → BbB • a

I9

S → Bb Ba •

Follow(S) = {$}, Follow(A) = {a, b}, Follow(B) = {a, b};
Look at the Table 5.20. Since there are reduce–reduce confl icts in [I1, a] and [I1, b], this

grammar is not an SLR(1) grammar. Hence, this grammar is LL(1) but not LR(0) and not
SLR(1).

Let us examine why SLR(1) is weak. There are two reasons for the weakness of SLR(1).

 � Though SLR(1) uses look ahead given by the follow set, actually follow sets are larger
than actual lookaheads. That leads to more entries than required in parsing table.
Hence, SLR(1) parses only a small class of grammars.

 � Look ahead information is not available in any state of parser, it is used independent
of any state by the follow set.

To overcome the above disadvantages, the better parsers, that is, LR(1) and LALR(1) are
constructed using LR(1) items.

LR(1) item = LR(0) item + look ahead terminal
Ex: A → a•, a where the input symbol “a” is called the “lookahead”
(which is of length 1). That’s why it is called LR(1) item.

When look ahead is present with the fi nal item, it tells when to perform reduce
action. In the above example, LR(1) item indicates that reduce a to A only if the next
symbol is “a.”

 Canonical LR(1) Parsers CLR(1)/LR(1) 209

5.12 Canonical LR(1) Parsers CLR(1)/LR(1)
This technique of parsing is the most powerful among all LR parsers. Let us see how to con-
struct the LR(1) parser. Procedure is the same as SLR(1). Take augmented grammar, create
canonical collection of LR(1) items, draw DFA, and prepare table. So to create canonical col-
lection of LR(1) items, we use closure and goto functions. Earlier, we have defi ned them for
LR(0) items; now let us redefi ne closure and goto functions for LR(1) items.

5.12.1 Closure(I) Where I Is a Set of LR(1) Items
I is a set of LR(1) items like [A→α•Bβ, $], [C→a•,a]. The function closure takes input as a
set of LR(1) items and produces set of LR(1) as output. The function is evaluated using the
following two rules:

1. Initially add every item from input to output.
2. If A→α•Bβ,$ is in I where B is nonterminal & B → γ is the rule for B then add
 B → γ, First(β$) to Closure (I). Repeat this for every newly added item.

Example 19: Consider the grammar
S → CC
C → cC
C → d
Find closure(S” → • S, $)

Solution: First add every item from input to output.

Table 5.20 Confl icts in SLR(1) Parsing Table

States
Action Goto

a b $ S A B

I0 r3/r4 r3/r4 1 2 3

I1 accept

I2 S4

I3 S5

I4 r3 r3 6

I5 r4 r4 7

I6 S8

I7 S9

I8 r1

I9 r2

210 Bottom-Up Parsers

S” → •S, $
Now because of “S” add rules for S where look ahead is First($) = {$}

S → •CC, $
Now because of “C,” add rules for C where look ahead is First(C$) = {c,d}

C → •cC, c|d
C → •d, c|d

In the newly added items there are no nonterminals next to dot. So that completes
closure().
Result is

S” → •S,$
S → •CC,$
C → •cC, c|d
C → •d, c|d

5.12.2 Goto(I,X)
Given the set of all items of the form [A → α • Xβ, a] in I, goto[I, X] = closure([A → αX • β; a]

The Goto function involves two steps––fi nd transition and apply closure. Earlier we
have defi ned the goto() function for LR(0) items. The same defi nition still holds good for
LR(1) also. But we need to extend the defi nition for look ahead. The change in look ahead in
goto function is as follows:

 � While finding transition look ahead remains the same
 � While finding closure, look ahead may change.

Example 20: Find goto(I0,C) if I0 is as follows
 I0: S” → •S,$
 S → •CC,$
 C → •cC, c|d
 C → •d, c|d

Solution: First fi nd transition in each item on “C.” Result is
S → C•C,$

 Now apply closure on the above item. Here evaluate look ahead as fi rst of grammar
symbols next to nonterminal including look ahead.
Because of “C” add rules for C where look ahead is First($)={$}

C → •cC, $
C → •d, $

So result of goto() is
 I1: S → C•C,$
 C → •cC, $
 C → •d, $.

Example 21: Find goto(I1,c)
Solution: First fi nd transition in each item on “C.” Result is

C → c •C, $

 Canonical LR(1) Parsers CLR(1)/LR(1) 211

Now apply closure on the above item.
Because of “C” add rules for C where look ahead is First($) = {$}

C → •cC, $
C → •d, $

So result of goto() is
I2: C → c•C,$
 C → •cC, $
 C → •d, $

Creating the canonical collection of LR(1) items and drawing the DFA is the same as
LR(0).

5.12.3 Creating Canonical Collection “C” of LR(1) Items
C = {I0,I1,I2,I3…..In}

1. The initial item in C is I0 = closure (augmented production with dot at the beginning, $).
 For example, in the above grammar, I0 = closure(E” → • E,$)
2. For each Ii in C and each grammar symbol X in G
 Repeat

 While goto(I,X) is not empty and not in C
 Add goto(I,X) to C

 Until no more set of items can be added to C.
Let us understand the procedure with an example.

Example 22: Draw DFA with LR(1) items for the grammar
S → AA
A → aA |b

Solution: Take augmented grammar
S” → S, S → AA, A → aA | b
 I0= closure(S” → • S,$) = S” → •S,$
 S → •AA,$
 A → •aA |• b, a|b

I1= Goto(I0,S) = S” → S,$

I2= Goto(I0,A) = S → A •A,$
 A → •aA | •b,$

I3= Goto(I0,a) = A → a•A, a|b
 A → •aA |• b, a|b
I4= Goto(I0,b) = A → b•, a|b

 That’s all the transitions from I0. Now apply the goto function on I1. Since I1 has
only the fi nal item, there is no need to apply the goto function. Now consider I2

I5= Goto(I2,A) = S →AA•, $

I6=Goto(I2,a)= A → a•A, $

212 Bottom-Up Parsers

 A → •aA |. B, $

I7= Goto(I2,b) = A → b•, $

I8= Goto(I3,A) = A → aA•, a|b

I9= Goto(I6,A) = A → aA•,$

Goto(I3,a) = I3, Goto(I3,b) = I4

Goto(I6,a) = I6, Goto(I6,b) = I7

 The DFA for the above set of LR(1) items is as shown in Figure 5.14.

Figure 5.14 DFA for Grammar in Example 22

S1→ • S , $
S → • AA , $
A → • aA ,a | b
 | • b , a | b

I0

I1

S1→ • S , $

I4

A → b • , a | b

S → A • A , $
 A → • aA , $
 | • b , $

I2

A → a • A , a| b
A → • aA , a | b
A → • b , a | b

I3

I5

S → AA • , $

A → a • A , $
A → • aA , $
 | • b , $

I6

I7

I6
I7

A → b • , $

I8

A → • aA , a | b

I9

A → aA • , $

S

A

A

A

A

a

a

b

b

a

b

5.12.4 Constructing CLR(1) Parsing Table
Once DFA is drawn, by using the DFA we can construct the parsing table. The proce-
dure is similar to SLR(1) the only difference being reduce entries. So let us discuss how
CLR(1) prepares reduce entries in the parsing table. SLR(1) uses the follow set but there are
no complications with LR(1). Look aheads are already available in item itself. So CLR(1)
checks the DFA for fi nal item, if fi nal item is available in state I2 as A → abc, a|$, then it
places reduce entry in the row 2 under columns given by look ahead, that is, a, $ as shown
in Table 5.21.

 Canonical LR(1) Parsers CLR(1)/LR(1) 213

This is how invalid reduction of SLR(1) are avoided by CLR(1). SLR(1) places reduce
entry at more places as follow sets are larger than actual look aheads but CLR(1) puts only
under actual look aheads. That’s why CLR(1) is the most powerful and can parse almost all
CFG.

Example 23: Construct the CLR(1) parsing table for the above DFA.
Solution: There are 10 states in DFA I0 to I9. So 10 rows. Columns are a, b, $, in action part
and S, A in goto part.

Table 5.22 is the parsing table of the most powerful parser, that is, the CLR(1) Parser.

Table 5.22 CLR(1) Parsing Table

States

Action Goto

a b $ S A

0 s3 s4 1 2

1 acc

2 s6 s7 5

3 s3 s4 8

4 r3 r3

5 r1

6 s6 s7 9

7 r3

8 r2 r2

9 r2

5.12.5 CLR(1) Grammar
If the CLR(1) parser does not contain any multiple entries then grammar is called CLR(1) or
LR(1) Grammar. Given a grammar to check whether it is CLR(1) or not, construct DFA with
LR(1) items. If there are any confl icts in DFA then it is not CLR(1). So checking for SR or RR
confl icts in DFA is very important for verifying whether the grammar is LR(1) or not. Let us
review checking SR or RR confl icts with LR(0) and LR(1) items. An example for each case is
shown in Table 5.23.

Table 5.21 Reduce Entries in the CLR(1) Parsing Table

a b $

2 R R

214 Bottom-Up Parsers

For example the following LR(1) items

A → α • aβ, $
B → γ •, b

There is no SR confl ict because the shift action is on “a” and reduce action is on “b.”
There is no confl ict at all.

For example, the following LR(1) items

A → α • Aβ, $
B → γ •, b

There is no SR confl ict because there is no shift action as the symbol next to dot in non-
fi nal item is “A” nonterminal. On seeing “A” if it enters to another state that corresponds to
the goto state but not shift action. There is only reduce action on “b.” There is no confl ict at all.

For example, the following LR(1) items

A → α •, a
B → γ •, b.

There is no RR confl ict because fi rst reduce action is on “a” and next reduce action is on
“b.” There is therefore no confl ict at all.

So we can test for confl icts in LR(1) items as follows:

SR confl ict: If there is fi nal item with nonfi nal item where look ahead in fi nal item is same as the
terminal next to dot in nonfi nal item, then it is an SR confl ict.

RR confl ict: If there is more than one fi nal item with at least one common look ahead, then it is a RR
confl ict.

Example 24: Check if the following grammar is LR(1) or not.
S → AA
A → aA |b

Solution: The DFA for above grammar is shown in Figure 5.14.
As there are no confl icts in any state of DFA, the grammar is LR(1).

The same can be verifi ed with the LR(1) parsing table constructed in Example 23.
No multiple entries in Table 5.19. So it is LR(1).

a b $
i s r

a b $

i r

a b $

i r1 r2

Table 5.23 Confl icts with LR Items

With LR(0) Items With LR(1) Items

Shift Reduce confl ict A → α • aβ
B → γ •

A → α • aβ, $
B → γ •, a

Reduce Reduce
Confl ict

A → α •
B → γ •

A → α •,a
B → γ •, a

 LALR(1) Parser 215

Compare the SLR(1) and CLR(1) tables for the grammar S → AA,A → aA | b. The SLR(1)
table is in Example 8 and LR(1) table is in Example 23. Note the difference. In SLR parser
table there are 7 rows, whereas in LR(1) there are 10 rows. So we observed that for a given
grammar if we construct SLR(1) and CLR(1) tables, table size of LR(1) is more as number of
rows in LR(1) is more. This is the main disadvantage of LR(1). Though it is most powerful, it
requires more table space; that’s why this is not a preferred parser. LALR(1) overcomes this
disadvantage; that’s why LALR(1) is preferred rather than LR(1). Even most of automatic
parser generators use the LALR technique rather than the CLR technique. Let us see how to
construct the LALR(1) parser.

5.13 LALR(1) Parser
The procedure to construct the LALR(1) parser is the same as that of CLR(1). Construct DFA
with LR(1) items. Now check if any two states are differing by look aheads, then merge them
into a single state. For example, consider the DFA with LR(1) items for the grammar

S → AA
A → aA |b

Look at the DFA shown in Figure 5.15.

Figure 5.15 DFA for a Given Grammar

S1→ • S , $
S → • AA , $
A → • aA , a | b
 | • b , a | b

I0

I1

S1→ • S , $

I4

A → b • , a | b

 S → • A • A , $
 A → • aA , $
 | • b , $

I2

A → a • A , a | b
A → • aA , a | b
A → • b , a | b

I3

I5

S → AA • , S

A → a • A , $
A → • aA , $
 | • b , $

I6

I6

I7

I7

A → b • , $

I8

A → a A • , a | b

I9

A → aA • , S

S

A

A

A

A

a

a

b

b

a

b

216 Bottom-Up Parsers

Check for the states that are differing by look ahead. Here I3I6 and I4I7 and I8I9 are such
states.

Now in LALR(1) we merge them to a single state like I3 I6 to new state I36, I4 I7 to new state
I47, I8I9 to new state I89. To merge the states we take items as they are but add lookaheads as
union of two states. For example,

I36 = A a•A, a|b|$
 A aA | b, a|b|$
I47 = A b•, a|b|$
I89 = Goto(I3,A) = A aA•, a|b

Now the table is constructed with new states with same procedure. It is shown in
Table 5.24.

Table 5.24 LALR(1) Parsing Table

State

Action Goto

a b $ S A

0 s36 s47 1 2

1 acc

2 s36 s47 5

36 s36 s47 89

47 r3 r3 r3

5 r1

89 r2 r2 r2

This is the LALR(1) parsing table. Compare this with the SLR parsing Table 5.15. What is
the difference? Are they same? Yes. Number of states in SLR is the same as LALR. As LALR
is merging the states where items are same but look aheads are different into same state.
The number of states is reduced compared to CLR(1). CLR(1) treats such states as separate.
That’s why more states and more number of rows are present in a parsing table. Hence,
LR(1) requires more space. As LALR(1) is combining such states together, the number of
states are reduced. Hence it requires less table space than CLR(1). But for a given grammar,
table size of SLR and LALR is the same but CLR will be large.

Now to test the power of CLR(1) and LALR(1), we can take all the previous examples
that failed to be SLR(1). Let us start with the grammar in Example 18.

Example 25: The following grammar is LL(1), not LR(0), not SLR(1)

S → A a A b | B b B a
A → ε
B → ε check if it is LR(1) and LALR(1).

 LALR(1) Parser 217

Solution: Take augmented grammar G” as follows:

S”→ S, S → AaAb | BbBa, A → ε, B → ε

Create canonical collection of LR(1) items

I0 = S” → • S, $, S → • A a A b, $, S → • B b B a, $ A → •, a, B → •, b
I1 = goto(I0, S) = {S” → S •, $},
I2 = goto(I0, A) = {S → A • a A b, $ }
I3 = goto(I0, B) = {S → B • b B a, $}
I4 = goto(I2, a) = {S → A a • A b, $ A → •, b }
I5 = goto(I3, b) = {S → B b • B a, $, B → •, a}
I6 = goto(I4, A) = {S → A a A • b, $ }
I7 = goto(I5, B) = {S → B b B • a, $ }
I8 = goto(I6, b) = {S → A a A b •, $ }
I9 = goto(I7, a) = {S → B b B a •, &}

Draw the DFA with LR(0) items by using the procedure described in 5.9.6.
Look at Figure 5.16. State I0 has no confl ict. Though there are two fi nal items [A → •, a]

and [B→ •, a]. Two look aheads are different. Hence, there is no confl ict. The grammar is
CLR(1) as there are no confl icts in DFA.

Figure 5.16 DFA for Grammar in Example 25

A

B

B

b

b

a

a

A

S’→ • S, $
S → • AaAb, $
S → • BbBa, $
A → • , a
B → • , b

I1

S → A • a Ab, $

I2

S → Aa • Ab, $
A → • , b

I4

I6

S → Aa A • b, $

I8

S → AaAb • , $

I5

S → Bb • Ba, $
B → • , a

I7

S → BbB • a, $

I3

S → B • bBa, $

I9

S → BbBa • , $

218 Bottom-Up Parsers

For checking LALR(1), we need to check if any two states are differing by look aheads.
If such states exist, merge them into single states and then check for confl icts. In this

example, there are no such states. Hence, this is also LALR(1). The above grammar cannot
be parsed by LR(0) or SLR(1) but can be parsed by CLR(1) or LALR(1). That is the power of
LR(1) and LALR(1). Let us understand this power with one more example.

Example 26: The following grammar is not LL(1), not LR(0), and not SLR(1). Check if it is
CLR(1) and LALR(1). Also generate the LR(1) parsing table for the following
grammar:

S → A a | b A c | d c | b d a
A → d

Solution: Take augmented grammar

S” → S

1. S → A a
2. S → b A c
3. S → d c
4. S → b d a
5. A → d

Create canonical collection of LR(1) items.

I1 = { (S” → • S, $), (S → • A a, $), (S → • b A c, $), (S → • d c, $),
(S → • b d a, $), (A → • d, a)},

I2 = goto(I1, S) = {(S” → S •, $)},

I3 = goto(I1, A) = {(S → A • a, $)},

I4 = goto(I1, b) = {(S → b • A c, $), (S → b • d a, $), (A → • d, c)},

I5 = goto(I1, d) = {(S → d • c, $), (A → d •, a)},

I6 = goto(I3, a) = {(S → A a •, $)},

I7 = goto(I4, A) = {(S → b A • c, $)},

I8 = goto(I4, d) = {(S → b d • a, $), (A → d •, c)},

I9 = goto(I5, c) = {(S → d c •, $)},

I10 = goto(I7, c) = {(S → b A c •, $)},

I11 = goto(I8, a) = {(S → b d a •, $)}.

Look at Figure 5.17. The states I5 and I8 contain fi nal and nonfi nal items but there is no
SR or RR confl ict as look ahead in the fi nal item is not the same as terminal next to dot in the
nonfi nal item. So no confl icts. This grammar is an LR(1) grammar. There are no states differ-
ing by look aheads; hence, it is also LALR(1). The parsing table for CLR(1) and LALR(1) is
as shown in Table 5.25.

This grammar is not LL(1), not LR(0), not SLR(1) but is CLR(1) and LALR(1) grammar.

 LALR(1) Parser 219

Table 5.25 CLR(1)/LALR(1) Parsing Table

States

Action Goto

A b c d $ S A

1 s4 s5 2 3

2 accept

3 s6

4 s8 7

5 r5 s9

6 R1

7 s10

8 s11 r5

9 r3

10 r2

11 r4

Figure 5.17 DFA for Grammar in Example 26

S

A

w

w

A

d

C

C

d

b

S1→ • S • $
S → • A a , $
S → • bAc ‚ $
S → • dc , $
S → • bdw , $
A → • d , w

I1

I2

S1→ S • ,$

I3

S → A • w , $

S → b • Ac , $
S → b • dw ‚ $
A → • d , c

I4

S → d • c , $
A → d • , w
 I5

I6

S → Aw • , $

I7

S → bAc • w,$
I10

S → bAc • , $

I11

S → bdw • , $
S → b d • w ‚ $
A → d • , c

I8

I9

S → dc • , $

220 Bottom-Up Parsers

Example 27: The following grammar is not LL(1), not LR(0) and not SLR(1). Check if it is
CLR(1) and LALR(1). Also generate the LR(1) parsing table for the following
grammar

S → A a | b A c | B c | b B a
A → d
B → d

Solution: Take augmented grammar

S” → S

1. S → A a
2. S → b A c
3. S → B c
4. S → b B a
5. A → d
6. B → d

Create canonical collection of LR(1) items.

I1 = {(S” → • S, $), (S → • A a, $), (S → • b A c, $), (S → • B c, $),
 (S → • b B a, $), (A → • d, a), (B → • d, c)}
I2 = goto(I1, S) = {(S” → S •, $)},
I3 = goto(I1, A) = {(S → A • a, $)},
I4 = goto(I1, b) = {(S → b • A c, $), (S → b • B a, $), (A → • d, c),

(B → • d, a)
I5 = goto(I1, B) = {(S → B • c, $)},
I6 = goto(I1, d) = {(A → d •, a), (B → d •, c)},
I7 = goto(I3, a) = {(S → A a •, $)},
I8 = goto(I4, A) = {(S → b A • c, $)},
I9 = goto(I4, B) = {(S → b B • a, $)},
I10 = goto(I4, d) = {(A → d •, c), (B → d •, a)},
I11 = goto(I5, c) = {(S → B c •, $)},
I12 = goto(I8, c) = {(S → b A c •, $)},
I13 = goto(I9, a) = {(S → b B a •, $)},

This grammar is an LR(1) grammar as there are no confl icts in the above DFA as shown
in Figure 5.18. To check for LALR(1), verify whether there are any two states differing by
look aheads. Look at states I6 and I10. Though there are no confl icts in the two states, later for
LALR(1), when we combine the two, it results in RR confl ict.

I610 =A → d •, a|c
 B → d •, c|a,

This is a confl ict in LALR(1). Hence, this grammar cannot be parsed by LALR(1) also. It
can be parsed only by CLR(1––the most powerful parser.

The CLR(1) parsing table is as shown in Table 5.26.

 LALR(1) Parser 221

Table 5.26 CLR(1) Parsing Table

States

Action Goto

A b c d $ S A B

1 s4 s6 2 3 5

2 accept

3 s7

4 s10 8 9

5 s11

6 r5 r6

7 r1

8 s12

9 s13

10 r6 r5

11 r3

12 r2

13 r4

Figure 5.18 DFA for Grammar in Example 27

I13

S → bBa • , $

S

A

b

B

a

A

B

d

c

a

S

S1 → • S , $
S → • Aa , $
S → • bAc , $
S → • Bc , $
S → • bBa , $
A → • d , a
B → • d , c

 I1

I2

S1 → S •

, $

I3

S → A • a , $

S → b • Ac , $
S → b • Ba , $
A → • d , a
B → • d , c

I4

I5

S → B • c , $
I6

A → d • , a
B → d • , c

I11

S → Bc , $

I7

S → Aa • , $

I8

S → bA • c , $

I9
S → bB • a , $

I10

A → d • , c
B → d • , a

I12

S → bAc • , $

222 Bottom-Up Parsers

Example 28: Check whether the following grammer is CLR(1) or LALR(1).

S → A
A → AB | ε
B → aB |b

Solution: First construct the initial item.

I0 = {(S” → • A, $), (A→ • A B, $), (A → •, $).

 This is what we get when we apply closure on fi rst production. Now we need to apply
closure to newly added item, which results in

(A→ • A B, a|b), (A → •, a|b).

So, fi nally we get

I0 = {(S” → • A, $), (A→ • A B, $), (A → •, $),(A→ • A B, a|b), (A → •, a|b),}

As all these are in the same state, we can combine similar items together. Hence, we get

I0 = {(S” → • A, $), (A→ • A B, a|b|$), (A → •, a|b|$)}

DFA with LR(1) items is shown in Figure 5.19.
This grammar is CLR(1) and LR(1). Also as there are no confl icts in DFA and no two

states differing by look ahead.

Figure 5.19 DFA for Grammar in Example 28

A a

b

B B

b
I2

w

S → • A ‚ $
A → • AB ‚ $ | a | b
A → • , $ | a | b

I0

S → A • ‚ $
S →A • B ‚ $ | a | b
B → • b , $ | a | b
 | • aB , $ | a | b

 I1

B → w • B , $ | a | b
B → • b , $ | a | b
 | • aB , $ | a | b

I4

B → aB • , $ | a | b

 I5I3

S → AB • , $ | a | b

B → b • , $ | a | b

I2

 Comparison of Parsers 223

5.14 Comparison of Parsers: Top-Down Parser vs.
Bottom-Up Parser

Out of all top-down parsers widely used, one is the LL(1) parser. Out of all bottom-up
parsers widely used, one is the LALR(1) parser. Let us compare them with the following
criteria.

Design: Top down is simple to construct than bottom up.

Table size: LALR(1) parser table size is exponential to the size of grammar. This is not the
case with LL(1) where the table size is bounded by the square of the size of grammar. The
size of the bottom-up parser is roughly double the size of top-down parser.

Power: LL(k) ⊂ LR(k)

Error Detection: Predictive nature of TDP allows errors to be detected at the earliest pos-
sible time. The TDP parser stack can be used to repair as it contains information on what is
expected to be seen in contrast with BUP where the stack contains what has already been
encountered in parsing. So far we have discussed many examples of parsers. Let us sum-
marize them in Table 5.27.

The LL(1) parser is a simple top-down parser that can parse only a small class of gram-
mars as there is a restriction on the grammar that it should be free of left recursion and should
be left factored. LR(0) is the simplest of all LR parsers but not used practically as it is less
powerful. It does not use any look ahead in making parsing decisions; hence, it can be used
to parse only a small class of grammars. SLR(1) is better than LR(0) as it uses look ahead.

Table 5.27 Grammars That Can be Parsed by Different Parsers

Grammar LL(1) LR(0) SLR(1) LALR(1) CLR(1)

1. S → a

2. E → E + T | T
T → a X

3.
E → E + T | T
T → T * F | F
F → id

X X

4. S → Aa | bAc | dc | bda
A → d X X X

5. S → Aa|bAc|Bc|bBa
A → d, B → d

X X X X

6. S → a |A, A → a X X X X X

224 Bottom-Up Parsers

But once again it is the least powerful as it cannot avoid invalid reduction using the follow
set. CLR(1) is the most powerful parser among all but requires more table space. LALR(1) is
better than SLR(1) as it uses LR(1) items; it is preferred than CLR(1) as it requires less table
space. The class of grammars that can be parsed by different parsers is shown in Figure 5.20.

Figure 5.20 Comparison of All Parsers

LR(0)

SLR(1)

LALR(1)

CLR(1)

LR(K)

Unambiguous
Grammars

Ambiguous
Grammars

AmbiguousAmbiguous
GrammarsGrammars

Ambiguous
Grammars

LL(1)

Operator
Grammars

.

If a grammar is LR(0), it is SLR(1), LALR(1), and CLR(1). If a grammar is LALR(1), it can be
CLR(1) but may or may not be SLR(1) and it may or may not be LR(0). But every LL(1) gram-
mar is LALR(1).

5.15 Error Recovery in LR Parsing
An LR parser will detect error when it consults the parsing action table and fi nd a blank
entry. An LR parser implements panic mode error recovery as follows: for each blank entry,
have a pointer to error recovery subroutine. So that whenever the blank entry is referred, the
corresponding subroutine is called. For example, look at Table 5.28, e1, e2, e3, and e4 are error
recovery routines. They specify how to recover from an error.

Table 5.28 Error Recovery in LR Parsing Table

id + * () $

0 S3 e1 e2 S2 e2 e1

Here e1() tells that an operand is missing at the beginning of the expression. So push id
and issue error message “missing operand.”

e2() tells that expression is starting with). So error recovery here can be to delete input
symbol and issue error message.

 Parser Construction with Ambiguous Grammars 225

5.16 Parser Construction with Ambiguous Grammars
So far whatever the parsing techniques discusses are applicable provided the grammar is
unambiguous. If it is ambiguous, if we follow the above procedures, we get multiple entries
in the parsing table––whether it is LL(1) or LR(1). So let us see whether there is any way of
constructing a parser with ambiguous grammars. Before looking at parser design, let us fi rst
understand what the advantages of ambiguous grammars are.

 � Ambiguous grammars are shorter and natural. For example, look at the following ambiguous
and its equivalent unambiguous grammar.

E → E + E E → E + T | T
 | E * E T → T * F | F
 | id F → (E) | id

 � If the parser is constructed with ambiguous grammar, we can change precedence associativity of the
parser at a later time, as precedence and associativity are not fixed in ambiguous grammar.

 � No wastage of time. Unambiguous grammar wastes time with reduction like E → T, T → F,
F → id. No such wastage of time.

To take advantage of all the above, most importantly, it is easy to write ambiguous than
unambiguous. Hence, it is better to construct parser with ambiguous grammar. For this we
are not going to modify any previous procedure. Follow the same procedure and construct
the table (anything LL(1) or LR(1)). Now the table will have multiple entries. Use disambigu-
ating rules and resolve multiple entries to single entries. So the change in the procedure here
is resolving multiple entries to single entries. To understand how to resolve multiple entries
to single entries, let us take a SLR(1) parsing table for ambiguous grammar E → E + E | E *
E | id. By following the procedure already discussed, we get SLR(1) Table 5.29.

Table 5.29 Error Recovery in LR Parsing Table

States

 Action Goto

id + * $ E

0 S2 1

1 S3 S4 Acc

2 r3 r3 r3

3 S2 5

4 S2 6

5 S3/r1 S4/r1 r1

6 S3/r2 S4/r2 r2

226 Bottom-Up Parsers

There are four SR confl icts. So this table as such cannot be used. Let us see how to resolve
this. We use disambiguating rules for resolving multiple entries. The disambiguating rules
for this grammar are precedence and associativity of operators. “*” has higher precedence
than “+” and both are left associative. With this information we resolve confl icts in the
following ways:

Take a simple string “id + id * id $.” Parse it.

 id + id * id $

1

E

2

id

0

2

id

3

+

1

E

0

5

E

3

+

1

E

0

State 5 on “*” is S4/r1 ––an S/R confl ict. Let us understand why SR confl ict. The string
that is already read is id + id. There is no confl ict till this is read. But on reading the next
operator, that is, “*,” if you look at the stack, there is a handle E + E; so it can go for reduce
action as handle is available. Otherwise, it can read further for the longest match, which is
nothing but shift action. That’s why we have an SR confl ict. Now let us resolve what right
action is. “*” has higher precedence than “+.” So if parser goes with reduce action, + is given
higher precedence, wrong decision. It should be resolved in favour of shift. that is, S4. This
means, read further till id * id is read. Reduce “*” fi rst and then “+.”

Similarly, take a string “id + id + id$.” In state 5 on “+,” the parser will refer to S3/r1—an
S/R confl ict. The string that is already read is “id+id.” So on the next token “+,” now parser
may not be able to decide whether to go for shift/reduce as handle E + E is already available.
Here associativity of “+” should be considered. As it is left associative, resolve confl ict in
favour of reduce, that is, r1.

Similarly, take a string “id * id + id$.” In state 6 on “+,” the parser will refer to S3/r 2—an
S/R confl ict. The string that is already read is “id * id.” So on the next token “+,” now parser
may not be able to decide whether to go for shift/reduce as handle E * E is already available.
“*” has higher precedence than “+.” So the parser goes with reduce action. Resolve confl ict
in favour of reduce, that is, r2.

Similarly, take a string “id * id * id$.” In state 6 on “*,” parser will refer S4/r 2—an S/R
confl ict. The string that is already read is “id * id.” So on the next token “*,” now parser may
not be able to decide whether to go for shift or reduce as handle E * E is already available.
Here associativity of “+” should be considered. As it is left associative, resolve confl ict in
favour of reduce, that is, r2. So the resulting parsing table is shown in Table 5.30.

As there are no multiple entries, it can be used by the parser to parse any string defi ned
by the grammar.

 Solved Problems 227

Solved Problems
1. What is the equivalent operator grammar for the following grammar?

S → AB, A → c|d, B → aAB |b
Solution: Here replace nonterminal B by its production. Then we get

S → AaAB|Ab, A → c|d, B → aAB |b
but AB is S. So equivalent operator grammar is

S → AaS|Ab, A → c|d, B → aS |b
2. Convert the following precedence relation table to function table

a () , $

a ⋗ ⋗ ⋗

(⋖ ⋖ ≐ ⋖

) ⋗ ⋗ ⋗

, ⋖ ⋖ ⋗ ⋗

$ ⋖ ⋖

Solution: There are fi ve terminals; so create 10 symbols. Here there is ≐ relation between
“(” and “)”. So take f(and g) into one group, remaining symbols can be taken as separate
nodes. Now add edges for each ⋖ and ⋗ relation. We get the following digraph shown in
Figure 5.21.

Table 5.30 Error Recovery in the LR Parsing Table

States
 Action Goto

id + * $ E

0 S2 1

1 S3 S4 acc

2 r3 r3 r3

3 S2 5

4 S2 6

5 S3 r1 r1

6 r2 r2 r2

228 Bottom-Up Parsers

fa

f

g$

ga

g (

g ,

f)

f $

f(, g)

,

Figure 5.21 Digraph

The precedence function table is as follows:

a () , $

f 2 0 2 2 0

g 3 3 0 1 0

 3. Consider the following grammar:

E → E + T | T
T → T * F | F
F → (E) | id.

Construct SLR(1) parsing table.

Solution: The DFA with LR(0) items is shown in Figure 5.22.

 Solved Problems 229

6

9

8

+

E → T •
T → T • * F

E → E + T •
T → T • * F

T → T * • F
F → • (E)
F→ • id

E → E •
E → E • + T

F → (E •)
E → E • + T

T → F •

F → id •

F → (E) •

T → T * F •

id

id

id

id

F

F

F

E

+

3

1

5

*
*

*

E F T
2

7

T

T

(

(

()

(

 10

 11

E ’ → • E
E → • E + T
E → • T
T → • T * F
T → • F
F → • (E)
F → • id

0

E → • E + T
T → • T * F
T → • F
F → • (E)
F → • id

4

F → • (E)
E → • E + T
E → • T
T → • T * F
T → • F
F → • (E)
F → • id

Figure 5.22 DFA with LR(0) items

The SLR(1) parsing table for the above grammar is given in Table 5.31.

States

Action Goto

id + * () $ E T F

0 S5 S4 1 2 3

1 S6 acc

2 r2 S7 r2 r2

3 r4 r4 r4 r4

4 S5 S4 8 2 3

5 r6 r6 r6 r6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 r1 S7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Table 5.31 SLR(1) Parsing Table for Example 3

230 Bottom-Up Parsers

4. Construct DFA with LR(1) items for the following grammar:

S → CC
C → cC
C → d

Solution:
I0: closure({(S” → • S, $)}) = { (S” → • S, $),
 (S → • C C, $), (C → • cC, c/d), (C → • d, c/d)}
 I1: goto(I0, S) = (S” → S •, $)
 I2: goto(I0, C) = {(S → C • C, $), (C → • cC, $), (C → • d, $)}
 I3: goto(I0, c) = {(C → c • C, c/d), (C → • cC, c/d), (C → • d, c/d) }
 I4: goto(I0, d) = (C → d •, c/d)
 I5: goto(I2, C) = (S → C C •, $)
 I6: goto(I2, c) = {(C → c • C, $), (C → • cC, $), (C → • d, $) }
 I7: goto(I2, d) = (C → d •, $)
 I8: goto(I3, C) = (C → cC •, c/d)
 : goto(I3, c) = I3
 : goto(I3, d) = I4
 I9: goto(I6, C) = (C → cC •, $)
 : goto(I6, c) = I6
 : goto(I6, d) = I7
DFA with LR(1) items is shown in Figure 5.23.

5. Consider the following grammar:
S → a A d | a c e | b A e
A → c

a. Construct the SLR(1) parsing table for this grammar. Is this grammar SLR(1)?
b. Construct the LR(1) parsing table for this grammar. Is this grammar LR(1)?
c. Construct the LALR(1) parsing table for this grammar. Is this grammar LALR(1)?

Solution:
a. 0 S” → S

1 S → a A d
2 S → a c e
3 S → b A e
4 A → c

 Follow(S) = {$}, Follow(A) = {d, e};

I1 = {S” → • S, S → • a A d, S → • a c e, S → • b A e},
I2 = goto(I1, S) = {S” → S •},
I3 = goto(I1, a) = {S → a • A d, S → a • c e, A → • c}
I4 = goto(I1, b) = {S → b • A e, A → • c}
I5 = goto(I3, A) = {S → a A • d}

 Solved Problems 231

c C

S

c

c

c

d

d

d

CC

C

S’ → • S , $
S → • CC , $
C → • cC , c / d
C → • d , c / d

I0
I1

S’→ S • ,$

I2

S → C • C , $
C → • cC , $
C → • d , $

I6

C → c • C , $
C → • cC , $
C → • d , $

S → CC • , $
I5

I9

C → CC • , $

I7

C → d • , $

C → c • C , c / d
C → • cC , c / d
C → • d , c / d

I3

I8

C → cC • , c / d

I4
C → d • , c / d

Figure 5.23

I6 = goto(I3, c) = {S → a c • e, A → c •}
I7 = goto(I4, A) = {S → b A • e}
I8 = goto(I4, c) = {A → c •}
I9 = goto(I5, d) = {S → a A d •}
I10 = goto(I6, e) = {S → a c e •}
I11 = goto(I7, e) = {S → b A e •}

232 Bottom-Up Parsers

States

Action Goto

a b c d e $ S A

1 s3 s4 2

2 accept

3 s6 5

4 s8 7

5 s9

6 r4 s10/r4

7 s11

8 r4 r4

9 r1

10 r2

11 r3

 Since there is a shift/reduce confl ict at state I6, this grammar is not an SLR(1) grammar.

b. Set of LR(1) items are as follows:

I1 = {[S” → • S, $], [S → • a A d, $], [S → • a c e, $], [S → • b A e, $]},

I2 = goto(I1, S) = {[S” → S •, $]},

I3 = goto(I1, a) = {[S → a • A d, $], [A → • c, d], [S → a • c e, $]}

I4 = goto(I1, b) = {[S → b • A e, $], [A → • c, e]}

I5 = goto(I3, A) = {[S → a A • d, $]}

I6 = goto(I3, c) = {[A → c •, d], [S → a c • e, $]}

I7 = goto(I4, A) = {[S → b A • e, $]}

I8 = goto(I4, c) = {[A → c •, e]}

I9 = goto(I5, d) = {[S → a A d •, $]}
I10 = goto(I6, e) = {[S → a c e •, $]}
I11 = goto(I7, e) = {[S → b A e •, $]}

 Summary 233

States

Action Goto

a b c d e $ S A

1 S3 S4 2

2 accept

3 S6 5

4 S8 7

5 S9

6 r4 S10

7 S11

8 r4

9 r1

10 r2

11 r3

 Since there is no confl ict in the parsing table, this grammar is an LR(1) grammar.
c. Since there are no two states with the same core in the LR(1) parsing table, the LALR(1)

table is the same as the LR(1) table, and the grammar is an LALR(1) grammar.

6. Consider the following grammar.

S → SS|a|ε
a. Construct collection of sets of LR(0) items for this grammar and draw its goto graph.
b. Indicate SR and RR confl icts in various states of LR(0) parser.
Solution: Draw DFA with LR(0) items as shown in Figure 5.24.
Here states I0, I1, and I3 have SR confl icts. State I3 has RR confl ict also.

Summary
 � Bottom-up parsing is the most efficient non-backtracking technique.
 � There is no restriction on grammar for constructing LR parsers.
 � Operator precedence parser is a simple bottom-up parser mainly used for parsing expres-

sion grammars.

234 Bottom-Up Parsers

 � LR(0) parser is the simplest of all LR parsers but is least powerful. Hence practically it is
not used.

 � SLR(1) is simple to construct, better than LR(0), but can parse only a small class of
grammars.

 � LALR(1) is the most widely used LR parser. Yacc also uses this technique. It requires less
table space compared to LR(1).

 � LR(1) is most powerful bottom-up parsing technique. But requires less table space.
 � SR conflict confuses the parser whether to take shift action/reduce action.
 � RR conflict confuses the parser whether to reduce by first rule or second rule.
 � If there are any SR/RR conflicts, we cannot construct LR parser.
 � Every LL(1) grammar is LALR(1).
 � LR(0) grammars are subset of SLR(1), LALR(1) and LR(1).
 � SLR(1) grammars are subset of LALR(1) and LR(1).
 � LALR10) grammars are subset of LR(1).
 � Operator grammar can be ambiguous or unambiguous.
 � We can construct parsers with ambiguous grammars also but need to resolve multiple

entries.

Fill in the Blanks
 1. Operator precedence parser is _____________ type of parser.
 2. The parsing technique that is used in parsers generators is _____________.
 3. If A → α • Bb, a is in I then closure (I, a) is _____________.

S1→ • S
S → • SS
 | • a
 | • ε

 I0

a

s s

s

a I2

I1

S1→ S •
S → S • S
 | • a
 | •

I
3

S → SS •
S → S • S
S → • SS
 | • a
 | • ε

I2

S → a •

Figure 5.24 DFA with LR(0) items

 Objective Question Bank 235

 4. If A → B, a is a production in LR(1) items, then reduce operation is entered
under _____________.

 5. _____________ items are used for LALR(1) parsers.
 6. The type of item used in [A → • Aa, a|b|c] _____________.
 7. Relation between grammars LL(1) _____________ LL(k).
 8. Relation between grammars LL(1) _____________ LR(k).
 9. If there are no RR confl icts in a LR(1) parser then it _____________ in LALR(1).
 10. If there are no SR confl icts in a LR(1) parser then it _____________ in LALR(1).
 11. Can we reduce every precedence relation table to function table? _____________.
 12. The other name for bottom-up parser is _____________.
 13 YACC is _____________.
 14. Operator precedence parser _____________ handle operator with different precedence.
 15. ”0” or “1” in LR items represent _____________.

Objective Question Bank
 1. Consider the grammar given below

A → Ba | Aa | c
B → B b | A b |d

Convert equivalent operator grammar

(a) A → Ba D | c D (c) A → Ba D | c D
 D → a D |∈ D → a D | ∈
 B → B b | A b |d B → A b E |d E
 E → b E | ∈

(b) A → Ba D | c D (d) none
 D → a D | ∈
 B → c D b E | d E
 E → b E | a D b E | ∈

 2. For a given grammar if SLR(1) has n1 states, LALR(1) has n2 states, LR(1) has n3
states which of the following is true?

(a) n2 = n3 (b) n2 <= n3 (c) n2 < n3 (d) none
 3. For a given grammar if SLR(1) has n1 states, LALR(1) has n2 states, LR(1) has n3

states which of the following is true?

(a) n3 > n1 (b) n3 >= n1 (c) n3 = n1 (d) none

 4. Consider the grammar given below

A → SB|S
B →; S B|; S
S → a

236 Bottom-Up Parsers

Convert the equivalent operator grammar

(a) A → S; A|S; S|S (b) A → S; B|S; S | S
S → a B →; SB|; S
 S → a

(c) A → S; A|S; S|S (d) does not exist
B →; S B|; S
S → a

 5. What is the precedence relation between; & a?

(a) less (b) greater (c) equal (d) none

 6. Consider SLR(1) and LALR(1) tables for CFG. Which of the following is false?
(a) Goto of both tables may be different

(b) Shift entries are identical in both tables
(c) Reduce entries in tables may be different
(d) Error entries in tables may be different

 7. For a given grammar if SLR(1) has n1 states, LALR(1) has n2 states, which of the fol-
lowing is true?

(a) n2 < n2 (b) n1 = n2 (c) n1 > n2 (d) none

 8. Consider the grammar S → CC, C → cC |d is
(a) LL(1) (b) SLR(1) but not LL(1)
(c) LALR(1) but not SLR(1) (d) LR(1) but not LALR(1)

 9. Which of the following is the most powerful parsing method?
(a) LL(1) (b) CLR(1) (c) SLR(1) (d) LALR(1)

 10. Consider the grammar S → SS|d|ε is
(a) LL(1) (b) LR(1) (c) LR(0) (d) none

 11. Consider the grammar E → E + n | E × n | n. For a sentence “n + n × n,” the handles
in the right sentential form of reduction are

(a) n, E + n and E + n × n (b) n, E + n and E + E × n
(c) n, n + n and n+ n × n (d) n, E + n and E × n

 12. Consider the grammar S → (S) | a. If SLR(1) has n1 states, LR(1) has n2 states,
LALR(1) has n3 states, which of the following is true?

(a) n1<n2<n3 (b) n1=n3<n2 (c) n1=n2=n3 (d) n1>n3>n2

 13. An LALR(1) parser for “G” can have SR confl icts if and only if
(a) The SLR(1) has SR confl icts (b) The LR(1) has SR confl icts
(c) The LR(0) has SR confl icts (d) The LALR(1) has RR confl icts

 Exercises 237

 14. Which of the following is true?
(a) every SLR(1) is LR(0) (b) every LL(1) is LR(1)
(c) every LL(1) is SLR(1) (d) every LL(1) is LR(0)

 15. The LL(1) and LR(0) techniques
(a) are both same in power (c) are not same in power
(b) both simulate RMD (d) none

 16. If a grammar is SLR(1) then []
(a) it may have S/R confl ict (c) It may have R/R confl ict
(b) It will not have any confl ict (d) it will not have S/R but may have R/R confl ict

 17. Using LR(0) items we can construct. []
(a) SLR parsing table (c) CALR parsing table
(b) LALR parsing table (d) none.

 18. I0 : S→ • aA, $ A→ • ε, a the state I0 has []
(a) S/R confl ict (c) S/S confl ict
(b) R/R confl ict (d) None

 19. The following grammar is []

S →ABC
A → 0A1 | ε
B → 1B | ε
C → 1C0 | ε

(a) LL(1) (b) LR(0) (c) not LL(1) (d) not LL(1) and not LR(0)

 20. Consider the grammar []

E → A | B
A → a | c
B → b | c

(a) LR(0) (b) LR(0) & LR(1) (c) LR(1),SLR(1) (d) none

Exercises
 1. Convert the following grammar to operator grammar.

