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CHAPTER l.A 

COMPILER CONSTRUCTION 

W. M. McKeeman 

The University of California at 

Santa Cruz 

U. S. A. 

" I f  PL/I is the Fatal Disease, 
then perhaps Algol-68 is 
Capital Punishment". 

An Anonymous Compiler Writer 

I .  DEFINITIONS 

l . l .  SOURCE AND TARGET LANGUAGES 

A compiler is a program, written in an implementation language, accepting text in a 

source language and producing text in a target language. Language description 

languages are used to define al l  of these languages and themselves as well. The 

source language is an algorithmic language to be used by progra~ers. The target 

language is suitable for execution by some particular computer. 

I f  the source and target languages are reasonably simple, and well matched to each 

other, the compiler can be short and easy to implement (See Section l.A.2 of these 

notes). The more complex the requirements become, the more elaborate the compiler 

must be and, the more elaborate the compiler, the higher the payoff in applying the 

techniques of structured programming. 



1.2. IMPLEMENTATION LANGUAGES 

Compilers can, and have, been written in almost every programming language, but the 

use of structured programming techniques is dependent upon the implementation lang- 

uage being able to express structure. There are some existing languages which were 

explicitly designed for the task of compiler writing (FSL [Feldman 66]~XPL [McKeeman 

70], CDL [Koster 71b], and some for structuring (Pascal [Wirth 71], Algol 68 

Ivan Wijngaarden 68]). The criterion for choosing an implementation language is 
quite straight forward: i t  should minimize the implementation effort and maximize 

the quality of the compiler. Lacking explicit knowledge of this kind, the compiler 

writer is advised to seek a language as close as possible to the ones mentioned above. 
The number, quality and availability of such languages is generally on the increase. 
I t  may be advantageous to write a compiler to run on a different machine than the 

target text will run on i f  better tools can thus be used (especially common for very 
small target machines). In any case, we shall simply assume an appropriate implemen- 

tation language is available. 

Since there are so many languages involved, and thus so many translations, we need a 

notation to keep the interactions straight. A given translator has three main 

languages (SL, TL, IL above) which are objects of the prepositions from, to and in 
respectively. A T diagram of the form 

I compiler name 1 

SL ~- TL 

gives all three [Bratman ~]. I f  the compiler in Section l.A.2 (below) is called 

Demo, then i t  can be described by the diagram 

Demo 

assignment ~ zero-address 
statement instructions 



Now a compiler wr i t ten  in Algol-68 is of  no use unless there is also a running com- 

p i l e r  for  Algol-68 avai lable.  Suppose i t  is on the Burroughs B5500. Then i f  we 

apply i t  to the T above, we w i l l  get a new T as fo l lows:  

assignment 
statement 

Demo Demo 

zero-address assignment 
code statement ) 

Munich Compiler 

Algol Algol T R 4 4 0  #R440 
-68 -68 ~" machine in a l i ne  

....... language language 

B5500 
machine 
language 

zero-address 
code 

where the arms of the middle T must match the t a i l s  of the Ts to the l e f t  and r igh t .  

Complicated, mult istage, multi language, multimachine t rans la t ion  processes can be 

described by appropriate cascades of such T diaqrams [McKeeman 70 pp. 16-18]. 

1.3 Lanquaqe Defininq Languages 

Language def in ing languages are almost always based on grammars (see Chapter 2 of 

these notes) but f requent ly have addi t ional  features designed to define the target 

tex t  ( i . e , ,  t rans la t ion  def in ing languages). Thus the d i s t i nc t i on  between language 

de f i n i t i on  and implementation language has not always been very clear. There was a 

t r ad i t i on  at one point  of time to define a programming language as "what the compiler 

would t ranslate"  but th is  turned out to be of no value to the user who was not pre- 

pared to explore the idiosyncracies of a compiler to be able to wr i te  programs. The 

problem then has been to define languages wi thout  leaning on the compiler i t s e l f .  



The ul t imate solut ion is a de f i n i t i ona l  mechanism both c lear enough for  human refer-  

ence and usable as input to a t rans la tor  wr i t i ng  system which automatical ly creates 

the compiler. 

2. Recursive Descent Compilation 

2.1 in t roduct ion 

I t  is the in ten t  of the fo l lowing pages to give a concrete example of t rans la t ion and 

also to review a pa r t i cu la r ,  rather simple, rather successful, t rans la t ion  technique. 

The example, a t rans la t ion of  assignment statements to an assembly language fo r  a 

stack machine, is t r i v i a l  by contemporary standards but serves to elucidate the pro- 

cess. We can, in fac t ,  present the en t i re  t rans la to r  as a whole wi thout becoming 

mired in e i ther  deta i l  or side issues. For the example, the source tex t  

A = - A+  5 * B  / (B-I)  

w i l l  be translated to the fo l lowing zero-address target tex t  

LIT A LIT A LOAD NEG LIT 5 LIT B LOAD MUL LIT B LOAD LIT 1 NEG ADD DIV ADD STORE 

which closely approximates the ins t ruc t ions of the Burroughs B5500 computer [Organik 

71] (See also Chapters 3.A and 3.E of these notes). The target tex t  is executed, 

step by step, in Figure 2.1. Although the meaning of the target tex t  is probably 

obvious to the reader, we w i l l  take a few words to describe i t .  There is an evalua- 

t ion stack in to  which values can be pushed. Furthermore, the top values (hence the 

las t  ones pushed in to  the stack) are avai lable to be used in computations. The  LIT 

ins t ruc t ion  pushes one value onto the stack. That value is e i ther  an address (e .g . ,  

the address of the var iable A in LIT A) or a constant (e.g. the value 5 in LIT 5). 

The LOAD ins t ruc t ion  assumes the top value on the stack is an address. The address 

is removed from the stack and the value found in the indicated ce l l  in memory is 

pushed onto the stack in i t s  place. The STORE ins t ruc t ion  must be supplied with two 

items at the stack top. One is the address of a ce l l  in memory. The other is a 

value to be stored into the indicated cel l  (the address is below the value in the 

stack); A f ter  the STORE ins t ruc t ion  has completed i t s  act ion,  both address and value 

are removed from the stack. The remainder of the ins t ruc t ions are ar i thmet ic opera- 

t ions.  NEG changes the sign of the top value on the stack and leaves i t  where i t  

found i t .  ADD, MUL and DIV operate on the two top elements on the stack, removing 



them and then p lac ing the r e s u l t  back on the stack. 

LIT A LIT 5 LIT A 

i -I 
LOAD MUL 

LOAD NEG 

LIT B LOAD LIT 1 

-2J 
3O 

LIT B 

30 

NEG 

A 

DIV 

A 

ADD ADD STORE 

Successive stack conf igura t ions  dur ing execut ion of the 

t rans la ted  version of  A = - A + 5 x B / (B - I ) .  

Note: memory (A) = 7, memory (B) = 6 

Figure 2.1 

The source t ex t  in  the example can be described by the grammar in  Figure 2.2. 

Assignment = Variable '=' Expression; 

Expression = Term 

I '-~ Term 

J Expression '+'  Term 

j Expression ' - '  Term; 

Term = Factor 

J Term ~x' Factor 

J Term ' / '  Factor;  

Factor = Constant 

J Var iable 

j ' ( '  Expression ' ) ' ;  

Var iable = I d e n t i f i e r ;  

I d e n t i f i e r =  'A' I 'B' j . . .  ] ' Z ' ;  

Constant = '0 '  j ' l ' j  . . . ' 9 ' ;  

A Source Text Grammar f o r  Assignments 

Figure 2.2 



The target tex t  in the example is described by the grammar in Figure 2.3. 

Assignment = Variable Expression 'STORE'; 

Expression = 'LIT'  Constant 

I Variable 'LOAD' 

I Expression 'NEG' 

I Expression Expression Operator; 

Operator = 'ADD' I 'MUL' I 'DIV' ;  

Variable = 'LIT'  I den t i f i e r ;  

I den t i f i e r  = 'A' I ' B ' I  " .  I 'Z ' ;  

Constant = '0' I ' I '  I " ' "  I ' 9 ' ;  

A Target Text Grammar for  Assignments 

Figure 2.3. 

The t ranslat ion problem is ,  then, to take a given source text  and produce an egui- 

valent target text .  In case of assignments the condition fo r  equivalence is 

easi ly expressed in terms of the so cal led parse tree. The two texts above are 

seen to be equivalent because the operators are associated with the properly corres- 

ponding operands in both parse trees (Figures 2,4 and 2.5). 

Assignment 

Va ~ -  r iabl  e = txpressi on 

I den t i f i e r  j Expression + ~ e m  

_ x factor ( Expression ) 
Z / \ 

W~iable F~ctor U~riable 

I den t i f i e r  Constant I den t i f i e r  Expression 
/ / / 

A j 5 B Term 
/ 

Factor / 
.~iable 

~ nti  f i  er 

B 
The Parse Tree for  the Source Text A = - A + 5 x B / (B- I ) .  

Figure 2.4 

Term \ 
Faltor 

Cons tan t 



Variable Expresslon STORE 

J J J \ 
LIT I d e n t i f i e r  Expression Expression Operato.r 

A Exp~ression NEG ExpreSs si on Exp~e~si on Operator~ ADD 

 OAO 

LIT I d e n t i f i e r  LIT Constant / ~ M U L / ~ b l e  LOAD E x p ~ o n  

A 5 Variable LOAD LIT I d e n t i f i e r  LIT Constant 

LIT I d e n t i f i e r  B I 

\ 
B 

The Parse Tree for  the Target Text for  A = - A + 5 x B / (B-I) 

Figure 2.5 

That is not to say that we must bui ld the parse tree as a part of t ranslat ion.  The 

most elaborate compilers may very well do so but i t  is not necessary for  such a 

simple language as assignments. We can go d i rec t l y  from source text  to target  tex t  

without using any intermediate representations~ 

2.2 Writ in 9 a Recursive Descent Compiler 

The technique of recursive descent t ranslat ion [Lucas 61] is one of those ideas that 

is so simple that nobody ever bothers to wr i te  much about i t .  I t  i s ,  however, in 

many cases the easiest method of wr i t ing  good translators.  The prerequisi tes are a 

grammatical de f in i t ion  of the source language and a recursive programming language 

in which to implement the compiler (Algol 68 in these notes). 

The grammar serves much the same purpose as a flow chart. Given some experience, 

the compiler wr i te r  can produce a compiler such as that depicted in Figure 2.8 about 

as fast as he can wr i te.  I t  is easier to comprehend the wr i t ing  process, however, 

i f  we use regular expression gran~nars to define the source text .  The grammar in 

Figure 2.6 describes the same language as that in Figure 2.2. The grammar fragment 

( i ' - ' )  s ign i f ies  that a minus sign may or may not be found (empty or present). The 

fragment (( '+' I ' - ' )  Term)* s ign i f ies  zero or more repet i t ions of e i ther  a plus or 

minus followed by a Term, and so on. 



Assignment = Variable '='  Expression; 

Expression (1' ' )  Term ( ( ' + '  I ' ' )  Term)* 

Term = Factor ( ( ' x '  I ' / ' )  Factor) ; 

Factor = Constant i Var iable I ' ( '  Expression ' ) ' ;  

Var iable = I d e n t i f i e r ;  

I d e n t i f i e r  = 'A' I 'B' I , , ,  i ' Z ' ;  

Constant = '0 '  I ' I '  I , , ,  I ' 9 ' ;  

A Regular Expression Grammar Equivalent to the Grammar in Figure 2,2 

Figure 2.6 

A certain portion of the compiler is relat ively independent of the source language 

to be translated and can be kept ready "on the shelf' so to speak. Such a partial 

compiler is called a skeleton and contains procedures for input and output, text 

scanning, error handling, etc. The compiler writer inserts his procedures into the 

skeleton (lines 27 to 85 in Figure 2.8). The symbol "token" contains the i n i t i a l  

symbol of the source text and is to be replaced each time the current symbol has been 

processed. 

Referring to Figure 2.6, we observe that we must find a variable, followed by the 

replacement operator ( '= ' ) ,  followed by an expression. Without worrying about how 

the variable and expression are to be processed, we immediately write the procedure 

Assignment as depicted in Figure 2.7. Note that when the replacement operator is 

found, i t  is immediately discarded and the next symbol placed in token. I f  i t  is not 

found, an error message is generated. ~ 

,p..roc Assignment = void: 

begin Var iable;  

i f  token = "=" then token := scan else e r ro r  f~i; 

Expression 

end 

A Procedure to Analyze Assignments 

Figure 2.7 

~The error response depicted is entirely inadequate for a con~piler that w i l l  see any 
extensive service. Refer to Chapter 5.D of these notes. 
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38 

proc 

begin 

t r ans la te  = void:  

co  The va r iab le  token is used to communicate between the procedures tha t  

fo l l ow,  co 

s t r i n ~  token; 

co The two procedures, scan and emit ,  concerned wi th input  and output ,  

are l e f t  undefined below to avoid in t roduc ing de ta i l  i r r e l e v a n t  to the 

t r ans la t i on  process, co  

co This procedure produces the next token from the input  s t r i ng  each t ime 

i t  is ca l led ,  co 

proc scan = s t r i ng :  s k i~;  

co This procedure assembles one i ns t ruc t i on  o f  zero address machine code. 

co 

proc emit  = ( s t r i ng  op) void:  sk ip ;  

co The procedure constant returns the value true i f  i t s  argument s ta r ts  

wi th a d i g i t ,  co 

proc constant = ( s t r i ng  c) bool :  

char ins t r i ng  ( c [ i ]  , "0123456789", lo___~cint); 

co The procedure i d e n t i f i e r  returns the value true i f  i t s  argument 

s ta r ts  wi th  a l e t t e r ,  co 

prOc i den t i f i e r  = (s t r ing  i )  bool: 

charinstr ing (i [15 , 

"ABCDE FGH I JKLMNOPQRSTUVWXY Z", 

loc i n t ) ;  

co The procedure error signals a v io lat ion of the input syntax, co 

pro c error = void: 

pr in t  ("syntax error") ; 

proc Assignment = void: 

begin Var iab le ;  

i__f_f token = "=" the n token := scan else error f__~i; 

Expression; 

emit ("STORE") 

en__dd; 

~roc Expression = void:  

begin s t r i ng  t ;  

co F i r s t  check f o r  unary minus. 

i f  token = " - "  

then token := scan; 

Term; 

co 
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61 

62 
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emi t  ("NEG") 

e lse  Term 

f_ti; 

co  Now process a sequence of  adding opera tors .  

wh i le  token : " - "  v token = "+" 

do t : :  token; 

token : :  scan; 

Term; 

i__ff t = " - "  then emi t  ("NEG") f__~i; 

emi t  ("ADD") 

od 

end; 

proc Term = vo id :  

begin 

co 

s t r i n g  t ;  

Factor ;  

co  Now process a sequence o f  m u l t i p l y i n g  operators 

wh i le  token = "x" v token = " / "  

do t := token; 

token : :  scan; 

Factor ;  

i f  t = "x" then emi t  ("MUL") e lse emi t  ("DIV") f i  

od 

enod; 

prgc Factor = vo id :  

begin co  F i r s t  check f o r  a constant .  

i f  constant ( token) 

then emi t  ( "L IT " )  ; 

emi t  ( token) ; 

token := scan 

e,nd; 

co 

co  Second, check fo r  a parenthesized subexl~ession. 

e l s f  token : " ( "  

then token := scan; 

Expression; 

i f  token : " ) "  then token := scan e lse e r r o r  f i  

co  F i n a l l y ,  assume the token is  an i d e n t i f i e r ,  co  

e lse Va r i ab le ;  

emi t  ("LOAD") 

f i  

CO 

co 
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79 r9_[9_c Var iab le  = vo id :  

80 i f  i d e n t i f i e r  (token) 

81 then emit  ( " L I T " ) ;  

82 emit (token) ; 

83 token : = scan 

84 else e r ro r  

85 f_.~i; 

86 co The remai'ning code const i tu tes  the body o f  the procedure 

87 t rans la te ,  co 

88 co I n i t i a l i z e  the value o f  token, co 

89 token := scan; 

90 Assignment 

91 end 

A Recursive Descent Compiler for Assignments 

Figure 2.8 

Presuming that the procedure Variable actually produced the zero-address instruction 

stream 

LIT A 

and the procedure Expression produced the stream 

LIT A LOAD NEG LIT 5 LIT B LOAD MUL LIT B LOAD LIT 1NEG ADD DIV ADD 
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we need only add the single ins t ruc t ion  

STORE 

to complete the pFocess. This can be done by adding one l ine  to procedure assignment 

( l i ne  31 in Figure 2.8) a f te r  the invocation of procedure Expression. 

Continuing in th is manner, we observe, in Figure 2.6, that  an expression has f i r s t  an 

optional minus, a term, and then a sequence of operations and terms. I f  the f i r s t  

minus is there, a NEG operation must be placed a f te r  the ins t ruc t ions fo r  the f i r s t  

term. The remainder of the terms ( i f  any) must be processed and the corresponding 

target tex t  operations placed a f te r  them. The resu l t  is the procedure Term ( l ines 

51 to 62 in Figure 2.8). Note that a local var iable t is used to save the informa- 

t ion about whether a plus or minus is found. The remainder of the compiler is 

wr i t ten s i m i l i a r l y .  

2.3 Executin 9 the Compiler 

Execution begins with l i ne  89 in Figure 2.8. Control soon passes to procedure 

assignment ( l i ne  90 then l ine  27) and onward. Figure 2.9 gives a complete h is tory  of 

the t rans la t ion of  A = - A + 5 x B / (B- I ) .  The reader is advised to hand simulate 

the execution of the procedure t rans la te ,  using the h is tory  as a check. 

Active l ine  Value Source text  Target code 
in the of remaining produced 
top-down token 
compiler 

s ta r t  undefined A=-A+5xB/(B-1) 
89 

A =-A+5xB/(B-I) 
90 
28 
80 

83 

29 
30 
36 
37 

51 
54 
63 
64 
70 
75 
80 

76 

56 

3 9  

A =-A+5xB/(B-1) 

= -A+5xB/(B-I) 
- A+5xB/(B-1) 

A +5xB/(B-I) 

A +5xB/(B-1) 

+ 5xB/(B-I) 

+ 5xB/(B-I) 

LIT A 

LIT A 

LOAD 



43 
46 

47 
51 
54 
65 

56 

57 
58 

59 
64 
70 
75 
80 

76 

60 

56 
57 
58 

59 
64 
70 
71 

72 
33 
36 
40 
54 
64 
70 
75 
80 

83 

76 

60 
56 
58 

65 
68 
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5xB/(B-I) 

xB/(B-I)  

xB/(B-1) 

B/(B-t)  

/ (B - l )  

/ ( B - l )  

(B-1) 

(B- l )  

B- l )  

- i )  

- i )  

1) 

1) 

NEG 

LIT 5 

LIT B 

LOAD 

MUL 

LIT B 

LOAD 

I ) LIT 1 
56 
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48 

49 

43 
73 
60 

56 
47 
48 

43 
31 

91 

) NEG 

) ADD 

DIV 

ADD 

STORE 

Summary of the Action of the Recursive Descent Compiler 

Figure 2.9 

2.4 Extendin 9 the Technique 

The success of  the recursive technique is due to several circumstances. F i r s t ,  i t  

is so simple that an experienced programmer can do i t  qu ick ly .  Second, the pro- 

grammer can inser t  his generator code between any two statements of the recognizer. 

This implies that whenever any s t ructura l  en t i t y  of the source language has been 

recognized, the programmer has a convenient opportunity to attach an in te rpre ta t ion  

to i t .  Third, because the local variables of recursive procedures are in fact  in a 

run-time stack, the programmer may associate temporary information with any source 

language construct (see the variables t in procedures Expression and Term, l ines 34 

and 53 wi thout labor iously bu i ld ing stack data structures in his t rans la tor .  One 

must re f l ec t  on the pervasive nature of stacks in t ranslators to appreciate the 

value of get t ing them for  " f ree".  Perhaps the most important advantage of the re- 

cursive technique, aside from i t s  s imp l i c i t y ,  is the fact  that  i t  can handle complex 

languages wi thout  catastrophic costs in size or speed. 

The recursive technique is of no par t i cu la r  help beyond the production of  a source- 

langauge-specif ic code (e.g. ,  zero-address code fo r  assignments). Since the great 

bu Ik of the work in w r i t i ng  a compiler for  the average modern computer comes in 

turn ing the source-language-specif ic code in to  good machine language, the helpful  

properties detai led above can look rather i r re levan t  to a hard-pressed implementor. 

In addi t ion to the need for  a recursive language in which to wr i t e ,  the recursive 

technique has one serious disadvantage. The generator and parser are thoroughly 
mixed together, preventing the programmer from t reat ing them separately for  purposes 

of documentation, maintenance, memory management, tes t ing,  and so for th .  In 
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particular, i t  is not unusual to find target code dependencies in the source lang- 

uage recognizer, preventing the recognizer from being machine independent. 

3. Modularization 

The use of modular programming techniques depends upon exp lo i t ing  the inherent st ruc-  

ture of the t rans la t ion  process. Over a period of years there has been a certain 

amount of convergence in the form of source tex ts ,  and of target tex ts ,  and of trans- 

la t ion  sub-processes. One e f fec t  is that  certain general s t ruc tura l  out l ines are 

appl icable to most compilers. One should not therefore assume that  a l l  compilers 

should e x p l i c i t l y  exh i b i t  a l l  of the s t ructure.  A very simple compiler (such as 

that  of the previous section) is easier to wr i te  as a whole. 

Before proceeding, we must recal l  at least  four kinds of  modularization. The docu- 

mentation of the compiler, the programmer assignments during implementation, the 

source text  of the compiler, and the executable machine language form of the compil- 

er. Each kind of  modularization is designed to s imp l i f y  one or more processes but,  

as the processes are qui te d i f f e ren t ,  one should not expect the modularizations to 

be the same. 

3.1 Modular Documentation 

A body of descr ipt ive l i t e r a t u r e  grows up about a compiler, e i ther  by plan or by 

accident. I t  may wel l  exceed the compiler in sheer volume of tex t  and time of pre- 

parat ion. The documentation i s ,  therefore, in need of s t ruc tur ing and is a candidate 

fo r  modularizat ion. The forms of the documentation can be expected to be technical 

prose with tables, appendices, indices and the l i ke .  The important point  is that  the 

documentation fo l low the inherent st ructure of the compiler so as to aid,  rather than 

obscure. 

For example, a pa r t i cu la r  module in the compiler may be the subject of a subsection 

of the documentation (e.g. The Parser). But more important ly ,  a more d is t r ibu ted 

concept may also be the subject (e.g. Module Inter faces).  The documentation struc- 

ture is designed fo r  understanding, thus p ro f i t s  from any consistent theme, regard- 

~ess of i t s  mapping onto the compiler i t s e l f .  Even such diverse topics as project 

h is to ry ,  source language d e f i n i t i o n ,  computer spec i f i ca t ions ,  market survey, per- 

formance evaluation are properly included. The task of the organizer of the docu- 

mentation is to f ind  the proper orderings and groupings to minimize the size and 

cost and amount of crass referencing of the documentation whi le simultaneously in-  

creasing i t s  effect iveness as a tool fo r  understanding. One should not underestimate 

the importance of th is  task re la t i ve  to the whole task of compiler implementations. 

3.2 Modular Programmer Assignment 

Large programming tasks, some compilers included, must be accomplished by a team of 

people over a period of time. The managerial task is to assign work to the team 



18 

members in a way that gets the job done, minimizing effort  and maximizing quality 

(See Chapter 5.B of these notes). 

Each assignment (of a task to a group of programmers) is a module. These modules 

are related by the dependencies of the resulting parts of the compiler. I t  is usual- 

lY (always?) the case that part of the compiler structure evolves during the im- 

plementation hence the order of doing things is constrained by the order in which 

decisions must be made. To quote an (old?) Irish proverb, the most general prin- 

ciple of structured programming is: "when crossing the bog, keep one foot on solid 

ground". We may be able to proceed some distance into the swamp by top-down hier- 

archical decomposition of the task, and also some distance by bottom-up construction 

of primitive functions. But, in the end, as does a schoolboy when proving a geometry 

theorem, we proceed both ends to the middle to keep from sinking in a sea of unre- 

solved decisions. 

3.3 Modular Source Text 

Another kind of modularization is found in the implementation language text  of the 
compiler (source tex t  from the viewpoint of the compiler w r i t e r ) .  The usual form of 

a source tex t  module is a set of related procedures together with a common data 

structure pr ivate to them. Such a module also forms the basis fo r  a good programmer 

assignment module. The c r i t e r i a  fo r  grouping procedures in to  modules is to mini- 

mize the module size whi le also minimizing intermodular communication. I t  would be 

in terest ing to see i f  a theory of "best" modularization could be formulated [Parras 

71]. 

3.4 Modular Target Text 

Running compilers tend to be large. I f  one is so large that i t  cannot f i t  in main 

memory, then the target text  form of the compiler must also be modularized. These 

modules must be able to funct ion fo r  r e l a t i v e l y  long periods of  time wi thout  requi r -  

ing more than a few of  the other modules be present simultaneously. The t rad i t i ona l  

multipass compiler is a special case of run time modularizat ion. 

4. Intermodular Communication 

4.1 Speci f icat ion 

No module ex is ts  in a vacuum; i t  must communicate with other modules. This requires 

the spec i f i ca t ion ,  in the source tex t  of  the compiler, of intermodular data struc-  

tures. Some languages, such as PL/I,  have e x p l i c i t  l i n g u i s t i c  f a c i l i t i e s  fo r  

bu i ld ing external data structures.  Intermodular communication also requires the 

spec i f ica t ion of the dynamic behavior of these same data structures.  In both cases 

grammars are useful.  In the case of a s ta t i c  view of a data s t ruc ture ,  such as a 

table,  gives the s ta t i c  st ructure.  For example, a table of str ings where the f i r s t  

character posi t ion i s  used for  the length which is followed by 8 -b i t  character codes 

can be described as fol lows in Figure 4.1. 
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s t r i ng_ tab le  = s t r i ng * ;  

s t r i ng  = length character* ;  

length = b i t  8; 

b i t  = '0 '  ] ' I ' ;  

character = a l b c . . .  i comma l . . . ;  

a = '11000001'; 

b = '11000010'; 

comma = '10101100 ; 

Grammatical Descr ipt ion of  a St r ing Table 

Figure 4.1 

When the compiler is running, the intermodular  data s t ruc ture  goes through a se- 

quence of  s tates.  I f  the states are viewed as terminal symbols, the sequence is a 

language. Suppose, fo r  example, the scanner is passing s t r ings on to another 

module coded as pointers in to  the aforementioned s t r ing  tab le ,  together wi th some 

a u x i l i a r y  in format ion fo r  the e r ro r  rout ine.  Then the grammar in Figure 4.2 

app l ies :  

scan_output = s t r i n g * ;  

s t r i ng  = pointer__into_st r ing_table e r r o r _ i n f o ;  

po in te r  into__string tab le  = b i t  16; 

e r ro r  in fo  = record_number column_number; 

record number = b i t  16; 

column number = b i t  8; 

b i t  = '0' I ' 1 ' ;  

Grammatical Descr ipt ion o f  Scan Output 

Figure 4.2 

The advantages o f  using grammars in th is  manner are: ( I )  i t  is a f a m i l i a r  no ta t ion  

(2) more precise and concise than natural  language. I t  should be apparent to the 

reader that  the spec i f i ca t i on  of  these intermodular  data s t ruc tures ,  even j us t  by 

example, is a very useful step towards ge t t ing  the job done. 

Another i n te res t i ng  po in t  ar ises when two module implementors who share a common 

intermodular  data s t ruc ture  give d i f f e r e n t  spec i f i ca t i ons  fo r  that  s t ruc ture .  The 

d i f fe rence probably represents source- text  that  is not seen to contain errors by the 

e a r l i e r  module, but f a i l s  to pass the s t r i c t e r  tests o f  the l a t e r  module (e .g . ,  the 

scanner does not detect mismatched scope entry and e x i t ,  but the symbol tab le  doesl. 

The important po in t  is that  the consumer react to the wrong ( to the consumer) i n t e r -  

modular communication with a meaningful message ra ther  than s i l e n t  d is func t ion .  
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For example, the intermediate language "characters" in Figure 4.5 is produced by the 

input module and consumed by the scanner. Figures 4.3 and 4.4 describe the di f fer-  

ing views of the characters. 

characters = character *; 

character = le t ter  I d ig i t  I separator; 

le t ter  + 'A' 'B' I 'C' etc. 

d ig i t  = '0' '1' I '2' etc. 

separator = ' I ' ( '  I '+' etc. 

The Character String (as produced) 

Figure 4.3 

characters 
token l i s t  

l i s t l  I 
l i s t l  = ( i  

l i s t 2  = (I 
l i s t 3  = { I 

l i s t 4  = (I 
i d e n t i f i e r  
integer = 

= token_list; 

l i s t 2  I l i s t 3  I l i s t 4 ;  
l i s t 2  i l i s t 3  I l i s t4 )  i d e n t i f i e r ;  

l i s t 3  i l i s t4 )  integer;  
l i s t 1  I l i s t 2  I l i s t 4 )  s t r i ng ;  

token l i s t )  separator; 
= l e t t e r  ( l e t t e r  I d i g i t ) * ;  
d i g i t  +; 

string = ' " '  string character * ' ' " "  

string_character = ' " '  ' ' "  I character; 

character = le t ter  I d ig i t  l separator; 

le t ter  = 'A' etc. 

d ig i t  = '0' etc. 

separator = ' ' etc., not including apostrophe. 

The Character String (as consumed) 

Figure 4.4 

4.2 "Need to Know" 

I t  is as important to shield the programmer from irrelevant detai l ,  and also danger- 

ous detai l ,  as i t  is to insure he has an adequate task specification [Parnas 71] 

(Also Chapter 5.B of these notes). On the one hand he is saved the time i t  takes to 

assimilate the information he is not going to use. On the other hand he is pre- 

vented from "clever" use of "soft" detail. An example of the lat ter  is when a pro- 

grammer, knowing the internal label of some needed external routine, branches 

direct ly to i t  to avoid the overhead of a procedure cal l .  The (negative) payoff 

comes when the label is changed (without notice because i t  was thought to be pr i-  

vate). Proper modularization, and distr ibution of just the intermodular specifica- 

tions, keeps each member of the team appropriately ignorant. 
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4.3 Test Environment 

Although i t  is true, as Di jkstra says, a test  only detects errors,  we nevertheless 
test  our modules. A well-conceived test might form the basis for  a proQf Qf cor- 

rectness but, more important ly,  i t  is  the quickest way to f ind and correct errors. 

The speci f icat ion of the intermodular communication is jus t  the information we need 

to "fake up" an environment which drives the module as though i t  were a part of the 

whole compiler. I t  takes about as long to make up the test as i t  does to imPlement 

the module but the ef for t  pays of f  in early removal of loose ends detected by the 

programmer as he builds his test. 

Properly done, the test program is driven by a set of data so that more tests can 

be prepared by a "Devils' Advocate". He prepares three kinds of tests: (I) a 

simple test for correct functioning, (2) a test with a large number of incorrect 

inputs to insure reasonable error behavior, (3) a test to overflow every internal 

table to insure that l im i t  failures are properly detected. There is an example of 

some such tests in Chapter 3.D of these notes. 

4.4 Feedback-Free 

A par t i cu la r l y  important kind of intermodular data flow is characterized as 
feedback-free. I t  is  th is kind of flow that allows a multipass organization to be 

used [McKeeman 72 and 74], Compilers are pa r t i cu la r l y  l i ke l y  to have inherent 

feedback-free structure because we tend to look at the process as a sequence of 

forms that have the feedback-free property. 

feedback-free form 

input records 

characters 

token, string-table 

parse tree (PT) 

abstract syntax tree (AST) 

standard tree (ST) 

a t t r ibute  collected tree 
(ACT) 

a t t r ibu te  d is t r ibuted tree 
(ADT) 

sequential expression tree 
(SET) 

sequential control tree 
(SCT) 

target text 

comments 

just  as the programmer prepared them 

control cards, card boundaries, comments removed 

scanned symbols represented by pointer to a s t r ing 
table 

e x p l i c i t  l i nks ,  leaves pointing to s t r ing table 

as above, nodes renamed, redundant structure removed 

transformed into standard form (See Chapter 2.E of 
these notes). 

declarat ive information pruned, replaced by symbol 
table 

leaves replaced by a t t r ibu te  information 

expression subtrees replaced by f l a t  sequence of tar -  
get text .  

control subtrees replaced by target text  control con- 
structs 

whew~ 

Intermediate Forms 

Figure 4.5 



20 

5~. Vertical Fragmentation 
Any module (or program) that can be broken into a multipass structure is said to be 

ver t i ca l l y  fragmented. The previous section hinted at one (very elaborate) possible 

vert ical fragmentation (Figure 4.5). A somewhat simpler one (that actually served 
as the basis for an implementation) is described below [McKeeman 72]. There are 

seven modules in the fragmentation in Figure 5.1. 

i INPUT 

I CAN 

I PARSE 

I SYNTHESIS 

i GENERATE 

I E.IT J 

i OOTPOT i 

records 
(source text) 

1 
characters 

tokens 

parse tree 

abs tract  syntax 
tree 

language-speci f i  c 
sequential code 

machi ne-speci f i  c 
sequential code 

records 
(target text) 

A Vertical Fragmentation 

Figure 5.1 

The tasks of the modules are conventional. Each intermediate language must be spec- 

i f ied  (Recall Figures 3.1 and 3.2) but that is beyond the scope of these notes. 

Rather, we give a series of examples, one for each intermediate language in Figures 
5.2a - 5.2h. 

I I THEN X=53 + X 1 

1 IFX  <= 
Source Text 

Figure 5.2(a) 

IF XK=I THEN X:53 + X 

Characters 

Figure 5.2(b) 
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1 2 14 
\ 

\ 

0 2 0 \ 
\ \ I  j 

2 2 18~ \ 

0 2 2 \ / .~,, 

\ ~ "  / i 
I 2 14-~\ \ / 

\ A  / 

0 2 9 -  ~ ' ~ \  - -  z_ 
/ \ i "~,, 

/ , , \ I  
2 2 16 ,<\ 

/ \\ 
0 I 2 \  / \ 

,../~ \ /~r 
\/ 

0 1 4 / \ z _ ~ .  
/ / "~" .~,\~ 

I 1 14 / / 
/ 

/ 
0 1 6 

3 

5 

2 

1 
! 

X 

1 

'N 

E 

H 

T 

4 

F 

I 

2 

< 

I 

I 
+ 

Token type kens String Table 
card 

st r ing table address Figure 5.2(c) 

i f statement - /  
i f ~ ~ ' ~ t a t e m e n t  

IF c o n ~ E N  
expr~sslon ~= expression! 

term te gm 

primary primary 
I 

variable constant 
I i 

i d e n t i f i e r  1 assignment 

variabl~ = expressi on 

ident iT1er expression + term 
/ ~ . / 

X ~rm pr~/mary 

p/ri mary  variable 
/ 

constant i d e n t i f i e r  

5 {  X / 

Phrase-structure Tree 

Figure 5.2(d) 
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Abstract Syntax Tree 

Figure 5.2(e) 

LIT X; LOAD; LIT 1; LE; 

LIT $LI; BRANCH_FALSE; LIT X; 

LIT 53; LIT X; LOAD; ADD; 

STORE; $LI: 

LOAD X; SUB = I ;  

LOAD =53; ADD X; 

Zero-address Code 

Figure 5.2( f )  

BRANCH POSITIVE $L1; 

STORE X; $LI: 

Single-address Code 

Figure 5.2(g) 

5810DO405B10DO444740E124 

411000375A10DC405010D040 

Machine Code 

Figure 5.2(h) 

A more elaborate (and in some sense more powerful) fragmentation re l ies  more heavi ly 

on the tree form of the source text .  In a very rough sense, the tree transforming 

process consists of reshaping the tree, pruning information from the t ree,  and re- 

cording information in tabular terminal nodes, At each stage the remaining tree 

structure represents work yet to be done. In the end, of course, the ent i re  pro- 

gram becomes a purely tabular structure (sequential code for  a conventional comput- 

er) .  The abbreviations in Figure 4.5 w i l l  be used below ( i . e . ,  PT, AST, ST, ACT, 

APT, SET, SCT). 

5.1 The Transformation PT~AST 

An AST is a condensed, renamed version of the PT. Most superfluous structure is 

discarded, leaving a more convenient computational object. Because the PT is so 

voluminous, we always specify the transformation PTID-AST as a part of the algorithm 

that reduces the PT i t se l f ,  avoiding ever forming the PT. This is accomplished by 
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the use of  a t ransduct ion grammar [Louis 68, DeRemer 69]. The range of  p o s s i b i l i -  

t ies  f o r  an AST is therefore def ined to be tha t  set o f  trees tha t  can be spec i f i ed  

by t ransduct ion grammars. An example is given in Table 5.3 and Figures 5.4a and 

5.4b. 

E = E '+ '  T => 'ADD' 
E T 

i E ' - '  T => 'SUB' 
, / ~  

E T 

I T => T; 

T = T ' * '  P => 'MUL' 

T P 

I P => P; 

P = ' ( '  E ' ) '  => E 

i V => ' VAR' / 
V ; 

V ='X' -~> ~X' 

I'Y' => 'Y' 

I i Z' = >  ' Z' ; 

A Transduct ion Grammar fo r  Expressions 

Figure 5.3 

E 
/E + T\ 

T P 
T / b P  ..Jr-... / . ( ~ . . )  

P /V /E - T\ 
/ g ' /  x / T  P 

x P / 
V / 

Y 

\ 
V \ 

Z 

A Parse Tree fo r  x*x  + (y-z)  

Figure 5.4a 

ADD 

MUL S UB 

VAR/~VAR VAR/~'VAR 
/ I I \ 
x x y z 

An Abstract  Syntax Tree f o r  x*x + (y-z)  

Figure 5.4b 
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5.2 The Transformation ASTIm-ST 

Programming languages sometimes allow more than one way to specify the same result. 

For example, attributes in PL/I may or may not be factored; certain expressions may 

or may not be parenthesized, etc. Some are more subtle, such as the assignment im- 

plied by parameter passing. The result is that there are classes of ASTs known to 

the language designer to be equivalent. The transformation ASTI~ST [Wozencroft 71] 

is designed to reduce members of the classes to single standard members, when i t  can 

be done by local renaming and reordering of tree nodes. 

The semantic equivalence of two constructs can be precisely stated (not the seman- 

t ics,  but the equivalence) by mapping one construct into the other. For example, in 

the language PAL [Evans 68] we can write either 

El where x = E2 

or 

let  x = E2 in E1 

where El and E2 are expressions. We state the equivalence of the constructs by the 

mapping in Figure 5.5 [DeRemer 74]. 

where let  

E1 / ~  --> j ~ = ~ E 1  

x E2 x E2 

A Local Tree Transformation 

Figure 5.5 

Each transformation rule consists of two parts, an "input" template and an "output" 

template. These two corresponding to the l e f t  and right parts, respectively, or a 

production of a type 0 grammar. However, in this case the intent is to reorder, ex- 

pand, and/or contract a local portion of a tree, rather than a local portion of a 

string. 

To "apply" a transformation we f i r s t  f ind a subtree that the input template matches. 

This establishes a correspondence between the "variables" in the input template and 

subtrees of the matched one. Then we restructure the part of the tree involved in 

the match, so that the ouput template w i l l  match i t ,  maintaining the correspondence 

between variables and trees established by the input template match. In general, 

U~is w i l l  involve reordering, duplicating, and deleting the subtrees as dictated by 

the number and position of occurrences of each distinct variable in the input and 

output templates. 

5.3 The Transformation STIP-ACT 

The attributes of variables are where you find them. From the compiler wri ter 's 

viewpoint, they are best found collected in declaration statements clustered at the 
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head of a var iable scope. More general ly a t t r ibutes may depend upon the context in 

which variables are used or even more subtle condit ions. In any case they must be 

gathered and tabulated before the t rans la t ion of the corresponding executable por- 

t ions of  the program can proceed. Upon completion, the ACT may have the form de- 

f ined in Figure 5.6. 

program = ACT; 

ACT = scope; 

scope = symbol table scope* command*; 

symbol table = (name a t t r i bu tes ) * ;  

a t t r ibutes= e x p l i c i t  a t t r ibutes 

I imp l i c i t _a t t r i bu tes ;  

A t t r i bu te -  col I ected Tree 

Figure 5.6 

Within a scope we f i r s t  have the table of local symbols, then an a rb i t ra ry  sequence 

of nested scopes, and f i n a l l y  the executable (scope-free) commands. The transforma- 

t ion ASTm~-ST may have been required to bring the tree into th is  form i f  a scope can 

be del imited by begin-blocks (as in Algol-60) as opposed to being exc lus ive ly  ident-  

i f i e d  with procedure declarat ions. Or the ACT can be more general ly defined to 

al low fo r  the less structured use of  scopes. 

Some at t r ibu tes  are e x p l i c i t l y  supplied by the programmer. Other a t t r ibutes are im- 

p l i c i t .  In pa r t i cu la r ,  machine related a t t r ibu tes  such as addresses are to be de- 

r ived by the compiler as one of i t s  major purposes. An important presumption is 

that  there are no necessary a t t r ibu tes  that cannot be derived p r io r  to the proces- 

sing of executable machine code. That i s ,  properties of  the machine, such as the 

re la t i ve  locat ion of certain ins t ruc t ions ,  are not allowed to e f fec t  the a t t r ibutes 

of var iables. 

The algorithm can be implemented, of course, as an ad hoc tree searching algorithm 

along the l ines commonly found in contemporary compilers. Some work has been done, 

however, on applying Knuth's concept of functions over trees [Knuth 68, Wilner 71] 

to th is  problem. I t  is a pa r t i cu la r l y  a t t rac t i ve  d i rect ion since declarat ive in -  

formation is defined to be evaluable p r io r  to the "main" computation ( i . e . ,  execu- 

t ion of the program). Knuth's functions can therefore be presumed to be evaluable 

fo r  declarat ion processing wi thout  any great amount of i t e r a t i o n ,  hence e f f i c i e n t l y .  

The approach is to specify ST~ACT as a set of symbol-table-valued functions over 

the ST (as opposed to Knuth's functions over the PT) together wi th a standard ACT 

bu i ld ing  process. We suspect that a reasonable res t r i c t i on  to put on declarat ive 

l i n g u i s t i c  constructs is that they can be processed by Knuth's functions in one pass 

over the ST; i . e . ,  going down the tree v ia funct ion ca l ls  and then back up the tree 

via funct ion returns. 
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To apply the functions to the tree we must be able to describe the nodes. Knuth used 

the names of the non-terminal symbols, numbering only for a repeated use of a name. 
When regular expressions are used i t  i~ s ~ l e r  to use a purely numeric scheme. 

Zero designates the l e f t  part of a rule; I ,  2 . . . .  the items in the right part; -1, 

-2,. . . the same items numbered from right to le f t ;  (k,1), (k,2) . . . .  the items in each 

repeated term on the right, etc. For example, suppose we have a declarative subtree 

of the form shown in Figure 5,7. 

DECLARE 

i em . . . .  item n 

'B' 'BIT' I ' ~ i  ' ~ 3 0 0  

A Declarative Subtree of a ST for 

DECLARE B BIT, I FIXED . . . .  X(300) FLOAT; 

Figure 5.7 

The objective is to compute two functions, A and S, giving the relative offset and 

number of bits for each item. The grammar and functions in Figure 5.8 define A and 

S, Terminal nodes (name, type and dimension) have intr insic values provided by a 

primitive function va]. 

DECLARE = item + 

item = name type dim 

:> A(I,1) : O, 

A(1,1+I) = A(I , I )  + S( I , I ) ,  
S(O) : A( I , - I )  + S(1,-1); 

=> S(O) = T(2)*val(3) 

I val(2) = 'BIT' then 1 

T(2) = val (2) ='FIXED' then 16 

val(2) = 'FLOAT' then 32 

Declarative Functions over a ST 

Figure 5.8 

5.4 The Transformation ACTIm-ADT 

The impl ic i t  links by name between the leaves of the ACT and i ts  symbol tables must 

be replaced by expl ic i t  attachment of the important attributes to the leaves them- 

selves. The scope rules of most popular programming languages are identical, from 

the viewpoint of trees, thus the destination of the distributed information need not 

be specified by the compiler writer. What does need to be specified is which a t t r i -  

butes are needed by the later modules. 

I f  the distribution is to be accomplished by simply replacing the leaf names with 
pointers into the symbol tables, the transformations ST~ACTmm-ADT may as well be 

accomplished as one step. I f  the leaf nam~are to be replaced with attributes, the 

transformations need to be kept separate. A before-and-after view of a variable 
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node is given in Figure 5.9. 

VAR 

1 
' I '  

VAR 
: >  

40 ' FI XED' 

A t t r ibu te  D is t r ibu t ion  for  a Variable 

of Type FIXED and Address Offset 40 

Figure 5.9 

The symbol table nodes are no longer needed and can be deleted. 

5.5 The Transformation ADTID-SET 

The ADT is an executable form; that i s ,  i f  we had tree executing hardware. But we 

do not, so we must reform the tree in to  equivalent sequential code. We expect 

rather long sequences of sequential code to be branch free. In pa r t i cu la r ,  expres- 

sions (not inc luding Algol-60 condit ional expressions) have th is  property. We can 

replace each sub-tree representing an expression with i t s  Polish form, say. Or we 

can go d i r ec t l y  to s ingle address code. Figure 5.10 shows an example of  such a 

trans formati on. 

ASS I GN ASSIGN 

/ c y ~ R ~  WAR--POLISH 

40 'FIXED' VAR MUL => 4 0 ~ ' ~ I X E D ' A ~  

40 \ \  VAR VAR CONST MUL ADD F I X E D ' \ \  ~ ,~--. 

VAR CONST 40 'FIXED' 40 'FIXED' ~3 

Expression Flat tening 

Figure 5. I0 

Note that assignments are not included in the expression f l a t t en i ng ,  but th is  adds 

only one t i e r  to the f la t tened expression trees. The reason assignments are l e f t  

alone is two-fold:  i t  avoids the ambiguity between variable addresses and values, 

and assignments need to be synchronized with some types of branching (parameters, 

returned values, index control for  loops, e tc . ) .  

5.6 The Transformation SET~SCT 

Having f la t tened the trees for  everything except control constructs,  we must f i n a l l y  

provide a sequential representation for  branch commands. There may be two kinds: 

i m p l i c i t  and label led.  The i m p l i c i t  branches ( i f - t hen -e l se ,  loops, case, etc . )  

merely require the replacement of tree l inks with branch l inks .  Labels, on the 

other hand, must be found before the l i nk ing  can be done. While STID-ACT could have 

col lected th is  informat ion,  i t  is safely deferred to th is  stage. Most of the tree 

has been pruned, hence the search w i l l  not be over a very large data st ructure.  For 
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example, suppose we have been processing a procedure call 

CALL P(x+3, 4) 

and have arr ived at the SET in Figure 5.11. x has of fset  40 and the two formal 

parameters (now appearing e x p l i c i t l y  in the tree) have offsets 60 and 64. 

CALL 

ASSIGN / ASSIGN 

VAR p/~OLISH VAR//~POLI SH 

oo 2 x 64 FI XED'~ 

VAR CONST ADD CONST 

40 ED' 3 4 

SET for  CALL P(x+3, 4) 

Figure 5.11 

,p, 

The only change needed is to replace 'P' with a pointer to the corresponding proce- 

dure de f in i t ion .  The tree has become a graph; a l l  names have f i na l l y  been pruned; 

we are ready to emit f u l l y  slequential code. 

6. Horizontal Fragmentation 

I t  is sometimes advantageous to specify modules that work in para l le l .  The simplest 

case is a subroutine that is occasionally cal led from the module. The subroutine 

may qual i fy  as a module by v i r tue of i t s  internal consistency and simple interface 

to the rest of the system yet not be feedback-free. 

The par t icu lar  example that led to the coining of this term [McKeeman 72] was the 

one hundred or so cases in in terpret ing the canonical parse [Wirth 66a] or phrase 

structure tree. The program that does the in terpretat ion contains a switch, or case 

statement, containing over one hundred destinations (corresponding to over one hun- 

dred grammatical ru les).  Such a large construct is obviously a candidate for  

st ructur ing.  

On careful examination of a par t icu lar  compiler for  a rather conventional language, 

we found six categories of compilation actions as displayed in Figure 6.1. Each 

catego~, except the f i r s t ,  is of  roughly equal complexity from the viewpoint of im- 

plementation. And each is nearly independent of the others, hence good candidates 

for  exp l i c i t  modularization. 
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Acti on Type 

Null 

Define 

Operand 

Operator 

Assignment 

Control 

Comments 

These actions have no in terpretat ion (e.g. ,  term = factor) 

These actions come from the rules supplying information to 
the compiler (pr imar i ly  declarations) for  the symbol table. 

These actions have to do with locating operands in expressions 
and assignments heavi ly dependent on symbol table. 

These actions correspond to the operators in expressions. 

These actions correspond to assignments, e i ther  e x p l i c i t  or 
implicit such as parameter passing and returned values. 

These actions map onto the branching instructions of the tar- 
get text. 

Six Categories of Primary Compiler Actions 

Figure 6.1 

The use of th is structure is f a i r l y  straight-forward. 

case rulenumber of 

100: 

end 

is transformed to a two level switch. 

I :  case_l; 

2: case_P; 

case I00 

The unstructured case 

One f i r s t  switches on category, then cal ls  a processing procedure (module) for  that 

category with a parameter which iden t i f i es  the item in the category. The PASCAL 

type [Wirth 71] 

type category = (nu l ls ,  defines, operands, operators, assignments, controls) 

allows the convenient PASCAL switch 

case kind (rule-number) of 

nu l ls :  

defines: define (compact ( ru lenumber)) ;  

operands: operand (compact (rule_number)); 

operators: operator (compact (rule_number)); 

assignments: assignment (compact ( ru lenumber)) ;  

controls: control (compact (rulenumber)) ;  

end 

where array "kind" is f i l l e d  with the appropriate values of type "category" and 

array "compact" renumbers the rules to a compact sequence of integers. The values 

in "compact" can be automatically derived from those in "kind".  

7. Equivalence Transformations 

As mentioned ea r l i e r ,  the sequences of states of the intermodular data structures 

can be viewed as languages (and grammatically described). Each such language is a 
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candidate for equivalence transformations. There are two main reasons for such 

transformations: (1) making the remaining part of the compilation task easier, and 

(2) improving the resulting target text (See Chapter 5.E of these notes). 

Each particular transformation can usually be done on any one of several intermed- 

iate languages. The major problems are deciding i f  a particular transformation is 

worthwhile and on which intermediate language i t  is most convenient to carry i t  out. 

Translating a very complex language (e.g. the IBM PL/I) can be simplified by passing 

repeatedly over the token string, each time producing an equivalent token string with 

with fewer primitive concepts. The f inal set of primitives is usually taken to in- 

clude GO TO, IF, assignments and other things that map directly onto a conventional 

instruction set. 

Figure 7 displays three successive equivalence transformations on a PL/L program. 

I n i t i a l l y  there is an array assignment which implies a loop (stage 2). The transla- 

tor has had to create some new identif iers (which are started with '$' to avoid con- 

fusion). The control expressions of the do-loop are evaluated only once implying 

that the head of the loop contains only simple variables (stage 3). The loop i t se l f  

can then be factored into IF and GO TO constructs (stage 4). 

The advantages are the already mentioned reduction in overall translator complexity 

and also the fragmentation of the translator to aid in making each piece small 

enough to permit running in a small memory. I t  has some u t i l i t y  in documenting the 

meaning of language constructs where the transformations are simple enough to be 

easily understood. 

The technique has some disadvantages. I t  can be slow since repeated passes over the 

token string are required. Clever methods of speeding things up may cancel the gain 

in simplicity that led to i ts use in the f i r s t  place. There is also a lack of 

theory governing the transformations, leaving a potentially confusing series of a d 

ho___~c algorithms. Finally, the transformations may obscure relations that would have 

been useful to the generators. For instance, the fact that the example in Figure 

7.1 can be accomplished with a single memory to memory block transfer instruction 

w i l l  never be recovered from the simplified form at stage 4. 

DECLARE (A,B) (20) FIXED; 

A = B; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DECLARE (A,B) (20) FIXED; 

DECLARE $21 FIXED; 

DO $11 = LBOUND(A) TO HBOUND (A); 

A($11) = B($11); 

END~ 
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DECLARE (A,B) (20) FIXED; 

DECLARE ($11, $12, $13, $14) FIXED; 

$12 = LBOUND(A) ; 

$13 = I ;  

$14 = HBOUND(A); 

DO $11 = $12 BY $13 TO $14; 

A($11) : B($11); 

END; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DECLARE (A,B) (20) FIXED; 

DECLARE ($11, $12, $13, $14) FIXED; 

$12 = LBOUND(A) ; 

$13 = I ;  
$14 = HBOUND(A); 

$11 : $12; 

$15: IF $11 > $12 THEN GO TO $16; 

A($11) = B($11); 

$11 = $11 + i ;  

GO TO $15; 

$16: 

Successive Transformations of a PL/I Program Fragment 

Figure 7.1 

The computation tree, since i t  exhibi ts almost a l l  of the meaningful source language 

structure,  may also be a convenient host for  equivalence transformations (See Chap- 

ter  2.E of these notes). Figure 7.2 depicts a before and a f te r  view of a small com- 

putation tree in which a (presumably expensive) mul t ip l i ca t ion  has been transformed 

into additions. 

STORE REPEAT 

I 1 SEQ J ~  
STORE IF 

I ADD GT RETURN ~ NULL 

/ ~ x  M~UL~ ADD I 2 

I 3 1 99 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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STORE S ~  ~REPEAT 

I 1 $11 9 SEQ 

STORE IF STORE 
J \  / I \  

I ADD I \ \ $ I I  ADD 

GT RETURN NULL 

$ I I  ADD 

1 99 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A Before and Af ter  View of the 

Computation Tree fo r  

I = 1; 

DO FOREVER; 

I = I+2; 

IF I * 3 > I + 99 THEN RETURN; 

END; 

Figure 7.2 

Tree tran~ormations consume more computational resources than most other phases of 

t rans la t ion  both because the tree occupies a l o t  of  memory and fo l lowing the l inks 

takes a l o t  of time. I t  may also be that the transformation causes a new i n e f f i c -  

iency to be introduced as a resu l t  of successful ly r idding the program of the one 

being attacked. Thus the implementor must be careful in deciding which transforma- 

t ions are economically j u s t i f i e d .  Tree transformations are easier to carry out 

when the source language does not include a GO TO construct to break up sequences of 

code, thereby making d i f f i c u l t  the detection of induct ion variables and the l i ke .  

Most computers have pecu l i a r i t i es  that are u t i l i z e d  by assembly language programmers 

but are not d i rec t l y  avai lable to the compiler, par t l y  because the opportuni t ies to 

make use of them do not become apparent un t i l  a f te r  the machine code i t s e l f  has been 

emitted, and par t l y  because they are special to the target machine in question 

CMcKeeman 65]. Figure 7.3 shows a typical  s i tua t ion  of  th is  kind. At stage I we 

have a good machine code for  the two statements. Because addit ion is commutative, 

the addresses of a pa i r ,  LOAD ADD, can be interchanged (stage 2) which permits the 

slow LOAD = i to be replaced with a fast  load immediate LI i and also saves the cel l  

c o n t ~ n g  the constant I (stage 3). In any pa i r ,  STORE X LOAD X, the LOAD can be 

dropped i f  i t  is not the dest inat ion of a branch (stage 4). Any pa i r  of  branches, 

where the f i r s t  is a condi~onal skip and the second is uncondit ional can be reduced 
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to a s ing le  cond i t i ona l  branch (stage 5). F i n a l l y ,  on a machine wi th an add-one-to- 

memory i n s t r u c t i o n ,  the sequence LI 1, ADD X, STORE X can be combined in to  one in-  

s t ruc t ion  (stage 6). 

LOAD X 

ADD = 1 

STORE X 

Stage 1 LOAD X 

LT = 3 

BRANCH FALSE $L1 

BRANCH L 

$L1; 

LOAD = I 

ADD X 

STORE X 

Stage 2 LOAD X 

LT= 3 

BRANCH FALSE $L1 

B RANCH L 

$LI: 

LI 1 

ADD X 

STORE X 

Stage 3 LOAD X 

LT= 3 

BRANCH FALSE $L1 

BRANCH L 

$L1: 

LI 1 

ADD X 

STORE X 

Stage 4 LT = 3 

BRANCH FALSE $L1 

BRANCH L 

$LI: 
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Stage 5 

Stage 6 

LI 1 

ADD X 

STORE X 

LT = 3 

BRANCH_TRUE L 

INDEX X 

LT = 3 

BRANCH TRUE L 

Machine-specific Transformations on 

X=X+I; IF X <3 THEN GO TO L 

Figure 7.3 

Innumberable such ingenuities can be applied. Since the savings can be dramatic (as 

in the last example}, the technique is useful and popular. Nothing makes the hero- 

author of a compiler happier than producing real ly subtle correct code, beating the 

assembly programmer at his own game. One must, however, guard against introducing 

errors into the code as a result of not carefully considering the conditions under 

which the transformations leave the program invariant, 

The algorithms that perform the equivalence transformations are feedback-free, and 

very isolated, hence excellent candidates for modularization. 

8. Evaluation 

In any substantial programming ef for t ,  there arise questions which start with the 

phrase: "Is i t  worth the ef fort  t o , . , " .  They must be answered. I t  would be nice 

i f  the answers had some sc ient i f ic  basis. In spite of a great deal of l i terature on 

the subject of evaluation, very l i t t l e  useful guidance is available. The intention 

of this section is partly to give that guidance, but more to show why i t  is so hard 

to do and to avoid giving false guidance. 

The f i r s t  problem is to decide what i t  is that is being evaluated. Generally speak- 

ing, i t  is a decision, From that decision w i l l  evolve two dif ferent World histories, 

one presumably more desirable than the other. The mere use of words such as "worth" 

and "value" imply an economic measure of desi rabi l i ty  is to be applied. That is to 

say, of al l  the effects of the decision, some w i l l  benefit us, some wi l l  cost us, 

and some wi l l  be of no consequence. We can formalize this concept by hypothesizing 

a function which can be applied to a decision to give us i ts ultimate payoff: 

value (decision) 

where the units are monetary, For convenience, since we think of cost and benefit 

in quite dif ferent ways, we might sp l i t  of f  the positive and negative components of 

value and express i t  in terms of two functions: 
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value (decision) = benefit (decision) - cost (decision) 

Note especially that the functions are determined by a point of view: my benefit 

may well be your cost. 

To keep things concrete, suppose the decision to be evaluated is: "Should compiler 

X be implemented?"; and our point of view is that of a user of the target text com- 

puter for compiler X. We know X wi l l  cost us a lot  but we expect to need fewer 

programmers over years of using the computer, hence X wi l l  benefit us a lot .  Sup- 

pose we can buy the compiler for $30,000 and we presently have a staff of assembly 

language progra~ers on a total annual budget of $I00,000. Over the predicted 5 

year l i fet ime of the computer, we must save about $30,000 in programmer salaries 

( i .e , ,  6%), But w i l l  we get 6% increased performance? Here is where evaluation 

gets hard. We need a p r i o r i  data on human performance. Another problem also arises. 

Price is a matter of policy, not sc ient i f ic  fact. We may be able to determine what 

events w i l l  follow from our decision but the values are determined by what people 

are wi l l ing  to pay and choose to charge. The point is that evaluations in comput- 

ing is very t igh t ly  bound to rather d i f f i c u l t  measures of human attributes. The 

worst, and most consistent error in the l i terature,  is to ignore this fact. 

Returning to the specific evaluation model, the alternative "World Histories" fo l -  

lowing from a decision are sets of events, H and H I .  We ascribe value to the 

events from our point of view. Some of the events have no value, and some are in 

both histories, hence can be ignored. The value of the decision can thus be expres- 

sed as the difference 

value (decision) = value (H) - value (H 1) 

where the value of a history is given by 

value (H) = ~___value (h). 
heH 

The f i r s t  problem in evaluation is to pick out the classes of events of value (cost 

or benef i t ) .  The second problem is to quant i fy  the occurences of those events. The 

th i rd  problem is to pr ice them. 

In compiler wr i t i ng  the events occur during compiler implementation, or compiler use, 

or use of the compiler output. We expect the costs to c lus ter  in the implementation 

e f f o r t  and the benefi ts (reduced costs wi th respect to having no compiler) to c lus ter  

in the compiler use. We may even f ind some benefi ts in the use of the target texts 

i f  the compiler has allowed less error-prone programs to be wr i t ten .  

In summary we can do somewhat better in our evaluation by l i s t i n g  out the events of 

importance and ascr ib ing values to them. I f  nothing else i t  forces the decision 

maker to be spec i f i c  about cer ta in otherwise conveniently hidden values, 
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CHAPTER 2.A. 

REVIEW OF FORMALISMS AND NOTATIONS 

Franklin L. DeRemer 

Universi ty of Cal i forn ia 
Santa Cruz, Cal i forn ia ,  USA 

I .  Terminology a~d Def in i t ions of Grammars [Aho 1972] 

I . I .  Unrestricted Rewriting Systems 

A "grammar" is a formal device for  specifying a po ten t ia l l y  i n f i n i t e  "language" (set 

of st r ings) in a f i n i t e  way. Strings in the lanaguage are generated by s tar t ing 

with a st r ing consisting of one par t i cu la r  "s ta r t  symbol" and successively rewr i t ing 

the st r ing according to a f i n i t e  set of rewri t ing rules or "productions". Grammars 

of in terest  here impose a structure, called a "derivat ion t ree" ,  on the st r ing 

generated. Formally, grammars are defined as fol lows. 

A set of symbols is cal led a vocabulary. The notation V*, where V is a vocabulary, 

denotes the set of a l l  str ings composed of symbols from V, including the empty 

st r ing.  The eem_~t_~_strin~, denoted ~, consists of no symbols. The notation V+ de- 

notes V* - {~}. I f  ~ is a s t r ing then I~Idenotes the length of (number of symbols 
in) ~. 

A 9rammar isa quadruple (VT, VN, S, P) where 

V T is a f i n i t e  ~et Qf sjnnbols cal led terminals, 

V N is a f i n i t e  set of sJn~bols cal led nonterminals 

such that VTF~V N = ~, 

S is a distinguished member of V N cal led the 

s ta r t  sjmnbol (or ~oal symbol or axiom), and 

P is a f i n i t e  set of pairs cal led productions such 

that each production (~,B) is wr i t ten 

~ ~ and the l e f t  part ~ ~ V * and the 

r igh t  par~c ~ c V * where V = V T UV N. 
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By convention we use Lat in  cap i ta l s  (A, B . . . . .  Z) to denote nonterminals,  lower case 

Lat in  l e t t e r s  (a, b . . . . .  z) to denote te rmina ls ,  and lower case Greek l e t t e r s  (a, ~, 

. . . .  ~) to denote s t r ings .  

I f  ~ ÷ Bis a product ion and y~p is  a s t r i ng  then yap ÷ y~pis an immediate der iva-  

t i on .  A de r i va t i on  is a sequence of  s t r ings  

~0' a l " " ' ~ n  
where n > 0 such tha t  

~0 ÷ ~ I '  ~I ÷ a2 , " " '  an-I ÷ an; 
i t  is wr i t t en  ~0 ÷ * • or  i f  n > 1 then ~0 ÷ + 

~n ~ - ~n"  

Any s t r i ng  ~ der ivab le  from the s t a r t  symbol S, i . e .  such tha t  S÷ * n, is ca l led  a 

sen ten t ia l  form. Any sen ten t ia l  form c~nsis t ing o f  terminals only is ca l l ed  a sen- 

tence. The language L(G) generated by a grammar G is  the set o f  a l l  sentences; i . e .  

L(G) = {n ~ V T *I  S ÷ + ~}. 

1.2 The Chomsky Hi erarch~ 

An unres t r i c ted  rewr i t i ng  system (grammar) as def ined in I . I  above is ca l led  a type 

grammar, and i t  generates a type 0 language. There are three successively more 

severe r e s t r i c t i o n s  that  can be placed on the form of  productions which resu l t  in 

i n te res t i ng  classes o f  grammars. 

A tYPe ~ or  con tex t -sens i t i ve  grammar (CSG) is  one in which each product ion ~ ÷ B 

is  such that  I B I ~ I a I. A l t e r n a t i v e l y ,  a CSG is sometimes def ined as having 

productions of the form y A p ÷ y m p where A ~ V N and ¥ ~ p ~ V +, but ~ ~ ~ A CSG 

generates a type ~ language (CSL). 

A t_~z~e2 or con tex t - f ree  grammar (CFG) is one in which each product ion is of  the 

form A ÷ ~ where A ~ V N and m ~ V*. Sometimes ~ is not allowed to be the empty 

s t r i ng  c • A CFG generates a type ~ language (CFL). 
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A type 3 or r Ke~ular grammar (RG) is either r i__~ l inear ,  with each production of the 

form A ÷ a or A + aB, or l e f t  l inear, with each production of the form A ÷ a or 

A ÷ Ba, where & ~ V N, B E V N, and a ~ V T. I t  is easy to show that allowing "a" to 

be in VT* does not change the essential idea behind, or computational complexity of 

regular grammars. An RG generates a t_y_p_e3 language (RL). 

1.3 Phrase Structure . Implied By Context-Free Grammars 

Let G = (V T, V N, S, P) be a context-free grammar. Then a right derivation is one in 

which the rightmost nonterminal of each string is rewritten to form the next; i .e.  

i f  s O, ~l '  . . . .  a n is the derivation, each step is of the form 

~i-I = Y A p ÷ y ~ p = ~i where p E VT*, y ~ V*, A ~ V N, and ~ ~ V*. 

A "parse" of some sentential form ~ is an indicat ion of how n was derived° In part- 

i cu la r ,  a r ight  parse is the reverse of the sequence of productions used in a r igh t  

der ivat ion of n. The LR techniques discussed in section 2.C below re la te to r ight  

parses. 

In a manner analogous to the above, one can define a l e f t  derivation. A le f t  parse 

is the sequence of productions used in a l e f t  derivation. The l e f t  parse relates to 

the LL techniques discussed in section 2.B below. 

One way to avoid questions of the order of the derivation or parse is to discuss the 

"derivation tree", variously called "parse tree" or "syntax tree". I f  we associate 

with each production A ÷ x1 x2 .... ×n" a tree structure of the form 
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then we can associate a tree with the derivation of each sentence n in an obvious 

way. In parallel with the derivation of n we construct a tree. We start with the 

string S and, in paral lel ,  the tree(~). Each time we rewrite a nonterminal in the 

str ing, we attach corresponding descendants to the corresponding node labelled with 

that nonterminal in the tree. At any given point in the derivation there is an 

ordered, l e f t  to r ight ,  one-to-one correspondence between the labels of the leaves 

of the tree and the symbols in the string. That is,  the labels of the leaves when 

read le f t - to - r igh t  spell out the string. 

Example Consider the context-free grammar 

GI = ({+, ( , ) ,  i } ,  {E, T}, E, P) where P consists of the following productions: 

E -~E+T  

E ÷ T  

T ÷ (E) 

T + i  

The right derivation of the sentence n = i + i in L (G I) procceds as follows. 

String derivation 

E 

E ~ T  

E + i  

T + i  

i + i  

Tree derivation 

© 
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The r i gh t  parse of  n, then is 

T ÷  i ,  E + T ,  T ÷  i ,  E÷  E + T. 

The der ivat ion "tree of n is the las t  one above. 

E + E + T ,  E ÷ T ,  T +  i ,  T ÷  i .  

The l e f t  parse would be 

Any production of the form A ÷ Am is called direct ly l e f t  recursive; such a produc- 

tion implies a left-branching tree. Similarly, A ÷~A is direct ly r ight  recursive 

and implies a right-branching tree. These terms are also applied to the nonterminal 

A. On a more subtle level,  i f  a nonterminal A is not direct ly l e f t  (or r ight) re- 

cursive but i f  A ÷ + A~" (or A ÷ + ~" A), then A is said to be indirect ly l e f t  (or 

r ight ) recursive. In either case, A is called recursive. 

I f  A ÷ + y A p where neither y : ~ nor p = c, then A is said to be self-embedding. 

I f  this occurs via the self-embedding Rraduction A ÷ y A p then i t  is direct,  other- 

wise i t  is indirect. 

1.4. Regular Grammars and Re~ular Expressions 

The essential d i f ference between regular and context- f ree grammars is that in reg- 

u lar  ones there is no self-embedding. Consequently, regular grammars may at best 

describe sequences of symbols in which there are repet i t ions and a l ternat ives but 

no nest ing, such as between matched pairs of  parentheses or begin . . .  end pa i rs ,  f o r  

example. 

Thus, regular languages may also be described by regular expressions (REs). REs in- 

volve only the thrmnotions of concatenation, alternation (unioD~and repetit ion 

~losure) , represented respectively by the i n f i x  operators "blank" ( i .e .  nothing at 

a l l )  and " I " ,  and the postfix operator "*". 

I f  M and N are RE'sthen 

M N (concatenation; "M followed by N") 

M I N ( ~ t e r n a t i o n ;  "e i ther  M or N"), and 

M ( repe t i t i on ;  "zero or more M's") 

are also REs. 

I f  M and N denote languages L M and L N, respect ive ly ,  then 

M N denotes the concatenation of the two languages L M and LN; i . e .  LMN = 

{ ~  I ~EL M ~nd B ~ LN}, 

M I N denotes L M U L N, and 

M denotes the closure of  LM; i . e .  

LM* = {~} U { ~  I ~ L M and ~LM*}. 

Except where al tered by parentheses the precedence for  these operators is as f o l -  

lows: closure is most b inding,  then concatenation, then a l te ra t ion .  
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ExamR,le The regular expression a b* (c I de)* denotes 

the language consisting of the fol lowing st r ings:  
a 

ab 

ac 

abb 

abc 

acc 

ade 

abbb 

abbc 

abcc 

abde 

accc 

acde 

adec 

i .e .  a single "a" followed by zero or more "b"s followed by zero or more of either 

"c" or "de". 

Regular expressions can be mechanically converted into regular grammars and vice 

versa. We w i l l  not go into those details here. 

2. Parsing 

2.1. Syntactic Dpminoes 

Consider the problem of determining the derivation tree for a string q purported to 

be in the language L(G) of a context-free grammar G, or al ternat ively,  of determin- 

ing that n is not in L(G). Ne may describe this problem as a game called "syntac- 

t i c  dominoes". 

We play the game on a board with a " f l a t  bottom" piece labelled with the start 

symbol at the top of the board, and a sequence of " f l a t  top" pieces at the bottom of 

the board, each labelled with the successive symbols of n. Corresponding to each 

production A ~ ~ of G there are a rb i t ra r i l y  many "dominoes", al l  of the same shape: 

at the top of the domino is a " f l a t  top" labelled A and at the bottom is a sequence 

of " f l a t  bottoms" labelled with the successive symbols of m. The cennections be- 

tween the top and bottoms of each domino are stretchy, but the order of the bot- 

toms is fixed. Furthermore, the dominoes may not be played upside-down. 

The game is played by positioning f l a t  sides of dominoes against one another and the 
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original f l a t  sides on the board. The object of the game is to try to eliminate 

al l  f l a t  sides. I t  is easy to see that i f  the player "wins", i .e.  eliminates al l  

f l a t  sides, then the result is essentially a derivation tree. Furthermore, the 

player wi l l  be able to succeed i f  and only i f  q ~ L(G). 

Example Consider grammar G 1 of section 1.3 above. The distinct dominoes are as 

l o l l  ows : 

There are arb i t rar i ly  many of each. To Parse, i .e. determine the derivation tree 

for, the string ~ = i + i we set up the playing board i n i t i a l l y  as follows: 

® 

C9 C9 0 

We might begin the game by playing a copy of domino (I) at the top of the board, 

resulting in: 

1 

I f  we now-play a copy of domino (4) a t  the r i g h t ,  we can match both t h e £ ~ )  and the 

Q')~ as well as the ( ~  r e s u l t i n g  in:  

We must play two more dominoes (4) and (2) ,  to get  the f i na l  r e s u l t :  
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Thus, we have won this particular game. In doing so we have proven that ~ ~ L (G l) 

and we have constructed ~ts derivation tree° 

Any algorithm that given a string determines its derivation tree, or equivalently 

its right or le f t  parse, is called a parsin 9 algorithm, parser, or analyser. 

2.2. Parsin 9 Strategies 

Clearly we can devise various strategies, called parsin 9 strategies, to win games of 

syntactic dominoes. Our strategy might be to try to determine the tree structure 

starting at the top and working down, or starting at the bottom and working toward 

the goal symbol at the top, Or we might mix top-down and bottom-up strategies. A 

good survey art icle covering early techniques in both top-down and bottom-up parsing 

is [Feldman 1968]. 

Independent of the vertical strategy there is the question of a horizontal approach° 

We might proceed from lef t - to-r ight  (we usually do) or from r ight- to- lef t  or we 

might alternate between the two in some fashion. 

Numerous bottom-up parsing algorithms have been devised that depend upon relation- 

ships between symbols. Operator precedence parsers [Floyd 1963] make decisions 

based upon the precedence hierarchy of operator symbols in the language, in addition 

to matching parenthesis-like symbols. Simple precedence [Wirth 1966] and weak pre- 

cedence [Ichbiah 1970] parsers work similarly, but depend upon precedence relations 

between all symbols, rather than just operators. Extended precedence [McKeeman 

1966] and bounded context [Eickel 1963] parsers depend upon relationships between 

strings of symbols. 

Top-down techniques are less numerous. Recursive descent parsing was i l lustrated in 

the elementary example given in the introduction. Most other top-down techniques 

involve guessing at parsing decisions and backing-up, or "back-tracking", to the 

last previous guess point when and i f  i t  becomes clear that the parser is on a path 

not leading to a solution. One survey art icle describing some of these techniques 

is [Floyd 1964]. 
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Most bottom-up techniques have been determin is t ic ;  i . e .  the parser makes a sequence 

of de f i n i t e  decisions leading d i r e c t l y  to a correct parse of  any s t r ing  in L(G) and 

d i r ec t l y  to an error  message fo r  any s t r ing  not in L(G). In contrast ,  most top- 

down techniques have been nondeterminist ic in that  they involve guessing. Of course 

determin is t ic  techniques are usual ly more e f f i c i e n t  in both space and time, than 

nondeterminist ic ones, thus much research in th is  area has been toward perfect ing 

determinist ic  techniques. 

The ul t imate in determin is t ic ,  bottom-up parsers, were introduced in [Knuth 1965] 

and are cal led L__RRparsers. Analogous, determin is t ic ,  top-down parsers are cal led 

L__Lparsers [Lewis 1968]. The essence of  nondeterminist ic parsers based on LR tech- 

niques is described in [Earley 1970]. LL and LR parsing techniques are discussed in 

deta i l  below in sections 2.B and 2.C, respect ively.  

2.3. Ambigui t¥ 

Since the semantics and t rans la t ions of  programming languages are usual ly  related 

to syntact ic  constructs, i . e .  productions of a phrase st ructure grammar, an unambig- 

uously defined and implemented language usual ly  requires an unambiguous grammar. 

A context- f ree grammar G is said to be unambiguous i f  and only i f  each sentence in 

L(G) has exact ly one der ivat ion t ree;  otherwise G is ambiquous. Equivalent ly ,  we 

may require that  each sentence have a unique r i gh t  parse (or l e f t  parse). 

2.4. Debu99in9 A Grammar 

A s u f f i c i e n t  condi t ion fo r  ambiguity is that a grammar contain a nonterminal A that 

is both l e f t  and r i gh t  recursive; e.g. A + + A ~ A fo r  some y E V* guarantees that  

the grammar is ambiguous, as does A ÷ + A, as does A ÷ + ~ A with A ÷ + A B. For 

example, the grammar G 2 = ( { i ,  +}, {E}, E, P) where P contains the productions 

E ÷ E + E  

E ÷ i  

is ambiguous since the sentence i + i + i has the two der ivat ion trees: 

and ~ ~  

The LL and LR techniques described below assume that  a l l  productions of each gram- 

mar are usefu l ,  i . e .  that  fo r  each production A ÷ m there ex is ts  a der ivat ion 

S + * y A p ÷ y ~ p ÷ * y" ~" p" such that  y" w" p" ~ VT*. This condit ion is eas i ly  

checked. Presumably the language designer has erred in his phrase structure 
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speci f icat ion i f  his grammar contains useless productions. 

Another condition that can be eas i ly  checked is the existence of an ambiguity due to 

some nonterminal being both l e f t  and r igh t  recursive. However, i t  is to be noted 

that th is is a special case. In general, the question of ambiguity in context-free 

grammars is undecidable [Floyd 1962]. 

Other ways of discovering problems within grammars are discussed below re la t i ve  to 

par t icu lar  parsing and t ranslat ing techniques. 

3. Machines, Computational Complexity, Relation To Grammars 

Corresponding to the Chomsky hierarchy of grammars is a hierarchy of machines 

[Hopcroft 1969]. A machine recognizes a language L in the sense that, i f  i t  appro- 

pr iately reads a sentence ~ ~ L, i t  w i l l  eventually halt and indicate that n is in- 

deed in the language; i .e .  i t  w i l l  accept ~. A machine M is said to be equivalent 

to a grammar G i f  and only i f  L(G) is exactly the language recognized by M. 

In th is l a t t e r  sense "Turing machines" are equivalent to type 0 grammars, both of 

which are equivalent, in a s im i la r  sense, to the most general (complex) computation- 

al systems known. S imi la r ly ,  " l inear  bounded automata" are equivalent to context- 

sensi t ive grammars, "pushdown automata" are equivalent to context-free grammars, and 

f i n i t e - s ta te  machines are equivalent to regular grammars and regular expressions. 

Proofs of the equiwlences between the two hierarchies involve techniques of con- 

verting grammars into equivalent machines and vice versa. In essence, we arrange to 

get one system to simulate the other. These techniques are similar to the LL and LR 

parser construction techniques discussed below. Also, the techniques are used dir-  

ectly below in creating scanners based on f in i te-state machines. 

The basic notion needed here from automata theory is that of "state".  The state of 

a parser at any given time sums up the h istory of the parse for  the purpose of mak- 

ing the next parsing decision. In addit ion, the parsers described here use a push- 

down stack to remember more detai l  about l e f t  context (the parse h is tory)  fo r  the 

purpose of matching l e f t  context against corresponding r igh t  context. Theoreti- 

ca l l y ,  our parsers are equivalent to determinist ic pushdown automata. 

4. Transduction Grammars 

Translation can be formally defined via grammars with two r igh t  parts to each pro- 

duction rather than jus t  one. We require a coordination between the two r igh t  

parts. In par t i cu la r ,  we require that each occurance of a given nonterminal in one 

r ight  part have a corresponding occurance of that same nonerminal in the other 

r ight  part.  We do not, however, place any res t r i c t ion  on the re la t i ve  orders of 
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the symbols in the two r i gh t  parts,  nor do we put any res t r i c t i ons  at a l l  on the 

terminals in e i ther  r i gh t  part .  

4.1 Str ing-To-Str ing Grammars 

The formal de f i n i t i ons  of grammars given in section ~ above can eas i~  be extended 

to define such t r ans~c t i on  9rammars [Lewis 68]. In pa r t i cu la r ,  we are interested 

here in context- f ree transduction grammars (CFTGs); i .e .  those based on CFGs, and 

thus, having a s ingle nonterminal as l e f t  part .  The one-to-one correspondence be- 

tween occurrances of  nonte~ ina ls  in the two r i gh t  parts means that  we can derive 

two str ings simultaneously by rewr i t ing  corresponding nonterminals via these 

"pa ra l l e l "  productions. 

Example Consider the fo l lowing CFTG based on the CFG G l above. TG I = 

({+, ( , ) ,  i } ,  {E, T},  E,P) whe.r~ P c~ ta i ns  the fo l lowing productions: 

E ÷ E + T  :> E T +  

E + T  => T 

T ÷  (E) => E 

T ÷ i  :> i 

We have used the symbol => to separate the two r i gh t  parts. TGI defines a t rans la-  

t ion from i n f i x  notat ion to pos t f i x  notat ion as is i l l u s t r a t e d  by the fo l lowing 

para l le l  der iva t ion .  

E E 

E + T  E T +  

E + (E) E E + 

E+ (E+T) E ET++ 

E + (E + i) E E i + + 

E + (T+ i) E T i ++ 

E + ( i  + i )  E i i + +  

T + ( i  + i )  T i i + + 

i + ( i  + i )  i i i + + 

Clear ly ,  such s t r i ng - t o - s t r i ng  transduction grammars can be used to t rans late to 

p re f i x ,  pos t f i x ,  and/or i n f i x  notat ion.  The above example is simple in that  the 

ordering of non~rminals in the two r i gh t  parts is the same. Translat ion to pos t f i x  

notat ion is  na tu ra l l y  done by an LR parser; t rans la t ion  to p re f ix  notat ion is natur- 

a l l y  done by an LL parser, which can also t rans late to pos t f i x  but for  a smaller 

class of grammars than LR techniques al low, as w i l l  be discussed below. 

I f  the non te~ ina ls  are not in the same order in the two r i gh t  parts,  complex trans- 

la t ions are defined which cannot be perfo~ed by d e t e m i n i s t i c  pushdown automata. 

Rather than implementing such complex reorderings via s t r i ng - t o - s t r i ng  t rans la to rs ,  

one usual ly  t ranslates the st r ings at least  p a r t i a l l y  in to  trees and then t rans fo~s  
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(reshapes) the trees. Such tree transformations can be defined via "transformation- 

al grammars" as described in section 2.E below. 

4.2. String~Co-Tree Grammars 

I f  we use a tree as the second part of each production [DeRemer 1969], we can for- 

mally define the translation from strings to trees. For example, for the CFG G l 

of above we might write productions: 

E÷ E +T => / ~  

E / ( ~ \  T 

E ÷ T  => ( ~  

T 

T + (E) => ~ _  

T ÷ i => Q 

This "string-to-tree transduction grammar" obviously translates any string in the 

language into i ts derivation tree. For the purposes of compilation, however, we are 

not interested in all of the detail of the context-free grammar, but only in the 

basic phrase structure and relations between operators and operands, key words and 

phrases. That is, we are interested in the abstract syntax, not the concrete syn- 

tax. The derivation tree corresponds to the concrete syntax while a "computation 

tree", or "abstract syntax tree", corresponds to the abstract syntax. 

We can use the above technique to describe the translation to abstract syntax trees. 

For example, for  G I we might specify the fo l lowing. 

E ÷ E + T  => / ~  

E T 

E ÷ T  => T 

T + (E) => E 

T + i  :> @ 
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A derivation via these productions is as follows: 

E E 

E + T 

E + (E) / / ~  

E E 

E + (E + T) 

E + ( E + i )  

E + ( T + i )  

E + (i + i) 

T + ( i + i )  TO< 
i + ( i + i )  
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For very simple str ing-to-tree grammars such as the above, with no reordering of 

nonterminals and at most one new node added to the tree per production, we may 

abbreviate our rules by mentioning only the node name ( i f  any) in the "tree part" of 

each production. For example, the las t  grammar above could be abbreviated: 

E ÷ E + T  => + 

E ÷ T  

T ÷ (E) 

T ÷ i  => i 

F ina l ly ,  we note that in section 2.D on " lex ica]  analysis" we use productions with 

regular expressions in t he i r  r igh t  parts. For example 

E ÷ T (+ T) + => + 

means that E may be rewri t ten as T fol lowed by one or more occurrances of +T and 

that the corresponding tree is a + node with the (two or more) subtrees correspond- 

ing to the T's as descendants. Trees containing such nodes, having an arb i t ra ry  

number of branches, are sometimes called bushes. 

5. Meta-Grammars 

5.1. Self-Desc~ibin 9 Grammars 

The notational conventions used above for specifying grammars, that is the written 

forms, of course constitute a language themselves. I f  we are to implement LL and 

LR grammar analysers as described below, we must adopt some well defined conventions 

for the input format of these grammars, i .e .  a language for grammars. 

Rather than use the conventions used for formal purposes above, we prefer to use 

standard programming language conventions. Our nonterminals are analogous to (even 

sometimes called) variables so we choose to use ident i f iers to denote them. Ter- 

minals are constant strings so we choose to use quoted string constants to denote 

them. In addition, we choose to use (~) "=" rather than "÷" to separate l e f t  part 

from r ight part, (2) "I" to separate alternative r ight parts rather than require 

separate productions for each, and (3) ";" to terminate the resulting "rules". 

How can we describe this language for grammars? With our l ingu is t ic  tools, of 

course; i .e .  with these very grammars. Thus, a grammar to define our grammatical 

notation is a self-describing grammar. Correspondingly, our language processors 

are usually self-implemented ( i .e ,  "bootstrapped") to demonstrate both their use 

and their  capabil i t ies. 

There follows such a self-describing grammar. Note that i ts  language is a set of 

sequences of characters, such as might be punched on cards, including the new-line 

character (or card boundary). Included is a description of comments (a sharp # 
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7 
8 
9 
I0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
2~ 
25 
25 
27 
24 
29 
3O 
31 
32 
33 
3~ 

35 
Jo 
37 
3~ 
39 
~0 

42 
43 
44 

45 
45 

~7 
~8 
~9 
50 
51 
52 
53 
5~ 
55 
5b 
57 
5~ 
59 

THE PHRASE SZRUCTURE OF CONTEXT-FREE GRAMMARS. 

Context_free_grammar 
= Spaces ~ A NULL GRAMMAR. 
; Context_free_grammar Rule Spaces 

Rule 
= Left part '=' Alternatives ' ;' 

Alternatives 
= Right_part 
| Alternatives ' I ' Right_part 

Right_part 
= Spaces ~ AN EMPTY RIGHT PART. 
i ~ight_part Terminal Spaces 
| Right_part Nontermi~al Spaces 

Nonterminai = identifier ; 

Terminal = String ; 

THE LEXICON OF CONTEXT-FREE GRAMMARS. 

Identifier 
= Upper_case letter 
I Identifier Lower_case ietter 
I ldentifie~ Digit 
I IdentifieL Underscore 

St~ing = Quote Any_characters Quote 

Spaces 
= Separator 
j Spaces Separator 

Separator 
= ~lank 
I New_line 
I Comment 

Comment = Shar~ Blank Any_characters New_line 

Any_characters 
= ~ AN EMPTY RIGHT PART HSAGE. 

I Any_characters Character 
| Any_characters Sharp 'N' ~ NEW LINE CHARACTEH. 
| Any_characters Sharp 'Q' ~ SINGLE QUOTE. 
j Any_characters Sharp Sharp ~ SHARP. 
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6O 
bl 
62 
63 
64 
65 
6b 
67 
68 
69 
70 
71 
72 
7J 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
9O 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
I01 

# THE CHARACTER SET. 

Character 
= Upper_case_letter 
| Lower_case_letter 
I Digit 
i Operator symbol 
i Blank 
I Underscore 

Upper case_letter 
= 'A' I 'B' I 'C' I 'D' I 'E' I 'F' I 'S' I 'H' 
I 'I' | 'J' I 'K' i 'L' | '~' J 'N' I '0' I 'P' 
I 'Q' | 'R' I 'S' I 'T' I 'U' I 'V' I 'W' I 'X' 
I 'Y' I 'Z' 

Lower_case letter 
= 'a' I 'b' I 'c' I 'd' I 'e' I 'f' I 'g' I 'h' 
I 'i' | ']' I 'k' I 'i' I 'm' I 'n' I 'o' I 'P' 
i 'g' I 'r' I 'S' | 't' | 'U' I 'V' I 'W' | 'X' 
I 'Y' I 'z' 

Digit 
= '0' | '1' I '2' I '3' I '~' I '5' I '6' I '7' 
I '8' t '9' 

Operator_symbol 
= '=' I 'I' i ';' I '+' I '-' I '*' I 'I' | '<' 
I '>' I '~' I '-' I '(' I ')' 

Quote = ' ~Q' ; 

Underscore =, '_' 

Sharp = '~' ; 

New_line = '&N' ; 

Blank = ' ' ; 

A USE OF THE QUOTE 
DENOTING CONVENTION. 

A USE OF THE SHARP 
# DENOTING CONVENTION. 
# A USE OF THE NEW-LINE 

DENOTING CONVENTION. 

Note: This grammar has been mechanically confirmed to be LALR(I). (See the 

section on LR parsing.) 
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followed by a blank, then the comment goes to the end of the l ine).  The sharp is 

the escape character inside strings; sharp followed by a Q denotes a single quote; 

sharp followed by N denotes the new line character; sharp followed by sharp denotes 

the sharp. The grammar is presented ~n three parts defining the phrase structure, 

the lexicon (how to construct words from characters), and f i na l l y ,  the character 

set. 

5.2. Practica!oApp]!cations 

In practice i t  has proven to be advantageous to separate the lexical and syntacti- 

cal specifications of languages into two grammars, a lexical grammar and a phrase 

structure grammar. Note for example that in the above self-describing grammar, 

spaces are required in places where they need not be (e.g. before a " ; " ) .  This 

problem can be solved with the addition of more productions, but when the phrase 

structure is more complex, as i t  usually is for programming languages, one t ires of 

inserting "Spaces" in numerous productions. Furthermore, the insertions destroy the 

readability of the grammar. 

Given next is a pair of grammars mutually describing themselves, in that one defines 

their lexicon and the other their phrase structure. The la t ter  is s~gnificantly 

more complex than the above sample, as i t  includes regular expressions in right 

parts of productions and tree parts to describe trees. 

The section below on lexical analysis discusses the mapping of the lexical grammar 

into a scanner, and the sections on LL and LR parsing discuss the mapping of phrase 

structure gran~ars into parsers. 

Other lecturers use s l ight ly  different notations for grammars, and they define 

their notations in their lectures and notes. 
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I I# 
2 1 #  
3 1 #  

5 # 
6 
7 
8 
9 

10 
11 
12 
13' 
1.~ 
"15'" 
t6  
]7  
18 

-19 
2O 
21 
22 
. '3 
2~ 
Zb 
26 
i f  
28 
.'9 
30 
3 t  
32 
33 
3L~ 
3 b  
36 
Ji" 

38 
39" 
~0 

~2 
t4.:l 

,u,t, 

~6 

~8 
q9 
5O 
51 
52 
53 
5~ 
,55 
56 
b l  
58 

-5"9--- 

sca nl%e~ Gr am~ar_text: 

* * 

.......... GRA~I~A~ LEXICON "' * 

Pal text = Text id hum I Text_operator I Text else; 

TEXT STARTING WITB AN IDENTIFIE~ OR NUMBER. 

...... ~"' TEXT S-~-~I~G-~fT-~--~}['-O-P~2~ TO~. 
Text operator = Operator (Text id_num ) Text_else)? ; 

# TEXT S~A~TING ~ITH ANYTHING ELSE. 

Text else = Spaces (fext id_num .] Text operator | Text_other}? 
"' "~ --FY~~V_-61-}i~Y ; 

'xext_'Other = (st rin-~-]-P-~t-u~Z~-d--[--~#~ ' )--~a'l-~'~. ; 

# THE BASIC TEXTUAL ELEMENTS. 

Identifier = Upper case letter (Lower_case letter I Digit | '_')* 
->-~--'-ID EN TIFIER " 

Integer = Digit + => * 'INTEGER'; 
ope ~-ator -~ - q~- ~ e - r  a--a~t o r _ D l / ~  b b l - - ~  ~- *~ OP ERATOR"~ 
St~zng = '~Q' Any character • '~Q' => * 'ST~INGt; 
s~a~'es'"= , , + --~" => ',IGNORE'; 
Punctuation = ' (' => * ' () 

I ' ) ' =~-~--")-" 
] ' ; '  => * ~;)  

# CHARACTEI~ SETS. 

~ny character = Upper case_letter ] Lower_case letter 

! ')' I '{' I ';' ! ',' I '~#' 'N' ! '##' 'T' '##' 'Q' 
........ j ,%~"-,~#"r--l--,-',- ; 

Upper_case letter = )Am I IB' I 'C' | 'D' ] )El J 'F' | 'G' 'Hm I mI' 
[-r j,- ]"--rK ,--l-- rLn--]~, Hv--j -"Nr-w-' 0 r-|--rP'?~"-l-- 'I{' 

I 'S' I 'T' J 'U' I 'V' | '~' I 'X' l 'Y' 'Z' 

Lower case !ether = 'a' i 'b' I 'c' I 'd' l ~e' | )fJ l ,gm 'h' ] 'i' 
i ~j '--1-~ k-' -3--~Yr-V-'-~ -'-VTnT-[-~6 ' - l--Tp '7--'~'-7--rr ' 
I 's' I 't' l 'u' | 'v' I 'w' I 'x' | ,y) 'Z' 

Digit = '0' | '1' I '2' I '3' | '4' I '5' I '6' I '7' | '8' '9' ; 

Operator syr.~bol = '+' I '-' | '~' | '<' | '>' I 'G' | 'o' 
I "~"-~--~--I- r':-T =-~-T-r~'-]-~q-r-I -' ~' ' 

~ - - ~ Y ' _ - - Z ~ x  t 

# 
#" 

i 
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III # i  
-2--Ti l  

3 I#  

5 i#  
-6--f-~ 
7 | 
8 Iparser Analysers: 

* CONTEXT-FREE GRAMMARS * 
* W~--R'EP~Ot-~,R EXPRF~ffSiO-N-S" '* 

# l  
t l  
#I 

l 
! 

9 1 
l~~a-l-ysers = ( An~n~h-~-- ,~An-~yser 
11 
12 Analyser 
13 = 'PARSER' ~IDENTIFIER' ':' T_grammar Ending 
]q I"' ,S~A~ER',' ,~ENTIFIER~--*T*-~£ grammar Eh~i~-g-- 
15 
16  ......... E n d i ~ - g ~  -N-D -~ 
17 I 'END' 'IDENTIFIER' 
1~' 
19 
2 0  
21 
2T- 

I 
=> ,;, ; |  

I 
I 

=> * ~PARSER' I 
~ ) ,  ,SC~NNERaC-----~| 

| 

...... => 'EI~' l 

I 
T grammar = T_rule ÷ => 'PRODUCTIONS';| 

T_rule = 'IDENTIFIER' '=' Right_part ';' 

] 
=> ! , 

= ;I 
I 

=> ' ALTERNATIVES' I 23 Right_part = Pair ( 'I' Pair ) + 

z~ ----U~ - - I  
25 l 
2b Pair = --S-#n a~p~-~-t- I 
27 I Syntax_part ':>' Opt_star Tree_part => '=>~ ;I 

~ I 
29 Opt_star = I 
JO - - - ] - - - r j - ,  -~y- • oUTP UTT---~ 
31 I 
32-- ~ _ p ~ t  = Reg-___-t-erm ; [ 
33 ] 
~'~ I ..... Tr~e"_part = 'ST~T---. " .... ; t  
35 1 I 
35~l~eg_exp = Reg-~f~-~-~g_f-~rm ) ÷ =) "I" l 

I Reg term; I 

Reg tern = => 'NULL' 
I Reg' fa~ ot~ _ ~ 5 ¥  + " ' =) .., 
] Reg_factor ; 

37 
3H 
39 
40 
41 

43 
41.1 
45 
40 
47 
q8 
49 
50 
51 
52 
5.] 
54 
55 
5b 
57 
58 I" 

Reg_factor = Reg_primary 

I Reg_primary '+' => 'ONE OR MORE' 

I Reg_primary ,,,i Repitition_specification => 'REPEAT'; 

Repit it ion_s pecific a t ion = 'INTEGER' 

| ,(' 'INTEGER' ',, ') , => 

=> 

Reg_primary = 'IDENTIFIER' # NONTERMINAL. 
I ......... ' ST~lq~-G' -- I T E R~lq~?. 
I ' (' Reg exp ') ' 

"UP_TO_~' 
'N_OR_MO~E' 

'NI_TO_N2'; 

59 ! 
~U-J-6n-a~ysers 
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CHAPTER 2.B. 

LL(1) GRAMMARS AND ANALYSERS 

M. GRIFFITHS 

Laboratoire d' Informatique 

UNIVERSITE DE GRENOBLE, FRANCE 

I - INTRODUCTION - 

Since th is  course is not so le ly  concerned wi th  syntax analys is ,  a choice 

has had to be made amongst a large number of possible methods. We have chosen to 

present the two methods which seem to be the most fundamental in  theoret ica l  terms. 

The choice was, of course, much easier amongst top-down methods, of which there are 

few. The LL(1) techniques described in  th is  chapter were discovered by Foster 

[Foster 68] and received a theoret ical  treatment in [Knuth 71]. The method is top- 

down, determin is t ic  w i th  one character of look-ahead. 

Before going in to  deta i ls  of the method, we should consider the context 

in which i t  w i l l  apply. Why are compi ler-wri ters so interested in syntax ? I t  is  

cer ta in ly  not true tha t ,  in  a given compiler, the syntact ic  part is  that which 

requires the most work. In fac t ,  the prat ica l  compiler w r i t e r  should be able to 

produce his compiler wi thout  even bothering much about the mechanics of syntax ana- 

l ys i s .  He is more interested in using the syntax as a framework on which to hang 

semantics, since th is  gives the overal l  s t ructure of the compiler. Essent ia l ly ,  for  

the compiler w r i t e r ,  Backus normal form is a programming language. 

This discussion shows us that ,  to be usefu l ,  a syntax analysis method 

must be automated ; the user merely has to type his grammar and some program prepares 

the appropriate analyser, which must also be e f f i c i e n t  and allow easy in te rac t ion  
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wi th  the semantics. This las t  point means that the method must be determin is t ic ,  but 

we w i l l  come back to that w i th  the examples. We s ta r t  w i th  a non-determinist ic method 

from long bygone days (a l i t t l e  over ten years ago), and then look at the problem of 

making i t  determin is t ic .  

1 .1 -  Predictive Analysis - 

Consider the following grammar, which describes an ALGOL block : 

Block ÷ begin DL ; SL 

DL ÷ D I D ; DL 

SL -~ S I S ; SL 

end 

We w i l l  analyse the following program (considering declarations and 

instructions to be non-separable units for the time being) : 

begin D ; D ; S ; S end 
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Analysis proceeds by comparing targets with the source text. The f i r s t  target is the 

axiom of the grammar, and new targets are produced by replacing left-most terminal 

symbols by the i r  possible expansions. Thoses targets which do not correspond to the 

text  are rejected, leaving the others for further comparison, and so on. The succes- 

sive states of the analysis of the given program are drawn up in the form of a 

table : 

i .  Block 

2. beg in  DL ; SL end 

3. DL ; SL end 

4. D ; SL end 

D ; DL ; SL end 

5. ; SL end 

; DL ; SL end 

6. SL end 

DL ; SL end 

7. S end 

S ; SL end 

D ; SL end 

, D ; DL ; SL end 

8. ; SL end 

. ; DL ; SL end 

Targets Text 

, begin D ; D ; S ; S end , 

. begin D ; D ; S ; S end . 

D ; D ; S ; S end 

D ; D ; S ; S end 

; D ; S ; S end 

D ; S ; S end 

D ; S ; S end 

; S ; S end 

and so on. State 8. is the same as state 5., except that some of the source text 

has been analysed between times. Resuming the rules of the game we see that : 

a) - The i n i t i a l  state has the axiom as the unique target, and retains a l l  the 

source text.  

b) - Any target which begins with a non-terminal symbol is replaced by as many new 

targets as are necessary, each one being the original target with the non-ter- 

minal symbol replaced by one of i ts  expansions, 

c) - I f  a l l  the targets begin with a terminal symbol, each of these symbols is 

compared with the left-hand member of the text. I f  the symbol does not match 

the text ,  'the corresponding target is rejected, otherwise the decapitated tar- 

get is passed to the next state, where the text also loses i ts  f i r s t  character. 
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d) - Analysis ends when a target and the text become empty simultaneously. I f  

several targets become empty at this point, the language is ambiguous, and i f  

no target becomes empty at this point, the text was not in the language. This 

is also the case i f  no target exists at some moment. 

e) - Left recursion causes the analyser to loop, since i t  becomes impossible to 

obtain only targets starting with a terminal symbol. 

A more formal presentation of predictive analysis is to be found in [Greibach 64]. 

1.2  - E f f i c i e n c y -  

Let us now consider state 4 of the analyser. The action leading to 

state 5 was the matching of the declaration of the text with the f i r s t  symbol of 

each of the two targets. But the matching of a declaration is not in fact an instan- 

taneous process, since a declaration consists of several, or, in the case of a 

procedure declaration, of many characters. The two targets are retained during the 

analysis of the complete declaration, which is thus analysed twice. Each statement 

is also analysed twice, and this number is doubled each time statements are nested. 

This obvious waste can easily be eliminated by choosing a different grammar, s t i l l  

keeping the same analyser : 

Block ÷ begin DL ; SL end 

DL+D X 

X÷E ; DL 

SL÷S Y 

Y÷E ; SL 

c represents the nu l l  s t r i n g ,  and we have simply fac to r i sed  the ru les.  The analyser 

now works as fo l lows : 

Targets Text 

Block begin D ; D ; S ; S end 

• begin DL ; SL ; end , begin D ; D ; S ; S end 

• DL ; SL ; end . D ; D ; S ; S end 

D X ; SL end . D ; D ; S ; S 

X ; SL enid . ; D ; S ; S end 
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and so on. The declarat ion is analysed once only. The obvious question is whether i t  

is possible to obtain a grammar for  which the analyser can always reduce the number 

of targets to one, and the answer is of course "Yes, in certain cases", otherwise 

there would be no story. 

Of course, when the grammar presents a l te rnat ives ,  there must be some 

decision c r i t e r i on ,  which in the case we are examining w i l l  always be the inspection 

of the leftmost character of the remaining source tex t .  I f  the analyser can choose 

i t s  target  simply by looking at one character, the grammar is said to be LL(1). I f  

k characters were necessary to reach a decision, the grammar would be LL(k). Measu- 

rements have shown that this sort of grammar transformation leads to a decrease of 

a factor  of ten in the time spent to analyse r e l a t i v e l y  simple ALGOL 60 programs, 

and of course the improvement is exponential with the degree of nesting. 

1.3 - Semantics - 

As soon as the programmer uses a determinist ic  method of syntax analysis, 

i t  becomes possible to execute semantic routines during the syntax analysis process, 

thus saving a pass of the source text .  This is easi ly  understood in the case of an 

LL(1) analyser, since we see that when the analyser takes a decision, i t  is always 

the ' r i gh t '  one. I t  can therefore ca l l  those semantic routines that the programmer 

has indicated, since i t  is sure of having correct ly  recognised a s i tua t ion .  Non- 

determinist ic methods do not allow th is ,  since back-tracking, for  example, cannot 

apply to semantics ; a l t e rna t i ve l y  i f  d i f fe ren t  routines were associated with two 

targets in the predict ive analyser, i t  is not possible to decide which to execute. 

Foster gives a simple example of the use of semantic functions : 

Integer ÷ D ig i t  f l  X 

X ÷ D ig i t  f2 X I 

f l  : resu l t  ÷ value ( d i g i t )  

f2 : resu l t  ÷ lO*resul t  + value ( d i g i t ) .  

We suppose that the value of the integer is to be found in ' resu l t '  and 

that the procedure 'value' decodes the las t  d i g i t .  The addi t ion of the names of 

semantic functions as a th i rd  type of object in the grammar is a technique which 

w i l l  be seen many times during this course. Compiler wr i ters often consider the 

primary function of a syntax as being that of the skeleton on which they can hang 

semantics. The form of the semantics i s ,  of course, very var iable.  
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2 - L L(1) CONDITIONS - 

We have seen that the analyser for an LL(1) grammar can decide which 

decision to take at any moment by looking at the leftmost character of the remaining 

source text. A decision is taken only when the f i r s t  character of the target is a 

non-terminal character, and the decision is by which of i ts  possible right-hand sides 

should the non-terminal be replaced. Thus any one terminal symbol should lead to 

only one expansion for a given non-terminal, and thus to each expansion corresponds 

a unique set of terminal symbols, which we w i l l  call the director symbols for that 

expansion. 

Consider the following productions for a non-terminal A : 

The director symbols for ~i obviously contain al l  those terminal symbols which can 

occur at the le f t  of any string generated by ~i" We call this set of symbols the 

'starter symbols' of ~ i '  defined formally as : 

S(~) = {a ~ V T I ~ ~ a ~, ~ ~ (V T u VN) } 

where ~ is any string (that is to say ~ c (V T u VN)* ). The starter symbols do not 

necessarily form the whole set of director symbols, since ~i can be, or can generate, 

the empty str ing, which has no starter symbol. Consider what could happen in this 

case, after a sequence of expansions starting with the axiom Z : 

Z ÷ . . . ÷ B A ~  

I f  A is the front character of the target, B E VT*, 6 c (V T u VN)*. 

I f  the expansion of A is to lead to the empty str ing, the character at the le f t  of 

the source text is a starter of 6, and hence the starter set of 6 is contained in 

the director symbols of that expansion of A which leads to the empty string. We note 

that there can be at most one such expansion, since otherwise the starters of 6 

would occur in more than one set of director symbols, and the analyser could not 

then decide which expansion to apply. The starters of al l  the possible strings which 

can follow A are called the followers of A : 

F(A) = {a I Z ÷ ~ A 6, Z the axiom, B, 6 ~ (V T u VN)*, a ~ S(~)} 

where A is any non-terminal symbol (A ~ VN). 

We can now define the director symbols for the expansion ~ of a non-terminal A : 

DS (A, ~) = {a I a ~ S(~) or ( ~ *  ~ and a ~ F(A))} 
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We suppose the grammar to be clean throughout th is  presentat ion, which means that 

every non-terminal is  accessible from the axiom (can occur in at least  one s t r ing  

generated from the axiom) and that every expansion can lead to at least  one s t r ing  

which contains no non-terminals. 

I t  is now possible to give the necessary and s u f f i c i e n t  condit ion that  a grammar be 

LL(1), which is  that  the d i rec to r  symbols corresponding to the d i f f e ren t  expansions 

of each non-terminal should form d i s j o i n t  sets. The j u s t i f i c a t i o n  of th is  condit ion 

is simple : 

- the condi t ion is  necessary, since i f  a symbol occurs in two sets of d i rec tor  

symbols the analyser can not decide which expansion to apply wi thout  fu r ther  in-  

formation 

- the condi t ion is s u f f i c i e n t ,  since the analyser can always choose an expansion in 

terms of the given symbol, and th is  choice w i l l  always be the r i gh t  one. I f  the 

symbol is contained in  no set of d i rec tor  symbols, the source tex t  is  not in the 

language and there is an error .  

Knuth's o r ig ina l  d e f i n i t i o n  gave four condi t ions,  which are equivalent to the one 

given above. One of the four deserves a l i t t l e  more a t ten t ion ,  since i t  is  the one 

which forbids l e f t  recursion. We have already noted that top-down analysers do not 

accept l e f t  recursive grammars ; these are also forbidden by the LL(1) condi t ion,  as 

shown by the fo l lowing log ic  : 

Consider a set of mutually l e f t - recu rs i ve  non-terminal symbols (such symbols form 

obvious closed sets) ,  and in  par t i cu la r  one of the symbols which presents al terna- 

t i ve  expansions (there must be one, otherwise, since the set is  mutually l e f t - r ecu r -  

s ive,  the rules concerned cannot generate terminal s t r ings ) .  Consider i t s  expansions: 

A ÷ ~1 I ~2 I " ' "  I ~n 

Suppose ml to be the l e f t - r ecu rs i ve  expansion. Thus we have 

A ÷ ml # A B ÷ m2 B (~ c (V T u VN)* ) 

then D S(ml) ~ D S (m2), since m I ~ m 2 B. 

The d i rec tor  symbols are not d i s j o i n t .  I t  is useful to tes t  for  l e f t  recursion inde- 

pendently of the LL(1) condi t ion in order to avoid loops in the algorithms and also 

to give more informative error  messages to the user. 
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3 - DECISION ALGORITHM - 

The algorithm which decides whether or not a grammar is LL(1) simply 

deduces the d i rec tor  symbol sets for  each expansion of a non-terminal and applies 

the condit ion described above. In order to f ind these sets we must f i r s t  deduce the 

s ta r te r  and fo l lower sets for  each non-terminal,  together wi th  the information as 

to whether or not the non-terminal can generate the empty s t r ing .  I t  is  for  th i s  

las t  point that  we give the f i r s t  algorithm. 

The algorithm requires a copy of the grammar and a vector V, with one 

entry per non-terminal in the grammar. The elements of V may take any one of three 

values : yes, no or undecided, saying whether or not the non-terminal can generate 

the empty string. We execute the following steps : 

1) - Each element of V is in i t ia l i sed  to 'undecided'. 

2) - During a f i r s t  pass of the grammar, the following two actions are performed : 

a) - I f  any expansion of a non-terminal is the empty string, the corresponding 

element of V takes the value 'yes' and a l l  the productions of the non-ter- 

minal are eliminated from the grammar. 

b) - Any production containing a terminal symbol is eliminated from the gram- 

mar. I f  this action eliminates al l  the productions of a non-terminal, the 

corresponding value of V takes the value 'no'. 

3) - The grammar is now l imi ted to rules in  which the r ight-hand sides contain only 

non-terminal symbols. Successive passes of the grammar obey the fo l lowing ac- 

t ions ,  in  which each symbol of each r ight-hand side is examined. 

a) - I f  the corresponding entry of V has the value 'yes ' ,  the symbol is  e l imi -  

nated. I f  th is  leaves the empty s t r ing  as r ight-hand side, the non-termi- 

nal for  which th is  i s  an expansion can generate the empty s t r ing .  The cor- 

responding entry of  V becomes 'yes ' ,  and the productions of the non-termi- 

nal are el iminated. 

b) - I f  the corresponding entry of  V has the value 'no ' ,  the production is 

el iminated. I f  a l l  the productions of a non-terminal are el iminated in  

th is  manner, i t s  entry in  V takes the value 'no' 
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I f ,  during a complete pass of the grammar, no entry of V is changed and there 

are s t i l l  undecided entries, the algorithm cannot terminate, and the grammar is 

not LL(1). 

We must f i r s t  of a l l  prove that non-termination of the above algorithm is a 

su f f i c i en t  reason to say that  the grammar is not LL(1). In fac t ,  in th is  case, 

i t  is both ]e f t - recurs ive and not clean, since there ex is t  a number of pro- 

ductions consisting only of non-empty non-terminals, which cannot then generate 

str ings which do not contain non-terminals. These productions must also be l e f t  

recursive since they form a f i n i t e  set, and thus the lef t -most members must loop. 

For any clean grammar we are therefore able to produce the vector V , indicat ing 

whether or not the non-terminals can generate the empty str ing.  

The next step is the production of b i t  matrices which w i l l  indicate the starters 

and fol lowers of each non-terminal. We f i r s t  consider the s tar ters,  which are 

accumulated in a matrix with two f i e lds :  

A B . . .  Z a b . . .  z 

During a pass of the grammar, the immediate starters are indicated in the matr ix,  

for  example, in the fo l lowing ru le:  

A ~ B c D l e f 

(B, A) and (e, A) are set to 1. 

Notice also that i f  B can generate the empty str ing ( information found in V), 

c is also a s tar te r  of A, and (c, A) takes the value I ,  and so on as long as 

the newly discovered s tar ter  is a non-terminal which can generate the empty 

st r ing.  The matrix of  immediate starters is of  course not su f f i c i en t ,  as is 

seen in the fo l lowing t r i v i a l  example : 

A ~ B c D  

B ~ b X  

b is a s tar ter  of B, and hence a s tar ter  of A. The t rans i t i ve  closure of the 

immediate s tar ter  matrix gives us the complete s tar ter  matrix required to cal-  

culate the d i rec tor  symbols. 
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The complete s t a r t e r  ma t r i x  a l lows an immediate t e s t  f o r  l e f t  recurs ion ,  since a 1 

on the p r i n c i p a l  diagonal of  the ma t r i x  i nd ica tes  tha t  a non- terminal  is  a s t a r t e r  of  

i t s e l f •  I t  is  useful to give t h i s  d iagnosis immediate ly  to  the user o f  the program. 

We w i l l  not g ive d e t a i l s  of  the t r a n s i t i v e  c losure a lgo r i t hm in  t h i s  t e x t  ; the 

best-known efficient algorithm is described in [Warshall 62]. I t  is however to be 

noted that a better algorithm can be written for this particular case since the 

matrix is sparse, and the left-hand half of the matrix is not in fact required 

(apart from the principal diagonal), since the tests only need the terminals which 

are the starters of each non-terminal [Griff iths 69]. 

An immediate f o l l o w e r  ma t r i x  should be produced dur ing the pass over the grammar t ha t  

produced the immediate s t a r t e r  ma t r i x .  This ma t r i x  needs three f i e l d s ,  as is  shown by 

the f o l l o w i n g  example: 

A ~ B C D l E f 

Immediate deduct ions are:  

C fo l l ows  B 

i f  C can generate the empty s t r i n g ,  

D fo l l ows  C 

f fo l l ows  E• 

D fo l l ows  B 

There i s ,  however, a f u r t h e r  problem• Consider a product ion conta in ing  A : 

X ~ YAZ 

Z fo l l ows  A. But i f  we replace A by B C D , we obta in  

X ~ Y B C D Z  

Z also fo l l ows  D. Thus, the f ac t  tha t  D is  the l a s t  symbol of  A needs to be kept ,  

since a l l  f o l l owers  of  A are f o l l owe rs  of  D (and i f  D can generate the empty 

s t r i n g ,  the same is t rue of  C , and so on).  The f o l l owe rs  ma t r i x  has the form: 

A B . . .  Z A B . . .  Z a b • . .  z 

A 

B 

Z 

In the f i r s t  f i e l d  (X, Y) = 1 means tha t  X fo l lows  Y 

In the second f i e l d  (X, Y) = I means t ha t  the f o l l o w e r s  of  X are 

f o l l owe rs  o f  Y , t ha t  is to say tha t  Y is the l a s t  member o f  

a product ion o f  X . 
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In the th i rd  f i e l d  (x, Y) = 1 means that x follows Y. 

For the f i r s t  f i e l d ,  X fol lows Y means that a l l  starters of X are fol lowers of Y ; 

but these starters are to be found in the complete s tar te r  matr ix,  remen~)ering that  

we are only interested in terminal starters and fo l lowers.  Thus the corresponding 

l i ne  of the starters matrix is added in to the th i rd  f i e l d  of the fol lowers matrix 

for  each I in the f i r s t  f i e l d .  We now perform a t rans i t i ve  closure on the second and 

th i rd  f ie lds  to obtain a complete fo l lower matrix. 

We have now obtained complete starter and follower matrices which allow the calcula- 

tion of the functions F and S of the preceeding paragraph. These in their turn allow 

the calculation of the director sy~ols and the application of the LL(1) condition. 

The sets of director syn~)ols are required in the generation of the analyser, since 

they form the decision criterion. I f  the condition gave a positive result, the ana- 

lyser can be directly generated, otherwise the grammar needs modification before 

accepting i t .  

4 - PRODUCTION OF AN ANALYSER - 

A grammar which is LL(1) allows the use of special forms of analysers. 

The most important of these is the method of recursive descent [Lucas 61], in which 

each non-terminal is made in to  a procedure. The analysis of a non-terminal is a ca l l  

of  the corresponding procedure. For example, consider an LL(1) grammar for  the ALGOL 

60 Block : 

Block ÷ begin D ; X S Y end 

X ÷ D ;X I E 

Y ÷ ; S Y I ~  

A corresponding analyser, using pr imit ives which we w i l l  subsequently def ine,  would 

be the fo l lowing : 

ROUTINE BLOCK 

CHECK begin 

CHECK D 

CHECK ; 

CALL X 

CHECK S 

CALL Y 

CHECK end 

RETURN 
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ROUTINE X 

DECIDE D , 11 

EXIT 

11 CHECK D 

CHECK ; 

CALL X 

RETURN 

ROUTINE Y 

DECIDE ; , 12 

EXIT 

12 CHECK ; 

CHECK S 

CALL Y 

RETURN 

The d i f fe ren t  pr imi t ives have the fo l lowing meanings: 

ROUTINE Procedure del imi ters.  

RETURN 

CHECK Confirms that the current character (the lef t -most character of the 

source text)  is the same as the actual parameter, and moves on one 

character in the source text  (hence ca l l ing  the lex ica l  analyser). 

I f  the current character does not conform, there is an error .  

CALL Procedure ca l l .  

DECIDE I f  the current character is the same as the f i r s t  parameter, then 

branch to the label in the second parameter, otherwise continue with 

the next inst ruct ion.  The f i r s t  parameter may be a l i s t ,  and con- 

tains the s tar ter  set for  the indicated expansion. 

EXIT Leaves the current procedure. Occurs when one of the expansions can 

generate the empty s t r ing,  and the current character is not in the 

s tar ter  set of any expansion. I t  is not necessary to confirm that 

the character is in the fo l lower set, since i t s  correctness w i l l  be 

confirmed la ter .  

ERROR I f  the non-terminal cannot generate the empty st r ing,  then EXIT is 

replaced by ERROR at the end of the l i s t  of uses of DECIDE. 

