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CHAPTER 1.A
COMPILER CONSTRUCTION

W. M, McKeeman
The University of California at
Santa Cruz
U, S. A.

UIf PL/T is the Fatal Disease,
then perhaps Algol1-68 is
Capital Punishment".

An Anonymous Compiler Writer

1. DEFINITIONS
1.1. SOURCE AND TARGET LANGUAGES

A compiler is a program, written in an implementation language, accepting text in a
source language and producing text in a target language. Language description
languages are used to define all of these languages and themselves as well. The
source language is an algorithmic language to be used by programmers. The target

language is suitable for execution by some particular computer.

If the source and target languages are reasonably simple, and well matched to each

other, the compiler can be short and easy to implement {See Section 1.A.2 of these

notes). The more complex the requirements become, the more elaborate the compiler

must be and, the more elaborate the compiler, the higher the payoff in applying the
techniques of structured programming.



1.2. IMPLEMENTATION LANGUAGES
Compilers can, and have, been written in almost every programming language, but the

use of structured programming techniques is dependent upon the implementation lang-
uage being able to express structure. There are some existing languages which were
explicitly designed for the task of compiler writing (FSL [Fe]dman 66],XPL [McKeeman
70], CoL [Koster 71b], and some for structuring (Pascal [Wirth 71], Algol 68

[Van Wijngaarden 68]). The criterion for choosing an implementation language is

quite straight forward: it should minimize the implementation effort and maximize
the quality of the compiler. Lacking explicit knowledge of this kind, the compiler
writer is advised to seek a language as close as possible to the ones mentioned above.
The number, quality and availability of such languages is generally on the increase.
It may be advantageous to write a compiler to run on a different machine than the

target text will run on if better tools can thus be used {especially common for very
small target machines}. In any case, we shall simply assume an appropriate implemen-

tation language is available.

Since there are so many languages involved, and thus so many translations, we need a
notation to keep the interactions straight. A given translator has three main
languages {SL, TL, IL above) which are objects of the prepositions from, to and in
respectively. A T diagram of the form

compiler name

SL =~ TL
e,

v

gives all three [Bratman Gﬂ . If the compiler in Section 1.A.2 (below) is called
Demo, then it can be described by the diagram

Demo

assignment »  zero-address
statement instructions

Algol-
68




Now a compiler written in Algo1-68 is of no use unless there is also a running com-
piler for Algol-68 available. Suppose it is on the Burroughs B5500. Then if we
apply it to the T above, we will get a new T as follows:

Demo Demo

assignment zero-address | assignment zero-address
statement code statement code

Munich Compiler

Algol | Algol TR440 TR440
-68 -68 ~ machine lin a Tin
language [language

B5500
machine
language

where the arms of the middle T must match the tails of the Ts to the left and right.
Complicated, multistage, multilanguage, multimachine translation processes can be
described by appropriate cascades of such T diagrams [McKeeman 70 pp. 16-18].

1.3 Language Defining Languages

Language defining languages are almost always based on grammars (see Chapter 2 of
these notes) but frequently have additional features designed to define the target
text {i.e., translation defining languages). Thus the distinction between language
definition and implementation language has not always been very clear. There was a
tradition at one point of time to define a programming language as "what the compiler
would translate” but this turned out to be of no value to the user who was not pre-
pared to explore the idiosyncracies of a compiler to be able to write programs. The
problem then has been to define Tanguages without leaning on the compiler itself.




The ultimate solution is a definitional mechanism both clear enough for human refer-
ence and usable as input to a translator writing system which automatically creates
the compiler.

2. Recursive Descent Compilation

2.1 Introduction

It is the intent of the following pages to give a concrete example of translation and
also to review a particular, rather simple, rather successful, translation technique.
The example, a translation of assignment statements to an assembly language for a
stack machine, is trivial by contemporary standards but serves to elucidate the pro-
cess. We can, in fact, present the entire translator as a whole without becoming
mired in either detail or side issues. For the example, the source text

A=-A+5*B/(B-1)

will be translated to the following zero-address target text

LIT A LIT A LOAD NEG LIT 5 LIT B LOAD MUL LIT B LOAD LIT 1 NEG ADD DIV ADD STORE
which closely approximates the instructions of the Burroughs B5500 computer [Organik
71] (See also Chapters 3.A and 3.E of these notes). The target text is executed,
step by step, in Figure 2.1. Although the meaning of the target text is probably
obvious to the reader, we will take a few words to describe it. There is an evalua-
tion stack into which values can be pushed. Furthermore, the top values {hence the
Tast ones pushed into the stack) are available to be used in computations, . The LIT
instruction pushes one value onto the stack. That value is either an address (e.qg.,
the address of the variable A in LIT A) or a constant (e.g. the value 5 in LIT 5).

The LOAD instruction assumes the top value on the stack is an address. The address
is removed from the stack and the value found in the indicated cell in memory is
pushed onto the stack in its place. The STORE instruction must be supplied with two
items at the stack top. One is the address of a cell in memory. The other is a
value to be stored into the indicated cell (the address is below the value in the
stack). After the STORE instruction has completed its action, both address and value
are removed from the stack. The remainder of the instructions are arithmetic opera-
tions. NEG changes the sign of the top value on the stack and leaves it where it
found it. ADD, MUL and DIV operate on the two top elements on the stack, removing



them and then placing the result back on the stack.

B
5 5
A 7 -7 -7 -7
A A A A A A
LITA  LITA LOAD NEG  LIT 5 LIT B
1 -1
6 B 6 6 6
5 30 30 30 30 30
-7 -7 -7 -7 -7 -7
| Al _A Al _A] A LA
LOAD MUL LIT B LOAD  LIT 1 NEG
5
30 6
-7 -7 -1
A A A
ADD DIV ADD STORE

Successive stack configurations during execution of the
translated version of A= - A+ 5 x B / (B-1).

Note: memory (A} = 7, memory (B) = 6

Figure 2.1

The source text in the example can be described by the grammar in Figure 2.2.

Assignment = Variable '=' Expression;

!

Expression = Term
'-' Term
Expression '+' Term

l
| Expression '~' Term;
or

Term = Fact
f Term *x' Factor
| Term '/* Factor;
Factor = Constant

| variable

| '{' Expression ')';

Variable = Identifier;

Identifier = 'A' | 'B' | ... |'Z';
Constant = '0' | '1’! PR A

A Source Text Grammar for Assignments
Figure 2.2



The target text in the example is described by the grammar in Figure 2.3.

Assignment = Variable Expression 'STORE';

Expression = 'LIT' Constant

| variable 'LOAD'

| Expression 'NEG'

| Expression Expression Operator;
Operator = 'ADD' | 'MUL' | 'DIV';
Variable = 'LIT' Identifier;
Identifier = ‘A" | 'B'| ... |'Z';
Constant = '0' | '1'| ... ]'9's

A Target Text Grammar for Assignments
Figure 2.3.

The transiation problem is, then, to take a given source text and produce an equi-
valent target text. In case of assignments the condition for equivalence is

easily expressed in terms of the so called parse tree. The two texts above are

seen to be equivalent because the operators are associated with the properly corres-
ponding operands in both parse trees (Figures 2.4 and 2.5).

Assignment

)

Variable = Expression

AR

Identifier Expression + Tarm

7 AR

A ~ Term Term / Factor

s 0

Factor Term x Factor ( Expression )

\

Variable Factor Variable

Identifier Constant Identifier Expression - Term
A 5/ B Term Factor
F;;gor Constant
Variable 1

e

if;nt1 ier

B
The Parse Tree for the Source Text A= -« A+ 5 x B / (B-1).

Figure 2.4



Assignment
Variable Expression STORE
LIT Identifier Expression Expression Operator
A" Expression NEG Expression Expression Operato ADD

Variable LOAD Expres§ion Expression Operator Expre;;;;;\ﬁxpression Operator DIV

LIT Identifier LIT Constant MUL Variable LOAD Expression NEG ADD
A 5 Variable LOAD LIT Identifier LIT Constant
\
LIT Identifier B 1
\
B

The Parse Tree for the Target Text for A= - A+ 5 X B / (B-1)
Fiqure 2.5

That is not to say that we must build the parse tree as a part of translation. The
most elaborate compilers may very well do so but it is not necessary for such a
simple language as assignments. We can go directly from source text to target text
without using any intermediate representations:

2.2 MWriting a Recursive Descent Compiler

The technique of recursive descent transiation [Lucas 61] is one of those ideas that
is so simple that nobody ever bothers to write much about it. It is, however, in
many cases the easiest method of writing good translators. The prereguisites are a
grammatical definition of the source language and a recursive programming language
in which to implement the compiler (Algol 68 in these notes).

The grammar serves much the same purpose as a flow chart., Given some experience,
the compiler writer can produce a compiler such as that depicted in Figure 2.8 about
as fast as he can write., It is easier to comprehend the writing process, however,
if we use regular expression grammars to define the source text. The grammar in
Figure 2.6 describes the same language as that in Figure 2.2. The grammar fragment
(i‘-') signifies that a minus sign may or may not be found {empty or present). The
fragment ({ '+f 1 o) Term)* signifies zero or more repetitions of either a plus or
minus followed by a Term, and so on,



Assignment = Variable '=' Expression;

Expression = (|'-') Term (('+' l 1) Term) s

Term = Factor {{'x’ 1 A Factor)*;

Factor = Constant i Variable ] ‘(' Expression ')';

Variable = Identifier;
Identifier = 'A' | 'B'| ... |'Z';
Constant = '0' | '1'§ e 19t
A Regular Expression Grammar Equivalent to the Grammar in Figure 2.2
Figure 2.6

A certain portion of the compiler is relatively independent of the source language

to be translated and can be kept ready "on the shelf' so to speak. Such a partial
compiler is called a skeleton and contains procedures for input and output, text
scanning, error handling, etc. The compiler writer inserts his procedures into the
skeleton (1ines 27 to 85 in Figure 2.8). The symbol "token" contains the initial
symbol of the source text and is to be repiaced each time the current symbol has been
processed.

Referring to Figure 2.6, we observe that we must find a variable, followed by the
replacement operator {'='}, followed by an expression. Without worrying about how
the variable and expression are to be processed, we immediately write the procedure
Assignment as depicted in Figure 2.7. WNote that when the replacement operator is
found, it is immediately discarded and the next symbol placed in token. If it is not
found, an error message is generated.T

proc Assignment = void:

begin Variable;
if token = "=" then token := scan eglse error fi;
Expression

end

A Procedure to Analyze Assignments
Figure 2.7

TThe error response depicted is entirely inadequate for a compiler that will see any
extensive service. Refer to Chapter 5.D of these notes.



01 proc translate = void:
02 begin co The variable token is used to communicate between the procedures that
03 follow. co

04 string token;

05 co The two procedures, scan and emit, concerned with input and output,
06 are left undefined below to avoid introducing detail irrelevant to the
07 translation process. ¢o

08 co This procedure produces the next token from the input string each time
09 it is called. co

10 proc scan = string: skip;

11 co This procedure assembles one instruction of zero address machine code.
12 <o

13 proc emit = (string op) void: skip;

14 co The procedure constant returns the value true if its argument starts
15 with a digit. co

16 proc constant = (string ¢) bool:

17 charinstring (c{1} , "0123456789", loc int);

18 co The procedure identifier returns the value true if its argument

19 starts with a letter. co

20 proc identifier = (string i) bool:

21 charinstring (i[1] ,

22 "ABCDEFGHIJKLMNOPQRS TUVWXYZ" ,

23 loc int);

24 co The procedure error signals a violation of the input syntax. co
25 proc error = yoid:

26 print {"syntax error");

27 proc Assignment = void:

28 begin Variable;

29 if token = "=" then token := scan glse error fi;

30 Expression;

31 emit ("STORE")

32 end;

33 proc Expression = void:

34 begin string t;

35 co First check for unary minus. co

36 if token = "-"

37 then token := scan;

38 Term;



39
40
41

42
43
44
45
46
47
48
49
50

51
52
53
54

55
56
57
58
59
60
61
62

63
64
65
66
67
68

69
70
71
72
73

74
75
76

77
78

emit {"NEG")
else Term

=

;

co Now process a sequence of adding operators.
while token = "-" v token = "+"

do t := token;

token := scan;

Term;
if t = "= then emit ("NEG") fi;
emit (“ADD")

[o]
j=5

end;

proc Term = void:

begin
string t;
Factor;

c©

co Now process a sequence of multiplying operators

i/

while token = "x" v token =
do t := token;

token := scan;

Factor;

<0

if t = "x" then emit ("MUL") else emit ("DIV") fi

od

end;
proc Factor = void:
begin co First check for a constant. co
if constant (token)
then emit ("LIT");
emit {token);
token := scan

co Second, check for a parenthesized subexpression.

elsf token = *("
then token := scan;
Expression;

o)

1f token = ")" then token := scan glse error fi

co Finally, assume the token is an identifier.
else Variable;
emit {“LOAD")

ﬁ
end;

4]



1"

79 proc Variable = void:

80 if identifier (token)

81 then emit ("LIT");

82 emit {token);

83 token := scan

84 else error

85 fis

86 co The remafning code constitutes the body of the procedure
87 translate. co

88 co Initialize the value of token. co
89 token := scan;

90 Assignment

91 end

A Recursive Descent Compiler for Assignments

Figure 2.8

Presuming that the procedure Variable actually produced the zero-address instruction
stream

LIT A
and the procedure Expression produced the stream

LIT A LOAD NEG LIT 5 LIT B LOAD MUL LIT B LOAD LIT 1 NEG ADD DIV ADD
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we need only add the single instruction
STORE

to complete the process. This can be done by adding one line to procedure assignment
(1ine 31 in Figure 2.8) after the invocation of procedure Expression.

Continuing in this manner, we observe, in Figure 2.6, that an expression has first an
optional minus, a term, and then a sequence of operations and terms. If the first
minus s there, a NEG operation must be placed after the instructions for the first
term. The remainder of the terms (if any} must be processed and the corresponding
target text operations placed after them. The result is the procedure Term (lines

51 to 62 in Figure 2.8). Note that a local variable t is used to save the informa-
tion about whether a plus or minus is found. The remainder of the compiler is
written similiarly.

2.3 Executing the Compiler

Execution begins with line 89 in Figure 2.8. Control soon passes to procedure
assignment {line 90 then line 27} and onward. Figure 2.9 gives a complete history of
the translation of A= - A+ 5 x B / (B-1). The reader is advised to hand simulate

the execution of the procedure translate, using the history as a check.

Active line Value Source text Target code
in the of remaining produced
top-down token
compiler
start undefined A=-A+5xB/(B-1)
89
A =-A+5xB/(B-1)
90
28
80
A =-A+5xB/(B-1) LIT A
83
= -A+5xB/{B-1)
29 - A+5xB/(B-1)
30
36
37
A +5xB/(B~1)
51
54
63
64
70
75
80
A +5xB/(B-1) LIT A
76
+ 5xB/(B-1) LOAD
56
+ 5xB/(B=1)

39



43
46

47
51
54
65

56

57
58

59
64
70
75
80

76
60

56
57
58

59
64
70
71

72
33
36
40
54
64
70
75
80

83
76
60
56
58

65
68

56

5xB/(B-1)

xB/(B-1)

xB/(B-1)
B/{B-1)

/(B-1)

/{8-1)
(B-1)
(B-1)

B-1)

-1)

NEG

LIT 5

LIT B
LOAD
MUL

LIT B

LOAD

LIT 1



48
) NEG
49
) ADD
43
73
60
DIV
56
47
48
ADD
43
31
STORE
91

Summary of the Action of the Recursive Descent Compiler
Figure 2.9

2.4 Extending the Technique

The success of the recursive technique is due to several circumstances. First, it
is so simple that an experienced programmer can do it quickly. Second, the pro-
grammer can insert his generator code between any two statements of the recognizer.
This implies that whenever any structural entity of the source language has been
recognized, the programmer has a convenient opportunity to attach an interpretation
to it. Third, because the local variables of recursive procedures are in fact in a
run-time stack, the programmer may associate temporary information with any source
language construct (see the variables t in procedures Expression and Term, Tines 34
and 53 without laboriously building stack data structures in his translator. One
must reflect on the pervasive nature of stacks in translators to appreciate the
value of getting them for "free". Perhaps the most important advantage of the re-
cursive technique, aside from its simplicity, is the fact that it can handle complex
languages without catastrophic costs in size or speed.

The recursive technique is of no particular help beyond the production of a source-
Tangauge-specific code (e.g., zero-address code for assignments). Since the great
bulk of the work in writing a compiler for the average modern computer comes in
turning the source-language~specific code into good machine language, the helpful
properties detailed above can look rather irrelevant to a hard-pressed implementor.

In addition to the need for a recursive language in which to write, the recursive
technique has one serious disadvantage. The generator and parser are thoroughly
mixed together, preventing the programmer from treating them separately for purposes
of documentation, maintenance, memory management, testing, and so forth. 1In
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particular, it is not unusual to find target code dependencies in the source lang-
uage recognizer, preventing the recognizer from being machine independent.

3. Modularization

The use of modular programming techniques depends upon exploiting the inherent struc-
ture of the translation process. Over a period of years there has been a certain
amount of convergence in the form of source texts, and of target texts, and of trans-
lation sub-processes. One effect is that certain general structural outlines are
applicable to most compilers. One should not therefore assume that all compilers
should explicitly exhibit all of the structure. A very simple compiler {such as

that of the previous section) is easier to write as a whole.

Before proceeding, we must recall at least four kinds of modularization. The docu-
mentation of the compiler, the programmer assignments during implementation, the
source text of the compiler, and the executable machine language form of the compil-
er. Each kind of modularization is designed to simplify one or more processes but,
as the processes are quite different, one should not expect the modularizations to
be the same.

3.1 Modular Documentation

A body of descriptive literature grows up about a compiler, either by plan or by
accident. It may well exceed the compiler in sheer volume of text and time of pre-
paration. The documentation is, therefore, in need of structuring and is a candidate
for modularization. The forms of the documentation can be expected to be technical
prose with tables, appendices, indices and the like. The important point is that the
documentation follow the inherent structure of the compiler so as to aid, rather than
obscure.

For example, a particular module in the compiler may be the subject of a subsection
of the documentation {e.g. The Parser). But more importantly, a more distributed
concept may also be the subject {e.g. Module Interfaces}. The documentation struc-
ture is designed for understanding, thus profits from any consistent theme, regard-
less of its mapping onto the compiler itself. Even such diverse topics as project
history, source language definition, computer specifications, market survey, per-
formance evaluation are properly included. The task of the organizer of the docu-
mentation is to find the proper orderings and groupings to minimize the size and
cost and amount of crass referencing of the documentation while simultaneously in-
creasing its effectiveness as a tool for understanding. One should not underestimate
the importance of this task relative to the whole task of compiler implementations.

3.2 Modular Programmer Assignment

Large programming tasks, some compilers included, must be accomplished by a team of
people over a period of time. The managerial task is to assign work to the team
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members in a way that gets the job done, minimizing effort and maximizing quality

(See Chapter 5.B of these notes).

Each assignment {of a task to a group of programmers) is a module. These modules

are related by the dependencies of the resulting parts of the compiler. It is usual-
1¥ (always?) the case that part of the compiler structure evolves during the im-
plementation hence the order of doing things is constrained by the order in which
decisions must be made. To quote an {o01d?) Irish proverb, the most general prin-
ciple of structured programming is: “when crossing the bog, keep one foot on solid
ground”. We may be able to proceed some distance into the swamp by top-down hier-
archical decomposition of the task, and also some distance by bottom-up construction
of primitive functions. But, in the end, as does a schoolboy when proving a geometry
theorem, we proceed both ends to the middie to keep from sinking in a sea of unre-
solved decisions.

3.3 Modular Source Text

Another kind of modularization is found in the implementation language text of the
compiler (source text from the viewpoint of the compiler writer). The usual form of

a source text module is a set of related procedures together with a common data
structure private to them. Such a module aiso forms the basis for a good programmer
assignment module. The criteria for grouping procedures into modules is to mini-
mize the module size while also minimizing intermodular communication. It would be
interesting to see if a theory of "best" modularization could be formulated {Parnas
71].