P → S R | S
R → θ S R | θ S
S → W θ s | W
W → L ↑ W | L
L → a.

Prepare a precedence relation table and parse the i/p string using the above grammar.

a ↑ a θ a ↑ a $

238 Bottom-Up Parsers

 2. Check whether the following grammar is LR(0).

S → S#
S → dA | aB
A → bA | c
B → bB | c

 3. Check whether the following grammar is LR(0).

S → (L)
S → x
L → S
L → L, S

 4. Check whether the following grammar is LR(0), SLR(1).

S → A | B
A → aAb | ab
B → aBbb| abb

 5. Check whether the following grammar is LR(0), SLR(1).

E → bEa | aEb | ba

 6. Check whether the following grammar is LR(1).

E → E + T | T
T → T * F | F
F → (E) | id

 7. Check whether the following grammar is SLR(1).

S → X Y a #,
X → a | Yb,
Y → | c

 8. Design the SLR parser with the following ambiguous grammar.

S → i S | iSeS | a

 9. Check if the following grammar is SLR(1), LR(1).

S → L = R | R
L → * R | id
R → L

 10. Check L(G) = {wwR | w [a+b]+ } is LR(1)

S → aSa | bSb | a | b

 11. How many confl icts occur in DFA with LR(1) items for the following grammar?

S → SS | a | c

 Key for Objective Question Bank 239

 12. Find closure of (E1 → • E, $) in G.

E → E + T | T; T → T * F | F; F → id

 13. Find the number of confl icts, if any, in DFA with LR(1) item.

S → A; A → AB| ε; B → aB | b

 14. Check if G is SLR(1).

S → AB | ε; A → aASb | a; B → bS

 15. Check if G is LR(1).

S → aB | ab; A → aAB | a; B → ABb | b

 1. Bottom up
 2. LALR(1)
 3. φ
 4. a
 5. LR(1)
 6. LR(1)
 7. ⊂
 8. ⊂

 9. may occur
 10. Will not occur
 11. No. if digraph has cycle
 12. SR parser
 13. Yet another compiler compiler.
 14. cannot
 15. presence or absence of lookahead.

Key for Fill in the Blanks

Key for Objective Question Bank
 1. b 2. b 3. b 4. a 5. a
 6. a 7. b 8. a 9. b 10. d
11. d 12. b 13. b 14. b 15. c
16. b 17. a 18. a 19. d 20. d

 This page is intentionally left blank.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 241

C H A P T E R 6

CHAPTER OUTLINE

 6.1 Introduction

 6.2 Attributes for Grammar Symbols

 6.3 Writing Syntax-Directed Translation

 6.4 Bottom-Up Evaluation of SDT

 6.5 Creation of the Syntax Tree

 6.6 Directed Acyclic Graph (DAG)

 6.7 Types of SDTs

 6.8 S-Attributed Defi nition

 6.9 Top-Down Evaluation of S-Attributed Grammar

 6.10 L-Attributed Defi nition

 6.11 Converting L-Attributed to S-Attributed Defi nition

 6.12 YACC

Syntax-directed defi nition is a generalization of a context free grammar (CFG), but effectively is an
attribute grammar. Syntax-directed translation describes the translation of language constructs
guided by CFGs. They are used in automatic tools like YACC.

Syntax-Directed Translation

Syntax-directed translation is an extension of context free grammars (CFGs). This helps
the compiler designer to translate the language constructs directly by attaching semantic
actions or subroutines. In this chapter, we discuss what is syntax-directed translation (SDT),
how to write SDT”s, and how to evaluate semantic actions. We also discuss the different
types of SDT”s and how to write S-attributed defi nition and L-attributed defi nition in detail.
Converting L-attributed to simple attributed is also discussed.

6.1 Introduction
So far we have discussed parsing. Given a grammar, how a parser checks the syntax of pro-
gramming language construct. Now let us look at another technique called syntax-directed
translation with which we can combine many tasks along with parsing. Along with each
production of the grammar, we attach a semantic action. The grammar together with seman-
tic action is called syntax-directed translation (SDT).

 A → α + {action} = SDT

242 Syntax-Directed Translation

Semantic action or translation rule or semantic rule or action is the same. We can attach
semantic actions for grammar rules for performing different tasks. Examples are:

1. To store/retrieve type information in symbol table
2. To perform consistency checks like type checking, parameter checking, etc.
3. To issue error messages
4. To build syntax trees
5. To generate intermediate or target code

There are two ways of defi ning semantic rules. One is syntax-directed defi nition (SDD),
which is a high-level language specifi cation for translation. This hides many implementa-
tion details and frees the user to explicitly specify the order of evaluation. The other scheme
syntax-directed translation (SDT) specifi es the order in which semantic rules are to be eval-
uated. So they allow some implementation details to be shown. Here we use the names
SDD or SDT interchangeably but the basic difference between the two is in specifying the
evaluation order. With SDD/SDT, we parse the input, create parse tree, and traverse the
parse tree as needed to evaluate semantic actions at the parse tree nodes. Evaluation of
semantic rules may result in storing information in symbol table, issue error diagnostics or
other activities.

Here we discuss syntax-directed translations. They are also called attribute grammars,
where

 � Each grammar symbol is assigned certain attributes.
 � Each production is augmented with semantic rules which are used to define attribute

values

6.2 Attributes for Grammar Symbols
Syntax-directed translation is a generalization of a context free grammar in which each
grammar symbol has an associated set of attributes. If we consider parse tree node as a
record for holding information, then an attribute is the name of each fi eld in record. A gram-
mar symbol can have “n” attributes. The attributes for grammar symbol can be a type, value,
address, pointer, or a string. The attributes that can be associated with a grammar symbol
can be classifi ed into two types as defi ned below.

Attribute types:
1. Synthesized attribute—The value of a synthesized attribute at a node is computed

from the values of attributes at the children of that node in the parse tree.
 EX: A → XYZ
 Here in Figure 6.1 we assume that there is an attribute .”s” with each grammar sym-

bol. Then if it is evaluated as A • s = f (X • s |Y • s | Z • s) that is,
 A → XYZ {A • s = X • s + Y • s + Z • s}
 Then .”s” is called the synthesized attribute.

2. Inherited attribute—The value of an inherited attribute is computed from the values of
attributes at the siblings and parent of that node.

 Writing Syntax-Directed Translation 243

 In Figure 6.1, we assume that there is an attribute “i” with each grammar symbol. Then if
it is evaluated as Y • i = f (X • i | Z • i | A • i| A • s) that is,

 A → XYZ { Y • i = A • i + X • i + Z • i}
 Then “•i” is called the inherited attribute.

Once we consider an attribute as a synthesized attribute, wherever it is used, it should
preserve the basic property of the synthesized attribute, that is, the value at parent is evalu-
ated with attribute values of its children. We cannot use the same attribute as synthesized
for some time and inherited for some time. Generally, we don’t specify explicitly, whether
an attribute is synthesized or inherited, by looking at semantic actions, that is, dependency
of attribute, we need to understand whether it is synthesized or inherited.

6.3 Writing Syntax-Directed Translation
Let us see how to write SDT. Let us try to understand with an example. Consider parsing
the input string “1 + 2 * 3.” Recollect, how a bottom-up parser parses this string. It uses the
following grammar:

 E → E + T | T
 T → T * F | F
 F → num

Parses the string. The result is a parse tree as shown in Figure 6.2.
Now along with parsing, that is, checking the syntax of a string, if we want to perform

the evaluation of an expression, let us see how to write SDT. So here the additional task that
is combined with parsing is evaluation of expression. For this we need to attach semantic
rules. Parse tree gives us the order in which reductions are carried out by the parser. If we
follow the tree from bottom to top we get the order. For example in Figure 6.2, the order of
reductions is number to F, F to T, T to E, next number to F, F to T, then number to F, T * F to
T, E + T to E. This is very useful to think about semantic actions. Whenever parser reduces
by rule, we must think what should be the corresponding action to get the desired output.
In SDT, initially we assume that whenever a bottom-up parser reduces by production, the
corresponding action is automatically carried out.

Figure 6.1 Parse Tree for Rule A → XYZ

i, A, s

i, Y, s i, Z, si, X, s

244 Syntax-Directed Translation

How do we defi ne semantic rules? Here fi rst we need to fi nd out what additional infor-
mation is required. When a bottom-up parser sees the input string “1 + 2 * 3,” on reading
the fi rst symbol “1,” it gets a token from the lexical analyzer as “num.” Now the fi rst step
performed by the parser is token “num” reduced to F by using production F → num. If it is
only checking the syntax, this reduction is enough. But along with this, if we want to take
care of the evaluation of expression, reducing fi rst token to nonterminal alone may not be
suffi cient. To take care of the evaluation of expression at any time, we have to propagate
additional information along with nodes of the parse tree. That additional information here
is lexeme value of token “num.” So to store the additional information, fi rst we need to
assume an attribute with grammar symbol. We attach attribute to grammar symbol with”.”
We assume that there is an attribute “.val” with each grammar symbol. Once attribute is pre-
sent, it will be for all grammar symbols like E.val, T.val, F.val. Now semantic actions defi ne
how to evaluate this attribute values at any node in the parse tree.

For example, when the parser reduces “num” to F by using production F → num, we
need to store the attribute value at node F. Hence, we attach semantic action as {F.val= num.
lval;} where num.lval is lexeme value of token num. It can be any value at run time like “1”
or “2” or “3” or “1000.” So the result is as shown in Figure 6.3.

The next step in parsing is reducing F to T. So here semantic action is forwarding lexeme
value from F to T by attaching semantic action {T•val = F•val;}. The same thing happens
with T to E also. The result in shown below in Figure 6.4.

Next the parser reads the next token “+,” and then “2.” Now it gets a token num and
reduces that to F. As translation for T → F is already defi ned, value “2” is propagated to node
F and then to node T also. Next the parser reads the next token “*,” then “3.” Now it gets a
token num and reduces that to F. Now the parser reduces T * F; here the semantic action is to
evaluate the expression and store the result. So SDT is defi ned as follows:

Figure 6.2 Parse Tree for Expression Grammar

E

E T

T

F

F num

T

+

F*

num

num

 Writing Syntax-Directed Translation 245

Example 1:
SDT for evaluation of expressions/Desk calculator

E → E1 + T {E•val = E1•val + T•val}
E → T {E•val = T•val}
T → T1 * F {T•val = T1•val * F•val}
T → F {T•val = F•val}
F → id {F•val = num•lval}

Figure 6.3 Parse Tree with Attribute Values

E

E T

T

F.val = 1 F num

T

+

F*

num.Ival = 1 num

Figure 6.4 Parse Tree with Attribute Values

E

E T

T

F.val = 1

.val = 1

.val = 1

F num

T

+

F*

num.Ival = 1 num

246 Syntax-Directed Translation

 Here E or E1 is the same. Just to understand the semantic action, this notation is used.
Here num.lval is the lexeme value of token num. The result of carrying out actions is shown
in Figure 6.5.

The parse tree that shows attribute values at each node is called annotated or decorated parse tree
as shown in Figure 6.5.

E

E T

T

F.val = 1

.val = 1

.val = 2

.val = 3.val = 2

.val = 7

.val = 6.val = 1

F num

T

+

F*

num.Ival = 1 .Ival = 2

.Ival = 3

num

Figure 6.5 Annotated Parse Tree

New semantic actions can be added without disturbing the existing translations.
As we have seen in the fi rst example, let us understand the procedure for writing SDTs.

It involves the following three steps:

 1. Defi ne grammar for input string.
 2. Take a simple string and draw a parse tree.
 3. Attach semantic actions by looking at the expected output.

Parser always starts with grammar. Here the second step is constructing the parse tree.
Drawing the parse tree has two advantages. One is to check whether defi ned grammar is
right or wrong, another is to get order in which reductions are carried out. This order is
important to defi ne semantic action. Follow the same order, and think about semantic action.
Let us understand the procedure with one more example.

Example 2:

Write an SDT for converting infi x expressions to post fi x form, that is, given an input string
“a + b * c” should give “abc * +” as output.

Let us see how to write the SDT. The fi rst step is defi ne the grammar. As input is the
same as the previous example, the same grammar can be used. Semantic actions are not the
same because the expected output is different. Now take a simple string “a + b” and draw a
parse tree as shown Figure 6.6.

 Writing Syntax-Directed Translation 247

Look at Figure 6.6.

1. The parser fi rst reads “a”; it will be matched with the token “id.” Now look at output,
“ab +”; whatever is read should appear in output. So let the semantic action with
reduce action F → id be {print(“id•name”);}, where “id.name” is the name of the iden-
tifi er, whether it is “a” or “b “or “c.”

2. Now look at the next step performed by the bottom-up parser T → F. Here during
this reduction, do we have to propagate any additional information? No. As there is
no additional information to be propagated, there is no need of assuming attributes
to grammar symbols. So with reduce action T → F, there is no need of any semantic
action. Hence, we defi ne the translation as T → F {}. Same thing happens with E → T
also.

3. Next parser reads “+.” Just with E+, it cannot perform any reduce action; Hence
reads “b.”

Now “b” is reduced to F, here “b” is printed out as F→ id {print(“id•name”);}.
Then it reduces, F to T, and there is no action.

4. The next reduction is “E+T” by E. Here already “ab” is printed and the only left out
character to be printed is the operator “+.” So whenever an expression is reduced,
print operator. Add this as semantic action with the rule. The resulting SDT is
shown below

E

E + T

FT

F

Id.name = a

Id.name = b

Figure 6.6 Parse Tree for String “a+b”

248 Syntax-Directed Translation

SDT for converting infi x to postfi x expression

E → E
1
+ T {print(“+”);}

E → T { }
T → T

1 *
 F {print(“*”);}

T → F { }
F → id {print(“id•name”);}

Let us understand how to defi ne semantic action by taking one more example. The next
phase in parsing is semantic analysis. The semantic analyzer’s main function is type check-
ing. Let us write a simple type checker.

Example 3:
Write an SDT for a simple type checker. Here we assume that our type checker is very simple
and recognizes only three types—int, bool, and err. Here “int” type is for integers, “bool”
type is for Boolean values True/false and “err” type is for error. Here we would like to have
a type checker that checks for expressions of the form: (8 + 8) = = 8. Given such expression,
it should check the type compatibility of operands and the fi nal result is true/false, that is,
bool.

1. Defi ne grammar. Grammar is for expressions. Why do we have to consider unambiguous
grammars? Let us take ambiguous grammar. We have already discussed how to construct
parsers with ambiguous grammars also. So defi ne grammar as follows.

E → E+ E
E → E

and E

E → E

= = E

E → true
E → false
E → num
E → (E)

2. Take the input string and draw a parse tree for string “(8 + 8)==8” as in Figure 6.7.
3. Now let us attach semantic actions. First the parser reads “(“ and then “8.” Here we are not

interested with value; what we are writing is a type checker. A type checker fi rst should
collect type information, and then should verify type compatibility of operands. Here
when “8” is read, we need to collect and store type information. For storing type informa-
tion, we assume that there is an attribute .”type” with each grammar symbol. So when
token num is reduced to E after reading “8,” we defi ne semantic rule as { E•type=int;}
because “8” is integer type. Similarly for true/false, assign the type as bool.

4. Now the parser reads “+,” then “8,” and reduces “8” to E. Now the next reduction is E + E
to E. Here type checker should verify types. To distinguish between left hand side nonter-
minal E and operands on right hand side Es,“we take them as E1, E2, and E3 respectively.
When expression with arithmetic addition is reduced, type check could be checking if both
operands are integer type. If they are integers, it returns integers, or else it returns an error
type. The above semantics can be implemented by attaching the semantic action as follows:

 Writing Syntax-Directed Translation 249

E
1
 → E

2
+ E

3
 { if(E

2
•type = =int and E

3
•type = =int)

 then E
1
•type = int else E

1•
type=error;}

5. Similarly, if an expression with Boolean operator is reduced, type check could be checking
if both operands are integer type or Boolean type. If they are int/bool, return bool, else
return error type. The above semantics can be implemented by attaching the semantic
action as follows:

E
1
 → E

2
 and E

3
 { if(E

2
•type = = E

3
•type) && (E

2
•type = =int/bool))

 then E
1
•type = bool else E

1•
type=error;}}

6. Similarly, if an expression with relational operator is reduced, type check could be check-
ing if both operands are integer type or Boolean type. If they are int/bool, return bool,
else return error type. The above semantics can be implemented by attaching the semantic
action as follows:

E
1
 → E

2
 == E

3
 { if(E

2
•type = = E

3
•type)

 then E
1
•type = bool else E

1•
type = error;}

E

E = = E

8E

+E

8

()

E

8

Figure 6.7 Parse Tree for String “(8 + 8) = = 8”

250 Syntax-Directed Translation

The SDT can be defi ned as follows:

SDT for simple type checking

E
1
 → E

2
+ E

3
 {if(E

2
•type = =int and E

3
•type = =int)

 then E
1
•type = int else E

1•
type=error;}

E
1
 → E

2
and E

3
 {if(E

2
•type = = E

3
•type) && (E

2
•type = =int/bool))

 then E
1
•type = bool else E

1•
type=error;}

E
1
 → E

2
= = E

3
 {if(E

2
•type = = E

3
•type)

 then E
1
•type = bool else E

1•
type = error;}

E → true {E•type = bool}
E → false {E•type = bool}
E → num {E•type = int}
E
1
 → (E

2
) {E

1
•type = E

2
•type}

The annotated parse tree for the string (8 + 8) == 8 is as follows in Figure 6.8.
Now let us see how to understand a given SDT.

Figure 6.8 Annotated Parse Tree for String “(8 + 8) = = 8”

E.type = bool

E.type = int(E.type = int)
= =

8

E.type = int E.type = int

E.type = int

88

+

6.4 Bottom-Up Evaluation of SDT
Given an SDT, we can evaluate attributes even during bottom-up parsing. To carry out the
semantic actions, parser stack is extended with semantic stack. The set of actions performed on
semantic stack are mirror refl ections of parser stack. Maintaining semantic stack is very easy.

 Bottom-Up Evaluation of SDT 251

During shift action, the parser pushes grammar symbols on the parser stack, whereas
attributes are pushed on to semantic stack.

During reduce action, parser reduces handle, whereas in semantic stack, attributes are
evaluated by the corresponding semantic action and are replaced by the result.

For example, consider the SDT

A → X Y Z {A · a := f(X · x, Y · y, Z · z);}

The stack contents would be as shown in Figure 6.9.

Figure 6.9 Stack Content While Parsing

... ...

X.xX

Y

Z Z.z

Y.y

top

 val [top – 2]

 val [top – 1]

 val [top]

symbol val

Strictly speaking, attributes are evaluated as follows

A → X Y Z {val[ntop] := f(val[top - 2], val[top - 1], val[top]);}

Evaluation of Synthesized Attributes

• Whenever a token is shifted onto the stack, then it is shifted along with its attribute
value placed in val[top].

• Just before a reduction takes place the semantic rules are executed.

• If there is a synthesized attribute with the left-hand side nonterminal, then carrying
out semantic rules will place the value of the synthesized attribute in val[ntop].

Let us understand this with an example:

E → E
1
 “+” T {val[ntop] := val[top-2] + val[top];}

E → T {val[top] := val[top];}
T → T

1
 “*” F {val[ntop] := val[top-2] * val[top];}

T → F {val[top] := val[top];}
F → “(“ E “)” {val[ntop] := val[top-1];}
F → num {val[top] := num.lvalue;}

input string 7 * 7
Figure 6.10 shows the result of shift action. Now after performing reduce action by

E → E * T resulting stack is as shown in Figure 6.11.
Along with bottom-up parsing, this is how attributes can be evaluated using shift

action/reduce action.

252 Syntax-Directed Translation

Example 4:
Consider the following SDT.

S → xxW { print(“1”);}
 | y { print(“2”);}
W → Sz { print(“3”);}

If an SR parser carries out the translations specifi ed, immediately after reducing with
rules of grammar, what is the result of carrying out the above translations on an input string
“x4 y z2”?
Solution: Given an SDT, to trace out SDT on an input string, take the string and draw a parse
tree. Now look at the order in which reductions are performed by the bottom-up parser.
Whenever the parser reduces by rule, carry out the attached semantic action, that gives you
the result. For the input string “xxxxyzz,” the parse tree is as shown in Figure 6.12

So here the fi rst reduction is y to S, result is print (2). Next reduction is Sz to W, result
of semantic action is print (3); next reduction is xxW to S, result is print(1); Next reduction
is Sz to W, result of semantic action is print (3); next reduction is xxW to S, result is print(1);

So the fi nal output is: 23131.

Example 5:
Consider the SDT given below.

E → E

* T { E•val = E•val

 *
 T•val;}

E → T { E•val = T•val;}
T → F - T { T•val = F•val - T•val;}
T → F { T•val = F•val;}
F → 2 { F•val = 2;}
F → 4 { F•val = 4;}

E

$ $

E.val = 12

Parser stack Semantic stack

Figure 6.11 Stack Content After Reduction

Figure 6.10 Stack Content While Parsing

T

+

E

$

T.val=7

E.val=7

$

 Parser stack Semantic stack

 Bottom-Up Evaluation of SDT 253

a. Using the SDT construct parse tree and evaluate string 4 − 2 − 4 * 2
b. It is also required to compute the total number of reductions performed to parse the given

input string. Modify the SDT to fi nd the number of reductions.

Solution: a. To evaluate the expression, there are two ways. The simple method is to take
the precedence and associativity of operators defi ned in the grammar. “–” has
higher precedence than “*.” “–” is right associative and “*” is left associative.
By considering this it can be evaluated without having the parse tree as follows:

(4 – (2 – 4)) * 2 = 4 – (–2) * 2 = 12.
The second method is the blind method, that is, using the parse tree. Construct

a parse tree for the expression that takes care of precedence and associativity.
Evaluate the expression from the parse tree as shown in Figure 6.13.

First evaluate inner sub tree (2 – 4) = –2. The next sub tree to be evaluated is
4 – (–2) = 6. The fi nal sub tree to be evaluated is 6 * 2 = 12.

 b. Modifying SDT is similar to writing SDT. To fi nd the number of reductions, one
simple way is to use a global variable “count” and increment for every reduc-
tion. But this is not an advisable solution.

Figure 6.12 “xxxxyzz” Parse Tree

S

x

x

x W

x W

zz

z

S

S

Y

x

254 Syntax-Directed Translation

 Other alternative is to use an attribute ”red,” to keep track of the number of reduc-
tions. The advantage of taking the number of reductions as attribute is that we can
store the number of reductions at any node in the parse tree with the attribute.
Now let us see how to defi ne semantic actions for evaluation of attribute .”red.”
 Use the parse tree shown in Figure 6.13, traverse the parse tree, whenever
any reduction is performed, defi ne rule for fi nding number of reductions.
 For example, the fi rst reduction is reducing terminal “4” to F. So here the num-
ber of reductions performed is one. So whether “2” is reduced or “4” is reduced,
the number of reduction is one. Hence, defi ne semantic actions as follows:

 F → 2 { F•val = 2; F•red = 1;}
 F → 4 { F•val = 4; F•red = 1;}

 The next reduction is F to T; when this is reduced, the number of reduc-
tions is the number of reductions at child node plus one. Hence, defi ne semantic
actions as follows:

 T → F { T•val = F•val; T•red = F•red + 1;}

 Similarly, for T to E, the same thing is applicable.

Figure 6.13 Parse Tree for “4 - 2 - 4 * 2”

E

E * T

–F 2

F

T

F

2

4 T

F

4

–

T

 Bottom-Up Evaluation of SDT 255

E → T { E•val = T•val; E•red = T•red + 1;}

 The next reduction is F-T to T; when this is reduced, the number of reduc-
tions is the number of reductions at the left child plus the number of reductions
at the right child plus one. Hence, defi ne semantic actions as follows:

T → F – T { T•val = F•val – T•val; T•red = F•red + T•red + 1;}

 Similarly, for E * T to E, the same thing is applicable.

E → E * T { E•val = E•val * T•val; E•red = E•red + T•red + 1;}

 Hence, the fi nal SDT after modifi cations is as follows:

E → E * T { E•val = E•val * T•val; E•red = E•red + T•red + 1;}
E → T { E•val = T•val; E•red = T•red + 1;}
T → F – T { T•val = F•val – T•val; T•red = F•red + T•red + 1;}
T → F { T•val = F•val; T•red = F•red + 1;}
F → 2 { F•val = 2; F•red = 1;}
F → 4 { F•val = 4; F•red = 1;}

 The annotated parse tree for the input string “4 – 2 – 4 * 2” is shown in
Figure 6.14.

Figure 6.14 Decorated Parse Tree for “4 - 2 - 4 * 2”

E.red = 10

*E.red = 7 T.red = 2

T.red = 2

F.red = 1

T.red = 6 F.red = 1

F.red = 1

F.red = 1

F.red = 1

T.red = 4 2

 2

 4

 4

 —

 —

256 Syntax-Directed Translation

Example 6:
Write an SDT to count the number of binary digits. For example, “1000” is 4.

Solution:

First defi ne the grammar for a binary number. Binary digit “B” can be either “1”
or “0.” The number can be a list of binary digits. The list can recursively defi ne
bits “B.” So grammar is as follows:

N → L
L → LB
L → B
B → 0
B → 1

The next step is to take a small string and draw a parse tree. So take 1000 and draw a
parse tree as shown in Figure 6.15.

The third step in SDT is to defi ne semantic actions. Assume “count” as an attribute to
count digits.

For example, the fi rst reduction is the reducing terminal “1” to B. So here the number of
digits, that is, the digit count is one. So whether “0” is reduced or “1” is reduced, the count
is one. Hence, defi ne semantic actions as follows:

Figure 6.15 Parse Tree for “1000”

N

L

L

B

B

1

B

L O

L B O

O

 Bottom-Up Evaluation of SDT 257

B → 0 { B•count = 1;}
B → 1 { B•count = 1;}

The next reduction is B to L; when this is reduced, the number of digits is the number of
digits at the child node. Hence, defi ne semantic actions as follows:

L → B { L•count = B•count;}

The next reduction is LB to L; when this is reduced, the count is the number of dig-
its at the left child plus the count at the right child. Hence, defi ne semantic actions as
follows:

L → LB { L•count = L•count + B•count;}

Final SDT for counting the number of digits in a binary number is as follows:

N → L { N•count = L•count;}
L → LB { L•count = L•count + B•count;}
L → B { L•count = B•count;}
B → 0 { B•count = 0;}
B → 1 { B•count = 1;}

Example 7:
Write an SDT to convert binary to decimal. For example, the binary number
101.101 denotes the decimal number 5.625.

Solution:

First defi ne the grammar for a binary number. The binary digit “B” can be either
“1” or “0.” The number can be a list of binary digits. The list can recursively
defi ne bits “B.” A binary number can be with decimal or without decimal. So the
grammar is as follows:

N → L1•L2

N → L
L → LB
L → B
B → 0
B → 1

The next step is to take a small string and draw a parse tree. First, we consider a binary
without decimal. So take 101.101 and consider only the left sub tree for 101. Draw a parse
tree as shown in Figure 6.16.

The third step in SDT is to defi ne semantic actions. Assume “dval” as an attribute to
store the decimal equivalent of binary.

For example, the fi rst reduction is the reducing terminal “1” to B. So here “dval” is one.
If it is “0” decimal equivalent “dval” is 0. Hence, defi ne semantic actions as follows:

B → 0 { B•dval = 0;}
B → 1 { B•dval = 1;}

258 Syntax-Directed Translation

The next reduction is B to L; when this is reduced, decimal equivalent “•dval” is what-
ever value the child node has. Hence, defi ne semantic actions as follows:

L → B { L•dval = B•dval;}

The next reduction is LB to L; when this is reduced, the decimal equivalent “dval” is
“dval” at the left child *2 plus “dval” at the right child. Hence, defi ne semantic actions as
follows:

L → LB { L•dval = L•dval * 2 + B•dval;}

The fi nal SDT for converting a binary number without decimal to decimal equivalent is
as follows:

N → L1•L2 {}
N → L { N•dval = L•dval;}
L → LB { L•dval = L•dval * 2 + B•dval;}
L → B { L•dval = B•dval;}
B → 0 { B•dval = 0;}
B → 1 { B•dval = 1;}

The annotated parse tree for string 101 is as shown in Figure 6.17.

Figure 6.16 Parse Tree for “4 - 2 - 4 * 2”

N

L . dval = 5 . L

L . dval = 2 B . dval = 1

B . dval = 0L . dval = 1 1

0

1

B . dval =1

 Bottom-Up Evaluation of SDT 259

Now let us extend the SDT for the decimal part. As we have already defi ned rules for the
nonterminal L, given an input string 101•101, the defi ned semantic actions are carried out even
for the right sub tree. This results in an equivalent for the decimal part, that is, 101 as 5. Now
as this is already evaluated, we can get the decimal equivalent for the decimal part as follows:

L.dval/2L.nd where “dval” is the decimal equivalent of the number after the decimal and
“nd” is the number of digits after the decimal. For example, 101, dval = 5 and nd = 3.

So equivalent = 5/23 = 5/8 = 0.625.
Let us now extend SDT for evaluating the number of digits “nd.” This is similar to the

previous example of counting the number of digits in binary. So the fi nal SDT is shown
below:

N → L1•L2 { N•dval = L1•dval + L2•dval / 2 L2•nd;}
N → L { N•dval = L•dval;}
L → LB { L•dval = L•dval * 2 + B•dval; L•nd = L•nd + B•nd;}

Figure 6.17 Annotated Parse Tree for “101”

N

L . dval = 5 . L

L . dval = 2 B . dval = 1

B . dval = 0L . dval = 1 1

0

1

B . dval =1

260 Syntax-Directed Translation

L → B { L•dval = B•dval; L•nd = B•nd;}
B → 0 { B•dval = 0; B•nd = 1;}
B → 1 { B•dval = 1; B•nd = 1;}

6.5 Creation of the Syntax Tree
The parser produces a tree while checking the syntax of the programming language con-
struct. This is called the parse tree. A parse tree gives the complete syntax of a string. It tells
you what the syntax behind the string is. Hence it is called concrete syntax tree, whereas a
condensed form of a parse tree is called syntax tree, which abstracts away unnecessary ter-
minals and nonterminals. Hence, it is even called abstract syntax tree(AST).

For example, consider the string 3 * (4 + 2). The parse tree and syntax tree for the string
are shown in Figure 6.18.

Now let us see how to write an SDT for creating a syntax tree.

Example 8:
SDT for creating a syntax tree

Solution:

Assume that an input string is of the form “a + b * c.”
The fi rst step is to defi ne grammar. Take unambiguous grammar that defi nes all arithmetic
expressions with “+” and “*.”

E

T

T F

F 2

T ∗

E
F

()

+E T

F

3

4

Figure 6.18 Parse Tree/Concrete Syntax Tree

∗

3 +

4 2

Syntax Tree/Abstract Syntax Tree

 Creation of the Syntax Tree 261

E→E+T | T
T→T*F | F
F→id

The second step is to take the input string and draw a parse tree. It is shown in Figure 6.19.
The third step is defi ning semantic actions. Here we are supposed to construct a node in

the parse tree at any time. For creating a node, assume that there is a procedure mknode(l,
d, r), where l is the left pointer, d is the data element, and r is the right pointer. Assume that
when mknode() is called with three arguments, creates a node, and returns the pointer to the
newly created node. Now let us see how the tree is created by using mknode().

The fi rst reduction is identifi er “a” is reduced to F. Here we need to create a leaf node.
For creating leaf nodes we use the mknode() function with the left pointer and the right
pointer as NULL. The return type of function is the pointer to the newly created node. So
to store this node pointer, assume that there is an attribute “nptr.” The semantic action is as
follows:

F → id { F•nptr = mknode (NULL, id•lvalue, NULL);}

The next reduction is F to T. Here simply extend the pointer further to T by adding
semantic action as

T → F { T•nptr = F•nptr;}.

Similarly, even for the next reduction T to E, extend the pointer further.
The next reduction is “T*F” to T. Here create a node using the mknode() function with

“*” as data element and T•nptr as the left pointer and F•nptr as the right pointer as shown
below:

T → T * F { T•nptr = mknode (T•nptr, “*”, F•nptr);}

 Figure 6.19 Parse Tree for “a + b * c”

E

E + T

a

T T *

b

F

F F C

262 Syntax-Directed Translation

The same thing can be carried out for E+T to E as

E → E + T { E•nptr = mknode (E•nptr, “+”, T•nptr);}

So the fi nal SDT for creating syntax tree is as follows:

E → E + T { E•nptr = mknode (E•nptr, “+”, T•nptr);}
E → T { E•nptr = T•nptr;}
T → T * F { T•nptr = mknode (T•nptr, “*”, F•nptr);}
T → F { T•nptr = F•nptr;}
F → id { F•nptr = mknode (NULL, id•lvalue, NULL);}

where mknode (l, d, r) is a function that creates a node with “l” as the left pointer and
“d” as the data element, and “r” as the right pointer. It returns pointer to a newly cre-
ated node.

The resulting syntax tree for input string “a + b * c” is as follows shown in Figures 6.19 and 6.20.

Figure 6.20 Syntax Tree for “a + b * c”

*

cb

+a

6.6 Directed Acyclic Graph (DAG)
DAG is used to identify common sub expressions. It helps us in eliminating redundant
code.

For example, let there be an expression a + (b * c) + (b * c). This expression can be repre-
sented as tree or DAG as shown in Figure 6.21.

So here, for a common sub expression, a node is created twice in a tree, whereas in DAG,
it is created only once and reused later. Now let us see how to write SDT for creating DAG,
that is, for the above SDT, given an input string a+a*a, if we carry out the above translations,
we get the syntax tree as found in Figure 6.22.

But we want DAG as shown in Figure 6.23.

 Directed Acyclic Graph (DAG) 263

Figure 6.21(a) Syntax Tree

**

+

+

a

cb cb

(b) DAG

*

+

+

a

cb

Figure 6.22 Syntax Tree for “a + a * a”

*

+

a

a a

Figure 6.23 DAG for “a + a * a”

+

*
a

264 Syntax-Directed Translation

So to get a DAG, do we have to rewrite the SDT in Example 8 or do we have to modify
the SDT? What changes are required, if any? No single change is required in SDT—Example
8. As it is, the same SDT can be used even for creating DAG but the difference is in function
mknode(). Earlier, we have defi ned mknode() as function that when called blindly creates
a node and returns a node. Now the modifi cation required is in mknode(). Here, it should
maintain a list of pointers already created.

Whenever mknode() is called, it fi rst verifi es whether the node is already created or not.
If it is already created, return the same pointer. If it is not there in the already created node
list, then it creates one and adds to list.

Example 9:
SDT for creating DAG

Solution:

E → E + T { E•nptr = mknode (E•nptr, “+”, T•nptr);}
E → T { E•nptr = T•nptr;}
T → T * F { T•nptr = mknode (T•nptr, “*”, F•nptr);}
T → F { T•nptr = F•nptr;}
F → id { F•nptr = mknode (NULL, id•lvalue, NULL);}

where mknode (l,d,r) function maintains a list of pointers already created. Whenever it is
called, fi rst it verifi es whether the node is already created or not. If it is already created,
return the same pointer. If it is not there in already created node list, then creates one and
adds to list.

6.7 Types of SDTs
There is one more type called the L-attribute defi nition. The difference between S-attributed
and L-attributed is as follows:

S-attributed defi nition L-attributed defi nition

1. It uses only synthesized attributes.

2. Semantic actions can be placed
only at the end of the right hand
side of a production.

3. Attributes are generally evaluated
during bottom-up parsing.

1. It allows both types. But if an inherited
attribute is present, there is a restriction.
The restriction is that each inherited
attribute is restricted to inherit either
from parent or from left sibling only.

2. Semantic actions can be placed
anywhere on the right hand side.

3. Attributes are generally evaluated by
traversing the parse tree depth fi rst
and left to right.

 Top-Down Evaluation of S-Attributed Grammar 265

6.8 S-Attributed Defi nition
So far whatever the examples we have used is S-attributed defi nition only. Look at the exam-
ples; in all the examples, the type of attribute used, that is, “val” or “type” or “red” or
“count” or “nptr” is only synthesized. A syntax-directed defi nition that uses synthesized
attributes exclusively is said to be an S-attributed defi nition, where “S” stands for simple.
S-attributed defi nition is also called postfi x SDT as semantic actions are always placed only
at the right end of productions.

6.9 Top-Down Evaluation of S-Attributed Grammar
So far we have seen bottom-up evaluation of S-attributed grammar, that is, given an SR/
LR parser. If the translations are carried out, what would be the output? Suppose we have a
top-down parser with SDT; can’t we carry out the same translations? Yes. We can carry out
even by using the top-down parser. The difference is if it is bottom-up parser, we can easily
specify when exactly the translation is carried out. For example, so far the assumption is that
whenever the parser reduces by any production, the corresponding semantic action is car-
ried out automatically, whereas with top-down parser, no doubt translations can be carried
out. But we cannot tell when exactly the translations are carried out. So far we have seen
enough examples for bottom-up evaluation. Now let us see some examples for top-down
evaluation.

Given an SDT, a top-down parser carries out translations as follows:

1. Assumes semantic actions as dummy nonterminals, which become part of the right hand
side of production.

2. Translations are pushed onto the stack along with grammar symbols.
3. When a dummy nonterminal appears on top of the stack, the terminal is popped and cor-

responding action is carried out.

To understand the above procedure, let us take a simple SDT

Example 10:
Write an SDT for counting the number of balanced parenthesis. For example,
given ((())) should give 3 as output.

Solution: The grammar for balanced parentheses is as follows:

 S → (S)
 | ε

The second step is to draw the parse tree for an input string “((())).” It is shown in
Figures 6.24 and 6.25.

The last step is to defi ne the rules.

S → (S1) { S•cnt=S1•cnt+1;}
 | ε { S•cnt=0;}

266 Syntax-Directed Translation

Figure 6.24 Parse Tree for Balanced Parentheses

S

(S)

(S)

)(S

ε

Figure 6.25 Annotated Parse Tree for “((())).”

s.cnt = 3

s.cnt = 2

s.cnt = 3Ss.cnt = 1

s.cnt = 0

ε

(

(

(

)

)

)

 Top-Down Evaluation of S-Attributed Grammar 267

The annotated parse tree is as follows:
Top-down evaluation is as follows:

1. Assume semantic actions as dummy nonterminals.

S → (S1) #1
 | ε #2
where #1 is S•cnt=S1•cnt+1;
and #2 is S•cnt=0;

2. Use LL(1) parsing algorithm to parse the input string.
3. During parsing if #1 or #2 appears on top of the stack, then take out the symbol and carry

out the translations as shown in Figure 6.26.

a.

S
$

((())) $

S on “(” is S → (S) #1, so replace S by R.H.S.

b. ((())) $

(
S
)
#1
$

“(” matches, popoff and advance ip

c. (())) $

S
)
#1
$

S on “(” is S → (S) #1, so replace S by R.H.S.

d. ((())) $

(
S
)
#1
)
#1
$

“(” matches, popoff and advance ip

e. ())) $

S
)
#1
)
#1
$

S on “(” is S → (S) #1, so replace S by R.H.S.

268 Syntax-Directed Translation

f. ())) $

(
S
)
#1
)
#1
)
#1
$

“(” matches, popoff and advance ip

g.
))) $

S
)
#1
)
#1
)
#1
$

Replace S→ ε #2

h.))) $

#2
)
#1
)
#1
)
#1
$

Popoff #2 and set s.cnt=0;Next
“)” matches. popoff “)”.

i.)) $

#1
)
#1
)
#1
$

next “)” matches. popoff “)”.

Now pop off #1.Set s.cnt=2;

next “)” matches. popoff “)”.

Now pop off #1.Set s.cnt=3;

Now pop off #1.Set s.cnt=1;

Now $ on $ hence successful.

Figure 6.26 Parser Actions in Top-Down Evaluation

This is how top-down evaluation of S-attributed defi nition can be carried out. Even
observe that given an SDT whether it is top-down evaluation or bottom-up evaluation, the
result is the same for the given input string.

 L-Attributed Defi nition 269

6.10 L-Attributed Defi nition
1. It allows both types, that is, synthesized as well as inherited. But if at all an inherited

attribute is present, there is a restriction. The restriction is that each inherited attribute is
restricted to inherit either from parent or from left sibling only.

For example, consider the rule
 A → XYZPQ assume that there is an inherited attribute. “i” is present with each nonter-
minal. Then,

Z•I = f(A•i|X•i|Y•i) but Z•i = f(P•i|Q•i) is wrong as they are right siblings.

2. Semantic actions can be placed anywhere on the right hand side.

 Ex: A → a {}
 B → C {} D
 C → EF {}

They can be placed either in the beginning or in the middle of grammar symbols or
at the end.

3. Attributes are generally evaluated by traversing the parse tree depth fi rst and left to right.
It is possible to rewrite any L-attributes to S-attributed defi nition.

Example 11:
Consider the following SDT:

 A → LM { L•i = f(A•i);
 M•i = f(L•s)
 A•s = f(M•s);}
 A → QR { R•i = f(A•i);
 Q•i = f(R•s)
 A•s = f(Q•s);}

Is it L-Attributed or S-Attributed?
Solution: Look at semantic actions. Here by looking at semantic actions we understand that
“s” is synthesized and “i” is inherited. So actions in fi rst rule are correct since “i” is dependent
on parent or left siblings only. But look at the second action in A → QR, Q.i = f(R.s); this vio-
lates the basic property of L-attributed defi nition. Inherited attribute can inherit either from
parent or from left sibling only. So this is a wrong SDT—not S-attributed or not L-attributed.

So far we have discussed enough examples for S-attributed defi nition. Now let us look
at some examples for L-attributed defi nition.

Let us start with a simple example .Consider the S-attributed defi nition for converting
infi x to the post fi x form.

E → E
1
+ T { print(“+”);}

E → T {}
T → T

1
* F { print(“*”);}

T → F {}
F → id { print(“id.name”);}

270 Syntax-Directed Translation

Consider actions as dummy nonterminals #1,#2,#3.

E → E1 + T #1
E → T
T → T1 * F #2
T →F
F → id #3

Eliminate left recursion. Now we get simple L-attributed defi nition as follows:

Example 12:
L-attributed defi nition for converting infi x to post fi x form.

E → TE”
E” → +T #1 E” | ε
T → F T”
T” → * F #2 T” |ε
F → id #3

where #1 corresponds to printing “+” operator, #2 corresponds to printing “*,” and # 3 cor-
responds to printing id.val.

Look at the above SDT; there are no attributes, it is L-attributed defi nition as the
semantic actions are in between grammar symbols. This is a simple example of L-attrib-
uted defi nition. Let us analyze this L-attributed defi nition and understand how to evalu-
ate attributes with depth fi rst left to right traversal. Take the parse tree for the input string
“a + b*c” and perform Depth fi rst left to right traversal, i.e. at each node traverse the left sub
tree depth wise completely then right sub tree completely.

Follow the traversal in Figure 6.27. During the traversal whenever any dummy nonter-
minal is seen, carry out the translation.

Figure 6.27 Depth First Traversal of Tree

E

T

F T’

i d # 3

a

E’

+ T #1 E’

 F

#3id

T’

∗ F # 2

id #3

c

ε

b

 L-Attributed Defi nition 271

 � So if we follow the path, the first dummy nonterminal that is seen is #3 after seeing iden-
tifier “a.” So carryout #3, which results in printing out “a.”

 � Next dummy nonterminal seen is #3 after seeing identifier “b.” So carryout #3, which
results in printing out “b.”

 � Next dummy nonterminal seen is seen is #3 after seeing identifier “c.” So carryout #3,
which results in printing out “c.”

 � Next dummy nonterminal seen is #2, which results in printing out “*.”
 � The last dummy nonterminal seen is #1, which results in printing out “+.”
 � So the final result is “abc*+.”

Let us take another example of L-attributed with attributes.

Example 13:
Write an SDT for storing type information in a symbol table.

Solution:

Given an input string int a,b,c, the SDT should give an output as

A int
B int
C int

The fi rst step is to defi ne grammar for declaration statements of the form int a,b,c

D → T L
T → int
T → char
L →L, id
L → id

The second step is to take the input string and draw a parse tree as shown in Figure 6.28.
The third step is to defi ne semantic actions. Here, the parser fi rst reads “int” and reduces

to T. So to store the type information, assume an attribute “type” with a grammar symbol
and store the type by defi ning semantic actions as follows:

T → int { T•type = int}
T → char { T•type = char}

The resulting parse tree is as shown in Figure 6.29.
Now look at the parse tree; type information is available at node T, whereas node L is

deriving identifi ers a, b, c. So if the type information at node T is made available with node L
then whenever an identifi er is seen, it stores type together with identifi er. Now the question
is how to propagate type information from node T to node L. Can we write semantic action
as follows?

D → TL {L•type = T•type;}

Is this correct? No. “type” is a synthesized attribute; so using synthesized attribute we
cannot propagate information to sibling. So the only way here is to use an inherited attribute.