The procedure for  a non-terminal has the fo l lowing form: 

ROUTINE Name 

DECIDE (Starter set of f i r s t  expansion), I i  

DECIDE (Starter set of second expansion), 12 
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EXIT or ERROR 

11 First Expansion 

EXIT 

12 Second Expansion 

EXIT 

RETURN 

(Name generates the empty string or not) 

The above primitives form a production language for LL(1) analysers. Ignoring the 

necessity of character coding, the above form is suitable for rewriting as a set of 

macmsin any convenient system, the only long macro being CHECK, which obviously needs 

to call the lexical analyser. The modern programmer may be shocked by the use of goto__, 

but he should realize that the analyser is generated by a program from the syntax, 

and is never produced by hand. I t  can of course be written in any language allowing 

recursive procedures: 

procedure block ; 

( 'begin') ; 

( ' D ' ) ;  
( ' ; ' ) ;  

begin check 

check 

check 

x ; 

check (' S ') ; 

Y ; 
check ('end') 

end ; 

procedure x ; 

begin i f  current character 

then begin check 

check 

X 

end 

end ; 

= i D ' 

( ' D ' )  ; 
( ' ; ' ) ;  

and so on. The analyser may also interpret the same information stored as a table, 

as a transit ion diagram or as a transit ion matrix, using a modification of 

[Conway 63]. 
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5 - GRAMMAR TRANSFORMATION - 

This section is intended to treat the problem which arises when a gram- 

mar is not LL(1) and is thus refused by the algorithm of paragraph 3. We have alre- 

ady seen that i t  is often possible to rewrite the grammar in a new form, the new 

grammar being LL(1). I t  is unfortuilate that this process cannot be entirely automa- 

ted, but help can be given to the user by the techniques which follow. 

More formal ly ,  th is  problem can be looked at as one of dec idab i l i t y .  While i t  is 

decidable whether or not a grammar is LL(1), i t  is  undecidable whether or not a 

language is LL(1). This means that given an a rb i t ra ry  grammar, i t  is  not possible 

in general to say whether or not the grammar describes an LL(1) language 

[Rosenkrantz 69], and hence i t  is not possible to wr i t e  a complete transformation 

algorithm. However, an algorithm which goes a long way can be wr i t t en .  We consider 

two d i f f e ren t  techniques. 

5.1 - Elimination of l e f t  recursion - 

The problem of e l iminat ing l e f t  recursions is completely solvable, as 

was shown theore t i ca l l y  in [Greibach 65]. The pract ical  algorithm given here is that 

of [Foster 68]. We f i r s t  note that ,  in a given grammar, l e f t  recursive non-terminals 

f a l l  in to  d i s j o i n t  sets, the members of each set being mutually l e f t  recursive. 

(Obviously, i f  A is  a member of two sets, A is mutually l e f t  recursive wi th  a l l  the 

members of the two sets, which are thus also mutually l e f t  recursive,  by the t rans i -  

t i v i t y  of l e f t  recursion).  Consider one such set : 

H = {XI ,  X2 . . . .  , Xn} 

We may rewr i te the rules def in ing the memebers of H in  the fo l lowing form : 

X i ÷ XI ~ l j  I X2 B2j I . . .  I Xn Bni I mi 

where mi' Bji E (V T u VN)* u ~. mi ~ Xi ~. 

is  a character which is  not in  the vocabulary, and thus st r ings containing ~ are 

considered to be non-existent.  I t  may have been necessary to rewr i te the grammar to 

obtain th is  form, and there would be no loss of genera l i ty  in rewr i t ing  mi and Bji 

as non-terminals, that  is  to say in  adding the fo l lowing rules to the grammar. 

Ai ÷ ~i 

Bji ÷ ~ji 

The transformation to this 'canomical' form is not always t r i v i a l .  Consider the 

following grammar : 
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A ÷ B A  I " ' "  

B ÷ £  I " "  

The l e f t  recursion of A must be made apparent. The transformation i s ,  however, 

always possible, since there are known algorithms for  producing c- f ree grammars 

[Greibach 65]. 

The set of rules may be rewri t ten using the operators of mu l t ip l i ca t ion  and addi- 

t i  on : 

Xi = X1 Bli + X2 B2i + . . .  + Xn Bni + A i 

These equations form a matrix equation : 

X = X B + A  

where X = (X1 X2 . . .  Xn) 

A = (A I A 2 . . .  An) 

B . . .  Bln ~ =~Bl l  B12 

nl Bn2 Bnn I 

We may j u s t i f y  the use of these operators by noting that 

Mul t ip l icat ion (in fact concatenation) is associative, and the empty str ing serves 

as ident i ty  element. 

- Addition (choice) is associative a'nd commutative, with @ as iden t i t y  element. 

The ident i ty  matrix is 

I = ~ ~ . . .  ~- 

with e on the principal  diagonal and ~ elsewhere. A minimal solut ion of the matrix 

equation is : 

X =A B* 

where B* = I + B + B 2 + . . .  

Putting Z = B*, and noting that B* = I + B B*, we obtain : 

Z = I + B Z  

X = A Z  
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Z is a matrix of new non-terminals : 

Znl Zn2 Znn" 

Let us il lustrate this by a simple example : 

P ÷ P a l Q b  I c 

Q ÷ P d I Q e l  f 
Thus : X = (P Q) 

A = (c f) 
B=ca d) 

be  
Z =(Z11 Z12~ 

\Z21 Z22/ 

The solution is : 

That is to say : 

(P Q) = (c f){Z11Z12 ~ 

\ Z21 Z22/ 

\z21 z22 ! \~ 4/ \b e/\Z21 ~22/ 

P ÷ c Zll 

Q ÷ c Z12 

Z11 ÷ a Zll 

Z12 ÷ a Z12 

Z21 ÷ b Zll 

Z22 ÷ b Z12 

f Z21 

f Z22 

d Z21 I 

d Z22 

e Z21 

e Z22 

(@ disappears) 

The transformations given here can fail i f  there exists a non-terminal A such that 

A+A 

A discussion of this so-called 'empty word problem' is to be found in [Salomaa 69]. 
A reasonable solution to the problem is to reject such grammars, since such condi- 

tions are usually due to errors on the part of the compiler writer. 
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In a l l  the o the r ,  ' reasonab le '  cases, the method has the advantage o f  

not  i n t roduc ing  new c o n f l i c t s  o f  the LL(1) c o n d i t i o n ,  and the example is  s t r i c t l y  

LL(1) .  I t  i s  to be noted t ha t  the general case e l i m i n a t i o n  produces a la rge  nun~er 

o f  new ru l es ,  and most users o f  the system p re fe r  to w r i t e  t h e i r  grammars w i t h o u t  

l e f t  recurs ion .  However, occasional cases may a r i se  f o r  semantic reasons, and one 

o f  these w i l l  be examined l a t e r .  

5.2 - F a c t o r i s a t i o n  and s u b s t i t u t i o n  - 

The o ther  standard technique which aims at  c rea t ing  LL(1) grammars is  

t ha t  of  f a c t o r i s a t i o n  and s u b s t i t u t i o n .  An example of  f a c t o r i s a t i o n  was seen in  the 

grammar o f  an ALGOL b lock  : 

was replaced by 

SL ~ S J S ; SL 

SL ~ S Y 

Y - ~ I ; SL 

D i rec t  f a c t o r i s a t i o n  is  not always poss ib le :  

A ~ B C I D E  

B ~ b X I Z  

D ~  b Y  

In th i s  case, the expans ion of  B and D 

s t a r t e r s  of  A : 
A ~ b X C I Z  

~ b N I Z C  

where N ~ X C I Y E 

replace the B and D which are the 

C b Y E 

We consider also the f o l l o w i n g  case: 

A ~ B C I D E 

B ~ b × I Y 

D -- B Z 

Subs t i t u t i ng  f o r  B and D g ives:  

A -~ b X C I Y C 

We must again s u b s t i t u t e  f o r  B : 

A ~ b X C I Y C 

b N I I  Y N2 

where N1-- X C I X Z E 

N2~  C I Z E 

B Z E 

b X Z E I Y Z E  
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S u b s t i t u t i n g  f o r  

And once again in  N1 

N1 ~ X N3 

N3 ~ C I Z E ( the same as N2) 

However, i f ,  in the o r i g i n a l  form, we had subs t i t u ted  f o r  D on ly ,  t h i s  would have 

g iven:  
A ~ B C I B Z E  

~ B N  

where N ~ C I Z E 

which is much more eff ic ient.  This example shows that we must consider the order in 

which substitutions are made. This wi l l  be the subject of a subsequent paragraph. 

This technique does not always resolve cases of non-disjoint starter sets. 

For example: 
A ~ B X I C Y  

a B X I W  

a C Y I W  

C we obtain 

C 

B and 

A 

N I - -  

N2 -, 

where 

a B X X t W X I a C Y Y I W Y 

a N I l W N 2  

B X X I C Y Y  

X I Y  

N1 presents the same c h a r a c t e r i s t i c s  as A, except tha t  the expansions are longer ,  and 

the a lgo r i t hm e i t h e r  f a i l s  or  loops. 

Non-d is jo in tness  of  d i r e c t o r  symbols is a l ready d i f f i c u l t  in the case of s t a r t e r s ;  

in the case of  f o l l owers  i t  is worse. The obvious so lu t ion  is  to subs t i t u te  f o r  the 

non-terminal  which can generate the empty s t r i n g ,  but t h i s  o f ten leads to o ther  

c o n f l i c t s ,  since the empty s t r i n g  is  usua l l y  present as a r e s u l t  o f  f a c t o r i s a t i o n ,  

which is immediately 'undone' by the substitution. 

5.2.1 - ORDERING- 

The f o l l o w i n g  example showed up the problem of  order  : 

A ~ B C I D E 

B ~ b X I Y 

D -- B Z 
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Since B is  a s t a r t e r  o f  D, we should subs t i tu te  fo r  D f i r s t .  In genera l ,  we should 

subs t i t u te  f i r s t  the non-terminal which needs the greater  number o f  generat ions be- 

fore  reaching the common s t a r t e r ,  s ince i t  may have the other  as s t a r t e r ,  but  not 

the opposi te.  We def ine a p a r t i a l  order ing R o f  the non-terminals such that  

B ~ S(D) => R(B) < R(D) 

Note f i r s t  that  th i s  order always ex is ts  i f  there is no l e f t  recurs ion,  since i f  

B ~ S(D), D i S(B) and A ~ S(B), B ~ S(C) => A c S(C). We give an a lgor i thm to f ind  

th i s  order ing : 

A vector  V w i th  one entry  per non-terminal ind ica tes  whether or  not the non-terminal 

has a l ready been given i t s  rank. The elements of  V take the values 'yes'  or ' no ' .  

I )  - I n i t i a l i s e  every element of  V to 'no' 

2) - n ÷ i 

3) - Find a non-terminal N which has no non-terminal s t a r t e r  fo r  which the entry in 

V is  'no ~ ( there must always be one, by the argument based on the lack of  l e f t  

recurs ion) .  V(N) ÷ 'yes' ; R(N) ÷ n ; n ÷ n + I 

4) - Repeat 3) u n t i l  every element o f  V is  marked 'yes' 

This a lgor i thm can be car r ied  out on the i n i t i a l  s t a r t e r  mat r ix  by searching f o r  an 

empty row, g iv ing  i t  the next rank and e l im ina t i ng  the corresponding column. 

Many class}c algor i thms depend on orderings of th is  type, fo r  example the search fo r  

precedence funct ions is a double order ing ; the order ing given here is  that  which 

al lows t r a n s i t i v e  c losure in a minimum number of  steps. 

6 - SEMANTIC INSERTION - 

Compiler w r i t e r s  consider syntax as the skeleton on which to hang seman- 

t i c s ,  and in  LL(1) d i rec ted methods they th ink  of  the analys is  of  a non-terminal as 

a procedure ca l l  (which is  in  fac t  i t s  implementation in recurs ive descent) which has 

cer ta in  semantic resu l t s .  We consider a number of  examples from th is  po in t  of  view. 
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6.1 - Generation o f  pos t f i xed nota t ion  - 

Consider the fo l l ow ing  grammar of  a r i t hmet i c  expression : 

E ~ E1 I E + E1 I E - E1 

E1 ~ E2 I E1 , E2 I El / E2 

E2 - Prim I E2 t Prim 

Prim ~ Var iab le I Constant I ( E ) 

The grammar expresses the p r i o r i t y  o f  the d i f f e r e n t  operators,  and also the fac t  that  

operators of  equal p r i o r i t y  apply from l e f t  to r i g h t  (since the grammar is l e f t  re-  

curs ive) .  Note that  th i s  is one case where l e f t  recursion is  required fo r  semantic 

reasons, but forebidden f o r  analys is  reasons. We w i l l  come back to th i s  problem. 

We may add the generat ion of  post f ixed nota t ion to th is  grammar very simply: 

E ~ E1 I E + E1 f l  I E E1 f2 

E1 - E2 i E l ,  E2 f3 I E1 / E2 f4 

E2 ~ Prim I E2 t Prim f5 

Prim ~ Var iab le  I Constant I ( E ) 

f l  : output (+) 

f2 : output (-)  

f3 : output (*) 

f4 : output ( / )  

f5 : output ( t )  

I t  is supposed that  ' v a r i a b l e '  and 'constant '  output the code corresponding to these 

operands. To convince the reader of  the fac t  that  th is  does in fac t  output the 

equ iva lent  post f ixed no ta t ion ,  we note tha t :  

- For each non-terminal E, El ,  E2, Prim, the f o l l ow ing  asser t ion is  t rue:  a ca l l  

o f  the non-terminal provokes the output o f  the corresponding pos t f i xed  code. 

Consider, fo r  example, E ~ E + El f l .  The grammar is executed by recursive 

descent. But post f ixed nota t ion has the fo l l ow ing  property:  

PF (E + El) = PF(E) II PF(E1) II + 

The sign II stands fo r  concatenation. The ca l l s  of the non-terminals have exac t l y  

th is  e f f e c t ,  by the f i r s t  asser t ion.  
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This sho r t  example shows up the advantages o f  the method. The grammar becomes the  

con t ro l  s t r u c t u r e  o f  t h i s  pass o f  the  comp i l e r ,  and the programmer can express him- 

s e l f  i n  a ve ry  compact form. The use o f  sequences o f  procedure c a l l s  a l so  e l i m i n a t e s  

the  need f o r  an e x p l i c i t  s tack ,  s ince  the p o s i t i o n  i n  the grammar i s  the  th ing  which 

' r e m e ~ e r s '  which ope ra to r  i s  app l i ed .  While w r i t i n g  the  comp i l e r ,  the programmer 

should note the semantic r e s u l t  o f  c a l l i n g  the n o n - t e r m i n a l ,  p r e f e r a b l y  on the  same 

l i n e .  

What should be done about the problem o f  l e f t  recurs ion? Leaving the semantic func-  

t i ons  as they a re ,  cons ider  the grammar which inc ludes t h e i r  c a l l s .  F i r s t  of  a l l  we 

f a c t o r i s e :  

E -- El I E NI 

El ~ E2 I El N2 

E2 -- Prim I E2 t Prim 

Prim -- Va r i ab l e  I Constant I 

N1 -- + £1 f l  I El f2 

N2 ~ * E2 f3 I / E2 f4 

The l e f t  recurs ions  are a l l  s imp le ,  o f  the form 

A ~ A a I b 

The s o l u t i o n  o f  t h i s  type of  l e f t  recu rs ion  i s :  

A * b X 

X ~ a X I c 

The grammar becomes: 

E * E1 X1 

El ~ E2 X2 

E2 * Prim X3 

Prim ~ Va r i ab l e  

NI * + E1 f l  I 

N2 ~ * E2 f3 1 

X1 ~ N1 X1 1 

X2 ~ N2 X2 1 

X3 ~ t Prim f5 

f5 

(E )  

I Constant I 

- E1 f2 

/ E2 f4 

X3 I 

(E )  

This grammar has e x a c t l y  the same semantic p r o p e r t i e s  as the o r i g i n a l ,  but is  LL(1) .  

Readers should convince themselves t ha t  the grammars have e q u i v a l e n t  r e s u l t s  by using 

them as gene ra t i ve  grammars. 
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For each ca l l  o f  a semantic func t ion  we generate i t s  name in the t e x t  as i f  i t  was a 

non- termina l .  But s ince,  in t h i s  sense, the two grammars generate the same language, 

the ca l l s  of  semantic funct ions w i l l  occur at  the same place in the t e x t ,  and thus 

w i l l  have the same e f f e c t .  

The new grammar is  not very readable,  and we should c e r t a i n l y  never ask a programmer 

to w r i t e  in t h i s  form. He should w r i t e  in the o r i g i n a l  form, and the t rans format ions  

w i l l  then be accomplished by a grammar t ransforming program. The transformed grammar 

should have the same status as the ob jec t  code produced by a compi ler  - the user 

should never see i t  in o ther  then except iona l  circumstances. 

I t  is only f a i r  to i nd i ca te  a process which would not work as e a s i l y ,  as the method 

has obvious l i m i t a t i o n s .  I f  we wanted to produce p re f i xed  no ta t i on ,  t h i s  would be 

more d i f f i c u l t ,  s ince the same semantic funct ions would be d i f f e r e n t l y  p laced:  

E - E1 I f l  E + El I f2 E E1 

and so on. The f a c t o r i s a t i o n  no longer  works. I t  is  of  course poss ib le  to w r i t e  new 

semantic funct ions which generate p re f i xed  no ta t i on ,  but  they are cons iderab ly  more 

complex, This is  not s t r i c t l y  an LL(1) problem, but  is  due to the f ac t  t ha t  the 

in fo rmat ion  a r r i ves  in  the 'wrong' order .  

6 .2 -  Symbol table inser t ion-  

Consider a part of the syntax of ALGOL declarations : 

Declaration ÷.real I d l i s t  f3 I ..i.nt..eger I d l i s t  f4 I 

I d l i s t  ÷ Id f l  Idrest 

I d res t  ÷ , Id f2 I d res t  I E 

The grammar is writ ten direct ly in LL(1) form ; we could have used le f t  recursion. 

The corresponding semantic functions use the l i s t  processing primitives cons, hd 

and t l  (these last two are called car and cdr in other languages) : 

f l  : l i s t  ~ cons (last id, nul l)  

f2 : l i s t  ~ cons (last id, l i s t )  

f3 : while l i s t  ~ null do 

begin put symbol table (real, hd( l i s t ) ,  next displacement); 

l i s t  ~ t l ( l i s t )  ; 

next  displacement ~ next  displacement + length of  a real  

end 

f4 : l i k e  f3 but w i th  i n teger  
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'next displacement' is the next address that can be used for variables in the run- 

time storage model. Symbol table entries are supposed to be t r ip le ts  of (type, name, 

run-time address). (See chapters 3.B, 3.D). 

6.3 - Interpretation of postfixed expressions - 

Grammars may be used to drive other passes of the compiler, and not only 

the input phase. Consider the following gramma~ for postfixed expressions : 

f l :  

f2: 

Ex ~ Ex Ex Binop f2 I Ex Unop f3 i 

Binop ~ +b f4 I -b f5 i * f6 I . . .  

Unop ~ +u f4 l -u f5 

push (value ( l as t  operand)) 

pu l l  (second value) ; 

pu l l  ( f i r s t  value) ; 

case i o f  begin plus:  push ( f i r s t  value 

minus: push ( f i r s t  value 

. . ,  

end 

Operand f l  

second value) ; 

second value) ; 

f3: case i of  begin plus : ; 

minus : push 

f4:  i 

f5:  i 

f6: . . .  

end 

1 

2 

- p u l l )  

This i s ,  of  course, a h igh ly  a r t i f i c i a l  example, since i t  does not do type manipula- 

t i o n ,  but  the idea is  f requent ly  used. '+b' and '+u' are the b inary  and unary addi- 

t i on  operators ,  ' i '  is  present merely as an index to the case statement. 

The above grammar is heav i l y  l e f t  recurs ive,  so f o r  completeness we give the resu l t  

o f  t ransforming th is  grammar to LL(1) form. The t ransformat ion would again, of  course, 

be done by use of  the transforming program. 

Ex 

XI 

N I  -- 

Binop 

Unop 

Operand f l  X1 

N1 X1 I c 

Ex Binop f2 

+b f4 J -b f5 

+u f4 I -u f5 

Unop f3 

I * f 6  1 - , .  
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7 - GENERALISATION AND CONCLUSION - 

This type of methodology forms the basis of most compiler-compiler cons- 

t ruc t ion ,  and w i l l  be talked about at a la te r  stage during the course (chapter 4). 

We w i l l  thus r e s t r i c t  ourselves here to remarks of a s t r i c t l y  syntact ic  nature. 

7.1 - Vienna No ta t ion -  

Classical Backus-Naur form [Backus 60] has been generalised in many 

d i rec t ions.  A simple improvement which el iminates many formal problems is  that  used 

in  the Vienna language descr ipt ion documents [Alber  68]. In pa r t i cu la r ,  the use of 

bracketing and of the repe t i t i on  operator menas that  the user wr i tes many less recur- 

sive rules and also that  the empty s t r ing  requires less special treatment. For exam- 

ple, the example grammar of block used above might be w r i t t en  : 

Block b e~in [D ; ] *  S { ;  S}* end 

The aster isk is the repe t i t i on  operator, square brackets ind ica t ing  that  t he i r  con- 

tents must occur at least  once and cur ly  brackets that  t h e i r  contents may or may not 

be present. The unnecessary recursion has been replaced by i t e ra t i on .  [Bordier 71] 

shows how th is  notat ion may be transformed in to  an LL(1) analyser al lowing recursive 

descent. The ru le for  block could generate : 

procedure block ; 

begin check ( 'beg in ' )  ; 

repeat D ; 

check ( ' ; ' )  

un t i l  current character i s ta r te r  set (D) ; 

S ; 

whi le  current character : ' ; '  do 

be_b ~ check ( '  ;) ; 

S 

end ; 

check ( 'end ' )  

end 

This is an example of a formalism which mirors more exact ly the way in which we 

conceive things and which is more convenient than an a r t i f i c i a l  one. In th is  case, 

the programmer thinks of ' l i s t  of dec lara t ions ' ,  where ' l i s t  o f '  is in  fact  a 

repe t i t i on  operator. Writ ing recursive rules does not express the concept in  the 

same way. 
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7.2 - LL(k I G[ammars - 

We noted in the introduction that a recursive descent analyser could use 

k characters in order to make a decision, instead of using only one character. This 

generalisation is to 'strong LL(k)' grammars [Rosenkrantz 69], since LL(k) grammars 

in general are defined in a way analogous to LR(k) grammars (see chapter 2.c), and 

allow the analyser to take the past history of the analysis into account. Neither 

LL(k) nor strong LL(k) methods have been used in practice, although strong LL(k) 

grammars could be useful and not too ineff ic ient.  The following theorems are impor- 

tant in this respect : 

- V k ~ i ,  3 a language which is LL(k+I) and not LL(k) [Kurki-Suonio 69]. 

- V k >_ 2, 3 grammars which are LL(k) and not strong LL(k) [Rosenkrantz 69]. For 

example, the fo l lowing grammar is LL(2) and not strong LL(2) : 

Z ÷ S-~-~ 

S + X I b X a  

X + a  IE 

A l l  LL(1) grammars are strong LL(1), and hence there is no need to keep the his- 

tory of the analysis in  th is  pa r t i cu la r  case, 

- A l l  LL(k) languages are strong LL(k) [Rosenkrantz 69]. 

- The grammar transformation which deduces a strong LL(k) grammar which generates 

the same language as a given LL(k) grammar is known [ G r i f f i t h s  74]. 

We see that  the general isat ion to strong LL(k) techniques allows the method of recur- 

sive descent to be applied to a wider class of languages. I t  is  not, however, useful 

to go to general LL(k), since the analyser would be less e f f i c i e n t  wi thout  a cor- 

responding increase in  the set of languages accepted. I t  is  worth whi le  repeating 

tha t ,  fo r  the moment, th is  discussion is s t r i c t l y  academic, given that  only LL(1) 

has been used in pract ice,  and that  there is no di f ference between LL(1) and strong 

kk(1). 
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8 - PRACTICAL RESULTS - 

LL(1) analysers have been used to drive working compilers for a variety 

of languages since 1966. They are thus part of the scenery and have shown themsel- 

ves to be extremely e f f ic ient ,  able to cope with the usual set of programming lan- 

guages, and a practical proposition as for as inserting semantics is concerned. The 

f i r s t  compiler-compiler based on the technique was that of [Foster 68] and i t  was 

used to implement a language called CORAL 66 [Currie 67] [Woodward 70]. 

To give some idea of space-time requirements, we quote figures from 

analysers used in conversational compilers for ALGOL60 and PL/1 [Berthaud 73]. The 

figures are for the executable modules produced from the macros of paragraph 4 by 

the IBM 360 assen~leur, and include calls of semantic functions, but not the text of 

the functions. The ALGOL analyser occupied about 4 1/2 K characters, and the PL/I 

abvut 12 K. Semantic calls amount to about 20 % of the text. In a batch environment 

on the 360 model 65 the PL/1 front end can process over 30 000 cards a minute. Since 

a large proportion of this time is spent in lexical analysis and semantic functions, 

the analyser was then running at over 100 000 cards a minute. These figures are, of 

course, approximate. 

Using interpretable code instead of an executable text has the effect, 

on the 360, of dividing space requirements by a factor of two, and increasing ana- 

lysis time by a factor of 1.5. All the figures can be improved upon by the use of 

known, simple optimisation techniques, but this has never been necessary in our 

experience. 
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Chapter 2.C. 

LR GRAMMARS AND ANALYSERS 

J. J. Horning 

University of Toronto 

Toronto, CANADA 

1. INTUITIVE DESCRIPTION 

This chapter is concerned with a family of deterministic parsing techniques based on 

a method f i r s t  described by Knuth [1965]. These parsers, and the grammars acceptable 

to them, share most of the desirable properties of the LL(k) family [Chapter 2.B.]. 

In addition, the class of LR(k)-parsable grammars is probably the largest class 

accepted by any currently practical parsing technique. The techniques with which we 

are mostly concerned are, in order of increasing power, LR(O), SLR(1), LALR(1) and 

LR(1). Collect ively, we call these four techniques the LR family [McKeeman 1970] 

[Aho 1974]. 

Until recently, LR parsing techniques have not been as widely used as theoret ical ly 

less attract ive methods. Early presentations of the method made the theory seem 

forbiddingly d i f f i c u l t ,  although readable presentations are now appearing (e.g., 

[Aho 1974]). More seriously, direct implementations of Knuth's original method were 

very ine f f i c ien t ,  and the approach was not pract ical ly useful unti l  a number of 

optimizations were discovered (e.g., [Aho 1972 a, b] [Anderson 1973] [DeRemer 1971] 

[Jol iat  1973] [Pager 1970]). Now, however, LR is becoming the method of choice in a 

large number of situations. 



86 

i.i. DEFINITION OF LR{k) 

In formal ly ,  a grammar is LR(k) i f  each sentence that  i t  generates can be determinist -  

i c a l l y  parsed in a s ingle scan from l e f t  to r i gh t  wi th at most k symbols of "lookahead." 

This means that each reduction needed fo r  the parse must be detectable on the basis of  

l e f t  context, the reducible phrase i t s e l f ,  and the k terminal symbols to i t s  r igh t .  

By contrast,  LL(k) parsers must select the production to be used in a reduction on 

the basis of l e f t  context, and the f i r s t  k terminal symbols of the reducible phrase 

combined with i t s  r i gh t  context. Thus, LR(k) parsers defer decisions un t i l  a f te r  

complete reducible phrases are found (a charac ter is t ic  of "bottom-up" parsers), whi le 

LL(k) parsers must p red ic t i ve ly  select a production on the basis of i t s  f i r s t  few 

symbols. Both techniques share the property of using complete l e f t  context in making 

decisions - a charac ter is t i c  commonly associated with "top-down" parsers. 

I t  is eas i ly  seen that any LL(k) grammar is also LR(k). I t  is less obvious that for  

each k there are LR(1) grammars that are not LL(k). As we w i l l  see in Section 7. ,  

LR(1) also s t r i c t l y  dominates most other determin is t ic  parsing methods, inc luding the 

widely-used precedence techniques. 

1.2. ITEMS 

To ta lk  about what happens w i th in  an LR parser, we need a notat ion for  par t l y  

recognized productions. An item (also sometimes cal led a conf igura t ion) is  a production 

with a dist inguished posi t ion in i t s  r i gh t  hand side. (Our usual notat ion w i l l  be to 

place a period at the dist inguished pos i t ion . )  I f  the productions are numbered, then 

we can denote an item by a pai r  of  integers [ p , j ] ,  where p is the number of the 

production and j is the number of the dist inguished posi t ion.  

For example, given the grammar 

Block = 'begin' Declarations ' ; '  Statements 'end' ; 

Declarations = Dec 

I Declarations ' ; '  Dec ; 

Statements = St 

I St ' ; '  Statements 
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We have the fo l lowing correspondences 

[2,0]  Declarations = . Dec 

[2,1]  Declarations = Dec . 

[3 ,2 ]  Declarations = Declarations ' ; '  . DeC 

We w i l l  associate the fo l lowing meaning to the use of an item [ p , j ]  at some point in 

the parse: 

The information col lected so far  is  consistent wi th the p o s s i b i l i t y  that 

production p w i l l  be used at th is  point  in the parse, and that  the f i r s t  

j symbols of p have already been recognised. 

1.3. STATES 

A state is a co l lec t ion  of information about the progress of a parse, and may be 

represented by a set of  items. LR parsing is based on the observation that  for  each 

LR grammar only a f i n i t e  number o f  states need to be dist inguished to permit 

successful parsing, and that a l l  t rans i t ions  between states (corresponding to parsing 

actions) may be tabulated in advance. Recall the example (Chapter 2.B. ,  Section l . l . )  

of parsing the sentence 

begin Dec ; Dec ; St ; St end 

We s ta r t  (see Figure 1.3.) in the state { [ I , 0 ] }  = {Block = . 'begin '  Declarations ' ; '  

Statements 'end ' } ,  which means that we expect the f i r s t  production to apply, but that  

none of i t  has yet been recognized. We may immediately recognize the 'beg in ' ,  and 

move to a new state containing the item [ I , I ]  to record that  fac t ,  as well as [2,0]  

and [3 ,0 ]  to record the p o s s i b i l i t y  of s ta r t ing  e i ther  of those productions. Since 

the Dec at the head of the remaining tex t  is consistent only with cont inuat ion of 

the [2 ,0 ]  item, we move to a new state containing only the item [2 ,1 ] .  

Now we have a new s i tua t ion :  the item [2,1] (or Declarations = Dec.) indicates that 

we have recognized the complete r i gh t  hand side of production 2. In general, any 

item with the period on the r i gh t  - cal led a completed item - corresponds to a possible 

reduction, in  th is  case the replacement of  Dec by Declarations. Af ter  the replacement 

the consistent items become [1,2] and [3 ,1 ] .  
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In Figure 1.3. we have label led each state in the stack by the terminal or non-terminal 

syn~bol whose recognit ion caused us to move to t ha t  state. Such labels are not a 

necessary part of the state,  but s imp l i f y  the process of  understanding the progress of  

the parse. We have also indicated in the r ight-hand column the parsing action to 

which the various t rans i t ions  correspond, 

2. INTERPRETING I2 TABLES 

Each LR parser has a ~arsing action table that controls i ts operation. Information 

about the parse is saved in a state stack, and at each step the next parsing action is 

selected on the basis of the top element of the state stack and the next symbol in 

the input. A parsing action may either consume one symbol from the input and place 

a new state on the stack (a s h i f t  ac t ion) ,  or i t  may replace some of  the top stack 

entr ies by a new state and signal a reduction (a reduce act ion) .  

2.1. FORM OF ENTRIES 

The parsing action table can be represented in many d i f fe ren t  ways. A simple (but 

not very e f f i c i e n t )  representation of a parsing action table is  shown in Figure 2.1. 

Each state is represented by a row of a matr ix,  each (terminal or nonterminal) symbol 

by a column. For any given combination of top state and input symbol the parsing 
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I.  

2. 

{ [ i ,o ] }  

begin { [1 ,1 ] [2 ,0 ] [3 ,0 ] }  

{ [ I , 0 ] }  
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Remaining text  

begin Dec; Dec;-S; S end 

Dec; Dec; S; S end 

Action 

Shi~t 

Shi f t  

3. Dec { [2 ,1 ] }  

begin { [ 1 , I ] [ 2 , 0 ] [ 3 , 0 ] }  

{ [ l  ,0]}  

; Dec; S; S end 

Reduce 2 

4. Declarations { [1,2][3,1]}  

begin { [ l , l ]  2,0][3,0]} 
{ [ I , 0 ] }  

; Dec: S; S end 

Sh!,,f,t 

5. 

l ,  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

I0. 

I I .  

; { [ I , 3 ] [ 3 , 2 ] [ 2 , 0 ] [ 3 , 0 ] }  

Declarations { [1 ,2 ] [3 ,1 ] }  

begin { [1 ,1 ] [2 ,0 ] [3 ,0 ] }  

{ [ i , o ] }  

Name Block Declar- 
ations 

I n i t i a l  Halt 

begin 

Dec 

Dec 

Declarations 

St 

Statements 

Statements 

end 

$5 

Figure 1.3. 

Dec; S; S end 

State- Dec St ; 
ments 

$9 

SIO 

$3 

R2 

R3 

$6 

$4 $8 

$8 

$7 

begin 

$2 

end 

R4 

SII 

R5 

R1 

Figure. 2.1. 
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action is found at the intersection of the correspondina row and column. 

Entr ies take one of four forms: 

- blank entr ies correspond to errors 

- S entr ies correspond to s h i f t  actions 

- R entr ies correspond to reduce actions 

- Halt entr ies correspond to completion of parsing. 

When the parser has looked up the next action 

- i f  i t  is an error  entry ,  recovery (described in Chapter 5.D.) is  i n i t i a t e d .  

- i f  i t  is  a s h i f t  ent ry ,  the input symbol is  discarded and the state number 

fo l lowing the S is pushed in to  the state stack. (This w i l l  always be a state 

whose name is the same as the discarded input symbol.) 

- i f  i t  is  a reduce ent ry ,  the production whose number fol lows the R is 

determined. A number of states equal to the length of the r i gh t  side of th is  

production is popped (the names of these states w i l l  be precisely the r i gh t  

side of the production) and then the l e f t  side of the production w i l l  be 

treated as though i t  were the input symbol (the new action w i l l  always be a 

s h i f t  or ha l t  - the net e f fec t  is to replace states named by the r i gh t  side 

of the production by a single state named by the l e f t  s ide).  

- i f  i t  is  a ha l t  ent ry ,  the parser qu i ts .  

Notice that Figure 2.1. contains an extra column for  the symbol ' ~ ' ~  which does not 

appear in the grammar. This is a special "end of input"  symbol, whose inser t ion we 

w i l l  discuss la te r .  

2.2 EXAMPLE 

Consider the LR parsing action table given in Figure 2.1. and our fami l ia r  sentence 

begin Dec ; Dec; St ; St end 

Star t ing from state 1 we have the fol lowingsequence of stacks, input symbols,and act ions: 

state Name input symbol action 

1 I n i t i a l  begin $2 

2 begin Dec $3 

1 I ni t i  al 

3 Dec 

2 begin 

1 I n i t i a l  

; R2 



state 

2 

1 

4 

6 

.5 

2 

1 

na,~ 

begin 

I n i t i a l  

Declarations 

begin 

In i t i a l  

Decl arati ons 

begin 

In i t i a l  

Dec 

Decl arat i  ons 

begin 

I n i t i a l  

begin 

I n i t i a l  

Declarations 

begin 

I n i t i a l  

Decl arat i  ons 

begin 

I n i t i a l  

St 

Declarations 

begin 

I n i t i a l  
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input symbol 

Declarations 

De c 

Declarations 

St 

action 

$5 

$6 

$4 

R3 

$5 

$6 

$8 

$7 



state 

7 

8 

6 

5 

2 

1 

I0 

7 

8 

6 

5 

2 

1 

n ame 

St 

Decl a ra t i  ons 

begin 
I n i t i a l  

St 

St 

Declarat ions 

begin 

I n i t i a l  

St 

Declarat ions 

be gi n 

I ni t i  al 

Statements 

St 

Declarat ions 

begin 

I n i t i a l  

Decl a ra t i  ons 

begin 

I n i t i a l  

Statements 

De cl a ra t i  ons 

begin 

I ni t i  al 
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input  symbol 

St 

end 

Statements 

end 

Statements 

end 

act ion 

$8 

R4 

SIO 

R5 

$9 

SII 



state name 

I I  end 

9 Statements 

6 

5 Declarations 

2 begin 

1 I n i t i a l  
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input symbol action 

,L R1 

1 I n i t i a l  Block Halt 

3. CONSTRUCTING ZI~ TABLES 

I f  we can construct a parsing action table whose entr ies have a l l  the fo l lowing 

properties 

- error  entr ies can never be encountered while parsing correct sentences, 

- each sh i f t  entry specif ies a state named by the input symbol, 

- each reduce entry is only reached when the top states on the stack are named 

by precisely the symbols in i t s  r igh t  hand side, 

- ha l t  entr ies can only be reached when the parse is complete, 

then i t  should be obvious that an LR parser (operating in the manner described in the 

previous section) w i l l  correct ly  parse any correct sentence, and detect at least one 

error  in each inva l id  one. 

What is not so obvious is how to construct a table with a l l  those propert ies. A 

var iety  of algorithms have been developed to construct LR tables from grammars. 

Although they d i f f e r  in de ta i l ,  they are a l l  based on the same pr inc ip les.  We 

describe f i r s t  one of the simplest, the LR(O) algorithm, and then b r i e f l y  sketch 

various modif ications to remove some of i t s  inadequacies. 

3.1. THE LR(O) CONSTRUCTOR ALGORITHM 

The LR(O) constructor works with states that are simply sets of items. After 

i n i t i a l i z a t i o n ,  i t  constructs the complete set of states that can be encountered 

during a parse, by means of a l ternate "successor" and "closure" operations; f i n a l l y  

the parsing action table is derived from the items in the states (a f te r  which the 

items themselves may be discarded). 
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3.1.1. INITIALIZATION 

Fi rs t ,  the grammar is augmented with a new production 0 G' = G ' l ' ;  where G is the 

goal symbol of the grammar, This e x p l i c i t l y  brings the terminator symbol ' ~  in to 

the language, and gives us a s tar t ing point ,  The i n i t i a l  state starts with the item 

[0 ,0 ] ,  corresponding to the fact that production 0 w i l l  be used, but i n i t i a l l y  

nothing has been recognized, 

3.1.2. CLOSURE 

I f  the dist inguished point in an item precedes a nonterminal symbol, then each of the 

productions for  that nonterminal become poss ib i l i t i e s  at that  po in t ,  and should be 

included (with j : O, since no part of  them has yet been recognized) in any state 

containing that item. The closure of a set of items is the resul t  of  repeatedly 

applying th is process un t i l  no new items are added. For example, given the grammar 

of Section I . I . ,  the closure of  { [0 ,0 ] }  is { [ 0 , 0 ] [ I , 0 ] } ,  the closure of { [ I , I ] }  is 

{ [ I , I ] [ 2 , 0 ] [ 3 , 0 ] }  and the closure of { [1 ,3 ] [3 ,2 ] }  is { [ 1 ,3 ] [ 3 ,2 ] [ 4 ,0 ] [ 5 ,0 ] } .  

3.1.3 SUCCESSOR STATES 

The sh i f t  action moves from one state to a successor by "absorbing" a single symbol, 

Only items in which the distinguished posit ion immediately precedes the input symbol 

remain v iable,  and the successor state w i l l  contain each of these items with the 

distinguished posit ion advanced by one ("the period moved across the input symbol"), 

We compute the core of the successor state for  each symbol as this set of advanced 

items; the state i t s e l f  is the closure of  the core. For example, the state 

{ [ 1 ,3 ] [ 3 ,2 ] [ 4 ,0 ] [ 5 ,0 ] }  = {Block = 'begin' Declarations ' ; ' .  Statements 'end';  

Declarations = Declarations ' ; ' .  Dec; Statements = . St ; Statements : . St ' ; '  

Statements} has as the core of i t s  St-successor the set { [4 ,1 ] [5 ,1 ] }  = {Statements 

: St . ;  Statements : St, ' ; '  Statements} and the core of i ts  Statements-successor is 

{ [1 ,4 ] }  = {Block : 'begin' Declarations ' ; '  Statements . 'end'} 

3.1 . 4 ACCESSIBLE STATES 

Start ing from the i n i t i a l  state we calculate the cores of  each of i t s  successors and 

then complete them, These are the states that are d i rec t l y  accessible from the 

i n i t i a l  state. The process is repeated unt i l  no new accessible states are found. 

(States are d i s t i nc t  i f  and only i f  t he i r  cores are d i f f e ren t . )  Since, for  any 

grammar, there are only a f i n i t e  number of items, there is also a f i n i t e  bound on 

the number of states. Therefore the process must terminate with a f i n i t e  set of  

accessible states, which are the only ones that can be encountered during the parse 



of a correct sentence. 

our running example. 

g5 

Figure 3.1.4. shows the complete set of accessible states for  

Core Closure 

{[o,o]} 
{ [ l , l ] }  
{[2,1]} 
{ [3 ,3 ] }  

{ [ 1 , 2 ] [ 3 ,1 ] }  

{ [ 1 , 3 ] [ 3 ,2 ] }  

{[5,2]} 
{[411nr5 I ~  ~U I ~a 

{[1,4]} 
{ [5 ,3 ] }  

{[1,5]} 

{ [ 0 , 0 ] [ I , 0 ] }  

{ [ 1 , 1 ] [ 2 , 0 ] [ 3 , 0 ] }  

{ [2 ,1 ] }  

{ [3 ,3 ] }  

{[1,2][3,1]} 
{ [ 1 , 3 ] [ 3 , 2 ] [ 4 , 0 ] [ 5 , 0 ] }  

{ [ 5 , 2 ] [ 4 , 0 ] [ 5 , 0 ] }  
~[4,1][5,1]) 
{[l ,4]} 
{[5,3]} 
{[1,5]} 

Figure 3.1.4 

3.1.5. DERIVING THE PARSING ACTION TABLE 

To convert the set of accessible states to a parsing action table is now s t ra igh t -  

forward. For convenience, we number the states, and create a row of the action table 

for  each state. The s h i f t  action corresponding to each successor state can most 

eas i ly  be entered in the appropriate column as the accessible states themselves are 

being calculated. The ha l t  action is placed in the row of the i n i t i a l  state and 

the column of the goal symbol. Af ter  the reduce entr ies have been f i l l e d  i n ,  the 

remaining (blank) ent r ies  may a l l  be treated as er ror  ent r ies .  

Reduce entr ies are placed in rows whose states contain completed items. The various 

algorithms in the LR fami ly d i f f e r  p r imar i l y  in the select ion of the columns in which 

the reduce entr ies are placed. The LR(O) algorithm uses a p a r t i c u l a r l y  simple ru le :  

place them in a l l  columns headed by terminals. This rule is adequate for  states 

that consist  of a s ingle item (the completed one), cal led LR~O 1 reduce states. 

I f  a state has uncompleted items as well  as the completed one, the LR(O) rule w i l l  

cause some columns to have both s h i f t  and reduce entr ies (a %hift-reduce c o n f l i c t ) ;  

i f  i t  has two or more completed items, terminal columns w i l l  have mul t ip le  reduce 

entr ies (a redu__ ce-reduce c o n f l i c t ) .  States with e i ther  kind of con f l i c t  are cal led 

inadequate, because they do not lead to the generation of unambiguous parsing action 

tables. In our example, the state { [ 4 ,1 ] [ 5 ,1 ] }  = {Statements = St. ; Statements = 
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St. ' ; '  Statements } is inadequate, because when the input symbol is ' ; '  we do not 

know whether to shi f t  or to reduce by production 4. 

I f  there are no inadequate states, then the LR(O) constructor has succeeded and the 

grammar is said to be LR(O). Very few grammars for programming languages actually are 

LR(O), and i t  is generally necessary to resolve some inadequacies by one of the 

techniques described in the next section, Howeve r , most programming languages seem 

to be "almost" LR(O) in that only a small fraction of the states are actually 

inadequate. The LR(O) constructor thus provides a useful f i r s t  approximation to the 

parsing action table. 

3.2. ADDING ZOOKAHEAD 

The inadequate state of our example is inadequate only because of our simple rule for 

placing reduce entries in the table. Simple inspection of the grammar shows that in 

a canonical parse reduction by Statements = St is only appropriate when the input 

symbol is 'end'. However~ i t  is  not always so simple to resolve conf l ic ts  and we 

need some more general mechanism for  determining the columns in which to place reduce 

entr ies.  In th is  section we w i l l  discuss a var ie ty  of such techniques. 

3.2.1. USING THE FOLLOWER MATRIX 

Each reduce action places the nonterminal that is the le f t  side of i ts  production on 

top of the stack. I f  the input symbol cannot val idly follow the nonterminal, then an 

error w i l l  be detected immediately after the reduction - thus, there was no real 

reason to have the reduce entry in that column of the parsing action table. 

The SLR(1) constructor [DeRemer 1971] replaces the LR(O) rule for reduce entries by 

the more restr ict ive: for each completed item place reduce entries only in the 

columns of terminal symbols that are valid followers of the le f t  side of the corres- 

ponding production. (An algorithm for computing the follower matrix was given in 

Chapter 2.B.3.) I f  the SLR(1) constructor removes all shift-reduce and reduce-reduce 

conflicts from the parsing action table, then the grammar is SLR(1). Note that we 

can apply the SLR rule to al l  completed items, or just to inadequate states, resulting 

in different parsing action tables, but not changing the class of SLR(1) grammars, 

SLR(1) handles many more grammars ( including our running example) than does LR(O). I t  

is probably an adequate class of grammars for  describing programming languages. The 

remai,ning refinements to be described do not great ly extend the class of acceptable 

grammars, but are somewhat more in the s p i r i t  of LR techniques. (By more carefu l ly  

res t r i c t i ng  the number of reduce entr ies they may also lead to smaller tables.)  
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3.2.2 USING T~ SHIFT ENTRIES 

For each state wi th a completed item i t  is possible to use the s h i f t  entr ies in the 

table to determine the state(s)  that  w i l l  be entered a f te r  a reduce act ion. Any 

columns of  that  state that  contain only error  entr ies should not have reduce entr ies 

in the or ig ina l  state.  The problem is complicated by the p o s s i b i l i t y  of encountering 

fu r the r  reduce en t r ies ,  but i t  is  possible to construct an algorithm to trace through 

the parsing action table and f ind  the minimum set of va l id  reduce entr ies for  each 

completed item [Lalonde 1971]. I f  th is  algorithm succeeds the grammar is said to be 

LALR(1). 

3.2.3. ADDING CONTEXT TO ITEMS 

The o r ig ina l  LR(k) constructor algorithm [Knuth 1965], of which the LR(O) constructor 

is a special case, carr ies k symbols of r i gh t  context wi th each item. For LR(1) th is  

means that each item is augmented by a lookahead set of symbols that may va l i d l y  be 

the Anput symbol when the item is completed. For example, the item [5 ,3 ] ,  that  may 

be va l i d l y  fol lowed by ' ; '  and 'end' is denoted ( [5 ,3 ]  { ' ; ' ,  ' end ' } ) .  

Recall that  the items in an accessible state get there in two ways: they are e i ther  

part of the core, a r is ing  from successor ca lcu la t ions,  or they are added by closure. 

We must define the treatment of items in both cases. The f i r s t  case is extremely 

simple - the symbols that may va l i d l y  fo l low an item are unchanged by the successor 

operation, so the lookahead sets are carr ied over unchanged. 

The second case is more subt le.  I f  we add a new item (with j = 0) ,  the symbols that 

may va l i d l y  fo l low i t s  completion may come e i the r  from the t a i l  of the item that  

caused i t  to be generated, or ( i f  the t a i l  can produce the empty s t r ing)  from the 

lookahead set of that  item. We thus require the s ta r te r  set and empty s t r ing  computa- 

t ions of Chapter 2.B.3. to calculate closures. Items w i th in  a state wi th the same 

[ p , j ]  but d i s t i n c t  lookahead sets are combined, and given the union of  the lookahead 

sets. 

In computing the set of accessible states, the lookahead sets may be treated in two 

d i f fe ren t  ways. I f  states with d i s t i n c t  lookahead sets are treated as d i s t i n c t ,  the 

LR(1) algorithm resu l ts ;  i f  states are treated as d i s t i n c t  only i f  the LR(O) states 

are d i s t i n c t ,  and the union of lookahead sets is taken when states are merged, then 

the resu l t  is  equivalent to the LALR(1) algorithm previously described. 
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4. REPRESENTING LR TABLES 

4 • 1 • MATRIX FORMS 

Thus far  we have kept our parsing action tables in a very simple matrix form, for  

ease of comprehension. Although table lookup in  a simple states x symbols matrix can 

be very e f f i c i e n t ,  programming language grammars may lead to tables with hundreds of 

states and symbols, and the space to store such a table may be a s i gn i f i can t  f ract ion 

of  the tota l  size of the compiler. In the next section we discuss an a l te rnat ive  form 

of the tab le ,  and in the fo l lowing section a number of techniques that can be used to 

reduce the memory requirements of e i ther  form. 

4.2. LIST FORM 

Although i t  may not be obvious from our small example, large parsing action tables are 

t yp i ca l l y  very sparse, and various sparse matrix representations may be t r ied .  One 

very useful form is to store l i s t s  of the non-error ent r ies ,  organised e i the r  by 

rows or by columns. These two al ternate forms of Figure 2.1. are shown in Figure 4.2.1 

Frequently, a pseudo-program notat ion that  is  equiva lent . to  l i s t i n g  the terminal 

columns by row and the nonterminal columns by column is employed (cf .  [Aho 1974]). 

Our example grammar is shown in th is  notat ion in Figure 4.2.2. 

By Rows 

State Symbol Action 

1 Block Halt 
begin S2 

2 Declarations $5 
Dec $3 

3 ; R2 
4 ; R3 
5 ; $6 
6 Statements $9 

Dec $4 
St $8 

7 Statements SIO 
St $8 

8 ; $7 
end R4 

9 end SII 
I0 end R5 
I I  I -  R1 

By~ Col umns 

Symbo] State 

Block 1 
Declarations 2 
Statements 6 

7 
Dec 2 

6 
St 6 

7 
; 3 

4 
5 
8 

begin 1 
end 8 

9 
I0 

.L I I  

Action 

Halt 
S5 
$9 
SIO 
S3 
S4 
S8 
$8 
R2 
R3 
S6 
S7 
S2 
R4 
Sl l  
R5 
R1 

Figure 4.2.1 
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by states 

i f  Input = 'begin' then Sh i f t  (2) else Error 

i f  Input : Dec then Sh i f t  (3) else Error 

i f  ]input : ' ; '  then Reduce (2) else Error 

i f  Input : ' ; '  then Reduce (3) else Error 

i f  Input = ' ; '  then Shi f t  (6) else Error 

2: 

3: 

4: 

5: 

6: i f  Input = Dec then Sh i f t  (4) 

else i f  Input = St then Sh i f t  (8) else Error 

7: i f  Input = St then Sh i f t  (8) else Error 

8: i f  Input : ' ; '  then Sh i f t  (7) 

else i f  Input = 'end' then Reduce (4) else Error 

9: i f  Input = 'end' then Sh i f t  ( I I )  else Error 

I0 :  i f  Input = 'end' then Reduce (5) else Error 

I I :  i f  Input = ' ' then ~duce ( I )  else Error 

by symbols 

Block: i f  Stacktop = 1 then Halt else Error 

Declarations : Sh i f t  (5) 

Statements: i f  Stacktop = 6 then Sh i f t  (9) 

else i f  Stacktop : 7 then Sh i f t  ( I0) 

Figure 4.2.2. 

4.3. EFFICIENCY TRANSFORMATIONS 

There are many things that  we can do to our parsing action tables,  e i ther  to speed up 

parsing or to reduce the amount of storage required. This section discusses a few of 

the possible transformations that seem to be among the most e f fec t i ve .  Some depend 

only on propert ies of the tables,  and hence can be applied to any representat ions; 

others exp lo i t  propert ies of pa r t i cu la r  representations. 

4.3.1. LR(O) REDUCE STATES 

States that consist  of a s ingle completed conf igurat ion have the same reduce entry in 

a l l  non-blank columns. At the cost of a s l i gh t  delay in error  detection (not invo lv ing 

reading another symbol), we can replace these LR(O) reduce rows by constants associated 

with the state° Better yet ,  by creating a new "shi f t - reduce" form of entry in the 

table we can replace a l l  references to LR(O) reduce states in the tab le ,  qui te t y p i c a l l y  

e f fec t ing  a 25.-40% reduction in the number of states (and, in matr ix form, in the 

size of the tab le) .  Figure 4.3.1. shows Figure 4.2.1. transformed to th is  form. 
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By Rows By Columns 

State Symbol Action Symbol State Action 

1 Block Halt Block 1 Halt 
begin $2 Declarations 2 $5 

2 Declarations $5 Statements 6 $9 
Dec SR2 7 SR5 

5 ; $6 Dec 2 SR2 
6 Statements $9 6 SR3 

Dec SR3 St 6 $8 
St $8 7 $8 

7 Statements SR5 ; 5 $6 
St $8 8 $7 

8 ; $7 begin 1 $2 
end R4 end 8 R4 

9 end SRI 9 SRI 

Figure 4.3.1. 

4,3.2, COLUMN REGULARITIES 

All the sh i f t  entr ies in a column refer to states named by the symbol heading that 

column, a small f ract ion of the t o t a l .  I f  state~ are sorted by name (and there is no 

reason for them not to be) then the sh i f t  entry for a given row need only select the 

correct state out of the small set of states with that name. Typ ica l ly ,  this allows 

us to reduce the number of b i ts  used to encode state numbers from around 8 to around 

2. 

4.3.3. ROW REGULARITIES 

The number'of d is t inc t  reduce entr ies in a row is generally small (usually 0 or I ) .  

We may move the actual production numbers over to the margin to cut the width of  

reduce entr ies in the matrix. 

4 • 3 • 4. DON ' T CARES 

By analysis, we can show that  some of the error  entr ies in the parsing action table 

w i l l  never be encountered, even in attempts to parse incorrect sentences. In 

pa r t i cu la r ,  note that a l l  blank entr ies in the nonterminal columns are rea l l y  "don't  

cares" and could be replaced by anything, In par t i cu la r ,  i f  a column contains no 

error ent r ies,  we can replace a l l  the "don' t  cares" by the common entry,  and then 

replace a l l  occurrences of  that entry in the column l i s t  by an else entry at the end 

of the l i s t .  
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4.3.5. COLUMN REDUCTION 

I f  a l l  the dif ferences between two columns involve a "don' t  care" in one or the other of 

them, then the two columns may be merged jus t  by replacing the "don' t  cares." 7his 

transformation is great ly  f a c i l i t a t e d  by the transformation of Section 4.3.2. Note 

that the freedom to re-number states may eas i ly  be explo i ted to make more mergers 

possible. 

4, 3.6. ROW REDUCTION 

The preceding transformations w i l l  general ly leave us with rows that  d i f f e r  only in 

"don ' t  care" pos i t ions,  which can be combined for  a fu r ther  reduction in space. A l l  

of  these transformations are detai led by Anderson et a l .  [1973]. 

4.3.7. LIST OVERLAPPING 

I t  is general ly the case that  many of the l i s t s  formed in a l i s t  representation 

contain ident ica l  sub l i s ts .  By using a pointer  plus length representation for  l i s t s ,  

and care fu l l y  ordering the elements, reductions in space by a factor  of two or three 

are general ly possible [Lalonde 1971]. 

4.3.8. MATRIX FACTORING 

As we mentioned ea r l i e r ,  the matrix form of tables is general ly preferred for  fast  

lookup. Jo l i a t  [1973] has taken the approach of re ta in ing  the matr ix form, but 

factor ing i t  in to  a number of special-purpose matrices (e .g . ,  a Boolean matr ix tha t  

merely indicates error  en t r ies) .  Although th is  i n i t i a l l y  mu l t ip l ies  the space 

requirement, the new matrices mostly have very simple forms with many "don' t  care" 

entr ies.  By applying the various transformations seperately to each matr ix ,  a very 

compact form can be obtained. The LR parsers constructed by his techniques are 

probably about as small and fast  as any avai lable table-dr iven parsers. 

4.3.9. ELIMINATING SINGLE PRODUCTIONS 

For syntact ic  reasons, grammars for  programming languages frequent ly contain productions 

of the form X = Y, i . e . ,  in which the r i gh t  side is a single symbol. Furthermore, 

these single produstions do not general ly have any semantic actions associated with 

them, so that performing the corresponding reduction during a parse is pure waste motion. 

Single productions may be el iminated from the parsing action table by replacing each 

such reduce action in the tab}e by the action that w i l l  be taken a f te r  the reduction. 

The condit ions under which th is  transformation preserves the correctness of the parser 
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are discussed by Aho and Ullman [1973]. This transformation t yp i ca l l y  doubles the 

speed of the parser [Anderson 1973]. 

5. PROPERTIES OF LR GRAMMARS AND ANALYSERS 

LR analysers, and the grammars for which they can be constructed, have many desirable 

propert ies, some of which are shared by LL(1) grammars. This section reviews several 

of these properties that are of importance to compiler-wri ters, although formal proofs 

are not given (but see [Aho 1972, 1973]). 

The f i r s t  important property of the LR family is the existence of computationally 

feasible constructor alaorithms for LR(O), SLR(1), LALR(1), and LR(1) ( in increasing 

order of cost). These algorithms can construct a parsing action table for any given 

grammar and determine whether i t  contains any inadequate states. Computation times for  

typical  programming language grammars range from a few seconds to a few minutes. 

The next property is that each constructor algorithm is also a decision algorithm 

that determines whether the grammar is in the corresponding class. Each of the classes 

of LR grammars is unambiguous, so a l l  ambiguous grammars are rejected. Each class 

also rejects some unambiguous grammars, but in practice (except for LR(O)) almost a l l  

rejections are for  ambiguity. Since no general test for ambiguity is possible [Aho 

1972], the various LR tests are about as good as we can do, and are often used to 

"debug" ambiguous grammars even when some other parsing algorithm (e.g. ,  recursive 

descent) is u l t imate ly  to be used in the compiler. 

The interpreters for LR tables in the i r  various forms are a l l  quite simple and easy 

to implement in almost any programming language (they don't even require recursion). 

Furthermore, the language parsed by an LR parser can be changed merely by changing the 

tables (perhaps even at run-time) without any change to the program at a l l .  Most 

important, given tables without inadequate states, they share with LL(1) parsers the 

properties of determinism and l i n e a r i t y .  The former means that they never make a 

mistake and have to backtrack, the l a t t e r ,  that the time to parse a sentence is 

d i rec t l y  proportional to the length of the sentence. (More general algorithms may 

require time proportional to the square or the cube of the length - c lear ly  impractical 

for a compiler.) 

Each LR parser can be guaranteed to correct ly  parse every correct sentence in i t s  

language and to detect an error in any incorrect sentence - properties that we ought 

to require of any parser (a~though some, e.g. ,  operator precedence, do not possess the 

l a t t e r  property}. Moreover LR parsers are almost unique in that they guarantee to 

detect errors at the f i r s t  Rgssible point,  i . e . ,  before sh i f t i ng  the f i r s t  symbol that 
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cannot be a va l id  cont inuat ion of the input seen so far .  This property is extremely 

important in error  diagnosis and recovery (Chapter 5.D.) ,  yet the only other we l l -  

known class of  pract ica l  parsers that shares i t  is LL(1). 

Semantic actions can read i ly  be incorporated in LR parsing action tables. However, 

i t  is customary in "bottom-up" compilers [Wirth 1966][McKeeman 1970] to associate 

semantic actions only with the reduce act ions, thereby al lowing semantic modules to 

be cleanly separated from the parsing module. Since LR parsers have no d i f f i c u l t y  

wi th empty r i gh t  sides, nu l l  productions can be inserted anywhere in the grammar as 

hooks on which:to hang semantics. ( I f  the grammar happened to be LL(1) to s ta r t  w i th ,  

inser t ing any number of such nu l l  productions w i l l  n~ver cause an LR parser any 

d i f f i c u l t y . )  

6. MODIFICATIONS TO OBTAIN LR GRAMMARS 

Most unambiguous grammars for  programming languages are SLR(1) - hence LALR(1) and 

LR(1) - in the form in which they are o r i g i n a l l y  wr i t ten .  Thus there has been 

r e l a t i v e l y  l i t t l e  work on mechanical transformations to obtain LR grammars, 

corresponding to the transformations described in Chapter 2.B.5. for  LL(1). However, 

there are a few s i tuat ions in which "na tu ra l l y  occurrr ing" grammars contain local 

ambiguities that must be el iminated to make them acceptable to LR constructors. This 

section discusses two examples. 

6.1. MULTIPLE-USE SEPARATORS 

The grammar in Chapter 2 .B. I .  uses the semi-colon as a separator in three d i f fe ren t  

productions. I t  f a i l s  to be LR(1) because of shi f t - reduce con f l i c t  invo lv ing the 

second production DL÷D.(which may be followed by the semi-colon in the f i r s t  productionS, 

and the t h i r d  production, DL + D ; DE (which contains a semi-colon). Two-symbol 

lookahead would resolve th i s  problem (the grammar is SLR(2)).but a more pract ical  

solut ion is to transform the r i gh t  recursion on DL into a l e f t  recursion, resu l t ing  

in the grammar of Section 1.2. Note that  whi le l e f t  recursion must be el iminated for  

LL(1) parsing, i t  causes LR parsers no d i f f i c u l t y .  Right recursion is only a problem 

for  LR parsers i f  the in ternal  separator may also be a fo l low symbol. 

6.2. COMPOUND TERMINAL SYMBOLS 

Consider the grammar fragment: 

St = Var ' "  '=' Exp 

I Lab St ; 

Var = Id ; 

Lab : Id ' . '  ; 
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Among the states for this grammar there w i l l  be one containing the completed item 

Var = Id . ,  which has ' : '  as a va l id  fol low symbol, and the uncompleted item Lab = 

Id . ' : '  , leading to a classical shift-reduce conf l i c t .  Again, one more symbol of 

lookahead (to see i f  ' : '  is followed by '= ')  would solve the problem, but the usual 

solution is  to make ' := '  into a single symbol - thereby forcing the stanner to do the 

extra lookahead. 

7. COMPARISON WITH OTHER TECHNIQUES 

Throughout th is  chapter we have compared properties of LR parsers with those of parsers 

obtained by other techniques. In th is section we summarize comparisons that may af fect  

the choice of a parsing technique. 

7,1. GRAMMAR INCLUSIONS 

The LR(1) constructor accepts a l l  grammars accepted by any of the other pract ical  

canonical parsing techniques. In addit ion, each of the other techniques rejects some 

grammars accepted by LR(1). 

While i t  is hard to place a meaningful metric on these i n f i n i t e  sets, in practice i t  

turns out that the difference between LR(k) for  k > 1 and LR(1) is not very s ign i f i can t ,  

nor is the difference between LR(1) and LALR(1) or SLR(1). However, both LR(O) and 

LL(1) accept such s ign i f i can t l y  smaller classes of grammars that they are only 

p rac t i ca l l y  usable with mechanical transformations such as those described in 

Chapter 2.B.5° The various precedence techniques also accept noticeably smaller classes 

of grammars, and some transformations are generally required. Figure 7.1. summarizes 

the inclusion relat ions among various classes of grammars. 

Context-fr~ee Gram~ 
Floyd-EFans Unambiguous ~ra tor  
Parsable CFG'S Precedence 

! ' 
B LL 

que|y Invergible imp e ransi t ion 
Extended Precedence MSP Matrices ~ / 

Uniquely Inver t ib le  / 
Weak Precedence / 

I LR 0 Simple Precedence ( ) LL(1) 

Figure 7.1. Grammar Class Inclusion Hierarchy 
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7.2. IJ4NGUAGE INCLUSIONS 

In the ]ast  section we discussed the classes of grammars accepted by the various 

techniques. However, jus t  because a technique rejects a par t icu lar  grammar does not 

necessari ly mean that i t  w i l l  re ject  a l l  other 9rammars for  the same language. Indeed, 

a l l  our grammar transformation techniques aim to convert an unacceptable grammar into 

an acceptable one for the same language. I t  is in terest ing to determine the l imi ta t ions 

of such transformations. 

I t  has been shown that there are differences among the classes of languages recognized 

by the various parsing techniques. The largest  p rac t i ca l l y  recognizable class is 

called the determinist iq languages, and i t  is  precisely the class defined by the 

LR(k) grammars for any k ~ I ,  or by the LALR(1) grammars, or by the SLR(1) grammars. 

Thus, we do not sacr i f ice  any languages when we res t r i c t  our attention to SLR(1) - in 

fact we can mechanically transform any LR(k) grammar to an SLR(1) grammar for the same 

language. Simi lar remarks hold for some of the more general precedence techniques 

(such as mixed-strategy precedence techniques [McKeeman 1970]), but not for  Wirth-Weber 

Simple Precedence [Wirth 1966], which accepts a smaller class, the simple precedence 
languages. 

I t  has been shown that the classes of LL(k) languages are d i s t i nc t  for every k, and 

properly contained in the determinist ic languages. Thus there are some languages with 

SLR(1) (or even LR(O)) grammars that do not have tL(k)  grammars at a l l !  This is 

sometimes thought to prove the super ior i ty  of the LR approach, but, in pract ice, 

programming languages do not actual ly  seem to f a l l  in the gap between LL(1) languages 

and determinist ic languages. Figure 7.2. summarizes the language inclusion hierarchy. 

Context-free Languages 

~te~ministic La s 

LL Languages Simple Precedence 

Languages 

LL(1) Languages J 
Ope ator Precedence 

Languages 

Figure 7.2. Language Class Inclusion Hierarchy 
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7.9. ERROR DETECTION 

One of the major reasons that LR and LL(1) parsers have been singled out for  par t icu lar  

attention in th is course is that the i r  error  detection and diagnostic capabi l i t ies  are 

substant ia l ly  superior to competitive techniques. Not only is the error detected at 

the ea r l i es t  possible point,  but the parsing action table contains, in a readi ly  

interpreted form, a l i s t  of the symbols that would have been val id  continuations at 

that point. This information can be used to supply a highly meaningful diagnostic 

message, and may also be useful in error recovery (c f .  Chapter 5.D.). 

7.4. EFFICIENCY 

Various studies ([Lalonde 1971][Anderson 1973][Jol iat 1973]) have shown that LR 

parsers can be made as e f f i c i e n t  as any technique of comparable general i ty ,  in both 

space and time. Compared to the demands of other processes within compilation, the 

requirements of LR parsers are quite modest. 

Direct comparison of the e f f ic ienc ies of LR and LL(1) parsers is d i f f i c u l t ,  because 

the usual implementation of the l a t t e r  (recursive descent) imposes a substantial over- 

head in procedure cal ls  and stack management that is not i n t r i n s i c  in the technique. 

( I f  the compiling technique requires most of the procedure cal ls  and stack management 

anyhow, then the added overhead due to parsing may be minimal.) Recursive descent 

tends to spread the parser out throughout the compiler, and i t  is  d i f f i c u l t  to 

determine the costs of parsing (e.g. ,  the space and time costs of the procedure cal ls)  

in a machine-independent fashion. There is some reason to believe that comparable 

implementations of LL(1) and LR parsers (e.g. ,  both non-recursive and table-driven) 

would have almost equal e f f i c ienc ies .  

8. CHOICE OF A SYNTACTIC ANALYSIS TECHNIQUE 

The compiler-wri ter does not rea l l y  want to concern himself with how parsing is done. 

So long as the parse is done correct ly ,  without using too many resources, and with 

adequate hooks on which to hang semantics, he can l i ve  with almost any re l iab le  

technique. (In fac t ,  he can probably switch techniques without af fect ing the rest of 

the compiler at a l l . )  Thus, the choice of a par t icu lar  technique is often made for  

reasons that have l i t t l e  to do with the i n t r i n s i c  merits of the technique. 
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Probably the most important external factor is the ava i l ab i l i t y  of the appropriate 

constructor algorithm on an available machine. Only i f  more than one constructor is 

available are factors l ike speed, table size, class of grammars accepted, or even 

error detection, l i ke l y  to be considered. A factor of some importance to the compiler- 

wri ter (though often neglected by authors of constructor programs) is the qual i ty of 

diagnostic messages produced when problems are encountered in the grammar. I f  a good 

LR constructor is available, i ts  wider classes of languages and grammars wi l l  probably 

be predominant factors. 

I f  none of the available constructors is suitable, the balance shif ts to LL(1) 

techniques. I t  is easier to quickly build an acceptably e f f i c ien t  LL(1) constructor 

than almost any other type. I f  even that imposes an unacceptable overhead, a 

recursive descent parser may be hand-constructed (and hand-checked for the LL(1) 

condition). This is somewhat less rel iable and less f lex ib le ,  but for an experienced 

compiler-writer may well be the quickest way to get the job done. 
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CHAPTER 2.D. 

LEXICAL ANALYSIS 

Franklin L. DeRemer 

University of California 
Santa Cruz, California, USA 

I .  Scanning, Then Screening ' 

Early in the compilation process the source program appears as a stream of charac- 

ters. The two subprocesses of "scanning" and "screening" constitute the process 

known as lexical analysis. 

Scanning involves finding substrings of characters that constitute units called 

textual elements. These are the words, punctuation, single- and multi-character 

operators, comments, sequences of spaces, and perhaps l ine boundary characters. In 

i ts simplest form a scanner finds these substrings and classif ies each as to which 

sort of textual element i t  is. 

Screening involves discarding some textual elements, such as spaces and comments, 

and the recognition of reserved symbols, such as the key words and operators, used 

in the particular language being translated. I t  is the output of this process, 

usually called a token stream, that is the input to the parser. 

For example, consider the following l ine from an Algol program represented as a 

character stream: 

C ®CSBS®CC ,  C XO X3@ 0 0 0 

After scanning, the program may be regarded as being in the following form: 
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where SP means "spaces", ID means " i d e n t i f i e r " ,  IN means " integer" ,  and OP means 

"operator". Af ter  screening, the program would be represented by the fol lowing: 

Of course, the parser reads only the names of the top nodes in th is  sequence, but 

the "subrosa information" (e.g. which par t icu lar  i d e n t i f i e r  is meant for  each ID 

node) is carried along through the parsing process for  l a te r  processing. 

2. Screening 

We discuss screening f i r s t  because i t  is  simpler and consequently our discussion 

w i l l  be shorter. The screening process may be formal ly specif ied via a set of rules 

such as the fol lowing: 

C 

3 

= >  

= >  

= >  

_--> 

O 

etc. 

® 

© 

© 

@ 

=> (poof!) 
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where the l as t  ru le  means that  an SP node, wi th any number of descendants, simply 

disappears ( is  erased). Formally, th is  set of  rules const i tutes a transformational 

grammar, as w i l l  be discussed in section 2.E below. In formal ly ,  i t  is simply a l i s t  

of reserved words and reserved operators, plus a statement of which textual  elements 

are to be ignored (e.g. spaces). 

Perhaps the easiest implementation of  a screener (reserved symbol processor) depends 

upon using a s t r ing  table,  which is undoubtedly used in the compiler anyway (see the 

section on "symbol tables" below). I f  in i n i t i a l i z i n g  the compiler we enter the 

reserved symbols f i r s t  in the s t r ing  table and remember the index r of the las t  one 

entered, then when the scanner f inds an i d e n t i f i e r ,  fo r  instance, we may decide 

whether i t  is reserved by looking i t  up in the s t r ing  table and asking i f  i t s  index 

is less than or equal to r.  We look up each i d e n t i f i e r  anyway so the compiler may 

work uniformly with ind ic ies in to  the s t r ing  table rather than with st r ings of non- 

uniform length. Thus, th is  reserved symbol process is extremely cheap. 

Implemented thus ly ,  the screener may be viewed as a table-dr iven processor. The 

reserved symbols const i tu te  the tables. They are stored in the s t r ing  table.  

3. Scanning 

~J. Lexical Grammars 

One can usual ly  specify the textual  elements of a programming language, i . e .  i t s  

lex ica l  l eve l ,  with a regular grammar or a regular expression, or most conveniently 

with a mixture of the two in the form of a transduction grammar. For example, con- 

sider the fo l lowing grammar, GLEX: 

Text = ( ( I d e n t i f i e r  I Integer) Spaces)* ; 

I d e n t i f i e r  = Let ter  (Let ter  I D ig i t  I ' _ ' ) *  => ' ID'  ; 

Integer = D ig i t  D ig i t  * :> ' IN'  ; 

Spaces = ' ' ( '  ' ) *  => 'SP' ; 

Letter = 'a' I 'b '  I 'c '  ; 

D ig i t  :: 'o '  I ' I '  I '2 '  ; 

(sometimes the notat ion D+ is used to mean D D * ;  i . e .  one or more occurrances). 

This grammar describes a very simple lexicon containing i d e n t i f i e r s ,  integers,  and 

spaces. I den t i f i e r s  and integers must be separated from each other by at least  one 

space. The program can be empty (contain no characters); i t  cannot begin with 

spaces, but i t  must end with at least  one space. We have l im i ted  the number of 

l e t te rs  and d ig i t s  so that  we may use the grammar as a running example below. 
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3.1.1. Tokens 

We require that the nonterminal vocabulary of a l exical grammar, such as GLE X, be 

part i t ioned into three kinds of nonterminals: 

( I )  "textual element" nonterminals, or tokens, are the ones appearing as l e f t  parts 

of productions having a tree part ;  furthermore, a i l  productions (a l ternat ives)  for  

tokens must have tree parts, 

(2) nonterminals that generate terminal str ings without ever generating any tokens, 

and 

(3) nonterminals that must generate tokens to generate terminal str ings in such a 

way that, for any such nonterminal A, every terminal string ~ that can be derived 

from A must be derivable in the form A ++ y÷+ n such that y is a string of tokens. 

Thus, we have required a s t rat i f icat ion of lexical grammars into levels. Let us 

call the three subvocabularies of nonterminals Vtoke n, V<token s, and V~okens, 

respectively. In GLE X we have 

Vtoke n ={ Ident i f ier ,  Integer, Spaces}, 

V<tokens={Letter, Dig i t } ,  and 

V>tokens={Text} • 

3.1.2. A Regularity Condition 

To further restr ic t  l exical grammars, we require that no nonterminal be self-embed- 
+ 

ding. That is, i f  A is a nonterminal, then for every derivation A÷ yA peither 

y or p must be ~. An easy way to satisfy this condition when constructing a lex i -  

cal grammar is always to use either l e f t  or r ight recursion, or neither, but never 

to mix the two in one grammar. Given a purported lexical grammar i t  is easy to 

check that the condition of no self-embedding is satisfied. 
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I t  is well-known [Hopcroft 1969] that this condition is suff icient to guarantee that 

the grammar generates a regular language. Thus, we may freely use regular and 

f in i te-state techniques to process this lexical level of the language. 

3.1.3. Converting Regular Grammars.. to .Regu.].ar..Ex..p.re.s.s.ions 

Well known techniques exist for converting regular grammars to regular expressions 

[Hopcroft 1969]. Basically, one eliminates nonterminals from the grammar as one 

would eliminate variables from a set of linear equations. The technique is alge- 

braic in nature and we are dealing with regular 9.]~ebra [Kleene 1956]. 

Given a recursive nonterminal A with productions such as 

A + ~  1 A ÷ A B  1 
' and " 

A + ~n A + A 6 m 
we can reduce these to one production, namely 

A+  (~I I . . . 1 % ) ( B  l I . . . l ~m) *  
or i f  m = 0 then simply A ÷ ~I I...1%. Analogously, r i gh t  recursion (A ÷ 6iA) 

would produce 

A ÷ (~I l " ' I B m ) * ( ~ l  I ' " l ~ n  )" 

Having eliminated direct ly recursive productions in this way, we can next eliminate 

some occurrences of nonterminals by substituting production right parts for occur- 

rences of the l e f t  part in other productions. In general, this w i l l  produce new 

directly recursive productions that wi l l  have to be eliminated as above. 

This process can be iterated unti l one production remains whose l e f t  part is the 

start symbol, or stopped when desired. The process would get into an in f in i te  loop 

i f  there were a self-embedding nonterminal in the grammar, since we have given no 

rule to eliminate this kind of recursion, hence the importance of the regularity 

condition given above. 

3.2. Generatin 9 Scanners Via LR Te.c..hniques 

3.2.1. Usin 9 A Simplified LR Parser As...A Scanner 

To use LR parser construction techniques to generate scanners, we f i r s t  use the 

la t ter  conversion technique to eliminate all nonterminals from a l exical grammar 

except for the tokens and the start symbol, and we eliminate their recursion, i f  any. 

Example. G~E x, the version of GLE x that is to be mapped into a parser is as follows: 
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Text = ( ( Ident i f ie r  I Integer ) Spaces)*; 

Ident i f ier  = ( ' a ' I ' b ' l ' c ' ) ( ' a ' I ' b ' l ' c ' I ' o ' l ' l '  I ' 2 ' I ' _ ' ) *  

=> 'ID' ; 

Integer = ( ' o ' I ' I ' I ' 2 ' ) ( ' o ' I ' I ' I ' 2 ' ) *  => 'IN' ; 

Spaces = ' ' ( ' ' ) *  => 'SP' ; 

For GZE X we have 

V~oke n = { Ident i f ie r ,  Integer, Spaces}, 

V~token s = ~, and V ~ = {Text} >tokens 

Converting the grammar in this way means that the only reductions to be performed by 

the resulting parser w i l l  be to tokens or, a£ the end of the entire text,  to the 

start symbol. On this last reduction the parser w i l l  enter the exi t  state, as usual. 

What state should the parser (scanne~enter after a reduction to a token? As in the 

case of context-free grammars and the LR parsers described in section 2.C above, 

this question is answered by restarting the parser in the state i t  was in at the be- 

Binning of the phrase being reduced and then causing i t  to read the token being re- 

duced to. 

However, we do not need a stack to remember previous states as in the case of con- 

text-free grammars. Lexical grammars have no self-embedding, due to the regularity 

condition, thus no stack is needed to match l e f t  against r ight context. Furthermore, 

our restr ict ion that the grammar be s t ra t i f ied,  with the tokens being involved in 

generating al l  terminals but never other tokens, means that the parser w i l l  repeatedly 

read (scan) some characters and reduce them to a token unt i l  i t  reaches the end of 

the str ing, when i t  w i l l  quit.  Thus, to restart after making a reduction al l  that 

the parser (scanner) needs to know is the state i t  was in after the previous reduc- 

tion. 

To map ou~ stratified, reduced lexical grammar into a parser (scanner) we must extend 

our LR parser construction techniques to deal with regular expressions. Since we 

already know how the machine is to make reductions, al l  we need are some rules for 

moving the LR marker (dot) through the regular expressions for the purpose of com- 

puting the parser states. The following three rules are what are necessary [Earley 

1970]. 

During the computation of the closure of each set of items: 

( I )  I f  an item of the form A ÷ y .(w I I...lwn)P 

appears, replace i t  with n items 

A÷ y (.Wll...lWn)P 

A÷ y (Wll...l.Wn)P 
(2) I f  an item of the form A ÷ y  ( . . . l w i - l . . . ) p  

appears, replace i t  with the item 
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A + x ( . . . I  w i I . . . )  " p 
(3) I f  an item of the form A ÷ x (w)* p 

or of the form A ÷ Y (w-)* p appears, 

replace i t  with the two items 

A ÷ x (.w)* p 

A ÷ ~ ( w)*-p 
The idea behind these rules is to keep track of which parts of which productions are 

applicable at a given point in the input str ing, in a manner consistent with the LR 

construction technique and with the meanings of regular expressions. Note, in part i -  

cular, that rule (3) returns the marker (dot) back to the beginning of the iterated 

phrase. 

Example. We now construct the states of the LR parser for grammar G'LE x. Note that 

to compute the parser we have added the terminator symbol (end of f i l e )  to the f i r s t  

production. 

Start: 

Ident i f ier :  

Integer: 

Text : - ( ( I d e n t i f i e r  I In teger)  Spaces)* '~' 
Text = ( . ( I d e n t i f i e r  I In teger)  Spaces)* '~' 
Text = ( ( I d e n t i f i e r  I In teger)  Spaces)* • '~' 
Text = ( ( . I d e n t i f i e r  ] In teger)  Spaces)* '~' 
Text = ( ( I d e n t i f i e r  I , In teger )  Spaces)* '~' 

I d e n t i f i e r  = . ( ' a ' ] ' b ' l ' c ' )  ( . . . ) *  

Integer = " ( ' o ' I ' I ' I ' 2 ' )  ( . . . ) *  
I d e n t i f i e r  : ( . ' a ' I ' b ' l ' c ' )  ( . . . ) *  
I d e n t i f i e r  : ( ' a ' I . ' b ' I ' c ' )  ( . . . ) *  
I d e n t i f i e r  = ( ' a ' l ' b ' ] . ' c ' )  ( . . . ) *  

Integer = ( . ' o ' I ' I ' I ' 2 ' )  ( . . . ) *  

Integer = ( ' o ' ] - ' I ' I ' 2 ' )  ( . . . ) *  

Integer = ( ' o ' I ' l ' I " 2 ' )  ( . . . ) *  

Text = ( ( I d e n t i f i e r .  IInteger) Spaces)* '~' 

Text = ( ( Ident i f ie r  I Integer)'Spaces)* '~' 

Spaces = .' ' ( ' ' ) *  

Text = (( Ident i f ier ! Integer-)  Spaces)* ' ] /  

Text = ((Identifierllnteger)-Spaces) * '~' 

Spaces = .' ' (' ' ) *  

(Integer is actually the same state as Ident i f ie r . )  

Let te r :  I d e n t i f i e r  = ( ' a ' . l ' b ' l ' c ' )  ( . . . ) *  
I d e n t i f i e r  : ( ' a '  I ' b ' - l ' c ' )  ( . . . ) *  
] i den t i f i e r  : ( 'a '  ] 'b' l ' c ' . )  ( . . . ) *  
] i den t i f i e r  : ( . . . ) . ( ' a '  I'm' l 'c '  I 'o '  I ' I '  [ '2 '  I ' _ ' ) *  
I d e n t i f i e r  = ( . . . )  ( . ' a ' l ' b '  i . . . l  ' ' ) *  

] i den t i f i e r  : ( . . . )  ( ' a '  l " b '  I . . - [ ' i ' ) *  

[Rule (3)] 

[Rule ( I ) ]  
÷ EXIT 

Ident i f ier  

÷ Integer 

[Rule (1)] 

[Rule (1)] 

÷ Letter 

÷ Letter 

÷ Letter 

Digit 

÷ Digit 

÷ Digit 

[Rule (2)] 

÷ Start 

÷ Blank 

[Rule (2)] 

÷ Start 

÷ Blank 

[Rule (2) ]  
[Rule (2) ]  
[Rule (2) ]  
[Rules (3) ;  ( l ) ]  

÷ Le t te r  
÷ Let te r  
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I d e n t i f i e r  : ( . . . )  ( ' a ' l ' b ' i . . . l . '  ' ) *  

I d e n t i f i e r  = ( . . . )  ( ' a ' l ' b ' l . . . l '  ' ) * -  

D ig i t :  Integer = ( '0 '  

Integer = ( '0 '  

Integer : ( ' o ' I ' I  

Integer = ( . . . ) . (  

Integer = ( . . . )  ( 

Integer = ( . . . )  ( 

Integer = ( . . . )  ( 

Integer = (.. 

Blank: Spaces = ' ' 

Spaces = ' ' 

Spaces : ' ' 

. l , l , i , 2 , )  ( . . . ) *  

l ' l ' . l ' 2 ' )  ( . . .)* 
'1'2'.) (. . .)* 
'o'1 '1'I '2 ' )*  
. ' o '  I ' I ' I ' 2 ' ) *  

o ' I . ' I ' I ' 2 ' ) *  

o'I'1' I.'2')* 
.) ( o' I '1 '1 '2 ' )* .  

.( ' ) .  
(., , ) .  
(, ) * .  

÷ Letter 

÷ Reduce 

[Rule (2)] 

[Rule (2)] 

[Rule (2)] 

[Rules (3); (1)] 

÷ Digit 

÷ Digit 

÷ Digit 

÷ Reduce 

[Rule (3)] 

÷ Blank 

÷ Reduce 

Note that in the above construct ion,  states I d e n t i f i e r  and Integer should rea l l y  be 

one state since they have exact ly the same t rans i t i ons .  This is becuase the three 

rules above say to replace the or ig ina l  item. Note that the second two items l i s ted  

in each of the two states are the same as those two in the other state,  thus the two 

states are indeed i den t i ca l ;  i . e .  rea l l y  jus t  one state (cal l  i t  I ) .  In several 

other instances, fo r  example re la t i ve  to the t rans i t i on  from state Let ter  back to 

state Let ter ,  th is  state i den t i t y  has been recognized, but not emphasized in the 

construct ion above. 

We emphasize that i te1~with [Rule ( i ) ]  to t h e i r  r i gh t  above are not ac tua l ly  in the 

states, but have been replaced according to the indicated ru le .  State i den t i t y  is 

determined by comparing the other items. 

To display more clearly the structure of our scanner for grammar GLE x we present its 

state diagram: 

~ Identifier 
Integer - ~ . . .  Spaces, , 

~ .  ,,,a' 'b' 
~a'_ , ' b ' ,  'c '  .~ 

~ 'O' ' l '  
Qo'  ' I  ' '2 '  

'c' '0' 
{?} 

~ 2  j 

{?} 

J 
! i 

{?} 

l ,  2 ,  _ 

~Reduce to Spaces 

Reduce to Identi f ier 

mReduce to Integer 
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Note that  we have indicated by {?} above that three of the states need look-ahead 

sets to determine read-reduce decisions. Look-ahead sets can be computed fo r  th is  

parser in essent ia l l y  the same ways as fo r  parsers for  context- f ree grammars. In 

th is  pa r t i cu la r  case, the unique t rans i t ions  under the tokens Spaces, I d e n t i f i e r ,  

and Integer make i t  easy to see that the needed sets are: 

{ ' ~ ' ,  ' a ' ,  ' b ' ,  ' c ' ,  ~o', ' I ' ,  ' 2 ' }  for  Spaces 

{ '  ' }  for  I d e n t i f i e r  

{ '  ' }  for  Integer. 

Such scanners (:an be implemented d i r ec t l y  as executable programs, or i n te rp re t i ve l y  

via tables, as LR parsers usual ly are. However, i t  is noteworthy that these 

scanners f requent ly  have states with d i rec t  loops, such as states Blank, Le t te r ,  and 

D ig i t ,  above. Such states should be implemented as fast  as possible since they 

t y p i c a l l y  do the bulk of the scanning. (The " t rans la te  and test"  (TRT) ins t ruc t ion  

of some models of the IBM 360 is useful for  th is  purpose, for  example.) 

3.3. Hand-Written Scanners [Gries 1971] 

Writ ing a scanner by hand is ac tua l l y  qui te easy. In e f fec t ,  we simply encode the 

state diagram "into a program, preferably i n ' t he  form of a case statement embedded in 

a whi le loop, as i l l u s t r a t e d  below. 

This is not to imply that one need construct a state diagram for  th is  purpose. On 

the other hand, in designing the lexicon of  the language~ i t  is  important for  both 

the human reader and the scanner to s ta r t  each d i f f e ren t  kind of token with a 

symbol from a set d i s t i n c t  from the sets of symbols beginning other kinds of tokens. 

This should be read i ly  apparent from the s imp l i c i t y  of the program structure i l l u s -  

t rated below. 

Several comments are appropriate before presenting the sample scanner: 

We have related th is  program to GLE X and the state diagram given above by inser t ing 

labels and comments and by using the names (constants) ID, IN, and SP. Note that  

the outer whi le loop implements the "major cycle" in the state diagram, whi le the 

inner whi le loops implement the "minor (d i rec t )  cycles".  Note, however, that  the 

program d i f f e rs  from the state diagram in that  there is no check for  a blank ( '  ' )  

a f te r  i den t i f i e r s  and integers in the program fragment. 

"Tokentype" is intended to map characters into the appropriate case number. " Is_ 

ident i f ie r_charac ter "  and " I s d i g i t "  are intended to map characters in to  truthvalues 

in an appropriate way. "Blank" and +'End of f i l e "  are intended as constants whose 

values should be obvious. 
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c c 

A sample scanner program-structure. 

c c 

Read (Next_character); 

Start: while Next character ~= End of f i l e  

do case Token_type (Nextcharacter) i n  

Ident i f ier :  

begin Read (Next_character); 

c Read the very f i r s t  

character. 

c Look for the end. 

c What kind of token 

is next? 

c 

c 

c 

while Is identifier_character (Next_character) 

do Read (Next_character) o__dd; ~ state Letter 

Make_token (ID) 

en_~d, 

Integer: 

begin Read (Next_character); 

while Is d ig i t  (Next_character) 

do Read (Nextcharacter) o_.d_d; ~s ta te  Digit 

Make_token (IN) 

end, 

Spaces: 

begin Read (Next_ character); 

while Next character = Blank 

do Read (Nextcharacter) o_d_d; ~ state Blank 

Make_token (SP) 

end 

Error: 

begin . . .  RECOVERY . . .  end 

esac od 

c We have not bothered with the detail of declarations c 

c because the intent should be clear from the choices of c 

ident i f iers and the surrounding t~xt. 

"Read" is assumed to read one charamter per call from the input stream and to 

treat l ine or card boundaries appropriately. "Make token" is intended to construct 

tokens from the characters read since i t  was last called, except for the very last 

character, and perhaps to detect reserved symbols, and communicate the tokens to the 

parser in some way. We have specif ical ly avoided irrelevancies, for our purposes 

here, of how these variables are implemented; e.g. whether the scanner and parser 

are coroutines or procedures, whether they operate in series or in paral le l ,  whether 

"Next_character" is actually a character or a numerical code, etc. 
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3.4. Error Recovery 

L i t t l e  can be said about recovering from lexical errors for either the automatic or 

the hand written case. The problem is a lack of redundancy at the lexical level of 

language design. 

While scanning a textual element, the scanner is always either in a context in which 

i t  has seen some le f t  context that must be matched by some r ight context (e.g. the 

terminating quote on a string constant) or i t  is in a context that may legal ly end 

at any point (e.g. an ident i f ie r ) .  In the la t ter  case, characters in error show up 

as the beginning o4 the next textual element and can usually be skipped or replaced 

with a blank (' ') to re~over safely. In the former case a scan to the end of the 

current l ine is usually in order to try to find the desired r ight context; i f  found 

the intervening text can be considered part of the current textual element; other- 

wise, the rest of the l ine is usually best skipped and the scanner is best restored 

to i ts  start state. 

4. On Not Includin~u"Conversion Routines" in Lexical Analysers 

Probably most compilers have been written with "conversion routines" embedded in and 

/or called by the lexical analyser. A call to such a routine usually occurs immed- 

iately after each token is discovered. Such routines usually convert d ig i t  strings 

to some "internal" integer representation, for example, or i f  a decimal point is 

encountered, to some ~ representation of reals; or they may interpret special charac- 

ters inside string constants; etc. 

Al l  too often the "internal" representation chosen is that of the machine on which 

the language is i n i t i a l l y  being implemented, with l i t t l e  or no thought that the com- 

p i ler  might later be moved to another machine or be modified to generate code for a 

dif ferent machine. Such decisions are usually made in the name of "eff iciency", of 

course. 

I t  is our thesis that such compiler design destroys modularity and portabi l i ty .  

Ultimately, conversion must be made into the representations defined as part of the 

target language, i .e.  target representations, and since the code generating parts 

of the compiler are already, and of necessity, intimately dependent upon those re- 

presentations, that is the place where such routines should be placed and called. 

That is ,  dependencies on the target representations should be localized. 

I t  is desirable to keep the entire front-end of the compiler independent of target 

representations, i f  possible. I f  constants are translated to target representa- 

tions by the lexical analyser, tables of several dif ferent types usually must be 

mainained and some processors that do not need to know thoserepresentations, none- 

theless must be programmed in terms of, or around them. For example, i f  constants 

are converted and an error message should relate to one, i t  must be converted back 

to source representation for printing. 
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In summary, we suggest that the scanner, screener, parser, standardizer (transform 

er) ,  declaration processor, type checker, and f lat tener,  should al l  be independent 

of target representations, i f  at al l  possible, (See section 2.E below on transfor- 

mational grammars for a description of the compiler structure assumed in the pre- 

vious sentence.) 
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CHAPTER 2.E 

TRANSFORMATIONAL GRAMMARS 

F. L. DeRemer 

University of California 

Santa Cruz, California 

U.S,A.  

1. Language Processin 9 a§ Tree Manipulation 

One goal of researchers in the area of programming language translation techniques 

has been, and will for some time be, to develop a language-description language such 

that language descriptions can be mapped straight-forwardly into compilers. The 

lessons'of structured programming would lead us to expect each compiler to be a col- 

lection of modules, and correspondingly, each language description to be modular. 

Some compiler modules would be expected to be language independent. Examples would 

be input and output modules, as well as a symbol table module for col lect ing a t t r i -  

butes associated with programmer-invented names. Such modules would, of course, not 

be d i rec t l y  related to modules of any part icular  language description. 

Other compiler modules would be expected to be, at least in part, directly specified 

by modules of "the language description. These might be table-driven modules, in 

which all but the tables are language independent, or they might be total ly rewrit- 

ten for each language, depending upon implementation considerations. Examples of 

such modules would be table-driven scanners, reserved word processors, parsers, and 

as we shall see shortly, "transformers" and "flatteners". 

Any programming system that aids in the construction of a translator (compiler) is 

called a "translator writing system" (TWS). A system which takes as input programs 
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in a formally defined language-description langauge, and which is to produce a com- 
piler (or equivalently, tables) as output, is called a "compiler compiler" (CC). 

The ideal language-description language would be useable by a language designer who 
is not necessarily also a compiler writer. That is, this user should be familiar 
with the various levels of language description/processing, but need not be familiar 
with the systems programming techniques employed in implementing a compiler. 

In [DeRemer 1973] we suggest that the ideal language description is a sequence of 
grammars that corresponds to the sequence of modules that appears conceptually, i f  
not actually, in compilers. The corresponding phases or levels of language proces- 
sing are illustrated in Figure 1. 

O0 0 @® ®0 ®O®O®O@©O@OCxD@O0 
(a) The PAL program "let x : 3 in x + i" in character stream form. 

(b) The program after scanning; i.e., after finding and classifying separate text- 
ual elements. 

~ ~.ide~fier) ~ ~ [ ~  {ide~fier) [~  

(c) The program after recognition of reserved words. 

{ i d e n ~ ~  

(d) The program after parsing; i.e., after determining the phrase structure. 

Lentifier  
(~ ~den~ier ) ~  

(e) The program after standardization. 
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(f) The progrmn after (par t ia l )  flattening. 

Language Translation as a Tree-manipulating Process 

Figure l 

1.I Lexical and Syntactical Processing 

Lexical and syntactical processing are assumed to produce an "abstract syntax" or 

'Eomputation" tree, as defined by corresponding lexical and syntactical specifica- 

tions. Language processing to the point of producing such a tree is il lustrated in 

Figure 1, parts a - d, where we have used a pAL program as an example[Evans 1968, 

Aho 1972~ PAt. is particularly well suited for i l lustrations here, because i t  was 

designed using a formalism similar to our own, albeit implicitly and informally. 

The processing occuring between parts b and c of Figure I ,  that of recognizing re- 

served words, can be conveniently described via transformations on the trees in- 

volved. For example: 

Of course, we already know how to implement an eff icient processor corresponding to 

such a transformation. In particular we would do so via a string-table look-up 

mechanism, and in our compiler-writing language we would use strings rather than 

trees to represent the words. But never mind the details; we are interested in the 

processing on a conceptual, rather than an implementation level, for our purposes 

here. 

1.2 Standardization 

Specification and processing beyond the syntactical level can usually be simplified 

i f  the abstract syntax tree is transformed into a standard form according to lang- 

uage-specific rules. Since PAL is modelled on the lambda calculus [ Wozencraft 

1969 ] several construc~in the language can be mapped into applications (y) of 

lambda expressions (~) to other expressions. The processing occuring between parts 
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d and e of Figure 1 implements th is modelling v ia the transformation: 

X E1 X E2 

We emphasize that the reader need not understand the underlying semantics, but 

should be concerned only with the tree transformation. 

Another PAL construct, the where expression, has the same meaning as the let expres- 

sion. The following is an alternate for the program of Figure i :  

x + I where x = 3 

The semantic equivalence of the two constructs can be precisely stated (not the se- 

mantics, but the equivalence} by mapping both into Y and L nodes; 

X E1 X E2 

Alternatively, we could have mapped one construct into the other; e.g. 

X El X E1 

In any case we may regard the resulting tree, after transformation, as being in a 

standard form. 

1.3LE]attening 

Part f of Figure 1 shows the program partial ly flattened into "pseudo code" ready to 

be further translated into "machine code". By "pseudo code" we mean the control 

structure (program) for an "ideal" machine, ideal in the sense of conceptual simpli- 

c i ty for defining the semantics of the language being translated. By "machine code" 

we mean the instructions for the actual (real) machine for which code is being com- 

piled. 

Pseudo code is typically prefix or postfix notation plus pointers. Expressions are 

typically flattened into the simple linear notation, but control constructs and pro- 

cedures are linked together via pointers appropriately embedded in the linear nota- 

tion. Looked at another way, the pointers link the l ists of linear notation (expres- 

sions) together. 
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Exa~l e. 

|tee: 

Grammars to specify the partial flattening of (standardized) trees into pseudo code 

are currently under research and are not a matter of main consideration here. How- 

ever, for completeness we give a "flattening grammar" for PAL below. I t  is a "tree- 

to-string transformational grammar" and is described briefly below after we further 

describe and i l lustrate " subtree transfo~ational grammars". 

2~..~Description of Subtree Transformational Gran~ars 

A transformational grammar consists of input and output vocabularies of node names, 

and a vocabulari~ of variables, and a f in i te set of transformations. Each transfor- 

mation consists of two parts, an "input template" (tree pattern) and an "output 

template". These two correspond to the left  and right parts, respectively, of a 

type 0 grammar [Chomsky 1959]. However, in this case the intent is to reorder, ex- 

pand and/or contract a local portion of a tree, rather than a local portion of a 

string. 

To "apply" a transformation we f i r s t  find a subtree such that the input template 

matches its top. This establishes a correspondence between the "variables" in the 

input template and subtrees of the matched one. We have used uncircled nodes, 

labelled with identi f iers, to indicate the variables above; i.e. X, El, and E2. 

Fir~aily, we restructure the part of the tree involved in the match, so that the 

outl)ut template wi l l  match i t ,  maintaining the correspondence between variables and 

trees established by the input template match. In general, this wil l involve re- 

ordering, duplicating, a~/or deleting the subtrees corresponding to variables in 

the in i t ia l  match, as dictated by the number and position of occurrences of each 

~ist inct variable in the input and output templates. In summary, each application 

involves a structural match and then a structural change. 

Consider the "!uet transformation",indicated above,applied to the following 

x _Cide.tifile  
Q ~ [identifier) (identifier) 

6 
whex-e ~e have indicated in an obvious way the subtrees matching the variables X, El, 

and E2. After applying the transformation the tree looks like: 
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@rder of application, o.f transformations. I t  happens that for PAL, almost all of i ts 

~del l ing rules can be. reasonably expressed via transformations. Furthermore, these 
as a sel~ 

tramsformations/bave an innate bottom-up bent to them. The transformations may not 

~e appl icable to one part o f  the tree un t i l  what is immediately below that part has 

~eem transformed to standard form. We shal l  see th is  below, r e l a t i v e  to the stand- 

ard iza t ion  of PAL's wi th in construct,  in pa r t i cu la r ,  and re l a t i ve  to the unfactoring 

of factored PLII a t t r i bu tes .  
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]hum. for PAL at least, and we suspect for other lanQuaqes, there exists an important 
class of transformations which we describe as being "bottom-up". I t  is important, 

then, that any corresponding language processor, or "transformer", search the tree 

being standardized from the bottom up. In fact, even more "efficiency" may be 

gained i f  the transformer is "fed" or "driven" by some other mechanism already pro- 

cessing the tree ~n a bottom-up order, especially i f  that mechanism "knows" which 

nodes are to be transformed. We conclude that i t  makes sense to attach a bottom-up 

transformer to a bottom-up parser within our compiler .... We emphasize, however, that 

by "bottom-up parser" we mean one that builds i ts abstract syntax tree from the 

bottom up, independent of the strategy i t  may use in parsing. 

Some theoretical foundations for these transformational grammars already exist 

[Rosen 1973]. rn particular, Rosen gives sufficient conditions for guaranteeing 

that ,  no matter what order of application of transformations is used, a unique 

standardized tree w i l l  resul t  for  a given set of transformations and a given i n i t i a l  

tree, assuming in f in i te  loops are avoided, of course. 

A linear notation for trees In l ight of the general lack of fac i l i t i es  for process- 

ing two dimensional languages, i t  behooves us to provide a linear notation for re- 

presenti~ trees. In our application we have no a priori knowledge of the number of 

descendants associated with nodes labelled with any particular symbol. Furthermore, 

we do not even require that a given symbol always be associated with the same number 

of descendants; i .e .  we do not l imi t  ourselves to "ranked" trees. 

An adequate convention for our purposes could be described as "Polish prefix nota- 

tion with brackets, say <>, around interior branch nodes~ sometimes called 

"Cambridge Polish". Consider the tree diagram: 

where we have added brackets around al l  nodes except the root and the leaves. The 

tree's linear representation is: 

' l e t '  < '= '  'x' < '+  'y' ' i ' >  > < ' * '  'x' '3 '  > 

Informally, an algorithm for "printing" the linear representation of a tree is as 

follows: starting at the root, travers~ the tree from lef t  to right printing the 
• preor~er 

name of each node as you f l r s t  come to it~ except that i f  i t  is a branch node other 

than the root, print a le f t  bracket <just  before the name and print a right bracket 

>upon returning to the node for the last time. 

Thus, our " let  transformation" from above is written: 

i l e t l  <,=t X E1 >E2 ~-> '~  < '~' X E2>E1 
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3. Compiler Structure 

The implications regarding compiler structure of our examples and observations above 
are depicted in Figure 2. There we find the usual scanner module refined into two 

components: The part that actually scans the characters (a f ini te-state machine) 

and the part that recognizes reserved words (a t r iv ia l  transformer). Similarly, we 

have two "phases" at the syntactic level: the actual parser (a "tree-building" 
deterministic pushdown automaton) and another transformer. 

Source code 

~ characters 
lexical I SCAN 

level SCREEN 

syntactical 

level 

static I 

semantic 

level 

f in i te  state machine 

t r i v ia l  transformer 

~ tokens 
PARSE deterministic pushdown automaton 

STDIZE bottom-up transformer 

Jt standardized tree 
DECLARE I top-down tree automaton 

i 

TYPE I bottom-up tree automaton 

J ~ semantic tree 
I 

FLATTEN n top-down tree automaton 

J control structure (pseudo code) 
t 

GENERATE I 
CODE 

instructions (machine code) 
Target code 

A Conceptual, i f  Not Actual, Compiler Structure 

Figure 2 

The transformations we envision happening at this second level are dist inct ly  nontriv- 
ial .  In fact, in most current compilers they happen only impl ici t ly and are buried 

indistinguishably in that amorphous lump called the "code generator" or "synthesizer". 

One reason that this latter "semantic" phase of compilation is so complex is that we 
have not yet recognized that, indeed, part of what happens in that phase is really 
syntactic; i.e. is involved with changing, or working around, the original form of 

the program. 

We have l i t t l e  to say here about the "static semantic lew l "  indicated in Figure 2. 
Let us merely note the following. The module call~ DECLARE is assumed to traverse the 
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standardized tree from the top down, entering declarative information in a "symbol 

table" (better termed a "declaration table") and depositing that information at the 

leaves of the tree; i .e. this module checks scopes of definitions to see that each 

name is declared as i t  should be and associates declarative information with uses 

of names. The raodule called TYPE is assumed to process the tree from the bottom up, 

checking the type compatibilities of operators and operands (and perhaps transform- 

ing the tree by inserting "coercion operators") by using the declarative information 

distributed through the tree by DECLARE. 

The "attribute grammars" of Knuth [Knuth 1968 ]appear to be an appropriate descrip- 

t ive mechanism for specifying the declarative and type compatibility aspects of 

progra~ing languages, and therefore, for specifying the modules DECLARE and TYPE. 

Other lecturers have more to say about these and similar grammars. 

The module FLATTE~J is intended to change the representation of the program into a 

mostly linear one. I t  also is a tree automaton that proceeds from the top of the 

tree to its bottom, flattening i t  mostly back into linear form. 

In the module GENERATE CODE machine-dependent addresses are computed, registers are 

allocated and machine code is generated. A well designed compiler wil l  have all 

dependencies on the target machine isolated in this module. As indicated in Figure 

2 this module is a rather large one relative to the others found there. I t  appears 

that further spl i t t ing of this large module into smaller ones requires horizontal 

rather than vertical fragmentation; i.e. its internal modules seem to need to operate 

in parallel, even conceptually. Again, we leave further discussion of this point to 

other lecturers. 

4. Further Exagples of Transformations 

4.1 Local Effects 

The let  and where transformations given above have str ic t ly  local effects on the trees 

to which they are applied. This is because they do not interact with themselves or 

other transformations to have a global effect through repeated application. 

4.2 Global Effects 

The within construct of PAL is standardized as follows: 

A E A B E B 
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Note that the '=' node with lef t  descendant B moves up the tree relative to the other 

modes and subtrees. Furthermore, i f  in an actual tree, a given ~within' node is the 

right descendant of another one, the transformation will apply twice: f i r s t  to the 

lower node and then to the upper one. Consequently, the (B, ~=') pair wil l  move up 

two levels. In general, the pair wil l "bubble" up the tree "through" any 'within' 

nodes above i t .  

Let us consider a specific example: 

where E×, Ef, and Eg denote subtrees whose internal structure is of no interest 

here. We have given above all the transformations that relate to our specific PAL 

example. Note that we have no choice of order of application in this case. We must 

apply the within transformation to the lower 'within' node. 

The result is: 

X Ex 

g 

#~ext we may only apply the within transformation to the remaining 'within' node, giv- 

ing: 
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Finally, the let  L transformation produces; 

Semamtic motivation 

x 

~ E g  Ef 

The within construct defines an own variable "within" another 

definition. The name actually being introduced by this let  construct is "g". Its 

scope of definition is the subtree which is the right descendant of the "let" node. 

Imagine how d i f f i cu l t  i t  is to describe scopes of definition, in general, in the 

context of "within" nodes! However, after standardization, scopes of definition are 

easy to describe: the scope of a bound variable ( le f t  descendant of the '~' node) 

is the body of i ts  lambda expression (right descendant of the '~' node)...with the 

usual stipulation that a contained lambda expression with the same bound variable 

defines a "hole" in the scope. 

For the sake of the programmer/reader, i t  Was convenient at the source code level to 

have "g" and "=" grouped with E . However, for the purposes of semantic-definition, g 
translation, and evaluation (execution), i t  is convenient to have "g" grouped with 

both the subtree over which i t  is defined and i ts total definition, including own 

variables. Imagine the antics that would be necessary to get the desired effect via 

a stack-like s~nbol table i f  a compiler had to work with the program in i ts original 

order~ The problem gets another order of magnitude more d i f f i cu l t  when we add to the 

]angauge the and construct described below (for "simultaneous" definitions). 

On the other hand, i f  we appropriately standardize our abstract syntax trees before 

further processing, the addition of a new construct to a language is more l ikely to 

have a linear, than a multiplicative or exponential effect on the size of our com- 

pi ler .  In PAL's case, for example, the difference between the compilers for the 

language with and without the and construct need be only: ( i )  one extra transforma- 

tion to recognize the reserved word and; i .e. one extra entry in the string table, 

plus (2) a few additional states in the parser, plus (3) one extra transformation to 

standardize each occurance of and into other constructs already in the language. A 

simi]ar statement can be made about the within, let,  and where constructs, since the 

lambda notation is directly available in PAL. 

4.3 Iterative Transformations 
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In some cases a transformation must be applied to some of the same nodes i t  has just 

been involved in transforming. A case in point is the well known optimization which 

minimizes the number of registers necessary to sequentially compute nested sums. 

The optimization can be described as follows: 

A B~C 
BU C 

We have emphasized above that the transformation works most simply i f  i t  is applied 

in bottom-up (BU} order. Then, we can be sure that the subtree corresponding to 

"B + C", relative to the input template, has already been "optimized". Thus, we can 

guarantee that the subtree matching C does not have a '+' node as i ts  root. 

S t i l l ,  the B stubtree may have a '+' root. Thus, after the in i t ia l  transformation, 

we must try to apply the transformation again, this time to the resulting "A + B" 

subtree. We have indicated this necessity above via the key word xfm. In general, 

the second application may result in the need for a third, and so on, unti l the tree 

is converted to a le f t - l inear  l i s t  of '+"nodes. 

I f ,  instead of using BU order, we apply the transformation f i r s t  to the topmost '+' 

node of any connected set of '+' nodes, the in i t i a l  application generates three 

points at which the transformation must be tried again. In particular, since in 

this case the tops of the three subtrees corresponding to A, B, and C may be '+' 

nodes, we must t ry  again at the two '+' nodes constructed by the previous applica- 

tion, as well as at the top of the A subtree. Diagramatically: 

A TD x f m ~  / ~ C 

xfm A B 

Without going into details that are irrelevant to our purposes here, we note that in 

general the top-down (TD) version of this tranformation causes fewer structural 

changes to occur than the BU version when standardizing the same tree. In fact, the 

BU version is probably exponentially worse for large trees (probably irrelevant to 

compi]er-writing practice since large expression trees are unco~non [Knuth 1971]). 

The problem is basically that the BU version linearizes each subtree and then absorbs 

i t  into a containing subtree, one node at a time. The TD version, on the other hand, 

starts at the top and works only along the le f t  edge of the tree, gradually absorbing 

nodes to the right into a longer and longer le f t  edge. Thus, i t  does not unnecessar- 

i l y  linearize right subtrees, as the BU version does. The reader should get a feel 

for this by trying an example with, say, seven or nine nodes, i n i t i a l l y  arranged in a 

right l i s t .  
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4.4 Extension to Regular Expressions 

Given the l i near  notat ion used above, i t  seems natural to use regular notat ion,  i . e .  

Kleene closure (*) and union (1), to indicate even larger  classes of trees. The 

closure operator, or "s tar " ,  allows us to describe "bushes": trees with nodes that 

may have any arb i t ra ry  number of sons. The union operator, or "bar",  allows us to 

concisely describe trees with one of several a l ternate structures. The combination 

of the two can substant ia l ly  increase the l i ngu i s t i c  power of our transofrmational 

notat ion.  

The fo l lowing is a simple example using just  a star:  

'and' < '=J X E > * => '=' < ' , '  X * > < ' , '  E * > 

or in a diagrammatic notat ion: 

This transformation is intended to standardize the and construct of PAL, which ex- 

presses simultaneous de f in i t i ons .  (Semantics: In such, we evaluate a l l  the expres- 

sions (Es) before makin 9 any name-value associatinns.) 

In words, the t r ans fom~ ion  states that an 'and' node having zero or more sons, 

each of which is an '=' node with two sons, cal led X and E, respect ively,  should be 

transformed to an '=' node having two sons: ( l e f t )  a ' , '  node with the X subtrees 

as descendants, and ( r ight )  a 

example: 

X1 El X2 E2 X3 E3 

' , '  node with the E subtrees as descendants. For 

= >  

is one of an arb i t ra ry  number of speci f ic  transformations indicated by the above. 

PL/I At t r ibutes As a f ina l  substantial example, we give three transformations to 

describe the unfactoring of  factored a t t r ibutes in PL/I declarat ions. The t ransfor-  

mations are described as they would operate in a bottom-up order. F i rs t  we give a 

sample tree to indicate what is to be standardized: 
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( declare ) 

In the PL/I program this would have appeared something l ike :  
declare (x, (y, z a6) a4 a5, w) al a2 a3; 

where the a i denote at t r ibutes such as FIXED, BINARY, etc. 
Compilation would be s~mpler for the equivalent form: 

declare x al a2 a3, 
y a4 a5 al a2 a3, 
z a6 a4 a5 al a2 a3, 
w al a2 a3; 

We intend the two transformations given below to standardize the former to the la t -  

ter. First transformation: 

o r :  

' type' < ' , '  ( ' type' N AN* I X)* > A* 
=>  I I I I , < type' N AN* A* 'type' X A* >* 

N AN* 

X 
That is ,  d is t r ibute the attr ibutes A 

=> I N A/A/A~N_A. 

ove r  the  names X and N, t h e  l a t t e r  a l r e a d y  

having attributes AN . Collect each name-attributes sequence under a "type" node, 

and collect al l  of those under a ' , '  node. 

This transformation would f i r s t  apply (BU order) to the middle 'type' node of the 

above tree, converting i t  to a ' , '  node: 
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The second transformation, then causes a higher ' , '  node to absorb the members of 

l i s t s  below i t :  
I I I i I  X~ ~ I , I  , < I Y >  :>  ( x * l  Y ) *  

or: 

I 
=>  

To implement the l a t t e r  transformation, we must consider each son of the 

higher ' , '  node in turn. I f  i t  is i t s e l f  a ' , '  node, we associate i t s  sons 

with X; otherwise we associate the en t i re  node with Y. In the end, X is associated 

with a l i s t  of sub l is ts  and Y with a l i s t  of non- ' , '  nodes. Furthermore, there is 

an interspersed ordering among the members of  X and those of  Y. To bu i ld  the trans- 

formed tree,  we bui ld  a ' , '  node whose descendants are the elements of Y and those 

of the subl is ts  of X, in t he i r  o r ig ina l  order. 

A l l  of that  is presumably implied by that  s ingle transformation above! The resu l t  

fo r  our spec i f i c  example above i s :  

(dec] are ) 

One more appl ica t ion of the f i r s t  t ransformation is necessary to standardize th i s  

example, resu l t ing in :  
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We challenge anyone to describe th is ,  or an equivalent e f fec t ,  in general,  in only 

three l ines ( t h i r t y  is more l i ke l y )  in any ex is t ing "compiler wr i t ing  language". Of 

course we are a long way from knowing how to implement the above e f f i c i e n t l y ,  as 

yet !  

5. Summary and Conclusions 

We have indicated the usefulness of a local ized version of transformational gram- 

mars. They are re levant  to the spec i f i ca t ion  and processing of programming lang- 

uages on several d i s t i nc t  levels.  They may be used to describe: (1) the notion of 

reserved words, (2) the standardizat ion of abstract  syntax t rees,  (3) the inser t ion ,  

i f  not the movement, of declarat ive information in t rees,  (4) the inser t ion of co- 

ercion operators, (5) opt imizat ions involv ing the shape of t rees;  and probably 

others. 

Transformational grammars can be mapped into tree-transforming modules, or " t rans-  

formers". Several purposes may be served by such transformers. For example, (1) 

semantically equivalent but syn tac t ica l l y  d i s t i nc t  constructs may be mapped into a 

s ingle form, (2) inconvenient ly ordered or structured forms in the tree may be 

transformed to a more convenient form, (3) abbreviated constructs may be expanded in 

the sty le of macro subst i tu t ions,  (4) redundant or useless information may be de le t -  

ed from the tree, (5) d is t r ibu ted  information may be co l lected,  condensed, and even 

sorted, and (6) optimizing transformations may be performed at the source leve l ,  and 

a f te r  macro expansion, at lower levels .  

We suggest that techniques such as " t ree a t t r i bu tes "  and " t ree automata" are most 

useful and appropriate when applied to a standardized t ree,  rather than to a der iva-  

t ion  tree of a ~ontext- f ree gran~ar that  describes the concrete syntax of a language. 

Much more research is necded to f ind the best combination of these techniques. The 

goal should be a technique of language descr ipt ion with a d i rec t  correspondence to 

techniques of e f f i c i e n t  language implementation. 
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6 .  Appendix - N~ta-~rammars and PAL Grammars 

The author of th is  section is cur rent ly  supported by the National Science Foundation 

of the United States to develop and implement a t rans la tor  wr i t ing  system based on 

the conceptual framework presented in the current section and in the sections on LR 
In chapter 2.A 

parsing and Lexical Analysis.  /we presented two associated meta-grammars describing 

the lexicon and phrase structure of an extended form of context- f ree grammars. 

A t h i r d  meta-grammar is presented next that describes the phrase st ructure of 

subtree transformational grammars. We use the language defined by the previous 

two meta-grammars to define th i s  th i rd  one. 

Following the meta-grammar are four grammars describing PAL's lex icon,  phrase struc-  

ture,  standardizat ion, and f l a t t en ing  into control s t ructure.  PAL's declarat ion pro- 

cessing and type checking are done at run-time so no a t t r i bu te  grammars for  these 

levels  are given. 

Unfortunately,  we haven't the time nor the space to f u l l y  describe these grammars 

here. Furthermore, the notations we are i l l u s t r a t i n g  here are not f u l l y  developed 

and perfected as yet .  

Let us mention, however, that  the " f l a t ten ing  grammar" for  PAL should be interpreted 

as a " t ree - to -s t r i ng  transformational grammar". That i s ,  the input template is  to 

be interpreted normally, but the output template should be interpreted as a s t r ing 

rather than as a tree--unless t h i s  convention is spec i f i ca l l y  overridden by the 

appearance of a pair  of brackets < >, in which case a node is intended with name 

and sons indicated by the contents of the brackets. When a var iable appears in the 

output template, the in tent ion is to refer  to the f la t tened form of the associated 

subtree. 

Another topic which we have not touched on at a l l  above because i t  is s t i l l  a matter 

of research is the recursive de f i n i t i on  of nested trees and re-entrant  control 

st ructures.  Such de f in i t i ons  are marked in the grammars by the key words where and 

rec. 

We have included these grammars here more to i l l u s t r a t e  the minimum possible sort  of 

input to a t rans la to r  wr i t i ng  system than fo r  t he i r  own sakes° 
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=> 'TEANSFRMATION$' 
I- 

,I- 

L 

I- 
I 

I 
, l 

I 
|- 

I 
I 
I 

! 