3.4 Modular Target Text

Running compilers tend to be large. If one is so large that it cannot fit in main

memory, then the target text form of the compiler must also be modularized. These
modules must be able to function for relatively long periods of time without requir-
ing more than a few of the other modules be present simultaneously. The traditional
multipass compiler is a special case of run time modularization.

4, Intermodular Communication

4.1 Specification

No module exists in a vacuum; it must communicate with other modules. This requires
the specification, in the source text of the compiler, of intermodular data struc-
tures. Some languages, such as PL/I, have explicit Tlinguistic facilities for
building external data structures. Intermodular communication also requires the
specification of the dynamic behavior of these same data structures. In both cases
grammars are useful. In the case of a static view of a data structure, such as a
table, gives the static structure. For example, a table of strings where the first
character position is used for the Tength which is followed by 8-bit character codes
can be described as follows in Figure 4.1.
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string_table = string*;

string = length character*;

length = bit 8;

bit = '0' ] '1';

character = a | b l c... ]comma [ o0
11000001,

11000010';

"

a
b

comma = '10101100';

Grammatical Description of a String Table
Figure 4.1

When the compiler is running, the intermodular data structure goes through a se-
quence of states. If the states are viewed as terminal symbols, the sequence is a
language. Suppose, for example, the scanner is passing strings on to another
module coded as pointers into the aforementioned string table, together with some
auxiliary information for the error routine. Then the grammar in Figure 4.2
applies:

scan_output = string*;

string = pointer_into_string_table error_info;
pointer_into_string_table = bit 16;

error_info = record number column_number;
record _number = bit 16;

column_number = bit 8;

bit = '0' | '1';

Grammatical Description of Scan Output
Figure 4.2
The advantages of using grammars in this manner are: (1) it is a familiar notation
(2) more precise and concise than natural Tanguage. It should be apparent to the
reader that the specification of these intermodular data structures, even just by
example, is a very useful step towards getting the job done.

Another interesting point arises when two module implementors who share a common
intermodular data structure give different specifications for that structure. The
difference probably represents source-text that is not seen to contain errors by the
earlier module, but fails to pass the stricter tests of the later module (e.g., the
scanner does not detect mismatched scope entry and exit, but the symbol table does).
The important point is that the consumer react to the wrong (to the consumer) inter-
modular communication with a meaningful message rather than silent disfunction.
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For example, the intermediate language "characters" in Figure 4.5 is produced by the
input module and consumed by the scanner. Figures 4.3 and 4.4 describe the differ-
ing views of the characters.

characters = character *;
character = letter | digit ' separator;

letter + ‘A' | 'B' | 'C' etc.
digit = '0' | '1' | '2' etc.
separator = ' ! | e ] '+' etc,

The Character String (as produced)
Figure 4.3

characters = token_list;

token list
1istl | 1ist2 | 1ist3 | Tistd;

Tistl = (] 1ist2 | 1ist3 | 1ist4) identifier;

1ist2 = (| 19st3 | 1ist4) integer;
Tist3 = /1 1istl | 1ist2 | 1ist4) string;
1istd4 = (] token_list) separator;

identifier = letter (letter | digit)*;
integer = digit +;

string = string character *'''';
string_character = '''"! vl character;
character = letter | digit | separator;
letter = 'A' etc.

digit = '0' etc.

separator = etc., not including apostrophe.

The Character String (as consumed)

Figure 4.4

4.2 "Need to Know"

It is as important to shield the programmer from irrelevant detail, and also danger-
ous detail, as it is to insure he has an adequate task specification [Parnas 71]
(Al1so Chapter 5.B of these notes}. On the one hand he is saved the time it takes to

assimilate the information he is not going to use. On the other hand he is pre-
vented from "clever" use of "soft" detail. An example of the latter is when a pro-
grammer, knowing the internal label of some needed external routine, branches
directly to it to avoid the overhead of a procedure call. The (negative) payoff
comes when the Tabel s changed (without notice because it was thought to be pri-
vate). Proper modularization, and distribution of just the intermodular specifica-
tions, keeps each member of the team appropriately ignorant.
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4.3 Test Environment

Although it is true, as Dijkstra says, a test only detects errors, we nevertheless

test our modules. A well-conceived test might form the basis for a proof of cor~

rectness but, more importantly, it is the quickest way to find and correct errors.

The specification of the intermodular communication is just the information we need
to "fake up" an environment which drives the module as though it were a part of the

whole compiler.

It takes about as long to make up the test as it does to implement

the module but the effort pays off in early removal of loose ends detected by the

programmer as he builds his test.

Properly done, the test program is driven by a set of data so that more tests can

be prepared by a "Devils' Advocate".

He prepares three kinds of tests: (1) a

simple test for correct functioning, (2) a test with a large number of incorrect

inputs to insure reasonable error behavior, (3) a test to overflow every internal

table to insure that 1imit failures are properly detected.

There is an example of

some such tests in Chapter 3.D of these notes.

4.4 Feedback-Free

A particularly important kind of intermodular data flow is characterized as

feedback-free.

It is this kind of flow that allows a multipass organization to be

used [McKeeman 72 and 74]. Compilers are particularly 1ikely to have inherent
feedback-free structure because we tend to look at the process as a sequence of
forms that have the feedback-free property.

feedback-free form

input records
characters
token, string-table

parse tree (PT)
abstract syntax tree (AST)
standard tree (ST)

attribute collected tree
(ACT)

attribute distributed tree
(ADT)

sequential expression tree
(SET)

sequential control tree
{5CT)

target text

comments

just as the programmer prepared them
control cards, card boundaries, comments removed

scanned symbols represented by pointer to a string
table

explicit links, leaves pointing to string table
as above, nodes renamed, redundant structure removed

transformed into standard form (See Chapter 2.E of
these notes).

declarative information pruned, replaced by symbol
table

leaves replaced by attribute information

expression subtrees replaced by flat sequence of tar-
get text,

control subtrees replaced by target text control con-
structs

whew!

Intermediate Forms
Figure 4.5
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5. Vertical Fragmentation
Any module (or program) that can be broken into a multipass structure is said to be

vertically fragmented. The previous section hinted at one {very elaborate} possible
vertical fragmentation (Figure 4.5). A somewhat simpler one (that actually served
as the basis for an implementation) is described below [McKeeman 72]. There are
seven modules in the fragmentation in Figure 5.1.

records
(source text)

| veur |

characters
[sev |

tokens
[ parse |

parse tree

[smmests |
|_eenerare |
ENE
o

abstract syntax
tree

language-specific
sequential code

machine-specific
sequential code

records
{target text)
A Vertical Fragmentation
Figure 5.1
The tasks of the modules are conventional. Each intermediate language must be spec-
ified (Recall Figures 3.1 and 3.2) but that is beyond the scope of these notes.
Rather, we give a series of examples, one for each intermediate language in Figures

5.2a - 5.2h.
{1 THEN X=53 + X
IIF X <= \

Source Text
Figure 5.2(a)

IF X <=1 THEN X=53 + X

Characters
Figure 5.2(b)
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String Table

if_statement
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IF co;ﬂlglgn\§?EN
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pr}mary
variable
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assignment
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erm i
V4 Prer
primary variable
constant

5§

identifier
pe
X

Phrase-structure Tree
Figure 5.2(d)
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IF
LE STORE
AN
X 1 X ADD
N
53 X

Abstract Syntax Tree
Figure 5.2(e)

LIT X; LOAD; LIT 1y LE;
LIT $L1; BRANCH FALSE; LIT X;
LIT 53; LIT X; LOAD; ADD;
STORE; $LI:

Zero-address Code
Figure 5.2(f)

LOAD X; SUB = 1; BRANCH_POSITIVE $L1;
LOAD =53; ADD X; STORE X; S$L1:

Single-address Code
Figure 5.2(9)

5810D040581000444740E124
411000375A10DC405010D040

Machine Code
Figure 5.2(h)

A more elaborate {and in some sense more powerful) fragmentation relies more heavily
on the tree form of the source text. In a very rough sense, the tree transforming
process consists of reshaping the tree, pruning information from the tree, and re-
cording information in tabular terminal nodes. At each stage the remaining tree
structure represents work yet to be done. In the end, of course, the entire pro-
gram becomes & purely tabular structure (sequential code for a conventional comput-
er}). The abbreviations in Figure 4.5 will be used below (i.e., PT, AST, ST, ACT,
APT, SET, SCT).

5.1 The Transformation PT#e AST
An AST is a condensed, renamed version of the PT. Most superfluous structure is

discarded, leaving a more convenient computational gbject. Because the PT is so
voluminous, we always specify the transformation PTme AST as a part of the algorithm
that reduces the PT itself, avoiding ever forming the PT. This is accomplished by
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the use of a transduction grammar [Louis 68, DeRemer 69]. The range of possibili-
ties for an AST is therefore defined to be that set of trees that can be specified
by transduction grammars. An example is given in Table 5.3 and Figures 5.4a and
5.4b.

E=E '+ T > ' ADD'
N
E T
JE -7 => "SB!
‘ N
E T
N T
T=T ' p = ‘MUL*
T 4
| P => P
P =I(I E I)I = E
§ v => 'VAR'
/
v o
y =tx! = byt
|Iy‘ => Iyl
]IZI = IZI ;

A Transduction Grammar for Expressions

Figure 5.3
E
£ T
/ AN
/T\ /Ph\
TP (E
P/ v/ E/I\
v/ / T/ \P
X
/ / N
X //P V\
v Z
s
y

A Parse Tree for x*x + (y-z)
Figure 5.4a

ADD
/\
g?L SUB
VeR \VeR Veﬁ/\\V5R
X X y z
An Abstract Syntax Tree for x*x + (y-z)
Figure 5.4b
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5.2 The Transformation ASTEe ST

Programming languages sometimes allow more than one way to specify the same result.

For example, attributes in PL/I may or may not be factored; certain expressions may
or may not be parenthesized, etc. Some are more subtle, such as the assignment im-
plied by parameter passing. The result is that there are classes of ASTs known to
the language designer to be equivalent. The transformation ASTEe ST Uwozencroft 71]
is designed to reduce members of the classes to single standard members, when it can
be done by local renaming and reordering of tree nodes.

The semantic equivalence of two constructs can be precisely stated (not the seman-
tics, but the equivalence) by mapping one construct into the other. For example, in
the language PAL [ Evans 68] we can write either

E1 where x = E2
or

let x = E2 in E1
where E1 and E2 are expressions. We state the equivalence of the constructs by the
mapping in Figure 5.5 [DeRemer 74].

El = = = El
N
x//\\EZ X E2

A Local Tree Transformation
Figure 5.5

Each transformation rule consists of two parts, an "input" template and an "output”
template. These two corresponding to the left and right parts, respectively, or a
production of a type 0 grammar. However, in this case the intent is to reorder, ex-
pand, and/or contract a local portion of a tree, rather than a local portion of a
string.

To "apply" a transformation we first find a subtree that the input template matches.
This establishes a correspondence between the "variables" in the input template and
subtrees of the matched one. Then we restructure the part of the tree involved in
the match, so that the ouput template will match it, maintaining the correspondence
between variables and trees established by the input template match. In general,
this will involve reordering, duplicating, and deleting the subtrees as dictated by
the number and position of occurrences of each distinct variable in the input and
output templates.

5.3 The Transformation ST# ACT
The attributes of variables are where you find them. From the compiler writer's
viewpoint, they are best found collected in declaration statements clustered at the
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head of a variable scope. More generally attributes may depend upon the context in
which variables are used or even more subtle conditions. In any case they must be
gathered and tabulated before the translation of the corresponding executable por-
tions of the program can proceed. Upon completion, the ACT may have the form de~
fined in Figure 5.6.

program = ACT;
ACT = scope;
scope = symbol_table scope* command*;
symbol table = {name attributes)*;
attributes= explicit_attributes

| implicit_attributes;

Attribute-collected Tree
Figure 5.6

Within a scope we first have the table of local symbols, then an arbitrary sequence
of nested scopes, and finally the executable (scope-free) commands. The transforma-
tion ASTe ST may have been required to bring the tree into this form if a scope can
be delimited by begin-blocks (as in Algol-60) as opposed to being exclusively ident-
ified with procedure declarations. Or the ACT can be more generally defined to
allow for the less structured use of scopes.

Some attributes are explicitly supplied by the programmer. Other attributes are im-
plicit. In particular, machine related attributes such as addresses are to be de-
rived by the compiler as one of its major purposes. An important presumption is
that there are no necessary attributes that cannot be derived prior to the proces-
sing of executable machine code. That is, properties of the machine, such as the
relative location of certain instructions, are not allowed to effect the attributes
of variables,

The algorithm can be implemented, of course, as an ad hoc tree searching algorithm
along the lines commonly found in contemporary compilers. Some work has been done,
however, on applying Knuth's concept of functions over trees [Knuth 68, Wilner 71]
to this problem. It is a particularly attractive direction since declarative in-
formation is defined to be evaluable prior to the "main® computation {i.e., execu-
tion of the program). Knuth's functions can therefore be presumed to be evaluable
for declaration processing without any great amount of iteration, hence efficiently.

The approach is to specify ST ACT as a set of symbol-table-valued functions over
the ST {as opposed to Knuth's functions over the PT) together with a standard ACT
building process. We suspect that a reasonable restriction to put on declarative
linguistic constructs is that they can be processed by Knuth's functions in one pass
over the ST; i.e., going down the tree via function calls and then back up the tree
via function returns.
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To apply the functions to the tree we must be able to describe the nodes. Knuth used

the names of the non-terminal symbols, numbering only for a repeated use of a name.
When regular expressions are used it is simpler to use a purely numeric scheme.

Zero designates the left part of a rule; 1, 2,...the items in the right part; -1,
-2,...the same items numbered from right to left; (k,1), (k,2),...the items in each
repeated term on the right, etc. For example, suppose we have a declarative subtree
of the form shown in Figure 5.7.

DECLARE

item item ces item

///K\l\ F*%r\\\\\r Tt:?\\\‘\w~
‘B' 'BIT" 1 'I' 'FIXED™ 1 'X' 'FLOAT™300

A Declarative Subtree of a ST for
DECLARE B BIT, I FIXED,...X(300) FLOAT;
Figure 5.7
The objective is to compute two functions, A and S, giving the relative offset and
number of bits for each item. The grammar and functions in Figure 5.8 define A and
S. Terminal nodes {(name, type and dimension) have intrinsic values provided by a
primitive function val.

DECLARE = item” > A(1,1) = 0,

A(1,1+1) = A(1,I) + S(1,I),

S(0) = A(1,-1) + S{1,-1);
item = name type dim => S{0) = T(2)*val(3)
( val(2) = 'BIT' then 1

val (2) ='FIXED' then 16

( val{2) = 'FLOAT' then 32
Declarative Functions over a ST

1(2)

Figure 5.8

5.4 The Transformation ACTM ADT
The implicit links by name between the leaves of the ACT and its symbol tables must

be replaced by explicit attachment of the important attributes to the leaves them-
selves. The scope rules of most popular programming languages are identical, from
the viewpoint of trees, thus the destination of the distributed information need not
be specified by the compiler writer. What does need to be specified is which attri-
butes are needed by the later modules.

If the distribution is to be accomplished by simply replacing the leaf names with
pointers into the symbol tables, the transformations ST ACTBe ADT may as well be
accomplished as one step. If the leaf nameg are to be replaced with attributes, the
transformations need to be kept separate. A before-and-after view of a variable
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node is given in Figure 5.9.

VAR VAR

't 40  'FIXED'
Attribute Distribution for a Variable

of Type FIXED and Address Offset 40
Figure 5.9

The symbol table nodes are no longer needed and can be deleted.

5.5 The Transformation ADTEe- SET
The ADT is an executable form; that is, if we had tree executing hardware. But we
¢o not, so we must reform the tree into equivalent sequential code. We expect

rather long sequences of sequential code to be branch free. In particular, expres-
sions (not including Algol-60 conditional expressions) have this property. We can
replace each sub-tree representing an expression with its Polish form, say. Or we
can go directly to single address code. Figure 5.10 shows an example of such a
transformation.

ASSTGN ASSTGN
VAR~ oD UART POLISH
/i\\ ' AN => ' 1
407 FIXED' VAR MUL 40" FIXED
40 'FIXED'\ VAR VAR CONST MUL ADD
7 Ve
VAR CONST  40”'FIXED' 40 "FIXED'
407 TFIXED' 3

Expression Flattening
Figure 5.10

Note that assignments are not included in the expression flattening, but this adds
only one tier to the flattened expression trees., The reason assignments are left
alone is two-fold: it avoids the ambiguity between variable addresses and values,
and assignments need to be synchronized with some types of branching {parameters,
returned values, index control for loops, etc.).

5.6 The Transformation SETe SCT
Having flattened the trees for everything except control constructs, we must finally

provide a sequential representation for branch commands. There may be two kinds:
implicit and labelled. The implicit branches (if-then-else, loops, case, etc.)
merely require the replacement of tree links with branch links. Labels, on the
other hand, must be found before the 1inking can be done. While STe ACT could have
collected this information, it is safely deferred to this stage. Most of the tree
has been pruned, hence the search will not be over a very large data structure. For
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example, suppose we have been processing a procedure call
CALL P(x+3, 4)

and have arrived at the SET in Figure 5.11. x has offset 40 and the two formal
parameters (now appearing explicitly in the tree) have offsets 60 and 64.

CALL
ASS1G

1

VAR POLISH VAR POLISH

7 VAN
607 ' FIXED' 64 'FIXED'

VAR CON%T ADD CON?T

-

ASSIGN 'pt

40" 'FIXED' 3 4

SET for CALL P{x+3, 4)
Figure 5.11

The only change needed is to replace 'P' with a pointer to the corresponding proce-
dure definition. The tree has become a graph; ali names have finally been pruned;
we are ready to emit fully sequential code.

6. Horizontal Fragmentation

It is sometimes advantageous to specify modules that work in parallel, The simplest
case is a subroutine that is occasionally called from the module. The subroutine
may qualify as a module by virtue of its internal consistency and simple interface
to the rest of the system yet not be feedback-free.

The particular example that led to the coining of this term [McKeeman 72] was the
one hundred or so cases in interpreting the canonical parse [w1rth 66a] or phrase
structure tree. The program that does the interpretation contains a switch, or case
statement, containing over one hundred destinations (corresponding to over one hun-
dred grammatical rules). Such a large construct is obviously a candidate for
structuring.

On careful examination of a particular compiler for a rather conventional language,
we found six categories of compilation actions as displayed in Figure 6.1. Each
category, except the first, is of roughly equal complexity from the viewpoint of im-
plementation. And each is nearly independent of the others, hence good candidates
for explicit modularization.



29

Action Type Comments

Null These actions have no interpretation (e.g., term = factor)

Define These actions come from the rules supplying information to
the compiler (primarily declarations) for the symbol table.

Operand These actions have to do with locating operands in expressions
and assignments heavily dependent on symbol table.

Operator These actions correspond to the operators in expressions.

Assignment These actions correspond to assignments, either explicit or
implicit such as parameter passing and returned values.

Control These actions map onto the branching instructions of the tar-
get text.

Six Categories of Primary Compiler Actions
Figure 6.1

The use of this structure is fairly straight-forward. The unstructured case

case rule_number of
1: case 1;
2: case 7;

100: case 100
end

is transformed to a two level switch.

One first switches on category, then calls a processing procedure (module) for that
category with a parameter which identifies the item in the category. The PASCAL
type [Wirth 71]

type category = (nulls, defines, operands, operators, assignments, controls)
allows the convenient PASCAL switch

case kind (rule-number) of
nulls:
defines: define (compact (rule_number));
operands: operand (compact (rule number));
operators: operator {compact (rule number));
assignments: assignment {compact (rule_number)};
controls: control {compact (rule_number));
end
where array "kind" is filled with the appropriate values of type "category" and
array “compact” renumbers the rules tc a compact sequence of integers. The values
in "compact" can be automatically derived from those in "kind".