272 Syntax-Directed Translation

Figure 6.28 Parse Tree for “int a, b, c”

D

s.cnt = 3L

,

a

T

int

L

L

, c

b

Figure 6.29 Propagating Type Info in Parse Tree

D

s.cnt = 3

,

a

T.type = int

int

L

L

L , C

b

 L-Attributed Defi nition 273

Assume that there is an inherited attribute “in.” Now we can defi ne the rule as follows:

D → TL {L•in= T•type;}

As “in” is an inherited attribute, it can take type information from node T.
Now node L takes type information from T. Now child L takes type info from parent

using inherited attribute by having action as

 L → L1, id { L1•in = L•in;}.

Now type is available with L and id is also available. Assume add_type(type,id) as a
function that stores id together with type into symbol table. So add the action as follows:

L → L1, id { L1•in = L•in; add_type(L1•in, id);}

Finally, when id is reduced to L, we have type information together with id, so store it
in symbol table by defi ning rule as

L → id { add_type(L•in, id•name);}

So the fi nal SDT is as follows:

D → TL {L•type = T•type;}
T → int { T•type = int}
T → char { T•type = char}
L → L1, id { L1•in = L•in; add_type(L1•in, id);}
L → id { add_type(L•in, id•name);}

The annotated parse tree is as shown in Figure 6.30.

Figure 6.30 Depth First Traversal of Tree

D

s.cnt = 3

,

a

T.type = int

int

L.in = int

L.in = int

L.in = int

, C

b

274 Syntax-Directed Translation

Figure 6.31 Dependency Graph

D

s.cnt = 3

,

a

T.type = int

int

L.in = int

L.in = int

L.in = int

, C

b

1

2

3

4

This is an L-attributed defi nition that uses both synthesized and inherited attributes.

General evaluation of semantic actions in any SDT is as follows:

1. Take input string, parse it, and it gives parse tree.
2. Traverse the parse tree and draw the dependency graph.
3. Graph gives evaluation order.

Let us understand the procedure with the above example.
Take the parse tree and dependency graph. Dependency graph is a graph that shows inter

dependencies among the attributes. The dependency graph is shown below in Figure 6.31.
We follow the dependency graph that gives you the evaluation order.
The evaluation order is as follows:

a1 = int
a2 = a1
a3 = a2
add_type(int,a)
a4 = a3
add_type(int,b)
add_type(int,c)

The general procedure is complex. Hence, we have discussed specifi c procedures. The
simple procedures are if it is S-attributed, evaluate during bottom-down parsing. If it is
L-attributed, traverse the parse tree depth fi rst left to right.

 L-Attributed Defi nition 275

Let us see how to evaluate attributes by traversing parse tree depth fi rst left to right.
Depth fi rst left to right traversal is at each node traverse the left sub tree depth wise then
right sub tree completely. During this traversal evaluate attributes as follows:

 � Evaluate inherited attributes if the node is visited for the first time
 � Evaluate synthesized attributes if the node is visited for the last time

Look at Figure 6.32. Start at point 1; here node D has no attributes defi ned. So continue
till 2. Here node T is visited for the fi rst time; so evaluate inherited attributes. Node T is not
defi ned with any inherited attributes, so continue till point 3. At 3, it is the last visit for node
T, so evaluate synthesized attributes T → int {T.type = int}. So node T will have type infor-
mation. Now continue till point 4; at 4, the fi rst visit for node L, evaluate inherited attribute
{L.in=T.type;}. Node L, at point 5 is the fi rst visit, so evaluate inherited.

L → L1, id { L1.in = L.in; add_type(L1.in, id);} Here add_type() has two arguments—L.in,
which is inherited attribute and ‘id‘ is synthesized attribute. As function has both types of
attributes, it can be evaluated only at the last visit. Similarly, at point 6, the inherited attrib-
ute is evaluated. Now at point 7, the last visit, so add_type() is carried out with the result,
“a” with type “int” is stored in symbol table. Now at point 8, the last visit, add_type() is
carried out with the result, “b” with type “int” is stored in symbol table. Now at point 9, the
last visit, add_type() is carried out with the result, “c” with type “int” is stored in the symbol

Figure 6.32 Depth First Left to Right Traversal of Tree

1

D

s.cnt = 3

,

a

T.type = int

int

L.in = int

L.in = int

L.in = int

, C

b

2
3 4

5

7

8

6

9

10

276 Syntax-Directed Translation

table. At point 10, it completes traversal. By this time a,b,c, along with type is stored in the
symbol table.

6.11 Converting L-Attributed to S-Attributed Defi nition
Now that we understand that S-attributed is simple compared to L-attributed defi nition, let
us see how to convert an L-attributed to an equivalent S-attributed.

Consider an L-attributed with semantic actions in between the grammar symbols. Sup-
pose we have an L-attributed as follows:

S → A {} B

How to convert it to an equivalent S-attributed defi nition? It is very simple!!
Replace actions by nonterminal as follows:

S → A M B
M → ε {}

Example 14:
Convert the following L-attributed defi nition to equivalent S-attributed
defi nition.

E → TE”
E” → +T #1 E” | ε
T → F T”
T” → *F #2 T” |ε
F → id #3

Solution:
Replace dummy nonterminals that is, actions by nonterminals.

E → TE”
E” → +T A E” | ε
A → { print(“+”);}
T → F T”
T” → *F B T” |ε
B → { print(“*”);}
F → id { print(“id”);}

Example 15:
Consider Example 13; let us see how to convert L-attributed to equivalent
S-attributed defi nition.

Solution:
To get the equivalent S-attributed defi nition, we need to eliminate inherited attributes in
Example 13. How to avoid inherited attributes in Example 13? Recollect Example 13, there
as type information is to be taken from node L which is a sibling, the only way is using

 Converting L-Attributed to S-Attributed Defi nition 277

inherited attribute. So as long as we use that grammar, L will be a sibling to T. As long as L
is sibling to T, inherited attribute is needed. So to avoid inherited attribute the only way is to
rewrite the grammar as follows:

D → D1, id
D → T, id
T → int | char

The parse tree for the string int a,b,c is as shown in Figure 6.33.
Now defi ne the semantic actions as follows:
First read “int” then reduce “int” to T. So to store type, assume attribute type and defi ne rule as

T → int { T•type = int}

Next it reads “a,” then reduces ‘T id’ to D. So here we propagate type information to
parent by using the same synthesized attribute and also store type with id into symbol table
by using add_type() by defi ning semantic action as follows:

D → T, id {L•type = T•type; add_type(T•type, id•name)}

Next it reads “b,” then reduces ‘D, id’ to D. So here we propagate type information to
parent by using the same synthesized attribute and also store type with id into symbol table
by using add_type() by defi ning semantic action as follows:

D → D1, id {D•type = D1•type; add_type(D1•type, id•name);}

Figure 6.33 Parse Tree for “int a, b, c”

D

s.cnt = 3id

b

a

D

,D

id

int

T

id

C

C,

278 Syntax-Directed Translation

So the fi nal equivalent L-attributed defi nition is as follows:

D → D1, id {D•type = D1•type; add_type(D1•type, id•name);}
D → T, id {L•type = T•type; add_type(T•type, id•name)}
T → int { T•type = int}
T → char { T•type = char}

So to convert L-attributed to equivalent S-attributed here, grammar is changed. But
rewriting grammars is not a simple solution. Consider the following example SDT:

A → BC {A•i=B•i + C•i;} is S-attributed and also L-attributed since there are no inher-
ited attributes. So every S-attributed is even L-attributed. However, the reverse is not true.

6.12 YACC

YACC—Yet Another Compiler Compiler—is a tool for construction of automatic LALR
parser generator.

Using Yacc

Yacc specifi cations are prepared in a fi le with extension “.y” For example, “test.y.” Then run
this fi le with the Yacc command as “$yacc test.y.” This translates yacc specifi cations into
C-specifi cations under the default fi le mane “y.tab.c,” where all the translations are under
a function name called yyparse(); Now compile “y.tab.c” with C-compiler and test the pro-
gram. The steps to be performed are given below:

C compiler

Yacctest.y

y.tab.c

y.tab.c

a.out

Commands to execute

$yacc test.y
This gives an output “y.tab.c,” which is a parser in c under a function name yyparse().
With –v option ($yacc –v test.y), produces fi le y.output, which gives complete informa-

tion about the LALR parser like DFA states, confl icts, number of terminals used, etc.

$cc y.tab.c
$./a.out

Preparing the Yacc specifi cation fi le
Every yacc specifi cation fi le consists of three sections: the declarations, grammar rules, and
supporting subroutines. The sections are separated by double percent “%%” marks.

 YACC 279

declarations

%%

Translation rules

%%

supporting subroutines

The declaration section is optional. In case if there are no supporting subroutines,
then the second %% can also be skipped; thus, the smallest legal Yacc specifi cation is

%%

Translation rules

Declarations section
Declaration part contains two types of declarations—Yacc declarations or C-declarations.
To distinguish between the two, C-declarations are enclosed within %{ and %}. Here we can
have C-declarations like global variable declarations (int x=1;), header fi les (#include….),
and macro defi nitions(#defi ne…). This may be used for defi ning subroutines in the last sec-
tion or action part in grammar rules.

Yacc declarations are nothing but tokens or terminals. We can defi ne tokens by %token
in the declaration part. For example, “num” is a terminal in grammar, then we defi ne

% token num in the declaration part. In grammar rules, symbols within single quotes are
also taken as terminals.

We can defi ne the precedence and associativity of the tokens in the declarations section.
This is done using %left, %right, followed by a list of tokens. The tokens defi ned on the
same line will have the same precedence and associativity; the lines are listed in the order of
increasing precedence. Thus,

%left ’+’ ’−’
%left ’*’ ’/’

are used to defi ne the associativity and precedence of the four basic arithmetic opera-
tors '+','–','/','*'. Operators '*' and '/' have higher precedence than '+' and '–' and both are
left associative. The keyword %left is used to defi ne left associativity and %right is used to
defi ne right associativity.

Translation rules section
This section is the heart of the yacc specifi cation fi le. Here we write grammar. With each
grammar rule, the user may associate actions to be performed each time the rule is recog-
nized in the input process. These actions may return values, and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values when a token
is matched. An action is defi ned with a set of C statements. Action can do input and out-
put, call subprograms, and alter external vectors and variables. The action normally sets the
pseudo variable “$$” to some value to return a value. For example, an action that does noth-
ing but return the value 1 is { $$ = 1;}

280 Syntax-Directed Translation

To obtain the values returned by previous actions, we use the pseudo-variables $1, $2,
. . ., which refer to the values returned by the grammar symbol on the right side of a rule,
reading from left to right. Thus, if the rule is

A: B C D
for example, then $1 has the value returned by B, and $2 the value returned by C. As an

example, consider the rule

E: ’(’ E ’)’;

The value returned by this rule is usually the value of the E in parentheses. This can be
indicated by

E : ’(’ E ’)’ { $$ = $2;}

Lexical Analysis
The user must supply a lexical analyzer to read the input stream and communicate tokens
(with lexeme values, if desired) to the parser. This can be done in two ways—either the lex
tool can be used or a user can write his own hand-coded lexical analyzer in C. The lexical
analyzer is an integer valued function with a default name “yylex().” The yylex() function
returns an integer, which is the token number, representing the kind of token that is read. If
there is a value associated with that token, it should be assigned to the yacc-defi ned global
variable “yylval.” The parser and the lexer must agree upon these token numbers so that
communication can take place between them. The numbers may be chosen by Yacc or by
the user. In either case, These numbers are symbolically returned by the lexical analyzer by
using the “# defi ne” macro mechanisms of C.

For example, suppose that the token name NUM has been defi ned in the declarations
section of the Yacc specifi cation fi le.

yylex(){
extern int yylval;
int c;
. . .
c = getchar();
. . .
switch(c) {
. . .

case ’0’:
case ’1’:

. . .
case ’9’:
yylval = c-’0’;
return(NUM);

. . .
}
. . .

The above code is to return a token NUM along with its value on seeing a digit. The
value of token is equal to the numerical value.

 YACC 281

If the lexical analyzer is supplied with the lex tool, fi rst prepare the lex fi le like test.l. Run
under lex. That gives you the “lex.yy.c” fi le. Add this as the fi rst statement in supporting
routines part as follows:

%%

%%

#include “lex.yy.c”

When Yacc is invoked with the –v option (verbose), a fi le called y.output is created with
complete description of the parser. The y.output fi le corresponds to the above grammar with
a full description of the LALR parser.

Yacc invokes two disambiguating rules by default:

1. In case of a shift/reduce confl ict, the default action is to go with the shift action.
2. In case of a reduce/reduce confl ict, the default action is to reduce action by the earlier

grammar rule.

Supporting routines section

When a user prepares input a specifi cation fi le to Yacc with “y” extension , it creates an out-
put fi le called y.tab.c. An integer valued function “yyparse()” is produced by Yacc; when
yyparse() is called, in turn it calls yylex(), which is the lexical analyzer supplied by the user
to obtain input tokens. yyparse() returns the value 1 on error and returns 0 on EOF. The
user must provide some supporting routines for this parser. For example, as with every
C program, a program called “main” must be defi ned, that eventually calls parser func-
tion yyparse(). In addition to this, a routine called yyerror()is also required as it gives error
diagnostics when a syntax error is detected. These two routines are compulsory for any yacc
program. Consider the following example:

main(){
 yyparse();
}
include <stdio.h>
yyerror(str) char *str; {
fprintf(stderr, “%s\n,” str);
}

The argument to yyerror() is a string “str” containing an error message. The default
stack type in YACC is integer type. If we want to change the stack type, we can overload
stack defi nition using %union as follows:

%union {
body of union ...
}

282 Syntax-Directed Translation

This declares the Yacc value stack, and the global variables yylval. If Yacc was invoked
with the -d option, the union declaration is copied onto the y.tab.h fi le.

Using ambiguous grammars
When ambiguous grammar is used in translation rules, we get confl icts. So to resolve con-
fl icts, we need to supply precedence and associativity of operators using %left…. %right…
For example, when ambiguous grammar is given,then specifying following:

%left “+” “-”
%left “*” “/”

Indicates that *,/ has higher precedence than +, − and are left associative.

Error recovery with YACC
In YACC, error recovery is performed using error production. We add extra productions for
taking care of errors as follows:

Line : Line Expr “\n” {printf(“%d\n,”$2);}
| error “\n” {yyerror(“Enter last line once again”);
yyerrok;}

Errors (sent by lexical analyzer as error tokens) are parsed using the second rule shown
in the above grammar. So when an error is captured, the error message “Enter last line once
again” will appear. “yyerrok” is a yacc-defi ned macro that resets parser to its normal mode
of operation. Let us have an example:

Example 16:
Write a YACC program for evaluation of expression like “8*8+8.”
Solution:

If we want to use hand coded yylex() for lexical analyzer with yacc, fi rst prepare a
YACC fi le “test.y” as follows:

Yacc program

%{
#include<stdio.h>
%}
%token NUM
%%
Line:Line Expr “\n”
{printf(“value of expr=%d\n,”$2);}
 |;
Expr:Expr “+” Term {$$=$1+$3;}
 | Term
 ;
Term:Term “*” Factor {$$=$1*$3;}
 |Factor
 ;

 YACC 283

Factor:NUM {$$=$1;}
 ;
%%
#include “lex.yy.c”
main()
{
yyparse();
}
void yyerror(char *s)
{printf(“%s,”s);
}
yylex()
{
char c;
while((c=getchar())!=“\n”)
{
 if(isdigit(c))
 {
 yylval=c-”0”;
 return NUM;
 }
 else return c;
}
return c;
}

To run the above program, execute the commands as follows:

$yacc test.y
$cc y.tab.c
$./a.out
8+8*8
72
$

If we want to use the “lex tool” instead of hand-coded yylex(), then fi rst prepare the lex
fi le “test.l” as follows:

Lex program

Digit [0-9]*
%%
{Digit} {sscanf(yytext,”%d,”&yylval); return NUM;}
[*-/+] { return yytext[0];}
“\n” { return yytext[0];}

284 Syntax-Directed Translation

Let us use the lex tool with ambiguous grammar. The yacc program “test.y is as follows:

%{
#include<stdio.h>
%}
%token NUM
%left “+” “-”
%left “*” “/”
%%
Line:Line Expr “\n” {printf(“value of expr=%d\n,”$2);}
 |;
Expr:Expr “+” Expr {$$=$1+$3;}

|Expr “*” Expr {$$=$1*$3;}
|Expr “-” Expr {$$=$1-$3;}
|Expr “/” Expr {$$=$1/$3;}
|NUM {$$=$1;}
;

%%

#include “lex.yy.c”
main()
{
yyparse();
}
void yyerror(char *s)
{printf(“%s,”s);
}
}

To run the above program, execute the commands as follows:

$lex test..l
$yacc test.y
$cc y.tab.c
$./a.out
8*8+8
72
$

Solved Problems
1. Consider the following SDT. If an LR parser carries out the translations on an input string
 “aabbccdb,” what is the output?

 Solved Problems 285

S → aaS { print(“a”);}
 | bA { print(“b”);}
 | b { print(“c”);}
A → bcA { print(“d”);}
 | cdS { print(“e”);}

Solution: Take the input string; draw the parse tree
The fi rst reduction is “b to S.” When this is reduced, the corresponding semantic action
is print(“c”);
The next reduction is “cdS” to A. When this is reduced, the corresponding semantic action
is print(“e”);
The next reduction is “bcA” to A. When this is reduced, the corresponding semantic
action is print(“d”);
The next reduction is “bA” to S. When this is reduced, the corresponding semantic action
is print(“b”);
The fi nal reduction is “aaS” to S. When this is reduced, the corresponding semantic action
is print(“a”);
Hence the fi nal result is the string “cedba” is printed.

S

a

b

cb

c d S

b

A

S

A

a

286 Syntax-Directed Translation

2. Consider the SDT given below.

E → E # T { E•val = E•val * T•val;}
E → T { E•val = T•val;}
T → T & F { T•val = T•val + F•val;}
T → F { T•val = F•val;}
F → num { F•val = num•val;}

What is the output for an input “2#3&5#6&4”?

Solution: Draw the parse tree for the string “2#3&5#6&4” as follows:
Here, look at semantic actions, “&” is used for addition and “#” is used for multiplication.
So the given string can be reduced as follows after replacing “&” by “+” and “#” by “*.”

2 * 3 + 5 * 6 + 4.

If you look at the grammar, “+” has higher precedence than “*” and both are left
associative.

Hence, the given string is evaluated as follows:

2 * (3 + 5) * (6 + 4) = 2 * 8 * 10 = 160.

E

E # T

E # T

T
T

&

2
3

F

&T F

6

F

5

F 4

F

3. Consider the SDT shown below

E → TE”
E” → + T {print(“+”);} E” | ε
T → num

 Solved Problems 287

Convert it to S-attributed; then check if an LR parser carries out translation on an input
“9+5+2”; what is the output?

Solution:
Equivalent S-attributed defi nition is

E → TE”
E” → + T M E” | ε
M → ε {print(“+”);}
T → num

E

T E'

9
+ T M

5 ε

εε

+ T M

2

E'

E'

Draw a parse tree
Now evaluate from the parse tree. The fi rst reduction is 9 to T. So prints 9.
Next is 5 to T, so prints 5. Next ε to M, prints +. Next reduction is 2 to T, prints 2.
Next ε to M, prints +. Next ε to E”, no action.
Final result is 95+2+.

4. Convert the following SDT

A → A {a} B
 | B {b}
B → 0 {c}

to an SDT that is postfi x SDT and has no left recursion in underlying grammar.

Solution:

First eliminate left recursion. The resulting grammar is as follows:

 A → B {b} A”
A” → {a} B A”
 | ε
 B → 0 {c}

288 Syntax-Directed Translation

To get postfi x SDT, move actions at right end as follows:

 A → B M A”
 M →{b}
A” → R B A”
 | ε
 R → {a}
 B → 0 {c}

5. Consider the following SDT. If an LR parser carries out the translations on an input string
“babcc.” What is the output?

S → S1S2c {S.t= S1.t-S2.t;}
 | a { S.t=5;}
 | b { S.t=2;}

S

b

ba

S

S

S

C

C

S1

1

2

2

Solution: Draw a parse tree and carry out the translations.
When “b” is reduced to S, result is s.t = 2.
Next when “a” is reduced to S, result is s.t = 5.
Next when “b” is reduced to S, result is s.t = 2.
Next when “SSc” is reduced to S, result is 0.3
Last when “SSc” is reduced to S, result is –1.

Summary
 � Grammar together with semantic actions is called syntax-directed translation.
 � If the value of an attribute at a node is computed from the values of attributes at the chil-

dren of that node in the parse tree then it is called synthesized attribute.

 Objective Question Bank 289

 � If the value of an inherited attribute is computed from the values of attributes at the sib-
lings or parent of that node.

 � The parse tree that shows attribute values at each node is called annotated or decorated
parse tree

 � Parse tree is even called concrete syntax tree
 � An SDT that uses only synthesized attributes is called S-attributed definition.
 � An L-attributed definition allows both types. But if an inherited attribute is present there

is a restriction. The restriction is that each inherited attribute is restricted to inherit either
from parent or from left sibling only.

 � Every S-attributed is even L-attributed.
 � We can convert an L-attributed definition to equivalent S-attributed definition.
 � S-attributed definition is also called postfix SDT.

Fill in the Blanks
 1. Consider the SDT given below.

 S → aSb { S.count = S.count + 2;}
 | bSa { S.count = S.count + 2;}
 | ε { S.count = 0;}
 This SDT checks_____________.

 2. The other name of S-attributed defi nition is _____________.
 3. In SDT, A → BC {C.s = B.s;} attribute .”s” is _____________.
 4. Every L-attributed is S-attributed (Yes/No)_____________.
 5. An attribute that is evaluated in terms of attributes of its parent is called_____________.
 6. In_____________SDD, semantic actions are placed anywhere on the right hand side.
 7. Every S-attributed is L-attributed (Yes/No)_____________.
 8. We cannot convert an L-attribute defi nition to S-attributed defi nition. (Yes/No)

 9. In SDT, A → BC {A.i = B.i;} attribute “i” is _____________.
10. The interdependencies among attributes are shown by the _____________ graph.

Objective Question Bank
 1. Consider the SDT given below.

E → E + T | T { count = count + 5; print (count);}
T → T * F | F { count = count * 5;}
F → i { count = 10;}

 What is the count after parsing the string “i + i * i”?
 (a) 110 (b) 55 (c) 550 (d) 11

 2. The SDT, A → BC {C.s = B.s;} is ______________.
 (a) S-attributed (b) L-attributed (c) both (d) none

290 Syntax-Directed Translation

 3. The SDT, A → BC {A.i = B.i;} is ______________.
 (a) S-attributed (b) L-attributed (c) both (d) none
 4. The SDT, A → BC {B.s = C.s;} is ______________.
 (a) S-attributed (b) L-attributed (c) both (d) none
 5. An S-attributed defi nition can be evaluated ______________.
 (a) Top down (b) bottom up (c) both (d) none

Key for Fill in the Blanks
 1. total number of a’s and b’s 6. L-attributed defi nition
 2. postfi x SDT 7. Y
 3. Inherited 8. N
 4. N 9. synthesized
 5. inherited 10. dependency

Key for Objective Question Bank
 1. b 2. b 3. c 4. d 5. c

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 291

C H A P T E R 7

CHAPTER OUTLINE

 7.1 Introduction

 7.2 Type Systems

 7.3 Type Expressions

 7.4 Design of Simple Type Checker

 7.5 Type Checking of Expressions

 7.6 Type Checking of Statements

 7.7 Type Checking of Functions

 7.8 Equivalence of Type Expressions

 7.9 Type Conversion

 7.10 Overloading of Functions and Operators

 7.11 Polymorphic Functions

A semantic analyzer checks the semantics of a program, that is, whether the language constructs are
meaningful or not. A semantic analyzer mainly performs static type checking.

Semantic Analysis

A compiler must ensure that the source program follows the syntax and semantic conven-
tions of the source language. Once the syntax is verifi ed, the next task to be performed by a
compiler is to check the semantics of the language. A semantic analyzer shown in Figure 7.1
mainly verifi es whether the language constructs are meaningful (semantics) or not. This is
called even static type checking, which ensures that certain kinds of programming errors
will be detected and reported.

7.1 Introduction
Parsing cannot detect some errors. Some errors are captured during compile time called
static checking (e.g., type compatibility). Languages like C, C++, C#, Java, and Haskell uses
static checking. Static checking is even called early binding. During static checking program-
ming errors are caught early. This causes program execution to be effi cient. Static checking
not only increases the effi ciency and reliability of the compiled program, but also makes
execution faster.

292 Semantic Analysis

Type checking is not only limited to compile time, it is even performed at execution
time. This is done with the help of information gathered by a compiler; the information is
gathered during compilation of the source program.

Errors that are captured during run time are called dynamic checks (e.g., array bounds
check or null pointers dereference check). Languages like Perl, python, and Lisp use dynamic
checking. Dynamic checking is also called late binding. Dynamic checking allows some con-
structs that are rejected during static checking. A sound type system eliminates run-time
type checking for type errors. A programming language is strongly-typed, if every program
its compiler accepts will execute without type errors. In practice, some of the type checking
operations is done at run-time (so, most of the programming languages are not strongly
typed).

For example, int x[100]; … x[i] most of the compilers cannot guarantee that i will be
between 0 and 99

A semantic analyzer mainly performs static checking. Static checks can be any one of the
following type of checks:

Uniqueness checks: This ensures uniqueness of variables/objects in situations where it is
required. For example, in most of the languages no identifi er can be used for two different
defi nitions in the same scope.

Flow of control checks: Statements that cause fl ow of control to leave a construct should
have a place to transfer fl ow of control. If this place is missing, it is confusion. For example,
in C language, “break” causes fl ow of control to exit from the innermost loop. If it is used
without a loop, it confuses where to leave the fl ow of control.

Type checks: A compiler should report an error if an operator is applied to incompatible
operands. For example, for binary addition, operands are array and a function is incompat-
ible. In a function, the number of arguments should match with the number of formals and
the corresponding types.

Name-related checks: Sometimes, the same name must appear two or more times. For
example, in ADA, a loop or a block may have a name that appears at the beginning and
end of the construct. The compiler must check whether the same name is used at both
places.

Source
Program

Lexical
Analyzer

Syntax
Analyzer

Symbol
Table

Semantic
Analyzer

Correct
Program

Syntax
 Tree

Figure 7.1 Role of a Semantic Analyzer in Compilation

 Type Expressions 293

What does semantic analysis do? It performs checks of many kinds which may include

 � All identifiers are declared before being used.
 � Type compatibility.
 � Inheritance relationships.
 � Classes defined only once.
 � Methods in a class defined only once.
 � Reserved words are not misused.

In this chapter we focus on type checking. The above examples indicate that most of the
other static checks are routine and can be implemented using the techniques of SDT dis-
cussed in the previous chapter. Some of them can be combined with other activities. For
example, for uniqueness check, while entering the identifi er into the symbol table, we can
ensure that it is entered only once. Now let us see how to design a type checker.

A type checker verifi es that the type of a construct matches with that expected by its con-
text. For example, in C language, the type checker must verify that the operator “%” should
have two integer operands dereferencing is applied through a pointer, indexing is done only
on an array, a user-defi ned function is applied with correct number and type of arguments.
The goal of a type checker is to ensure that operations are applied to the correct type of oper-
ands. Type information collected by a type checker is used later by code generator.

7.2 Type Systems
Consider the assembly language program fragment. Add R1, R2, R3. What are the types of
operands R1, R2, R3? Based on the possible type of operands and its values, operations are
legal. It doesn’t make sense to add a character and a function pointer in C language. It does
make sense to add two fl oat or int values. Irrespective of the type, the assembly language
implementation remains the same for add. A language’s type system specifi es which opera-
tions are valid for which types. A type system is a collection of rules for assigning types to
the various parts of a program. A type checker implements a type system. Types are repre-
sented by type expressions. Type system has a set of rules defi ned that take care of extracting
the data types of each variables and check for the compatibility during the operation.

7.3 Type Expressions
The type expressions are used to represent the type of a programming language construct.
Type expression can be a basic type or formed by recursively applying an operator called a
type constructor to other type expressions. The basic types and constructors depend on the
source language to be verifi ed. Let us defi ne type expression as follows:

 � A basic type is a type expression
• Boolean, char, integer, real, void, type_error

 � A type constructor applied to type expressions is a type expression
• Array: array(I, T)

294 Semantic Analysis

Array(I,T) is a type expression denoting the type of an array with elements of type
T and index set I, where T is a type expression. Index set I often represents a range of
integers. For example, the Pascal declaration

var C: array[1..20] of integer;

associates the type expression array(1..20, integer) with C.
• Product: T1 × T2
• If T1 and T2 are two type expressions, then their Cartesian product T1 × T2 is a type

expression. We assume that × associates to the left.
• Record: record((N1 × T1) × (N2 × T2))

 A record differs from a product. The fields of a record have names. The record
type constructor will be applied to a tuple formed from field types and field names.
For example, the Pascal program fragment

type node = record
 address : integer ;
 data : array [1..15] of char
 end;
var node_table : array [1..10] of node ;

declares the type name “node” representing the type expression

record((address×integer) × (data × array(1..15,char)))

and the variable “node_table” to be an array of records of this type.
• Pointer: pointer(T)

 Pointer(T) is a type expression denoting the type “pointer to an object of type T
where T is a type expression. For example, in Pascal, the declaration

var ptr: *row

declares variable “ptr” to have type pointer(row).
• Function: D R

Mathematically, a function is a mapping from elements of one set called domain to
another set called range. We may treat functions in programming languages as map-
ping a domain type “Dom” to a range type “Rg.”. The type of such a function will be
denoted by the type expression Dom Rg. For example, the built-in function mod, i.e.
modulus of Pascal has type expression int int int.
As another example, the Pascal declaration

function fun(a, b: char) * integer;

says that the domain type of function “fun” is denoted by “char × char” and range
type by “pointer(integer).” The type expression of function “fun” is thus denoted as
follows:

char × char pointer(integer)

 However, there are some languages like Lisp that allow functions to return objects of arbitrary
types. For example, we can defi ne a function “g” of type (integer integer) (integer integer).

type node = record
 address : integer ;
 data : array [1..15] of char
 end;

var node_table : array [1..10] of node ;

 Design of Simple Type Checker 295

 That is, function “g” takes as input a function that maps an integer to an integer and “g”
produces another function of the same type as output.

Example 1: Write type expression for a pointer to array of real, where the array index ranges
from 1 to 100.

Solution: The type expression is pointer(array[1..100, real])

Example 2: Write a type expression for a function whose domains are functions from inte-
gers to character and whose ranges are pointer to integer.

Solution:
Type expression is
Domain type expression is integer character
Range type expression is pointer (integer)
The fi nal type expression is (integer character) (pointer(integer))

7.4 Design of Simple Type Checker
Different type systems are designed for different languages. The type checking can be done
in two ways. The checking done at compile time is called static checking and the checking
done at run time is called dynamic checking. A system is said to be a Sound System if it com-
pletely eliminates the dynamic check. In such systems, if the type checker assigns any type
other than type error for some fragment of code, then there is no need to check for errors
when it is run. Practically this is not always true; for example, if an array X is declared to
hold 100 elements. Usually the index would be from 0 to 99 or from 1 to 100 depending on
the language support. And there is a statement in the program referred to as X[i]; during
compilation this would not guarantee error free at runtime as there is possibility that if the
value of i is 120 at run time then there will be an error. Therefore, it is essential that there is a
need even for the dynamic check to be done.

Let us consider a simple language that has declaration statements followed by state-
ments, where these statements are simple arithmetic statements, conditional statements,
iterative statements, and functional statements. The program block of code can be generated
by defi ning the rules as follows:

Type Declarations

P D “;” E
D D “;” D
 | id “:” T {add_type(id.entry, T.type) }
T char {T.type := char }
T integer {T.type := int }
:….. :…..
T “*” T1 {T.type := pointer(T1.type) }
T array “[”num “]” of T1 {T.type := array(num.value, T1.type) }

296 Semantic Analysis

These rules are defi ned to write the declaration statements followed by expression state-
ments. The semantic rule { add_type(id.entry, T.type) } indicates to associate type in T with
the identifi er and add this type info into the symbol table during parsing. A semantic rule
of the form {T.type := int } associates the type of T to integer. So the above SDT collects type
information and stores in symbol table.

7.5 Type Checking of Expressions
Let us see how to type check expressions. The expressions like 3 mod 5, A[10], *p can be gen-
erated by the following rules. The semantic rules are defi ned as follows to extract the type
information and to check for compatibility.

E → literal {E.type := char}
E num {E.type := int}
E id {E.type := lookup(id.entry)}
E E1 mod E2 {E.type := if E1.type = int and E2.type = int
 then int
 else type_error}
E E1 “[” E2 “]” {E.type := if E1.type = array(s, t) and E2.type = int
 Th en t
 else type_error}
E “*” E1 {E.type := if E1.type = pointer(t)
 then t
 else type_error}

When we write a statement as i mod 10, then while parsing the element i, it uses the
rule as E id and performs the action of getting the data type for the id from the symbol
table using the lookup method. When it parses the lexeme 10, it uses the rule E num
and assigns the type as int. While parsing the complete statement i mod 10, it uses the rule
E E1 mod E2, which checks the data types in both E1 and E2 and if they are the same it
returns int otherwise type_error.

7.6 Type Checking of Statements
The statements are simple of the form “a = b + c” or “a = b.” It can be a combination of
statements followed by another statement or a conditional statement or iterative. To gener-
ate either a simple or a complex group of statements, the rules can be framed as follows: To
validate the statement a special data type void is defi ned, which is assigned to a statement
only when it is valid at expression level, otherwise type_error is assigned to indicate that
it is invalid. If there is an error at expression level, then it is propagated to the statement,
from the statement it is propagated to a set of statements and then to the entire block of
program.

 Equivalence of Type Expressions 297

P → D “;” S
S → id “:=” E {S.type := if lookup(id.entry)= E.type

 then void
 else type_error}

S → S
1
 “;” S

2
 {S.type := if S

1
.type = void and S

2
.type

 = void
 then void
 else type_error}

S → if E then S
1
 {S.type := if E.type = boolean

 then S
1
.type

 else type_error}
S → while E do S

1
 {S.type := if E.type = boolean

 then S
1
.type

 else type_error}

7.7 Type Checking of Functions
The rules for writing a function and for associating type expression with non terminal T are
written as follows:

T → T
1
 “→” T

2

{T.type := T

1
.type → T

2
.type}

E → E
1
 “(” E

2
 “)”

 {E.type := if E
1
.type = s → t and E

2
.type = s

 then t else type_error}

These rules specify that an expression formed by applying E1 to E2, the type of E1 must
be a function of the form s t from the type s of E2 to some range type t, makes the type of
E1(E2) is t.

7.8 Equivalence of Type Expressions
The two expressions are equal if both are of the same basic type; otherwise, it is type_error.
To check for type equivalence of two expressions constructed using basic types, there must
be a well-defi ned procedure to check for the equivalence. Such equivalence between two
type expressions is structural equivalence.

7.8.1 Structural Equivalence
A type expression can be a basic type or the one obtained by applying a constructor to the
basic type. Two type expressions T1 and T2 are said to be structurally equivalent if they are of
the same basic type or obtained by applying same constructor to the same basic type.

P → D “;” S
S → id “:=” E {S.type := if lookup(id.entry)= E.type

 then void
 else type_error}

S → S
1
 “;” S

2
 {S.type := if S

1
.type = void and S

2
.type

 = void
 then void
 else type_error}

S → if E then S
1
 {S.type := if E.type = boolean

 then S
1
.type

 else type_error}
S → while E do S

1
 {S.type := if E.type = boolean

 then S
1
.type

 else type_error}

T → T
1
“→” T

2

{T.type := T
1
.type → T

2
.type}

E → E
1
 “(” E

2
 “)”

 {E.type := if E
1
.type = s → t and E

2
.type = s

 then t else type_error}

298 Semantic Analysis

Example 3:
An integer is structurally equivalent to another integer
Pointer(char) is structurally equivalent to Pointer(char)
Integer is not structurally equivalent to char

A recursive algorithm for testing the structural equivalence is designed, which considers
the basic types and the type constructors for arrays, products, pointers, and functions.

Algorithm: To check structural equivalence of two type expressions.
Input: Expressions s and t
Output: true if equivalent otherwise false.

If s and t are basic types, then return true
else If s = array(s1, s2) and t = array(t1, t2) then
 return true if equal(s1, t1) and equal(s2, t2)
else If s = s1 s2 and t = t1 t2 then
 return true if equal(s1, t1) and equal(s2, t2)
else If s = pointer(s1) and t = pointer(t1) then
 return true if equal(s1, t1)
else If s = s1 s2 and t = t1 t2 then
 return true if equal(s1, t1) and equal(s2, t2)
else return false.

7.8.2 Encoding of Type Expressions
To check equivalence of type expression we can encode type expression using bit rep-
resentation. For instance, we can use four bits to represent different basic data types as
follows:

Basic Type Encoding
boolean 0000
char 0001
integer 0010
real 0011

To represent the constructed types expressions, we can use the corresponding number of
integers. For instance, let us assume that there are arrays, pointers, and functions where
pointer(t) represents as a pointer of type t, freturns(t) represents a function of some argu-
ment that returns an object of type t, and array(t) denotes as array of elements of type t.
These can be represented by using two bits as follows:

Type constructor encoding
pointer 01
array 10
freturns 11

Each of the above constructors is a unary operator. Type expressions formed by apply-
ing these constructors to a basic type have a uniform structure. Each constructor can be

Basic Type Encoding
boolean 0000
char 0001
integer 0010
real 0011

Type constructor encoding
pointer 01
array 10
freturns 11

 Equivalence of Type Expressions 299

expressed by a sequence of bits using a simple encoding scheme. For instance, the possible
constructed type expressions are integer, freturns(integer), pointer(freturns(integer)), array(
pointer(freturns(integer))). If we assume that the maximum number of constructors is three
then we require 6 bits to encode the complete type expression. For the above type expres-
sions, the encoding is as follows:

Type expression encoding
integer 000000 0010
freturns(integer) 000011 0010
pointer(freturns(integer)) 000111 0010
array(pointer(freturns(integer))) 100111 0010

To check for the equivalence, we can compare the bit sequence because two different
type expressions cannot be represented with the same sequence if they are formed with dif-
ferent basic types of type constructors.

Note: Here we considered only three constructed types and four basic types. The bit repre-
sentation can be modifi ed depending on the number of basic types, number of constructors
that may be included, and the maximum number of constructors that can be included.

Merits of structural equivalence

 i. No type names are needed to check the equivalence.
 ii. Gives exact internal representation of types.
Demerits of structural equivalence

 i. Very tedious, as substitution has to be done for every type name.
 ii. While checking structural equivalence, infi nite looping or cycles may be encountered.

7.8.3 Name Equivalence
In some languages, the type expressions are given names. To handle such situations the type
expressions are allowed to be named; hence, even names appear in the type expressions. For
example, in Pascal program fragment

type link = ↑ node;
var next : link;
 last : link;
 a : ↑ node;
 b,c : ↑ node;

the link is declared as a type node. To check whether next, last, a, b, c are identical, we com-
pare for equivalence in terms of the names in the type expression. Name equivalence views
each type name as a distinct type, so two type expressions are name equivalent if and only
of they are identical.

Note: link, next, last, a, b, c are structural equivalent
 a, b, c – name equivalent
 next, last – name equivalent

Type expression encoding
integer 000000 0010
freturns(integer) 000011 0010
pointer(freturns(integer)) 000111 0010
array(pointer(freturns(integer))) 100111 0010

type link = ↑ node;
var next : link;
 last : link;
 a : ↑ node;
 b,c : ↑ node;

300 Semantic Analysis

Merits of Name Equivalence

 i. Easy to implement
 ii. Types with different names are treated differently
 iii. Faster in checking type equivalence since no substitution is done.

Demerits of Name equivalence

 i. Not systematic
 ii. Needs a type name for every type expression.

7.8.4 Type Graph
To check for the type equivalence, type graph can be used. To construct a type graph, a node
is created for every constructed type or basic type that is encountered. For every type name,
a leaf node is created. Two type expressions are said to be equivalent if they are represented
by the same node in the type graph. The following graph shows the equivalence for next,
last, a, b, and c in the above example.

next last a b c

link = pointer pointer

node

pointer

Example 5:
Draw the type graph for the following

 type x = y;
 var a : x;
 b : x;
 c : y;
 d : y;

Solution:

a b

Pointer

Pointer

c d x

y

 Equivalence of Type Expressions 301

A type graph can also have cycles in it. For example, consider the following example in
Pascal.

 type link = ↑ cell;
 type cell = record
 x : int,
 next : link
 end;

Note that type name link is defi ned in terms of a cell and that cell is defi ned in terms of a
link. So the defi nitions are recursive. Recursively defi ned type names can be substituted out
by introducing cycles in type graph as shown in Figure 7.2. If pointer(cell) is substituted for
link, the type expression shown in Figure 7.3 is obtained for a cell. We cannot use structural
equivalence if there are cycles in type expressions.

cell = record

info int next pointer

x

x
x

Figure 7.2 Type Graph with Cycles

cell = record

info int next pointer

x

x
x

cell

Figure 7.3 Type Graph without Cycles

C uses structural equivalence to avoid cycles like in Figure 7.3. In C the declaration for
cell would look like

struct cell {
 int info;
 struct cell * next;
};

type link = ↑ cell;
type cell = record
 x : int,
 next : link
 end;

struct cell {
 int info;
 struct cell * next;
};

302 Semantic Analysis

7.9 Type Conversion
In an expression, if there are two operands of different type, then it may be required to
convert one type to another in order to perform the operation. For example, the expression
“a + b,” if a is of integer and b is real, then to perform the addition a may be converted to real.
The type checker can be designed to do this conversion. The conversion done automatically
by the compiler is implicit conversion and this process is known as coercion. If the compiler
insists the programmer to specify this conversion, then it is said to be explicit. For instance,
all conversions in Ada are said to be explicit. The semantic rules for type conversion are
listed below.

E num {E.type := int}
E num.num {E.type := real}
E id {E.type := lookup(id.entry)}
E E1 op E2 {E.type := if E1.type = int and E2.type = int
 then int
 else if E1.type = int and E2.type = real
 then real
 else if E1.type = real and E2.type = int
 then real
 else if E1.type = real and E2.type = real
 then real
 else type_error}

7.10 Overloading of Functions and Operators
An operator is overloaded if the same operator performs different operations. For example,
in arithmetic expression a + b, the addition operator “+” is overloaded because it performs
different operations, when a and b are of different types like integer, real, complex, and
so on. Another example of operator overloading is overloaded parenthesis in ada, that i,
the expression A(i) has different meanings. It can be the ith element of an array, or a call to
function A with argument I, and so on. Operator overloading is resolved when the unique
defi nition for an overloaded operator is determined. The process of resolving overloading is
called operator identifi cation because it specifi es what operation an operator performs. The
overloading of arithmetic operators can be easily resolved by processing only the operands
of an operator.

Like operator overloading, the function can also be overloaded. In function overload-
ing, the functions have the same name but different numbers and arguments of different
types. In Ada, the operator “*” has the standard meaning that it takes a pair of integers
and returns an integer. The function of “*” can be overloaded by adding the following
declarations:

Function “*”(a,b: integer) return integer.
Function “*”(a,b: complex) return integer.
Function “*”(a,b: complex) return complex.

 Polymorphic Functions 303

By addition of the above declarations, now the operator “*” can take the following possible
types:

 1. It takes a pair of integers and returns an integer
 2. It takes a pair of integers and returns a complex number
 3. It takes a pair of complex numbers and returns a complex number

Function overloading can be resolved by the type checker based on the number and types
of arguments.

The type checking rule for function by assuming that each expression has a unique type
is given as

E → E
1
(E

2
) { E.type : = t

 E
2
.type : = t → u then

 E.type : = u
 else E.type : = type_error
 }

If the syntax-directed defi nition for expression has more than one possible type, then type
checking can be performed with the following semantic rules:

E′ → E {E′.type := E.type}

E → id {E.type := lookup(id.entry)}

E → E
1
(E

2
) {E.type := { u | there exists an s in E

2
.type

 Such that s → u is in E
1
.type }

An overloaded identifi er may have several types saved in the symbol table. The function
lookup() returns this set. The type of expression E1(E2) is u if s is one of the types of E2 and
the function maps s to u.