.I 

I- 
=> ' E X D O  

.... | _  

|_ 
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43 I INEW_PAGE 

~5  t E e g _ e x p  
= q 6 _ |  . . . . . .  ~ _ R e g _ t e r m _ . ( _ t l ! . R e g _ t e r = = ) _  + 
~7 | I ~eq_term 
~8._1 

=) t e ..... |_ 

~9 1 Req_term 
_50 -t = 
51 I I Reg_factor Reg_factor + 
52...I .... l_Reg facto= 

53  I 
_5Q l_ ._~eg_ factor . . . . . .  
55 I : Req_primar7 

_ 5 6 _ |  . . . . . . . . . . .  |__Reg_prim~r yo.t~ ' . . . . .  
57 I | Reg_primary '÷' 

.58_|___ l_Req_p=imar7 '++' 
59 | I Req_prieary '?' 
.6~ I- ~_Req_primar7 2.~! Repetition specification 
61 1 

_62_L___Repetition_specific~tion_ 
63 I = 'INTEGEr, 

_6~__| ........ i_!(~_AINTEGER' ')' 
65 i I ' (' eINTEGER' ',' ')' .... 
_66_| . . . . . .  I__~£[ tlN_TEGER~_Z,!_'INTEGER'_!)' 
67 l 

._68_.l___9~eq_prima~7_ 
69 I = Subtree 
70_  I . . . . .  |_IX FN'_ Subtree . . . . . . . . . . . . . . . . . . .  

71 [ I 'IDENTIFIER' a :, Reg_primary 
_72 l~,.- I. 'COUNT' Reg_primary_ 
73 [ I 'STRING' 
_7Li_ ! '(' Re~exp '}' 
75 I 
36 t . . . .  Subt~ee . . . . . . .  

77 | = IIDERTIFIZR' 
_[8_..|____|__'_<t_~eg_e~_~'>' 
79 l 

81 l e n d  T r a n s f o r m e r s  

___=> , I{U_LL, 
:> I . I  

=> =el 
=> I÷i 
=> ~,.+l 
=> ,?t 

=> I REP E AT~____. 

=> =UP TO N I 
=> IN OR ~O~E I 
=> '~I TO ~2!_____ 

I_ 

=> ITRANSFORM[ ___J 
=> ICALSI 
=> 'COU~T' 

=> o~ODE~ 
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I | #NEW PAGE ****~e*******~*****e****~#**~ l | 
__2--~ # LOWERCASE • . . . . . . .  * l | -  

3 I# * PAL ~EXICON • #l 
- - . L I  # '~ "* - - l l  

S l~  * * * * * * * * * * * * * - * * * * * * * * * * * * * * * * * * *  ~ i  
.---6_1 1- 

7 1 I 
__8._| scanner~P~ 1 _~ ext, : ...................... L 

g I I 
_1~_|__Pal__tezt_-u_Tsrt id_num._l__~ext operator | Text_else: |.. 

11 
_12-_ I, TvJ[_T__S~AR~L!}[G_ WITH_AN_ IDENTIFIER OR ~U~BER. 
13 Text_id hum = (Identifier | Integer I Real} (Te~t operator | Text else)? ; 
-/4-- 
15 
_16_ 
17 
d8_ 
19 

21 
_22_ 
23 

.2 , .  1- 
25  I 
~6 . . . . . .  I .-.T KE _.BXS~C--TZY~TU~ L-~ LE ME NTS .~ _ I 
27 | 
.28. ._Identifier = Zetter_(Letter I Digit. ] ~' t|.-~ -----/L~-gIDENTIFIER'; - I  
29 Integer = Digit ÷ => * 'INTEGER'; l 
-30--I .... Re~l = Digit + ~ '. ' Digit + {'~' ........ {'+' ,_i~. ..... Dia~.t~ . . . .  ÷)~ =>..~..'RE~L': ___~ 

31 Operato~ = Operator_symbol + => • |OPERATOR, ; ] 
-32-.I __Strinq_=._'_#Q'_An7 character e_.'lQ' , . _--/~_$_.~SIRING': .... |_ 
33 Spaces = ' ' + => 'ISNORE'; 
-34 - I  . . . .  Punct~a£ion _=_'_(' .=>_@_.t(, 1-  
35 l I ')' => * ')' 

. . . . .  => ~ I . | _.36. I I ' ; '  . . . . . . .  L 
37 l I ',' => * ','; 
.38.4 I -  

# TEXT STARTING WITH AN OPERATOR. 
TexLopexatoc = Operator_{.Text_id_num |_Text_else} ?. ;____ 

__ #__T~-d[T~TAI~T~NG_WI!H INZTHiNG.. ELSE. 

Texh=els~ = Spaces_ (Text=id_num..J_Text operator..| Text other)? 
] Text other ; 

Text_other = (String I Punctuation I '#N'| Pal text? ; 

39 1 
__q0__l__# _CHARACTER SETS. I -  
.I I 

_42 l---Any=character-~=-~etter l-Digit |.operator symbol ..... L_ 
43 l l ')' l '{' l ':' I '.' I ,l#' ,N' I 'l#, 'T' I '##' 'O' 
-44-I. I '#.#'_'I~' I-'--'.--; .................... |- 
45 I Letter = 'A' i 'D' I 'C' l 'D' l 'E' l IF' l 'G' l ,H' | 'I' 
_46.l I-!J'--I~'K'. |.'L' I..'H'.I_'N' .|,'0' | 'P' l 'Q' I 'R'- ...... |.__ 
47 I I 'S' I 'T' I 'O' I 'V' I '~' | 'X' l 'T' 1 'Z' 
_48J [_ 
49 | Digit = '0' l 'I' I '2' | '3' I '~' I '5' I '6' I '7' I '8' I '9' ; 
-50 ._I 
51 | Operator_STmbo I = t+, I ,_i | I,I I 0<0 I t>, I '8 i | g.~ 

53 l 
-.5~__ lena PaZ_te xt 
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3 I |NEW_P~GE ******************************* I I  
---~-.I # * . . . . . . . . . . . . .  * t l  

5 i~'  • PJLL PHRASE S~£RUC'£U[LE • #1 
---6..I # * * .II 

7 ~) * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  I l 
-._ 8 -I . . . . . .  I 

9 I p a r s e c  P: I 
. 3 0 - I  I.- 
11 I P = ('DEF' D )+ => * *DE~' I 

- 12 - I ........ I-.Z--; ............. l 
13 I E = 'LET s D 'IN' E => * 'LET' l 

15 1 I Ev ; I 
a R l . . . . . . .  --16_,l .... Ew_ ~_Ev_.._WHE. E,,_Dr____ =>__*_-21-WHE RE ' __ __.._L. 

17 I I Ev ; , I 
_18, l .... E~_~._!.¥~LOF'_C. =>____'~ ¥~£0F ' l 
19 1 l C ; l 

_ 20_._I ........... I 
21 I # COH~DS (STATEHENT-s)-. ~&**~'~'*~'*~;*v~'*'~*~'***!***Hi*&*i~**H~**~'***** #I 

_22 ~-I _I 
23 1 C = Cl *;' C => ';' 

_24..I ...... l_Cl__; ............ 
25 I Cl = ( 'IDENTIFIER' ':' ) ÷ Cc => I:* 

_26 l ..... L£c. : ............................................ 
27 I Cc = 'TEST' B '!FSO' CI 'IFNOT' Cl 
_28 .| ..... L~.[~EST'-- _B._!'iFNOT' CI_'IESO" _Cl 
29 I I 'IF' B 'DO' Cl 

_3~ .l ...... I.._'U~LESS'_ B 'DO" Cl 
31 | I )WHILE' B 'DO' Cl 
.32 J ...... I_'UNTiL~ .... S ~'DOL Cl 
3 3 1  I CB : 
_3~__l__~:b--- = T_'_: ='~__ 
35 l I 'GOTO' R 
36 . |  z ..... |__.'EEEi2 
37 ! | T ; 

I 
l 

I 
.... | 

=> * '~ RSO'!FNOTt I 
=> H JIFNOT-IFSO' __J__ 

=> * 'IF' I 
~>H 'UNLESS' [ 
=> ~ tWHILE' I 
=>~ .~UNT!L ~ 

! 

~> ' :=' L 
=> 'GOTO' I 

! 
38 I ............................ 
39 1 

~rj. -I 

. . . . .  i 
# T'JPLE EXPRESSIONS. ****************************************************** #I 

L 

41 | ~ = Ta ( ',' Ta ) + => ',TXU' I 
42 ! ....... ~ Ta_; I 
43 I Ta ~" Ta 'AUG.' Tc => 'AUG' I 

45 
_46_ 
47 
48 
,9 
59 
51 
-52- 
53 
54 
55 
56 
57 
58 
59 
6C 
61 

Tc = B '->' Tc 'I' Tc => *''->' I 
L_JL: _ _  , I_ 

I 
_ # BOCLEAI~ EXPRESSIONS. ****************************************************** #I 

I 
,. _B. =-B.-tOR' Bt___ 

Bt ; 
.-_~t .~-.3t---'8-'~S-- 

Bs : 
ES = 'BOT'. Bp 

Bp ; 
_ _Bp =-A RI_A 

X ; 

. . . .  Ki_--.,_3~ ~'_ 
)GE' 

...... I .'LS '~ 
'LE o 

62 1 . . . . .  l -,¶EQ- I 

= >  f O X '  .t _ 

I 

1 
_=>_ ~ I lOT '  ] _ 

• I 

I 
- - > ~ .  ' G R '  I 
=> 'GE' I 
=> _ 'LS' I._ 
=> 'LE" I 
_==> _ ._'~ EQ' I__ 
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_63_ ~ . . . .  ~_:..~rE, =>_.  _3EE,  1--- 
6 ;  I ; " > '  => '~;N = I 
-65_~ ! .- ~--< ' .-=>----'-L S~-4 I-- 
66 ~ ! 
.67- | .__.|_.k~ITH~ETIC--EX PRESSIONS ._*******~,**t********************~,*****************_ ||._ 
68 l l 
.69 l _ - - / _ _ - - - - - X - - ! + '  1~" =>---'-÷'- .1- 
70 I ! ~ ' - '  At => ~ - '  t 
-3d--|- 4 ' ' ~  __F>. 'UNSH~RE ~ . . . . . .  I_ 
72 | | '-' At => 'NEGATE' ! 
-73.._1 ---l-At-- ; ! _. 
7q I At = ~t '*' Af => '*' l 
_75~ l__At~!/'~ f ....... 9> '/3 l -- 
76 ! ] Af ; 
-~7--| ..... Af-~--Ap ' * * '  ~f . . . . . . . . . . .  ~>---£**~---. | -_ 
78 ! I Ap ; 
-79- I ~p. ;--ap--!~' ' I~ENT I FIER'-- E-- - =->----' ~'= ................... | _  
80 I l '$' R => 'UNSHAEE' 

~ 1  -I .... I - L ;  .I -. 
82 l 
-83 - t  ---# -R~TORS_AND~..RANDS_(OPEE~TO~S ~ND OEEE~NDS).._**~)~)******'~**=**.***~**~**~*.~_*~_~# I -  
8q I 
85 I __L ~..E_Ra ~=> .... 'G]~MMA'. 1-- 
86 I I Rn ; 

-87 I --~n = '=IDENTIFIER' ............ |_ 
88 | I 'INTEGER' 
-89 -I ------I _'=-RE ~ i' l - -  
90 ] l ' STRING' 
.91 ! .......... |__'TRUE! 
92 I l 'FALSE' 

_93 | . . . . .  |.._~N IL" 
9~ l l '(' E ')' 

-95_ I- %--'-D~M7-' 
96 

. 97  
98 
99 

100 
10 1 
102 
103 
lr,~. 
105 
106 
107_  
108 

.... ~ - ~a_ '=WITHIN '_D 

I ba ; 
_._Da. ~..D~--(~'AND~r_ )_* ..... 

I Dr ; 

! Db ; 
_ - - D h _ ~ _ . V I  '='. E__. 

! 'IDENT!FIE~' Vb÷ '=~ E 
I '(' D ')' - 

110 I 

....... -->__ _'_T E~E ' 
=> ~FKLSE' 
=A_...~' NIL: ...... | _ 

! 

->____'-DUMMI'_ ; l - 
I 

. . . .  ~_ DEFINITIONS. *,~***,,~**,~**'***********t;~*~,*e~t~,~******te****~e~*t*~**~£~_#~ 
! 

2>_* __'WITHIN' |_ 

__ ~.> __* 'AND' . . . . . . . . . . . . . .  l-- 

.__~3_ *__'_REC: I - -  

=> ' =' . . . . . . . . . . . . .  - l -  
=> ' FgNZTION FO~' 

L 
=> • 'LAMBDA' 

. . . .  => *__'LK~BDA' ; .............. |. 

U 

112 I 
1~3 _| ___vb.=. !-/-IDENTIFIER ' 
114 1 I '(' V l  ')' I 
1 1 5 . 1  . . . . . .  1 - - ' ( :  ' ) '  . . . . . . .  = -> - - - - 3 . 0  ~ .; L 
116 I '71 = 'IDENTIFIER' ( ','-;IB~ENTIFIER ' ) • => 'CO~BA' | 
.~117 | ........ ~--'IDENTI~IER' _: ~_ 
118 I ! 

J 19 . - len  d_P. . . . . . . . . . . .  l -  
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- - 3 - l - I  * * 
II 
-I l 
II 
l_ 

_ 5 .  t l  
6 1 !  

---'/. - !  

* P~L STANDARDIZATION 

II 
i l L  

8 I t r a n s f o r s e r  Pal _standarization: 
--9-I 

10 I # PUT INTO STANDARD FORM. 
_ 1 1 4  
12 I ( ~ET' < '=' X Eq > E2 

_~ 311 _ I + ~ ~ ~ ~ ~ P.E L_E2 

J5- 
16 

-17.. 
18 

20 
_21_ 

22 
23 
2"  

_ 25 
26 

~ _  
28  

__:/~A~[BD&' < ' ,'__Xi__>_Z . . . .  

! 
l_ 
I 

_=>__t-'___<_'.CO~I M~ ~ ;~ ~ .>__<_.!;TA&LE~_~.._> ;1_ 
I 

=>--~' _F La~b~as I_ 
where rec Lambdas = E I I 

< [LAMBDA' Vb Lambdas > ....... if. 

I 
=>_let .T_. = 'NEW_IDE~ITIFIER! ~[n |._ 

'LAMBDA' T Applys I 
where rec Applys= E I L 

< 'GAMMA' l 
< 'LKSBDA' I Applys > ............. ____l_ 
< 'G~B~A' T Count X > | 

_ 2 9  I . _ ! ~ I T H I N  :._<_~_=_'_X_~I>__<_.~. = '  ~_E~7>_ . . . . .  _ - - > _ ' = ! ~ .  < 'GAMMA'  < : L A M B D & ' .  :[ E~/.._> E:O__;_I_ 
3O I 

_31 I. - ~*~RECt_~'--_'_X_ E>~ 
32 

_33 .... (_tIFS O_IF NOT L_B _EI._E2 
3~ I II?NOT_IFSO' B E2 El 

_35 .I - ' . ~> '_B  El E2 
36 

_.3~ . . . . .  'IF_' B S_ 
38 

~9- ___-~SNLB SS*--~S 

__.¢~3. l. 
~ I ':' N S 

_~5_| 

~6 I #~EW_PAGE 

~8 I I  ADD IN A NEW LABEL, 
_.q9 -I 
50 I l:, R < 'DELTA' < ',' L ~ > S > 

-5_I_ I 
52 I # COMBINE LABELS FROM LOWER IN THE TREE. 

-53--I 

I 
=> '=' X~_ ~GAMMA*_ ~T' < ~LA~BDA* X E> > ;[ 

I 
I 
I 

=> xfm <'BET&'B El E2 >~ ....... ~I_ 
| 

=> xfs< !BETh' B S 'DURMT[__>_.~ . . . . . .  I_ 
| 

| 

I 

L 
=> 'DELT~'<", ' < ':' N S > > S ; 

=> 'DELTi ~' < ',' < '-' ~ S > L * > S ; 
I- 

.I- 

L- 
5~ I " ; '  < 'DELTA' < ',' L1 * > Bl > < 'DELTA' < ',' Lr * > Sr > 

-55--I .=> .'DELTa' < ',' .LI~ Lr*.> <__t:~_ Si.Sr_>._$|_. 
56 1 

-5~ .%--~ ~i~ ~I ~--LA BE IS_ F~O~LLT-H E_ LE FT--QE_ R I G HT . ~__ 
58 I 

-594--(- w_tJ_L.~_.2_D E LT A_*_ LS_S I_> _ S r ....................... |_ 
60 I I '~ S1 < 'DELTA' Ls Sr > ) => 'DELTA' is < ':' Si Sr > 

~£t--I ....... l- 
~2 I~ BUF, BLE LABELS FROM THE STATEMENT. 

-63-I 
6q l ( 'WBILE' I 'UNTIL' ) E < 'DELTA' L S > 

-65.| __--->.~DEL~A' L.<- ('WHILE'_I_SORTILI}_E_S_A_~|_ 
66 I I 
_67_j~.BUBBLE~ABELS_I~ROM TEE_RIGOr OR LEFT AE~ OF THE CONDITIONAL,_OR BOTH.AR~S ...... {_ 

68  ! ! 
69 I-~-~DETA¶-E $i <._'DELTA' £s Sr > ............................. |_ 
70 I I IBETA' E < 'DELTA' LS S1 > Sr ) => 'DELTA' Ls < 'BETA, E S1 SE > ~ | 

_'Z'L_I 
72 I 'BETA' ~ < 'DELTA' <~,' L1 * > 31> <'DELTA' <',' Lr * > St> => | 

_73 1~ !DELTI' <!,' LI * LE * > <'BETA'_.E SI_Sr>4_I_ 
7~ |end Pal_standardization | 
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--3_ * ..... ~ ......... 
# • PAL CONTROL STRUCTDRE * 

_ _.|# * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

_ 7 _ ! f l a i t e ~ e r _ C o n t r o l _ s t r u c t u ~ e :  
8 

__Iu_THE.AP£LIC~IVR._CONS~UC~S 
TO l_l_I Rroqran => < IDELTAW Program > - -  
dL. 
12 IGAeME' Rator Rand => eGAMMAI ~tor Rand 
~3 .......................................................................... 
14 ILA~BDA' Bound_variable Body => < 'LE~BDA, Bound_variable Body > 

16 ~BETA ~ Condition True arn False_arm 

18 < 'DELT~' False_arm > 
. 1 9 _ t  ?BRT~ ~ . - -  
20 I Condition 
~I_|.__I_DA~A. STRUCTURZS, 
2~  t 'T~ ~ Expression * => ~TA~ ~ count EIpression Expression* 
~ 3 _ |  
2~  | '~3' Tulle ~ew_eleme~t => 'A~G' Tuple ~ev_element 
25 1 
~ ~ , T~ ZN~ER~-~V~~O~TR~C~ST ...................... 

2~--1 ~'__Eirst_~a±e=ent_~est_of_mtatements ............... 
28 | => < 'DELTA' Rest_of_statements > 
2~ | ~'~ First_statement . . . . .  
39 1 

i.-! 31_I ...... -_~ddress..value ..... ~A~¶:=I Address Value 

32 1 
33 _~ ____'~N S R AR Z/~aLia bl e ....... =>_!$~ Xa riable . . . . .  
3. I 
35-I-- _2WHILEL_Condition._StatemeDts_ .=>. Cs where rec Cs = 
36 I < 'DELTa' 
37__l < 'DELTa' Cs ';' Statements > 
38 I 'DU~Y' 

3 9 - 4  _~BETA' 
~0 | Condition 
~I.1 . . . . . . . . . . . .  > .......... 
~ 2  | ~U~S~' Condition Statements => Cs where rec Cs 

~ | ~DUMMY' 
A S _ |  ~ 'DELTA'.Cs_'.L[.St~t~m~_~ 
~6 I 'BETA' 
~ | Condition. 
~8 I > 
-~9 _|.___~O~OLLabel ............... ~>_~GOTOt Label . 

50 1 
~_---t~Ei~L_~abels_Block ~>__<_tDECL~RE_LABELSi .'_~!_Labels_.9.1ock~ 
52 l 
53 I _ 'VALOFL Statements ......... ~>_[VALOR' Statements 

5~ I 
- I  S .55..~__JRESLErpresmion ............. _->_._RE L_Exp~essioe 

56 1 
~7_I___#__KMODULAK_COfiPILKTIOH ~EA.TURD~__ 
58 I 'DRF' Definition => < IDEF e Definition > 
_59 I . . . . . . . . . . .  
60 lend Control_structure 

#! 
#1 

f l  
| 
I 
I 

; I  
.I- 

; I  
I 

.|_ 
I 
1- 
! 
t 

; I  
I_ 

; I  
1_ 

; !  
t_ 
! 

J _  
! 

I 
~l_. 

I 
" L  

I 
1_ 
I 
1 
I 
L 
I 

~_l_ 
! 
L 
I 
t _  
! 
!_  

_ _ ~ . l  _ 
I 

,~1__ 
1 

- !  
I 

I 
] _  

:1 
I 
I 
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CHAPTER 2.F. 

TWO-LEVEL GRAMMARS 

C. H. A. Koster 

Technical University of Berlin 

Berlin, G~rmany 

1. Context sensi t iv i ty  

1.1 On the borderline between syntax a ndsemantics 

In the def in i t ion of ALGOL 60, a clear dist inct ion was maintained between the syntax 

and the semantics of the language defined: syntax is concerned with the form of things, 

semantics with their meaning. 

The syntax was defined rather formally, in dist inct ion to prose definit ions which are 

in use even now. 

As an example, contrast the syntactic def ini t ion of arithmetic expressions now consid- 

ered classical in section 3.3.1 of the ALGOL 60 Report [Naur 62] with the following 

def in i t ion,  taken from the description of the BASiC-System of a large computer manu- 

facturer: 

EXPRESSI~tS 
Two types of expressions are considered by BASIC, arithmetic and relat ional. 

Arithmetic eypressions are rules for computing a value. Arithmetic operators may 

not appear in sequence and must be exp l i c i t l y  stated. The following are inval id 

arithmetic expressions: 

OPE~IDS 
An operand i t s e l f  is a va l id  expression, 

There is no doubt that, for the compiler-maker, rigorous syntactic def ini t ion of the 

language to be implemented is a help and not a hindrance, the use of CF grammars in 

language defini t ion has had a deep impact on the compiler-makers trade. 
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Formalization of semantics has clearly been less successful: the definitions of 

ALGOL 60, ALGOL W and ALGOL 68 al l  use some variant of the English language to state 

semantics in, with consequent trouble for the implementers. 

Upon closer scrutiny the semantics in, e.g., the ALGOL 60 Report can be divided into 

two categories: 

I) dynamic semantics: a definit ion of the effect and or value of some construct upon 

execution (Example: Paragraph 1 of section 3.3.3 of the ALGOL 60 Report). The 

dynamic semantics pertain to the execution phase of the program rather than i ts  

compilation phase, since the execution of a program generally depends on values 

supplied dynamically: In order to know what a program means, i t  has to be execut- 

ed. 

2) static semantics :admonitions, restrictions and other information about the form 

of the program, obviously directed at the compiler-maker ( te l l ing,  e.g., how to 

treat borderline cases) or even at the programmer. (Examples: Section 2.4.3 of 

the ALGOL 60 Report, the "context conditions" in [van Wijngaarden 1969] ). 

Static semantics sails under false colours: i t  is syntax expressed verbally, 

because of impossibility to treat i t  in a formal way. 

The restriction in 4.3.4 of the ALGOL 60 Report is syntactical in natur~having to 

do with matter~ which can be stat ica l ly  ascertained from the text of the program. 

I t  is also impossible to formalize by means of CF syntax. I f  the means would have 

been available, the authors of the ALGOL 60 Report would have included this restr ic- 

tion into the syntax, where i t  belongs. 

In the revised version of the ALGOL 68 Report [van Wijngaarden 1974] the context 

conditions have disappeared from semantics and are now treated by syntax alone, 

making far more use of the syntactic mechanism. 

I t  is d i f f i cu l t  to draw the optimal borderline between syntax and semantics in any 

given language definit ion (indeed, cynics might argue that, at any point in time, 

that part of language definit ion which we can treat formally wi l l  be termed syntax 

and semantics starts where understanding ends). I t  is in the interest of compiler- 

makers that a l l  matters syntactical are treated by one same helpful syntactical 

formalism. CF grammar is too weak for the purpose, a more powerful mechanism must be 

used. 
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2. Van Wijngaarden.. Grammars 

Van Wijngaarden grammars arose from the need, f e l t  in de f in ing  new programming 

languages, fo r  a type o f  grammar more powerful than context  f ree grammar, a l lowing 

the syntac t ic  t reatment of  context  dependencies. They are c l a s s i f i e d  as " two - l eve l -  

grammars" because two superimposed syn tac t ic  leve ls  can be discerned. 

2.1 One-level van Wi#ngaarden grammars 

As a f i r s t  step in de f in ing  two- leve l  van Wijngaarden grammar, we w i l l  introduce one- 

level  van Wijngaarden grammar. 

2.1.1 Defini t ion: lVWG 

A ~VWG is a 4- tup le  

G = <S,T,E,P>, where 

S=alphabet, a f i n i t e  nonempty set o f  syn tac t ic  marks, which does not contain the 

de l im i te rs  z, , , : , ~ or  . . 

T=symbols, a f i n i t e  subset o f  S +. 

E : i n i t i a l  not ion e S +. 

P = product ions,  a f i n i t e  subset o f  (~(S+-T)±) x (~S~)  ~. 

~ . I . 2  Notation 

I f  (~x : ,~y l :~Y2± . . .Zyn . )~  p, then we wr i te  x: y l ,  y2 . . . . .  y n . .  

When both x:w I .  and x:w 2. we wr i te  x:wl~ w 2. . 

2.1.3 Terminology 

A protonot ion is any member o f  S +. 

A not ion is any protonot ion P such that  

YEP:V.] 

A member is e i t h e r  a not ion and is  then termed product ive,  or  is a symbol, or  is  some 

other  p ro tonot ion ,  which we w i l l  then term a b l ind  a l l e y .  

A l i s t  o f  not ions is a sequence o f  members separated by comma's. 

A d i r e c t  product ion o f  a not ion X is  a l i s t  o f  not ions Y such tha t  X:Y.. 

A product ion o f  a not ion X is  e i t h e r  a d i r ec t  product ion of  X or  a l i s t  o f  not ions 

obtained by replac ing in a product ion o f  X some product ive member V with a d i r ec t  
product ion o f  V. 
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A terminal production of a notion X is a production of × al l  of whose members are 

either a symbol or empty. 

A sentence of a lVWG G is any terminal production of the i n i t i a l  notion of G. The 

lanfuage of a lVWG G is the set of sentences of G. 

For every symbol, one or more graphics, i ts  rePresentations, are given. 

2.1.4 Pro~ertiess 

The def ini t ion just given for a 1VWG is clearly functionally identical to that of a 

Context Free grammar. The only unusual aspect is the insistence that the members are 

denoted by strings rather than being treated as abstract elements of the set of pro- 

tonotions. This property w i l l  be ut i l ized in the def ini t ion of the second level. 

2.1.5 Example 

Following is a transscription in the present notation of section 4.2.1 of the 

ALGOL 60 Report. 
left part: variable,becomes symbol; 

procedure identifier, becomes symbol. 

left part list: left part; 

left part list, left part. 

assignment statement: 

left part list, arithmetic expression; 

left part list, boolean expression. 
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Here, 'becomes symbol' is the on ly  symbol. 

Problem: an assignment statement consists o f  a 18ft part  l l s t  fo l lowed by an 

a r i thmet i c  or  boolean expression, independent o f  the types o f  the var iab les  in the 

l e f t  part  l i s t .  Solved by s t a t i c  semantics in sect ion 4.2.4.  

2.2 two-level Van Wijngaarden grammars 

The basic idea of 2VWG is to generate the productions of a 1VWG by means of a 

grammar. 

2.2.1 Definition: 2VWG 

A 2VWG is a 6-tuple 
G =<M,S,T,E,R,P>, where 

M = metaal~habet, a f i n i te  set of metasyntactic marks, which does not contain the 

del imiters~, ~, :, ~, . or . . 

S = alphabet, a f i n i te  nonempty set of s~ntactic marks, which does not contain the 

del imi ters~,  I ,  :, ~, or . and such that SmM = ~. 

T = s~mbols, a f i n i t e  subset of S +. 

E = i n i t i a l  notionES +. 

R = metarules, a f i n i te  subset of 

(IM+~) x (S+U~M~±) * . 

Let L : {xEM+I y[(~x~,y)ER]}. 

P = rules, a f in i te  subset of 

(z((Su~L~)+-T)I) x (~(Su±Le)*i) R. 

2.2.2 Notation 

When (±x~,ly1~ ~y2 ± . . .  ~yn ~) ~ R, then we write 

x: :YlY2 " ' "  Yn " Notat ion of  metarules 

When ( z x l , ~ y l l z y  2 . . .  lyn~ ) ~ P ,  then we wr i t e  

x: y i , y2  . . . . .  Yn" Notat ion o f  ru les 

When no ambiguity a r i ses ,  the d e l i m i t e r  • may be omit ted.  Indeed i t  is only i n t rod -  

uced in th is  d e f i n i t i o n  to assert  unambiguous deconcatenab i l i t y  o f  ru les and meta- 

ru les.  

When both x: wl. and x: w2. then we w r i t e  x; wi: w2. 

2.2.3 Terminology 

Observe tha t  f o r  every m~L the 4° tup le  Gm:(M,S~,m,R ) forms a IVWG with as d e l i m i t -  

er.  In p a r t i c u l a r  L(m) is the set o f  terminal  productions o f  m. For s t r ing  x ,y  and zj 
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le t  subst (x,y,,z) denote the result of substituting x for every occurrence of ±y~ 

in z. 

A metanotion is any member of L. 

A h~pernotion is any member of (Su~Li) +. 

A Brotonotion is any member of S +. 

A notion is any protonotion P such that there is a rule (U,V)~P and there are termin- 

al productions ml, m 2 . . . . .  mn of m 1, m 2 . . . . .  mn~L such that 

subst(ml,ml,SUbst(m2,m 2 . . . .  subst(mn,mn,U)...))=P. 

A member is either a notion, and is then termed productive, or is a symbol, or is 

empty, or is some other protonotion, which we then term a blind al ley. 

A l i s t  of notions is a sequence of members separated by comma's. 

A direct production of a notion X is a l i s t  of notions V such that there is a rule 

(U,V)~ P and there are terminal productions m 1, m 2 . . . . .  ~n of the metanotions 

m I,  m 2 . . . . .  m n such that 

I)  subst(~l,m 1, subst(~2,m 2 . . . .  subst(~n,mn,U)...)) = X, and 

2) subst(ml,m 1, subst(~2,m 2 . . . .  subst(~n,mn,V)...) ) = V. 

The terms production, terminal production, sentence and language can now be introd- 

uced for a 2VWG in the usual way. 

2.2.4 Properties 

Let us call a Finite State grammar, a l l  of whose rules are of the form A-*a, where 

A is nonterminal and a is terminal, a Finite Choice grammar FC. 

We thus have a hierarchy of grammars 

FC c FS c CF c CS. 

I f  in some 2VWG Tf°r every m~L, G m is a grammar of type T or weaker, we w i l l  indicate 

that 2VWG as a r~_(~F ) • 
FC 

(CF) z CF 

CF (CF) ~ semiThue system [Sintzoff,1967] 

I t  is extremely d i f f i c u l t  to visualize a recogniser for general 2VWG; just ponder 

for instance over section 7.1.1. cc to j j  of [van Wijngaarden, 1969]. 

Consider also the problem of finding out what rules are applicable after a certain 

rule, more precisely: 

Referencing problem 

Given a 2VWG G and two hypernotions U and V, is i t  decideable whether there are 

terminal productions mi and m~ of the metanotions m i such that 
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subst (ml 'ml' subst(m2'm2 . . . .  subst(B n ,m n ,U)... ) ) = 

subst(n1~,m 1, subst(~',m2 2'" . . . .  subst(mn'mn 'V)" ")) ~ 

The referencing problem is undecideable because of the undecideability of the empty- 

ness problem of the intersection of Context Free 3anguages . 

2.2.5 ExamPle: assignment statement 

Metasyntax: 

TYPE::ARITHMETIC; boolean. 

ARITHMETIC::real; integral. 

ARITHMETIC2::ARITHMETIC. 

Syntax: 

TYPE left part: TYPE varleble, becomes symbol; 

TYPE procedure identifier, becomes symbol. 

TYPE le f t  part l i s t :  TYPE le f t  pert; 

TYPE le f t  pert l i s t ,  TYPE le f t  pert. 

assignment statement: 

ARITHMETIC left part list, ARITHMETIC2 expression; 

boolean left part llst, boolean expression. 

The del imiter~ has as usual been elided. 

This example introduces direct ly into the syntax the constraint given only verbally 

in the ALGOL 60 Report that the data types of al l  elements of a " l e f t  part l i s t "  must 

agree. 

As i t  stands the example might have been written direct ly in context free notation, 

i t  would only have been more lengthy. Consider however the problem i f  ARITHMETIC had 

had an in f in i te  number of terminal productions, as indeed the equivalent metanotion 

in ALGOL 68 has. Since there would need to be one " l e f t  part l i s t "  per terminal 

production of ARITHMETIC i t  would be quite impossible to write such a Context Free 

grammar. Either one uses the power of the 2VWG to impose the constraint syntactically 

or one must be content with a verbal statement of "static semantics". 

2.2.6 Example: defining and applied occurrences 

Consider a bare-bones language containing defining and applied occurrences of identi- 

f iers but nothing else: 
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program: statement sequence. 

statement sequence: 

statement sequence, defining occurrence; 

statement sequence, applied occurrence; 

defining occurrence. 

defining eccurrenee: define symbol, tag symbol. 

applied occurrence : apply symbol, tag symbol. 

tag symbol: letter symbol, tag symbol; letter symbol. 

letter symbol: letter a symbol; ,..; letter z symbol. 

The above IVW grammar allows us to write programs where the applied and defining 

occurrences of ident i f iers may appear in any order (except that one defining 

occurrence must come f i r s t ) .  There might be multiple defining occurrences of the 

same identif ier '  and perhaps some applied occurrence might have no corresponding 

defining occurrence. 

Our goal is to impose two constraints on the language: 

(1) each applied occurrence of an ident i f ie r  must correspond to some preceding 

defining occurrence 

(2) only one defining occurrence of each ident i f ie r  is allowed. 

To accomplish this we w i l l  proceed in several stages. First ,  a two-level grammar 

w i l l  be written whcih recognizes the same language as above but contains information 

about the occurring ident i f iers in the (nonterminal) notions themselves. 

Second, additional notions w i l l  be added to the grammar which yield ~ i f  the con- 

straint  they represent is satisfied and otherwise are blind alleys and block the 

parsing of the program. 

Metasyntax: 

(A) TAGS ; :  TAGS TAG; TAG. 

(B) TAG :: LETTER TAG ; LETTER symbol. 

(C) LETTER ; :  l e t t e r  ALPHA. 

(D) ALPHA :: a;b;c;d;e;f;g;h;i;jjk;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z. 

Syntax: 

(a) program: TAGS statement sequence, 

(b) TAGS TAG statement sequence: 

(C) TAGS statement sequence, TAG defining occurrence; 

(d) TAGS statement sequence, TAG applied occurrence. 

(e) TAG statement sequence : TAG defining occurrence. 

(f) TAG defining occurrence : define symbol, TAG symbol. 

(g) TAG applied occurrence : apply symbol, TAG symbol. 

(h) LETTER TAG symbol : LETTER symbol, TAG symbol. 
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As promised th is  grammar recognizes exact ly the same language as the foregoing. I t  

does i t  however in the rather pecul iar  manner of having the i n i t i a l  notion produce 

an i n f i n i t e  number of a l te rna t i ves ,  only one of which w i l l  not be a b l ind a l ley  since 

the l i s t  of i den t i f i e r s  represented by that production of the metanotion TAGS w i l l  

correspond exact ly to the i d e n t i f i e r s  which ac tua l l y  appear in the input stream. 

Say that we now want to introduce the constra int  that  an applied occurrence of an 

i d e n t i f i e r  must appear a f te r  i t s  def in ing occurrence. This is equivalent to demanding 

in l ine(d)  that  the production for  TAG must be a substring of the production for  TAGS 

in that same l i ne .  (TAGS i$ the l i s t  of  a l l  the i den t i f i e r s  appear to the l e f t  of the 

one being appl ied).  Let us modify that a l te rna t i ve  so that i t  w i l l  recognize the 

input i f  and only i f  the condit ion is sa t i s f ied .  

(b) TAGS TAG statement sequence: 

(d) TAGS statement sequence, TAG applied occurrence, where TAG is in TAGS, 

where TAG is in TAGSETY TAG TAGSETY2:EMPTY, ( i )  

The production ru le ( i ) ,  which we ca l l  a predicate, needs some extra metasyntax to 

be complete: 

(D) TAGSETY2::TAGSETY. 

(E) TAGSETY::TAGS;EMPTY. 

(F) EMPTY::. 

Observe that  instances of the production rule ( i )  ex is t  only when the l e f t  side TAG 

is embedded somewhere in  the r i gh t  side TAGSETY TAG TAGSETY2. This is insured by the 

Uniform Replacement Rule where the two occurrences of TAG must be replaced by the 

same (meta-)production. In the cases where an instance of ( i )  ex is ts ,  the terminal 

production is the empty s t r ing  and the parsing may continue. Otherwise th is  is a 

b l ind a l l ey ,  the condit ion is  not respected, and the parsing is blocked for  that 

pa r t i cu la r  input s t r ing.  Thus the permissible sentences of the language have been 

reduced to those where the f i r s t  occurrence of  an i d e n t i f i e r  is not an applied 
occurrence (and thus must be def in ing) .  
Mu l t ip le  de f i n i t i ons  are s t i l l  possible. Let us el iminate those using the same 

technique: 

(b) TAGS TAG statement sequence: 

(C) TAGS statement sequence, TAG defining occurrence, 

where TAG is not in TAGS; 

The predicate we need here is just the inverse of the one we used before. This time 

i t  is l i t t l e  bi t  harder since we cannot exploit the Uniform Replacement Rule direct- 

ly: 
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(j) where TAG is not in TAG2 TAGS : 

where TAG is not TAG2, where TAG is not in TAGS. 

(k) where TAG is not in TAG2 : where TAG is not TAG2. 

Hence an ident i f ier  is not in an ident i f ier  l i s t  when i t  is neither identical to the 

f i r s t  element of the l i s t  nor somewhere in the rest of the l i s t .  We must use a meta- 

notion TAG2 here which again yields TAG directly. Since this kind of construction 

wi l l  be frequently needed le t  us impose the (metameta?) rule that any metanotion 

followed by a d ig i t  wi l l  produce that metanotion. 

Now we need to verify i f  two identi f iers are not identical: 

(1) where LETTER TAG is not LETTER2 TAG2 : 

where LETTER symbol is not LETTER2 symbol ; 

where TAG is not TAG2, 

They are not identical when either the f i r s t  letters are not identical or the re- 

mainders of each ident i f ier  are not identical. 

(m) where LETTER TAG is not LETTER2 symbol : EMPTY. 

(n) where LETTER symbol i s  not LETTER2 TAG : EMPTY, 

The two i d e n t i f i e r s  are c e r t a i n l y  not  i d e n t i c a l  i f  they have d i f f e r e n t  lengths ,  

The job is done now i f  we can verify that two letters are different: 

(0) where LETTER symbol is not LETTER2 symbol : 

where LETTER precedes LETTER2 in ALPHABET ; 

where LETTER2 precedes LETTER in ALPHABET . 

ALPHABET is exactly what you think i t  is: 

(G) ALPHABET :: abcdefghlJklmnopqrstuvwxyz. 

Now f ina l l y  we can exploit the Uniform Replacement Rule to determine i f  one le t ter  

comes before another in the alphabet: 

(p) where letterALPHA precedes letter ALPHA2 

in ALPHSETY ALPHA ALPHASETY2 ALPHA2 ALPHSETY3 : EMPTY. 

This requires some more metysyntax: 

(H) ALPHSETY ::: ALPHAS ~ EMPTY, 

(I) ALPHAS :: ALPHA ; ALPHAS ALPHA. 

Thus the last piece fa l ls  into place and we have defined a language obeying both 

of the i n i t i a l l y  proposed constraints. We have accomplished this purely within the 

bounds of the formal notation and hence have avoided the p i t fa l l s  inherent in a 

natural language presentation of "semantics". 
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3. Conclusion 

We hope to have shown that two-level grammars allow to define precisely context- 

dependencies such as those that provide much of the compiler-makers daily sweat, 

and that even the forbidding armatory of van Wijngaarden grammars is understandable 

and usable by the normal compiler writer. 

To conclude we should mention the fact that there exist other and rather different 

forms of two-level grammars, the most well known being Attribute Grammars [Knuth, 

1968; Lewis et al, 1973; Bochmann, 1973; Rosenkrantz et al, to appear~ which time 

and space do not allow us to treat here. 

Acknowledgement the timely production of this lecture note would have been impossible 

without the help of Bruce Willis, who wrote the harder part. 
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CHAPTER 2.G. 

SEMANTIC ANALYSIS 

W. M. Waite 

Univers i ty  of Colorado 

Boulder, Colorado, USA 

We have already seen how the syntax of a language allows us to analyze the 

structure of a program and display i t  as a tree, but this is only a part of the 

story. Structural analysis can be used to deduce the fact that the program contains 

a binary expression whose l e f t  operand is the ident i f ie r  A, whose r ight operand is 

the ident i f ie r  B and whose operator is +; i t  cannot te l l  us how to evaluate that 

expression. The purpose of the semantic analyzer is to derive an evaluation 

procedure from the structure of an expression and the attributes of i ts  components. 

An evaluation procedure is a sequence of primitive operations on primitive 

operands, and is completely specified by the def in i t ion of the source language. The 

semantic analyzer must deduce the attributes of the various components of a 

structure, ensure that they are compatible, and then select the proper evaluation 

procedure from those available. For example, i f  the semantic analyzer of an ANSI 

FORTRAN compiler sees a binary expression with integer operan~s and a + operator i t  

selects the evaluation procedure for integer addition. When the operands are both 

real i t  selects the procedure for real addition, and i f  one is integer and the other 

real i t  signals an error [ANSI 1966, Section 6.1]. 

The input to the semantic analyzer consists of the structure tree (abstract 

program tree, abstract syntax tree) which specifies the algorithm, and the 

dictionar~ which provides attr ibute information° Two transformations, attr ibute 

pr0pagat!on ~ and f lattening, must be performed to obtain the evaluation procedure. 
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Attribute propagation is the process of deriving the attributes of a tree from those 

of i ts  components, while flattening (Chapter 3.E) transforms a tree into a sequence 

by making explicit the order in which the operators are executed. The result of the 

semantic analysis is an instruction sequence which may be thought of as a program 

for an abstract machine (source language ~chine, SLM) having the primitives of the 

source language [Newey 1972]. 

I .  Tree Traversal 

The structure tree may be subjected to various optimizing transformations, in 

addition to attribute propagation and flattening [Hopgood 1969]. These 

transformations may involve tree traversals, and are discussed in Chapter 5.E. 

Conceptually, each transformation takes place on the entire tree; practically, the 

scope of a particular transformation is quite limited. This property allows us to 

reduce the amount of random-access storage which must be devoted to the tree during 

semantic analysis. 

During a particular traversal of the tree, each node might be encountered in 

three contexts: 

ao As a descendent of another node (Erefix) 

b. After traversing a subtree descended from the node, when further 

remain to be traversed ( inf ix) 

c. After the last descendent subtree has been traversed (postfix) 

subtrees 
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I f  a node has only one subtree (e.g. the node for a unary operator), then no i n f i x  

(type b) encounters occur. Many in f i x  encounters w i l l  occur, however, i f  a node has 

many subtrees (e°g. the node for a conditional or a case statement.) Actions may 

be taken each time a node is encountered, and may depend upon the type of encounter 

as well as information contained in the tree. 

The f i r s t  "traversal" of the structure tree can be performed as i t  is being 

bui l t :  Each node of the tree corresponds to some production of the grammar for the 

source language. Suppose that the syntax analyzer can determine, without actually 

analyzing i ts  components, that a part icular production must derive a segment of the 

input text+ (Such a determination would usually be made on the basis of some unique 

prefix, such as the i f  which begins on ALGOL condit ional.) Making this 

determination is equivalent to a prefix encounter with a node in the structure tree. 

Any action which is appropriate to such an encounter, and which does not require the 

actual linkages of the tree, may therefore be taken. Similarly, i f  the completion 

of one component can be detected appropriate i n f i x  actions may be taken at that 

time; any postfix actions may be taken when the production is actually applied to 

reduce a segment of the input+ 

The evaluation procedures specified by the language def in i t ion,  plus the degree 

and type of optimization desired, determine the number of traversals which must be 

made over the structure tree and the pattern in which they are to be made. This, in 

turn, determines the storage requirements of the semantic analyzer. For example, 

suppose that a small part of the tree must be traversed several times in sequence, 
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no other part of the tree is examined during the sequence, and this part of the tree 

is not examined at any other time. I f  the entire tree is composed of subtrees with 

these properties, then random-access storage is required only for the largest 

subtreeo Many existing compilers make such assumptions, although in some cases 

there is no theoretical l im i t  to the size of the subtree which must be stored. The 

compiler then either accepts subtrees whose size depends upon the amount of storage 

which the user has allocated for the compiler during the current run, or i t  sets an 

arbitrary l im i t .  Examples of the subtrees picked are FORTRAN statements and program 

units, ALGOL expressions, and PASCAL procedures. 
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When more extensive trees must be traversed several times, they are usually 

represented by some l inear encoding and written to an intermediate f i l e .  The 

encoding is o~ained from an i n i t i a l  traversal, which may be combined with the 

construction of the tree. Two basic strategies are available for processing a 

l inearized structure tree, depending upon the manipulations which are required: 

a. The fu l ly - l inked form of each relevant subtree can be reconstituted from 

the linearized intermediate form. 

b. The linearized intermediate form can be used direct ly.  

Care must be taken when using strategy (b) to ensure that the nodes of the tree are 

specified in thE; proper order. 

One of the simplest l inearizations of a tree is postfix notation: Prefix and 

i n f i x  encounters are ignored during the traversal which creates the linear encoding; 

a postfix encounter causes the specification of the node to be written to the 

intermediate f i l e .  In many cases the linearized form can be used ({ irectly, and 

recovery of the complete tree is a straightforward task. 

Some operators influence the interpretation of their operands, but in a postfix 

string the operator is not encountered unt i l  after the entire operand has been 

processed. I f  a pref ix encounter of a node in the structure tree causes output of 

the node specification, while i n f i x  and postfix encounters are ignored, each 

operator preceeds i ts  operands in the linearized form. This prefix notation allows 

an operator to influence the processing of  i ts  operands when the linearized form is 

used di rect ly ,  but considerably more storage is required to generate i t .  An 

arithmetic operator, for example, is not encountered in most source language text 

unti l  after i ts  f i r s t  operand. To obtain the prefix notation, the subtree 

representing the entire expression would have to be bu i l t  before any specifications 

were output. 

Another useful representation of the structure tree is a l i s t  of n_-t~ples. Each 

node is represented by the n-tuple (operator, operand l ,  . . . .  operand k, name.) 

"Name" is a unique ident i f icat ion associated with this node, and each operand is the 

name of a descendent node. Nodes with dif ferent numbers of descendents could be 

represented by different-length tuples, or by tuples of the same length with a 

special operand to indicate "no descendent°" The most common case is n=4, with a l l  
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tuples the same length. 

Because each node of the tree is given an explicit name, the n-tuple notation can 

describe general directed graphs. This property is useful for certain kinds of 

optimization, such as common subscript elimination, but the presence of explicit 

names increases the bulk of the intermediate f i l e  and requires additional 

capabilities for cross-referencing. I f  the order of the n-tuples is fixed, the 

explicit name is unnecessary. Each descendent would then be represented by the 

index of the descendent tuple in the l i s t ,  with 0 indicating that the descendent is 

absent. 

2. Attribute Prqpa~ation 

The declarative part of the program specifies the attributes of the leaves of the 

structure tree. These attributes must be used to deduce the attributes of entities 

resulting from the evaluation of subtrees. For example, consider the ALGOL 60 

expression of Figure 2.1a. The syntax of the language allows us to create the 

structure tree of Figure 2.1b, and the mode indicated for each leaf is given in the 

declarative part of the program. By using the semantic rules stated in Section 

3.3.4 of the ALGOL 60 Report [Naur 1963], we can deduce the modes of the subtrees as 

shown in Figure 2.1co 

A simple mechanism suffices for the case illustratLKl in Figure 2.1: Maintain a 

stack of modes (the semantic stack.) which is updated as the structure tree is being 

built. A postfix encounter with a leaf places the mode of the corresponding entity 

onto the stack; a postfix encounter with an interior node causes the semantic 

analyzer to apply the appropriate rule to the two modes on top of the stack. These 

modes are removed and the proper result mode is entered in their place. (The result 

mode would also be used to modify the tree.) 

Suppose that the rightmost leaf of Figure 2.1c were -2. According to Section 

3.3.4.3 of the ALGOL 60 Report, the mode of kt(-2) is real. Addition is defined for 

integer and real operands, but the result is integer only i f  both operands are; 

otherwise the result is real. This leads to a semantic error, because the result of 

an integer division is defined only i f  both of i ts  operands are integer. 
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i ÷ (j+k+2) i , j , k  integer 

a) An ALGOL 60 expression 

÷ 

iJ + integer . y \  
j + 

integer / 

k 
integer 

2 
integer 

b) The structure tree for (a) 

i ~ " ~ +  integer 
integer ~ ~ 

j + integer 
integer ~ - ~  

k 2 
i ntege r i n teger 

c) After attr ibute propagation 

Figure 2.1 

Attribute Propagation 
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Finally, suppose that the rightmost leaf were the integer variable n. The report 

states that the mode of k n depends upon the value of n: for n~O i t  is integer, and 

for n(O i t  is real. Since the semantic analyzer has no w~ of determining the value 

of n, i t  cannot determine the mode of the result. 

Even though the mode of the result cannot be determined precisely, i t  can be 

restricted to either integer or real (i.eo i t  is not Boolean~ nor is i t  a string.) 

Thus the semantic analyzer could recognize a new mode (say, arith) which describes a 

value that might be either integer or realo Such a mode is called a union in ALGOL 

68. 

Application of the integer division operator to an operand of mode arithmay or 

may not constitute a semantic error. I f  this error is to be detected, a dynamic 

mode check must be included in the program. Unfortunately, most hardware does not 

permit a def ini t ive mode check on values computed during execution (Chapter 3.A.) 

Another problem is that most computers would implement integer and real mode objects 

in different ways, and would have dist inct instructions for performing addition on 

them. When one of the operands of + is an arith mode object, the compiler wi l l  not 

be able to select the proper instruction. 

So far,  I have considered only the bottom-up propagation of attribute 

information; top-down propagation is also possible, and wi l l  solve our d i f f i cu l t ies  

in Figure 2.1. The integer division operator requires operands of mode integer. 

Hence the result of the addition must be an integer, and this implies in turn that 

i ts  Operands must both be of integer mode. I f  the rightmost leaf is replaced by n, 

then there is a semantic error unless ~0. A dynamic check must s t i l l  be inserted 

into the program, but now i t  tests the sign rather than a mode. 

Top-down attribute propagation cannot generally occur as the tree is being bui l t .  

(Suppose, for example, that the operands of the integer division were reversed in 

Figure 2.1a.) I f  the structure tree is represented in postfix notation, a backward 

pass over the linearized intermediate form can be used for top-down attribute 

propagation. The algorithm is v i r tua l ly  identical to that for the bottom-up case: 

A semantic stack is used to hold specifications of the required operand modes, which 

are then tested for compatibility with the modes derived previously. 
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3. Operato_z_rldentification and Coercion 

Sections 3.3.4 and 4.2.4 of the ALGOL 60 report [Naur 1963] describe the 

relationship between operators and modes. For example, the mode of the result of an 

addition, subtraction or multiplication "wil l  be integer i f  both of the operands are 

of integer type, otherwise real." There is no attempt to specify how this result is 

obtained, beyond the statement that the operators "have the conventional meaning." 

When the compiler designer specifies evaluation procedures for these operators, 

he must use his knowledge of mathematics and of the structure of the target computer 

to implement "the conventional meaning" of each operator. One possibility would be 

to specify twelve distinct algorithms, four for each operator (e.g. integer + 

integer, intege[ + real, real + integer and real + real.) This approach is s t i l l  

feasible for ALGOL 60 because the number of combinations is not very large. As the 

number of modes and operators increase, however, the number of combinations rapidly 

becomes unmanageable. 

The solution to the problem lies in the fact that most hardware offers only a 

limited number of algorithms for performing a given operation. For example, a 

target machine might provide only two add instructions: one implementing integer + 

integer and the other implementing real + real. The other two possibilit ies, 

integer + real and real + integer, would have to be implemented by converting the 

integer operand to a real and then performing real + real. 

By stating "the conventional meaning" of addition, subtraction and multiplication 

in terms of two algorithms per operator and a single transfer function (Chapter 

3.A., Section 1.3) which converts an integer operand to ~9~], I can reduce the 

number of distinct algorithms from twelve to seven. This approach partitions the 

problem, reducing the rate at which the number of algorithms increases, but i t  

introduces the possibility of semantic ambiguity. 

Consider, for example, the ALGOL 60 expression of Figure 3.1a. Two possible 

evaluation procedures for this expression are shown in Figures 3.1c and 3.1d. (The 

expression to be evaluated at each step is enclosed in parentheses, with only the 

operand modes given. The result mode follows the parentheses; i t  is omitted i f  

there is no result.) Note that there is no guarantee that these two evaluation 

procedures are equivalent° From the general considerations discussed in Chapter 
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a := i+j a real 

i , j  integer 

a) An ALGOL 60 expression 

a + 

real j 
i j 

integer integer 

b) The structure tree derived from (a) 

(integer+integer)integer; (integer)real; (real:=real); 

c) A possible evaluation procedure 

(integer)real; (integer)r.e.a.l; (real+real)real; (real::real) 

d) Another possible evaluation procedure 

Figure 3.1 

A Semantic Ambiguity 
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3.A, Section I ,  we can conclude that Figure 3.1c might resul t  in an overflow and 

Figure 3.1d might resu l t  in a loss of precision. 

Semantic ambiguities such as th is  must be avoided in the language de f in i t i on .  

The ALGOL 60 Report [Naur 1963] and the FORTRAN Standard [ANSI 1966] do so by 

specifying d i s t i nc t  algorithms for  each operator and combination of operands. Each 

de l imi ter  token, such as the + of ALGOL 60, may be considered to represent some set 

of algorithms, such as (integer + integer) integer, (real + real.) real . Whenever 

this delimiter occurs in the structure tree, the semantic analyzer must select one 

of the algorithms in the set which the delimiter represents. In general, this 

selection (known as operator identification)depends upon both the modes of the 

operands and the context in which the entire subtree occurs. Once the algorithm has 

been selected, the operand modes which i t  requires are known. I f  the apr!ori modes 

of the operands do not agree with those required by the algorithm, then a sequence 

of transfer functions must be added to the structure tree. This process is known as 

coercion, and the sequence of transfer functions is calle~ a coercion s e ~ .  

I t  is important to note that the operator identification and coercion performed 

by the semantic analyzer are those specified by the language definition rather than 

by any particular hardware. In ALGOL 60, for example, there is no coercion 

associated with arithmetic operators; Section 3.3.4 of the report specifies distinct 

algorithms for each possi~e pattern of operand modes. A coercion is, however, 

associated with the ALGOL 60 assignment: " I f  the type of the arithmetic expression 

differs from that associated with the variables and procedure identifiers, 

appropriate transfer functions are understood to be automatically invoked." 

(Section 4.2.4 of the ALGOL 60 Report.) Further transfer functions may be inserted 

by the code generator in the course of implementing an algorithm on a particular 

target computer, but these transfer functions are machine-dependent and hence 

outside the scope of semantic analysis. 

The operand modes of a language may be thought of as nodes in a directed graph 

[Hext 1967, Jorrand 197l]. Branches represent transfer functions which convert an 

object of one mode into an equivalent object of another mode (Chapter 3.A.) 

Operator identification is then performed by finding paths from the nodes 

representing the apriori modes of the operands to nodes representing the operand 
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modes of some algorithm for the given delimiter. Each path defines a coercion 

sequence, and i f  more than one set of paths can be found a semantic ambiguity 

exists° 

More than one graph may be specified for a given language. The semantic analyzer 

would then select a particular graph on the basis of context. In ALGOL 68 [van 

Wijngaarden 1969], for example, different graphs are used for the right-hand side of 

an assignation (a stron9 position) and for an operand of a formula (a firm 

position.) The latter is a subgraph of the former in the case of ALGOL 68, but such 

a relationship is not necessary. 

I shall not discuss specific algorithms for operator identification and coercion, 

because most of those in use depend strongly upon the characteristics of a 

particular language [Hext 1965, Scheidig 1970, 1971, Woessner 1970, 1971]. 
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CHAPTER 3.A. 

RELATIONSHIP OF LANGUAGES TO MACHINES 

W. M. Waite 

University of Colorado 

Boulder, Colorado, USA 

Selection of the proper interface between code generation ant{ the analysis steps 

which preceed i t  is an engineering decision which balances two properties of the 

compilation: 

a. Most of the structure of the program is determined solely by the source 

Ianguage. 

b. Most of the representational details are determined solely by the target 

machine. 

The interface should be chosen so that most of the structure is dealt with by the 

analysis steps, while most of the representational decisions are made by the code 

generation steps. This choice can be made in a way which is largely i°ndependent of 
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a par t i cu la r  source language and target machine, i f  the fundamental concepts Of 

programming languages and machine organization are understood. 

We are interested in such features of the source language as the elementary data 

objects and operators which i t  provides, the methods avai lable for constructing data 

aggregates and control structures, and the l i f e t ime  of objects during execution. 

The features of the target machine which are of in terest  are i t s  register  

organization, i t s  memory layout and addressing structure, and the f a c i l i t i e s  which 

i t  provides for  inst ruct ion sequencing and environment speci f icat ion.  (We must 

regard the operating system, along with any software conventions in use by other 

systems, as a part of  the target machine because they may act as constraints to f i x  

the representation of certain data and operations.) I t  is not possible to explore 

a l l  of these points in deta i l  during th is  b r i e f  series of lectures;  I shall 

therefore only attempt to outl ine the most important ones. 
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I .  Data Objects 

When we solve a problem on a computer, we use an algorithm to manipulate a set of 

objects which describe data that is relevant to the solut ion.  The interpretat ion of 

these data objects depends upon the problem being solved. To implement the solution 

in a par t i cu la r  programming language, we must encode the data objects in terms of 

the pr imi t ive  constructs avai lable in that language; a further encoding is  performed 

by the t rans lator  when i t  represents the data objects in terms of machine 

pr imi t ives.  Mos t  encodings are many-to-one, and hence we must d ist inguish two 

properties of  each object: i t s  value and the interpretat ion of that value. For 

example, consider the pattern of 32 b i t s  specified in Figure l . l a .  I f  th is  pattern 

happened to be the contents of four consecutive bytes aligned on a ful lword boundary 

in the memory of an IBM System/360 computer, i t  could be interpreted as any one of 

the values shown in Figures l . l b - f .  Unless the interpretation of the data item is 

known, i t  is impossible to choose the "correct" value from among those given. 

l . l .  Encodinos. When an operator is applied to data objects, the interpretation 

of their values could be determined either by the operator or by the data objects 

themselves. For example, consider the addition of two integers. On Control Data 

0100 0000 I000 0111 I001 0110 0101 II01 

a) A 32-bit  pattern 

1 082 627 677 

b) The pattern of (a) interpreted as a binary integer 

-4 087 965 

c) The pattern of (a) interpreted as packed decimal 

.529 638 I I I  591 339 I I I  328 125 

d) The pattern of  (a) interpreted as a real 
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go) (The f i rs t  character is a space) 

e) The pattern of (a) interpreted as a character string 

STH 8,1629(7,9) 

f )  The pattern of (a) interpreted as an instruction 

Figure l . l  

Interpretations of a Bit Pattern 

6000 series machines, this could be done by executing the instruction IX6 Xl+X2. Xl 

and X2 are registers containing 60-bit words. These words are interpreted according 

to the encoding of integers, and the encoding of the integer sum is placed in 

register X6. The interpretation of the words stored in XI and X2 is determined 

solely by the operator IXX+X, and not by any property of the data objects. I f  the 

instruction FX6 XI+X2 had been executed with the same words in Xl and ×2, they would 

have been interpreted according to the encoding of f loat ing point numbers, and the 

encoding of the f loat ing point sum would have been placed in X6o 
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In contrast ,  consider the fragment o f  an ALGOL program shown in Figure 1.2a. I 

and J are references to data objects which are interpreted according to the encoding 

of  integers, and the encoding of the integer sum is the value of  the formula l+J. 

The in terpre ta t ion  of the objects referred to by I and J is determined by the 

declarat ions of  the i den t i f i e r s  I and J, and not by any property of the operator 

ind icat ion +. In Figure 1.2b the operands are interpreted according to the encoding 

of real numbers, and the encoding of  the real sum is the value of the formula l+J. 

Languages in which the in terpre ta t ion  of  a data object is  determined by the 

operator applied to i t  are called t~peless languages; those in which the 

interpretation is determined by the data object i t se l f  are called t~/ped languages= 

The attr ibute of a data object which specifies i ts interpretation in a typed 

language is called i ts  mode. I f  the mode of a particular object can be deduced 

solely by examination of the program text, i t  is termed a manifest mode° Latent 

modes, on the other hand, cannot be deduced unti l the program is actually executed. 

An object whose mode is latent must therefore carry an expl ic i t  mode indication 

during execution. FORTRAN, COBOL and ALGOL 68 are examples of languages whose data 

objects have manifest modes: All variables are declared (either exp l ic i t ly  or 

impl ic i t ly)  to have values of a certain mode, and there are different forms of 

denotation for constants of different modes. (The union modes of ALGOL 68 are an 

expl ic i t  provision for controlled latency.) In contrast, SNOBOL4 has neither 

declarations nor implied mode specifications for i ts  variables and hence the modes 

of i ts data objects are latent. 

The major advantage of mode specification is that i t  enlarges the class of 

diagnosable errors to include inconsistent use of data objects. Such errors may 
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integer I ,  J; 

. . . I ~  . . .  

a) I and J interpreted as integers 

real I ,  J; 

. . .  I+J . . .  

b) I and J interpreted as real numbers 

Figure 1.2 

Fixing Interpretation by Declaration 
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occur either when an object is created or when i t  is used. I f  the modes are 

manifest, then either kind of error is detected at the point of occurrence. When 

the modes are latent, however, both kinds are detected when the object is used 

incorrectly. Unfortunately, the actual error might have been the creation of an 

incorrect object. When an object forms part of a complex data structure, i t  is 

sometimes very d i f f i c u l t  to determine the point at which i t  was created and the 

state of the computation at that point [Dunn 1973]. Thus the error-detection 

capabil it ies of a language w i l l  be enhanced i f  the modes are manifest rather than 

latent. Moreover, manifest modes can be checked s ta t ica l ly  by the translator, 

avoiding the necessity of a dynamic check which may be costly in execution. 

l~ost machine languages are typeless, but in some cases mode information is 

carried by additional bits attached to each value [ I 1 i f f e  1972]. For example, on 

the Burroughs 5000 and 6000 series computers, descriptors (which represent addresses 

of various kinds) are distinguished from ~ (which represent values,) A 

further dist inct ion between single- and double-precision operands is made by the 

6000 series. Even when the machine language of a particular computer is typeless, 

however, there may be redundancies in the encoding which make certain 

interpretations of certain data objects impossible. As a concrete example, consider 

the representation of decimal integers on a character-oriented computer. Not al l  

bit patterns can be interpreted as valid digi ts,  and hence an attempt to perform 

integer arithmetic on arbitrary character data may lead to a processor error. Other 

examples of th is kind of redundant encoding are the addresses on IBM 1400 series 

computers and the packed decimal representation on System/360. 

Mode specification and redundancy in machine language encoding of data items 

imply that machine-independent source languages must defer representational 

decisions by providing a variety of interpretations for data objects. This variety 

may be achieved in either a typed or a typeless language. In the former, many modes 

would be available; in the la t ter ,  many operators. I shall res t r ic t  my attention in 

these notes to typed source languages. 

1.2. Primitive ~4odes. The set of a l l  modes available in a typed language can be 

divided into two classes, the primit!ve modes and the derived modes. A data object 

whose mode is primitive has no internal structure which can be discussed in terms of 
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the language° Derived modes, on the other hand, imply that the data object has 

components which can be accessed and manipulated exp l ic i t l y  within the language. In 

Section 2 I shall discuss the formation rules which allow the ~ser of a typed 

language to construct objects with derived modes; here I shall review some of the 

data objects which have direct realizations in the hardware of current computers, 

and how these ~ealizations are reflected in the primitive modes of current 

languages. The purpose of this review is to provide a basis for determining which 

decisions regarding representation of data objects should be taken during analysis 

of the source program, and which should be deferred unti l code for the target 

computer is being generated. 

Integer data objects reflect the concept of counting which is fundamental to the 

design of current computers. They are used to index ordered sets of both data 

(arrays) and computations (i terations.) Every computer with which I am famil iar 

provides hardware to implement addition and subtraction operations on non-negative 

integers. Usually there is also a natural interpretation of negative integers which 

is preserved by the addition and subtraction operations. Integer multiplication is 

often used in the mapping of a multidimensional array to a one-dimensional array, 

but this is real ly more dependent upon the implementation than upon the 

specification of the algorithm. On the Burroughs 5500, for example, two-dimensional 

arrays are represented as arrays of descriptors (Figure 1.3.) To reference such an 

array, the program places two subscript values in the stack and specifies the base 

descriptor. The f i r s t  subscript value and base descriptor are used by the hardware 

to obtain a descriptor for the desired row, and the second value indexes the desired 

element. Arrays with more dimensions are treated in the same way; no integer 

multiplication is required for subscript calculations. 

Integer arithmetic is exact. Integers can therefore be used to encode operands 

for business applications such as bank automation which require a larger range than 

that needed to (say) encode the indices of an array. Some hardware reflects this 

fact by distinguishing several lengths of integer (e.g. half- and full-word 

integers on the IEM System/360.) A machine-independent language should therefore 

permit the programmer to specify ranges of values which are relevant for his 

algorithm, leaving the choice of representation to the translator. Note that the 
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Figure 1.3 

Array Storage on the B5500 
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set of possible ranges must not be fixed, since that would require a specification 

by the programmer which does not ref lect  the true needs of his algorithm. I f  the 

language is machine-independent, any fixed set of possibi l i t ies probably has no 

relevance for most target machines either! 

The concept of a range of values must be distinguished from the concept of a 

mode. Range affects the manner in which a data object is accessed, but not i ts  

interpretation as an operando This can be seen in the description of the halfword 

add instruction of the IBM System/360 [IBM 1967]: "The halfword second operand is 

expanded to a fullword before the addition by propagating the sign-bit value through 

the 16 high-order bi t  positions. Addition is performed by adding a l l  32 bits of 

both operandsoo." (The last sentence quoted and the remainder of the description is 

identical to that for a fullward add instruction.) 

I f  a set has N elements, they may be placed in one-to-one correspondence with the 

integers O,l, .o. ,N-l. The definit ion of such a correspondence is a 

representational decision which might specify more properties of the set than 

necessary° For example, i t  would impose an irrelevant ordering on a set which was 

conceptually unordered. To avoid this problem, we must recognize the independent 

existence of f in i te  sets. The programmer or language designer can then specify 

certain sets with exactly those properties needed, leaving the choice of encoding to 

the translator. Examples of such sets are ~false, true ~ and the set of characters 

used in input/output communication. These occur so frequently that they are 

distinguished as Boolean and character modes respectively. 

Most hardware does not make expl ic i t  provision for the encoding of Boolean mode 

objects. The representation should be chosen on the basis of the available 

instructions and storage access mechanisms, in an attempt to balance speed and 

space. You should realize that actual computation involving these objects is quite 

rare. In most cases, what appears to be a Boolean expression is real ly a test 

sequence which does not require any use of Boolean mode objects at a l l .  

Different manufacturers use different encodings for characters, some of which (as 

I pointed out earl ier)  are not valid representations of integers. Hardware performs 

the conversion from external to internal representation, and special instructions 

are often available to manipulate these internal representations. In order to 
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retain machine independence, the character set must be assumed to be unordered. 

Thus two character mode objects may be tested for equality but not for relat ive 

magnitude, nor is a successor function defined. Also, range is a meaningless 

concept because of the lack of order. 

There is another important f i n i t e  set whose characteristics are determined by the 

hardware and operating system of the target computer: the set of memory locations. 

A memory location is represented by an object of address mode, which may be encoded 

in many ways. As in the case of character encodings, an address may not be a valid 

representation of an integer° The set of memory locations must also be assumed to 

be unordered, due to the dif ferent storage allocation algorithms used in various 

situations. For example, on the Burroughs 5000 and 6000 series computers, arrays 

are allocated to dif ferent segments of memory. The relationship between the 

addresses of two segments may vary during execution, and hence no ordering of these 

addresses may be assumed. (The order of elements within a single array is defined, 

however, as discussed in Section 2.3.) 

The lack of order in the sets of characters and memory locations precludes 

implementation of algorithms such as text sorting and most dynamic storage 

allocation. Each of these algorithms requires some additional ordering property 

which is not specified for the set. in the case of a sort, the desired order is 

fixed by the problem specifications and is independent of the internal 

representation of characters. The storage allocation problem, on the other hand, 

does not demand a particular order; i t  merely requires that there be some successor 

function defined on memory locations so that l inear scans of the entire allocatable 

area are possible. Both  kinds of order can easily be imposed by providing 

additional primitive functions on the elements of the set. These additional 

functions would be used to access the required property exp l i c i t l y ,  and only when 

that property was relevant. Then implementation would vary from one machine to the 

next, depending upon the representation chosen for the set. 

Most engineering and scient i f ic  applications require operands which have a larger 

range than can be economically provided by a single value interpreted as an integer. 

Also, most of these computations involve measurements which are subject to inherent 

errors. Precision may be traded for range without increasing the storage required 
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for an o~ect by interpreting i t  as a mantissa-exponent pair rather than a single 

integer° Precision is lost because some bits of the object are devoted to the 

exponent, thus leaving fewer available for the mantissa. This new interpretation of 

the object is distinguished as the primitive mode floatin~ point. Floating point 

o~ects are ordered, but a successor function cannot be defined i f  machine- 

independence is to be preserved. 

impossi~e on the same grounds. 

1.3. Mode Conversions. I t  is 

Speci f icat ion of  e x p l i c i t  ranges is also 

often useful to def ine an equivalence between 

values of  d i f f e ren t  modes. For example, Section 2.2.3.1 (d) o f  the ALGOL 68 report 

[van Wijngaarden 1969] states: "Each integer of  a given length number is  equivalent 

to a real number of  that  length number," I t  goes on to say ( in paragraph f o f  the 

same sect ion) that  there is  a value of  mode i nt equivalent to each character, but 

that the equivalence is "defined only to the extent that  d i f f e ren t  characters have 

d i f f e ren t  integral  equivalents."  

Equivalent values of  d i f f e ren t  modes general ly  have d i f f e ren t  hardware 

representations° This means that  spec i f ic  operations, cal led t ransfer  funct ions,  

are usual ly  required to implement the equivalences. Some t ransfer  funct ions (such 

as in t  to r eea.]l) may be provided as p r im i t i ve  actions in the ins t ruc t ion  set o f  the 

target computer; others may be implemented by a sequence of ins t ruc t ions .  (Note 

that  when the objects of two d i f f e ren t  modes have ident ica l  encodings no target 

machine actions are needed to implement a t ransfer  func t ion . )  

There are two d i s t i n c t  classes of  t ransfer  funct ion:  those which can be executed 

without loss of  information and those which cannot. I t  is  obvious that  a general 

t ransfer  funct ion from f l oa t i ng  point to integer cannot be managed without loss of  

information, because there are f l oa t i ng  point objects (such as 3.14) which have no 

integer equivalent .  A t ransfer  funct ion from integer to f l oa t i ng  point  does not 

have th is  problem, but remember tha t  i t  must pack an integer exponent and an integer 

mantissa to form a f l oa t i ng  point  number° I f  the o r ig ina l  integer has a larger 

range than that  represented by the mantissa port ion of  a f l oa t i ng  point object,  then 

information would be los t  in the conversion. 

Some care must be exercised in select ing representations fo r  the p r im i t i ve  modes 

of  a language to ensure that  the equivalences defined by the language are preserved 
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by the transfer functions used to implement the necessary mode conversions. For 

example, on the IBM System/360 the range of an ALGOL 68 in t  must be l imi ted to the 

mantissa range of a f l oa t ing  point object (24 b i ts )  rather than using the f u l l  range 

of  an integer object (32 b i t s . )  This l im i ta t i on  would be unnecessary for a FORTRAN 

or ALGOL 60 integer because the speci f icat ions fo r  those two languages do not 

precisely define equivalence between integer and f loa t ing  point objects. 

2. Fo~T~tion Rules 

Program structure is provided by the formation rules of a language. They are 

concerned with the grouping of data objects into conceptual units, and the 

definit ion of control structures. In this section I shall not explore the fu l l  

range of formation rules available to the user of the language, but rather shall 

concentrate upon those which are relevant for the analyzer/generator interface 

specification because they are reflected in the architecture of contemporary 

computers. 

2.1. Expressions. The concept of an expression is borrowed from normal 

mathematics° I t  is a tree written in l inear form (Figure 2.1), with each node 

representing an elementary computation. A leaf of the tree represents a computation 

which can be carried out independently of a l l  other nodes in the tree, while an 

inter ior node represents a computation which requires as operands the results of the 

computations represented by i ts  descendants. One possible evaluation procedure for 

this tree is the following: 

a. Select an), leaf and perform the computation which i t  represents. 

b. I f  the selected leaf is the root, then stop. The result of the computation 

is the value of the tree. 

Co Otherwise, transmit the result to the parent of the leaf and delete the 

lea f  from the tree. 

do Go to (a). 

This evaluation procedure is s t r i c t l y  sequential, but nothing is said about the 

order in which the leaves are selected° In ALGOL 68 terminology, the elaboration is 

collateral. One could also specify evaluation procedures which performed parallel 
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(a+b)*c 

a) A typical expression 

/ \  
+ c / \  

a b 

b) The equivalent tree 

Figure 2.1 

The Meaning of an Expression 
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computations or which selected leaves in some par t icu lar  order. 

The major reason fo r  using an expression is to avoid naming each of the 

intermediate resul ts  created in the course of  a computation: When a l ea f  of an 

expression is evaluated, the resu l t  is  anon~ous. The compiler is f ree to do what 

i t  w i l l  with these anonymous resul ts  because i t  has e x p l i c i t  control over the times 

at which they are created and the times at which they are no longer of  in terest ;  i t  

does not need to worry about whether the programmer may access them unpredictably. 

The concept of an anonymous operand appears in hardware as the re~ister  

structure. Detai ls vary widely, but f i ve  broad categories cover most computers: 

a. No programmable regis ters.  A l l  instruct ions take the i r  operands from 

memory and return the i r  resul ts  to memory. (IBM 1400 series, IBM 1620) 

b. A single ar i thmetic reg is ter .  Unary operators take the i r  operand from the 

reg is ter ,  binary operators use i t s  content as the i r  l e f t  operand and take 

the i r  r ight  operand from memory. Al l  operators return the i r  resu l t  to the 

reg is ter .  The ari thmetic regis ter  often has an extension, which does not 

have the f u l l  capabi l i ty  of  the major reg is ter .  (IBM 7090, Control Data 

3000 series, many minicomputers) 

c. Mul t ip le ar i thmetic reg is ters .  Binary operators may take the i r  r ight  

operand e i ther  from a register  or from memory; a l l  operators return the i r  

resu l t  to a reg is te r .  Some registers ~ay be paired to provide an analog of  

the extension in a s ing le- reg is ter  machine, but a l l  have essent ia l l y  the 

same capab i l i t i es .  (IBM System/360) 

d. Hierarchy° Both operands of  a binary operator must be in reg is ters ,  and 

a l l  registers have essent ia l l y  the same capab i l i t i es .  A l l  operators return 

the i r  resu l t  to a reg is ter .  This type of  machine could be considered 

identical to type (a)s with the registers and memory forming a two-level 

storage hierarchy. (Control Data 6000, 7000 series) 

e. Stack. The top n locations of the stack hold the operands of an n-ary 

operator, with the rightmost at the top. They are removed by the operator, 

which pushes i ts  result in their place. (ICL KDF9, Burroughs 5000 and 6000 

series) 
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The number of anonymous operands may exceed the number of registers in al l  cases 

except (e). Excess operands must be stored in memory, thus effect ively naming them. 

This is a representational decision which must be made on the basis of the target 

machine characteristics, and hence the interface should simply deal with anonymous 

results as such° 

2.2. Names, A name is an object which refers to another object. This concept 

appears in hardware as the random-access memory: Each name defines a cell which may 

contain any object referred to by the name. The name has a def ini te l i fet ime, 

called i ts  extent__, during which the content of the defined cell may be changed 

without affecting the name i t se l f .  When the extents of two names overlap, those 

names must define dis jo int  cel ls.  

Names can be represented by ident i f iers,  and accesses to the cel ls which the 

names define are indicated by the appearance of these ident i f iers.  A particular 

ident i f ier  is made to represent a particular name'by means of a declaration. This 

declaration has a scope which defines the part of the program over which i t  is 

val id.  Scope is a static property of the program, whereas extent is a dynamic 

property. Figure 2.2 i l lust rates the meaning of these two terms in the context of 

an ALGOL 60 program. 

A single occurrence of an ident i f ie r  may represent more than one name. For 

example, consider a local variable of a procedure in ALGOL 60. Conceptually, a new 

name is created each time the procedure is entered and an occurrence af the 

ident i f ie r  represents each of these names in turn. The extents of the names 

represented by a local variable are not d is jo int  i f  the procedure is invoked 

recursively, according to Section 4.7.3 of the ALGOL 60 Report [Naur 1963]. 

Objects of address mode are used to implement names. When a particular 

occurrence of an ident i f ie r  represents only one name, then the address used to 

implement that name can be completely specified by the translator. I f  the 

occurrence of the i~ent i f ie r  represents more than one name, and i f  their  extents do 

not overlap, then the translator can implement a l l  of them by the same address. I f  

the extents of any pair of names represented by the same occurrence of an ident i f ie r  

overlap~ then the translator cannot specify a complete address to implement that 

occurrence of the ident i f ie r .  There are three common mechanisms for providing the 
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be~n real A; 

J 

i 

! end~ l - -  

I ..... Scope 

begin_ integer A; 

t 

end.___; 

and extent 

of i~ntgger A 

Scope of real A 

Extent of real A 

Figure 2.2 

Scope and Extent in ALGOL 60 
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information to complete the spec i f i ca t ion  at execution time: 

a. Program modi f ica t ion.  The complete memory address is computed by the 

program and placed in to  an ins t ruc t ion  which is then executed. (IBM 1400 

series, II~ 1620) 

b. Indirect addressing. The complete memory address is computed by the 

program and placed into some memory location. The instruction references 

that location, and the hardware interprets i ts content as an address. (IBM 

1620, Burroughs 6000 series, many minicomputers) 

c. Address modification. The complete memory address is computed by the 

hardware at the time the reference is made. Part of the data required to 

compute the address is supplied by the referencing instruction, the 

remainder is obtained from one or more processor registers. (IBM 

System/360, Control Data 3000, 6000, 7000 series, Burroughs 5000, 6000 

series) 

Selection of  a pa r t i cu la r  mechanism is obviously a representational decision 

which should be deferred un t i l  the character is t ics  o f  the target machine are known. 

This means that  access information must be included in the spec i f i ca t ion  of  a named 

operand. For example, a local  var iable in  ALGOL 60 might be d is t inguished from an 

own var iable or a var iable local to a containing block. The code generator might 

then use d i f f e ren t  mechanisms to complete the address spec i f ica t ion in each case. 

2°3. Aggregates. An aggregate is a s ingle object which is made up of  a number 

of  d is t inguishable component objects.  These components may be unordered or ordered, 

and may be of  the same or d i f f e ren t  modes. (Most programming languages provide only 

for  ordered aggregates in which a l l  components are of  the same mode.) I f  the 

components are unordered, then each is i den t i f i ed  by a component name; i f  they are 

ordered, then each is i den t i f i ed  by an integer index. Component names are not 

computable, and hence are speci f ied l i t e r a l l y  in the source program. Indices, 

however, may be computed during the execution of  the program. 

In many programming languages, the indices of an aggregate are res t r i c ted  to a 

range of  integers° This r e s t r i c t i o n  is unnecessary; any object which belongs to a 

f i n i t e  set could be used to index an array which had one element fo r  each object in 

that  set. In order to a l locate storage fo r  the array and to access an element, a 
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one-to-one correspondence must be established between the N elements of the set and 

the integers O,l, . . .  ,N-I. This correspondence might not be implied by the 

def in i t ion of the set, and might not be a relevant property of the set for any 

operation except array indexing. Such constraints do not affect the use of the 

object as an index, although they would res t r ic t  the operations allowed in index 

expressions. For example, consider an array indexed by characters. On each 

computer, the character encoding used by the manufacturer provides an obvious one- 

to-one correspondence with a range of integers. The size of the array w i l l  vary 

from one machine to another, as w i l l  the particular element selected by a given 

character. 

Each aggregate is usually implemented as a contiguous area of memory defined by a 

base, with the position of each component specified relat ive to that base. When the 

components are unordered, then the translator is free to rearrange them i f  this 

would be advantageous. The component name is translated into a displacement, 

defined in terms suitable for the target computer, which does not change during 

execution of the program. An aggregate with ordered components cannot be rearranged 

by the translator, but component references which do not change during execution can 

certainly be converted to displacements. Even i f  the index must be computed ~uring 

execution, i t  may be possible to decompose the index expression into the sum of a 

constant add a variable part. The constant part can then be converted to a 

displacement by the translator. Thus a general reference to a component of a data 

aggregate consists of a base, a displacement and an index which must be co~ined at 

the time the program is executed. The hardware mechanisms l isted in Section 2.2 are 

used to perform this combination. 

I t  is important to distinguish al l  three parts of the reference because of the 

ways in which machines access these aggregates. For example, i t  may be that a 

particular machine instruction specifies an address and an index register whose 

content is to be added to that address when the instruction is executed. In this 

case, i t  is possible for the translator to combine the displacement with the base to 

obtain an effective base address. Such a strategy w i l l  not work~ however, on a 

machine which addresses data aggregates indirect ly .  For example, on the B~rroughs 

6700 the base is the address of a descriptor which contains a pointer to the 
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aggregate i t se l f  and specifies i ts  size. In this case, even though the displacement 

is available at compile time, i t  must be added to the value of the index at run time 

to form an effective index. The hardware then combines this effective index with 

the descriptor to yield the f inal reference. 

I t  may be that each component of an aggregate occupies only a part of an 

addressable memory location on the target computer. The number of memory locations 

which the entire aggregate occupies could then be reduced by ~acking the components 

instead of al lot t ing one location to each. This usually leads to a tradeoff, 

because the components maLv be more d i f f i c u l t  to access individually when the 

aggregate is packed. On the other hand, i f  the aggregate is heavily used as a unit, 

the d i f f i cu l t y  of accessing individual components may be irrelevant. The optimum 

representation depends upon the number of aggregates involved, the size of each, the 

frequency of access to components and the frequency of use of the entire aggregate 

as a unit. 

When an aggregate is packed, the access algorithms change: The displacement must 

specify the position within a memory location as well as the memory location i t se l f .  

Some computers allow an instruction to specify the extraction of the relevant f ie ld  

direct ly as a part of the operand while a sequence of instructions may be required 

on others. In any case, the actual instruction would be constructed by the code 

generator on the basis of information about the structure of the aggregate and about 

the position of the relevant component. 

2.4. Procedures. There are two aspects of procedure invocation: control 

interaction and data interaction. The control interaction is realized by 

instructions that transfer control to the procedure and back to the call ing program~ 

a process that involves saving status before the transfer and restoring i t  upon 

return. Data interaction is established when a procedure accesses global data or 

arguments passed by the call ing program, and when i t  returns a value to the calling 

p~ogram. 

I t  is useful to distinguish three components of the control interaction: cal l ,  

entry and return. Implementation of a procedure invocation is distributed among 

these components, which occur at different points in the program and have access to 

different kinds of information. The status of the calling program (consisting of a 
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program address and an environment specification) is passed to the procedure as an 

impl ici t  argument° Like al l  arguments, i ts  value is known only at the point of 

cal l .  Transfer of control to the procedure requires establishment of only a minimal 

status (consisting of the program address and argument values.) Any further 

environment is established at the point of entry to the procedure, where such items 

as the lexicographic level and the amount of local storage are known. The status of 

the calling program is available at each point of return, since this status is an 

implicit  argument of the procedure. I f  a value is to be returned exp l ic i t l y ,  i t  is 

also known at this point. Restoring the cal ler 's status returns control, and the 

value may be passed as though i t  were a parameter. Further action may be required 

at the point of call to incorporate this value into the cal ler 's environment. 

Control interaction is manifested in hardware by the mechanisms for status saving 

and transfer of controlo There are four common methods: 

a. Relevant status is placed on a stack by the hardware when a subroutine jump 

is executed. (Burroughs 5500, ICL KDFg) 

b. Relevant status is placed in a register by the hardware when a subroutine 

jump is executed. (Data General NOVA, UNIVAC 1108, IBM System/360) 

c. Relevant status is placed in memory by the hardware when a subroutine jump 

is executed. The memory location bears some fixed relationship to the 

target of the subroutine jump. (CDC 3000, 6000, XDS 940, UNIVAC II08) 

d. Separate instructions are provided for saving the relevant status and 

performing the subroutine jump° (GE 645) 

The makeup of the "relevant status" depends entirely upon the computer. At the 

least, i t  contains the return address. 

There are f ive common parameter mechanisms used to pass data to a procedure: 

a. Call by value - The argument is evaluated and i ts value passed to the 

procedure. Assignments to the corresponding bound variable ( i f  permitted) 

do not affect the argument value in the calling program. 

b. Call by result - This mechanism is used to return values to the calling 

program. Before the cal l ,  an address is computed for the argument. As 

control is returned to the call ing program, the value of the corresponding 

bound variable is assigned to the memory element specified by that address. 
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The assignment takes place upon a normal exit from the procedure, and hence 

is not made i f  a direct jump to a global label is executed within the 

procedure. 

c. Call b~/ value-result - This ~s a combination of (a} and (b). The argument 

value is passed to the procedure and the value of the corresponding bound 

variable is copied back into the calling program when control is returned. 

d. Call b~/ reference - The address of the argument is con~puted~ before the 

procedure is invoked, and this address is passed. Access to the 

corresponding bound variable from within the procedure is indirect, and 

thus the argument i t se l f  is being manipulated. 

e. Ca]]. by name The argument expression is converted to a parameterless 

procedure which, when invoked, yields the same result as the argument. 

Whenever the corresponding bound variable is accessed, this procedure is 

invoked° 

Methods {a) and (b) are the basic ones; the other three can be synthesized 

them. 

Figure 2.3 i l lustrates the effect of the different parameter mechanisms. 

from 

The 

program in Figure 2.3a is written in ANSI FORTP~AN, except that the interaction 

between the main program and the function violates Section 8.3.2 of the standard 

[ANSI 1966] ( i f  a bound variable becomes associated with an entity in COMMON, 

assignments to either within the function are prohibited.) The final values of ~4 

and N depend on the parameter mechanism that is used; possible values are listed in 

Figure 2.3b.  (Call by result cannot be used in the example since that mechanism 

does not pass values to the function.) Most language standards do not expl ic i t ly 

state the parameter mechanisms which must be provided. By careful study of their 

effects, however, some of the possibilities can usually be eliminated as 

incompatible with various statements in the standard. Only method (c) or method (d) 

could be used in an implementation of ANSI FORTRAN, for example. 

The element in the calling program that defines each argun~nt sets up a value 

that is passed to the procedure. This value is an address in cases (d) and (e); the 

object program must therefore have the ab i l i ty  to manipulate addresses as values i f  

either Qf these mechanisms is to be used. Call by result does not require that 
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FUNCTION I~,K) 

COMMON L 

J = J + 1  

L = L + K  

I = J + L  

RETURN 

END 

CO~ON M 

M = l 

N = I(M,M+3) 

STOP 

END 

a) A FORTRAN Program 

N 

Call by value 7 

Call by value-result 7 

Call by reference 12 

Call by name 14 

b) Possible results 

Figure 2.3 

The Effect of the Parameter Mechanisms 
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anything be passed to the procedure, but each argument must be updated when the 

invocation of the procedure has been completed. 

The implementation of the data interaction may also be distr ibuted over the ca l l ,  

entry and return components of the procedure invocation: Argument values must be 

set up at the point of ca l l ,  and additional manipulations may be required after 

entry to the procedure. For example, i f  the call by value and call by value-result 

mechanisms pass addresses, then code must be generated to move the argument values 

into local storage. When call by result or call by value-result is used, values 

from local storage must be moved back to argument locations at the point of return. 

Generally, this wi l l  also require actions at the point of call after control has 

actually returned from the procedure. 

Each of the three components of the procedure invocation must be distinguished in 

order to defer the representational decision unt i l  the characteristics of the target 

computer are known° The "point of cal l "  is actually a broad area which begins just 

before the computation of the f i r s t  argument value and ends just after any actions 

required to incorporate returned values into the ca l le r ' s  environment. I t  is 

necessary to distinguish both of these l imi ts ,  since procedure invocations on some 

computers require d is t inct  operations at each of them. (The "mark stack" and 

"enter" instructions of the Burroughs 6700 are an exa~le of th is s i tuat ion.)  

Similarly, the "point of entry" must be considered to begin just before the f i r s t  

declaration of the procedure and end just  before the f i r s t  executable statement; 

both l imits must be marked to permit f l e x i b i l i t y  in the choice of representation. A 

procedure may have several returns, each involving a sequence of actions. Again, 

both the beginning and end of such a sequence could be marked. In this case, 

however, my experience has been that a single return operation is sufficient. 
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I - INTRODUCTION- 

This short course is an in t roduct ion to c lassical  storage a l locat ion and 

access techniques used by compilers (see [Randell 64], [Gries 71], [ G r i f f i t h s  71]).  

I t  w i l l  be fol lowed by a discussion of some more advanced features in  chapter 3.C. 

One of our aims w i l l  be to show which language features require d i f -  

ferent types of storage management, in  which we d is t ingu ish a hierarchy. At the 

bottom end is the s ta t i c  a l locat ion scheme for  languages l i ke  FORTRAN, in which i t  

is possible to know the address that each object w i l l  occupy at run time. The next 

level comes w i th  the in t roduct ion of stack techniques for  languages l i ke  ALGOL60, 

where space is al located on a stack at block entry and released at block ex i t .  The 

stack is not a s u f f i c i e n t  model i f  the language allows store a l loca t ion  and l ibera-  

t ion in a non-nested fashion. L is t  processing languages, l i ke  languages which allow 

para l le l  or pseudo-parallel processing, are in th is  category, and require more 

sophist icated treatment. Languages l i ke  PL/I require a l l  three types of storage 

management. 

2 - STATIC ALLOCATION - 

In a s ta t i c  a l locat ion scheme i t  must be possible to decide at compile 

time the address that each object w i l l  occupy at run-time. In turn,  th is  requires 

that the nunl)er and size of the possible objects be known at compile time, and also 

that  each object may only have one occurrence at a given moment in  the execution of 

the program. This is  why, for  example, in  FORTRAN, arrays have constant bounds and 

procedures cannot be recursive. 

The process through which the compiler goes in doing storage a l locat ion 

fo r  a s ta t i c  language is thus very simple. During a f i r s t  pass of the tex t ,  the com- 

p i l e r  creates a symbol table in  which is kept the name, type, size and address of 

each object encountered. During code generation (which may be in  the same or a sub- 

sequent pass), the address of each object is  thus avai lable for  inser t ion  in to  the 

object code. 

Consider a FORTRAN program in  which occur f l oa t ing  point  variables A, B, 

a f l oa t i ng  point  array T of size 10 x i00, and f ixed point variables I ,  J. We w i l l  

suppose that  f l oa t ing  point  variables occupy four bytes and f ixed point variables 

two. The symbol table could contain the fo l lowing information : 
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Name Type Size Address 

A 

B 

T 

I 

J 

f l oa t  

f l oa t  

f l oa t  array 

f ixed 

f ixed 

4 

4 

4000 

2 

2 

0 

4 

8 

4008 

4010 

The information under 'address' may, of course, be the absolute or the re la t i ve  

address of the object concerned, and w i l l  most often be a re la t i ve  address, to be 

used, fo r  example, as a displacement with respect to an i m p l i c i t  or e x p l i c i t  regis- 

ter .  

The above is not meant to be a complete storage a l locat ion  scheme for  

FORTRAN, since no attempt has been made to t rent  COMMON statements or SUBROUTINES. 

The important thing is the basic p r inc ip le ,  which states that the posit ion of each 

object at run time can be foreseen at compile time, and any one object can always 

occupy one same storage address during the complete execution of the program. This 

does not mean that every FORTRAN compiler follows this p r inc ip le ,  in par t icu lar  the 

second part,  since a par t icu lar  compiler may, for  other reasons, a l locate ,  for  

example, d i f fe ren t  addresses to local variables during successive cal ls  of a given 

SUBROUTINE. 

3 - DYNAMIC ALLOCATION - 

Modern programming languages allow recursive procedure ca l ls ,  and this 

precludes any attempt at a s ta t i c  storage a l locat ion scheme, since to a var iable 

which is declared wi th in  a recursive procedure may correspond more them one value 

at a given moment during the execution of the programme. Note that recursive proce- 

dures are not the only perturbing factor ,  since the existence of arrays with calcu- 

lated bounds means that i t  is no longer possible to know where each object starts 

and ends, since the i r  size is unknown to the compiler. 

The usual storage a l locat ion  model in  these circumstances is a stack, 

on which entry to a block or a procedure causes a now a l loca t ion ,  the space being 

freed at ex i t  from the block or procedure. The use of a stack to model nested struc- 

tures is a standard device. Consider a program with the fo l lowing block structure,  

where the blocks are nu~ered for  convenience : 
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213 E 

We consider the run-time stack at di f ferent moments during the execution of the 

program° Within block 4 : 

Direction 

of growth ÷ 

The f igures indicate that  the zone contains the values of variables declared in the 

block of the same index. 

Within block 5 : 

5 

1 
I 
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Notice that the values corresponding to variables declared in block 5 use the same 

physical space as those from block 4. Thus the stack allow the continual reut i l isa-  

tion of the available space. 

We now suppose that  block 2 is  in  fac t  a procedure, which is cal led 

from block 5. The stack w i l l  have the fo l lowing form whi le the procedure is being 

executed : 

2 

5 

1 

The order of occurrence of data zones in the stack is no longer that which indicates 

stat ic inclusion (the procedure 2 is included in block 1 but not in block 5). We 

w i l l  say that the procedure is s tat ica l ly  contained in block 1 and dynamically cal- 

led from block 5. I f  procedure 2 calls i t se l f ,  a further data zone, with new values 

corresponding to the same variables, is opened on the stack. 

3.1 - Block Linkage- 

At any moment in time, a base register B points at the start of the 

most recent data block in the stack (we w i l l  ignore hardware problems which may 

lead to s l igh t ly  dif ferent solutions). B allows reference to be made to al l  those 

values which correspond to local variables. Consider the following simple program 

in ALGOL60 : 

1. begin integer a, b, c ; 

. . ,  

2. begin integer x, y, z ; 

x : = y + z  ; 

a : = b + c  ; 

end 

end 
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When the executiion of the program arrives at the two assignments, the form of the 

stack w i l l  be : 

÷ 

) 
The letters indicate the position 

of their corresponding values. 

x, y and z are accessible by their displacements from the value of B, say dx(B), 

dy(B), dz(B). This allows us to compile the f i r s t  assignment, but not the second, 

since reference is made to a, b and c, which are not indicated by the base register. 

To solve this problem, the data zone corresponding to each block w i l l  indicate the 

start of the preceeding block, together with i ts  own block number : 

Z 

2 ~ 
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Preceeding block. 

This pointer is simply the value of B before entry to the block. We see that the 

blocks are linked together on a chain (which always ends with block I ) .  When refe- 

rence is made to a non-local variable, the compiler produces instructions which 

descend the chain looking for the block number, and positions a base register on 

the relevant data zone. The non-local value is accessed by displacement from this 

base register. 

The same pointer in the stack serves both in searching for non-local 

variables, and in resetting the stack at block exi t .  As can be seen from the 

diagram, the base register points at the word which contains i ts  preceeding value. 

At the end of eL block, the stack is returned to i ts  former state by replaoing the 

base by this former value. The values declared within the block which has just been 

le f t  are lost,  and the space can be re-used. 
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However, in the case of a procedure, the two uses of this pointer do not 

necessarily indicate the same point, since reference to non-locals considers statical- 

ly containing blocks, whereas procedure exi t  is to the dynamically calling block. Con- 

sider the following program : 

1. begin integer a, b, c ; 

2. procedure f ; 

begin ...  

a : : b + c  ; 

o , ,  

end ; 

3. begin integer x, y, z 

f ;  

, o ,  

end 

end 

When the program executes f the stack is as follows : 

B 

31. 

1 ¸ 0 

z 

Y 

x 

Within f ,  no reference can be made to x, y or z, and no purpose is served in 

examining block 3 on the chain when looking for non-local values. A second pointer 

should be included in the data zone of f ,  which indicates i ts stat ical ly  contai- 

ning block (block 1). In the particular example we give, this may seem to be 

simply an optimisatlon, but in certain cases this pointer becomes a necessity : 
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z Dynamic :I° ° n er 

i o L 

Static pointer 

The static pointer is used in searching for non-locals, the dynamic pointer being 

used to reset the stack at exit from the procedure. The reason why this is unne- 

cessarywith blocks is that the ~o pointers would always have the same value. 

3 ,2-  Displays- 

References to non-local variables can be ineff icient with the above 

method f f  nesting is deep. One way to avoid this is to use the DISPLAY introduced 

in [Dijkstra 60]. The idea is to have a table in which are kept pointers to the 

currently active data block corresponding to each block of the program, References 

to non-local variables are made by displacement from the value of the relevant dis- 

play, which contains those values which would be inserted in the base register 

after searching down the chain for the relevant block level. 

The simple DISPLAY defined above is thus a table with one entry per 

block : 
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DISPLAY 

21 

3 

' I  
STACK 

] 
r" 

Extra information needs to be kept in the stack to fac i l i t a te  the resetting of the 

DISPLAY at block or procedure exit .  

An improvement to the above scheme is to create a new DISPLAY at each 

block or procedure entry, and keep i t  in the stack. This time the table can contain 

just those pointers which would be useful within the block, that is to say the 

position in the stack of those data blocks to which reference may be made during 

the execution of the current block or procedure. The data blocks referenced cor- 

respond to blocks in which are declared variables which are referred to as non- 

locals in the current block. The values of the pointers can be deduced at block 

entry by following the static chain, and this chain is thus followed only once per 

block i nstedad of once per non-local reference. We consider an example : 
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I .  b~!gi.n, in teger  a, b, c ; 

2. h e - - i n t e g e r  d, e, f ; 

3. procedure p(x) ; value x ; integer, x ; 

4. begin in teger  i ,  j ,  k ; 

i := a + d ; 

end ; 

, , ,  

P(a) 
end 

end 

The stack w i l l  have the following form when the assignment is executed as a result 

of the call of p at the bottom of the program : 

Pointer 
for the 
reference 
to d. 

Sta t i c  
po in ter  

I 

k 

J 
i 

i ,  , 

4 

3 

. . . . . . .  f 

2 

~ointer for ~e 
reference to a 
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Since block 4 contains two non-local references (to a and d), two pointers are pre- 

pared, which indicate the corresponding data blocks. 

3.3 Compaction of the Stack - 

1. 

2. 

Consider the small ALGOL60 program that we have already seen : 

begin integer a, b, c ; 

begin integer x, y, z ; 

. ° ,  

end 

end 

When block 2 is being executed, the form of the stack is always the following : 

This means that i t  is not necessary to do the linkage joining block 2 to block 1. 

Suppose that the base register points as usual, that a register S indicates the 

f i r s t  free space in the stack, and also that integers occupy one address. Just 

before entry into block 2 we have. 

The addresses of a, b and c avec I(B), 2(B) and 3(B). To enter block 2 i t  is suf- 

f i c ien t  to augment the value of S by 3 and refer to x, y and z as 4(B), 5(B), 6(B). 

The base does not move, no linkage is done, and reference to non-locals is shorte- 

ned in many cases. In general, i f  the inner block is not a procedure and the outer 

block contains no array, this may always be done. Arrays are a problem, since the 

amount of space allocated to the outer block is unknown at compiletime. The compac- 

tion can nevertheless be done at the price of always keeping the space for simple 

variables in the outer block. Consider the following program : 



i .  begin i n t e g e r  a, b ,  c ; 

array t [ . . . ]  ; 

2. b e .~ i n i n t e~e r  x ,  y ,  z ; 

ar ray u [ . . . ]  ; 

end 

end 

In b lock 1 the stack has the form : 
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c 

b 

a 

I I 0 

The space f o r  t s t a r t s  a t  7(B) ,  and the spaces f o r  x,  y ,  z are not used, but  must be 

reserved. In b lock 2, we a r r i v e  at  : 

u 

t 

z 

Y 

x 

.c 

b 

a 
1 o 

With t h i s  mechanism i t  becomes poss ib le  to  a l l o c a t e  space f o r  data o f  f i xed  s i ze  

only at  procedure l e v e l ,  as is  suggested in  [Gr ies 71] and [Wichmann 73]. Array 
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space is allocated at block level, but only procedures need l ink information. The 

space for simple variables in inner blocks (x, y, z in the example) can be reused 

for parallel inner blocks, this part of the stack being modelled at compile-time. 

3.4 - Parameter Linkage- 

In chapter 3.1 the dif ferent methods of passing parameters were discus- 

sed. In terms of stack structure, the methods of value, result,  reference or d i f -  

ferent co~inations of them cause no problem. Parameters by name (or by procedure) 

are more d i f f i c u l t .  The actual parameter corresponding to a formal parameter by 

name is re-evaluated at each reference to the formal, and the evaluation takes place 

in the environment of the call of the procedure. For example : 

I. begi n procedure f(x) ; integer x 

2. begin . . .  

X 

end ; 

3. begin integer a, b ; 

f(a+b) 

. . .  

end 

end 

Procedure f is s tat ica l ly  contained in block 1. However, the reference to x requires 

re-evaluation of a+b, and hence reference to variables of block 3. The stack w i l l  

have the following form : 

X 

| 

21 
b 
a 

3 i ' 

Static 
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Since block 3 is not on the s ta t i c  chain of f ,  a and b cannot be referenced. In fac t ,  

the evaluation of actual parameters corresponding to formal parameters by name is by 

creation of a parameterless procedure (cal led a ' thunk') which is l inked to the 

ca l l ing  block. 

Thunk for  

x (= a+b) 

2 

1 0 

Stat ic 

] ]'- 

Static 

The static pointer of a thunk points to the data zone towards which points the dyna- 

mic pointer of the procedure of which the formal is a parameter. This allows access 

to a and b, and ensures the correct environment in al l  circumstances. 

3.5 - Labels - 

Whether he approves of goto or not, the compiler w r i t e r  usually has to 

implement i t .  A got.o a non-local label requires that the stack be in the r igh t  

state on a r r i va l .  Since the scope of a labe l ,  l i ke  the scope of any var iab le ,  is 

known at compile-time, and thus has a block number, f inding the r ight  environment 

is simply a matter of  descending the s ta t ic  chain. That is to say that the local 

base regis ter  points at the level of  data which corresponds to the block in which 

the label occurs. As usual, a l l  data at a higher level is los t  and the space can be 

reused. 
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4 - AGGREGATES - 

We have already seen that the de f in i t i on  of arrays has a considerable 

inf luence on storage a l locat ion  algorithms, since i t  may be that the size of an 

array is unknown at compile time, which means that some part of the storage al loca- 

t ion mechanism must be dynamic. But arrays are not the only way of forming aggre- 

gates, and we w i l l  also consider storage a l locat ion  for  structures. 

4.1 - Arrays - 

I f  the size of an array is known at compile time, i t s  space can be 

al located s t a t i c a l l y ,  as in FORTRAN. Arrays may fol low each other in the run-time 

data zone, and the compiler can always foresee the address of each one. In a lan- 

guage in which the l im i ts  can be calculated at run-time, a l locat ion must be dyna- 

mic. On an ALGOL60 stack, for  example, arrays are stored in two parts. One space 

w i l l  be al located by the compiler in  the same way as those al located to simple 

variables ; th is space w i l l  contain a pointer to the actual locat ion of the array. 

Space for  the array is seized at block entry, a f ter  calculat ion of the amount neces- 

sary, and this on top of the stack. For example : 

I .  begin integer n ; 

read (n) ; 

2. begin integer arra~ p[1 : n] ,  q [ l  : 10, I : n] ; 

end 

end 

When the program is being executed, and inside block 2, the stack w i l l  have the 

fol lowing form : 
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F 
L 

contents of q 

contents of p 

root of q 

root of p 

We call the pointer which indicates the address of an array, i t s  ' root ' .  

In the following paragraphs, we w i l l  discuss di f ferent ways of ordering 

the elements of arrays in order to fac i l i t a te  references to di f ferent elements. 

4 .1 .1  - ~ 9 f g r 9 9 9 9 _ ~ _ ~ g l } l P ] 1 9 9 ~ 1 9 9  - 

The def in i t ion of FORTRAN, which w i l l  be used as an example of this 

method, specifies the order in which array elements are stored, and chooses to 

store them with the f i r s t  subscript varying the most rapidly. This is the opposite 

of usual mathematical convention, but in most cases the order is of no importance. 

Consider an array defined by 

DIMENSION A(5,  10) 

A is a matrix of size 5 x 10, and w i l l  occupy 50 consecutive storage locations in 

the order : 

A(I ,  i ) ,  A(2, 1) . . . . .  A(5, 1), A(1, 2) . . . .  A(5, 2) . . . . .  A(1, 10) . . . . .  
A(5, 10). 

When making a reference, element A(I, J) is to be found in position 

(J - I)  , 5 + I - I 

from the start of the array. In general, given an array T with bounds B i : 

DIMENSION T(B 1, B 2 . . . . .  Bn) 

Element T(I1, ][2' " " '  In) is to be found at position : 
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( . . .  ( ( I  n -  I) * B n -  1 + I n -  I 1) * B n -  2 + "'" + 12 " i )  * B I + 11 - I 

This sequence of calculations must be made at run-time by the instructions generated 

for each reference to an array element. Note that, i f  any I i is a constant, parts of 

the calculation may be done at compile time. A displacement address is of course 

calculated by multiplying the position by the size of each element, and adding the 

result to the address of the f i r s t  element of the array. 

The case of FORTRAN is the simplest possible, but other languages may 

equally well be treated by the same method. ALGOL60 is a typical example, in which 

an array declaration has the form : 

integer arra~ t [ l  I : u I ,  12 : u 2 . . . .  , I n : u n] 

Both lower and upper bounds are given, and both may be calculated at run-time. Con- 

sider a reference : 

t [ i  1, i 2 . . . . .  i n] 

I f  the elements are stored as in FORTRAN ( ALGOL60 leaves the decision to the com- 

pi ler  wr i te r ) ,  the position of the element is found by replacing ( I j  - 1) byJ 

( i j  - l j )  and Bj by (uj - l j  + 1), which gives : 

( " "  (( i n -  In) * (Un - I - In - I + I)  + i n -  I - In - 1 ) * (Un - 2 In - 2 + 1) 

+ . . .  + i 2 -  12 * (u I - 11 + 1) + i I - 1 I .  

Whereas in FORTRAN the bounds are constants known at compile time, in ALGOL60 they 

are calculated at run-time, at block entry, and must therefore be stored in the stack. 

For each dimension, the quantity (uj - l j  + 1) is also calculated at block entry 

and stored in the stack in order to improve the speed of references. Thus the dia- 

gram given in § 4.1 was incomplete, and in practice, the stack w i l l  look l ike : 
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n 

1, n 

10 

1, 10 

n 

1, n 

values of q 

values of p 

u 2 - 12 + 1 

bounds of 2 nd dimension 

u I - 11 + 1 

bounds of I s t  dimension 

root  of q 

u I - 11 + 1 

bounds of  p 

root of p 

The compiler w i l l  once again take advantage of each time bounds or subscripts are 

constants to optimise the calculat ions.  

However, since ALGOL and s imi lar  languages leave a choice, another 

method is often used which fol lows pointers instead of doing ar i thmet ic  : 

4.1.2 - Reference by Code Words - 

A bet te r  t i t l e  for  th is  methode would be repeated indexing, since a 

matrix is treated as a vector of  vectors, a three-dimensional array as a vector of 

matrices, each of which is a vector of vectors, and so on. The method w i l l  be 

i l l u s t r a t e d  by an example : 

integer a.rray t [3 : 10, - 5 : 7] ; 

The root of t points at  a vector of  pointers to the vectors of  elements : 
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root 

10 > 

Every pointer points at the element zero of the next vector (whether this element 

exists or not), thus avoiding substraction of the lower bound. The sequence of ins- 

tructions for a reference calculates the address by adding the f i r s t  subscript to 

the root, which gives an address. Add the second subscript to the contents of that 

address to get another, and so on. That is to say, in general, an element is found 

by : 

( . . .  contents (contents (contents (root) + i l )  + i2) . . .  + in) 

This sequence can be coded very e f f i c ien t ly  in many computers. 

4.1.3 - ~ 9 ~ . ~ 9  - 

An important source of errors in certain types of program is that resul- 

ting from using subscripts which are outside the declared bounds. A good compiler 

w i l l  allow the programmer to specifywhether he wishes the object code to test sub- 

scripts, since this testing is a process which may slow down considerably the run- 

ning program. A compromise which is useful in the mult ipl ication method is just to 

test i f  the f inal  address is in fact part of the array, thus avoiding the overwri- 

t ing of instructions of the program, for example. 

This need to test subscripts is,  for some people, a cri t icism of cur- 

rent language design, since in most cases i t  is clearly wasteful. I t  would be more 

ef f ic ient  to wri te 

for i index of t do t [ i ]  : . . . .  

than the standard step - unt i l  construction, the compiler handling bounds. 
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4.2 - Structures - 

Structures are sets of named f ie lds  which are var iously defined in d i f -  

ferent  languages, for  instance in PL/I or ALGOL68 : 

DCL 1 POINT 

2 X, Y FIXED ; 

struct point ( integer x, y) ; 

References are made by 

POINT.X or x of  point 

Other languages have other de f in i t i ons .  In the run-time memory, a zone is created 

which w i l l  contain the successive f ie lds  of the structure. Structure references are 

resolved at compile time, since at least  the address of the root of each f i e l d  is 

known. 

The quant i ty of memory given to each f i e l d  depends on the type of the 

f i e l d .  I f  a f i e l d  is of simple type (as in the above example), space is d i rec t l y  

reserved for  the corresponding value ; otherwise a pointer serves as a root ,  as in 

the method of stor ing arrays. 

The f i e lds  of a structure may themselves be structures or arrays, but 

this causes no inconvenience with the methods that have already been described. 

5 - LISTS - 

I t  is not always possible to manage store as a stack, since this requi- 

res that storage be released at known moments, in the opposite order from i t s  a l l o -  

cat ion,  and in a completely nested manner. Languages which allow the use of  heavi ly - 

structured data and the manipulation of pointers do not fol low this rule.  Examples 

of language features of th is type are own in ALGOL60, the l is t -processing pr imit ives 

hd, t l  and cons, reference in ALGOL W, ref  ref  in ALGOL68. In a l l  these cases, the 

programme requires a l locat ion  of memory as the resul t  of the execution of statements, 

and this in unforeseeable quant i t ies ; the a l locat ion lasts as long as some l i ve  

pointer references the element of memory, and l i be ra t ion  can take place when no l i ve  

pointer allows access to the object. A l locat ion and l i be ra t i on  are at a rb i t ra ry  

moments. 

As an example, l e t  us add the l i s t  pr imit ives to ALGOL60, which allows 

the wr i t ing  of programs l i ke  : 
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1 := null ; 

for l := cons (hd (a), l )  while t l (a)  # null do 

a := t l (a)  

Which transfers the contents of l i s t  a to l ,  supposing that a contains at least one 

element. Each execution of the function cons causes the allocation of a new space 

in memory, which w i l l  have the form : 

ta i l  

Thus the l i s t  (a (b c) d) is represented as follows : 

a 

,I I J 

The diagonal stroke represente null,  the end of a l i s t  or the empty l i s t .  The sta- 

tement 

l := cons (a, cons (cons (b, cons (c, nul l ) ) ,  cons (d, null.))) 

would create the above l i s t  structure, and a pointer would be placed in the memory 

space corresponding to I. 

New manipulations may mean that some or al l  of the elements of a l i s t  

structure are no longer accessible ; the space can them be recovered by a techni- 

que called 'garbage col lect ion'.  

5.1 - Free Lists and Garbage - 

The storage spaces seized by cons have to be taken from a special zone, 

for which we w i l l  use the ALGOL68 term 'heap'. Since, in the example seen above, 

the space seized was always the same size, i t  is possible to cut the space availa- 

ble for the heap into elements of this size. These elements are i n i t i a l l y  linked 

together in a special l i s t  called the 'free l i s t ' .  When space is required within 

cons, an element is taken from the free l i s t  and used by the routine. When the free 
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l i s t  is  empty, no more space is avai lab le.  However, as we have already seen, i t  is 

usual ly  possible to recover space as a resu l t  of the i naccess i b i l i t y  of no lon- 

ger used elements by the process of garbage co l lec t ion .  

Garbage co l lec t ion  is  a process which usual ly  works in two phases, 

the f i r s t  being to mark a l l  useful elements and the second to recover space at the 

same time as removing the marks. Marking requires that  the algorithm consider in  

turn each pointer defined in the program ; the pointer is  fol lowed, marking each 

accessible element. I f  the element marked contains pointers,  these also must be 

fol lowed, and so on. A b i t  may be avai lable w i t h i n  the element to be marked, or 

otherwise a heap model is  kept which consists of one b i t  per heap word. When mar- 

king is complete, the whole heap space is examined. Marked words have the i r  marks 

removed, and unmarked words are put in to  the free l i s t .  

The main problems of garbage co l lec t ion  are i t s  i ne f f i c i ency ,  and the 

fact  that  i t  l o g i c a l l y  takes place when there is no space l e f t  in the memory, and 

so the garbage co l lec t ion  algorithm has no work space. Su f f i c i en t  space must there- 

fore be kept in  reserve. 

5.2 - Storage Collapse - 

Many languages allow space to be taken from the heap in elements of 

a rb i t ra ry  and d i f f e r i ng  sizes. In th is  case the idea of a free l i s t  no longer works, 

and the fo l lowing problem can ar ise.  Consider a memory in which the unused spaces 

are shaded : 

A 

Hi 
B 

N%yJ . 
C 

The memory is shared between three items, A, B and C, which leave two holes H 1 and 

H 2. I f  we now wish to store an item D of size greater them that  of H I or H 2 but 

less than the i r  sum, them a d i f f i c u l t y  has ar isen. The ex is t ing  items must be 
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moved towards one end of the memory in order to leave a consecutive piece of store 

of large enough size. This process is cal led 'storage col lapse' .  

I t  may be necessary to use storage collapse even i f  the heap consists 

of elements of l ike size, for example i f ,  in a fixed storage space, the stack 

grows from one end and the heap from the other. When the two meet, garbage collec- 

tion with a free l i s t  would not allow the stack to expand, and so the heap must be 

collapsed. 

Storage collapse is preceeded by a marking algorithm, but is even less 

e f f i c i e n t  than was the use of a free l i s t ,  since items are moved. In this case, a l l  

pointers to a moved item must be updated, which is a costly process. I t  is usual to 

use a mixture of free l i s t  and storage collapse techniques in order to keep a cer- 

ta in  level of e f f ic iency.  In par t i cu la r ,  since objects may be moved, i t  may be prac- 

t i ca l  to direct al l  pointers to these objects via individual pointers which are 

themselves in a zone which is garbage collected by free l i s t  techniques. Only these 

individual pointers need updating, since they themselves are not moved : 

Pointer to A Object A 

Zone col lected by Zone for  var iable 

free l i s t .  size elements. 

Al l  references to A are to the pointer in the pointer zone and not to A i t s e l f .  

A complete garbage co l lec t ion method w i l l  be given in chapter 3.C. 

6 - PARALLEL PROCESSES - 

Another s i tua t ion  in which i t  is not possible to use a stack is that 

in which the time-scale of the execution of a program is not that indicated by con- 

secutive execution of the inst ruct ions,  for  instance in the control of real- t ime 
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processes, or in their  simulation. A given task may activate a second one, activa- 

t ion which looks l ike a procedure ca l l ,  except that the relat ive order of evalua- 

t ion of tlhe two tasks is unknown. Thus i t  is possible for the cal l ing task to 

f in ish before the called task, which is in contradiction with the necessity of a 

completely nested cal l ing structure. What is more, the called task may need access 

to data furnished by the cal l ing task, and thus, at i ts  completion, the cal l ing 

task may not be able to l iberate i ts  data space. 

Consider an example from an operating system. A routine P can acti- 

vate an input-output operation as a task, in order to transfer data to be found in 

the data zone of P. But P may well terminate before the input-output operation ; 

in this case, the data space of P cannot be liberated, since the input-output task 
continues to make use of the space. 