7. Equivalence Transformations

As mentioned earltier, the sequences of states of the intermodular data structures
can be viewed as languages (and grammatically described). Each such language is a
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candidate for equivalence transformations. There are two main reasons for such
transformations: {1) making the remaining part of the compilation task easier, and
{2) improving the resuiting target text {See Chapter 5.E of these notes).

Each particular transformation can usually be done on any one of several intermed-
iate languages. The major problems are deciding if a particular transformation is
worthwhile and on which intermediate language it is most convenient to carry it out.

Translating a very complex language {e.g. the IBM PL/I) can be simplified by passing
repeatedly over the token string, each time producing an equivalent token string with
with fewer primitive concepts. The final set of primitives is usually taken to in-
clude GO TO, IF, assignments and other things that map directly onto a conventional
instruction set.

Figure 7 displays three successive equivalence transformations on a PL/L program.
Initially there is an array assignment which implies a loop {stage 2). The transla-
tor has had to create some new identifiers (which are started with '$' to avoid con-
fusion). The control expressions of the do-loop are evaluated only once implying
that the head of the loop contains only simple variables (stage 3). The loop itself
can then be factored into IF and &0 TO constructs (stage 4).

The advantages are the already mentioned reduction in overall translator complexity
and also the fragmentation of the translator to aid in making each piece small
enough to permit running in a small memory. It has some utility in documenting the
meaning of language constructs where the transformations are simple enough to be
easily understood.

The technique has some disadvantages. It can be slow since repeated passes over the
token string are required. Clever methods of speeding things up may cancel the gain
in simplicity that led to its use in the first place. There is also a lack of
theory governing the transformations, leaving a potentially confusing series of ad
hoc algorithms, Finally, the transformations may obscure relations that would have
been useful to the generators. For instance, the fact that the example in Figure
7.1 can be accomplished with a single memory to memory block transfer instruction
will never be recovered from the simplified form at stage 4.

DECLARE {A,B) {20) FIXED;

A = B;

DECLARE (A,B) (20) FIXED;

DECLARE $11 FIXED;

DO $11 = LBOUND{A) TO HBOUND (A);
A($11) = B($I1);

END;

_______________________________
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DECLARE (A,B) (20) FIXED;
DECLARE ($11, $12, $13, $14) FIXED;

$I2 = LBOUND(A);
$13 = 1;
$14 = HBOUND(A);

DO $I1 = $I2 BY $13 TO $14;
A($11) = B($I1);
END;
DECLARE (A,B) {(20) FIXED;
DECLARE (%11, $I2, $I3, $I4) FIXED;
$12 = LBOUND(A);

$13 = 1;
$I4 = HBOUND(A);
$I1 = $12;

$15: IF $I1 > $I2 THEN GO TO $16;
A($11) = B($11);
$11 = $I1 + 1;
GO TO $I5;

$16:

Successive Transformations of a PL/I Program Fragment
Figure 7.1

The computation tree, since it exhibits almost all of the meaningful source language
structure, may also be a convenient host for equivalence transformations (See Chap-

ter 2.E of these notes). Figure 7.2 depicts a before and after view of a small com-
putation tree in which a (presumably expensive) multiplication has been transformed

into additions.

/N FQQ?:“\-\\\\‘

I ADD GT  RETURN ~ NULL
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SEQ
STORE  STQRE  REPEAT
/N A S
I 1 $i1 9 SEQ

iIQEE' IF %;955
I /ﬁDD $I1 ngl
\ /
I 2 $11 6

GT RETURN  NULL
AN

$I1 ADD
/N

A Before and After View of the
Computation Tree for
I=1;
DO FOREVER;

I = [+2;

IF I *3>1+ 99 THEN RETURN;
END;

Figure 7.2

Tree transformations consume more computational resources than most other phases of
transtation both because the tree occupies a lot of memory and following the Tinks
takes a Tot of time. It may also be that the transformation causes a new ineffic~
jency to be introduced as a result of successfully ridding the program of the one
being attacked. Thus the implementor must be careful in deciding which transforma-
tions are economically justified. Tree transformations are easier to carry out

when the source Tanguage does not include a G0 TO construct to break up sequences of
code, thereby making difficult the detection of induction variables and the like.

Most computers have peculiarities that are utilized by assembly language programmers
but are not directly available to the compiler, partly because the opportunities to
make use of them do not become apparent until after the machine code itself has been
emitted, and partly because they are special to the target machine in question
{Mcxeeman 65]. Figure 7.3 shows a typical situation of this kind. At stage 1 we
have a good machine code for the two statements. Because addition is commutative,
the addresses of a pair, LOAD ADD, can be interchanged (stage 2) which permits the
slow LOAD = 1 to be replaced with a fast load immediate LI 1 and also saves the cell
containing the constant 1 (stage 3). 1In any pair, STORE X LOAD X, the LOAD can be
dropped if it is not the destination of a branch {stage 4). Any pair of branches,
where the first is a conditional skip and the second is unconditional can be reduced



to a single conditional branch (stage 5).

33

Finally, on a machine with an add-one-to-

memory instruction, the sequence LI 1, ADD X, STORE X can be combined into one in-

struction (stage 6).

Stage 1

Stage 2

Stage 3

Stage 4

LOAD X

ADD = 1

STORE X

LOAD X

LT = 3
BRANCH_FALSE $L1
BRANCH L

$L1;

STORE X

LOAD X

LT = 3
BRANCH_FALSE $L1
BRANCH L

$L1:

ADD X

STORE X

LOAD X

LT = 3
BRANCH_FALSE $L1
BRANCH L

$L1:

ADD X

STORE X

LT = 3
BRANCH_FALSE $L1
BRANCH L

$L1:
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LI1
ADD X
STORE X

Stage 5 LT =3
BRANCH_TRUE L
INDEX X

Stage 6 LT =3
BRANCH _TRUE L

Machine~specific Transformations on
X=X+1; IF X <3 THEN GO TO L
Figure 7.3

Innumberable such ingenuities can be applied. Since the savings can be dramatic (as
in the last example}, the technique is useful and popular. Nothing makes the hero-
author of a compiler happier than producing really subtle correct code, beating the
assembly programmer at his own game. One must, however, guard against introducing
errors into the code as a result of not carefully considering the conditions under
which the transformations leave the program invariant,

The algorithms that perform the equivalence transformations are feedback-free, and
very isolated, hence excellent candidates for modularization.

8. Evaluation

In any substantial programming effort, there arise questions which start with the
phrase: "Is it worth the effort to...". They must be answered. It would be nice
if the answers had some scientific basis. In spite of a great deal of literature on
the subject of evaluation, very 1ittle useful guidance is available. The intention
of this section is partly to give that guidance, but more to show why it is so hard
to do and to avoid giving false guidance,

The first problem is to decide what it is that is being evaluated. Generally speak-
ing, it is a decision, From that decision will evolve two different World histories,
one presumably more desirable than the other. The mere use of words such as "worth”
and "value" imply an economic measure of desirability is to be applied. That is to
say, of all the effects of the decision, some will Denefit us, some will cost us,

and some will be of no consequence. We can formalize this concept by hypothesizing

a function which can be applied to a decision to give us its ultimate payoff:

value {decision}

where the units are monetary. For convenience, since we think of cost and benefit
in quite different ways, we might split off the positive and negative components of
value and express it in terms of two functions:
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value {decision} = benefit {decision} - cost {decision}

Note especially that the functions are determined by a point of view: my benefit
may well be your cost,

To keep things concrete, suppose the decision to be evaluated is: "Should compiler
X be implemented?"; and our point of view is that of a user of the target text com-
puter for compiler X. We know X will cost us a Tot but we expect to need fewer
programmers over years of using the computer, hence X will benefit us a lot. Sup-
pose we can buy the compiler for $30,000 and we presently have a staff of assembly
language programmers on a total annual budget of $100,000. Over the predicted 5
year lifetime of the computer, we must save about $30,000 in programmer salaries
(i.e,, 6%). But will we get 6% increased performance? Here is where evaluation
gets hard. We need a priori data on human performance. Another problem also arises.
Price is a matter of policy, not scientific fact. We may be able to determine what
events will follow from our decision but the values are determined by what people
are willing to pay and choose to charge. The point is that evaluations in comput-
ing is very tightly bound to rather difficult measures of human attributes. The
worst, and most consistent error in the literature, is to ignore this fact.

Returning to the specific evaluation model, the alternative "World Histories" fol-
Towing from a decision are sets of events, H and Hl. We ascribe value to the

events from our point of view. Some of the events have no value, and some are in
both histories, hence can be ignored. The value of the decision can thus be expres-
sed as the difference

value {decision) = value (H) ~ value (Hl)

where the value of a history is given by
value (H) = Y value (h).
heH
The first problem in evaluation is to pick out the classes of events of value (cost
or benefit). The second problem is to guantify the occurences of those events. The
third problem is to price them,

In compiler writing the events occur during compiler implementation, or compiler use,
or use of the compiler output. We expect the costs to cluster in the impiementation
effort and the benefits (reduced costs with respect to having no compiler} to cluster
in the compiler use. We may even find some benefits in the use of the target texts
if the compiler has allowed less error-prone programs to be written.

In summary we can do somewhat better in our evaluation by listing out the events of
importance and ascribing values to them. If nothing else it forces the decision
maker to be specific about certain otherwise conveniently hidden values.
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CHAPTER 2.A.
REVIEW OF FORMALISMS AND NOTATIONS

Franklin L. DeRemer

University of California
Santa Cruz, California, USA

1. Terminology and Definitions of Grammars [Aho 1972]

1.1. Unrestricted Rewriting Systems

A "grammar" is a formal device for specifying a potentially infinite "language" (set
of strings) in a finite way. Strings in the lanaguage are generated by starting
with a string consisting of one particular "start symbol" and successively rewriting
the string according to a finite set of rewriting rules or “"productions”. Grammars
of interest here impose a structure, called a "derivation tree", on the string

generated. Formally, grammars are defined as follows.

A set of symbols is called a vocabulary. The notation V*, where V is a vocabulary,
denotes the set of all strings composed of symbols from V, including the empty
string. The empty string, denoted ¢, consists of no symbols. The notation V+ de-
notes V¥ - {e}. If a is a string then |o|denotes the length of (number of symbols
in) a.

A grammar isa gquadruple (VT, VN’ S, P) where

VT is a finite set of symbals called terminals,

VN is a finite set of symbols called nonterminals
such that VT(WVN =4,

S s a distinguished member of VN called the
start symbol (or goal symbol or axiom), and

P is afinite set of pairs called productions such
that each production (o,8) is written
a + f and the left part o ¢ V * and the
right part 6 € ¥ * where V = Vo u Vy
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By convention we use Latin capitals (A, B,..., Z) to denote nonterminals, lower case

Latin letters {a, b,...,z) to denote terminals, and lower case Greek letters {a, g,
...y ©) to denote strings.

If o » Bis a production and yap is a string then vop » yBpis an immediate deriva-

tion. A derivation is a sequence of strings

0(.0, (X-l,-.-:an
where n > 0 such that

a0+a.l, o —>a2 s eers Ol —>o¢n;

R . . +
it is written 4g * a3 or if n>1 then ag r o

Any string n derivable from the start symbol S, i.e. such that S+ * n, is called a
sentential form. Any sentential form censisting of terminals only is called a sen-

tence. The language L(G) generated by a grammar G is the set of all sentences; i.e.
L{(G) = {ne v *| S >+ p).

1.2 The Chomsky Hierarchy

An unrestricted rewriting system {grammar) as defined in 1.1 above is called a type
0 grammar, and it generates a type 0 language. There are three successively more
severe restrictions that can be placed on the form of productions which result in
interesting classes of grammars.

A type 1 or context-sensitive grammar (CSG) is one in which each production « -+ 8

is such that | 8 | > | « |. Alternatively, a CSG is sometimes defined as having
productions of the form y A o > v w p where A e Vy and y wp e V', but w # e A CSG
generates a type 1 language (CSL).

A type 2 or context-free grammar (CFG) 1is one in which each production is of the
*

form A > w where & ¢ VN and w ¢ V. Sometimes w is not allowed to be the empty

string e . A CFG generates a type 2 language (CFL).
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A type 3 or regular grammar (RG) is either right linear, with each production of the

form A -~ a or A » aB, or left linear, with each production of the form A -~ a or

A > Ba, where A ¢ VN’ B e VN’ and a e VT‘ It is easy to show that allowing “a" to
be in VT* does not change the essential idea behind, or computational complexity of
regular grammars. An RG generates a type 3 language {(RL).

1.3 Phrage Structure Implied By Context-Free Grammars

Let G = (VT, VN
which the rightmost nonterminal of each string is rewritten to form the next; i.e.

» S» P) be a context-free grammar. Then a right derivation is one in

if Ggs Gyseers O is the derivation, each step is of the form
{xi_]=YAQ+Ymp=D&_§Wher‘epEVT*,YEV*,ASVN,andeV*.

A "parse" of some sentential form % is an indication of how n was derived. In part-~
icular, a right parse is the reverse of the sequence of productions used in a right
derivation of n. The LR techniques discussed in section 2.C below relate to right
parses.

In a manner analogous to the above, one can define a left derivation. A left parse

is the sequence of productions used in a left derivation. The left parse relates to
the LL techniques discussed in section 2.B below.

One way to avoid gquestions of the order of the derivation or parse is to discuss the
"derivation tree", variously called "parse tree" or "syntax tree". If we associate
with each production A + x, Xae e Xps @ tree structure of the form

CERN
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then we can associate a tree with the derivation of each sentence n in an obvious
way. In parallel with the derivation of n we construct a tree. We start with the
string S and, in paraliel, the tree(:). Fach time we rewrite a nonterminal in the
string, we attach corresponding descendants to the corresponding node labelled with
that nonterminal in the tree. At any given point in the derivation there is an
ordered, left to right, one-to-one correspondence between the labels of the leaves
of the tree and the symbols in the string. That is, the labels of the leaves when
read left-to-right spell out the string.

Example Consider the context-free grammar
8, = ({+, {+)» i}, {E, T}, E, P) where P consists of the following productions:

E->E+T
E->T
T > {E)
T 1

The right derivation of the sentence n = 1 + i in L (G;) procceds as follows.

String derivation Tree derivation

E ®

o 5o

E+ i &)
® ®» O
@

T+ &)
® O
®

i+ ®
©& ©O
O ®

®
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The right parse of n, then is
T+i,E>T, T>1i, E>E+T.

The derivation tree of n is the last one above. The left parse would be
E-E+T,E~>T, T>1, T~ 1.

Any production of the form A + Aw is called directly left recursive; such a produc-

tion implies a left-branching tree. Similarly, A + wA is directly right recursive
and implies a right-branching tree. These terms are also applied to the nonterminal

A. On a more subtle level, if a nonterminal A is not directly left (or right) re-
cursive but if A > + Aw” (or A > + w” A), then A is said to be indirectly left (or
right) recursive. In either case, A is called recursive.

If A+ + v A p where neither vy = ¢ nor p = ¢, then A is said to be self-embedding.
If this occurs via the self-embedding preduction A > vy A p then it is direct, other-
wise it is indirect.

1.4. Regular Grammars and Regular Expressions

The essential difference between regular and context-free grammars is that in reg-
ular ones there is no self-embedding. Consequently, regular grammars may at best
describe sequences of symbols in which there are repetitions and alternatives but

no nesting, such as between matched pairs of parentheses or begin ... end pairs, for
example.

Thus, regular languages may also be described by regular expressions (REs). REs in-
volve only the thre notions of concatenation, altermation (unjomhand repetition

(closure) , represented respectively by the infix operators "blank" (i.e. nothing at
all) and "|", and the postfix operator "*'",

If M and N are RE'sthen

M N (concatenation; "M followed by N")
M | N (alternation; "either M or N"), and
M {repetition; "zero or more M's"}
are also REs.

If M and N denote 1anguages LM and LN’ respectively, then

M N denotes the concatenation of the two languages LM and LN; i.e. LMN =
{08 | uaLM and 8 ¢ LN}’

M*| N denotes Ly ULy, and

M denotes the closure of LM; i.e.
LM* = {e} U {ag | oe LM and BSLM*}.

Except where altered by parentheses the precedence for these operators is as fol-
Tows: closure is most binding, then concatenation, then alteration.
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Example The regular expression a b* {c | de)* denotes
the language consisting of the following strings:

a

ab

ac

abb

abc

acc

ade

abbb

abbc

abcc

abde

accc

acde

adec

j.e. a single "a" followed by zero or more "b"s followed by zero or more of either

HH

c" or "de".

Regular expressions can be mechanically converted into regular grammars and vice
versa. We will not go into those details here.

2. Parsing

2.1. Syntactic Dominoes

Consider the problem of determining the derivation tree for a string n purported to
be in the language L{G) of a context-free grammar G, or alternatively, of determin-
ing that n is not in L{G). We may describe this problem as a game called "syntac-
tic dominoes".

We play the game on a board with a "flat bottom" piece labelled with the start
symbol at the top of the board, and a sequence of “flat top" pieces at the bottom of
the board, each Tabelled with the successive symbols of n. Corresponding to each
production A -+ w of G there are arbitrarily many "dominoes", all of the same shape:
at the top of the domino is a "flat top" labelled A and at the bottom is a sequence
of "flat bottoms" Tabelled with the successive symbols of w. The cennzctions be-
tween the top and bottoms of each domino are stretchy, but the order of the bot-
toms is fixed. Furthermore, the dominoes may not be played upside-down.

The game is played by positioning flat sides of dominoes against one another and the
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original flat sides on the board. The object of the game is to try to eliminate
all flat sides. It is easy to see that if the player "wins", i.e. eliminates all
flat sides, then the result is essentially a derivation tree. Furthermore, the
player will be able to succeed if and only if n ¢ L(G).

Example Consider grammar G; of section 1.3 above., The distinct dominoes are as
follows:

(1) CE¢ (2) i (3) (4) E’
(f)i’b (_(§ iﬁ Z)

There are arbitrarily many of each. To parse, i.e. determine the derivation tree
for, the string n = i + i we set up the playing board initially as follows:

@®

®@ o ©

We might begin the game by playing a copy of domino (1) at the top of the board,
resulting in:

£E
\E/
D

(B) M

®» ® D

If we now play a copy of domino (4) at the right, we can match both the (T) and the
(@ as well as the (¥) resulting in:

D

DD

o &

We must play two more dominoes, (4) and (2), to get the final result:
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o

Thus, we have won this particular game. In doing so we have proven that n ¢ L (G;)

and we have constructed its dertvation tree,

Any algorithm that given a string determines its derivation tree, or equivalently
its right or left parse, is called a parsing algorithm, parser, or analyser.

2.2. Parsing Strategies

Clearly we can devise various strategies, called parsing strategies, to win games of

syntactic dominoes. Our strategy might be to try to determine the tree structure
starting at the top and working down, or starting at the bottom and working toward
the goal symbol at the top. Or we might mix top~down and bottom-up strategies. A
good survey article covering early techniques in both top-down and bottom-up parsing
is [Feldman 1968].

Independent of the vertical strategy there is the question of a horizontal approach.
We might proceed from left-to-right (we usually do) or from right-to-left or we
might alternate between the two in some fashion.

Numerous bottom-up parsing algorithms have been devised that depend upon relation-
ships between symbols. Operator precedence parsers [Floyd 1963] make decisions

based upon the precedence hierarchy of operator symbols in the language, in addition
to matching parenthesis-like symbols. Simple precedence [Wirth 1966] and weak pre-
cedence [Ichbiah 1970] parsers work similarly, but depend upon precedence relations
between all symbols, rather than just operators. Extended precedence [McKeeman
19661 and bounded context [Eickel 1963] parsers depend upon relationships between
strings of symbols.

Top-down techniques are less numerous. Recursive descent parsing was illustrated in

the elementary example given in the introduction. Most other top-down techniques
involve guessing at parsing decisions and backing-up, or "back-tracking", to the
last previous guess point when and if it becomes clear that the parser is on a path
not leading to a solution. One survey article describing some of these techniques
is [Floyd 1964].
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Most bottom-up techniques have been deterministic; i.e. the parser makes a sequence
of definite decisions leading directly to a correct parse of any string in L(G) and
directly to an error message for any string not in L{8). In contrast, most top-
down techniques have been nondeterministic in that they involve guessing. Of course
deterministic techniques are usually more efficient in both space and time, than

nondeterministic ones, thus much research in this area has been toward perfecting
deterministic techniques.