7.11 Polymorphic Functions
A piece of code is said to be polymorphic if the statements in the body can be executed with
different types. A function that takes the arguments of different types and executes the same
code is a polymorphic function. The type checker designed for a language like Ada that sup-
ports polymorphic functions, the type expressions are extended to include the expressions
that vary with type variables. The same operation performed on different types is called
overloading and are often found in object-oriented programming. For example, let us con-
sider the function that takes two arguments and returns the result.

int add(int, int)
int add(real, real)
real add(real, real)

The type expression for the function add is given as
int × int int
real × real int
real × real real

E → E
1
(E

2
) { E.type : = t

 E
2
.type : = t → u then

 E.type : = u
 else E.type : = type_error
 }

E′ → E {E′.type := E.type}

E → id {E.type := lookup(id.entry)}

E → E
1
(E

2
) {E.type := { u | there exists an s in E

2
.type

 Such that s → u is in E
1
.type }

304 Semantic Analysis

Solved Problems
1. Write type expression for an array of pointer to real, where the array index ranges from

1 to 100.

Solution: The type expression is array[1..100,pointer(real)]

2. Write a type expression for a two-dimensional array of integers (that is, an array of arrays)
whose rows are indexed from 0 to 9 and whose columns are indexed from –10 to 10.

Solution: Type expression is array[0..9, array[-10..10,integer]]

3. Write a type expression for a function whose domains are functions from integers to
pointers to integers and whose ranges are records consisting of an integer and a character.

Solution: Type expression is
 Domain type expression is integer pointer(integer)
 Let range has two fi elds a and b of type integer and character

respectively.
 Range type expression is record((a × integer)(b character))
 The fi nal type expression is (integer pointer(integer)) record

((a integer) (b character))

4. Consider the following program in C and the write the type expression for abc.

typedef struct {
 int a,b;
 } NODE;
 NODE abc[100];

Solution: The type expression for NODE is record((a × integer) × (b × integer))
abc is an array of NODE; hence, its type expression is

 array[0..99, record((a × integer) × (b × integer))]

5. Consider the following declarations.
type cell=record
 info: integer;
 next: pointer(cell)
type link = ↑ cell;
var next = link;
 last = link;
 p = ↑ cell;
 q,r = ↑ cell;

Among the following, which expressions are structurally equivalent?
Which are name equivalent? Justify your answer.
 i. link
 ii. Pointer(cell)

 Summary 305

 iii. Pointer(link)
 iv. Pointer (record ((info × integer) × (next × pointer (cell))).

Solution: Let A = link
 B = pointer (cell)
 C = pointer (link)
 D = Pointer (record ((info × integer) × (next × pointer(cell))).

To get structural equivalence we need to substitute each type name by its type expression.
We know that, link is a type name. If we substitute pointer (cell) for each appearance of

link we get,
A = pointer (cell)
B = pointer (cell)
C = pointer (pointer (cell))
D = Pointer (record ((info × integer) × (next × pointer (cell))).
We know that, cell is also type name given by
type cell=record
 info: integer;
 next: pointer(cell)
Substituting type expression for cell in A and B, we get
A = pointer (record ((info × integer) × (next × pointer (cell)))
B = pointer (record ((info × integer) × (next × pointer (cell)))
C = pointer(pointer(cell))
D = Pointer (record ((info × integer) × (next × pointer (cell))).
We have not substituted for the type expression of cell in “C” as it is anyway different

from A, B, and D. That is, even if we substitute in C, the type expression will not be the same
for A, B, C, and D.

We can say that A, B, and D are structurally equivalent.
For name equivalence, we will not do any substitutions. Rather we look at type expres-

sions directly. If they are the same then we say they are name equivalent.
None of A, B, C, D are name equivalent.

Summary
 � Static type checking is done at compile time.
 � Dynamic checking is done at run time.
 � Semantic rules support the type checker for verifying the type of variables.
 � A system is said to be a Sound System if it completely eliminates the dynamic check.
 � type_error is a special type used for expressing that the type expression is invalid.
 � Variables that are name equivalent are said to be structural equivalent.
 � Structural equivalent elements need not be name equivalent.

306 Semantic Analysis

Fill in the Blanks
1. ________ is type expression for the char a[10].
2. ________ avoids dynamic type checking.
3. ________ is the type expression used to express type for statements.
4. Two variables that are name equivalent are also ________.
5. ________ is a special type used for expressing invalid type.
6. The conversion done automatically by the compiler implicitly is known as ________.
7. Error checking performed at compile time is ________.
8. Error checking performed at run time is ________.
9. Static checking is done in languages ________.

10. Late binding is also called ________.

Objective Question Bank
1. Give type expression for “x” in var x : array[2..20] of tables

(a) array[0..18, table] (b) array[2..20, table]
(c) array[table, 0..18] (d) array[table, 2..20]

2. Which of the following is an example of semantic checking?
(a) E E1 + E2 {E.val := E1.val + E2.val }
(b) E E1 + E2 {E.type := if E1.type = int and E2.type = int
 then int
 else type_error}
(c) Both
(d) None

3. Which of the following semantic rule is valid for type checker of E E + E ?
(a) {E.type := if E1.type = int && E2.type = int then int else type_error}
(b) {E.type := if E1.type = int || E2.type = int then int else type_error}
(c) {E.type := if E1.type = int &! E2.type = int then int else type_error}
(d) None

4. ________ are constructed data types.
(a) arrays (b) structures (c) pointer (d) all

5. While performing type checking ________ special basic types are needed.
(a) 1 (b) 2 (c) 3 (d) 4

6. The semantic way of expressing type of a language construct is called ________.
(a) semantic expression (b) type expression
(c) type system (d) all

 Exercises 307

 7. The constructed data types are build using ________ data types.
 (a) Enumerated (b) Boolean
 (c) Basic (d) Builtin

 8. Semantic errors can be detected ________.
 (a) only at compile time (b) only at run time
 (c) both at compile time and at run time (d) none

 9. Type checking done by the compiler is called ________.
 (a) static checking (b) dynamic checking
 (c) semantic checking (d) none

10. Two type expressions are ________ if two expressions are either the same basic type or
are formed by applying the same constructor to structurally equivalent.

 (a) name equivalent (b) structural equivalent
 (c) valid (d) invalid

Exercises
1. Which of the following type expressions are equivalent?
 e1 = integer e1
 e2 = integer (integer e2)
 e3 = integer (integer e1)

2. Among the following expressions, which expressions are structurally equivalent?
Which are name equivalent?

 i. node.
 ii. pointer(n)
 iii. pointer(node)
 iv. pointer(record(info × integer) × (next × pointer(n)))

3. Express, using type variables, the type of the following functions.
 (a) The function ref that takes as argument an object of any type and returns a

pointer to that object.
 (b) A function that takes as arguments an array indexed by integer, with elements of

any type, and returns an array whose elements are the objects pointed to by the
elements of the given array.

4. Compute the type expressions for the following program fragments.
 (a) c: char; i : integer; c mod i mod 3
 (b) p: ↑ integer; a : array[10] of integer; a[p ↑]
 (c) f : integer boolean;
 i : integer; j : integer; k : integer;
 k : = i
 i : = j mod i;
 j : = k

308 Semantic Analysis

Key for Fill in the Blanks
1. array[0..9,char] 6. coercions
2. sound system 7. static checking
3. void 8. dynamic checking
4. structural equivalent 9. C,C++
5. type_error 10. dynamic checking

Key for Objective Question Bank
 1. b 2. b 3. a 4. d 5. d 6. b 7. c 8. c 9. a 10. b

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 309

C H A P T E R 8

CHAPTER OUTLINE

 8.1 Introduction

 8.2 Intermediate Languages

 8.3 Types of Three Address Statements

 8.4 Representation of Three Address Code

 8.5 Syntax-Directed Translation into Three Address Code

Intermediate code generator makes target code generation easier. It takes the hierarchical represen-
tation of the source program as parse tree and prepares linear representation that is simple and easy
to analyze.

8.1 Introduction
The intermediate code is useful representation when compilers are designed as two pass sys-
tem, i.e. as front end and back end. The source program is made source language independent
by representing it in intermediate form, so that the back end is fi ltered from source language
dependence. The intermediate code can be generated by modifying the syntax-directed trans-
lation rules to represent the program in intermediate form. This phase of intermediate code
generation comes after semantic analysis and before code optimization as shown in Figure 8.1.

Benefi ts of intermediate code

 � Intermediate code makes target code generation easier
 � It helps in retargeting, that is, creating more and more compilers for the same source

language but for different machines.
 � As intermediate code is machine independent, it helps in machine-independent code

optimization.

Intermediate Code
Generation

Figure 8.1 Role of Intermediate Code Generator

Parser Semantic
checker

Intermediate
code generator

Code
optimizer

Intermediate

code

310 Intermediate Code Generation

8.2 Intermediate Languages
 Intermediate code can be represented in the following four ways.

1. Syntax trees
2. Directed acyclic graph(DAG)
3. Postfi x notation
4. Three address code

8.2.1 Syntax Trees
A syntax tree is a graphical representation of the source program. Here the node represents
an operator and children of the node represent operands. It is a hierarchical structure that
can be constructed by syntax rules. The target code can be generated by traversing the tree in
post order form. For instance, consider an assignment statement a = b* − (c − d) + b* − (c − d)
when represented using the syntax tree it appears as follows shown in Figure 8.2.

 The rules for constructing the syntax tree for assignment statements are produced by
the syntax-directed defi nition as shown in Figure 8.3

The tree for the statement a = b* − (c − d) + b* − (c − d) is constructed by creating the
nodes in the following order.

p1 = mkleaf(id, c)
p2 = mkleaf(id, d)
p3 = mknode(‘−’, p1, p2)
p4 = mknode(‘U’, p3, NULL)
p5 = mkleaf(id, b)

Figure 8.2 Syntax tree for a = b* − (c − d) + b* − (c − d)

=

a +

* *

b bUnminus Unminus

– –

c d c d

 Intermediate Languages 311

p6 = mknode(‘*’, p5, p4)
p7 = mkleaf(id, c)
p8 = mkleaf(id, d)
p9 = mknode(‘−’, p7, p8)
p10 = mknode(‘U’, p9, NULL)
p11 = mkleaf(id, b)
p12 = mknode(‘*’, p11, p10)
p13 = mknode(‘+’, p6, p12)
p14 = mkleaf(id, a)
p15 = mknode(‘=’, p14, p13)

The tree that is constructed using the above procedures is shown in Figure 8.4.

Figure 8.3 SDT for Creating the Syntax tree

 Production Semantic Rule
 S → id := E S.nptr := mknode(‘assign’, mkleaf(id, id.place), E.nptr)
 E → E1 + E2 E.nptr := mknode(‘+’, E1.nptr ,E2.nptr)
 E → E1 * E2 E.nptr := mknode(‘* ’, E1.nptr ,E2.nptr)
 E → − E1 E.nptr := mkunode(‘uminus’, E1.nptr)
 E → (E1) E.nptr := E1.nptr
 E → id E.nptr := mkleaf(id, id.place)

 Figure 8.4 Tree Construction for a = b* − (c − d) + b* − (c − d)

id a

id b

d

id b

id c id did c id

=

+

*

U

––

*

U

P15

P14 P13

P6

P5 P4 P11 P10

P12

P3

P1 P2 P7 P8

P9

312 Intermediate Code Generation

8.2.2 Directed Acyclic Graph (DAG)
The tree that shows the same information with identifi ed common sub-expression is called
Directed Acyclic Graph (DAG). On examining the above example, it is observed that there
are some nodes that are unnecessarily created. To avoid extra nodes these functions can be
modifi ed to check the existence of similar node before creating it. If a node exists then the
pointer to it is returned instead of creating a new node. This creates a DAG, which reduces
the space and time requirement. We can use the same SDT (Figure 8.3) to create a DAG with-
out any modifi cation but mknode() is redefi ned as above. The list of nodes created in DAG
is as follows:

p1 = mkleaf(id, c)
p2 = mkleaf(id, d)
p3 = mknode(‘−’, p1, p2)
p4 = mknode(‘U’, p3, NULL)
p5 = mkleaf(id, b)
p6 = mknode(‘*’, p5, p4)
p7 = mkleaf(id, c) = p1
p8 = mkleaf(id, d) = p2
p9 = mknode(‘−’, p1, p2) = p3
p10 = mknode(‘U’, p3, NULL) = p4
p11 = mkleaf(id, b) = p5
p12 = mknode(‘*’, p5, p4) = p6
p13 = mknode(‘+’, p6, p6)
p14 = mkleaf(id, a)
p15 = mknode(‘=’, p14, p13)

The Figure 8.5 shows the constructed DAG for the given expression.
In this tree the number of nodes is reduced and also helps in identifying redundant sub

expression. All the nodes in the syntax tree can be visited by following the pointers start-
ing from the root and the instructions can be generated by traversing the tree in post order
form.

8.2.3 Postfi x Notation
Postfi x notation is a linear representation of a syntax tree. This can be written by travers-
ing the tree in the post order form. The edges in a syntax tree do not appear explicitly
in postfi x notation; only the nodes are listed. The order is followed by listing the parent
node immediately after listing its left sub tree and its right sub tree. In postfi x notation,
the operators are placed after the operands. The postfi x notation for the statement is as
follows:

a = b* − (c − d) + b* − (c − d) is a b c d − U * b c d − U * + =

 Intermediate Languages 313

8.2.4 Three Address Code
Three address code is a linear representation of a syntax tree or a DAG in which explicit names
correspond to the interior nodes of the graph. Three address code is a sequence of statements
of the form A = B OP C where A, B and C are the names of variables, constants or the tempo-
rary variables generated by the compiler. OP is any arithmetic operation or logical operation
applied on the operands B and C. The name refl ects that there are at most three variables where
two are operands and one is for the result. In three address statement, only one operator is
permitted; if the expression is large, then break it into a sequence of sub expressions using the
BODMAS rules of arithmetic and store the intermediate results in newly created temporary
variables. For example, consider the expression a + b * c; this expression is expressed as follows:

T1 = b * c
T2 = a + T1

Here T1 and T2 are compiler-generated temporary names. This simple representation of
a complex expression in three address code makes the task of optimizer and code generator

Figure 8.5 DAG Construction for a = b* - (c - d) + b* - (c - d)

id a

id b

did c id

=

+

*

U

–

314 Intermediate Code Generation

simple. It is also easy to rearrange the sequence for effi cient code generation. Three address
code for the statement a = b* − (c − d) + b* − (c − d) is as follows:

T1 = c − d
T2 = −T1
T3 = b * T2
T4 = c − d
T5 = −T4
T6 = b * T5
T7 = T3 + T6
 a = T7

The code can also be written for DAG as follows:

T1 = c − d
T2 = −T1
T3 = b * T2
T4 = T3 + T3
 a = T4

Example 1: Consider the assignment a: = b* − c + b* − c. Draw the syntax tree and the DAG.

Solution: The tree and DAG for the expression a: =b* – c + b* – c is shown in Figure 8.6.

Syntax Tree DAG

assign

uminus uminus

uminus

a

b

cc c

b

b

+

∗ ∗ ∗

assign

a
+

Figure 8.6 Syntax tree and DAG for a = b * – c + b * – c

8.3 Types of Three Address Statements
For expressing the different programming constructs, the three address statements can be
written in different standard formats and these formats are used based on the expression.
Some of them are as follows:

 Representation of Three Address Code 315

 � Assignment statements with binary operator. They are of the form A := B op C where op is a
binary arithmetic or logical operation.

 � Assignment statements with unary operator. They are of the form A: = op B where op is a
unary operation like unary plus, unary minus, shift, etc.

 � Copy statements. They are of the form A: = B where the value of B is assigned to variable A.
 � Unconditional Jumps such as goto L: The label L with three address statement is the next

statement number to be executed.
 � Conditional Jumps such as if X relop Y goto L. If the condition is satisfied, then this instruc-

tion applies a relational operator (<=,>=,<,>) to X and Y and executes the statement with
label L else the statement following if X relop Y goto L is executed.

 � Functional calls: The functional calls are written as a sequence of param A, call fun,n, and
return B statements, where A indicates one of the input argument in n arguments to be
passed to the function fun that returns B. The return statement is optional. For example,
if the statement is

 � B fun(A1, A2, A3, An), then three address statements for it are as follows:

param A1
param A2
param A3
 .
 .
param An
call fun, n
return B

 � Indexed assignments The statements of the form A: = B[i] and A [i]: = B are indexed
assignments.

 � In the A: = B[i] statement, A is set to the value in the location i memory units beyond
location B.

 � A[i]:=B sets the contents of the location i units beyond A to the value of B. In both these
instructions, A, B, and i refer to data objects.

 � Address assignments Statement of the form A:= &B, which sets A to the location B.
 � Pointer assignment Statements of the form A:= *B and *A: = B are included. For instance,

 � A:= *B sets the value of A to the value pointed to by B.
 � *A:=B changes the location of the value in A to the address pointed by B.

For any intermediate code generator, the choice of allowable operator is an important
issue as this will simplify the optimization and code generation task.

8.4 Representation of Three Address Code
Three address codes can be represented in special structures known as quadruple, triple and
indirect triple.

316 Intermediate Code Generation

8.4.1 Quadruple
A quadruple is a record structure with four fi elds. The fi rst fi eld is to store the operator, the
second and third fi elds are for the operands used in the operation, and the fourth fi eld is for
the result. For example, the three address statement A=B op C is written by placing op in the
fi rst fi eld, that is, operator, B, and C are placed in the second and third fi elds, that is, operand
1 and operand 2 respectively, and A in fourth fi eld, that is, result. If the operator is unary,
then the third fi eld is not used. In case of conditional and unconditional jump statements,
the target label is placed in the result fi eld. The quadruple for the statement a = b* − (c − d)
+ b* − (c − d) is shown below.

We use U for unary minus and – as it is for binary minus.

Operator Opr1 Opr2 Result

− c d T1

U T1 T2

* b T2 T3

− c d T4

U T4 T5

* b T5 T6

+ T3 T6 T7

= T7 A

8.4.2 Triple
In quadruples there is an overhead for managing the temporary variables created. This
problem can be reduced by referring the position of the statement that computes the value
of the sub expression. In triples there are only three fi elds, one for the operation and the
remaining two for operands that may have a variable or a constant or the statement posi-
tion number that computes the value of the operand. Since there are only three fi elds, it is
called “triples.”

Parenthesized numbers represent the position number of the triple structure, while
symbol-table pointers are represented by the names themselves. Since the operands rep-
resent two different entries, the fi elds can be encoded in a proper manner. For example,
in case of copy statement a:= t1, where t1 is computed at some position (i) then the triplet
entries are “=” is placed in the fi rst fi eld, a in the second fi eld and (i) in the third fi eld.
For a ternary operation like a[i]:=b, it requires two entries in the structure. The fi rst entry
fi nds the position of i with reference to a and then the actual copy statement as given
below.

Statement No Operator Arg 1 Arg 2

(0) []= a i

(1) = (0) b

 Representation of Three Address Code 317

The triple for the statement a = b* − (c − d) + b* − (c − d) is

Statement No Operator Arg 1 Arg 2

(0) − c d

(1) U (0)

(2) * b (1)

(3) − c d

(4) U (3)

(5) * b (4)

(6) + (2) (5)

(7) = a (6)

8.4.3 Indirect Triples
Indirect triples is another implementation of three address code where the listing of pointer
to triples is given separately as shown in the following example:

Statement No Operator Arg 1 Arg 2

(20) − c d

(21) U (20)

(22) * b (21)

(23) − c d

(24) U (23)

(25) * b (24)

(26) + (22) (25)

(27) = a (26)

Sequence Statement No

(0) (20)
(1) (21)
(2) (22)
(3) (23)
(4) (24)
(5) (25)
(6) (26)
(7) (27)

318 Intermediate Code Generation

8.4.4 Comparison of Representations
The main difference between the three forms of structures is that in case of quadruples,
temporary variables are created, which need entries in the symbol table. This leads to waste
of space. This problem is eliminated in triples and indirect triples. The second difference
is regarding the extent of indirection that is present in the representation. For instance,
when the target code is produced, each variable or compiler generated temporary varia-
ble is assigned some run-time memory location. There would be an entry regarding these
addresses in the symbol table. In case of quadruples, the three address statement that uses
these temporary variables can be accessed immediately from the symbol table. The advan-
tage of these entries in the symbol table is when the optimizer rearranges the statements for
generating effi cient code, it requires no changes for the variables. In case of triples moving
a single statement that defi nes a temporary value, many changes have to be made in all the
statements that refer to this computation either in arg1 or in arg2. Hence, it is diffi cult for the
optimizer to optimize the code.

In case of indirect triples, this problem does not exist. A statement can be moved by
reordering the statement list. Since pointers to temporary values refer to the statements in
the actual list of statements, which are not modifi ed, the reference pointers can be reordered
easily. The indirect triples are almost similar to quadruples in terms of space and utility.
However, indirect triples can save some space compared with quadruples if the same tem-
porary value is used more than once. This is because two or more entries in the statement
array can point to the same line in the actual triple structure.

For example, lines (20), (21), and (22) could be combined with (23), (24), and (25).

8.5 Syntax-Directed Translation into Three Address Code
Syntax-directed translation rules can be defi ned to generate the three address code while
parsing the input. It may be required to generate temporary names for interior nodes which
are assigned to nonterminal E on the left side of the production E→E1 op E2. While process-
ing, the variable names and code generated so far are tracked till they reach the starting
nonterminal. For this purpose, we associate two attributes place and code associated with
each nonterminal.

 � E.place, the name that will hold the value of E.
 � E.code, the sequence of three-address statements evaluating E.

8.5.1 Assignment Statement
To generate intermediate code for assignment statement, fi rst searching is applied to get
the information of the identifi er from the symbol table. These identifi ers are simple or
multidimensional array or a constant value that is stored in a literal table. After search-
ing, the three address code is generated for the program statement. Function lookup
will search the symbol table for the lexeme and store it in id.place. Function newtemp is
defi ned to return a new temporary variable when invoked and gen function generates the

 Syntax-Directed Translation into Three Address Code 319

three address statement in one of the above standard forms depending on the arguments
passed to it.

Let us consider the example arithmetic statement a = − (b − c). When it is represented as
three address code, the statements are

T1 = b − c
T2 = − T1
 a = T2

Let us consider the order in which the statements are generated. First the statement
relating to c-d is generated by using a new temporary variable. While parsing the possible
rules used for this expression are

S → id = E
E → − E1
E → E1 − E2
E → id

 S

 E

 E E

 E id

 id id

 =

 –

 –

S.code = “ T1 = b − c ; T2 = − T1 ; a = T2 ”

E.code = “ T1 = b − c

E.code = “ T1 = b − c ”

E.code = “ ”
E.code = “ ”

; T2 = − T1 ”

E.place = T2

E.place = T1

E.place = c

id. place = b id. place = c

id. place = a

E. place = b

 3

 2

 1

Figure 8.7 Syntax tree for a = −(b − c)

Consider the syntax tree for the expression a = −(b − c) shown in Figure 8.7.

1. Using the production E → id, that is, E → b and E → c. Check for entries b and c in
the symbol table; if these entries are not present an error message is displayed. If these
entries are present then E1.place = b and E2.place = c (pointer to symbol table for the entry
b and c).

2. At node 1 in the fi gure using the production E → E1 − E2 it creates a temporary variable T1
using newtemp(). Three address code E.place = E1.place + E2.place is generated.

3. At node 2 in the fi gure using the production E → − E1, it creates a temporary variable T2
using newtemp(). Three address code E.place = − E1.place is generated.

320 Intermediate Code Generation

4. At node 3 using the production S → id = E searches for a in the symbol table, assuming it
the code produced is a = E.place

The syntax-directed translation for arithmetic statements can thus be written as follows:

S → id = E { id.place = lookup(id.name);
 if id.place ≠ null then S.code = E.code || gen(id.place “:=” E.place)
 else S.code=type_error}
E → − E1 {E.place = newtemp();
 E.code = E1.code || gen(E.place “:=” “–” E1.place)}
E → E1 + E2 {E.place = newtemp();
 E.code = E1.code || E2.code || gen(E.place “:=” E1.place “+” E2.place)}
E → E1 – E2 {E.place = newtemp();
 E.code = E1.code || E2.code || gen(E.place “:=” E1.place “−” E2.place)}
E → E1 * E2 {E.place = newtemp();
 E.code = E1.code || E2.code || gen(E.place “:=” E1.place “*” E2.place)}
E → E1/E2 {E.place = newtemp();
 E.code = E1.code || E2.code || gen(E.place “:=” E1.place “/” E2.place)}
E → id {E.place = lookup(id.name), E.code = “ ”}

8.5.2 Addressing Array Elements
Elements of array are stored in consecutive memory location. If the array is of size n and the
size of each element is s, then the i th element of the array can be accessed at the base address
+ (i – low) * s when the array is single dimension.

Here base is the base address of the array or the address of the fi rst element of array and
low is the lower bound of the array or the index of the fi rst element of the array.

Example 2: Let A[5] be an array of 5 elements. Let the size of each element be 2, that is, s = 2
and the array is stored from memory location 100, that is, base address = 100.

A[1]

A[2]

A[3]

A[4]

A[5]

To refer to the third element of the array, the address is calculated as 100 + (3 − 1) * 2 = 104.
In case of the two-dimensional array, the expression is written as i * s + base – low * s

where the fi rst sub expression is (i * s) and second sub expression is (base − low * s). In the
second expression, all the components are known before compilation; hence, they can be
pre-computed and stored. This reduces the time taken to generate the address of the i th ele-
ment. In case of multi-dimension arrays like matrix, elements are either stored as row major
or column major order.

 Syntax-Directed Translation into Three Address Code 321

Example 3: Consider Array A[3,3] with elements stored in row major order is shown below
in Figure 8.8.

A[1,1]

A[1,2]

A[1,3]

A[2,1]

A[2,2]

A[2,3]

A[3,1]

A[3,2]

A[3,3]

Figure 8.8 Array A[3,3]

The address of element A[i,j] in row major order is computed with the expression
base+((i − low_i)* n2 + j − low_j) * s, where base is the starting address of the array, low_i
is the lower bound of i, low_j is the lower bound of j, n2 is the number of columns, and s is
the size of each element.

This expression can be written as ((i * n2) + j) * s + (base − ((low_i * n2) + low_j) * s
The second part of the expression can be pre-computed by knowing the value of base. low_i,
low_j, and s. This helps in faster generation of address of A[i,j]. The generalized rules may
be as follows:

S → A = E
E → E + E
E → E * E
E → A
A → Alist]
A → id
Alist → Alist, E | id [E

A can be a simple name (has only one base address and no offset) or an indexed name (has
base address and object) assignment to location.

S → A = E { If A.offset = null then gen(A.place ‘=’ E.place
 else
 gen(A.place ‘[‘ A.offset’]’’=’E.place)}

E → E1 + E2 {E.place = newtemp();
 E.code =E1.code || E2.code || gen(E.place “:=” E1.place“+”E2.place)}

322 Intermediate Code Generation

E → E1 + E2 {E.place = newtemp();
 E.code= E1.code || E2.code || gen(E.place “:=” E1.place “*”E2.place)}
E → A { If A.offset = null then E.place = A.place
 else begin
 E.place=newtemp()
 gen(E.place ‘=’A.place ‘[‘ A.offset’]’)
 end}
A → Alist { A.place =newtemp()
 A.offset =newtemp()
 gen(A.place ‘=’ c(Alist.array)
 gen(A.offset ‘=’ Alist.place ‘*’ width(Alist.array))}
A → id { A.place =id.place
 A.offset =null}
Alist → Alist1, E { t=newtemp()
 m= Alist1.dim +1
 gen(t ‘=’ Alist.place ‘*’ lmt(Alist.array,m))
 gen(t ‘=’ t ‘+’ E.place)
 Alist.array=Alist1.array
 Alist.place = t
 Alist.ndim=m}
Alist → id [E { Alist.array =id.place
 Alist.place = E.place
 Alist.ndim = 1}

If A A.offset and A.value are the two attributes associated with A as L-values. If A is an
array, A.offset is a temporary variable to store the fi rst part of the expression and A.value
stores the second part of the expression. If A is a simple variable, then A.value points to the
symbol table and A.offset is set to null. Here we defi ne other functions like lmt() for maxi-
mum number of elements present in the jth dimension, width() for the size of the array, m to
denote the dimension of the array, and c for the second component of the expression.

8.5.3 Logical Expression
An expression that contains operators like +, –, *, / are simple arithmetic expressions,
whereas the expression that contains relational operators like <, >, ≥, ≤, or , and, not, etc.,
are logical expressions. The logical expressions are mainly used for a set of statements that
are to be executed based on the condition that is satisfi ed, that is, to control the fl ow of path.
The use of logical expression always results in either true or false, which is considered 0/1.
0 indicates false and 1 or a positive number indicates true. The rules for writing the logical
expressions are as follows:

E → E1 or E2
E → E1 and E2
E → not E1
E → id1 relop id2
E → (E1)

 Syntax-Directed Translation into Three Address Code 323

E → true
E → false

To convert the expression with logical operator requires two things to be added after the
evaluation of the expression to true or false.

1. Where the control should go when the condition is true and
2. Where to go when the condition is false.

This is done by fi rst evaluating the expression and then adding the “if” statement that
checks the result and sets the value to 0 or 1. While generating three address statement, we
use variable next that keeps track of current statement number that is used to generate the
next required statement number for true or false condition. The translation rules to convert
to three address code are as follows:

E → E1 or E2 {E.value = newtemp();
 gen(E.value “=” E1.value “or” E2.value)}
E → E1 and E2 {E.value = newtemp();
 gen(E.value “=” E1.value “and” E2.value)}
E → not E1 {E.value = newtemp();
 gen(E.value “=” “not” E1.value)}
E → (E1) {E.value = E1.value}
E → id1 relop id2 {E.value = newtemp();
 gen(“if” id1.value relop.op id2.value “goto” nextstat + 3)
 gen(E.value “=” “0”)
 gen(“goto” nextstat + 2)
 gen(E.value “=” “1”)}
E → true {E.value = newtemp();
 gen(E.value “=” “1”)}
E → false {E.value = newtemp();
 gen(E.value “=” “0”)}

Example 4: Write three address statement for the x or y and not z

Solution: Three address code for the above expression is

t1 = not z
t2 = y and t1
t3 = x or t2

Example 5: Write three address statement for the if x < y then 1 else 0.

Solution: The address code for the above expression is

10. if x < y go to 13
11. t1 = 0
12. go to 14
13. t1 = 1
14.

324 Intermediate Code Generation

8.5.4 Control Statements
Flow of control statements can be shown pictorially as in the Figures 8.9 and 8.10 below.

Figure 8.10 Control low for while statement

Code for while test

Conditional jump

Code for body of while

Unconditional jump

true

false

Figure 8.9 Control low for if-then-else statement

Code for true case

Code for If statement

Conditional jump

Unconditional jump

Code for false case

false

true

 Syntax-Directed Translation into Three Address Code 325

While generating the code we need to generate the label that will execute the segment
of code depending on the condition whether it is true or false. The rules for writing different
constructs are as follows:

S →. if E then S1

S → if E then S1 else S2

S → while E do S1

While writing the translation rules for the fi rst rule, we need to generate a new label for
the true segment and the next statement is the statement that follows S. Hence, the transla-
tion rules are as follows:

S → if E then S1 {E.true = newlabel();
 E.false = S.next;
 S1.next = S.next;
 S.code = E.code || gen(E.true , “ :”) || S1.code}

S → if E then S1 else S2 {E.true = newlabel();
 E.false = newlabel();
 S1.next = S.next;
 S2.next = S.next;
 S.code = E.code || gen(E.true , “ :”) || S1.code ||

 gen(“ GOTO ”, S.next) || gen(E.false , “ :”) || S2.code}

S → while E do S1 {S.begin = newlabel();
 E.true = newlabel();
 E.false = S.next;
 S1.next = S.next;
 S.code = gen(S.begin “:”) || E.code || gen(E.true , “ :”) ||
 S1.code || gen(“GOTO” , S.begin)}

Example 6: Give three address code for the following:
 While (a < 5) do a: = b + 2

Solution:

 L1: If a < 5 goto L2
 goto last
 L2: t1 = b + 2
 a = t1
 goto L1
 last:

Similarly, we can translate for the “do…while” and the “for” loop.
Translate “do S while (E).”
The fl ow of control for the “do while” loop is as shown in Figure 8.11.

326 Intermediate Code Generation

Example 7: Translate do x = y + z while a < 10
Solution: L1:

t1 = y + z
x = t1
If a < l0 goto L1

Flow of control for the “for” loop is shown in Figure 8.12 for(E1;E2;E3) S;

 L1: S
 if E goto L1
 goto…

S

T
E

F

Figure 8.11 Control fl ow of repeat... statement do... while

E1

E2

E3

S

F

T

Figure 8.12 Control fl ow of for loop

 Solved Problems 327

Translate the following switch statement.

switch(E)
{ case v

1
: s

1
;

case v
2
:s

2
;

:
:

case v
n
:s

n

}

The translation is based on the way the fl ow of control executes the statement and is
given as follows:

 t1=E
 goto test

 L1: s
1

 goto last

 L2: s
2

 goto last

 Ln: s
n

 goto last

 test: if (t
1
==v

1
) goto L1

 if (t
2
==v

2
) goto L2

 :
 if (t

n
==v

n
) goto Ln

 last:

Solved Problems
1. Translate the following IR forms

 −(a + b) * (c + d) + (a + b + c)

Solution:
 Postfi x form = ab+ – cd+ * ab + c + +
 Three address code:

t1 = a + b
t2 = −t1
t3 = c + d
t4 = t2 * t3
t5 = a + b
t6 =t5 +c
t7 =t4 + t6

328 Intermediate Code Generation

Syntax tree: The syntax tree for the given expression is shown in Figure 8.13.

+

+

+

∗

+

a b

c d a b

+ c–

DAG: The DAG for the given expression is shown in Figure 8.14.

+

– +

+

a b

c d

+*

Figure 8.13 Syntax tree

Figure 8.14 DAG

 Solved Problems 329

2. Convert into postfi x notation and write the three address code.

 a * (b + c) / (d + e)

Solution: The postfi x form step by step is given by

 a* (bc+) /(de+)
 (abc+*)/(de+)
 abc+*de+/

Three address code is

t1 = b + c
t2 = a * t1

t3 = d + e
t4 = t2/t3

3. Convert into postfi x notation and write the three address code.

 −a + b / c ↑ d ↑ e*f/g

Solution: postfi x form step by step is given by

 (a−)+ b / c ↑ d ↑ e*f/g
 (a−)+ b / c ↑ (de ↑)*f/g
 (a−)+ b / (cde↑↑)*f/g
 (a−)+ (bcde↑↑/)*f/g
 (a−)+ (bcde↑↑/f*g/)
 a−bcde↑↑/f*g/+

Postfi x form is:

Three address code:

t1 = −a
t2 = d ↑ e
t3 = c ↑ t2

t4 = b / t3

t5 = t4 * f
t6 = t5 / g
t7 = t1 + t6

4. Let A be the two-dimension matrix with the size 10 * 10; generate the address of x=A[y,z].

Solution: The lower bound of both is equal to 1, that is, low1 = low2 = 1 and higher bound
is equal to 10, that is, n1 = n2 = 10 and let the size of each element be 4, that is,
s = 4. The annotated parse tree generates the address of x = A[y, z] as shown in
Figure 8.15.

a−bcde↑↑/f*g/+

330 Intermediate Code Generation

5. Write the three-address statement for x < y or z < x1 and y1 < z1.

Solution: Three address code for the above expression will be as follows:

 10. if x < y go to 13
 11. t1= 0
 12. go to 15
 13. t1 = 1

A.value = x
A.offset =null

A.value = z
A.offset = null

A.value = y
A.offset = null

E . value = t4

E. value = z

E. value = y

Alist. value = t1
Alist. dim = 2
Alist. array = A

Alist. value = y
Alist. dim = 2
Alist. array = A

: =

A. value = t2
A. offset = t3

]

,

A

y

z

 [

A

Figure 8.15 Parse tree for x = A[y, z]

 Solved Problems 331

 14. go to 22
 15. if z < x1 go to 18
 16. t2 = 0
 17. go to 23
 18. if y1 < z1 go to 21
 19. t3 = 0
 20. go to 23
 21. t3 = 1
 22. go to true
 23. false cond

6. Generate the three address code for the following statement:

while a<b
do
 if c < d then
 x = y + z
else
 x = y – z
done

Solution: The three address code will be as follows:

L1. if a<b then GOTO L2
 GOTO LNEXT
L2. if c<d then GOTO L3
 GOTO L4
L3. t1 = y + z
 x = t1
 GOTO L1
L4. t1= y - z
 x = t1
 GOTO L1
LNEXT.

7. Generate the three address code for the following C program:

main(0
{
int i=1;
int a[10];
while(i<=10)
 A[i] = 10;
}

332 Intermediate Code Generation

Solution: Three address code is as follows:

i=1
L: if i<=10 goto L1
 goto last
L1: t1 = i * w
 t2 = addr(A)
 t2[t1]= 10
 Goto L
Last:

where w is the width of each array location.

8. Translate the following switch statement.

switch(i+j)
{ case 1: x = y + z;
case 2: u = v + w;
default: p = q + r
}

Solution:
The translation as follows:

 t=i + j;
 goto test
L1: t1 = y + z;
 x = t1;
 goto last
L2: t2 = v + w
 u = t2;
 goto last
L3: t3 = q + r;
 p = t3;
 goto last
test: if (t==1) goto L1
 if (t==2) goto L2
 goto L3
last:

Summary
 � The intermediate code is useful representation when the compilers are designed as front

end and back end.
 � A syntax tree is graphical representation of the source program.
 � DAG representation is useful for common sub expression elimination.

 Objective Question Bank 333

 � Postfix notation is a linear representation of a syntax tree.
 � Three address code is the most commonly used intermediate representation.
 � Quadruples use temporary variables to store intermediate results.
 � Syntax-directed translation rules can be defined for translating the source program to

intermediate code.

Fill in the Blanks
 1. __________ rules are defi ned to generate the three address code.
 2. __________ representation makes the program source language independent.
 3. __________ is the simplest form of intermediate representation.
 4. The postfi x notation for the expression x+-y*c is __________.
 5. The three address code for the expression x+-y*c is __________.
 6. __________ is a special graph that eliminates the nodes for common expression.
 7. Three address code for the statement a= add(int x, int y)__________.
 8. __________ representation of three address code uses temporary variables.
 9. __________ representation uses references within the table that has three address

code.
 10. __________ is a graphical representation of the source program.

Objective Question Bank
 1. Which of the following is the postfi x representation for the expression x + - y *

(− y + z)?

 (a) xy + −y − z* +
 (b) xy − y −z+ * +
 (c) xy − +y −z +*
 (d) xy −y −z +* +

 2. _________ is an invalid three address code.

 (a) Quadruple.
 (b) Threaded code
 (c) Triple
 (d) Indirect Triple

 3. DAG stands for_________.

 (a) directed adjacent graph
 (b) double adjacent graph
 (c) directed acyclic graph
 (d) double acyclic graph

 4. Program is independent of the source language and the target language when it is
represented as _______.

334 Intermediate Code Generation

 (a) Machine code
 (b) Intermediate code
 (c) Assembly code
 (d) Relocatable code

 5. Machine-independent optimization is applied on the code when it is in ______.

 (a) Intermediate form
 (b) Assembly code
 (c) Target code
 (d) Machine Code

 6. The three address code for the statement x + − y * (− y + z) is

 (a) t1 = −y, t2 = t1 + z, t3 = t1 * t2, t4 = x+ t3
 (b) t1 = −y, t2 = x + t1, t3 = t1 + z, t4 = t2 * t3
 (c) Both a and b are valid
 (d) None

 7. Temporary variables are generated in ____________.

 (a) quadruple
 (b) threaded code
 (c) triple
 (d) indirect triple

 8. Statements can be moved in and around in ____________.

 (a) quadruple
 (b) threaded code
 (c) triple
 (d) indirect triple

 9. Intermediate code can be represented as ____________.

 (a) graph
 (b) prefi x expression
 (c) tree
 (d) DAG

 10. Postfi x expression can be evaluated using the ____________data structure.

 (a) tree
 (b) stack
 (c) graph
 (d) queue

Exercises
 1. Translate the arithmetic expression x*-(y-z) into a syntax tree, postfi x notation and

three address code.

 Key for Objective Question Bank 335

 2. Translate the executable statement of the following C program into a syntax tree, three
address code.

main()
{
int i;
int a[10];
i = 1;
while(i ≤ 10)
{
 a[i] = 0.0; i = i + 1;
}
}

 3. Write a program to implement the syntax-directed defi nition for translating Boolean
expression into three address code.

 4. Write a program to implement the syntax-directed defi nition for translating fl ow- of-
control statements into three address code.

 5. Translate the following assignment statement into three address code using the trans-
lation scheme.

 A[i , j] : = B[i , j] + C[A[k , l]] +D[i + j]

Key for Fill in the Blanks
 1. Syntax direction translation 6. Directed Acyclic Graph
 2. Intermediate code 7. param x, param y, call add 2, return a
 3. Postfi x 8. Quadruples
 4. xy − c*+ 9. Indirect triples
 5. t1 = − y, t2 = t1 * c, t3 = x + t2. 10. Syntax trees

Key for Objective Question Bank
 1. d. 2. b. 3. c. 4. b. 5. a. 6. a. 7. a. 8. a.
 9. b. 10. b.

 This page is intentionally left blank.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 337

C H A P T E R 9

CHAPTER OUTLINE

 9.1 Introduction

 9.2 Symbol Table Entries

 9.3 Operations on the Symbol Table

 9.4 Symbol Table Organization

 9.5 Non-block Structured Language

 9.6 Block Structured Language

Symbol table organization is important for improving the effi ciency of the compiler. It is important to
understand the different forms of symbol table and how it effects the performance while retrieving
the variable information

Symbol Table

Symbol table is an important data structure which stores the information of all the variables
and procedures in the program. This table is created during fi rst phase and is used by all the
phases for inserting the information or retrieving the information. Organizing the elements
in the symbol table shows the impact on the performance of the compiler. This chapter
focuses on what type of details are stored in the symbol table, how they are organized and
how the arrangement of these elements effect the retrieval time. The focus in mainly on sim-
ple array structure, linked list, trees and hash tables for both block and non-block structured
languages.

9.1 Introduction
So far we have discussed the different phases of the compiler, each performing some specifi c
task. The main objective of any compiler is to generate a target code that corresponds to a
given source code in terms of task execution, correctness, and meaningfulness. These objec-
tives are achieved with the support of a special data structure called the symbol table. It is
a data structure that stores information about the name, type, and scope of the variables for
performing the tasks defi ned in all the phases of a compiler.

The symbol table is created during the lexical analysis phase and is maintained till the
last phase is completed (Table 9.1). It is referred to in every phase of the compiler for some
purpose or the other.

338 Symbol Table

Table 9.1 Symbol table

S.No. Phase Usage

1. Lexical Creates new entries for each new identifi ers

2. Syntax Adds information regarding attributes like type, scope,
and dimension, line of reference, and line of use.

3. Semantic Uses the available information to check for semantics

4. Intermediate Helps to add temporary variables information.

5. Optimization Helps in machine-dependent optimization by considering
address and aliased variables information.

6. Code
Generation

Generates the code by using the address information of
the identifi ers.

It is clear that every time the compiler fi nds a new identifi er in the source code during
lexical analysis phase, it needs to check if this identifi er is already in the table, and if not it
needs to store it there. Every insertion operation is always preceded with search operation
during lexical phase. During other phases it searches in the symbol table to access the attrib-
ute information of the entries.

The basic two operations that are often performed with the symbol table are insert—
to add new entries—and lookup—to fi nd existing entries. The performance of the table
depends on how these elements are arranged in the table. The different mechanisms that
govern the performance of the table are linear list, hierarchical list, and hash-based lists.
These mechanisms are evaluated based on the number of insertions(n) and the num-
ber of lookup(e) operations. A linear list is the simplest to implement, but its perfor-
mance is poor when n and e are large. Hierarchical list gives performance proportional
to n(log(n))+e(log(n)), where n is the number of insertions and e is the number of look-
up operations. Hashing schemes provide better performance with greater programming
effort and space overhead.

Apart from organizing the elements, the size of the table is also an important factor. The
size can be fi xed when the compiler is written. The fi xed size has a limitation—if chosen
small, it cannot store more variables; if chosen large, a lot of space is wasted. It is important
for the symbol table to be dynamic to allow the increase in size at compile time.

The entries in the symbol table are made during the lexical phase as soon as the name is
seen in the declaration statement of the input program. The information on the attributes is
added when available. In some cases, the attribute information is added along with entry, on
the fi rst appearance of the variable.
For example, the C declarations

char NAME[20];
int AGE;
char ADDRESS[30];
int PHONENO[10];

 Symbol Table Entries 339

For block structured languages, the entries are made when the syntactic role played
by the name is discovered. The attributes are entered as action corresponding to identify-
ing a LEXEME for a token, which is an identifi er in declaration statements. This action is
performed for every colon encountered in the sequence of the variable list.