We see that compilers for languages which allow parallel processing, 

or which simulate such processes, must use a storage allocation technique which 

allows storage recovery by methods similar to those used for l i s t s ;  space is sei- 

zed at block or procedure entry, the space being taken from the heap. At any one 

moment, the di f ferent active tasks indicate their  data zones. Within each zone 

exist pointers to those zones to which access may be required, exactly as in the 

case of the second type of display seen above. When i t  is necessary to recover 

storage, a garbage collection algorithm can follow the pointers from the dif ferent 

tasks in order to mark their  data zones. These zones is their turn point to any 

other data zones to which the task may make reference, and these zones are also 

marked. Space can then be recovered by storage collapse : 

Description blocks 

I ..... i 

i 
I ...... 

i I 
I , 

Corresponding 
to active 
tasks 

Pointers to 
their data 
zones 

Pointers to 
other zones 
which may be 
referenced 
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This represents only one method of keeping track of used and unused 

store, and there exist many variations on the same theme. 

7 - CONCLUSION - 

The generation of executable machine code is obviously completely con- 

ditioned by the storage allocation techniques which are to be used at run-time. We 

have tried to give some idea of the basic storage allocation mechanisms, without 

going into too much detail. I t  should be noted that an extremely wide variety of 

techniques exist, and many interesting ideas have not been discussed here. However, 

• most of the variety stems from efforts to improve the basic themes that we have 

developped, or to adapt them to particular machines. 

One point of importance is the very close relationship between sto- 

rage allocation mechanisms and the type of operations which may exist in the lan- 

guage. Small changes in language design can lead to large changes in the architec- 

ture of the compiler and in the complexity of the run-time system. 
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CHAPTER 3.C. 

SPECIAL RUN-TIME ORGANIZATION TECHNIQUES FOR ALGOL 68 

Ursula H i l l  

Technical Univers i ty  of Munich 

Munich, Germany 

I. INTRODUCTION 

In the previous lectures,  in par t i cu la r  those of W. M. Waite and of M. G r i f f i t h s ,  

basic concepts l i ke  mode and object etc. in higher programming languages were in t ro -  

duced and the i r  equivalents in the machine discussed. Especial ly ,  I refer  to the pre- 

sentation of the principles of data storage management, such as static and dynamic i )  

storage allocation, procedure calls, realization of more complex data structures, and 

the i l l u s t r a t i o n  by examples of storage a l locat ion models fo r  FORTRAN and ALGOL 60. 

The in tent ion of th is  lecture is to discuss the rea l i za t ion  of those pr inc ip les  for  a 

more ambitious language, ALGOL 68. This language requires the study of a great deal 

of the general p r inc ip les ,  although some important concepts, coroutines or par t ia l  pa- 

rametr izat ion fo r  instance, are missing. There are s t i l l  other res t r i c t i ons  in connec- 

t ion wi th modes - e .g . ,  there are no arrays of arrays 2) _ and the manipulation of  da- 

ta - e .g . ,  changing the length of f l e x i b l e  arrays by jo in ing  new components is not 

possible - as examples which should s impl i fy  the handling for  the compiler without be- 
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ing inconvenient fo r  the user of the language. On the other hand, ALGOL 68 contains 

features of questionable usefulness which can only be integrated in to  the general 

storage mechanism wi th special addi t ional  provis ions. 

This discussion is based on the concrete Munich implementation of ALGOL 68 fo r  the 

Telefunken TR4 [9 ] ;  the basic design of the compiler was developed by G. Goos [5 ] ,  [6] .  

Many of the de ta i l s  to be mentioned can be real ized in d i f f e ren t  ways. Especial ly ,  I 

should ca l l  your a t tent ion to the work of the Brussels ALGOL 68 implementation group 

which, at the same time, in some cases came to the same, in others to qui te d i f f e ren t  

so lut ions,  and which published detai led descr ipt ions [2].  

I) Throughout this lecture the term statio is connected with tasks which can be carried 
out at compile-time, whereas dynamic means that the execution is only possible at 
run-time; the attr ibute dynamic is used, in particular, for run-time stack opera- 
tions. 

2)  Instead of the ALGOL 68 technical term multiple value we shal l  mostly use the more 
usual term array. 
Furthermore, we shall  use the terms block and procedure in the fo l lowing sense: a 
block corresponds to a ser ia l  clause containing at least one declarat ion or genera- 
to r ,  a procedure is an object the mode of which begins with proc. 
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1.1. SHORT OUTLINE OF DATA STORAGE PRINCIPLES 

Our f i r s t  task is to give a summary of data storage a l loca t ion  pr inc ip les  appl icable 

to ALGOL 68. We begin wi th a b r i e f  survey of basic concepts such as handling objects 

of  more usual modes and the mechanisms fo r  run-time stack and heap [7] ,  [8 ] ,  [9] .  

1.1.1. FIXED AND VARIABLE PARTS OF OBJECTS 

Each object consists of a f ixed and a var iable part .  In th is  context f i x e d  means that 

the size of the needed storage area is known at compile-time, whereas fo r  the v a r i a b l e  

part th is  size can only be determined at run-t ime. The var iable part may be empty. In 

any case, i t  is not empty i f  the considered object i s ,  or contains as subvalue, a dyna- 

mic array or a s t r ing .  At run-t ime, f ixed and var iable part may be stored in dis jo ined 

data areas, furthermore, the var iable part can consist of several components which 

need not stand in consecutive storage ce l ls  (see Figure I ) .  

I t  is essential that  w i th in  the f ixed part  re la t i ve  addressing is possible at compile- 

time. 

f ixed par t ,  
length known 
at compile- 
time 

f 

Figure 1. 

object 

/ 
"--~-" denotes 

possible pointers 

var iable part  

Fixed and variable part of an object 

1.1.2. MODES AND OBJECTS IN ALGOL 68 

ALGOL 68 contains several p r im i t i ve  standard modes as int, real, char, etc. Objects 

of these modes have only a f ixed part of constant length (depending on the machine). 

Furthermore, there are standard modes s t r i n g  ' , b i t s ,  and by tes ,  which can be considered 

as special array modes. Objects of these modes need not be handled l i ke  general mu l t i -  

ple values: fo r  objects of modes b i t s  or bytes the length normally is res t r ic ted to 

one or two machine words: 
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bits. I . . .  11ol 1 , bytes. I I 

An object of mode string is of f lexible length. I t  can be represented as a fixed part, 

which is nothing more than a (internal') pointer, and a variable part composed of the 
length as a particular entry and the actual string (see Figure 2). 

fixed part 

pointer ( [ __~_______~ 
variable part 

1 
Figure 2. String 

length of string 

string 

Starting from the standard modes, new modes can be defined. Most important (and also 

known from other languages) are references, mult ip le values (arrays) and structured 

values (records). 

An object of a reference mode consists of a fixed part containing an address (see also 

3.2). 

A multiple value consists of a descriptor (information vector) as fixed part and the 

set of the elements as variable part, which at least in the case of a subvalue, need 

not be stored in consecutive storage cells (see Figure 3). The length of the descrip- 
tor depends only on the dimension. For arrays with fixed bounds the set of elements 

can be considered to belong to the fixed part; but we don't go further into the dis- 
cussion of such optimization possibi l i t ies.  

fixed part: I 
descriptor K 

/ 

I variable part: 

elements 

Figure 3. Multiple value (array) 
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A structured value is the co l lect ion of the objects of the component modes. The f ixed 

part is the sequence of the f ixed parts of the components, the variable part is the 

co l lect ion of the appropriate variable parts. In par t icu lar ,  the length of the f ixed 

part is z Li ,  where Li = length of f ixed part of i - th  component. 
i 

An example is given in Figure 4. 

f ixed 
part 

descr ip t l r  I 
oT j ] / elements 

of j 

elements 
of k 

variable 
>part  

Figure 4. Object of mode struct (int i, [11:u 1] real j, [12:u2]real k, compl l) 

Objects of procedure modes can be handled quite simply. They only require a f ixed 

space for  the reference to the corresponding code in the program storage part together 

with a reference to (the beginning of the data storage of) the s ta t ic  predecessor. 

See also 4.1. 

Other, more special objects are treated in section 2. 

We conclude the paragraph with a remark on one of the most widely discussed features 

of the ALGOL 68 mode declarations: modes in ALGOL 68 can (with certain res t r i c t ions)  

be defined recursively and, by consequence, modes can be " i n f i n i t e " .  

For example 

mode m = 8truct (int i, ref ~ j ) implies 

= struct (int i, ref etruct (int i, ref struct (... 
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Now, the mode conditions guarantee that objects of " i n f i n i t e "  modes are always f i n i t e ,  

that means the storage needed is f i n i t e .  There may occur only more or less complicated 

cycles but only through references, as e.g. ,  with the above mode m : 

m_x, y; x:= (1,y); y:= (2,x) delivers: 

For every object occurring in an ALGOL 68 program the mode is known at com~- t ime.  For 

a l l  these modes representations are stored in a mode-table. For the fur ther  handling 

of modes and objects in the compiler i t  is convenient to store together with each mode 

the length of the f ixed part of an object of th is  mode (note that th is  length only de- 

pends on the mode). In the case of a structured mode the re la t i ve  addresses of the 

f ixed parts of the components are also stored. See Figure 5. 

~ n g t h  of descriptor> 

~--i<mode of elements> 

struct 

<length of f ixed part> 

Z _ _  <mode of i> 
<re la t i ve  address> 

<mode of j >  

<re la t ive  address> 

entry for  int 

} entry for m , 

mode m = [/:u] int 

entry for  ~ , 

mode n = struct(int i, m j) 

Figure 5. The mode-table. Example 
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The mode-table is used for  a number of purposes, amongst them code generation at 

compile-time and in terpretat ion of complicated operations or garbage col lect ion at 

run-time. 

Access to subvalues is in general more expensive but no more complicated than in 

ALGOL 60. For each f ixed part of an object a pair  consisting of re la t i ve  address and 

base regis ter  is known at compile-time. Code can be generated for  accessing the ele- 

ments of a mul t ip le value by means of the descriptor in the usual ways. For accessing 

a component of a structured value a simple re la t i ve  addressing within the f ixed part 

is su f f i c ien t .  

1.1.3. STATIC AND DYNAMIC DATA STORAGE AREAS 

Our main task is to discuss the storage al locat ion for  the objects occurring in an 

ALGOL 68 program. At f i r s t  we can dist inguish two cases: There are objects given by 

denotations (constants in the sense of ALGOL 60 for  instance); these objects are 

stored in a cons tan t - l i s t  at compile-time (with the exception of procedures, of course) 

and we can forget about them. Al l  other objects are created during run-time, e.g.,by 

copying values from the constant - l i s t  or by bui lding structures from other objects. 

We shall concentrate on th is  case where storage requirements are determined e x p l i c i t l y  

by generators and declarat ions, or i m p l i c i t l y  by intermediate resul ts.  

In ALGOL 60 ( [7 ] ,  [8 ] ) ,  for  each block the f ixed parts of the local data can be col- 

lected into the static data area, the variable parts form the dynamic data area. 

Length and structure of static data areas are determined at compile-time. These areas 

can be handled according to the block structure. 

In a procedure-oriented (as opposed to the usual block-oriented) stack organization, 

to the main program and to each procedure corresponds one s~atic data area consisting 

of the s ta t i c  data areas of the local blocks joined or overlapped according to the 

tree structure inherent in block structure, and of certain items required for  organi- 

zational purposes (see Figure 6). The organization of dynamic data areas is s t i l l  

block-oriented. We use a vector of block pointers (stacktop locations) for  the main 

program and each procedure whose length is given by the respective maximum local block 

leve l .  Dynamic composition of procedural s ta t i c  and dynamic data area gives the run- 

time stack. Base registers (displays) for  addressing a l l  accessible data are allocated 

according to the s ta t i c  procedure level structure. The contents of these registers are 

kept in the organizational storage parts of procedures to allow eventual ly necessary 

reloadings of the base registers.  Detai ls may be taken from the Figures 7 and 8. 
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Procedure P 
with local blocks: 

<formal parameters> 

B1 

B2 

B4 

Procedural s ta t ic  data area: 

organizat ional storage ce l ls :  
s ta t ic  and dynamic chain 

~ stacktop locations 
for  local blocks 

s ta t ic  data area of the 
outermost "block" (formal 
parameters) : BO 

s ta t ic  data area 
of B1 

sta t ic  data 
area of B2 s ta t ic  data 

area of B4 

s ta t i c  data 
area of B3 

Figure 6. Procedural s ta t ic  data area 
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Example of a program structure:  

P BO 

B1 

B4 

B~ I ! B2 

B3 1 . B3 

l 

procedure P , BO is the ( i n t e r n a l l y  
inserted) outermost 

BI TM local block 

B4 

local blocks of P 

Run-time stack at the moment denoted by " - ,~ - "  

The stacktop pointer 
is stored in a stack- 
top locat ion at the 
beginning of an inner 
block. 

stacktop 
pointer ~- 

B2, B3~ 
stacktop 
locat ions 

dynamic data area 
of BO (formal 

parameters) 

dynamic data area 
of B1 

dynamic data area 
of B3 

Figure 7. Procedural s ta t i c  and dynamic data areas 

procedural 
s ta t i c  data area 
Ps 

procedural 
dynamic data area 
Pd 
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base reg is ter  
of main program 

base reg is ter  
of f i r s t  ---m- 
procedure level 

stack 

stacktop 
pointer 

procedural 
s ta t i c  data area 

procedural 
dynamic data area 

procedural 
s ta t i c  data area 

procedural 
dynamic data area 

of main program 

of a procedure 
cal led 

Figure 8. Procedure-oriented organizat ion of the run-time stack 

In p r i nc ip le ,  the above used terms and the stack organizat ion can be applied to ALGOL 

68. Deviations concern mainly the fac t  that  in ALGOL 68 the s ta t i c  data area of a 

block needs not contain a l l  local f ixed parts, the corresponding fact  holds for  the 

dynamic data areas (see 4.2 ). Nevertheless, these areas can be defined and handled 

as fo r  ALGOL 60, but wi th the mentioned modif icat ions and with the observation that  

there are s t i l l  other parts of objects (which form what may be cal led heap-areas) to 

be stored on the heap. 

1.1.4. THE HEAP 

The heap is real ized as a port ion of unstructured free storage. There are diverse 

mechanisms of a l loca t ing  storage needed for  an object on the heap and of releasing 
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i t ,  e.g., the boundary tag method [10], or the use of an additional b i t  l i s t  for mark- 

ing free or used words. 

Since in ALGOL 68 objects and subvalues of any mode and length may be stored on the 

heap, storage in the area provided for the heap is allocated in consecutive locations. 

When the whole area is used up, the heap is collapsed by the garbage collector (see 
Figure 9). 

stack unused heap 

' ~taC~etOr~ ~ ~pheaPter 1 

Figure 9. Data storage at run-time 

1.2. GENERATIVE AND INTERPRETATIVE HANDLING 

In compiler theory generation and interpretation are well-known terms. In practice i t  

seems that only compilers of mixed forms exist with more or less tendency to either 
generative or interpretative handling. Pure interpreting is out of the question (not 

only) for ALGOL 68. And most of the so-called interpreters for other languages are 

based on material collected in prepasses, and thus are "part ial"- interpreters only. 

Sometimes, i t  is a matter of taste how far to go with generation and interpretation. 

In the case of ALGOL 68 a more generative handling seems appropriate. All information 

necessary for handling objects is known at compile-time. Apart from the "actual modes" 

of union objects for each ALGOL 68 object the mode is kown stat ica l ly .  D i f f icu l t ies  

for code generation result only from the immense work to be done for general modes. 

Obviously, the code for, e.g., 

a := b where mode of a is refm__, mode of b is ~ and 
m = [...] struct ( .... [...] struct (...)...) 

i~ expensive; nested loops must be generated. This is, of course, possible. The same 

holds for the implementation of declarations of such objects, for parameter transfers 

etc. In our implementation we decided to use a partly interpretative method in these 

cases. Certain preparations, such as coercions, are performed at compile-time. But 

the code generated consists (for general modes) of a macro or subroutine call of the 

form ASSIGNATION (a,b, mode (a), mode (b)) 



233 

where the f i r s t  two parameters de l iver  the actual storage addresses, the las t  ones are 

references to the corresponding entr ies in the mode-table mentioned above. The sub- 

routine ASSIGNATION is designed in a way enabling i t  to handle a l l  possible objects 

and modes. 

A more generative method could mean that instead of the general subroutine a special 

subroutine is generated at compile-time for  each actua l ly  occurring mode. 

Di f ferent  poss ib i l i t i es  ex is t  analogously for  the garbage col lector .  The Munich imple- 

mentation contains a general garbage col lect ion program applicable to a l l  ALGOL 68 pro- 

grams. Another proposal, made by Branquart et a l .  [2 ] ,  provides for  generating special 

garbage col lector  parts for the actual ly  occurring modes. 

2. SPECIAL OBJECTS IN ALGOL 68 

In th is  section special ALGOL 68 objects are b r i e f l y  considered. 

2.1. FLEXIBLE ARRAYS 

Subscript bounds in array declarers may contain the symbol ~ Z e x .  Objects declared by 

means of such declarers are called f l ex i b l e  arrays. (Note, however, that in ALGOL 68 

flex does not belong to the mode.) 

Example: 
mode m = [1 flex : 3 flex] in___t; 

x; struct(int i, m j) y 

The values referred to by x and j of y are f l e x i b l e  arrays. 

The bounds cannot be changed by using "out of bounds" components, but only through 

assignations to the whole array. 

2.2. OBJECTS GENERATED BY SLICING 

Sl ic ing of an array means a) selecting a single component (subscripted var iable in 

ALGOL 60), and b) selecting a subvalue which is i t s e l f  an array. We consider here the 

second case: The resul t  of s l i c ing  a given array is an object consisting of a new des- 

c r ip to r  as f ixed part and of the set of selected elements as var iable part ,  which are 

not copied (see Figure 10). 
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descr iptor 

f ixed part  

/ 

var iable part  

F ~ - ~ - -  7 
I I 
I ] 

\ J 
given array 

f ixed part  

set of elements 

subarray 

Figure lo.  S l ic ing  

descr iptor 

2.3. OBJECTS GENERATED BY ROWING 

Objects may be rowed to arrays. Some d i f f e ren t  cases are to be dist inguished: 

Rowing a vacuum means generation of a descr iptor  re fe r r ing  to an empty var iable part.  

I f  the given value is not an array and the resu l t  is not a reference, then an object 

is generated consist ing of a descr iptor and of the given value as only component. 

I f  the given value is an array the resu l t  of rowing is a new array of higher dimension. 

At least  a new descr iptor must be generated. 

I f  the mode of the resu l t  begins with ref, only a new descr iptor is generated; the 

var iable part of the new object is the value referred to by the given object,  or i t s  

var iable part i f  the given object is already an array (see Figure i i ) .  

I 

(a) I~  I t 
reference 

(b) 

reference 

value 
referred element 

\ v Y \ '  

given value rowed object 

descr iptor 

J ~y 

resu l t  

i ill i reference Ire er  escr o  :meo descriptor 
'V "  ¥ 

given value rowed object resu l t  

Figure 11. Rowing, where the resu l t  is of reference mode 
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2.4. OBJECTS OF UNION MODES 

An object of a union mode is ac tua l l y  an object of one of the component modes. I t  con- 

s is ts  of a f ixed part containing the f ixed part of the actual value and a mode inform- 

at ion,  that  is a reference to the corresponding entry in the mode-table, and of the 

actual var iable part.  Su f f i c i en t  storage place must be reserved fo r  actual values of 

any possible component mode; in consequence, i t  is reasonable to reserve as f ixed part  

the maximum storage needed, as shown in Figure 12. 

mo% 
i~ixed part I 

f ixed part 

/ 

var iable part 

/ (L = Tax Li , 
i 

where Li = f ixed part length 
of objects of i - t h  component 
mode) 

Figure 12. Object of union mode 

A var iable part exists only i f  the actual value is or contains an array. The storage 

area needed is , in general, not known at the moment of elaboration of declarat ion;  

i t  is reserved in connection with assignations. 

3. SCOPES OF VALUES (LIFE-TIME) 

Up to now we have discussed the overal l  s t ructure of the data storage, of run-time 

stack and heap, and we oonsidemd the representation of objects of the d i f f e ren t  modes. 

Our next task is to study in which part of storage the objects and in pa r t i cu la r  where 

f ixed and where var iable parts can be placed. This does not only depend on the modes 

of the considered objects but also on the scopes.  There is a close re la t ion  between 

scopes and storage a l loca t ion ;  of course, at least  during i t s  l i f e - t i m e ,  storage must 

be reserved fo r  any object. In th is  section we give at f i r s t  the d e f i n i t i o n  of scopes. 

3.1. DEFINITION 

The scope of a value is some block or the ent i re  program; i t  covers the proper l i f e -  

time which, however, begins with the generation of the object. 
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In detai l :  

The scope of a primitive object is the entire program, 

The scope of a composed value (array or structure) is the minimum of the scopes of 

i ts  elements; the scope of a subvalue of an array is the scope of the array. 

The scope of a generator (reference) in the case of a global generator is the entire 

program and otherwise the block containing the (local) generator. 

For procedures see 4.1. 

Access to a value i s ,  of course, only possible w i th in  i t s  scope (or more exact ly 

during i t s  l i f e - t ime ) .  

For scopes two condit ions must be observed: 

1) The scope of the resu l t  of a block (or procedure) must s t r i c t l y  contain the 

block (or procedure). 

2) For assignations the scope of the l e f t  hand value must be contained in the scope 

of the r i gh t  hand value. 

3.2. CHECKZNG THE SCOPE CONDITIONS 

In simple cases, the scope conditions can be checked s ta t ica l ly ,  otherwise checks at 

run-time must be provided [5]. 

Stat ic  checkings: 

In general, i t  is not possible to determine at compile-time for  each expression and 

subexpression the block which is the scope of i t s  value. One can give only estimates, 

that  means we define a minimum and a maximum scope for  each expression (which are, in 

the worst case, an innermost block, and the ent i re  program, resp.) .  At compile-time, 

to each block and procedure B a block level number bl(B) can be attached, wi th the 

property 

bl(B 1) < bl(B 2) i f  B 1 ~ B 2 for  blocks or procedures B1,B 2. 

These block level numbers can be used for  s ta t i c  checkings (provided that i den t i f i ca -  

t ions have been made cor rec t l y ) .  We denote the block level number of the minimum 

(maximum) scope by bl i (bla). 

(1) For a resu l t  r of a block or procedure B: 

i f  b l i ( r )  < bl(B) then correct else 

i f  bl ( r )  ~ bl(B) then incor rect ,  a 
otherwise dynamic checking is necessary. 
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(2) For an assignation Zhv := rhv : 
i f  bla(lhv) ~ bli(rhv) then correct else 

i f  bliClhv) < bla(rhv) then incorrect, 

otherwise dynamic checking is necessary. 

Dynamic checkings: 

At run-time the use of block level numbers is not su f f i c i en t ,  since there may ex is t  

several incarnations of one block with d i f fe ren t  l i f e - t imes .  In our implementation the 

absolute addresses of the stacktop locations b l s t  in the run-time stack are a sui table 

representation of the corresponding blocks or scopes. 

For two act ive blocks B 1 and B 2 

blst(B 1) < blst(B 2) i f  the l i f e - t ime  of  B 1 is greater than the one of B 2. 

Thus, the dynamic checkings reduce to comparisons of addresses b l s t .  The checks are 

necessary for  objects of reference modes, and these objects are conveniently repre- 

sented by a pair  of addresses: 

address of the object referred to 

b l s t  of the block which is the scope 

(The scope is known at the moment when the reference is generated). 

4. SCOPES AND DATA STORAGE ALLOCATION 

We already stated that there is a connection between scope and storage a l loca t ion .  

There are two groups of  objects to be handled, that is l oca l  and global ones. We said that 

twa data storage areas are avai lab le and we shal l  examine in section 4.2 where to 

store the d i f f e ren t  objects. 

But, at f i r s t ,  we consider another consequence of the scope de f i n i t i on  in ALGOL 68 

which concerns the general stack mechanism. 

4.1. SCOPE OF ROUTINES AND ALLOCATION OF BASE REGISTERS 

The scope of a routine is the smallest of those embracing blocks which contain the 

declarat ions (def ining occurrences) of i den t i f i e r s ,  indicat ions and operators used 

but not defined wi th in the rout ine,  or eventual ly the ent i re  program. The a l loca t ion  

of the base registers for  the stack organizat ion depends on these scopes: 
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In ALGOL 60 s ta t i c  predecessors, s ta t i c  chains, procedure levels and the corresponding 

a l locat ion of base registers are d i rec t l y  given by the text  of the program. As may be 

seen from the example in Figure 13, for ALGOL 68 these correspondences are possible in 

the same manner only a f te r  each procedure has been l i f t e d  to the level of the block 

which is i t s  scope (together with appropriate replacements). Otherwise the s ta t i c  chain 

could have gaps which would require a modif ication of the stack organization (especial- 

l y  of procedure ca l l s ) .  

Program example : Procedure Ievel s 

( proc(int)int P ; I 

proc Q = (in t i) proc(int)int : 2 

(proc R = (in kt j) ~roc(int)intm : 

! ( . . . . .  ; a) 4? 

{ ((int k~ int : k ~ 2)I); 
L - -  J 

int x := R(O)(1) ; ..... 2? 

R(2)  ) ;  

P := Q(3) ; . . . . .  

P ( 4 ) ;  

. . . . .  ) 

procedure level i ~-~base regis ter  BR. 

Stat ic  chains 

when executing 

R ( O ) ( ! )  

a) BR I ~ main program 
¢ 

BR 2 ~ procedure Q 
¢ 

BR 4 ~ procedure R ~ )  
/ 

b) BR 1 ~ mainsprogram ~~ 
( B R  2 ~ )  procedure Q 

BR 2 ~ procedure R@,) 

when executing 

P(4)  

BR 1 ~ main program 
$ ) 

BR 4 ~ procedure R(2)  

BR 1 ~ mainsprogram 

BR~ ~ procedure R(2J 

Figure 13. Stat ic chains and base registers 
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Dynamic scope checking (see 3.2) requires that the objects of procedure modes too con- 

ta in  information on t he i r  scope. We represent these objects in the form: 

address of code 

address of the beginning of the data 

storage of the s ta t i c  predecessor 

blst of the block which is the scope 

4.2. STORAGE FOR DATA 

We have pointed out that the size of the storage area needed for  any object depends 

on i t s  mode and on actual subscript bounds, i f  any. Furthermore, we stated that  the 

scope of an objec~ must have an inf luence on where to store i t s  f ixed and var iable 

part ,  in the data stack or on the heap. 

For th is  aspect of data storage a l loca t ion  we d is t ingu ish  four classes of objects. 

4.2.1. LOCAL OBJECTS GENERATED IN THE BLOCK WHICH IS THEIR SCOPE 

These objects correspond to the ALGOL 60 objects; the usual simple stack mechanism 

applies. See Figure 14. 

Program exampl e: 

B : int x ; 

--T~:3] real y ; 

run-time stack: 

x : 

descr iptor 
of y :  

el ements 
of y :  

stacktop 
p o i n t e r ~  ~ 

s ta t i c  data 
area of B 

dynamic data 
area of B 

Figure 14. Local objects 
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4.2.2. LOCAL OBJECTS GENERATED IN AN "INNER" BLOCK 

There are local objects ( that means objects, the scope of which is a block) which are 

not generated in the block defining the i r  scope, but in an inner block. Such objects 

must be stored on the heap, since they don't f i t  into the stack mechanism. 

This in particular concerns 

descriptors of slices whose mode begins with ?ef 

and rowed expressions whose mode begins with re~ 

(see Figure 15). 

Program example: 

BI: 
[ 1 : n] int x ; 

ref [ ] int xx ; 

B2: I XM. := x [ 1 : 4 at 2 ] ; CO scope (x [ 1 : 4 at 2 ] ) 

= scope (x) 

= BI co 

run-time stack: 

descriptor 
of x: 

XX: 

elements 
of x and of 
subarray~ 

stacktop 
pointer 

< 

heap: 

I s ta t i c  data 

dynamic data 
area oT BI 

dynamic data 
area of B2 

/ 

Figure 15. Local objects generated in an "inner" block 

descriptor of 
subarray 



241 

4.2.3. LOCAL OBJECTS ~ETH FLEXIBLE LENGTH 

For these objects the need of storage for  the var iable part changes during l i f e - t ime  

( f l e x i b l e  array or s t r ing) .  For the var iable part the storage must be allocated on the 

heap, whereas the f ixed part can be placed in the stack. By the way, the same is true 

for  var iable parts of union objects. In the case of a stringthe f ixed part is an in te r -  

na l ly  introduced pointer to the heap. See Figure 16. 

Program example: 

B: 
[ 1 : 2 ~lex , 1 : 2 flex ] int a ; 

a := ((I,~) , (3,4)) ; 

a := ((1,2,3) , (4,5,6) , (7,8,9)); 

data storage at 

descriptor 
of a: 

G 

/ 

heap 

L stat ic data 
~ area of B 

t 
stacktop 
pointer 

stack heap 

data storage at 

descriptor 
of a: 

stacktop ___~ 
pointer 

hea.p. 
polnzer---t.. 

/ ~ s ta t i c  data 

J area of B 

stack 

t 
heap 

el ements 
of a 

} elements 
of a 

"old" elements of 
a, no more accessible 

Figure 16. Local objects with f l e x i b l e  length 
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4.2.4. GLOBAL OBJECTS 

Apart from constants which can be stored in a constant l i s t  at compile-time, and mul- 

t i p l e  values with unrestr ic ted scope, global objects must be stored on the heap. Yet 

fo r  each such entry on the heap an in ternal  pointer is inserted in the stack w i th in  

the storage area fo r  the block in which the global object is generated. See Figure 17. 

Program example: 

BI: ~ref [ ] real yy ; 

B2: ~heap int x ; 

he a~ [•:3] rea~ y ; 

yy := y 
L_ 

yy  

L_ 

run-time stack: 

static data 
area of B1 

s ta t i c  data 
area of B2 

heap: 

yy. 

in~ecnal . 
poln%ers Tor x 

for y 

stacktop 
pointer 

~ - ~  hea.p. 

elements 
of y 

descr iptor 
of y 

Figure 17. Global objects 
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5. SPECIAL TOPICS 

Though in p r inc ip le  for  ALGOL 68 the well-known mechanisms fo r  run-time stack and 

heap can be used, some special problems ar ise for  which special provisions are to be 

considered. In cer ta in more or less obvious points a modif icat ion of the storage 

a l loca t ion  scheme is necessary. 

5.1. RESULTS OF BLOCKS AND PROCEDURE CALLS 

In ALGOL 68, blocks and procedure ca l l s  may have resul ts  of any general mode. More- 

over, i t  may occur that such a resu l t  is stored in the data area of the block con- 

cerned, and is los t ,  i f  storage is released by the usual simple reloading of the 

stack pointer .  These resul ts  must be saved as i l l u s t r a t e d  by Figure 18. 

Program example: 

F-- BI: 
~[ 1:4 ] int x ; 

Oa := 

B2: ( [1:3 ] struct (int i , [ 1 : 4 ] int j ) a ; 

j of a [ I ]  CO result of block B2 co ) ; 

L , 

run-time stack at the end of E2 : 

elements 
of a 

elements~ 
of j 

stacktbp 
pointer 

area of B I  I I | 
i I ~dynamic data 

l 
area of B1 

w / / / / ; x , / / / / ~  ~ stacktop 
polnter 

resu l t  of B2 

i 

> dynamic data 
area of B2 

Figure 18. Result of a block 
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This saving can be interpreted as 

assignment to an intermediate var iable declared in an outer block 

o r  as 

a certain garbage co l l e c t i on - l i ke  col lapsing of the data area of the top block 

in the stack which preserves only the compacted block resu l t ,  wi th reset t ing 

of the stack pointer to the las t  word of the resu l t .  

In order to avoid overwr i t ing th is  t ransfer  requires already a sui table storage scheme 

for  objects of general modes. In par t i cu la r  i t  is  possible that the var iable parts of 

objects are not stored in consecutive storage ce l l s  (e.g. ,  in the case of subvalues 

of mul t ip le  values). 

A simple solut ion of the problem is the t ransfer  of the objects to the heap. 

5.2. GENERAL ACTUAL PARAMETERS 

Actual parameters in ALGOL 68 may contain e.g. blocks and jumps which cause certain 

modif icat ions fo r  the stack operations. 

One of the points to be considered is how to inser t  blocks occurring in actual para- 

meters into the block and procedure structure of the whole program. According to the 

semantics of the ALGOL 68 procedure ca l l  the actual parameter is transferred into the 

(copy of the) rout ine where i t  is elaborated during elaboration of the rout ine.  Thus, 

blocks in actual parameters are local blocks of the procedure cal led.  For the s ta t i c  

chain (used. for  reaching non-locals) th is  i s ,  however, not true. Since actual para- 

meters are in e f fec t  value-parameters (with the res t r i c t i on  that the formal parameters 

pack contains no semicolon) they should be elaborated before ac tua l ly  entering the 

rout ine cal led.  In our implementation th is  is done and the values of the actual para- 

meters are d i r ec t l y  stored in the places for  the formal parameters. 

In a block-oriented stack scheme special provision must be made for  the s ta t i c  chain 

such as shown for  the example in Figure 19. 

In a procedure-oriented version the same modif icat ion of  the s ta t i c  chain is necessary, 

because procedures, too, may occur in actual parameters. But there are s t i l l  other 

d i f f i c u l t i e s  in handling the dynamic storage areas of blocks in actual parameters. 

Among other p o s s i b i l i t i e s  are a special handling of block ends concerned or the in -  

sert ion of those blocks into the s ta t i c  block level st ructure of the ca l l i ng  pro- 

cedure together with an addit ional  stacktop locat ion for  the ca l l  (see Figure 20). 
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program example: run-time stack: 

B1 : rpre c p 

r 

B2: [--~roc Q 
I---p(... 

B3: r-. 

C) 
[_ 

t_Qc.. .)  
[__''" dynamic 

chain 

BI  

B2 

P 

B3 

a f t e r  
entering P 

I l during 
_ _ ~ _ ] | e l  aboration 
| of actual 

parameters 

s ta t i c  chain 

Figure 19. Actual parameters. Block-oriented run-time stack 

5.3. LOCAL GENERATORS 

Storage for  local generators cannot be reserved in a s ta t i c  data area in general, 

because the number of objects ac tua l l y  generated in the same block depends on program 

f low. 

Local generators occurring as actual parameters in i den t i t y  declarat ions, e .g . ,  

r e ,  r e a l  x = l o o  r e a l  := 3 .1  , cause no problems. In the Munich implementation we 

res t r ic ted the handling of local generators to those cases, Otherwise, d i f f i c u l t i e s  

ar ise in storage a l loca t ion  and scope checking [3] .  (Moreover, in most cases the use 

of global generators is  more reasonable.) 

A case in point  is the occurrence of a local generator in an actual parameter of a 

procedure ca l l .  Consider, fo r  example 

B: begin real y; 

~roc P = (re_~ ref real x) , ...x :-- lo__~c real; ... ; 

P (loc ref real := y) 

~ref re real x -- loc re~ real f . . . . . . .  "= y; 

e_'nd L ... x "= loc real; ...) 



246 

Program example: 

I p ( 
BI :  

B2: 1 

i : 

B3: I 

L_I" 
) ;  

co nested blocks within 
P ( . . . J  co 

B1 

P() 

B2 

B3 

stacktop 
locations 
of cal l ing 
procedure 

If:: / 
/ 

/ 
/ 

j ~  
i 

stacktop 
pointer 

stack 

- k///////,'/////, 

/ 
/ 

procedural 
stat ic data area 
of cal l ing procedure 

dynamic 
data area 
of BI (cal l ing block) 

procedural 
stat ic data 
area of p 

dynamic 
data area 
of B2 

dynamic 
data area 
of B3 

Pigure 20. Stacktop locations for calls 
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The scope of a local generator is the innermost range (block) containing i t .  The ca l l  

mechanism prescribes the ca l l  to be replaced by the rout ine,  that  is  a block contain- 

ing i den t i t y  declarat ions derived from formal and actual parameters. This block con- 

tains the generator and, in consequence, the scope and thus the stacktop locat ion re- 

presenting i t ,  is in general determined only dynamically, depending on the rout ine 

cal led.  A ca l l  P( xx  := l o c  r e a l : :  . . .  ) for  instance, where x x  is of mode 

r e f r e f  r e a l  and declared in the ca l l i ng  block, is undefined. The general storage 

a l loca t ion  scheme leads to reserving space in the dynamic area for  the local (or even 

actual)  parameters, where the generator must be kept un t i l  the rout ine is l e f t .  

5.4, GENERAL MODE DECLARATIONS 

In a mode declarat ion the actual declarer may contain actual bounds. Each applied 

occurrence of the defined mode ind icat ion must be replaced by the actual declarer. 

For example: 

mode m = [ l : n ]  real ; 

m x ; strict (m i .... ) 

[ l : n ]  real [ l : n ]  real 

Therefore, in generating code, th is  inser t ion is conveniently done by ca l l i ng  a closed 

subroutine derived from the mode declarat ion.  

These subroutines may contain procedure ca l l s  and thus become even ( i m p l i c i t l y )  re- 

cursive: 

proc P = (int x) int: 

Fmode m = [1:.,.P(1) ... ] real; ...~ 

The easiest way to deal with th is  fact  is to handle mode declarat ions with actual 

bounds l i ke  procedures wi thout parameters with a l l  consequences concerning base re- 

g is ters and storage a l loca t ion .  Our previous d e f i n i t i o n  of procedures, therefore, must 

be supplemented. A scope d e f i n i t i o n  is not necessary since modes cannot be handled 

l i ke  other data. 

5.5. "EMPTY J'~ FLEXIBLE ARRAYS 

At the time of elaboration of a declarat ion for  a f l e x i b l e  array the space i n i t i a l l y  

required for  the elements may be empty. This causes problems when the elements again 

may contain arrays. 

For example~ [1 : 0 f l e x ]  s t r u c t  ( [m : n ]  i n t  i ,  . . .  ) x 

x has i n i t i a l l y  an empty set of elements. 

Normally the values of m and n are stored in descriptors contained in these elements. 



248 

m and n are furthermore needed when assignments to x are made, e.g. ~nce a subsequent 

access to m and n would be rather cumbersome, we decided to reserve store for  just  one 

element where the necessary local information can be held. 

6. GARBAGE COLLECTION 

In this section we consider an ALGOL 68 garbage co l lec to r ;  we res t r i c t  ourselves to 

the storage collapse technique used in the Munich implementation. Possible optimiza- 

t ions of the underlying pr inc ip le  are not discussed here. 

The garbage co l lec tor  works in 3 phases: 

(1) Marking phase: 

Al l  objects or subvalues stored on the heap can be reached by reference chains s tar t -  

ing in s ta t ic  data areas in the run-time stack. 

One of the tasks is now to f ind a l l  s ta t ic  areas of act ive blocks and procedure cal ls  

in the stack. This is possible by means of the dynamic chain for  procedure ca l ls .  

Furthermore, we introduce a (s ta t ic )  numbering of a l l  blocks and procedures. This 

number is stored, together with the stacktop pointer,  in the stacktop locat ion of the 

block (procedure) concerned. Thus, the number of a l l  act ive incarnations of blocks 

and procedurescan be found (see Figure 21). 

Each s ta t ic  data area must be examined whether i t  contains pointers leading into 

the heap (possibly, through dynamic areas). For s ta t ic  data areas the structure is 

known at compile-time (and i t  is the same for  any incarnat ion).  That is,  a storage 

a l locat ion l i s t  can be set up at compile-time for  each s ta t ic  data area, which 

specif ies for  each item whether or not i t s  content is relevant for  the garbage co l lec-  

tor .  To these l i s t s  the aforementioned block number can be attached. A model of such 

a l i s t  is given in Figure 22. For each item in a s ta t ic  data area i t  contains 

a sequence of n zeroes (0) i f  the item needs n storage cel ls  and is or 

contains no pointer,  

a one ( i )  i f  the item is or contains a pointer ;  in addi t ion a reference 

to the entry of the mode table for  the item concerned is given. 

These l i s t s  allow us to analyze at run-time a l l  chains in a par t ly  in te rpre ta t i ve  

manner with regard to modes. Al l  objects (storage ce l ls )  on the heap reached in this 

way are marked ( in our case by using a marking b i t  l i s t ) .  
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Example: 

B: begin 

end 

,oo 

I 

i 
f 
I 
i 
i 
J 
I 

J 

I 

i 
i 
i 
i 

I 
I 
l 
i 
t 

I° 

real a; 

I1 : u] ~ real b; 

heap real c; 

int d; 

i 
f 
I 
i 
f 
t 
i 
I 
I 
t 
I 
I 
I 
t 
I 
F 
I 
L 

I 

stack 

\ \  

' "  1 

[ 

mode-tabl e 

heap 

a 

descriptor 
of b 

)ointer to c 

d 

~e l  ements 
possible 
references 
to the heap 

storage al locat ion 
l i s t  for  B 

entry for re freal 

entry for [] re~ real 

Figure 22. Garbage col lect ion 
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(2) Compactification phase: 

In the compactif ication phase a l l  (sequences of) storage ce i ls  marked on the heap are 

joined into an uninterrupted sequence. A special requirement of ALGOL 68 is that even 

i f  only a subvalue of an array is marked, then in general the whole array is kept, 

with the exception that dynamic parts of the i r re levant  elements of the or ig inal  array 

are discarded. This was deemed advisable, in par t icu lar ,  since redef in i t ion  of des- 

cr iptors would be necessary, otherwise. 

(3) Addressing phase: 

Collapsing requires (almost) a l l  pointers into the heap (possibly within the heap) to 

be changed according to the transfers performed. The problem is to f ind a l l  these 

pointers, which would require a great deal of the work done in phase (1) to be repeat- 

ed. Instead, during phase (1) a l i s t  of a l l  respective pointers can be set up which 

f a c i l i t a t e s  the work of th is phase. 

One of the problems in garbage col lect ion is posed by the storage which the col lector  

i t s e l f  needs for  l i s t s  and for  the stack used for  analyzing modes and composed objects. 

Two addit ional remarks should be made: The use of storage a l locat ion l i s t s  does not 

allow objects of d i f fe ren t  non-primit ive modes to be stored in the same storage ce l ls  

of one s ta t i c  data area. Thu~ the use of a "number ce l la r "  for  intermediate resul ts 

is only possible for  objects of p r imi t ive  ( i r re levant  for  garbage col lect ion)  modes. 

Furthermore, the i n i t i a l i z a t i o n  of storage cel ls  with a suitable skip~value is ne- 

cessary at each block begin, dynamic storage a l locat ion,  and procedure cal l  and re- 

turn; otherwise, the garbage col lector  might work with undefined values. 
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Chapter 3.D 

SYMBOL TABLE ACCESS 

W. M. McKeeman 

Univers i ty o f  Ca l i fo rn ia  at 

Santa Cruz, U.S.A. 

"The bu t t e r f l y  co l l ec to r  l i kes  to 
catch e lus ive l i t t l e  things and 
l i ne  them up in rows. He should 
enjoy symbol tab les . "  

I .  INTRODUCTION 

During the t rans la t ion  of  many .programming languages i t  is necessary to asso- 

c iate each occurrence o f  an i d e n t i f i e r  with i t s  col lected a t t r i bu tes .  This is 

accomplished ~ means o f  a symbol table which holds re levant  information about a l l  

act ive i d e n t i f i e r s  encountered in the source tex t .  Information required f o r  t rans- 

l a t i on ,  and held in the symbol tab le,  may include the name, type, locat ion,  diagnos- 

t i c  in format ion,  scope nest ing, etc. An entry is made in to the symbol table when a 

new i d e n t i f i e r  is declared. When an i d e n t i f i e r  is otherwise used the symbol tab le 

is in terrogated fo r  the information on which to base t rans la t ion  decisions. 
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I f  the same identif ier has been declared in nested scopes, the declaration in 

the innermost scope controls its use. As a result the symbol table search mechanism 

must insure that the f i rs t  occurrence found wil l be the innermost. 

All entries local to a scope (e.g., local variables to a procedure) become i r -  

relevant upon exit  from that scope and are removed from the symbol table. This 

serves the dual function of freeing space in the symbol table and "uncovering" any 

previous use of those symbols in outer scopes. 

Symbol tables access consumes a major portion of the processor time during 

translation. For example, a study of an efficient translator for the PL-like lan- 

guage XPL revealed that one-fourth of its translation time was spent interrogating 

the symbol table when a linear search method was employed. Changing to a hashed 

table lookup algorithm, a faster access method for this application, saved nearly all 

of that time. 

There are four methods for symbol table access presented here for evaluation 

and comparison (linear, hash, sorted, and tree). None are new and all have their 

merits depending on the application for which they are being used. 

2. OPERATIONS 

Certain programming languages, such as ALGOL-60 and PL/I, have nested scopes of 

application for their identifiers. A scope is delimited by matching bracketing sym- 

bols (such as beBin-end). The appearance of a declaration for an identi f ier within 

the brackets makes the identif ier local to that scope ( i .e . ,  not available outside 

the brackets). When a single identif ier is declared in more than one level of 

nested scopes, the innermost declaration takes precedence (see Figure 2.1). 
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1 / *  A PL/I PROGRAM FRAGMENT * /  

2 BEGIN; 

3 DECLARE (A, B) FIXED; 

4 A = l ;  

5 BEGIN; 

6 DECLARE (C, A) FIXED; 

7 A, B, C = l ;  

8 BEGIN; 

9 A = l ;  

lO END; 

I I  BEGIN; 

12 DECLARE A FIXED; 

13 A : I ;  

14 END; 

15 A = I ;  

16 END; 

17 A : I ;  

18 END; 

A Program Exhibit ing Nested Scopes 

Figure 2.1 
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The symbol table for  a nested language holds a record of ident i f iers and the 

information associated with them. Upon encountering the declaration of an identi - 

f ie r  (expl ic i t  or implici t) ,  a translator must f i r s t  check that there has been no 

previous declaration of i t  in the present scope and then enter i t  into the table. 

Upon encountering the use of an ident i f ier ,  the translator must find the symbol 

table entry for the corresponding declaration to make available the associated in- 

formation. The scope bracketing symbols must also cause the translator to react 

appropriately. 

The simplest table organization for symbols in a nested language is a stack. 

Upon scope entry the stack must be marked to delimit the new scope; upon encounter- 

ing a declaration the new ident i f ier  is stacked; upon encountering the use of an 

ident i f ie r  the stack is searched from newest entry to oldest to find the most re- 

cently declared occurrence of that name; upon scope exi t  the identi f iers local to 

the scope must be discarded. 

The speed with which the above operations can be accomplished is often a c r i t i -  

cal design cr i ter ion for the symbol table mechanism. There are several access 

methods that can be superimposed on the stack organized table to improve performance. 

The choice "between them is based on various considerations of table size and fre- 

quency of access; several choices are given below. In each case there are four 

procedures corresponding to the four access actions as noted in Figure 2.2. 

Two other auxi l iary functions are needed to deal with the attributes associated 

with each symbol: "new-attribute" and "old-attribute, . The f i r s t  records a newly 

discovered attr ibute and checks that i t  does not confl ict with previously recorded 

information. The la t te r  simply retrieves an attr ibute from the symbol table. 

Let "id" be the character string form of a name, "n" be i ts location in the 

symbol table, "atr" be the designation of an attr ibute, and "atrval" the value of 

the designated attr ibute. The the following six lines are the standard calls of 

the six functions (in PL/I). 
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n = new_id ( i d ) ;  

n = o ld_id ( i d ) ;  

ca l l  enter~scope; 

ca l l  exit_scope; 

ca l l  new_attr ibute ~ ,  a t r ,  a t r v a l ) ;  

a t rva l  : o l d a t t r i b u t e  (n, a t r ) ;  

procedure name action accomplished 

new id 

old id 

scope_entry 

scope e x i t  

An i d e n t i f i e r  has j u s t  been declared. 

Check that  no previous con f l i c t i ng  

declarat ion has been given and then 

enter the symbol in to  the table.  

An i d e n t i f i e r  has jus t  been used. Find 

the table locat ion corresponding to i t s  

most recent declarat ion.  

A beginning bracket f o r  a scope has been 

encountered. Prepare a new local naming 

scope. 

An ending bracket f o r  a scope has been 

encountered. Discard i d e n t i f i e r s  no 

longer accessible and reestabl ish the next 

outer  scope. 

Symbol Table Access Primit ives 

Figure 2.2 



258 

3. Method of Presentation 

The presentation here is primarily in terms of some running programs 

written in XPL. The advantage of presenting complete programs is in i~ediate 

transfer to a working translator. All of the details are spelled out so that the 

user can simply translate into his implementation language and use the algorithms. 

Another advantage is in immediate comparison of the four algorithms presented. They 

have been made as similar as possible so that the difference~will stand out. 

The running programs contain the implementation of the four access primitives 

that are needed to define the symbol table module (See Section l.A .5 of these notes). 

The "language" that drives the symbol table module is given by the grammar in Figure 

3.1. 

defineactions : scope-entry action_list scope-exit 

action_list=(new_id Iold_idl defineactions )* 

The Intermodular Communication 

with the Symbol Table Module 

Figure 3.1 

The test programs read in a stylized example of the intermodular communication 

and obey the implicit commands. Other tests (See Section I.A.4.3 of these notes) 

can be presented to the program by simply changing the input. The code words in the 

data correspond to the actions as l isted below: 

IN scope_entry 

OUT scopeexi t 

NEW new_i d 

OLD Old_i d 
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The trace output prints the driving input data as well as all the table con- 

tents at each stage. The output is a bi t  cryptic but, since the program that pro- 

duced i t  is there, i t  should be understandable. 

4. LINEAR SYMBOL TABLE ACCESS 

attribute 
table ~ ~ T A B L E  TOP 

1 . ~  L L  - -  

ID TABLE SCOPE MARKER 

Linear Access Method 

Symbol Table Configuration 

Figure 4.l 

The diagram in Figure 4.1 depicts the linear search method symbol table as i t  

would appear after a translator has processed lines I-6 of the program fragment in 

Figure 2.1. ID_TABLE holds the identifiers A, B, C, and A while SCOPE_MARKER sig- 

nifies that the f i rs t  two are in the outer scope and the second two are local to the 

inner scope. The variables LL and TABLE_TOP point to the next available cell in 

their respective tables. The attributes of the identifiers are held in another 

table which is accessed by the same pointer as ID_TABLE allowing the translator to 

f i r s t  locate an identif ier then use its location to sample or add to the associated 

attributes. 

The linear access method is expressed and tested in the following XPL program. 

(The language XPL is close enough to PL/I so that the reader should easily under- 

stand the meaning of i ts constructs.) The output of the program consists of a 

series of snapshots of the table contents and pointers after each action triggered 

by the program in Figure 2.1. INDEX records the location found by the procedure 
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invoked. The signals IN and OUT correspond to scope entry and exit caused by 

BEGIN and END; NEW A signifies the declaration of the identif ier A and OLD A the 

use of A. The table configuration in Figure 4.1 is reached after the seventh 

event in the test run. 

I 

2 

3 

4 

5 

6 

7 

8 

9 

I0 

II 

12 

13 

14 

IS 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

32 

/ *  S Y M B O L  T A B L E  A L G O R I T H M S  */ 

/ *  L I N EAR S E A R C E  METHOD */ 

/ *  DATA STRUCTURE DEFINITIONS: 

ID_TABLE() HOLDS THE IDENTIFIERS. 

TABLE_TOP POINTS TO THE NEXT AVAILABLE CELL IN ID__TABLE(). 

TABLE_LIMIT IS THE BOUND ON TABLE_TOP. 

SCOPE_MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE. 

LL IS THE PRESENT LEVEL OF PROGRAM NESTING. 

LL LIMIT IS THE BOUND ON LL. 

INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES. 
*/ 

DECLARE TABLE_LIMIT LITERALLY 'lO0', TABLE_TOP FIXED, 

ID_TABLE(TABLE_LIMIT) CHARACTER ; 

DECLARE LL_LIMIT LITERALLY ' lO', LL FIXED, SCOPE_MARKER(LL_LIMIT) 

DECLARE INDEX FIXED; 

FIXED; 

ERROR: PROCEDURE; OUTPUT, OUTPUT = 'ERROR'; CALL EXIT; END ERROR; 

NEW_ID: 

PROCEDURE(IDENTIFIER); 

DECLARE IDENTIFIER CHARACTER; 

DECLARE SB FIXED; 

/ *  SEARCH FOR DUPLICATE DECLARATION */ 

SB = SCOPE_MARKER(LL-I); 

INDEX : TABLE_TOP; 

DO WHILE INDEX > SB; 
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33 INDEX = INDEX - l ;  

34 IF IDENTIFIER = ID_TABLE(INDEX) THEN CALL ERROR; 

35 END; 

36 

37 / *  CHECK FOR ID TABLE OVERFLOW */  

38 IF TABLE TOP = TABLE LIMIT THEN CALL ERROR; 

39 

40 / *  ENTER NEW IDENTIFIER * /  

41 INDEX = TABLE_TOP; TABLE_TOP = TABLE_TOP + l ;  

42 ID_TABLE(INDEX) = IDENTIFIER; 

43 END NEW_ID; 

44 

45 OLD ID: 

46 PROCEDURE(IDENTIFIER); 

47 DECLARE IDENTIFIER CHARACTER; 

48 

49 / *  SEARCH ID TABLE FOR THE IDENTIFIER */  

50 INDEX = TABLE_TOP; 

5'I DO WHILE INDEX > O; 

52 INDEX = INDEX - l ;  

5:3 IF IDENTIFIER = ID__TABLE(INDEX) THEN RETURN; 

54 END; 

55 

56 / *  RECORD FAILURE TO FIND THE IDENTIFIER * /  

57 CALL ERROR; 

58 END OLD._ID; 

59 

60 SCOPE_ENTRY;" 

PROCEDURE; 

/ *  MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED * /  

IF LL = LL LIMIT THEN CALL ERROR; 

SCOPE_MARKER(LL) = TABLE__TOP; / *  POINT TO FIRST LOCAL */ 

LL = LL + l ;  / *  INCREASE LEXIC LEVEL */  

END SCOPE_ENTRY; 

61 

62 

63 

64 

65 

66 

67 

68 SCOPE EXIT: 

69 PROCEDURE; 

70 LL = LL - l ;  

71 TABLE_TOP = SCOPE__MARKER(LL); 

72 END SCOPE_EXIT; 

73 
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79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

9O 
g] 

92 

93 

94 

95 

96 

97 

98 

99 

IO0 

!01 

IO2 

74 / *  TEST PROGRAM FOR SYMBOL TABLE ALGORITHMS */ 

75 DECLARE (CARD, LINE) CHARACTER; 

76 DECLARE I FIXED; 

77 OUTPUT = ' SIMULATION OF EVENTS DURING TRANSLATION ' ; 

78 OUTPUT = ' ' ;  

OUTPUT = 'EVENT: TABLE STATUS:'; 

OUTPUT = ' ' '  

LL = O; TABLE_TOP = O; 

DO WHILE LL >= O; 

/ *  PRINT STATUS OF TABLES AND POINTERS * /  

OUTPUT = ' TABLE_TOP='IITABLE_TOPII' 

LINE = ' ID_TABLE()= ' ;  

DO I = 0 TO TABLE_TOP - l ;  

LINE = LINE I] ID_TABLE(1)II ' ;  

END; 

OUTPUT = LINE ; 

LINE = ' SCOPEMARKER() = ' ;  

DO I = 0 TO LL- ] ;  

LINE = LINE II SCOPE_MARKER(1) ' ' ;  

END; 

OUTPUT = LINE ; 

LL=' I I LLI I" INDEX=' I I INDEX ; 

/ *  SIMULATE ACTIONS OF A TRANSLATOR */  

CARD, OUTPUT = INPUT; 

IF SUBSTKCARD,O,2) = 'IN' THEN CALL SCOPEENTRY ; 

ELSE IF SUBSTR(CARD,O,3) = 'OUT' THEN CALL SCOPEEXIT; 

ELSE IF SUBSTR(CARD,O,3) = 'NEW' THEN CALL NEW_ID(SUBSTR(CARD,5,1)); 

ELSE IF SUBSTR(CARD,O,3) = 'OLD' THEN CALL OLD_ID(SUBSTR(CARD,5,1)); 

103 END; 

104 EOF EOF 

Test Module for  Linear Access 

Figure 4.2 
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EVENT: 

IN 

NEW A 

NEW B 

OLD A 

IN 

NEW C 

NEW A 

OLD A 

OLD B 

TABLE STATUS: 

TABLE TOP = 0 LL = 0 

ID_TABLE() : 

SCOPEMARKER() = 

INDEX = 0 

TABLE_TOP = 0 LL : 1 

ID_TABLE() = 

SCOPE_MARKER() = 0 

INDEX = 0 

TABLE_TOP = 1 LL : 1 

IDTABLE() : A t 

SCOPEMARKER() = 0 

INDEX = 0 

TABLE_TOP = 2 LL = 1 

IDTABLE() = A B 

SCOPE.MARKER() = 0 

INDEX = l 

TABLE_TOP : 2 LL : 1 

ID_TABLE() = A B 

SCOPEMARKER() : 0 

INDEX : 0 

TABLE_TOP : 2 LL = 2 INDEX = 0 

ID_TABLE()= A B 

SCOPE_MARKER() : 0 2 

TABLE_TOP : 3 LL : 2 

IDTABLE() = A B C 

SCOPE_MARKER() = 0 2 

INDEX = 2 

TABLE_TOP = 4 LL = 2 

ID_TABLE() : A B C A 

SCOPEMARKER() = 0 2 

INDEX = 3 

TABLETOP : 4 LL : 2 

IDTABLE() = A B C A 

SCOPE_MARKER() = 0 2 

INDEX = 3 

TABLE.TOP : 4 LL = 2 

IDTABLE() = A B C A 

SCOPEMARKER() = 0 2 

INDEX : 1 



264 

OLD C 

IN 

OLD A 

OUT 

IN 

NEW A 

OLD A 

OUT 

OLD A 

OUT 

TABLE_TOP = 4 LL = 2 INDEX = 2 

ID_TABLE() = A B C A 

SCOPE_MARKER{) = 0 2 

TABLE_TOP = 4 LL = 3 INDEX = 2 

ID_TABLE() = A B C A 

SCOPEMARKER() = 0 2 4 

TABLETOP = 4 LL = 3 INDEX = 3 

ID_TABLE() = A B C A 

SCOPEMARKER() = 0 2 4 

TABLE_TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() : AB C A 

SCOPE_MARKER() = 0 2 

TABLE_TOP = 4 LL = 3 INDEX = 3 

ID_TABLE() = A B C A 

SCOPE_MARKER() 0 2 4 

TABLE_TOP = 5 LL = 3 INDEX = 4 

ID_TABLE() = A B C A A 

SCOPE_MARKER() = 0 2 4 

TABLE_TOP = 5 LL = 3 INDEX = 4 

ID_TABLE() = AB C A A 

SCOPE_MARKER() = 0 2 4 

TABLE_TOP = 4 LL = 2 

ID_TABLE() = A B C A 

SCOPE MARKER() = 0 2 

INDEX = 4 

TABLE_TOP = 4 LL = 2 

ID._TABLE() = A B C A 

SCOPEMARKER() = 0 2 

INDEX = 3 

TABLE_TOP = 2 LL = 1 

ID_TABLE() = A B 

SCOPE_MARKER() = 0 

INDEX = 3 
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OLD A 

OUT 

OUT 

TABLE TOP = 2 LL = l 

ID_TABLE() = A B 

SCOPE_MARKER() = 0 

INDEX = 0 

TABLE TOP = 0 LL = 0 INDEX = 0 

ID_TABLE() = 

SCOPE_MARKER() = 

Trace Output: Linear Access 

Figure 4.3 

5. SORTED SYMBOL TABLE ACCESS 

~ L _ _ _ ~ . . ~ - ' - - J F  4 ] TABLETOP 

POINTER ID TABLE SCOPE MARKER 

Sorted Table Access Methoa 

Symbol Table Configuration 

Figure 5.1 

I f  a table is ordered and we can locate the middle item, hal f  of  the table can 

be discarded with a single comparison. The remaining hal f  can be treated s imi lar ly ,  

e tc . ,  unt i l  only one item remains. Since the requirement of nested language scope 

predetermines the table order, a second ordering is imposed via a table of 

pointers. 

Figure 5.1 depicts the sorted table method af ter  processing l ines I-6 of 

Figure 2.1. The order: 
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ID_TABLE(POINTER(1)) = A 

ID_TABLE(POINTER(2)) = A 

ID_TABLE(POINTER(3)) = B 

ID_TABLE(POINTER(4)) = C 

is in increasing collating sequence allowing the subdivision to be accomplished. 

Multiple entries are handled by always taking the higher one (e.g., ID_TABLE 

(POINTER(2)) for A in this instance}. 

Exercise Verify that the simulation output corresponds to the 

correct symbol table actions. 

Exercise Hand simulate the look-up implied by action 8 (OLD A) 

of the simulation. 

I 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

11 

12 

13 

14 
15 */ 

16 

/ *  S Y M B O L  T A B L E  A L G O R I T H M S  */ 

/ *  S O R T E D  T A B L E  A C C E S S  METHOD */ 

/*  DATA STRUCTURE DEFINITIONS: 

ID_TABLE() HOLDS THE IDENTIFIERS, 

TABLE TOP POINTS TO THE NEXT AVAILABLE CELL IN ID_TABLE(}, 

TABLE_LIMIT IS THE BOUND ON TABLETOP, 

SCOPE MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE, 

LL IS THE PRESENT LEVEL OF PROGRAM NESTING, 

LL LIMIT IS THE BOUND ON LL, 

INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES. 

17 DECLARE TABLE_LIMIT LITERALLY 'IO0', TABLE_TOP FIXED, 

18 ID_TABLE(TABLE_LIMIT) CHARACTER; 
19 DECLARE LL LIMIT LITERALLY 'IO', LL FIXED, SCOPE_MARKER(LL_LIMIT) FIXED; 

20 DECLARE INDEX FIXED; 

21 
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22 / *  POINTERS FOR INDIRECT SORT * /  

£13 DECLARE POINTER(TABLE_LIMIT) FIXED; 

24 

25 ERROR; PROCEDURE; OUTPUT, OUTPUT = 'ERROR'; CALL EXIT; END ERROR; 

26 

27 NEW ID: 

PROCEDURE(IDENTIFIER); 

DECLARE IDENTIFIER CHARACTER; 

DECLARE (R, M, T) FIXED; 

28 

29 

3O 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

5O 

51 

52 

53 

54 

55 

56 

57 

58 

/ *  SEARCH FOR DUPLICATE DECLARATION * /  

B = - I ;  M, T = TABLE_TOP; 

DO WHILE B+I < T; 

M = SHR(B+T, I ) ;  

IF IDENTIFIER < ID TABLE(POINTER(M)) THEN T = M; 

ELSE B : M; 

END; 

IF B = M THEN 

IF IDENTIFIER = ID_TABLE(POINTER(M)) THEN 

IF POINTER(M) >= SCOPE_.MARKER(LL-I) THEN CALL ERROR; 

/ *  CHECK FOR ID_TABLE OVERFLOW * /  

IF TABLE TOP = TABLE LIMIT THEN CALL ERROR; 

/ *  ENTER NEW IDENTIFIER */ 

INDEX = TABLE_TOP; TABLE_TOP = TABLE_TOP + l ; 

ID_TABLE(INDEX) = IDENTIFIER; 

/ *  KEEP THE POINTER TABLE IN ORDER */  

T = INDEX; 

DO WHILE B+l < T; 

POINTER(T) = POINTER(T-I); 

T = T - I ;  

END; 

POINTER(T) = INDEX; 

END NEW ID; 

59 OLD ID: 

60 PROCEDURE(IDENTIFIER); 

61 DECLARE IDENTIFIER CHARACTER; 

62 DECLARE (R, M, T) FIXED; 
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63 

6¢ 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

/ *  SEARCH IO TABLE FOR THE IDENTIFIER * /  

IF TABLE TOP = 0 THEN CALL ERROR; 

B = - I ;  M, T = TABLE_TOP; 

DO WHILE B + 1 < T; 

M = SHR(B+T, I ) ;  

IF IDENTIFIER < rDTABLE(POINTER(M)) THEN T = M; 

ELSE B : M; 

END; 

/ *  RECORD FAILURE TO FIND THE IDENTIFIER * /  

IF B < 0 THEN CALL ERROR; 

INDEX = POINTER(B); 

IF IDENTIFIER = ID_TABLE(INDEX) THEN CALL ERROR; 

END OLD_ID; 

79 SCOPE_ENTRY: 

80 PROCEDURE; 

81 / *  MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED * /  

82 IF LL = LL LIMIT THEN CALL ERROR; 

83 SCOPE~¢ARKER(LL) = TABLE_TOP; / *  POINT TO FIRST LOCAL * /  

84 LL : LL + I ;  / *  INCREASE LEXIC LEVEL */ 

85 END SCOPE_ENTRY; 

86 

87 SCOPE_EXIT: 

88 PROCEDURE; 

89 DECLARE (SB, B, T) FIXED; 

90 

91 LL = LL -I ; 

92 / *  DISCARD POINTERS INTO LIMBO */  

93 T, B = O; SB = SCOPE_MARKER(LL); 

94 DO WHILE T < TABLE_TOP; 

95 IF POINTER(T) < SB THEN 

96 DO; / *  SAVE GOOD ONES */  

97 POINTER(B) = POINTER(T) ; 

98 B = B + I ;  

99 END; 

lO0 T = T +  l ;  

lOl END; 

102 TABLE. TOP = SB; 
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I03 

104 

105 

106 

I07 

108 

109 

110 

I I I  

112 

113 

I14 

]15 

316 

]17 

118 

]19 

]20 
121 

122 

123 

124 

]25 

126 

127 

128 

129 

]30 

131 

132 

I33 

I34 

135 

136 

]37 

138 

END SCOPE_EXIT; 

/ *  TEXT PROGRAM FOR SYMBOL TABLE ALGORITHMS * /  

DECLARE (CARD, LINE, LINE1) CHARACTER; 

DECLARE I FIXED; 

OUTPUT = ' SIMULATION OF EVENTS DURING TRANSLATION '~ 

OUTPUT = ' ' • i 

OUTPUT = 'EVENT: TABLE STATUS:'; 

OUTPUT = ' ' • 

LL = O; TABLE TOP = O; 

DO WHILE LL >= O; 

/ *  PRINT STATUS OF TABLES AND POINTERS * /  

OUTPUT = ' TABLE_TOP = ' ITABLE_TOPII' 

LINE = ' ID_TABLE() = ; 

LINEI = ' POINTER() = ' ;  

DO T = 0 TO TABLE TOP-I; 

LINE = LINE IITD_TABLE(1) I ' ; 

LINEI = LINEI I] POINTER(1) I ' ' ;  

END 

OUTPUT = LINE; 

OUTPUT = LINEI; 

LINE = ' SCOPE_MARKER() = ; 

O0 I = 0 TO LL-I ;  

LINE = LINE II SCOPE_MARKER(I ' ' ;  

END; 

OUTPUT = LINE; 

LL = ' [ILL1[ ' INDEX:' I I INDEX; 

/ *  SIMULATE ACTIONS OF A TRANSLATOR * /  

CARD, OUTPUT = INPUT; 

IF SUBSTR(CARD, 0,2) = ' IN' THEN CALL SCOPE_ENTRY; 

ELSE IF SUBSTR(CARD,O,3) = 'OUT' THEN CALL SCOPE EXIT; 

ELSE IF SUBSTR(CARD,O,3) = 'NEW' THEN CALL NEW_ID(SUBSTR(CARD,5,1)); 

ELSE IF SUBSTR(CARD,O,3) = 'OLD' THEN CALL OLD ID(SUBSTR(CARD,5,1)); 

END; 

EOF EOF 

Test Module for  Sorted Access 

Figure 5.2 



EVENT: 

IN 

NEW A 

NEW B 

OLD A 

IN 

NEW C 

270 

TABLE STATUS: 

TABLETOP = 0 LL = 0 

ID_TABLE() = 

POINTER() = 

SCOPEMARKER() = 

INDEX = 0 

TABLETOP : 0 LL : l 

ID_TABLE() = 

POINTER() = 

SCOPEMARKER() = 0 

INDEX = 0 

TABLE.TOP = 1 LL = 1 

ID._TABLE() = A 

POINTER() = 0 

SCOPEMARKER() =0 

INDEX : 0 

TABLE TOP = 2 LL = 1 

IDTABLE() = A B 

POINTER() = 0 1 

SCOPE_MARKER() : 0 

INDEX = I 

TABLE TOP = 2 LL - 1 

ID_TABLE() = A B 

POINTER() = 0 1 

SCOPE_MARKER() = 0 

INDEX : 0 

TABLETOP = 2 LL = 2 

ID_TABLE() = A B 

POINTER() = 0 1 

SCOPE_MARKER() = 0 2 

INDEX = 0 

TABLE TOP : 3 LL = 2 INDEX = 2 

ID_TABLE() = A B C 

POINTER() = 0 I 2 

SCOPEMARKER() = 0 2 
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NEW A 

OLD A 

OLD B 

OLD C 

IN  

OLD A 

OUT 

IN 

TABLE TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() : 0 3 1 2 

SCOPE_MARKER() = 0 2 

TABLE TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() = 0 3 I 2 

SCOPE_MARKER() = 0 2 

TABLE TOP = 4 LL : 2 INDEX = 1 

IDTABLE() = A B C A 

POINTER() = 0 3 l 2 

SCOPEMARKER() = 0 2 

TABLE TOP = 4 LL : 2 INDEX : 2 

ID_TABLE() = A B C A 

POINTER() = 0 3 l 2 

SCOPE_MARKER() = 0 2 

TABLE_TOP = 4 LL = 3 INDEX = 2 

IDTABLE() = A B C A 

POINTER() = 0 3 1 2 

SCOPEMARKER() : 0 2 4 

TABLE TOP = 4 LL : 3 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() = 0 3 I 2 

SCOPE_MARKER() = 0 2 4 

TABLE TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() : 0 3 1 2 

SCOPE MARKER() : 0 2 

TABLE TOP = 4 LL = 3 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() = 0 3 I 2 

SCOPE_MARKER() = 0 2 4 



NEW A 

OLD A 

OUT 

OLD A 

OUT 

OLD A 

OUT 

OUT 
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TABLETOP : 5 LL = 3 INDEX = 4 

ID_TABLE() = A B C A A 

POINTER() = 0 3 4 I 2 

SCOPE_MARKER() = O 2 4 

TABLETOP = 5 LL = 3 INDEX = 4 

ID_TABLE() = A B C A A 

POINTER() = 0 3 4 l 2 

SCOPEMARKER() = O 2 4 

TABLETOP = 4 LL = 2 INDEX = 4 

IDTABLE() : A B C A 

POINTER() = 0 3 l 2 

SCOPLMARKER() = 0 2 

TABLE_TOP = 4 LL : 2 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() = 0 3 I 2 

SCOPE_MARKER() = 0 2 

TABLE_TOP : 2 LL = 1 INDEX = 3 

IDTABLE() = A B 

POINTER() = 0 1 

SCOPEMARKER() = 0 

TABLETOP = 2 LL = 1 

ID_TABLE() : A B 

POINTER() = O l 

SCOPE_MARKER() = 0 

INDEX = 0 

TABLETOP = 0 LL = 0 

IDTABLE() = 

POINTER() = 

SCOPE_MARKER() = 

INDEX = 0 

Trace Output: Sorted Access 

Figure 5.3 
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6. TREE SYMBOL TABLE ACCESS 

ROOT 

3:-: 

LEFT RIGHT 

. • l  TABLE_TOP 

ID_TABLE SCOPE_MARKER 

LL 

Binary Tree Access Method 

Symbol Table Configuration 

Figure 6.1 

An access tree is a structure that has nodes corresponding to each identi f ier 

in the table (Figure 6.1). Starting from some root position, an identi f ier is com- 

pared with the ident i f ier at the root and either the lef t  or right branch taken 

(unless marked with - l ,  signifying the node is a leaf of the tree). The tree 

corresponding to the table configuration above (which i tse l f  corresponds to the 

processing of lines I-6 of Figure 2.1 as usual) is more readily understood from 

the diagram in Figure 6.2. 

ROOT ; A 

\ 
B 

Al C 
Figure 6. 2 

A is at the root. Since nothing wil l sort "<" than A, everything else hangs off 

the right branch of the tree. The next node, B, allows the second A to sort le f t  

and the C to sort right where the tree terminates in leaves. Because the tree is 

grown from oldest entry out to recent entries at the leaves, the last entry 
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found is the correct one. 

Exercise Hand simulate the access algorithm for action 8 (OLD A) of the 

simulation output. 

1 

2 

3 

4 

5 

6 

7 

B 

9 

I0 

I I  

12 

13 

14 

15 

16 

/ *  S Y M B O L  T A B L E  EL GO R I THMS 

/*  B I N A R Y  TREE A C C E S S  M E T H O D  

/ *  DATA STRUCTURE DEFINITIONS: 

IDTABLE() HOLDS THE IDENTIFIERS 

TABLETOP POINTS TO THE NEXT AVAILABLE CELL IN ID_TABLE(), 

TABLE_LIMIT IS THE BOUND ON TABLE_TOP, 

SCOPE_MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE, 

LL IS THE PRESENT LEVEL OF PROGRAM NESTING, 

LL_LIMIT IS THE BOUND ON LL, 

INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES. 
*/ 

17 DECLARE TABLE_LIMIT LITERALLY 'lO0', TABLE_TOP FIXED, 

18 ID TABLE(TABLE_LIMIT) CHARACTER ; 

19 DECLARE LL_LIMIT LITERALLY ' I 0 ' ,  LL FIXED, SCOPE_MARKER (LL_LIMIT) FIXED; 

20 DECLARE INDEX FIXED; 

21 
22 / *  DATA STRUCTURES FOR TREE ACCESS * /  

23 DECLARE (LEFT, RIGHT)(TABLE_LIMIT) FIXED, ROOT FIXED; 

24 
25 ERROR: PROCEDURE; OUTPUT, OUTPUT = 'ERROR'; CALL EXIT; END ERROR; 

26 
27 NEW ID: 

28 PROCEDURE (IDENTIFIER) ; 
29 DECLARE IDENTIFIER CHARACTER; 

30 DECLARE ( I ,  K) FIXED; 

31 
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33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

/ *  SEARCH FOR DUPLICATE DECLARATION * /  

K = ROOT; INDEX = - I ;  

DO WHILE K = - I ;  

IF IDENTIFIER = ID_TABLE(K) THEN INDEX = K; 

I = K~ 

IF IDENTIFIER < ID_TABLE(K) THEN K = LEFT(K); ELSE K = RIGHT(K); 

END; 

IF INDEX >= SCOPE__MARKER(LL-I) THEN CALL ERROR; 

/ *  CHECK FOR ID_TABLE OVERFLOW */  

IF TABLE TOP = TABLE LIMIT THEN CALL ERROR; 

/ *  ENTER NEW IDENTIFIER * /  

INDEX : TABLE_TOP; TABLE_TOP = TABLE_TOP + l ;  

ID__TABLE(INDEX) = IDENTIFIER; 

IF ROOT =-l THEN ROOT = INDEX; 

ELSE IF IDENTIFIER < IDTABLE(1) THEN LEFT(1) = INDEX; 

ELSE RIGHT(1) = INDEX; 

LEFT(INDEX), RIGHT(INDEX) = - l ;  

END NEW ID; 

/ *  SEARCH ID_TABLE FOR THE IDENTIFIER */  

K = ROOT; INDEX = - l ;  

DO WHILE K = - l ;  

IF IDENTIFIER = ID_TABLE(K) THEN INDEX = K; 

IF IDENTIFIER < ID_.TABLE(K) THEN K : LEFT(K); ELSE K : RIGHT(K); 

END; 

53 OLD_ID: 

54 PROCEDURE(IDENTIFIER); 

55 DECLARE IDENTIFIER CHARACTER; 

56 DECLARE K FIXED;. 

57 

58 

59 

60 

61 

62 

63 

64 
65 / *  RECORD FAILURE TO FIND THE IDENTIFIER */ 

66 IF INDEX = -I THEN CALL ERROR; 

67 END OLD ID; 

68 

69 SCOPE_ENTRY: 

70 PROCEDURE; 
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71 / *  MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED * /  

72 IF LL = LL LIMIT THEN CALL ERROR; 

73 SCOPE_MARKER(LL) = TABLE_TOP; /*POINT TO FIRST LOCAL * /  

74 LL : LL + I ; / *  INCREASE LEXIC LEVEL * /  

75 END SCOPEENTRY; 

76 

88 

89 

90 

77 SCOPE EXIT: 

78 PROCEDURE; 

79 DECLARE I FIXED; 

80 LL = LL - I ;  

81 TABLE_TOP = SCOPE._MARKER(kL) ; 

82 / *  DISCARD LEAVES CORRESPONDING TO LOCAL IDENTIFIERS */  

83 IF ROOT >= TABLE_TOP THEN ROOT =- l  ; 

84 ELSE 

85 DO I = 0 TO TABLETOP - I ;  

86 IF LEFT(I) ~ TABLE TOP THEN LEFT(r) = - I ;  

87 IF RIGHT(1) ~ TABLETOP THEN RIGHT(1) = - l ;  

END; 

END SCOPE_EXIT; 

lO0 DO 

lOl 

I02 

I03 

I04 

105 

I06 

I07 

I08 

I09 

91 / *  TEST PROGRAM FOR SYMBOL TABLE ALGORITHMS */  

92 DECLARE (CARD, LINE, LINEI, LINE2) CHARACTER; 

93 DECLARE I FIXED; 

94 OUTPUT = ' SIMULATION OF EVENTS DURING TRANSLATION ' ;  

95 OUTPUT = ' ' ;  

96 OUTPUT = 'EVENT: TABLE STATUS: ' ; 

97 OUTPUT = ' ' ; 

98 LL = O; TABLE TOP = O; 

99 ROOT = - l ;  

WHILE LL > = O; 

/ *  PRINT STATUS OF TABLES AND POINTERS */  

OUTPUT = ' TABLE_TOP = ' IITABLE_TOPII ' 

LINE = ' ID_TABLE() = ' ;  

LINEI = ' LEFT() = ' ;  

LINE2 = ' RIGHT() = ' ;  

DO I = 0 TO TABLETOP-I; 

LINE : LINE I I ID TABLE(1) I I  ' ' ;  

LINE1 = LINE1 I I L E F T ( 1 ) I I  ' ' ;  

LL : ' ))LL))' INDEX: 'IIINDEX; 
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I I0  

I I I  

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

LINE2 = LINE2 IIRIGHT(1)II ' ' ; 

END; 

OUTPUT = LINE; 

OUTPUT = ' ROOT = ' II ROOT; 

OUTPUT = LINEI; 

OUTPUT = LINE2; 

t.INE = ' SCOPE_MARKER() = ' ;  

DO I = 0 TO LL-I ;  

LINE = LINE II SCOPE MARKER(1)II ' ' ;  
END; 

OUTPUT = LINE ; 

/ *  SIMULATE ACTIONS OF A TP#~NSLATOR * /  

CARD, OUTPUT = INPUT; 

IF SUBSTR(CARD, 0,2)  = ' IN '  THEN CALL SCOPE_ENTRY; 

ELSE IF SUBSTR(CARD,O,3) = 'OUT' THEN CALL SCOPE_EXIT; 

ELSE IF SUBSTR(CARD,O,3) = 'NEW' THEN CALL NEW ID(SUBSTR(CARD,5,1)); 

ELSE IF SUBSTR(CARD,O,3) : 'OLD' THEN CALL OLD ID(SUBSTR(CARD,5,1)); 

128 END; 

129 EOF EOF 

Test Module f o r  Binary Tree Access 

Figure 6.3 

EVENT: 

IN 

TABLE STATUS: 

TABLE TOP : 0 LL = 0 

ID_TABLE() = 

ROOT = - I  

LEFT() : 

RIGHT() = 

SCOPE_MARKER() = 

TABLE TOP = 0 LL = 1 

IDTABLE() : 

ROOT = - l  

LEFT() : 

RIGHT() : 

SCOPE__MARKER() = 0 

INDEX = 0 

INDEX = 0 
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NEW A 

NEW B 

OLD A 

IN 

NEW C 

NEW A 

TABLE_TOP = 1 LL = 1 

ID_TABLE() = 

ROOT = - I  

LEFT() = 

RIGHT( ) = 

SCOPE_MARKER( ) = 0 

INDEX = 0 

TABLETOP = 2 LL : l INDEX : 1 

ID_TABLE() = A B 

ROOT = 0 

LEFT() = - I  - I  

RIGHT() = 1 - I  

SCOPEMARKER() = 0 

TABLE TOP = 2 LL = l INDEX = 0 

ID_TABLE() = A B 

ROOT = 0 

LEFT () = - l  -1 

RIGHT() = I - I  

SCOPE_MARKER() = 0 

TABLE_TOP = 2 LL : 2 INDEX = 0 

ID_TABLE() : A B 

ROOT = 0 

LEFT() = - l  - l  

RIGHT() = I - I  

SCOPE_MARKER() 0 2 

TABLE__TOP = 3 LL : 2 INDEX : 2 

ID_TABLE() = A B C 

ROOT = 0 

LEFT() = - l  -1 - l  

RIGHT() = l 2 - l  

SCOPE_Ft~RKER() = O 2 

TABLE_TOP : 4 LL : 2 INDEX : 3 

ID_TABLE() : A B C A 

ROOT = 0 

LEFT() = - I  3 - I  - I  

RIGHT() = I 2 - I  - I  

SCOPE_MARKER() : 0 2 
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OLD A 

OLD B 

OLD C 

IN 

OLD A 

OUT 

TABLE TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() = A B C A 

ROOT = 0 

LEFT() = - l  3 -1 - l  

RIGHT() = 1 2 - I  - I  

SCOPE_MARKER() = 0 2 

TABLE TOP = 4 LL = 2 INDEX = l 

ID_TABLE() = A B C A 

ROOT = 0 

LEFT() = - I  3 - I  - I  

RIGHT() = 1 2 - I  - I  

SCOPE_MARKER() = 0 2 

TABLE_TOP = 4 LL = 2 INDEX = 2 

ID_TABLE() = A B C A 

ROOT = 0 

LEFT() = - l  3 - l  - I  

RIGHT() = I 2 - l  - l  

SCOPE_MARKER() = 0 2 

TABLE TOP = 4 LL = 3 INDEX = 2 

ID_TABLE() = A B C A 

ROOT = 0 

LEFT() = - l  3 - I  - I  

RIGHT() = I 2 - I  - l  

SCOPE_MARKER() = 0 2 4 

TABLE TOP = 4 LL = 3 INDEX = 3 

ID_TABLE() = A B C A 

ROOT = 0 

LEFT() = - I  3 - 1  -1 

RIGHT() = l 2-I - I  

SCOPE_MARKER() = 0 2 4 

TABLE_TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() = A B C A 

ROOT = 0 

LEFT() = - I  3 - I  - I  

RIGHT() = I 2 - I  - I  
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IN 

NEW A 

OLD A 

OUT 

OLD A 

OUT 

SCOPE_MARKER() = 0 2 

TABLE_TOP = 4 LL = 3 INDEX = 3 

ID_TABLE() = A B C A 

ROOT = 0 

LEFT() = - l  3 - l  - l  

RIGHT() = 1 2 - I  - I  

SCOPE_MARKER() = 0 2 4 

TABLE_TOP = 5 LL = 3 INDEX = 4 

ID_TABLE() = A B C A A 

ROOT : 0 

LEFT() = -1 3 - I  - I  - I  

RIGHT() = l 2 - 1  4 - I  

SCOPE_MARKER() = 0 2 4 

TABLE TOP = 5 LL = 3 INDEX = 4 

ID_TABLE() = A B C A A 

ROOT = 0 

LEFT() = - I  3 - I  - I  - I  

RIGHT() = I 2 - I  4 - I  

SCOPE MARKER() = 0 2 4 

TABLE TOP = 4 LL = 2 INDEX = 4 

ID_TABLE() = A B C A 

ROOT : 0 

LEFT() = -1 3 - I  - l  

RIGHT() = l 2 - l  - l  

SCOPE_MARKER( ) = 0 2 

TABLE_TOP = 4 LL = 2 INDEX = 3 

ID._TABLE() = A B C A 

ROOT = 0 

LEFT() : - I  3 - I  - I  

RIGHT() = l 2 - l - l  

SCOPE_MARKER( ) = 0 2 

TABLE TOP = 2 LL = I INDEX = 3 

I D_TABLE( ) = A B 

ROOT = 0 

LEFT() = - I  - I  
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OUT 

OUT 

281 

RIGHT() = I -I 

SCOPE_MARKER() = 0 

TABLE TOP = 2 LL = I INDEX = 0 

ID_TABLE() = A B 

ROOT = 0 

LEFT() = -I -1 

RIGHT() : l - l  

SCOPE_MARKER( ) = 0 

TABLE TOP = 0 LL = 0 

ID_TABLE() = 

ROOT = -I 

LEFT() = 

RIGHT() = 

SCOPE_MARKER() = 

INDEX = 0 

Trace Output: Binary Tree Access 

Figure 6.4 

Scope ex i t  and removal of ident i f ie rs  from the tree symbol table de- 

picted in Figure 6.1 requires a l inear search of the l e f t  and 

r ight  pointers to delete the entries greater than the SCOPE_MARKER. This is a 

~inear process. A faster variat ion is shown in Figure 6.5. A table of pointers 

corresponding to each entry in the ID_TABLE is maintained. Each entry in this 

table points to the entry in the LEFT/RIGHT table for  the corresponding i den t i f i e r  

in the ID TABLE. Scope ex i t  removal of  iden t i f ie rs  from the symbol table would be 

accomplished by deleting al l  entries in the LEFT/RIGHT table pointed to by entries 

in the POINTER table above the SCOPE MARKER being returned to. This method would 

be an N'Iog2N process and the additional memory required for  the backward 

pointers would be the cost. 
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ROOT LEFT RIGHT POINT TBL 

C 
B 

A 
ID_TBL 

4,.7] 

SCOPE_MARKER 

Binary Tree Access Method 
With Backward Pointers 

Figure 6.5 

7. HASH SYMBOL TABLE ACCESS 

-I' 

- - m , -  , , ,  

"~~i, POINTER 

ROOT 

~ 'i 4i TABLE_TOP 

'i';_TABLE SCOPE_MARKER 

Hash Access Method 

Symbol Table Configuration 

Figure 7.1 
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A hash or scramble is an integer valued function on the i d e n t i f i e r  i t s e l f .  A 

good hash w i l l  give an even d is t r ibu t ion  of integer values over the set ofoidenti  - 

f ie fs  actual ly presented to the t rans la tor ,  e f fec t i ve ly  separating them into a large 

number of small classes. The access method only examines members of the hash class 

which reduces search time by roughly a factor  equal to the range of scrambled 

values (in th is case, 16). 

The diagram in Figure 7.1 depicts the ' tab le  as i t  would appear a f te r  the 

t ranslator  had processed l ines I-6 of Figure 2.1 ( refer  to the previous example). 

Two arrays, ROOT AND POINTER, appear in addit ion to the i den t i f i e r  table and 

scope marker. Each entry in ROOT points to the f i r s t  i d e n t i f i e r  in i t s  hash class 

(or is -I i f  the class is empty). Each entry in POINTER points to the next number 

of the hash class (or is -I i f  there are no more). To access an i d e n t i f i e r ,  we 

scramble i t ,  look in to ROOT then fo l low the pointers unt i l  we f ind the i d e n t i f i e r  

or come to the end of the chain. The pointers are arranged to point from new to 

old so that the f i r s t  match found is correct.  

Exercise Veri fy that the simulation output corresponds to the correct symbol 

table actions. 

Exercise Hand simulate the algorithm for  action 8 (OLD A) in the simulation. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I I  

/ * S Y M B O L  T A B  L E A L G O R I T H MS * /  

/ * H A S H  S E A R C H  M E T H O D  

/ *  DATA STRUCTURE DEFINITIONS 

ID_TABLE() HOLDS THE IDENTIFIERS, 

TABLETOP POINTS TO THE NEXT AVAILABLE CELL IN THE ID__TABLE(), 

TABLE LIMIT IS THE BOUND OR TABLE_TOP, 

SCOPE_MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE, 

LL IS THE PRESENT LEVEL OF PROGRAM NESTING, 
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12 LL_LIMIT IS THE BOUND ON LL, 

13 

14 INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES. 

15 * /  

16 
I I  DECLARE TABLE. LIMIT LITERALLY ' I 0 0 ' ,  TABLE_TOP FIXED, 

18 ID_TABLE(TABLE_LIMIT) CHARACTER; 

19 DECLARE LL_LIMIT LITERALLY ' I 0 ' ,  LL FIXED, SCOPE_MARKER(LL._LIMIT) FIXED; 

20 DECLARE INDEX FIXED; 

21 
22 / *  DATA STRUCTURES REQUIRED FOR HASH ~CCESS METHOD * /  

23 DECLARE HASH SIZE LITERALLY '15 ' ,  ROOT(HASH_SIZE) FIXED, 

24 POINTER(TABLELIMIT) FIXED; 

25 

26 SCRAMBLE: 

27 PROCEDURE(IDENTIFIER) FIXED; 

28 DECLARE IDENTIFIER CHARACTER; 

29 / *  FIND A NUMBER BETWEEN 0 AND 15 */ 

30 RETURN (LENGTH(IDENTIFIER) +BYTE(IDENTIFIER)) & HASH_SIZE; 

31 END SCRAMBLE; 

32 
33 ERROR: PROCEDURE; OUTPUT, OUTPUT = 'ERROR' ; CALL EXIT; END ERROR ; 

34 

35 NEW ID: 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

PROCEDURE(IDENTIFIER); 

DECLARE IDENTIFIER CHARACTER; 

DECLARE (SB, K) FIXED ; 

/ *  SEARCH FOR DUPLICATE DECLARATION */  

K = SCRAMBLE(IDENTIFIER) ; INDEX = ROOT(K); 

SB = SCOPE_MARKER(LL-I); 

DO WHILE INDEX > : SB; 
IF IDENTIFIER = IDTABLE(INDEX) THEN CALL ERROR; 

INDEX = POINTER(INDEX); 

END; 

/ *  CHECK FOR IDTABLE OVERFLOW */  

IF TABLE_TOP = TABLE_LIMIT THEN CALL ERROR; 

/ *  ENTER NEW IDENTIFIER * /  
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52 INDEX = TABLE TOP; TABLE TOP = TABLE TOP + 1 ; 

53 IDTABLE(INDEX) = IDENTIFIER; 

54 POINTER(INDEX) = ROOT(K); ROOT(K) INDEX; 

55 END NEW_ID; 

56 

57 OLD ID: 

58 PROCEDURE(IDENTIFIER); 

59 DECLARE IDENTIFIER CHARACTER; 

6O 

61 / *  SEARCH IDTABLE FOR THE IDENTIFIER * /  

62 INDEX = ROOT(SCRABLE(IDENTIFIER)); 

63 DO WHILE INDEX ~ = - I ;  

64 IF IDENTIFIER = ID_TABLE(INDEX) THEN RETURN; 

65 INDEX = POINTER(INDEX); 

66 END; 

67 

68 / *  RECORD FAILURE TO FIND THE IDENTIFIER * /  

69 CALL ERROR; 

70 END OLD_ID; 

71 

72 SCOPE ENTRY: 

73 PROCEDURE; 

74 / *  MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED * /  

75 IF LL = LL LIMIT THEN CALL ERROR; 

76 SCOPE_MARKER(LL) = TABLE_TOP; /*POINT TO FIRST LOCAL*/ 

77 LL = LL + I ;  /*INCREASE LEXlC LEVEL * /  

78 END SCOPE ENTRY; 

79 

80 SCOPE EXIT: 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

9'1 

PROCEDURE; 

DECLARE K FIXED; 

DECLARE K FIXED; 

INDEX = TABLE__TOP; 

LL = LL - I ;  

TABLE_TOP = SCOPE_MARKER(LL); 

/*DE-LINK IDENTIFIERS BEING DISCARDED * /  

DO WHILE INDEX > TABLE_TOP; 

INDEX = INDEX - I ;  

K : SCRAMBLE(IDTABLE(INDEX)); 
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92 ROOT(K) : POINTER(ROOT(K)); 

93 END; 

94 END SCOPE_EXIT; 

95 

96 / *  TEST PROGRAM FOR SYMBOL TABLE ALGORITHMS */  

97 DECLARE (CARD, LINE, LINEI) CHARACTER~ 

98 DECLARE I FIXED; 

99 OUTPUT = ' SIMULATION OF EVENTS DURING TRANSLATION ' ;  

IO0 OUTPUT = ' ' ; 

IOl OUTPUT = 'EVENT: TABLE STATUS : ' ;  

102 OUTPUT = ' ' ;  

103 DO I = O TO HASH_SIZE; 

I04 ROOT(I) = - l ;  / *  MARK ALL HASH CLASSES EMPTY */  

I05 END; 

IO6 

I07 LL = O; TABLE TOP = O; 

]08 DO WHILE LL >= O; 

109 

]lO / *  PRINT STATUS OF TABLES AND POINTERS * /  

I l l  OUTPUT = ' TABLE_TOP =' IITABLETOPII ' LL=' I ILLr i '  

l l2  LINE = ' ID_TABLE() = ' ;  

113 LINEI = ' POINTER() = ' ;  

I14 DO I = 0 TO TABLETOP-I; 

115 LINE = LINE II ID_TABLE(1)II ' ' ;  

I16 LINEI = LINEIII POINTER(I)I I ' ' ;  

l i t  END; 

l l 8  OUTPUT = LINE; 

l l 9  OUTPUT = LINEI; 

120 LINE = ' SCOPE_MARKER() = ' ;  

121 DO I + 0 TO LL-I; 

122 LINE = LINE II SCOPE_MARKER(1) II ' ' ;  

123 END; 

124 OUTPUT = LINE; 

125 LINE = ' ROOT() = ' ;  

126 DO I = 0 TO HASH_SIZE; 

127 LINE = LINE II ROOT(1)EI ' ' ;  
128 END; 

129 OUTPUT = LINE; 

130 

I31 /*SIMULATE ACTIONS OF A TP~NSLATOR * /  

INDEX='IIINDEX; 
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132 CARD, OUTPUT = INPUT; 

133 IF SUBSTR(CARD, 0,2) = ' IN' THEN CALL SCOPEENTRY; 

134 ELSE IF SUBSTR(CARD,O,3) = 'OUT' THEN CALL SCOPE_EXIT; 

135 ELSE IF SUBSTR(CARD,O,3) = 'NEW' THEN CALL NEW_ID(SUBSTR(CARD,5,I)); 

136 ELSE IF SUBSTR(CARD,O,3) = 'OLD' THEN CALL OLD_ID(SUBSTR(CARD,5,1)); 

137 END; 

138 EOF EOF 

Test Module fo r  Hash Access 

Figure 7.2 

EVENT: 

IN 

NEW A 

NEW B 

OLD A 

TABLE STATUS: 

TABLE TOP = 0 LL = 0 INDEX = 0 

ID_TABLE ( ) = 

POINTER() = 

SCOPE_MARKER() = 

ROOT() = - I  - l  - l  - l  - I  - I  - l  - I  - I  - I  - l  -I - I  - I  - I  - I  

TABLE TOP = 0 LL = I 

ID_TABLE() = 

POINTER() = 

SCOPE_MARKER() = 0 

ROOT() : - I  

INDEX = 0 

-I -I -I -I -I -I -I -I -I -l -I -I -I -I -I 

TABLETOP = l LL = l INDEX = 0 

ID TABLE() = A 

POINTER() = - I  

SCOPE_MARKER( ) = 0 

ROOT() : - I  - l  0 - I  - l  - I  - I  - I  - l  - I  - I  - I  -1 - l  - I  - I  

TABLE_TOP : 2 LL = l INDEX = l 

ID_TABLE() : A B 

POINTER() : - I  - I  

SCOPE_MARKER( ) = 0 

ROOT() = - I  - I  0 l - I  - I  - I  - I  - I  -1 - l  - l  - l  - l  - l  - I  
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IN 

NEW C 

NEW A 

OLD A 

OLD B 

TABLE TOP = 2 LL = 1 INDEX = 3 

I D_TABLE () = A B 

POINTER() = - l  - l  

SCOPE_MARKER( ) = 0 

ROOT(} = - I  - I  0 1 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE TOP = 2 LL = 2 INDEX = 0 

iD__TABLE() = A B 

POINTER() = - I  - I  

SCOPE_MARKER() = 0 2 

ROOT() : - I  - I  O 1 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  -1 - I  

TABLE TOP = 3 LL = 2 INDEX = 2 

ID_TABLE() : m B C 

POINTER() = - I  - I  - I  

SCOPEMARKER() = 0 2 

ROOT() = - I  - I  0 1 2 - I  - I  - l  - l  - l  - I  - I  - I  - l  - l  

TABLE TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() = - I  - l  - l  0 

SCOPE_MARKER() = 0 2 

ROOT() = - I  - l  3 l 2 - l  - l  - l  - l  - l  - l  - I  - l  - l  - I  - l  

TABLE TOP = 4 LL = 2 INDEX = 3 

ID__TABLE() = A B C A 

POINTER() = - I  - I  - I  0 

SCOPE_MARKER() = 0 2 

ROOT() = -1 -1 3 1 2 -1 -1 - I  -1 - I  -1 - I  -1 -1 -1 -1 

TABLE_TOP = 4 LL = 2 INDEX = 1 

ID__TABLE() A B C A 

POINTER() = -1 - I  - I  0 

SCOPE_MARKER() : 0 2 

ROOT() = - I  -1 3 I 2 -1 - I  - I  - I  - I  - I  - I  - I  -1 - I  - I  

- I  
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OLD C 

IN 

OLD A 

OUT 

IN  

NEW A 

TABLE TOP : 4 LL : 2 INDEX = 2 

ID. TABLE() = A B C A 

POINTER() = - I  - I  - I  0 

SCOPE_MARKER() = 0 2 

ROOT() = - I  - I  3 1 2 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE TOP = 4 LL = 3 INDEX = 2 

ID_TABLE() = A B C A 

POINTER() = - I  - I  - I  0 

SCOPE MARK~R() = . 0 2 4 

ROOT() = - I  - I  3 1 2 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE_TOP = 4 LL = 3 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() = - l  - l  - I  0 

SCOPEMARKER() = 0 2 4 

ROOT() = - I  - I  3 1 2 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE TOP = 4 LL = 2 INDEX = 4 

ID_TABLE() = A B C A 

POINTER() = - 1 - l  - l  0 

SCOPE_MARKER() = 0 2 

ROOT() : - l  - l  3 1 2 - l  - l  - l  - l  - l  -1 - l  - l  - l  - l  - I  

TABLE TOP = 4 LL = 3 INDEX = 4 

ID TABLE () = A B C A 

POINTER() = - l  - l  - l  0 

SCOPE_MARKER() = 0 2 4 

ROOT() : - I  - I  3 1 2 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE TOP = 5 LL = 3 INDEX = 4 

ID TABLE() = A B C A A 

POINTER() = - l  - l  - l  0 3 

SCOPE_MARKER() = 0 2 4 

ROOT() = -1 - I  4 1 2 - I  - I  - l  - I  -1 -1 - I  - I  - I  - l  - l  
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OLD A 

OUT 

OLD A 

OUT 

OLD A 

OUT 

OUT 

TABLE_TOP = 5 LL = 3 INDEX = 4 

ID_TABLE() = A B C A A 

POINTER() = - l  - l  - I  O 3 

SCOPEMARKER() = O 2 4 

ROOT() : - I  -1-4 I 2 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE TOP = 4 LL = 2 INDEX = 4 
I 

ID_TABLE() = A B C A 

POINTER() = - I  %1 - I  0 

SCOPEMARKER() = O 2 

ROOT() : - l  - I  3 l 2 -I  - I  -1 - I  - I  - I  - I  - I  - I  - I  - I  

TABLE_TOP = 4 LL = 2 INDEX = 3 

ID_TABLE() = A B C A 

POINTER() = - I  - I  - I  0 

SCOPE__MARKER() = 0 2 

ROOT() = - I  -I  3 1 2 - I  -I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE TOP = 2 LL = l INDEX = 2 

ID TABLE() = A B 

POINTER( ) = - I  - I  

SCOPE MARKER() = 0 

ROOT() = - I  - I  0 1 - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  - I  

TABLE_TOP : 2 LL : l INDEX : 0 

ID_TABLE() = A B 

POINTER() = -I  -1 

SCOPE_MARKER( ) = O 

ROOT() : - I  - I  0 1 - I  - I  - I  - I  -1 - I  - I  - I  - I  - I  - I  - I  

TABLETOP = 0 LL : O INDEX = 0 

I D_TABLE( ) = 

POINTER( ) = 

SCOPE_MARKER( ) = 

ROOT() = -1 - t  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Trace Output: Hash Access 

Figure 7.3 
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7.I Hash Functions 

Numerous algorithms can be developed for scrambling the bits of an identi f ier 

to produce an index for entering a symbol table lookup. Some standard methods em- 

ployed in these algorithms include concatenation of N select bits of the identi f ier 

where N is the size of the required index, or multiplication of a portion of the 

identif ier, usually a machine word, by a constant value and selecting the middle 

bits of the product as the index. 

Execution speed of the algorith~ and the distribution of the indices across 

the range of the table are the considerations for selecting an algorithm for calcu- 

lating the hash index. In order to choose the most efficient hashing algorithm, the 

trade-off between the time taken to produce the hash and flatness of the distribu- 

tion of indices over the hash table must be found for each candidate algorithm and 

evaluated in respect to the specific application. 

Concerning the speed of an algorithm, when dealing with f i l ing systems of 

large size, where the hash tables tend to be large and not always resident in 

primary store i t  may be necessary to carefully develop an efficient hash in order 

to minimize the need to fetch tables. In translators the complete hash and symbol 

tables reside in primary store and the time spent in developing the hash is a factor 

in the overall efficiency of the hash algorithm. The accuracy of the hash produced 

is not cr i t ical  as long as i t  is sufficiently distributive. In this case the faster 

the hash algorithm the faster will be the symbol table access. However, the speed 

o f  the hash algorithm tends to become unimportant as the average number o f  symbols 

to be interrogated during each symbol taole access increases. I f  more than one 

symbol is to be looked at the time taken in development of the hash wil l be masked 

out by the time spent in the comparison of each symbol. In the examples of the hash 

algorithms given in the next section the average number of symbols looked at was 

slightly less than two and the overall access speed was only sl ightly effected by 

the faster algorithms. 
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Concerning the randomness of the d is t r ibu t ion  of  an algorithm the ideal case 

is the algorithm which, given a table length L with posit ions EIE 2 . . . .  E L , produces 

hash keys to cover the ent i re range of L without any predictable grouping. 

Consider implementation on an IBM 360 of a hash table of 256 posit ions which 

would require an index of 8 bi ts length. The i d e n t i f i e r  is presented as the key 

and the hashing algorithm consists of the least  s ign i f i can t  four b i ts  of the f i r s t  

l e t t e r  plus the length shif ted l e f t  four b i ts  a l l  masked to 8 b i ts .  The indices 

produced by thSs algorithm wi l l  cover~a range of only 144 numbers out of the 

possible 256; 112 of the table locations would never be used. The reason is that 

the least s ign i f icant  four b i ts  of the hexadecimal code for  le t te rs  maps into only 

9 of the ent i re range of 16 possible numbers. The least s ign i f icant  four bi ts of 

the key would always be 0-9 instead of O-F. 

A test  of s ix  hash algorithms was performed on an IBM 360/40 using as input 

the actual ident i f ie rs  taken from a studenttranslator in terpreter  program. The in- 

tent was to determine the overall  e f f ic iency of each algorithm, speed, against d is-  

t r ibu t ion ,  using data representative of a normal programming problem. 

The algorithms are shown imbedded in the actual procedures used in the test  

program. In each procedure the parameter ID contains the i den t i f i e r  to be hashed 

and the procedure returns an index value of the range 0 to 255. 

l 

2 

3 

4 

5 

6 

7 

8 

9 

I0 

II  

12 

13 

ALGORITHM1 : 

PROCEDURE (ID) FIXED; 

DECLARE ID CHARACTER; 

IF LENGTH (ID) = 1 THEN 

ID : ID II ' ' ; 

RETURN ((BYTE(ID)&"OF)+(BYTE(ID,I) & "OF")+SHL(LENGTH(ID),4))&"FF"; 

END ALGORITHM I ;  

/ *  ALGORITHM__1 PRODUCES AN INDEX FROM THE SUM OF THE LOW ORDER 

FOUR BITS OF THE FIRST TWO CHARACTERS CONCATENATED WITH THE LENGTH 

OF THE IDENTIFIER AS THE HIGH ORDER FOUR BITS OF THE INDEX. 

14 * /  
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15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

,ql 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

ALGORITHM 2: 

PROCEDURE (ID) FIXED; 

DECLARE ID CHARACTER, L FIXED; 

L = LENGTH(ID); 

RETURN((BYTE(ID) &"3F")+(BYTE(ID,L-I)&"3F") + SHL(L,4))& "FF"; 

END ALGORITHFL2; 

/ *  ALGORITHM 2 PRODUCES AN INDEX FROM THE SUM OF THE LOW ORDER 

SIX BITS OF THE FIRST AND LAST dHARACTERS AND THE LENGTH OF THE 

IDENTIFIED SHIFTED LEFT FOUR PLACES. 
* /  

ALGORITHM 3: 

PROCEDURE (ID) FIXED ; 

DECLARE ID CHARACTER; 

RETURN (BYTE(ID) + LENGTH(ID)) & "FF"; 
END ALGORITHM._3; 

* /  

ALGORITHM_3 PRODUCES AN INDEX FROM THE PRODUCT OF THE LENGTH 

OF THE IDENTIFIER TIMES THE FIRST CHARACTER OF THE IDENTIFIER. 

ALGORITHM_4: 

PROCEDURE (ID) FIXED ; 

DECLARE ID CHARACTER, L FIXED; 

L = LENGTH(ID); 

RETURN(BYTE (ID) + BYTE(ID,L-I) + SH~L,4) & "FF"; 

END ALGORITHM4; 

/ *  ALGORITHM_4 PRODUCES AN INDEX FROM THE SUM OF THE EIGHT BITS 

OF THE FIRST AND LAST CHARACTER AND THE LENGTH OF THE IDENTIFIER 

SHIFTED LEFT FOUR PLACES. 

53 * /  

54 
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55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

ALGORITHM 5: 

PROCEDURE (ID) FIXED; 

DECLARE ID CHARACTER, L FIXED; 

L : LENGTH(ID); 

RETURN (BYTE(ID) + SHL(BYTE(ID,L-I),3) + SHL(L,4) & "F"; 
END ALGORITHM 5; 

/ *  ALGORITHM 5 PRODUCES AN INDEX FRQM THE SUM OF THE FIRST 

CHARACTER AND THE LAST CHARACTER SHIFTED LEFT THREE PLACES AND 

THE LENGTH OF THE IDENTIFIER SHIFTED LEFT FOUR PLACES. 
* /  

ALGORITHM 6: 

PROCEDURE (ID) FIXED ; 

DECLARE ID CHARACTER ; 

RETURN (SHR((BYTE(ID)*"5B5C3D5A"),20) + SHL(LENGTH(ID),4))& "FF"; 

END ALGORITHM 6; 

/ *  ALGORITHM~6 PRODUCES AN INDEX BY MULTIPLYING THE FIRST CHARACTER 

OF THE IDENTIFIER BY A CONSTANT AND EXTRACTING THE MOST RANDOM BITS 

OF THE PRODUCT TO SUM WITH THE LENGTH OF THE IDENTIFIER IN THE 

HIGH ORDER OF FOUR BITS. 
* /  

Hashing Algorithms 

Figure 7.4 

The results of  the symbol table test on each algorithm is shown in 

Figure 7.5. 
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ALGORITHM # 
BUCKETS SYMBOLS SECONDS 

U S E D  INTERROGATED CONSUMED 

183 27,969 

202 27,428 

151 36,044 

203 27,428 

198 26~823 

182 28,564 

29.32 

26.58 

28.01 

24.20 

26.15 

25.42 

Table 7.5 Symbol Table Test Results 

The results of  the tests are inconclusive. Thus we conclude that even 

a f a i r  hash is pretty close to optimal. 

7.2 Secondary Store 

The technique of  superimposing an access method on the basic table has 

allowed f o r  qui te uniform programs with nevertheless d i f f e r e n t  a t t r i bu tes .  A more 

serious tes t  of  the technique comes when the s t r ings of  i d e n t i f i e r s  themselves 

cannot be kept in main memory. I f  the characters are on secondary s tore ,  then 

every comparison ( l i ne  34 o f  Figure 4.2, f o r  example) implies an access to second- 

ary store.  That is unacceptable. 

An in te res t ing  so lu t ion ,  involv ing a second hash, can be applied to a l l  o f  

the methods already proposed. Instead of  having the characters avai lab le  f o r  com- 

parison, keep a su i tab ly  short code f o r  each one o f  them in main memory (say eight  

b i t s ) .  The code is to be generated by a second hash funct ion and recorded when 

the symbol is f i r s t  placed onto secondary store (by new id) .  Now, when another 

occurrence of  the i d e n t i f i e r  appears, we f i r s t  look through the table to see i f  the 

second hash funct ion o f  the new occurrence matches that already recorded. Only i f  

the codes are the same can the two symbols be the same. We then must ac tua l ly  look 

at the symbol on secondary store to veri fy that the comparison holds, and continue 
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on with the look-up i f  i t  turns out to have been an accidental match of the codes. 

In the case of hash access, where we were already looking at only I/N of the 

identif iers (those in the same hash class) we now look at only I/N 2 (assuming both 

hashes have a range of N). 

Exercise Modify one of the symbol table algorithms to add a secondary store and 

secondary hash to keep the number of accesses down. What is the cost? In memory 

accesses? In secondary accesses? In memory residence? 

8. EVALUATION OF ACCESS METHODS 

The choice between the four methods presented (or others) depends upon which 

is the most economical, a cri terion easier to state than to measure. In a practical 

situation one simply tr ies l ike ly  algorithms and measures gross performance against 

an actual computational load. We can also analyze the algorithms to give a 

reasonable predictive analysis to eliminate those not even near the optimum. The 

cr i t ical  resource is memory and the two bottlenecks are memory access and memory 

residence. The most meaningful parameters are t ,  the average number of symbols in 

the table, t ' ,  the average number of symbols in the most local scope, t ' ,  the 

largest number of identi f iers the algorithms must be prepared to tabulate at one 

time, H, the range of the hash function, and f l '  f2 '  f3 '  f4 '  the predicted relative 

frequency of the actions scope entry, scope ex i t ,  declaration of an identif ier,and 

use of an ident i f ier.  

We want to predict the load on the mechanisms of memory residence and memory 

access due to the symbole table act iv i ty.  We need not consider the load on the 

other devices of the computer (e.g.,CPU) since they are largely idle and we can 

choose not to tabulate loads common to al l  methods (such as calling the access 

procedures). We wil l  assume that the appearance of an ident i f ier  is equivalent to 

a memory access and that certain loops in the algorithms are terminated on the 

average after I/2 their maximum run. On that basis Figure 8.1 defines the memory 

access load for each primitive symbol table action. (Int stands for  the logarithm 

of t to the base 2). 
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ACCESS SCOPE SCOPE 

METHOD ENTRY EXIT DECLARATION USE 

Linear 7 5 7t'+14 3t+2 

Hash 7 19t'+7 (8/H)t'+32 (3.5/H)t+lO 

Sort 7 13t +9 4t+(ll)Int+20 ( l l ) I n t  + ~2 

Tree 7 IOt +8 (16)Int+31 (15)Int + 4 

Memory Access Counts 

Figure 8.1 

Counting the actions in one of the small test programs for the symbol table 

algorithm and extrapolating for a somewhat larger program, we predict the actual 

access actions in the numbers: 

Program f l  f2 f3 f4 

Size Entry Exit Declaration Use 

Small 5 5 20 lO0 

Medium lO lO lO0 700 

Symbol Table Actions 

Figure 8.2 

Then for each action we need to evaluate the formulas of Figure 8.1 with 

weights given in Figure 8.2. The resulting formula 

M = flMl + f2M2 + f3M3 + f4M4 

simplifies to the formulae given in Figure 8.3. 
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Mlinear = 335t + 540 

Mhash = 25.6t + 1710 

Msort = 145t + 13201nt + 1680 

Mtree = 50t + 18201nt + I095 

"Small program" 

Memory access as a function of table contents 

Figure 8.3 

In ca lcu lat ing the equations in Figure 8.2 we have assumed t '  : t /4  and H : 

256. I t  might be more r e a l i s t i c  to assign t '  a constant value (such as I0) since i t  

is not necessar i ly va l id  to assume that  the number of  var iables declared l oca l l y  

in a program w i l l  increase with the size of  the program. The e f fec t  o f  assigning 

a constant term would be to remove the l i nea r  term from the Linear and Hash equa- 

t ions,  Their graph l ines represented in Figure 8.4 would then slope s l i g h t l y  

downward. One can get a fee l ing f o r  which algorithm makes the leas t  demand on the 

memory access circui try by a graph of the functions (Figure 8.4) over a reasonable 

range (t = l ,  lO0). 

Observing Figure 8.4, we conclude that except for very small table sizes the 

hash scheme places the least load on the memory access mechanism. I t  does not make 

sense to extrapolate the curves further since they are based on frequency counts 

from small programs, but the analysis can be repeated with new figures for  the 

larger load as suggested in Figure 8.2. The disappointing performance of  the sorted 

table is due to the term 145t in the equation which is due to the necessity to re- 

sort upon scope exit  and each new addition to the table. The larger weights reduce 

the importance of both actions so we should expect some improvement there. The 

tree aTgorithms should gain even more radically. We conclude that algorithm per- 

formance is suff ic ient ly dependent upon environment that i t  is meaningless to ask 

which is "best" overall but performance can be estimated once the environment is 

specified. 
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LINEAR 

32 

28 

24 

20 

16 

12 

SORT 

TREE 

HASH 

20 40 60 80 100 

Memory Accesses vs, Active Contents 

Figure 8.4 
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Exercise Repeat the analysis of Figure 8.3 and Figure 8.4 with the "medium" 

figures from Figure 8.2 

Exercise Verify in detail the formulae in Figure 8.1 by counting the potential 

memory references in each symbol table algorithm. 

Another view of what has just been described is shown in Table 8.5. Here 

the order of the number of memory~ccesses caused by each symbol table operation 

is given for the four methods. 

SCOPE SCOPE 
ENTRY E X I T  DECLARATION USE 

LINEAR 

HASH 

SORT 

TREE 

t" 

t"lnt 

t" 

t i! 

H 

t" 

Int 

t 

Int 

Int 

Table 8.5 Memory Accesses 

Memory access is not the whole picture; memory residence is also expensive. 

I f  i t  were not we would simply increase the size of the hash function so as reduce 

cost of hash access arbitrar i ly far. Ignoring the difference in actual program 

size, the extra memory required over the symbol table i tse l f  is given in Figures 

8.6 and 8,7. 
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Linear 0 Linear 0 

Hash t"  + H Hash 356 

Sort t "  Sort I00 

Tree 2t" Tree 200 

Figure 8.6 Figure 8.7 

Extra Memory Required Extra Memory Cells Occupied 

Assuming modest value of lO0 for maximum table size and 256 for an 8-bit hash, we 

see that the speed of the hash algorithm is paid for in used memory. The combina- 

tion of the figures for memory residence and memory access depends upon the computer 

organization in a way that cannot"~e predetermined. I t  depends upon where the 

cr i t ica l  resource is and what wil l  happen to idle resources (e.g., can some other 

process use them via multiprogramming). 

Exercise Pick a computer you are famil iar with and attempt to weigh the consider- 

ations of memory access vs. memory residence to make a choice of symbol table 

algorithms for a translator that is going to handle streams of small student jobs. 

Exercise Gather an actual set of numbers f l  . . . .  f4 by modifying an existing com- 

pi ler ,  writing a special processing program or doing some manual examination of 

the input set to some compiler. Also obtain estimates of t ,  t ' ,  t".  How does the 

ratio f4/f3 vary with t and t '?  What implication does this have on the choice of 

algorithms? State a mathematical analysis which allows a comparison of the algo- 

rithms over the distribution of values you have determined. Would a policy of 

using one algorithm for small programs and another for large programs pay large 

dividends? 
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A source language definition specifies the evaluation procedures for the 

constructs of the language in terms of a set of primitive operators and operands 

provided for this purpose. I f  the source language is machine-independent, then 

these primitives are necessarily abstractions, as discussed in Chapter 3.A. Code 

generation is the process of implementing an evaluation procedure in terms of the 

primitives of a particular target computer. The basic approach is to simulate the 

evaluation procedure in the environment (register organization anct addressing 

structure) provided by the target computer: A description of the run-time contents 

of the environment is maintained by the code generator. When the evaluation 

procedure indicates that the contents shouIcL be altered, then code to perform the 
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alteration is emitted and the description is updated. 