The ultimate in deterministic, bottom-up parsers, were introduced in [Knuth 1965]
and are called LR parsers. Analogous, deterministic, top-down parsers are called
LL parsers [Lewis 1968]. The essence of nondeterministic parsers based on LR tech-
niques is described in [Earley 1970]. LL and LR parsing techniques are discussed in
detail below in sections 2.B and 2.C, respectively.

2.3. Ambiguity

Since the semantics and translations of programming languages are usually related
to syntactic constructs, i.e. productions of a phrase structure grammar, an unambig-
uously defined and implemented language usually requires an unambiguous grammar.

A context-free grammar G is said to be unambiguous if and only if each sentence in
L(G) has exactly one derivation tree; otherwise G is ambiguous. Equivalently, we
may require that each sentence have a unique right parse {(or left parse).

A sufficient condition for ambiguity is that a grammar contain a nonterminal A that
is both left and right recursive; e.g. A> + A v A for some y £ V* guarantees that
the grammar is ambiguous, as does A ~ + A, as does A+~ + o A with A >+ A g. For
examp]é, the grammar G, = ({i, +}, {E}, E, P) where P contains the productions
E+-E+E
E~>i
is ambiguous since the sentence i + i + i has the two derivation trees:

© 9.
B.® B and ® ® ©
GRORGEO 006
® ® ®

2.4, Debugging A Grammar

The LL and LR technigues described below assume that all productions of each gram-
mar are useful, i.e. that for each production A +  there exists a derivation
S>*yAp>vywp>*vy w p”such that y" w” p” ¢ VT*. This condition is easily
checked. Presumably the language designer has erred in his phrase structure
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specification if his grammar contains useless productions.

Another condition that can be easily checked is the existence of an ambiguity due to
some nonterminal being both left and right recursive. However, it is to be noted
that this is a special case. In general, the question of ambiguity in context-free
grammars is undecidable [Floyd 1962].

Other ways of discovering problems within grammars are discussed below relative to
particular parsing and transiating techniques.

3. Machines, Computational Complexity, Relation To Grammars

Corresponding to the Chomsky hierarchy of grammars is a hierarchy of machines
[Hopcroft 1969]. A machine recognizes a language L in the sense that, if it appro-
priately reads a sentence n € L, it will eventually halt and indicate that n is in-
deed in the language; i.e. it will accept n. A machine M is said to be equivalent
to a grammar G if and only if L(G) is exactly the language recognized by M.

In this latter sense "Turing machines" are equivalent to type O grammars, both of
which are equivalent, in a similar sense, to the most general (complex) computation-
al systems known. Similarly, "linear bounded automata" are equivalent to context-
sensitive grammars, “pushdown automata” are equivalent to context-free grammars, and
finite-state machines are equivalent to regular grammars and regular expressions.

Preofs of the equivalences between the two hierarchies involve techniques of con-
verting grammars into equivalent machines and vice versa. In essence, we arrange to
get one system to simulate the other. These techniques are similar to the LL and LR
parser construction techniques discussed below. Also, the techniques are used dir-
ectly below in creating scanners based on finite-state machines.

The basic notion needed here from automata theory is that of "state". The state of
a parser at any given time sums up the history of the parse for the purpose of mak-
ing the next parsing decision. In addition, the parsers described here use a push-
down stack to remember more detail about left context (the parse history)} for the
purpose of matching left context against corresponding right context. Theoreti-
cally, our parsers are equivalent to deterministic pushdown automata.

4. Transduction Grammars

Translation can be formally defined via grammars with two right parts to each pro-
duction rather than just one. We require a coordination between the two right
parts. In particular, we require that each occurance of a given nonterminal in one
right part have a corresponding occurance of that same nonerminal in the other
right part. We do not, however, place any restriction on the relative orders of
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the symbols in the two right parts, nor do we put any restrictions at all on the
terminals in either right part.

4.1 String-To-String Grammars

The formal definitions of grammars given in section ] above can easily be extended
to define such transduction grammars [Lewis 68]. In particular, we are interested

here in context-free transduction grammars {(CFTGs); i.e. those based on CFGs, and
thus, having a single nonterminal as left part. The one-to-one correspondence be~

tween occurrances of nonterminals in the two right parts means that we can derive
two strings simultaneously by rewriting corresponding nonterminals via these
"parallel” productions.

Example Consider the following CFTG based on the CFG G, above. TG; =
({+, {,)s i}, {Es T}, E,P) where P contains the follewing productions:
E>E+T = ETH+

E->T => T
T~ (E) = E
T 1 = i

We have used the symbol => to separate the two right parts. TG, defines a transla-
tion from infix notation to postfix notation as is illustrated by the following
parallel derivation.

E E

E+T ETH+

E+ (E) EE+
E+ (E+T) EET++
E+ (E+1) EET++
E+ (T+1) ETi++
E+ (1+1) Eid++
T+ (i+1) Tii++
i+ (i+d) Tid++

Clearly, such string-to-string transduction grammars can be used to translate to
prefix, postfix, and/or infix notation. The above example is simple in that the
ordering of nonterminals in the two right parts is the same. Translatfon to postfix
notation is naturally done by an LR parser; translation to prefix notation is natur-
ally done by an LL parser, which can also translate to postfix but for a smaller
class of grammars than LR techniques allow, as will be discussed below.

If the nonterminals are not in the same order in the two right parts, complex trans-
lations are defined which cannot be performed by deterministic pushdown automata.

Rather than implementing such complex reorderings via string-to-string translators,
one usually translates the strings at least partially into trees and then transforms
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{reshapes) the trees. Such tree transformations can be defined via "transformation-
al grammars” as described in section 2.E below.

4,2. String=To-Tree Grammars

If we use a tree as the second part of each production [DeRemer 1969], we can for-
mally define the translation from strings to trees. For example, for the CFG G
of above we might write productions:

E-E+T =>
E T
E>T @
T
T~ (E) =>
E

This "string-to-tree transduction grammar" obviously translates any string in the
language into its derivation tree. For the purposes of compilation, however, we are
not interested in all of the detail of the context-free grammar, but only in the
basic phrase structure and relations between operators and operands, key words and
phrases. That is, we are interested in the abstract syntax, not the concrete syn-
tax. The derivation tree corresponds to the concrete syntax while a "computation
tree", or "abstract syntax tree", corresponds to the abstract syntax.

We can use the above technique to describe the translation to abstract syntax trees.
For example, for G, we might specify the following.

E T

E~T => T
T+ (E) =5 E

T+1 => @
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A derivation via these productions is as follows:

E E
E+T /G)\
E T
=+ PoN
E E
E+ (E+T)
E
E T
E+ (E+ i)
E+(T+ 1)
E+ (i+ 1) (+)
E (+)
© ®
T+ (i+1) ﬂ
T ()
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For very simple string-to-tree grammars such as the above, with no reordering of
nonterminals and at most one new node added to the tree per production, we may
abbreviate our rules by mentioning only the node name (if any) in the "tree part” of
each production. For example, the last grammar above could be abbreviated:

E>E+T = +
E->T
T+ (E)
T => i

Finally, we note that in section 2.D on "lexical analysis" we use productions with
regular expressions in their right parts. For example
+
E-T (+7)
means that E may be rewritten as T followed by one or more occurrances of +T and
that the corresponding tree is a + node with the {two or more) subtrees correspond-
ing to the T's as descendants. Trees containing such nodes, having an arbitrary

=> +

number of branches, are sometimes called bushes.

5. Meta-Grammars

5.1. Self-Describing Grammars

The notational conventions used above for specifying grammars, that is the written
forms, of course constitute a language themselves. If we are to implement LL and
LR grammar analysers as described below, we must adopt some well defined conventions
for the input format of these grammars, i.e. a language for grammars.

Rather than use the conventions used for formal purposes above, we prefer to use
standard programming tanguage conventions. Our nonterminals are analogous to {even
sometimes called) variables so we choose to use identifiers to denote them. Ter-
minals are constant strings so we choose to use quoted string constants to denote
them. In addition, we choose to use (s} "=" rather than "+" to separate left part
from right part, (5} “|" to separate alternative right parts rather than require
separate productions for each, and (5) ";" to terminate the resuiting "rules”.

How can we describe this language for grammars? With our linguistic tools, of
course; i.e. with these very grammars. Thus, a grammar to define our grammatical
notation is a self-describing grammar. Correspondingly, our language processors
are usually self-implemented (i.e. "bootstrapped") to demonstrate both their use
and their capabilities.

There follows such a self-describing grammar. Note that its language is a set of
sequences of characters, such as might be punched on cards, including the new-line
character (or card boundary). Included is a description of comments (a sharp #
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# THE PHRASE SIRUCTURE OF CONTEXT~FREE GRAMMARS.

Context_free_grammar
= Spaces # A NULL GRAMHAR.
Context_free_gyrammar Rule Spaces

Ruls
Left_part *=7' JAlternatives ';!

(D we e}

£ 4
Alternatives
= Right_part
{ Alternatives '{'! Right_part
Right_part
= Spaces # AN EMPTY RIGHT PART.
| Right_part Terminal Spaces
} Right_part Nonterminal Spaces

#onterminal = Identifier ;

Terminal = String

-

# THEL LEXICON OF CONTEXT~FREE GRAMHARS.

Identifier

= Upper_case_letter

Identifier Lover_case_letter
identifier Digit

Identitier Underscore

[ |

String = Quote Any_characters Quote H

spaces
Separator
Spaces Separator

-e = I O

Separator

= Blank

] Wew_1line

{ Comment
Comment = Sharp Blank Any_characters New_line
Any_chacacters

Any_characters Character

Auny_characters Sharp 'Q° ¥ SINGLE QUOTE.
Any_characters Sharp Sharp # SHARP.

- -]

# AN EMPTY RIGHT PART USAGE.

Any_characters Sharp *Hf # NEW LINE CHARACTER.
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# THE CHARACTER SET.

Character
Upper_case_letter
Lower_case_letter
Digit
Operator_symbol
Blank

Underscore

o —— -}

Upper_case_letter
= ’R' l lBI 1 !CI l IDI

_l' ‘!I! ‘ IJI l IK' l 'Ll
i lQI ] 1t I 15t 1 L]
! IY! 4 'Zl

Lovwer_case_letter
Oal 1 Ibl l 'C' | ldl

? lil } ljl 1 Ikl ‘ |1I
i lq! ! 3}:’ ‘ IS' I !tl
; lyl 1 iZ'

Diqit
= ‘O! i ¥ i i 120 i !3'

i £39 1 g

Operator_symbol
='='l'1'l lolll+!

; 151 l l’l ; LI ; I{i

Quo{e = f§Q H
Underscore = '_! H
Sharp = V¢! H
New_1line = N H
Blank =t 1 H

| 'E* g (¥Rl 14
‘ 'Ml lN' ’Ol lPI
[ 1y T 1 X0
| 'e!? 11 1gt The
{ 'a? Y gt 1p1
i tut tys 1yt ty
1 14 151 151 [ X
j ot (X1} 10 1
P

# A USE OF THE QUOTE

# DENOTING CONVENTION.

# A USE OF THE SHARP

# DENOTING CONVENTION.

# A USE OF THE NEW-LINE

¥ DENOTING CONVENTION.

Note: This grammar has been mechanically confirmed to be LALR{1). (See the

section on LR parsing.)
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followed by a blank, then the comment goes to the end of the 1ine). The sharp is
the escape character inside strings; sharp followed by a Q denotes a single quote;
sharp followed by N denotes the new line character; sharp followed by sharp denotes
the sharp. The grammar is presented in three parts defining the phrase structure,
the lexicon (how to construct words from characters), and finally, the character
set.

5.2. Practical Applications

In practice it has proven to be advantageous to separate the lexical and syntacti-
cal specifications of languages into two grammars, a lexical grammar and a phrase
structure grammar. Note for example that in the above self-describing grammar,
spaces are required in places where they need not be {(e.g. before a ";"). This
problem can be solved with the addition of more productions, but when the phrase
structure is more complex, as it usually is for programming languages, one tires of
inserting "Spaces” in numerous productions. Furthermore, the insertions destroy the
readability of the grammar.

Given next is a pair of grammars mutually describing themselves, in that one defines
their lexicon and the other their phrase structure. The latter is significantly
more complex than the above sample, as it includes regular expressions in right
parts of productions and tree parts to describe trees.

The section below on lexical analysis discusses the mapping of the lexical grammar
into a scanner, and the sections on LL and LR parsing discuss the mapping of phrase
structure grammars into parsers.

Other lecturers use slightly different notations for grammars, and they define
their notations in their lectures and notes.
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T 1% A A A WA AR AT AR KK T
2 1t * * ¥
ERNE ] # GHAMNMAE LEXICON ¥ ¥
4 |z * * $
5% REFFEFGE KR RRRRRAR KL ERFERFREN K §
6 1
7]
8 |scanner srammar_text:
91

10 | Pal_text = Text_id_num | Text_operator | Text_else;

TT§ -

12 ) # TEXT STARTING WITH AN IDENTIFIER OR NUMBER.

T TRt IAd_nuH T (Identifier | Iiteyer | Redl) (TEXY_operator | Text_elsey? ;

1 g

1514 ¥ TEXT STARTING WITH AV OPERATOKT

6 | Text operator = Cperator {(Text_id_num J Text_else}? ;

171

18 # TEXT SIARTING HITH ANYTHING ELSE.

REN]

20 | Text_else = Spaces (lext_id_num | Text_operator | Text_other)?

2T | Text_other 7

22 |

2377 TEXL_other = (STIing | PunctudTion [ T#N'Y PAL_Text? 5

24

PEM]

26 | # THE BASIC TEXTUAL ELEMENTS.

271

28 i Identifier = Upper_case_letter (Lower_case_letter | Digit [ '_')*

297 =RTEFFIDENTIFIERY 7

30 i Inteqger = Digit + => * VIRTEGER';

377 UpETEEor = UpeTdtor Bywhol™+ =37 ¥ YOPERATORY,

32 | Strang = '#Q' Any_character * t4Q1 => % V'STRING';

3371 Spaces = T T 3 => YIGNGRE'; ™

34 | Punctuation = ' (! => % t [

3577 )" =5 RV

36 | 1 '3 => * 1o

J7q T ',7 =T

338 4

357

40 | # CHARACTER SETS.

51 |

42 Any_character = Upper_case_letter |} Lower_case_letter

g3 1 T Digit [ Operatot_Syubol

44 § YT L (Tl Yt o Y,Y o YEEY OTNY | TEEY YTV} vggr Q0

05 ! I TEFT ¢ [ B H

46 | Upper_case_letter = YAt | YB*' | CY | D' | tge § YFe { tGv | YR | vt

577 LA Ll B - vt e I A Rt 2 o L 1 e W oY Sl - &

48 ] j 1§y o YT | gy | otyH i e [ RN A1 LA

49 1 H

50 | Lower_case_letter = *a' | 'b' | Tc' | '@ | te* | ¥FEV | vg' |} 4hY ] ‘i

57 ‘ I IJl’”"’i’“"‘lk’v'“!'”TTT‘”F—T‘ETV“”‘”"I"“"I‘““"-T'O”I_r‘“I'PI ’ lq! ' L

52 ’ l o ‘ Tgt i ty? ‘ Ty , Tyt ‘ Tyt ’ lyi 3 12

5371 :

54 1 Diqit = e 1 + 1t i 121 ‘ 3¢ i st i 151 ‘ LE4 I Ll ] 1 g 1 Qg H

3571

56 § Operator_symbol = T+% | t-3 (LA B TS P IR A e

YA T Yot T Y/ T RN YRYT TN RN

58 | ;

]

end Gragmar_teXt
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114 sk o ke skl ok ok o Ok Ok HOR KK ROR KK Ok XKk R K t1
21 * * L3}
3 1# * CONTEXT-FREE GRAMMARS * ¥
[ * WITH BEGULAR EXPRESSIONS ¥ ¥
5 ¢ * * #)
& (¥ FHF F TR RN RO FE R FEE R RFHH ¥
71 i
¥ {parser AhalysSers: i
3 1 i
kL Analysers = ( Analyser ;¥ Y ¥ Ahnalyser =3 LR 1
1 |
127 Analyser ]
13 | = 'PARSER' YIDENTIFIER®' *':' T_grammar Ending =>» * VPARSER?
W T VSCENRERTYIDENTIFIERY VIV T_grammar E4dIng E3 ¥ YSCENNER™ H
15 | i
61 Ending = 'TLND?V =P YENDY i
17 | | 'END* 'IDENTIFIER' H
BT i
19 T _gqrammar = T_rule + =3 tPRODUCTIONS' ;¢
207 I
21 | T_rule = IDENTIFIER' '=' Right_part ';!' =y 1= H ]
22} 1
23 1 Right_part = Pair ( *{' Pair )} + =>  YALTERNATIVES®|
2877 T PRIT? 1
25} i
Z6 1 PAIr = Synta¥_part 1
27 } | Syntax_part *'=>' Opt_star Tree_part => Tz H
28 1 i
29 | Opt_star = |
307 THY P TOUTPUT” 31
31
3277 SYfitax_part = REG Tetnm 71
33 4 1
ELN1 Tree_part = FTOTRIRGY 7 B
35 i
35 1 Reg_exp = Reg_ferm { '|¥ Red_term j + =5 bl I
37 4 | Reg_term; {
381
39 | Reg_ternm = =»  SRULL' I
G0 ¥ [ Reg_tactor Rég_tractor + = v
4t } Reg_factor;
LY
43 Reg_factor = Reg_primary
597 - i Reg_primary T¥°¥ =) YZERO_UR_MNORE?
45 | { Reg_primary '+ = *ONE_OR_MORFE*
551 T REG_Prinary v27 EF YUPTICYAL Y
47 | | Reg_primary '*%' Repitition_specification = 'REPEAT':
g8 7
49 Repitition_specification = f*INTEGER'
501 i i YINTEGEHY 1Y =5 YOP_TU_N?
51 1 { *(* 'INTEGER® ',* '} =>  'HN_OR_MNORE'
52 1 T Y INTECERT Y, YUY INTECERY Y)Y
53 | => ¢*K1_TO_N2';
501 )
55 | Req_primary = ‘*IDENTIFIER!' 4 NONTERMINAL.
Y] [} TSTRINGT ¥ TERAINAL.
57 1 I '(' Reg_exp ")
5871 H
59 ¢
50 Jend ARalysers
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CHAPTER 2.B.

LL{1) GRAMMARS AND ANALYSERS

M. GRIFFITHS
Laboratoire d'Informatique

UNIVERSITE DE GRENOBLE, FRANCE

I - INTRODUCTION -

Since this course is not solely concerned with syntax analysis, a choice
has had to be made amongst a large number of possible methods. We have chosen to
present the two methods which seem to be the most fundamental in theoretical terms.
The choice was, of course, much easier amongst top-down methods, of which there are
few. The LL{1) techniques described in this chapter were discovered by Foster
[Foster 681 and received a theoretical treatment in [Knuth 71]1. The method is top-
down, deterministic with one character of look-ahead.

Before going into details of the method, we should consider the context
in which it will apply. Why are compiler-writers so interested in syntax ? It is
certainly not true that, in a given compiler, the syntactic part is that which
requires the most work. In fact, the pratical compiler writer should be able to
produce his compiler without even bothering much about the mechanics of syntax ana-
lysis. He is more interested in using the syntax as a framework on which to hang
semantics, since this gives the overall structure of the compiler. Essentially, for
the compiler writer, Backus normal form is a programming language.

This discussion shows us that, to be useful, a syntax analysis method
must be automated ; the user merely has to type his grammar and some program prepares
the appropriate analyser, which must also be efficient and allow easy interaction



58

with the semantics. This last point means that the method must be deterministic, but
we will come back to that with the examples. We start with a non-deterministic method
from long bygone days (a Tittle over ten years ago), and then look at the problem of
making it deterministic.