9.2 Symbol Table Entries
Each entry in the symbol table is associated with attributes that support the compiler in dif-
ferent phases. These attributes may not be important for all compilers, but each should be
considered for a particular implementation.

 � Name
 � Size
 � Dimension
 � Type
 � Line of declaration
 � Line of usage
 � Address

There is a distinction between the token id for an identifi er or name, the lexeme consist-
ing of the character string forming the name, and the attributes of the name. Lexeme is used
mainly to distinguish the attributes of one variable from the other categorized as the same
token type. During the lexical analysis, when the lexeme that corresponds to an identifi er is
found, it fi rst looks up in the symbol table and if it does not appear then the entry is made. A
common representation of a name is a pointer to a symbol table entry for it.

All these attributes are not of a fi xed size. Their space requirement in symbol table is not
always constant. For instance, the size of the variable’s name is language dependent. If there
is an upper limit on the length, then the characters in the name can be stored in the symbol
table entry as shown in Figure 9.1.

Attributes

Name Type Size Dim
Line of
decle

Line of
usage

address

N A M E Char 20 1 … …. ….

A G E Int 1 0 … …. ….

A D D R E S S Char 30 1 … …. ….

P H O N E N O Int 20 1 … …. ….

……… … …. …. … …. ….

Figure 9.1 Symbol table

340 Symbol Table

In fi xed size space within a record.
In language like BASIC and FORTRAN, the name is of a limited size of two or six. In

such languages it is better if the name is stored in the symbol table.
If the limit on the length is not fi xed, then it is not feasible to fi x the size in the symbol

table. The solution in such a case is to use the indirect scheme. Instead of storing the variable
name, it is good to store the address of the location where the variable is stored. The indirect
scheme permits the size of the name fi eld of the symbol table entry itself to remain a constant.

The complete lexeme constituting a name must be stored in a separate location to ensure
that all uses of the same name can be associated with the symbol table record. The following
table shows the entries in the symbol table for the above example, which is with fi xed size
space requirement.

In languages like C, C++, Java, etc., the variable name can vary from one character to 31
characters. In such cases the indirect scheme provides a better way of storing the information.

Name Type Size Dim Line of decle Line of usage address

0 4 Char 20 1 … …. ….

5 3 Int 1 0 … …. ….

9 8 Char 30 1 … …. ….

17 7 Int 20 1 … …. ….

… …. …. … …. ….

 Symbol Table

N A M E # A G E # A D D R E S S # P H O N E N O # … … …

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Figure 9.2 Array to store all name attributes

The name attribute in the symbol table has two values, the starting address of the name
and the size of the name. In this approach, good space is saved but the disadvantage is when
the compiler has to look for the attribute information. It fi rst looks in the symbol table for the
fi rst name location; then it checks if that is the required variable; if that is not the required
variable, it has to again make the symbol table reference until it gets the required variable
information. A lot of time is wasted in searching for the required information.

9.3 Operations on the Symbol Table
The operations performed on the symbol table are dependent on whether the language is
block structured or non-block structured. In case of non-block structured languages, there
is only one instance of the variable declaration and its scope is throughout the program.
In block structured languages, the variables may be re-declared and its scope is within the
block. To handle the variable information, some more operations are required to keep track
of the scope of the variable.

 Symbol Table Organization 341

For non-block structured languages the operations are:
 � Insert
 � Lookup

For block-structured languages the operations are:

 � Insert
 � Lookup
 � Set
 � Reset

Insert (s,t) performs the insertion of string s and token t and returns the index of this
new entry.

Lookup(s) fi nds for string S, if found, it returns the index, to get attributes; otherwise, it
returns 0.

Set operation is performed on every block entry to mark the beginning of a new scope of
variables declared in that block. Every insert and look up operation depends on this infor-
mation entered.

Reset is performed at every block exit, to remove all declarations inside this scope and
the details of the block.

Set and reset operations are performed in block structured languages to keep the scope
information of the variables. Since, scope behave like stacks the best way to implement these
functions is to use a stack. When we begin a new scope, we push a special marker to the
stack to indicate the beginning of the block. The list of new declarations is inserted after this
special marker is verifi ed. At the exit of block the scope the element ends and hence all the
elements inserted are popped off the stack.

9.4 Symbol Table Organization
We can use any data structure for the symbol table. The performance of any compiler
depends on the organization of the symbol table and the type of declaration supported.
Some programming languages support implicit declaration. In such languages, the variable
can be declared or can be directly used without declaration. For example, in FORTRAN, the
variables can be used without declaration. It considers the variable as int if it starts with I, J,
K, L, M, or N; otherwise, it is real. In some languages, all declarations are done at the start of
the program and are used later. All insert operations are performed fi rst followed by lookup
operations in case of explicit languages. In implicit languages, the insert and lookup opera-
tions may be performed at any time. The various ways a symbol table can be stored are as
follows and each has its own advantages and disadvantages.

 � Linear list
 ○ Array

 ● Ordered
 ● Unordered

 ○ Linked list
 ● Ordered
 ● Unordered

342 Symbol Table

 ○ Hierarchical
 ● Binary search tree
 ● Height balanced tree

 � Hash table.

9.5 Non-block Structured Language

9.5.1 Linear List in Non-block Structured Language
It is the simplest form of organizing the symbol table to add or retrieve attributes. The list
can be ordered or unordered. Consider the following example in Ada language shown in
Figure 9.3.

void Number(int Mike, int Alice, int John_Smith, fl oat
F=1.0)

{
printf(“Enter value of Mike \n”);
scanf(“%d”,&Mike);
printf(“Enter value of Alice\n”);
scanf(“%d”,&Alice);
John_Smith = 3*Mike+2*Alice+2;
printf(“%d\n”,3*Mike+2*Alice+11);
printf(“%d\n”,John_Smith);
John_Smith=Mike + Alice+1000000;
printf(“A million more than Mike and Alice %d\n”,
John_Smith);
F=F+fl oat(Mike)+3.1415265;
printf(“F as an Integer %d\n”.F);
}

In the above example, the variables are Mike, Alice, and John_Smith declared as integers
and F declared as fl oat, and value assigned as 1.0.

9.5.1.1 Ordered List
In an ordered symbol table, the entries in the table are lexically ordered on the variable
names. Every insertion operation must be preceded with a lookup operation to fi nd the posi-
tion of the new entry. Two search techniques can be applied, that is, linear or binary search.
The following Figure 9.4 shows the order in which these variables are inserted.

Figure 9.3 Program in Ada

 Non-block Structured Language 343

Name Type Size Value

Mike Integer 1 … ….

Name Type Size Value

Alice Integer 1 … ….

Mike Integer 1 … ….

 (a) After inserting Mike (b) After inserting Alice

Name Type Size Value

Alice Integer 1 … ….

John_
Smith

Integer 1 … ….

Mike Integer 1 … ….

 Name Type Size Value

Alice Integer 1 … ….

F Float 1 1.0 ….

John_
Smith

Integer 1 … ….

Mike Integer 1 … ….

 (c) After inserting John_smith (d) After inserting F

Performance:
Insert operation has the overhead of moving the elements to fi nd the place to insert the new
element. On the average, the lookup time would be (n+1)/2 if linear search is used. This can
be improved if binary search is used and it would be proportional to (log n).

9.5.1.2 Unordered List
As shown in Figure 9.5, it is easy to insert the elements in an unordered list, since it inserts at
the end. The look up time increases as it has to search the entire list to fetch the information
of variables.

Name Type Size Value

Mike Integer 1 … ….

Alice Integer 1 … ….

 (a) After inserting Mike (b) After inserting Alice

Name Type Size Value

Mike Integer 1 … ….

Figure 9.4 Insert operation in ordered list

344 Symbol Table

Name Type Size Value

Mike Integer 1 … ….

Alice Integer 1 … ….

John_
Smith

Integer 1 … ….

 Name Type Size Value

Mike Integer 1 … ….

Alice Integer 1 … ….

John_
Smith

Integer 1 … ….

F Float 1 1.0 ….

 (c) After inserting John_smith (d) After inserting F

Performance:

If the language supports explicit declaration then there is no need to perform a lookup oper-
ation for every insertion. But to avoid duplication, complete table checkup may be needed
after all insertions. The lookup operation requires, on an average, a search length of (n + 1)/2
assuming there are n records in the table. This value is derived based on the position of the
element while comparisons are made as follows:

1
n

n

i = 1
 i = 1n (n + 1) * (n)/2) = (n + 1)/2

If the element is not found, it indicates an error condition and the error handler should
handle it.

If variables are declared implicitly, attributes are added according to the order in which
they are encountered during compilation. Every insert operation must be preceded by a look
up operation. If the lookup operation returns 0, it indicates the absence of a variable and it
must be inserted. In worst case scenario, it requires n elements to be checked and then inserted.

If only lookup operation is performed, then on an average it requires (n + 1)/2 compari-
sons. Let the ratio of fi rst variable reference to total variable references be denoted by x; then
the lookup and insertion process requires on an average

 x * n + (1 – x) * (n + 1) / 2
This unordered table organization should be used only if the number of variables are

less or the table size is small, since the average time for lookup and insertion is directly pro-
portional to the table size.

These tables are not suitable where the insert and look up operations are always applied.
They are good to be used to store the reserved words in a language. The main drawback
with arrays is the overhead and fi xed size. This is overcome by the linked list.

9.5.2 Linked List or Self-organizing Tables

9.5.2.1 Ordered list
The variables information is inserted as shown in Figure 9.6 in the sequence encountered.
The node requires an extra fi eld to store the pointer to the next node and the last node in the
list has NULL.

Figure 9.5 unordered list – Insert

 Non-block Structured Language 345

Head node

Mike Integer 1

Mike

Mike

Integer 1

Integer 1

Alice

John_
Smith

Integer

Integer 1

1

... ...

......

Alice Integer 1Head node

Head node(a)

(b)

(c)

Head node

Mike Integer 1

Alice

John_
Smith

Integer

Integer 1

1

1.0

... ...

......

F Float 1 ...

(d)

For each insertion operation, it should check if the element is there in the list, if not
present, then it creates a new node and places in the order changing only two link point-
ers. This makes the insertion to overcome the overhead of moving the elements. The time
to insert the element is O(n) + O(1). The lookup operation is always sequential with worst
case O(n).

Figure 9.6 Insertion sequence

346 Symbol Table

9.5.2.2 Unordered Linked List

Head node

Mike Integer 1

1

1

1

1

1

.......

Mike Integer

Mike Integer

Mike Integer 1

F Float 1 1.0

Alice Integer

John_
Smith

Integer

1
John_
Smith

Integer

.......

Alice Integer

...

....

....

...

Alice Integer 1

...

Head node

Head node

Head node(a)

(b)

(c)

(d)

In case of an unordered list, the time for insertion is 0(1) as the insertion is done at
head node as shown in Figure 9.7. Each lookup operation always has the worst case time
since it has to search the entire list.

Figure 9.7 Insertion in unordered list

 Non-block Structured Language 347

9.5.3 Hierarchical List
Binary search tree is a more effi cient approach to symbol table organization. We add two
links, left and right, in each record, and these links point to the record in the searc h tree.
Whenever a new name is found decision is made either to add it or ignore it. First the name
is searched in the tree if it exists, then it is ignored. If it does not exist, then a new record is
created for the new name and is inserted as a leaf node. This organization follows a lexico-
graphical order, that is, all the names accessible from namei with value less than namei are
found by following a left link. Similarly, all the names accessible from namei that follow
namei in alphabetical order are found by following the right link. The expected time needed
to enter n names and to make m queries is proportional to (m + n) log2n. So for a greater num-
ber of records (higher n), this method has advantages over linear list organization.
For the example program the tree structure is shown below in Figure 9.8.

1. On inserting fi rst variable Mike.

Mike Null Null(a)

2. On inserting the second variable Alice.

Mike LN Null

(b)
.....

Alice Null Null.....

3. On inserting third element John_smith.

 Mike LN Null.....

Alice Null RN.....

John_
Smith

(c)

Null Null.....

348 Symbol Table

4. On inserting the last element F the tree is as shown below.

Mike LN Null.....

Alice Null RN.....

F Null Null.....

John_
Smith

(d)

LN Null.....

From the above example, it is clear that the tree structure may not always give better
performance. If the tree formed is a skewed tree (each level has only one node), then the
time complexity is again dependent on the number of elements in the program. This can be
overcome by using height balanced trees like AVL trees or 2 – 3 trees.

9.5.3.1 AVL Trees
An AVL tree is similar to a binary search tree but involves balancing operations after inser-
tions and deletions when it leaves the tree unbalanced. These operations are called rotations,
which help to restore the height balance of the sub-trees.

Lookup

Lookup in an AVL tree is performed exactly as in an unbalanced binary search tree. The
only difference lies in the time taken to execute the lookup operation. It is proportional to
the height of the tree which is O(log n). The time for search is maintained as O(log n). The
effi ciency can be further increased by adding index number to each node and the elements
are retrieved based on index.

The parent or child node can be explored in amortized constant time after a node is
searched in the tree. The traversing requires maintaining at most 2 × log(n) links. If it is required
to explore n nodes it may require at most approximately 2 × (n – 1)/n links, which is just 2.

Insertion

Every node in an AVL tree is associated with a balance factor bf. This bf is the difference of
height of left and right sub-trees.

bf = Hl – Hr

Figure 9.8 Insertion in hierarchical list

 Non-block Structured Language 349

The permissible value can be −1, 0, or +1 if the value is o then the node is balanced. If the
value is 1, then we say the node is left heavy as the left sub-tree has height one more than
the right sub-tree. If it is –1, then we say it is right heavy as the height of the right sub-tree is
one more than the left sub-tree. However, if the balance factor becomes ±2, then the sub-tree
rooted at this node is unbalanced and rotation is applied to balance the sub-tree.

After inserting a node, the balance factor is adjusted for all the nodes that lie in the
path from the point of insertion and the root. If there is any node whose value is ±2, then
depending on the condition, the balancing rules are applied to balance it and are shown in
Figure 9.9 to 9.12.

The following fi gures explain how rotations can rebalance the tree, proceeding toward
the root and updating the balance factor of the nodes that lie in the path. There are four types
of rotations where two are symmetric to the other two in opposite directions.

Right–Right (RR)

This case occurs when X is the root sub-tree with Y as the right child of X. Let Z be the right
child of Y. Let the height if XL, YL, ZL, ZR be H. Then the bf Z is 0, Y is –1 and for X is –2.
Hence, node X is critical. Since the node is critical to the right and the right child is right
heavy, we apply Right–Right rotation (single). The resultant tree has the node Y as root of
the tree and X as left child and Z as right child. The sub-trees left to Y are adjusted as shown
in the Figure 9.9.

X
−2

−1

0

0

0

0

Y

Z
X

Y

Z

XL

YL

XL
ZR

XL YL XL ZR

Right–Left (RL)

This case occurs when X is the root sub-tree with Z as the right child of X. Let Y is the left
child of Z. Let the height if XL, YL, YR, ZR be H. then the bf Y is 0, Z is 1 and for X is -2. Hence
node X is critical. Since the node is critical to the right and the right child is left heavy, we
apply Right–Left rotation (double). The resultant tree has the node Y as the root of the tree
and X as the left child and Z as the right child. The sub-trees left to Y are adjusted as shown
in the Figure 9.10.

Figure 9.9

350 Symbol Table

XX

−2−2

−1

1

0

0

0

0

0

Y

Y

Z

Z
X

Y

Z
XL

XL

YL

YL

YR

YR
ZR

ZR
XL YL

YR
ZR

Left–Left (LL)

This case occurs when Z is the root sub-tree with Y as the left child of Z. Let X be the left child
of Y. Let the height of XL, XR, YR, ZR be H. Then the bf of X is 0, Y is 1, and for Z is 2. Hence,
node Z is critical. Since the node is critical to the left and the left child is left heavy, we apply
Left–Left rotation(single). The resultant tree has the node Y as the root of the tree and X as left
child and Z as right child. The sub-trees right to Y are adjusted as shown in the Figure 9.11.

X

2

1

0

0

0

0

Y

Z

X

Y

Z

XL XR

YR

ZR

XL XL
YR

ZR

Left–Right (LR)

This case occurs when Z is the root sub-tree with X as the left child of Z. Let Y be the right child
of X. Let the height of XL, YL, YR, ZR be H. Then the bf of Y is 0, X is –1 and for Z is 2. Hence node
Z is critical. Since the node is critical to the left and the left child is right heavy, we apply Left–
Right rotation (double). The resultant tree has the node Y as the root of the tree and X as the left
child and Z as the right child. The sub-trees left to Y are adjusted as shown in the Figure 9.12

Figure 9.10

Figure 9.11

 Non-block Structured Language 351

X

X

2
2

−1 1

00 0

0

0

Y

Y

Z
Z

X

Y

Z

YL

YR

YR

ZR
ZR

XL YL
YR

ZR

XL

XL YL

Deletion

Deletion of the node is similar to the binary tree. After deletion, the balance factor of the
nodes is adjusted till it encounters the root node. If the balance factor for the tree is +2 / –2
and that of right/left sub-tree is 0, then right/left rotation is performed at the root of that
sub-tree.

While retracing, if the balance factor of any node has a value between –2 and +2, based
upon the balance factor, do any one of the following.

 � If the balance factor is either –1 or +1, then the tree remains unchanged so stop
adjusting.

 � If the balance factor is 0, it indicates that the height of sub-tree is decreased by one,
hence, it continues to retrace towards root.

 � If balance factor is either –2 or +2 it indicates that the node is critical; hence, rotation is
applied. If the balance factor of any node is 0, then retrace toward the root.

The time required for the deletion operation is O(log n) as the time required for lookup
and adjusting nodes backwards id O(log n) + O(log n).
For the previous example, the AVL tree would be constructed as follows.

1. On inserting fi rst variable Mike.

Mike(a) Null Null.....

2. On inserting the second variable Alice.

Mike LN Null.....

Alice

(b)

Null RN.....

Figure 9.12

352 Symbol Table

3. On inserting third element John_smith it requires to apply rotation to balance the tree
structure.

Mike Null Null.....Alice Null Null.....

John_
Smith

(c) LN RN.....

4. On inserting the last element F the tree is as shown below in Figure 9.13.

Mike Null Null.....

F Null Null.....

Alice Null RN.....

John_
Smith

(d) LN RN.....

9.5.4 Hash Tables
The data structures discussed so far has the time complexity that is expressed as a function
of n. As the value of n becomes large, the time requirement also increases. There is a special
structure where the operation time is independent of n.

Let there be m locations and n elements whose keys are unique. If m n, then each ele-
ment is stored in the table T[m], so that the hash function applied on the key K results in the
location Ti. If the location Ti is empty then the element is inserted; otherwise, if it contains an
element it applies the second strategy to insert element. When searching for a key element
K, in location Ti it would return the element if found, otherwise returns NULL. Sample table
is shown in Figure 9.14.

To use the hash table technique, it requires the keys to be unique. Also the range of keys
must be bounded with the addresses of the locations.

Note: If keys are not unique, then there are various mechanisms that can be adopted. A
simple method is to construct a set of m lists that store the heads of these lists in the direct
address table. If the elements in the collection have at least one distinguishing feature other
than the key, then the search for the specifi c element in that collection depends on the maxi-
mum number of duplicates.

Figure 9.13

 Non-block Structured Language 353

k

j

i

0

i i
0
j j

0

k k

0

0

i
0
j

k

0

T

m

Collection

i

k

k

Direct acess table

Mapping Function

The direct address approach requires a hash function, h(K) to map the key K to one of
the location that is in the range (1,m) where 1,m indicates the range of memory address.
It is said to be a perfect mapping function if it is one-to-one as it results in search time
that is O(1).

It is easy to defi ne such a perfect hash function theoretically but practically it is always
not possible. For example, consider (1,m) to be (0,100). To map elements with keys 12, 112,
512, if the hash function is K%100, then all the keys are mapped to the 12th location. When
more than one key is mapped to the same location, we call the condition, as collusion. When
there are collusions, then more than one element has to be stored in the same location; this is
not possible. In such a condition, we apply collusion-resolving techniques.

Handling the Collisions

Techniques have to be applied for resolving collusions for easy insertion and search. The
following is the list of collusion-resolving techniques.

1. chaining,
2. re-hashing,
 a. linear probing(using neighboring slots),
 b. quadratic probing,
 c. random probing.
3. overfl ow areas

Chaining

It is the simplest technique to chain all the collusions in the list attached to the appropriate
slot. This method doesn’t require a priori knowledge of how many elements are contained

Figure 9.14

354 Symbol Table

in the collection. This would exhibit poor performance if all the elements are mapped to the
same location as it would create a linked list whose time is again proportional to O(n).

Re-Hashing

This technique uses a second hash function when there is a collusion. This is repeated until it
fi nds an empty space in the table. In general, the second function could be the same function
with varying parameters constituting a new function. This technique requires applying the
same hash function in the same order for searching of insertion. It also involves overhead in
fi nding the elements and requires more hash functions.

a. Linear probing

Simple rehash function that can be chosen is +1 of –1, that is, looking in the consecutive loca-
tions until a free slot is found as shown in Figure 9.15. It is easy to implement.

k

i

j

0

k

0

i

h2 (j)
j

0

h (k)

h (i)

h1(i)

b. Random probing

This technique uses a random function to fi nd the next location to insert the element. If the
location has an element, then the random function is applied until a free slot is found. This
ensures the proper utilization of the complete table as the random function generates the
index which ranges uniformly. The problem is, the time taken by the random function.

c. Quadratic probing

In quadratic probing when a collusion occurs, secondary hash function is used to map the
key to address. The advantage of this technique is that the address obtained by secondary
function is distributed quadratically.

Address = h(key) + c i 2 on i th re-hash.
(A more complex function of i may also be used to have better performance.)
This re-hashing scheme uses the space within the allocated table avoiding the overhead

of maintaining the linked list. To apply the approach it is required to know the items that are
to be stored in advance. At the same time it adds up a drawback of creating collusions for
other valid keys as the table space is pre-occupied by the elements that caused the collusion
earlier.

Figure 9.15

 Non-block Structured Language 355

Overfl ow area

The table is divided into two sections in this technique. One is the primary area to which the
keys are mapped and overfl ow area to take care of collusions as shown in Figure 9.16.

k

i

j

0

k

0

i

j

0

h (k)

h (i)

0

overflow
 area

primary
 area

Whenever collusion occurs, the space in overfl ow area is used for the new entry. This
location is linked to the primary table space. This appears to be similar to chaining but there
is slight difference in the allocation of table space. Here the extra space is allocated along the
actual table; hence, it provides faster access. It is essential to know the size of elements before
allocation of space for table

It is possible to design the system with multiple overfl ow tables, or with a mechanism
for handling overfl ow out of the overfl ow area which provides fl exibility without losing the
advantage of the overfl ow scheme.

The following table gives the summary of the hash table organization:

Organization Advantages Disadvantages

Chaining Unlimited number of elements
Unlimited number of collisions Overhead of multiple linked lists

Re-hashing
Fast re-hashing
Fast access through use of
main table space

Maximum number of elements must be
known
Multiple collisions may become probable

Overfl ow
area

Fast access
Collisions don’t use primary
table space

Two parameters which govern
performance need to be estimated

Example: Let the variables names be
 Mike, Alice: Integer;
 John_Smith: Integer;
 F: Float := 1.0;

Let the hash function be chosen as the sum of ASCII representation of each alphabet and
let the table size be 10. We use linear probing to overcome the collusion.

Solution:
The result of hash function on each variable is shown in the table below.

Figure 9.16

356 Symbol Table

Variable Name Sum of ASCII values Total
value(TV)

Hash function
 (TV)/10

Mapping
location

Mike 77+105+107+101 390 390/10 0

Alice 65+108+105+99+101 478 478/10 8

John_Smith 74+111+104+110+95+83
 +109+105+116+104

1011 1011/10 1

F 70 70 70/10 0

The insertions are done as shown in Figure 9.17.

Insert Mike Insert Alice

0 Mike
1

2

3

4

5

6

7

8

9

0 Mike
1

2

3

4

5

6

7

8 Alice

9

(a) Insert John_Smith (c) Insert F

0 Mike
1 John_Smith

2

3

4

5

6

7

8 Alice

9

 0 Mike
1 John_Smith

2 F

3

4

5

6

7

8 Alice

9

 (b) (d)

9.6 Block Structured Language
Block structured languages comprise a class of high-level languages in which a program
is made up of blocks, which may include nested blocks as components, such nesting being

Figure 9.17

 Block Structured Language 357

repeated to any depth. A block is a group of statements that are preceded by declarations
of variables that are visible throughout the block and the nested blocks. These declarations
are invisible if the inner blocks have the same variables declared. Once the scope of the
inner block is completed, the variables of the outer block become effective. Variables are said
to have nested scopes. The concept of block structure was fi rst introduced in the Algol fam-
ily of languages. The symbol table organization in block structured languages is complex,
compared to the structured languages. It requires the additional information to be stored
at every block entry and exit. Let us consider the following example shown in Figure 9.18.

This program contains four blocks. B1 is main that has two inner blocks B2 and B3.
Block B3 has another inner block B4. On execution fi rst the main is called, which invokes
the function fun1; fun1 in turn calls fun2, which includes B4. On completion of B4, it exe-
cutes the remaining part of fun2(). On completion fun2() it returns to next statement of
Call fun2() in fun1(). On completion of fun1() it executes the next statement of call fun1()
in main.

B1 main ()
{

Real a, b ;
String name;
......
......
B2 fun1 (integer x)
{

Integer a;
......
......

......

......
} End fun1 ;
B3 fun2 (integer y) ;
{

......

......
B4

......

......

B4

......

......

Array integer F (y) ;
Logical test 1

{

} End

B1;End

B3End }

Call fun 1 (a/b);

}

Call fun2 (x +1)

......

......

Figure 9.18

358 Symbol Table

During execution, these two blocks behave differently, but during compilation both
types of blocks require similar types of processing. During the compilation, at the block
entry, a sub-table should be created for new variables using the set operation. For the vari-
ables declared with the same name in both inner block and outer block, care should be taken,
so that the variables of the outer block are inactive and the variables in the inner block are
active. At the block exit, these entries should be deleted using the reset operation. The fol-
lowing is the trace of compilation with set and reset operations at every block.

B1 entry: Set operation is performed and no variable is either active or inactive.
B2 entry: Set operation is performed and at this moment variables a, b, name and fun1 are

active. No variable is inactive.
B2 exit: Reset operation is performed. a, b, name, fun1, x and a are active. No variable is

inactive.
B3 entry: Set operation is performed. a, b, name, fun1and fun2 are active. x and a are inactive.
B4 entry: Set operation is performed. a, b, name, fun1, fun2 and y are active. x and a are

inactive.
B4 exit: Reset operation is performed. a, b, name, fun1, fun2, y, F and test1 are active. x and

a are inactive.
B3 exit: Reset operation is performed. a, b, name, fun1, fun2 and y are active. x, a, F and

test1 are inactive.
B1 exit: Reset operation is performed. a, b, name, fun1 and fun2 are active. x, a, F, test1 and

y are inactive.
End of compilation: All variables a, b, name, fun1, fun2, x, a, F, test1 and y are inactive.

Note: In block B2 both the instances of a are active but the lookup operation should
return the attributes of the recent instance of a. Hence, the best suitable data structure that
can be used is a stack.

9.6.1 Stack Symbol Tables
In this organization, records containing the attributes of the variables are stacked as they are
encountered. At the block exit these records are deleted since they are not required outside the
block. This organization contains two stacks—one that holds the records and the other that
holds the block index details. The four operations performed on the table are explained below.

Set: This operation generates a new block index entry at the top of block index table,
which corresponds to the top of the symbol stack. This entry marks the start of the variable
in the new block.

Reset: This operation removes all the records corresponding to the current completed
block. This corresponds to setting the top in symbol stack to the value pointed by the block
index and popping the current top in block index.

Insert: This operation is simple and involves in adding the new record on top of symbol
stack. This operation requires examining that no duplicates exist in the same block.

Look up: This operation is similar to the linear search of the table from the top to bottom.
It searches for the variable that is the latest declaration.

For the above example, the following Figure 9.19 shows how the variable information is
added or removed after the entry/exit of every block.

 Block Structured Language 359

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

(a) Set at B1 entry

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Insert a , b , name , fun1

fun1

name

b

a

(b) Insert a, b, name ,fun1

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Set at B2 entry

 (c) Set at B2 entry

fun1
name

b

a

4

Figure 9.19

360 Symbol Table

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Insert x , a

(d) Insert x , a

fun1

name

b

a

4

x

a

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Resert at B2 exit & Delete x , a

fun1

name

b

a

(e) Delete ex,a & Resert at B2 exi

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Insert fun2

(f) Insert fun2

fun1

name

b

a

fun2

Figure 9.19

 Block Structured Language 361

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Set at B3 entry

 (g) Set at B3 entry

fun1

name

b

a

fun2

5

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table

(h) Set at B3 entry

Index table

Insert y

fun1

name

b

a

y

fun2

5

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Set at B4 entry

(i) Set at B4 entry

fun1

name

b

a

y

fun2

5

6

Figure 9.19

362 Symbol Table

8

7

6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Insert F , test1

(j) Insert F and test1

fun1

name

b

a

y

fun2

5

6

F

test1

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table
Index table

Reset B4 exit and Delete test1, F

(k) Reset at B4 exit

fun1

name

b

a

y

fun2

5

8

7
6

5

4

3

2

1

0

4

3

2

1

00

Stack symbol table Index table

Reset at B3 exit and Delete y

(I) Reset at B3 exit

fun1

name

b

a

fun2

Figure 9.19

 Block Structured Language 363

9.6.2 Stack-Implemented Tree-structured Symbol Tables
Tree structured symbol table organization can be done in two different forms for block struc-
tured languages. The fi rst approach is using a single tree for all the variables. This involves
removal of records for a block, when the compilation of the block is completed. Since the
records of all the blocks are merged as one tree, it requires a complex procedure to address
the required records while applying the operations on the tree.

Insertions are always done as the leaf node; care should be taken while performing a
lookup operation to ensure that the reference is for the current block. Every deletion opera-
tion involves the following steps.

 1. Locate the position of the record in the tree.
 2. Remove the record from the tree and adjust the links to bypass the node.
 3. Rebalance the tree if the deletion causes the tree unbalanced.

Note: Single tree structure may not be suited to compile the nested languages.
The second approach is to construct a forest of trees where each block has allocated its

own tree—structured table. When the compilation of the block is complete, the entire tree
for that block is deleted.

In this organization, the node for each record is associated with two special pointers
along with all the attributes—one left pointer to point the left node and right pointer to point
to right node. The symbol table is maintained as a stack. When the block is entered during
compilation, the value of top of stack table is stored at the top of the block index table. As
decelerations are encountered, records are inserted at the top of the symbol table and rebal-
anced if the insertions make it unbalanced.

A lookup operation must ensure that the latest occurrence is located. The search must begin
at the tree structure for the last block to be entered and proceed down the block index table till
it points the root of the tree for the fi rst block entered. For example, to lookup for variable “a”
in Figure 9.20B, it fi rst starts the search at the root pointed by the top of the block index. The
top points to location 4, compares with it, and searches in the left sub-tree until it is found and
returns the index as 5. When the search is for b, the sub-tree pointed by the top of block index
returns null; hence a search is made in the sub-tree pointed by the (top-1) and returns the loca-
tion is at 1.

8
7
6
5
4
3
2
1
0

4

3
2
1
0

Stack symbol table Index table

Reset at B1 exit and Delete a , b , name, fun1, fun2

(m) Reset at B1 exit

Figure 9.19

364 Symbol Table

The following fi gure shows the operations on every entry and exit of the block.
8
7

6

5

4

3

3

2

2

1

10 0

4

3

2

1

0

(A) Stack symbol table Index table

null null

null

null

null

fun1

name

b

a

8
7

6

5

54

4

3

3

2

2

1

10 0

4

3

2

1

0

Stack symbol table Index table

null

null

null

null

null

null

null

null

fun1

name

b

a

a

B2

x

(B) Before call to fun2 in B2

8
7

6

5

5

4

3

3

2

2

1

10 0

4

4 3

2

1

0

Stack symbol table Index table

null

null

null

null

null

null

null

null

fun1

fun2

name

b

a

y

(C) Just before entry at B4

Figure 9.20

 Block Structured Language 365

8

7

7

6

5

6

5

4

3

3

2

2

1

10 0

4

4 3

2

1

0

Stack symbol table Index table

null

null

null

null

null

null

null

null

null

null

null

fun1

fun2

name

b

a

y

(D) In the Block B4

F

test1

9.6.3 Stack-Implemented Hash-Structured Symbol Table
Applying hashing technique is complex for block structured languages, as it requires
some techniques to preserve the information regarding the variables of same block. This is
achieved by using an intermediate hash table. The hash table stores the link to the location in
the stack symbol table where the variable is stored. The stack symbol table stores the infor-
mation of the variable along with the link, to the location of the variable which maps to the
same location in hash table. The block index table stores the starting location of the variables
on the current block. The operations performed are also complex.

Set: On every block entry, the current top of the stack symbol table is stored in block
index table.

Insert: First the hash function is applied on the key

 a. If it maps to a location with no collusion, then the variable information is
stored in the current top of stack symbol table and that index is stored in hash
table.

 b. If it maps to a location with collusion, then the index stored in the hash table is
stored along with the variable information in the current top of the stack symbol
table and this index is updated in the hash table. This enables to store the variable
information without losing the information of the variable previously inserted.

Lookup: First the hash function is applied on the key,

 a. If the hash table has null, then return null.
 b. If it points to the some location in the stack symbol table,
 a. If it is the required variable, return the index if the index is greater than the

current top of the block index.
 b. Otherwise, use the link pointer to go to next location and perform step a.

Figure 9.20

366 Symbol Table

Reset: Delete all the variables from the stack symbol table whose index is greater than or
equal to the current top in block index. While deleting the variable, it requires the following
modifi cations.

 a. If the link fi eld of the variable is null, then delete the variable and set the index
in hash table to null which points it.

 b. If the link fi eld is not null, then store this index in the hash table and delete the
variable information.

Example: The symbol table organization for block structured languages using hashing tech-
nique is shown below.

Let the hash function be chosen as the sum of ASCII representation of each alphabet and
let the table size be 10. We use linear probing to overcome the collusion.

Solution:
The result of hash function on each variable is shown in the table below. The Figure 9.21

shows the content of hash table after set and insert operation in each block entry.

Variable Name Sum of ASCII values
Total value

(TV)

Mapping
location
(TV/10)

 A 97 97 7
B 98 98 8
Name 110+97+109+101 417 7
fun1 102+117+110+49 378 8
X 120 120 0
fun2 102+117+110+50 379 9
Y 121 121 1
F 70 70 0
test1 116+101+115+116+49 497 7

Block B1: Four variables are inserted a, b, name, and fun1 where a and name map to the
7th index and b and fun1 map to the 8th index in the hash table.

8
7

5

5

4
4

3
3

3

22

2

1

1

1
0

0

0 0

4

3

2

1

0

Stack symbol table Index table

fun1

name

b

a

(A) In Block B1

6
6
7
8

9

null

null

Hash table

Figure 9.21

 Block Structured Language 367

Block B2: Two variables x and a are inserted where a is mapped to the 7th index and x is
mapped to the 0th index in the hash table.

8
7

5
5

4
4

3
3

3

2

2

2

5

1

1

1
0

0

0 0

4

4

3

2
1

0

Stack symbol table Index table

fun1

name
b
a

a

(B) In Block B2

6
6
7
8

9

null

null

null

Hash table

4

x

Block B3: Two variables fun2 and y are inserted where fun2 is mapped to the 9th index
and y is mapped to the 1st index in the hash table.

8
7

5

5

5
4

4

4

3
3

3

22

2

1

1

1
0

0

0 0

4

3

2
1

0

Stack symbol table Index table

fun1

fun2

name
b
a

y

(C) In Block B3

6
6
7
8

9

null

null
null

null

Hash table

5

Block B4: Two variables F and test are inserted where F is mapped to the 9th index and
test1 is mapped to the 1st index in the hash table.

8
7

5

5

5
4

4

4

3
3

3

22
1

1

1
0

0

0 0

4

3

2
1

0

Stack symbol table Index table

fun1

fun2

name
b
a

y

(D) In Block B4

6
6

6

7 7
8

9

null

null

null

2

null

null

Hash table

5

F

test1

6

Figure 9.21

368 Symbol Table

Summary
 � A symbol table is created during the lexical phase.
 � The indirect scheme permits the size of the name field of the symbol table entry itself to

remain a constant.
 � In non-block structured languages the operations performed on symbol table are insert

and lookup.
 � In block structured languages the operations performed on symbol table are set, reset,

insert, and lookup.
 � Linear structures like arrays and linked list are simple to implement but performance is poor.
 � A search tree is a more efficient approach to symbol table organization.
 � The expected time needed to enter n names and to make m queries is proportional to

(m + n) log2n.
 � Balanced trees are more suitable than binary search trees.
 � Performance of hash-based technique is independent of number of elements in the list.
 � Insert (s,t) performs the insertion of string s and token t and returns the index of this new

entry.
 � Lookup(s) finds for string S, if found returns the index, 0 otherwise.
 � Set operation is performed at every block entry and it stores the top of the variable index

table in the stack table.
 � Reset operation is performed at every block exit. It removes the variable list information

of the block it exited and the top of the stack table.

Fill in the Blanks
 1. The symbol table is created during _______________ phase.
 2. Hierarchical list gives performance proportional to _______________.
 3. For _______________ the entries are made when the syntactic role played by the name

is discovered.
 4. _______________ is used mainly to distinguish the attributes of one variable with the

other categorized as same token type.
 5. _______________ performs the insertion of string s and token t and returns the index

of this new entry.
 6. _______________ fi nds for string S, if found returns the index, 0 otherwise.
 7. _______________ is performed on every block entry to mark the beginning of new

scope of variables declared in that block.
 8. _______________ is performed at every block exit, to remove all declarations inside

this scope and the details of the block.
 9. Set and reset operations are performed in Block structured languages to keep

_______________ of the variables.
 10. In _______________ the variables can be used without declaration.
 11. _______________ operation has the overhead of moving the elements to fi nd the place

to insert new element.

 Objective Question Bank 369

 12. Balance factor bf of every node in an AVL tree is associated with a value _______________.
 13. If the node is critical to the right and the right child is right heavy we apply

_______________.
 14. If the node is critical to the right and the right child is left heavy we apply

_______________.
 15. If the node is critical to the left and the left child is left heavy we apply _______________.
 16. If the node is critical to the left and the left child is right heavy we apply _______________.
 17. If the balance factor becomes _______________ then the sub-tree is said to be

unbalanced.
 18. The range of the key determines the size of the _______________ and may be too large

to be practical.
 19. When more than one key is mapped to the same location we say _______________ has

occurred.
 20. The concept of block structure was fi rst introduced in the _______________ family of

languages.

Objective Question Bank
 1. The basic two operations that are often performed with the symbol table are ______.

(a) set and reset
(b) insert and lookup
(c) set and insert
(d) reset and lookup

 2. __________ schemes provide better performance for greater programming effort and
space overhead.

(a) Arrays
(b) Linked list
(c) Trees
(d) Hashing

 3. In case of __________ there in only one instance of the variable declaration and its
scope is throughout the program.

(a) non-block structured languages
(b) block structured languages
(c) object oriented languages
(d) All of the above

 4. In __________the variables may be re-declared and its scope is within the block.

(a) non-block structured languages.
(b) block structured languages.
(c) object oriented languages.
(d) All of the above

370 Symbol Table

 5. __________ performs the insertion of string s and token t and returns the index of this
new entry.

(a) Lookup
(b) Set
(c) Insert
(d) Reset

 6. __________ fi nds for attributes of the variable in symbol table.

(a) Lookup
(b) Set
(c) Insert
(d) Reset

 7. __________ operation marks the scope of variables in the block.

(a) Insert
(b) Lookup
(c) Set
(d) Reset

 8. __________ operation removes all variable declarations inside the scope of a block on exit.

(a) Insert
(b) Lookup
(c) Set
(d) Reset

 9. __________ operations are performed in block structured languages to keep scope
information of the variables.

(a) Set and reset
(b) Insert and lookup
(c) Set and insert
(d) Reset and lookup

 10. In ordered symbol table, the entries in the table are lexically ordered on the __________.

(a) variable names
(b) variable size
(c) variable type
(d) All.

 11. __________ is applied if the node is critical to the right and the right child is right
heavy.

(a) Right - Right rotation.
(b) Right - Left rotation
(c) Left - Left rotation
(d) Left - Right rotation

 Exercises 371

 12. __________ is applied if the node is critical to the right and the right child is left
heavy.

(a) Right - Right rotation
(b) Right - Left rotation
(c) Left - Left rotation
(d) Left - Right rotation

 13. __________ is applied if the node is critical to the left and the left child is left heavy.

(a) Right - Right rotation
(b) Right - Left rotation
(c) Left - Left rotation
(d) Left - Right rotation

 14. __________ is applied if the node is critical to the left and the left child is right heavy.

(a) Right - Right rotation
(b) Right - Left rotation
(c) Left - Left rotation
(d) Left - Right rotation

 15. The __________ requires that the function, h(k) to map each key k to one address that
is in the range (l,m).

(a) direct address approach.
(b) indirect address approach.
(c) Both.
(d) None.

 16. The ________ technique uses a second hashing operation when there is a collision.

(a) quadratic hashing.
(b) linear hashing.
(c) re-hashing.
(d) double hashing.

 17. The concept of block structure was fi rst introduced in the __________ family of
languages.

(a) Fortran.
(b) Pascal
(c) Lisp.
(d) Algol.

Exercises
 1. a. What is the use of the symbol table in the compilation process? List out various

attributes stored in the symbol table.
 b. Explain the different schemes of storing the name attribute in symbol table.

372 Symbol Table

 2. a. Write about the importance of symbol table.
 b. Explain the importance of each attribute stored in symbol table.

 3. Explain the importance and format of storing the following attributes in symbol
table.

a. Variable name.
b. Variable type.
c. Size.
d. Address of variable.

 4. List the various data structures that can be used to organize a symbol table. Compare
the performance.

 5. a. Explain symbol table organization as arrays and linked list.
 b. Construct ordered array list for the variable in the following program.

int main()
{
 int a1, a2, c1, c2;
 char b1;
 fl oat d1, d2;

}

 6. a. Explain the hash table organization of symbol table.
 b. List the advantage of the hash table over other data structures.

 7. a. Explain about block and non-block structured languages with example.
 b. List the operations in block structured language.

 8. a. What is the use of the symbol table in compilation process? List out the various
attributes stored in the symbol table.

 b. Explain dynamic storage allocation.

 9. Explain symbol table organization using hash tables. Construct hash-based structure
for symbol table for the variable in the following program.

int main()
{
 int a1, a2, c1, c2;
 char b1;
 fl oat d1, d2;

}

 Exercises 373

 10. Explain symbol table organization in trees. Construct the tree structure for symbol
table for the variable in the following program.

int main()
{
int a1, a2, c1, c2;
char b1;
fl oat d1, d2;

}

 11. Explain symbol table organization using hash tables. With an example show the sym-
bol table organization for block structured language.

 12. What is a symbol table? What is its use? What are the different ways of organizing
data in symbol table?

 13. a. Explain tree-structured symbol tables with example.
 b. What is the main criterion used in comparing different symbol table organizations?

 14. What is the use of the symbol table in compilation process? List out various attributes
stored in the symbol table.

 15. a. Explain the importance of each attribute stored in symbol table.
 b. Compare the performance of different symbol table organization.

 16. a. Construct ordered array list for the variable in the following program.

int main()
{
 int a1, a2, c1, c2;
 char b1;
 fl oat d1, d2;

}

 b. Explain about block and non-block structured languages with example.

 17. Explain the operations in block structured languages with examples.

a. Set
b. Reset
c. Lookup
d. Insert

374 Symbol Table

Key for Fill in the Blanks
 1. Lexical analysis. 11. Insert.
 2. n(log (n)) +e (log (n)). 12. −1, 0, or +1.
 3. Block structured languages. 13. Right – Right rotation
 4. Lexeme. 14. Right – Left rotation.
 5. Insert. 15. Left – Left rotation.
 6. Lookup. 16. Left – Right rotation.
 7. Set operation. 17. −2 or +2
 8. Reset. 18. direct address table.
 9. Scope information. 19. collusion
 10. FORTRAN. 20. Algol.

Key for Objective Question Bank
 1. b. 2. d. 3. a. 4. b. 5. c. 6. a. 7. c. 8. d. 9. a. 10. a.
 11. a. 12. b. 13. c. 14. d. 15. a. 16. c. 17. d

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 375

C H A P T E R 10

CHAPTER OUTLINE

 10.1 Introduction

 10.2 Where and How to Optimize

 10.3 Procedure to Identify the Basic Blocks

 10.4 Flow Graph

 10.5 DAG Representation of Basic Block

 10.6 Construction of DAG

 10.7 Principle Source of Optimization

 10.8 Function-Preserving Transformations

 10.9 Loop Optimization

 10.10 Global Flow Analysis

 10.11 Machine-Dependent Optimization

Code optimization is an important phase to improve the time and space requirement of the generated
target code. Given a code in intermediate form it applies optimizing techniques and reduces the code
size and returns the code in intermediate form.