The data For the code generator consists of the structure tree, as modified 

during the semantic analysis, and the dictionary. These two components can be 

considered as one, since the dictionary is simply a means of recording the 

attributes of certain structure tree nodes. (In the GIER ALGOL compiler [Naur 

1964], for example, the attributes of each ident i f ier  were recorded in the 

intermediate text at every occurrence of that ident i f ie r . )  The evaluation 

procedures specify the sequence in which the nodes of a structure tree are to be 

considered when performing the evaluation, and this sequence is largely independent 

of the particular target computer. I shall therefore assume that the structure tree 

is traversed by the semantic analyzer or by an optimizer which considers entire 

subtrees before deciding upon the best sequence of operations to perform. (This is 

the f lattenin~ process mentioned in Chapter 2oG.) Thus the code generator input is 

a sequence of tokens specified by the nodes of the structure tree. Conceptually, 

the input is derived from an intermediate text f i l e ;  actually, i t  may be specified 

by a sequence of procedure or coroutine calls upon the code generator by another 

module. Regardless of the source of the input stream, i t  is assumed to represent a 

program which is correct. (Any errors detected during analysis must be patched up 

by the analyzer, and not passed on to the code generator.) 
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lo A Model for Code Generation 

I have assumed that the code generator does not have arbitrary access to the 

structure tree, and must therefore operate on the basis of limited information. The 

model which I advocate [Wilcox 1971] consists of two parts: 

ao A pushdown store transducer, which maintains the contextual information 

that can be derived from the sequence of input tokens. 

b. A target machine simulator, which maintains the run-time contents of the 

environment and produces sequences of target computer instructions to 

implement the abstract primitives. 

(Wilcox terms these components the translator and the coder, respectively.) The 

transducer passes a sequence of commands to the simulator, each consisting of an 

abstract operator and its associated operands. Each command is interpreted by the 

simulator in the l ight of the environment which wil l  exist at that point in the 

execution of the program. I t  generates appropriate code and then updates the 

environment to reflect the effect of that code. 



305 

Iolo The Transducer. A pushdown store transducer has four components; an input 

tape, an output tape, a f in i te-state control and a pushdown store. In our case the 

input tape models the stream of tokens which encodes the structure tree, and the 

output tape models the abstract instructions which wi l l  be delivered to the 

simulator. The finite-sLate control and the pushdown store encode the limited 

contextual information derived from the sequence of input tokens, 

Information pertaining to the ancestors of the current nodes and the status of 

the current node i t se l f ,  is encoded by the f in i te-state control. This information 

can be used to distinguish regions of the program in which a particular construct 

may have different meanings° For example, a string expression appearing as the 

argument of a LENGTH function in PL/I and the same expression appearing as the right 

hand side of a string assignment should be translated di f ferent ly.  In the former 

case, we are not interested in the actual string produced by the expression, but 

merely in i ts  length; hence concatenation operators should be translated as 

additions. Similar situations arise with expressions appearing in array subscripts 

(where we wish to do linear subscript optimization) and on the l e f t  hand side of 

assignment statements (where we need to obtain an address rather than a value.) 

The pushdown store contains information derived from subtrees which have been 

completely traversed° After al l  subtrees whose roots are descendants of a 

particular node have been traversed, their entries are deleted from the pushdown 

store and replaced by a single entry for the entire tree rooted at that node. 

Information from the pushdown store is used to identify the operands of an operator. 

State information may also be retained in the pushdown store during the traversal 

of the subtree rooted in a given node° When this is done, the state would be 

entered into the pushdown store at the prefix encounter with the node and removed 

during processing of the postfix encounter° The sequence of actions which 

implements the postfix encounter would be: remove subtree entries, remove state, 

insert result entry. 
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During the flattening of the structure tree by the semantic analyzer, encounters 

with interior nodes result in input tokens for the transducer only i f  the evaluation 

procedure requires i t .  These tokens are the operatpr ) and delimiters of the input 

stream, and I shall discuss specific examples in Section 2. Operand tokens are 

always created for leaves of the tree. The transducer has four basic actions which 

i t  may perform, singly or in combination, for each token: 

a. Request simulation of a given token with given arguments, accepting a 

description of the result i f  one exists. 

b. Remove the top k entr ies of the pushdown store (k~O). 

c. Insert  a given entry into the pushdown store. 

d, Make the state of the control a given value. 

The f i r s t  action allows the transducer to supply information to the simulator. I t s  

arguments may include the value of the transducer state, and the top k entr ies of 

the pushdown store. (This is a v io la t ion  of the s t r i c t  de f in i t ion  of a pushdown 

store transducer, but i t  is  a reasonable assumption fo r  any pract ical  

implementation°) In action (c) the "given entry" may be the current value of the 

transducer state, and in action (d) the "given value" may be the top entry of  the 

pushdown store. 

1.2. The Simulator, In order-to in terpret  the pr imi t ives of the source language 

in terms of the target machine, the simulator must maintain descriptions of the 

values being manipulated (yalue image) and of  the target machine environment 

(machine image.) A par t icu lar  value may be represented in many d i f fe ren t  ways in 

the target computer, and the purpose of  the value image is  to specify the current 

representation of each value. S imi la r l y ,  the registers of the target machine may 

contain many d i f fe ren t  values during the course of execution, and the purpose of the 

machine image is to specify the current contents of each regis ter .  The 

relat ionships between values and the registers which contain them are expressed by 

cross-linkages between the two images. I shall discuss the detai led structure and 

contents of the images in Section 3. 

A value comes under the control of  the code generator when the transducer 

requests simulation of an operand token, giving the current transducer state as an 

argument. At that point the simulator creates an entry for the operand in the value 
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image and, i f  appropriate, l inks i t  to the machine image. 

Values pass out of the control of the code generator when they are used as 

operands (but see Section Io3.) This is signalled when the transducer requests 

simulation of an operator token giving the current state and one or more values as 

arguments. At that point the simulator deletes the operand entr ies from the value 

image, breaking any linkage to the machine image. I f  a resu l t  is  specif ied, a 

descript ion of the resu l t  value is  created and linked to the appropriate entry in 

the machine image. 

1.3. Common Subexpressions. The model which I have presented above is  based on 

the representation of  a program as a structure tree in which the leaves correspond 

to named operands or constants. These ent i t ies l i e  outside of the ken of the code 

generator. Their values are obtained when the corresponding leaves are encountered, 

and the values so obtained are then treated as d is t inct  ent i t ies which are under the 

code generator's total control. In effect, the code generator deals only with 

anonymous results (Chapter 3.A, Section 2.1.) 

Common subexpression elimination is an optimization which creates a directed 

acyclic graph rather than a structure tree to describe the program (Figure l . l ) .  

This graph can be represented by an equivalent tree which contains an additional 

named operand, as shown in Figure l . l c .  The new operand, however, is not one which 

~s  named by the programmer. Control of this operand should therefore be the 

responsibi l i ty of the code generator. Since i t  is not anonymous, however, i t  w i l l  

be used more than once and hence i t  cannot be modelled by an entry in the 

transducer's pushdown store° 

This problem can easily be circumvented i f  we realize that the value image 

maintained by the simulator may encompass more than just the contents of the 

transducer's pushdown store. In general, the pushdown store contains a subset of 

the values being managed by the code generator at any given instant. When the 

simulator creates a value image entry for an operand, i t  might set a counter to 

indicate the number of uses le f t  for  that value° Each time the value appears as an 

argument this count would be decremented; the entry would be deleted only when i t  

reaches zero. 
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a) An expression with a common subexpression 
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b) The directed acycl ic graph fo r  (a) 
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Figure 1.1 

Representing Common S~bexpressions 
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2. Sequencing and Control 

An operator is pgstfix-translatable i f  code for i ts  operands can be generated in 

the same state as code for the operator/operand combination, and i f  the semantics of 

the operator do not require prologue code or intervening code between operands. 

These conditions imply that the transducer wi l l  never take action (d) (Section l . l ) ,  

and only postfix encounters with inter ior nodes of the structure tree wi l l  result in 

transducer input tokens. Most in f i x  operators in current programming languages 

satisfy these constraints, provided that certain kinds of optimization are not 

required. 

As an example of the problems caused by optimization, consider the two 

expressions (I+J)*K/L and (I+J+K)/L. Using an appropriate syntax for expressions, 

these two could be translated to the postfix forms IJ+K*L/ and IJ+K+L/ respectively, 

Note that the translations are identical over the f i r s t  four characters; in 

particular the summation of I and J is the same in both. I f  we assume that the 

operators are postfix translatable, then the code generated from IJ+ must be the 

same in both expressions because we have no information about text to the right of 

this subexpressiono 

Let us now consider the translation of these two expressions into object code for 

the IBM System/360. Integer multiplication on this machine is specified as follows 

[IBM 1967]: "Both mult ipl ier and multiplicand are 32-bit signed integers. The 

product is always a 64-bit signed integer and occupies an even/odd register pair. 

Because the multiplicand is replaced by the product the register f ie ld  of the 

instruction must refer to an even numbered register . . .  the multiplicand is taken 

from the odd register of the pair. The content of the even numered register 

replaced by the product is ignored unless that register contains the mult ip l ier ."  

Integer division is defined as follows: "The dividend is a 64-bit signed integer 

and occupies the even/odd pair of registers specified by the o.. instruction . . . .  

A 32-bit signed remainder and a 32-bit signed quotient replace the dividend in the 

even numbered and odd numbered registers respectively. The divisor is a 32-bit 

signed integer." Given these instruction definit ions, the best code for each of the 

two expressions is shown in Figure 2.1. Notice that the operator following K 

determines the register in which l+J is computed° 
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L R1 ,I 

A RI ,J 

M RO,K 

D RO,L 

a) Code for the expression ((I+J)*Yv'L) 

L RO, I 

A ROoJ 

A RO~K 

SEDA R0,32 

D RO, L 

b) Code for the expression ((I+J+K)/L) 

Figure 2.1 

Optimum Instruction Sequences for System/360 
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To produce the optimum code, the code generator could recognize that i t  is 

processing the f i r s t  operand of a division. In other words, the two operands of the 

division would be translated in different states of the code generator. A further 

change in state when the f i r s t  operand is an expression containing a multiplication 

would guarantee that the multiplicand is le f t  in the proper register of the pair. 

Alternatively, the registers could be allocated but not assigned on a f i r s t  pass, 

with a second pass substituting the actual register numbers [Beatty 1974]. 

Figure 2°2 is a flow chart showing the basic sequencing algorithm for postfix- 

translatable operators. I t  assumes that the input tape to the code generator 

consists of a sequence of identif ier and operator tokens, plus a distinguished 

terminator. The assumption that the token stream is correct makes i t  unnecessary to 

provide an exit for an unrecognizable token. In Figure 2.2 I use Wilcox' notation 

O(IT,S) to denote the action of simulating the operand token IS with the current 

state S of the transducer as i ts  argument, and R(IT,S,Z) to denote the action of 

simulating the n-ary operator token IS with the current state S of the transducer 

and the current contents Z of the pushdown store as i ts  arguments. Each of these is 

an action of type (a), which constructs the description of a result value. I t  is 

this value description (denoted by "d" in Figure 2.2) which is inserted into the 

pushdown store before the next symbol of the token stream is read. 

The algorithm of Figure 2.2 assumes that the number of operands is known for each 

operator, which is not always the case. (For example, the FORTRAN intrinsic 

functions MAXO and MINO could be considered to be postfix-translatable operators 

with two or more operandso) Figure 2.3a il lustrates possible ambiguities which 

could arise unless extra information is included in the token stream to delimit the 

operand l i s t  of a variadic operator. As Figure 2.3b shows, the addition of the 

single delimiter token "(" is sufficient to resolve this ambiguity. This token is 

considered an operand, and the function O("(",S) creates a special descriptor to 

mark the beginning of the operand l i s t .  When IT represents a variadic operator, 

R(IT,S,Z) scans the pushdown store for this marker and thus determines the value of 

n. The value of n is set to one more than the number of operands in this case, to 

ensure removal of the marker. (I should perhaps note that the example of Figure 2.3 

is somewhat contrived; i t  would probably be more satisfactory to translate MINO into 
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A B C MINO D MAXO 

a) A sequence of input tokens 

MAXO(A,MINO(B,C),D) 

MAXO(MINO(A,B,C),D) 

b) Possible interpretations of (a) 

( A ( B C MINO D MAXO 

c) Forcing the f i rs t  interpretation 

Figure 2.3 

Correction of Ambiguity due to Variadic Operators 
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a sequence of dyadic MIN operators.) 

Array referencing can be treated as a postfix-translatable operator in a single- 

state language, but not in a language whose transducer uses multiple states. Again, 

a simple example is provided by the PL/I LENGTH function: The prefix operator 

LENGTH switches the code generator into the "length" state, in which only the length 

of string variables is of interest. The subscript of the array reference in 

LENGTH(A[I]), however, should not be evaluated in this state. Hence, the array- 

reference operator must be prefixed in order to change the state to one suitable for 

evaluation of the subscript. Upon completion of the subscript, the previous state 

of the code generator is restored. Similar problems arise with function 

invocations, in which i t  is necessary to mark parameters uniquely. 

Figure 2.4 shows the basic sequencing algorithm for prefix operators. D(IT,S) 

denotes the simulation of a prefix operator token IT with the current state S of the 

transducer as its argument° Like O(IT,S), i t  constructs a description which is to 

be entered into the pushdown store. Instead of an operand value, however, this 

description specifies the current state of the transducer. The action of resetting 

the transducer state is denoted by S=N(IS, S). Note that N does not depend 

expl ic i t ly upon the contents of the pushdown store. This reflects the fact that the 

state is used to encode information pertaining only to the current node and its 

ancestors° Finally, T(S,Z) denotes the action of simulating the postfix encounter 

with the node. In addition to constructing a description of the result value, i t  

restores the state from the information originally created by D(IS, S) at the prefix 

encounter. Thus T(S,Z) includes both type (a) and type (d) actions. 

Figure 2.4, like Figure 2.2, assumes that the number of arguments is known for 

each operator° An obvious modification is to have a delimiter token ")" to mark the 

end of a variable length argument l is t :  When IT=")", control would transfer 

directly to the T(S,Z) action° 

A hybrid code generation scheme which permits both prefix and postfix operators 

requires a delimiter token to flag the end of an intermediate operand for a prefix 

operator° This delimiter signals an infix encounter with the node representing the 

prefix operator; i f  i t  were not present the code generator would continue to process 

the stream of tokens, under the assumption that sooner or later a postfix operator 
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would show up. Figure 2.5 i l l u s t r a tes  the token stream which would resul t  i f  the 

Fortran i n t r i ns i c  function MINO were implemented as a pref ix  operator with a 

variable number arguments° Two de l imi ter  tokens, " , "  and " ) " ,  are used to terminate 

operands: The former indicates an i n f i x  encounter with the parent node, while the 

l a t t e r  marks a post f ix  encounter. 

Figure 2.6 describes the basic sequencing algorithm which accepts a stream of  

input tokens consisting of pref ix  operators, post f ix  operators, del imi ters and 

operandso I t  is a simple combination of Figures 2°2 and 2.4, except that  now the 

operands of a pref ix  operator are terminated e x p l i c i t l y .  Hence there is no need to 

loop on the completion test  for  the pre f ix  operand l i s t .  

3. Generator Data Structures 

The three data structures used by the code generator model of Section 1 are the 

pushdown store, the value image and the machine image. In Section 1.3 I argued that 

the pushdown store contained entries for a subset of the elements of the value 

image. I f  the transducer and the simulator coexist in memory, then the pushdown 

store could be formed simply by linking appropriate elements of the value image. 

Each element of the value image would carry information for both the transducer and 

the simulator, and would have provision for the necessary linkage. Wilcox calls 

these elements value descriptors; I shall discuss their structure in Section 3.1. 

Not all of the pushdown store entries specify value information. Recall that the 

state of the transducer may also be saved on the pushdown store during the 

processing of a subtreeo This state is of no interest to the simulator and does not 

resemble a value descriptor. Practically speaking, there is no reason to use the 

same pushdown store for values and transducer states; only an ardent theoretician 

would object to the use of a separate state stack. 

The transducer and simulator need not coexist in memory. Action (a) of Section 

l . l ,  which requests the simulation of a token with arguments, could simply write 

that request to a f i l e  which would be scanned by the simulator in another pass. In 

this case the pushdown store and value image would be disjoint. Only the 

information relevant to the transducer would appear in a pushdown store entry, and 
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A*MINO(B,C-D,E) 

a) A typical expression 

A MINO B , C D - , E ) 

b) Input stream for the expression of (a) 

Figure 2.5 

Input  f o r  a Hybrid Code Generator 
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only that relevant to the simulator would be held in the value descriptor. I t  might 

s t i l l  be useful, however, to have a separate state stack for the transducer. 

Each target computer requires a machine image based upon the peculiarities of i ts  

internal organization. Accessible processor components would be represented by 

various elements capable of holding their status. I shall lump al l  of these 

together under the t i t l e  register descriptor, although they might not actually 

represent registers. The machine image contains representations not only of 

processor components, but also of temporary storage. These memory locations are 

used by the code generator when the number of values which i t  must manage exceeds 

the capacity of the target computer's registers, and when i t  must store the values 

of l i tera l  constants° They are represented by descriptors which might correspond to 

individual elements of storage or entire areas. The number of such me morx 

descriptors might be fixed, or i t  might grow and shrink as storage was allocated and 

released. 

Named operands are modelled by certain entries in the translator's dictionary, 

which specify all attributes of these operands. Three general attribute classes can 

be distinguished: 

a. Source language: Mode, scope, associated identif ier. These are maintained 

by the semantic analyzer° 

bo Target computer: Encoding, size, environment. These are maintained by the 

code generator° 

c. Memory image: Memory address, reference chains~ defined origin. These are 

maintained by the assembler. 

The values of named operands are not managed by the code generator, since i t  does 

not have complete control over the manner in which they are changed. 

3.1o Value Descriptorso An access function is a procedure for obtaining the 

contents of the cell defined by a name; i t  exists at all points within the scope of 

the declaration which associates an identif ier with that name. When the access 

function of a name is realizable within a given addressing structure, we say that 

the object referred to by the name is addressable. I f  an object required by the 

computation is not addressable, then the code generator must issue instructions 

which manipulate the environment in order to make i t  addressable before i t  can be 
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used. 

The manipulations of the environment required to make an object addressable can 

be divided into two groups, those required by source language constructs and those 

required by l imitations on the addressing structure of the target co~uter. 

Implementation of a reference through a pointer variable would be an example of the 

former, while loading a value into an index register i l lustrates the lat ter .  The 

exact division between the groups is determined by the structure of a value 

descriptor° When an operand token is encountered in the input stream, a value 

descriptor is constructed for that operando I f  the operand is not a constant, then 

the value descriptor must specify a location at which the operand may be found. 

This means that the value descriptor must realize some addressing structure, and i f  

the operand is not addressable within that structure then primitive operators must 

be used to make i t  addressable. When an operator is applied to an operand described 

by a value descriptor, i t  may happen that the operand location is not addressable 

with the single target machine instruction which implements the operator. In that 

case, the function which is processing the operator must emit further addressing 

code. Thus we see that addressing code may appear both at the point where the 

reference to a variable was f i r s t  encountered in the structure tree, and at the 

point where i t  was f i na l l y  used as an operand. 

Value descriptors should employ a uniform addressing mechanism to insulate the 

operator processors from the original source language form of the operand. We have 

already seen (Chapter 3.A, Sections 2.2 and 2°3) that a base, index and displacement 

can provide such a mechanism for addressing locations in memory: The base is a name 

which refers to an area of memory, and which may be computed at execution time. I t  

would be represented in the value descriptor by a pointer to the dictionary ( i f  i ts  

value were known at compile time) or to another value descriptor ( i f  i ts value were 

computed.) The index is always a computed value, and is therefore represented by a 

pointer to another value descriptor; the displacement is simply an integer value. 

This mechanism can easily be extended to cover constants and values held in 

registers. 

I n i t i a l l y ,  a constant value has no location; the value descriptor must therefore 

specify the constant i tse l f °  This permits the code generator to perform certain 
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machine-dependent optimizations (such as implementing mul t ip l i ca t ions by sh i f t s . )  

The constant value would also be required i f  evaluation of constant expressions were 

l e f t  to the code generator° Most such expressions would probably be handled by the 

optimizer, since i t  can combine evaluation with other optimizations such as strength 

reduction, but the simulator should have th is  capabi l i ty  in order to handle 

constants introduced during code generation. 

On most computers, constants must be stored in memory unless they are small 

integers which can be placed in the address f i e lds  of certain instruct ions.  When 

the constant is  used, the code generator w i l l  decide whether i t  must be placed in 

memory. Thus  the value descriptor fo r  a constant must provide space for a memory 

reference as well as for the constant value~ I f  the constant has no locat ion, th is  

fact would be indicated by a nul l  pointer in the base f i e l d .  

I f  a value is held in a reg is ter ,  then the base f i e l d  of  i t s  descriptor contains 

a pointer to the descriptor for  that register°  Note that th is  case cannot be 

confused with that of  an ind i rec t  reference to memory through an address held in a 

register :  When the reference is ind i rec t ,  the base f i e l d  of the value descriptor 

points to another value descriptor which describes the address. (Figure 3.1 

i l l u s t r a tes  the d i s t i nc t i on . )  

In addit ion to the location and value speci f icat ions,  a value descriptor must 

define the encoding of the operand and provide some housekeeping information. 

Figure 3°2 is an example of  a typ ica l  value descriptor layout, adapted from Wilcox' 

description of  the PL/C compiler [Wilcox 1971]. (PL/C is a var iant  of  PL/I ,  and the 

compiler runs on the IBM System/360 [Conway 1973].) 

3.2. Registe_r Descriptors. There is  one reg is ter  descriptor for  each target 

computer reg is ter  which could be of in terest  to the code generator. This includes 

dedicated registers whose contents might be used as operands, as well as registers 

that are actua l ly  managed by the code generator° Each reg is ter  descriptor contains 

a l l  of the information needed to use the register  as an operand, and to control i t s  

a l locat ion.  The code generator speci f ies a reg is ter  simply by a pointer to the 

reg is ter  descriptor. 

When a value is in a reg is ter ,  the value descriptor contains a pointer to the 

reg is ter  descriptor.  The register  descriptor must point to the value descriptor 
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1 VALUE DESCRIPTOR UNALIGNED BASED(P) 

2 DESCRIPTOR MANAGB~ENT 

3 STATUS 

4 USES LEFT FIXED BIN(7) 

4 VALUE BIT(1) INIT(1) 

4 STORAGE BIT(1) 

4 TEMPORARY BIT(1) 

4 IMAGE BIT(1) 

4 OTHER FLAGS BIT(20) 

3 FORWARD LINK POINTER 

3 BACK LINK POINTER 

2 ACCESS FUNCTION 

3 BASE POINTER 

3 DISP FIXED BINARY{31) 

3 INDEX POINTER 

2 ATTRIBUTES 

3 MACHINE TYPE 

4 $360 STORAGE BIT(8) 

4 SCALE FIXED BINARY(7) 

4 PRECISION FIXED BINARY(7) 

3 SOURCE TYPE BIT(8) 

2 VALUE BIT(64) 
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/*USED BY OPTIMIZER*/ 

/ * I  INDICATES A VALUE DESCRIPTOR*/ 

/*0 INDICATES ITEM IN A REGISTER*/ 

/ * I  INDICATES A TEMP IS ALLOCATED*/ 

/ * I  INDICATES ANONYMOUS OPERAND*/ 

/*PJ~DIX POINT POSITION*/ 

/*SIGNIFICANT DIGITS*/ 

/ * I F  KNOWN*/ 

Figure 3.2 

PL/C Value Descriptor 
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also, since i t  may be necessary to free the register by storing the value which i t  

contains° This action would normally be taken in response to a request which had 

nothing to do with the value currently in the register, and hence the value 

descriptor for the evicted operand must be accessible from the register descriptor. 

In some cases the content of a register is duplicated in some memory location 

managed by the code generator. I f  i t  becomes necessary to free a register, one 

whose content is also available in memory need not have that content stored again; 

all that is necessary is to reset the value descriptor to refer to the memory 

location° This requires that we provide space to store a base, index and 

displacement in the register descriptor° When a register is loaded, the value 

descriptor's location specification could be copied into the register descriptor. 

Similarly, when a value is stored from a register the register descriptor would be 

set to address the target location of the store. 

Note that the linkage between the register descriptor and storage is quite 

independent of any particular value descriptor. I t  represents a condition which 

happens to exist in the run-time environment, and which is not connected with the 

particular values currently being used in the computation. This is particularly 

important in connection with address modification. Consider a reference to a 

variable local to a containing block in ALGOL 60. In order to access that variable, 

i t  may be necessary to load a register with the base address of the containing 

block's local storage. This value is not relevant to the computation once the 

reference has been made, and hence no value descriptor wi l l  be retained for i t .  

However, i f  the register is not needed, i ts  descriptor wi l l  remain linked to the 

memory location containing the base address. When another reference occurs to a 

local variable of the same block, the base register load can be avoided by checking 

the register contents° This is done in the PL/C compiler, which uses the register 

descriptor defined in Figure 3.3° Note the close simi lar i ty between i t  and the 

value descriptor of Figure 3°2° 
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REGISTER DESCRIPTOR UNALIGNED BASED(P) 

2 DESCRIPTOR MANAGEMENT 

3 STATUS 

4 USES LEFT FIXED BIN(7) /*USED BY OPTIMIZER*/ 

4 VALUE BIT(1) INIT(O) / *0  INDICATES A REGISTER DESCRIPTOR*/ 

4 DEDICATED BIT(1) /*0 INDICATES MANAGED REGISTER*/ 

4 GENERAL BIT(1) /*0 INDICATES FLOATING PT REG*/ 

4 PAIRED BIT(1) / * I  INDICATES USE IN A PAIR*/ 

4 SAVED BIT(1) / * I  INDICATES COPY IN MEMORY*/ 

4 OTHER FLAGS BIT(3) 

4 REGISTER INFORMATION 

5 REGNUM BIT(4) 

5 ALLOCATION CLASS BIT(4) 

5 STORE OP BIT(8) 

3 FORWARD LINK POINTER 

3 BACK LINK POINTER 

2 CONTENT ADDRESS 

3 OLD BASE POINTER 

3 OLD DISP FIXED BINARY(31) 

3 OLD INDEX POINTER 

2 CONTENT ATTRIBUTES 

3 MACHINE TYPE 

4 S360 S~ORAGE BIT(8) 

4 SCALE FIXED BINARY(7) 

4 PRECISION FIXED BINARY(7) 

3 SOURCE TYPE BIT(8) 

2 CONTENT DE~RIPTION POINTER /*VALUE DESCRIPTOR FOR CONTENT*/ 

Figure 3.3 

PL/C Register Descriptor 
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4. Instruct ion Generation 

Synthesis of the actual inst ruct ion encodings acceptable to the control unit  of  

the target machine is  an assembly task, as is the al locat ion of target computer 

storage° The simulator generates a sequence of speci f icat ions for  machine 

instruct ions and assembly d i rec t i ves ,  which i t  passes to the assembler [Capon 1972]. 

Conceptually, an intermediate f i l e  is used for  th is  communication; ac tua l ly ,  the 

simulator may cal l  assembly procedures d i r ec t l y  or the two may in teract  through a 

coroutine linkage° 

The simulator is generating an assembly language program and, l i ke  a human 

programmer, i t  must maintain i t s  image of the environment within which the generated 

code w i l l  operate. For a given target computer, the operations one uses to maintain 

the machine image (such as reg is ter  management and storage area management) are 

independent of  the par t icu lar  assembly language program being generated. The 

simulator routines which perform such functions can therefore be wri t ten without 

regard for  the source language, and could form the basis for  many d i f fe ren t  

simulators. 

I f  value descriptors are not used to implement the transducer's pushdown store, 

then they are also independent of the source language. Each represents a target 

machine value, and the mapping from the source language to the target machine is  

carried out when the descriptor is constructed. No information regarding the source 

language at t r ibutes is required by the simulator, since the evaluation procedure is 

chosen by the transducer on the basis of those a t t r ibu tes .  Thus the value 

descriptor management u t i l i t i e s  can also be used in many simulators. 

To create a simulator for  a par t icu lar  source language, we must specify the 

evaluation procedures in terms of sequences of machine inst ruct ions,  assembly 

directives and simulator functions. These procedures tend to be bulky because they 

perform extensive analysis of special cases in an attempt to generate good code, but 

most of their execution time is spent in the various u t i l i t i e s .  An evaluation 

procedure is thus a prime candidate for interpretation: The sequence is encoded in 

a compact form which is scanned by a central control routine. This routine sets up 

parameters for the simulator u t i l i t i e s  specified by the sequence, and calls them to 

perform the actual operations° 
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4.1. Primitive Operations. Table 4.1 is a typical set of simulator primitives. 

I present i t  as a concrete basis for discussion, not as an exhaustive l i s t  of 

possibil it ieso (Remember that the particular operations which are relevant depend 

upon the target machine.) My purpose is to explain the major tasks, and to indicate 

specific operations which are useful. 

Instruction generation always results in a call on an assembly procedure. Before 

this call is made, however, the simulator guarantees that the operand of the 

instruction is addressable within the structure of the target machine. This may 

involve generation of additional instructions to load base and index registers. 

Some care must be taken to ensure that allocating these registers does not free 

other registers needed by the instruction. 

Assembly directives are used for the actual allocation of target computer memory 

and definit ion of symbols. The assembler also has fac i l i t i es  for multiple storage 

areas (Chapter 3.F, Section 3.2), with allocation and in i t ia l i za t ion .  I t  does not 

usually provide complex recovery strategies for use in temporary storage areas, and 

those are best handled within the simulator. 

The LOCK operation of Table 4.1 allows an evaluation procedure to guarantee that 

a particular register w i l l  not be reallocated. Normally, the register manager would 

base i ts reallocation policy on the allocation state of the register, which 

specifies whether the register is in use and whether a copy of i ts content can be 

found in memory° (The memory reference for the content is also considered part of 

the allocation state.) 

LINK is used to attach a value descriptor to a register descriptor, linking the 

two and setting the allocation state. This operation does not generate instructions 

to load the value into the register, i t  simply updates the relevant descriptors. 

Presumably i t  would be preceeded or followed by the appropriate LOAD instruction. 

There is no "delink" operation. When the content of a register has been stored, 

the register's allocation state can be set to "not in use, copy in memory at 

reference --" i f  this is the intent. However, the value remains in the register, 

and that is the most accessible copy. Hence the value descriptor stays linked to 

the register descriptor° I f  the register is now reallocated and another value 

linked to i t ,  the old value descriptor is altered to reference memory. Thus 



328 

Table 4.1 

Simulator Operations 

Instruction Generation 

Generate 15-bit instruction Generate 30-bit instruction 

Storage Management 

Create storage area 

A1 locate element 

Define location 

Establish default area 

Free element 

Re~ister Management 

Allocate 

Lock 

Link 

Save 

Free 

Unlock 

Set allocation state 

Restore 

Join 

Descriptor Management 

Create 

Protect 

Copy descriptor 

Destroy 

Release 

Make working copy 
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"del inking" is  a function of  the LINK operation, and is only done when a new value 

is brought into the reg is ter .  

On most machines a t ransfer  of control does not a l te r  the contents of the 

registers.  Consider the implementation of  the i f - t hen -e l se - f i  construct in ALGOL 68 

[van Wijngaarden 1969]. The contents of the registers w i l l  be the same jus t  before 

then and jus t  a f ter  else; they may d i f f e r  just  before else and jus t  before f.~_i. 

These facts  can be ref lected in the evaluation procedure by the use of SAVE, RESTORE 

and JOIN~ each of  which operates on the complete register  status and the contents of  

a specif ied reg is ter  status save area in the simulator (Figure 4.1. )  

Wilcox defines JOIN as fol lows [Wilcox 1971]: "For each current ly managed 

reg is ter ,  i f  i t s  [a l locat ion state]  d i f f e r s  from that recorded in [the specif ied 

regis ter  status save area] i t  is  marked empty. I f  they agree, i t  remains 

unchanged°" Thus none of  the three operations generate code in his simulator, and 

memory must contain copies of the contents of a l l  registers in use at else and f i .  

A simple modif ication allows JOIN to generate only necessary STORE instruct ions at 

f__~i, but a l l  act ive regis ters must s t i l l  be saved at else (unless an extra jump is 

inserted°) A backwards pass of  a mult iple-pass code generator could be used to move 

the necessary information from JOIN B to SAVE B, thus el iminat ing redundant STOREs 

at else alsoo 

When a value is no longer needed by an evaluation procedure, i t s  descriptor is 

RELEASEd. This frees a l l  resources ( reg is ter ,  storage) al located to the value, 

unless the descriptor indicates that  uses are l e f t .  PROTECT increments the count of  

uses le f to  

Sometimes i t  is  necessary to have a copy of a value which can be destroyed. For 

example, on the IB~ System/360 an ADD instruct ion replaces i t s  f i r s t  operand with 

the resul t°  I f  the f i r s t  operand is a value which w i l l  be needed again ( i . e .  one 

which indicates that uses are l e f t ) ,  then another copy of that value must be used in 

the ADD. This new copy inher i ts  a l l  of  the a t t r ibu tes  of the or ig inal  except the 

number of  uses l e f t .  

4.2. In terpre t ive  Coding Language. The pr imi t ive  operations of  Figure 4.1 form 

the nucleus of an in terpre t ive  coding language (ICL) suitable fo r  describing the 

manipulation of values necessary to implement evaluation procedures. Since each 
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value under the control of the code generator is represented by a value descriptor, 

value descriptors are the basic problem-oriented operands of this language. 

_Al~oritk~-oriented operands (e.g. integers, booleans, f in i te  sets, labels) and 

operators (e.g° transfer of control, declaratives) are also required i f  the ICL is 

to have a conventional structure. 

An assembly language is one obvious tool to use for describing sequences of 

machine instructions. In conventional assembly languages, each l ine is a statement 

made up of four f ields: 

a. The location f ie ld  may contain a symbol or be empty. 

b. The operation f ie ld  must contain a symbol 

Co The content and layout of the operand f ie ld  depends upon the symbol in the 

operation f ie ld .  

d. The comment f ie ld  is for documentation only; i ts  content is ignored. 

The operations which the language provides include al l  of the machine instructions, 

plus a set of pseudos which access the compile-time fac i l i t i e s  of the assembler. 

The particular pseudos supplied vary widely; the following four w i l l ,  however, be 

available in even the simplest assembler: 

a. END° Causes the assembler to wind up i ts processing of this program. 

b. DATA. Causes the assembler to i n i t i a l i ze  the contents of a block of 

memory. 

c. RESERVE. Causes the assembler to reserve a block of memory without 

in i t i a l i z ing  i ts contents. 

do DEFINE. Causes the assembler to define the value of a symbol. 

As we study the assembly process, I shall present additional pseudos which are 

useful for the simulator [Mealy 1967]. 

The assembly language for a particular computer can serve as a starting point for 

the design of an ICL for that computer: I t  is famil iar to the system programmers 

who must construct simulators, and i t  p~'ovides access to the assembly procedures for 

instruction encoding and storage allocation. Additional pseudos can be provided to 

access the simulator u t i l i t i e s  discussed in Section 4.1 and to provide the 

algorithm-oriented fac i l i t i es  mentioned above. The ICL statements must be 

translated into a compact sequence of data items, which is then incorporated into 
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the compiler. This translation is simplified by the structure of an assen~)ly 

language° ( I f  the assembler for the target machine has a macro faci l i ty ,  then 

appropriate macros allow the existing assembler to perform the translation.) 

Several authors have employed the basic strategy of using an ICL to create a 

description of the final code generation process [IBM 1968, Arden 1969, Elson 1970, 

Wilcox 1971]. Most of these languages were based on assembly code, and some were 

actually implemented by macro definitions for a conventional assembler 
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Assembly is the final step in the translation to machine code. Instruction 

specifications are converted into the actual patterns recognized by the control unit 

of the computer, and these patterns are placed into a memory image. Some of the 

instruction specifications normally contain references to other items in the 

program; during assem~y, these references are replaced by the addresses in the 

memory image of the referenced items. 

In many respects, assembly is machine-dependent: The number and layout of f ie lds 

within an instruction, the length of an instruction and the representation of a 

memory address are al l  items which vary from one computer to another. Nevertheless 

i t  is possible to derive a general model of the overall assembly process which 
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highlights i ts  basic machine-independence. By studying the model, we can identify 

important interfaces and specify a collection of procedures which can be used to 

carry out an assembly. These procedures are machine-dependent only in their 

detailed operation; their functions and interconnections are independent of any 

particular computer or class of computers. 

I t  is often convenient to spl i t  an assembly into several passes. The most common 

reason is to permit separate translation of modules in a large program. Each module 

is par t ia l ly  assembled, and the text placed in a f i l e .  When the program is to be 

executed, the f i l es  for a l l  modules are combined in a f inal assembly pass° This 

f inal pass is usually termed "loading", "linkage editing" or "binding", but in 

rea l i ty  is a completion of assembly. 
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I. A Model for Assembly 

Figure Ioi summarizes the major data structures used during assemblyj and shows 

how they are interconnected. MEM is the memory image which is being created by the 

assembly, LCNTR is the location counter which indicates the current position of the 

assembly in MEM, and DICT is the dictionary, which is used to retain certain 

constant values and positions in MEM. I assume that the assembly procedures may 

access MEM and DICT randomly, and that LCNTR may address any "relevant position" in 

MEM. {The "relevant positions" are determined by the architecture of the target 

computer.) At the completion of assembly, the contents of MEM can be executed 

immediately by the target computer; no further processing is required. 

The data structures of Figure l . l  are manipulated by a collection Qf procedures 

which can be grouped into the classes shown in Figure 1.2. Procedures in the 

object, reference and definition classes provide an interface to the assembly data 

structures, while statement procedures interface to the remainder of the translator. 

Each basic instruction generation step is a call on a statement procedure, passing 

arguments which describe the desired instruction. The interpretation of these 

arguments depends entirely upon the statement procedure which is called. 

lo l .  Object and Staten~nt Procedures. Object procedures insert information into 

MEM and maintain LCNTRo They are called by the code generator, and their functions 
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can be placed into the following broad categories: 

a: Enter a given item into MI~. 

bo Advance LCNTR by a given amount° 

c. Advance LCNTR i f  necessary to address an element of a particular storage 

class. 

Category (c) re f lec ts  the fact  that  in some computers certain information must f a l l  

on par t icu lar  "boundaries" in memory. For example, on a computer which can store 

several instruct ions in each word i t  may be necessary to guarantee that an 

instruct ion which is the target of a jump f a i l s  at the beginning of a word. 

Some object procedures may perform functions in more than one category, the most 

usual combination being (a) and {b). Care must be taken with category (c) functions 

because LCNTR can af fect  the values of  operands used in the inst ruct ion.  This means 

that i f  a category (c) function is necessary, i t  should be carried out before the 

instruct ion is generated and not combined with (say) a category (a) function carried 

out at the end of  the generation process. 

A statement procedure in terprets  and processes i t s  argument, ca l l ing upon 

procedures in the other classes to obtain the desired ef fect .  For example, consider 

the processing of an instruct ion which specif ies an address and an index reg is ter .  

The statement procedure called would be one which processes instruct ions with index 

and address f i e l ds ;  the arguments passed would specify the operation code for the 

par t icu lar  inst ruct ion,  the number of the index regis ter ,  and the address. After 

building the inst ruct ion pattern required by the control un i t ,  the statement 

procedure would cal l  an object procedure to place the instruct ion into HEM at the 

address specif ied by the location counter. This object procedure would probably 

update the locat ion counter to address the space immediately fol lowing the 

inst ruct ion.  

I shall assume for  the moment that each statement procedure can determine the 

proper object procedures to use simply by examining i t s  arguments. This seems at 

f i r s t  glance to be a t r i v i a l  assumption, but consider a computer which provides jump 

instruct ions of  several lengths: The short jump is used when the jump target is 

wi th in (say) 128 locations of  the jump inst ruct ion,  while the long jump is  used when 

the jump target is more d is tant .  I t  would be useful to simply specify that a jump 
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was required, and let the statement processor sort out which to use [Richards 1971]. 

This means, however, that the statement processor cannot determine the proper object 

procedure from i ts  arguments alone, because the instruction length depenEs upon the 

position of the instruction and the position of the jump target. 

There wil l be one statement procedure for each distinct class of instruction 

patterns, because the statement procedure must know how to interpret and pack the 

fields which specify i ts arguments. At least two procedures are needed to provide 

direct access to category (a} and (b) object functions. These procedures are used 

to specify arbitrary data items (patterns which cannot be expressed as instructions) 

and to reserve blocks of storage. Sometimes i t  is useful to provide a third 

procedure to access category (c) functions; this depends strongly upon the target 

computer organization. 

Io2. Cross Referencing. Some of the operands of an instruction may depend upon 

the location of other instructions. An obvious example is the address f ield of a 

jump instruction, which depends upon the location of the jump target. Such operands 

present a cross-referencing problem which is solved through the use of the 

dictionary: Each operand is associated with an entry in the dictionary holding the 

value of LCNTR at the defining occurrence of the operand. Access to these entries 

is provided by procedures in the reference and definition classes. 

The only problem which arises in providing cross-references is that of a forward 

reference: An operand for which one or more applied occurrences preceed the 

defining occurrence° I t  is possible fat some cost in convenience) to eliminate 

forward references to data objects by re-arranging the source program. Forward 

references to instructions, however, can only be eliminated in certain simple cases; 

thus we must deal with the forward reference problem. 

A conceptually simple solution to the problem is to make two passes over the 

input specifications. During the f i r s t  pass, the statement routines request only 

object functions in categories (b) and (c). Thus they maintain the value of the 

location counter, but place no information into MEM. Applied occurrences of all 

operands are ignored, but definition procedures are called to process defining 

occurrences° At the end of this pass, the dictionary contains the values of all 

cross-referenced symbols° A second pass is now made in which defining ~ccurrences 
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of operands are ignored and all categories of object functions are used. (Note that 

this solution is possible only because of the assumption made in Section l . l .  I f  

the length of a jump instruction depended upon the position of i ts target, we ~uld 

not be able to decide which object function to use during pass l . )  

In order to show that a second pass can be avoided, we must f i r s t  show that i t  is 

possible to remember each location where information must be supplied, and what 

information is required, in an amount of space which grows with the number of 

distinct items rather than the number of references. The basic strategy is the 

following [Wilkes 1957]: 

a. Consider an instruction which makes a forward reference. We do not know 

what to put into the f ield containing the forward reference, and hence this 

f ield may be used (temporarily) to held anything. 

bo In particular, i t  may be used to address the last forward reference to the 

same location by setting i t  equal to the difference between the current 

address and the adCress at which the last reference occurred. ( I f  this is 

the f i r s t  reference, the f ield would contain 0.) 

c. The dictionary entry contains the address of the most recent forward 

reference. 

This technique is called back chaining. The back chains are constructed by the 

procedure invoked when an undefined identifier is referenced, and the values are 

f i l led in by the procedure invoked when an identif ier is defined. 

An obvious problem with back chaining is that the f ield containing the forward 

reference must be large enough to address the last forward{ reference to the same 

symbol° In practice, i t  is usual to allow forward references only in address fields 

because this is where they are most useful. Unfortunately, a restriction of forward 

references to address fields does not always solve the problem completely. 

Consider, for example, a computer which permits several instructions to be stored in 

one word, but in which an address f ield of an instruction is only large enough for a 

word address° Thus i t  is not possible for a back chain to specify which address 

f ield of a given word contained the last forward reference to the same symbol. In 

this case, however, i t  is usually true that the number of possible positions for an 

address f ield is smallo (On CDC 6000 series computers the address f ield of an 
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instruction must appear in one of three positions,) I t  is therefore feasible to 

maintain a separate back chain for each address f ield position in the word. 

A somewhat more challenging example is the class of machines with short address 

fields in which the effective address is constructed by using the contents of the 

address f ield and the contents of a base register. The simple case is that in which 

the base register is the location counter° Here the address distance between the 

f i r s t  forward reference to a symbol and the definition of the symbol must be 

repesentable in the short address field° Since all entries on the back chain l ie  

between the f i r s t  reference and the definition, all links must be representable in 

short address fields° 

I f  the base register is not the location counter, then i t  may be impossible to 

maintain all of the links of the back chain in the address fields of the instruction 

making the forward references. One possible solution is to use several back chains, 

starting a new one for each reference which is too far from the preceeding one to 

permit the normal linkage. Although this violates the one-pass criterion, i t  is 

usually successful because the references tend to cluster and hence the number of 

back chains is much smaller than the number of references. When using this 

technique, only the head of the most recent back chain is kept in the dictionary 

entry° Earlier back chain headers are kept in a pushdown l i s t  accessible from the 

dictionaryentry. This means that the reference procedure needs to take special 

action only when i t  discovers that linkage to the previous entry of the current back 

chain is impossible. (Note that the fu l l  address of the last entry in the chain 

must be kept in the dictionary.) 

There is a more serious problem with machines (such as the IBM System/360) having 

a number of base registers: The base register which must be used for any given 

reference may depend both upon the symbol being referenced and upon the point at 

which the reference occurs. 

The effects of these complexities are localized in the reference and definition 

procedures, and in the structure of the dictionary. I f  i t  is necessary to cater for 

link fields of several sizes which fa l l  into several positions with respect to the 

location counter, thon more than one reference procedure might be specified. Each 

of these procedures would have access to the location counter and to the dictionary 
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entry for the forward reference; knowing the peculiarities of i ts  particular f ie lds,  

i t  would be able to construct appropriate l ink values and dictionary modifications. 

When a forward-referenced operand becomes defined, then the back chain must be 

followed and the proper values f i l l ed  ino This task can be sp l i t  into two parts: 

following a chain and performing a certain action at each element. I t  would be 

useful to implement the two parts of the task by separate procedures i f  you 

anticipated tracing the back chain for purposes other than definit ion (one example 

would be to print a l i s t  of references to an undefined symbol at the end of the 

assembly.) Even i f  the task is implemented as a single procedure, however, a 

conceptual sp l i t  can help in understanding the design. 

The back-chain tmace procedure must v i s i t  every entry, in any order. At each 

entry i t  must provide the action procedure with both the value of the location 

counter at the time the entry was made and the type of f ie ld  in which the entry 

resides. (Type information could be given impl ic i t ly  by calling an action procedure 

which was specific to that particular type of f i e ld . )  I f  the action procedure is 

defining the operand, then i t  must have access to the definition as well as the 

f ie ld specification° 

The dictionary entry for a symbol must not only specify whether that symbol has 

been defined, but also whether i t  has been referenced. A reference procedure uses 

the "referenced" flag to control in i t ia l i za t ion  of the back chain, and a definit ion 

procedure uses i t  to control the f i l l i n g  of a back chain. I t  is needed because a 

dictionary entry may be created for a symbol before a valid reference to that 

symbol, one in which a back chain l ink could be stored, actually exists. 

1.3o Assembly under a Storage Constraint. I shall now show that the assembly 

can be carried out even i f  the entire object program cannot be held in memory. To 

do this,  I must postulate another program, a loader, which is capable of performing 

the "back chain f i l l "  function of a definit ion procedure. The necessary information 

is provided by means of loader directives, which are encodings of the relevant 

dictionary entries° (Loader directives are written to the same f i l e  as the object 

text, and i t  must be possible for the loader to distinguish them.) 

The program is processed exactly as before, until there is no further space for 

object code; at that point the existing object code may s t i l l  contain unfi l led back 
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chains, but these w i l l  be processed la te r  by the loader. The current object code is 

output to a f i l e ;  the assembler continues to process the program, re-using the same 

memory area. A d e f i n i t i o n  procedure may now attempt to fo l l ow  a back chain in to  the 

object code which is no longer in memory. When t h i s  happens, an appropriate loader 

d i rec t i ve  is  wr i t ten  to the object f i l e  to enable the loader to  continue processing 

of  the back chain. Note that  t h i s  loader d i rec t i ve  immediately fo l lows the object 

code to which i t  applies° 

Suppose that  the t rans la to r ' s  memory does not f i l l  a second time. At the 

completion of  the assembly, no un f i l l ed  back chains w i l l  ex is t  in the port ion of  the 

object program which remains in memory° This absolute block o f  t ex t  is  then wr i t ten  

to the object f i l e .  When the loader is  cal led to process the object f i l e ,  i t  reads 

the tex t  fo r  the f i r s t  part o f  the program in to  memory. (This tex t  must f i t ,  

because the loader is  smaller than the t rans la to r  and needs no d i c t i ona ry . )  I t  then 

reads the d i rec t ives  and f i l l s  the speci f ied back chains. The ent i re  tex t  is now 

absolute; the loader may read the remainder of  the object text  and execute the 

program, or  i t  may create an absolute object f i l e  f o r  l a te r  execution by wr i t i ng  out 

the tex t  held in core and copying the remainder from the other f i l e .  

I f  the t rans la to r ' s  memory f i l l s  several times, then there may be several blocks 

of  object text  separated by loader d i rec t i ves .  Only the las t  block is  guaranteed to 

be absolute. In th is  case, the loader may not be able to store a l l  of  the object 

tex t  which must be updated° More than one pass by the loader w i l l  therefore be 

needed to complete the processing of  the object code. I t  can be shown that each 

pass increases the amount of tex t  which fo l lows the las t  loader d i rec t i ve ,  and is 

hence guaranteed to be absolute. 

I f  a loader is to be used, there is actually no need for the translator to retain 

any object code or to f i l l  any back chains. Object text is written as i t  is 

generated, and when a symbol def in i t ion is encountered the proper loader directive 

is emitted° This approach is useful on small machines with limited peripheral 

capacity, where i t  is desirable to retain the object program for repeated execution. 

1.4, Operand Expressions. Figure Io3 gives several examples of the use of 

expressions as operands in assembly code statements. These expressions are made up 

of symbols and constants, using the four basic arithmetic operators and the 
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parentheses° The meaning of these operators is clear when a l l  of the operands are 

integers; l e t  us consider the i r  meanings with address operands. 

A computer memory is made up of one or more ordered sets of locations called 

segments. The resu l t  of adding an integer, n, to an address, A, is  the address of  

the nth location beyond the one addressed by A. I f  th i s  location would l i e  outside 

the segment addressed by A, then the resu l t  is  undefined. S imi la r ly ,  A is the 

address of  the nth location beyond the one addressed by A-n. 

I f  A1 and A2 are addresses no reasonable interpretat ion can be placed upon the 

resu l t  of  AI+A2, and hence such an expression is meaningless. Since mul t ip l i ca t ion  

by an integer is simply a shorthand notation for  repeated addit ion, A*n is  also 

meaningless. The only useful operation involving two addresses is  AI-A2, which 

yields an integer giving the directed distance from A2 to A1 . Figure 1.3c 

i l lustrates such an expression, which automatically redefines SIZE when data 

declarations are added to or removed from the table° 

The usual associative and commutative laws hold when an expression contains more 

than one operator° Thus a valid interpretation can be placed upon the expression of 

Figure 1.3d, even though i t  contains the sum of two addresses as a subexpression. 

An expression containing a forward reference cannot be evaluated at the time i t  

is encountered, because the value of the forward reference is unknown. A back chain 

entry cannot be created for later update, because that would require storing the 

entire unevaluated expresson in the address f ie ld  of the instruction. Let us 

approach the solution to this problem obliquely, f i r s t  asking whether i t  real ly is a 

problem. 

Consider an expression as the operand of a DEFINE directive. Since this 

directive does not actually generate code, i t  could be placed anywhere in the 

program° In particular, i t  could be placed at the end (or at least at some point 

after al l  of the components of i t s  operand expression had become defined.) Thus we 

can arrange that the operand of a DEFINE directive never c~ntains a forward 

reference° 

Suppose that the programmer wishes to use an expression containing forward 

references as the operand of some instruction which cannot be moved. He can avoid 

using the expression (and yet achieve the same effect) by substituting a new 
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ident i f ier  which does not appear anywhere else in the program. He then adds a 

DEFINE directive at the end of the program which defines this new ident i f ier  as the 

value of the desired expression° By this strategem he makes i t  unnecessary to store 

the complete unevaluated expression in the address f ie ld ;  only a reference to a 

single undefined ident i f ier ,  using a normal back chain, is required. 

The effect of adding a new ident i f ier  and inserting a DEFINE can be achieved by 

the assembler: When i t  encounters a forward reference in an address expression, i t  

adds an entry to the dictionary which cannot be accessed via the normal lookup 

mechanism. This entry represents the "new ident i f ier , "  and obviously cannot appear 

anywhere else in the program. A forward reference to the new entry replaces the 

address expression, which is stored in the dictionary as an unevaluated DEFINE 

directive. The directive is represented by an element which has two components: 

'as A pointer to the entry for the ident i f ier  being defined. 

b. An encoding of the expression which is the operand of DEFINE. 

In order to allow the assembler to evaluate al l  such directives at the end of the 

program, a third component is also required: 

c. A pointer to the entry for the previously-stored directive ( i f  one exists). 

The assembler keeps a pointer to the most-recently stored directive, and from that 

i t  can reach all previous ones. 

Any convenient encoding can be used for the expression. I t  is important to 

realize that some of the operands of the expression must be dictionary references 

(for i f  they were not, then al l  operands would be known and the expression would be 

evaluable.) Thus the encoding must include a means of distinguishing dictionary 

references from constants. 

Consider a symbol which has not been defined, and which has been used only in 

address expressions. This symbol must appear in the dictionary, because the encoded 

expressions must point to i t .  There is, however, no back chain associated with i t  

because i t  has never been referenced direct ly in an instruction. Hence this symbol 

would not have i t s  "referenced" f lag (Section 1.2) set. 

You should note that a l l  of the code required to handle operand expressions is 

localized in a single routine. I f  forward references are allowed in operand 

expressions, then the END statement processor must also be changed to evaluate the 
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expressions which have been deferred and to cal l  d e f i n i t i o n  procedures to 

back chains. 

f i l l  the 

2. Two-Pass Assembly 

The one-pass assembler places information into f ixed locat ions in memory. Often 

i t  is advantageous to t rans la te  a block of ins t ruc t ions without knowing exact ly  

where i t  w i l l  be placed° In th i s  case, addresses can only be speci f ied re la t i ve  to 

the s tar t  o f  the block; an extra pass would be necessary to make those re la t i ve  

addresses absolute. Several blocks containing re la t i ve  addresses can also be 

combined to y i e l d  a larger  block in which the addresses are s t i l l  r e l a t i ve .  

2.1. Relat ive S~mbol De f i n i t i on .  In section 1.4 1 discussed the spec i f ica t ion 

of operands by expressions containing forward references. Suppose that  such an 

expression were used as the operand o f  a RESERVE d i rec t i ve ,  as shown in Figure 2 . la .  

Since the amount o f  storage reserved cannot be computed immediately, i t  is  not 

possible to speci fy the absolute locat ion of the ins t ruc t ions  which fo l low the 

RESERVE d i rec t i ve .  There is ,  however, no d i f f i c u l t y  in determining the i r  values 

re l a t i ve  to the end of  the reserved area (Figure 2 . l b . )  

RESERVE d i rec t i ves  such as those of  Figure 2.1 can be avoided by sui table re- 

arrangement of the source code° However~ they serve as models fo r  var iab le- length 

ins t ruc t ions  such as the short and long jumps discussed in Section l . l .  Thus i f  we 

can process these d i rec t i ves ,  we can re lax the assumption made in that  section which 

prevented the assembler from select ing the proper jump ins t ruc t ion  automatical ly.  

The techniques developed in th is  section also form the basis for  implementation of 

mu l t ip le ,  independent storage areas° 

Let the f i r s t  absolute memory locat ion beyond the reserved space be denoted by X. 

Every symbol which fo l lows the RESERVE d i rec t i ve  can then be given a value of  the 

form X+C, where C is an integer.  In pa r t i cu la r ,  FIRST = X+IO0 and LAST = X+I50. 

The RESERVE d i rec t i ve  i t s e l f  allows us to define X by X = 15+(LAST-FIRST). At the 

end of  the assembly, when a l l  symbols have been defined, the values of FIRST and 

LAST can be subst i tuted into th i s  expression to y ie ld  an equation in X: 

X = ]5+((X+150)-(X+100)) = 15+50 = 65 
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This value of X can then be substituted into al l  of the def ini t ions which depended 

upon i t ,  and a second pass completes the assembly° 

Assume a more complex program than that of Figure 2.1, in which there are n 

RESERVE directives whose operands contain forward references. This means that there 

w i l l  be n X's and n groups of symbols whose values have the form >C+C. Each RESERVE 

directive contributes an expression which defines an X in terms of integers and X's. 

Moreover, the rules for address arithmetic discussed in Section 1.4 guarantee that 

these expressions are linear in the X's. Thus a system of l inear equations in n 

unknowns is available; there are well-known methods for obtaining a solution (or 

showing that no solution exists.) The solution may be obtained at the erKI of one 

pass, and assembly completed in a second pass. 

A relative address is s t i l l  an address, and obeys the rules for address 

arithmetic discussed in Section 1.4: When an integer is added to or subtracted from 

a relat ive address the result is an address relat ive to the same pointi relat ive 

addresses may not be added together, nor may they appear as operands of 

mult ipl icat ion operators. However, the result of the difference of two relat ive 

addresses is defined only i f  the addresses are relat ive to the same point; the 

difference of two addresses relat ive to separate points is unevaluable, but does not 

necessarily represent an error. Figure 2.2 i l lus t ra tes a correct program in which 

this situation occurs. Note that the operand of the second RESERVE directive is 

undefined even though defini t ions of a l l  symbols appearing in i t  have previously 

been encountered. 

Suppose that our assembler is already equipped to handle expressions containing 

forward references, as discussed in Secton 1.4. To accommodate relat ive symbol 

def in i t ion we must expand the dictionary entry for each symbol to specify an origin 

as well as a value. In two ways, an origin acts as though i t  were a symbol: I t  may 

be used in expressions, and i t  may eventually take on a value relat ive to some other 

or ig in.  Thus i t  is reasonable to represent an origin by a symbol entry in the 

dictionary, and to specify the origin on which a symbol is based by giving a pointer 

to this entry. 

I f  the operand of  a RESERVE directive is an unevaluable expression, then i t  w i l l  

be represented by a new symbol, as discussed in Section 1.4. Let us denote this 
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created symbol by E, the current or ig in by A and the current of fset  from that or ig in 

by I .  The RESERVE procedure must therefore create an or ig in whose value w i l l  be the 

value of the expression A+I+E. In e f fec t ,  the new or ig in  is a symbol, N, defined 

by: 

N DEFINE A+I+E 

In section 1.4 1 explained how such d i rec t ives  were created by the assembler and 

stored in the d ic t ionary.  

In adc~ition to set t ing up an expression entry in the d ic t ionary and creating a 

new symbol to represent the or ig in ,  the RESERVE procedure must reset the current 

or ig in to th is  new symbol and make the current of fset  from that or ig in equal to O. 

Subsequently-defined symbols w i l l  then specify the new origin,, and the value of the 

of fset  w i l l  be updated to r e f l ec t  the code generated. 

When a l l  of the or igins in a program are defined by RESERVE d i rec t ives,  no 

operations on pairs of equations are required to solve for  the or ig in values. This 

means that we simply need to evaluate the expressions in the proper order to obtain 

a solut ion; i f  no such order ex is ts ,  then no solut ion ex is ts .  Unfortunately, the 

expressions have been chained in the reverse order of occurrence (Section 1.4), and 

Figure 2.2 i l l u s t r a t e s  the fact  that th is  ordering is not necessari ly the proper 

one. 

Even i f  the ordering of the chain is not the correct one, al l  expressions may be 

evaluated by repeated passes over the chain. At least one expression is evaluated 

and removed from the chain on each pass. I f  a pass is made without evaluating an 

expression, then no solution to the set of equations exists. 

As expressions are evaluated, the origin on which symbols are based may change. 

For example, in Figure 2.2 the origin of Sl changes from Xl to O when $3-$2 is 

evaluated° This change must be noted on the second pass over the l i s t  of 

expressions in order to evaluate SI-START. Thus i t  must be possible, given an 

origin entry, to f ind al l  of the symbols based direct ly  upon that origin entry. By 

including one more pointer f i e ld  in each symbol entry, we can construct a chain 

which begins at an origin entry and l inks al l  of the symbols defined relat ive to 

this origin. When the origin becomes defined relat ive to another or igin, we can 

scan over the chain and update al l  of the symbol entries. The chain (including the 



352 

or ig in entry) is then added to that of the new or ig in .  

2.2° Mul t ip le  Location Counters. The memory image of a running program can 

usual ly be part i t ioned into several d i s t i nc t  regions, each holding information of a 

par t icu lar  type. For example, inst ruct ions,  contants and working storage locations 

often occupy d i f fe ren t  areas of memory. This par t i t ion ing may be required by the 

hardware of the target computer, but t rans lators tend to construct separate regions 

even i f  the hardware does not require them. 

So far  we have considered assembly under the control of a single location 

counter; a single point at which information can be entered into the memory image. 

I f  only one location counter is provided, then the par t i t ion ing discussed in the 

previous paragraph must be done in the source code: Al l  instruct ions must be 

wri t ten f i r s t ,  followed by a l l  DATA d i rect ives which establ ish constants, followed 

in turn by a l l  RESERVE d i rec t i ves  declaring the working storage. 

Instead of  providing only a single location counter, allow the t rans lator  to 

define as many as i t  needs. Each location counter specif ies the point at which 

information can be entered into a given region of the memory image, and also the 

origin of the region° A region may~ of course, contain RESERVE directives whose 

operands cannot be evaluated; in that case the region would be made up of several 

related blocks of information. The origin of each of these blocks must eventually 

be defined relative to the origin of the region (Section 2.1), but as yet we have no 

mechanism for defining the relationship of theregions to one another. 

Perhaps the simplest way to define the relative positions of several regions is 

to have them follow one another in the order in which they were declared. This is 

satisfactory in most cases, but sometimes the user may wish to combine them 

differently (when designing overlays, for example.) I f  we consider the location 

counter name to be a symbol representing the origin of the region, then the normal 

DEFINE directive can be used to specify the location of that origin relative to some 

symbol in another region. In the absence of an explicit declaration, the region 

could be assumed to follow the region declared before i t ,  

A location counter actually consists of two symbols: one represents the 

beginning of the region, the other represents the current position in the region. 

The state of each location counter is completely specified by the second symbol: 
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Its origin pointer indicates the current base for relative addresses, i ts  symbol 

pointer remembers the last symbol defined under this location counter, and i ts  

offset f ie ld  is the present relative address° Thus LCNTR can be a pointer to this 

symbol entry, and a change of location counters is merely a change of the pointer. 

Assuming that the assembler already provides relative symbol def ini t ion, the only 

added mechanism required to support mul t ip le  location counters is a d i rec t i ve ,  USE, 

which specif ies that subsequent assembly should be under the control of a d i f fe rent  

counter. The operand of USE is the location counter name~ which provides access to 

the f i r s t  of the two symbol entr ies associated with the counter. In order to 

ac tua l ly  perform the change, access to the second symbol entry is ~equired. Thus a 

location counter entry is normally a composite of the two symbol entr ies.  Such an 

entry is created by USE when i t s  operand has not previously been encountered. 

3. Part ia l  Assembly_ and Linkage 

Separate t rans la t ion of modules requires that assembly be carried only to a 

certain point, and su f f i c ien t  information wr i t ten in a f i l e  to permit completion at 

a la te r  t ime. In th is  section I examine the question of information f low in par t ia l  

assembly, basing my discussion on the complete assembly algorithms presented in 

ea r l i e r  sections of th is  chapter. You should be aware that  t rans lat ions of par t ia l  

programs wri t ten in some higher level languages may require information (such as 

mode indicat ions for  procedure parameters) beyond that  discussed in th is  section. 

Consider f i r s t  a program which contains no re la t i ve  symbol de f in i t ion .  Suppose 

that we assemble this program using the algorithms of section I with two slight 

changes: An address-valued symbol is always represented by a dictionary pointer, 

and the definit ion procedure for an address-valued symbol records the value in the 

dictionary and marks the symbol defined but does not f i l l  the back chain. (The back 

chain of a symbol with a constant value would be f i l l e d . )  These changes ref lect the 

fact that the actual address depends upon the position at which the program is 

loaded; the definit ion of the symbol simply provides a relative address. 
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Upon reaching the end of the program we have a body of text containing back 

chains and a dictionary containing al l  of the symbols referenced. These symbols can 

be divided into three classes: 

ao Symbols which have been defined as constants. 

bo Symbols which have been defined as addresses. 

Co Symbols which remain undefined. 

Those in class (a) are of no further interest, since their values have already been 

substituted into the text; values for the remaining symbols must be determined in a 

subsequent pass. Thus the output of the partial assembly consists of the text and 

specifications for the symbols in classes (b) and (c). 

The value of a class (b) symbol depends only upon the value of the text origin. 

Thus these symbols can be represented by directives which specify the back chain and 

address relative to the origin° A directive representing a class (c) symbol, on the 

other hand, must specify the back chain and the name of the symbol. Since this name 

generally refers to a class (b) symbol in another program, the names of certain 

class (b) symbols must be known to subsequent passes. 

An extra assembly directive, ENTRY, is needed to specify which class (b) symbol 

names should remain known after a partial assembly. This directive might result in 

the output of a new directive similar to DEFINE, or i t  might simply expand the 

normal directive for a class (b) symbol to include the symbol name. 

A subsequent assembly pass might complete the assembly, or i t  might simply 

combine several partially-assembled blocks to form a larger block. In the lat ter  

case, additional ENTRY directives must be input to specify symbols whose names are 

to be retained for future passes° 

When two passes are used for the partial assembly (Section 2), another strategy 

becomes available for representing the output program: Place the proper relative 

address in each address f ie ld  and attach a flag specifying the origin. (This flag 

is usually termed "the relocation bits" of the f i e ld . )  Back chaining must s t i l l  be 

used i f  the symbol is defined by an expression which contains operands not defined 

in the program unit being assembled. Specifications for the class (c) symbols and 

class (b) symbols whose names must be retained can appear either before or after the 

text; back chain headers and generated DEFINE's should follow the text. 
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CHAPTER 4 . A .  

INTRODUCTION TO COMPILER COMPILERS 

M. Gr i f f i ths 

Laboratoire d'Informatique 

UNIVERSITE DE GRENOBLE, France 

1 - MOTIVATION - 

Histor ical ly,  the existence of compiler-compilers is a result of using 

syntax-directed compiling techniques in order to structure the compiler. Syntax 

becomes a language in which parts of the compiler may be wri t ten, and the concept 

is extended to semantics by including a compatible programming language, usually 

general purpose, which allows classical programming methods for those parts of the 

compiler not susceptible to treatment by syntax. We w i l l  divide the subject in two 

parts, dealing f i r s t  with those compiler-compilers whose formal treatment is l imi-  

ted to context-free grammars, and subsequently with extensions of these formalisms 

by one method or another. This division is s t r i c t l y  arbitrary, but corresponds to 

a practical fact, which is that the former class can be used, and indeed are being 

used, in a commercial environment to produce ef f ic ient  compilers more easily than 

by ad hoc methods. The second group includes a series of promising ideas which 

are at di f ferent stages of development, but for which i t  is as yet not possible to 

make a reasonable evaluation. 
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Compiler compilers depend very much on language d e f i n i t i o n  techniques, 

since, for  example, i t  is  d i f f i c u l t  to use syntax-directed methods fo r  a language 

which has no syntax. I t  may even be said that  the compiler-compiler is  the tool 

which takes a formal language d e f i n i t i o n  together wi th  a machine descr ipt ion and 

produces a compiler. We may consider them to be sa t is fac tory  when i t  is  no longer 

necessary for  a programmer to intervene to achieve th is  goal. At the present 

moment we ape a long way from i t ,  mainly because our de f i n i t i ona l  tools are not 

yet s u f f i c i e n t .  

2 - COMPILER-COMPILERS BASED ON CONTEXT-FREE SYNTAX METHODS - 

The f i r s t  of a large number of compiler-compilers of th is  generation 

is  described in [Brooker 62] ; most of them have certa in character is t ics  : 

Based on a par t i cu la r  method of syntax analysis.  

- C a l l s  may be made during syntax analysis to semantic funct ions,  which are 

procedures wr i t t en  in some programming language. These ca l l s  appear in  the 

tables used by the analyser, or in the analysis program produced by the com- 

p i ler -compi ler .  

- Some compiler-compilers use spec ia l ly  created 'production languages' ( for  

example, that of Floyd and Evans [Floyd 61]). 

A survey has been made of many of the methods used [Feldman 68], but,  unfor tunate ly ,  

the methods treated do not include some in teres t ing  European cont r ibut ions.  
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2.1 - Syntax - 

There exist few top-down analysis techniques, and the principal one has 

already been described (Chapter 2.B). The method is heavily used, since i t  is rela- 

t ively simple to implement and allows semantic functions to be placed at different 

points in the grammar. There exist many more bottom-up methods, of which one 

(Chapter 3.C) has already been described in some detai l .  Perhaps the most frequently 

used methods are those of precedence, while bounded context [Floyd 64] represents a 

convenient special case of LR for use with some forms of production language. 

Whichever analysis method is used, the compiler-compiler must include 

a cer ta in nunW)er of sub-programs, which w i l l  perform the fo l lowing tasks : 

- Test that  the grammar is wel l -def ined and clean (a l l  symbols defined, a l l  

productions useful ,  no parasites, and so on) 

- Test whether the grammar can be used wi th  the method chosen (LL(1), precedence, 

LR . . . .  ) 

- I f  the grammar does not conform, t r y  to transform i t  so that  i t  does 

- Production of an analyser in the relevant form, together wi th the in ter face 

which provides the 'hooks' for  the semantic funct ions.  

Examples of the implementation of these funct ions have already been given in the 

relevant chapters ; we w i l l  not repeat the tex t  here. Reasons which may lead to a 

par t i cu la r  choice among the d i f f e ren t  analysis methods have also been given 

(Chapter 3.C). 

2.2 -Languages for Compiler Writing - 

The language in which a compiler is wr i t t en  must be considered in two 

parts, the production language, which is generated by the compiler-compiler and 

which includes the syntax analyser wi th semantic hooks, and the language in which 

the semantics are w r i t t en ,  the 'hand-coded' part. 
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2.2.1 - P~d~c~on~an~ua~e - 

One production language has already been seen in connection with the 

LL(1) analyser. I t  consists of a small number of pr imi t ives which can readi ly  be 

coded in any sui table language. A l te rna t i ve l y ,  the same information can be stored 

in tables, as was done in the LR analyser. Semantic hooks may be associated with 

a l l  or with certain entr ies in the table.  In addit ion to these methods, we must 

also mention the Floyd-Evans production language [Floyd 61], both because of i t s  

h i s to r i ca l  in te res t  and subsequent frequent use and because i t  can be used to 

express analysers which are based on d i f fe ren t  bottom-up techniques, for  example 

bounded context: or precedence. This m u l t i p l i c i t y  of appl icat ion of Floyd-Evans 

productions is due to the fact  that these d i f f e ren t  bottom-up techniques are clo- 

sely re lated.  The productions are simply descriptions of the state of the analysis 

stacks when a reduction or a sh i f t  is to take place. For example, consider the 

grammar of an ALGOL60 block previously used to demonstrate LL(1) analysis, changed 

s l i g h t l y  to f a c i l i t a t e  a bottom-up technique : 

Axiom ÷ I-- B l o c k ~  

Block ÷ begin DL SL end 

DL ÷ D ; I D ; DL 

SL ÷ S I S ; SL 

An analyser for  this grammar, wr i t ten in Floyd-Evans productions, could have the 

fo l lowing form, with Z I -  the s ta r t  point : 

Zl- 

Zb 

ZD 

Z ; 

ZDL 

7S 

I- be__  
error 

begin D 

error 

D ; 

error 

D ; S ~ D L S  

D ;D  

S ; S  

error 

D ; DL S I÷ DL S I ZDL 

begin DL S 

error 

S end ~-~ SL end 

S ; 

error 

* Zb 

* ZD 

* Z; 

ZDL 

* ZD 

, ZS 

j , Z S  

ZSL 

, Z ;  
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ZSL S ; SL end I÷ SL end 

DL SL end 

error 

Ze begin DL SL end ~ I+ B 

error 

ZB I- B-I 
error 

ZSL 

* Ze 

ZB 

f in ish 

A production has the form : 11 character l is t1  I ÷ character l i s t2  I * 12 f 

11 is the label of the production. I f  the top of the stack is the same 

as the f i r s t  character l i s t ,  i t  is replaced by the second and control is passed to 

label 12, having read a character i f  the star is present and having executed, i f  one 

is given, the semantic function f .  I f  the f i r s t  character l i s t  is not the same as 

the top of the stack, the following production is examined. The f i r s t  label, the 

replacement clause, the asterisk and the semantic function may be indiv idual ly omit- 

ted. This br ie f  description is simply meant to give some idea of the form of the 

production language. 

2.2.2. - ~ - ~ ! ~ 9 ~ _ ~ 9 ~  - 

Production languages are relat ively simple, since they have few primi- 

tives and their subject matter can be formalised. This is not true of the langua- 

ges in which are written semantic functions, which need to be more general, while 

retaining compat ib i l i tywi th the production language. A great deal of interest 

has been shown recently about this subject ([van der Poel 74] [Rain]), and the 

current trend is towards the use of special-purpose languages for the production 

of software in general, and not only compilers 

A wide variety of machine oriented languages has already been publis- 

hed, and some of the characteristics which are considered to be important by their 

authors are amongst the following : 

- Complete control of the computer and i ts  instruction set (this w i l l  usually 

mean that the language is machine-dependent) 

- Existence of high-level language constructs for the flow of control (loops, 

procedures, case . . . .  ), usually in their  simpler forms. 

Possibi l i ty to define a wide range of data structures and addressing mecha- 

nisms 
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- Constructions which could lead to less than e f f i c i e n t  object code are suppres- 

sed. 

The aim of many of these languages is to re ta in  a l l  the advantage of 

low-level programming, whi le al lowing a programming sty le which is h igh- leve l .  The 

resul t ing gain in ease of programming, speed of error correct ion and communicabi- 

l i t y  is not o f fse t  by a lack of e f f ic iency.  Indeed, in most cases, there is an im- 

provement in performance, since the programmer has a bet ter  overal l  view of his 

algorithms and can more easi ly  improve the i r  logic.  

3 - CURRENT RESEARCH - 

Several in terest ing improvements or developments of the compiler-compi- 

le r  pr inciples out l ined above are the subject of research in d i f fe ren t  laborator ies;  

some of these now ideas are already being applied to the production of usable com- 

p i lers  or programming systems. 

A f i r s t  glance at any of the projects which w i l l  be indicated provides 

a s t r i k ing  confirmation of  the close re la t ionship  there must be between language 

de f i n i t i on  methods and compiler implementation techniques. I f  we are convinced that 

compiler improvement depends on formal isat ion,  them we are soon convinced that the 

formal isat ion must occur in the language de f i n i t i on .  The formal de f i n i t i on  of a 

language should, to a great extent, indicate the implementation method to be used. 

On a t r i v i a l  l eve l ,  i f  the language is to be compiled using an LL(1) compiler com- 

p i l e r ,  i t  is a good thing to have an LL(1) grammar to s tar t  o f f  wi th.  However, the 

remark goes much deeper, in par t icu lar  i f  we wish to use more sophisticated techni- 

ques. 

Let us consider the d i f f e ren t  types of information contained in a lan- 

guage de f i n i t i on .  They may be separated in to  three categories - syntax, s ta t i c  

semantics, and dynamic semantics. Syntax is concerned with the form of the tex t ,  

and is comparatively well-understood. Stat ic semantics are the s ta t i c  constraints 

which must be imposed on th is tex t ,  fo r  example, that each use of an i d e n t i f i e r  cor- 

responds to one and only one de f i n i t i on  of the i d e n t i f i e r ,  and so on. Having achi- 

eved a moderate degree of success in the automation of syntax, research workers 

are now proposing ways of t reat ing s ta t i c  semantics in a s imi la r  manner. Of course, 

this leaves the d i f f i c u l t  part of  the problem unresolved, that being dynamic seman- 

t i cs ,  which describe the effects of the d i f fe ren t  language constructs. Dynamic 

semantics is d i f f i c u l t  because of the fact that i t  is here that we are required to 

know something about machines and the i r  operations. A more detai led discussion of 
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this topic is to be found in [Gr i f f i ths 73]. 

In c lar i fy ing the def ini t ion of stat ic semantics, methods which have 

been used include that of extension of context-free syntax methods (see, for example, 

W-grammars, chapter 2.F). The point of d i f f i cu l t y  is finding formal methods which 

are also implementable in practical machines. Chapter 4.B discusses a practical 

method of compiler-compiler which is a descendant of double grammars, and the a t t r i -  

butes of [Knuth 67] form a related and very promising method. In the author's view, 

the use of attributes to describe stat ic semantics is feasible and would constitute 

an advance in both defini t ional and implementation methods i f  i t  was adopted. 

3.1 - Extensible Languages - 

Dynamic semantics requires a descr ipt ion of operations in  terms of some 

machine, e i ther  real or abstract. In pract ice th is  means in terms of another langua- 

ge, presumably of a lower leve l .  The lower level language is always d i f f i c u l t  to 

def ine, since i f  i t  is too close to a par t i cu la r  machine, i t  is useless for  others, 

whereas i f  i t  is  too fo r  removed, i t  is unimplentable (see the discussion on imple- 

mentation languages). 

The idea behind extensible languages is to take some lower-level langua- 

ge, called the 'base language' which is supposed to be implementable and clearly 

understood, and to define the higher-level language in terms of the base language 

by means of extension mechanisms which are themselves contained in the base langua- 

ge. ALGOL68 is said to use extension techniques when i t  allows the def ini t ion of 

new modes and operators. A powerful device, which allows the creation of new synta- 

t i c  forms,as well as the possibi l i ty  of defining the meaning of phrases using these 

forms in terms of previously existing ones, is that of syntax macros. We i l l us t ra te  

the idea with an example which uses the formalism of [Schumann 70] : 

macro statement o + while Ex I do statement 1 

where type (EXl) = boolean 

means 11 : i f  Ex I then begin statement I ; got9 ' 11 en_~d 

The macro defines the 'whi le-statement'  in  terms of a condit ion and a branch state- 

ment. The formalism permits the confirmation of s ta t i c  semantics ( 'where')  as wel l  

as g iv ing the equivalence. Readers interested in  th is  subject may consult the 

proceeding of  Ip~o consecutive ACM special i n te res t  group conferences [SIGPLAN 69], 

[SIGPLAN 71]. 
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3.2 - Formal Semantics - 

Compiler writers are also encouraged by the number of efforts being 

made towards the formalisation of semantics, which should eventually lead to the 

automation of new implementation levels. One idea is to create a model machine, 

and give the effect of each construct in terms of this machine. The machine is 

often represented as a tree manipulation program. The semantics of ALGOL68 are 

defined in terms of an abstract machine, and the formal def in i t ion of PL/1 

[Lucas 71] goes further, since al l  the operations are symbolically defined. For 

the moment, neither of these definit ions is direct ly exploitable, and i t  seems 

probable that both the defini t ional and the implementation experts w i l l  need to 

make progress before these formalisms are di rect ly  useful. 

Efforts are also being made to introduce language def in i t ion on an 

axiomatic basis, by stat ic assertions. This technique is l ike that used by advo- 

cates of structured programming and program proving. An example is to be found in 

[Wirth 73]. Methods of this type require research before we w i l l  be able to make 

use of them. In part icular, the relationships between stat ic assertions and their 

equivalent programs are only just being brought to l igh t ,  and then only in the 

sense of proving equivalences between a given stat ic and a given dynamic descri- 

ption. Whether a program can be deduced from a set of assertions is considered in 

ABSYS [Foster 69], but the results are not yet satisfactory as far as compiler cons- 

truction is concerned. 

4 - CONCLUSION - 

I t  may seem misleading to talk so much about language def in i t ion methods 

when we wish to examine the state of the art in compiler-compilers, but the one is 

d i rect ly  dependent on the other. Compiler implementers have always complained that 

the language definers ignore their problems, but both sides should l isten more 

carefully to what the other has to say. 

The present situation as regards the mechanical production of compilers 

is that the classical methods, based on context-free syntax drivers, are well 

established and well understood, even though certain industrial compiler producers 

have yet to see the l ight .  Methods which take their formalisation further than 

context-free grammars are promising subjects of research (or in some cases develop- 

ment) and some time w i l l  elapse before they are applicable in the industrial arena. 

I t  seems l i ke ly  that the introduction of new implementation techniques w i l l  have 

a large influence not only on language def ini t ion tools, but also on the contents 

of languages. 
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CHAPTER 4.B. 

USING THE CDL COMPILER-COMPILER 

C. H. A. Koster 

Technical Univers i ty  of Ber l in 

Ber l in ,  Germany 

O. Introduct ion 

In th is  sequence of lectures one compiler compiler is going to be h ighl ighted by 

means of somewhat larger examples, preceded by a discussion of ideas underlying i t .  

This does not imply that th is  par t i cu la r  compiler compiler is the best avai lab le:  

even though i t  has been around for  two years now, i t  has s t i l l  not been evaluated 

s u f f i c i e n t l y  in pract ice. Nor is i t  very t yp ica l :  Other compiler compilers embody 

qui te d i f f e ren t  ideas. 

The in tent ion is to give an ins igh t  in to  the way of working with a compiler compiler 

Instead of ,  as a demonstration, carrying through a tota l  implementation of a compi- 

l e r ,  which would then of necessity be very simple, i t  was decided to f i r s t  show the 

f u l l  implementation of an i n te rp re te r - l i ke  object (a small ed i tor)  and then t reat  

in greater deta i l  some parts out of a r e a l i s t i c  compiler. In the course of 

these examples we w i l l  f ind  the opportunity to discuss some fa r ther  going questions 

(such as machine dependence and e f f i c iency ) .  
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4 B 1. Affix grammars and CDL 

The Compiler Description Language CDL is based on an equivalence between grammars 

and specific programs, viz. the corresponding analyzers° 

I t  is possible to make a two-level extension of CF grammars which has its analogue 

for the corresponding analyzers. These Af f ix  Grammars ~Koster 1971] can therefore, 

af ter  the addition of some syntactic sugar, be considered as a programming language 

with peculiar grammarlike characterist ics, which lends i t se l f  well for writ ing 

compilers in. 

1.1 C F grammar as_ ~ programming ]anguage 

Suppose we want to translate programs writ ten in some language including, among 

other objects, numbers, with the following CF syntax (written in van Wijngaarden's 

notation): 

number: digit, number; digit. GI 

I f  we want to use this rule to construct a top-to-bottom parser we will have to bring 

i t  into LL(1) form introducing an auxiliary rule to obviate backtrack: 

number: digit, number tail. 

n~bertail: digit, n~T1bez~ail; G2 

NOW we can very simply translate these syntactic rules into two procedures which 

answer "the question whether the next symbols of some input form a number, provided 

only such a procedure is also written to recognize digit. In ALGOL 68 we might write: 

p r o o  number : hoof: i~ digit then numbertail else false Ci; P2 
proo numbertail = bo,ol: if digit then numbertail else true ~; 

More abstractly, such reGognizing procedures for number and numbertail may be seen 

as real izat ion of the syntax diagrams 

~ s . t  and 

i 

D2 
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where the ovals denote invocations of  other rules (or,  a l t e rna t i ve l y ,  recognizers). 

Notice that the ordering of the a l ternat ives in numbertail is important, in d i s t i nc -  

t ion to the usual in te rpre ta t ion  of CF grammars. This comes from the fact  that  a 

procedure corresponding to some ru le is  of necessity executed de te rmin is t i ca l l y  

from l e f t  to r i gh t .  In assigning to CF grammars an in terpre ta t ion  as a program one 

must be aware of th is  d i f ference.  We w i l l ,  at a l a te r  po in t ,  show some advantages 

of th is  non-standard in terpre ta t ion  of grammars, in par t i cu la r  the fact  that  i t  

allows to include error  treatment in the syntax. 

The two boolean procedures in P2, and in general a l l  procedures rea l i z ing  the dia- 

gram D2, could be obtained from the two rules in G2 by a more or less mechanical 

process of t ranscr ip t ion .  We w i l l  ca l l  a boolean procedure obtained from a rule by 

such a t ranscr ip t ion  a predicate; under cer ta in condit ions (such as the fact  that  

the grammar must be LL(1)) these predicates serve as recognizers for  the correspond- 

ing ru les,  working by the method of  recursive descent. 

Since we are going to the trouble of recognizing number, we may j us t  as well t r y  

do something useful ,  and compute t he i r  meaning. The meaning of a number, c lea r l y ,  

is i t s  value. As a side e f fec t  of  recognizing the number we want to derive i t s  value. 

We can do so by introducing semantic actions into the syntax: 

nt~nber: digit, actionl, numbertail. 
G3 

n~nbert~l: digit, action2, numbertail; . 

where actionl performs val:=last digit read and action2 performs val:=10~val+last 

digit read, with the e f fec t  that  the value val is computed g loba l ly .  In a diagram, 

enclosing the invocations of  actions by a rectangle to d is t ingu ish them from those 

of predicates: 

This scheme is not very sat is fac tory  because i t  presupposes some environment in 

which the actions are performed, and no way to access that environment is  ava i lab le ,  

nor is i t  c lear how to define the semantic actions. We w i l l  have to extend CF 

syntax in order to remove these problems. 
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1.2. E_xtendin!I C[ grammar 

1.2.1 Affixes 

We wi l l  show, in a sequence of steps, the extension of CF grammars to the compiler 

description language CDL, stressing the motivation for each change. 

We wi l l  allow predicates to have both parameters and local variables, and extend CF 

syntax accordingly by adding a second level. Parameters and local variables wi l l  be 

indicated in the grammar by identi f iers associated with the nonterminal sjnnbols; 

we wi l l  term them Affixes. 

We wi l l  suppose d ig i t  to have one parameter which gets the value of the last d ig i t  

read. We therefore have to invoke d ig i t  with one parameter, e.g.: digit+d, using, 

for historical reasons, the infix-plus rather than parentheses. The corresponding 

predicate is supposed to have the following properties: 

1) I f  the next symbol of the input is a d ig i t ,  then i t  returns the value true 

after having assigned to i ts parameter the value of that d ig i t  and advanced 

the input by one symbol. 

2) I f  the next symbol of the input is not a d ig i t ,  then i t  returns the value 

false. (The value of the parameter is irrelevant.) 

The rule for number uses a parameter val to compute the value in, and to pass that 

value to the outside. We wi l l  indicate this in the le f t  hand side of the rule: 

number+val: 
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Parameter correspondence is to be by name or by reference. 

The rule for n ~ e r t a i l  needs both a parameter val and a local variable d, the la t ter  

to hold the values of individual digi ts.  We wi l l  indicate this in the le f t  hand side 

of the rule, using an in f i x  minus as separator: 

numbertail+val-d: 

Employing these extensions, we can now write: 

number~val: digit+val, numbertail+val. 

numbertail+val-d: digit+d, action2, nt~bertail+val; . G4 

Here action2 performs va l : : lO~va l+d .  The value of the number is now computed local ly.  

A corresponding piece of program in ALGOL 68 might be: 

proc number = (re I in__~t val) booZ: 

if digit(val) then, numbertail(val) else false ~; 

~roc numbertail = (fez int val) bool: 

in t d; P4 

if digit (d) 

then val := lORval+d; numbertail(val) 

else true 

end 

Thinking of affixes as local variables and parameters is i n tu i t i ve l y  quite satis- 

factory; a more precise and formal defini t ion can be found in [Koster 1971A] . 

1.2.2 Primitive actions and predicates 

The introduction of action2 is s t i l l  unsatisfactory: we want to be able to define 

such primitives in a way which allows harmonious insertion in a predicate. 

In P4 we have used a very simple device: textual substitution in the framework of 

the predicate. This smacks of macros: A macro is a rule for replacing each piece of 

text which satisfies a given pattern by another text, the macro body., possibly after 

replacing in that text a number of parameters. We w i l l  introduce a simple macro 

system. Macros should be invoked in exactly the same way as predicates, e.g., 

one more digit+val+d 

where the pattern has 2 parameters. 

Introducing some syntactic sugar, we can define action2 as 

'macro"action' one more d ig i t  = ' I ' = = I 0 , ' I '  + '2  t . 

Here ' I '  stands for the f i r s t  parameter, etc. The expansion of the macro invocation 

one more digit+val+d is therefore val==10~val+d, which in the languages ALGOL 60, 

ALGOL W and ALGOL 68 happens to have one same meaning. This Macro def ini t ion is 
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therefore useful in conjunction with predicates written in any of those 3 languages, 

but not with predicates in, e.g., 360 Assembler. The body of a macro is not inherent- 

ly meaningful, but becomes so only by association with transcription of the rules to 

a specific language. By this macro def ini t ion we have introduced into our grammar 

arithmetic capabil i t ies by borrowing them from the target language of the compiler 

compiler. Macros provide a limited extensional f a c i l i t y ,  with, as we shall see, 

profound consequences. 

Thus we can give a new approximation to the def ini t ion of number: 

'macro''action' one more digit : 'i'::'i'~I0+'2'. 

number val: digit+val, numbertail+val. G5 

numbertail+va!-d: 

digit+d, one more digit+val+d, numbertail+val; . 

with P4 as a transcription into ALGOL 68. 

Similarly, we can introduce primitive predicates by macros, l ike: 

'maero~r'predieate ' less = 'I'<'2', 

equal : 'i':'2', 

lseq = 'I'~'2'. 

allowing us e.g. to let the effect of a predicate depend upon some values. 

1.2.3. Actions 

The concepts of primitive predicates and primitive actions lead to the idea of 

having, besides predicates, also non-primitive actions. In tu i t i ve ly ,  an action is a 

rule transcribed to a proc void instead of to a ~roc bool. We w i l l  visualize actions 

as predicates whose value is uninteresting because i t  is always true. An example is 

n ~ e r t ~ d l ,  whose transcription may or may not do some further parsing, but always 

returns true. We w i l l  indicate by an action-specification that we regard this rule 

as defining an action: 

'action' numbertail. 

number+val: digit+val, numbertail+val. G6 

numbert ail+val-d: 

digit+d, one more digit+val+d, numbertail+val; . 

with as a transcription: 

proc number = (re_~ int val) bool: 

i_~ digit (val ) 

then numbertaiICval); true 

else ~alse 

Zt: 
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pr¢o n~nbertail = (re~ in t val) void: 

int d; 

if digit (d) 

then val:=lO~val+d; nu3nbertail (d) P6 

else skip, 

Z£ 
end 

We wi l l  now attempt to define d ig i t .  We presuppose an environment containing an in_~t 
buffer ohar holding, at any moment, the code of the f i r s t  character of the input 

that has not yet been consumed, and an action nextchar reading the code of the next 

character of the input into that buffer. We suppose the characters are encoded as 

small integers, and in particular the digits zero to nine have the codes 100 to 109. 

We can then write: 

'macro' 'predicate' is a digit = '1'~ IOOA '1'~ 109. 

'macro' 'action' convert to dig : '2' :: '1' - 100. 67 

digit d: is a digit+char, convert to dig+char+d, nextchar. 

with as an ALGOL 68 transcription: 

~roo digit : (~ int d) hoof: 

if ohar >~ I00/~ ohar <~ 109 

then d := char - 100; nextchar; true P7 

el, s,e false 

ZC 

1.2.4 Repetition 

The example G6 is s t i l l  unrealist ic in that the number is recognized recursively. 

A number is not inherently a recursive object: i t  consists merely of a sequence of 

digi ts,  and any systems programmer would compute i ts  value in a loop, not by re- 

cursion. 

We w i l l  allow labels and jumps within a rule. Now don't start laughing or cursing. 

I know the l i terature on structured programming just as well as you do: hear me out. 

We w i l l  use label ident i f iers and write the jump to the label next: as :next. A jump 

can only occur as the last member of an alternative. Only jumps to "visible" labels 

are allowed where a label is v is ib le from a jump only i f ,  in the syntax diagram, 

there is a path directed from the labelled point to the jump. In this fashion, for- 

ward jumps and al l  manner of other dangerous phenomena are forbidden: the jump is 

tamed. The equivalent syntax diagram are, of course, ordered trees with additional 

arcs from descendants to ancestors: 
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In a l inear notation, these diagrams read: 

A :: 

rep: (B; 

C, :rep). 

generating C~B, and 

A: B, rest: D; 

C, :rest. 

which is forbidden, and has to be written as 

A : B,D; C,D. 

or A : Q,D. 

Q : B;C. 

Using this notation, we can write: 

n1~abert ail+val-d: 

) allowed 

forbidden 
J 

rest: digit+d, one more digit+val+d, :rest; . 

with a transcription 

~roo numbertail = (ref int val) void: 

keEin int d; 

rest: if digit (d) 

then val := lO~val+d; gotp, rest 

else skip 

end 

which should put the hearts of the efficiency fiends at rest. 

D8 

D9 

PIO 

G8 

G9 

G9 

GIO 

1.2.5 Grou~ing 

in order for the grammar GI to be backtrack free, we had to rewrite in into G2, 

introducing an auxi l iary rule. This is something of a nuisance, al l  the more so 

because what we want to achieve is so simple: having found one d ig i t ,  we take i t  

into account, and then expect either further digits, or no further digits. 
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We w i l l  al low the grouping of a l ternat ives by means of parentheses: 

number+val-d: 

digit+val, 

rep: (digit+d, one more digit+val+d, :rep;). 

with a transcription. 

proc number = {~int val) bool: 

begin in__~td; 

if digit(val) 

then 

rep: i~digit(d) 

then val := lO~val+d; goto rep 

else true 

else ya.18e 

end 

GI1 

Pll  

1.2.6 Data txpes 

In turn ing CF grammars in to  a fu l l - f l edged  programming language we have to choose 

what data types we w i l l  al low. We must choose them such that they are p r im i t i ve  for  

every present day computer and su i tab le  for  expressing the data usual ly  maniputated 

by compilers. I t  is  h igh ly  important that  they should not be so elaborate as to re- 

quire large run-time support. 

The philosophy adopted is to have as basic data types only the machine-word and the 

l inear  array, of machine words of f ixed length. More fancy data structures are to be 

expressed a lgor i thmica l l y  in terms of those basic data types. More about th is  in 

4B2,3. 

A var iable to hold a machine word is termed a pointer .  As an example, a one-word 

buf fer  can be declared 

'pointer' buffer. 

In principle such a word is uninterpreted, and any interpretation as, e.g., an inte- 

ger or even an address, is at the discretion and the risk of the compiler writer by 

his choice of macros. CDL provides only for the declaration f ac i l i t y  and the para- 

meter passing (by name, or by reference, which are equivalent in this case) and gives 

no means of looking at the value of a word. 

A linear array of machine words is termed a l i s t .  As an example, an input buffer of 

200 words can be declared by 

'list' ~nbuf (1:200), 
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CDL gives only the means to declare the l i s t .  A means for accessing i t  has to be pro- 

vided exp l i c i t l y ,  e.g. for ALGOL W 

'macro"action' get = '3' := '1' ('2'), 

put = '1' ('2') := '3'. 

allowing, e.g., get+~buf+p+nextsym 

Pointers can of course also be introduced by macros. As an example, one should of 

course never mention one constant as upper bound of a l i s t  whose length may have to 

be varied, but give a manifest constant (named constant), e.g.: 

'macro"pointer' maxbuf:200. 

'list' inbuf (l:maxbuf). 

Final ly,  in spite of a l l  hope to the contrary, i t  turns out that a compiler spends 

i ts time mainly doing arithmetic, which forces us to allow integral constants to be 

denoted direct ly:  an unsigned sequence of digi ts can be used as actual parameter. 

As an example set to+777 passes a word with the value 777 on to the predicate set to. 

1.3 A f f i x  grammars 

A contextfree grammar extended with aff ixes, primitive predicates and primitive 

actions is called an Af f ix  grammar [Koster 1971A] , a two-level grammar not unlike 

van Wijngaarden grammar (see 2F). A f f i x  grammars are also equivalent to semi- Thue 

systems, and i t  is a simple exercise to write down an a f f i x  grammar generating, e.g., 

only the prime numbers. In dist inct ion to van Wijngaarden grammar a number of import- 

ant practical questions are solvable. In part icular, for an affix-grammar that satis- 

fies a number of lenient and rea l is t ic  restr ict ions, the parsing-problem is solvable. 

Af f ix  grammars are, in a sense, a more natural extension of CF grammar than context- 

sensitive grammar is, because pract ical ly al l  techniques for parsing or for "improv- 

ing" the grammar which are applicable to CF grammars can be applied with s l ight  

modification to a f f i x  grammars. 

1.4 From language def ini t ion to C om~!ler Description 

The present knowledge of compiler compiler techniques should have a profound in- 

fluence on the def ini t ion of future programming languages. A very successful 

language l ike FORTRAN was standardized and precisely defined only after i t  was in 

widespread use. for a number of years. The, in Europe, moderately successful language 

ALGOL 60 was only implemented and given to the users after a precise def in i t ion,  

and this course of events was in te l lec tua l ly  much more satisfactory. Since then, the 

history of ALGOL 68 has shown that for such an intr icate language a highly precise 

def ini t ion is necessary but not suf f ic ient :  both the d i f f i cu l t y  of implementation 
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(which was foreseen) and the long time lag in the arrival of implementations (which 

was not foreseen) have turned much i n i t i a l  enthusiasm of some people to frustration 

and have enforced the, often unfounded, distaste of others. The history of PASCAL has 

shown that a language for which a good implementation is available immediately, can 

be a success, even i f  that implementation differs from the (none too precise) defin- 

i t ion of the language and is not available on IBM computers. 

The lesson to be learned from these observations is that a language definit ion must 

be precise and must be constructive in the sense that i t  must be possible to directly 

derive from the definit ion a correct implementation on any computer. A language 

definit ion must be of use to the user and the implementor as well as to the language 

theorist. 

The syntactic and semantic techniques employed in a language definit ion should there- 

fore consist of a description of a machine-independent compiler or interpreter, given 

in a suff ic ient ly well-defined formal system to suit the language theorist, accompan- 

ied by humanly understandable pragmatics systematically giving motivation, explanation 

and consequences of the various language elements. 

The compiler-maker's task then consists of turning this description into a correct, 

ef f ic ient,  helpful and well-documented implementation on a specific machine. In this 

task he should have a set of mechanical tools at his disposal. 

I t  is in this sp i r i t  that the compiler description language has been designed. 

4 B 2. The CDL ComPiler Compiler 

In this chapter, the problem of imple~nting CDL, and some properties of the existing 

compiler compiler, are discussed, as well as some techniques in making use of i t .  

2.1 Extensional mechanisms 

Indicating, in the usual fashion, a compiler written in the implementation language I 

translating from the source language S to the target language T by 

I 

we mean ~ a CDL compiler c~p i le r  some compiler 

t CDL - ~  T I 

where M is some direct ly executable language, e.g. FORTRAN, ALGOL or the machine code 
of our machine. 
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This compiler compiler can translate a CDL program correctly only i f  the bodies of 

macros occurring in that CDL program are written in T. To make this dependence 

exp l ic i t  we w i l l  indicate a CDL program which is a compiler from A to B 

and has macrobodies in T , by 

~CDL_ ~ ..... 
allowing us to produce: 

T j ~, B A ~ B 

I_,,M 

In this way, we have made the f i r s t  extensional mechanism exp l ic i t :  the borrowing of 

concepts from some target language by means of macros. 

This is s t i l l  not al l  of the picture: the product of the compiler compiler, a piece 

of text written in T, need not be intended to run on the bare T machine, 

but w i l l  run in some environment, containing e.g. the interface with the operating 

system. Now i t  is clearly not within the scope of CDL to define that interface too, 

we w i l l  have to be content with assuming i ts  existence and knowing i ts properties. 

This is a spur to keep the interface as small as possible, containing just  the prim- 

i t ives necessary for the communication of our compiler with the system, e.g.: 

'external''aetion' resym, prsym, pusym~ exit. 

where resym allows input one character at a time, assigning the next character of 

input to i ts  parameter, prsymoutputs one character to a p r i n t f i l e ,  p~J~sym outputs 

one character to the f i l e  that should hold the code generated, and exit  aborts the 

program and returns control to the operating system. I t  is the responsibi l i ty of the 

compiler wri ter that such procedures are linked and loaded together with the program. 

The extensional mechanisms, especially the macro system, give CDL its power, and the 

possibi l i ty  to write compilers in a machine-independent fashion and s t i l l  obtain 

e f f ic ient  results on any machine. Machine dependence is a question of style, but 

the necessary tools are provided. Some examples of their use can be found in 4 B 2.3, 

3, 4 and 5. 
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2.2 Realizing the CDL machine 

There are two versions of the CDL compiler compiler in current use: a h ig.h-level 

version (which translates to a high level language l ike ALGOL 60 or ALGOL W, or even 

PL/1, by mapping CDL constructs into corresponding constructs in the target language) 

and a low-level version (which is intended to translate to various assemblers, and 

has been used to generate code for a 360/67 and a DEC PDP 10). 

Since the possib i l i ty  to map CDL into a high level language is so obvious as to be 

unenlightening, we wi l l  describe in this section a simple abstract machine, suitable 

for executing CDL programs, and easily mappable onto ar~ existing computer. 

We assume the underlying computer to have one l inear homogenous addressable store M, 

one index register pwhich w i l l  serve as a stack pointer, a condition register C 

capable of holding at least one b i t ,  a subroutine jump instruction, a suff ic ient 

number of further registers to perform arithmetic, and a f a c i l i t y  for s~bol ic  

addressing of instructions and data words, such as present in practical ly al l  assemb- 

lers. 

On any computer satisfying these assumptions, CDL can be realized easily. 

2.2.1 Some instructions 

Consider the def in i t ion of the following CDL predicate, where pred, predl and pred2 

are predicates and act is an action. 

pred+pl+p2-11: 

predl+pl+ll, act+pl+p2; 

pred2. 

We want to translate this piece of text into a sequence of instructions for a suitable 

abstract machine. This machine w i l l  have one stack. 

We w i l l  f i r s t  define and explain some instructions of an abstract machine for CDL, 

and then show a translation of the piece of text into a sequence of those instructions. 

Instruction Meaning 

i )  procdeclare+label label: 
I t  is assumed upon entry that the address of al l  parameters are on the stack, 

with the return address~ton top. 

2) loadzero M[p]:--'0% p:~+1 
Used to reserve space for one local variable and i n i t i a l i z e  i t  to zero. 

3) loadpar+offset M[p] : =M[p-offset] ; p:--p+1 
The address of some parameter is copied on top of the stack. 

4) loadloo+offset M[p~:--p-offset; p:---p+1 
The address of some local variable is copied on top of the stack. 
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5) call+label M[p]:= instructioncounter+1; p:--p÷1; 
ins truct ioncounter : = labe l 

A stacking subroutine ca l l  to the label .  

6) negjw~p+label if7 C then instructionoounter:=label 

A conditional jump inversely dependent on C. 

7) lab declare+number L number: 

Putt ing a numbered label .  

8) retua~n+npar+nloc p :--p-npar-n loc-1; 
instructioncounter :--M[p+npar] 

On the stack the room for npar parameters, nloo locals and 1 l ink is freed, after 

which a return is made u t i l i z i ng  the l ink (which is s t i l l  on M, albeit possibly 

beyond p). In this way, each procedure can remove i ts  own debris from the stack. 

9) set true C .=true 

I0) set false C :=fals# 

The set t ing of  the condit ion C. 

Using only 8 of these 10 ins t ruc t ions ,  we can make our t rans la t ion  of pred in to a 

procedure p~d. At the moment of entry in to  pred we assume the fo l lowing stack st ruc-  

ture: p points to the f i r s t  free place in the stack. On top of the stack we f ind  the 

l i n k  ~ with underneath i t  the addresses of the two parameters pl and p2. 

a ) proadeclare+pred 

b) loadzero 

C) load par+4 

d) load lot+3 

e) cal l +predl 

f )  negjump+1 ] 
g) load par+4 

h) load par+4 

i) call+act 

j) return+2+1 l 

J k) lab declare+l 

l ) call+pred2 

m) return+2+1 ] 

, i  
p2 

pred+pl+p2 

-11: 

predl+pl+ll 

act+pl+p2 

pred2 
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After l ine  b the stack picture is 

I 
After  l ine  c ~ i ~ _  ~ <----/~ 

i 
/ 

After l i n e d  
(note that loading addresses on the stack 
influences the of fset  of the parameters; 
in t ranslat ing we must keep track of those changes). 

After l ine e 
(note that the call of predl has upon return 
le f t  no debris on the stack) 

In l ine j ,  the stack pointer is f i r s t  lowered 
unt i l  the s i tuat ion pictured alongside is reached, 
and then a return jump is made via M[p+~]. 

# ~ ! 

z} ,i 

V/ ' / / / / / / / / / , l  

J 
!,,, #P' ] 

Observe that we at no place had to set the condition C e x p l i c i t l y :  condition sett ing 

is done by tests in macros, and for  the rest is p rac t i ca l l y  always done correct ly  

as a side ef fect  of predicates cal led. 

2.2.2 Parametrization 

Since i t  is parametrization which distinguishes a f f i x  grammars most from CF grammars, 

we w i l l  look at i t  more closely.  

We must dist inguish between three types of ca l ls  that can be parametrized: 

. rules 

_ system macros 

- user macros. 

By sYstem macros we mean the macros corresponding to the instruct ions of the abstract 

CDL machine, by user macros we mean the macros par t icu lar  to some CDL text .  We w i l l  

see that a l l  three might have to be parametrized by d i f fe ren t  mechanisms. 

2.2.2.1 Parametrization of rules 

In the model given here (other models are certainly conceivable) a rule corresponds 
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to a closed subroutine, called with addresses of the actual parameters. 

On machines with a palatable s tack- fac i l i t i y ,  the parameters and return address can 

be passed via the stack. On machines with a 360-1ike architecture (many registers 

and a fast multiple-store instruction) i t  is faster to pass them in registers and 

store them on top of the stack en bloc upon procedure entry. Removal from the stack 

is in both cases achieved by a subtraction from the stack pointer without reloading 

the registers: the cal l ing environment is either unaffected or on the stack anyway, 

so i t  need not be restored exp l i c i t l y .  

2,2.2.2 P arametrization of sYstem macros 

For parametrizing macros in the low-level version, simple textual substitution of the 

ident i f iers of actual parameter gives some d i f f i cu l t y ,  since in most assemblers there 

is no symbolic addressing mechanism for globals, locals and formal parameters to fa l l  

back on. The system w i l l  have to invoke di f ferent macros to, e.g., load an address 

on top of the stack, depending on the class of actual parameter, so that for each of 

them text substitution w i l l  work. 

Apart from macros corresponding to the instructions loadloo and loadpar already 

mentioned, they are: 

11) load~lob+idf M~p]:=addrGCdf; p:=p+l 

To load the address of a global variable, the address of a word labelled Gidf 

in a data segment is loaded on top of the stack. 

12) loadeons+n M~p~:=a~ Cn; p:--p+l 

To load the address of a constant, the address of a word in i t ia l i zed  to n and 

labelled Cn in a data segment is loaded in top of the stack. 

13) loadlist+idf M[p]:= addr Gidf; p:--p+1 

To load the address of a l i s t ,  the address of the f i r s t  word of part of a 

data segment, reserved for that l i s t ,  is loaded on top of the stack. 

By choosing the appropriate macro and substituting for i ts  parameter the appropriate 

piece of text (an ident i f ie r  in some cases, an offset in others), the system macros 

can use textual substitution for parametrization. 

2.2.2.3 Parametrization of user macros 

For a user macro l ike, e.g., make to perform the assignment, whose body can be ex- 

pressed so concisely in ALGOL as '1'=='2', we get into trouble when attempting to use 

textual substitution, e.g. (for some hypothetical assembler-like target language) 

'macro''action' make = 

fetch acc, 'i' 

store acc, '2'. 
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The trouble is that for each of the various types of parameters mentioned, we would 

have to substitute different pieces of text, e.g,, for a bound parameter we would 

have to supp!y something l ike M[M[p-offset]] , indirectly addressing via the stack. 

I f  the architecture of the target machine is f lexible and systematic enough to allow 

this kind of address calculation with every type of instruction, then there is no 

problem, but an important machine l ike the 360 is def ini tely deficient in these re- 

spects. 

Three methods of parametrization for user macros, in order of decreasing preferabil- 

i t y ,  are 

a) by tex t substitution. Needs a machine with well designed indirect addressing, 

l ike the DEC PDP 10. 

b) by index registers, passing the addresses of a l l  parameters in corresponding 

registers. Needs a machine with a suff icient number of registers that can also 

serve as index registers, l ike the 360. 

c) by stac k , passing the parameters on top of the stack. A slow but secure method 

when everything else fa i ls .  

I t  is clearly important that user macros be re lat ively large units of action, for 

the following reasons: 

a) parametrization by registers or by stack gives,for small macros, a relat ively 

large overhead 

b) small units of action lead to large interdependencies between actions, where 

the information is unnecessarily stored from registers at the end of one unit and 

restored at the beginning of the next. 

c) The larger the macro, the better the chances to apply local optimizations and 

shortcuts in i t .  

2.2.2.4 Suggested ameliorations 

The previous discussion shows that i t  might be helpful to have a more powerful 

macro mechanism,where, depending on the type of parameters, different macro bodies 

can be chosen. In this way, unnecessary indirections can be weeded out, which wi l l  

lead to an appreciable condensation of the code generated. 

Furthermore, i t  is clearly advantageous to introduce a distinction between para- 

meters called by address and parameters called by value, so that, e.g., a horror 

l ike ~e+3+4 
is prevented, which is pedantically correct i f  the doctrine is accepted that a l l  

parameters are passed by address. 

A revision of CDL is being undertaken in which this and other matters wi l l  be 

ameliorated. 
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2.3 Data structures and Data access 

In CDL only two types of data are handled (the word and the l i near  array of  words) 

which, at f i r s t  s igh t ,  seems to be a shocking lack of  expressional power, and in 

contrast to tendencies, even in systems implementation languages intended to run in 

an essent ia l l y  empty environment, to provide fo r  ever bet ter  structured and more 

helpful  data structures.  

CDL allows the formulat ion of  algorithms in such a way that  they are h igh ly  machine- 

independent and can be ported eas i ly .  I f  we can define data structures by means of 

algori thms, then the i r  p o r t a b i l i t y  is assured by the same mechanism. 

From the point  of view of CDL, a data s t ructure is an access d i s c i p l i ne ,  a set of  

cooperating access algori thms, providing access to a p r im i t i ve l y  structured co l lec-  

t ion  of  data in an order ly  fashion. Thus, a stack consists of  a l i nea r  array of  

words and a stack po in ter ,  accessible (a f te r  i n i t i a l i z a t i o n )  through two access algo- 

rithms stack and unstack and in no way else. 

The access algorithms provide a cleancut in ter face,  independent of  whether they are 

made to correspond to some f a c i l i t i e s  supplied by the run time environment or 

whether they are broken down labor ious ly  in terms of smaller and smaller algori thms, 

e.g. ,  in port ing a compiler which uses a stack one can choose between simulat ing 

that  stack or making use of a stack f a c i l i t y  already present. I f  a compiler is ported 

which has say a characterwise I /0  in ter face,  then one can i n i t i a l l y  u t i l i z e  th is  

in ter face,  and la te r  on speed up the compiler by taking a more complicated level of  

in ter face,  and program the necessary algorithms in Assembler. 

As an example of the philosophy of providing data access algorithms instead of data 

st ructures,  consider the fo l lowing.  

In some compiler we bu i ld ,  for  each i d e n t i f i e r ,  a chain of def in ing occurrences, 

s ta t ing in which blocks i t  has been defined and with what types. 

We need something l i ke :  

mod~ defohain = struct (int bnmb, 

type type, 

re~defahain link). 

In CDL we might wr i te~hoos ing some f ixed maximal size to th is  table,  and l e t t i ng  

pdef point to the f i r s t  free place): 

'm~cro"poimter' max def=1000. 

'pointer' pdef. 

'list' defch (l:maxdef). 

'macro"action' get bnmb='2' :=defchOl'], put bnmb=defch~l'] :='2', 

get tsqpe='2' : = d e f c h [ ' ! ' + l ] ,  put type=defch~l'+l] : = ' 2 ' ,  

get link:'2' : =defch~l'+2] ,put link:defch~l'+2~ :='2'. 

'macro"pointer' def element size=3. 
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Assuming now that with every ident i f ier  a chain is associated whose head is held by a 

specific pointer ( i n i t i a l l y  zero), we can append a new cell b,t to the front of the 

chain pointed at by p by: 

append def+b+t+p-l: 

make+l+p, make+p+pdef, add+pdef+def element size+pdef, 

(less+max def+pdef, report def full and quit; 

put bnmb+p+b, put type+p+t, put link+p+l). 

The algorithm ensures that, i f  we run out of space, this is signalled in some orderly 

fashion. Notice that i t  works for any value of max de£ and def element size, provided 

we do not forget to i n i t i a l i ze  this administration at the start of the program, by 

prepare def: ~e+pdef+l. 

Now suppose we want to pack the type and the block number together into one word. The 

only changes needed are suitable redefinitions of get bnmb, put brm~, get type and 

put type, as well as 

'macro''pointer' def element size : 2. 

This kind of memory economy does not bring much gain in the design and test phases of 

a compiler, or in porting i t ,  but once a compiler is running correctly i t  can be 

adapted without endangering i ts  correctness. 

The advantages of making use of data access algorithms instead of data structures 

can be summed up as follows: 

a) no runtime s~stem. Having such data-structures as stacks, records, queues and 

f i les  would ask for a f a i r l y  large runtime memory management system, which would 

lessen the portabi l i ty of compilers written in CDL. 

b) machine independence. By a judicious use of the technique, the question of machine- 

dependence of data representations is shifted to the man who adapts a portable 

compiler to his machine, and who therefore can be supposed to have the intimate 

knowledge and the patience necessary to turn a correct but academic compiler into 

one suitable for production purposes. 

c) structured programming. The benefits of structured programming (and, in a wider 

sense, software engineering) are until now essentially confined to algorithms. To 

those algorithms various methodologies for design and proof can be applied much 

more easily than to data structures. 

2.4 The CDL compiler compiler as a tool 

In spite of i ts  syntactical background, CDL is more l ike an implementation language 

than l ike the usual syntax-driven compiler generating system, because i t  provides a 

technique to describe, in a homogenous fashion, not only the parsing part of the 
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compiler, but the fu l l  table administration and generation of code as well. In imple- 

menting a major "language, this is at least one third of the work (the other two 

thirds being taken up by design and implementation of the run-time system, run-time 

environment and documentation), whereas parsing is something l ike 10 percent of the 

work. 

In porting a compiler, these proportions stay more or less the same, but the total 

amount of work is much less. 

In this section, we w i l l  go into three aspects of using the CDL compiler compiler 

as a tool. Other aspects w i l l  have to come from the examples following i t :  the proof 

of the pudding is in the eating. 

2.4.1 High-level and low-level version 

I t  is useful to have access to two versions of the compiler compiler, a high-level 

version, generating e.g. an ALGOL 60 program, and a low-level version, generating a 

program in Assembler. 

We can then develop and debug compilers using ALGOL 60 for the macros, and run the 

resulting program in the knowledge that i t  w i l l  not collapse in a mysterious fashion, 

as machine-code programs are wont to do, but that al l  stat ic and dynamic debugging 

aids plus the inherent security of the high level language are at our disposal. We 

can then i f  necessary try an improvement by patching the ALGOL text, only recompiling 

the CDL program by the time we are sure of what has to be done. 

For production purposes i t  is of course intolerable to put a compiler f i r s t  through 

the ALGOL compiler before running i t ,  and also use of ALGOL may lead to unnecessary 

overhead. Once we dispose of a correct compiler we can rewrite the macros in Assemb- 

ler and then use the low-level version of the compiler compiler to generate an equiv- 

alent assembler program, which we need never look at: assembly language is not f i t  

for human eyes. 

The same considerations hold in porting a compiler: i t  is advantageous to f i r s t  get 

a high-level language version running, and only then spend a thought on efficiency. 

2.4.2 S~n.~ctic debugging aids 

All versions of the compiler compiler have a number of bu i l t - in  debugging aids. The 

most interesting one of them consists of a collection of error messages concerning 

the syntactic structure of the program. 

Consider the following rule, where al l  ident i f iers denote predicates: 

p: q; d. 

q: a,b; c. 

Under the assumption that the grammar is LL(1), the input for which p should deliver 

true is o/~U~Ud; for any other input i t  should deliver false. Now consider the equiv- 

alent syntax diagram 
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and imagine i ts realization as a set of procedures. Suppose the input contains ad, 

so a returns true but b returns false so q returns false; next d is tr ied and (since 

the input has not been repositioned) returns true: the input is accepted even though 

i t  should not. 

The point is that, upon finding that a was there and b was not, the side effect of a 

had to be undone. In general, whenever an alternative returns false, i t  should have 

had no side effects. Since i t  is obviously impossible to undo al l  side effects (e.g., 

those ofpz~n~ only one other way remains: once an alternative has had a side effect, 

i t  should not be allowed to return false any more. 

The compiler compiler keeps track of side effects, ~nder the assumption that a flag 

never has a side effect, and a predicate or action always has a side effect. When- 

ever in an alternative after some side effect has been noticed a test follows (be i t  

a predicate or a flag) the warning 

backtrack? 

appears, e.g., in our example: 
q: a,b; 

backtrack? C. 

meaning that, when b is false, either a must be undone, or the missing b must be 

signalled, thus: 

q: a, (b; si~almissingb); c. 

where we assume signal~Lissing b to be an action. 

Taking an example from a programming language, which allows declarers longnint .... and 

lon~ n real for n~O, we might have: 

declarer: int symbol; 

real symbol; 

long symbol, declarer. 

We are promptly told that declarer may cause backtrack, and are forced to write 



387 

declarer: int symbol; 

real symbol; 

long symbol, 

(declarer; 

report declarer missing). 

The resulting grammar is robust against input errors since we have extended i t  to 

describe also a l l  incorrect input. Notice the important use we are making here of the 

ordering of alternatives ! 

Another warning message is given when a predicate never returns false, which is an 

invi tat ion to scrutinize i t  and possibly to specify i t  as an action. 

In this way, our syntax for number needs a specification 'action' nu~ert~Ltl., which 

also rids us of a backtrack warning. 