1.1 - Predictive Analysis -

Consider the following grammar, which describes an ALGOL block :

Block ~begin DL ; SL end
L ~ D |D ; DL
sSL o+ S |s 5 sl

We will analyse the following program {considering declarations and
instructions to be non-separasble units for the time being) :

begin D 3 D ; S ; S end
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Analysis proceeds by comparing targets with the source text. The first target is the
axiom of the grammar, and new targets are produced by replacing Teft-most terminal
symbols by their possible expansions. Thoses targets which do not correspond to the
text are rejected, leaving the others for further comparison, and so on. The succes-
sive states of the analysis of the given program are drawn up in the form of a

table :

Targets Text

1. Block begin D : D ; S ;S end

2. begin DL ; SL end begin D s D3 S 3 S end

3. DL ; SL end D;D3S;5 Send

4. D ; SL end DsDsSsSend
D ;DL ; SLend

5. ; SL end ;D35S Send
3 DL 5 SL end

6. SL end D;S;sSend
DL ; SL end

7. S end D;SsSend
S5 SLend
D; SL end
Dy DL 3 SL gﬂg

8. 3 SL end 3 S 3 Send
;3 DL 5 SL end

and so on. State 8. is the same as state 5., except that some of the source text
has been analysed between times. Resuming the rules of the game we see that :

a) - The initial state has the axiom as the unique target, and retains all the
source text.

b) - Any target which begins with a non-terminal symbol is replaced by as many new
targets as are necessary, each one being the original target with the non-ter-
minal symbol replaced by one of its expansions,

c) - If all the targets begin with a terminal symbol, each of these symbols is
compared with the left-hand member of the text. If the symbol does not match
the text, the corresponding target is rejected, otherwise the decapitated tar-
get is passed to the next state, where the text also loses its first character.
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d) - Analysis ends when a target and the text become empty simultaneously. If
several targets become empty at this point, the language is ambiguous, and if
no target becomes empty at this point, the text was not in the language. This
is also the case if no target exists at some moment.

e} - Left recursion causes the analyser to loop, since it becomes impossible to
obtain only targets starting with a terminal symbol.

A more formal presentation of predictive analysis is to be found in [Greibach 64].
1.2 - Efficiency ~

Let us now consider state 4 of the analyser. The action Teading to
state 5 was the matching of the declaration of the text with the first symbol of
each of the two targets. But the matching of a declaration is not in fact an instan-
taneous process, since a declaration consists of several, or, in the case of a
procedure declaration, of many characters. The two targets are retained during the
analysis of the complete declaration, which is thus analysed twice. Each statement
is also analysed twice, and this number is doubled each time statements are nested.
This obvious waste can easily be eliminated by choosing a different grammar, still
keeping the same analyser :

Block - begin DL ; SL end

DL - D X
X~¢ | ;DL
SL+S ¥
Y+e | ;SL

¢ represents the null string, and we have simply factorised the rules. The analyser
now works as follows :

Targets Text
Block beginD ;D ; S ;S end
begin DL ; SL ; end begin D ; D5 S35 end
DL ; SL ; end D;D; S5 Send
D X ; SL end D;D;:S; Send
X ; SL end 3D 355 Send
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and so on. The declaration is analysed once only. The obvious question is whether it
is possible to obtain a grammar for which the analyser can always reduce the number
of targets to one, and the answer is of course "Yes, in certain cases", otherwise
there would be no story.

Of course, when the grammar presents alternatives, there must be some
decision criterion, which in the case we are examining will always be the inspection
of the leftmost character of the remaining source text. If the analyser can choose
its target simply by looking at one character, the grammar is said to be LL{1l}. If
k characters were necessary to reach a decision, the grammar would be LL(k}. Measu-
rements have shown that this sort of grammar transformation leads to a decrease of
a factor of ten in the time spent to analyse relatively simple ALGOL 60 programs,
and of course the improvement is exponential with the degree of nesting.

1.3 - Semantics =

As soon as the programmer uses a deterministic method of syntax analysis,
it becomes possible to execute semantic routines during the syntax analysis process,
thus saving a pass of the source text. This is easily understood in the case of an
LL(1) analyser, since we see that when the analyser fakes a decision, it is always
the ‘right’ one. It can therefore call those semantic routines that the programmer
has indicated, since it is sure of having correctly recognised a situation. Non-
deterministic methods do not allow this, since back-tracking, for example, cannot
apply to semantics ; alternatively if different routines were associated with two
targets in the predictive analyser, it is not possible to decide which to execute.

Foster gives a simple example of the use of semantic functions :

Integer » Digit f1 X
X -~ Digit f2 X | «

fl : result « value (digit)
f2 : result « 10*result + value (digit).

We suppose that the value of the integer is to be found in 'result' and
that the procedure 'value' decodes the last digit. The addition of the names of
semantic functions as a third type of object in the grammar is a technique which
will be seen many times during this course. Compiler writers often consider the
primary function of a syntax as being that of the skeleton on which they can hang
semantics. The form of the semantics is, of course, very variable.
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2 - LL(1) CONDITIONS -

We have seen that the analyser for an LL{1) grammar can decide which
decision to take at any moment by looking at the Teftmost character of the remaining
source text. A decision is taken only when the first character of the target is a
non-terminal character, and the decision is by which of its possible right-hand sides
should the non-terminal be replaced. Thus any one terminal symbol should lead to
only one expansion for a given non-terminal, and thus to each expansion corresponds
a unique set of terminal symbols, which we will call the director symbols for that
expansion.

Consider the following productions for a non-terminal A :

Ao oyl oo

The director symbols for oy obviously contain all those terminal symbols which can
occur at the left of any string generated by oy We call this set of symbols the
‘starter symbols' of G defined formally as :

S(a) = {a e Vg la3ag, Be (Vp v yN}*}

where o is any string (that is to say a « (VT u VN)*). The starter symbols do not
necessarily form the whole set of director symbols, since a; can be, or can generate,
the empty string, which has no starter symbol. Consider what could happen in this

case, after a sequence of expansions starting with the axiom Z :
Z+...+>BAS
If A is the front character of the target, B « VT*, § e (VT u VN)*.

If the expansion of A is to lead to the empty string, the character at the left of
the source text is a starter of &, and hence the starter set of & is contained in
the director symbols of that expansion of A which leads to the empty string. We note
that there can be at most one such expansion, since otherwise the starters of &
would occur in more than one set of director symbols, and the analyser could not
then decide which expansion to apply. The starters of all the possible strings which
can follow A are called the followers of A :

F(A) = {a | Z» g A&, Z the axiom, 8, § e (Vp v V)", a e S(8)}

where A is any non-terminal symbol (A < V).

We can now define the director symbols for the expansion o of a non-terminal A :

DS (A, o) ={a | a eS(a)or (aXcandaeF(A)}
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We suppose the grammar to be clean throughout this presentation, which means that

every non-terminal is accessible from the axiom {can occur in at least one string

generated from the axiom) and that every expansion can lead to at least one string
which contains no non-terminals.

It is now possible to give the necessary and sufficient condition that a grammar be
LL(1), which is that the director symbols corresponding to the different expansions
of each non-terminal should form disjoint sets. The justification of this condition
is simple :

- the condition is necessary, since if a symbol occurs in two sets of director
symbols the analyser can not decide which expansion to apply without further in-
formation

- the condition is sufficient, since the analyser can always choose an expansion in
terms of the given symbol, and this choice will always be the right one. If the
symbol is contained in no set of director symbols, the source text is not in the
language and there is an error.

Knuth's original definition gave four conditions, which are equivalent to the one
given above. One of the four deserves a little more attention, since it is the one
which forbids left recursion. We have already noted that top-down analysers do not
accept left recursive grammars ; these are also forbidden by the LL(1) condition, as
shown by the following logic :

Consider a set of mutually left-recursive non-terminal symbols {such symbols form
obvious closed sets}, and in particular one of the sywbols which presents alterna-
tive expansions (there must be one, otherwise, since the set is mutually left-recur-

sive, the rules concerned cannot generate terminal strings). Consider its expansions:
A+0L1|0L2]... Iotn
Suppose oy to be the left-recursive expansion. Thus we have

Avag SAB>a, 8 (Be (VpuVy))
then D S(a;) €D S (o), since a; * o, .
The director symbols are not disjoint. It is useful to test for left recursion inde-

pendently of the LL(1) condition in order to avoid loops in the algorithms and also
to give more informative error messages to the user.
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3 - DECISION ALGORITHM -

The algorithm which decides whether or not a grammar is LL{1} simply
deduces the director symbol sets for each expansion of a non-terminal and applies
the condition described above, In order to find these sets we must first deduce the
starter and follower sets for each non-terminal, together with the information as
to whether or not the non-terminal can generate the empty string. It is for this
last point that we give the first algorithm.

The algorithm requires a copy of the grammar and a vector V, with one
entry per non-terminal in the grammar. The elements of Y may take any one of three
values : yes, no or undecided, saying whether or not the non-terminal can generate
the empty string. We execute the following steps :

1) - Each element of V is initialised to ‘undecided’.

2) - During a first pass of the grammar, the following two actions are performed :

a) - If any expansion of a non-terminal is the empty string, the corresponding
element of V takes the value 'yes' and all the productions of the non-ter-
minal are eliminated from the grammar.

b) - Any production containing a terminal symbol is eliminated from the gram-
mar. If this action eliminates all the productions of a non-terminal, the
corresponding value of V takes the value 'no‘.

3) - The grammar is now limited to rules in which the right-hand sides contain only
non-terminal symbols. Successive passes of the grammar obey the following ac-
tions, in which each symbol of each right-hand side is examined.

a) - If the corresponding entry of V has the value 'yes', the symbol is elimi-
nated. If this leaves the empty string as right-hand side, the non-termi-
nal for which this is an expansion can generate the empty string. The cor-
responding entry of V becomes 'yes’, and the productions of the non-termi-
nal are eliminated.

b) - If the corresponding entry of V has the value 'no', the production is
eliminated. If all the productions of a non-terminal are eliminated in

this manner, its entry in V takes the value 'no’.
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If, during a complete pass of the grammar, no entry of V 1is changed and there
are still undecided entries, the algorithm cannot terminate, and the grammar is
not LL{1}.

We must first of all prove that non-termination of the above algorithm is a
sufficient reason to say that the grammar is not LL{1). In fact, in this case,

it is both left-recursive and not clean, since there exist a number of pro-
ductions consisting only of non-empty non-terminals, which cannot then generate
strings which do not contain non-terminals. These productions must also be left
recursive since they form a finite set, and thus the left-most members must loop.
For any clean grammar we are therefore able to produce the vector V , indicating
whether or 1ot the non-terminals can generate the empty string.

The next step is the production of bit matrices which will indicate the starters
and followers of each non-terminal. We first consider the starters, which are
accumulated in a matrix with two fields:

During a pass of the grammar, the immediate starters are indicated in the matrix,
for example, in the following rule:

A - BchD | ef
(B, A) and (e, A) are set to 1.

Notice also that if B can generate the empty string (information found in V),
c is also a starter of A, and (c, A) takes the value 1, and so on as Tong as
the newly discovered starter is a non-terminal which can generate the empty
string. The matrix of immediate starters is of course not sufficient, as is
seen in the following trivial example :

A » BcbD
B - bX

b is a starter of B, and hence a starter of A. The transitive closure of the
immediate starter matrix gives us the complete starter matrix required to cal-
culate the director symbols.
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The complete starter matrix allows an immediate test for left recursion, since a 1
on the principal diagonal of the matrix indicates that a non-terminal is a starter of
itself. It is useful to give this diagnosis immediately to the user of the program.

We will not give details of the transitive closure algorithm in this text ; the
best-known efficient algorithm is described in [Warshall 621. It is however to be
noted that a better algorithm can be written for this particular case since the
matrix is sparse, and the left-hand half of the matrix is not in fact required
(apart from the principal diagonal), since the tests only need the terminals which
are the starters of each non-terminal [Griffiths 69].

An immediate follower matrix should be produced during the pass over the grammar that
produced the immediate starter matrix. This matrix needs three fields, as is shown by
the following example:

A - BCD | Ef

Immediate deductions are:

- C follows B
- if C can generate the empty string, D follows B
- D follows C
- f follows E.

There is, however, a further problem. Consider a production containing A :

X - YAZ
Z follows A. But if we replace A by B C D , we obtain
X - YBCDZ

Z also follows D. Thus, the fact that D is the last symbol of A needs to be kept,
since all followers of A are followers of D (and if D can generate the empty
string, the same is true of C , and so on}. The followers matrix has the form:

AB ... Z AB ... Z ab ... z

In the first field (X5 Y) = 1 means that X follows Y

In the second field (X5 Y) = 1 means that the followers of X are
followers of Y , that is to say that Y s the last member of
a production of X .
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In the third field (x, Y} = 1 means that x follows Y.

For the first field, X follows Y means that all starters of X are followers of Y 3
but these starters are to be found in the complete starter matrix, remembering that
wWe are only interested in terminal starters and followers. Thus the corresponding
line of the starters matrix is added into the third field of the followers matrix
for each 1 in the first field. We now perform a transitive closure on the second and
third fields to obtain a complete follower matrix.

We have now obtained complete starter and follower matrices which allow the calcula-
tion of the functions F and S of the preceeding paragraph. These in their turn allow
the calculation of the director symbols and the application of the LL{1) condition.

The sets of director symbols are required in the generation of the analyser, since
they form the decision criterion. If the condition gave a positive result, the ana-
lyser can be directly generated, otherwise the grammar needs modification before
accepting it.

4 - PRODUCTION OF AN ANALYSER -

A grammar which is LL{1) allows the use of special forms of analysers.
The most important of these is the method of recursive descent [Lucas 611, in which
each non-terminal is made into a procedure. The analysis of a non-terminal is a call
of the corresponding procedure. For example, consider an LL(1) grammar for the ALGOL
60 Block :

Block ~ begin D ; X S Y end
X + D ;X e
Y ~ 3 SY e

A corresponding analyser, using primitives which we will subsequently define, would
be the following :

ROUTINE BLOCK
CHECK begin
CHECK D
CHECK 3
CALL X
CHECK S
CALL Y
CHECK end

RETURN
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ROUTINE X
DECIDE D, 11
EXIT
11 CHECK D
CHECK
CALL X
RETURN
ROUTINE ¥
DECIDE ; , 12
EXIT
12 CHECK
CHECK S
CALL Y
RETURN

The different primitives have the following meanings:

ROUTINE Procedure delimiters.
RETURN
CHECK Confirms that the current character (the left-most character of the

source text) is the same as the actual parameter, and moves on one
character in the source text (hence calling the lexical analyser).
If the current character does not conform, there is an error.

CALL Procedure call.

DECIDE If the current character is the same as the first parameter, then
branch to the label in the second parameter, otherwise continue with
the next instruction. The first parameter may be a 1ist, and con-
tains the starter set for the indicated expansion.

EXIT Leaves the current procedure. Occurs when one of the expansions can
generate the empty string, and the current character is not in the
starter set of any expansion. It is nof necessary to confirm that
the character is in the follower set, since ifs correctness will be
confirmed later.

ERROR If the non-terminal cannot generate the empty string, then EXIT is
replaced by ERROR at the end of the Tist of uses of DECIDE.

The procedure for a non-terminal has the following form:

ROUTINE  Name
DECIDE (Starter set of first expansion), 11
DECIDE (Starter set of second expansion), 12
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EXIT or ERROR  (Name generates the empty string or not)
11 First Expansion

EXIT

12 Second Expansion
EXIT

RETURN

The above primitives form a production language for LL{1} analysers. Ignoring the
necessity of character coding, the above form is suitable for rewriting as a set of
macros in any convenient system, the only long macro being CHECK, which obviously needs
to call the lexical analyser. The modern programmer may be shocked by the use of goto,
but he should realize that the analyser is generated by a program from the syntax,

and is never produced by hand. It can of course be written in any language allowing

recursive procedures:

procedure biock ;

begin check ('begin') ;
check ("D ') ;
check (' 5 ') 3
X 3
check ('S ') ;
Y s
check ('end')

end ;

procedure x

begin if current character ‘D
then begin check ("D ')
check (' 5 ') 3

X

end
end
and so on. The analyser may also interpret the same information stored as a table,
as a transition diagram or as a transition matrix, using a modification of

{Comway 631.
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5 - GRAMMAR TRANSFORMATION -

This section is intended to treat the problem which arises when a gram-
mar is not LL(1) and is thus refused by the algorithm of paragraph 3. We have alre-
ady seen that it is often possible to rewrite the grammar in a new form, the new
grammar-being LL(1). It is unfortunate that this process cannot be entirely automa-
ted, but help can be given to the user by the techniques which follow.

More formally, this problem can be looked at as one of decidability. While it is
decidable whether or not a grammar is LL(1), it is undecidable whether or not a
language is LL{1). This means that given an arbitrary grammar, it is not possible
in general to say whether or not the grammar describes an LL(1) language
[Rosenkrantz 691, and hence it is not possible to write a complete transformation
algorithm. However, an algorithm which goes a long way can be written. We consider
two different techniques.

5.1 - Elimination of left recursion -

The problem of eliminating left recursions is completely solvable, as
was shown theoretically in [Greibach 65]. The practical algorithm given here is that
of [Foster 68]. We first note that, in a given grammar, left recursive non-terminals
fall into disjoint sets, the members of each set being mutually left recursive.
(Obviously, if A is a member of two sets, A is mutually left recursive with all the
members of the two sets, which are thus also mutually left recursive, by the transi-
tivity of left recursion). Consider one such set :

H={X1, X2, ..., Xn}
We may rewrite the rules defining the memebers of H in the following form :

Xy > X1 By I xe Boj [ oo I Xngs ooy

where s Bji ¢ (VT U VN)* u 9. a 3Xis.

¢ is a character which is not in the vocabulary, and thus strings containing ¢ are

considered to be non-existent. It may have been necessary to rewrite the grammar to
obtain this form, and there would be no loss of generality in rewriting oy and Bji

as non-terminals, that is to say in adding the following rules to the grammar.

. - »
Ay > oy

B.: » B

ji Ji
The transformation to this ‘canomical' form is not always trivial. Consider the
following grammar :
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A+BA]J ...

B~ ¢ |

The left recursion of A must be made apparent. The transformation is, however,
always possible, since there are known algorithms for producing €-free grammars
[Greibach 651.

The set of rules may be rewritten using the operators of multiplication and addi-
tion :

Xi = X1 Bli + X2 BZi + ...+ Xn Bﬂi + Ai

These equations form a matrix equation :

X=XB+A
where X = (X1 X2 ... Xn}
A= (A1 A2 vae An)
B = B11 812 e B1n
821 822 vee B2n
nl BnZ Tt Bnn

We may justify the use of these operators by noting that

- Multiplication (in fact concatenation) is associative, and the empty string serves
as identity element.

- Addition {choice) is associative and commutative, with ¢ as identity element.

The identity matrix is

I=_ecdd ... ¢~
6 e o}

¢dd ... €

with ¢ on the principal diagonal and ¢ elsewhere. A minimal solution of the matrix
equation is :

X =AB"

where B = 1+ B + B2 + ...

Putting Z = B*, and noting that B =1+8 B*, we obtain :

Z
X

I1+BZ
AZ
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Z is a matrix of new non-terminals :

N

Z=,111 L5 +o+ gy

Zy) Zyp o+ Ipy

e

an Zn2 Tt Znn

Let us illustrate this by a simple example :
P>Pa|Qb]|c
Q-Pd | Qe | f

Thus X = (P Q)
A= (c f)
B =

(

i>
221 2

(P Q) = (c f)f7y1 2,

The solution is :

Z51 %22
le le =fec oY +fa d le le
122 \* </ \P ¢/\la1 222
That is to say :
Prcizy | fZy
Q->c le | f Z22
Zyp»alyy | dZy e
11, > a1, I d 1o, (¢ disappears)
Zyp»b Iy | eZy
Zpp*b Ipp L e Zy

The transformations given here can fail if there exists a non-terminal A such that
Ada
A discussion of this so-called 'empty word problem' is to be found in [Salomaa 69].