Code Optimization

Code optimization phase is an optional phase in the phases of a compiler, which is either
before the code generation phase or after the code generation phase. This chapter focuses on
the types of optimizer and the techniques available for optimizing. It also includes global
fl ow analysis, a technique to gather the information of how data and control fl ows, to apply
global optimization.

10.1 Introduction
It is possible for a programmer to outperform an optimizing compiler by using his or
her knowledge in choosing a better algorithm and data items. This is far from practical
conditions. In such an environment, there is need for an optimizing compiler. Optimiza-
tion is the process of transformation of code to an effi cient code. Effi ciency is in terms of
space requirement and time for its execution without changing the meaning of the given
code. The optimization is considered an important phase because of the following practi-
cal reasons:

376 Code Optimization

 � Inefficient programming (which forces many invisible instructions to be performed for
actual computation.) e. × a = a + 0

 � The programming constructs for easy programming. e. × Iterative loops.
 � Compiler generated temporary variables or instructions.

The following constraints are to be considered while applying the techniques for code
improvement:

 � The transformation must preserve the meaning of the program, that is, the target code
should ensure semantic equivalence with source program.

 � Program efficiency must be improved by a measurable amount without changing the
algorithm used in the program.

 � When the technique is applied on a special format, then it is worth transforming to that
format only when it is beneficial enough.

 � Some transformations are applied only after detailed analysis, which is time consuming.
Such analysis may not be worthy if the program is run very few number of times.

The optimization can be classifi ed depending on

 � Level of code.

 ○ Design level—effi ciency of code can be improved by making the best use of available
resources and selection of suitable algorithm.

 ○ Source code level—the user can modify the program and change the algorithm to
enhance the performance of the object code.

 ○ Compile level—the compiler can enhance the program by improving the loops, opti-
mizing on the procedure calls and address calculations. This is possible when the rep-
resentation is in three address code.

 ○ Assembly level—the compiler optimizes the code based on the machine architecture
and is based on the available registers and suitable addressing modes.

 � Programming language

 ○ Machine Independent––the code-improvement techniques that do not consider
the features of the target machine are machine-independent techniques. Con-
stant folding, dead code elimination, and constant propagation are examples of
 machine-independent techniques. These are applied on either high-level language or
intermediate representation.

 ○ Machine dependent––these techniques require specifi c information relating to target
machine. Register allocation, strength reduction, and use of machine idioms are exam-
ples of machine-dependent techniques.

 � Scope

 ○ Local—Optimizations performed within a single basic block are termed as local
 optimizations. These techniques are simple to implement and does not require any:
analysis since we do not require any information relating to how data and control fl ows.

 Where and How to Optimize 377

 ○ Global—optimization performed across basic blocks is called global optimizations.
These techniques are complex as it requires additional analysis to be performed
across basic blocks. This analysis is called data-fl ow analysis.

Optimization is the fi eld where most compiler research is done today. High-quality opti-
mization is more of an art than a science. Compilers for mature languages are judged based
upon the quality of the object code generated and not based on how well they parse or ana-
lyze the code.

Example 1:
Consider the following example, which sets every element of an array to 1.

a) int array_ele[10000];
void Binky() {
int i;
for (i=0; i < 10000; i++)
array_ele[i] = 1;
}

b) int array_ele[10000];
void Winky() {
register int *p;
for (p = array_ele; p < array_ele + 10000; p++)
*p = 1;

 }

In the above two examples, one may think the second one is faster than the fi rst. It may
be true if they use a compiler without optimization. Many modern compilers emit the same
object code by using clever techniques like “loop-induction variable elimination.”

10.2 Where and How to Optimize
Optimization techniques can be applied to intermediate code or on the fi nal target code.
It is a complex and a time-consuming task that involves multiple sub phases, sometimes
applied more than once. Most compilers allow the optimization to be turned off to speed up
compilation process. For example, in gcc there are specifi c fl ags that are turned on/off for
individual optimization. To apply optimization it is important to do control fl ow analysis
and data fl ow analysis followed by transformations as shown in Figure 10.1.

Control Flow Analysis: It determines the control structure of a program and builds a
control fl ow graph.

Data Flow Analysis: It determines the fl ow of scalar values and builds data fl ow graphs.
The solution to fl ow analysis propagates data fl ow information along a fl ow graph.

Transformation: Transformations help in improving the code without changing the
meaning or functionality.

378 Code Optimization

Flow Graph

A graphical representation of three address code is called fl ow graph. The nodes in the fl ow
graph represent a single basic block and the edges represent the fl ow of control. These fl ow
graphs are useful in performing the control fl ow and data fl ow analysis and to apply local or
global optimization and code generation.

Basic Block

A basic block is a set of consecutive statements that are executed sequentially. Once the
control enters into the block then every statement in the basic block is executed one after the
other before leaving the block.

Example 2: For the statement a = b + c * d/e the corresponding set of three address code is

t1 = c * d
t2 = t1 / e
t3 = b + t2
 a = t3

All these statements correspond to a single basic block.

10.3 Procedure to Identify the Basic Blocks
Given a three address code, fi rst identify the leader statements and group the leader state-
ment with the statements up to the next leader. To identify the leader use the following
rules:

1. First statement in the program is a leader.
2. Any statement that is the target of a conditional or unconditional statement is a leader

statement.
3. Any statement that immediately follows a conditional/unconditional statement is a

leader statement.

Figure 10.1 Code Optimization Model

Code Optimizer

Control flow
 analysis

Data flow
analysis

Transformation

 Procedure to Identify the Basic Blocks 379

Example 3: Identify the basic blocks for the following code fragment.

main()
{
 int i = 0, n = 10;
 int a[n];
 while (i <=(n-1))
 {
a[i] = i * i;
i=i+1;
 }
 return;
}

The three address code for the initialize function is as follows:

 (1). i: = 0
 (2). n: = 10
 (3). t1: = n − 1
 (4). If i > t1 goto (12)
 (5). t2: = i * i
 (6). t3: = 4 * i
 (7). t4: = a[t3]
 (8). t4: = t2
 (9). t5: = i + 1
 (10). i:= t5
 (11). goto (3)
 (12). return

Identifying leader statements in the above three address code
 Statement (1) is leader using rule 1
 Statement (3) and (12) are leader using rule 2
 Statement (4) and (12) are leaders using rule 3

 1. i: = 0 Leader 1
 2. n: =10
 3. t1: = n − 1 Leader 2
 4. If i > t1 go to (12)
 5. t2: = i * i Leader 3
 6. t3: = 4 * i
 7. t4: = a[t3]
 8. t4: = t2
 9. t5: = i + 1
 10. i: = t5
 11. go to (3)
 12. Return Leader 4

380 Code Optimization

Basic block 1 includes statements (1) and (2)
Basic block 2 includes statements (3) and (4)
Basic block 3 includes statements (5)–(11)
Basic block 4 includes statement (12)
Basic blocks are shown in Figure 10.2.

10.4 Flow Graph
Flow graph shows the relation between the basic block and its preceding and its successor
blocks. The block with the fi rst statement is B1. An edge is placed from block B1 to B2, if
block B2 could immediately follow B1 during execution or satisfi es the following conditions.

 � The last statement in B1 is either conditional or unconditional jump statement that is fol-
lowed by the first statement in B2 or

 � the first statement in B2 follows the last statement in B1 and is not an unconditional/
conditional jump statement.

Flow graph for Figure 10.2 is shown in Figure 10.3.

Figure 10.2 Basic Blocks

(1) i = 0
(2) n = 10

(3) t1 : = n – 1
(4) If i > t1 go to (12)

(5) t2 = i*I
(6) t3 = 4*i
(7) t4 = a [t3]
(8) t4 = t2
(9) t5 = i + 1
(10) i : = t5
(11) go to (3)

(12) return

B1

B2

B3

B4

 Construction of DAG 381

10.5 DAG Representation of Basic Block
A DAG is a useful data structure for implementing transformations within a basic block.
It gives the pictorial representation of how values computed at one statement are useful in
computing the values of other variables. It is useful in identifying common sub-expressions
within a basic block. A DAG has nodes, which are labeled as follows:

 � The leaf nodes are labeled by either identifiers or constants. If the operators are arithmetic
then it always requires the r- value.

 � The labels of interator nodes correspond to the operator symbol.
 � Some nodes are sometimes referred to by the sequence of identifiers for labels. The interior

nodes represent computed values.

Note: The DAG is not the same as a fl ow graph. Each node in a fl ow graph is a basic
block, which has a set of statements that can be represented using DAG.

10.6 Construction of DAG
To construct DAG, we process each statement of the block.

If the statement is a copy statement, that is, a statement of the form a = b, then we do not
create a new node, but append label a to the node with label b.

Figure 10.3 Flow Graph for Example 3

(1) i : = 0
(2) n : = 10

(3) t1 : = n − 1
(4) If i > t1 go to (12)

(5) t2 : = i*I
(6) t3 : = 4*i
(7) t4 : = a [t3]
(8) t4 : = t2
(9) t5 : = i + 1
(10) i : = t5
(11) go to (3)

(12) return

B1

B2

B3 B4

382 Code Optimization

If the statement is of the form a = b op c, then we fi rst check whether there is a node with
same values as b op c, if so we append the label a to that node. If such node does not exist then
we fi rst check whether there exists nodes for b and c which may be leaf nodes or an internal
nodes if recently computed, then create a new node for op and add to it the left child b and
the right child as c. Label this new node with a. This would become the value of a to be used
for next statements; hence, we mark the previously marked nodes with a as a0.

DAG creation would be easy if we maintain the information of the nodes created for all
the identifi ers and facility to create a linked list of attached identifi ers for each node.

We also defi ne a function that returns the most recently created node associated with
identifi er.

10.6.1 Algorithm for Construction of DAG
Given a basic block we need to construct a DAG, which has the following information:

 � A label (identifier/operator) for each node.
 � For each node list of identifiers attached to it.

In the construction process, we process each statement and categorize it to one of the
following cases.

 i. a = b op c
 ii. a = op b
 iii. a = b
 iv. Relational operators are treated as case (i) for example if i 20 go to l1 consid-

ered similar to case (i) with a undefi ned.

Initially we assume there are no nodes, and a node is undefi ned for all arguments and does
the following steps:

1. For case (i)

 a. If node(b) and node(c) are undefi ned, create leafs labeled b and c respectively; let
node(b) and node(c) be these nodes.

 b. Find if there is a node labeled op, with left child as node(b) and right child as
node(c); if found return this node; otherwise, create a node and let this be n.

 c. Delete a from the list of attached identifi ers for node(a). Append a to the list of
attached identifi ers for the node n found in (b) and set node(a) to n.

2. For case (ii)

 a. If node(b) is undefi ned, create a leaf labeled b; let node(b) be the node.
 b. Find if there is a node labeled op, whose lone child is node(b); if so, return this

node otherwise create a node and let this be n.
 c. Delete a from the list of attached identifi ers for node(a). Append a to the list of

attached identifi ers for the node n found in b) and set node(a) to n.

3. For case (iii)

 a. node(b) is an existing node and let it be n.

 Construction of DAG 383

 b. Delete a from the list of attached identifi ers for node(a). Append a to the list of
attached identifi ers for the node n found in (a) and set node(a) to n.

Example 4: Let us consider Figure 10.4 and construct DAG for each block step by step.

For block B1

For the statement which satisfi es case iii) we fi rst create a leaf labeled 4 and attach identi-
fi er i to it as shown in Figure 10.5.

For block B2

For fi rst statement, which satisfi es case i) we fi rst create nodes for n and 1, then create
node for operator(–) and label it as t1. Figure 10.6(a) shows for single statement in B2.

For second statement, which is a conditional statement, we create a node for operator >
and label it as 12 as when this condition is satisfi ed it should go to statement 12. Figure 10.6(b)
shows for all statements in B2 block.

Block B3

For the fi rst statement, which satisfi es case (i), we create nodes for i and use as right
child, then create node for operator(*) and label it as t2 as shown in Figure 10.7(a).

Figure 10.4 Example 3 Program in Basic Blocks

(1) i : = 0
(2) n : = 10

(3) t1 : = n – 1
(4) If i > t1 go to (12)

(5) t2 : = i*I
(6) t3 : = 4*i
(7) t4 : = a [t3]
(8) t4 : = t2
(9) t5 : = i + 1
(10) i : = t5
(11) go to (3)

(12) return

B1

B2

B3

B4

Figure 10.5 DAG for Block B1

4i

384 Code Optimization

For second statement, we fi rst create nodes for 4 and use node(i), then create node for
operator(*) and label it as t3 as in Figure 10.7(b).

For third statement, we fi rst create nodes for a and use node(t3), then create node for
operator([]) and label it as t4 as in Figure 10.7(c).

For fourth statement, since it satisfi es the copy statement, we delete label t4; mark it as t40
and attach t4 label to node with label t2 as in Figure 10.7(d).

After construction for the entire block, the DAG would be as shown in the Figure 10.7(e).

10.6.2 Application of DAG

 � By looking at DAG we can determine
 ○ which ids have their values used in the block.
 ○ which statement computes values which could be used outside the block.

 � DAGs are useful for redundancy elimination

Figure 10.6(b) DAG for Block B2

>

i –

n 1

t1

12

Figure 10.6(a) DAG for First Statement in Block B2

−t1

n 1

Figure 10.7(a) DAG for One Statement Block B3

i

*
t2

 Construction of DAG 385

Figure 10.7(b) DAG for Two Statements in Block B3

i4

*

*

t2

t3

Figure 10.7(c) DAG for Three Statements in Block B3

i4

*

*

[]

 a

t2 , t4

t3

t40

i4

*

*

[]

 a

t2

t3

t4

Figure 10.7(d) DAG for Four Statements in Block B3

386 Code Optimization

10.7 Principle Source of Optimization
A transformation of a program is called local if it is applied within a basic block and global if
applied across basic blocks. There are different types of transformations to improve the code
and these transformations depend on the kind of optimization required.

 � Function-preserving transformations are those transformations that are performed with-
out changing the function it computes. These are primarily used when global optimiza-
tions are performed.

 � Structure-preserving transformations are those that are performed without changing the
set of expressions computed by the block. Many of these transformations are applied
locally.

 � Algebraic transformations are used to simplify the computation of expression set using
algebraic identities. These can replace expensive operations by cheaper ones, for instance,
multiplication by 2 can be replaced by left shift.

10.8 Function-Preserving Transformations
The following techniques are function-preserving transformations, where common sub
expression elimination can be applied locally or globally. The other techniques are applied
globally.

10.8.1 Common Sub-expression Elimination
An expression E is said to be common sub expression if E is computed before and the vari-
ables in the expression are not modifi ed since its computation. If such expression is present,
then the re-computation can be avoided by using the result of the previous computation.
This technique can be applied both locally and globally. We need to maintain a table to store

Figure 10.7(e) DAG for Complete Block B3

4

*

*

[]

 a
t3

t2 , t4

t40

i 1

+ t5 , i

0

 Function-Preserving Transformations 387

the details of expressions evaluated so far and use this information to identify and eliminate
the re-computation of the same expression. The common sub-expression elimination can be
done within basic block by analyzing and storing the information of expression in the table
until the operands in the expression are redefi ned. If any operand in the expression is rede-
fi ned, then remove the expression from the table. The algorithmic approach is given below.

Function subexpr_elimination (Block B)
{

For each statement that evaluates an expression within basic block
{

 Maintain in the table the set of expressions evaluated so far
If any operand in the expression if found as redefi ned, then
remove it from the table

Modify the instructions accordingly as you go
Generate temporary variable and store the expression in it and
Use the latest variable defi nition next time the expression
is encountered.

}
}

Figure 10.8 is an example that shows the optimized code on applying this technique
locally and globally.

Global common sub expression elimination is applied with the extra information col-
lected in fl ow graph analysis. At every block entry and exit the collected information should
be maintained to identify the evaluated expression.

Example 5: The following example in Figure 10.9 shows the common sub expression elimi-
nation globally by replacing the evaluated expression with a new temporary variable t1 and
t2 and these variables are used wherever the same expression is used. This generates copy
statements. If these copy statements are unnecessary, then they are eliminated by the tech-
nique explained in the next section.

Example 6: The bubble sort program is given below with its corresponding three address
code represented in fl ow graph.

void quicksort(int LI, int HI)
{
 int i, j;
 int pivot, z ;
 if(HI ≤LI) return;
 i = LI - 1;
 j = HI
 pivot =a [HI];
 while(1)
 {
 do i = i + 1; while (a[i] < pivot);

388 Code Optimization

Figure 10.8 Program Code Before and After Common Sub Expression Elimination

c = a + b
d = m * n
e = b + d
f = a + b
g = – b
h = b + a
a = j + a
k = m * n
j = b + d
a = – b
if m * n go to L

†1 = a + b
c = †1
†2 = m

*
 n

d = † 2
†3 = b + d
e = †3
f = †1
g = – b
h = †1 / * commutative * /
a = j + a
k = †2
j = †3
a = – b
if †2 go to L

Figure 10.9 Example for Global Common Sub Expression Elimination

entry

c = a + b
d = a * c
e = d * d

f = a + b
c = c * 2
c > d

g = a * c g = d * d

g > 10

exit

entry

†1 = a + b
c = †1
d = a * c
†2 = d * d
e = †2

f = †1
c = c * 2
c > d

g = a * c g = † 2

g > 10

exit

 Function-Preserving Transformations 389

 do j = j - 1; while (a[j] > pivot);
 if(i³j) break;
 z = a[i];
 a[i] = a[j];
 a[j] = z;
}

z = a[i];
a[i] = a[HI];
a[HI] = z;
quicksort(LI,j);
quicksort(j+1,HI);

}

Its corresponding three address code is given below and corresponding fl ow graph is
shown in Figure 10.10.

 1. i: = LI – 1 16. temp
7
: = 4 * i

 2. j: = HI 17. temp
8
: = 4 * j

 3. temp
1
: = 4 * HI 18. temp

9
: = a[temp

8
]

 4. pivot: = a[temp
1
] 19. a[temp

7
]: = temp

9

 5. i: = i + 1 20. temp
10
: =4 * j

 6. temp
2
: = 4 * i 21. a[temp

10
]: = z

 7. temp
3
: = a[temp

2
] 22. go to 5

 8. if temp
3
 < pivot go to 5 23. temp

11
: = 4 * i

 9. j: = j – 1 24. z: =a[temp
11
]

 10. temp
4
: =4 * j 25. temp

12
: = 4 * i

 11. temp
5
: = a[temp

4
] 26. temp

13
: = 4 * HI

 12. if temp
5
 > pivot go to 9 27. temp

14
: = a[temp

13
]

 13. if i ³ j go to 23 28. a[temp
12
]: = temp

14

 14. temp
6
: = 4 * i 29. temp

15
: = 4 * HI

 15. z: = a[temp
6
] 30. a[temp

15
]: = z

On applying local common sub expression elimination, we have block B5 and block B6
with improved code as the expressions 4 * i is computed more than once without change of
value. Hence, on optimizing locally, we get resultant code as shown in Figure 10.11.

On applying this technique globally, the code is further improved and the resultant code
is shown below in Figure 10.12. It is clear that the computation of a[i] in block B2 can be
used in B5 and B6. Similarly, a[j] computed in B3 can be used in B5 and B6.

10.8.2 Copy Propagation
A copy statement is a statement that is in the form a = b. Copy propagation technique is
applied to replace the later use of variable a with the use of b if original values of a do not

390 Code Optimization

change after this assignment. This technique can be applied locally and globally. This opti-
mization reduces runtime stack size and improves execution speed. To implement this, we
need to maintain a separate table called copy table, which holds all copy statements. While
traversing the basic block, if any copy statement is found, add this information into the copy
table. While processing any statement, check the copy table for variable a, which can be
replaced variable b. If there is an assignment statement that computes the value for a then
remove the copy statement from the copy table. Copy propagation helps in identifying the
dead code.

Let us assume that there are a set of statements s1, s2, s3…..sn, where the statements would
be either a copy statement of the statement which uses the right hand side of copy statement
or computes the value for a variable.

Figure 10.10 Flow Graph for Quick Sort Program

1. i : = L 1–1
2. j : = HI
3. temp1 : = 4 * HI
4. pivot : = a [temp1]

5. i : = i + 1
6. temp2 : = 4 * i
7. temp3 : = a [temp2]
8. if temp3 < pviot go to 5

9. j : = j –1
10. temp4 : = 4 * j
11. temp5 : = a [temp4]
12. if temp3 > pivot go to 9

19. a [temp8] : = z
20. go to 5

14. temp6 : = 4 * j
15. z : = a [temp6]
16. temp8 := 4 * j
17. temp9 := a [temp8]
18. a[temp6] : = temp9

28. a [temp13] : = z

23. temp11 : = 4 * j
24. z : = a [temp11]
25. temp13 : = 4 * HI
26. temp14 : = a [temp13]
27. a[temp11] : = temp14

13. if i ≥ j go to 23

B2

B3

B4

B6B5

B1

 Function-Preserving Transformations 391

Algorithm for copy propagation

Let INSERT (a, b) be a function that inserts {(a, b)} in a copy table, for a copy statement a = b,
which indicates that a can be replaced by b.

GET (a, table) be a function that checks in the table for the variable a. if found returns b;
otherwise, returns a.

Figure 10.11 After Applying Common Sub Expression Elimination for Figure 10.10

1. i : = L 1–1
2. j : = HI
3. temp1 : = 4 * HI
4. pivot : = a [temp1]

5. i : = i + 1
6. temp2 : = 4 * i
7. temp3 : = a [temp2]
8. if temp3 < pivot go to B2

9. j : = j –1
10. temp4 : = 4 * j
11. temp5 : = a [temp4]
12. if temp3 > pivot go to B3

19. a [temp8] : = z
20. go to B2

14. temp6 : = 4 * i
15. z : = a [temp6]
16. temp8 := 4 * j
17. temp9 := a [temp8]
18. a[temp6] : = temp9

28. a [temp13] : = z

23. temp11 : = 4 * i
24. z : = a [temp11]
25. temp13 : = 4 * HI
26. temp14 : = a [temp13]
27. a[temp11] : = temp14

13. if i ≥ j go to B6

B2

B3

B4

B6B5

B1

392 Code Optimization

GET(a, table)
{
 if you fi nd (a, b) in table

return b
else return a

}
GET(a, table)
{
 if you fi nd (a, b) in table

 return b
else return a

}

Figure 10.12 After Applying Global Common Sub Expression Elimination for Figure 10.11

1. i : = L 1–1
2. j : = HI
3. temp1 : = 4 * HI
4. pivot : = a [temp1]

5. i : = i + 1
6. temp2 : = 4 * i
7. temp3 : = a [temp2]
8. if temp3 < pivot go to B2

9. j : = j - 1
10. temp4 : = 4 * j
11. temp5 : = a [temp4]
12. if temp5 > pivot go to B3

16. a [temp4] : = z
27. go to B2

14. z : = temp3
15. a[temp2] : = temp5

21. a [temp1] : = z

18. z : = temp3
19. temp14 : = a [temp1]
20. a[temp2] : = temp14

13. if i ≥ j go to B6

B2

B3

B4

B6B5

B1

 Function-Preserving Transformations 393

OPT_CP_PROP(B)
{
 for each statement from s

1
 to s

n

 if statement is of the form “a = b op c”
 b = GET(b, table)
 c = GET(c, table)
 else if statement is of the form “a = x”
 x = GET(x, table)
 if statement has a left hand side a,
 REMOVE from table all pairs involving a.
 if statement is of the form “a = x”
 insert {(a, GET(x, table))} in the table
 endfor
}

Example 7: Let the basic block contain the following set of statements:

Y = X
Z = Y + 1
W = Y
Y = W + Z
Y = W

Statement No Instruction Updated instruction Copytable content

1. Y=X Y=X {(Y,X)}

2. Z=Y+1 Z=X+1 {(Y,X)}

3 W=Y W=X {(Y,X),(W,X)}

4 Y=W+Z Y=X+Z {(W,X)}

5 Y=W Y=W {(W,X),(Y,X)}

On the fi rst statement 1, since it is a copy statement, the information is added in to the
copy table. Statement 2 uses the value of X indirectly from Y. hence GET(Y,table) would
return X and the statement is modifi ed replacing Y with X. The third statement is a copy
statement and since Y is to replace X, we insert into the copy table W to be replaced by X.
When statement 4 is processed, Y value is defi ned; hence, details for Y are removed from the
copy table. The fi fth statement is a copy statement and is inserted into the copy table.

 To apply the technique globally, we perform fl ow analysis and given a copy state-
ment X = Y and a statement as W = X in successive blocks, we can replace W = X with W = Y
only if the following conditions are met:

 � X = Y must be the only definition of X reaching W = X. This can be determined through
ud-chains.

394 Code Optimization

 � The value of Y is not redefined in any path from the statement X = Y to W = X. Use itera-
tive data flow analysis to gather this information.

Example 8: The following example in Figure 10.13 shows the copy propagation technique
applied globally across different blocks. After the copy propagation we can see that the copy
statements d = c and g = e is a dead code as the values assigned to d and g are not used; hence
they can be eliminated.

Example 9: For the resultant quicksort code in Figure 10.12, obtained after common sub
expression elimination, copy propagation is applied the resultant code as is shown in
 Figure 10.14.

10.8.3 Dead Code Elimination
Code that is unreachable or that does not affect the program is said to be dead code. Such
code requires unnecessary CPU time, which can be identifi ed and eliminated using this
technique. The following program gives an example in high-level language where, the value
assigned to i is never used, and the value assigned to var1 variable in statement 6 is dead
store and the statement 9 is unreachable. These statements can be eliminated as they do not
affect the program execution.

Figure 10.13 Example for Global Copy Propagation Technique

entry

1: c = a + b
2: d = c
3: e = d * d

4:f = a + c
5: g = e
6: a = g + d
7: a < c

8: h = g + 1 9: f = d – g
10: f > a

11: b = g * a
12: h < f

exit

entry

c = a + b
d = c
e = c * c

f = a + c
g = e
a = e + c
a < c

h = e + 1 f = c – e
f > a

b = e * a
h < f

exit

Dead code ?

 Function-Preserving Transformations 395

1. int var1;
2. void sample()
3. {
4. int i;
5. i = 1; /* dead store */
6. var1 = 1; /* dead store */
7. var1 = 2;
8. return;
9. var1 = 3; /* unreachable */
10. }

Figure 10.14 Quick Sort Program After Applying Copy Propagation

1. i : = L 1–1
2. j : = HI
3. temp1 : = 4 * HI
4. pivot : = a [temp1]

5. i : = i + 1
6. temp2 : = 4 * i
7. temp3 : = a [temp2]
8. if temp3 < pivot go to B2

9. j : = j –1
10. temp4 : = 4 * j
11. temp5 : = a [temp4]
12. if temp3 > pivot go to B3

16. a [temp4] : = temp3
17. go to B2

14. z : = temp3
15. a[temp2] : = temp5

21. a [temp1] : = temp3

18. z : = temp3
19. temp14 : = a [temp1]
20. a[temp2] : = temp14

13. if i ≥ j go to B6

B2

B3

B4

B6B5

B1

396 Code Optimization

Below is the code fragment after dead code elimination.

1. int var1;
2. void sample()
3. {
4. var1 = 2;
5. return;
6. }

Example 10: Blocks B5 and B6 of fl owchart corresponding to quick sort there is dead store to
variable Z which can be eliminated by dead code elimination. The resultant code is shown
in Figure 10.15.

Figure 10.15 Quick Sort Program After Dead Code Elimination

1. i : = L 1–1
2. j : = HI
3. temp1 : = 4 * HI
4. pivot : = a [temp1]

5. i : = i + 1
6. temp2 : = 4 * i
7. temp3 : = a [temp2]
8. if temp3 < pivot go to B2

9. j : = j - 1
10. temp4 : = 4 * j
11. temp5 : = a [temp4]
12. if temp5 > pivot go to B3

15. a [temp4] : = temp3
16. go to B2

14. a[temp2] : = temp5

21. a [temp1] : = temp3

17. temp14 : = a [temp1]
18. a[temp2] : = temp14

13. if i ≥ j go to B6

B2

B3

B4

B6
B5

B1

 Loop Optimization 397

10.8.4 Constant Propagation
Constant propagation is an approach that propagates the constant values assigned to a
 variable at the place of its use. For example, given an assignment statement x = c, where c is a
constant, replace later uses of x with uses of c, provided there are no intervening assignments
to x. This approach is similar to copy propagation and is applied at fi rst stage of optimization.
This method can analyze by propagating constant value in conditional statement, to deter-
mine whether a branch should be executed or not, that is, identifi es the dead code.

Example 11: Let us consider the following example:

1. pi = 22/7
2. void area_per(int r)
3. {
4. fl oat area, perimeter;
5. area = pi * r * r;
6. perimeter = 2 * pi * r;
7. print area, perimeter;
8. }

In this short example, we can notice some simple constant propagation results, which
are as follows:

 � In line 1 the variable pi is constant and this value is the result of 22/7, which can be
computed at compile time and has the value of 3.413.

 � In line 5 the variable pi can be replaced with the constant value 3.413.
 � In line 6 since the value of pi is constant, the partial result of the statement can be

computed and the statement can be modified as

perimeter = 6.285 * r;

Note: In common sub expression elimination or constant propagation, often it may
require to rearrange the expressions by using the associative properties of the algebraic
expression.

10.9 Loop Optimization
In most of the programs, 90% of execution time is inside the loops; hence, loop optimiza-
tion is the most valuable machine-independent optimization and are good candidates for
improvement. Loops are for convenience of program writing, but these programs has to be
transformed using loop transformation techniques. Let us consider the example of a pro-
gram that has a loop statement.

for (int i=0; i<1000; i++)
x = x + y/z;

print x;

The optimized code of this program is represented in fl ow graph as shown in
Figure 10.16.

398 Code Optimization

It is clear that for the code the total number of statements that are executed are as follows:

Statement Number Frequency of execution Total number of statements

1 1 1

2 – 5 1000 4000

6 1 1

On the whole, the number of statements that are executed are 4002. Instead, if the code
is written as follows, then the total number of statements that are executed are only 1002.

1. t1 = y / z
2. x = x + t1
3. x = x + t1
4. x = x + t1
5. …
 ….
1001. x = x + t1
1002. print x

The execution is three times better for later than the fi rst form, but the space requirement
is more. Ineffi cient code is generated in the loops for various reasons like

 � Induction variable usage to keep track of iteration
 � Unnecessary computations made inside the iterative loops that are not effective
 � Use of high strength operators inside the loop

The important loop optimizations are elimination of loop invariant computations,
strength reduction, code motion and elimination of induction variables.

10.9.1 A Loop Invariant Computation

A loop invariant computation is one that evaluates the same value every time the statements
in loop are executed. Moving such a computational statements outside the loop leads to a
reduction in the execution time.

Figure 10.16 Flow Graph After Code Optimization

1. i : = 0

2. t1 = y / z
3. x = x + t1
4. i = i + 1
5. if i < 1000 go to B2

6. print X

B1

B2

B3

 Loop Optimization 399

Algorithm for elimination of loop invariant code

Step 1: Identify loop-invariant code.

Step 2: An instruction is loop-invariant if, for each operand:
 ○ The operand is constant, OR
 ○ All defi nitions for all the operands that reach the instruction inside the loop are

made outside the loop, OR
 ○ There is exactly one defi nition made using loop invariant variables inside the loop

for an operand that reaches the instruction.
Step 3: Move it outside the loop.

 ○ For each loop-invariant defi nition statement i: x = y + z in basic block B, verify that
it satisfi es the conditions:

 a. B is the fi rst block that dominates all exits of the loop
 b. x is not redefi ned anywhere else in the loop, that is, it is defi ned once in block
 c. block B dominates all uses of x with in the loop

 (i.e., all uses of x within the loop can be reached only by statement i.)
 ○ Move each instruction i to newly created preheader if and only if it satisfi es these

requirements of the loop, making certain that any non-constant operands (like y,
z) have already had their defi nitions moved to the pre-header.

Note: It is important that while applying loop-invariant code motion in nested loops, start at
innermost loop and work outwards.

Example 12:

for (int i=0; i<1000; i++)
x = x + y/z;

print x;

In the example, the value of y and z remains unchanged as there is no defi nition for
these variables in the loop. Hence, the computation of y/z remains unchanged, which can be
moved above the loop and the same code can be rewritten as follows:

t
1
= y/z

for (int i=0; i<1000; i++)
 x = x + t

1
;

print x;

10.9.2 Induction Variables
Induction variables are those variables used in a loop, their values are in lock-step, and hence,
it may be possible to eliminate all except one. There are two types of induction variables—ba-
sic and derived. Basic induction variables are those that are of the form

I = I ± C
where I is loop variable and C is some constant.

400 Code Optimization

Derived induction variables are those that are defi ned only once in the loop and their
value is a linear function of the basic induction variable.

For example,

J = A * I + B

Here J is a variable that is dependent on the basic induction variable I and the constants
A and B. This is represented as a triplet (I, A, B)
Induction variable elimination involves three steps.

1. Detecting induction variable
2. Reducing the strength of induction variable
3. Eliminating induction variable

10.9.2.1 Detecting Induction Variable
Given a loop L with reaching defi nition information and the families of induction variable
this algorithm generates the output that indicates the set of induction variables. For each
induction variable J that belongs to family of I if, there is as associated triplet (I, A, B) where
I is the basic induction variable, A and B are constants such that, value of J is computed as
A * I + B.

Algorithm for detecting the induction variable

For all basic blocks

 i. Scan the statements of loop L, if there is a loop—invariant computation associated
with each basic induction variable, the triplet as (I, 1, 0).

 ii. Search for a variable J within the loop L is defi ned as single assignment and is in the
family of I where I is basic induction variable.

J = I + B (then the triplet is (I, 1, B)
J = I – B (then the triplet is (I, 1, –B)
J = A * I (then the triplet is (I, A, 0)
J = I / A (then the triplet is (I, 1/A, 0)

iii. If the induction variable J is in the family of some K, where K is not basic induction
variable but is in family if I, then the other requirements are

a. There is no assignment to I between the actual point of assignment to K in L and
the assignment to J and

b. There is no defi nition of K outside L reaches J.

Suppose the induction variable J = C * K where the triplet for K is (I, A, B), then triplet
for J is given as (I, A * C, B * C). Once the family of induction variable is found, we modify
the instructions, computing induction variable to use additions or subtractions rather than
multiplications. This can be done by the strength reduction process, which is shown in the
next algorithm.

 Loop Optimization 401

Example 13: Let us consider the block B2, optimized code of quick sort program as in
Figure 10.17. In this block, variable i is a basic induction variable as there is a lone assign-
ment to i in the loop and increments by 1. temp2 is in the family of i and its triplet is (i, 4, 0).
Similarly J is the only basic induction variable in block B3 with temp4 in the family of J with
triplet (j, 4, 0)

Figure 10.17 Block B2 from Quick Sort Program

5. i : = i + 1
6. temp2 : = 4 * i
7. temp3 : = a [temp2]
8. if temp3 < pivot go to B2

10.9.2.2 Strength Reduction Applied to the Induction Variable
For a loop L with reaching defi nition information and families of induction variables,
we revise the loop where the high strength operations are replaced by low strength
operations.

Algorithm

Consider each basic induction variable I, consider a variable J in the family of I depending
on the variable I with triplet (I, a, b):

1. Create a new variable K for the two variables J1 and J2 with same triplet.
2. Replace the assignment to J by J = S
3. Add a new statement S = S + A*n immediately after every assignment I = I + n in L, and

place S in family of I.
4. Ensure that S is initialized to A * I + b on entry to the loop. This initialization may be

placed at the end of preheader which consists of

S = A * I
S = S + B

Example 14: On applying the previous algorithm, we got that in block B3 the basic induction
variable is j and temp4 is in family of J with triplet (j, 4, 0). On applying the above algorithm,
the statement temp4 = 4 * j is replaced by temp4 = s4 and inserts the assignment statement
s4 = s4 – 4 after the assignment of j = j – 1 where –4 is obtained by multiplying the –1 in the
assignment to j and the 4 in the triplet (j, 4, 0) for temp4. Initialization of s4 is placed at the end
of block B1, which contains the defi nition of J. After strength reduction, we fi nd that only use
of some induction variables is in tests, we can replace a test of such an induction variable by
that of another as shown in Figure 10.18.

10.9.2.3 Elimination of Induction Variable
The induction variable can be eliminated if the reaching defi nition information, loop invari-
ant computation information, and live variable information is available.

402 Code Optimization

1. Let there be some basic induction variable that is used only to compute other induction
variable in its family and in conditional branches.

 For example, let J be in the family of I with triplet (I, A , B) where A is positive.

J = A * I + B.

 Let there be a test of the form

if I relop X goto B

 where X is not an induction variable; then this statement can be replaced as follows:

C = A *X

Figure 10.18 Quick Sort Program After Applying Strength Reduction

1. i : = L 1–1
2. j : = HI
3. temp1 : = 4 * HI
4. pivot : = a [temp1]
5. s2 : = 4 * i
6. s4 : = 4 * j

7. i : = i + 1
8. s2 : = s2 + 4
9. temp2 : = s2
10. temp3 : = a [temp2]
11. if temp3 < pivot go to B2

12. j : = j – 1
13. s4 = s4 – 4
14. temp4 : = s4
15. temp5 : = a [temp4]
16. if temp5 > pivot go to B3

19. a [temp4] : = temp3
20. go to B2

18. a[temp2] : = temp5

 23. a [temp1] : = temp3

21. temp14 : = a [temp1]
22. a[temp2] : = temp14

17. if i ≥ j go to B6

B2

B3

B4

B6B5

B1

 Global Flow Analysis 403

C = C + B
If J relop C goto B

 where C is a new temporary variable. This modifi cation makes the code independent of
induction variable I since comparing I with X is the same as comparing J with A*X+B

 If there are two variables I1 and I2 then the test statement is

if I1 relop I2 goto B,

 then we check for the variables J1 and J2 in the families of I1 and I2 with the triplets as
(I1, A1, B1) and (I2, A2, B2) respectively with A1 = A2 and B1 = B2 then the statement

if I1 relop I2 goto B, can be replaced as

if J1 relop J2 goto B.

 Once these variables are replaced, delete all the induction variables as these are useless.

On applying induction variable elimination to the quick sort program, the resultant
code is shown in Figure 10.19.

10.10 Global Flow Analysis
To apply the optimization globally and get a good optimized code, it is required to collect
information about variables or expressions in the program as a whole and distribute this
information to each block. Data fl ow information can be collected by setting up equations
and solving these equations at various points. These equations are framed in terms of four
variables that are listed below.

IN(S) it indicates the set of defi nitions that are reaching the statement S.
OUT(S) it indicates the set of defi nitions that are leaving the statement S.
GEN(S) the defi nition that is generated at this statement.
KILL(S) the defi nition that is killed at this statement.

A typical equation has a form

OUT(S) = GEN(S) ∪ (IN(S) – KILL(S))

This indicates the information at the end of a statement is either generated within the
statement, or enters at the beginning of the statement and is not killed in as the control fl ows
through the statement.

The factors that infl uence the framing of the equations and solving them depends on

1. The notions of generating and killing depend on the desired information. Sometimes
it may require analyzing the fl ow backwards rather than normal fl ow.

2. Since the data fl ows along the control path, the data fl ow analysis is affected by the
control structures in the program.

3. There may be cases that may control the analysis. For example, procedure calls,
assignment through pointers or array variables.

Before understanding the method for framing and solving the equations, let us try to
understand reaching defi nition, use defi nition chains, defi nition use chains, live variable
analysis.

404 Code Optimization

10.10.1 Points and Paths
A point is between two adjacent statements, as well as the point before and after a state-
ment. If a block has four statements, then there would be fi ve points in the block as shown
in Figure 10.20.

 A path is a sequence of points p1, p2, …….pn, which give the global view of how the
control fl ows and satisfi es the condition for each i between 1 to n; either

1. pi is a point immediately preceding a statement and pi+1 is the point immediately
following the statement in the same block or

Figure 10.19 Code After Induction Variable Elimination

1. i : = L 1– 1
2. j : = HI
3. temp1 : = 4 * HI
4. pivot : = a [temp1]
5. temp2 : = 4 * j
6. temp4 : = 4 * j

7. temp2 : = temp2 + 4
8. temp3 : = a [temp2]
9. if temp3 < pivot go to B2

10. temp4 : = temp4 - 4
11. temp5 : = a [temp4]
12. if temp5 > pivot go to B3

15. a [temp4] : = temp3
16. go to B2

14. a [temp2] : = temp5

 23. a [temp1] : = temp3

17. temp14 : = a [temp1]
18. a [temp2] : = temp14

13 . if temp2 ≥ temp4 go to B6

B2

B3

B4

B6B5

B1

 Global Flow Analysis 405

2. pi is a point at the end of some block and pi+1 is a point which is at the beginning
of the succeeding block.

10.10.2 Reaching Defi nition
A defi nition of a variable a is a statement that assigns, or may assign, a value to a. The com-
mon forms of defi nition to assign value to a is by an input statement or by an assignment
statement. These forms are said to be unambiguous. The ambiguous defi nitions are

1. A call to a procedure with variable a as a parameter using call by reference.
2. An assignment through a pointer that could refer to variable a.

A defi nition d that reaches a point p, if and only if there exists a path from the point of
its defi nition to the point immediately following d, such that d is not killed in any path that
reaches d.

10.10.3 Use Defi nition Chains
Use defi nition chains are used to store the reaching defi nition information. It is the list of
each use of a variable out of all defi nitions that reach that use.

 � If a variable a has unambiguous definition then ud-chain for that use is a set of defini-
tions in IN[B]. If there is an unambiguous definition within the block, then the use of a
is the one that is last defined in the same block.

 � If a variable a has an ambiguous definition, then all of these for which no unambigu-
ous definition of a lies between it and the use of a are on the ud-chain for this use of a.

10.10.4 Live Variable Analysis
Some code optimization techniques depend on the information computed in the direction
opposite to the fl ow of control. For example, in dead code elimination, we may eliminate
the statements that assign values to variables that are never used. This requires the analysis
in the opposite direction, which identifi ed what defi nitions are used at any statement. In
live variable analysis, we wish to know for a variable x and a point p whether the value x at
p could be used along some path in the fl ow graph starting at p. if we say so, x is live at p,
otherwise x is dead at p.

Figure 10.20 Basic Block Indicating Different Points

1. i : = L1–1
p

1

 p2
2. j : = HI
 p3
3. temp1 : = 4 * HI
 p4
4. pivot : = a [temp1]
 p5

406 Code Optimization

10.10.5 Defi nition Use Chains
A variable is used at a statement s if the r-value of the variable is required in the computation
in statement s. The du-chain represents for a point p the set of uses s of a variable x, such that
there is a path from p to s that does not redefi ne x.

10.10.6 Data Flow Analysis of Structured Programs
The program includes different control fl ow constructs such as if statements, iterative state-
ments, which would control the framing of data fl ow equations. This section gives different
ways of framing equations that are structure dependent.

Figure 10.21 gives the list of rules for framing equations where Da indicates the set of all
defi nitions corresponding to variable a.

10.10.7 Representation of Sets
The set of defi nitions for GEN and KILL can be represented using bit representation, which
is compact and easy to compute. We assign a number for each defi nition and then use a bit
vector that has the bits depending on the number of defi nitions. To compute union, we can

1 S

°

° °

°

d : a = b + c
GEN [S] = { d }
KILLS [S] = Da – { d }
OUT [S] = GEN [S] ∪ (IN [S] – KILLS [S])

2
 S

°

°

 S

°

°

 S

°

°

 s1

°

°

°

°

GEN [S] = GEN [S2] ∪ (GEN [S1] - KILL [S2])
KILL [S] = KILL [S2] ∪ (KILL [S1] -GEN [S2])
IN [S1] = IN [S]
IN [S2] = OUT [S1]
OUT [S] = OUT [S2]

GEN [S] = GEN [S1] ∪ GEN [S2]
KILL [S] = KILL [S2] ∩ KILL [S1]
IN [S1] = IN [S]
IN [S2] = IN [S]
OUT [S] = OUT [S1] ∪ OUT [S2]

GEN [S] = GEN [S1]
KILL [S] = KILL [S1]
IN [S1] = IN [S] ∪ GEN [S1]
OUT [S] = OUT [S1]S

s1

°

s1

s1s1

3

4

Figure 10.21 Rules for Framing Equations

 Global Flow Analysis 407

perform logical operation, for intersection perform a logical operation and for difference,
that is, A – B perform logical A and (not B).