Two further warning messages make the system complete: 

They warn when any other than the last alternative of a rule always returns true 

(which would make the remaining alternatives superfluous) or when an action, consider- 

ed as a predicate, could return false. 

By this system of warnings, the most insidious structural errors in the grammar are 

exposed, and ways of correcting them suggested. 

2.4.3 Efficiency of the resulting compiler 

A compiler obtained with the help of the CDL compiler compiler is, of course, longer 

and slower than one obtained by clever assembler programming, but i t  is much more 

l ike ly  to be bug free. Some overhead in space and time is paid. As usual one should 

distinguish between distributed and localized overhead. The overhead in using CDL is 

essentially distributed al l  over the program, and CDL does not contain any costly 

features, nor are there aspects to a compiler badly expressible in CDL. 

Once a low-level version of the compiler is running correctly, i f  i ts  speed and size 

compare badly to other compilers one can tune i t  in various ways. Mostly, this tuning 

w i l l  be unnecessary because the inherent simpl ici ty of CDL (simple procedure mechan- 

ism and parameter passing, etc.) means that a straightforward implementation w i l l  be 

satisfactory. Tuning should encompass only those parts of the compiler where most 

time is spent, and should essentially entail a better choice of algorithm rather 

than piecemeal shortcuts and optimizations, choosing, e.g., a hashed symbol table 

instead of a l inear one, etc. 

In order to reduce distributed overhead, the CDL system w i l l  include in future two 

optimizations: 

a) Various transformations w i l l  be applied to the CDL text to reduce the physical 

size of the corresponding program and consequently raise i ts  speed. 

b) A more sophisticated macro system w i l l  allow local optimization of the code 

generated. 
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Some research is also going on as regards models for CDL on machines with different 

architectures, in particular microprogrammed machines. 

2.4.4 Conclusion 

I t  should be obvious that the technical problems of size and speed can be overcome, 

making implementation languages l ike CDL not only equal but even superior to assembly 

languages in al l  aspects of the writing of large system programs l ike compilers. 

The next step is for compiler makers to start concentrating on the problems of design 

of abstract machines for realizing high level languages, relying on the use of soft- 

ware writing tools to perform the more menial tasks. 
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4 B 3 Example : A simple Editor 

Our f i rs t  example will be the design in full of a simple interpreter-like 

object: an editor. While not being a compiler in the str ict  sense, i t  displays some 

important properties of compilers (some syntactic structure to the input; table up- 

keep by semantic actions) while not necessitating the treatment of code generation 

techniques. 

This example is intended to bring out another property of CDL which is essential for 

implementation languages: i t  lends i tse l f  well as a vehicle for structured program- 

ming. In the course of teaching CDL [Koster, 1974] and ALEPH, a variant of CDL 

[Grune, 1973] , to students i t  was gradually realized that CDL has a tendency to 

enforce good programming habits. 

The suitabil ity of CDL for structured programming derives from the following propert- 

ies: 

- The basic programming construct,  the ru le ,  possesses a control f low qraph which is 

a tree with addi t ional  arcs from terminal nodes back to t he i r  ancestors. Any node 

of the tree may be decomposed in the same way. This encourages top-down-programm- 

ing, and ensures that  ind iv idua l  rules remain short and uncomplicated. 

- The control structures are very simple, al lowing the shortest possible notat ion 

of  condi t ional  and return. Also the use of jumps and labels ,  wi th the r es t r i c t i on  

mentioned, is  jus t  an unusual notat ion for  the repe t i t ion  and in no way d is tor ts  

program structure.  

- Al l  objects defined by rules and a l l  macros are named, and there is no upper l i m i t  

to the length of such i d e n t i f i e r s .  The programmer has to name even the simplest 

operations. This fac t  in conjunction wi th the low degree of complexity of  each 

ind iv idua l  object seduces even the more stupid programmers to choose helpful  

mnemonic names. 

- The overal l  s imp l i c i t y  of the language helps to prevent t r i cky  programming. In 

pa r t i cu la r  the u t te r  s imp l i c i t y  of the data structures encourages the programmer 

to th ink in terms of  algori thms, inc luding data access algorithms. 

CDL helps in wr i t i ng  programs by a process of stepwise refinement, top-down programm- 

ing with some t imely in ter ludes of bottom-up programming to get the feet back on 

earth. In unfolding th i s  las t  example we w i l l  t r y  to demonstrate the naturalness of 

th is  "yoyo-programming" (a term coined at the Trondheim Working Conference on Machine 

Oriented High Level Languages in 1973). 
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3.1 Specification of a simple editor 

We w i l l  construct an editor which allows to establish, update and display a document 

consisting of (not necessarily consecutively) numbered lines, in the order of in- 

creasing l ine number. I n i t i a l l y  the document consists of no lines at a l l .  I t  can be 

manipulated by the following commands: 

I. n : e n t r y  ~) 

where: n is some number, the l ine number, 

: serves to indicate the beginning of an entry, and 

entry is some sequence of characters not containing the ~, and 

# is the end of l ine character. 
The effect of such a command is the following: 
A) I f  a l ine with l ine number n was not yet present in the document, then the 

entry is inserted with l ine number n. 

B) I f  a l ine with l ine number n was already present, then that l ine is re- 

placed by the entry with l ine number n. 

This allows both insertion and change in a very simple fashion. 

I I .  d n 

where: d is the le t ter  d, 

n is some number, and 

is the end of l ine character. 

The effect of this command is: 

A) I f  a l ine with l ine number n was present in the document, then i t  is de- 

leted. 

B) I f  such a l ine was not present, then an error is reported, but editing is 

not terminated. 

I I I .  I~ 

where: I is the le t ter  l ,  and 

is the end of l ine character. 

Effect: al l  lines of the document are l isted in the order of increasing l ine 

numbers, after which the editing is ended. 

From this specification we w i l l  deduce a syntax of the input language of the editor: 

i n p u t :  

spaces to end off line, input; 

fresh line, input; 

deletion c~d, input; 

list command. 

spaces to end of line: 

space char, spaces to end of line; end of line char. 
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fresh line: 

nt~uber, equals c~ar, rest of line. 

rest of line: 

end of line char; 

a~y cb~acter, rest of line. 

deletion conm~and: 

letter d char, ntm~ber, spaces to end of line. 

list coz~r~nd: 

letter I char, spaces to end of line. 

nu~er: 

space cb~nr, nt~mber; 

digit, (nun~oer;). 

Notice that we bui l t  into the syntax a number of degrees of freedom as regards lay- 

out that are not mentioned in the original specification, but are highly necessary 

because of the f a l l i b i l i t y  of humans: a good compilermaker should have a great prag- 

matic insight, foreseeing and forestall ing the input errors that are going to be 

made. 

3.2 Environment, and arithmetic macros 

As contact with the environment we need solely an action resym reading one character 

and an action prsym printing one character as well as an action exi t  to terminate 

the editor, e.g. in case of some l i s t  overflow. 

Of course resym and prsym must make use of one same character encoding, where we 

wi l l  require the digits zero to nine to have consecutive increasing codes, as well 

as the let ter  a to z. We need to know the codes for these characters and a few more. 

To that end, we wi l l  introduce some macro pointers: 

'external' 'action' resym, prsym, exit. 

'macro' 'pointer' spacechar=105, 

enid of line ck~:llO, 

digit zero char=54, 

digit nine char=63, 

letter d char=31, 

letter i char=39, 

equals char=86. 

We wi l l  also presuppose a, more or less standard, set of macros for arithmetic and 

testing, As a goal language for the design and test phase we wi l l  choose ALGOL W for 

the 360/67. 
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3.3 Table administration strategy 

Now we wi l l  choose a strategy for the tables and their administration. We wi l l  have 

to remember lines associated with their numbers (key_s). We wi l l  combine those keys 

into a directory, te l l ing at any point in time what keys are present, and indicating 

the associated texts in a l i s t  text, which wi l l  contain lines stripped of their 

number and equals symbol. The directory wi l l  therefore consist of two l i s ts  key and 

ptr. In a picture: 

key 

directory key1 

key2 

key3 

ptr 

ptr1 

ptr2. 

ptr3. 

text 

The three l i s ts  mentioned must have one access action each for putting and getting a 

word. The f i r s t  free place in the directory wi l l  be pointed at by pdLm, the f i r s t  

free place in text by ptext. Obviously the l i s ts  in the directory must have one same 

length. Choosing some sensible lengths for the l i s ts ,  we write: 

'macro"pointer' max dir:50. 

'list' ikey(l:max dir), Iptr(l:max dir). 

'pointer' pdir. 

'macro"action' get key='2':=lkey('l'), put key=lkey('l'):='2', 
get ptr='2':=lptr('l'), put ptr=lptr('l'):='2'. 

'macro"pointer' max text=2000. 

'list' text(l:max text). 

'macro"action' get text='2':=text('l'), put text=text('1'):='2'. 

'pointer' ptext. 

We must not forget to i n i t i a l i ze  pdir and ptext to I at the start of the program. 

Since we intend to search the directory for a specific key a number of times and in 

the end want to l i s t  a l l  lines in order of increasing keys, the keys in the directory 

had better be ordered. Rather than exp l ic i t l y  sorting them, we wi l l  take care that 

the keys are kept ordered at any point in time. This wi l l  entail moving part of the 

keys up or down the directory when inserting or deleting a l ine, but this overhead 

is distributed over the editing process. 

So much for the directory. 

We must also decide how the entries in text wi l l  be stored. We wi l l  have to indicate 

the end of such an entry in some fashion. We could store, at the beginning of each 
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entry, i ts length. We do not know that length unt i l  we have stored the whole entry, 

so we would have to leave a place open at the beginning of the entry for storing the 

length. ( I t  would not be advisable to extend the directory with a third l i s t  contain- 

ing lengths of entries, because when inserting or deleting lines this information 

would also have to be moved.) 

Alternatively, we could add to each character a b i t  indicating whether i t  was the 

last one of the entry - but this might entail too high an overhead in space. 

A third alternative is to store a special character at the end of the entry. The 

natural choice for such a terminating character here seems to be the end-of-line 

character, which is used for that same purpose during input. In outputting an entry 

we can then output also this terminating character saving an exp l i c i t  newline state- 

ment. We w i l l  prefer i t  over the f i r s t  two alternatives, especially because i t  saves 

us the trouble of counting. 

We w i l l  now design the low-level primitives for entering entries into text.  The 

characters of the entry w i l l  become available in one long burst. In order to simplify 

the i n i t i a l  version of the editor, we w i l l  not now tackle the problems of packing 

more than one character into a word, but w i l l  at f i r s t  store one character per text 

word. We w i l l  choose the text entering actions such that we can, in adding character 

packing later on, keep the same interface. We choose stack text as the lowest action, 

stacking i ts parameter under control of ptext, we choose add to text to add one more 

character to the current text entry and f in ish  text to complete the current entry. 

'action' add to text, finish text, stack text. 

add to text+x: 

stack text+x. 

finish text: 

add to text+end of line char. 

stack text+x: 

iseq+ptext+maxtext, put text+ptext+x, incr+ptext; 

text overflow, exit. 

We make a note that we w i l l  have to define the error reaction text overflow giving 

e.g. some suitable message. 

Another question to be solved is what to do when deleting an entry, either by an 

exp l ic i t  deletion co,and or by redefining the entry belonging to some given key. 

In redefining we could overwrite the previous entry provided the new entry was of 

the same length as the old entry (or at any rate not longer), but we do not know the 

length of an entry unt i l  we have read i t  completely. We could of course reserve as 

much space for each entry as i ts  maximal length, but that would be unsatisfactory 

for various reasons. I t  would entail a probably large waste of space; and i f  the in- 

put is from paper tape then there is no hard maximum to the length. We take the 

simple way out: we w i l l  not t ry to reuse the space in text freed because we suppose 
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that the deletion of an entry is a rather infrequent action. I f  this retention strat-  

egy turns out to be a real bother in practice, we w i l l  le t  text overflow perform a 

garbage collection and continue i f  space was salvaged. 

3.4 Input and output primitives 

Now we wi l l  choose a reading strategy. A one character buffer should suff ice, because 

we do not envisage any back-up-over the input stream. 

'pointer' char. 

In order to have a record of the editing done, we w i l l  output each character immedia- 

tely upon i ts consumption before reading the next one: 

' action' nextchar. 

nextchar: prsym+char, resym+char. 

We wi l l  need a predicate asking for specific characters, and another one asking for 

a d ig i t ;  the lat ter  one should also provide the value of the d ig i t .  

' is+x: equal+char+x, nextchar. 

digit+d: was digit+char, conv char to dig+char+d, nextchar. 

The macro was d ig i t  should test whether the value of i ts  parameter is the code of 

some d ig i t ,  and the macro action conv char to dig should convert the code of a d ig i t  

into the numeric value of that d ig i t :  

'macro' 'flag' was digit=('1' ~digit zero char) 

' and '('1' -~digit nine char). 

'macro"action' cony char to dig='2':='l'-digit zero char, 

cony dig to char: ' 2 ' : = ' 1 ' +digit zero char. 

We must not forget to read one character into the buffer at the start  of the program! 

Final ly,  we define a predicate to read a number and two actions to skip spaces and to 

skip to the end of a l ine: 

is number+x-d: 

skip spaces, is digit+x, 

rst: (is digit+d, append digit+x+d, :rst;). 

'macro' 'action' append digit:'1' ::10~'1'+'2'. 

skip spaces : 

skp: is+space char,:skp; 

skip to next line: 

skp: is+end of line char; 

nextchar, :skp. 

On output we w i l l  need, apart from prsym to print one character, an action to output 

one number and an action to give a new l ine. We w i l l  define an auxi l iary action 

prdig to output one d ig i t .  
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'action' out number, prdig, new line. 

out number+x-h~ad-d: 

less+x+lO, prdig+x; 

remove digit+x+head+d, out ntLmber+head, prdig+d. 

'macro"action' remove digit='2':='1'' div 'i0; '3':='1" rem '10. 

prdig+x-c: 

cony dig to char+x+c, prsym+c. 

new line: prsym+end of line char. 

Higher level input and output w i l l  be developed later on as needed. 

3.5 The works 

We have laid a suf f ic ient  foundation, and are by now rather fed up with working 

bottom-up, so i t  is time to construct the bold lines of our design. 

We want to construct a simple editor. I t  must, after some as yet unspecified prepar- 

ation, proceed to consume an input sequence consisting of fresh lines and deletion 

commands, terminated by a l i s t  o o I ~ d .  At the beginning of a l ine we are wi l l ing  to 

skip any number of blanks. Furthermore we are w i l l i ng  to overlook blank lines without 

protest. I f  the input l ine is not a correct command, we issue a message. 

sinple editor: 

preparation, 

rst: skip spaces, 

(fresh l~e,:rst; 

deletion corm~und,:rst; 

list command; 

is+end of line char,:rst; 

incorrect line, skip to next line,:rst). 

A fresh l ine starts with a number (the key of the l ine) followed by an equals symbol, 

possibly preceded by some number of spaces, followed by the entry for that key. Now 

we must distinguish two possib i l i t ies:  either this key was already present in the 

directory, in which case we discard the previous entry by overwriting the ptr  belong- 

ing to the key; or i t  was not yet there, in which case we w i l l  have to make room for 

i t  in the directory. While searching for a key in the directory we w i l l ,  as a side 

effect~ compute the offset in the directory of the slot where the key has been or is 

to be inserted: 

case a key = 111 

offset 

Re_/ 
110 

111 

114 

115 ~s present in the directory. 
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case b key : 112 
key 

110 

111 

offset 114 

115 

The key was not present in the directory. The directory entries for 

keys~114 must be moved up by one position. The offset is that of the 

key 114, which is where 112 should come instead. 

case c key : 120 

key ptr 
Iii ~ ~  
112 

offset 114 

The key was not present in the directory. This is just a special form of 

case b and should be handled by the same mechanism. 

We program this as follows: 

fresh line-key-offset: 

is number+key, obtain offset+key+offset, rest of line+offset. 

obtain offset+key+offset: 

already there+key+offset; 

shift up from+offset, put key+offset+key. 

In order to find whether a key was already there we w i l l  search the directory l inear- 

ly ,  unt i l  we either find the key, or give up because i t  is absent. 

already there+key+offset-there: 

make+offset+l, 

srch:less+offset+pdir, get key+offset+there, 

( equal+there+key; 

less +there+key, incr+offset, : srch ). 

We w i l l  now define shift up from, making sure that the directory does not overflow. 

shift up from+p-q: 

less+pdir+max dir, make+q+pdir, 

shft: (equal+p+q~ incr+pdir; 

decr+q, copy up+q, :shft) ; 

dir overflow, exit. 

'macro' 'action' copy up= 

ikey ( ' I' +I) : =ikey( ' I' ) ; Iptr( ' I'+I) : :iptr( ' i' ). 
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The action directomy overflow should provide some sensible reaction when the direct- 

ory becomes too small. Notice that case c is handled correctly (nothing is shifted). 

While we are at i t ,  we may likewise define the action sh i f t  down to for use by the 

deletion command: 

shift, down to+p-q: 

make+q+p, 

shft: (equal+pdir+q, decr+pdir; 

incr+q, copy down+q, :shft) .  

'matzo)' 'action' copy down= 

lkey( ' 1' - i )  : :lkey( ' i '  ) ; ip t r (  ' 1 ' - i )  : =Iptr( ' 1' ). 

Now we define what to do with the rest of the l ine. We check the presence of the 

equals sign after the number. We then cause the ptr of the key to point to the f i rst  

free place in text and proceed to read characters until we reach the end of l ine, 

adding each of them into the text as we go along. 

rest of line+offset: 

check equals sign, put ptr+offsetvptext, 

rst; add to text+char, 

(is+end of line char, finish text; 

next char, :rst ). 

In checking for the equals sign we are w i l l i ng  to skip any number of blanks preced- 

ing i t ,  I f  the equals sign is missing we w i l l  signal an error by the action 
equ~_Is sign mXssir~, but continue editing 

check equals sign: 

skip spaces, 

(is+equals char; 

equals sign missing). 

A deletion cormmm~d consists of a letter d followed by a number, the key of the line 

to be deleted. I f  this key is present in the directory then the corresponding direct- 

ory entry is obliterated by shi f t ing the upper part of the directory down one place; 

i f  i t  is not present, an error is reported by the action i~Eoossible to delete. 

'action' delete, 

deletion coramand-key: 

is+letter d char, 

(is number+key, delete+key, skip to next line; 

missing number, skip to next line). 

delete+key-offset: 

already there+key+offset, shift down to+offset; 

impossible to delete. 
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That leaves us with the l i s t  ec~m~m~d. 

'ac t ion '  l i s t  entry, l i s t  tex t .  

list command-p: 

is+letter 1 char, make+p+1, newline, 

ist: (equal+p+pdir, skip to next line; 

list entry+p, ~or+p,:ist). 

list entry+offset-key-ptr: 

get key+offset+key, out number+key, 

prsym+equals char, 

get ptr+offset+ptr, list text+ptr. 

list text+p-c: 

Ist: get text+p+c, prsym+c, 

(equal+c+end of ling char; 

incr+p,:Ist). 

Finally, we program preparation combining various i n i t i a l i z a t i o n s :  

preparation: 

make+ptext+l, make+pdir+1, resym+char. 

This completes the design of the ed i tor ,  apart from some reordering to combine re la t -  

ed pieces of program into one section headed by a comment and supplying the necessary 

'act ion '  speci f icat ions.  

3.6 Packing more characters into a word 

I t  is rather a waste of storage not to pack the characters in the text  array: pract- 

i c a l l y  a l l  computers can store considerably more than one character per word. Of 

course, for  debugging purposes packing one character into a word is convenient, but 

a f te r  the ed i to r  is running correct ly  we would l i ke  to tune i t  up so that i t  gets 

some semblance of  usefulness. 

We w i l l  define new versions of the two actions add to tex t ,  which packs one more 

character into tex t ,  and f i n i s h  tex t ,  which serves to round o f f  the packing process. 

At every point in time, ptext  w i l l  point to the f i r s t  free place in tex t  and we w i l l  

have a word under construction, word containing eharcount characters. Whenever 

charcount threatens to exceed the machine-dependent number of  chars per word we 

stack the word into tex t  and s tar t  constructing the next word. 

'action' add to text, finish text. 

'm~cro"pointer' chars per word=4, nix=l. 

'macro"action' pack onto='1'::256~'1'+'2', 

unpack from:'2'::'1" div '16777216; 

'1'::256~('1" rem '16777216). 

'pointer' word, charcount. 
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add to text+x: 

equal+charcount+chars per word, stack text+word, 

make+word+x, make+charcount+l; 

pack onto+word+x, incr+charcount. 

finish text: 

fill: equal+charcount+chars per word, stack text+word, 

make+word+O, make+charcount+O; 

pack onto+word+nix, incr+charcount, :fill. 

The action pack onto shifts the f i r s t  parameter 8 bits to the l e f t  and then adds the 

second. Of course, the ALGOL W version given here works correctly only i f  overflow 

into the sign b i t  cannot occur or is ignored, which we happen to be sure of because 

our code is a 7-bit-code. The reason we s t i l l  choose to part i t ion the (/360) 32 b i t  

word into groups of 8 bits is that we did not want to shock IBM by having 7-bit 

bytes. Notice that the last word must, i f  necessary, be padded with nix. 

We now have to redefine the preparation in order to i n i t i a l i z e  the word and charcount 

administration: 

preparation: 

make+ptext+l, make+pdir+l, resym+char, 

make+word+o, make+charcount+o. 

Final ly,  we have to rewrite l i s t  text to ref lect  the new situation: 

'action' list text, get from text. 

list text+p-q-x: 

mmke+q+p, make+charcount ~0, 

ist: get from text+q+x, prsym+x, 

(equal+x+end of line char; 

: ist). 

get from text+q+x: 

equal+charcount+O, get text+q+word, make+charcount+ 

chars per word, 

incr+q, get from text+q+x; 

unpack from+word+x, decr+charcount. 

Another candidate for tuning is the predicate already there which can be speeded up 

substantially by performing binary search instead of l inear search. This is l e f t  as 

an exercise to the reader. This one example of tuning should show the technique of 

improving the algorithm while retaining the interface. 
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3.7 Various target languages 

This edi tor , including the packing of text,  was written by the author, using ALGOL W 

as a target language, in one sunday morning and keyed into the terminal and debugged 

in two evening sessions. Debugging took 3 runs, in which the following errors were 

removed: 

1) Because ALGOL W uses i t  as a reserved ident i f ie r ,  the ident i f ie r  is had to be 

changed into char i s .  

2) The Modulo-operator in ALGOL W is written rem, n o t ~  as I thought in my inno- 

cence. 

3) The in i t i a l i za t i on  of ptext and pdir was overlooked. 

4) The analogy between s h i f t  up and s ~ f t  down had caused a programming mistake, 

which had to be caught by "proving" that the ed i tor  could not do what i t  did. 

This is ce r ta in l y  not a record of  b r i l l i a n t  programming, but, considering the rather 

sloppy programming s ty le  of the author, i t  shows that CDL is decidedly helpful  in 

avoiding errors.  

Afterwards, the ed i tor  was translated by one student to /360 Assembly language. 

In t rans la t ing  to /360 Assembler, the bulk of the work was in rewr i t ing the macros. 

Of the 27 macros, many could e i ther  be taken over from another program or were very 

s im i la r  to one another, so that essen t ia l l y  8 macros had to be invented. With some 

perusal of IBM manuals, the wr i t i ng  of the macros took him a good ha l f  hour. 

The time spent debugging the ensemble was 8 hours, during which the fo l lowing errors 

were repaired: 

i )  4 c le r i ca l  errors in macros, of which 3 were found s t a t i c a l l y  and one dynamically. 

2) One of the macros invoked i t s e l f  recurs ive ly ,  because of i den t i t y  of a s t r ing  to 

be output wi th the macro name. 

3) One 'macro"flag' set i ts  condition wrongly. With the 2 condition bits of the 

/360, i t  is d i f f i c u l t  to model a one-bit C-register. 

4) A /360-System macro had an unforeseen side effect on a register. 

5) An error was found in the CDL program, viz. the fact that a last word of an entry 

has to be padded out unt i l  i t  contains max nmb eI~L~ characters. Because in the 

ALGOL W version, zero was the code of a nonprinting character, this was only dis- 

covered in the assembler version. A good example of the p i t f a l l s  in writ ing 

machine-independent programs - mea culpa. 

A comparison between the programs obtained in this fashion is very d i f f i c u l t :  compar- 

ison of speed is rather useless because of the character of the editor, but other 

experience shows that the /360 Assembler version of CDL programs is at least a factor 

3 faster than the ALGOL W version. In this comparison i t  should be noted that the 

ALGOL W compiler produces the fastest code for CDL among al l  high-level language 

compilers available on our 360. 



401 

A comparison of the length of the code generated by the assembler version (2924 bytes 

: 736 words) with that generated by the ALGOL W compiler is  not given because we 

could not with cer ta inty  deduce that length from a l i s t i n g  of entry points, but we 

suspect the ALGOL W object code is actual ly  shorter. 

A cross compilation to the DEC PDP i0 was not completed in time for  these lecture 

notes. 

A tentat ive conclusion from these experiences is that f i r s t  wr i t ing in CDL and debug- 

ging a high-level version and only then constructing an assembler version is highly 

preferable over wr i t ing in assembly language d i rec t  as far  as the manpower necessary 

is concerned. Conclusions about ef f ic iency in time and space can not be drawn at this 

point. 
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4 B 4. Example 2: Symbol table administ rat ion ' 

This example and the one in Section 4 B 5 are connected: we w i l l  attempt to t rea t  a 

large chunk out of a r e a l i s t i c  compiler, encompassing a l l  of the lex ica l  scan and 

some parsing and treatment of  s ta t i c  semantics. 

The presentation w i l l  not be topdown, as in the f i r s t  example, but bottom up layer-  

wise, knowing by hindsight  (having wr i t ten  the whole compiler) what each layer should 

contain. 

This is of course not exact ly the way th is  program or ig inated,  because that was a 

process of yoyo programming, but i t  allows the consecutive display of  segments of  the 

compiler as a sequence of s t i l l s ,  which can each be understood in f u l l .  

The language, for  which th is  example provides the lex ica l  analys is ,  is  assumed to 

have the outward appearance and the complexity of ALGOL 68. 

Seen from the viewpoint of  lex ica l  analysis,  the compiler reads a t e x t  wi th fo l lowing 

syntax: 

text: 

end of file symbol; 

cormnent, text; 

item, text. 

cormuent: 

comment symbol, 

rest con~nent: (con~nent symbol; 

character,:rest cor~nent). 

A text consists of items, with comments interspersed which are discarded. 

item: 

layout, item; 

tag; 

bold symbol; 

denoter; 

special symbol. 

layout: 

space character, (layout;); 

nlcr character, (layout;). 

An item is, apart from layout which is disregarded, of one of four kinds of symbols. 

tag: letter, 

rest tag: (letgit,:rest tag; ). 

bold symbol: bold letter, 

rest bold: (bold letter,:rest bold; ). 
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special symbol: 

semicolon character; con~9, character; 

open character,(slash character; ); 

slash character,(close character; ) . 

denoter: digit, 

restden:(layout, restden; 

digit~:restden; ). 

The special symbols include the two compounded symbols (/ and /). For bold letter 

we w i l l  use the capi ta l  l e t t e r s ,  instead of the more usual underl ined or enclosed 

le t te rs .  

The next lower level consists of the characters, inc lud ing the l e t t e r s ,  l e t g i t s  

( :  l e t t e r  or d i g i t )  and bold l e t t e r s ,  which we w i l l  not enumerate. 

I t  is the purpose of the lex ica l  analysis to s p l i t  the tex t  up into items, discarding 

comments and ~ayout, and t rans late each item in to  a key, a small integral  number 

with the property that equal items get equal keys, unequal items get unequal keys, 

and the key allows us to output that item again. 

We w i l l  now present that part  of  the compiler which performs th is  task, s ta r t ing  with 

the de ta i l s ,  un t i l  we have la id  the foundation for  the parsing and table handling in 

the next example. I t  is divided into four parts,  

- the environment 

- stor ing representations 

- output,  and 

- input 

of  which the las t  section is the longest. 

Because of  the size of  the compiler, we w i l l  keep the number of explanatory remarks 

to the minimum, hoping i t s  text  speaks for  i t s e l f .  

4.1 The environment 

In th is  section we w i l l  t rea t  the in ter face wi th the machine, as well  as the encoding 

of characters and the usual macros fo r  ar i thmet ic and tes t ing.  

4.1.1. Interface with the machine 

( * * * * * * * * * * I N T E R F A C E  WITH THE MACHINF) 

'EXTERNAL' 'ACTION' RESYMoPRSYHeEXlT. 

We w i l l  read characterwise from one f i l e ,  and p r in t  characterwise on another. I f  i t  

becomes necessary to abort the program, ex i t  is  cal led.  
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4.1.2 Character encoding 

( **********CtlARACTER ENCODING ) 

'MACRO' 'POINTER' 
DIGIT 0 CHAR = 68, 
CLOSE CHAR • 89, 
COMMA CHAR • 9 4 ,  
MINUS CHAR = 92, 
OPEN CHAR = 82 ,  
SEMICOL CHAR • 90 ,  
SPACE CHAR = 78 ,  
SLASH CHAR = 93 ,  
NIX = I, 
NLCR CHAR = I0 ,  
EOF CHAR • 5. 

'MACRO' 'FLAG' 
IS LETTER = ( ' 1 ' >=16 ) ' "AND" ' ( ' 1 ' <=41 ) ,  
IS BOLD LETTER = ( ' l ' > = 4 2 ) ' " A N D " ' ( ' l ' < = 6 7 ) ,  
IS DIGIT =( '1 '>=68) ' "AND" ' ( '1=<=77) ,  
IS LETGIT = ( ' I t > = I 6 ) I " A N D " ' ( ' l ' < = 4 1 )  

'"OR"' ('I' >=68) '"AND"' ( ' 1 '  < = 7 7 ) .  

I t  is assumed that the digits 0 to 9 have consecutive increasing codes, as have the 

letters a to z and the bold letters A to Z. The nix is used to pad out words contain- 

ing padded-out characters, and is nonprinting. 

4.1.3 The basic macros 

( **********BASIC MACROS ) 

'MACRO''ACTION' 
MAKE = '1':='2 ', 
INCR = '1':='I'+i, 
INVERT = 'I':=-'i', 
ADD = '3' ='2'+'1', 
ADD BYTE = 'I':='I''256+'2 ', 
OBTAIN BYTE = '2':='1''"/"'16777216; 
DIVREMI0 = '2':='II'"/"'10; 
SET = ' I ' : = I ,  
RESET = ' I ' : = 0 .  

'MACRO''FLAG' 
EQUAL = ' I ' = ' 2  ' ,  
LESS = ' 1 ' < ' 2 ' ,  
LSEQ ='1'<='2', 
MARKED ='1'<0, 
HOLDS ='1'=1, 
FALSE ='"FALSE"' 

' 1 '  :=( '1 '  '"MOD"116777216)*256, 
' 3 '  :='11 '"MOD"' 10, 

The complementary macros add byte and obtainbyte are used in packing cnaracters into 

a word. To use a pointer as a flag, the macros set and reset are provided, as well as 

holds to test such a flag. 
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4.2 Steering representation ' 

In order to retain representations of symbols for later use we build up one table 

containing the representation of each symbol. Each entry into this repr table con- 

sists of a static and a dynamic part. 

class 

static l e f t  ->repr 

r i g h t - -  -~repr 
+ 

+ 
dynamic + 

The s t a t i c  par t  consists o f  hree elements, the class of  the symbol and two pointers  

l e f t  and r ight,  which are used to connect repr  en t r ies  in to  a b inary t ree fo r  fas t  

searching. 

The dynamic par t  consists o f  some number o f  words, at  leas t  one, a l l  but the l as t  o f  

which are pos i t i ve ,  the l as t  being marked by a negat ive sign. The dynamic par t  con- 

ta ins  the i nd i v idua l  characters o f  the symbol, packed some number to a word, e .g . :  

+a 

+e 

-m 

where ~" stands for the padding 

cl ass I 

fe t "I 
r i  ght" ] 

m s t " !  

r d a  i 

character  n i x ,  

4.2.1 The repr %able 

( * * * * * * * * * *RE PR-TABL E ) 

'iMACRO ' I POIfITER' 
M I N  REPR=!O0000, FIX PART OF REPR ENTRY=3, 
FIRST REPR=100000+3+I,HAX REPR=100000+20000. 

tPOI NTER' 
PREPR. 

' L I S T '  
REPR (Ml;~ REPR:MAX REPR). 

'HACRO' 'ACTI O~' 
GET CLASS : ' 2 ' : : R E P R ( / ' I ' - 3 / )  
GET LEFT = ' 2 ' : : R E P R ( / ' I ' - 2 / )  
GET RIGHT : 1 2 ' : : R E P R ( / ~ 1 1 - 1 / )  
GET REPR : ' 2 ' : : R E P R ( / ' I '  / )  

• PUT CLASS = R E P R ( / ' I ' - 3 / )  " : t 2 ' ,  
• PUT LEFT R E P R ( / ' I ' - 2 / )  ~ - ' ' ~ '  
• PUT RIGHT : R F P R ( I ' I ' - I / ) : =  i ' 
• PUT REPR = REPR(/11 I / ) . - , ~ t ' . _  ~ , 
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'MACROWIFLAG I 
IS REPR = (t l t>=MIN REPR)'"AND"'('I'<=PREPR). 

'ACTIOt~' STACK REPR. 

STACK REPR+X: 
PUT REPR+PREPR+X, INCR+PREPR, 

(LESS+PREPR+MAX REPR; 
ABORT+~ISG OVERFLOW+MSG OF+rlSG REPR+HSG TABLE+PREPR). 

The macro pointer f i r s t  repr points at the dynamic part of the f i r s t  entry, and its 

value wi l l  be the key of the f i r s t  symbol entered. In general, we wi l l  use the index 

of the f i r s t  word of the dynamic part of a symbol as i ts key. The test is repr serves 

to determine whether the value of some integer is a key. 

The action abort outputs its 5 parameters and then calls exit - we wi l l  define i t  

later. We shall take care that an identi f ier prefixed with msg identifies a pointer, 

whose value is a key to a symbol whose representation is suggested by the identif ier; 

e.g., outputting msgoverflow wi l l  cause the text overflow to be printed, etc. 

4.2.2 B uildin~ a re pr tabl e element. 

( **********BUILDI~IG A RFPR TABLE ELEMENT) 

'ACTION' 
INIT REPR ENTRY,ADD TO REPR F~NTRY,CLOSF REPR ENTRY. 

'POINTER' 
WORD, BYTECOUNT. 

'MACRO' 'POI~TER' 
BYTES PER WORD=4. 

I~JIT REPR ENTRY: 
ADD+PREPR+FIX PART OF REPR ENTRY+PREPR, 

(LSEQ+PREPR+MAX REPR, 
PUT CLASS+PREPR+O,PUT LEFT+PREPR+O,PUT RIGHT+PR~PR+O; 

ABORT+~ISG OVERFLOW+MSC OF+MSG REPR+MSG TABLE+PREPR). 

ADD TO REPR ENTRY+BYTE: 
EQUAL+BYTE COUNT+BYTES PER WORD,STACK REPR+I.~C)RF), 

~AKE+WORP+BYTE, MAKE +BYTF~ COUT!T+I; 
ADDBYTE+WORD+BYTE, I NC R+BYTEPOU~!T. 

CLOSE REPR ENTRY: 
REP: (EQUAL+BYTECOUHT+BYTES PER WORD, 

INVERT+WORD,STACK REDR+WORD,MAKE+WORD+O,tIAKE+BYTF~OU"T+O~ 
ADD BYTE+WORD+~JIX, IHCR+BYTECOUHT,:REP). 

In this section we find the machinery for packing characters into a word. The number 

of bytes per word, and the packing operators add byte, must be chosen in such a way 

that the sign bi t  of each word is le f t  free for marking purposes. Alternatively, a 

special l i s t  of marking bits can be added. The three actions ~ i t  repr entry, 

add to repr entry and close repr entry control the bui ld ing of a table element on 

top of the repr table.  



407 

4.2.3 Enterin9 an element in to the repr table 

( * * * * * * * * * * E N T E R I N G  AN ELEMENT INTO REPR TABLE) 

'ACTION' ENTER REPR. 

ENTER REPR+IT-OLDENTRY: 
CLOSE REPR ENTRY, 

( IS  IN REPR+IT+OLD ENTRY, 
MAKE+P REPR+IT,MAKE+IT+OLD ENTRY; 

INIT REPR ENTRY). 

'MACRO''FLAG' 
LIES TO THE LEFT : ABS('I')<ABS('2'). 

IS IN REPR+IT+RESUI_T ENTRY-NEW ENTRY-XI-×2-WI-W2: 
LESS+FIRST REPR+IT,MAKE+RESULT ENTRY+FIRST REPRs 

NEXT ENTRY: 
(MAKE+XI+IT,MAKE+X2+RESULT ENTRY, 

NEXT WORD: (GET REPR+XI+WI,GET REPR+X2+W2, 
(LIES TO THE LEFT+WI+W2sGET LEFT+RESUET ENTRY+NEW ENTRY, 

(EQUAL+NEW ENTRY+0p 
PUT LEFT+RESULT ENTRY+ITt(FALSE); 

MAKE+RESULT ENTRY+NEW ENTRY,:NEXT ENTRY); 
EQUAL+WI+W2, 

(MARKED+W1; 
INCR+XI, INCR+X2,:NEXT WORD); 

GET RIGHT+RESULT ENTRY+NEW ENTRY, 
(EQUAL+NEW ENTRY+0, 

PUT RIGHT+RESULT ENTRY+IT,(FALSE);  
MAKE+RESULT ENTRY+NEW ENTRY,:NEXT ENTRY)) ) ) .  

IS SA~IE SYMBOL+P+Q-X-Y-WX-WY: 
MAKE+X+P,MAKE+Y+Qs 

REP: (GEl" REPR+X+WX,GET REPR+Y+WY, 
EQUAL+WX+WY, 
(MARKED+WX; 

INCR+XelNCR+Ye:REP)). 

The reading strategy is such that the representation of each symbol is f i r s t  stacked 

on top of the repr table as i t s  characters are read, under the assumption that i t  is 

d i f f e ren t  from a l l  previous symbols; then in enter repr a check is made whether th is  

symbol was already present in the repr table. I f  i t  was not, then the new symbol is 

l inked into the binary tree. but i f  i t  was, the candidate entry is deleted. The key 

obtained is that of of  the old entry equal to the symbol, i f  such an entry was pres- 

ent, and otherwise that  of the new entry. 

~L 

? 

i 

I 
St S~ ~ S~ 

I 
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The repr  table is kept as a binary tree in order to f a c i l i t a t e  searching and insert -  

ion. Each entry contains a pointer l e f t  to a l l  entr ies lex icographical ly  preceding i t  

(zero i f  there are none), and a pointer riFJ~t to a l l  those lexicographical ly  fol low- 

ing i t ,  i f  any. The key of the root of the tree is the value of the pointer f i r s t  

repr.  

As an example, the binary tree for the symbols PO, AD~ AE~ EE, CD, DE~ EG can be de- 

picted as 

f i r s t  repr  ~ 

Notice that the s tructure of the t ree obtained depends heavily on the order in which 

the symbols arr ive ,  

The lexical ordering is defined using the t e s t  to the l e f t  which, disregarding the 

sign b i t  used for marking, compares the numerical value of words packed full  of 

characters.  The assumption underlying this  method is that  the leftmost character has 

been packed into the most s igni f icant  part  of the word, and that the ordering of 

character codes is an acceptable ordering for the characters. 

The predicate is  s~Lme symbol tests for equality of repr entries without attempting to 

l ink the topmost entry into the tree. I t  is used in skipping comments. 

4.3 Output 

( **********OUTPUT ) 

'ACTION' 
OUT TEXT,OUT M WORD,NEWLINF, LINE TAB,OUTINT,OUTINTI. 

'MACRO'tpOINTER l EMPTY = I00000. 

OUT TEXT+X-PTR-W: 
EQUAL+X+EMPTY; 
IS REPR+X, PRSYM+SPACE CHAR,~IAKE+PTR+X, 

NWD: GET REPR+PTR+W, 
(MARKED+W, INVERT+W, OUT M WORD+~V; 
OUT M WORD+W, INCR+PTR,:NWD); 

ERROR+MS~ OUTPUT ERnOR+MSQ INCORRECT PREPR+X+EMPTY+E~IPTY. 

OUT M WORD+W-BYN-C: 
MAKE+BYN+I, 

REP: OBTAIN BYTE+N+C,PRSY~I+C, 
(LESS+BYN+BYTES PER WORD, INCR+BYN,:REP; ). 
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OUTINT+X: 
LESS+X+OsPRSYM+MINUS CHARelNVERT+XeOUTI~ITI+X~ 
EQUAL.+X+OePRSYM+DIGIT 0 CHAR~ 
OUTINTI+X. 

OUTINTI+X-C[-R: 
EQUAL+X+O; 
DIVREMIO+X+Q+RsOUTINTI+Q~ADD+R+DIGIT 0 CHAR+RsPRSYM+R. 

NEWLINE: 
PRSYM+NLCR CIIAR. 

LINE TAB: 
PRSYII+NLCR CIIARePRSYM+NLCR CHARoPRSYM+NLCR CHAR, 

The action out text serves to output the symbol with a given key, outint prints a 

number, newline and tablJ_ne provide for vertical layout. 

4.4 

The fo l lowing part const i tutes the lex ica l  scan proper and consists of a number of 

layers. I t  is not suggested that  the reader of these notes should plod through each 

layer in order, but he may skim through them and look at deta i ls  only when necessary. 

4.4.1 A one character stock 

( ********** INPUT ) 

( * * * * * * * * * *A  ONE CHARACTER STOCK ) 

'POINTER' 
CHAR STOCK. 

'POINTER' 
CHAR IN STOCK. 

'ACTION' 
REMEMBER. 

REMEMBER+C: 
HOLDS+CHAR IN STOCKe 

ABORT+MSG OVERFLOW+MSG OF+MSG CHAR+MSG STOCK+EMPTY~ 
MAKE+CHAR STOCK+CHAReMAKE+CHAR+CsSET+CHAR IN STOCK. 

For reading composed symbols l i ke  ( /  i t  is  useful to have some look-ahead f a c i l i t y .  

The strategy used here is to have a stock for  one character which is normally empty. 

I n i t i a l l y ,  char in  stock does not hold. I f  we have read one character too far  (e.g. ,  

in order to inspect the character fo l lowing an opening bracket), we remember th is  

character by putting i t  into the stock and causing char in stock to hold. 



410 

4.4.2 Reading a single character 

( **********READING A SINGLE CHARACTER ) 

'POINTER' 
CHAR, LINE NUMBER. 

'POINTER' 
SOURCE DISPLAY WANTED. 

'ACTION' 
NEXT CHAR. 

NEXT CHAR-C: 
IIOLDS+CHAR IN STOCK,MAKE+CHAR+CHAR STOCK, RESET+CHAR 
MAKE+C+CHAR, RESYM+CHAR, 

(HOLDS+SOURCE DISPLAY WANTED, 
(EQUAL+C+NLCRCHAR,NEWLINE, INCR+LINE NUMBER, 

OUT INT+LINE NUMBER; 
PRSYM+C); ). 

I N STOCK; 

We read characters one at a time by resym, keeping track of the l ine number of input, 

and displaying the source text as we are reading along i f  source display wanted holds. 

4.4.3 Recognizing characters 

( **********RECOGNIZING CHARACTEPS ) 

'ACTION' 
SCAN ANY CHAR, SKIP LAYOUT, SKIP ILLEGAL CHAR. 

SCAN ANY CHAR: 
ADD TO REPR ENTRY+CHAR,NEXT CHAR. 

LETTER: IS LETTER+CHARtSCAN ANY CHAR. 

BOLD LETTER: IS BOLD LETTER+CHAR,SCAN ANY CHAR. 

DIGIT: IS DIGIT+CHAR, SCAN ANY CHAR. 

LETGIT: IS LETGIT+CHAR,SCAN ANY CHAR. 

SKIP ILLEGAL CHAR: 
NEWLINE, PRSYM+CHAR, 
ERROR+MSG ILLEGAL+MSG CHAR+MSG IN THIS POSITION+MSG CODE+CHAR,NEXT CHAR. 

END OF FILE: 
EQUAL+CHAR+EOF CHAR. 

SKIP LAYOUT: 
N CHAR: EQUAL+CHAR+SPACE CHAR,NEXT CHAR,:N CHAR; 

EQUAL+CHAR+NLCR CHARtNEXT CHAR,:N CHAR; . 

In this section the primitives are introduced for recognizing the input characters. 

Notice that sc~qany char adds the representation of the character just recognized 

to the repr table. 
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4.4.4 Recognizin9 a symbo 9 

( **********RFCOGNIZE A SYMBOL ) 

TAG: 
LETTER, 

N CHAR:(SKIP LAYOUT,(LETGIT,:NCHAR; ) ) .  

BOLD SYMBOL: 
BOLD LETTER, 
N CHAR:(BOLD LETTER,:N CHAR; ). 

SPECIAL SYMBOL: 
EQUAL+CHAR+SEMICOL CHAR,ADD TO REPR ENTRY+SEMICOL CHAR, NEXT CHAR; 
EQUAL+CHAR+COMMA CHAR,ADD TO REPR ENTRY+COMMA CHARtNEXT CHAR; 
EQUAL+CHAR+OPEN CHAR,ADD TO REPR ENTRY+OPEN CHAR, NEXT CHAR, 

(EQUAL+CHAR+SLASH CHAR,ADD TO REPR ENTRY+SLASH CHAR, NEXT CHAR;); 
EQUAL+CHAR+SLASH CHARtNEXT CHAR, 

(EQUAL+CHAR+CLOSE CHAR, NEXT CHAR, 
ADD TO REPR ENTRY+SLASH CHAR,ADD TO REPR ENTRY+CLOSE CHAR; 

REMEMBER+SLASH CHAR); 
EQUAL+CHAR+CLOSE CHAR,ADD TO REPR ENTRY+CLOSE CHARtNEXT CHAR. 

DENOTER: 
DIGIT ,  

N CHAR: (SKIP LAYOUT,(DIGIT, :N CHAR; 

'ACTION' 
RECOGNIZE. 

) ) .  

RECOGNIZE+IT: 
SKIP LAYOUT,MAKE+IT+PREPR, 

N CHAR: (TAG,PUT CLASS+IT+X TAG,ENTER REPR+IT; 
BOLD SYMBOL,ENTER REPR+IT; 
DENOTER, PUT CLASS+IT+X DENOTER, ENTER REPR+IT; 
SPECIAL SYMBOLtENTER REPR+IT; 
END OF FILE,MAKE+IT+EOF SYMBOL; 
SKIP ILLEGAL CHAR,:N CHAR). 

Four kinds of symbols are dist inguished. Notice the l ibera l  a t t i tude towards the 

presence of layout w~thin a tag or denoter. The action recognize a t t r ibu tes  to each 

tag the class x tag and to each denoter the class x denoter. Other symbols do not 

obtain a class at th is  po in t ,  but obtain t he i r  class d i f f e r e n t l y ,  This corresponds 

to the fact  tha t ,  in an ALGOL 68- l ike language, one can define the class of newly 

introduced bold and specials symbols by a mode- or operator-declarat ion.  

In an i n i t i a l i z a t i o n  not shown here, a l l  de l imi ters ( i . e . ,  those bold an special 

symbols which belong to the kernel of  the language) are given classes l i ke  x decl 

t o k e n  for struot, etc. Upon reading a symbol with the same representation as some 

symbol already encountered before, the new symbol gets the same class as the old 

symbol (automatically, since no new entry is made). 
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4.4.5 Reading items 

( * * * * * * * * * *  READING ITEMS ) 

'ACTION' NEXT ITEM, BACKTRACK, SKIP COMMENT. 

mPOINTER' ITEM, CLASS, ITEM STOCKtCLASS STOCK, ITEM IN STOCK. 

ITEM WAS+IT: EQUAL+ITEM+IT~NEXT ITE~. 

CLASS IS+IT: EQUAL+CLASS+IT. 

NEXT ITEM: 
EQUAL+ITEM+EOF SYMBOLs 

ABORT+MSG EOF+MSG BEFORE+MSG LOGICALEND+M~G OF+MSG PROGRAM~ 
HOLDS+ITEM IN STOCK, 

MAKE+ITEtI+ITEM STOCKs~AKE+CLASS+CLASS STOCKeRESET+ITE~ IN STOCK~ 
REP: RECOGNIZE+ITEM, 

(EQUAL+ITEM+BEGIN COMMENT SYMBOL~SKIP CO~MENTs:REP; 
GET CLASS+ITEM+CLASS). 

BACKTRACK+IT: 
~OLDS+ITEM IN STOCK, 

ABORT+MSG OVERFLOW+MSG OF+MSG ITEM+MSG STOCK+EMPTY; 
MAKE+ITEM STOCK+ITEMeMAKE+CLASS STOCK+CLASS, SET+ITEM IN STOCK, 

MAKE+ITEM+IT,GET CLASS+IT+CLASS. 

SKIPCOMMENT-OLD PREPR: 
REP: (MAKE+OLD PREPR+PREPR, 

(BOLD SYMBOLeMAKE+PREPR+OLD PREPR, 
( IS  SAME SYMBOL+PREPR+END COMMENT SYMBOLI:REP)~ 

MESSAGEeMAKE+PREPR+OLD PREPR~ 
( IS  SAME SYMBOL+PREPR+EOF SYMBOL~ 

ABORT+MSG EOF+MSG IN+MSG COMMENT+EMPTY+EMPTY~:REP); 
NEXT CHAR,:REP)).  

The pointers item and class hold at each moment the current item and i t s  class. There 

is a one-item stock al lowing to backtrack by one item i f  such is found necessary. The 

apotheosis of a l l  these de f i n i t i ons  l i es  in the act ion next item and the predicates 

item was and class i s .  The test  item was checks whether the current item is equal to 

a given item, and i f  true as a side e f fec t  inputs the next item. The test  class i s  

checks whether the current item is of a given class, but has no such side e f fec t .  

4.5 The work table 

The work table is used as a stack to hold information gleaned from the program, of 

two kinds: 

a) block structure 

b) defining occurrences of identifiers 
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( **********WORK TABLE ) 

'MACRO'wPOINTER ' 
MIN WORK=200001, MAX WORK:200001+9999. 

'POINTER' 
PWORK. 

'LIST' 
WORK (MIN WORK:MAX WORK). 

fMACRO''FLAG' 
IS WORK=MIN WORK< =tltt"AND''''II<=PWORK" 

The test is work serves to find out whether some integer can be a pointer into the 

work table. 

4.5.1 The block administration 

( **********BLOCK ADMINISTRATION ) 

'MACRO''POINTER' 
BLOCK TABLE ENTRY LENGTH=l. 

'POINTER' 
CURR BNMB. 

'MACRO''ACTION' 
GET PREDEC = ' 2 ' : = W O R K ( / ' I ' / ) ,  PUT PREDEC = W O R K ( / ' I ' / ) : = ' 2  ' .  

'ACTION' 
UP BLOCKsDOWN BLOCK. 

UP BLOCK-P: 
MAKE+P+PWORK, ADD+PWORK+BLOCK TABLE ENTRY LENGTH+PWORK, 

(LSEQ+PWORK+MAX WORKo 
PUT PREDEC+P+CURR BNMB,MAKE+CURR BN~4B+P; 

ABORT+MSG ~VORK+MSG TABLE+MSG OVERFLOW+EMPTY+EMPTY). 

DOWN BLOCK: 
GET PREDEC+CURR BNMB+CURR BHMB. 

In order to uniquely character ize each block wi th an integral  number, i t s  block 

number, we haw~ a pointer cur t  brm~b to which we assign, at the beginning of a block, 

the current value of the pointer pwork which points at the lowest free word in work. 

Since we at the same time stack the b]ocknumber of the d i r ec t l y  surrounding block 

in to  the work table,  we achieve two goals 

I )  i t  is assured that  d i f f e ren t  blocks get d i f f e ren t  block numbers 

2) at the end of  a block we can very eas i ly  restore the block number to be that 

of the d i r ec t l y  surrounding block. 
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4.5.2 Symbol table 

( **********SYMBOL TABLE ) 

~MACROIIpOINTER t 
SYMBOL TABLE ENTRY LENGTH=3. 

'MACROIIACTION I 
GET BNMB :s2I:=WORK(/'I' / ) ,  PUT BNMB=WORK(/'I I / ) : = ' 2  I ,  
GET MODE ='2':=WORK(/11'+1/), PUT MODE=WORK(/11'+I/):=12 ' ,  
GET LINK ='2':=WORK(/'I'+2/), PUT LINK=WORK(/'11+2/):='2 I .  

repr 

right ~ - -  
left 
class 

work 
bnmb 
mode 
link 

The work table contains also chains of def in ing occurrences, in the fo l lowing fashion: 

As long as an i d e n t i f i e r  has had no def in ing occurrence, i t s  class is  x tag ; i f  i t  

has some number of def in ing occurrences, these are chained together in a chain of  

t r i p l es  (bnmb, mode, l i nk )  in the work table,  and the class of the i d e n t i f i e r  is a 

pointer to that chain, e.g. :  

IACTION I 
DEFINE IDENTIFIER, ADD TO DEF CHAIN,APPLY IDENTIFIER. 

DEFINE IDENT1FIER+IDF+HODE-P: 
MAKE+P+PWORK,ADD+PWORK+SYMBOL TABLE ENTRY LENGTH+PWORK, 
(LSEQ+PWORK+MAX WORK, 

PUT BNMB+P+CURR BNMB, PUT MODE+P+MODE, 
ADD TO DEF CHAIN+IDF+P~ 

ABORT+MSG WORK+MSG TABLE+MSG OVERFLOW+EMPTY+EMPTY). 

ADD TO DEF CHAIN+IDF+DEF-LINK-SUCC: 
GET CLASS+IDF+LINK, 

( IS  REPR+LINK, PUT LINK+DEF+O, PUT CLASS+IDF+DEF; 
IS GOOD $UCCESSOR+LINK+IDF, 

PUT LINK+DEF+LINK, PUT CLASS+IDF+DEF; 
REP: 

(GET LINK+LINK+SUCC, 
(EQUAL+SUCC+O, PUT LINK+DEF+SUCC, PUT LINK+LINK+DEF; 

IS GOOD SUCCESSOR+LINK+IDF, 
PUT LINK+DEF+SUCC,PUT LINK+LINK+DEF; 
MAKE+LINK+SUCC,:REP))). 

IS GOOD SUCCESSOR+LINK+IDF-NBNMB: 
GET BNMB+LINK+NBNMB, 

(LESS+NBNMB+CURR BNMB; 
EQUAL+NBNMB+CURR BNMB, 

ERROR+MSG IDENTIFIER+IDF+MSG DECLARED+~SG TWICE+EMPTY), 
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Great care is taken that the elements in such a chain are kept in order of decreas- 

ing blocknumber, which makes the converse process of  f i nd ing ,  for  an applied occur- 

rence, the mode of the def in ing occurrence which i t  i d e n t i f i e s ,  a whole l o t  easier. 

APPLY IDENTIFIER+IDF+MODE-LINK-TRY BNMB-DEF BNMB: 
GET CLASS+IDF+LINK, 
( IS  REPR+LINK, ERROR+MSG IDENTIFIER+IDF+MSG NOT+MSG DECLARED+EMPTY, 

MAKE+MODE+ERRONEOUS; 
MAKE+TRY BNMB+CURR BNMB, 

NEXT DEF:(GET BNMB+LINK+DEF BNMB, 
NEXT SURR: (LESS+DEF BMMB+TRY BN~B, 

GET PREDEC+TRY BFIMB+TRY BH~R,:NEXT SLIRR; 
EQUAL+DEF BHMB+TRY BNMB,GET MODE+LINK+MODE; 
GET LINK+LINK+LINK, 

(EQUAL+LIHK+O, 
ERROR+HSG IDENTIFIER+IDF+MSG FIOT+MSG DECLARED+EMPTY, 
MAKE+MODE+ERRONEOUS; 

:NEXT D E F ) ) ) ) .  

4.6 Conclusion 

We have la id  the foundation fo r  the next example, in the form of parsing predicates 

and some table adminis t rat ion,  which is s u f f i c i e n t  to handle languages of the i n t r i c -  

acy of ALGOL 68. 

In the next example we w i l l  t r y  to put to work the algorithms defined un t i l  now, 

in pa r t i cu la r  the actions up block, dO.~l block and def ine i d e n t i f i e r ,  as well  as the 

predicates item was and class i s .  
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4 B 5 Example 3: Treatment of declarations 

In this example we build, on the basis laid in the previous example, a recognizer 

for a language with some of the characteristics of ALGOL 68. 

The example is intended to show the relationship between syntax and parser, meta- 

syntax and table administrations, and also show within a small framework techniques 

which are also v i ta l  to the construction of l i fe -s ize compilers. 

5.1 The language to be recognized 

The language to be recognized consists essentially of ident i f ie r  definit ions (with 

an ALGOL 68-1ike syntax) and ident i f ie r  applications (of the most t r i v i a l  form) em- 

bedded in a block-structure. 

In three instalments of syntax and metasyntax we w i l l  give a very informal syntactic 

def in i t ion of the language. The starting symbol of i ts grammar is closed clause, 

5.1.1 

a) 

Closed clauses 

closed clause: 

begin symbol, serial clause, end symbol, 

b) serial clause: 

identifier definition, semicolon symbol, serial clause; 

series, 

series: 

unit, semicolon symbol, series; 
unit, 

unit: 

closed clause; 

i d e n t i f i e r  a p p l i c a t i o n .  

e) identifier definition: 

MODE declarer, MODE identifier, 

f) identifier application: 

MODE identifier, 

With the closed clause a blockstructure is associated in the usual fashion, w i th the  

usual scope rules for ident i f iers.  The appearance of MODE in ident i f ie r  def in i t ion 

and ident i f ie r  application is there to remind us of the fact that a def ini t ion estab- 

lishes the ident i f ie r  with a given mode (viz. the mode of the declarer) and every 

applied occurrence of an ident i f ie r  must identi fy one defining occurrence and obtain 

a mode from i t .  

c) 

d) 
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begin real a; bop, ~ b; 
a; 

begin in___tta; 
a; 

b 

end__; 
a 

end 

5.1.2 Modes 

A) MODE:: 

PRIMITIVE; 

reference to MODE; 

LONGS INTREAL; 

PROCEDURE; 

structured with FIELDS; 

ROWS of MODE; 

union of MODES mode. 

C) PRIMITIVE:: 

INTREAL; boo1; chart void. 

D) INTREAL:: 

int; real. 

E) LONGS:: 

long LONGS; long. 

F) PROCEDURE:: 

procedure PARAMETY MODE, 

G) PARAMETY:: 

with PARAMETERS; EMPTY. 

H) EMPTY:: 

I )  PARAMETERS:: 

PARAMETER and PARAMETERS; 

PARAMETER. 

J) PARAMETER:: 

MODE parameter. 

K) FIELDS:: 

FIELD and FIELDS; 

FIELD. 

L) FIELD:: 

MODE 51etd TAG. 

M) ROWS::row ROWS: row. 
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real identifier~ 

~ int identi fier~ 

bool identi fier~ 

~real identi fier~ 
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N) TAG:: 

l e t t e r  LETTER; 

TAG letter LETTER; 

TAG digit OIGIT. 

0) LETTER::a;b; ... ; z. 

P) DIGIT:: 0;I; . . .  ; 9. 

Q) MODES:: 

MODE and MODES; MODE. 

We cal l  each terminal production of the metanotion MODE a mode, Clear ly,  there are 

countably many modes, and we w i l l  have to construct some mechanism for  storing modes. 

The construction pr inc ip le  of the modes should speak for  i t s e l f ,  as well as the i r  

in te rpre ta t lon .  Otherwise, a f u l l  treatment of  a s imi lar  system can be found in 

[van Wijngaarden 19743. 

5,1.3 Declarers 

a) MODE declarer: MODE declarator. 

At th is  point in syntax, mode indicants can be added, 

b) PRIMITIVE deolaretor:  

PRIMITIVE symbol, 

Example: real is a real declarator.  

For each pr imi t ive  mode, there is one symbol, such as the real  symbol with re- 

presentation real ,  etc. 

c) long INTREAL declarator:  

long symbol, INTREAL declarator. 

d) long LONGS INTREAL deolarator: 

long symbol, LONGS INTREAL declarator. 

Example: ~ong lo~ int is a long long int declarator. 

We dist inguish between an arb i t ra ry  number of  lengths of reals and integers. 

e) reference to MODE deolarator: 

reference to symbol, MODE declarator. 

Example: re2Zchar is a reference to char declaretor. 

f) PROCEDURE declarator: 

procedure symbol, PROCEDURE plan. 

g) procedure with PARAMETERS MODE plan; 

open symbol, PARAMETERS part, close symbol, MODE result. 

h) MODE parameter part; MODE declarer. 

i) MODE parameter and PARAMETERS part: 

MODE declarer, PARAMETERS part. 

j) procedure MODE plan: MODE result. 

k) MODE result; MODE declarer. 
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Examples: ~roo {real) real is a procedure with real parameter real declarator, 

and proer~.~int i s  a procedure re fe rence  to  i n t  d e c l a r a t o r .  

l )  s t r uc tu red  w i t h  FIELDS d e e l a r a t o r :  

s t r u c t u r e  symbol, open symbol, FIELDS p a r t ,  c lose symbol, 

m) MODE f i e i d  TAG p a r t :  

MODE d e c l a r e r ,  TAG. 

n) MODE f i e l d  TAG and FIELDS p a r t :  

MODE d e c i a r e r ,  TAG, comma symbol, FIELDS p a r t .  

We omi t  the syntax f o r  TAG which a l lows  the s y n t a c t i c  hand l ing o f  i d e n t i f i e r s .  

Example: etz~ot (real re, real im) is a structured with real f ie ld  let ter  r 

letter e and real field letter i letter m declarator. 

O) ROWS of MODE declarator: 

sub symbol, ROWS rower, bus symbol, MODE decierer. 

p) row rower: 

q) row ROWS rower:  comma symbol, ROWS rower.  

Example: [ , ,  ] char  is  a row row row o f  char d e c l a r a t o r ,  

r) union of MODES mode declarator: 

union of symbol, open symbol, MODES declarer list, close symbol. 

S) MODE declarer list: MODE declarer, 

t) MODE and NODES declarer list: 

MODE declarer, comma symbol, NODES declarer list. 

Example: ~ion {real, bool) is a union of real and bool mode declarator. 

The syntax shows how the mode of a declarer can be deduced from its outward appear- 

ance. 

5.2 Recognizing closed clauses 

As a f i r s t  step in obtaining a recognizer from this language def ini t ion, we wi l l  

build a parser' for the overall structure, leaving the treatment of declarers out of 

consideration for the moment. From the syntax in 5.1.1 a recognizer written in CDL 

can be obtained by t r i v i a l  rewriting of the rules, but this text, as i t  stands, wi l l  

e l i c i t  6 backtrack messages (where?). 

In order to get r id of those messages, i t  is sensible to turn series and serial 

clause into actions, by the addition of suitable error messages, since e.g. after a 

begin symbol there is no question that a serial clause must follow, and i f  i t  does 

not, the program is wrong. 

A backtrack free formulation is 
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( **********CLOSED CLAUSES ) 

'ACTION' 
SCAN SERIAL CLAUSE, SCAN SERIES,MUST BE UNIT,MUST BE IDENTIFIER. 

CLOSED CLAUSE: 
ITEM WAS+BEGIN SYMBOL, 

UP BLOCK, 
SCAN SERIAL CLAUSE, 
DOWN BLOCK, 
(ITEM WAS+END SYMBOL; 
ERROR+END SYMBOL+MSG EXPECTED#EMPTY+EMPTY+EMPTY, 

SKIP TO NEXT CLOSER,NEXT ITEM). 

SCAN SERIAL CLAUSE: 
REP: IDENTIFIER DEFINITION, 

(ITEM WAS+GO ON SYMBOL,:REP; 
ERROR+GO ON SYMBOL+MSG EXPECTED+EMPTY+EMPTY+EMPTY, 

SKIP TO NEXT SEPARATOR, 
(ITEM WAS+GO ON SYMBOL, tREP; ) ) ;  

SCAN SERIES. 

SCAN SERIES: 
REP: MUST BE UNIT, 

(ITEM WAS+GO ON SYMBOLs:REP; . 

IDENTIFIER DEFINITION-IDF-MODE: 
DECLARER+MODE, 

MUST BE IDENTIFIER+IDF, 
DEFINE IDENTIFIER+IDF+MODE, 
TRACE+MSG DEFINING+MSG IDENTIFIER+IDF+MSG MODE+MODE. 

MUST BE IDENTIFIER+IDF: 
IDENTIFIER+IDF; 
ERROR+MSG IDENTIFIER+MSG EXPECTED+EMPTY+EMPTY+EMPTY,MAKE+IDF+DUMMY. 

MUST BE UNIT: 
CLOSED CLAUSE; 
IDENTIFIER APPLICATION; 
ERROR+MSG INCORRECT+MSG UNIT+EMPTY+EMPTY+EMPTY, 

SKIP TO NEXT SEPARATOR. 

IDENTIFIER APPLICATION-IDF-MODE: 
IDENTIFIER+IDFt 

APPLY IDENTIFIER+IDF+MODE, 
TRACE+MSG IDENTIFIER+IDF+MSG MODE+MODE+EMPTY. 

IDENTIFIER+IDF: 
IS TAG+CLASS,MAKE+IDF+ITEM, NEXT ITEM. 

IS TAG+CL: 
IS WORK+CL; 
EQUAL+CL+X TAG. 

Notice that the actions have been named by i den t i f i e r s  s tar t ing  with scan or must be. 
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The action trace is called in order to leave a record of the recognition process; i ts 

def ini t ion is omitted here. 

5.3 Storing modes 

We want to store modes, and to obtain a key for each mode, a small integer with the 

property that equal modes get equal keys, unequal modes get unequal keys and the key 

allows print ing the modes. The strategy we w i l l  followed is suggested by the meta- 

syntax in 5.1.2 and the syntax in 5.1.3: As a representative of a mode we w i l l  store 

a declarer in a l i s t  decl (with stack pointerpclecl), in a form reminiscent of LISP, 

viz. (head, tai l )  pairs where head and t ~ l  each can be the key of a symbol or a 

pointer into the deeZ table. 

This idea is elucidated by the following table. In the r ight hand side, either an 

arrow or overlining is used to indicate a pointer, and a symbol stands for i ts  key. 

mode representation 

i n t  (int, O) 
real (~l,O) 
bool (bo_~oZO) 
char (char, O) 
void (VO~-'-~,O) 

reference to MODE (~,MODE) 

long MODE (long, MD-D~) 

procedure PARAMETY MODE (ppoo, ~ ( ~ , M ~ )  
structured with FIELDS ( s t r u p ; t , ~ )  
FIELD and FIELDS (F=-IG~-O, FI~ZD~J) 
MODE f i e l d  TAG (PFO-DE~I?~G ~) 

row of MODE ( ~ M ~ )  
row ROWS of MODE (row.___,RO'WS of MODE) 

union of MODES mode ( ~ R ~ - D ~ )  
MODE and MODES (MOEEjP[O~S) 

We store (head, t ~ l )  pairs by the action enterd in to  the deol tab le,  obtaining the 

index in decl where the pa i r  is stored as a key. We take care that  no pa i r  is entered 

twice, by searching the decl table and, in case the pa i r  was already there, not ent- 

ering i t  again but return ing the index of the old pa i r .  For the language under consid- 

erat ion,  th is  solves a l l  problems of  equivalence of  modes ( i f  we agree that  union 
(real, c~r) is not eqaivalent to ~i£n (c~, rea l ) .  For a language which includes 

mode declarations and circular modes this is a good heuristic approach even though 

i t  does not f u l l y  prevent entering equivalent declarers. 
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( **********DECLARER TABLE ) 

'ACTION' ENTERD, 

'MACRO''POIrITER' 
MIN DECL=300001, DECL ENTRY LENGTH=2, 
MAX DECL=300001+I000*2-1. 

' L I S T '  DECL(MIN DECL:MAX DECL). 

'POINTER' P DECL. 

'MACRO''ACTION' 
GET HEAD='2'::DECL(/'I'/),PUT HEAD=DECL(/'I'/)::'2't 
GET TAIL='2':=DECL(/'I'+I/),PUT TAIL=DECL(/'I'+I/):='2' 

'MACRO''FLAG' 
IS DECL:MIN D E C L < = ' I ' ' " A N D " ' ' I ' < : P D E C L .  

ENTERD+DI+D2+MODE-I-II-12: 
LSEQ+PDECL+MAX DECL, 

MAKE+I+MIN DECL~ 
REP: (LESS+I+PDECL, 

(GET HEAD+I+IleEQUAL+I+DIe 
GET TAIL+I+I2sEQUAL+I2+D21NAKE+MODE+I; 

ADD+I+DECL ENTPY LENGTH+I,:REP); 
PUT HEAD+PDECL+DloPLIT TAIL+PDECL+D2t MAKE+MODE+PDECLe 

ADD+PDECL+DECL ENTRY LENGTH÷PDECL); 
ABORT+MSG OVERFLOW+MSG OF+MSG DECL+MSG TABLE+EMPTY. 

Clear ly,  emterd can be speeded up tremendously by replacing the l inear  search by some 

faster  algorithm. 

5.4 Recognizing declarers 

I t  is not so easy to rewr i te the syntax in 5.1.3 into CDL, because of some features 

of 2VWG" The f i r s t  problem is ,  that  many l e f t  hand sides of rules in that section are 

j us t  pa r t i cu la r i za t ions  of ~DDE declarator ,  SO in a f f i x  grammars those rules would 

have to be combined into one fa t  ru le .  This problem can be solved by changing the 

overal l  s t ructure to something s tar t ing as fo l lows: 

declarer + mode: 

primitive declarator + mode; 

reference declarator + mode; 

long declarator + mode; 

procedure declarator + mode; 

structure declarator + mode; 

rows declarator + mode; 

union declarator + mode. 
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The second problem is that the original gra~lar is intended to be used generatively: 

in parsing, the information comes available str ict ly from lef t  to right. The solution 

taken is to turn the mode of each declarator  into an output parameter, and to l e t  

each declarator enter the information i t  obtains in a pos t f i x  fashion, i . e . ,  making 

sure the head and the t a i l  are both in deck before entering (head, t a i l ) .  

( * * * * * * * * * *DECLARERS ) 

IACTIONt ~.iUST BE DECLARER, PROCS RESULT, PARA~ETERS,PLAN, 
REST STRUCTURE DECLARATOR, REST ROWS DECLARATOR, FIELD, FIELDS, 
REST DECL LIST PACK, REST UNION DECLARATOR. 

tPOINTERI 
INT,REAL, BOOL,CHAR MODE, FORMAT, VOID. 

MUST BE DECLARER+MODE: 
DECLARER+MODE; 
ERROR+MSG DECLARER+MSG EXPECTED+EMPTY+EMPTY+EMPTY,MAKE+MODE+ERRON 

EOUS. 
DECLARER+MODE: 

CLASS I S+X DECL TOKEN, 
(STRUCTURE DECLARATOR+MODE; 
REFERENCE DECLARATOR+MODE; 
PROCEDURE DECLARATOR+MODE; 
UNION DECLARATOR+~ODE); 

PRIMITIVE DECLARATOR+MODE; 
ROWS DECLARATOR+MODE; 
LONG DECLARATOR+MODE. 

PRIMITIVE DECLARATOR+MODE: 
CLASS IS+X PRIMITIVE, 

(ITEM WAS+INT SYMBOL,MAKE+~ODE+INT; 
ITEM WAS+REAL SYMBOL,MAKE+MODE+REAL; 
ITEM WAS+BOOL SYMBOL,MAKE+MODE+BOOL; 
ITEM WAS+CHAR SYMBOL,MAKE+MODE+CHAR MODE; 
ITEM WAS+FORMAT SYMBOL,MAKE+MODE+FORI~AT; 
ITEM WAS+VOID SYMBOL,MAKE+MODE+VOID). 

LONG DECLARATOR+MODE-MI: 
ITEM WAS+LONG SYMBOL, 

(ITEM WAS+INT SYMBOL,ENTERD+LONG+INT+MODE; 
ITEM WAS+REAL SYMBOL, ENTERD+LONG+REAL+MODE; 
LONG DECLARATOR+M1, ENTERD+LONG+MI+MODE). 

REFERENCE DECLARATOR+MODE-MI: 
ITEM WAS+REF SYMBOL,MUST BE DECLARER+MI,ENTERD+REF+MI+MODE. 

The next problem is to insert error reporting and error recuperation in the right 

places, with some help from the backtrack messages that keep coming as long as some 

backtrack possibility was overlooked. 
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STRUCTURE DECLARATOR+MODE: 
ITEM WAS+STRUCT SYMBOL, REST STRUCTURE DECLARATOR+MODE. 

REST STRUCTURE DECLARATOR+MODE-M1-M2-M3-1DF: 
ITEM WAS+OPEN SYMBOL, 

FIELD+MI+IDF, ENTERD+MI+IDF+M2IFIELDS+MI+M3,ENTERD+M2+M3+M3, 
ENTERD+STRUCT+M3+MODF; 

ERROR+MSG INCORRECT+MSG STRUCTUREDWITH+MSG DECLARATOR+EMPTY+EMPTY, 
MAKE+MODE+ERRONEOUS. 

FIELD+MODE+IDF: 
MUST BE DECLARER+MODE,MUST BE IDENTIFIER+IDF. 

FIELDS+MI+MODE-M2-M3-1DF: 
AGN:ITEM WAS+COMMA SYMBOL, 

(IDENTIFIER+IDFeENTERD+MI+IDF+M2tFIELDS+MI+M3sENTERD+M2+MS+MODE; 
FIELD+MI+IDF,ENTERD+MI+IDF+M2, FIELDS+MI+M3,ENTERD+M2+M3+MODE)# 

ITEM WAS+CLOSE SYMBOL,MAKE+MODE+0; 
ERROR+MSG INCORRECT+MSG FIELDS+MSG PACK+EMPTY+EMPTY, 

SKIP TO NEXT CLOSER,NEXT ITEM. 

The action skip to next closer performs the error recuperation i ts identif ier suggests. 

Notice that an erroneous declarer gets a special mode erroneous which can be of help 

in preventing multiple signalling of one same error. The remaining declarators 

present no new problems. 

PROCEDURE DECLARATOR+MODE: 
ITEM WAS+PROC SYMBOL, PLAN+MODE. 

PLAN+MODE-M1-M2: 
PARAMETERS+MIePROCS RESULT+M2tENTERD+MI+M2+MIoENTERD+PROC+MI+MODE. 

PARAMETERS+MODE: DECLARER LIST PACK+MODE; MAKE+MODE+0. 

PROCS RESULT+MOID: 
MUST BE DECLARER+MOID. 

DECLARER LIST PACK+MODE-ill-M2: 
ITEM WAS+OPEN SYMBOL,MUST BE DECLARER+MIsREST DECL LIST PACK+M2 , 

ENTERD+MI+M2+MODE. 

REST DECL LIST PACK+MODE-M1-M2: 
AGN:ITEM WAS+COMMA SYMBOL,MUST BE DECLARER+MloREST DECL LIST PACK+M2, 

ENTERD+MI+M2+MODE; 
ITEM WAS+CLOSE SYMBOLtHAKE+MODE+0; 
ERROR+MSG INCORRECT+MSG DECLARER+MSG LIST+MSG PACK+EMPTY, 

SKIP TO NEXT CLOSEReNEXT ITEM. 
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ROWS DECLARATOR+MODE-MZ: 
ITEM WAS+SUB SYMBOL, 

REST ROWS DECLARATOR+M1,ENTERD+ROW+MI+MODE. 

REST ROWS DECLARATOR+MODE-MI: 
RST: ITEM ~AS+COMMA SYMBOL, 

REST ROWS DECLARATOR+MI, ENTERD+ROW+MI+MODE; 
ITEM WAS+BUS SYMBOL,MUST BE DECLARER+MODE; 
ERROR+MSG INCORRECT+MSG ROWOF+MSG DECLARATOR+EMPTY+EMPTY, 

SKIP TO NEXT CLOSER, NEXT ITEM. 

UNION DECLARATOR+MODE: 
ITEM WAS+UNION SYMBOL, REST UNION DECLARATOR+MODE. 

REST UNION DECLARATOR+MODE-~II: 
DECLARER LIST PACK+M1,ENTERD+UHION+MI+MODE; 
ERROR+MSG INCORRECT+MSG UNIONOF+MSG DECLARATOR+EMPTY+E~IPTY, 

MAKE+MODE+ERRO~IEOUS. 

5.5 Conclusion 

As a bonus to al l  readers who have shown the patience to follow the argument so far, 

we end by giving some output obtained from the recognizer described. 

1BEGIN REF PROC INT a; 
. . . .  > DEFINIHG IDENTIFIER a HODE REF PROC INT 

2 BEGIN STRUCT ((//)REAL b)b; 
. . . .  > DEFINING IDENTIFIER b MOD~ STRU(~T ( RO~V REAL b ) 

3 INT b; 
====> ERROR: IDENTIFIER b DECLARED T'~'ICE 

.... > DEFINING IDENTIFIER b MODE INT 

4 b:. 
.... > IDENTIFIER b MODE INT 

5 a:. 
.... > IDENTIFIER a I~IODE REF PROC I,~-IT 

G d 
7 END 
. . . .  > ERROR: IDENTIFIER d NOT DECLARED 

. . . .  > IDENTIFIER d HODE ERRONEOUS 

8a; 
. . . .  > IDENTIFIER a MODE REF PROC I?~T 

9b 
10END 
. . . .  > ERROR: IDENTIFIFR b NOT DECLARED 

. . . .  > IDENTIFIER b MODE ERROHEOUS 
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I f  we add a dr iv ing program, error report ing, and various odds and ends, what have 

we obtained? In b ib l i ca l  terms, a colossus on gold feet ,  s i l ve r  legs, iron thighs 

topped with a clay head. Those parts of a compiler which are the hardest to invent, 

especial ly code generation, machine-independent and dependent optimization are missing. 

S t i l l  the parts we have shown here are s u f f i c i e n t l y  general to be a sizeable part of 

any compiler design. This should show the poss ib i l i t y  of "o f f  the shelf" compiler 

components. 

By a l l  standards of judgement, the only way one should not wr i te compilers is the 

one s t i l l  used most: to wr i te i t  in assembly language. 

We hope to have made clear that i t  is possible to design a language, intended sole ly 

for  the wr i t ing  of compilers, which is  of undisputed help in a l l  phases of compiler 

construction. Time, and the in terest  taken by others, w i l l  have to decide whether 

CDL is going to contribute to the a v a i l a b i l i t y  of good compilers for  a l l  languages 

on each machine. 
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CHAPTER 5.A. 

PORTABLE AND ADAPTABLE COMPILERS 

Peter C. Poole 

Universi ty of Colorado 

Boulder, Colorado, USA 

I .  BASIC CONCEPTS 

-LI. Portabil i t #  and Adaptabil i t y  

To say that a program is "portable" implies that i t  is  a r e l a t i ve l y  

easy and s t ra ight  forward task to move i t  from one machine to another; 

i f  the e f fo r t  to move the program is considerably less than the e f fo r t  

required to wr i te  i t  i n i t i a l l y ,  then we can say that the program is 

"highly portable". An "adaptable" program, on the other hand, is one 

that can read i ly  be modified to meet a wide range of user and system 

requirements; again, i f  the e f fo r t  to vary the character ist ics or 

behaviour of the program is  much less than that required to produce a 

specialized program fo r  the same task, then the program is  "highly 

adaptabl e", 
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Portabil i ty is clearly a property possessed by programs written in 

high level languages. In theory at least, i f  a translator for the 

language is available on the target machine, then the program can easily 

be transferred, compiled and executed, Adaptability is a less obvious 

property but is exemplified in a situation where say an operating system 

is being generated to suit a particular machine configuration. 
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Based on the above def in i t ions,  we can say that a "portable and 

adaptable compiler" is one that can easily be moved to a new machine and 

modified to interface with i t s  operating system. However, the situation 

is not quite as simple as th is .  Suppose we have a compiler for  language 

A operating on machine X and we wish to move i t  to machine Y. By one 

means or another, we make the transfer and the compiler becomes 

available on Y. I t  accepts, as input, source statements in A; 

unfortunately, i t  w i l l  s t i l l  produce code for the original machine X. 

Thus, just a straight transfer of the program does not give the desired 

result.  We must also modify the algorithm so that i t  produces the 

correct code for the new machine. Usually, with portable software, this 

is just the thing we are trying to avoid, e.g. i f  we transfer a text 

editor, we expect i t  to behave on the new machine exactly as i t  did on 

the old one without us having to alter the program in any way. With a 

compiler, we must be concerned not only with the transfer to the new 

machine but also with the modifications that w i l l  enable i t  to produce 

correct output. 

The advantages that accrue from making software portable and 

adaptable are la rge ly  economic ones. I f  the e f f o r t  involved to move the 

software is much less than the e f f o r t  required to reprogram, then the 

cost o f  making the software avai lab le on a new machine w i l l  be great ly  

reduced. I f  the t rans fer  process is a f a i r l y  mechanical one so that the 

p robab i l i t y  of int roducing new errors is  small, then users of the 

software on the new machine w i l l  benef i t  great ly  since i t  w i l l  be t r i e d  
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and tested. Portable and adaptable compilers provide a two-fold benefit 

the development of new software is not impeded by compiler errors and 

the transfer of old software is greatly faci l i tated.  

1.2. Problems with Current Compilers 

With the development of FORTRAN and other high level languages in the 

ear ly 60's, people began to predict quite confidently that the era of  

"machine independence" would soon be with us. Programs no longer would 

be locked to the par t icu lar  machines on which they were developed; 

ins ta l la t ions  would no longer have to bear the heavy expense of re- 

programming for  a new machine. Al l  software would be wr i t ten in high 

level languages and programs could easi ly  be transferred from one 

machine to another once the compiler fo r  the par t icu lar  language became 

avai lable.  Although i t  was recognized that i t  would be necessary to 

expend considerable e f fo r t  to make the compilers widely avai lable,  i t  

was assumed that  i t  was merely a question of time and money. A decade 

later,  we are al l  only too well aware that these early predictions have 

not become real i ty .  High level languages have found ready acceptance in 

the user community and have been largely responsible for the tremendous 

growth in the use of computers that has occurred in the last few years. 

However, i t  is s t i l l  no easy task to move programs from one computer to 

another even when they are written in a high level "machine-independent" 

language. 

The reasons for the present d i f f i cu l t ies  in transferring software are 

partly historical and partly economic. The f i r s t  of the high level 

languages to find wide spread acceptance was FORTRAN, This language was 

developed by IBM and, as i t  became more and more popular, other 
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manufacturers were forced to follow suit by providing compilers for the 

language that is, i f  they wished to continue to compete with IBM in the 

market place. Invariably, such compilers accepted slightly different 

languages to the one processed by the IBM version, partly because the 

language was not well defined and pa r t l y  because each manufacturer 

tended to add new features in an attempt to make his system more 

a t t r ac t i ve  to a potent ia l  customer. Even moving a FORTRAN program from 

one IBM machine to another could be fraught wi th d i f f i c u l t i e s  since 

compilers developed by d i f f e ren t  implementation groups even for the same 

machine might not necessari ly be compatible, 

The key to the d i f f icu l ty  appeared to be standardization. I f  a well 

defined standard for the language could be constructed and published, 

then there might be fewer discrepancies between compilers produced by 

different manufacturers since there would be pressure from customers on 

them to adopt the standard. Accordingly, in 1962, a group was set up by 

the American Standards Association to prepare a standard for FORTRAN. 

In 1966, the f i r s t  ASA standard for FORTRAN IV was published [FORTRAN 

66] and was followed by revisions and clarifications in 1969 

[FORTR~ 69] .  These documents have gone a long way towards setting up 

the necessary standards for the language. However, differences between 

compilers s t i l l  occur. The existence of a standard does not prevent a 

manufacturer from adding extra features to the language over and above 

what the standard sets out in order to attract new customers or keep 

existing ones locked to his machine once they have made use of some non- 

standard feature. Programmers are usually guided by manuals supplied by 

the manufacturer and most are unaware of the details of the standard, 

even, in many cases, of i ts  very existence. Hence, they can easily make 
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use of some convenient feature available locally and not appreciate the 

d i f f i cu l t ies  i t  w i l l  cause them when subsequently they try to move the 

program to another machine. For example, a permissible subscript in IBM 

FORTRAN IV is 

variable ± variable 

which is obviously more general, ef f ic ient  and convenient than 

variable±constant 

the only form permitted by the standard. Any attempt to move a program 

containing such constructs to say a CDC machine could involve many 

changes and considerable effort.  Further, the implementation of non- 

standard features can s t i l l  lead to discrepacies between two compilers 

from the same manufacturer and operating on the same machine since they 

can be implemented in s l ight ly  different ways. For example, mixed mode 

arithmetic involving reals and integers is not permitted by the ASA 

FORTRAN IV standard. However, both FORTRAN compilers for the CDC 6000 

series accept expressions containing such mixtures. Unfortunately, the 

algorithms used in the two compilers d i f fer  s l ight ly .  One of the 

compilers only switches to real arithmetic when i t  encounters an operand 

of this type; the second compiler, on the other hand, f i r s t  searches the 

expression for the dominant mode and performs all arithmetic operations 

in that mode i ,e.  i f  the expression contains a real operand, then only 

real arithmetic is used during i ts  evaluation as al l  integer operands 

are f i r s t  converted to real ones . I t  is not d i f f i cu l t  to construct 

expressions which wi l l  produce s l ight ly  different results according to 

which of the two algorithms is used. Thus, the result of a calculation 

could depend on which compiler produced the object program, hardly a 
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very satisfactory situation. 

Even when an attempt is made to implement the standard exactly~ there 

s t i l l  remains a strong possibility that the finished compiler wi l l  not 

be error-free. Residual errors could be due to the implementation or 

ones due to a misinterpretation of the published standard. The document 

which defines FORTRAN, although i t  uses English as the meta-language, is 

not an easy one to read. The definition is very rigorous and must be 

thoroughly understood before any attempt is made to translate i t  into 

the design of a compiler. I t  should be noted that the standard is only 

concerned with the syntax and semantics of FORTRAN; i t  says nothing 

about how the language should be translated. There are therefore many 

possibilities for introducing errors during the construction of a 

working compiler. Most of these wi l l  ultimately be corrected but some 

wil l  be allowed to remain, either because they are not considered 

troublesome or because they could be very expensive to correct. Users 

of a particular compiler soon learn to avoid i ts  trouble spots. The 

di f f icul t ies only arise when an attempt is made to transfer software 

between machines. 

To i l lustrate the type of error that has been allowed to remain in 

existing compilers, consider the FORTRAN program in Figure l . l ,  The 

compiler has obviously mistaken the statement labelled "lO" as a FORMAT 

statement even though FORMAT has been dimensioned as an array at the 

beginning of the program. Some FORTRNI compilers are designed to treat 

words l ike GOTO, IF, FORMAT, etc. as reserved words even though the 

standard does not define them as such since this simplifies the 

construction process, However, i t  cannot be argued that the CDC 
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RUN VERSION NOV 71 D 13:39 74/01/04 
PROGRAM OUCH(OUTPUT,TAPE6=OUTPUT) 

000003 DI MEN Sl ON FORMAT (2), J (2) 
000003 INTEGER FORMAT 
000003 FORMAT (I)=I 
000004 J(l )=2 
000005 l 0 FORMAT (l)=J(l ) 
000005 WRITE(6,100) FORMAT(I ) 
000013 lO0 FORMAT(23H VALUE OF FORMAT(I ) IS , l l  ) 
OOOOl 3 END 

VALUE OF FORMAT(1) IS 1 

a) successful compilation under RUN but incorrect execution 

PROGRAM 

CARD NO. 

6 

OUCH CDC 6400 FTN V3.0-P363 OPT=I 74/01/04 13,39.10. 

SEVERITY 

FE 

I0 

1 O0 

15 

PROGRAM OUCH (OUTPUT ,TAPE6:OUTPUT) 
DIMENSION FORMAT(2) ,J(2) 
INTEGER FORMAT 
FORMAT (I)=I 
J(l )=2 
FORMAT (I)=J( l  ) 
WRITE(6,1 00) FORMAT(I ) 
FORMAT(23H VALUE OF FORMAT(1) IS , I I )  
END 

D IAGNOST IC 

CD 6 PRECEDING CHARACTER ILLEGAL AT THIS POINT 
IN CHARACTER STRING. ERROR SCAN FOR THIS 
FORMAT STOPS HERE. 

b) unsuccessful compilation under FTN 

Figure 1 .I 
Varying Behaviour of Equivalent Compilers with Same Program 
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compiler belongs to th is  class wi th  FORMAT as a reserved word since i t  

accepts as legal the assignment statement at the beginning of the 

program. One can only conclude that  FORMAT is taken to be a reserved 

keyword i f  i t  is  fol lowed by a l e f t  parenthesis and the statement is  

terminated by a right parenthesis, Notice also that the same error 

occurs in both CDC compilers although the RUN compiler does not check 

the format specification as does FTN. Thus the lat ter  compiler not only 

accepts an assignment statement as a fo~at  statement but also proceeds 

to inform the programmer that the specification is incorrect. I t  could 

be argued that anyone who uses the word FORMAT as an ident i f ier  is 

asking for trouble. However, i t  is permitted by the standard and could 

have a very valid mnemonic meaning in a particular program. Clearly the 

RUN compiler could create a puzzling situation i f  a program which 

contains the ident i f ier  FORMAT is transferred from a machine in which i t  

is accepted to a CDC computer. The program would compile as legal but 

would execute to produce incorrect results, 

Another example of  an error is  shown in Figure 1.2a where a per fec t ly  

legal FORTRAN program f a i l s  to compile. The offending statement is  a 

GOTO and the error  message indicates that there is an i l l ega l  reference 

to a DO loop terminator.  I t  i s  c lear from an examination of the tex t  

that  t h i s  is not so since the label led GOTO statement is  in the extended 

range of the DO as defined by Section 7.1.2.8.2 of the FORTRAN standard. 

I f ,  nowl we move the GOTO statement to a posi t ion before the DO loop~ 

then the program compiles successful ly as shown in Figure 1.2b. 

Apparently, the compiler only permits an extended range i f  i t  occurs 

before the DO statement. This does not conform to the standard which 

does not specify any posi t ion re la t i ve  to the DO loop fo r  an extended 
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RUN VERSION NOV 71D 13:56 74/01/04. 

PROGRAM FORTES3(INPUT,OUTPUT) 
000003 30 DO I0 I=1,9 
000005 IF(I.EQ.I)GOTO 20 
000007 lO CONTINUE 
O00011 STOP 
000013 20 GOTO lO 

****GTF********** 
000013 END 

GT*******ILLEGAL REF. TO DO LOOP TERMINATOR FROM OUT OF LOOP 
000013 

a) unsuccessful compilation under RUN 

RUN VERSION NOV 71 D 13:56 74/01/04, 

PROGRAM FORTES4(INPUT,OUTPUT) 
000003 20 GOTO lO 
000004 30 DO l O I=l.9 
000006 IF(I.EQ.I )GOTO 20 
DO0010 l O CONTINUE 
0000012 STOP 
000014 END 

SPACE REQUIRED TO COMPILE -- FORTES4 
032000 

b) successful compilation under RUN 

Figure 1.2 
Varying Behaviour of Same Compiler with Equivalent Programs 
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range. 

1.3. Portable ~nd Adaptable Standards 

Pressure for the definition of and adherence to standards must, in 

the long run, come from computer users. I t  is their interests which are 

best served by the easy transfer of software from one machine to 

another. To some extentt manufacturers gain from forward portability 

i~e. the ab i l i ty  to move existing software but they have l i t t l e  to gain 

by making i t  easy for a customer to transfer his programs to a 

competitor's machine. Hence, users must be provided with a readily 

accessible yardstick against which they can compare the compiler 

supplied by the manufacturer. Such a measure could be provided in the 

shape of a standard compiler, one that is both portable and adaptable. 

Let us suppose that the standards committee in addition to publishing 

a meta-linguistic description of the language also makes available a 

standard compiler and a comprehensive set of test programs. The 

compiler would have to be both portable and adaptable so that i t  could 

be readily transferred to many machines and easily tailored to a variety 

of systems. An implementation guide would also be required so that any 

manufacturer could make the language (or a standard subset) available on 

his machine. The purpose of the suite of test programs is two-fold. In 

the f i r s t  place~ any implementor of the compiler would need such a set 

in order to validate his implementation. A second and perhaps even more 

important function is to provide the customer with a means for checking 

the manufacturer's compilers. One would certainly expect the portable 

standard to be available on any machine. However, there would be 

nothing to stop a manufacturer providing his own compiler as well, 
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perhaps to gain extra efficiency. The test programs could be used to 

check this compiler as well as the standard. I f  the testing can be 

carried out successfully to show that the two compilers are compatible, 

then the user wi l l  have a high degree of confidence that his programs 

wil l  be easily transferred to other machines. Of course, i f  the 

manufacturer out of the goodness of his heart, adds extra features to 

the language and makes these available in his compiler, then the onus is 

on the user to beware of such "goodies". Any di f f icul t ies he encounters 

in moving software are on his own head. 

As wil l  be seen during the course of these lectures, the technology 

for creating such portable and adaptable standards is already here; 

whether the current political situation favours such an approach is 

another question. Apart from discouraging noises that might emanate 

from manufacturers, there is s t i l l  a considerable gap between the 

language designers who specify the syntax and semantics of the language 

and the software engineers who build the compilers. Hence, there is 

always the possibility that a standard wil l  be misinterpreted or even 

consciously modified because some particular feature is very d i f f i cu l t  

to implement. What we would l ike to achieve is a situation in which the 

definition of the language could be used to produce the compiler 

automatically. The compiler would then be the physical realization of 

the standard for the language. 
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2. SURVEy OF TECHNIQUES 

Let us now consider what is actually involved in transferring a 

compiler from one machine to another and the ways in which this might be 

achieved. Obviously, i f  the compiler is written in the assembly code of 

machine A, then no transfer to machine B is possible unless B is very 

similar to A, for example, both A and B are members of a range of 

machines, Hence, we must assume that the compiler is described in some 

machine independent language. We will consider f i rs t  the case where a 

general purpose language is used to describe the compilation algorithm. 

Later, we will mention techniques which use special purpose languages to 

describe the language to be compiled and to assist in the production of 

the compiler. 

2.1. Portability through ~ Level Language Cod in9 

Suppose we have a compiler for language A written in language B which 

is running on machine X and producing code for that machine. Suppose, 

now, that we wish to transfer the compiler to machine Y. I f  the 

compiler for B is available on Y, then the transfer would be quite 

straight forward, provided the compilers were compatible. Of course, as 

we have already noted, the compiler would s t i l l  be translating A into 

code for X. Hence, the code generation routines would have to be 

rewritten and, whether this is possible or not, will depend on the 

existence of a well defined interface and the availability of good 

documentation. Provided these conditions are fu l f i l led,  then, in 

principle, there should be no di f f icul ty in transferring the compiler. 
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Some of the early attempts at producing portable compilers made use 

of FORTPJ~N, the most widely distributed h igh  level language. 

Unfortunately, FORTP~AN is not a language well suited to the writing of 

compilers and these usually proved to be rather large, slow and 

cumbersome. The situation has improved somewhat of late with the 

availabi l i ty of languages l ike BCPL [Richards 69a] and Pascal [Wirth 

71a] which are much more suitable for the writing of compilers than was 

FORTRAN. However, whatever the language, there is s t i l l  the need to 

modify the code generating routines for the new machine. 

2.1.1. Bootstrapping. The more usual situation is one in which 

there is no compiler for language B on machine Y and we are faced with 

the task of "bootstrapping" the compiler onto the new machine. There 

are two approaches that can be taken to solve this problem. The f i rs t  

approach involves both the donor and the target machine. First ly, the 

compiler for B on the donor machine X is modified to produce symbolic 

assembly code for Y. Then, the compiler for A written in B is modified 

to produce code appropriate to a production compiler on machine Y. When 

a satisfactory version of this compiler has been produced, i t  is taken 

to machine Y, assembled and tested. Errors result in changes to the 

source text of the compiler held at the donor machine and the cycle is 

continued until a working version of the compiler is available on the 

target computer. A minor variation to the approach occurs when A and B 

are the same language i .e. the compiler for A is written in A. In this 

situation, the compiler can be modified to produce symbolic assembly 

code for Y instead of code appropriate to the final version. The latter 

can then be developed entirely on the target machine. 
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The above strate~, sometimes called "half-bootstrapping" [Halstead 

62] or "pushing", can suffer from a slow debugging loop and 

communication di f f icul t ies. I f  both machines are close together and 

accessible to and understood by the implementatation personnel, then the 

method can be quite effective. However, this is not the usual case and 

there is evidence which indicates that when the machines are 

geographically remote and different groups are attempting to 

communicate, then the success rate is not very high. A large number of 

iterations is usually required and a long time may be needed to bring 

the compiler up on the target machine. 

In the second approach, all the work to implement the compiler on the 

new machine is carried out on that machine. Th is  strategy is often 

referred to as "ful l  bootstrapping" [Waite 69] or "pulling". The 

implications are that the compiler is available in a symbolic form, that 

there are tools available to assist the implementation and that the 

whole process is supported by good documentation. In practice, this 

turns out to be the better of the two approaches since the communication 

problems are much less severe. I t  appears that one is much more certain 

of a successful implementation i f  one describes to people who understand 

the target machine and i ts system the method for implementing the 

portable software rather than trying to inform the developers of the 

software about the idiosyncracies of the target machine. 

To i l lustrate the ful l  bootstrap approach, suppose that, in addition 

to the compiler for language A written in B, there also exists a 

compiler for language B written in FORTRAN. I f  FORTRAN is available on 

machine Y, then this version of the compiler can be readily transferred 
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(providing that the FORTRAN's are compatible). I t  wi l l  s t i l l  translate 

language B into assembly code for machine X and the code generators must 

therefore be modified to produce assembly code for machine Y. Again, we 

assume that the compiler has been suitably structured so that this is a 

straight forward process. Now, what we have is a compiler for language 

B running on machine Y and producing code for that machine. Since i t  is 

written in Fortran, i t  i s  l i ke ly  to be very slow and ineff ic ient and 

would hardly suffice as a production compiler. However, i t  only has one 

task in front of i t ,  namely, to translate the compiler for A written in 

B into assembly code for Y and i t  real ly does not matter how long this 

process takes. The resultant assembly code version of the compiler for 

A s t i l l  produces code for machine X but, at least, the process is an 

eff ic ient one. What we must do now is modify the code generators of 

this compiler. Once these modifications have been checked out and the 

compiler interfaced to the system, then we have achieved our goal - a 

compiler for A operating on machine Y. Notice that all the work has 

been carried out on the target machine - an essential point of the fu l l  

bootstrap approach. 

2.1.2. Language-Machine Interface. I t  is clear from the above 

discussion that a key factor controlling the portabi l i ty of a compiler 

is the existence of a suitable program structure. In order to move the 

compiler, we must be able to rewrite the code generating routines to 

suit the new machine. For this to be a not unreasonable task, there 

must be a well defined interface such that the compiler can be divided 

into two parts, one dependent on the language and the other on the 

target machine. Providing there is a clear separation, only the part 

dependent on the new machine wi l l  need to be modified to effect the 
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transfer. The part of the compiler which depends only on the 

characteristics of the language we wil l  call the language-dependent 

translator (LDT); the part which depends only on the target computer 

wi l l  be referred to as the machine-dependent translator (MDT). The 

communication between these two parts can either be in the form of 

procedure calls or as a symbolic program in an intermediate assembly 

code. 

The LDT breaks the source code into tokens, and contains the 

formation rules that express the way the tokens may be combined in a 

program to form sentences in the language. I f  the program's syntax does 

not conform to that of the language, appropriate error diagnostics must 

be reported. After the LDT has analyzed the program for syntactic 

errors, i t  determines what actions are required to execute the program. 

Collectively, the actions are semantically equivalent to the source 

program. To keep the LDT machine-independent, the actions i t  produces 

must not rely on a particular target computer; ~hey are the fundamental 

operations that must be implemented on ~ computer, As the LDT 

determines what fundamental operations are needed, i t  call s upon the MDT 

to convert each operation into executable code for the target computer. 

Thus, the information flow is generally from the LDT to the MDT, The 

information passed back to the LDT from the MDT involves characteristics 

of the target machine which are needed to generate the proper 

fundamental operations. For example, the LDT must be able to perform 

address calculations in terms of the target machine's address unit. 

I f  a compiler is wr i t ten in a high-level language and structured as 

described above, then in pr inc ip le ,  there should be no d i f f i c u l t y  in 
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moving i t  from one machine to another. Often such compilers are written 

in their own languages and once the f i rs t  compiler is available, the 

half-bootstrap technique can be used to effect the transfers. However, 

as we have already noted, this is not without its attendant 

di f f icul t ies. We would prefer to use the full-bootstrap approach. We 

will now consider how this might be achieved with no assumptions made 

about the software available on the target machine. 

2.2. Portabilit ~ through Abstract Machine Modelling 

The information flow between the two parts of a compiler is composed 

of the fundamental operations of the language in one direction (LDT to 

MDT), and the information about the target machine in the other (MDT to 

LDT). The fundamental operations are the instruction set for a computer 

which is designed for the programming language (e.g. a Pascal machine). 

The information flow from the MDT to the LDT is represented by pseudo 

operations in the computer's assembly language. This computer is called 

the abstract machine. 

An abstract machine is based upon operations and modes that are 

primitive in the programming language. The LDT translates a program 

into abstract machine code by breaking constructs of the language into a 

sequence of primitive operations on the primitive modes. The primitive 

modes of the abstract machine can be types in the language (e.g. REAL in 

Pascal), or modes that are used to construct the more complex types of 

the language (e.g. structured types in Pascal). The primitive 

operations of the abstract machine are the simplest and most direct 

operations that will describe a program in the language. A primitive 

mode and a primitive operation form a pair which describe an 
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instruction; some modes and operations cannot be paired because they 

would have no meaning in the language. 

The architecture of the abstract machine forms an environment in 

which the modes and operations interact to model the language. Unlike a 

real machine whose architecture is governed by economic considerations 

and technical limitations, the abstract machine has a structure which 

faci l i tates the operations required by a given programming language. 

The designer of the abstract machine must plan the architecture so that 

i t  can be eff iciently implemented on a real machine. 

The abstract machine can be embedded into the LDT by a series of 

interface procedures, one for each abstract machine instruction. When 

the LDT determines that a certain abstract machine instruction is 

needed, a call is made upon the corresponding procedure. The effect of 

the procedures is dependent on the method chosen to implement the MDT. 

The use of an abstract machine allows the LDT and the MDT to be 

separated by a well-defined interface. The separation permits one to 

refine either part of the compiler without affecting the other. A move 

to a new machine wi l l  require extensive modifications to the MDT, while 

the LDT wil l  need l i t t l e  change. 

Another advantage of using an abstract machine is the choice i t  

allows in implementing the MDT. The LDT's interface procedures could 

produce a symbolic assembly code for the abstract machine. The MDT 

would then be an abstract machine assembler which could be implemented 

by using a macro processor, either the one provided with the real 
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machine's assembl er or a machine-independent macro processor, 

Another implementation of the MDT is to place i t  within the interface 

procedures. When the LDT makes a call upon one of these procedures, the 

MDT gains control and produces the target machine equivalent of the 

abstract machine instruction corresponding to the procedure. The 

equivalent code could be in the target machine's assembly language, 

relocatable binary, or absolute binary. 

2.2.1. A Standard Abstract Machine. A standard abstract machine is 

an abstract machine which has been carefully designed around a model 

that can be used for many programming languages. Many LDTs can produce 

assembly code for the standard abstract machine, and one assembler could 

be used to translate this assembly code for the target machine. 

The standard abstract machine language should be extensible to allow 

new operations and modes that appear in a new programming language. 

When several compilers use the same abstract machine, many of the 

operations and modes wi l l  recur in several of the compilers. A new 

compiler wil l  require only a few new operations and modes. The more 

differences there are between two languages, the harder i t  is to design 

an abstract machine which wi l l  be suited to both, For example, an 

abstract machine designed for Pascal could with a few modifications be 

adapted to ALGOL60, However, major modifications might be necessary to 

make the machine useful for LISPI.5, 

The amount of work necessary to design and implement a particular 

abstract machine decreases as the l ibrary of operations and modes grows. 
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Moving a standard abstract machine version of a compiler to a new 

machine requires only the implementation of the operations and modes not 

in the new machine's abstract machine library. The result is less work 

and faster ini t ial  implementation of the compiler. 

A family of abstract machines called Janus [Coleman 73] has been 

developed at the University of Colorado in order to study the problems 

of producing portable software and in particular portable 

compilers. Figure 2.1b il lustrates the role of Janus in the translation 

process: The translator is split along the interface of Figure 2.1a. A 

small module attached to the analyzer encodes the information normally 

passed across the interface from le f t  to right. The encoded information 

constitutes a symbolic program, which can then be transmitted to another 

computer. Janus specifies the structure of this symbolic program, but 

says nothing about the particular set of operators and modes which can 

be used. 

The symbolic Janus code is translated to the assembly language of the 

target computer by a program such as STAGE2 [Waite 70b]. Simple 

translation rules are supplied by the user to describe the various Janus 

constructs and the primitive modes and operators. Final translation to 

object code is provided by the normal assembler of the target computer. 

The design for the Janus family of abstract machines is based upon 

the relationship between existing languages and existing hardware. Each 

component of Figure 2.2 models a specific language characteristic; the 

precise form of the model was chosen to simplify the generation of 

machine code from symbolic Janus. 
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b) Janus as an intermediate language 

Figure 2.1 

The Translation Process 
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Figure 2.2 

The Architecture of the Janus Family of Abstract Machines 
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The memory and the processor model the explicitly-named operands and 

the primitive operators, respectively. Details of the structure and 

capabilities of these components are omitted from the definition of 

Janus because they depend upon the particular set of primitve modes and 

operators provided by the abstract machine. An expression is used to 

avoid explicit ly naming the intermediate results of a computation, and 

hence this introduces anonxmgu ~ £~#ra.nds. The accumulator and the stack 

of Figure 2.2 model anonj~nous operands in the same way that the memory 

models explicitly-named operands, 

Figure 2°2 favors target computers with a single arithmetic register, 

or with multiple arithmetic registers and register/storage arithmetic. 

For machines with a register f i le  or stack, i t  is necessary to expand 

certain symbolic Janus instructions into sequences of machine 

instructions. This expansion is easy to do, because the code generator 

need not consider the context in which the instruction occurs. Machines 

with no programmable registers have no provision for anonymous operands, 

and hence all operands must be given names by the code generator. 

Correct qode can always be produced by simulating a machine with a 

single arithmetic register. 

An array or structure is an aggregate which is recognized as a 

distinct entity, but whose components may be used individually as 

operands. Access to a component is provided by an index, which defines 

a location within the aggregate. Again, the organization of Figure 2.2 

favors computers with explicit index registers. Th is  class seems to 

represent the mainstream of computer architecture, although there exist 

other mechanisms for component addressing. However, the model chosen 
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provides enough information to generate correct code in each case 

without retaining contextual information. Figure 2.2 thus reflects the 

use of expressions to form complex operations from primitive operators, 

and the use of arrays and structures to create complex data items from 

primitive modes. Since there appears to be widespread agreement about 

how these particular formation rules should be implemented in hardware, 

Figure 2,2 also reflects the organization of contemporary computers. 

There is less agreement regarding the hardware realization of 

conditionals, iterations, and procedures. I t  appears that these 

formation rules do not have a strong influence on the overall 

o_rr~anization of a machine; they are reflected in the set of operators 

provided. 

For conditionals, the crit ical questions here are whether the 

abstract machine should have an explicit condition code, and whether a 

comparison should destroy the contents of the accumulator. Janus takes 

a middle course and provides both destructive and non-destructive 

comparison operators which set a condition code destroyed by any 

instruction other that a conditional transfer, The accumulator is 

destroyed by any transfer of control except one following a non- 

destructive comparison. 

An iteration may proceed under count control, or i t  may continue 

until a certain condition holds. The former is a special case of the 

latter, but i t  is sufficiently important such that some computers have 

special instructions which wi l l  modify a register, test i t  and transfer 

control i f  some condition is met. Although this indicates that the 



452 

abstract machine model might be provided with an iteration counter which 

can be incremented and tested by a transfer instruction, i t  has not been 

incorporated because of the dif f icult ies in formulating the instructions 

to manipulate i t  in such a way that they apply to most computers. 

A procedure invocation involves both parameter passing and status 

saving. Because of the diversity in status saving methods, one must use 

a high level model for a procedure call. Janus employs three 

instructions: 

I) Return 

the procedure. 

2) Lin~k appears as 

procedure body. 

3) Return is used 

the procedure. 

Jump is used in the calling program to actually invoke 

the f i rs t  executable instruction of the 

in the procedure body to actually return from 

These instructions are interdependent, a fact which may be used by the 

implementor to match any one of the status saving methods. 

Parameter mechanisms (reference, value, etc.) are primarily 

determined by the source language. The location of parameters in the 

calling sequence is system-dependent; there are three common techniques: 

I) Parameters are stored in the calling program in the vicinity of 

the return jump. 

2) Parameters are stored in a fixed area of the called program. 

3) Parameters are stored in registers or on a stack. 
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A diversity of parameter mechanisms, like the diversity of status 

saving methods, demands a high level model. Janus uses two special 

pseudos: 

l )  CALL marks the beginning of the code required to compute 

arguments at run time. (For example, to obtain the address of 

A(1) when arguments are passed by reference.) 

2) CEND marks the end of a set of storage reservation pseudos 

which define the argument l i s t .  

These pseudos, in conjunction with the three procedure call instructions 

discussed above, can be used to create procedure calls conforming to a 

wide variety of conventions. 

Reference modes are represented by addresses or by descriptors. A 

primitive mode ADDR may be used to describe either representation. A 

"load inmediate" instruction creates an entity of ADDR mode which 

references the operand of the instruction, and leaves i t  in the 

accumulator. A pseudo which allows one to preset a reference in memory 

is also required. 

2.2.2° Janus Assembl~ Language Formats. The symbolic Janus program 

is an encoding of the information which passes across the interface of 

Figure 2.1a. The design goal was to present the information in a form 

which would simplify the process of producing assembly language for the 

target computer. Although i t  would certainly be POSSib]e for a human 

programmer to write Janus, such an approach is not advocated. I t  is 

assumed that the code will always be pro'duced as the output of some 

translator. 
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Janus has two basic formats for executable instructions: 

operator model mode2 

operator mode reference 

The f i rs t  of these is used for instructions which may be broadly classed 

as mode conversion (f ix, float) and value conversion (negate, truncate) 

operations which modify the contents of the accumulator. Model and 

mode2 are the ini t ial  and final modes, respectively, of the accumulator 

contents. 

than the 

references 

operands, 

operands. 

The second instruction format is used when an operand other 

accumulator must be specified. Three major classes of 

may be distinguished: references to explicitly-named 

references to anonymous operands, and references to constant 

Each reference to an explicitly-named operand specifies a synlbol and 

an index. Normally, the attributes of each symbol would be specified by 

declaration and stored in a dictionary by the translator. However, 

dictionary lookup is a time- and space-consuming process for STAGE2 and 

i t  was desired to avoid this i f  possible. 

Examination of the usual attributes of an operand revealed two - 

£ategory and address - which influenced the translation of the reference 

into machine code. The category tel ls what sort of operand is being 

represented. For example, categories can be used to distinguish 

arguments, formal parameters, and particular storage areas (local, 

global, dynamic, etc.) Often these operands will require different 

translations. Such special treatment can be provided only i f  i t  is 

possi~e to distinguish the operands which require i t .  
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On most machines the value of the address does not affect the 

sequence of instructions needed to accomplish the reference. Provided 

that the symbol in the Janus instruction is acceptable to the target 

machine's assembler, i t  may be used unchanged in the output code. Under 

these circumstances no dictionary lookup is required to establish the 

address during the STAGE2 run. 

I t  is useful to separate the index of an aggregate reference into two 

parts: the fixed offset (whose value may be obtained from the program 

text) and the variable offset (whose value must be determined during 

execution.) On many computers the base address and fixed offset may be 

combined at translation time to form an "effective base address." The 

final address is then obtained at run time by addition of the variable 

offset. 

Instructions which reference explicitly-named operands therefore have 

the following general fom: 

operator mode category symbol(fixed)variable 

Either or both of the offset specifications may be omitted. 

A reference to an anonymous operand is a reference to the top element 

of the stack. I f  the target computer does not have a hardware stack, 

then the Janus stack must be simulated in memory. All references to 

anonymous operands are in the same category~ and hence the category 

f ield of the instruction can be used to indicate that the operand is 

anonymous. The address specifies a location within the current frame of 

the simulated stack. The only problem is that entities of different 
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modes require different amounts of storage and, in some cases, must be 

aligned on different address boundaries. I t  would be wasteful to 

simulate the stack by an array of fixed-size elements, and hence the 

actual address corresponding to a particular operand must be determined 

by the contents of the stack at the time the operand is pushed onto the 

stack. Most of the bookkeeping associated with this storage allocation 

can be performed by the analyzer; only the actual address assignment 

must be deferred until the characteristics of the target machine are 

known. 

I f  the address and size of the previous element on the stack are 

known, then these can be combined to determine the f i r s t  address beyond 

the previous element. The alignment of the new item can be used to 

determine the proper boundary. The address of the new element is then 

assigned to the symbol for the anonymous operand, which would be used to 

provide the address of the previous element for the next new element. 

(Note that both the size and alignment of an item can be determined from 

i ts mode.) 

Instructions which reference anonymous operands therefore have the 

following general form: 

operator mode STACK symbol(size)previous 

Both "size" and "previous" would be omitted i f  the operand were the 

f i r s t  on the stack. 

A reference to a constant operand may ~r may not involve a memory 

reference on the target machine. The value can often be incorporated 
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into the instruction i t se l f  i f  the constant satisfies certain machine- 

dependent constraints. When this cannot be done, the constant must be 

placed in memory. All references to constant operands are in the same 

category, and hence the category f ie ld of the instruction can be used to 

indicate that the operand is a constant, I t  is also useful to associate 

a symbol with the constant in case the target machine's assembler is 

incapable of handling l i tera ls .  

There are four types of constants: 

(1) An as-is constant is independent of the target computer, and 

(2) 

(3) 

(4) 

i ts  value can be placed directly into the Janus code. 

An expression constant is usually associated with the 

addressing structure of the target computer. Its complexity 

is limited by the translator. Each Janus mode identif ier is 

assumed to be a variable whose value is the number of target 

machine address units occupied by an entity of the 

corresponding mode. 

A symbolic constant provides for machine-dependent constants 

which are unrelated to the addressing structure. Their values 

are preset in the memory of the translator by a pseudo, and 

are substituted into the Janus instruction. 

A character code constant could be handled via a symbolic 

reference, but this requires excessive amounts of translator 

memory. I t  is a simple matter for the translator to compute 

the integer equivalent of a character [Waite 73]~ and hence 

such constants are treated separately. 
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Instructions which reference constant operands therefore have the 

following form: 

operator mode CONST symbol() type value 

Storage for an operand can be reserved i f  one knows the mode of the 

operand, whether i t  is an array, and the number of array elements. I f  

the contents of the reserved area are to be init ial ized, most assemblers 

require that the in i t ia l  values be presented at the time the storage 

reservation is made. The storage requirements of the entire array 

should be stated in a single pseudo so that a descriptor for the array 

can be constructed. I f  all elements have the same init ial value, that 

value can be attached to the pseudo, Otherwise, the pseudo is flagged 

to indicate that init ial ization follows. The ini t ia l  values can then be 

defined by a sequence of pseudos, each of which sets or skips a block of 

elements. 

The storage reservation pseudo therefore has the following general 

fom: 

SPACE mode category symbol(elements)flag type value 

I f  "flag" is present, in i t ia l  value specifications follow this 

pseudo; "symbol" and "flag" will both be omitted on those 

specifications. 

2.2.3. Some Janus Examples. Figure 2.3 contains several storage 

reservations, both with and without init ial ization. The constant types 

are flagged by "A" (as-is), "E" (expression), "M" (symbolic) and "C" 
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SPACE INT LOCAL G2(3) 
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SIMPLE VARIABLE 

THREE-ELEMENT ARRAY 

a) 

SPACE INT LOCAL G3() C X. 

SPACE REAL LOCAL G4() M LN~SE. 

SPACE INT LOCAL G5(15) A 6. 

Reservation without in i t ia l izat ion 

CHARACTER C DE 

SYMBOLIC CONSTANT 

FIFTEEN IDENTICAL ELEMENTS 

b) Reservation with i n i t i a l i z a t i o n  

DECLARE ARRAY, INITIALIZATION FOLLOWS 

FIRST ELEMENT IS INITIALIZED 

SECOND ELEMENT IS NOT 

THIRD AND FOURTH ARE 

Separate i ni t i  al i za t i  on of array el ements 

Figure 2.3 

Use of the SPACE Pseudo 

SPACE INT LOCAL G6(4)+ 

SPACE INT LOCAL ( I )  A O, 

PACE INT LOCAL (I)  . 

SPACE INT LOCAL (2) A I .  

c) 
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(character code). A plus is used as the "init ial ization to follow" 

flag. 

The procedure of Figure 2.4 calculates the square root of a positive 

real number, using Newton's iteration. The algorithm has been 

simplified somewhat in order to concentrate on the features of Janus. 

The f i r s t  line specifies the mode of the result and the number of 

parameters, as well as the name of the routine. Th is  information is 

included to ease the implementation of certain linkage conventions. 