A reasonable solution to the problem is to reject such grammars, since such condi-
tions are usually due to errors on the part of the compiler writer.
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In all the other, ‘reasonable' cases, the method has the advantage of
not introducing new conflicts of the LL{1) condition, and the example is strictly
LL(1). It is to be noted that the general case elimination produces a large number
of new rules, and most users of the system prefer to write their grammars without
left recursion. However, occasional cases may arise for semantic reasons, and one
of these will be examined later.

5.2 - Factorisation and substitution -

The other standard technique which aims at creating LL(1) grammars is
that of factorisation and substitution. An example of factorisation was seen in the
grammar of an ALGOL block :

was replaced by

Direct factorisation is not always possible:

-

A B C | DE
B - b X |
D - b Y

In this case, the expansionsof B and D replace the B and D which are the
starters of A

A -~ b X C 1} Z C | b Y E
- b N | Z C
where N - X C | Y E

We consider also the following case:

A~ B C | D E
B - b X | Y
D - B Z
Substituting for B and D gives:
Al-b X C I Y C | BZE

We must again substitute for B :

A - b X C 1 YC | bX ZEILYZE

-

b
where Nl- X C | X Z E
C
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And once again in N1

NI - X N3
N3-~ C | Z E (the same as N2)

However, if, in the original form, we had substituted for D only, this would have

given:
A - B C 1| B ZE
- B N
where N - C | Z E

which is much more efficient. This example shows that we must consider the order in
which substitutions are made. This will be the subject of a subsequent paragraph.

This technique does not always resolve cases of non-disjoint starter sets.
For example:

- B X | €Y
-~ a B X I W
a C Y | W

[Sp IR~ 2.

-

Substituting for B and € we obtain

A - a B X X | WX ] actCyYY | WY
- a NI | W N2
where NI~ B X X[ C Y Y
N2 - X |

N1 presents the same characteristics as A, except that the expansions are longer, and
the algorithm either fails or loops.

Non-disjointness of director symbols is already difficult in the case of starters;

in the case of followers it is worse. The obvious solution is to substitute for the
non-terminal which can generate the empty string, but this often leads to other
conflicts, since the empty string is usually present as a result of factorisation,
which is immediately ‘'undone' by the substitution.

5,2.1 - ORDERING -

The following example showed up the problem of order :

+

¥
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Since B is a starter of D, we should substitute for D first. In general, we should
substitute first the non-terminal which needs the greater number of generations be-
fore reaching the common starter, since it may have the other as starter, but not
the opposite. We define a partial ordering R of the non-terminals such that

B e S(D) = R(B) < R(D)

Note first that this order always exists if there is no left recursion, since if
B« S(D), D4 S(B) and A ¢ S(B), B ¢ S(C) == A ¢ S(C). We give an algorithm to find
this ordering :

A vector V with one entry per non-terminal indicates whether or not the non-terminal
has already been given its rank. The elements of V take the values 'yes' or 'no'.

1) - Initialise every element of V to 'no'
2) - n<«1

3) - Find a non-terminal N which has no non-terminal starter for which the entry in
V is 'no' (there must always be one, by the argument based on the lack of left
recursion). V(N) < 'yes' ; RIN) «n 3 n<«n+1

4} - Repeat 3} until every element of V is marked ‘yes’.

This algorithm can be carried out on the initial starter matrix by searching for an
empty row, giving it the next rank and eliminating the corresponding column.

Many classtc algorithms depend on orderings of this type, for example the search for
precedence functions is a double ordering ; the ordering given here is that which

allows transitive closure in a minimum number of steps.

6 - SEMANTIC INSERTION -

Compiler writers consider syntax as the skeleton on which to hang seman-
tics, and in LL(1) directed methods they think of the analysis of a non-terminal as
a procedure call (which is in fact its implementation in recursive descent) which has
certain semantic results. We consider a number of examples from this point of view.
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6.1 - Generation of postfixed notation -

Consider the following grammar of arithmetic expression :

E -~ El | E + E1 |} E - El

El - E2 | El+ E2 | El1/E2

E2 - Prim | E2 t Prim

Variable | Constant | ( E )

+

Prim

The grammar expresses the priority of the different operators, and also the fact that
operators of equal priority apply from left to right {since the grammar is left re-
cursive). Note that this is one case where left recursion is required for semantic
reasons, but forebidden for analysis reasons. We will come back to this problem.

We may add the generation of postfixed notation to this grammar very simply:

E - E1 { E + E1 f1 | E - E1 f2
El - E2 | El» E2 f3 | El/ E2 f4
E2 - Prim | E2 t Prim f5

Prim - Variable | Constant | ( E }

fl : output {+)}
f2 : output (-)
f3 : output {*)
f4 : output (/)
f5 : output (t)

It is supposed that 'variable' and 'constant' output the code corresponding to these
operands. To convince the reader of the fact that this does in fact output the
equivalent postfixed notation, we note that:

- For each non-terminal E, E1, E2, Prim, the following assertion is true: a call
of the non-terminal provokes the output of the corresponding postfixed code.
- (Consider, for example, E - E + E1 fl. The grammar is executed by recursive

descent. But postfixed notation has the following property:

PF (E + E1) = PF(E) || PF(E1) Il +
The sign || stands for concatenation. The calls of the non-terminals have exactly

this effect, by the first assertion.
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This short example shows up the advantages of the method. The grammar becomes the
control structure of this pass of the compiler, and the programmer can express him-
self in a very compact form. The use of sequences of procedure calls also eliminates
the need for an explicit stack, since the position in the grammar is the thing which
‘remenbers' which operator is applied. While writing the compiler, the programmer
should note the semantic result of calling the non-terminal, preferably on the same
Tine.

what should be done about the problem of left recursion? Leaving the semantic func-
tions as they are, consider the grammar which includes their calls. First of all we
factorise:

E - El | E N1

El -~ E2 | El N2

E2 -~ Prim | E2+ Prim f5

Prim - Variable | Constant | { E)
N1 + E1 f1 | - E1 f2
N2 -~ « E2 f3 | / E2 f4

+

The left recursions are all simple, of the form
A - A a | b

The solution of this type of left recursion is:

The grammar becomes:

E - E1 X1

El -~ E2 X2

E2 -  Prim X3

Prim -~ Variable | Constant | ( E)
NI - + E1 fl | - E1 f2

N2 - x E2 f3 | / E2 f4

X1 - NI X1 | «

X2 -~ N2 X2 | «

X3 -~ + Prim f5 X3 | «

This grammar has exactly the same semantic properties as the original, but is LL(1).
Readers should convince themselves that the grammars have equivalent results by using
them as generative grammars.
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For each call of a semantic function we generate its name in the text as if it was a
non-terminal. But since, in this sense, the two grammars generate the same language,
the calls of semantic functions will occur at the same place in the text, and thus

will have the same effect.

The new grammar is not very readable, and we should certainly never ask a programmer
to write in this form. He should write in the original form, and the transformations
will then be accomplished by a grammar transforming program. The transformed grammar
should have the same status as the object code produced by a compiler - the user
should never see it in other then exceptional circumstances.

It is only fair to indicate a process which would not work as easily, as the method
has obvious limitations. If we wanted to produce prefixed notation, this would be
more difficult, since the same semantic functions would be differently placed:

E - El | ft E + E1 | f2 E =~ El

and so on. The factorisation no longer works. It is of course possible to write new
semantic functions which generate prefixed notation, but they are considerably more
complex. This is not strictly an LL(1) problem, but is due to the fact that the
information arrives in the 'wrong' order.

6.2 - Symbol table insertion -

Consider a part of the syntax of ALGOL declarations :

Declaration + real Idlist f3 | integer Idlist f4 | ...
Idlist + Id fl Idrest
Idrest + , Id f2 Idrest |

The grammar is written directly in LL{1) form ; we could have used left recursion.
The corresponding semantic functions use the Tist processing primitives cons, hd
and t1 (these last two are called car and cdr in other languages) :

fl : list -« cons (last id, null)
f2 : list < cons (last id, list)
f3 : while 1list # null do
begin  put symbol table {real, hd{1list), next displacement);
list « tI(list) ;
next displacement < next displacement + length of a real
end
f4 : like f3 but with integer
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‘next displacement' is the next address that can be used for variables in the run-
time storage model. Symbol table entries are supposed to be triplets of (type, name,
run-time address). {See chapters 3.B, 3.D).

6.3 -~ Interpretation of postfixed expressions -

Grammars may be used to drive other passes of the compiler, and not only
the input phase. Consider the following grammar for postfixed expressions :

Ex - Ex Ex Binop f2 | Ex Unop f3 | Operand f1

Binop - +b f4 | -b f5 | = f6 |
Unop - +u f4 | ~u f5
fl: push (value (last operand))
f2: pull (second value) ;
pull (first value) ;
case 1 of begin plus: push (first value + second value) ;

minus: push {first value - second value)} ;

end

f3: case i of begin plus : 3
minus : push { - pull)

end
f4: § « 1
f5: i <« 2
fé:

This is, of course, a highly artificial example, since it does not do type manipuia-
tion, but the idea is frequently used. '+b' and '+u' are the binary and unary addi-
tion operators, '

i' is present merely as an index to the case statement.
The above grammar is heavily left recursive, so for completeness we give the result
of transforming this grammar to LL(1) form. The transformation would again, of course,

be done by use of the transforming program.

Ex -~ Operand fl X1

X1 -~ NI X1 e

NI - Ex Binop f2 | Unop f3
Binop -~ +b f4 | -b f5 | = f&6 |
Unop - +u f4 | -u f5
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7 - GENERALISATION AND CONCLUSION -

This type of methodology forms the basis of most compiler-compiler cons-
truction, and will be talked about at a Tater stage during the course (chapter 4).
We will thus restrict ourselves here to remarks of a strictly syntactic nature.

7.1 - Vienna Notation -

Classical Backus-Naur form [Backus 607 has been generalised in many
directions. A simple improvement which eliminates many formal problems is that used
in the Vienna language description documents [Alber 681. In particular, the use of
bracketing and of the repetition operator menas that the user writes many less recur-
sive rules and also that the empty string requires less special treatment. For exam-
ple, the example grammar of block used above might be written :

Block begin [D ;1° S {; S} end

The asterisk is the repetition operator, square brackets indicating that their con-
tents must occur at least once and curly brackets that their contents may or may not
be present. The unnecessary recursion has been replaced by iteration. [Bordier 713
shows how this notation may be transformed into an LL({1) analyser allowing recursive
descent. The rule for block could generate :

procedure block ;
begin check ('begin') ;

repeat D ;

check (';')
until current character ¢ starter set (D) ;
S

while current character = ';' do
begin check (' 3) ;
S
end ;
check ('end')
end

This is an example of a formalism which mirors more exactly the way in which we
conceive things and which is more convenient than an artificial one. In this case,
the programmer thinks of 'list of declarations', where 'list of' is in fact a
repetition operator. Writing recursive rules does not express the concept in the
same way.
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7.2 - LL{k] Grammars -

We noted in the introduction that a recursive descent analyser could use
k characters in order to make a decision, instead of using only one character. This
generalisation is to 'strong LL(k)' grammars [Rosenkrantz 691, since LL(k) grammars
in general are defined in a way analogous to LR(k) grammars (see chapter 2.c), and
allow the analyser to take the past history of the analysis into account. Neither
LL(k) nor strong LL(k) methods have been used in practice, although strong LL(k)
grammars could be useful and not too inefficient. The following theorems are impor-
tant in this respect :

¥ k 2 1, 3 a language which is LL(k+1) and not LL(k) [Kurki-Suonio 69].

¥ k = 2, 3 grammars which are LL{k} and not strong LL{k) [Rosenkrantz 691. For
example, the following grammar is LL(2) and not strong LL(2) :

L>S -
S>X|bXa
X>a e

A11 LL(1) grammars are strong LL(1), and hence there is no need to keep the his-
tory of the analysis in this particular case.

A11 LL(k) languages are strong LL(k) [Rosenkrantz 69].

- The grammar transformation which deduces a strong LL{k) grammar which generates
the same language as a given LL(k) grammar is known [Griffiths 741.

We see that the generalisation to strong LL{k) technigues allows the method of recur-
sive descent to be applied to a wider class of languages. It is not, however, useful
to go to general LL(k), since the analyser would be less efficient without a cor-
responding increase in the set of languages accepted. It is worth while repeating
that, for the moment, this discussion is strictly academic, given that only LL(1)

has been used in practice, and that there is no difference between LL(1) and strong
LL(1).
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8 - PRACTICAL RESULTS -

LL(1) analysers have been used to drive working compilers for a variety
of languages since 1966. They are thus part of the scenery and have shown themsel-
ves to be extremely efficient, able to cope with the usual set of programming lan-
guages, and a practical proposition as for as inserting semantics is concerned. The
first compiler-compiler based on the technique was that of [Foster 681 and it was
used to implement a language called CORAL 66 [Currie 671 [Woodward 701.

To give some idea of space-time requirements, we quote figures from
analysers used in conversational compilers for ALGOL60 and PL/1 [Berthaud 73]. The
figures are for the executable modules produced from the macros of paragraph 4 by
the IBM 360 assembleur, and include calls of semantic functions, but not the text of
the functions. The ALGOL analyser occupied about 4 1/2 K characters, and the PL/1
abput 12 K. Semantic calls amount to about 20 % of the text. In a batch environment
on the 360 model 65 the PL/1 front end can process over 30 000 cards a minute. Since
a large proportion of this time is spent in lexical analysis and semantic functions,
the analyser was then running at over 100 000 cards a minute. These figures are, of
course, approximate.

Using interpretable code instead of an executable text has the effect,
on the 360, of dividing space requirements by a factor of two, and increasing ana-
lysis time by a factor of 1.5. All the figures can be improved upon by the use of
known, simple optimisation techniques, but this has never been necessary in our
experience.
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Chapter 2.C.

LR GRAMMARS AND ANALYSERS

J. J. Horning

University of Toronto
Toronto, CANADA

1. INTUITIVE DESCRIPTION

This chapter is concerned with a family of deterministic parsing techniques based on
a method first described by Knuth [1965]. These parsers, and the grammars acceptable
to them, share most of the desirable properties of the LL{(k) family [Chapter 2.B.].
In addition, the class of LR(k}-parsable grammars is probably the largest class
accepted by any currently practical parsing technique. The techniques with which we
are mostly concerned are, in order of increasing power, LR(0), SLR(1), LALR(1) and

LR{1). Collectively, we call these four techniques the LR family [McKeeman 1970]
[Aho 1974].

Until recently, LR parsing techniques have not been as widely used as theoretically
less attractive methods. Early presentations of the method made the theory seem
forbiddingly difficult, although readable presentations are now appearing {e.qg.,
[Aho 19747). More seriously, direct implementations of Knuth's original method were
very inefficient, and the approach was not practically useful until a number of
optimizations were discovered (e.g., [Aho 1972 a, b] [Anderson 1973] [DeRemer 1971]
[Joliat 1973] [Pager 1970]). Now, however, LR is becoming the method of choice in a
large number of situations.
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I.1. DEFINITION OF LR({K)

Informally, a grammar is LR{k) if each sentence that it generates can be determinist-
ically parsed in a single scan from left to right with at most k symbols of "lookahead.”
This means that each reduction needed for the parse must be detectable on the basis of
left context, the reducible phrase itself, and the k terminal symbols to its right.

By contrast, LL(k) parsérs must select the production to be used in a reduction on

the basis of left context, and the first k terminal symbols of the reducible phrase
combined with its right context. Thus, LR{k} parsers defer decisions until after
complete reducible phrases are found (a characteristic of "bottom-up" parsers), while
LL{k) parsers must predictively select a production on the basis of its first few
symbols. Both techniques share the property of using complete left context in making
decisions - a characteristic commonly associated with "top-down" parsers.

It is easily seen that any LL(k) grammar is also LR(k). It is less obvious that for
each k there are LR(1) grammars that are not LL(k). As we will see in Section 7.,
LR(1) also strictly dominates most other deterministic parsing methods, including the
widely-used precedence techniques.

i.2. ITEMS

To talk about what happens within an LR parser, we need a notation for partly
recognized productions. An item (also sometimes called a configuration)is a production
with a distinguished position in its right hand side. (Our usual notation will be to
place a period at the distinguished position.) If the productions are numbered, then
we can denote an item by a pair of integers [p,j], where p is the number of the
production and j is the number of the distinguished position.

For example, given the grammar

Block = ‘begin’ Declarations ';' Statements ‘end’ ;3
Declarations = Dec

's' Dec
Statements = St

1
2
3 | Declarations
4
5 | St ';' Statements
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We have the following correspondences

[2,0] Declarations = . Dec
[2,1] Declarations = Dec .
[3,2] Declarations = Declarations ';' . Dec

We will associate the following meaning to the use of an item [p,j] at some point in
the parse:

The information collected so far is consistent with the possibility that
production p will be used at this point in the parse, and that the first
J symbols of p have already been recognised.

1.3. STATES

A state is a collection of information about the progress of a parse, and may be
represented by a set of items. LR parsing is based on the observation that for each
LR grammar only a finite number of states need to be distinguished to permit
successful parsing, and that all transitions between states (corresponding to parsing
actions) may be tabulated in advance. Recall the example (Chapter 2.B., Section 1.1.)
of parsing the sentence

begin Dec 5 Dec ; St ; St end

We start (see Figure 1.3.) in the state {[1,0]} = {Block = .'begin' Declarations ';'
Statements 'end'}, which means that we expect the first production to apply, but that
none of it has yet been recognized. We may immediately recognize the 'begin', and
move to a new state containing the item [1,1] to record that fact, as well as [2,0]
and [3,0] to record the possibility of starting either of those productions. Since
the Dec at the head of the remaining text is consistent only with continuation of

the [2,0] item, we move to a new state containing only the item [2,1].

Now we have a new situation: the item [2,1] (or Declarations = Dec.) indicates that

we have recognized the complete right hand side of production 2. In general, any

item with the period on the right - called a completed item - corresponds to a possible
reduction, in this case the replacement of Dec by Declarations. After the replacement
the consistent items become [1,2] and [3,1].
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In Figure 1.3. we have labelled each state in the stack by the terminal or non-terminal
symbol whose recognition caused us to move to that state. Such labels are not a
necessary part of the state, but simplify the process of understanding the progress of
the parse. We have also indicated in the right-hand column the parsing action to
which the various transitions correspond.

2. INTERPRETING LR TABLES

Each LR parser has a parsing action table that controls its operation. Information

about the parse is saved in a state stack, and at each step the next parsing action is
selected on the basis of the top element of the state stack and the next symbol in

the input. A parsing action may either consume one symbol from the input and place

a new state on the stack (a shift action), or it may replace some of the top stack
entries by a new state and signal a reduction {a reduce action}.

2.1. FORM OF ENTRIES

The parsing action table can be represented in many different ways. A simple (but
not very efficient) representation of a parsing action table is shown in Figure 2.1.
Each state is represented by a row of a matrix, each {terminal or nonterminal} symbol
by a column. For any given combination of top state and input symbol the parsing
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Stack Remaining text Action
1. {1,013 begin Dec; + S:
eqgin Dec; Decs S; S end Shift
2. begin {[1,1][2,03[3,01} Dec; Dec; S3 S end
{{1,01}
Shift
3. Dec 2,111 ;3 Dec; S3 S end
begin  {{1,11[2,0][3,01}
{1,061y
Reduce 2
4, Declarations {[1,21(3,1]: 3 Dec: S; S end
begin {[1,1] 2,01[3.073
{[1,01}
[1.0] Shift
5. 3 {01,3]1[3,23[2,0][3,01} Dec; S5 S end
Declarations {[1,2][3,11}
begin {[131][2’0][3301}
{01,011}
Figure 1.3.
Name Block Declar- State- Dec St ;  begin end X
ations ments
1. Initial Halt 52
2. begin S5 S3
3. Dec R2
4, Dec R3
5. Declarations 56
6. : 59 S4 S8
7. ) Si10 S8
8. St S7 R4
9. Statements s
10. Statements R5
1. end Rl
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action is found at the intersection of the correspondina row and column.