Example 15: Consider the program that has eight defi nitions as shown below

d1 I = n – 1
d2 J = m
d3 a = x 1
 do
d4 I = I + 1
d5 J = J – 1
 if E1 then
d6 a = x2
 else
d7 I = x2
d8 a = x3
 while E2

In the above partial program, there are eight defi nitions from d1 through d8. Eight bits
are required for bit representation. At any given point, the KILL, GEN, IN, OUT are repre-
sented as 8 bits. The bits that are set to 1 are said to be those defi nitions that are killed, gener-
ated, reaching, or leaving the point respectively. The set for KILL and GEN are computed by
applying the data fl ow equations to the statements. These statements can be represented as
a syntax tree using the following rules.

S id: = E | S ; S | if E then S else S |
 do S while E | if E then S
E id + id | id – id | id * id | id / id | id

We can represent the entire program in the form of syntax tree using the rules. For each
node in the parse tree, we can compute the values for GEN and KILL as explained below.

GEN(d1) = 1000 0000 / as only one defi nition is done here
KILL(d1)= 0001 0010 / the defi nition here is for I and this kills the defi nition of I in

defi nitions of d4 and d7
Similarly, for all defi nitions, d2, d3 …..d8 the calculations are done. At a point above d1

and d2 to compute GEN and KILL we apply the rule of statements in sequence

 GEN[S] = GEN[S2] (GEN[S1] – KILL[S2])
 0100 0000 (1000 0000– 0000 1000)
 0100 0000 (1000 0000 11110111)
 0100 0000 (1000 0000)
 1100 0000
KILL[S] = KILL[S2] (KILL[S1] – GEN[S2])
 0000 1000 (0001 0010 – 0100 0000)
 0000 1000 (0001 0010 1011 1111)
 0000 1000 (0001 0010)
 0001 1010

408 Code Optimization

Similarly, calculations are done for each node and the values are shown in the annotated
parse tree of Figure 10.22.

10.10.8 Iterative Algorithm for Reaching Defi nition
Once the KILL and GEN for each block is computed, we can compute IN and OUT for each
block using the formulas

N[B] = ∪OUT [p]
p∈predecessor (B)

OUT[B] = GEN[B] ∪(N[B] − KILL[B])

We use iterative approach, starting with an estimation for IN[b] = for all blocks B and
converging to the desired value of IN and OUT. The algorithm sketch is given below.

Figure 10.22 Annotated Parse Tree with GEN and KILL Values

;

e1

If - then - else

e2

do

;

;

;

;

G = 0001 1111
K = 1110 0000

G = 1110 0000
K = 0001 1111

G = 0010 0000
K = 0001 0101

G = 0001 1111
K = 1110 0000

d3 ;

G = 0100 0000
K = 0000 1000

d2d1
G = 1000 0000
K = 0001 0010

G = 1100 0000
K = 0001 1010

G = 00011000
K = 1100 0001

d4 d5
G = 0001 0000
K = 1000 0010

G = 0000 1000
K = 0100 0000

G= 0001 1111
K = 1110 0000

G = 0000 0111
K = 0010 0000

G = 0000 0100
K = 0010 0001

d6

G = 0000 0011
K = 1011 0100

d7 d8
G = 0000 0010
K = 0010 0001

G = 0000 0001
K = 1001 0000

 1. initialize IN[B]= and OUT[B] based on GEN[B] values
 2. for each block B do until OUT[B] = GEN[B]
 3. change = true
 4. while change do begin
 5. change = false
 6. for each block B do begin
 7. N[B] = ∪OUT [p]

p∈predecessor (B)

 Global Flow Analysis 409

 8. OLDOUT= OUT[B]
 9. OUT[B]=GEN[B] (IN[B] – KILL[B])
 10. if OUT[B] ¹ OLDOUT then change = true
 11. end
 12. end

Example 16: The above algorithm when applied to the fl ow graph of Example 15, we
can observe that at the end, the GEN and KILL values for each block are shown in
Figure 10.23.

According to the algorithm, fi rst initialize the values of IN[B] with all zeros and based
on GEN information fi nd the values for OUT for each block.

PASS 1:

IN[B1] remains the same as there is no predecessor block.

OUT[B1] = GEN[B1] (IN[B1] – KILL[B1])
 = 1110 0000 (0000 0000 – 0001 1111)
 = 1110 0000 (0000 0000 1110 0000)

Figure 10.23 GEN and KILL Values for Each Block

d1 l = n – 1
d2 J = m
d3 a = x1

d4 l = l + 1
d5 J = J – 1

d6 a = x2
d7 l = x2

d8 a = x3

B2

B3
B4

B1
GEN(B1) = {d1, d2,d3} = 1110 0000
KILL(B1) = {d4,d5,d6,d7,d8} = 0001 1111

GEN(B2) = {d4,d5} = 0001 1000
KILL(B2) = {d1,d2,d7} = 1100 0010

GEN(B3) = {d6} = 000 0100
KILL(B3) = {d3, d8} = 0010 0001

GEN(B4) = {d4, d8} = 0000 0011
KILL(B4) = {d1,d3, d4,d6,} = 1011 0100

Block B
Initial Pass 1 Pass 2

In[B] Out[B] In[B] Out[B] In[B] Out[B]

B1 0000 0000 1110 0000 0000 0000 1110 0000 0000 0000 1110 0000

B2 0000 0000 0001 1000 1110 0111 0011 1101 1111 1111 0011 1101

B3 0000 0000 0000 0100 0011 1101 0001 1100 0001 1101 0001 1100

B4 0000 0000 0000 0011 0011 1101 0001 1111 0001 1101 0001 1111

410 Code Optimization

 = 1110 0000 0000 0000
 = 1110 0000

IN[B2] = OUT[B1] OUT[B3] OUT[B4]
 = 1110 0000 0000 0100 0000 0011
 = 1110 0111

OUT[B2] = GEN[B2] (IN[B2] – KILL[B2])
 = 0001 1000 (1110 0111– 1100 0010)
 = 0001 1000 (1110 0111 0011 1101)
 = 0001 1000 0011 0101
 = 0011 1101

IN[B3] = OUT[B2] = 0011 1101

OUT[B3] = GEN[B3] (IN[B3] – KILL[B3])
 = 0000 0100 (0011 1101– 0010 0001)
 = 0000 0100 (0011 1101 1101 1110)
 = 0000 0100 0001 1100
 = 0001 1100

IN[B4] = OUT[B2] = 0011 1101

OUT[B4] = GEN[B4] (IN[B4] – KILL[B4])
 = 0000 0011 (0011 1101 – 0010 0001)
 = 0000 0011 (0011 1101 1101 1110)
 = 0000 0011 0001 1100
 = 0001 1111
PASS 2:
IN[B1] remains same as there is no predecessor block.
OUT[B1] = GEN[B1] (IN[B1] – KILL[B1])
 = 1110 0000 (0000 0000– 0001 1111)
 = 1110 0000 (0000 0000 1110 0000)
 = 1110 0000 0000 0000
 = 1110 0000

IN[B2] = OUT[B1] OUT[B3] OUT[B4]
 = 1110 0000 0001 1100 0001 1111
 = 1111 1111

OUT[B2] = GEN[B2] (IN[B2] – KILL[B2])
 = 0001 1000 (1111 1111– 1100 0010)
 = 0001 1000 (1111 1111 0011 1101)
 = 0001 1000 0011 1101
 = 0011 1101

IN[B3] = OUT[B2] = 0011 1101

OUT[B3] = GEN[B3] (IN[B3] – KILL[B3])
 = 0000 0100 (0011 1101– 0010 0001)
 = 0000 0100 (0011 1101 1101 1110)

 Machine-Dependent Optimization 411

 = 0000 0100 0001 1100
 = 0001 1100

IN[B4] = OUT[B2] = 0011 1101

OUT[B4] = GEN[B4] (IN[B4] – KILL[B4])
 = 0000 0011 (0011 1101– 0010 0001)
 = 0000 0011 (0011 1101 1101 1110)
 = 0000 0011 0001 1100
 = 0001 1111

Since the OUT of each block in pass 2 is same with pass 1, it is converged and can be
stopped.

The same technique can also be applied for common sub expression and use this infor-
mation for global optimization.

10.11 Machine-Dependent Optimization
This optimization can be applied on target machine instructions. This includes register allo-
cation, use of addressing modes and peep hole optimization. Instructions involving register
operands are faster and shorter (instruction length is small); hence, if we make use of more
registers during target code generation, effi cient code will be generated. Hence, register allo-
cation and use of addressing modes also contribute to optimization. The most popular opti-
mization that can be applied on target machine is peephole optimization.

Peephole Optimization
Generally code generation algorithms produce code, statement by statement. This may con-
tain redundant instructions and suboptimal constructs. The effi ciency of such code can be
improved by applying peephole optimization, which is simple but effective optimization
on target code. The peephole is considered a small moving window on the target code. The
code in peephole need not be contiguous. It improves the performance of the target program
by examining and transforming a short sequence of target instructions. The advantage of
peephole optimization is that each improvement applied increases opportunities and shows
additional improvements. It may need repeated passes to be applied over the target code to
get the maximum benefi t. It can also be applied directly after intermediate code generation.

In this section, we shall defi ne the following examples of program transformations that
are characteristic of peephole optimizations.

10.11.1 Redundant Loads and Stores
The code generation algorithm produces the target code, which is either represented with
single operand or two operands or three operands. Let us assume the instructions are with
two operands. The following is an example that gives the assembly code for the statement
x = y + z.

1. MOV y, R0
2. ADD z, R0
3. MOV R0, x

412 Code Optimization

Instruction 1 moves the value of y to register R0, second instruction performs the addi-
tion of value in z with the register content and the result of the operation is stored in the
register. The third instruction copies the register content to the location x. At this point the
value of x is available in both location of x and the register R0.

If the above algorithm is applied on the code a = b + c, d = a + e then it generates the code
given below:

1. MOV b, R0
2. ADD c, R0
3. MOV R0, a
4. MOV a, R0
5. ADD e, R0
6. MOV R0, d

Here we can say that 3 and 4 are redundant load and store instructions. These instruc-
tions will not affect the values before or after their execution. Such redundant statements can
be eliminated and the resultant code is as follows:

1. MOV b, R0
2. ADD c, R0
3. ADD e, R0
4. MOV R0, d

10.11.2 Algebraic Simplifi cation
There are few algebraic identities that occur frequently enough and are worth considering.

Look at the following statements.
x: = x + 0
x: = x * 1

They do not alter the value of x. If we keep them as it is, later when code generation
algorithm is applied on it, it may produce six statements that are of no use. Hence, such
statements whether they are in three address code or target code can be removed.

10.11.3 Dead Code Elimination
Removal of unreachable code is an opportunity for peephole optimization. A statement
immediately after an unconditional jump or a statement that never get a chance to be exe-
cuted can be identifi ed and eliminated. Such code is called the dead code.

For example consider a statement in high level language code
defi ne x = 0
…….
If (x)
{ ----print value

}

 Machine-Dependent Optimization 413

If this is translated to target code as

If x=1 goto L1
goto L2

L1: print value
L2: ……..

Here value will never be printed. So whatever code inside the body of “if(x)”is dead
code; hence, it can be removed.

10.11.4 Flow-of-Control Optimization
Sometimes when we apply code generation algorithms mechanically we may get jump on
jumps as follows:

goto L1
L1: goto L2
…….
L2: goto L3
….
L3: if a < b goto L4
L4:
This can be optimized as
goto L3
……….
L3: if a < b goto L4
L4:

10.11.5 Reduction in Strength
This optimization mainly deals with replacing expensive operations by cheaper ones. For
example

 � x2 x * x
 � fixed-point multiplication and division by a power of 2 shift
 � floating-point division by a constant floating-point multiplication by a constant

10.11.6 Use of Machine Idioms
While generating the target code it is better to make use of rich instruction set supported by
the target machine, instead of blindly applying available code-generation algorithms. This
may produce effi cient code. Feature provided by machine architecture may be identifi ed
and used wherever applicable to reduce the overall execution time signifi cantly.

For example, consider the statement x = x + 1; if we apply the code-generation algo-
rithm mentioned in redundant load/store, we get six instructions but there can be hardware
instructions for certain specifi c operations auto-increment and auto-decrement addressing
mode like INR x, which is one instruction only.

414 Code Optimization

Solved Problems
1. Create DAG for the following code:

t1 = 4 * i
t2 = a[t1]
t3 = b[t1]
t4 = t2 * t3
pr = pr + t4
i = i + 1
if i <=20 goto (1)

Solution: The DAG for a given code is shown in Figure 10.24

Figure 10.24 DAG for 1

+

∗

+

<=

∗

[] []

prod

prod0

ba

4 i 1

(1)

i
20

0

2. Divide the following code, which is for factorial function, into basic blocks and draw fl ow
graph

 1. f = 1;
 2. i = 2;
 3. If (i>x) goto (8)
 4. f = f * i;
 5. t1 = i + 1;
 6. i = t1;
 7. goto (3)
 8. goto calling program

Solution: By using the algorithm for leaders, we identify leaders as 1, 3, 4, 8.

 The statement starting from a leader up to the next leader is a basic block.
 Figure 10.25 shows the basic blocks for the factorial program.
 The fl ow graph is shown in Figure 10.26.

 Solved Problems 415

3. Consider the following part of code.

 for(i=1; i<n; i++)
 for(j=1; j<n; j++)
 c[i,j] = a[i,j] * b[i,j];
 print(“done”);

 a. Write its equivalent three address code.
 b. Identify the basic blocks.

Solution: a. The three address code for the above program is as follows:

Figure 10.25 Basic Blocks for Factorial Program

f = 1;
i = 2;

If (i >x) goto (8)

f = f∗ i;
t1 = i +1
i = t1;
goto (3)

go to calling program

B1

B2

B3

B4

Figure 10.26 Flow Graph for Factorial Program

B1

B2

B3

B4

416 Code Optimization

1. i = 1
2. j = 1
3. t

1
= 4 * i

4. t
2
=i – 1

5. t
3
 =t

2
 + j

6. t
4
= t

3
* 4

7. t
5
 = a[t

4
]

8. t
6
= i – 1

9. t
7
 = t

6
 * n

10. t
8
= t

7
+ j

11. t
9
 = t

8
 * 4

12. t
10

= b[t
9
]

13. t
11

= t
5
* t

10

14. t
12

= i – 1
15. t

13
= t

12
* n

16. t
14

= t
13
 + j

17. t
15
= t

14
* 4

18. t
16

= c[t
15
]

19. t
16

= t
11

20. t
17

= j + 1
21. j = t

17

22. if j < n go to 2
23. t

18
= i + 1

24. i = t
18

25. if i < n go to 1
26. print(“done”);

 b. To identify the basic blocks, fi rst identify the leader statements. In the above three
address code, the leader statements are statement 1, 2, 23, and 26.

1. i = 1 àleader 1
2. j = 1 àleader 2
3. t

1
= 4 * i

4. t
2
 = i - 1

5. t
3
 = t

2
 + j

6. t
4
 = t

3
 * 4

7. t
5
 = a[t

4
]

8. t
6
 = i - 1

9. t
7
 = t

6
* n

10. t
8
 = t

7
 + j

11. t
9
 = t

8
* 4

12. t
10

= b[t
9
]

13. t
11

= t
5
* t

10

 Solved Problems 417

 15. t
13

= t
12

* n
 16. t

14
= t

13
+ j

 17. t
15

= t
14

* 4
 18. t

16
= c[t

15
]

 19. t
16

= t
11

 20. t
17

= j + 1
 21. j = t

17

 22. if j < n go to 2
 23. t

18
= i + 1 àleader 3

 24. i = t
18

 25. if i <n go to 1
 26. print(“done”); àleader 4
 14. t

12
= i - 1

 Basic block 1 has statement 1
 Basic block 2 has statements 2 – 22
 Basic block 3 has statements 23 – 25
 Basic block 4 has statement 26.

 The fl ow graph is shown in Figure 10.27.

Figure 10.27 Flow Graph for 3

B1

B2

B3

B4

4. Optimize the code applying suitable optimization techniques on the resultant three
address code for question 3.

Solution: The three address code is given in the previous problem. On applying redundant
sub expression elimination we get it as

 1. i = 1
 2. j = 1
 3. t

1
 = 4 * i

418 Code Optimization

5. For the following statements, draw the DAG.

t1 = a + b;
t2 = a * b;
t3 = t1 * b;
c = t3 + t2;

Solution:
 The DAG for the above sequence of statements is in Figure 10.28

Figure 10.28 DAG for 5

+

+

a b

*

*

C

t3

t2

t1

6. Write the procedure to construct the DAG for a statement. Represent the following state-
ment using DAG.

a = (b + c)*(d–c)+a/(d–c)+(b+c)

 4. t
2
= i - 1

 5. t
3
 = t

2
+ j

 6. t
4
 = t

3
* 4

 7. t
5
= a[t

4
]

 8. t
6
 = b[t

4
]

 9. t
7
 = t

5
* t

6

 10. t
8
= c[t

4
]

 11. t
8
 = t

7

 12. t
9
= j + 1

 13. j = t
9

 14. if j < n go to 2
 15. t

10
= i + 1

 16. i = t
10

 17. if i <n go to 1
 18. print(“done”);

 Summary 419

Figure 10.29 DAG for 6

+

+

a

a

+

b d

/

c

–

+

Figure 10.30 DAG for 7

–

/

+

*

d

e f

+

a

X

b c

Solution: Procedure for constructing DAG is explained in Section 10.6. The DAG for the
given expression is in Figure 10.29.

7. Represent the statement x = a/(b+c) – d*(e+f) using DAG.
Solution:

Summary
 � Optimization improves the code in terms of space and time.
 � Machine-independent optimization techniques are applied on intermediate representation.
 � Machine-dependent optimization techniques are applied on target code of machine code.

420 Code Optimization

 � Flow graphs are used to represent the three address code where nodes are basic blocks
and the edges represent the control flow.

 � A basic block is the basic unit of program where all the statements in the block are either
executed or ignored depending on the control flow.

 � Leader is the first statement in the basic block.
 � DAG representation is useful in identifying the redundant sub expression.
 � Function-preserving transformations are performed without changing the function it

computes.
 � Structure-preserving transformations are performed without changing the set of expres-

sions computed in the block.
 � Algebraic transformations are useful to change the set of expressions computed by basic

block into algebraically equivalent set.

Fill in the Blanks
 1. ____________ are the principal sources of optimization.
 2. ____________ analysis is used to detect loops in intermediate code.
 3. Applying optimization guarantee that generated code is optimal. (Y/N) ____________
 3. Replicating the body of the loop to reduce number of tests if the number of iterations

is constant is called ____________.
 4. Merging the bodies of two loops if the loops have same number of iterations and they

use same indices is called ____________.
 5. Moving a computation from a high-frequency region to a low-frequency region is

called ____________.
 6. ____________ is a code which is never used.
 7. ____________ are useful data structures for redundancy elimination.
 8. Replacing a costlier operation by a cheaper one is called ____________.
 9. The usefulness of a variable is listed using ____________.
 10. The possible defi nitions that are reachable at a particular point are listed using

____________.
 11. In a path p1, p2, …..pn, if pi is the last point in a block then pi+1 is ____________.
 12. To apply global redundant sub expression elimination, ____________ gives the

required information.

Objective Question Bank
 1. Folding is a___________ optimization with regard to the basic block.
 (a) global (b) local
 (c) universal (d) none

 2. Which of the following is machine-dependent optimization?
 (a) Strength reduction (b) Redundancy elimination
 (c) Flow of control optimization (d) None

 Exercises 421

 3. Which of the following is machine-independent optimization?
 (a) Strength reduction (b) redundancy elimination
 (c) loop optimization (d) all

 4. ________ optimization should not introduce additional errors in the program.
 (a) Folding (b) Constant propagation
 (c) Any (d) None

 5. For fi nding leaders for basic block, we use the rule as the_______ statement in a
leader.

 (a) fi rs (b) last
 (c) statement that is before a conditional jump
 (d) statement that is before a unconditional jump

 6. Statement starting from a leader up to the next leader is called_______.
 (a) leader (b) DAG
 (c) basic block (d) none

 7. Which of the following is peephole optimization?
 (a) Common sub expression elimination (b) Flow of control optimization
 (c) Loop jamming. (d) None

 8. Advantages of copy propagation is that_______.
 (a) it often reduces code
 (b) it often turns the copy statement into dead code
 (c) it often makes code to run faster
 (d) None

 9. Code motion is_______.
 (a) moving part of computation outside loop.
 (b) moving loop invariant computation before loop
 (c) Either (a) or (b)
 (d) None

 10. Folding can be applied to_______.
 (a) subscripted variables
 (b) fl oating point numbers
 (c) un subscripted variables
 (d) None

Exercises
 1. Write the importance of code optimization. Explain the strength-reduction technique

in loop with example.

 2. Explain with example the various techniques in loop optimization.

 3. What is local and global optimization? Explain with example any three local optimi-
zation techniques.

422 Code Optimization

 4. Consider the following part of code.

int main()
{
 int n,k=0;
 scanf(“%d,”&n);
 for(i=2; i<n;i++)
 {
 if((n % i) == 0) break;
 }
 k=1;
 if(i==n)
 printf(“number is prime”);
 else
 printf(“number is not prime”);
}

 a. Identify the basic blocks in the given program.
 b. Draw the domination tree for the program.
 c. Using dead code elimination identify the statements that are eliminated.

 5. Explain the following loop optimization techniques with examples.

 a. Frequency reduction
 b. Strength reduction
 c. Code motion

 6. Explain about (a) loop unrolling (b) loop jamming (c) code motion.

 7. Explain about (a) folding (b) strength reduction (c) redundant code elimination (d)
dead code elimination.

 8. Write the procedure to construct the DAG for a statement. Represent the following
statement using DAG.

a = (x + y) * (x − y) + x /(x − z) + (x + y)

 9. Explain DAG and its use. Write the procedure to construct the DAG for a statement.

 10. What is a basic block? With an example explain the procedure to identify the basic
blocks in a given program. Draw the domination tree for the following procedure.

(16M) -M
 read a,b
 c=a+b
 If (c>=30) go to 10
 c=c*2

 Exercises 423

go to 20
10 c=c*3
20 print a,b,c

 11. a. Explain DAG and its use.
 b. For the following statements draw the DAG.

t8 = d + e
t6 = a + b
t5 = t6 – c
t4 = t5 * t8
t3 = t4 – e
t2 = t6 + t4
t1 = t2 * t3

 12. a. What is local and global optimization? (6 + 5 + 5 M) − M

read a,b
c=a+b
If (c>=30) go to 10
 c=c+0
 c=c*2
 go to 20
10 c=c*3
20 print a,b,c

 b. Identify the basic blocks in the given program.
 c. Identify the optimization technique that can be applied and write the optimized

code.

 14. Defi ne the following terms.

 a. Reaching defi nition.
 b. Live variables.
 c. Use defi nition chains.
 d. Defi nition use chains.

 15. Explain the formulation of data fl ow equations for reaching defi nition in structured
programs. Describe the procedure to compute in and out values.

 16. Explain about global data fl ow analysis. Explain the factors that affect the data fl ow
equations.

 17. Write the iterative algorithm for reaching defi nition. Compute in and out for the fol-
lowing fl ow graph.

424 Code Optimization

d1: i = m- 1
d2 : j = n
d3 : a = u1

d4: i = i+1
d5 : j = j -1

d6: a = u2

d7: i = u3

B1

B2

B3

B4

 18. Explain about global data fl ow analysis. List the data fl ow equations for reaching
defi nitions for structured programs.

 19. a. Explain the use of algebraic identities in optimization.
 b. Explain strength reduction with example.

 20. a. Explain live variable analysis with example.
 b. Explain redundant sub expression elimination with example.

Key for Fill in the Blanks
 1. dead code elimination and

constant propagation
 2. global fl ow
 3. No
 4. loop unrolling and
 loop jamming
 5. code motion

 6. dead code
 7. DAG
 8. strength reduction
 9. use defi nition chains
 10. defi nition use chains
 11. fi rst point in the successor block
 12. data fl ow analysis

Key for Objective Question Bank
 1. b. 2. a. 3. d. 4. b. 5. a.
 6. c. 7. b. 8. b. 9. c. 10. c.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0

0 1 0 1 01 01 01 0 1 0 1 0 1 0 0 00 0 00 00 0 111 011 0111 0111 01 0 1 0 1 0 1 0 1 01 0 1 01 01 0 1 01 01 01 0 0 10 10 10 1 0 1 1111110 10 10 1 0 10 10 10 10 10 10 10 10 10 10 100 100 0 0 000 0 1 0 1 0 1 0 1 0 1 0
1 0 10 1 1111111111111 0000000 10 10 10 10 10 10 0 10000000 1000 000 00 0 10 100 1000 10 100 10 10000 000 0 00 0 100 10 10 10 10 1110 10 10 10 10 110 0 100 10 10 0 10 10 10 10 1100 10 10 10 10 10 100 000 0000 00 110 111110 11100 11 0 0 1 0 1 0 1 0 1
0 111 1 1 1 01 01 01 0 1 0 0 1111 01 1 0 11 0 1 0 1 011 01 01 01 01 0011 01 01 011 1 011111 0 111 1 0 1 0000000 1 01 01 011 0 01 01 01 01 01 01 0001 0 1 01 000 1 00 1 000000000000000 1 01 0000 0 0000000 0 0000 1 0 111111 1 0 1 0 1 0 1
000 00 0 000 1 011 1 0 1 01 0 11 0 1 11 0 1 0 1 01 01 0 11 0 0 11111 0 111 0 0 0 1 0 1 0 1 011 1 01 01 01 0 011 01 011 01 001 0 10 100000 10 100 10 0 000000 0 10 10 1000 110 10 100 1100000 0 10 1100 10 110 10 10 10 10 1100 111 00 10 110 10 10 10 11100 10 00000000 10000000 00000 0 1 0 1 0 1 0
0000 0 00 11 1 11 0 11 1 01 111 1 01 01 0 1 01 0 1 0 1 000000 1 01 01 01 0 1 0 01 01 01 01 01 01 01 01 01 01 01 01 1 0 0 000 1 0 000 1 01 01 01 01 0 1 0 1 0 1 0 1 01 01 01 01 01 0011 0011 1111 0 1 0 0 0 0 01111 0 1 01111 0 00000000 0 100000000 0 1 0 1 0 1 0
0 00000 0 0 00 11 1111 1 0 1 0 1 111 1 11 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 01 0 00 0 00 0 0 11111111 1 0 111 1 0 1 0 1 0 0

1111 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 110 100 10 1 0 0 0 0 0 00 0 0 0 0 0000 00 00 0 0 00 00 00 00 000 00 0 1 01 0 1 0 1 01 0 1 0 1 0 1 1 0 1 01 01 01 01 01 01 0 1 011 01 1 01 01 0 1 0 1 0 1 01 0001 0 1 01 0 0 01 0 1 01 01 0 1 0 0 1 0 1 0 1 01 01 0 1 001 0 1 01 001 0 1 0 1 001 01 01 0 1 00 1 0111 01 0 1 0 1 0 1 0 0 1 0 1 01 0 1 01 01 0 1 0 111 0 1111111111 1 0 11111 111 1 0 1 0 1 0 1 0
0 1 00 00 0 00000000000 1 01 01 01 01 0 1 01 01 0 1 01 01 0 1 01 0111 01 1 111 01 001 001 01 0 01 01 0 1 01 011 01 01 01 001 01 011 01 001 0 111111 01 001 01 01 0 1 0 1 01 0 1 0 1 0 1 01 01 01 1 1 1 01 01 001 000 0 1 01 0001 01 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0000000000 1 01 01 01 01 01 01 01 01 01 01 01 0000001 01 01 0 1 01 01 01 01 01 01 01 0000001 0001 001 0 1 01 0111111 011 01 01 01 01 01 0 1 0 1 0 0 0 0 0 000 0000000000 1 01 01 011 001 01 01 00 1 0 01 01 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 000000 0 10 10 10 0 10 10 10 1000 0 00 1 00 0 0 000000000 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111 0 10 1 0 1 0 10 1 1110 1 0 1 11110 1 11 0 100000 0 1 0 0
0 1 0 1 0 1 0 1 0 0 11 0 1 0 1 0 10 100 10 10 10 10 10 1 0 0 00 0 0 0 0 10 10 10 0000 10 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 000 0 10 10 0 10 10 10 10 1 00 0 0 0 0 1000000 000000 0 1
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 000 0 1 01 0 1 0 0 000 00 1 0 1 01 0 1 0 0001 0 0 1 011111
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 01 0 1 0 1 0 1 0 1 0 00 1 1 11111 1 0000111 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 000 1 0

 425

C H A P T E R 11

CHAPTER OUTLINE

 11.1 Introduction

 11.2 Issues in the Design of a Code Generator

 11.3 Approach to Code Generation

 11.4 Instruction Costs

 11.5 Register Allocation and Assignment

 11.6 Code Generation Using DAG

Code generation is the fi nal phase in a compiler. Given a code in intermediate form, it uses code
generation algorithm and register allocation strategies to generate the fi nal target code.

Code generation phase is responsible for generating the target code. This chapter focuses on
the issues in code generation phase and the register allocation strategies. Code generation
algorithm for three address code and DAG is explained with an example.

11.1 Introduction
Code generator is the last phase in the design of a compiler. It takes three address code
or DAG representation of the source program as input and produces an equivalent target
program as output. Figure 11.1 shows the position of the location of code generation phase.

The code generator has many limitations regarding the generation of code that is
of high quality, accurate, and effi cient. In addition to this, the code generator should
run effi ciently. There are many issues that are to be considered while designing a code
generator.

11.2 Issues in the Design of a Code Generator
The code generated is target language dependent and operating system dependent as mem-
ory management, instruction selection, register allocation, order of evaluation would affect
the effi ciency of the code generated. Even the input to the code generation phase is an issue
because there are many forms of intermediate codes that are generated by the front end.

Code Generation

426 Code Generation

11.2.1 Input to the Code Generator
The output of front end is the input to the code generator along with the information in the
symbol table that is used to determine the run time address of the data objects denoted by
the names in the intermediate representation.

Intermediate code is either in the linear form or in the hierarchical form. Linear rep-
resentation that includes postfi x notation, three address representation (quadruples and
triples), and hierarchical representation includes syntax trees and DAGs. The input is
intermediate representation and is error free. The values of variable names present in the
intermediate code can be represented by target machine in a directly manipulatable form.
Since semantic analyzer has already performed the type checking, type conversion oper-
ators have been inserted wherever necessary and obvious semantic errors have already
been detected.

11.2.2 Target Programs
The output of the code generator is the program in target language. Various possible outputs
can be generated.

Absolute machine code—this code is static and is always placed in the same location
in memory. This can be loaded and run immediately. Fast in execution but requires same
memory locations. This may be suitable for programs like VI editor. Compilers like PL/C
produce absolute code.

Relocatable machine code—this allows the subprograms to be compiled separately
resulting in a set of relocatable object modules. Loader and linker programmes are needed
to link the modules and load the programs into the memory for execution. Although the pro-
cedure is expensive, there is fl exibility in being able to compile subroutines separately and to

Figure 11.1 Code Generator

Intermediate
code generator

Code optimizer Code
 Generator

Source
code

Intermediate Intermediate
code code code

Target

Symbol
 Table

 Issues in the Design of a Code Generator 427

call other previously compiled programs from an object module. If relocation is not carried
out automatically by the target machine then the compiler must provide explicit relocation
information to the loader. This is used to link the separately compiled object modules.

Assembly code—When we have Assembly language as the output, it makes the process
of code generation easier. We can generate mnemonic instructions and use the macro facili-
ties of the assembler to generate code. The cost involved after code generation is less as the
other forms require an assembler. Particularly for a machine with a low memory, this choice
is reasonable, where a compiler must use more passes.

11.2.3 Memory Management
The role of code generator in coordination with front end is to map the names of variables in
the source program to the addresses of the data objects in run time memory. The name in a
three address statement refers to a symbol table entry for that name, which is used by code
generator.

Each label in the three address code has to be converted to actual memory addresses of
instructions and this process is called “back patching.” In case of quadruples, if the numbers
are referred by labels, then each quadruple is read and the address is computed by maintain-
ing a counter for the words used for the instructions generated so far. The quadruple array
within an additional fi eld is used to store the count.

For example, if a reference such as j: goto i is encountered, where i could be less than or
greater than j,

 � if i is less than j, it is a backward jump, we may simply generate a jump instruction with
the target address equal to the machine location of the first instruction in the code for
quadruple i.

 � The jump is forward jump when i is greater than j. Hence, i exceeds j. Here we have store
on quadruple list i the location of the first instruction generated for quadruple j. Then the
quadruple i is processed. Then for all forward jumps to i, proper machine locations are
filled.

11.2.4 Instruction Selection
The instruction set of the target machine is an important factor that controls the uniformity
of the execution. If the target machine does not support each data type in a uniform manner,
then each exception to the general rule requires special handling.

Machine idioms and speed of instruction are other important factors to consider in code
generation. Instruction selection is straightforward provided the effi ciency of the target pro-
gram is not an important task then, but this results in more computation time.

For example, let us consider a simple statement a: = b + c, where a, b, and c are statically
allocated and can be translated into the machine code as follows:

MOV b, R0 /* load b into register R0 */
ADD c, R0 /* add c to R0 */
MOV R0, a /* store R0 into a */

428 Code Generation

If the code generator translates statement-by-statement, it often produced a very poor
code as given below.

Let the statements in three address code be

a := b + c
d := a + e

would be translated into

MOV b, R0
ADD c, R0
MOV R0, a
MOV a, R0
ADD e, R0
MOV R0, d

The fourth statement in the code sequence is redundant. If the value of a is not subse-
quently used, then the third statement is also redundant.

Let us consider another statement, a = a + 1; if this statement is translated into machine
code it results in three machine instructions. If the target machine has an increment instruc-
tion INC, using this instruction is more effi cient as it would perform the same task as that of
three instructions generated in normal code generation.

Instruction speeds are needed to design good code sequence but knowing the accurate
timing information is often a diffi cult task. Deciding which machine code sequence is best
for a given three address construct may also require knowledge about the context in which
that construct appears.

11.2.5 Register Allocation
Effi cient use of registers is particularly important in code generation as the instructions
involving the register operands are short and fast than those instructions involving the oper-
ands in memory. The use of registers is often subdivided into two sub problems:

 � During the first phase, that is, register allocation phase, we select the set of names that
reside in registers at a point in the program.

 � During the later phase of register assignment, we pick the register where a variable will
reside in

Register assignment to variables is a diffi cult task as the registers available are to be used
by the operating system and also by the programs that are currently running on the system.
Mathematically this problem is NP-complete problem and is also complicated because the
hardware and/or the operating system of the target machine may require that certain reg-
ister usage.

Few target machines require register pairs for some operations and to store results. For
example, the integer division and multiplication requires register pairs in the IBM System
OS 370 machine. The multiplication instruction is of the form

M x, y

 Approach to Code Generation 429

The even register of an even/odd register pair will have x, which is the multiplicand. The
multiplier y is a single register and the multiplicand value is taken from the odd register
pair. The result occupies the complete even/odd register pair. Similarly, the division instruc-
tion is of the form

D x, y

In the even/odd register pair, the 64-bit dividend occupies even register x and y represents
the divisor. After performing the division operation, the remainder is stored in the even reg-
ister and the quotient is stored in the odd register.

11.2.6 Choice of Evaluation Order
The effi ciency of the target code depends on the evaluation order. The computation order
also effects the register requirements to hold intermediate results. Choosing the best order is
another diffi cult task. If the input is in the form of three address code, it may require reorder-
ing of the input for effi cient code generation. If the input is in the form of DAG, then the best
code can be generated by traversing the tree in post order form.

11.3 Approach to Code Generation
An important criterion for a code generator is to generate the code that is correct in terms
of meaning and effi ciency. Correctness is another important factor because of the number of
different cases that code generator must face. Because of prominence in correctness, design-
ing a good target code generator that can be implemented, tested, and maintained easily is
an important design goal.

The input for code generator is a sequence of three-address statements partitioned into
basic blocks. A simple code generation involves generating code for each three-address
statement, taking the advantage of the operands that are in the registers and storing the
result in registers as long as possible. The output in register is stored until it is needed for the
next computation or just before a procedure call, jump/labeled statement, or end of the basic
block. The reason for this is that after leaving a basic block, we may go to several different
blocks, or we may go to one particular block that can be reached from several others. This is
done to avoid possible error in using the data that reaches that point.

The code generator should keep track of what is currently available in the registers and
where the data of a variable is available which will cost less. For this reason it uses two data
structures called register descriptor and address descriptor.

Register descriptor: It is a structure that maintains a pointer to the list that contains infor-
mation about what is currently available in each of the registers. Initially all the registers are
set to empty. Whenever a code generator makes a request for register to be allocated, this list
is verifi ed, if it already holds the operand it is returned otherwise a free register is allocated.

Address descriptor: It is a structure that keeps track of the locations for each variable
name—where the current value of the name can be found at run time. This information can
be stored in the symbol table.

430 Code Generation

The code generator fi rst invokes a function getreg(), that returns a location specifying,
where the computation has to be performed by three-address statement. If there is a state-
ment a = b op c, the getreg() function returns a location L where the computation of b op c
should be performed. This could be the memory location or a register; the decision depends
on the required effi ciency.

11.3.1 Algorithm for Code Generation Using Three
Address Code

The code generator reads every three-address statement, which is of the form a = b op c it
fi rst invokes the getreg() function, generates the target code and appropriately updates the
register and address descriptors as follows:

For every three-address statement of the form a = b op c in the basic block do

{

1. First invoke the function getreg() to return the register or memory location L in
which the operation b op c should be performed. The input for this function is
three-address statement a = b op c as a parameter, which can be done by passing
the index of this statement in the quadruple array.

2. Check the current location of the operand b by consulting its address descriptor,
and if the value of b is currently present in both memory location and in register,
then prefer the register reference. If the value of b is currently not available in L,
then generate a statement MOV b, L (where b as assumed to represent the current
location of b).

3. Generate the statement OP c, L, and modify the address descriptor of a to state that
value of a is now available in L, and if L is in a register, then modify its descriptor
to indicate that it will contain the run-time value of a.

4. If the current values of b and /or c are in the register, and there is no next use of
these variables, that is, they are not live at the end of the block, then alter the reg-
ister descriptor to indicate that after the execution of the statement a = b op c, these
registers will no longer contain value of b and /or c.

}

The procedure getreg(), when invoked it returns a location where the computation relat-
ing to the given three-address statement a = b op c should be performed. The location to be
used to be returned is based on the following conditions:

1. Prefer the register location if one of the register already contains the variable name
b. If b has no next use after the execution of a = b op c, and if b is not live at the end
of the block and this register does not hold the value of any other variable, then
return the register for L.

2. If such a register is not available then getreg() search is made to fi nd an empty
register; and if an empty register is available, then it returns it for L.

3. In the absence of an empty register, and if a has next use in the block, or op is
an operator, such as indexing, which requires a register for computation, then
getreg() searches for a suitable register. If this register is not empty then a state-
ment is generated to empty the register by generating store instruction to store its

 Approach to Code Generation 431

value. In the appropriate memory location M, the address descriptor is modifi ed,
and the register that is freed is returned for L. It uses the different strategies and
one such strategy is least recently used to empty one of the occupied register.

4. Finally, the getreg() procedure returns the memory location L if es that have next
use within the block.

Example: Let us consider the sequence of statements as given below.

 t = a – b;
u := a – c;
 v := t + u;
d := v + u;

When these statements are given as input for a code generator, then the operations are
performed as follows:

First the address descriptor and register descriptor are set to empty. Let us assume that
R0 and R1 registers are available for performing these operations.

For the fi rst statement t = a – b, since the registers are empty, the get register would return
register R0 for the computation and hence, the instruction MOV a, R0 is generated and the
register descriptor indicates that R0 holds the value of a. Then it generates the instruction
SUB b, R0 and the address descriptor for t is set to R0. The last instruction generated is MOV
R0 t and updates the address descriptor indicating that the value of t is available in both
register R0 and memory location t. Similarly for each statement in three address code is pro-
cessed and the resultant code generated is shown in Table 11.1.

Statement Code generated Register descriptor Address descriptor

R0, R1 are empty All variables are in memory

t = a – b

MOV a R0 R0 contains a A in R0 and memory

SUB b R0 R0 contains t A in memory, t in R0

MOV R0 t R0 contains t A in memory, t in R0 and memory

u:= a – c

MOV a R1 R0 contains t
R1 contains a

A in R1 and memory,
t in R0 and memory

SUB c R1 R0 contains t
R1 contains u

A in memory, t in R0 and
memory, u in R1

MOV R1 u R0 contains t
R1 contains u

A in memory, t in R0 and
memory u in R1 and memory

v:= t + u ADD R1 R0 R0 contains v
R1 contains u

A in memory, t in memory
u in R1 and memory, v in R0

d:= v + u
ADD R1 R0 R0 contains d

R1 contains u
A in memory, t in memory
u in R1 and memory, v in R0

MOV R0 d R0 contains d
R1 contains u

A in memory, t in memory
u in R1 and memory, d in R0

Table 11.1 Contents of register and address descriptor during code generation

432 Code Generation

If the code generator is effi cient, then the target code that is generated would have the
statements as follows:

The algorithm makes use of the next-use information of each name for effi cient use of
the registers. Therefore it is required to compute the next-use information. If:

 � A statement at the index i in a block assigns a value to name a,
 � And if a statement at the index j in the same block uses a as an operand,
 � If the value assigned to a variable a is not modified in any path from any statement

at index i to the statement at index j then

we say that the value of a computed by the statement at index i is used in the statement at
index j. In such cases the next use of the variable a in the statement i is statement j. For each
three address statement i, compute the information relating to variables that appear in state-
ment i, which has next use in the same block. Backward scanning of basic block allows to
attach every statement i under consideration with information of those statements that have
next use of each variable name in statement i. The algorithm is as follows:

For each statement i of the form a = b op c do

{
 � compute information relating to the next uses of a, b, and c to statement i
 � update the next-use for a as no next-use /* This information can be kept into the

symbol table */
 � update the information for b and c to be the next use in statement i

}

Once we gathered the information regarding the next use, use this information for select-
ing register allocation strategies.

The register usage reduces the cost of computation. It may not always be true, it depends
on the factor how the instruction is written, what addressing modes are used, the number of
registers available, number of variables used in the program, and their frequency.

11.4 Instruction Costs
The instruction cost depends on the operation and the addressing modes of the operands
involved in the instruction. Addressing modes involving the register have cost zero, while
those with a memory location or literal in them have one as the operands have to be stored
with the instruction.

1. The instruction MOV R0, R1 has cost one, since it occupies only one word of memory.
Both the operands in the instruction are registers which costs zero.

2. The instruction MOV R0, M has cost two, since the address of memory location M is in the
word following the instruction.

3. The instruction ADD #1, R0 has cost two, since the constant 1 is in the next word follow-
ing the instruction.

 Register Allocation and Assignment 433

4. The instruction SUB 4(R0), *12(R1) has the cost three as the constants 4 and 12 are stored
in the next two words following the instruction.

The following table gives the details of the added cost based on the addressing mode.

Mode Form Address Added Cost

Register R R 0

Indirect Register *R Contents(R) 0

Absolute M M 1

Indirect register *R Contents (R) 1

Indexed C(R) C + contents(R) 1

Indirect Indexed *C(R) Contents(C + contents(R)) 1

Note: For calculating, the cost of instruction is one plus the added cost of source and, destination, i.e.,
 Cost of instruction = 1 + cost of source address + cost of destination address.

Example:
1. To move register contents to memory (® M)

 MOV R0, M
 cost = 1 + 0 + 1 = 2.

2. To move the contents from register in indirect indexed mode to memory
 MOV * 4 (R0), M
 cost = 1 + indirect index + instruction word = 1 + 1 + 1 = 3

3. To move the contents from register in indexed mode to memory
 MOV 4(R0), M
 cost = 1 + indirect mode + instruction word = 1 + 1 + 1 = 3

4. To move constant or litetral to register
 MOV #1, R0
 cost = 1 + 1 + 0 = 2

5. To move from memory to memory
 MOV M1, M2
 cost = 1 + 1 + 1 = 3

11.5 Register Allocation and Assignment
From the examples in the previous section, it is clear that the register operands are faster and
shorter than the memory operands. A good code generator should consider the availability
of registers and the use of variables for generating an effi cient code. There are different strat-
egies for identifying the registers and their assignment.

434 Code Generation

11.5.1 Fixed Registers
The most common and simple strategy is to assign the specifi c register to specifi c values. For
example, use a separate set of registers for storing the base address, set of registers for stor-
ing the stack pointers, set of registers for arithmetic computations and few are reserved by
compiler for suitable operations. The advantage of this approach is that the register alloca-
tion task is simplifi ed. But the disadvantage is that all the registers are not utilized properly.