A SPACE declaration is given for each parameter. These declarations 

may or may not reserve storage. They serve to identify the mode of the 

parameter and to associate a symbol with the parameter position. 

Declarations of parameters are distinguished by the category PARAM. and 

hence may be treated specially by the translator. 

LINKN is a special form of LINK, which conveys the additional 

information that this procedure does not invoke other procedures~ Some 

optimization may be possible in this case i f  parameter addresses are 

passed in registers. 

The remainder of the program is quite straight forward with the 

exception of CMPNF. This is a non-destructive comparison which checks 

the contents of the accunmulator without destroying i t .  The F indicates 

that the value of the accummulator is only used on the "fal l-through" 

path, The LOC pseudo defines a label and also indicates whether the 

contents of the accumulator and index register are signif icant at that 
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BEGIN REAL PROC SQRT(1) 

SPACE REAL PARAM G92() 

SPACE REAL LOCAL G93() 

LINKN REAL PROC SQRT(1) 

LOAD REAL PARAM G92() , 

. SQRT RETURNS A REAL AND HAS ONE PARAMETER 

• DECLARE THE FORFBaL PARAMETER 

. DECLARE A LOCAL VARIABLE 

• PERFORM LINKAGE DUTIES IF NECES~RY 

ACCESS THE VALUE OF THE FORMAL PARAMETER 

CMPNF REAL CONST G22() A OEO.DOES NOT DESTROY THE ACCUMULATOR CONTENTS 

JLT,I INSTR CODE G99() . 

LOC REAL VOID G98. 

STORE REAL LOCAL G93() . 

LOAD REAL PABAM G92() . 

DIV REAL LOCAL G93() . 

ADD REAL LOCAL G93() 

DIV REAL CONST G88() A 2EO. 

CMPN REAL LOCAL G93() 

JNE,I INSTR CODE G98() . 

RETURN REAL PROC SQRT(1) 

LOC VOID VOID G99. 

ABORT THE RUN ON A NEGATIVE ARGUMENT 

ACCUMULATOR CONTENTS REAL, INDEX IRRELEVANT 

SAVE THE CURRENT GUESS 

RECALL THE VALUE OF THE FORMAL PARAMETER 

DIVIDE BY THE CURRENT GUESS AT THE ROOT 

AVERAGE THE RESULT WITH THE CURRENT GUESS 

TO GET A NEW GUESS 

DOES NOT DESTROY ACCUMULATOR CONTENTS 

REFINE THE GUESS AGAIN IF NECESSARY 

ELSE RETURN WITH RESULT IN ACCUMULATOR 

ACCUMULATOR AND INDEX CONTENTS IRRELEVANT 

MSG STRNG CONST GIO0() A NEGATIVE ARGUMENT FOR SQRT. 

ABORT REAL PROC SQRT(1) . ABANDON THE EVALUATION OF THE PROCEDURE 

END SQRT, 

Figure 2,4 

A Janus Procedure 
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point. 

One of the problems with procedure calls is that of insuring 

modularity [Dennis 73]: In order to run programs written in Janus with 

those written in other languages one must be able to translate a Janus 

procedure call into the standard calling sequence assumed by the other 

languages. Thus i t  is extremely important to be able to recognize 

parameter setup and parameter use in the Janus code. I f  these 

constructs can be recognized, then translation rules can be written to 

match virtually any conventions, 

As a concrete example, consider the procedure call of Figure 2.5a. 

The f i rs t  and third arguments are to be passed by value, while the 

second and fourth are to be passed by reference. Computation is 

required to obtain the third and fourth arguments, I t  is assumed that 

the procedure returns a value in the accumulator. 

Figure 2.5b shows the Janus version of the call with variable names 

instead of generated symbols for clarity. Two specifications of the 

arguments are given. The f i r s t ,  lying between CALL and RJMP, shows how 

they are computed. The second, lying between RJMP and CEND, is a l i s t  

of argument addresses. 

The translation of D[I+3] reflects the fact that an array index is an 

integer which must be multiplied by the number of address units per 

element before being used, Multiplication of the fixed offset can be 

carried out at translate time; a separate Janus instruction performs the 

multiplication of the variable offset. (The "+" in the variable offset 
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F(I ,A,B+C,D[ I+3] ) 

a) A procedure call 

CALL REAL PROC F() 

ARGIS INT CONST CI() A l 

ARGIS,I REAL LOCAL A() 

LOAD REAL LOCAL B() 

ADD REAL LOCAL C() 

STARG REAL TEMP T1 () 

LDX INT LOCAL I() 

MPX INT CONST C2() E REAL 

LOAD,I REAL LOCAL D(3*REAL)+ 

STARG ADDR ARG L1 (3*ADDR) 

RJMP REAL PROC F() 

SPACE ADDR ARG L1 (4)+ 

SPACE ADDR ARG (I)  A C1 

SPACE ADDR ARG (I )  A A 

SPACE ADDR ARG ( I )  A T1 

SPACE ADDR ARG (I)  

CEND REAL, PROC F() 

b) Janus code for (a) 

Figure 2,5 

Example of a Procedure Call 
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f ield of the reference specifies an anonymous operand in the index 

register. ) 

This procedure call can readily be translated for various interface 

conventions including stack (both hardware and software), l i s t  of 

addresses following the jump to the procedu6e, l i s t  of addresses within 

the procedure body, l i s t  of values within the procedure body. The 

calling sequence wi l l  not easily handle the case in which values are 

stored following the jump to the procedure. However, this form is 

unlikely to be used in practice: Access to the arguments from within 

the procedure body would involve some kind of indexing or indirection, 

and space to store the arguments would be needed at every call. 

Janus has now been implemented, via the STAGE2 macro processor, on 

two computers. I t  is estimated that approximately two man-weeks of 

effort are required to construct the macros for a new machine. This 

would be the effort required to implement the f i r s t  piece of Janus 

software; subsequent software would require only the additions to the 

original set of macros. 

2.2.4. Realizing the Abstract Machine by Interpretation. Another 

method of implementing the abstract machine on the real machine is by 

interpretation i.e. a program is written in the language of the real 

machine to simulate the operation of the abstract machine. The data 

supplied to the interpreter is the program for the abstract machine, 

usually after i t  has been translated in one way or another to some 

binary representation. The writing of such an interpreter is usually a 

fa i r ly  straightforward task and consequently, the effort required to 
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move the program can be quite small. 

At f i r s t  sight, i t  might appear that realizing abstract machines by 

interpretation produces portable programs at the cost of efficiency, 

The term "interpreter" usually conjures up visions of a very slow 

program. How is i t  then that this technique can be used to produce 

software of an acceptable efficiency, Let us f i r s t  examine the 

structure of a simple interpreter. 

Interpreters usually consist of:- 

(a) A main routine to carry out instruction fetching and decoding 

(b) A number of routines to perform the instructions of the machine 

being simulated 

For a simple machine,the logic of the main routine is as follows :- 

I .  Fetch the next instruction to be obeyed 

2. Increment the simulated program counter 

3. Separate the operation code from the operands 

4. Select the appropriate function routine on the basis of the 

operation code and jump to i t  

Each of the function routines must be terminated by a jump back to the 

start of the main loop of the interpreter. I f  we assume that the 

program being interpreted has been thoroughly checked so that there is 

no need to test for program counter or operand out of range~ then the 

overhead introduced by interpretation is about 5 operations. I f  a 

particular function routine carries out a very simple operation e.g. 
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add the contents of a memory location to the simulated accumulator, then 

the overhead is relatively very high. On the other hand, i f  the 

function is a complex one so that the routine involves many operations, 

then the overhead introduced by the interpretation is only a small 

fraction of the total number of operations performed. Hence, the 

overall efficiency could be quite acceptable. Of course, the more 

complex the operations of the abstract machine, the greater the 

efficiency and the lower the portability. The goal of the designer is 

to choose the correct level of complexity so that he has a convenient 

language available for writing the program, yet can s t i l l  obtain 

acceptable efficiency without having to expend too much effort 

implementing the interpreter. 

2.3 Pprtabilit~ thrpu~h Generation 

Another approach to producing portable compilers involves the use of 

programming systems which attempt to automate the writing of translators 

of programming languages. These range in complexity from ones which 

automatically construct recognizers from the grammar of the language to 

those in which an attempt is made to handle both the syntax and the 

semantics, e.g. to use a compiler-compiler, one f i rs t  expresses the 

formal syntax in a syntatic meta-language and inputs this to the syntax 

loader. This constructs tables which will control the recognition and 

parsing of programs in the language. Similarly, the semantics described 

in a semantic meta-language are fed into the semantic loader to produce 

another table containing a description of the meaning of statements in 

the language. When the loaders are discarded, the remaining program is 

a table driven compiler for the language. 
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The mechanical production of compilers and the use of compiler- 

compilers is being treated elsewhere in this course [Griffiths 74, 

Koster 74] and will not be discussed in any detail here. I t  should be 

noted, however, that many of the problems associated with the moving of 

compilers written in high-level languages s t i l l  exist. For example, the 

kernel of a compiler-compiler includes such faci l i t ies as input-output, 

code generation routines and other faci l i t ies used by all the 

translators, Thus the portability of the individual compilers is 

dependent on the portability of the compiler-compiler i tsel f .  

Similarly, i f  a syntax analyzer generator is i tse l f  not portable, then 

the new compiler must be developed on the old machine. Even with the 

dif f icult ies that this can cause, i t  m~ s t i l l  be a better proposition 

than attempting to write the analyzer by hand for the new machine. The 

output phase of the generator must be modified to produce code for the 

target computer but, once this has been accomplished, the analyzer can 

be generated from the meta-linguistic description of the syntax which, 

hopefully, has already been proven. 

2.4 Adaptability 

The two properties of portability and adaptability are very closely 

interrelated since the latter can enhance the former. If a portable 

program is created containing many faci l i t ies,  then there is a risk that 

i t  will be rejected by an installation on the grounds that i t  is too 

large. Conversely, omission of some faci l i t ies may st i l l  result in the 

program being rejected because i t  does not satisfy the needs of the 

users of the installation. A portable program stands a much better 

chance of being accepted i f  the implementor is given some control over 

the way in which i t  util izes system resources. 
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Techniques for producing adaptable software have already been 

discussed in some detail in a previous course [Poole 73]. Broadly 

speaking, they fal l  into two classes 

(a) parameterization and selection 

(b) translation 

The former involves constructing the original software in such a way 

that i t  can be tailored to meet a specific application by the setting of 

parameters and the selection of components. For example, the portable 

text editor MITEM [Poole 69a] was written in such a way that from the 

original body of text one can generate one of six different versions, 

each of which can include a number of optional features. The choice of 

version and options is lef t  to the implementor and is made on the basis 

of what faci l i t ies are to be provided for users and what system 

resources would be required. Adaptability through translation, on the 

other hand, is dependent on the characteristics of the translator and 

implies that the type of code generated can be vaHed according to the 

form of optimization required i.e. optimization for space as opposed to 

optimization for speed. For example, the production of a hybrid version 

of MITEM consisting of a mixture of interpretive and directly executable 

code was only made possible by the fact that the translator STAGE2 

possessed highly adaptable code generators. 

I f  the above techniques are applied to the production of a compiler, 

then, we might expect i t  to possess the following properties: 

(a) compilers for standard subsets of the language can readily be 

generated from the original source statements. 



469 

(b) the source code is well parameterized so that the implementor 

has control over  any fac i l i ty  which affects the amount of 

storage used by the compiler e.g. size of symbol table. 

(c) the implementor can choose the appropriate balance between 

optimization for space and optimization for speed to assist in 

f i t t ing the compiler into the space he wishes to make 

available to i t ,  e.g. code to handle l i t t l e  used faci l i t ies 

in the language might be optimized for space to reduce the 

size of the compiler. 

Finally~ we would l ike the compiler i tse l f  to be able to apply 

different forms of optimization to the code i t  generates in response to 

requests from the user. We can envisage a situation in which a user 

f i rs t  gathers statistics on which parts of his program are used most 

frequently. He then tel ls the compiler to optimize these for speed and 

the remainder of the program, for space. The resultant program being 
I 

smaller in size and only slightly less efficient in terms of CPU 

utilization may be cheaper to run or provide a better turn around 

depending on the scheduling and costing algorithms of the particular 

installation. 
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3. CASE STUDIES 

We will now consider a number of case studies involving portable 

compilers and the methods used to move them from one machine to another. 

The l i s t  is not intended to be exhaustive~ rather, each study has been 

chosen in an attempt to i l lustrate one of the techniques discussed 

above. 

3.1 AED 

AED-O [Ross 69] is a high level language developed by the M.I.T. 

Computer-Aided Design Project. I t  is based on ALGOL60 and is aimed at 

providing a convenient and effective language for creating specialized 

computer aided design systems for a wide variety of application areas. 

The original AED-O compiler written in a bootstrap compiler language 

became operational on an IBM 709 machine in 1963. Subsequently, i t  was 

moved to CTSS of M.I.T.'s Project MAC operating on an IBM 7094. Further 

developments were then made in this system to produce a fair ly stable 

language by late 1964. By this time, the compiler existed in i ts own 

language and all further system changes and improvements were carried 

out in AED-O itself.  

In 1967, considerable emphasis was placed on machine independence and 

the problem of moving the AED system to third generation machines. 

Successful transfers were made to a Univac If08 and to an IBM system 360 

in 1967 and 1968 respectively. In 1969, work was underway to move the 

system to DEC and GE machines. 
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Published details on the method of transferring the AED system are 

sparse. However, i t  appears that the compiler is moved via a half- 

bootstrap technique. Once, the compiler has been set up on the new 

machine, then the remainder of the AED software can be brought across. 

Estimates of the amount of effort required to make the move are not 

readily obtainable. However, all of the successful transfers of the AED 

system have been made by the people who developed i t  and who are 

therefore very familiar with i t .  To date, there does not appear to have 

been any move of the system made by other people. Such evidence 

supports the comment made earlier in this course about the dif f icult ies 

that can be encountered when a half-bootstrap approach is used to port 

software. 

3.2. LSD 

LSD (Language for Systems Development) [Calderbank 71] is a low level 

systems programming language designed to provide programmers with some 

of the faci l i t ies of high level languages . The design goals for the 

language were object code efficiency and portability. The purpose 

behind the LSD project was to provide a language for implementing 

software on small machines, in particular, a suite of data acquisition 

programs being developed by a group of physicists. As a large time 

sharing machine was also available, the LSD compiler was set up in. a 

test bed on this machine to provide faci l i t ies for the developers of the 

software to test their programs online. Once the programs were checked 

out, they could be transferred to the small machine providing a 

translator was available for that machine. However, the LSD compiler in 

the test bed did not produce machine code for either of the two 

machines. Instead, i t  output an intermediate code which was then 
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interpreted. This facilitated the inclusion of many useful debugging 

features in the test bed, e.g., break point, trace, register dump etc. 

Since the intermediate code produced by the compiler was machine 

independent, there was no need to rewrite the code generators when the 

compiler was moved to a new machine. Of course, the interpreter i tsel f  

would have to be rewritten in order to make the transfer, 

Once the LSD program was tested and debugged on the large machine, i t  

was translated into the assembly code of the small machine. The 

compiler used for this translation was the STAGE2 macro processor, The 

design of the LSD language was strongly influenced by the decision to 

use STAGE2 to make the language portable. STAGE2 is not a very fast 

translator and the more complex the language the slower the translation 

process. I t  should be noted that the speed of STAGE2 was of no 

consequence during the development of software written in LSD since all 

compilations required during the testing and debugging phase were 

carried out in the fast compiler in the interactive test bed. 

The compiler for LSD~ as one might expect, was i tse l f  written in LSD. 

STAGE2 and the appropriate set of macros formed the bootstrap compiler 

for the in i t ia l  implementation on the large machine. 

To move the LSD compiler, one would f i r s t  implement STAGE2 on the 

target machine and then develop a set of macros to translate LSD into 

the machine code of the new machine. The LSD translator could ~hen be 

compiled and set up on the new machine using this ful l  bootstrap 

procedure. Given that the implementor was familiar with STAGE2, 

experience gained from moving LSD a number of times indicated that about 
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one man-month of effort was required to implement about 95% of the 

language on a new machine. Th is  included all the common and most 

frequently used fac i l i t ies.  The remaining 5% required about another 

man-month of effort. 

Clearly this technique could be applied to other languages and 

compilers, i .e. use a portable general purpose macro processor as the 

translator to perfom the bootstrap. Since one assumes that the 

compiler being moved has been debugged (except for the code generator) 

then the speed of the bootstrap translator is not a critical factor. I t  

can, of course, be quite troublesome i f  the bootstrap compiler is also 

used to develop the main compiler in i t ia l ly .  Translation speeds are 

very important when one is in the testing and debugging phase of 

software development. 

3.3 BCPL 

BCPL is a general purpose programming language which was originally 

developed as an aid to compiler writing. I t  has proved i tse l f  to be a 

very useful language in this area and in other systems programning 

applications. I t  is an ALGOL-like language based on CPL which was 

developed by the Cambridge a~d London Universities in the mid 60's. 

Although BCPL is block structured and permits recursion, i t  is a much 

less complex language than CPL, the most significant simplification 

being that i t  has only one data type - the binary bit pattern. The BCPL 

compiler which is written in BCPL is a highly portable program [Richards 

71] and has been moved successfully to a number of different machines. 

It requires about l - 2 man-months of effort to make the move. 
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BCPL is a f a i r l y  simple language to compile, The compiler is quite 

straight forward and produces reasonably eff ic ient object code at an 

acceptable speed. The language has a simple underlying semantic 

structure which is organized around an idealized abstract machine, The 

compiler can therefore be divided into two sections: one which 

translates BCPL into the language of the intermediate machine and the 

other which translates this intermediate language into the machine code 

of the target computer. This intermediate language called OCODE is a 

macro-like low level language which contains 56 different statement 

types. I t  can be thought of as the assembly language of the abstract 

machine defined by the BCPL language, OCODE is a very simple language 

since there is only one data type i .e .  al l  values in the language have 

the same size. This allows for a very simple addressing structure as 

well as a stack whose operations do not need to be concerned with type, 

The format of OCODE is that of an assembly code with a keyword 

specifying one of the possible statements. This is followed by 

arguments whose number depends upon the particular keyword, An OCODE 

program is coded as one statement per l ine. 

Since BCPL permits recursion, al l  arguments, anonymous results and 

most variables are allocated space on a run time stack and are addressed 

relat ive to a pointer which indicates the start of the currently active 

portion of the stack. The instructions in OCODE are logically grouped 

in the following way: 

I .  Local variable access i .e .  to variables in the active portion 

of the stack. 

2. Global variable access similar to FORTRA~ common, 
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3. Static variable access which is similar 

ALGOL or local variables in FORTRAN, 

4. The loading of constants. 

5. Diadic expression operators. 

6. Monadic expression operators, 

7. Command operators, 

8. Function and routine calling. 

to own variables in 

The BCPL compiler is moved to another machine via a distribution tape 

containing the compiler written in BCPL and the corresponding OCODE 

version. Both compilers generate OCODE as output. A working version of 

the compiler is created by translating each statement in OCODE into the 

corresponding sequence of assembly code instructions via a macro 

processor, This gives us a running compiler on the target machine which 

will translate OCODE. However, as OCODE is a simple language~ there is 

l i t t l e  chance for optimization and the compiler is a rather inefficient 

one. More efficient code generators for translating OCODE into the 

machine language of the target machine can now be written and added to 

the compiler written in BCPL at the OCODE interface, Note that these 

code generating routines could largely be written in BCPL. There is 

considerable room for optimization during this process so that a 

reasonable level of local optimization can be obtained, This can be 

done by simulating the state of the run time stack and delaying the 

generation of code as long as possible, Instructions are only output 

when i t  becomes necessary to simplify the simulation. This method was 

used in BCPL code generators for machines like the 7094, 360, XDS Sigma5 

and proved to be quite satisfactory. One advantage of this form of 

simulation is that i t  is largely independent of the machine. Hence a 
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large portion of the code generator written for one machine could be 

used in a code generator for another. Once the BCPL compiler with the 

optimizing code generators is available then i t  can be put in service 

and the less efficient versions discarded. 

Although the BCPL compiler proved to be highly portable, the amount 

of effort required to move i t  seemed to be larger than was really 

necessary. As i t  is of l i t t l e  importance just how inefficient the 

bootstrap version of the compiler is, Richards designed an interpretive 

machine code called INTCODE to ease the in i t ia l  bootstrapping of BCPL 

onto a new machine. The main advantage of the language is that i t  Is 

very compact; the assembler and interpreter are both very short and easy 

to write. Together they are almost an order of magnitude smaller than a 

typical BCPL code generator translating OCODE into assembly language and 

can therefore be implemented in machine code in a few days. The OCODE 

version of the compiler was translated into INTCODE and this became the 

distributed version. The interpreter for INTCODE can be expressed in 

BCPL and, even though no BCPL is available on the target machine, i t  can 

serve as a documentation aid and be translated by hand into some other 

high level language or assembly code. 

The BCPL compiler composed of the INTCODE version, plus the 

interpreter is about the factor of lO to l slower in execution speed 

than the directly executable one. However, again, we must remember that 

this is no great drawback since we are only involved in the f i rs t  stage 

of the bootstrap process. The steps are s t i l l  as outlined above, i .e. ,  

write code generators which translate OCODE into machine code and 

develop this compiler using the interpretive INTCODE version. With the 
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BCPL available in INTCODE, the transfer time is about one month. 

The portabil ity of BCPL il lustrates the use a hierarchy of abstract 

machines [Poole 71]. The OCODE machine reflects the characteristics of 

the language and is well suited to executing programs written in BCPL. 

I t  is further removed from real machines than the INTCODE machine and 

hence requires a larger amount of effort to realize i t  on the actual 

computer. I ts function in the hierarchy is efficiency rather than 

portability. The INTCODE machine, on the other hand is much closer in 

structure to that of real machines. I t  has a store consisting of equal 

size locations addressed by consecutive integers from 0 upwards. The 

central registers of the machine are A and B~ accumulators, C, a control 

register, D, an address register, and P, a pointer used to address the 

local work area and function arguments. The form of an instruction on 

the INTCODE machine consists of four fields: 

I .  Operation code specifying one of eight possible machine 

functions. 

2. Address f ie ld specifying an integer in the range 0 - 8191 which 

is the in i t ia l  value of D in the evaluation of the effective 

address. 

3. P bi t  is a single bi t  to specifywhether the stack base is to 

be added into D at the second stage of the address evaluation. 

4. I bi t  is an indirection bi t  which determines whether D is 

replaced by the contents of the location addressed by D at the 

last stage of the address evaluation. 

There are 8 machine functions: load, store, add, Jump, Jump i f  true, 

Jump i f  false, call a function and execute. The latter allows an 
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auxil l iary operation to be executed and effectively extends the number 

of operation codes available on the machine. The address D specifies 

which of the operations are to be carried out. There are in fact 24 

such operations and the effective number of instructions on the machine 

is therefore about 30. I t  is clear that this machine is much closer to 

real machines and much further removed from BCPL, i .e . ,  there are no 

stack operations. The stack i tse l f  is simulated in the linearly 

addressed memory. Hence the function played by INTCODE in the transfer 

of BCPL is portability rather than efficiency. 

3.4. Pascal 

There are two reasons why Pascal was chosen for this project [Webber 

73]: 

I .  I t  is easier to move the LDT to a new machine i f  the translator 

is written in the language that i t  translates~ the Pascal 

compiler that was available was written in Pascal. 

2. The burden of writing any program is lessened i f  the 

implementation language is suited to the task and Pascal is 

well suited to writing a compiler. 

3.4.1. Structure of Pascal. Pascal is fa i r ly  complete in terms of 

the programming tools i t  gives to the programmer. I t  is an ALGOL-like 

language with features found normally in more complex languages such as 

ALGOL 68 or PL/I. The language provides a rich set of data types and 

structuring methods that allow the programmer to define his own data 

types. 
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Two important features of the language are the RECORD and the CLASS. 

These two structuring methods are used to build the symbol table. (A 

CLASS is an execution-time allocatable memory area, and a RECORD is a 

collection of f ields.) 

Pascal is a procedure-oriented language. A procedure is the basic 

unit of a program and each is always defined within another procedure. 

The main program is considered to be a procedure without parameters 

which is defined in and called from the software system. A data area 

for local variables associated with every procedure invocation may be 

active or inactive. (An active data area is one whose variables are 

accessible to the executing procedure.) The data area for the main 

program containing global variables is always active. 

There are two kinds of scalar data types in the Pascal language: 

predefined and defined. There are five predefined scalar types: 

INTEGER, REAL, CHAR, ALFA and BOOLEAN. The second kind of a scalar data 

type is one" defined by the programmer. These are formed by specifying 

either a subrange of another scalar or enumerating the elements of the 

scal ar. 

A non-scalar type may be defined by specifying a structuring method 

and the component type of the structure, e.g. an ARRAY is a structure 

with all elements of one type and a component selection mechanism for 

selecting any element. A RECORD is a made of a series of fields, each 

of which may be of any type. A f ield of the RECORD is selected by the 

name of the f ield. A SET is a structuring method which indicates the 

inclusion or exclusion of every element in the domain of the SET. A 
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FILE is a sequence of components which are al l  the same type. The CLASS 

has components which are allocated during the program's execution. The 

components may be of any type except a CLASS or FILE. A pointer is the 

address of a component that was dynamically allocated in a CLASS, The 

component is allocated by the standard procedure NEW which returns a 

pointer to the component. 

The assignment statement in Pascal allows the assignment of a scalar 

value to a scalar variable or an ARMY or RECORD variable to a similarly 

structured variable. Other statements in the language include a 80TO 

statement for transferring control to another place in the program, 

Conditional statements are the IF statement which allows a two-w~ 

branch and the CASE statement which allows an n-way branch depending on 

the value of the case-expression. Pascal a lso allows repetitive 

statements such as the FOR, WHILE, and REPEAT statements. The compound 

statement allows a series of statements to be used as a single 

statement. The WITH statement allows the programmer to omit the 

description of the RECORD of a f ie ld within the WITH statement's 

component statement. 

The reader should note that i f  the FOR statement has a final value 

which must be computed ( i ,e. an expression), i t  must be possible to save 

the value for the test preceding each execution of the component 

statement. Similiarly. the RECORD variable of a WITH statement must be 

saved i f  i ts  value is not constant (e.g. an array of RECORDs). This 

need to save run time values between statements must be ~eflected In the 

abstract machine. 
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3.4.2. The Abstract Machine for Pascal. The Pascal abstract machine 

has seven primitive modes. Five of these (INT, REAL, CHAR, ALFA and 

BOOL) arise from the predefined scalar types INTEGER, REAL, CHAR, ALFA 

and BOOLEAN respectively, and the primitive mode SET is derived from the 

Pascal SE1 structure. The seventh primitive mode of the abstract 

machine is ADDR. I t  represents a target machine address, and is 

required to handle two Pascal constructs: 

I .  Pointer variables 

2. Parameters passed by reference 

The memory of the abstract machine is divided into a number of areas 

or categories. The variables declared by the main program are called 

global variables and are assigned the category GLOBAL. All variables 

that are not declared in the main program are called nontglobal 

variables and are kept in the run time variable stack (RTVS). Every 

time a nested procedure begins i ts execution, an area of memory is 

allocated in the stack for i ts local variables. The RTVS has areas on 

i t  which are accessi~e to the executing procedure~ these areas are said 

to be active. The areas on the stack which are not accessible are said 

to be inactive. 

A disp~!a~ is used to identify the active data areas on the RTVS. I t  

contains, for each nesting level, the base address of the active RTVS 

areB for that level. To access a variable in RTVS the abstract machine 

f i r s t  accesses the display to locate the active data area containing the 

variable, and then uses the given offset as an address within this area. 

Operands on RTVS are distinguished by the category DISP. 
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There is a high probability that a procedure wi l l  access i ts own data 

area, which is the last allocated data area on the RTVS. A significant 

optimization is possible i f  these references can be distinguished, and 

hence they use the category LOCAL instead of DISP. 

Before calling a procedure, the calling procedure must set up a 

parameter area. Th is  area is called PARAM in the abstract machine. 

When the procedure is entered, PARAM becomes part of the LOCAL data 

area.  

Every mode, whether primitive or derived, has two characteristics 

which are relevant for storage allocation: size and alignment. These 

depend upon the target machine and cannot be determined by the LDT. 

Many machines use different amounts of storage for data depending upon 

the mode. The target machine may also require that an item of a certain 

mode must reside on a particular word boundary. The LDT cannot plan for 

any space that must be inserted between variables or fields in order to 

make an item reside on the correct boundary. 

On the IBM 360, for example, a CHAR could be assigned a byte and an 

INT could be assigned four bytes. For efficient use of the hardware, 

the address of the f i r s t  byte of an INT must be divisible by 4. The 

following PASCAL RECORD would then require nine bytes of memory: 

RECORD 

A: INTEGER; 

B: INTEGER; 

C :CHAR 

END 
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In contrast is the following RECORD which contains the same information 

but would require tw~ve bytes of memory i f  implemented in a 

staightforward manner: 

RECORD 

A:INTEGER; 

C:CHAR; 

B:INTEGER 

END 

Although the LDT needs to know the sizes of structured types, i t  does 

not have enough information about the target machine to compute them, A 

possi~e solution, and the one chosen for the Pascal LDT, is to include 

in the abstract machine a way of mapping Pascal structures into the 

target machine. This requires the abstract machine to compute the size 

of the structure and pass the value back to the LDT. 

Although there can be no physical flow of information from the MDT to 

the LDT, information flow can exist because the LDT does not have to 

numerically manipulate the size of a structure which is passed to i t  

from the MDT. The latter can compute the size of the structure and 

associate the size with the symbol. Every time the LDT wants to use 

that size, i t  can pass the symbol to the abstract machine. I f  the MDT 

is implemented within the interface procedures of the LDT, the MDT could 

then actually pass back a numeric value of the size. 

Two pseudo operations are used to compute the size of a record. The 

REC pseudo specifies the symbol that corresponds to the size of the 

recorcI. I t  also specifies the boundary that the record must be on. The 
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REC pseudo is followed by a SPACE declaration for each f ield in the 

record; the symbol that is specified in the SPACE declaration is set to 

the offset of the f ield from the beginning of the record. An ENDR 

pseudo terminates the abstract machine record. Figure 3.l i l lustrates 

the relationship between a Pascal RECORD and an abstract machine record. 

A variable in the abstract machine is defined by four quantities: 

I .  Level of the Pascal procedure which defined the variable. 

2. The offset from the beginning of data area. 

3. The data area containing the variable. 

4. The type of the variable. 

The level of a variable is the level of the procedure which declared 

the variable. The problem of finding the offset of a variable is the 

same as finding the offset for a f ield in a RECORD; the size of the 

entire data area is needed so that storage can be allocated on the RTVS. 

The size of a data area and the offset for each variable are determined 

by treating the procedure's variables as a RECORD. Figure 3.2 shows how 

a Pascal VAR declaration is mapped into the abstract machine, 

The type of a Pascal variable is determined in the declaration of 

that variable, The LDT translates all variable references in a source 

program to their equivalents in the abstract machine. The type of an 

abstract machine variable can be: 

l ,  A primitive mode of the abstract machine 

2. A block of data with a size equal to an integral number of 

elements of a primitive mode 



RECORD 

A:ALFA; 

B:-IO,.IO; 

C :BOOLEAN; 

D: REAL 

END; 

a} A PASCAL RECORD 
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REC ALFA RECORD Sl (). 

SPACE ALFA RECORD SA(1). 

SPACE INT RECORD SB(1), 

SPACE BOOL RECORD SC(I ), 

SPACE REAL RECORD SD(1). 

ENDR ALFA RECORD Sl(). 

b) The equivalent abstract machine record 

Figure 3.1 

A Pascal RECORD compared to an abstract machine record. 
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PASCAL: 

VAR 

A,B:REAL; 

C :CHAR; 

I ,J,K: INTEGER; 

JANUS: 

REC REAL RECORD S1 () .  

SPACE REAL RECORD SA(1). 

SPACE REAL RECORD SB(I ), 

SPACE CHAR RECORD SC(I ), 

SPACE INT RECORD SI(I ). 

SPACE INT RECORD SJ(1), 

SPACE INT RECORD SK(1), 

ENDR REAL RECORD Sl ( ) .  

Figure 3,2 

Mapping a Pascal VAR 

declaration into an abstract machine record 
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The block of data is either a RECORD or an ARRAY; the need for 

describing a block of data arises from the Pascal construct that allows 

a RECORD or ARRAY to be assigned or compared to another RECORD or ARRAY. 

In general there are three parts to every Pascal abstract machine 

instruction: the operation code, the operand mode, and the operand 

address. I f  the instruction references a constant, then a fourth f ield 

is to specify the constant. 

The operation code and the operand mode are used collectively to 

specify the operation. The operand address is composed of four parts: 

a memory area, a base address, a fixed offset, and a variable offset. 

The memory area of an operand can be the CODE memory, the GLOBAL memory, 

or the RTVS. 

The base address can have two meanings. I f  the category is CODE or 

GLOBAL, then the base address is the location of an instruction or data. 

For a non-global variable, the base address indicates the level of the 

procedure which declared that variable. A non-global variable reference 

uses DISP to find the active data area on the RTVS for the level of the 

variable. As noted earlier, the LOCAL category is considered a quick 

way to access an active area on the RTVS which ordinarily would be 

accessed via DISP. 

The fixed offset part of an address is an LDT determined value that 

is included in the address computation of the operand. This value is 

the distance from the beginning of the data area to the variable in 

address units. I f  the operand is a f ield of a record, then the offset 
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includes the distance from the beginning of the record to the f ield. 

Figure 3.3 shows an example of how the fixed offsets computed for the 

variables shown in Figure 3.2 are used in several Janus instructions. 

The variable offset allows an execution-time determined value to be 

included in the address computation. I f  a variable offset is indicated, 

the contents of the abstract machine's index register are added to the 

address. 

3.4.3. Incorporating the Abstract Machine into the LDT. The symbol 

table has an entry for every type, variable, constant, f ield of a RECORD 

and procedure defined by the programmer or predefined in the language. 

#n entry for a type must contain the amount of storage required for a 

variable (or f ield) of that type. A size is represented by two things~ 

I. a primitive mode and 

2. an integer value 

integer value), 

(or symbol that the MDT associates with an 

The integer value times the primitive mode is equal to the storage 

required for the type. For example, i f  the integer is ten and the 

primitive mode is REAL then the size is equal to the storage required 

for ten REALs. The size also indicates that variables of that type must 

be aligned (in the target machine) on the same memory boundary as the 

primitive mode. 

An entry for a variable must indicate a type and an address for the 

variable. The type is a pointer to the symbol table entry for the type 

of the variable; the address of a variable is composed of three parts. 
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PASCAL: 

J: =I+I ; 

JANUS: 

LOAD INT LOCAL D2(SI). 

ADD INT CONS S4() I .  

STORE INT LOCAL D2(SJ). 

Figure 3,3 

Accessing variables in the 

active data area for level two 
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The f i rs t  part is the integer level of the procedure which declared the 

variable. (A level of zero indicates a global variable.) The second 

part of an address is an offset in address units from the beginning of 

the procedure's data area to the variable, and the third part is the 

category of the variable. 

A entry for a constant contains a type and a value. The type is a 

pointer to the symbol table entry for the type of the constant; the 

value part contains the value of the constant. An example of a symbol 

table entry for a constant is an element of an enumerated scalar. The 

entry contains a pointer to the type of the scalar and a value equal to 

the non-negative integer mapping for that element. 

An entry for a f ield in a record is similar to an entry for a 

variable. The address specifies an offset which is equal to the 

distance from the beginning of the record to the field. I t  also 

contains an offset which is used i f  the f ield is in the variant part of 

the record. This extra offset facil i tates addressing a field of a 

record that may have been allocated in a CLASS structure. 

Procedures require several kinds of information in their symbol table 

entries, Every procedure has a CODE category entry point address, which 

specifies the f i r s t  executable instruction of the procedure, and two 

data areas, The two data areas are the parameter l i s t  and the local 

variable data area, allowing the LDT to produce instructions that will 

make appropriate adjustments to the RTVS on entry and exit to the 

procedure. Before a procedure is entered, the calling procedure 

allocates space on the RTVS for the called procedure's parameters. Upon 
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entry to the procedure, the called procedure allocates space for i ts 

local data area. The parameter l i s t  becomes part of the local data area 

at this time. 

If  the procedure is a function, i ts value is le f t  in the RTVS. The 

symbol table entry for the function contains an address in the RTVS for 

the returned value and the value's type. 

The LDT translates phrases in the source program into their abstract 

machine equivalents; the MDT takes the abstract machine instructions and 

produces code for the target machine. The translation of source code 

into abstract machine instructions is accomplished through a set of 

interface procedures in the LDT, one procedure for every abstract 

nBchine instruction. As the LDT determines the appropriate abstract 

machine instructions for the phrase, i t  will make calls upon the proper 

procedures, The parameters of each procedure contain the same 

information as the operands of the corresponding abstract machine 

instruction. 

The function of the interface procedures is to interact with a 

particular implementation of the MDT; their results wil l vary depending 

on the implementation of the MDT. Symbolic abstract machine language 

can be done away with by having the procedures produce target machine 

instructions that are equivalent to abstract machine instructions. 

3.4.4. Measurements. There are various measures of efficiency that 

could be applied to the compiler produced on this project, Clearly, by 

dividing the compiler into two sections, one could introduce 
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inefficiencies which would not otherwise be there i f  the compiler were 

to produce machine code directly. These inefficiencies involve both 

execution speed and core occupancy. Since the Pascal compiler modified 

in this project was the 6400 compiler, the necessary standard was 

available to make comparisons. Another factor of interest is the time 

taken to implement the MDT on a new machine as this gives some measure 

of the portability of the approach. 

The MDT has been implemented on the 6400 via a set of STAGE2 macros. 

Although a fu l l  implementation has not been completed as yet, the effort 

required to implement about 90% of the abstract machine was one man- 

week. One short cut taken was to use the FORTRAN input-output system 

available on the machine. The implementor estimated that about another 

one man-week of effort would be required to make a fu l l  implementation. 

Currently, i t  appears that given the existence of STAGE2 on the target 

machine, about one man-month of effort would be required to implement a 

~orking and usable version of the Pascal compiler via a ful l  bootstrap 

technique. Such a compiler could then be put into service while work 

was being carried out to optimize the compiler by moving the macro 

definitions into procedures. 

With the macros available to translate Janus to 6400 assembly ¢ode, 

i t  is then possible to write test programs in Pascal and compare 

execution time and core occupancy for the object code produced by both 

the modified and unmodified compilers. A test package was constructed 

consisting of the basic mathematical functions and a main program to 

call them lO,O00 times. The code produced by the modified compiler 

proved to be about 10% slower than that from the unmodified one. The 
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size of the object code was the same in both cases. At the time the 

project was carried out, i t  was suspected that the mechanism for 

procedure entry and exit was not as efficient for the abstract machine 

as i t  might have been. Accordingly, timing tests were carried out on 

procedure calls and these showed that the modified compiler produced 

code that was about 30% slower. With a more efficient mechanism~ one is 

led to believe that the modified code could be brought to within about 

5% of the code produced from the unmodified compiler. This is not a 

very heavy price to pay for the high portability both of the compiler 

i t se l f  and of the object code i t  produces. Note that an applications 

program written in Pascal could now be transported to another computer 

in Janus and implemented on that machine via STAGE2. 

3.5. IBM S~360 FORTRAN(G) Compiler 

The IBM Fortran IV G-level compiler exemplifies an approach to 

compiler portabil ity in which the abstract machine is implemented on the 

real machine via an interpreter, Although the compiler has probably 

never been moved to another computer, in principle i t  could be~ since 

the technique used to construct i t  would faci l i tate such an operation. 

The compiler is written in the language of an abstract machine called 

POP whose design is well suited to the implementation of compilers. As 

one might expect, POP is a machine organized around a number of last in 

- f i r s t  out queues i,e, push down stacks. The instructions of the 

machine are set up to operate on these stacks as well as on a linearly 

organized memory. There are two stacks, WORK and EXIT which are an 

integral part of the machine so that access is efficient. The remainder 
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of the stacks are created dynamically as required by the particular 

program. The language of the POP machine available to the compiler 

writer is a one-address symbolic assembly code comprising an operation 

code and an operand. Since there are about lO0 instructions in the 

abstract machine, the operation code can be represented in one byte. 

The language has been organized so that the operand which represents 

either a value or a relative address can also be represented in one 

byte. Hence each POP instruction occupies 16 bits on the System/360. 

For a full description of the machine, the reader is referred to the 

Program Logic Manual [FORTRAN 67]. Some idea of the structure may be 

gained by considering the various classes into which the instructions 

have been divided :- 

(a} transmissive 

(b) arithmetic and logical 

(c) decision making 

(d) Jump 

(e) stack control 

(f) code producing 

(g) address computation 

(h) indirect addressing 

The compiler is divided into five phases=- 

Parse Phase 1 translates the Fortran source text into 

polish notation and creates various in-core 

tables for use in later phases. 

Allocate Phase 2 allocates storage for the variables 

defined in the source module. 



Unify 

Gen 

Exit 
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Phase 3 optimizes the usage of general registers 

within DO loops, 

Phase 4 uses the polish notation and the memory 

allocation information to produce the code for 

the object module, 

Phase 5 completes the output for the object 

module and winds up the compilation process. 

From the description of the various parts of the compiler, i t  

appears l ikely that phases I and 2 are largely machine independent 

although 2 could reflect some of the structure of S/360, Phase 3 

obviously depends on the register structure of the 360 and is machine 

dependent as are phases 4 and 5. These phases would have to be 

rewritten to transfer the compiler to another machine. However, i t  

should be noted that this rewrite can be carried out in the POP 

language. 

The Fortran compiler written in POP is translated for the S/360 by 

defining each instruction type as a macro and using the standard macro- 

assembler, Each instruction produces a pair of address constants of 

size 2 bytes. The POP interpreter written in S/360 assembly code 

fetches a half word according to the current value of the simulated 

program counter, separates i t  into a l-byte opcode and a l-byte operand 

and then transfers control to the appropriate function routine. Since 

access to the WORK and EXIT stacks must be efficient, the pointers to 

these stacks are maintained in general registers. The remaining stacks 

are referenced via pointers stored in memory, 
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As was pointed out in Section 2.2.4, the efficiency obtainable when 

an abstract machine is realized through interpretation depends on the 

relationship of the overhead introduced by the main loop of the 

interpreter and the number of operations involved to perform each of 

the instructions. Thus the t ime required to execute the POP 

instruction 

ADD G 

which adds the contents of the memory location G into the top cell of 

the WORK stack is probably somewhat shorter than that required to 

execute the main loop. Hence, i f  all instructions were such simple 

ones, then the resulting program would be very inefficient. On the 

other hand, consider the instruction 

QSA G 

which compares character strings and advances a pointer along a line i f  

the strings are equal. Clearly, this could involve many operations and 

the t ime required would be large compared with that of the main loop. 

I f  the program spends most of its t ime executing instructions of 

comparable complexity, then the overall efficiency could be quite high. 
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CHAPTER 5.B. 

STRUCTURING COMPILER DEVELOPMENT 

James J. Horning 

Univers i ty  of Toronto 

Toronto, Canada 

i. GOALS OF COMPILER DEVELOPMENT 

Each compiler is developed in a par t i cu la r  environment, in response to certain needs, 

and that  environment w i l l  shape not only the form of the completed compiler, but also 

the process by which i t  is developed. This chapter is concerned with ways in which 

the development process can be structured to meet given object ives. 

An e x p l i c i t  set of goals should be formulated at the outset of any compiler pro ject ;  

although they may change with t ime, they provide guidel ines for  major decisions and 

are the basis for  evaluat ion. Merely s tat ing goals does not ensure t he i r  attainment, 

but wi thout  goals no coherent product can be developed, 

I°i. TYPICAL COMPILER GOALS 

i.i.I. CORRECTNESS 

"Of a l l  the requirements that we might place on a program, f i r s t  and 

foremost is  that i t  be correct,  In other words, i t  should give the 

correct outputs for  each possible input .  This is what we mean when 

we say that a program 'works,' and i t  is often and t r u l y  said that 'any 

program that  works is better than any program that  d o e s n ' t . ' . . .  
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" I f  a program doesn't work, measures of e f f i c i ency ,  of adap tab i l i t y ,  or 

of cost of production have no meaning. S t i l l ,  we must be r e a l i s t i c  and 

acknowledge that probably no perfect program was ever wr i t ten .  Every 

rea l l y  large and s i gn i f i can t  program has ' j us t  one more bug.' Thus, 

there are degrees of meeting speci f icat ions - of 'working' - and 

eval~ation of programs must take the type of imperfection in to  account. 

"Any compiler, for example, is going to have at least 'pathological' 

programs which i t  w i l l  not compile correctly. What is pathological, 

however, depends to some extent on your point of view. I f  i t  happens in 

your program, you hardly classify i t  as pathological, even though thousands 

of other users have never encountered the bug. The producer of the compiler, 

however, must make some evaluation of the errors on the basis of the number 

of users who encounter them and how much cost they incur . . . .  " [Weinberg 1971] 

One goal of every compiler is  to cor rec t ly  t ranslate a l l  correct input  programs and 

to cor rect ly  diagnose a l l  incorrect  ones [see Chapter 5.D.] .  However, compilers are 

seldom absolutely correct;  perhaps " r e l i a b i l i t y "  is  a more feasible goal, i . e . ,  

keeping the number of errors encountered acceptably small. 

What constitutes an acceptable error rate w i l l  depend on the expected cost of errors 

in the environment. The cost of an error, in turn, depends on the way in which the 

compiler has deviated from i ts  specification. I t  may be worse, for example, to 

incorrectly translate a correct program than to incorrectly diagnose a faulty one. 

Many compilers deliberately deviate from the specifications of their  source languages, 

either accepting prohibited constructs ("language extensions") or rejecting permitted 

ones ("restr ic t ions") ;  the costs of such deviations may be jus t i f ied by advantages 

gained elsewhere. Errors or deviations that produce warning messages are generally 

more tolerable than those that go unreported. 
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1 • 1 • 2 . AVAILABILITY 

Even a correct compiler that  cannot be run is of very l i t t l e  use. Thus, a very 

important aspect of any compiler project is  i t s  schedule. I f  the compiler is worth 

anything, then any delay in i t s  production w i l l  incur a real cost. S im i la r l y ,  the 

compiler must run on the r i gh t  ( i . e . ,  avai lable) machine in the r i gh t  conf igurat ion 

with the r i gh t  operating system, 

Unfortunately,  scheduling is one of the least understood aspects of managing software 

development. Teams seldom have a chance to undertake projects s imi la r  to what they 

have done before, so past experience is not a s u f f i c i e n t  guide. Most of ten,  project 

deadlines are set by external constra ints ,  with l i t t l e  appreciation for  technical 

r e a l i t i e s .  

As Weinberg [1971] notes, "Conceptually, there is a minimum expert ise and a minimum 

time necessary to produce a given system. Because these quant i t ies cannot be c lear ly  

defined - and because of the uncertaint ies involved in program estimation - managers 

often form a team which any reasonable judgement would indicate cannot perform the 

designated task in the a l l o t ted  time. Inev i tab ly ,  the team is given an extension 

when the time l i m i t  is reached and the r e a l i t y  must be faced. Had i t  been faced 

ea r l i e r ,  the work could probably have been organized d i f f e r e n t l y  - in recognit ion of 

the longer schedule - and thus produced, in the end, more qu ick ly . "  

I t  should be recognised that man-months is a measure of cost, not of p roduc t i v i t y .  A 

compiler that can be produced by a team of four in two years can cer ta in ly  not be 

produced by a team of sixteen in much less than a year, nor by a team of a hundred in 

a l i f e t ime!  
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1.1 • 3. GEN~ERALITY AND ADAPTABILITY 

Although some special-purpose compilers are produced to compile single programs, most 

compilers must be planned to handle a large number of  programs, and to evolve over a 

considerable l i f e t ime  to meet changing requirements. Compiler-writers are f requent ly 

surprised at the uses to which the i r  compilers are put, and often f ind that they pers is t  

longer than was planned during t he i r  construct ion. 

The design of a compiler should not make unnehessarily r e s t r i c t i v e  assumptions about 

the programs i t  w i l l  compile that w i l l  rule out new classes of users (e .g . ,  that a 

fast  "student" compiler w i l l  only be used for  small programs), nor should i t  l i m i t  the 

compiler to pa r t i cu la r  equipment conf igurat ions (e .g . ,  exact ly  64K of memory and one 

disk).  I t  should rather contain a number of parameters that al low the compiler to be 

ta i lo red  to pa r t i cu la r  environments with a minimum of redesign. 

During the l i f e t ime  of a compiler, requirements and speci f icat ions may change many 

times (of ten,  even before i t  is completed!). Unless special care is taken during i t s  

construct ion to ensure adap tab i l i t y ,  responding to these changes may be both traumatic 

and expensive. 

i.i.4. HELPFULNESS 

Chapter 5.D. contains a catalogue of features that separate a "bare-bones" compiler 

from a t r u l y  useful one. None of these features comes by accident, and few are l i k e l y  

to be included unless "helpfulness" is among the design goals of  the compiler. The 

kind and amount of help that  is most appropriate w i l l  depend on the intended users: 

beginning students need careful explanations of simple errors in small programs, whi le 

system programmers are more concerned.with the detection of subtle errors in large 

programs, or the locat ion of  e f f i c iency  "bott lenecks." 

In addit ion to error  detection and diagnosis, the compiler may assist  with various 

other parts of  the program development process, such as documentation, updating source 

programs, and maintenance of program l i b r a r i e s .  The general aim is to reduce the cost 

of program development in a spec i f i c  environment. 
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1.1.5. EFFICIENCY 

Eff ic iency is both a frequently-stated and easily-misunderstood goal in compiler 

development. The usual two-dimensional c lass i f i ca t ion  into "space e f f ic iency"  (memory 

usage) and "time ef f ic iency"  (processor usage) is great ly over-s impl i f ied.  Space and 

time in teract ,  and in d i f fe rent  environments d i f fe rent  balances are appropriate. 

Furthermore, there are several other dimensions of e f f ic iency to be taken into account: 

- e f f ic iency of the compiler development process 

- e f f ic iency of program development using the compiler ( including e f f ic iency of 

compilation) 

- e f f ic iency of target programs produced by the compiler. 

There are some environments in which the f i r s t  dimension is r e l a t i v e l y  unimportant 

(because a single compiler w i l l  have many users), or the th i rd  dimension is r e l a t i ve l y  

unimportant (because program development costs overshadow execution costs), but 

environments in which the second dimension can be neglected are much less common. 

Most compiler projects must aim for  at least acceptable e f f ic iency in a l l  three 

domains. 

1.2. THE EFFECTS OF TRADE-OFFS 

Having picked a set of goals, the compiler-wri ter must recognise that they cannot a l l  

be optimised simultaneously. There is a general " t rade-of f "  phenomenon: improvements 

in one area can only be made by sacr i f i c ing  something in another. (This is sometimes 

known as the TANSTAAFL Law: There A in ' t  No Such Thing As A Free Lunch.) The rare 

occasions in which a new technique allows an improvement without a corresponding cost 

represent s ign i f i can t  advances in the theory of compilers. 

Serious compiler-writers attempt to make trade-offs ra t i ona l l y ,  but face immense 

d i f f i c u l t i e s  in doing so. Success in meeting a goal is d i f f i c u l t  to measure quantita- 

t i v e l y  (and even harder to predic t ) ;  even where measurements can be made, the units do 

not lend themselves to comparison (e.g. ,  should a compiler be speeded up from 8600 

cards/minute to 9200 cards/minute i f  the r e l i a b i l i t y  would drop from 99.995% to 

99.992%?). In theory, a l l  t rade-of f  decisions are economic, and the appropriate units 

are monetary ones, derived from cost-benefi t  analysis. In pract ice, they are usually 

taken i n t u i t i v e l y ,  based on simple rankings of the goals (e.g. ,  yes/no, because speed 

is considered more/less important than r e l i a b i l i t y ) .  This section mentions several 

t rade-offs that generally occur within any compiler project. 
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1.2.1. COMPILATION EFFICIENCY VS. EXECUTION EFFICIENCY 

For most languages and most machines, the simplest and most eas i l y  produced t rans la t ion  

of a program w i l l  not be optimum in execution e f f i c iency .  Thus, the compi ler-wr i ter  

is faced with the choice of  whether to invest e f f o r t  at compile-time to save e f f o r t  

at run-t ime, as well as choices that al low him to trade space for  time. There is a 

spectrum between very e f f i c i e n t  compilers and compilers that produce very e f f i c i e n t  

target  code, and the appropriate point on th is  spectrum depends on whether compilation 

or execution is expected to be the dominant cost. (Caution: I ns ta l l a t i ons  that have 

done careful measurements have general ly been surprised at the high proportion of  

computer time ac tua l l y  spent on compi lat ion.)  

The topic of optimisation is discussed more f u l l y  by Cheatham [Chapter 5 .E. ] .  Here 

we merely note that some local optimisations (e .g . ,  "peephole" optimisations [McKeeman 

1965]) are so Cheap that t h e i r  inc lus ion is almost always j u s t i f i e d ,  whi le most global 

opt imisat ion techniques are appropriate only to execut ion- intensive environments, and 

that the inc lus ion of opt imisat ion w i l l  also af fect  other goals, such as schedule and 

e f f i c iency  of compiler development. 

1.2.2. COMPILATION EFFICIENCY VS. HELPFUlnESS 

I t  is clear that  a "stripped-down" compiler that  makes no attempt at careful e r ro r -  

checking or diagnosis can be smaller and faster  than a more helpful  one. Such 

'~eff iciency" is often i l l u s o r y ,  however, since the faster  compiler may have to compile 

programs many more times before they are completely debugged. 

1.2.3. GENERALITY VS. EFFICIENCY 

" I f  our primary concern in a pa r t i cu la r  appl icat ion is e f f i c i ency ,  the f i r s t  step 

should always be to look fo r  areas in which the spec i f icat ions can be changed to s u i t  

computer e f f i c iency  rather than user convenience . . . .  The e f fec t  of s l i g h t  dif ferences 

in source language on compiler e f f i c iency  can be s t r i k i ng .  Typ ica l l y ,  i f  the compiler 

w r i t e r  can choose I0 percent of the language which he w i l l  not implement, he can 

produce a 50 percent faster  compiler." [Weinberg 1971] "The addit ion of  features to 

a language is not a l i nea r  process as far  as the t rans la tor  is concerned. Constructs 

in teract  with each other,  and the addit ion of a single feature may, in some cases, 

double the size of the t rans la to r . "  [McKeeman 1970] 

Highly special ized compilers can be tuned to be extremely e f fec t ive  in l im i ted  environ- 

ments. However, every b i t  of tuning that is  done for  a pa r t i cu la r  environment reduces 

the p o s s i b i l i t y  of e f f ec t i ve l y  t rans fe r r i ng  the compiler to some other environmen%. 
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Thus, i t  is extremely useful to de l imi t  in advance the intended range of appl icat ion 

of the compiler (and hence, the allowed tunings). 

1.2.4. RELIABILITY VS. COMPLEXITY 

Every decision provides an opportunity for error ,  and generally the r e l i a b i l i t y  of 

programs declines rapidly with size. Many of the techniques of software engineering 

are designed to cope with u n r e l i a b i l i t y ,  but even they can only delay, not e l iminate,  

th is  phenomenon. Thus, when r e l i a b i l i t y  is an important goal i t  may be necessary to 

keep the compiler structure very simple and to ru th less ly  r es t r i c t  i t s  size. 

1.2.5. DEVELOPMENT SPEED VS. EVERYTHING EI~gE 

I t  is generally recognized that when a programming team is under time pressure a l l  

other aspects of i t s  work suf fer .  Weinberg [1972] contains s t r i k ing  experimental 

evidence of the deleterious e f fec t  on four other factors (core usage, output c l a r i t y ,  

program c l a r i t y ,  program size) of the simple instruct ion " t r y  to complete th is 

assignment as quickly as possible." I t  is not surprising that the best compilers are 

generally the work of small teams r e l a t i v e l y  free of external time pressures. 

2. PROCESSES IN DEVELOP~NT 

The construction of a compiler (or any large software system) involves several 

conceptually d is t inc t  processes: spec i f icat ion,  design, implementation, va l idat ion,  

evaluation, and maintenance. Several processes may involve the same people, many of 

them may procede concurrently, and the whole cycle may be repeated several times, yet  

i t  is useful to remember that they have d is t inc t  aims and produce d i f fe rent  products. 

This section b r i e f l y  reviews the function of each process - more thorough treatments 

w i l l  be found in Metzger [1973], Bemer [1969], and Aron [1970]. 

2.1. SPECIFICATION 

In an i n i t i a l  phase of the project,  a set of goals should be chosen and the i r  implica- 

t ions explored. ,The compiler speci f icat ion document should include 

- a precise speci f icat ion of the source language to be compiled 

- a def in i t ion of the target language or machine 

- an indicat ion of the re la t ive  importance of various goals 

- design targets for such features as compiler size and speed and degree of 

optimisation 

- a l i s t  of diagnostic and other features to be included in the compiler 



505 

and perhaps 

a scheduled completion date and/or budget 

a choice of the language in which the compiler is to be wr i t ten.  

At th is  stage, the speci f icat ion is the pr incipal  interface between the compiler 

project and the potential users (customers). Great care should be taken that i t  is 

complete and unambiguous, and that both groups are sa t is f ied  with the same in terpretat ion.  

2.2. DESIGN 

The design of a compiler should be started well before the specif icat ions are frozen, 

since i t  w i l l  generally reveal the poss ib i l i t y  of t rade-of fs that can best be evaluated 

by the customers. I t  w i l l  also continue well into implementation; indeed, in many 

projects i t  is impossible to draw a precise boundary between design and implementation. 

The design process should structure the compiler into major components (passes, phases, 

modules), al locate functions and respons ib i l i t ies  among them, and define the i r  i n te r -  

faces. I t s  resul t  should be one or more design documents, describing the overal l  

structure (and the reasons why i t  was chosen) and the specif icat ions of  the major 

components. 

Since design works from a speci f icat ion and produces specif icat ions for components, 

i t  may be treated as a recursive process, with each component being designed in the 

same way that  the compiler i t s e l f  was. The recursion terminates at a level where a 

speci f icat ion is simply an executable program. Some designers prefer to use a non- 

compilable language (e.g. ,  English) for the higher levels of a design, doing only the 

bottom level in a programming language; others have found i t  convenient to express 

the structure at a l l  levels in a programming language, using macro or procedure names 

for the components. 

2.3. IMPLEMEA~I~ATION 

Regardless of the design technique used, at some point the compiler must be wri t ten in an 

already implemented language, translated into machine code, and executed. Because of 

the size of compilers, implementation is usually the process in which the most people 

are involved. However, the a b i l i t y  to parcel out pieces of a compiler ~o d i f fe ren t  

programmers depends c r i t i c a l l y  on the success of the design in separating those pieces 

cleanly,  with wel l -speci f ied interfaces and no imp l i c i t  interact ions. 
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2 • 4. VALIDATION 

After the compiler has been wr i t ten ,  i t  is necessary to ve r i f y  that i t  in fact works 

correct ly.  Such over-al l  test ing is normally preceded by smaller tests of individual 

program modules as they are wri t ten ( "un i t  test ing,"  "debugging") and as they are 

collected into successively larger subsystems ("system in tegrat ion") .  I t  may well be 

followed by an independent "acceptance test"  performed by the customer. 

Thorough test ing is great ly f a c i l i t a t e d  i f  each level of speci f icat ion is accompanied 

by a carefu l ly  designed set of tes t  data, to be supplemented by test data supplied by 

the person (general ly the programmer) most fami l ia r  with the internal structure of the 

component. Such data should be permanently associated with the program as part of i t s  

documentation, and should be updated with every change of speci f icat ion,  and re-run 

a f te r  every modification [Poole 1973]. 

2 • 5. EVALUATION 

Throughout the l i fe t ime of a project,  t rade-offs are cont inual ly forcing evaluation of 

various aspects of the compiler. Af ter the compiler has been validated i t  is useful 

to attempt a global evaluation of the compiler to see how well i t  has met i t s  or iginal 

(or modified) goals, how appropriate were various decisions taken during i t s  development, 

and whether the specif icat ions were reasonable. A careful cost-benef i t  analysis may 

well indicate the des i r ab i l i t y  of repeating some of the previous processes to produce 

a new product. 

2.6. MAINTENANCE 

The compiler-wri ter generally feels that his troubles are over when the compiler has 

been accepted and released. However, i t  is not uncommon for  the maintenance process 

of a successful (widely-used) compiler to consume as much manpower as a l l  the others 

combined. Demands for  maintenance may arise for a var ie ty  of causes 

- change of language specif icat ions 

- detection of errors 

- detection of inef f ic ienc ies  

- new environments 

- need for  new f a c i l i t i e s .  

I t  is largely because of the unpredictable (but predictably large) demands of maintenance 

that careful and extensive documentation of previous processes is required. Belady 

and Lehman [1971] give a theory that predicts maintenance costs. 
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3. MANAGEMENT TOOLS 

Because compilers are large programs, the i r  construction generally involves several 

people, and thus, necessari ly,  management. This section is devoted to some social 

structures that assist  the human a~ t i v i t y  of compiler development. 

3.1. PROJECT ORGANIZATION 

Conway's F i rs t  Law [1968] states that every program has the same structure as the 

organization that produced i t .  This pr inc ip le can be used to structure the implemen- 

tat ion group, given a par t icu lar  design. A l te rna t i ve ly ,  i t  can warn against the 

choice of certain designs, given ex is t ing group structures. ( I t  is no accident that 

small teams generally produce single-pass compilers, or that the largest computer 

company recently produced an 87-phase compiler!) 

Baker and Mi l l s  [1973] have advocated the production of structured programs by means 

of highly structured groups, cal led Chief Programmer Teams. (The CPT concept also 

includes a number of other tools that w i l l  be treated l a te r . )  Each CPT contains 

several men~ers with c lear ly  defined roles. The chief  programmer has overal l  design 

respons ib i l i t y ,  wri tes the top- level  program, specif ies components, and checks the 

programming of a l l  other team programmers. The backup programmer monitors the work 

of the chief programmer, performs his functions in his absence, and assumes responsi- 

b i l i t y  for major subsystems. Up to f ive junior  programmers work on the development 

of components defined by the chief  programmer; in large projects they may also serve 

as the chief  programmers of subsidiary CPT's. The programming l i b ra r ian  modifies 

source programs as instructed by programmers, submits runs at the i r  request (program- 

mers ~ submit t he i r  own runs), logs a l l  runs,(together with l i s t i n g ,  predicted 

resu l t ,  and actual resu l t ) ,  and generally maintains project records. The resul ts 

obtained by CPT~s are impressive - I0,000 l ines of "debugged" source program per man- 

year, with a mean of one bug l a te r  detected per I0,000 l ines of debugged program - but 

how much is due to project organisation, and how much to other factors,  is hard to 

determine. 

Weinberg [1971] has proposed another organisation: the "egoless programming" group, 

based on the observation that a programmer is the person least l i k e l y  to spot errors 

in his own work. In egoless programming, programs are the property of the group, 

rather than the ind iv idua l ,  and a l l  programs are passed around for checking by one or 

more other programmers. The approach cer ta in ly  seems applicable to compiler develop- 

ment, although i t  may not generalize to extremely large projects. 

One thing that should be kept in mind when t ry ing a new project organisation is the 
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"Hawthorne e f fec t " :  workers involved in any experimental s i tua t ion  may take such pride 

in t he i r  work that  t he i r  performance improves temporari ly,  whether or not the new 

s i tuat ion is superior. (Smart managers sometimes exp lo i t  t h i s  fact  by t ry ing  

a rb i t ra ry  experiments.) 

3.2. INFORMATION DISTRIBUTION AND VALIDATION 

The design and implementation of a system progresses by a series of decisions. Each 

decision must be checked to ensure that  i t  is consistent wi th system speci f icat ions 

and ea r l i e r  decisions. Furthermore, each decision resul ts in information about the 

system that is po ten t i a l l y  useful in making fu r ther  decisions. System documentation 

should record and communicate these decisions. 

I t  is common in compiler projects to maintain a projec t workbook containing the current 

state of the design and implementation, general ly in loose- leaf  form to make updating 

easy. Each member of the project has an up-to-date copy of the workbook, to which he 

can refer  for information as needed. As pages are replaced, they may be f i l e d  in a 

special section to provide project l~istory. A workbook is most useful i f  i t  concentrates 

on recording the reasons fo r  decisions, rather than simply l i s t i n g  the decisions them- 

selves. 

Both the Chief Programmer Team [Baker 1973] and "egoless programming" [Weinberg 1971] 

methodologies re ly  heavi ly  on converting programming from a "pr ivate ar t "  to a "publ ic  

pract ice."  By ensuring that  a l l  programs are checked by at least  two people, and that 

program l i s t i ngs  are publ ic  (project) documents, they great ly  reduce the p robab i l i t y  

of programming errors escaping notice for  long periods. They also cut down a pro ject 's  

vu l ne rab i l i t y  to the loss of a programmer - someone else has already read and under- 

stood the modules he has produced. 

For very d i f fe ren t  reasons, Parnas [1971] has advocated that  management provide 

techniques for  r es t r i c t i ng  the f low of information wi th in  a project.  He argues that 

in we l l -s t ruc tured systems each module w i l l  make only a few c lear ly -spec i f ied  assump- 

t ions about the rest of the system. On the other hand, "a good programmer makes use 

of the usable information given him." The conclusion that  he draws is that each 

programmer should receive documentation only of those design decisions that he is 

intended to assume in the production of his current module. Systems produced under 

such a d isc ip l i ne  should be more re l iab le  and more adaptable, although, as Weinberg 

[1971] points out, most actual information f low in a social system takes place outside 

management-defined channels in any case. 
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3. 3. PROGRAMMER MOTIVATION 

The goals of an "individual programmer are not necessari ly those of the group. Many 

projects have ended disastrously or been subs tan t ia l l y  delayed because some members 

were working at cross-purposes to the project.  Weinberg [1971] has pointed out 

several p i t f a l l s  in the usual management techniques for  motivat ing programmers: salary 

and threats.  

Perhaps the strongest single motivation to project members is par t i c ipa t ion  in 

establ ish ing project goals, and the imposit ion of goals from outside the project is 

often ine f fec t i ve .  Groups that coalesce in to  teams also exert  strong social pressures 

on each other to ensure that  each member "pu l ls  his weight,"  pa r t i cu l a r l y  in s i tuat ions 

where everyone's contr ibut ion is avai lable for publ ic  inspect ion. One company has 

found that substant ia l  rewards (up to $I0,000) for  er ror - f ree programming contr ibutes 

to the establishment of a Zero-Defects psychology. 

4. TECHNICAL TOOLS 

Not a l l  of the problems involved in compiler development are human problems. There is 

a growing body of software engineering practice and experience that indicates the 

u t i l i t y  of a var ie ty  of technical too ls ,  some of which are mentioned here. 

4.1. COMPILER COMPILERS 

Most compilers have many tasks in common: lex ica l  analysis,  syntact ic  analysis,  semantic 

analys is ,  code generation. When some (or a l l )  of these problems are solved in general 

form, the compi ler-wr i ter  can be rel ieved of some part  of his job. This is  the goal 

of compiler compilers, as described by G r i f f i t h s  [Chapter 4 .A . ] ,  Koster [Chapter 4 .B . ] ,  

McKeeman et a l .  [1970], and Feldman and Gries [1968]. 

Every compi ler-wr i ter  should ce r ta in ly  consider the compiler compilers avai lable to 

him before deciding to wr i te  his own complete compiler. I f  he f inds one that acceptably 

meets his requirements, he may gain in a number of respects: 

the compiler w i l l  be produced more qu ick ly ,  with less manpower 

- the compiler w i l l  probably contain fewer errors 

- the compiler w i l l  be more f l e x i b l e  and adaptable 

- the compiler may well contain useful features that would not otherwise have 

been included 

- since i t  uses wel l - tes ted techniques, the compiler may even be more e f f i c i e n t .  

Not every compiler compiler of fers a l l  these advantages, of course, and there are not 
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yet good compiler compilers for  a l l  environments. Some languages may be beyond the 

scope of ex is t ing compiler compilers. 

4.2. STANDARD DESIGNS 

Even i f  no compiler compiler is sui table,  the compiler-wri ter need not s tar t  from 

scratch. Many d i f ferent  designs, suitable for various languages and environments 

have been published. McClure [1972] and Gries [1971] survey a number of these. We 

may mention designs 

for  COBOL [Conway 1963] 

for Algol 60 [Randell 1964] 

- for PL/I subsets [McKeeman 1970] 

for  Algol 68 [Peck 1971]. 

The user of a standard design 

saves time 

avoids p i t f a l l s  

perhaps increases compatabil i ty with other compilers. 

4.3. DESIGN METHODOLOGIES 

For components that he chooses to design himself, the compiler-wri ter may f ind i t  

advantageous to adopt one of the current design methodologies, such as those described 

by Zurcher and Randell [1968], Liskov [1972], and Graham [1973]. These promise 

better control of the design process 

ea r l i e r  evaluation of the system 

more adaptable designs. 

4,4, OFF-THE-SHELF COMPONENTS AND TECHNIQUES 

Vi r tua l l y  every technique mentioned in th is course has been described in the open 

l i t e ra tu re ,  frequently in the form of an algorithm. Most of them have been implemented 

on one or more machines, and frequently these implementations are avai lable from the i r  

or ig inators.  Many compiler-writers choose to combine research with development, but 

t~ere is no real need to do so. 

A word of caution is in order. Algorithms are much more portable than programs. Even 

i f  a program module is avai lable "free" from i t s  implementor, unless i t  has been 

constructed with po r t ab i l i t y  and adaptabi l i ty  in mind, i t  may be easier to wr i te a 

new program based on the same design than to adapt the old program to the new environ- 

ment. ( Interface specif icat ions are pa r t i cu la r l y  troublesome.) 
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4.5. STRUCTURED PROGRAMMING 

Programming need not be the undiscipl ined ar t  form that i t  once was. Systematic 

techniques for decomposing a problem and constructing a program to solve i t  are now 

becoming accepted pract ice. Par t i cu la r ly  when combined with management tools (e.g. ,  

in Chief Programmer Teams) these discip l ines have proved to be very e f fec t ive  in 

increasing programmer product iv i ty ,  retaining adaptab i l i t y ,  and ensuring r e l i a b i l i t y .  

Very readable expositions are contained in Dahl, Di jkstra and Hoare [1972], Wirth [1971], 

Mi l l s  [1972], and Naur [1969]. 

4.6. STRUCTURED PROGRAMS 

I t  is very helpful for  programs to retain the structure that guided the i r  construction. 

This contributes to r e l i a b i l i t y ,  and par t i cu la r l y  to main ta inab i l i t y .  I t  is now 

generally accepted that the replacement of go tostatements by more structured control 

constructs (e.g. ,  i f - then-e lse ,  case,do-while) contributes to th is structure [SIGPLAN 

1972]. 

Careful use of procedures and macros to modularize the program is another extremely 

helpful technique. Idea l l y ,  every decision in the design and implementation of the 

compiler would be stated in one place only, and each module would isolate the 

consequences of an independent decision. 

4.7. APPROPRIATE LANGUAGES 

Our languages control the way we think and the rate at which we work. The choice of 

an appropriate language can reduce the cost of compiler by an order of magnitude. 

This is due to two ef fects :  in the r ight  language, the source tex t  of the compiler 

w i l l  be much shorter, and a suitable language w i l l  reduce the opportunit ies for  error 

and assist  in the detection of errors that do occur. 

We may iden t i f y  a number of requirements of a language suitable for wr i t ing  compilers: 

- i t  must be eas i ly  readable and understandable 

- i t  must have appropriate data objects (e.g. ,  Booleans, integers, characters) 

and operations on them 

- i t  must have simple yet powerful control and data structures (e.g. ,  i t e ra t i on ,  

vectors, select ion) 

- i t  must contain enough redundancy for substantial compile-time checking 

- i t  must support modularisation (e.g. ,  by means of macros, procedures, and 

data type de f in i t i ons ) ,  preferably with secure separate compilation 

- i t  must allow separate and checkable speci f icat ion of module interfaces 
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- i t  must map e f f i c i e n t l y  i n to  machine code. 

Assembly languages are unsuitable on almost all counts, but many high-level languages 

are also unsatisfactory. Probably the best candidates currently are the so-called 

Machine-oriented Languages (MOL's) [van der Poel 1974]. 
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Chaper 5.C 

PROGRAMMING LANGUAGE DESIGN 

W. M. McKeeman 

Univers i ty  of Cal i fo rn ia  at 

Santa Cruz, U.S.A. 

" I t  is as important to 

forbid non-sense as i t  is 

to permit good sense" 

i .  WHO SHOULD (NOT?) DO IT? 

I can s t i l l  f ind  no better way to express my thoughts on th is  subject than the f o l -  

lowing [McKeeman 66]: "The universe and i t s  re f lec t ion  in the ideas of man have 

wonderful ly complex structures.  Our a b i l i t y  to comprehend th is  complexity and per- 

ceive an underlying s imp l i c i t y  is in t imate ly  bound with our a b i l i t y  to symbolize and 

communicate our experience. The sc ien t i s t  has been free to extend and invent lan- 

guage whenever old forms became unwieldy or inadequate to express his ideas. His 

readers however have faced the double task of learning his new language and the new 

structures he described. There has therefore arisen a natural contro l :  a work of 

elaborate l i n g u i s t i c  inventiveness and meager resul ts  w i l l  not be widely read." 

"As the computer sc ien t i s t  represents and manipulates information w i th in  a machine, 

he is simulating to some extent his own mental processes. He must, i f  he is to make 

substantial  progress, have l i n g u i s t i c  constructs capable of communicating a r b i t r a r i l y  

complicated information structures and processes to his machine. One might expect 

the balance between l i n g u i s t i c  elaborat ion and achieved resul ts  to be operable. Un- 

fo r tunate ly ,  the computer sc i en t i s t ,  before he can obtain his resu l ts ,  must success- 

f u l l y  teach his language to one pa r t i cu l a r l y  reca lc i t ran t  reader: the computer i t -  

se l f .  This teaching task, cal led compiler w r i t i ng ,  has been formidable." 
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"Consequently, the computing community has assembled, under the banner of standard- 

i za t i on ,  a considerable movement for  the acceptance of a few committee-defined 

languages for  the statement of a l l  computer processes. The twin ideals of a common 

language for  programmers and the immediate i n t e r chang ib i l i t y  of programs among 

machines have la rge ly  f a i l ed  to mater ia l ize.  The main reason for  the f a i l u r e  is that 

programmers, l i ke  a l l  sc ien t is ts  before them, have never been wholly sa t is f ied  with 

the i r  heritage of l i n g u i s t i c  constructs. We hold that the demand for  a f ixed stand- 

ard programming language is the ant i thes is  Of a desire for  progress in computer 

science. That the  major respons ib i l i t y  f o r  computer language design should rest with 

the language user w i l l  be our central theme." 

While a great deal of programming language design has gone on in the meantime, much 

of i t  has been at cross purposes. On the one hand the designer has been t ry ing  to 

f a c i l i t a t e  the messy process of human understanding; on the other hand he has had to 

insure e f f i c i e n t  use of modern computers. His language const i tutes the impedance 

match between grossly d i f f e ren t  representations. In some sense the designer has been 

l im i ted  to the top of a tower of languages that s tar ts  at b i ts  in computer memory and 

bui ld up through stages to his higher level language. Between each stage there must 

be an automatic t rans la t ion  program. As might be expected, there is only a l imi ted 

amount of va r ia t ion  possible under these constra ints.  The major concepts that have 

arisen are the var iable and structures composed of variables which are, in fact  and 

in ten t ,  ways of using computer memory; f i n i t e  funct ions over data structures;  and 

sequence contro l .  Programming languages are s t i l l  a long way from the patterns of 

human thought. 

A simple analogy w i l l  i l l u s t r a t e  the point .  Suppose we were designing languages for  

expressing recipes. We might very well succeed in saving some ingredients,  and even 

some footwork by the cook. But we would probably not help the master chef invent a 

new dish, nor the gourmet to enjoy one. Their patterns of thought, about exact ly  

the same subject, are on a d i f f e ren t  plane al together.  

The fact  that  programming costs now exceed computer costs has forced the langauge 

designer to concentrate more on st ructur ing the programming process than the program 

i t s e l f .  There is as much to save by reducing the pre- insp i ra t ion  f l a i l i n g s  of a pro- 

grammer as there is in e l iminat ing a redundant STORE in the inner loop. 
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Two additional levels of language appear to be forming on top of the more tradit ional 

programming structures (Figure 1.1). One is characterized by a top-down analyses of 

the program structure. The other is characterized by predicates over various ab- 

stract data structures. At the highest level we now see, we have statements of 

things that must be true, perhaps at specific points in the computation. Once we 

established these restr ict ions, we fragment the program hierarchically into the most 

natural units possible. Only then do we map the program onto machine-related con- 

structs. These topmost mappings are probably not done automatically; i t  is easier 

to do them by hand than to formalize the mapping process. Paradoxically, we no 

longer care very much about the structure of the higher level language program i f  we 

can understand i t  easily with reference to the even higher level descriptions. 

Again, since i t  is the programming process that is being fac i l i ta ted,  we observe that 

progress down the tower of abstraction may well run into problems, causing lower 

level obstacles to be solved bychanging higher level descriptions. I t  is an i tera- 

t ive process involving al l  the levels of abstraction. 

Thus we in one sense put to rest  the issue of "Who should do i t ? " .  At the level of 

meaty thoughts, the programmer necessari ly invents his symbolism. Ei ther in one 

wrenching step, or in a series on smaller steps, he transforms the program to the top 

of the automatical ly t ranslatable series and then turns the problem over to the com- 

p i l e r .  

The substantive questions are what structures are useful at each of the various 

levels of abstraction. The new viewpoint is that i t  is not necessary to mix a l l  the 

levels into one notation. Or, to put i t  d i f ferent ly ,  i t  was a mistake to assume we 

could think effect ively in a (single) programming language. 
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f l n  the brain of 
the problem solver 

Predicates that 
describe certain 
relat ionships that must 
be sat is f ied by the program 

~ T o p - d o w n ,  h i e r a r c h i c a l  
decomposition of the program 

Programming language 

Intermediate languages in 
the compilation process 

Loadable program modules 

Bits in computer memory 

Levels in the 
problem solving language tower. 

Figure 1.1 

2. DESIGN PRINCIPLES 

There are a lo t  of reasons to design computer languages but the point of view ex- 

pressed he~e~ ~attbere is a special appl icat ion area which needs a special lang- 

uage. The designer is attempting to put such a language together without secret ly 

t ry ing to upstage the designers of Algol-68 (or any other general purpose language). 

The f i r s t  question, as a pract ical  matter, is how to do i t .  And the f i r s t  ru le,  as 

a pract ical matter, is how to Keep I t  Simple. The major error by beginning designers 

and compiler wr i ters is overambition. The resul t  may be a great design but w i l l  

surely be an unfinished project. As Wirth says, the hardest decisions are what to 

leave out. 

Use established constructs as much as possible. The remaining sections of th is 

chapter are concerned with the most useful models for  languages. 

Having decided not to do very much, and to copy most of i t ,  the problem reduces to 

achieving the necessary features (Figure 3.1) in a consistent manner. The simplest 

way to proceed is to wr i te some programs. That i s ,  l e t  your new language invent i t -  

se l f  natura l ly ,  A small program w i l l  generally exercise a large part of the languag~ 



518 

Then attempt to use the standard language defining tools (grammars) to specify the 

language concisely. The restr ict ive form of def in i t ion w i l l  surely suggest changes 

in the language, then, in turn, in the sample programs. Iterate the process unt i l  

both the programs and the language description are elegant and understandable. 

One might suspect that the language would not improve by having to conform to a re- 

s t r ic t ive defining tool. But experience shows that i t  does. In some sense there is 

no art unless there is a restr ict ion of the medium. In some perverse way, the human 

mind, in coping with restr ict ion,  produces i ts  best results. And grammars, the very 

formalization of nested def in i t ion,  are a rich medium. 

Involution is a desirab~ property for a language. Having added a f a c i l i t y ,  i t  pays 

to use i t  everywhere i t  makes sense. The use of <expression > in  Algol is an 

example. 

Orthogonality is a de~ra~e property. The f ac i l i t i e s  that are there should be highly 

independent. For example, i f  there are features for sequence control, then there 

should not be an additional set of sequence controll ing features down inside expres- 

sions. 

Adequacy is adesirab~ property. I t  should be able to express the solutions to al l  

problems to be solved in i t .  But that is not the same as generality, or complete- 

ness. There is no reason to be able to compute an arbitrary function i f  we know 

ahead of time that only certain simple classes of functions are going to be used. 

Translatabi l i ty is a desirable property. There is not much point in designing a 

neat language that cannot be translated, eventually, to machine language. Although 

we have made the point that some translations are best done by the human hand, they 

must be doable. For those that are going to be automatically translated, the lang- 

uage designer had better have some translator writ ing experience. A number of our 

most spectacular modern computer languages concealed hidden snags that defeated the 

compiler writers. 

Another important property of the language is that i t  mirror human thought patterns. 

The go-to controversy is an excellent example. When one human is giving another 

another commands, he rarely says "Now go to step 3" or the l ike. More l ike ly  he wi l l  

say "Do X and then Y and then Z." While you are doing Z, i f  P happens, then quit 

doing Z and start al l  over." That is, naming, abstraction, sequencing, repeating, 

qui t t ing, and the l ike are natural modes of thought. Unfortunately, early program- 

mers were more concerned with giving commands to computers, leaving us with an anach- 

ronist ic,  inhuman go-to heritage. The solution is not to get rid of the go-to, i t  is 

to get i t  out of our sight and mind. I t  belongs at some convenient point below the 

highest level language the human is going to deal with in the tower in Figure l . l .  
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3. MODELS FOR LANGUAGES 

There are an enormous number of useful language models upon which the designer might 

base his new language. Each must have some merit or i t  would not have survived the 

"natural control" mentioned in Section i of th is chapter. For the problem solver 

the measure of merit is in how much the language helps him to discover a good 

solut ion. 

In each l i ngu i s t i c  model there are some of these necessary, human-engineered f a c i l i -  

t ies ,  Figure 3.1 gives a br ie f  l i s t  of important features. Again, i t  is not 

necessary (or even advisable) to have a l l  features in one level .  

Assertions 

Hierarchical 
decomposition 

Modular 
decomposition 

Data structur ing 

Abstraction 

Sequencing 

A f a c i l i t y  to state 
propositions that should 
hold regardless of the 
deta i ls  of implementation. 
(Also called predicates, 
invar iants,  propert ies).  

A f a c i l i t y  to express a 
top-down analysis of the 
programming task. Tasks 
and subtasks. Structures 
and substructures. May or 
may not imply sequencing. 

A f a c i l i t y  to express 
program units that may be 
semi-independently wr i t ten 
or executed. Sequencing 
not implied. Intermodular 
interfaces necessarily 
simple in both form and 
dynamic behavior. 

A f a c i l i t y  to express sets 
of values. A program is a 
function over a domain consisting 
of a l l  values of i t s  global 
variables (including input).  
Reducing the v a r i a b i l i t y  of the 
range through data de f in i t ion  
reduces the needed complexity 
of the function (program). 

A f a c i l i t y  more general than 
hierarchical decomposition. The 
a b i l i t y  to take any in te rna l l y  
consistent theme of a program, 
describe i t ,  name i t ,  and use 
only the name subsequently. 

A f a c i l i t y  to control the sequence 
of events during computation, 
f u l l y  or p a r t i a l l y .  
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Data manipulation 

Redundancy 

A f a c i l i t y  to carry out pr imi t ive  
operations on the data. Except for  
i t s  interact ion with sequencing, highly 
appl icat ion dependent. 

The f a c i l i t y  to guide programming 
by detecting and diagnosing 
inconsistencies of the programmer. 
Includes paragraphing, required 
declarat ion, type checking, etc. 

3.1 

Programming Language Features. 

Figure 3.1 

THE ALGOL FAMILY AS MODELS 

The Algol family of languages (Algol-58, Algol-60, Euler, Algol-W, PL/1, Pascal, 

Simula-67, Formula Algol,  Algol-68, to name a few), serves as an excel lent reposi- 

tory of notations for  sc i en t i f i c  problem solving. A few of them are reviewed below. 

Some constructs are the incarnation of more than one d i f fe ren t  features out of 

Figure 3.1. 

The f a c i l i t y  of Algol for  hierarchical decomposition of the programming process is 

the procedure. Procedures can be defined in terms of other procedures to an a rb i t -  

rary depth. We can wr i te 

procedure program; 

begin 

i n i t i a l i z a t i o n ;  

main process; 

termination 

end program; 

having l e f t  out the deta i ls  of the three parts. Continuing we wr i te 

procedure i n i t i a l i z a t i o n ;  

beg!n 

read user di rect ions;  

prepare tables; 

pr in t  headings; 

end i n i t i a l i z a t i o n ;  

again without making any commitments to deta i ls  of data structures and other low 

level  de ta i ls .  And so on. 

The use of the procedure in th is manner has one disadvantage: i t  is decidedly se- 

quential .  Some hierarchical decompositions do not have any implied sequencing. For 

example, the per fect ly  reasonable decomposition 
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procedure sc ien t i f i c  subroutines; 

begin 

f loa t ing  point routines; 

f ixed point routines; 

tex t  routines 

end sc ien t i f i c  subroutines 

does not make any sense. 

The f a c i l i t y  in Algol for  modular decomposition is also the procedure. The neces- 

sary d isc ip l ine  on the intermodular interface is achieved by requir ing a l l  communi- 

cation to take place through the parameter l i s t  (no global or up-level addressing). 

Since procedure def in i t ions can be nested, modules can be fur ther  ref ined. The pro- 

blem with th is kind of refinement is that the inner procedures cannot be used out- 

side of the containing procedure, an ef fect  not always desired. Another important 

feature of modularization, the a b i l i t y  to r e s t r i c t  the access to the global data 

structure for  any given module to the appropriate variables is not generally pos- 

s ib le in Algol. The only scope res t r i c t i on  avai lable is through nesting. Thus i t  

is impossible to have three modules A, B and C, and three variables AB, AC and BC, 

where A is rest r ic ted to exactly AB and AC, B is rest r ic ted to exactly AB and BC, 

and C is rest r ic ted to exactly AC and BC. 

The f a c i l i t i e s  in Algol for  sequencing have proven most successful. Recent designs 

have tended to minimize the elaborate looping constructs, el iminate the go-to, and 

add procedure and loop ex i t  constructs. 

The most general form of the Algol decision making (condit ional,  i f ,  case, etc. )  

f a c i l i t y  can be expressed as [from rumors about the Di jkstra New Mexico lectures, 

1/74]: 

i f  

guard: action; 

guard: act!~on; 

guard: action; 

f i  

where one action is selected from among those which are "unguarded". The t rad i t i on -  

al i f - then-e lse construct has two guards that are mutually exclusive. For example: 

i f  a >b then $I else S2 

is expressed 
i f  

a <b:  SI; 

~a <b:  S2 
f i  
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The case statement of Pascal 

is expressed 

case i of 

begi n 

c1: $1; 

c2: $2; 

c3:c4: $3; 

end; 

i f  

f i  

i = c i :  $1; 

i = c2: $2; 

i = c3V i  = c4:$3; 

The general notation has several important propert ies. F i rs t ,  i t  is general. Sec- 

ond, the p o s s i b i l i t i e s  o f  more than one guard simultaneously sa t i s f i ed ,  or zero 

guards sa t is f ied  now occur, g iv ing the opportunity for  new semantics. Third,  the 

notat ion is order-independent ( in  contrast to i f - then-e lse ,  the or ig ina l  case state- 

ment of Hoare, the LISP cond i t iona l ) .  Fourth, and perhaps most important, the 

guards are in the form of assert ions, forming a possible l i n k  to a higher level 

assertion de f i n i t i on  of the program. 

Exactly the same form can be used for  looping. 

loop 

guard: act ion;  

guard: act ion;  

guard: act ion;  

° , °  

pool; 

wi th the obvious in te rpre ta t ion  that  a l l  guards passed are executed in some unknown 

order, and a l l  guards f a i l i n g  terminates the loop. 

Again, one can imagine using the same form for  events. The guards are to be "con- 

t inuously"  evaluated and, whenever one becomes true,  the computation is interrupted 

and the corresponding action carr ied out. 

An argument against a l l  of the above can be based on the i ne f f i c i ency  of evaluating 

a l l  of the guards every time the construct is entered, and the p o s s i b i l i t y  of side 

ef fects causing the guards to be i l l - d e f i n e d .  Both are based on t rad i t i ona l  i n t u i -  

t ion as to how such constructs might be implemented on contemporary computers. I 

suspect the solut ion is an in te res t ing ,  but not very d i f f i c u l t ,  problem for  compiler 

wr i te rs .  
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The f a c i l i t i e s  in Algol for  redundancy include required declarat ions of var iables.  

This allows the compiler to not only check fo r  spel l ing errors but also cer ta in sem- 

antics implied by type res t r i c t i ons .  The type f a c i l i t i e s  of Pascal are much strong- 

er in th is  regard by e l iminat ing the need for  coding a host of l i t t l e  messages as 

integers which have then los t  t he i r  unique i den t i t y  in the program for  checking pur- 

poses. I t  was the lack of such a f a c i l i t y  that caused many errors in the XPL comw 

p i l o t .  

Long, mnemonic i den t i f i e r s  are also redundant, both for  the compiler and the 

human reader, as are paragraphing conventions, enforcing the matching of begin-end 

pairs and other s im i l i a r  rules [McKeeman '65 ] .  

F a c i l i t i e s  for  data s t ructur ing f i n a l l y  appear in the Algol languages in Algol-W, 

and then in Pascal (Algol-68 has, of course, everything).  We s ta r t  with cer ta in 

sets from mathematics ( integers,  reals,  etc.)  and other user defined sets (types). 

Then the concepts of sets, ordered sets and graphs are used to bui ld  more complex 

combinations. I t  is important to rea l ize  that the path from the or ig ina l  idea to 

the ul t imate programming language data structure is a long one. Algol does not give 

us much guidance, for  example, on representing veal cordon bleu. 

3.2 MATHEMATICS AS A MODEL 

The notations of mathematics are a second, though ce r ta in l y  not independent source 

of concepts. Mathematics is a l o t  less constrained than Algol .  About a l l  that  is 

necessary is that the notation f a c i l i t a t e  formal manipulations and that i t  can be 

wr i t ten  down. And, in addi t ion,  i t  has hundreds of years of evolut ion behind i t .  

The lack of constra int  is not a l l  of pos i t ive value. A great deal of mathematics 

deals with concepts that are noncomputational in nature (the law of excluded middle, 

ext rapolat ion to the l i m i t ,  i n f i n i t e  sets, e tc . ) .  What i s  always f i n i t e  is  the 

sequence of formal manipulations the mathematicians go through to prove the i r  re- 

su l ts .  

There is not much point in t ry ing to review mathematics here. To date i t  is the 

most pr imit iw~ concepts that have been most used in programming languages. To some 

extent th is  is a resu l t  of the more complex mathematical concepts f a i l i n g  to work. 

There is ,  for example, a great deal of theory about funct ions of a real var iable,  

most especia l ly  ana ly t ic  funct ions. But computer represented funct ions are always 

f i n i t e  in both range and domain. The resu l t  is that  algorithms that depend upon 

convergent ser ies, or the f i ne r  propert ies of the real f i e l d ,  may be e r ra t i c .  In 

computing i t  always seems best to do a l o t  of something simple than a l i t t l e  b i t  of 

something clever.  
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3.3 STREET LANGUAGE AS A MODEL 

Although we have placed i t  l as t ,  i t  should be clear that past formalisms are not the 

source of new ideas. I t  is the undisciplined ramblings of human communication that 

are most l i k e l y  to lead to real l i ngu i s t i c  progress. I f  there is a special applica- 

t ion,  then the sample programs (of Section 2) may well show special pr imi t ives.  The 

language of a bank t e l l e r  at a computer console, for  example, might be described by 

the grammar 

t e l l e r  = command * ;  

command = deposit 

I withdrawal 

I t ransfer 

I openaccount 

I closeaccount; 

and so on. Such a language is matched f i rm ly  to the appl icat ion. We expect i t ,  no 

matter how far  from our heritage, to be better for  the appl icat ion than a l l  of the 

neat constructs of numerical analysis (or astronomy for that matter). 
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CHAPTER 5.D. 

WHAT THE COMPILER SHOULD TELL THE USER 

James J. Horning 

Universi ty of Toronto 

Toronto, Canada 

O. INTRODUCTION 

"When ~ use a word," Humpty Dumpty said, in a rather scornful tone, 

" i t  means just  what I choose i t  to mean - nei ther more nor less."  
m 

"The question i s , "  said Al ice,  "whether you cap make words mean so 

many d i f fe ren t  th ings."  

"The question i s , "  said Humpty Dumpty, "which is to be master - 

that 's  a l l . "  

- Lewis Carro l l ,  Through the Looking Glass. 

The emphasis of th is course has been on the process of t rans la t ion from high- level  

to low-level  languages: man-machine communication. I t  is a l l  too easy to neglect 

the importance of communication in the other d i rec t ion ,  but without e f fec t i ve  

machine-man communication, compilers are useless. Furthermore, i f  we are to be 

t ru l y  masters of our machines, we must i ns i s t  that both parts of th is dialogue be 

conducted in languages acceptable to us. 
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Koster [1972] identi f ies several tasks of a compiler: 

- to check whether the source program is correct 

- i f  i t  is not correct, to give al l  useful information for correcting i t  

(treatment of static errors) 

- i f  i t  is correct, to translate the program into an equivalent object code 

program 

- to cause the object program to be executed 

- to report any errors occurring during execution. 

This chapter is concerned with the design of appropriate communication from the 

compiler to the user regarding each of these tasks. I t  is motivated by the warning 

that "the naive programmer is only too wi l l ing  to confuse the properties of the 

language with those of the compiler" [Koster 1972]. 

Since conversations with the compiler are in i t ia ted by the user, compiler responses 

may conveniently be thought of as feedback. I t  is useful to have both negative 

feedback (warnings of detected errors), and positive feedback (indications that 

certain types of errors were not found). Compiler output has both immediate uses 

(e.g., debugging) and deferred uses (e.g., maintenance, documentation). A wel l-  

engineered compiler w i l l  take a l l  of these into consideration, without drowning the 

user in paper. 
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i. NORMAL OUTPUT 

Most of th is  chapter is devoted to compiler responses to various sorts of errors,  

but i t  is worth not ing that  a basic requirement on any compiler is  that i t  produce 

sui table output for  correct programs. Since error  messages and diagnostics are 

general ly in addi t ion to normal output,  they const i tute a small f rac t ion of the 

to ta l  compiler output,  even though errors are detected in most programs. 

i.I. HEADINGS 

Every compiler should c lea r l y  i den t i f y  i t s e l f  at the s ta r t  of each compilat ion. 

Fai lure to provide such i d e n t i f i c a t i o n  is one of the most common (and inexcusable) 

errors of amateur compi ler-wr i ters.  Useful information includes the 

- source language 

- target machine 

- compiler (name and version) 

- date when the compiler was created 

- time of the current compilation 

- options in e f f ec t ,  and options suppressed. 

As i l l u s t r a t e d  in Figure I . I . ,  such a heading need not consume much space, and is 

not hard to generate. 

TOOLCOM/390 - UNIVERSITY OF TORONTO VERSION 4.2 (1985 MARCH 22) 

SOURCE LANGUAGE: TOOLKIT - TARGET MACHINE: SYSTEM/390 - TIME: 1985 MARCH 29, 14:38 

OPTIONS: ON (PARAGRAPH, CROSS-REFERENCE, PROFILE) - OFF (TARGET CODE, TRACE, DUMP) 

1 I << SOURCE PROGRAM STARTS HERE >> 

Figure i.i. A Sample Heading 

Headings are perhaps neglected because they don' t  seem to be too helpful  as immediate 

feedback to the user debugging his program. By and large he treats them as so much 

noise to be ignored at the top of every l i s t i n g .  However, in the deferred uses of 

compiler output some piece of  i den t i f y i ng  information may well be c ruc ia l ,  and 
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extremely hard to reconstruct a f te r  the fact .  

1.2. LISTINGS 

Almost a l l  compilers make provision for  l i s t i n g  source programs when they are compiled. 

A l i s t i n g  enables the programmer to ve r i f y  that the program was input co r rec t l y ,  

provides a framework for  error  messages and diagnost ics,  and serves as an essential 

component of documentation. I t  rare ly  makes sense to suppress the source l i s t i n g .  

A good l i s t i n g  contains more than j us t  the source tex t .  I t  must establ ish a co-ord i -  

nate system wi th in  the program by which program elements can be i den t i f i ed ,  both for  

human communication and for  association with (compile-time and run-time) error  messages. 

I t  is  common to number e i the r  every l i ne  or every statement of  a program; some compilers 

use an addit ional  co-ordinate (e .g . ,  code locat ion) to s imp l i f y  run-time messages. 

Other useful information (pa r t i cu la r l y  measures of cost) may be included in any extra 

space remaining on each l i ne .  

Much time is spent reading l i s t i ngs  (although perhaps not as much as should be). A 

corresponding amount of thought should be given to t he i r  layout and appearance. 

Few compi ler-wr i ters can agree on precise formatt ing ru les ,  but any user can spot 

the di f ference between a haphazard l i s t i n g  and a well-considered one. One non- 

obvious point  learned from hard experience is that the part of  each l i ne  containing 

source tex t  should be separated from the rest by v i s i b l e  de l imi ters ,  avoiding visual 

ambiguity. 

The placement of source tex t  w i th in  the avai lable space can subs tan t ia l l y  a f fec t  

the readab i l i t y  and understandabi l i ty  of programs. Careful programmers use blank 

l ines and spaces to improve readab i l i t y  by making visual structure re f l ec t  logical  

s t ructure.  The key to e f fec t i ve  "paragraphing" is the consistent appl icat ion of 

simple rules (e .g . ,  indent the body of each nested st ructure,  such as a for loop or 

a begin block). Various paragraphing styles have evolved, many of  them a lgor i thmica l l y  

expressable. Automatic paragraphing of  source l i s t i n g s  is now becoming a popular 

compiler opt ion. There are many reasons for  doing t h i s :  

- i t  re l ieves the programmer of a tedious chore 

- i t  s imp l i f i es  the process of modifying programs (since the source deck need 

not be re-paragraphed) 

- i t  assures an exact correspondence between logical  and visual s t ructure,  not 

subject to programmer error  

- i t  ensures a uniform paragraphing s ty le  w i th in  a group 

i t  allows programs to be automatical ly reformatted to new page sizes (e .g . ,  

for  publ icat ion)  

- i t  allows the consistent use of  extended character sets (e .g . ,  upper and lower 
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1 

2 
3 
4 

5 

6 
7 
8 
9 

I0 
I I  
12 
13 

14 
15 

16 

17 
18 

19 
20 
21 
22 
23 

24 
25 
26 
27 
28 

29 

3O 
31 
32 
33 
34 

35 
36 
37 

38 
39 
4O 
41 

42 

43 
44 

45 

context Portion of the timermanager; 

type Timer_interrupt_type = (Calender_clock_update alarm, 
Cpu__schedul er al arm,Pri mi t i  ve_manager_cal ende~_cl ock al arm, 
F1 ush_i nterrupt)  ; 

type Alarm_type = (End of t i m e ,  l i c e ,  Run__clock_alarm); 

type Timer element = 
recor~ 

pointer  to Process_ercapabi l i ty__descr ipt iontype ( 
Process), 

pointer to Timer element (Next_element), 
Alarm type ( A l a ~ r e a s o n ) ,  
Timer_quni ts (TimeT 

end; 

/ *  Inser t  - - th is  puts element in i t s  correct place in the * 
• queue and adjusts the in te rva l .  * 

macro Insert(Element); 

begin 
open Element@;- 

i f  Time < F i rs t  t imer element@.Time; 
then: NexYelem~nt := F i rs t  t imer element; 

F i rs t  ~imer element := [lemenT; 
Next__~lemenT@.Time := Next__element@.Time - Time; 

else: 

begin 
decl are 

pointer to Timer element (E); 
E := F i rs t  t imer eleme-nt; 
Time := Ti~e - E@-.Time; 

cycle 

. . . .  e x i t  when Time < E@.Next element@.Time 
I E@.Next element =--End of  queue; 

E := E@.Next eTement; 
Time := Time--- E@.Time 

end; 

Next element := E@.Next element; 
E@.N~xtelement := E l e ~ n t  

end; 

i f  Next element = End of queue; 
th~n: Next element@TTi~e := 

Next .__[lement@.Time - Time 
end 

end 

end 
end macro; 

Figure 1,2.1 An Automatically Paragraphed Listing 
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case ) avai lable on p r in te rs ,  but not keypunches, to add fu r ther  visual structure 

Figure 1.2.1. shows the output of a typ ica l  automatic paragrapher. Further deta i ls  

may be found in Gordon [1974]. 

L is t ings of target  programs are not needed near ly as f requent ly  as source l i s t i n g s .  

They are sometimes demanded by users who do not rea l l y  t rus t  t h e i r  compilers, but 

t he i r  most common use is to ass is t  the compi ler-wr i ter  himself in debugging or main- 

ta in ing  the compiler. The provision of  a capab i l i t y  to l i s t  the target  code generated 

for speci f ied sections of source code is thus a good investment, but the emphasis 

should be on s imp l i c i t y  and c l a r i t y ,  rather than on the provision of elaborate 

features. Figure 1.2.2 shows one possible s ty le .  

1.3. SUMMARIES 

Although a source l i s t i n g  contains theo re t i ca l l y  complete information about a 

program, i t  is general ly useful to co l lec t  some information in a more compact form. 

The compiler's symbol table is the repository of much of th is  informat ion, and pro- 

v is ion should be made to p r i n t  i t  in a convenient form, e i ther  at the end of compilat ion, 

or at the end of each major un i t  (e .g. ,  procedure). For ease of access, i t  should 

be sorted a lphabet ica l l y ,  and for  each symbol should indicate at least :  

- i t s  type and size 

- the co-ordinate where i t  was defined (declared) 

- the number of times i t  was used 

and possibly:  

- the co-ordinates of a l l  uses of  the symbol (a cross-reference table) 

- the (absolute or re la t i ve )  memory address associated with the symbol (a 

memory map). 

The compiler should indicate the memory requirement (code, and, i f  possible, data) 

for each major program un i t .  Depending on the language and the environment, various 

other s t a t i s t i c s  gathered about the program may be he lp fu l .  F ina l l y ,  the number of 

warnings and error messages pr inted must be displayed in a conspicuous place, so 

that the progra~ner can eas i ly  ve r i f y  that he has not missed any. ( I f  no errors are 

detected, do no t  make the mistake of t e l l i n g  the programmer that  his program does 

not contain any errors.) 

Compilers should also co l lec t  s t a t i s t i c s  on t h e i r  own performance. A few l ines at 

the end of compilation ind ica t ing  the amount of time used by major compiler components, 

the size of various tables,  e t c . ,  w i l l  not only warn the user who stra ins various 

compiler l i m i t s ,  but w i l l  also guide the person who wishes to optimize compiler per- 

formance. 
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X P L COMPILATION - -  STANFORD UNIVERSITY - -  XCOM I I I  VERSION OF MAY 7, 1969. 

TODAY IS AUGUST I0 ,  1969, 

I0 

/ *  INTERLIST $EMITTED CODE * /  

DECLARE I FIXED, J B IT(16) ,  K B IT (8 ) ,  
ALPHA CHARACTER INITIAL('MESSAGE'), 

BETA (3) BIT(64) ; 

CALL TRACE ; / *  BEGIN TRACING * /  

I , J , K  = 2 ; 

BETA(1) = ALPHA ; 

Figure 1.2.2. 

24: DESC = 6, 160 
160: CHARACTER = D4 
161: CHARACTER = C5 
162: CHARACTER = E2 
163: CHARACTER = E2 
164: CHARACTER = C1 
165: CHARACTER = C7 
166: CHARACTER = C5 

I 
1286: CODE = STM 1 

1286 
1286 
1286 
1286 
1286 

1286 
1286 
1286 

,124(3,11)  
1290: CODE = LA 1 ,12 (0 ,0 )  
1294: CODE = BALR 12,15 
1296: CODE = LM 1,124(3,11)  

I 13oo 
1300: CODE : LA 1 ,2 (0 ,0 )  
1304: CODE = STC 1,1346(0,11 
1308: CODE = STH 1,1344(0,11 
1312: CODE = ST 1,1340(0,11 

j1316 
1316: CODE = L 1,1340(0,11 
1320: CODE = L 2 ,24(0 ,13)  
]324:  CODE = SLL 1,2 
1328: CODE = ST 2,2811,13) 

Interlisting Emitted Code. 
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2. REACTION TO ERRORS 

In an ideal world, where nei ther  humans nor machines ever made mistakes, the 

compi ler-wr i ter  could l i m i t  his at tent ion to cor rec t ly  t rans la t ing  correct programs 

(and some naive compi ler-wri ters do so). In r e a l i t y ,  however, most of the programs 

processed by any compiler w i l l  be to some degree incorrect  - simply because correct 

programs need not be recompiled - and most compilers themselves contain hidden 

errors.  Unless the compi ler-wr i ter  has planned for  them, some errors may have 

catastrophic consequences. 

2.1 STYLES OF REACTION 

We may broadly classify a compiler's response to a particular error into one of six 

categories. 

2.1.i CRASH OR LOOP 

Although every compiler should respond reasonably to any possible input, al l  too 

often some unforeseen combination of circumstances w i l l  place a compiler in a non- 

terminating loop or cause i t  to lose control and be terminated abnormally. 

2.1.2. PRODUCE INVALID OUTPUT 

Sometimes a compiler w i l l  apparently operate correctly, yet produce output that is 

inval id because of an undetected error. I t  can be argued that such a reaction is 

potential ly more damaging than one in the previous category, since the user is given 

no indication that anything is wrong. 

2.1.3. QUIT 

While i t  is at least honest, a compiler that quits upon f i r s t  detecting an error w i l l  

not be popular with i ts  users. Many runs may be required just to remove t r i v i a l  

keypunching errors from a program. (Some puritans argue that this s t r i c t  discipline 

w i l l  encourage better habits on the part of programmers, however.) 

2.1.4. RECOVER AND CONTINUE CHECKING 

A compiler may continue looking for errors even after i t  has abandoned compilation 

of a program. In order to do so, however, i t  must somehow get past the original 

error in such a way that further problems i t  reports are l i ke ly  to be symptoms of 

new errors. 
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2.1.5 REPAIR AND CONTINUE COMPILATION 

An incorrect  program may be transformed in to  a "s imi la r "  but va l id  program, which 

is then compiled. I f  ca re fu l l y  done, such transformations may permit the detection 

of more errors than simple recovery techniques do, and they may also make i t  

possible to guarantee that  so~ parts of  the compiler need only deal wi th va l id  

programs. However, there is no guarantee that the transformed program represents 

the user's in ten t .  

2 • 1.6 • "CORRECT" 

True error  correct ion - the replacement of incorrect  programs by the programs the 

user intended - is subs tan t ia l l y  beyond the current state of  the ar t  of both 

language design and compiler design. "Error correct ing" compilers to date merely 

repai r  and hope. Unfortunately,  they may also mislead the user who believes that 

they have rea l l y  corrected his errors.  

2.2 ENSURING CHOSEN REACTIONS 

The less desirable reactions (crash or loop, produce inva l i d  output,  qu i t )  may be 

produced acc identa l ly .  Even at th is  l eve l ,  however, some planning is required to 

ensure consistent responses to a var ie ty  of  errors.  Compilers never perform wel l  

at recovery or repai r  unless considerable forethought has gone into the design of 

t he i r  er ror-handl ing mechanisms. 

A compiler should be a to ta l  funct ion.  To ensure that  no possible input can cause 

the compiler to loop unboundedly or crash, i t  is necessary to demonstrate that no 

module ever loses cont ro l ,  regardless of  i t s  inputs,  and that  every loop e i ther  has 

an a p r i o r i  bound, or involves the consumption of some input .  We may cal l  these 

properties er ror  immunity. 

Compilers should attempt to detect and report as many errors as possible. Two 

obstacles block our desire to strengthen th is  to "a l l  e r rors" :  I )  Some errors trans- 

form va l id  programs in to  other va l id  programs (e.g. ,  replacement of " I  := I + I "  

by " I  := I + I " ) .  Errors are more l i k e l y  to be detected in languages with high 

redundancy than in those designed for  conciseness. 2) Although "correctness is a 

compile-time property,"  some errors manifest themselves only under pa r t i cu la r  

dynamic condi t ions,  which can only be determined by the compiler by simulat ing 

complete executions of the program. Fortunately,  syntact ic  errors,  to which we w i l l  

devote a great deal of a t ten t ion ,  can a l l  be detected by the compiler. There is no 

excuse for  f a i l i n g  to report a syntact ic  error .  
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Al l  error  detection is based on redundancy. Thus, the symptom of an error  is  always 

an inconsistency between two (or more) pieces of  information that  are supposed to 

agree. For recovery, i t  is sometimes s u f f i c i e n t  to ignore the  inconsistency. Repair 

requires that at least one of them be changed to achieve consistency. Correction 

would require s u f f i c i e n t  redundancy to determine (with high p robab i l i t y )  which item 

is in error  and what i t s  intended value i s .  

2.3 ERROR SOURCES, DETECTORS AND SINKS 

Before we can deal e f f e c t i v e l y  wi th er rors ,  we need to determine where they come 

from, where they are not iced, and how they are removed. 

An error  can enter a program in many d i f f e ren t  ways. The or ig ina l  speci f icat ions 

for the program may be wrong; the programming may not accurately re f l ec t  the design 

(a " l og ic  e r ro r " ) ;  the source program may not be what the programmer intended (a 

"keypunch e r ro r " ) ;  or the compiler i t s e l f  may introduce an error by incorrect  

processing. Errors from d i f f e ren t  sources may f requent ly  exh ib i t  some of  the same 

symptoms wi th in  the compiler, but (except for  compiler errors) the compiler's 

chances of dealing properly wi th an error  increase somewhat as we move down the l i s t ,  

due to the kinds of redundancy avai lable to i t .  

E x p l i c i t l y  or imp l~c i t l y ,  each of  the analysis phases of  the compiler compares i t s  

input with a set of spec i f icat ions.  Since not a l l  inputs are va l i d ,  there is a 

p o s s i b i l i t y  of con f l i c t  (error  detect ion).  Frequently, i f  somewhat inaccurate ly ,  

we name errors by the analyser that detects them. Thus we speak of  lex ica l  er rors ,  

syntact ic errors,  and semantic errors. 

Af ter  detecting and report ing an er ror ,  a module may e i ther  attempt to repair  i t  (so 

i t  is not seen by subsequent modules) or pass i t  along. Each approach has i t s  

problems. I f  a module is  to be t r u l y  an er ror  s ink,  i t  must ensure that none of  the 

ef fects of the error  i t  has repaired can propagate. Conversely, i f  i t  does not 

f i l t e r  out a l l  er rors,  then a l l  subsequent modules must be prepared to deal reasonably 

with them (without generating too many fur ther  messages). In many compilers, a s ingle 

error can t r igger  a whole avalanche of messages on the unsuspecting user; th is  is 

very nearly as unacceptable as qu i t t i ng  a f te r  the f i r s t  er ror .  
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3. SYNTACTIC ERRORS 

Syntact ic analysis not only plays a central role in the organisation of compilers, i t  

is also the focal point  of error  detection and recovery w i th in  compilers. Because 

syntact ic  speci f icat ions are precise, i t  is possible to develop parsers that accept 

exact ly the speci f ied languages; because they are formal, i t  is possible to prove 

that the parsers detect any syn tac t i ca l l y  i nva l i d  program. Typ ica l l y ,  syntax provides 

the most s t r ingent  single structure wi th in  a programming language; more keypunch errors 

and coding errors w i l l  be caught as v io la t ions of the syntact ic  speci f icat ions than 

by a l l  other tests combined. 

Recovery from syntact ic  errors is pa r t i cu l a r l y  d i f f i c u l t  (and especia l ly  important) 

because of t he i r  non-local e f fects .  The omission of a single begin or the inser t ion 

of an extra parenthesis may rad ica l l y  change the in te rpre ta t ion  of a large section of 

the program being compiled. By contrast,  errors detected during lex ica l  analysis or 

semantic analysis f requent ly have only local e f fects .  

3.1. POINT OF DETECTION 

Dif ferent  parsing techniques w i l l  in general respond d i f f e r e n t l y  to an error  that  

causes a program to be syn tac t i ca l l y  i nva l id .  Many ad hoc techniques and some of the 

older formal methods (e .g . ,  operator precedence) w i l l  ac tua l l y  f a i l  to detect any 

errors at a l l  in su i tab ly  chosen gibberish. Other methods (e .g . ,  precedence) 

guarantee to eventual ly  detect some error  in every i nva l i d  program, but the point  of 

detection may be a r b i t r a r i l y  delayed. 

One of the pr inc ipa l  merits of the LL(1) and LR parsing techniques [Chapters 2.B and 

2.C] is that they guarantee to report error  at the ear l i es t  point  at which i t  can be 

determined that an error  has occurred, i . e . ,  before accepting the f i r s t  symbol that 

cannot be a va l id  cont inuat ion of  the port ion of the program that has already been 

read and p a r t i a l l y  parsed. This ear ly detection makes i t  much easier to produce 

meaningful diagnostic messages, improves the chances of successful recovery, and 

ensures that la te r  compiler modules never p a r t i a l l y  process source tex t  that  turns 

out to contain a syntact ic  error .  

3 . 2 . RECOVERY TECHNIQUES 

A syntact ic  error  is  discovered when the parser can take no fu r ther  va l id  parsing 

act ions, given the current state of the parse (the stack) and the current input symbol. 

Recovery thus requires changing the stack, the input ,  or both. The changes may take 

the form of delet ions or insert ions (a subst i tu t ion  is simply a delet ion and an 
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inser t ion) .  Various combinations of these four kinds of  changes have been used in 

compilers, and the optimal recovery strategy is s t i l l  a matter for debate. 

Arguments can be advanced against each class of change. Gries [1971], for  example, 

points out that changes to the stack are pa r t i cu la r l y  dangerous, since semantic routines 

w i l l  have been invoked for the parsing actions leading to the current stack, and the 

parser cannot safely undo or modify the effects of these action~. The argument 

against deleting source tex t  is that some part of the input w i l l  thereby not be checked. 

Source text  inserted for  recovery purposes is unl ike ly  to correspond exact ly with the 

programmer's in tent ,  and errors detected in the inserted text  during semantic analysis 

may lead to confusing diagnostics. Neither insert ion nor deletion by i t s e l f  is 

su f f i c ien t  to recover from a l l  errors;  in par t icu lar ,  a parser that attempts recovery 

sole ly  by insert ion may loop unboundedly on some inputs. 

3.3. SYSTEMATIC RECOVERY STRATEGIES 

Compilers using ad hoc parsing techniques generally re ly  on ad hoc recovery techniques, 

i . e . ,  the compiler-wri ter attempts to supply a "reasonable" recovery action at each 

point where an inconsistency may be detected. Compilers using formal parsing 

techniques are more l i k e l y  to adopt some overal l  strategy that is expected to cope 

"reasonably" with any error encountered. No t o t a l l y  sat is factory strategy has yet 

been demonstrated (and some of the theore t ica l l y  more a t t rac t ive  ones have not yet 

been t r ied  in pract ical  compilers). Each strategy can be opposed by par t icu lar  

counter-examples that cause i t  to perform badly, and comparisons between strategies 

often rest on undocumented assumptions about which kinds of errors are rea l l y  the 

most common (or the most important to recover well from). 

Probably the most widely used strategy is also one of the least  e f fec t ive .  Panic mode 

(the term is due to Graham and Rhodes [1973]) has generally been adopted for  i t s  

s imp l i c i t y .  I t  merely involves discarding source text  unt i l  something "so l id , "  such 

as a statement de l imi ter ,  is found, and then discarding stack entr ies unt i l  something 

that can va l i d l y  precede the sol id token is found. The only merit  (besides s imp l ic i t y )  

that th is method has is that i t  avoids i n f i n i t e  looping. Almost a l l  the cr i t ic isms 

of the previous section apply. 

Two interesting techniques have been reported for using precedence parsing tables to 

isolate and recover from syntactic errors. Leinius [1970] tr ies to find the smallest 

potential phrase containing the point of error that is required by i ts context to 

reduce to some unique non-terminal (e.g., <statement>), and then to make the required 

replacement. Graham and Rhodes [1973], also use precedence relations to isolate the 

troublesome phrase, but re ly  more heavi ly on i t s  internal "resemblance" to some r igh t  
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hand side of a production in choosing a subst i tu te.  Both methods suf fer  from the 

delayed er ror  detection capab i l i t i es  of precedence parsers, and v io la te  the c r i t e r i on  

of not modifying the stack. 

Gries [1971] has proposed an untested scheme for  synthesizing a terminal s t r ing  that 

w i l l  al low the parse to continue based on the context of the error  and the productions 

of the grammar. I f  no such s t r ing  can be found, an input symbol is deleted and the 

search repeated. I t  is not clear how e f fec t ive  the strategy would be in general, 

although i t  does avoid most of the spec i f ic  problems mentioned in the previous sect ion. 

Several authors [e .g . ,  Aho and Johnson 1974, Leinius 1970, Wirth 1968] have considered 

augmenting the syntact ic  descr ipt ion of  a language by a number of er rgr  productions, 

describing common errors ,  so that recovery can be (at least  p a r t i a l l y )  subsumed under 

normal parsing. For th is  strategy to be e f fec t i ve ,  several problems must be dealt  w i th :  

the compi ler-wr i ter  must ensure that he has rea l l y  included enough error  productions 

to cover the common errors ;  since so many d i f fe ren t  errors are possible, the error  

productions may subs tan t ia l l y  enlarge the grammar (and hence the parser); i t  is 

d i f f i c u l t  to include error  productions without making the grammar ambiguous. 