Entries take one of four forms:
- blank entries correspond to errors

S entries correspond to shift actions

R entries correspond to reduce actions

Halt entries correspond to completion of parsing.

When the parser has Tooked up the next action

- if it is an error entry, recovery {described in Chapter 5.D.) is initiated.

- if it is a shift entry, the input symbol is discarded and the state number
following the S is pushed into the state stack. (This will always be a state
whose name is the same as the discarded input symbol.)

- if it is & reduce entry, the production whose number follows the R is
determined. A number of states equal to the length of the right side of this
production is popped (the names of these states will be precisely the right
side of the production) and then the left side of the production will be
treated as though it were the input symbol (the new action will always be a
shift or halt - the net effect is to replace states named by the right side
of the production by a single state named by the left side).

- if it is a halt entry, the parser quits.

Notice that Figure 2.7. contains an extra column for the symbol ' X', which does not
appear in the grammar. This is a special "end of input" symbol, whose insertion we
will discuss later.

2.2 EXAMPIE
Consider the LR parsing action table given in Figure 2.1. and our familiar sentence

begin Dec ; Det; St : St end
Starting from state 1 we have the following sequence of stacks,input symbols, and actions:

state Name input_symbol action

1 Initial begin S2

2 begin Dec S3
Initial
Dec H R2
begin

Initial



state

- TN

—_

—_ M o O

—_— M O O b

— N W

—_ M o1 O

—_ M o1 Y 0

name
begin
Initial

Declarations
begin
Initial

Declarations
begin
Initial

Dec
Declarations
begin
Initial

begin
Initial

Declarations
begin
Initial

Declarations
begin
Initial

St

H
Declarations
begin
Initial

91

input syrbol
Declarations

Dec

Declarations

St

action

S5

S6

S4

R3

S5

S6

S8

S7
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state name input symbol action

H St S8
St
Declarations
begin
Initial

S N T OV o

St end R4

St
Declarations
begin
Initial

— N 1Oy 00N

H Statements S10
St
Declarations
begin
Initial

— N T oY 0~

10 Statements end R5
St

Declarations

begin

Initial

— N O 0~

H Statements S9
Declarations
begin
Initial

— N oo

Statements end SN
Declarations

begin

Initial

L = *2 B o) R Y]



93

state name input_symbol action
1 end L R1

g Statements

6 H

5 Declarations

2 begin

1 Initial

1 Initial Block Halt

3. CONSTRUCTING LR TABLES

If we can construct a parsing action table whose entries have all the following
properties

- error entries can never be encountered while parsing correct sentences,
each shift entry specifies a state named by the input symbol,
each reduce entry is only reached when the top states on the stack are named
by precisely the symbols in its right hand side,

- halt entries can only be reached when the parse is complete,
then it should be obvious that an LR parser {operating in the manner described in the
previous section) will correctly parse any correct sentence, and detect at least one
error in each invalid one.

What is not so obvious is how to construct a table with all those properties. A
variety of algorithms have been developed to construct LR tables from grammars.
Although they differ in detail, they are all based on the same principles. We
describe first one of the simplest, the LR(0) algorithm, and then briefly sketch
various modifications to remove some of its inadequacies.

3.1, THE LR((0) CONSTRUCTOR ALGORITHM

The LR{0)} constructor works with states that are simply sets of items. After
initialization, it constructs the complete set of states that can be encountered
during a parse, by means of alternate “successor” and “closure” operations; finally
the parsing action table is derived from the items in the states (after which the
items themselves may be discarded}.



94
3.1.1.  INITIALIZATION

First, the grammar is augmented with a new production 0 G' = G '\; where G is the
goal symbol of the grammar. This explicitly brings the terminator symbol '}' into
the language, and gives us a starting point. The initial state starts with the item
[0,0], corresponding to the fact that production 0 will be used, but initially
nothing has been recognized.

3.1.2. CIOSURE

If the distinguished point in an item precedes a nonterminal symbol, then each of the
productions for that nonterminal become possibilities at that point, and should be
included (with j = 0, since no part of them has yet been recognized) in any state
containing that item. The closure of a set of items is the result of repeatedly
applying this process until no new items are added. For example, given the grammar
of Section 1.1., the closure of {[0,0]} is {[0,0][1,07}, the closure of {[1,11} is
{[1,11{2.,0][3,0]} and the closure of {[1,3][3,21} is {[1,3][3,21[4,01[5,073.

3.1.3 SUCCESSOR STATES

The shift action moves from one state to a successor by "absorbing" a single symbol.
Only items in which the distinguished position immediately precedes the input symbol
remain viable, and the successor state will contain each of these items with the
distinguished position advanced by one (“the period moved across the input symbol").
We compute the core of the successor state for each symbol as this set of advanced
items; the state itself is the closure of the core. For example, the state
{[1,31[3,21[4,01[5,0]} = {Block = 'begin' Declarations ';'. Statements 'end’;
Declarations = Declarations ';'. Dec; Statements = . St ; Statements = . St ';'
Statements} has as the core of its St-successor the set {[4,11[5,1]} = {Statements

= St.; Statements = St. ';' Statements} and the core of its Statements-successor is
{[1,41} = {Block = 'begin’' Declarations ';' Statements . 'end'}

3.1.4 ACCESSIBLE STATES

Starting from the initial state we calculate the cores of each of its successors and
then complete them. These are the states that are directly accessible from the
initial state. The process is repeated until no new accessible states are found.
(States are distinct if and only if their cores are different.) Since, for any
grammar, there are only a finite number of items, there is also a finite bound on
the number of states. Therefore the process must terminate with a finite set of
accessible states, which are the only ones that can be encountered during the parse
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of a correct sentence. Figure 3.1.4. shows the complete set of accessible states for
our running example.

Core Closure

{[0,6]} {f0,01[1,01:
(1,1 {[1,11[2,0][3,01}
2,11 2,11y

{[3,31} {3,371
{01,2103,11 01,2103, 13
([1,3103.211 ([1,31[3,2][4,01[5,00}
[5.2]1 {[5,2104,01[5,0}
(F4,17r5,17 158,1105.173
(01,473 ([1,4]1

{[5,3]) {5,373

{,50 {{1.,51y

Figure 3.1.4

3.1.5. DERIVING THE PARSING ACTION TABLE

To .convert the set of accessible states to a parsing action table is now straight-
forward. For convenience, we number the states, and create a row of the action table
for each state. The shift action corresponding to each successor state can most
easily be entered in the appropriate column as the accessible states themselves are
being calculated. The halt action is placed in the row of the initial state and

the column of the goal symbol. After the reduce entries have been filled in, the
remaining {blank) entries may all be treated as error entries.

Reduce entries are placed in rows whose states contain completed items. The various

algorithms in the LR family differ primarily in the selection of the columns in which
the reduce entries are placed. The LR(0) algorithm uses a particularly simple rule:

place them in all columns headed by terminals. This rule is adequate for states

that consist of a single item {the completed one), called LR{0) reduce states.

If a state has uncompleted items as well as the completed one, the LR(0) rule will
cause some columns to have both shift and reduce entries {a shift-reduce conflict);
if it has two or more completed items, terminal columns will have muitiplie reduce
entries (a reduce-reduce conflict). States with either kind of conflict are called
inadequate, because they do not lead to the generation of unambiguous parsing action
tables. In our example, the state {[4,1][5,1]} = {Statements = St. ; Statements =




96
St. ';' Statements } is inadequate, because when the input symbol is ';' we do not
know whether to shift or to reduce by production 4,

If there are no inadequate states, then the LR{0) constructor has succeeded and the
grammar is said to be LR(0). Very few grammars for programming languages actually are
LR(0), and it is generally necessary to resolve some inadequacies by one of the
techniques described in the next section. However, most programming languages seem

to be "almost" LR(0) in that only a small fraction of the states are actually
inadequate. The LR(0} constructor thus provides a useful first approximation to the
parsing action table.

3.2. ADDING LOOKAHEAD

The inadequate state of our example is inadequate only because of our simple rule for
placing reduce entries in the table, Simple inspection of the grammar shows that in
a canonical parse reduction by Statements = St is only appropriate when the input
symbol is 'end'. However, it is not always so simple to resolve conflicts and we
need some more general mechanism for determining the columns in which to place reduce
entries. In this section we will discuss a variety of such techniques.

3.2.1. USING THE FOLLOWER MATRIX

Each reduce action places the nonterminal that is the left side of its production on
top of the stack. If the input symbol cannot validly follow the nonterminal, then an
error will be detected immediately after the reduction - thus, there was no real
reason to have the reduce entry in that colum of the parsing action table,

The SLR(1) constructor [DeRemer 1971] replaces the LR{8) rule for reduce entries by
the more restrictive: for each completed item place reduce entries only in the
columns of terminal symbols that are valid followers of the left side of the corres-
ponding production. (An algorithm for computing the follower matrix was given in
Chapter 2.B.3,) 1If the SLR{1) constructor removes all shift-reduce and reduce-reduce
conflicts from the parsing action table, then the grammar is SLR{1). Note that we

can apply the SLR rule to all completed items, or just to inadequate states, resulting
in different parsing action tables, but not changing the class of SLR{1) grammars.

SLR(1) handles many more grammars {including our running example) than does LR(0). It
is probably an adequate class of grammars for describing programming languages. The
remaining refinements to be described do not greatly extend the class of acceptable
grammars, but are somewhat more in the spirit of LR technigues. {By more carefully
restricting the number of reduce entries they may also lead to smaller tables.)
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3.2.2 USING THE SHIFT ENTRIES

For each state with a completed item it is possible to use the shift entries in the
table to determine the state(s) that will be entered after a reduce action. Any
columns of that state that contain only error entries should not have reduce entries
in the original state. The problem is complicated by the possibility of encountering
further reduce entries, but it is possible to construct an algorithm to trace through
the parsing action table and find the minimum set of valid reduce entries for each
completed item [Lalonde 1971]. If this algorithm succeeds the grammar is said to be
LALR(1).

3.2.3. ADDING CONTEXT TC ITEMS

The original LR{k) constructor algorithm [Knuth 1965], of which the LR{0) constructor
is a special case, carries k symbols of right context with each item. For LR(1) this
means that each item is augmented by a lookahead set of symbols that may validly be
the dnput symbol when the item is completed. For example, the item [5,3], that may
be validly followed by ';' and 'end' is denoted ([5,3] {';', 'end'}).

Recall that the items in an accessible state get there in two ways: they are either
part of the core, arising from successor calculations, or they are added by closure.
We must define the treatment of items in both cases. The first case is extremely
simple - the symbols that may validly follow an item are unchangéd by the successor
operation, so the lookahead sets are carried over unchanged.

The second case is more subtle. If we add a new item {with j = 0), the symbols that
may validly follow its completion may come either from the tail of the item that
caused it to be generated, or (if the tail can produce the empty string} from the
lookahead set of that item. We thus require the starter set and empty string computa-
tions of Chapter 2.B.3. to calculate closures. Items within a state with the same
[p,j] but distinct Tookahead sets are combined, and given the union of the lookahead
sets.

In computing the set of accessible states, the lookahead sets may be treated in two

different ways. If states with distinct lookahead sets are treated as distinct, the
LR{(1) algorithm results; if states are treated as distinct only if the LR(0) states

are distinct, and the union of lookahead sets is taken when states are merged, then

the result is equivalent to the LALR(1) algorithm previously described.
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4. REPRESENTING LR TABLES

4.1. MATRIX FORMS

Thus far we have kept our parsing action tables in a very simple matrix form, for

ease of comprehension. Although table Tookup in a simple states x symbols matrix can
be very efficient, programming language grammars may lead to tables with hundreds of
states and symbols, and the space to store such a table may be a significant fraction
of the total size of the compiler. In the next section we discuss an alternative form
of the table, and in the following section a number of techniques that can be used to
reduce the memory requirements of either form.

4.2. LIST FORM

Although it may not be obvious from our small example, large parsing action tables are
typically very sparse, and various sparse matrix representations may be tried. One
very useful form is to store 1ists of the non-error entries, organised either by

rows or by columns. These two alternate forms of Figure 2.1. are shown in Figure 4.2.1

Frequently, a pseudo-program notation that is equivalent.to Tisting the terminal
columns by row and the nonterminal columns by column is employed (cf. [Aho 19741).
Our example grammar is shown in this notation in Figure 4.2.2.

By Rows By Columns

State Symbol Action Symbol State Action

1 Block Halt Block 1 Halt
begin S2 Declarations 2 S5

2 Declarations S5 Statements 6 S9
Dec S3 7 S10

3 : R2 Dec 2 S3

4 H R3 6 S4

5 H S6 St 6 S8

6 Statements S9 7 S8
Dec S4 H 3 R2
St S8 4 R3

7 Statements S10 5 S6
St S8 8 S7

8 H S7 begin 1 S2
end R4 end 8 R4

9 end S11 9 SN

10 end RS 10 R5

1 1 R1 i 11 R1

Figure 4.2.1
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by states

Ti if Input = 'begin' then $hift (2) else Error
2: if Input = Dec then Shift (3) else Error
3: if Input = ';' then Reduce {2} else Error
4: if Input = ';' then Reduce (3) else Error
if Input = ';' then Shift (6) else Ervror
if Input = Dec then Shift (4)
else if Input = St then Shift (8} else Error
7: if Input = St then Shift (8) else Error
if Input = ';' then Shift (7)
else if Input = 'end' then Reduce (4) else Error
9: if Input = 'end' then Shift {11) else Error
10: if Input = 'end' then Reduce (5) else Error
1: if Input = ' ' then Reduce (1) else Error

1

1]

1}

i

by symbols

Block : if Stacktop = 1 then Halt else Error
Declarations : Shift (5)
Statements: if Stacktop = 6 then Shift (9)

else if Stacktop = 7 then Shift (10)

Figure 4.2.2.
4. 3. EFPICIENCY TRANSFORMATIONS

There are many things that we can do to our parsing action tables, either to speed up
parsing or to reduce the amount of storage required. This section discusses a few of
the possible transformations that seem to be among the most effective. Some depend
only on properties of the tables, and hence can be applied to any representations;
others exploit properties of particular representations.

4.3.1. LR(0) REDUCE STATES

States that consist of a single completed configuration have the same reduce entry in
all non-blank columns. At the cost of a slight delay in error detection (not involving
reading another symbol), we can replace these LR(0) reduce rows by constants associated
with the state. Better yet, by creating a new “shift-reduce” form of entry in the

tabie we can replace all references to LR(0) reduce states in the table, quite typically
effecting a 25-40% reduction in the number of states {and, in matrix form, in the

size of the table). Figure 4.3.1. shows Figure 4.2.1. transformed to this form.



By Rows By Columns

State Symbol Action Symbol State Action

1 Block Halt Block 1 Halt
begin S2 Declarations 2 55

2 Declarations S5 Statements 6 59
Dec SR2 7 SR5

5 5 S6 Dec 2 SR2

6 Statements S8 6 SR3
Dec SR3 St 6 S8
St S8 7 S8

7 Statements SR5 3 5 Sé6
St S8 8 S7

8 H S7 begin 1 S2
end R4 end 8 R4

9 end SR1 9 SR1

Figure 4.3.1.

4.3.2. COLUMN REGULARITIES

A1l the shift entries in a column refer to states named by the symbol heading that
column, a small fraction of the total. If statey are sorted by name {and there is no
reason for them not to be) then the shift entry for a given row need only select the
correct state out of the small set of states with that name. Typically, this allows
us to reduce the number of bits used to encode state numbers from around 8 to around

2.
4.3.3.  ROW REGULARITIES

The number of distinct reduce entries in a row is generally small (usually 0 or 1).
We may move the actual production numbers over to the margin to cut the width of
reduce entries in the matrix.

4.3.4. DON'T CARES

By analysis, we can show that some of the error entries in the parsing action table
will never be encountered, even in attempts to parse incorrect sentences. In
particular, note that all blank entries in the nonterminal columns are really "don't
cares" and could be replaced by anything. In particular, if a column contains no
error entries, we can replace all the "don't cares” by the common entry, and then
replace all occurrences of that entry in the column 1ist by an else entry at the end

of the Tlist.
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4.3.5. COLUMN REDUCTION

If all the differences between two columns involve a "don't care" in one or the other of
them, then the two columns may be merged just by replacing the "don’t cares.” This
transformation is greatly facilitated by the transformation of Section 4.3.2. HNote

that the freedom to re-number states may easily be exploited to make more mergers
possible.

4.3.6. ROW REDUCTION

The preceding transformations will generally leave us with rows that differ only in
"don't care" positions, which can be combined for a further reduction in space. All
of these transformations are detailed by Anderson et al. [1973].

4.3.7. LIST OVERLAPPING

It is generally the case that many of the lists formed in a 1ist representation
contain identical sublists. By using a pointer plus length representation for lists,
and carefully ordering the elements, reductions in space by a factor of two or three
are generally possible [Lalonde 1971].

4.3.8. MATRIX FACTORING

As we mentioned earifer, the matrix form of tables is generally preferred for fast
Tookup. Joliat [1973] has taken the approach of retaining the matrix form, but
factoring it into a number of special-purpose matrices {e.g., a Boolean matrix that
merely indicates error entries). Although this initially multiplies the space
requirement, the new matrices mostly have very simple forms with many "don't care"
entries. By applying the various transformations seperately to each matrix, a very
compact form can be obtained. The LR parsers constructed by his techniques are
probably about as small and fast as any available table-driven parsers.

4.3.9. ELTMINATING SINGLE PRODUCTIONS
For syntactic reasons, grammars for programming languages frequently contain productions

of the form X = Y, 1.e., in which the right side is a single symbol. Furthermore,
these single productions do not generally have any semantic actions associated with

them, so that performing the corresponding reduction during a parse is pure waste motion.
Single productions may be eliminated from the parsing action table by replacing each
such reduce action in the tabje by the action that will be taken after the reduction.

The conditions under which this transformation preserves the correctness of the parser
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are discussed by Aho and UlIman [19731. This transformation typically doubles the
speed of the parser [Anderson 19731].

5. PROPERTIES OF LR GRAMMARS AND ANALYSERS

LR analysers, and the grammars for which they tan be constructed, have many desirable

properties, some of which are shared by LL(1) grammars. This section reviews several

of these properties that are of importance to compiler-writers, although formal proofs
are not given {but see [Aho 1972, 19731).

The first important property of the LR family is the existence of computationalily
feasible constructor algorithms for LR(0), SLR(1), LALR{1), and LR{1) (in increasing
order of cost). These algorithms can construct a parsing action table for any given

grammar and determine whether it contains any inadequate states. Computation times for
typical programming language grammars range from a few seconds to a few minutes.

The next property is that each constructor algorithm is also a decision algorithm

that determines whether the grammar is in the corresponding class. Each of the classes
of LR grammars is unambiguous, so all ambiguous grammars are rejected. Each class

also rejects some unambiguous grammars, but in practice {except for LR(0)) almost all
rejections are for ambiguity. Since no general test for ambiguity is possible [Aho
19721, the various LR tests are about as good as we can do, and are often used to
"debug" ambiguous grammars even when some other parsing algorithm (e.q., recursive
descent) is ultimately to be used in the compiler.

The interpreters for LR tables in their various forms are all quite simple and easy

to implement in almost any programming language (they don't even require recursion).
Furthermore, the language parsed by an LR parser can be changed merely by changing the
tables (perhaps even at run-time) without any change to the program at all. Most
important, given tables without inadequate states, they share with LL{1) parsers the
properties of determinism and linearity. The former means that they never make a
mistake and have to backtrack, the latter, that the time to parse a sentence is

directly proportional to the length of the sentence. (More general algorithms may
require time proportional to the square or the cube of the length - clearly impractical
for a compiler.)

Each LR parser can be guaranteed to correctly parse every correct sentence in its
language and to detect an error in any incorrect sentence - properties that we ought
to require of any parser (although some, e.g., operator precedence, do not possess the
latter property). Moreover LR parsers are almost unique in that they guarantee to
detect errors at the first possible point, i.e., before shifting the first symbol that




103

cannot be a valid continuation of the input seen so far. This property is extremely
important in error diagnosis and recovery (Chapter 5.D.), yet the only other well-
known class of practical parsers that shares it is LL(1).