11.5.2 Global Register Allocation
When the code is generated for a single block, the variables that are consistently used are
stored in the registers. At the end of the block only those variables that are live are stored
in the registers. The allocation of variables across the block boundaries is known as global
register allocation and this must be consistent. The strategies available for global register
allocation are listed below:

 � Registers can be fixed to store values for most frequently used variables throughout the
loop.

 � Number of registers can be fixed to hold the most active values in each inner loop.
 � Preference may be given to the free registers if available to one block.

11.5.3 Usage Count
The best way of register allocation is to count the number of times the variable is used in the
basic block and then assigning the register to the variable that has the highest usage count.
This usage count gives the idea about the reduction in cost of code generated depending on
selection of register allocation for specifi c variable.

blockBinL

(use(x,B) + 2* live (x,B))

Here use(x,B) gives the number of times the variable x is used in block B, prior to the
defi nition of x. and live(x,B) is 1 if x is live on exit from B, otherwise it is 0.

Let us consider the following program fragment in the Figure 11.2, which has four blocks
B1, B2, B3, and B4.

The variables that are used are I, J, a, n, m, x1, x2, and x3. The cost of I is computed across
every block as follows:

Block(B) Use(x,B) Live(x,B) Use count

B1 0 1 0 + 2 * 1 = 2

B2 1 1 1 + 2 * 1 = 3

B3 0 0 0

B4 0 1 0 + 2 * 1 = 2

Total 7

 Register Allocation and Assignment 435

Similarly, the use count for all variables is computed.

Variable Use count

I 7

J 5

a 6

n 1

m 1

x1 1

x2 1

x3 1

Suppose, there are only two registers then it would be better to reserve them for variable
I and a as their use count is more. If there are four registers, then three can be assigned for I,
J, a and the fourth register can be used for other variables.

11.5.4 Register Assignment for Outer Loop
If the program has nested loops, that is, loop L2 inside the loop L1, then while assigning the
registers the following criteria may be chosen.

 � If x is allocated in inner loop L2 then it should not be allocated in outer loop L1-L2.
 � If x is allocated in L1 and is not used in L2 then store the variable x in memory at the

entrance to L2 and load while leaving L2.

Figure 11.2 Flowgraph

d1 l = n – 1
d2 J = m
d3 a = x1

d4 l = l + 1
d5 J = J – 1

d6 a = x2
d7 l = x2
d8 a = x3

B1

B2

B4
B3

436 Code Generation

 � If x is allocated in L2 and not used in L1 then load z on the entrance of L2 and store z on
the exit of L2.

11.5.5 Graph Coloring for Register Assignment
Register allocation can be done using graph coloring. Each variable is represented as a node
in the graph. If the variables are interfering, then we place an edge between them and this
indicates that the same register cannot be assigned for both of them. If there is no edge
between two nodes, that is, they are not adjacent, then we can use the same register for both
variables, which will reduce the number of registers.

Let us consider n registers r1, r2 …., rn with n different colors. Now it is required to assign
a color so that no two adjacent nodes get the same color. This resembles the graph coloring
problem. The solution to this problem will result in minimum number of registers to be used
for execution of the program which is cost effective.

 11.6 Code Generation Using DAG
Code generation using DAG would result in effi cient code as it eliminates redundant
instructions and uses minimum number of registers. Target code is generated in two
phases—numbering and code generation.

Numbering phase assigns a number to each node in the tree that indicates how many reg-
isters are needed to evaluate the subtree of this node. Let us assume that for a node T it requires
l register to evaluate its left subtree and r registers to evaluate the right subtree. If one of the
numbers is large, say l > r, then we can evaluate the left subtree fi rst and store its result into one
of the registers Rk. Now the same registers can be used to evaluate the right subtree excluding
the register Rk. If l = r we need an extra register Rl+1 to remember the result of the left subtree. If
node T is a leaf then the number of registers to evaluate T is either 1 or 0 depending whether it
is a left or a right subtree. For example, the instruction ADD R1, A it is better to handle the right
operand A directly without storing it into register. Usually the numbering algorithm starts from
the leaf nodes of the tree and assigns 1 or 0 as explained. Then for each node whose children are
labeled l and r, if they are equal then the node number is l + 1 otherwise it is maximum of l and r.

For example, for the expression (A – B) + ((C + D) + (E * F)), which corresponds to the
AST/DAG as shown in the following Figure 11.3.

Numbering phase would process this and assign the register number to each node as
shown in Figure 11.4.

Code generation phase generates the code based on the numbering assigned to each
node T. All the registers available are arranged as a stack to maintain the order of the lower
register at the top. This makes an assumption that the required number of registers cannot
exceed the number of available registers. In some cases, we may need to spill the intermedi-
ate result of a node to memory. This algorithm also does not take advantage of the commuta-
tive and associative properties of operators to rearrange the expression tree.

It fi rst checks whether the node T is a leaf node; if yes, it generates a load instruction cor-
responding to it as load top(), T. If the node T is an internal node, then it checks the left l and
right r subtree for the number assigned. There are three possible values, the number on the

 Code Generation Using DAG 437

right is 0 or greater than or less than the number on the left. If it is 0 then call the generate()
function with left subtree l and then generate instruction op top(), r. If the numbering on the
left is greater than or equal to right, then call generate() with left subtree, get new register by
popping the top, call generate() with right subtree, generate new instruction for OP R, top(),
and push back the used register on to the stack.

If the number on the left is smaller than the number on the right, then fi rst swap the
top two elements on the stack, call the generate() function with the right subtree, get new
register by popping the top, call generate() with left subtree, generate new instruction for

Figure 11.3 AST for (A–B) + ((C+D) + (E ∗ F))

+

+

+

*

–

A B

C
D E F

Figure 11.4 Register Allocation

+

+

+

*

–

A B

0

0 0

1

1 1

1

1

1

2

2

C D E F

438 Code Generation

OP R, top() push back the used register on to the stack, and fi nally swap the top two ele-
ments of the stack.

Algorithm to generate the target code using the numbering information.

function CodeGen_DAG(T)
{
 If T is a leaf node then generate Load top(), T
 If T is some internal node then identify the l and r
 children then
 {
 CodeGen_DAG(l)
 Generate statement op top(), r
 }

 If register (l) > register(r) then
 {
 CodeGen_DAG(l)
 R=pop()
 CodeGen_DAG(r)
 Generate statement op R, top()

Push(R)
 }

 If(register(l) < register (r) then
 {
 Exchange the top two elements of the stack
 CodeGen_DAG(r)
 R=pop()
 CodeGen_DAG(l)
 Generate statement op R, top()
 Push(R)
 Exchange the top two elements of the stack
 }

}

It is clear from the numbering phase that this evaluation requires two registers R1 and
R2. Let the registers be arranged with R1 on top of the stack. The code generator fi rst calls the
generate function with the root node. Since the right child has the number 2, which is greater
than the left, it fi rst swaps the top two register numbers and then calls the generate function
with the right sub tree. This procedure is repeated until the leaf is reached and the resultant
code generated is as follows:

load R2, C
add R2, D
load R1, E

 Solved Problems 439

Solved Problems
1. Generate the target code for the following three address code.

D := B – C
E :=A + B
B := B + C
A := E − D

 Solution: Let us assume there are two registers. The code generated is displayed step by
step in the following table.

Statement Code generated Register descriptor Address descriptor

R0, R1 are empty All variables are in memory

D = B – C

MOV B R0 R0 contains B B in R0 & memory

SUB C R0 R0 contains D B in memory, D in R0

MOV R0 D R0 contains D B in memory, D in R0 & memory

E :=A + B

MOV A R1 R0 contains D
R1 contains A

A in R1 & memory,
D in R0 & memory

ADD B R1 R0 contains D
R1 contains E

A in memory, D in R0 & memory,
E in R1

MOV R1 E R0 contains D
R1 contains E

A in memory, D in R0 & memory
E in R1 & memory

B := B + C

MOV B R0 R0 contains B
R1 contains E

B in R0 & memory, D in memory,
E in R1 & memory

ADD C R0 R0 contains B
R1 contains E

B in R0, D in memory,
E in R1 & memory

MOV R0 B R0 contains B
R1 contains E

B in R0 & memory, D in memory,
E in R1 & memory

A := E – D
SUB D R1 R0 contains B

R1 contains A
B in R0 & memory, E in memory,
A in R1

MOV R1 A R0 contains B
R1 contains A

B in R0 & memory, E in memory,
A in R1 & memory

mult R1, F
add R2, R1
load R1, A
sub R1, B
add R1, R2

440 Code Generation

2. Draw DAG for the statement a/(b + c) – d * (e + f) and generate the target code.

 Solution: The above expression when represented as a DAG then we get Figure 11.5.
 After the numbering phase, the number of registers required at each node is computed
and displayed in Figure 11.6.

Figure 11.6 Register Allocation

–

d

*

+

/

a

22

3

1 11

1

1 10
0

+

b
c e f

Figure 11.5 AST for a/(b+c) – d ∗ (e + f)

–

d

*

+

/

a +

b c
e f

 Solved Problems 441

Assuming there are three registers available, the target code generated is listed below.

3. If there are three registers r1, r2, and r3, how are these registers allocated for the following
program fragment?

 Solution:
 The variables that are used are temp1, temp2, temp3, temp4, temp5, and temp6. The cost of
these variables is computed across every block as follows:

MOV A, R1
MOV B R2
ADD C R2
DIV R2 R1
MOV D R2
MOV E R3
ADD F R3
MUL R3 R2
SUB R2 R1

Variable
blockBinL

(use(x,B) + 2* live (x,B)) Total Use count

temp1 1 + 2 * 1 3

temp2 1 + 2 * 3 7

temp3 2 + 2 * 1 4

temp4 1 + 2 * 2 5

temp5 1 + 2 * 1 3

temp6 0 + 2 * 1 2

temp2 : = temp2 + 4
temp3 : = a [tem p2]

temp4 : = temp4 - 4
temp5 : = a [tem p4]

a [temp2] : = temp5
a [temp5] : = tem p3

temp6 : = a [temp1]
a [temp2] : = temp6
a [temp5] : = tem p3

B1

B2

B3 B4

442 Code Generation

Similarly, the use count for all variables is computed as shown in the table below.
If there are three registers, then these registers are to be assigned to the variables temp2,

temp4, temp3 as their use count is high.

Summary
 � Code generator is dependent on the target language.
 � Different forms that the input code generator can have are polish notation, three address

code, and syntax trees.
 � There are three forms of target code—absolute machine code, relocatable machine code,

and assembly code.
 � Space and time of the object code also depends on the type of instructions used.
 � DAG’s representation is useful in generating efficient code.
 � Register descriptors are maintained to keep track of the contents of the registers.
 � Address descriptors are maintained to keep track of the availability of the value of

variable.
 � The getreg() function returns the register that can be used for the computation of the

instruction.
 � The cost of instruction is dependent on the register allocation.
 � Use count and graph coloring approaches will improve the cost of program execution

with minimum number of registers being used.
 � Code generation using DAG helps in generating the code that uses minimum number of

registers.

Fill in the Blanks
 1. ________________ phase is responsible for generating the target code.

 2. The intermediate codes that are in linear representation are ________________ and
________________.

 3. The intermediate codes that are in hierarchical representation are ________________
and ________________.

 4. ________________ code is static and is always placed in the same location in memory.
 5. ________________ and ________________ programmes are needed to link the mod-

ules and to load the programs into the memory for execution.
 6. The conversion of all labels in three address statements to addresses of instructions is

known as ________________.
 7. Target code for the instruction a = b * c is ________________.
 8. Use of ________________ reduces the cost of instruction.
 9. ________________ maintains a pointer to the list that contains the information about

what is currently available in the registers.

 Objective Question Bank 443

 10. ________________ keeps track of locations of each variable.
 11. What is the cost of the instruction mov r5, r3?
 12. ________________ form of writing the instruction would minimize the instruction

cost.
 13. C(R) indicates that the instruction is in the ________________ mode.
 14. The cost of instruction is dependent on the ________________ of the operands.
 15. ________________ gives the number of times the variable x is used in block B.

Objective Question Bank
 1. The input of code generation phase is.

 (a) Polish notation. (b) Three address code
 (c) Abstract syntax tree (d) Any one of the above

 2. Name the programs that are needed to run the code that is in relocatable form.
 (a) Assemblers and loaders (b) Loaders and linkers
 (c) Assemblers and linkers (d) None

 3. Back patching is a process that comprises which of the following tasks?
 (a) The labels in three address statements are converted to the addresses of instructions.
 (b) The address of instruction is converted to labels in three address statements.
 (c) Both are valid
 (d) None

 4. Which of the following machine idioms perform the task equivalent to a = a + 1?
 (a) INC (b) SFT
 (c) Both are valid (d) None

 5. Register assignment to variables is _____________ problem.
 (a) P – hard problem (b) P – complete problem
 (c) NP – hard problem (d) NP – complete problem

 6. For integer multiplication in IBM System/370 ________ registers are used.
 (a) single (b) pair
 (c) two pairs (d) Any of the above

 7. Name the descriptor required to keep track of content of registers.
 (a) Address (b) Register
 (c) Both (d) Any of the above

 8. Name the descriptor used to keep track of the availability of value for the variables.
 (a) Address (b) Register
 (c) Both (d) Any of the above

 9. Which of the following intermediate code helps in generating the effi cient target code?
 (a) Post fi x notation (b) Three address code
 (c) Quadruples (d) DAG

 10. Code generator is dependent on
 (a) Type of input (b) Type of output
 (c) Register allocation (d) All

444 Code Generation

Exercises
 1. Explain the code generation algorithm, function getreg() with an example.
 2. Write about the use of DAG in code generation. Explain the procedure for construct-

ing DAG with an example.
 3. (a) Write about the issues in the design of code generator.
 (b) Write about target code forms. Explain how the instruction forms effect the com-

putation time.
 4. Write the code generated for the following statements.

 (a) A = B[i] (b) A[i] = B
 (c) A = *p (d) A = B + C

 5. (a) Write about global register allocation strategy for loops.
 (b) Explain code generation from DAG. For the following instructions construct DAG.

t1: = a + b
t2: = a + b
t3: = e − t2
t4: = t1 − t3

 6. For the following instructions, construct DAG and generate code with and without
optimization.

t1: = a + b
t2: = c + d
t3: = e − t2
t4: = t1 − t3

 7. Generate the code for the following C statements using its equivalent three address code.

 (a) a = b + c (b) x = a/(b + c) – d * (e + f)
 (c) * A = p (d) A = B + C

 8. Generate the code for the following C statements using its equivalent three address code.

 (a) a = b + 1 (b) x = y + 3
 (c) y = a/b (d) a = b + c

 9. Explain the following terms.

 (a) Register descriptor. (b) Address descriptor.
 (c) Instruction costs.

 10. (a) What is DAG? Construct the DAG for the following basic block.

D: = B − C
E: = A + B
B: = B + C
A: = E − D

 11. (a) Explain the importance of register allocation with respect to optimization?
 (b) Explain the importance of addressing modes with respect to optimization?
 12. (a) Write about global register allocation strategy for loops.
 (b) Explain code generation from DAG. For the following instructions construct DAG.

 Key for Objective Question Bank 445

t1: = a/b
t2: = a/b
t3: = e − t2
t4: = t1 − t3
t5: = e − t2
t6: = t4 * t5

 13. (a) Write the three-address code for the following code.

fact(x)
{ int f=1;
for(i=2, i >=x, i++)
{
 f=f*i;
 return f;
}

 (b) Represent the above code using DAG.
 14. (a) Explain the importance of register allocation with respect to optimization.
 (b) Explain the procedure for constructing DAG with an example. Write the applications

of DAG.

Key for Fill in the Blanks
 1. Code generation 8. Registers
 2. Postfi x notation, three address 9. Register descriptor.
 representation. 10. Address descriptor
 3. Syntax trees and DAGs 11. One
 4. Absolute machine code 12. Register and indirect register
 5. Loader and linker 13. Indexed
 6. Back patching. 14. Addressing mode
 7. mov b R1, mul c R1, mov R1 a 15. use(x,B)

Key for Objective Question Bank
 1. d 2. b 3. a 4. a 5. d
 6. b 7. b 8. a 9. d 10. d

 This page is intentionally left blank.

RECOMMENDED READINGS AND WEBSITES

Further Readings
1. Compiler Design, by Santanu Chattopadhyay. PHI Learning (2006).
2. Compilers: Principles, Techniques, & Tools, by Alfred V. Aho. Pearson (1986).
3. Comprehensive Compiler Design, by O. G. Kakde. Laxmi Publications (2005).
4. Formal Languages and Automata Theory, by A. A.Puntambekar. Technical Publications (2011).

Online References
1. 202.113.80.118:8080/sjjg/upLoad/down/.../20120704005.doc
2. baggins.nottingham.edu.my/~hsooihock/G52CMP/semantic.ppt
3. books.google.co.in/books?isbn=8131707881
4. books.google.co.in/books?isbn=8131759024
5. books.google.co.in/books?isbn=8184314892
6. books.google.co.in › Computers › Programming › Algorithms
7. citeseerx.ist.psu.edu/viewdoc/download?... - United States
8. digitallibrary.srmuniv.ac.in/dspace/bitstream/.../1/3259.pdf
9. dinosaur.compilertools.net/lex/

10. dinosaur.compilertools.net/yacc/index.html
11. docs.oracle.com › ... › Chapter 3 yacc -- A Compiler Compiler
12. dragonbook.stanford.edu/lecture-notes/.../20-Optimization.pdf
13. elearning.algonquincollege.com/coursemat/ranevs/.../NRPP.do..
14. elearning.vtu.ac.in/16/ENotes/.../Unit6-NKC.pdf
15. en.wikipedia.org/wiki/AVL_tree
16. en.wikipedia.org/wiki/Compiler
17. en.wikipedia.org/wiki/Formal_language
18. en.wikipedia.org/wiki/Linker_(computing)
19. home.pcisys.net/~aharon/classnotes3.doc
20. lambda.uta.edu/cse5317/fall02/notes/node39.html
21. lylib.com/books/en/1.424.1.79/1/ - United States
22. man.cat-v.org/plan_9/1/lex
23. nptel.iitm.ac.in/courses/Webcourse.../power...9/9_18.html
24. polaris.cs.uiuc.edu/~padua/cs321/PARSING1.ppt
25. smkfi t.fi les.wordpress.com/2012/01/compiler-notes-unit-iv.pdf
26. suif.stanford.edu/~courses/cs243/lectures/l2.pdf
27. tinman.cs.gsu.edu/~raj/4340/sp12/notes/bottomup-Ullman.pdf
28. uw714doc.sco.com/en/SDK.../_Ambiguity_and_Confl icts.html
29. http://acorwin.wordpress.com/2012/10/18/lexical-analysis-the-role-of-the-lexical-analyzer-section-3-1/
30. http://code.google.com/p/cbse-065/wiki/module10
31. http://computacion.cs.cinvestav.mx/~acaceres/courses/itesm/lp/clases/lp07b.pdf
32. http://csis.bits-pilani.ac.in/faculty/dck/spl/slide/spl4.pdf

448 Recommended Readings And Websites

33. http://en.wikipedia.org/wiki/Chomsky_hierarchy
34. http://en.wikipedia.org/wiki/Regular_grammar
35. http://en.wikipedia.org/wiki/Syntax_diagram
36. http://fl ylib.com/books/en/1.424.1.31/1/
37. http://grammar.about.com/od/basicsentencegrammar/a/grammarintro.htm
38. http://lambda.uta.edu/cse5317/notes
39. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/compiler-desing/chapter_1/1_1a.html
40. https://parasol.tamu.edu/~rwerger/Courses/434/lec14.pdf
41. http://programming4.us/desktop/392.aspx
42. http://sandbox.mc.edu/~bennet/ada/examples/numbers_adb.html
43. http://svnweb.freebsd.org/csrg/old/yacc/PSD.doc/ss2?revision=62773&view=co&pathrev=62773
44. http://www.augustana.ab.ca/~mohrj/courses/2000.fall/csc370/lecture_notes/ebnf.html
45. http://www.bituh.com/2012/10/19/14bii-explain-the-transformation-of-basic-blocks/
46. http://www.boddunan.com/articles/education/19-engineering.html?start=195
47. http://www.codeduniya.com/slide_folder/Language%20Processors/Scanning.pdf
48. http://www.cs.arizona.edu/classes/cs453/fall12/class_notes/PDF/LexicalAnalysis.pdf
49. http://www.cs.columbia.edu/~aho/cs4115/lectures/13-02-25.htm
50. http://www.eecs.wsu.edu/~cook/tcs/l5.html
51. http://www.fi t.vutbr.cz/~meduna/zap/ZAP_SLAJDY.pdf
52. http://www.labautopedia.org/mw/index.php/List_of_programming_and_computer_science_terms
53. http://www.mec.ac.in/resources/notes/notes/compiler/module3/type%20check.htm
54. http://www.univ-orleans.fr/lifo/Members/Mirian.Halfeld/Cours/TLComp/l3-OverviewTL.pdf
55. www.bituh.com/.../14aii-explain-code-generation-phase-with-s...
56. www.cs.auckland.ac.nz/~jmor159/PLDS210/hash_tables.html
57. www.csa.syr.edu/~chapin/cis657/yacc.pdf
58. www.cs.engr.uky.edu/~lewis/essays/compilers/rec-des.html
59. www.cs.northwestern.edu/academics/courses/322/notes/14.ppt
60. www.cs.nyu.edu/courses/fall06/G22.2130-001/class-notes.html
61. www.cs.rice.edu/~keith/512/2011/.../L08Reassoc-1up.pdf
62. www.cs.wright.edu/~tkprasad/.../L12BUP.pdf - United States
63. www.csee.wvu.edu/~timm/cs310/cs310_12.html
64. www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/translat.htm
65. www.fact-index.com/c/co/compiler.html
66. www.facweb.iitkgp.ernet.in/~niloy/Compiler/.../TACintro.doc
67. www.facweb.iitkgp.ernet.in/~niloy/Compiler/notes/TCBB.doc
68. www.facweb.iitkgp.ernet.in/~niloy/Compiler/notes/PG.doc
69. www.iitg.ernet.in/dgoswami/resource/Code-Optimization.ppt
70. www-inst.eecs.berkeley.edu/~cs164/fa05/lects/f05-13-2x2.pd
71. www.mec.ac.in/resources/notes/notes/automata/enfa.htm
72. www.mec.ac.in/resources/notes/.../compiler/.../codegenissues.h...
73. www.mec.ac.in/resources/notes/notes/.../predective.htm
74. www.nationmaster.com/encyclopedia/Retargetable-compiler
75. www.oocities.org/wael_it2003/2.ppt
76. www.scribd.com/doc/40687350/CD-Shivani
77. www.site.uottawa.ca/~bochmann/.../Notes/.../Error-recovery.p...
78. www.slideshare.net/AdnoisAyyappa/unit8-16576062

INDEX

A

Abstract syntax tree (AST), 260, 260f
Ambiguous, 94
Augmented grammar, 192
Automatic code generator, 24
Automatic parser generator, 23
AVL trees, 348–352
 deletion, 351–352
 insertion, 348–349
 left–left (LL), 350
 left–right (LR), 350–351
 lookup, 348
 right–left (RL), 349–350
 right–right (RR), 349

B

Back patching, 427
Backus-Naur form (BNF), 84–85
Bootstrapping, 20–21
 advantages, 22–23
 T-diagram, 21
Bottom-up parser, 175f
 canonical LR(1) parsers CLR(1)/LR(1),

 209–215
 closure(I), 209–210
 CLR(1) grammar, 213–215
 constructing CLR(1) parsing table,

 212–213
 creating canonical collection, 211–212
 goto (I,X), 210–211
 handle, 173–174
 LALR(1) parser, 215–222
 LR(0) parser, 197–204
 advantages and disadvantages, 199

 LR(0) grammar, 199
 shift-reduce parsing confl icts, 200–204
 LR grammar, 187
 LR parsers, 187–188
 error recovery, 224
 LR parsing algorithm, 188–191
 LR parsing table, construction, 191–197
 augmented grammar, 192
 closure(I), 193–194
 creating canonical collection, 195
 DFA construction, 195–197
 goto (I,X), 194–195
 LR(0) item, 192–193
 operator precedence parsing, 176–187
 error recovery, 184–185
 operator precedence relation, calculating,

 182–184
 parsing algorithm for, 178–179
 precedence relations, 177
 precedence relation table, construction,

 179–182
 precedence relation table to precedence

 function table, 184–185
 recognizing handles, 177–178
 SLR(1) parser, 204–209
 vs.top-down parser, 223–224
Brute force technique, 131–133, 132f–133f

C

Chomsky hierarchy, 81
 context sensitive grammars (CSG), 82
 recursively enumerable languages, 81
 regular grammars (RG), 82
 Unrestricted grammars (URG), 81
CLR(1)/LR(1) grammar, 213
Code generation, 425

Note: Page numbers followed by "f" and "t" denote fi gures and tables.

450 Index

 approach to, 429–432
 issues in design, 425–426, 426f
 choice of evaluation order, 429
 code generator input, 426
 instruction selection, 427–428
 memory management, 427
 register allocation, 428–429
 register allocation and assignment, 433–436
 target programs, 426–427
 using DAG, 436–439
Code optimization, 375–377
 basic block identifi cation, 378–380
 DAG construction, 381–386
 DAG representation of basic block, 381
 fl ow graph, 380–381
 function-preserving transformations
 common sub-expression elimination,
 386–389
 constant propagation, 397
 copy propagation, 389–394
 dead-code elimination, 394–396
 global fl ow analysis, 403–411
 loop optimization, 397–403
 machine-dependent optimization, 411–413
 model, 378f
 principle source, 386
Coercion, 302
Compiler, 1–2, 8
 bootstrapping, 20–23
 challenge, 3–4
 design of passes, 19–20
 design phases
 back end, 17–19, 18f
 code optimizer, 13–14
 front end, 16–17, 17f, 18f
 intermediate code generator, 13
 lexical analysis, 10–13
 symbol table manager and error handler,

 15–16
 target code generator, 14–15
 design principle, application, 24–25
 design tools, 23–24
 history, 2–3
 input and output, 2f
 modern compilers, 24

 retargeting, 20
 typical language-processing system, 6–9
 vs. interpreter, 4–6
Concrete syntax tree, 260, 260f
Context Free Grammars (CFG), 79, 82, 87–89, 88,
 125, 241
 applications of, 112
 derivation, 89–91
Context sensitive grammars (CSG), 82
Copy propagation, 389–394
Cross compiler, 20–21

D

Data-fl ow engine, 24
Dead-code elimination, 394–396, 412–413
Derivation tree, 93–94
Deterministic fi nite automata (DFA), 13
Directed acyclic graph (DAG), 262–264, 312
 algorithm for construction, 382–384
 application of, 384–386
 construction, 381–382
 representation of basic block, 381

E

Early binding, 291
Encoding of type expressions, 298–299
Error handler, 15
Executable code, 6
Extended backus naur form (EBNF), 85–86

F

Finite automata (FA), 31
Finite state machine, 43–63
 automaton model, 44
 converting NFA (MN) to DFA (MD), 51–53
 deterministic fi nite dutomaton (DFD), 48–49
 eliminating ε-transitions, 55
 epsilon closure (ε-closure), 54–55
 equivalence of DFA and NFA, 50–51
 language acceptance, 46–47
 minimization of DFA, 59–63
 NFA with epsilon (ε-transitions), 54

Index 451

 nondeterministic fi nite automaton
 (NFA), 49–50
 transition diagram and table, 45–46
 transition function, properties, 45
Function newtemp, 318–319
Function-preserving transformations
 common sub-expression elimination, 386–389
 constant propagation, 397
 copy propagation, 389–394
 dead-code elimination, 394–396

G

Global fl ow analysis, 403–404
 live variable analysis, 405
 points and paths, 404–405
 reaching defi nition, 405
 iterative algorithm for, 408–411
 set representation, 406–408
 use defi nition chains, 405
Global optimizer, 24
Grammar, 79–80
 ambiguous, 100–103
 attributes for symbols, 242–243
 inherent ambiguity, 105–106
 language defi ned by, 91–96
 left-factoring, 98–100
 left recursion, 96–98
 LL(1), 145–150
 parsing, 125
 removing ambiguity, 103–105
 representations, 84–87
 Backus-Naur form (BNF), 84–85
 extended Backus-Naur form (EBNF),
 85–86
 syntax diagrams, 86–87, 86f, 87f
 simplifi cation of, 106–111
 string of symbols, 139–141
 types—Chomsky hierarchy, 81–84

H

Handle, 173–174
 pruning, 174
Hash tables, 352

 chaining, 353–354
 collision handling, 353
 mapping function, 353
 overfl ow area, 355–356
 re-hashing, 354
I

Intermediate code, 309
 benefi ts of, 309
 generator role, 309f
Intermediate languages
 directed acyclic graph, 312
 postfi x notation, 312–313
 syntax trees, 310–311
 three address code, 313–314
Intermediate representation (IR), 13, 17
Interpreter, 4, 4f
 advantages of, 5–6

L

L-attributed, 269–276
L-attributed to S-attributed, converting, 276–278
Left-factoring, 98–100
Leftmost derivation (LMD), 92, 128
Left recursive, 96–98
Lexeme, 35
Lexical analysis, 10–13, 11f, 16, 31–64
 advantages of separating from syntax analysis, 33
 error recovery, 33–34
 fi nite state machine, 43–63
 input buffering, 38–40
 lexical analyzer secondary tasks, 33
 lex tool, 63–64
 strategies for implementing, 37–38
 tokens, patterns, lexemes, 34–37
 tokens specifi cation and recognition, 40–43
Loader/linker, 9–10
Loop optimization, 397–398
 induction variables, 399–400
 detecting, 400–401
 elimination of, 401–403
 strength reduction applied to, 401
 loop invariant computation, 398–399
LR grammar, 187

452 Index

M

Machine-dependent optimization, 411
 algebraic simplifi cation, 412
 dead code elimination, 412–413
 fl ow-of-control optimization, 413
 redundant loads and stores, 411–412
 strength reduction, 413
 use of machine idioms, 413
 Myhill Nerode theorem, 61–63

N

Name equivalence, 299–300
Nondeterministic fi nite automata (NFA), 31

O

Operator precedence parsing, 176–187
 error recovery, 184–185
 operator precedence relation, calculating,
 182–184
 parsing algorithm for, 178–179
 precedence relations, 177
 precedence relation table, construction,
 179–182
 precedence relation table to precedence

 function table, 184–185
 recognizing handles, 177–178

P

Panic Mode Error Recovery, parsing, 127, 150–152
Parsers
 actions in top-down evaluation, 267f–268f
 error handling in, 126–127
 LR, 188–191, 189f
 predictive, 133–134
 algorithm for LL(1) parsing, 137–139
 construction of parsing tables, 144–145
 error recovery, 150–152
 non-recursive descent parser-LL(1) parser,

 136–137, 136f
 recursive descent parser, 134–136
 types, 128f

 top-down parsers (TDP), 128–129, 129f
 universal parsers, 128
Parse tree, 243f, 244f, 245f, 246f, 247f, 249f, 250f,
 253f, 254f, 255f, 256f, 258f, 259f, 262f, 263f, 266f,
 272f, 277f
Pattern, 35
Peephole optimization, 411
Postfi x notation, 312–313

R

Recursively enumerable languages, 81
Regular grammars (RG), 82
Rightmost derivation (RMD), 92

S

S-attributed grammar, top-down evaluation of,
 265–268
Scanner. See Lexical analysis
Scanner generator, 23
Semantic analysis, 291–293
 equivalence of type expressions
 encoding of type expressions, 298–299
 name equivalence, 299–300
 structural equivalence, 297–298
 type graph, 300–301
 functions and operators overloading, 302–303
 polymorphic functions, 303
 role of a semantic analyzer in compilation,
 292f
 simple type checker, design, 295–296
 type checking
 of expressions, 296
 of functions, 297
 of statements, 296–297
 type conversion, 302
 type expressions, 293–295
 type systems, 293
Shift/reduce confl ict, 200–204
Shift reduce (SR) parser, 174–175, 174t
 See also Bottom-up parser
Source language, 2
Stack symbol tables, 358–363
Structural equivalence, 297–298

Index 453

Symbol table, 10, 337–367, 338t
 block structured language, 356–358
 stack-implemented tree/hash-structured
 symbol tables, 363–367
 stack symbol tables, 358–363
 entries, 339–340
 non-block structured language
 AVL trees, 348–352
 hash tables, 352–356
 hierarchical list, 347–348
 linear list, 342
 linked list or self-organizing tables, 344–346
 ordered list, 342–343
 unordered list, 343–344
 operations on, 340–341
 organization, 341–342
Symbol table manager, 15
Syntax analysis, 125–126, 126f
Syntax diagrams, 86–87, 86f, 87f
Syntax-directed translation (SDT), 24, 241–284
 bottom-up evaluation of, 250–260
 into three address code, 318–327
 addressing array elements, 320–322
 assignment statement, 318–320
 control statements, 324–327
 logical expression, 322–323
 postfi x, 265
 syntax tree, creation, 260–262
 types, 264
 writing, 243–250

Syntax tree, 260, 310–311

T

Target code generator, 14–15
Target/object language, 2
Three address code, 313–314
 representation
 comparison, 318
 indirect triples, 317
 quadruple, 316
 triple, 316–317
 types, 314–315
Token, 34
 recognition, 42–43
 specifi cation, 40–41
Top-down parsers (TDP), 128–129, 129f
 brute force technique, 131–133, 132f–133f
Translator, 2
Typical language-processing system, 6, 7f
 loader/linker, 9–10
 preprocessor, 6–9
U

Universal parsers, 128
Unrestricted grammars (URG), 81

Y

YACC (Yet Another Compiler Compiler), 278–284

	Cover
	Dedication
	Brief Contents
	Contents
	Preface
	Acknowledgements
	Chapter 1 : Introduction
	1.1 What is a Compiler?
	1.1.1 History
	1.1.2 What is the Challenge?

	1.2 Compiler vs. Interpreter
	1.3 Typical Language-Processing System
	1.3.1 Preprocessor
	1.3.2 Loader/Linker

	1.4 Design Phases
	1.4.1 The Lexical Analysis
	1.4.2 Intermediate Code Generator
	1.4.3 Code Optimizer
	1.4.4 Target Code Generator
	1.4.5 Symbol Table Manager and Error Handler
	1.4.6 Compiler Front End
	1.4.7 Compiler Back End

	1.5 Design of Passes
	1.6 Retargeting
	1.7 Bootstrapping
	1.7.1 T-diagram
	1.7.2 Advantages of Bootstrapping

	1.8 Compiler Design Tools
	1.9 Modern Compilers—Design Need for Compilers
	1.10 Application of Compiler Design Principles
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 2 : Lexical Analyzer
	2.1 Introduction
	2.2 Advantages of Separating Lexical Analysis from Syntax Analysis
	2.3 Secondary Tasks of a Lexical Analyzer
	2.4 Error Recovery in Lexical Analysis
	2.5 Tokens, Patterns, Lexemes
	2.6 Strategies for Implementing a Lexical Analyzer
	2.7 Input Buffering
	2.8 Specification of Tokens
	2.8.1 Operations on Language

	2.9 Recognition of Tokens
	2.10 Finite State Machine
	2.10.1 Finite Automaton Model
	2.10.2 Properties of the Transition Function “δ”
	2.10.3 Transition Diagram
	2.10.4 Transition Table
	2.10.5 Language Acceptance
	2.10.6 Finite Automation is of Two Types
	2.10.7 Deterministic Finite Dutomaton (DFA)
	2.10.8 Nondeterministic Finite Automaton (NFA)
	2.10.9 Equivalence of DFAs and NFAs
	2.10.10 Converting NFA (MN) to DFA (MD)—Subset Construction
	2.10.11 NFA with Epsilon (ε)-Transitions
	2.10.12 Epsilon Closure (ε-closure)
	2.10.13 Eliminating ε-Transitions
	2.10.14 Converting NFA with ε-Transition to NFA Without ε-Transition
	2.10.15 Converting NFA with ε-Transition to DFA
	2.10.16 Comparison Method for Testing Equivalence of Two FAs
	2.10.17 Reduction of the Number of States in FA
	2.10.18 Minimization of DFA
	2.10.19 Minimization of DFA Using the Myhill Nerode Theorem

	2.11 Lex Tool: Lexical Analyzer Generator
	2.11.1 Introduction
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 3 : Syntax Definition – Grammars
	3.1 Introduction
	3.2 Types of Grammars—Chomsky Hierarchy
	3.3 Grammar Representations
	3.4 Context Free Grammars
	3.5 Derivation of CFGs
	3.6 Language Defined by Grammars
	3.6.1 Leftmost and Rightmost Derivation
	3.6.2 Derivation Tree
	3.6.3 Equivalence of Parse Trees and Derivations

	3.7 Left Recursion
	3.8 Left-Factoring
	3.9 Ambiguous Grammar
	3.10 Removing Ambiguity
	3.11 Inherent Ambiguity
	3.12 Non-context Free Language Constructs
	3.13 Simplification of Grammars
	3.14 Applications of CFG
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 4 : Syntax Analysis—Top-Down Parsers
	4.1 Introduction
	4.2 Error Handling in Parsing
	4.2.1 Panic Mode Error Recovery
	4.2.2 Phrase Level Recovery
	4.2.3 Error Productions
	4.2.4 Global Correction

	4.3 Types of Parsers
	4.3.1 Universal Parsers
	4.3.2 Top-Down Parsers (TDP)
	4.3.3 Bottom-Up Parsers

	4.4 Types of Top-Down Parsers
	4.4.1 Brute Force Technique

	4.5 Predictive Parsers
	4.5.1 Recursive Descent Parser
	4.5.2 Nonrecursive Descent Parser—LL(1) Parser
	4.5.3 Algorithm for LL(1) Parsing
	4.5.4 First(α), Where α is Any String of Grammar Symbols
	4.5.5 Follow(A) Where ‘A’ is a Nonterminal

	4.6 Construction of Predictive Parsing Tables
	4.7 LL(1) Grammar
	4.8 Error Recovery in Predictive Parsing
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 5 : Bottom-Up Parsers
	5.1 Bottom-Up Parsing
	5.2 Handle
	5.3 Why the Name SR Parser
	5.4 Types of Bottom-Up Parsers
	5.5 Operator Precedence Parsing
	5.5.1 Precedence Relations
	5.5.2 Recognizing Handles
	5.5.3 Parsing Algorithm for Operator Precedence Parser
	5.5.4 Construction of the Precedence Relation Table
	5.5.5 Mechanical Method of Constructing Operator Precedence Table
	5.5.6 Calculating Operator Precedence Relation ⋖ ⋗ =
	5.5.7 Error Recovery in Operator Precedence Parser
	5.5.8 Procedure for Converting Precedence Relation Table to Precedence Function Table

	5.6 LR Grammar
	5.7 LR Parsers
	5.8 LR Parsing Algorithm
	5.8.1 Task of LR Parser: Detect Handle and Reduce Handle

	5.9 Construction of the LR Parsing Table
	5.9.1 Augmented Grammar
	5.9.2 LR(0) Item
	5.9.3 Closure(I)
	5.9.4 Goto(I,X)
	5.9.5 Creating Canonical Collection “C” of LR(0) Items
	5.9.6 Construction of DFA with a Set of Items

	5.10 LR(0) Parser
	5.10.1 Advantages of the LR(0) Parser
	5.10.2 Disadvantages of the LR(0) Parser
	5.10.3 LR(0) Grammar
	5.10.4 Conflicts in Shift-Reduce Parsing

	5.11 SLR(1) Parser
	5.12 Canonical LR(1) Parsers CLR(1)/LR(1)
	5.12.1 Closure(I) Where I is a Set of LR(1) Items
	5.12.2 Goto(I,X)
	5.12.3 Creating Canonical Collection “C” of LR(1) Items
	5.12.4 Constructing CLR(1) Parsing Table
	5.12.5 CLR(1) Grammar

	5.13 LALR(1) Parser
	5.14 Comparison of Parsers: Top-Down Parser vs.Bottom-Up Parser
	5.15 Error Recovery in LR Parsing
	5.16 Parser Construction with Ambiguous Grammars
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 6 : Syntax-Directed Translation
	6.1 Introduction
	6.2 Attributes for Grammar Symbols
	6.3 Writing Syntax-Directed Translation
	6.4 Bottom-Up Evaluation of SDT
	6.5 Creation of the Syntax Tree
	6.6 Directed Acyclic Graph (DAG)
	6.7 Types of SDTs
	6.8 S-Attributed Definition
	6.9 Top-Down Evaluation of S-Attributed Grammar
	6.10 L-Attributed Definition
	6.11 Converting L-Attributed to S-Attributed Definition
	6.12 YACC
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 7 : Semantic Analysis
	7.1 Introduction
	7.2 Type Systems
	7.3 Type Expressions
	7.4 Design of Simple Type Checker
	7.5 Type Checking of Expressions
	7.6 Type Checking of Statements
	7.7 Type Checking of Functions
	7.8 Equivalence of Type Expressions
	7.8.1 Structural Equivalence
	7.8.2 Encoding of Type Expressions
	7.8.3 Name Equivalence
	7.8.4 Type Graph

	7.9 Type Conversion
	7.10 Overloading of Functions and Operators
	7.11 Polymorphic Functions
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 8 : Intermediate Code Generation
	8.1 Introduction
	8.2 Intermediate Languages
	8.2.1 Syntax Trees
	8.2.2 Directed Acyclic Graph (DAG)
	8.2.3 Postfix Notation
	8.2.4 Three Address Code

	8.3 Types of Three Address Statements
	8.4 Representation of Three Address Code
	8.4.1 Quadruple
	8.4.2 Triple
	8.4.3 Indirect Triples
	8.4.4 Comparison of Representations

	8.5 Syntax-Directed Translation into Three Address Code
	8.5.1 Assignment Statement
	8.5.2 Addressing Array Elements
	8.5.3 Logical Expression
	8.5.4 Control Statements
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 9 : Symbol Table
	9.1 Introduction
	9.2 Symbol Table Entries
	9.3 Operations on the Symbol Table
	9.4 Symbol Table Organization
	9.5 Non-block Structured Language
	9.5.1 Linear List in Non-block Structured Language
	9.5.2 Linked List or Self-organizing Tables
	9.5.3 Hierarchical List
	9.5.4 Hash Tables

	9.6 Block Structured Language
	9.6.1 Stack Symbol Tables
	9.6.2 Stack-Implemented Tree-structured Symbol Tables
	9.6.3 Stack-Implemented Hash-Structured Symbol Table
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 10 : Code Optimization
	10.1 Introduction
	10.2 Where and How to Optimize
	10.3 Procedure to Identify the Basic Blocks
	10.4 Flow Graph
	10.5 DAG Representation of Basic Block
	10.6 Construction of DAG
	10.6.1 Algorithm for Construction of DAG
	10.6.2 Application of DAG

	10.7 Principle Source of Optimization
	10.8 Function-Preserving Transformations
	10.8.1 Common Sub-expression Elimination
	10.8.2 Copy Propagation
	10.8.3 Dead Code Elimination
	10.8.4 Constant Propagation

	10.9 Loop Optimization
	10.9.1 A Loop Invariant Computation
	10.9.2 Induction Variables

	10.10 Global Flow Analysis
	10.10.1 Points and Paths
	10.10.2 Reaching Definition
	10.10.3 Use Definition Chains
	10.10.4 Live Variable Analysis
	10.10.5 Definition Use Chains
	10.10.6 Data Flow Analysis of Structured Programs
	10.10.7 Representation of Sets
	10.10.8 Iterative Algorithm for Reaching Definition

	10.11 Machine-Dependent Optimization
	10.11.1 Redundant Loads and Stores
	10.11.2 Algebraic Simplification
	10.11.3 Dead Code Elimination
	10.11.4 Flow-of-Control Optimization
	10.11.5 Reduction in Strength
	10.11.6 Use of Machine Idioms
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Chapter 11 : Code Generation
	11.1 Introduction
	11.2 Issues in the Design of a Code Generator
	11.2.1 Input to the Code Generator
	11.2.2 Target Programs
	11.2.3 Memory Management
	11.2.4 Instruction Selection
	11.2.5 Register Allocation
	11.2.6 Choice of Evaluation Order

	11.3 Approach to Code Generation
	11.3.1 Algorithm for Code Generation Using Three Address Code

	11.4 Instruction Costs
	11.5 Register Allocation and Assignment
	11.5.1 Fixed Registers
	11.5.2 Global Register Allocation
	11.5.3 Usage Count
	11.5.4 Register Assignment for Outer Loop
	11.5.5 Graph Coloring for Register Assignment

	11.6 Code Generation Using DAG
	Solved Problems
	Summary
	Fill in the Blanks
	Objective Question Bank
	Exercises
	Key for Fill in the Blanks
	Key for Objective Question Bank

	Recommended Readings and Websites
	Index