Aho and Johnson [1974] have proposed a strategy for LR parsers that seems to be a 

promising combination of  the er ror  production technique with the er ror  i so la t ion  ideas 

of Leinius.  Error productions are res t r i c ted  to the form A - ~ e r r o r ,  where error  is a 

special terminal symbol and A is a "major" non-terminal. When the LR parser encounters 

an er ror ,  i t  reports i t  and then replaces the current input symbol by error .  Elements 

are then discarded from the stack un t i l  a state is  reached wi th a parsing action for  

the symbol error .  The parser can then read error  and reduce by the corresponding 

error  production. F ina l l y ,  input is discarded un t i l  a symbol that can be read in the 

new state is  found. 

3.4. P3PAIR TECHNIQUES 

Some diagnostic compilers, notably PL/C [Conway 1973], do a reasonably successful job 

of transforming programs containing syntact ic  errors in to  programs that are both va l id  

and s imi la r .  The PL/C technique is somewhat ad hoc, and is based on i t s  authors' long 

experience with diagnosing errors in students' programs. This section w i l l  describe 

a s im i la r ,  but somewhat more systematic, method developed for the SP/k compiler by 

Holt [1973]. 

Repair is  divided in to  three leve ls ,  each with i t s  own de l imi ters :  

the program level 

the statement level  
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the token level 

At the program leve l ,  i f  the logical end of the program is not immediately followed 

by a job control card, input text  is discarded unt i l  a job control card is found. I f  

a job control card is found before the logical end of the program, input text  is 

9enerated (by a process to be explained la ter )  unt i l  the logical end of the program 

is generated. 

At the statement leve l ,  i f  a semi-colon (or then) is expected, but not found, input 

text  is discarded unt i l  a statement del imi ter  (a semi-colon, then, or a statement- 

s tar t ing keyword - such as begin or else) is reached. I f  an unexpected statement 

del imi ter  is found in the input, input tex t  is generated to complete the current 

statement. 

At the token leve l ,  i f  the current input token is not permitted by the parsing tables, 

one input symbol is generated. The current input symbol is also discarded unless the 

generated symbol is a parenthesis or operator and the current input symbol is an 

i d e n t i f i e r  or constant. 

Generation is control led d i rec t l y  by the LL(1) parsing tables. I f  a number is required, 

" I "  is generated; i f  an i d e n t i f i e r  is required,"$NIL" is generated; any other terminal 

symbol is generated for  i t s e l f  when required. I f  a non-terminal symbol is required, 

one of i t s  a l ternat ives (general ly the most common, or "default"  a l ternat ive)  is 

selected. The generation process is continued by the parser unt i l  repair  has been 

completed at the contro l l ing leve l ,  and normal parsing can be resumed. 

Although more sophisticated repair  strategies can be designed, Hol t 's  simple strategy 

works surpr is ingly wel l .  I t  frequently makes the obvious "correct ion,"  and seldom 

generates avalanche errors;  the source tex t  i t  produces is generally an adequate 

diagnostic message. 

The fol lowing figures summarize observations on SP/k's error repair  in 83 student 

programs containing 102 syntact ic errors:  

errors "corrections" Symptom 

33 30 missing or unbalanced parenthesis 

13 13 missing procedure or en__dd 

9 8 missing semi-colon 

8 6 misspelled keyword 

39 15 miscellaneous 

102 72 



539 

4. OTHER ERRORS 

4.1 LEXICAL ERRORS 

Certain errors can be detected purely by lex ica l  analysis.  For example, many languages 

do not u t i l i z e  the f u l l  character set of the computer on which they run (except, 

perhaps, in character s t r ings and comments). Thus, the detection of an i l l e g a l  

character can be reported immediately; the usual recovery is e i ther  to ignore the 

offending character, or to t reat  i t  as a blank. Some classes of  tokens (e .g . ,  numbers, 

i d e n t i f i e r s )  are formed of res t r i c ted  character sets. Characters that are i nva l i d  in 

the current token, and that  cannot va l i d l y  fo l low the current token, may be detected 

as i nva l i d ,  even i f  they are va l id  in other contexts. 

More general ly ,  each token class has i t s  own formation ru les,  any v io la t ion  of which 

must be reported. Many errors can be c lass i f i ed  as "de l imi ter  errors" invo lv ing 

tokens that s ta r t  and end with pa r t i cu la r  symbols (e .g . ,  comment and semicolon, " / * "  

and "* / " ,  quotation marks). Fai lure to terminate such a token with the appropriate 

de l imi ter  may cause much of the fo l lowing program tex t  to be inadver tent ly  absorbed 

in to  the token. I f  the same de l imi te r  (e .g . ,  a quotation mark) is used at both ends, 

the s i tua t ion  is even worse (e .g . ,  a l l  the remaining program text  may be treated as 

s t r ings ,  and a l l  the st r ings as program tex t ) .  To l i m i t  the ef fects of  de l im i te r  

er rors ,  some compilers bound the length of such tokens (e .g . ,  by l i m i t i n g  them to one 

card). 

Some compilers attempt to recover on the lex ica l  level from certain errors detected 

by syntact ic  or semantic analysis.  For example, i f  the parser expects the next token 

to be one of a set of keywords, but f inds an i d e n t i f i e r  instead, i t  may inquire of  a 

special "spe l l ing  correct ion" module whether the i d e n t i f i e r  is a p lausib le misspel l ing 

of any of those keywords. S im i la r l y ,  i f  a semantic rout ine detects the use of an 

undeclared i d e n t i f i e r  as a var iab le,  i t  may inquire whether the i d e n t i f i e r  is a 

plausible misspel l ing of any declared i d e n t i f i e r .  Morgan [1970] claims that up to 

80% of the spe l l ing  errors occurring in student programs may be corrected in th is  

fashion. 

4.2, STATIC SE~qANTIC ERRORS 

The number of errors detected during semantic analysis depends both on how many 

res t r i c t i ons  are speci f ied syn tac t i ca l l y  and on the amount of checking deferred un t i l  

run-t ime. Some checking that could, in p r i nc ip le ,  be done syn tac t i ca l l y  (e .g . ,  type 

compat ib i l i t y  of operators and operands) is f requent ly l e f t  to the semantic rout ines,  

for  grammatical s imp l i c i t y  and for  superior diagnostic capab i l i t y .  I f  the size or 

speed of the compiler is of more concern than the speed of the target program (e.g. ,  
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in a student-oriented compiler), such checking may even be postponed un t i l  run-t ime. 

However, i t  is  general ly preferable to detect errors at compile-time i f  possible, 

since equivalent checking at run-time may be executed thousands or mi l l i ons  of times. 

Errors of declarat ion or scope are general ly detected during semantic analysis.  The 

most common error  in th is  class is the use of an undeclared i d e n t i f i e r .  Unless 

"spe l l ing correct ion" (Sec. 4.1.) removes the er ror ,  recovery is accomplished by 

t rea t ing  the i d e n t i f i e r  as though i t  had been declared with the type required by i t s  

current context; fu r ther  error  messages for  the same i d e n t i f i e r  may be suppressed by 

entering i t  in to  the symbol table wi th a special "error  entry" f lag .  

Mul t ip le  declarat ion of an i d e n t i f i e r  w i th in  a s ingle scope is an error  that is 

eas i ly  detected whi le adding the new entry to the symbol table.  I t  is debatable 

whether a bet ter  recovery is obtained by discarding the old declarat ion or the new 

one; f lagging i t  as an error  entry can suppress fur ther  messages. 

To be useful ,  every var iable must be assigned a value somewhere in the program, and 

i t s  value must be used somewhere in the program. By keeping a "set" f lag and a 

"used" f lag with each var iable in the symbol table,  the compiler can warn the user 

of  useless var iables,  which probably represent errors and cer ta in ly  represent 

i n e f f i c i e n t  use of  memory. 

The remaining major opportuni ty for  s ta t i c  error  detection is the discovery of type 

incompatabi l i t ies between operators and operands (or formal and actual parameters, 

or variables and expressions to be assigned to them). How ef fec t ive  a compiler can 

be here depends almost t o t a l l y  on the language being compiled. Some languages (e .g. ,  

BCPL and BLISS) have only a single data type, so no incompatabi l i t ies can ar ise.  

Others (e .g . ,  APL and SNOBOL) have several types, but al low the type of a var iable to 

change dynamically, forc ing type-checking to be postponed to run-t ime. S t i l l  others 

(e .g . ,  PL/I) define automatic transformations among most of t he i r  types, replacing 

error-detect ion by type-conversion. However, some languages (e .g . ,  Pascal) combine 

a r ich type structure with strong typing;  in these languages thorough type-checking 

w i l l  catch the major i ty of errors that have escaped detection by other means. (Strong 

typing requires that the type of every var iable,  expression, parameter, etc. be 

calculable at compile-time; i t  excludes such constructs as pointers that are not 

res t r ic ted to point ing at objects of a single type and formal parameters whose type 

is not spec i f ied. )  The secur i ty  gained by strong typing is pa r t i cu l a r l y  important 

in the in tegrat ion and maintenance of large programs. 

4.3. DYNAMICALLY DETECTED ERRORS 

Run-time error  checking is done for a var ie ty  of reasons. Some kinds of errors can 
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only be e f f ec t i ve l y  detected at run-time. Any checking postponed from compile-time 

must be done at run-time. I t  may be desirable to include redundant checking to 

duplicate checks made by the compiler, pa r t i cu la r l y  i f  the program must function 

more re l i ab l y  than the compiler, hardware, and operating system that support i t ,  or 

i f  the cost of undetected errors may be high. 

In order to perform dynamic checking, extra information associated with the program 

and/or data must be preserved and checked for consistency. Some kinds of checking 

(e.g. ,  subscripts vs. array bounds) require very small overheads and should always 

be performed, while others (e.g. ,  dynamic type checking) are very expensive with 

current hardware and must be carefu l ly  j u s t i f i e d  to warrant inclusion. 

The value of a variable to which no assignment has yet been made is meaningless. 

Although the compiler can sometimes detect instances of use before de f in i t i on ,  in 

general these errors must be detected dynamically. Idea l ly ,  we would associate an 

extra f lag b i t  with each var iable,  indicat ing whether i t  contained a va l id  value, and 

tes t  i t  on each reference. Some compilers have reduced the storage overhead of th is 

checking by using a single value (e.g. ,  the largest negative number) to represent 

"un in i t i a l i sed"  (with luck, perhaps i t  w i l l  not generate too many error messages for 

va l id  programs!). Other compilers merely i n i t i a l i s e  a l l  variables to some standard 

value (e.g. ,  zero), and ignore these errors. And an unfortunately large number of 

compilers f a i l  to take even th is  precaution, leaving the user at the mercy of what- 

ever garbage was previously in memory. 

In any context, there is a range of acceptable values for an expression, determined 

by machine res t r ic t ions  (e.g. ,  word length), language considerations, and programmer- 

supplied information (e.g. ,  array bounds). A careful compiler can determine that 

some expressions w i l l  always be in range (and hence need not be checked dynamically), 

and that some w i l l  never be (and hence can be reported as errors at compile-time); 

however, there w i l l  remain a residue whose range must be checked at run-time. In 

some cases, such as ar i thmetic overflow, the hardware i t s e l f  may supply both the 

bounds and the checking, but in general the burden of saving the bounds and producing 

the checking code f a l l s  on the compiler. 

Two types of range errors can have such severe consequences that many otherwise 

uncr i t ica l  compilers generate checks for  them: array subscripts out of bounds, and 

case (or computed go to) selectors out of range. The former might otherwise allow 

an arb i t ra ry  location in memory to be overwri t ten, the l a t t e r  might cause the 

transfer of control to an arb i t ra ry  locat ion; in e i ther  case, determining the source 

of the error  from i t s  symptoms may be exceedingly d i f f i c u l t .  
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Errors that are not caught by any of the techniques mentioned so far  are general ly 

cal led " log ica l  er rors , "  and have as the i r  symptoms e i ther  incorrect  output or 

f a i l u re  to terminate ( i n f i n i t e  looping).  The compiler can provide l i t t l e  assistance 

with va l id ,  but incorrect  ( i . e . ,  not what the programmer intended) output, unless the 

programmer has supplied addit ional  tests by which the output may be checked. However, 

some compilers do attempt to detect i n f i n i t e  looping. The problem of whether an 

a rb i t ra ry  program w i l l  ha l t  is  formal ly undecidable, but as a pract ical  matter these 

compilers cause execution to be interrupted a f te r  some set number of times through 

any loop wi thout ex i t i ng  (obviously,  i t  must be possible to increase th is  bound for  

par t i cu la r  programs). This technique may be somewhat more e f fec t ive  than simply 

re ly ing on an execution time l i m i t  imposed ex terna l ly  by the operating system. 

Since (with current hardware) many useful forms of dynamic checking incur substant ial  

overheads, many compilers allow the user to specify the amount of checking to be 

performed. Typ ica l l y ,  f u l l  checking is speci f ied during program debugging, and 

minimum checking for  the production version of th is  program. Hoare [1970] has 

c r i t i c i s e d  th is  practice on the grounds that i t  is only undetected errors in the 

production version that are harmful. (He l ikens i t  to the practice of keeping a f i r e  

ext inguisher  in your car at a l l  times, except when i t  is being used!) Another problem 

is that the symptoms of subtle errors may disappear or s h i f t  when checking code is 

added or removed. However, the economic argument is  f requent ly compelling. 

4.4. LIMIT FAILURES 

Every real compiler has a number of l im i t s  that may be consequences e i the r  of i t s  

design or of the f i n i t e  resources at i t s  disposal. Thus a compiler might be l imi ted 

to a parse stack depth of 75 and to 500 entr ies in i t s  symbol tab le;  less reasonably, 

i t  might r e s t r i c t  i den t i f i e r s  to 8 (or 31) characters, or the number of blocks in a 

program to 255. Sensible compi ler-wr i ters w i l l  attempt to minimize the number of  

such l im i t s  (the ideal is one: to ta l  space used by the compiler),  and to ensure that 

the average user never encounters them. 

No matter how large any pa r t i cu la r  compiler l i m i t  i s ,  some user, some day, w i l l  

encounter i t .  Since the encounter w i l l  come near the end of compil.ing some large 

program, i t  is  very important tha t  the compiler react sensib ly ,  and report not only 

that a l i m i t  was exceeded, but which one, and what i t s  value is .  Thus eyery place in 

the compiler where some l i m i t  may be exceeded must contain a check against the l i m i t .  

(A very useful technique that guards against forget t ing such checks is to access each 

l im i ted  resource so le ly  by means of a procedure or macro that contains the check.) 

The target program w i l l  also be run with l im i ted  resources, and i t  is essential that  
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the compiler produce code to check run-time l im i t s  wherever they may be exceeded. I f  

storage is al located dynamically on a stack or heap, every a l locat ion must be 

preceded by a test  to assure that  s u f f i c i e n t  memory is ac tua l ly  avai lable.  L imi t  

checking may be a substant ial  port ion of the overhead in dynamic storage a l loca t ion ,  

but the consequences of  omit t ing i t  are in to le rab le ,  since very large programs w i l l  

malfunction inexp l icab ly .  

4.5. COMPILER SELF-CHECKING 

While the compi ler-wr i ter  should spare no pains to ensure the correctness of  his 

compiler, he should be e te rna l l y  suspicious of his own accomplishments. Even 

modules that can "never" receive incorrect  input should be er ror  immune (cf .  Sec. 2 .2 . ) .  

I t  is good pol icy  to include tests throughout the compiler that  can never f a i l  whi le 

the compiler is  funct ion ing proper ly,  to provide ear ly  warning of compiler malfunctions. 

(The worst way to f ind them is by debugging the target  code of correct user programs 

that f a i l  to execute co r rec t l y . )  Simple consistency checks (e .g . ,  that  input is w i th in  

range, counters never go negative, stacks are never popped when empty, registers are 

free at appropriate places) have often uncovered subtle errors that would otherwise 

have remained unnoticed for  months or years. 

During compiler development i t  is wise to "instrument" every major module so that  i t s  

inputs and outputs can be traced at w i l l .  I f  i t  contains a major data structure (e .g . ,  

the symbol tab le ) ,  provision should also be made ~or dumping i t s  contents, in a 

readable format, upon request. These se l f -d iagnost ic  capab i l i t i es  should not be 

removed from the production version of the compiler, since t he i r  resource consumption 

is small unless they are used, and they can be invaluable during maintenance. 

5. ERROR DIAGNOSIS 

I t  is not s u f f i c i e n t  to t e l l  the user that  his program contains one or more errors.  

To a very large extent ,  a compiler's p o p u l a r i t y w i t h  i t s  users is determined by i t s  

helpfulness in locat ing and expla in ing t he i r  errors.  Since debugging is cur rent ly  

one of the largest  single costs of computing, economics indicate that the compi ler-wr i ter  

should invest  considerable e f f o r t  in t r y ing  to speed th~s process. 

Good error  messages w i l l  exh ib i t  a number of character is t ics :  

- they w i l l  be user-directed, report ing problems in terms of what the user has 

done, not what has happened in the compiler 

- they w i l l  be source-oriented, rather than containing mysterious in terna l  

representations or port ions of target  tex t  

- they w i l l  be as spec i f i c  as possible 
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- they w i l l  local ize the problem 

- they w i l l  be complete 

- they w i l l  be readable ( in the user's natural language) 

- they w i l l  be re.stra!ned and po l i te .  

The f ina l  point is of par t icu lar  importance. I t  is a l l  too easy for  compiler-writers 

to forget that the user must be the master, the compiler the servant. The at t i tude 

( i f  not the phraseology) of error messages should always be "Oh worthy master, I 

have fa i led  to f u l l y  understand your in tent ions,"  rather than "That does not compute" 

(or, worse "0C5"). 

5.1. LOCATING THE PROBLEM 

The f i r s t  thing the user must be told about an error is where the inconsistency was 

detected. Frequently he can detect and correct an error  simply from an indicat ion of 

the l ine and symbol at which a problem was found, provided that error  detection was 

not too long delayed (cf .  Sec. 3.1.) .  A v is ib le  pointer into the l ine is superior 

to a numerical or verbal description of the location. Where the problem involves 

i den t i f i e r s  or symbols, they should be given e x p l i c i t l y ,  e .g . ,  "OUTPOT not declared," 

rather than "undeclared inden t i f i e r "  or "THEN may not fol low IF" rather than " i l l ega l  

symbol pa i r . "  

5.2. DESCRIBING THE SYMPTOM 

One of the hardest things to remember in designing error  diagnostics is that you don't 

know what the error was. Two (or more) pieces of information have been found to be 

inconsistent, but i t  cannot be said with cer ta inty  where the error l i es .  The safest 

strategy is to describe the symptom (the detected inconsistency) as c lear ly  as 

possible before attempting to make any suggestions about the nature of the error.  

Symptoms should be described in a posi t ive fashion wherever possible, e .g . ,  " I  expected 

th is or th is ,  but found that , "  rather than "Missing r igh t  parenthesis." I f  the 

inconsistency involves information from some other part of the program (e.g. ,  a 

declarat ion),  that information should be displayed, or at least i t s  co-ordinates given. 

5.3. SUGGESTING CORRECTIONS 

The compi ler-wr i ter 's  knowledge of ,  and experience wi th,  the language being compiled 

may indicate that certain kinds of inconsistencies nearly always spring from 

par t icu lar  kinds of errors ( "character is t ic  er rors" ) .  I f  he is unable to re-design 

the language to el iminate these errors,  he may nevertheless pass th is  information on 
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to the user in the form of suggestions for correct ing the error .  Such ad hoc 

suggestions correspond to the re f lex  actions of experienced program advisors, in which 

a par t i cu la r  message w i l l  t r igger  an automatic query of the form "Have you checked...?" 

I t  is not possible for  the compi ler-wr i ter  to separately ant ic ipate every error  that 

may lead to an inconsistency and prepare a suitable suggestion for  i t .  Par t i cu la r l y  

in the area of syntact ic errors,  i t  is probably bet ter  to use some simple algorithm 

(working on the stack, the input,  and the parsing tables) to generate "reasonable" 

suggestions for a whole class of inconsistencies than to consider each one separately. 

A compiler that does careful repair  (see Sec. 3.4.) may use the repaired source tex t  

as a suggested correct ion. The repaired tex t  w i l l  be va l i d ,  and "s imi lar "  to the 

input. Even when i t  f a i l s  to match the user's in ten t ,  the repair  may be very success- 

fu l  in communicating to the user the nature of the problem and the steps that he should 

take to remove i t .  (The repaired text  should be l i s ted  anyhow, so the user can under- 

stand fur ther messages about the revised program.) 

5.4. LOCALISATION OF ERROR PROCESSING 

All messages about errors should be processed by a central module. Fai lure to observe 

this pr inc ip le  w i l l  have numerous undesirable consequences: 

redundant code w i l l  be produced throughout the compiler to handle error messages 

- subtle inconsistencies in the treatment of errors and formatting of messages 

w i l l  creep in 

- the adaptab i l i t y  of the compiler w i l l  suf fer ,  and changes to error-handl ing w i l l  

be d i f f i c u l t  

i t  w i l l  not be convenient to co l lec t  s ta t i s t i cs  on the number of error messages, 

nor to suppress duplicate or excessive messages. 

The f ina l  point deserves fur ther  comment. The user should not be bludgeoned with 

numerous messages springing from a single error .  We have already mentioned some 

recovery techniques to minimize duplicate messages (e.g. ,  error entr ies in the symbol 

table) .  Some compilers suppress a l l  error  messages for  a l ine  of source tex t  fo l lowing 

the f i r s t  reported syntact ic error .  The reason is simple: current syntact ic error  

recovery/repair techniques are just  not good enough to ensure that fur ther  messages 

rea l l y  indicate new errors.  Most compilers also place a l i m i t  on the to ta l  number of 

error messages they w i l l  p r in t ,  since at some point confidence in the whole recovery/ 

repair  mechanism breaks down. 

5,5. SYNTHESIS AND PLACEMENT OF MESSAGES 

The er ror - repor t ing module should have a standard format for  messages that is concise 
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yet d is t inc t i ve  - error  messages should stand out on the page. A typical  format might 

include: 

- a pointer to the symbol where the inconsistency was noted 

- a series of asterisks or other special characters in the margin to catch the 

eye 

- an indicat ion of sever i ty 

- a b r ie f  descript ion of the symptom 

- the count of error messages, and the co-ordinate of the immediately previous 

message. 

Other information would be included depending on the par t icu lar  symptom, such as 

- i d e n t i f i e r s ,  symbols, or types involved 

- what was expected by the compiler 

- suggested corrections. 

Gries [1971] discusses techniques for  e f f i c i e n t l y  synthesizing error  messages. 

There are two reasonable placements for  error messages: in the l i s t i n g  at the point 

of detection, and fol lowing the l i s t i n g ,  with the summary information. These place- 

ments are f requent ly,  although not necessari ly,  associated with single-pass and mul t i -  

pass compilation, respect ively. 

For dealing with indiv idual  errors,  placement of the message at the point of detection 

is cer ta in ly  more convenient. The locat ion of the messaae i t s e l f  establishes the 

co-ordinate of the symptom, and i t  is not necessary to f l i p  back and forth from the 

l i s t i n g  to the error  messages to f ind the problem. This placement occurs automatical ly 

in single-pass compilation unless a l l  messages are saved unt i l  the end. I f  i t  is 

desired in multi-pass compilation, l i s t i n g  must be postponed unt i l  the completion of 

analysis, and the error  messages col la ted into the l i s t i n g .  

Error messages that are col lected in the summary information are easier to f ind,  and 

are perhaps less l i k e l y  to be overlooked. I t  is essential that a l l  messages dealing 

with a single statement appear together, and desirable that  messages be sorted into 

the same order as the statements they refer  to. For single-pass compilation this 

simply requires a FIF0 buffer in which messages are saved, but with multiple-pass 

compilation i t  becomes necessary to co l la te  the messages from the various passes. 

5.6. ERROR LOGGING 

Of course the user wants to know at the end of compilation how many error messages 

were issued by the compiler. There are also otherswho may be concerned with s ta t i s t i cs  

about errors.  An inst ructor  in a course may wish to know what kinds of errors his 

students are current ly making, so he can take correct ive action. A programming 
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manager might want similar s tat is t ics ,  or stat ist ics about the error-proneness of 

individual programmers. A language designer could try to eliminate the more common 

errors, i f  he had accurate stat is t ics about what they were. Final ly,  the compiler- 

wri ter himself may be able to improve the u t i l i t y  of the compiler by monitoring i ts  

response to detected errors. 

Different uses may require different kinds of error logging. For some, gross 

~Lggregates (e.g., 5,842 severe error messages, I0,914 error messages, 7,231 warning 

messages) may suffice. Others w i l l  need classif ication by point of detection (e.g., 

5,914 lexical errors, 10,231 syntactic errors, 7,842 semantic errors), and s t i l l  

others w i l l  need the frequencies of each message. For a detailed study of responses 

to errors, i t  may be helpful to save every source statement that caused a message, 

together with the message, or even to "drain" a copy of every program containing a 

detected error. (This la t ter  is part icular ly helpful in evaluating changes in the 

compiler's response to errors.) 

.5.7. RUN-TIME DIAGNOSIS 

The diagnosis of errors detected at run-time should follow the general principles 

discussed in previous sections. However, these standards can only be achieved with 

some forethought, and many otherwise excellent compilers abdicate all responsibi l i ty 

in this domain to an operating system to ta l l y  unequipped to deal reasonably with 

run-time errors - the result is a cryptic message and a hexadecimal dump. 

The fundamental principle that diagnostics must be given in terms of the source, not 

the target, program, requires (as a minimum) that the symbol table be available at 

run-time (although not necessarily in main memory). Dumps, when required, should 

contain variable names and values in source-language form, and should be selective, 

working outward from the scope in which the error was detected. [Poole 1973] 

Traces should also be based on the source program; ideal ly,  a trace w i l l  l i s t  the 

source statements as they are executed, but source co-ordinates provide an acceptable 

substitute. Since they potential ly generate so much output, i t  is part icularly 

important that traces be selective. Some popular techniques are: le t t ing the program- 

mer dynamically start and stop tracing; tracing only particular sections of the 

program; tracing only major program elements (e.g., procedure calls and returns); 

only tracing each statement the f i r s t  N times i t  is executed ( typical ly N=2 is adequate); 

and keeping a ring buffer of trace l ines, and print ing only those executed immediately 

preceding the detection of the error. 

Another useful tool, both in diagnosing actual errors and in detecting ineff ic iencies, 
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is the "program prof i le"  - a label l ing of each statement by i ts frequency of 

execution. Zero-frequency statements are ei ther untested or useless. High-frequency 

statements are candidates for optimization. Satterthwaite [1972] describes the 

implementation of prof i le collection for Algol W, as part of what is undoubtedly the 

best run-time diagnostic package available today. 
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CHAPTER 5. E. 

OPTIMIZATION 
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A program is a description of an algorithm given in some language. The task of a 

translator is to accept this description and to produce a description of an 

"equivalent" algorithm in another language. Usually the second algorithm is 

accepted as being "equivalent" to the f i r s t  i f  i t  produces the same results for 

particular sets of input data. Note that this definit ion of "equivalence" permits 

the translator to choose any one of many possible algorithms; i t  is not restricted 

to the one which was written down by the programmer. The term optimization is used 

to denote the attempt by a translator to improve upon the description of the 

algorithm which was given by the programmer. Optimization is most appropriate when 

the source language does not provide access to al l  af the fac i l i t i es  of the target 

computer, 
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Work on optimization techniques began in earnest with the original FORTRAN, whose 

design specifications were frozen in 1954. At that time most programmers wrote in 

symbolic assembly language (a few s t i l l  used numeric machine code), and the 

attention of the FORTRAN group was focused on the challenge of constructing an 

automatic ceding system which could take over many of the tasks of the programmer 

and s t i l l  create object programs of competitive eff ic iency. Backus and Heising 

[1964] recall that " . . .  the group had one primary fear. After working long and hard 

to produce a good translator program, an important application might promptly turn 

up which would confirm the views of the skeptics: this application would be of the 

sort that FORTRAN was designed to handle and, even though well-programmed in 

FORTRAN, i ts object program would run at half  the speed of a hand-coded version." 

The group f e l t  that i f  one or more such applications appeared, acceptance of FORTRAN 

would be blocked. 

The major design problem which the group foresaw was the inefficiency arising 

from subscript calculation within a loop, when that calculation involved a 

multiplication° (In many loops i t  is possible to compute ini t ia l  subscript values 

and then merely to increment them by constants each time around the loop.) Their 

solution involved partitioning the program into "regions" based on the frequency of 

execution, and in one twenty-minute compilation on the IBM 704 ten minutes were 

devoted to region formation [Backus 1964]. This and other types of optimization, 

although expensive~ did enable the FORTRAN compiler to meet the goals of object code 

efficiency set by its designers. The case for "automatic coding" was thus proved. 

As users discovered the ease of coding in higher-level languages, efficiency 

considerations began to fade into the background. Machine costs have decreased 

significantly since the early 1960s, while progra~ing costs have risen sharply. 

Modern programming languages have therefore been designed to increase the efficiency 

of the programmer, even at the expense of machine efficiency. 
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I. Classification of Techniques 

Any general approach to code optimization is severely limited by undecidability 

results [Aho 1970] and by the lack of definitive optimality cri teria. The 

compiler's optimizer therefore provides improvement (relative to some cost 

function)~ rather true optimization, In order to avoid undecidable equivalence 

questions~ the improvement is carried out by applying a sequence of equivalence- 

preserving transformations to the original algorithm [Aho 1973]. Each 

transformation is based upon information gathered from some region of the program, 

In this section I shall classify the currently-popular techniques on the basis of 

the transformations which they perform and the regions which they consider. I shall 

then summarize the results of a study of actual FORTRAN programs [Knuth 1971], with 

emphasis upon the relative efficacy of the various optimizations. 
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I . I .  Transformations. Optimizing transformations [Allen 1972] can be 

dichotomized as machine independent and machine dependent. Machine independent 

optimization involves manipulation of the original algorithm independently of its 

realization. This includes such operations as: 

- Folding and propagation 

- Rearrangement 

- Redundancy elimination 

- Strength reduction 

- Frequency reduction 

When the values of all operands in an expressiQn are known to the compiler, that 

expression can be folded (replaced by a single value); when a variable is set to a 

value known at compile time, that value can be propagated (substituted for the 

variable) by the compiler. Although a programmer would not normally write an 

expression l ike I+2 expl ic i t ly ,  constant subexpressions are generated by certain 

constructs. For example, the array reference A(I,J,K) in FORTRAN yields the 

following index polynomial [ANSI 1966]: 

I+dl*J+(dl*d2)*K-dl*(d2+l) 

Taken together, folding and propagation also enable the user to increase both the 

readability and adaptability of his program by parameterization ' at no cost in 

execution time: Constants can be expressed symbolically to eliminate "magic 

numbers" [Clark 1973], and to localize changes. 

Care must be taken in folding when the translator is running on one computer and 

producing code for another. I f  the precision of the machine on which the translator 

runs is less than that of the machine on which the program is to execute, then the 

accuracy of computations performed at compile time wil l  not be as great as that of 

the same computations performed during execution. In general, however, folding is 

an inexpensive optimization which should be performed by most translators. 
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The usual purpose of rearrangement is to reduce the amount of temporary storage 

required during the evaluation of an expression. On most machines this has the 

effect of speeding up the evaluation because i t  may be possible to compute a value 

using only registers for temporary storage. However, the rearrangement may be 

irrelevant for some target computers, For example, on a stack machine such as the 

Burroughs 5000 or 6000 series~ there is virtually no penalty for temporary storage 

used during expression evaluation. The savings might also be negligible on machines 

having either large numbers of registers or a high-speed cache memory, because of 

the relative simplicity of the expressions which occur in practice. 

Code is redundant i f  the value which i t  computes is already available at the 

point where the code occurs. Most programmers will not write obviously redundant 

code unless there are important documentation considerations which make that form 

preferable in a particular instance. However, constructs such as references to 

multi-dimensional arrays may generate redundant code without themselves being 

redundant. Gear [1965] mentions a FORTRAN assignment statement used in the three 

dimensional Gaus-Seidel iteration of the Laplace equation: 

A(I,J,K) = (A(I,J,K-I)+A(I,J,K+I)+ 

A(I ,J- I  ,K)- A(I,J+I ,K)+ 

A(I- I ,J,K)+A(I+I ,J,K)) /6.0 

I f  dl and d2 are the f i r s t  two dimensions of A, this statement generates the 

expression l+dl*(J+d2*K) (in combination with various constants) seven times, 

Strength reduction is the general process of replacing an expensive operation by 

a cheaper one. When a value is raised to a constant power, for example, i t  may be 

possible to replace the exponentiation by a series of mult ipl ications [Bagwell 

1970]. The most common use of strength reduction is in the induction variable 

optimization mentioned at the beginning of this chapter. When the controlled 

variable of a ~oop is multipl ied by an expression whose value remains constant over 

the loop~ that mult ipl icat ion may be replaced by an addition. 
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Most of the expressions which yield to induction variable optimization are 

generated by references to multi-dimensional arrays, I have given two examples of 

such references in this section; in each case they would be candidates for strength 

reduction i f  J or K were induction variables. Documentation considerations may also 

lead the programmer to use multiplication by an induction variable exp l ic i t l y .  In 

this case, strength reduction is possible only i f  the constant expression has an 

integer value because the accumulation of roundoff error precludes repeated addition 

of reals [Forsythe 1969]. 

Frequency reduction attempts to sh i f t  operations from regions of the program 

which are entered frequently to those which are entered rarely. As with the other 

transformations, references to multi-dimensiQnal arrays provide most of the 

expressions moved during frequency reduction. The most important use of this 

transformation is to remove invariant calculations from loops, on the assumption 

that the cede inside a loop is executed more frequently than that surrounding the 

loop. This is a reasonable assumption in general, but may be defeated in specific 

programs. In some cases the program wi l l  normally pass through the loop once, only 

making multiple passes when some unusual situation arises. Here optimization wi l l  

be waste motion but w i l l  not effect the runnning time of the program. A less 

fortunate situation is the one in which the loop is not traversed at al l  in the 

normal case.  Here optimization wi l l  move the invariant operations from the less- 

frequently executed body of the loop to the more-frequently executed area 

surrounding the loop, and the transformation actually produces a degredation of the 

program's performance. 

Machine-dependent optimizations are concerned with the realization of an 

algorithm on a particular piece of hardware. I t  is necessary to make a distinction 

between true machine-dependent optimization and the simple avoidance of stupidity in 

code generation. Typical machine-dependent optimization techniques include: 

- Register allocation 

- Special instructions 

- Code rearrangement 

In each case there are degrees of care which may be taken. I regard elementary 

precautions aoainst bad code as being the n o e l  task of the compiler writer rather 
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than the province of a discussion on optimization. 

Register allocation can be performed on the basis of global flow analysis which 

provides the code generator with information on the future use of values currently 

residing in registers, and this type of allocation def ini tely fa l ls  in the province 

of optimization [Beatty 1974]. The so-called "peephole optimization" [McKeeman 

1965], which avoids locally redundant fetches and stores of register contents, is 

merely an instance of inte l l igent  code generation. 

Many machines have special instructions for incrementing the contents of a 

register or storage location. Picking up situations in which these instructions can 

be used may or may not be d i f f i cu l t  depending upon the language. For example, 

implementation of the FORTRAN assignment I=I+l by an "increment storage" instruction 

requires the analysis of a relat ively large subtree of the structure tree. On the 

other hand, implementation of the ALGOL 68 operator "+::" by the same machine 

instruction is simply an example of competent code generation. Special instructions 

such as "increment storage" have been called idioms by A. D. Hall of Bell Telephone 

Laboratories. His experience indicates that the proper generation of idioms is an 

important key to producing good object code for a wide class of minicomputers [Hall 

1974]. 

Code rearrangement is usually concerned with operators which take single-length 

operands and produce double-length results or vice versa. For example, integer 

multiplication on many machines requires a single-length multiplicand and produces a 

double-length product. Conversely, integer division requires a double-length 

dividend and produces a single-length quotient plus a single-length remainder~ I f  

this is the case, then multiplications and divisions should be alternated during the 

computation of an expression. The multipl ication wi l l  produce a double-length 

result which can be immediately used as the double-length dividend in a following 

division. I f  this alternation is not observed~ then additional register 

manipulations are usually required [Sheridan 1959, Wilcox 1971]. 

1.2. Regions. During optimization, the compiler considers some fragment of the 

program in i ts  entirety. Increasing the size of the fragment increases the amount 

of information upon which decisions can be based, and hence normally improves the 

quality of the generated code; i t  also increases the amount of storage which the 



556 

compiler must devote to the fragment during optimization. Obviously, a tradeoff 

based upon the resources available and the normal usage of compiled programs must be 

made (see Section 1.3.) 

The choice of a program fragment is not based solely ~pon its size, but also upon 

its structural properties. Particular properties which simplify the analysis are 

used to define regions, and these regions (rather than arbitrary program fragments) 

are considered by the optimizer. Region definition may be based upon general 

properties of programs (control flow, side effects), or upon specific language 

constructs (DO and fo r  loops, blocks~ procedures, etc.) I shall concentrate upon 

the former here, since the latter merely uses the language constructs to bypass a 

part of the analysis. (The 0S/360 FORTRAN H compiler explicit ly ignores the 

information provided by DO statements in favor of a complete structural analysis of 

the program [Lowry 1969].) 

The set of possible regions is usually f i rs t  partitioned according to control 

flow: Loca_..Zloptimization is performed on regions which contain no transfers, while 

global optimization considers control flow. Most literature on optimization uses 

inappropriate terminology to express the choice of regions, but I feel that I should 

not attempt to rectify that inadequacy here. I shall therefore simply present the 

common name and important characteristics for each kind of region. 

An expression is a region which has only a single entry point and contains no 

control statements~ and within which no construct is permitted to have a side effect 

which alters the value of any element used in the region. This region may or may 

not correspond to the nonterminal "expression" as defined in the syntax of the 

language; Figure l . l  illustrates two cases in which an expression (defined by the 

ALGOL 60 syntax) contains a function call which alters the value of another element 

of the same expression. 

The control of side effects is a fundamental question in language design. Some 

people hold strong opinions on this point [Bauer 1961]: "Indeed, the idea of 

expressions having any effect but defining an actual value is so preposterous that 

i t  was not even considered by the ALGOL committee." A softer line appears in 

Section 6.4 of the FORTRAN Standard [ANSI 1966]: "The evaluation of functions 

appearing in an expression may not validly alter the value of any other element 
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meansq := (READ(30)~2+READ(30)~2)/2.0 

a) Obtaining two numbers from an input f i l e  

b e _ ~ ? p a l  w; 

real procedure SNEAKY(z); value z; real z; 

begin SNEAKY := z+(z-2)~2; 

w := z+l; 

end 

w := I ;  

PRINT(SNEAKY(w)+w); 

end 

b) Result depends upon order of evaluation [Hext 1965] 

Figure l . l  

I l lustration of Side Effects 
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within the expressions~ assignment statement or CALL statement in which the function 

reference appears." Thus any single expression, assignment statement or CALL 

statement in FORTRAN ~ y  be considered an expression for optimization purposes, 

All of the transformations of Section l . l  except frequency reduction are relevant 

to optimization within an expression. For a language s~ch as FORTRAN, expression 

optimization can be carried out locally and the transformations can be applied 

easily to the tree form of the expression. Thus the cost of this form of 

optimization is not high. 

A basic block is a region which has only a single entry point and in which 

control statements, i f  any, follow all computational and input/output statements. 

Thus all computations of a basic block must be executed i f  any is, and no extensive 

analysis is required to determine the order in which the computations will be 

carried out. The basic block forms the underlying unit for all optimizations using 

global flow analysis. Figure 1.2 illustrates the definition of a basic block 

applied to a portion of a FORTRAN program. 

All transformations other than frequency reduction are applicable to a basic 

block, and the analysis techniques are similar to those used for expressions. 

Consideration of a region larger than a basic black requires the compiler to 

investigate the flow paths of the source program to determine possible computations. 

This entails analysis which is fundamentally different from that used within a basic 

block, where the computation is fixed. The distinction between local and global 

optimization is thus drawn at the level of the basic block: Local optimization 

involves transformations within expressions and basic blocks, while global 

optimization involves transformations upon collections of interconnected basic 

blocks. 

The next obvious region for the compiler to consider is a loop: A set of basic 

blocks which are connected by transfers in such a way that each block can be reached 

from every other block. Computations which are invariant within a loop can be made 

prior to entry rather than during execution of the loop (frequency reduction), and 

others cannot be made redundant by identical computations outside of the loop. In 

Figure 1.3a, for example~ 2.0*PI*FREQ is invariant within the loop but J+l is not. 

As Figure 1.3b shows, the former can be evaluated prior to entry, but the latter 



A = B  

IF (X) 1,2,3 

C=D 

M=N 

I = J  

IF (P .LT. Q) 

a) 

559 

P=q 

A sequence of FORTRAN statements 

A=B 

IF (X) 1,2,3 

C = D  

M = N  

l = J  

IF (P .LT. Q) P=q 

b) Basic blocks in (a) 

Fi gure I .  2 

Illustration of Basic Blocks 



NP = J + ]  

DO 1 I=M,N 

Z(1) = I .O/(2.0*PI*FREQ*C(1)) 

J = J+l 

560 

a) A sequence o f  FORTRAN statements 

NP = J+l 

OMEGA = 2.0*PI*FREQ 

DO 1 I=M,N 

Z(1) = I.O/(OMEGA*C(1)) 

J = J+l 

b) Optimized version of (a) 

Figure 1.3 

Loop Invarlance 
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cannot be eliminated or replaced by NP. 

Loops are chosen as regions not only because frequency reduction is applicable, 

but also because al l  of the transformations applied within a loop are independent of 

the remainder of the program. When the analysis of the loop is complete, the entire 

region is replaced by a single block which summarizes the results of that analysis; 

the summary is then used when containing loops are analyzed. Constructs other than 

loops may have this same property and may therefore be considered as regions for 

global optimization. Such regions may be identif ied by some expl ic i t  topological 

property [Cocke 1970] or by a simulated execution of the program [Ki ldal l  1972]. 

1.3. Efficacy. The theoretical aspects of optimization present a host of the 

easy-to-state, yet moderately challenging, problems so dear to the hearts of Ph.D. 

candidates. As is usual in such cases, i t  was a long time before anyone had the 

idea of studying just how effective these techniques were in improving the 

performance of real programs. In the sunlaer of 1970, D. E. Knuth and a small group 

at Stanford analyzed a number of randomly-selected programs from the University and 

from industry [Knuth 1971]. The f inal sample consisted of about ll,O00 cards from 

Stanford and over 250,000 from Lockheed Missiles and Space Corporation. 

Static measurements on the number of occurrences of different statement types 

indicated internal consistency but poor agreement between industry and university. 

Industry had 2.7 times as many comments, and more IF's and GQTO's (possibly 

indicating more careful checking for erroneous input data.) An analysis of the 

assignment statements showed that 68% involved simple replacements of the form A = 

B, with no arithmetic operators present. 13% were of the form A = A op e: The 

f i r s t  operand on the right was the same as the variable on the le f t  ("op" is some 

operator and "e" is an arbitrary expression.) 

The complexity of an assignment was rated by defining a cost of one unit for each 

addition or subtraction, f ive units for each multiplication and eight units for each 

division. More than 85% of the assignment statements had a cost of 0 or l .  2% had 

a cost of 6 and 3% had a cost of 8, reflecting the use of a single multiplication or 

division operator. Thus over 90% of the assignment statements probably involved an 

expression with no more than one operator. Turning to the variables, Knuth and his 

coworkers found that 58% were unindexed, 30.5% had a single index, 9.5% had 2 and 
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only I% had 3. 

Dynamic checks indicated that in most programs less than 4% of the code accounted 

for more than 50% of the execution time exclusive of input/output. I/O statements, 

although they represented only 5% of the code, accounted for more than 25% of the 

execution t ime (this figure includes the t ime spent in the operating system 

servicing I/O requests.) Thus i f  optimization were to reduce the execution time of 

the computational part of a program to O, we would only see a factor of 4 speedup in 

the overall execution. 

Knuth distinguished four levels of optimization (summarized in Table l . l ) ,  

according to the amount of effort required by the compiler to acheive them. He then 

optimized the most-frequently executed regions of seventeen randomly-selected 

programs. Table l . l  shows the minimum, average and maximum increases in speed 

obtained within these regions at each level of optimization, taken over all 

seventeen programs. (This  optimization does not affect the input/output time.) 

Notice that the average improvement, even with the most complex kind of 

optimization, was only a factor of 3.5. By the time the third level had been 

reached, almost all of the improvement had been obtained. Since the cost of the 

optimization increases rapidly with level i t  seems that many of the ~ore esoteric 

techniques proposed in the literature should be treated merely as curiosities. 

The best conceivable optimization ianything goes except a change in the algorithm 

or data structure) increased the speed of the program by a factor of 4 or more in 

about half of the 17 cases which Knuth studied in detail. Assuming that the 

computational part of the program accounts for approximately 75% of the execution 

time, simple arithmetic shows us that this optimization may gain us a factor of 2 in 

overall speed - well below the penalty for poor choice of algorithm (which can cost 

several orders of magnitude.) 

The message contained in these statistics is that extensive optimization is 

probably not justif ied in a FORTRAN compiler ~nless the operating environment is 

quite different from that of Stanford and Lockheed. Note that conclusions regarding 

other languages cannot be drawn on the basis of this study because other languages 

may have particular features which must be optimized in order to reduce operating 

costs to a tolerable level. 
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Table I . I  

Efficacy of Various Optimizations 

Level Improvement Factor 

Min Avg Max 

1 1 .I 1.4 2.5 

2 1 .I 2.7 9.0 

Transformations 

Local folding, rearrangement and redundancy 

elimination. Competent register allocation as 

discussed in Chapter 3.E. 

Global folding, rearrangement, strength and frequency 

reduction. 

3 1 .I 3.6 9.4 

4 1.5 4.8 13.1 

Idioms for the IBM System/360. 

Any transformation which could conceivably be 

performed by a compiler of  arbi t rary complexity. 

Changes in the basic algorithm or data structures 

were not allowed. 

Notes: 

I .  

2. 

Each level includes al l  optimizations specified for lower levels. 

The improvement factors are a l l  relat ive to "classical one-pass compilation 

techniques" with dedicated registers. 
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2. Local Optimization 

The basic data structure used during local optimization is a directed acyclic 

graph (DAG). I t  describes the constraints placed ~pon the order of evaluation: 

Descendents of a node must be evaluated before the node i t se l f .  Since the 

definition of an expression precludes side effects which alter the value of any 

component, disjoint subexpressions may be evaluated in any order. 

Optimizing transformations are applied to fold constant subexpressions as the 

structure tree is being bu i l t ,  and a number which specifies temporary storage 

requirements is attached to each node. The resulting tree is converted to a 

directed acyclic graph by identifying common subexpressions, and the graph is 

flattened into a sequence of elementary actions. This sequence is passed to the 

code generator, as discussed in Chapter 3.E. 

No changes to the overall code generation procedure described in Chapter 3.E are 

required to accommodate optimization, although the number of operators wi l l  

increase. We shall see that the register allocation strategies discussed in Chapter 

3.E are adequate, and that the operations are performed in the proper order. 

2.1. Rearrangement of an expression. Some number (perhaps O) of anonymous operands 

must exist simultaneously during the evaluation of a given expression. This number 

depends upon the order in which the components of the expression are evaluated; the 

minimum may be determined by applying the following rules [Sethi 1970] to the tree 

whic~ defines the expression: 

a. Attach the number 0 to each leaf. 

b. Let j an~ k be the numbers attached to the sons of a node (jSk). I f  j ,k ,  

attach k to the node, otherwise attach k+l. 

To see why these rules work, consider an expression with two subexpressions. 

Suppose that one of the subexpressions is defined by a tree to which we have 

attached the number j ,  and the other is defined by a tree to which we have attached 

the number k (j<k). Suppose further that the f i r s t  subexpression to be evaluated is 

the one to which k has been attached. This means that, at some point during the 

evaluation of the subexpression, k anonymous operands are required simultaneously. 

When the evaluation is complete, only the single result remains. We must preserve 

this result (which is i t se l f  anonymous) during the evaluation of the second 
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subexpression. At some point during this second evaluation, j anonymous operands 

are required simultaneously. Because we must also preserve the result of evaluating 

the f i r s t  subexpression, a total of j+l values are required simultaneously. Since 

we have assumed that j<k, j+l can be no greater than k and the maximum number of 

anonymous operands which must exist simultaneously at any time during the 

computation is ko Note that this result requires a particular order of evaluation. 

I f  we evaluated the subtree requiring j anonymous operands f i r s t ,  then the entire 

evaluation would have required k+l anonymous operands to exist simultaneously. I f  

j=k, the order of evaluation is irrelevant and k+l operands must exist 

simultaneously. Figure 2oi gives several examples of trees whose nodes have been 

numbered according to these rules. 

The temporary storage requirements for a given tree are fixed. (Temporary 

storage must be available for the maximum number of anonymous operands which can 

exist simultaneously.) In order to lower the require~Rent, we must transform the 

tree into another which yields the same value but has a different structure; this is 

done by making use of particular properties of the operators. Consider, for 

example, the expression of Figure 2.1c. We can apply the associativity 

transformation of Figure 2.2a to obtain the tree of Figure 2.2b, which requires only 

a single temporary rather than two. 

Notice that the tree of Figure 2.2b exhibits less parallelism than that of Figure 

2.1c. On a machine l ike the Control Data 6600, Figure 2.1c might be superior to 

Figure 2.2b because i t  makes better use of the multiple arithmetic units. Even in 

this case, however, I believe that there is a good reason to prefer Figure 2.2b: I t  

provides a canonic structure for the tree which simplifies commutativity 

transformations. When f inal code is generated from the tree, Figure 2.2a can be 

applied in reverse to regain the parallelism. 

Although the mathematical properties of an operator include associativity, the 

fact that computer arithmetic has f i n i t e  precision may make i t  non-associative 

[Knuth 1969]: The associativity axiom for addition states that (A+B)+C = A+(B+C) 

must hold for al l  values of A, B and C. Consider a machine which operates upon 

floating point numbers with a precision of two decimal digits~ and assume that the 

values of A, B and C are -lO.O~ I I .0  and O.l respectively. The value of (A+BI+C is 
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a) A+B*C 

+(1) 

A(O) j ~ * ( I )  

B(o) ~ ~c(o) 

b) A*B+C*D 

. ( i ) ~  (2) 

A(O) B(O) C(O) D(O) 

c) A*B+(+D) 

, (i) ~ " ~  (2 ~'.....+. 1 

Figure 2.1 
Temporary Storage Requirements 
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el op 

e2 e3 

op 

op e3 

e l ~ e 2  

a) General form 

A(O) 

+(1) 
+(1) / ""~(o) 

. l l / /  ~c/o/ 

b) Applied to Figure 2olc 

Figure 2.2 

Associativity Transformation 
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I . I ,  but the value of B+C is ll.O due to the two-digit precision of the machine and 

consequently the value of A+(B+C) is l.O. (This fai lure may be duplicated for any 

fixed precision by choosing suitable operands.) 

Section 6.4 of the FORTRAN Standard [ANSI 1966] expl ic i t ly permits the use of 

associativity even though the machine implementation of the operators cannot be 

associative: " I f  mathematical use of operators is associative, commutative, or 

both, fu l l  use of these facts may be made to revise orders of combination, provided 

only that integrity of parenthesized expressions is not violated." This statement 

forces the programmer to insert expl ic i t  parentheses where the order of evaluation 

within an expression is important - as much a documentation aid as an aid to 

optimization. 

Note that this specification requires a semantic action for the production 

P::=(E): A flag must be set in the root of the tree for E to indicate that its 

operator is non-associative. This flag simply disables the associativity 

transformation when i t  attempts to examine the subtree resulting from the 

parenthesized expression° 

Sheridan [1959] has given the name segment to a s:bexpression whose operands may 

be permuted arbi t rar i ly .  A sequence of operands linked by occurrences of an 

operator which is both associative and commutative is obviously a segment. This is 

not a necessary condition, however, since A-B+C-D is also a segment. (The operands 

may be permuted arbi t rar i ly  by making use of the identity A-B = A+(-B) and the 

properties of + [Knuth 1969, Frail ey 1970, Rohl 1971].) 

The optimizer can permute the operands of a segment to fold expressions like I- 

f+J+2, and to reduce temporary storage requirements: A segment wi l l  use less 

storage i f  the operand with the highest number attached to i t  is evaluted f i r s t .  

For example, in Figure 2.3 the operand with the highest number is C*D. When that 

subexpression is evaluated f i r s t ,  the required storage is reduced from 2 to I. 

At each node, the routine which flattens the tree should traverse the subtree 

with the largest number f i rs t °  I f  the operator of the node is non-commutative this 

requires that a "reverse" flag be set in the node to indicate that the operands are 

not in the order given by the programmer. The transducer can then interchange the 

value descriptors when simlulating the operator (Chapter 3.E). Notice that at the 



569 

+(2) 

+(] ) *(1 ) 

A(O) B(O) C(O) D(O) 

a) A+B+C*D 

+(I) B(O) 

A(O) * ( l )  

C(O) D(O) 

b) A+C*D+B 

Figure 2.3 

Making Use of Associativity and Commutativity 
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time the transducer requests simulation of the operator both operands must have been 

computed. Thus the interchange of value descriptors does not affect the order of 

computation, 

When the operands require equal amounts of temporary storage, other points should 

be considered. For example, the value of the f i rs t  operand to be computed is the 

most likely to end up in memory. This is due to the strategy which we use for 

generating code: An anonymous operand is maintained in a register as long as 

possible, but stored into temporary memory when the number of registers is not 

adequate to the task. Thus the computation of the second operand may use a 

sufficient number of registers to force the value of the f i r s t  operand into a 

temporary storage location. Notice that i f  we attempted to keep the value of the 

f i rs t  operand in a register at the expense of storing some of the intermediate 

values required during computation of the second operand, we would not be making 

optimum use of the registers. The intermediate values must necessarily be used 

before the value of the f i rs t  operand is used; they should therefore be kept in 

registers in preference to keeping the value of the f i r s t  operand. 

The hardware implementation of non-commutative operators on many machines favors 

the use of memory for a particular operand. For example, the IBM System/360 can 

subtract the contents of a memory location from the contents of a register with a 

single instruction; two instructions plus a scratch register are required to 

subtract the contents of a register from a memory location. Thus I would prefer a 

"reverse subtract" operation in the case where both subtrees of a minus node had the 

number k (>0) attached to them. 

2.2. Redundant Code Elimination. A structure tree is converted into a DAG by 

retaining only one copy of each distinct node; all uses of the subexpression 

represented by that node are linked to this single copy (Figure 2.4.) The f i rs t  

step in the transformation is to rearrange the descendants of a node into some 

canonic order. The exact criterion is immaterial provided that i t  is applied 

consistently. (In Figure 2.4a I have ordered terminal symbols alphabetically from 

lef t  to right and placed non-terminals to the right of terminals.) The canonic 

order is used only during the common subexpression analysis, and does not affect the 

order in which code is generated for a particular n~de. 
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+ 

+ B C 

A * 

B C 

a) Canonical tree for  A+B*C(C*B+A)~(B*C) 

b) Equivalent DAG 

+ 

A * 

B C 

Figure 2.4 

Relationship Between a Tree and a DAG 
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We have already seen (Chapter 2.D) that the syntax analyser can report the 

postfix encounters with nodes of the parse tree by executing a semantic action 

whenever a reduction takes place. The semantic actions wil l  be executed in the 

order specified by the postfix form of the expression being analyzed. As these 

actions are executed, the DAG is created. The data structures used during this 

process are a semantic stack and the t r ip le s representing nodes of the DAG. Before 

a new t r ip le is generated, the compiler checks al l  existing tr iples for a match. 

Figure 2.5 shows how this procedure is used to create the DAG of Figure 2.4b. 

Each step in the process is taken by a semantic action which corresponds to a 

reduction by the syntax analyser. In the example of Figure 2.5, step 8 recognizes 

the common subexpression B*C. This recognition requires that the top two elements 

of the semantic stack be placed in canonic order ( i .e.  reversed) before the tr ip le 

is compared with all previously generated tr ip les. Since there is ~ match with (1), 

no new tr ip le is generated at this time; (1) is simply placed on the stack as the 

result of reducing B*C. Another common subexpression is recognized at step lO, 

which notes that we have encountered a second instance of (2). This requires that 

(1) was previously recognized as common, but (1) no longer represents a directly 

common subexpression after recognition of (2). In other words, the common 

subexpression B*C has been superseded by the larger expression A+B*C, One more 

instance ef B*C is recognized in step 13. 

An "expression" for optimization purposes may actually encompass several 

(syntactic) expressions, and hence redundancy analysis may yield a DAG in which 

several nodes have no predecessors. Figure 2,6 i l lustrates this point with a FOR 

statement from BASIC. 

I t  is possible to argue that the FOR statement of Figure 2.6 does not constitute 

an expression because the assignment to the control variable has an effect upon the 

value of the l imit.  Since there is no standard for BASIC, i t  is not possible to 

predict with certainty what the result of this FOR statement wil l  be. (Most BASIC 

manuals are written for novice programmers and hence do not explore such esoteric 

points.) The following explanation [GE 1968] is typical: " I f  the in i t ia l ,  f inal ,  

or stepping factor values are given as formulas, these formulas are evaluated upon 

entering the FOR statement. The control variable can be changed in the body of the 
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ABC*+CB*A+BC*~+ 

a) Postfix form of A+B*C+(C*B+A)~(B+C) 

Step 

1 

2 

3 

4 

5 

6 

7 

8 

9 

I0 

I I  

12 

13 

14 

15 

Semantic Stack Tr~le Generated 

A 

AB 

ABC 

A(1) I: * B C 

(2) 2: + A ( I )  

(2)C 

(2)CB 

(2 ) ( i )  

(2)(1)A 

(2)(2) 

(2)(2)B 

(2)(2)BC 

(2)(2) ( I )  

(2)(3) 3: ~ (2) ( I )  

(4) 4: + (2) (3) 

b) Construction of the t r ip les  

Figure 2.5 

Creation of a DAG 
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JK*L*I = JK*L*I*limit = JK*step = 

Postfix form of FOR I=J*K*L TO J*K*L*I STEP J*K 

Step 

l 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

I I  

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Semantic Stack 

J 

JK 

(1) 

(1)L 

(2) 

(2)I 

J 

JK 

(l) 

(])L 

(Z) 

(2)I 

(4) 

(4) l imit  

J 

JK 

(1) 

(I)step 

Triple Generated 

l :  * J K 

2: * L ( l )  

b) 

3: = I (2) 

4: * I (2) 

5: = l imi t  (4) 

6 :  = 

Construction of the tr iples 

step ( l )  

Figure 2.6 

A DAG with Several "Roots" 
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loop; of course~ the exi t  test always uses the latest value of this variable." My 

interpretation is that the expressions defining the i n i t i a l  value, l im i t  and step 

size are evaluated before any assignment is made tQ the control variable; this point 

of view agrees with that of Lee [1972]. The tr iples of Figure 2.6b wi l l  therefore 

yield the correct result i f  (3) is executed last. 

Note the treatment of the assignment tr iples in steps 7, 16 and 21: They do not 

leave a result on the semantic stack. Sometimes i t  is appropriate to use the value 

of an assignment t r ip le  as an operand to another t r ip le ;  this point is covered in 

Section 2.3° 

Once the 

instructions. 

traversing a 

DAG has been constructed, i t  must be traversed to yield a sequence of 

I t  is possible to prove the optimality of the sequence generated by 

tree [Sethi 1970], but no analogous result holds for DAGs. I shall 

therefore give a heuristic procedure, adapted from one presented by Aho and Ullman 

[1973]. The general idea is to traverse the DAG, creating a stack of t r ip le  

numbers. This stack represents the computations to be performed, in reverse order. 

The elements are then popped off  the stack and passed to the code generator. The 

procedure is: 

a. Set up an empty stack, S, for t r ip le  numbers. 

b. Choose a t r ip le ,  not already on S, a l l  of whose ancestors (in the DAG) are 

on S. Add the number of this t r ip le  to S. The procedure terminates i f  no 

such t r ip le  can be found. (A t r ip le  which has no ancestors may be added to 

S.) 

c. I f  n was the last t r ip le  added to S, and one descendent of n is not on S, 

and al l  ancestors of that descendent are on S, then add that descendent and 

repeat step c. Otherwise go to step b. 

A convenient way of  deciding whether or not a l l  of the ancestors of  a par t i cu la r  

t r i p l e  are on S is to include a reference count wi th  each t r i p l e  in  the DAG. This 

reference count can be computed as the t r i p l es  are being generated: When a new 

t r i p l e  is added to the l i s t ,  set i t s  reference count to 0 and increment the 

reference count o f  each t r i p l e  which is  one of  i t s  operands. A t r i p l e  may be placed 

on S i f  and only i f  i t s  reference count is  Oo When a t r i p l e  is added to S, 

decrement the reference count of each of i ts  operand t r ip les.  Figure Z.7a shows the 
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Triple Count 

l :  * B C 2 

2: + A (1) 2 

3: ~ (2) (1) 1 

4: + (2) (3) 0 

a) Reference counts added to the t r ip le l i s t  of Figure 2.5 

s,tep, 

l 

Stack 

(4) 

Resultant Triple List 

l :  * B C 2 

2: + A (1) l 

3: ~ (2) ( I )  0 

4: + (2) (3) 0 

(4)(3) I: * B C l 

2: + A (1) 0 

3: ~ (2) ( I )  0 

4: + (2) (3) 0 

(4)(3)(2) l :  * B C 0 

2: + A (I) 0 

3: ÷ (2) ( l )  o 

4: + (2) (3) 0 

(4)(3)(2)(I) no change 

b) Construction of the stack 

Figure 2.7 

Flattening the DAG 
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t r ip le  l i s t  generated in Figure 2.5 with reference counts added; Figure 2.7b 

i l lustrates the generation of a stack from this t r ip le  l i s t .  

The choice of a t r ip le  is fixed at each step in Figure 2.7 by the reference 

count. The DAG of Figure 2.6 does not have this property (see Figure 2.8). 

I n i t i a l l y  there are three tr ip les with 0 reference counts; presumably any one of 

them could be placed on S f i r s t .  In this particular example, however, (3) has a 

side effect and consequently must be executed last. This means that (3) must be 

selected as the i n i t i a l  element of S, and the resultant t r ip le  l i s t  is given in 

Figure 2.8b. 

We must now make a choice between (5) and (6), each of which has a reference 

count of O. Since neither has a side effect within this expression, we are free to 

select either. I would advocate selection of (5). The reason is that i ts  operand, 

(4), has a reference count of l while the operand of (6) has a reference count of 2. 

This means that i f  I select (5) I wi l l  be able to select i ts  operand as the next 

element of S. Tile advantage of selecting an operand inT~ediately after selecting the 

t r ip le  which uses i t  is that the two computations are linked [Sheridan 1959]: The 

computed operand value wi l l  be used immediately, i f  I chose (6) in this example, I 

would have to delay selection of i ts  operand unti l several other nodes in the DAG 

had been placed on S. This would mean that the computation of the operand would be 

remote from i ts use, and i ts value might have to be stored in memory instead of 

being kept in a register. 

Once I choose (5) the rest of the selections are fixed: The reference count of 

(4) is decremented to 0 and hence (4) must be selected according to rule b. This 

decrements the reference count of (2), which ~ust be selected for the same reason. 

At this point (6) is the only t r ip le  with a 0 reference count, and selection of (1) 

follows by rule b. The resulting contents of S are shown in Figure 2.8c. 

I t  appears that linkage is the most important property which can be used to 

determine the next t r ip le  to place on S. In more complex expressions, where each 

immediate operand has a reference count of l ,  i t  B~ay be useful to look at the 

reference counts of their operands in turn. The search can be continued to any 

depth, tracing only operands with reference count l ,  and wi l l  eventually reach 

either a leaf or a t r ip le  whose reference count is greater than I .  The operand 
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l :  * J K 2 

2: * L (1) 2 

3: = I (2) 0 

4: * I (2) 1 

5: = l im i t  (4) 0 

6: = step (1) 0 

a) Reference counts added to the t r i p l e  l i s t  of Figure 2.5 

I :  * J K 2 

2: * L ( I )  1 

3: : I (2) 0 

4: * I (2) l 

5: = l im i t  (4) 0 

6: = step (1) 0 

b) After placing (3) into the stack 

(3 ) (5 ) (4 ) (2 ) (6 ) ( I )  

c) The complete stack, assuming (5) was chosen at step 2 

Figure 2.8 

Choices During Flattening 
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which leads to the longest chain should be selected. Obviously the cost of this 

strategy increases as the depth of the search increases, and the additional 

efficiency gained with each step goes down. 

In Chapter 3oE (Section 1.3) I noted that a common subexpression value must be 

given a name because i t  wi l l  be used more than once and thus cannot be modelled by 

an entry in the transducer's pushdown store. This name must be assigned when the 

common subexpression is f i r s t  encountered in the traversal of the DAG, and i t  must 

be used for a l l  references to the particular t r ip le  which represents the common 

subexpression. Thus we must expand the description of a t r ip le  to include space for 

a name. 

Only those tr iples which appear as common subexpressions wi l l  have names. This 

fact can be used to delimit the range of a common s~bexpressien (the portion of the 

program over which i ts  value must be preserved): We are within the range of a 

common subexpression i f  and only i f  the reference count is nonzero and the name is 

nonnull. We can make use of this property to provide expl ic i t  PROTECT and RELEASE 

commands (Chapter 3.E, Section 4) to the code generator. Upon encountering a node 

with a nonzero reference count and null name, the traversal algorithm should issue a 

name and place a RELEASE command for that name onto S. The corresponding PROTECT 

command is placed onto S just before adding a named nade with a 0 reference count. 

The PROTECT and RELEASE commands are then passed to the code ~enerator when they are 

taken off the stack as the tr iples are being evaluated. 

This approach ( i l lustrated in Figure 2.9) places the protect operation just after 

the evaluation of the common subexpression, and places the release operation just 

before the last computation which uses i ts  value. This is the proper order because 

the last computation which uses the value should know that that value need not be 

preserved. (Recall from Chapter 3.E that a release operation does not make the 

value descriptor vanish immediately.) 

2.3. Basic Blocks° The side effects possible within a basic block force us to 

consider more than just the form of a t r ip le  in order to check for common 

subexpressions. In Figure 2.10, for example, B*C is not a common subexpression 

because of the assignment to C, The informatian necessary to account for the side 

effects can be provided by attaching level numbers to the variables and tr iples and 



Step 

l 

Stack 

(4) 

RELEASE T1 

(4) 

RELEASE Tl 

(3) 

RELEASE T2 

(4) 

RELEASE Tl 

(3) 

RELEASE T2 

PROTECT Tl 

(2) 

(4) 

RELEASE Tl 

(3) 

RELEASE T2 

PROTECT Tl 

(2) 

PROTECT T2 

(I) 
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Resultant Tr ip le List  

l :  * B C 2 

2: + A (1) l Tl 

3: (2) (1) 0 

4: + (2) (3) 0 

l : * B C l T2 

2: + A (1) 0 Tl 

3: (2) (1) o 

4: + (2) (3) 0 

l : * B C 0 T2 

2: + A (1) 0 Tl 

3: (2) ( I )  0 

4: + (2) (3) 0 

l :  * B C 0 

2: + A (1) 0 

3: (2) ( I )  0 

4: + (2) (3) 0 

T2 

T1 

Figure 2.9 

Providing Names for Commmon Subexpression Values 
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A = B*C 

C : D+G 

E = B*C 

F = A+E 

Figure 2.10 

Side Effects Within a Basic Block 
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then checking these. 

Level numbers are assigned as follows: 

a. The level number of a t r ip le  is one larger than the largest level number 

among i ts operands. 

bo The level number of a variable is the Bumber of the t r ip le  which last 

caused i ts value to change. 

(Level number 0 is used to indicate that the value of a variable has not changed in 

this basic block.) When a new t r ip le  is formed, i ts  level number is computed. The 

t r ip le  is redundant i f  and only i f  there is an identical t r ip le  with the same level 

number. 

The use of level numbers is i l lustrated in Figure 2.11. ( I  have eliminated the 

reference count and name f ields from Figure 2.11 in order to save space. These 

fields would, however, be used in the manner discussed in Section 2.2.) In step 14 

the term B*C is reduced° Since the level number of C was reset to 4 at step lO, the 

level number for this t r ip le  would be 6. Although there is an identical t r ip le ,  

(1), i ts  level number is I .  Consequently B*C is not a common subexpression and a 

new t r ip le  must be generated. Once the decision has been made to generate a new 

t r ip le ,  we are free to use the value of assignment (4) rather than that of the 

variable C i t se l f .  The necessary information is given by the level number of C, 

which is equal to the number of the t r ip le  that last altered i ts  value (rule b). 

The level n~ber for t r ip le  (4) is 3, not 5, and this value is used to compute the 

level of the generated t r ip le .  Notice that step 19 has a similar effect, using the 

value of the assignments (2) and (6) in lieu of the variables A and E. 

A value is assigned to the variable C in steps I0 and 20. The f i r s t  of these 

assignments is irrelevant outside the basic block, since the v/alue is destroyed at 

step 20. (5) uses the value of (4) rather than the value of C, and therefore the 

assignment to C is to ta l ly  redundant. This redundancy can be deduced at step 20 by 

the fact that the level number of C is not O. Moreoyer, the level number of C 

specifies the t r ip le  number of the redundant assignment. 

We wish to flag this assignment as being redundant, but not to eliminate i t  

entirely. The reason is that we may discover during code generation that the value 

cannot be held in a reg is te r  but must be placed in  memory. I f  th is  s i tua t ion  



Step Semantic Stack 

1 A 

2 AB 

3 ABC 

4 a(1) 

5 (Level of  A is reset to 2) 

6 C 

7 CD 

8 CDG 

9 C(3) 

I0 (Level of C is reset to 4) 

11 E 

12 EB 

13 EBC 

14 E(5) 

15 (Level o f  E is reset to G) 

16 F 

17 FA 

18 FAE 

19 F(7) 

20 (Level of  C is reset to 8) 
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Triple Generated 

I :  * B  C 1 

2: : A ( I )  2 

3: +D G 1 

4: = c (3 )  2 

5: * B (4) 3 

6: = E (5) 4 

7: + (2) (6) 5 

8: = C (7) 6 

Figure 2.11 

Construction of Triples for Figure 2.10 
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arises, the variable C provides the obvious temporary storage location. Thus an 

additional temporary need not be assigned by the code generator. 

The use of level numbers does not alter the traversal of the DAG in any way. 

There is no need to select a particular i n i t i a l  node because of a possible side 

effect; the last t r ip le  on the l i s t  is always el ig ible as a starting point. 

So far I have discussed only expl ic i t  assignments to variables. In most 

languages, assignments can be made in other ways as well. For example, suppose that 

an assignment is made to the array element A(1). Since the value of I is not known 

to the compiler, i t  has no way of discovering which element of A was altered. Thus 

i t  must associate a single level number with the entire array and update that number 

whenever any element of the array is assigned a value. The compiler cannot 

generally use the value of the assignment as the value of a particular array 

element, although this is possible in certain cases. 

There are other cases in which the compiler can't even be sure that an assignment 

has taken place, let  alone ver i fy the value assigned [Spillman 1972]. Examples of 

such "possible assignment" are the side effects which a function call may have on 

global variables and variables which are arguments to the function. As in the case 

of array references, the compiler may not use the t r ip le  value where the possibly 

assigned variable appears in s~bsequent t r ip les.  Thus an extra flag is required to 

distinguish "possible assignments" from expl ic i t  assignments in which the t r ip le  

number may be used in place of the variable. 

To handle side effects of function cal ls,  certain t r ip les are treated as 

"possible assignments" to al l  global and argument variables. The choice of the 

tr iples is determined by the language definit ion. In ALGOL 60, for example, each 

function call t r ip le  must be regarded as making assignments to a l l  of i ts  argument 

variables and to al l  global variables. In FORTRAN, however, the t r ip le  making the 

possible assignment is the last t r ip le  of a statement containing a function cal l .  

The effects of a "possible assignment" can be extended through the use of 

equivalence statements such as those in FORTRAN. In certain algorithms i t  is useful 

to establish an equivalence relation between simple variables and selected elements 

of an array. This makes i t  easier to access those elements, and allows references 

to them to be optimized as though they were simple variables. However, when an 
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assignment is made to an arbitrary element of the array the compiler must assume 

that the values of a l l  of the equivalenced simple variables have been destroyed. 

Figure 2.12 i l lustrates the problem of "possible assignment" with a FORTRAN 

program. In this example, B*(C+D) is a common subexpression, but A*B*C cannot be a 

common subexpression because A is an argument variable in the second statement. 

X*(Y+Z) is common in the assignments to R and S, but the other occurrences of 

X*(Y+Z) cannot be considered common because the variables X, Y and Z are in COI~MON 

and are thus subject to alteration by the functions ABCF and XYZF. Actually, a more 

sophisticated analysis could show that X*(Y+Z) would also be common throughout this 

basic block i f  the program adhered to the FORTRAN Standard [ANSI 1966]. The reason 

is that a l l  three of the variables X, Y and Z appear in each assignment statement. 

According to the excerpt from Section 6.4 of the Standard quoted in Section l of 

this Chapter, neither of the functions can val id ly alter any of these variables. 

The analysis required to discover this fact, however, is not usually carried out by 

a FORTRAN compiler. I t  is not only expensive, but also i t  is dangerous. In the 

second statement, for example, XYZF could al ter the values of X, Y and Z without 

affecting the assignment. The reason is that these variables appear only in an 

argument expression of the function, and this argument expression must invariably be 

evaluated before the function is called. The FORTRAN Standard thus provides a 

specification which is more restr ict ive than necessary in this situation. 

3. Global Optimization 

Flow of control within a program can be described by a directed graph which may 

contain cycles,. Each node of the graph corresponds to a single basic block in the 

program, and each edge represents a direct control path from one basic block to 

another. A c_~ompute point for an expression is a point in the program at which a 

computation of the expression occurs; a d e f i n i t i o n ~ i s  one at which a new value 

is assigned to some operand of the expression. I f  a path through the program graph 

contains neither a compute point nor a definit ion point for a particular expression, 

then i t  is said to be a clear path with respect to that expression. The value of an 

expression is a yailable at a point P i f  every path by which we nay arrive at P 
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P = A*B*C+B*(C+D)-ABCF(A)+X*(Y+Z) 

Q = B*(C+D)-XYZF(X*(Y+Z),A) 

R = B*(C+D)-(X*(Y+Z)/(A*B*C)) 

S = (X*(Y+Z))/ABCF(A) 

A, B, C and D are local 

X, Y, and Z are in COMMON 

Figure 2.12 

Possible Assignment 
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contains a clear subpath from some compute point of the expression to P. Finally, 

an expression is l i ve  at point P i f  there is a clear path from P to a compute point 

at which the value is available ( i f  an expression is not l ive i t  is dead.) 

Consider the FORTRAN program and corresponding graph shown in Figure 3.1. There 

are compute points for E*F in the third, f i f t h  and sixth statements of Figure 3.1a; 

X+E*F has a definit ion point in the third statement. There is no clear path with 

respect to E*F from the IF statement to statement I I ,  because each path contains a 

compute point for that expression. The value of E*F is available on entry to the 

basic block beginning with statement l l ;  i t  is l ive at the end of the third and 

f i f t h  statements, and dead after statement I f .  

In this section I shall show how the transformations which we have applied 

local ly can be extended through the use of information regarding ava i lab i l i ty  and 

liveness, and how these concepts apply to frequency reduction and induction variable 

optimization° This wi l l  allow us to determine the type of flow analysis which is 

necessary to support global optimization. 

3o]. R edundanc~ and Rearrangement. The expression E*F is evaluated in three of 

the four basic blocks. Figure 3.1b shows that one of these evaluations invariably 

precedes entry to the basic block which begins at statement I f .  Since no new value 

is assigned 'to either E or F between the time E*F is evaluated and the time i t  is 

used, i t  need not be re-evaluated in statement I I .  Thus this computation is 

redundant and may be replaced by the name of the value calculated in either of the 

predecessor blocks. (Recall from Section 2 that the optimizer must give each common 

subexpression a name by which the code generator may refer to i t . )  

A particular instance of an expression is redundant i f  the value of the 

expression is available at that point. Notice, however, that an expression is 

available at P only i f  there is a compute point on every path leading to P, and a 

clear subpath between that compute point and P. In Figure 3.2, for example, A*B is 

computed in the third statement of the program but not in statement lO. Thus the 

value of this expression is unavailable at entry to statement II because there is a 

path to statement I I  which does not contain a compute point of that expression. 

This in turn means that A*B is dead following i ts  computation in the third 

statement. 
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FUNCTION H(A,B,C,D,E,F,G,X,Y) 

IF (A.GE.B) GO TO lO 

X = D+E*F-G 

GO TO I I  

C = X+E*F/SIN(Y) 

H = COS(E*F-THETA) 

RETURN 

END 

a) A FORTRAN program 

E*F 

© 

E*F 

b) The graph corresponding to (a) 

Figure 3.1 

Describing the Flow of Control 
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I I  

FUNCTION H(A,B,C,D) 

IF (A.GE.B) GO TO I0 

H = A*B+C 

GO TO I l 

H = 0.0 

D = D-A*B 

RETURN 

END 
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a) A FORTRAN program 

A*B 

© 

A*B 

b) The graph corresponding to (a) 

Figure 3.2 

An Unavailable Expression 
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Figure 3.3 shows that i f  E*F is introduced into the entry block of the function 

al l  three existing occurrences become redundant; th~s the number of occurrences can 

be reduced from three to one. Earnest [1974] says that i t  is profitable to insert 

an expression into a block whenever such an insertion m~kes the value available at 

two or more compute points of that expression. Unfortunately this insertion does 

not necessarily improve the execution speed of the program because i t  ma~ transfer 

computations from low-frequency to high-frequency regions. I believe, however, that 

such problems are minimized by proper region selection. 

Local rearrangement of computations cannot introduce error conditions (such as 

overflow and divide check) unless improper use is made of associativity. The reason 

is that al l  computations in a basic block wi l l  be executed i f  any are, a property 

which is not necessarily shared by any larger region. For example, suppose that A = 

Q'C, B = Q*A and C~O in Figure 3.4. The code of Figure 3.4a wi l l  not execute 

SQRT(Q) i f  Q<O, while the code of Figure 3.4b always executes SQRT(Q). Thus the 

profitable rearrangement of Figure 3.4b may introduce an error. I t  is safe [Earnest 

1974] to move an expression which could result in an error i f  every path leaving the 

new position leads to a compute point in the original program. This means that the 

error would have occurred in the original program; the rearrangement has simply 

moved i t  to a new position. (Consider the problems of debugging a program which has 

been subjected to global rearrangement - optimization should only be applied to 

validated, production softwareL) 

3.2. Frequenc~ and Strength Reduction. A loop is represented by a strongly- 

connected region in the program graph, and an expression is constant within the loop 

i f  i t  has no definit ion points in the region. Even when an expression has 

definit ion points in the region i t  may be constant, as i l lustrated by Figure 3.5a. 

There the variable T is assigned a value which is constant within the loop, and thus 

remains constant i t se l f .  Figure 3.5b shows that this condition is not suff icient, 

however: T is assigned a constant value at the end of the f i r s t  i teration, but this 

value differs from the value which i t  had on entry. When an expression has a 

definition point within the loop, then i t  is invariant i f  i t  is dead at each entry 

to the loop and the value assigned at each definit ion point is invariant. 
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FUNCTION H(A,B,C,D,E,F,G,X,Y) 

T = E*F 

IF (A.GE.B) GO TO lO 

X = ~+T-G 

GO TO II  

C = X+T/SIN(Y) 

H = COS(T-THETA) 

RETURN 

END 

a) Introduction of a new variable 

E*F 

b) Movement of the computation 

Figure 3.3 

Optimizing Figure 3.1 
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IF (A .GE. B) GO TO l 

H = Y+2.7*SQRT(Q) 

GO TO 2 

IF (C .NE. O) P = COS(Y)/(2.7*SQRT(Q)) 

H = H+SIN(THETA) 

a) Source program 

T : 2.7*SQRT(Q) 

IF (A .GE, B) GO TO l 

H = Y*T 

GO TO 2 

IF (C oNE. O) P = COS(Y)/T 

H = H+SIN(THETA) 

b) A prof i table rearrangement which is unsafe 

Figure 3.4 

Safety 



DO 1 1 = J ,K 

T = A*B+C 

FI = I 

X(1) = Y(1)+R/T 

Z(1)  = S*T 
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a) Constant  exp ress ions  w i t h  a d e f i n i t i o n  p ~ i n t  

T = A*B-C 

DO 1 1 = J ,K  

FI = I 

X(1) = Y(1)+R/T 

Z ( 1 )  = S*T 

1 T = A*B+C 

b) Non-constant expressions 

Figure 3.5 

Loop Constants 
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I f  an expression is invariant over a loop, then i t  can be evaluated at each entry 

rather than during execution of the loop. We usually ignQre the profitabil i ty 

(Section 3.1) of this move, arguing that i t  reduces the frequency of execution, but 

the safety constraint discussed in Section 3.1 must be satisfied. 

Aho and U11man [1973] define an induction variable as one which takes on a 

sequence of values forming an arithmetic progression (with positive or negative 

difference) for arbitrary computation paths in a region. The problem of finding all 

of the induction variables in a region is unsolvable, but several heuristics serve 

to detect the important cases. One obvious approach is to use language constructs 

such as DO and for statements to flag the loop control variable, and then ignore 

other induction variables. Gear [1965] looks for variables which are incremented by 

constant amounts within the loop; another possibility is to examine the variables 

which are tested to determine loop termination [IBM 1968]. 

Linear expressions involving induction variables can be transformed to remove the 

multiplication from the loop, as illustrated in Figure 3.6. (Such expressions 

normally arise from references to multi-dimensional arrays subscripted by the loop 

control variable.) The profitabil i ty test is not applied to this transformation 

because of the expected frequency reduction, and the safety criterion is usually 

satisfied because the computations do not generate errors. 

Note that the strength reduction transformation creates new induction variables. 

Strength reduction can then be performed anew upon expressions which are linear in 

these variables. The classic example is the index polynomial of the FORTPJ~N array 

reference A(I,J,K) when K is the original induction variable [ANSI 1966]: 

I+dl*(J-l+d2*(K-l)) 

The expression K-l is linear, and can be replaced by a single temporary. This 

temporary is an induction variable, and the coefficient of dl is a linear function 

of ito Thus the same transformation can be applied, replacing the coefficient of dl 

by another single induction variable° Finally, the entire expression is replaced by 

a single induction variable. The sequence of transformations is equivalent to 

rewriting the expression as: 

K*(dl*d2)+(I+dl*(J-l-d2)) 

This expression is obviously linear in K, but the manipulation required to obtain i t  



DO 1 1 = MI,M2,M3 

. . . ( K I * I + K 2 ) . . .  

CONTINUE 
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a) A linear function of the induction variable 

I I  = KI*MI+K2 

12 = KI*M3 

DO 1 I : MI,M2,M3 

. . . ( I I ) . . .  

I~ = ll+I2 

b) Multiplication removed from the loop 

Figure 3.6 

Strength Reduction 
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is not easily taught to a compiler. 

3.3. Global Anal~siSo The optimizations described above require a 

representation of the program graph and some additional information derived from the 

basic blocks. Computations within a basic block are defined by l ists of tr iples, as 

discussed in Section 2. The tr iples do not specify transfers of control, although 

they do describe the computations ( i f  any) upon which such transfers are based. 

The program graph is most conveniently stored as a l i s t  of nodes and a l i s t  of 

edges [Hopcroft 1973]. Each node is represented by a bIQck PaCkage [Lowry 1969] 

containing the following information: 

a. Pointer to the l i s t  of edges entering this node. 

b. Pointer to the l i s t  of edges leaving this node. 

c. Pointer to the next block package. 

d. Specification of the computation carried out by this basic block. 

e. Additional information as discussed below. 

Actual text for the computation is not normally stored in the block package. 

FORTRAN H [IBM 1968] represents the text for each block as a linear l i s t  of 

quadruples [Gries 1971], with the block package pointing to the f i r s t  quadruple. 

(This l i s t  is essentially equivalent to the flattened DAG which I discussed in 

Section 2°) The "additional information" contains summaries of expression and 

variable usage within the basic block which are relevant for ~lobal flow analysis; 

thus the actual text can reside on backing storage while the graph is analyzed. 

Each edge 6f the graph is represented by an edge package (analogous to the block 

package) which contains the following information: 

a. Pointer to the next edge entering the same node. 

bo Pointer to the next edge leaving the same node. 

c. Pointer to the next edge package. 

d. Specification of the computation ( i f  any) which causes this edge to be 

traversed. 

e. Pointers to the block packages for the nodes which this edge connects. 

Edges serve as associators [Lang 1968], and hence each edge lies on two l is ts .  This 

is the purpose of the f i r s t  two pointers, as shown in Figure 3.7. The computation 

which causes the edge to be traversed is relevant only when the edge represents a 
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a) A program graph 

Nodes 

(]) 

Inward [ 
Outward o 

Edges 

(a) 

-f 
(b) 

Common Tail 

Common Head 

(2) 

o 

0 

(3) 

I ,, 0 

b) Internal representation 

(c) 

v I o 

Figure 3.7 

Storing a Program Graph 
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conditional transfer of control. In that case, the edge package would contain a 

pointer to the single t r ip le  which summarizes the computation ( i .e.  a pointer to 

the root of the tree or DAG for the computation.) 

The block and edge packages are bui l t  and linked duming the f i r s t  pass over the 

program text: Space for the f i r s t  basic block is allocated, and analysis of the 

text begins. When a jump is encountered in this analysis, space for an edge package 

and the block package for the target block is allocated and linked° The dictionary 

specifies the correspondence between labels and block packages, so that new edges 

can be properly linked to existing block packages. At the end of the f i r s t  pass the 

program graph is complete, and the computations carried out by each basic block have 

been specified. 

Section 3.1 explained that the characteristics of the computation which were 

relevant for rearrangement and redundancy elimination were the relative positions of 

the definit ion points and compute points. In a single basic block, there are f ive 

possibi l i t ies which must be distinguished for each expression - 

a. A compute point preceeds any definition points. 

bo A definit ion point preceeds any compute points. 

c. A compute point follows any definit ion points. 

do A definit ion point follows any compute points. 

e. There are neither definit ion points nor compute points. 

Possibil i t ies a and b are opposites, as are c and d; i f  e is true then none of a-d 

is true. Three bits are therefore required to express the information which can be 

derived from the basic block for each expression. 

There are many ways to specify the values of the three bits; your choice wi l l  

depend upon the problem you are trying to solve and the precise algorithm which you 

are using. For example, consider the problem of determining the block entries at 

which a particular value is available [Cocke 1970, Allen 1971, Ullman 1973]. Let us 

express the solution by a single bi t  for each block: 

AVAIL(i)=I i f  the value is available on entry to block i ,  

AVAIL(i)=O otherwise° 

First we assume that the value is available on entry to a block i f  and only i f  that 

block has at least one predecessor. This assumption enables us to i n i t i a l i ze  
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AVAIL(1) for  a l l  i .  

A value is avai lable on entry to a block only i f  i t  i s  avai lable on ex i t  from a l l  

of that block's predecessors. Once we determine that the value is unavailable on 

ex i t  from some block, no other conditions which we can discover w i l l  render that 

value avai lable to a successor. Thus a v a i l a b i l i t y  is a f rag i l e  f lower, which cannot 

be resurrected once i t  is destroyed. The boolean and implements this property - i f  

AVAIL is altered only by assignments of the form AVAIL=AVAIL*e, then once i t  becomes 

0 i t  can never be reset to lo 

I f  possibi l i ty (d) holds for any block, then the value cannot be available on 

entry to any successor of that block. This suggests that we represent (d) by a O- 

b i t ,  KILL, and make a single pass over the edges of the graph setting 

AVAIL(j)=AVAIL(j)*KILL(i). (Here the edge is directed from block i to block j . )  

After this pass is completed, we can forget about case (d) entirely anC concentrate 

upon cases (c) and (e). In case (c) the value is unconditionally available on exit ,  

while in case (e) i t  is available on exi t  only i f  i t  is available on entry. Suppose 

that case (c) is represented by a l - b i t ,  GEN. I f  block j is a successor of block i ,  

and AVAIL(i)=(), then AVAIL(j)=AVAIL(j)*GEN(i). I f  AVAIL(J) becomes 0 during either 

the in i t ia l i za t ion  or the f i r s t  pass, place block j on a stack, S. At the end of 

the f i r s t  pass, remove the top block ( i ,  say) from S and perform the assignment 

AVAIL(j)=AVAIL(j)*GEN(i) for  each successor block j .  I f  th is  assignment changes 

AVAIL(j) to O, place block j on S. The process continues unt i l  S is empty, and 

requires O(ne) steps (where n is the number of blocks and e the number of  edges 

[Ullman 1973].) 

The l imi ted information required by the a v a i l a b i l i t y  algorithm was natura l ly  

encoded by the GEN and KILL b i t s .  Earnest [1974] presents a composite algorithm for 

rearrangement and redundancy which makes decisions on the basis of safety and 

p r o f i t a b i l i t y  in addit ion to a v a i l a b i l i t y .  This algorithm requires the f u l l  three 

b i ts ,  and encodes the information as fol lows: 

c ( i )= l  i f  block i contains no de f in i t i on  point for  the expression, or i f  a 

compute point fol lows a l l  de f in i t i on  points in block i .  

d ( i )= l  i f  there is no clear path for  the expression through block i ,  

e ( i )= l  i f  there is no de f in i t i on  point fo r  the expression in block i ,  or i f  a 
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compute point precedes all definition points. 

(These names are used by Earnest, and should not be confused with cases c, d and e 

discussed above. I f  "-" indicates "don't care", then cases a through e are encoded 

by - ] l ,  -lO, l l - ,  Of- and lOl respectively.) 

Each bit gives the appropriate summary information for one expression in one 

basic block. Unfortunately, we need this information for every expression in every 

basic block in order to complete the analysis. Most of the expressions will turn 

out to be irrelevant for optimization, but I know of no systematic method of 

determining which are important. (FORTRAN H [Lo~y 1969] retains summary 

information only about the f i r s t  127 simple variables, and then does exhaustive 

searches for common subexpressions in order to eliminate redundancy.) 

The global analysis procedure does not normally attempt to consider the entire 

program at once. Rather i t  finds a partition of the basic blocks which covers the 

graph and has some useful property (e.g. each group of ba~sic blocks is strongly- 

connected, or has only a single entry point.) I t  then deduces~ for each region of 

the partition, summary information similar to that used for a basic block. Finally 

i t  iterates the process, using a graph whose nodes are the regions. One 

particularly important aspect of this process is that i t  makes the loop nesting 

apparent and allows nests to be optimized in "inner to outer" order. Region 

formation is well-documented in the literature [Allen 1970, Ullman 1973], and I 

shall not discuss the mechanics of i t  here. 

Upon completion of "inner to outer" processing, additional information is 

available about values at region boundaries. This information is then passed into 

the region, and deposited at the boundaries of nested regions. Eventually i t  

reaches the level of the basic block, where i t  causes ~odification of the text. 

This final modification is what actually performs the optimization (the global 

analysis merely serves to gather the necessary information); i t  consists of the 

normal transformations discussed in Section 2. 
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CHAPTER 6. 

Appendix: HISTORICAL REMARKS ON COMPILER 

CONSTRUCTION 

F. L. Bauer 

Technical University of Munich 

Munich, Germany 

Historical ~Remarks on Compil...e.r Construct.i...on 

D. E. KNUTH [81] has observed (in 1962!) that the early history of cimpiler construc- 

tion is d i f f i cu l t  to assess. Maybe this, or maybe the general unhistorical attitude 

of our century is responsible for the widespread ignorance about the origins of com- 

pi ler construction. In addition, the overwhelming lead of the USA in the general de- 

velopment of computers and their application, together with the language barrier, has 

in fact favoured negligence of early developments in Middle Europe and in the Soviet 

Union. 

Far from being able to give a thorough and complete history of compiler writing - I 

hope to find one day the time for doing the immense reading and screening involved in 

such an enterprise - I w i l l  only t ry to give a few remarks together with bibliographi- 

cal notes, that may help some interested readers to penetrate into the historical work 
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and to do their own investigations. I should also give the warning that I may be 

biased: My own attitude to compilers has in the early 60's strongly favoured syntax- 

controlled analysis over syntax-directed analysis I ) ,  fa i th fu l  to the economic prin- 

ciple of doing things rather once for al l  than repeatedly. Moreover, I have been in- 

volved myself at some time with the development, and know some parts of i t  better than 

others. 

Nevertheless, I would venture the hope that historical studies are s t i l l  considered to 

be more than digging out material for patent courts and for the entertainment of stu- 

dents, that historical assessment is an indispensable part of science and in particu- 

lar of a discipl ine that has keenly called i t se l f  "computer science" and is now com- 

pelled to l ive with the claim. 

I) In the sense of FLOYD [51] 
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i .  Prehistor ical  'Gedanken-compilers ' 

Translation is a conversion of sentences from one language to another, which preserves 

the meaning. A compiler t ranslates descriptions of algorithms from a language sui ta~e 

for human use to a more hardware-oriented language specifying somehow more elementary 

actions. In th is  sense, the problem of 'reading' a complicated ar i thmetical  formula, 

pa r t i cu la r l y  with the intent ion to do some calculat ion according to th is  prescript ion 

means actual ly  a mechanical mental process (which is helped by some d r i l l  received at 

junior  highschool). Thus, logic ians,  looking behind the curtain of obviousness in ma- 

thematics, were close to studying the processes of compiling ar i thmetical  and other 

"algebraic" formulae, t o t a l l y  independent of the existence and use of computers. 

The parenthesis-free or 'po l ish '  notation which was introduced by J. LUKASlEWICZ in 

the late 20's [88], today frequently called pre f ix  notation, was a perfect notation 

for  the output of a compiler as defined above, and thus a step towards the actual me- 

chanization and formulation of the compilation process. 

A fur ther  step was made 1953 by BURKS, WARREN, WRIGHT [28] in specifying a r i gh t - to -  

l e f t  check algorithm for well-formed parenthesis-free Boolean formulae. However, 
H. ANGSTL, in 1950, had designed a mechanism that solved the problem, see [14]. 

Mere ' ru les of spel l ing '  for  the parenthesis-free notation had been formalized and 

proved by MENGER 1932 and SCHRUTER 1943 [91], [113] ( for formulae with parenthesis in 

the most general case apparently 1934 by KLEENE [79] and 1941 by CHURCH [36]). In 1950, 

P. ROSENBLOOM's book [103] already contained a chapter on formal languages, based on 

work by POST [99] in 1943, and thus the tools for  describing even the syntax of the 

class of ar i thmetic and other 'a lgebraic '  formulae with parentheses. The aim, however, 

was mathematica~ proof theory and the mechanism heavy. 

This was only changed when N. CHOMSKY in 1957 introduced very special classes of 

languages [32], [33], [34], [35]. Mention should also be made of a rather unsuccess- 

fu l  attempt by WELLS in 1947 [125]. Al l  th is  happened in the realm of logic.  An ex- 

ception is K. ZUSE. Paral le l  to, but independent of, his pioneering work in hardware 

and functional design, ZUSE specif ied in 1945, immobilized by war events in a small 

bavarian v i l l age ,  an algorithm that determines whether an expression with parentheses 

is well-formed and tackles already s imp l i f i ca t ion  problems l i ke  double negation and 

removal of superflous parentheses. ZUSE writes a program, f u l l y  operational as an 

appl icat ion example of his PlankalkUl [129], [130]. But i t  only describes a check a l -  

gorithm, the compilation i t s e l f  is lacking; there is also no indicat ion in ZUSE's work 

that he had considered mechanical processing in his PlankalkUl, that he had even seen 
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the possibi l i ty.  I) 

Thus, according to our knowledge, i t  was H. RUTISHAUSER who was (1951) the f i r s t  to 

describe a compilation process both in i ts fu l l  operational detail and in i ts  actual 

importance [104], [105], [106]. The Z4 computer accessible to RUTISHAUSER was actual- 

ly  not suited to do the compilation, RUTISHAUSER could only perform a Gedankenexperi- 

ment, that strongly influenced the design of the Swiss ERMETH [120]. RUTISHAUSER's 

method was to establish the parentheses level contour map (Klammergebirge) and then 

to work down level by level, see Fig. 1. 

. L ~I : ( A2 + A 3 )  I " ( A I ~ A 2 x A3) ~ B 
~ I I I I I I I I I I f I I I 
1 ! I I I I I 1 1 I t I I I ! ! I t 

3 1" I t i 1 / ' i ~  1/~+,, .  I 1 1 I i I i 
t I I ~ i / i V i \ i  I i i ~ ~ 1 

2 - [  , I A  J i ] i ~ I I A I A  A I  ~ I i 
/ I i / i  \ l i  i i i i ; % '+  I l i  i \ 1 /  i " % 1 /  i \ 1  I l I 

# ~ I ~ ~" I Y i ', i I ', % . 1 ~  I T ~ 1 i ~ I j l  
0 I i I 

Fig. 1. Parentheses level contour map. 

Facsimile from Rutishausers original paper. 

2 .  ..... The f i r s t  comPilers 

RUTISHAUSER has used the term "Automatische Rechenplanfertigung". "Automatic program- 

ing" was a similar term, in usage since 1951 [127]. A compiler was or iginal ly a pro- 

gram that "compiled" subroutines [126]. When in 1954 the combination "algebraic com- 

pi ler"  came into use [66], [67], or rather into misuse, the meaning of the term had 

already shifted to the present one. In the german language area, "Dbersetzer" was 

favoured, and language-conscious people l ike PERLIS [9?], [7], used more properly 

"translator". But in the sloppy way so typical for a wide part of the computer commun- 

i t y ,  compiler became the dominating term. 

A number of early compilers in the more t r i v i a l  sense was presented in 1954 at the 

US Office of Naval Research Symposium on Automatic Programming. Names to be mentioned 

are ADAMS and LANING (Comprehensive compiler, Summer Session Compiler) [2], RICE 

(APS I l l  Comiler) [101], GOLDFINGER (NYU Compiler) [55], BACKUS and HERRICK (IBM 7@I 

I) KNUTH, in [81], simplifies history too much when merely writing "a complete 
history of compilers should mention the work of ZUSE . . . "  
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Speedcoding) [8 ] ,  somebody (Remington Rand A-2 Compiler) [ I ] ,  BROWN and CARR I I I  

(MAGIC I )  [27] and GORN [56]. 

Remarkable was in 1954 the f i r s t  "algebraic compiler" wr i t ten [2] ,  [84] by ADAMS, 

LANING and ZIERLER for the Whirlwind and the proclamation of a universal ,  machine in- 

dependent programming language by J. W. CARR I I I  [27]; also a f i r s t  pract ical  attempt 

in th is d i rect ion:  APT, a common programming language proposed by B. RICH [102] which 

is essent ia l l y  a p re f ix  notation and thus escaped from the more subtle problems of 

ar i thmetic formulae. 

Restr ict ing the notation was obviously one way to ease the actual compilation process. 

Among the two t r i v i a l  ways, suppressing operator precedence (as RUTISHAUSER had done) 

and requir ing f u l l  parenthesation, the second one is of par t icu lar  in teres t ,  since 

there is a simple mechanical way of establ ishing th is form by insert ing v i r tua l  paren- 

theses (see Fig, 2), which was also in the logicians'  fo l k lo re ,  according to KALMAR. 

readily. An ingenious idea used in the first FOR~A~ compiler was to sur- 
round binary operators with peculiar-looking parentheses: 

+ and -- were replaced by ))) + ((( and ))) -- ((( 

* and / were replaced by ) )*  (( and ) ) / ( (  

** was replaced by )**  ( 

and then an extra "(((" at the left end ")))" at the right were tacked on. 
The resulting formula is properly parenthesized, believe it or not. For 
example, if we consider "'(X + Y) + W/Z," we obtain 

((((X))) + (((Y)))) + (((W))/((Z))) 

This is admittedly highly redundant, but extra parentheses need not affect 
the resulting machine language code. Atter the above replacements are 

Fig. 2. The f u l l  parenthesation t r i ck .  Faksimile from 

Knuth's 1962 Survey paper [81]. 

C. B~HM [19], in his 1952 Zurich thesis under RUTISHAUSER could therefore r e s t r i c t  

his in terest  to the f u l l  parenthesized case; f o r ~ i s  case he was f i r s t  to show that a 

sequent ial ly working process could be used in place of RUTISHAUSER's process, which 

worked on the whole formula (see Fig. 3). 
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Abbau des Klammerausdrucks 

K I : [ A I : ( A2+ A 3 ) ] - ( A~ x A2 ,c A5 ) #~ B 

I. Red. : HI=5 , ii=5 , m=2 ; R I = A2+A 3 

R2 

2. Hed. : H2=2 , i2=2 , m=2 ; R 2 = AI:R I 

R 2- ( AI~ A2x A3) ~B 

R3 

3. Red. : H3=2 , i3=4 , m=3 ; R3=AIx A2x ~ 

Xufbau der 
Befehlsreihe 

A 702 
+ 703 
$ 999 

A 701 
• 999 

998 

A 701 
× 702 
x 703 
S 997 

K 4 : R 2- RS~ B 

4. Red. : H4=I , i4=I , m =3 ; 
A 998 

B = R2-R 3 (Schluss) - 997 
S I 00 
Fin 

Fig. 3. RUTISHAUSER's method of layered 

reduction. Faksimile from [105]. 

Thus, BUHM was ahead of the f i r s t  FORTRAN compiler by SHERIDAN [116], which used the 

same technique. See also [10], [115]. The other way, suppressing operator precedence 

and thus requiring suff icient parenthesizing, was used in 1956 by A. J. PERLIS in the 

IT compi]er [97]. He was also able to give a sequential algorithm. Again, BUHM had 

already br ie f ly  discussed this case. Also, some early attempts by NAMUR in 1954 [92] 

are outdated by BOHM. 

In the Soviet Union, Ljapunov and Yanov [86], [75], [76] developed, without relation 

to compilation, in 1957 an algorithmic notation. KANTOROVIC showed in 1957 how a 

parsed formula can be represented with help of a tree [78] (see Fig. 4). 
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In the middle of the 50's, i t  had become evident that compilation of ar i thmet ical  fo r -  

mulae was only a prototype of the general problem of compiling a reasonable program- 

ming language. Moreover, machines were s t i l l  slow and had res t r ic ted storage capacity 

so that e f fec t ive  compilation methods were sought f o r ,  in pa r t i cu la r  in the pover- 

str icken European quarters, where rumours about the size of the FORTRAN system en- 

couraged people pa r t i cu l a r l y  to do i t  better in order to do i t  at a l l .  Thus compila- 

t ion  techniques were aimed at what would work sequent ia l ly  fo r  unrestr icted ar i thmet ic 

formulae and thus fo r  the prototype of most general nested and agglomerated structures. 

Described in terms of RUTISHAUSER's parentheses leve l ,  the simplest p o s s i b i l i t y  is  

the fo l lowing:  to proceed un t i l  the f i r s t  closing parentheses is found and then to 

work down from there. This was proposed by BOTTENBRUCH 1957 [20] ,  was used by ADAMS 

and SCHLESINGER (1958) fo r  the IBM 650 [3] and, as far  as we could see, was also 

found by ERSHOV in 1958 [43] ,  [41],  [42] and used in the "Programming Program" fo r  

the BESM. The GAT Compiler of ARDEN and GRAHAM [5] works also in th is  way (and shows 

other s t r i k i ng  para l le ls  with the Russian approach). GARWICK also independently d is-  

covered th is  method, as mentioned in [18],  and maybe others. Clearly th i s  method may 

proceed fa r ther  than necessary, since fo r  RUTISHAUSER's parenthesis leve ls ,  f u l l  pa- 

renthesation is not assumed. 

A more sophist icated method proceeds in  the parentheses contour map un t i l  the f i r s t  

pair  of re la t i ve  maxima is found, and works down from there (see Fig. 4, the num- 

bering indicates the order). For dyadic operators, th is  is i n t u i t i v e l y  the most ef fec- 

t i ve  method. I t  has been found by SAMELSON in  1955 [107] and was used by BAUER and 

SAMELSON in 1957 [16] in designing the hardware of a machine accepting 'a lgebraic 

code'. I) 

I)  Another early attempt in the d i rec t ion  of 'high level language computers' was made 

in the SEAC design, see [117]. In the Burroughs B 5000 [29] and in Ferranti KDF9 

[641 design, as well as in microprogrammed machines, to some extent a revival  of 

the idea of high level language computers can be found. 



610 

Formel e * b x a / I c x d + ~ J + 9 x h x j 

Baura 

o,bi~. 

bl!d Zl. Dat>te~]unl~ canes Ausdrucks als Forrnel, a | s  Baum (ha th  ~anforo?Jic~) 
~md als Klammergcbi rge  (.aO~ Rutlshaumcr) 

Fig. 4. RUTISFLAUSER's parentheses level contour map, 

KANTOROVIC's tree and the sequential method 

of SAMELSON-BAUER. Facsimile from the BAUER- 

SAMELSON 1961 survey paper [18]. 

I t  was the basis of the work preparing the GAMM proposals [53], [15] for the Zurich 

1958 ALGOL conference and subsequently of the ALCOR compilers for  ALGOL, the proto- 

type and the f i r s t  of which was wr i t ten 1958 (working in spring 1959) for  ALGOL 58 

by PAUL for  the ZUSE Z22, a small machine with a drum memory of 2000 ce l ls .  I t  was 

followed in the compilers for  ALGOL 60 by PAUL for  the Z22, by SCHWARZ for the ERMETH, 

by SEEGMOLLER for  the PERM, by HILL and LANGMAACK for the Siemens 2002, see [109] and 

[111]. WEGSTEIN (1959) independently found [124] essent ia l ly  the same solut ion,  which 

was characterized by SAMELSON and BAUER as " l e f t - t o - r i g h t  (or r i g h t - t o - l e f t )  scanning, 

deferr ing symbols jus t  as long as necessary and evoking action as soon as possible" 

[16]. 

The outbreak of ALGOL stimulated independent, more or less systematic work on a 

number of other ear ly  compilers, among which we mention from 1959 in the WEGSTEIN 

l ine KANNER [77], in the PERLIS l ine KNUTH with RUNClBLE [80],then GORN and INGERMAN 

[57], [70]; from 1960 and la te r  FLOYD [46], [47], HUSKEY and WATTENBURG ( [68] ,  [69], 

[123]) with the NELIAC adherents (see [65]).  Apparently, MAUCHLY, HOPPER and Anatol 

W. HOLT with the Remington Rand people [118], [45], [119], were also on th is  road. 

The Mercury Autocode people around BROOKER [21], [22], [23], [24], [25], [26], and 
1) some others w i l l  be mentioned la te r  at appropriate places. 

1)Further material that might be relevant,  concerning work by DAHN and by BARTON and 
TURNER [12] seems to be d i f f i c u l t  to get at. 
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Almost a l l  the e f f i c i en t  sequential compilation methods 1) had used for  intermediate 

storage of not yet processed parts a ' l as t  in - f i r s t  out' store, also called 's tack ' ,  

' ce l l a r '  2) (from German ' K e l l e r ' ) ,  'pushdown store ' .  RUTISHAUSER had stored in te r -  

mediate resul ts in a s tack- l ike fashion, (see Fig. 3), but had not stressed at a l l  

th is  point. In fac t ,  such a las t  in - f i r s t  out store had already been used by ANGSTL 

and BAUER in the logical ( re lay- )  computer STANISLAUS designed in 1951 [4] ,  [14], and 

th is experience was the s tar t ing point for  SAMELSON (1955), to use a "ce l la r "  not only 

for deferred intermediate resul ts ,  as needed even with parenthesis-free notation, but 

also for deferred operations. The pr inc ip le  was independently found elsewhere and 

other i n t u i t i v e  imaginations were involved, for  example a ra i l yard  shunt served for  

DIJKSTRA [38]. General aspects were also taken into account in 1961 by ARDEN, GALLER 

and GRAHAM [6] describing the MAD compiler, and in 1963 by GREIBACH [61]. 

In 1959 [109] (an English t ranslat ion [110] appeared in 1960) 3) BAUER and SAMELSON 

summarized the i r  technique as applied to a f u l l  language and worded i t  in terms of a 

t rans i t ion table with input characters and the state-determining top posit ion of a 

ce l la r .  In a colloquium with logicians 1960 in Berl in (see [82]) , the in terpretat ion 

as a pushdown automaton, a general ization of a f i n i t e  state automaton was pa r t i cu la r l y  

stressed. This coincided with A. G. OETTINGER's (1961) independent introduction of 

pushdown automata [93], which originated from ea r l i e r  considerations of mechanical 

t rans lat ion of natural languages. Following OETTINGER's approach, P. C. FISCHER [44] 

had reached in 1959 about the same mastery of languages with parentheses that may be 

omitted e i ther  in the presence of associat ive operators or in the presence of opera- 

tors with hierarchical di f ference, as the ALCOR group. Pushdown automata were fur ther  

investigated by SCHOTZENBERGER [114], the design of the t rans i t ion  table was studied 

by CONWAY [37] and la ter  by GRIES [62a]. Al l  methods, so fa r ,  had been "bottom-up" in 

modern terminology. Except for  OETTINGER's, who apparently had used a top-down parsing 

( 'p red ic t i ve  analysis '  of the l i ngu is t i cs )  and HUSKEY's. This l ine w i l l  be taken up 
again in 6. 

1) I t  seems that the NELIAC compilers had not used e x p l i c i t e l y  a stack (see GRIES, 
Compiler Construction for Dig i ta l  Computers. Wiley 1971, p. 153.) but recursive 
descent (see 6.) instead. 

2) The expression ' ce l l a r '  came from a par t icu lar  set-up of wire l ines in the design 
drawing of STANISLAUS, see below. 

3) See also [17]. 
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4. "Synta x controlled compilers" 

I t  was obvious that the transition tables of the BAUER-SAMELSON and of the OETTINGER 

pushdown automaton reflected the structure of the language. The problem of deriving 

them mechanically from a structural language description, was given to PAUL and solved 

in his Mainz thesis of 1962 [94], see also [96] and [95] as well as [108]. The 

generality, however, in which PAUL had attacked the problem, resulted in a complicated 

process. Nevertheless, later independent attempts to solve this problem for restricted 

types of language, for example for operator languages with precedence properties of 

the kind PERLIS had used, by FLOYD in 1963 [48], would have been corollaries of PAUL's 

results, had those been known. Work in this direction was interpreted as refining the 

grammar in order ±o cut off  dead-end roads and thus defining deterministic transitions. 

Results by EICKEL et al. [40] in 1963 were generalized by FLOYD [49], GRAHAM [58], and 

IRONS [74] in 1964, introducing bounded context grammars. The f i r s t  paper that actual- 

ly showed how to construct tables for a (m,n) le f t - to- r ight  bounded context recognizer 

was by EICKEL [39] 1) . The most general class LR(k) of grammars that could be treated 

with a deterministic pushdown automaton, which is allowed to look to al l  the symbols 

in the stack and the k symbols to the r ight, was specified (and shown how to construct 

the recognizer) by KNUTH. S t i l l ,  the class is at present somewhat too general to be 

used unrestrictedly in practice. Here we reach the modern and recent development, as 

discussed by HORNING in this course. 

5. Compilers based on precedence 

The idea to use precedence between adjacent symbols in controlling the recognizer, 

introduced in tu i t i ve ly  by PERLIS 1956 and used also by others, was generalized in the 

NELIAC compilers and elsewhere to the use of precedence between neighbouring pairs of 

operators. I t  led FLOYD in 1963 to introduce precedence grammars, for which a recog- 

nizer was easily constructed [48]. FLOYD's operator precedence grammar was paralleled 

by the simple precedence grammar of WIRTH and WEBER [128], the (1,1)-case of the more 

general (m,n)-grammars which were also introduced by WIRTH and WEBER, but, according 

to GRIES, 'the definit ion was wrong' and was corrected later by him [62]. 

In 1966, McKEEMAN found a generalization of simple precedence, the (1,2)(2,1) pre- 

cedence. Again, we reach here the material of this course. 

I) GRIES writes, 'the paper is not only hard to read, but also hard to obtain'. The 
second is not true, several hundred copies have been sent out on request, and 
copies can s t i l l  be obtained from the Math. Inst.,  Techn. Univ. Munich; therefore 
anyone who wants may find out for himself whether the f i r s t  assertion is true. 
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The fur ther development seems to approach (1,1) bounded context and thus to converge. 

There are in ar~ case deeper connections between: Use of precedence for  cont ro l l ing 

the i r  pushdown t ransi t ions was discussed by BAUER and SAMELSON in 1959 [17]. In 1961, 

M. PAUL and C. A. PETRI (see [111]) independently found that parts of the ALCOR push- 

down automaton t rans i t ion  tables re f l ec t  a simple l inear  ordering of the entry pairs. 

This was la te r  used in the ALCOR ILLINOIS compiler by GRIES, PAUL and WIEHLE [63]. 

6. Syntax-directed compilers 

Syntax-directed compilation was in i t s  pure form f i r s t  preposed by GLENNIE in 1960 

[54]. He already treated the algebra of recognition graphs and used i t  i n t u i t i v e l y  in 

order to avoid backup. Parsing by exp l i c i te  recursive descent was proposed by LUCAS 

in 1961 [87], describing a s impl i f ied ALGOL 60 compiler by a set of recursive sub- 

routines that c losely followed the BNF syntax. Clear ly,  th is  was top-down analysis,  

the cal l -and-return stack of the recursive procedure implementation mechanism i )  

serving as a pushdown store, and i t  was without backup because i t  contained appropri- 

ate tests.  I t  was somehow s imi lar  to GRAU's [60], [59] compiler in 1961, using recur- 

sive procedures, which is not surprising since both were based on the t rans i t ion  

tables for  a determinist ic pushdown automaton that were in current use in the ALCOR 

group. As a resu l t ,  i t  was more c lear ly  seen in the ALCOR group how pushdown state 

symbols ref lected syntact ic states, and th is stimulated work on syntax-control led 

processor generators. HUSKEY [68], [69] also used recursive descent. Then, in 1961, 

IRONS described a parsing algorithm [72], [73] driven by tables which described the 

syntax, but his method was a mixture of top-down and bottom-up. His method needed 

backup and so did BROOKER's [25], [26], [23]. The idea was fascinat ing (many papers: 

WARSHALL [121], REYNOLDS [ I00] ,  LEDLEY and WILSON [85], INGERMANN [71], CHEATHAM and 

SATTLEY [31], BASTIAN [13], BARNETT and FUTRELLE [ I I ] ,  WARSHALL and SHAPIRO [122], 

CHEATHAM [30], SCHORRE [112] followed within a short time) but i t s  pract ical  use was 

rest r ic ted to places that had abundant computer time. KUNO and OETTINGER, in natural 

language t rans lat ion,  also favoured a 'mult i -path syntact ic ana lys is ' [83 ] ;  a s imi lar  

idea was used in COGENT by REYNOLDS in 1965 [62]. 

Several compilers in practical use used top-down parsing with recursive descent: The 

META compilers of SCHORRE [62], the Burroughs extended ALGOL compiler and the SHARE 

7090 A~DLcompiler. The elegance and convenience for the compiler writer was paid for 

in compile time by the user. While GLENNIE had estimated that 1000 instructions were 

to be executed in order to produce one machine instruction, PAUL in his ALGOL 60 

compiler for the Z22 did i t  with about 50. 

1)A subroutine return stack was proposed in 1952 by W. L. van der Poel [98]. 
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The s i tuat ion changed, when one learned to do syntax-directed (top-down) parsing with- 

out backup. In 1965, FOSTER found the general rule for  mechanically transforming a 

grammar into what was cal led la te r  LL(1). The publicat ion was delayed unt i l  1968 Z52]. 

Independently, KNUTH, in the Copenhagen summer school 1967, gave a de f in i t ion  of LL(1) 

- the publ icat ion was delayed unt i l  1971. So, techniques for  achieving th is systemati- 

ca l l y  were f i r s t  published in 1968 by UNGER [62], while LEWIS and STEARNS [62] in 

1968, ROSENKRANTZ and STEARNS [62] in 1969 treated the class LL(k) of grammars that 

can be parsed top-down without backup by examining at each step a l l  the symbols pro- 

cessed so far  and k symbols more to the r igh t .  Clear ly,  LL(k), l i ke  LR(k), is an 

e f f i c i en t  method, and the discrepancy between bottom-up syntax-controlled and top-down 

syntax-directed methods is no longer of more than h is tor ica l  importance, i t  has been 

replaced by competition. Again, we have reached the ac tua l i t ies  of th is f i e l d .  

7. Concluding . remarks 

The development in the Soviet Union and i t s  neighbours has progressed quite indepen- 

dently from the Western side, and vice versa. An attempt to arr ive at a complete and 

comparative coverage would be very desirable, but I am not even able to give a f i r s t  

approximation in the framework of th is  course. I would, however, venture the hope that 

in co-operation with Soviet colleagues such an aim can be approached. Quite general ly,  

I would appreciate to receive addit ional mater ia l ,  from whatever part of the world, on 

the history of compilers, and may combine with the thanks to potential  contributors 

the thanks to my colleagues and f r iends,  in par t icu lar  the lecturers of th is course, 

for  the i r  help. 
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