Semantic actions can readily be incorporated in LR parsing action tables. However,

it is customary in "bottom-up" compilers [Wirth 1966][McKeeman 1970] to associate
semantic actions only with the reduce actions, thereby allowing semantic modules to

be cleanly separated from the parsing module. Since LR parsers have no difficulty
with empty right sides, null productions can be inserted anywhere in the grammar as
hooks on which:to hang semantics. (If the grammar happened to be LL{1) to start with,
inserting any number of such null productions will never cause an LR parser any
difficulty.)

6. MODIFICATIONS 70O OBTAIN LR GRAMMARS

Most unambiguous grammars for programming languages are SLR(1} - hence LALR{1} and
LR{1) - in the form in which they are originally written. Thus there has been
relatively little work on mechanical transformations to obtain LR grammars,
corresponding to the transformations described in Chapter 2.B.5. for LL{1). However,
there are a few situations in which “naturally occurrring" grammars contain local
ambiguities that must be eliminated to make them acceptable to LR constructors. This
section discusses two examples.

6.1. MULTIPLE-USE SEPARATORS

The grammar in Chapter 2.B.1. uses the semi-colon as a separator in three different
productions. It fails to be LR(1) because of shift-reduce conflict involving the

second production DL+D.(which may be followed by the semi-colon in the first production),
and the third production, DL - D ; DL {which contains a semi-colon}. Two-symbol
Tookahead would resolve this problem (the grammar is SLR{2)}.but a more practical
solution is to transform the right recursion on DL into a left recursion, resulting

in the grammar of Section 1.2. Note that while left recursion must be eliminated for
LL(1) parsing, it causes LR parsers no difficulty. Right recursion is only a problem
for LR parsers if the internal separator may also be a follow symbol.

6.2. COMPOQUND TERMINAL SYMBOLS

Consider the grammar fragment:

St =Var ‘':' ‘=" Exp
| Lab St ;
Var = Id ;

Lab = Id ':' ;



104

Among the states for this grammar there will be one containing the completed item

Var = Id ., which has ':' as a valid follow symbol, and the uncompleted item Lab =
Id .':' , leading to a classical shift-reduce conflict. Again, one more symbol of
lookahead (to see if ':' is followed by '=') would solve the problem, but the usual
solution is to make ':=' into a single symbol - thereby forcing the stanner to do the

extra lookahead.

7. COMPARISON WITH OTHER TECHNIQUES

Throughout this chapter we have compared properties of LR parsers with those of parsers
obtained by other techniques. In this section we summarize comparisons that may affect
the choice of a parsing technique.

7.1, GRAMMAR INCLUSIONS

The LR(1) constructor accepts all grammars accepted by any of the other practical
canonical parsing techniques. In addition, each of the other techniques rejects some
grammars accepted by LR(1).

While it is hard to place a meaningful metric on these infinite sets, in practice it
turns out that the difference between LR{k} for k > 1 and LR(1} is not very significant,
nor is the difference between LR(1) and LALR(1) or SLR(1). However, both LR(0) and
LL{1) accept such significantly smaller classes of grammars that they are only
practically usable with mechanical transformations such as those described in

Chapter 2.B.5. The various precedence techniques also accept noticeably smaller classes
of grammars, and some transformations are generally required. Figure 7.1. summarizes
the inclusion relations among various classes of grammars.

Context—fdge Grammgh____~_~___“~_____~17—_
Floyd-EVans Unamb'i guous perator

Parsable CFG'S Precedence
____“______,__—-—~'——'””“'___—-_—-LR~h-~‘“ﬁﬁ“““--~,____‘

BRC L&(]) LL
MSR____‘"”*“—-—£1:11:il LALR(]) RCF
Uniquely Invertible S1mp1e Transition SLR
Extendeg‘E:ififiiii~§‘~“ rSP Matr1ces

Uniquely Invert1b1e

Weak Pr?cedence

Simple Precedence LR{0) LL(1)

Figure 7.1. Grammar Class Inclusion Hierarchy
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7.2. LANGUAGE INCLUSIONS

In the last section we discussed the classes of grammars accepted by the various
techniques. However, just because a technique rejects a particular grammar does not
necessarily mean that it will reject all other grammars for the same language. Indeed,
all our grammar transformation techniques aim to convert an unacceptable grammar into

an acceptable one for the same language. It is interesting to determine the limitations

of such transformations.

It has been shown that there are differences among the classes of languages recognized
by the various parsing techniques. The largest practically recognizable class is
called the deterministic languages, and it is precisely the class defined by the

LR(k) grammars for any k > 1, or by the LALR(1) grammars, or by the SLR(1) grammars.
Thus, we do not sacrifice any languages when we restrict our attention to SLR{1) - in
fact we can mechanically transform any LR{k} grammar to an SLR(1) grammar for the same

fanguage. Similar remarks hold for some of the more general precedence techniques
(such as mixed-strategy precedence techniques [McKeeman 19707), but not for Wirth-Weber
Simple Precedence [Wirth 1966], which accepts a smaller class, the simple precedence

languages.

It has been shown that the classes of LL{k} languages are distinct for every k, and
properly contained in the deterministic languages. Thus there are some languages with
SLR(1) (or even LR(0)) grammars that do not have {L{k) grammars at alll This is
sometimes thought to prove the superiority of the LR approach, but, in practice,
programming languages do not actually seem to fall in the gap between LL{1) languages
and deterministic languages. Figure 7.2. summarizes the language inclusion hierarchy.

Context-free Languages

Deterministic Languages

LL Languages Simple Precedence
Languages

LL(1) Languages
Operator Precedence

Languages

Figure 7.2. Language Class Inclusion Hierarchy
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7.3.  ERROR DETECTION

One of the major reasons that LR and LL{1) parsers have been singled out for particular
attention in this course is that their error detection and diagnostic capabilities are
substantially superior to competitive techniques. Not only is the error detected at
the earliest possible point, but the parsing action table contains, in a readily
interpreted form, a list of the symbols that would have been valid continuations at
that point. This information can be used to supply a highly meaningful diagnostic
message, and may also be useful in error recovery (cf. Chapter 5.D.).

7.4. EFFICIENCY

Various studies {[Lalonde 19711[Anderson 1973]{Joliat 1973]) have shown that LR
parsers can be made as efficient as any technique of comparable generality, in both
space and time. Compared to the demands of other processes within compilation, the
requirements of LR parsers are quite modest.

Direct comparison of the efficiencies of LR and LL(1) parsers is difficult, because
the usual implementation of the latter (recursive descent) imposes a substantial over-
head in procedure calls and stack management that is not intrinsic in the technique.
{If the compiling technique requires most of the procedure calls and stack management
anyhow, then the added overhead due to parsing may be minimal.} Recursive descent
tends to spread the parser out throughout the compiler, and it is difficult to
determine the costs of parsing {e.g., the space and time costs of the procedure calls)
in a machine-independent fashion. There is some reason to believe that comparable
implementations of LL{1) and LR parsers {e.g., both non-recursive and table-driven)
would have almost equal efficiencies.

8. CHOICE OF A SYNTACTIC ANALYSIS TECHNIQUE

The compiler-writer does not really want to concern himself with how parsing is done.
So long as the parse is done correctly, without using too many resources, and with
adequate hooks on which to hang semantics, he can live with almost any reliable
technique. ({In fact, he can probably switch techniques without affecting the rest of
the compiler at all.) Thus, the choice of a particular technique is often made for
reasons that have little to do with the intrinsic merits of the technique.
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Probably the most important external factor is the availability of the appropriate
constructor algorithm on an available machine. Only if more than one constructor is
available are factors like speed, table size, class of grammars accepted, or even

error detection, Tikely to be considered. A factor of some importance to the compiler-
writer {though often neglected by authors of constructor programs) is the quality of
diagnostic messages produced when problems are encountered in the grammar. If a good
LR constructor is available, its wider classes of languages and grammars will probably
be predominant factors.

1f none of the available constructors is suitable, the balance shifts to LL(1)
techniques. It is easier to quickly build an acceptably efficient LL(1) constructor
than almost any other type. If even that imposes an unacceptable overhead, a
recursive descent parser may be hand-constructed {and hand-checked for the LL{1)
condition). This is somewhat less reliable and less flexible, but for an experienced
compiler-writer may well be the quickest way to get the job done.
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CHAPTER 2.D.
LEXICAL ANALYSIS

Franklin L. DeRemer

University of California
Santa Cruz, California, USA

1. Scanning, Then Screening

Early in the compilation process the source program appears as a stream of charac-
ters. The two subprocesses of "scanning” and "screening" constitute the process
known as lexical analysis.

Scanning involves finding substrings of characters that constitute units called
textual elements. These are the words, punctuation, single~ and multi-character

operators, comments, sequences of spaces, and perhaps line boundary characters. In
its simplest form a scanner finds these substrings and classifies each as to which
sort of textual element it is.

Screening involves discarding some textual elements, such as spaces and comments,
and the recognition of reserved symbols, such as the key words and operators, used
in the particular language being translated. It is the output of this process,
usually called a token stream, that is the input to the parser.

For example, consider the following 1ine from an Algol program represented as a
character stream:

COOOEALECHCRODTCIROHOEROROECTORO0 0

After scanning, the program may be regarded as being in the following form:

D P O POLH POPRPOR
LA
OOCOOONOOOROBOTCG
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where SP means "spaces”, ID means "identifier", IN means "integer", and OP means
"operator”. After screening, the program would be represented by the following:

@D @@@@g@
O ®) )
Of course, the parser reads only the names of the top nodes in this sequence, but

the "subrosa information" (e.g. which particular identifier is meant for each ID
node) is carried along through the parsing process for later processing.

2. Screening

We discuss screening first because it is simpler and consequently our discussion
will be shorter. The screening process may be formally specified via a set of rules
such as the following:

=> (poof!)

etc.
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where the last rule means that an SP node, with any number of descendants, simply
disappears {is erased). Formally, this set of rules constitutes a transformational
grammar, as will be discussed in section 2.E below. Informally, it is simply a list
of reserved words and reserved operators, plus a statement of which textual elements
are to be ignored {e.g. spaces).

Perhaps the easiest implementation of a screener {reserved symbol processor) depends
upon using a string table, which is undoubtedly used in the compiler anyway (see the
section on "symbol tables" below). If in initializing the compiler we enter the
reserved symbols first in the string table and remember the index r of the last one
entered, then when the scanner finds an identifier, for instance, we may decide
whether it is reserved by looking it up in the string table and asking if its index
is less than or equal to r. We look up each identifier anyway so the compiler may
work uniformly with indicies into the string table rather than with strings of non-
uniform length. Thus, this reserved symbol process is extremely cheap.

Implemented thusly, the screener may be viewed as a table-driven processor. The
reserved symbols constitute the tables. They are stored in the string tabie.

3. Scanning

3J. Lexical Grammars

One can usually specify the textual elements of a programming language, i.e. its
lexical level, with a regular grammar or a regular expression, or most conveniently
with a mixture of the two in the form of a transduction grammar. For example, con-
sider the following grammar, GLEX:

Text = {{Identifier | Integer) Spaces)™ ;
Identifier = Letter (Letter | Digit | '_f)* = 'ID' ;
Integer = Digit Digit * => "IN’ ;
Spaces =0 ¥ => 'SP' ;
Letter ='a' | ' | 'c¢';

Digit = 'ot | 1|2

(sometimes the notation D+ is used to mean D D *. i.e. one Or more occurrances).
This grammar describes a very simple lexicon containing identifiers, integers, and
spaces. Identifiers and integers must be separated from each other by at least one
space. The program can be empty (contain no characters); it cannot begin with
spaces, but it must end with at least one space. We have 1imited the number of
letters and digits so that we may use the grammar as a running example below.
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3.1.1. Tokens

We require that the nonterminal vocabulary of a lexical grammar, such as GLEX’ be
partitioned into three kinds of nonterminals:

(1) "textual element" nonterminals, or tokens, are the ones appearing as left parts
of productions having a tree part; furthermore, ail productions (alternatives) for
tokens must have tree parts,

(2) nonterminals that generate terminal strings without ever generating any tokens,
and

{3) nonterminals that must generate tokens to generate terminal strings in such a
way that, for any such nonterminal A, every terminal string n that can be derived
from A must be derivable in the form A . v -t n such that v is a string of tokens.

Thus, we have required a stratification of lexical grammars into levels. Let us

call the three subvocabularies of nonterminals V v and V

token® “<tokens’ stokens’

respectively. In GLEX we have

={Identifier, Integer, Spaces},
={Letter, Digit}, and

={Text}.

Vtoken
V<tokens

v>tokens

3.7.2. A Regularity Condition

To further restrict lexical grammars, we require that no nonterminal be self-embed-
ding. That is, if A is a nonterminal, then for every derivation Aa—+ yA peither
yor eomust be €. An easy way to satisfy this condition when constructing a lexi-
cal grammar is always to use either left or right recursion, or neither, but never
to mix the two in one grammar. Given a purported lexical grammar it is easy to
check that the condition of no self-embedding is satisfied.
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It is well-known [Hopcroft 1969] that this condition is sufficient to guarantee that
the grammar generates a regular language. Thus, we may freely use regular and
finite-state techniques to process this lexical level of the language.

3.1.3. Converting Regular Grammars to Regqular Expressions

Well known techniques exist for converting regular grammars to regular expressions
[Hopcroft 1969]. Basically, one eliminates nonterminals from the grammar as one
would eliminate variables from a set of linear equations. The technique is alge-
braic in nature and we are dealing with regular algebra [Kleene 1956].

Given a recursive nonterminal A with productions such as
A+ % A A 81
and
A o A+ A B
we can reduce these to one production, namely
A (o
or if m = 0 then simply A ~ o I

1 Joue un) (s] |...|sm)*
o Analogously, right recursion (A - BiA)

would produce
).

Having eliminated directly recursive productions in this way, we can next eliminate

A (e] ]...[gm)*(a] ]...ian
some occurrences of nonterminals by substituting production right parts for occur-
rences of the left part in other productions. In general, this will produce new
directly recursive productions that will have to be eliminated as above.

This process can be iterated until one production remains whose left part is the
start symbol, or stopped when desired. The process would get into an infinite loop
if there were a self-embedding nonterminal in the grammar, since we have given no
rule to eliminate this kind of recursion, hence the importance of the regularity
condition given above.

3.2. Generating Scanners Via LR Techniques

3.2.1. Using A Simplified LR Parser As A Scanner

To use LR parser construction techniques to generate scanners, we first use the
latter conversion technique to eliminate all nonterminals from a lexical grammar
except for the tokens and the start symbol, and we eliminate their recursion, if any.
Example GLEX’ the version of GLEX that is to be mapped into a parser is as follows:
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Text = ({Identifier | Integer ) Spaces)*;

Identifier = (fa*|'b*|'c')('a'|*b'| c’| o' "1 [ 2| ")*
= 'ID’

Integer = ('o'["1'|'2')('o'|'1"]'2")* = 'IN'

Spaces = L) => 'Sp!

For GCEX we have
VEoken = {Identifier, Integer, Spaces},
v:tokens = #, and v;tokens = {Text}.

Converting the grammar in this way means that the only reductions to be performed by
the resulting parser will be to tokens or, at the end of the entire text, to the
start symbol. On this last reduction the parser will enter the exit state, as usual.
What state should the parser (scanner)enter after a reduction to a token? As in the
case of context-free grammars and the LR parsers described in section 2.C above,

this question is answered by restarting the parser in the state it was in at the be-
ginning of the phrase being reduced and then causing it to read the token being re-
duced to.

text-free grammars. Lexical grammars have no self-embedding, due to the regularity
condition, thus no stack is needed to match left against right context. Furthermore,
our restriction that the grammar be stratified, with the tokens being involved in
generating all terminals but never other tokens,means that the parser will repeatedly
read {scan) some characters and reduce them to a token until it reaches the end of
the string, when it will quit. Thus, to restart after making a reduction all that
the parser (scanner) needs to know is the state it was in after the previous reduc-
tion.

To map our stratified, reduced lexical grammar into a parser (scanner) we must extend
our LR parser construction techniques to deal with regular expressions. Since we
already know how the machine is to make reductions, all we need are some rules for
moving the LR marker (dot) through the regular expressions for the purpose of com-
puting the parser states. The following three rules are what are necessary [Earley
1970].

During the computation of the closure of each set of items:
(1) If an item of the form A » v ~(w1 }...}wn)p
appears, replace it with n items
A~y ('W1|~--an)O

Ay (w]l...l-wn)p
(2) If an item of the form A >~y (...]w,;"

[..u)p
i
appears, replace it with the item
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Ay (o] Wy foo) =
(3) If an item of the form A > y « (w)* p
or of the form A~ ¥ (w<)* o appears,
replace it with the two items
Ay (sw)* o
Ay ((w)*p
The idea behind these rules is to keep track of which parts of which productions are
applicable at a given point in the input string, in a manner consistent with the LR
construction technique and with the meanings of regular expressions. Note, in parti-
cular, that rule (3) returns the marker {dot) back to the beginning of the iterated
phrase.

Example. We now construct the states of the LR parser for grammar G’LEX' Note that
to compute the parser we have added the terminator symbol (end of file) to the first

production.

Start: Text = +{(Identifier | Integer} Spaces)* 'l [Rule {3)]
Text = (-(Identifier | Integer) Spaces)* '|' [Rule (1)]
Text = ((ldentifier | Integer) Spaces)* « ']' - EXIT
Text = {{-Identifier | Integer) Spaces)* 'l' - Identifier
Text = {(Identifier | *Integer) Spaces)* '|' - Integer
Identifier = a'l'b'|'c') (...)* [Rule (1)]
Integer = -('o'|'1'}'2") (...)* [Rule (1)]
Identifier = (-'a’ l b'i'c') (...)* -+ Letter
Identifier = ('a']-. I Y (..L ) > Letter
Identifier = ('a'|" ') (L.)* -+ Letter
Integer = (‘o' ["1"|'2") (...)* + Digit
Integer = {'o']-"1"|'2"y (L..)* + Digit
Integer = (fo'|"1']r2") (L.} - Digit

Identifier: Text = ((Identifier-|Integer) Spaces)* ']’ [Rule (2)]
Text = ((Identifier | Integer)-Spaces)* ']'~ = Start
Spaces = Lty -+ Blank

Integer: Text = ({Identifier |Integer:) Spaces)* '] [Rule {2)1
Text = ((Identifier |Integer)+Spaces)* '|' + Start
Spaces CREU G L -+ Blank

{Integer is actually the same state as Identifier.)

Letter: Identifier = {'a'<]'b'{'c') (...}* [Rule (2)]
Identifier = ('a' |['b'4'c') (...)* [Rule (2)]

(
Identifier = ('a '|'b'|' ) (L) [Rule (2)]
Identifier = (...).("a' I'b" 'c' J'o' |"1" ['2" {'_")* [Rules (3); (1]
(...) ( al 'bt L) '}* - Letter
(...) (*a’

Identifier =

Identifier = N T L - Letter
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Identifier = ( D o(atth .t ) - Letter
Identifier = (...) ('a'|'b'|...[' " )*. + Reduce
Digit: Integer = (F0'-]'1']'2") (...)* [Rule (2)]
Integer = ("0'['1'-]2") (...)* [Rule {2)]
Integer = ('o'jr1M)'2t) (..2)* [Rule (2)]
Integer = (...)+('o'|'1']'2")* [Rules (3); (1)1
Integer = (...) (-'o'|'T'|'2")* » Digit
Integer = {...) ('o'|."1"|'2" )* » Digit
Integer = (...) ('o'{'1" |"2") + Digit
Integer = (...) (Po'j1r 2> » Reduce
Blank: Spaces =ty [Rule (3)]
Spaces =Pt oy -~ Blank
Spaces R S LA - Reduce

Note that in the above construction, states Identifier and Integer should really be
one state since they have exactly the same transitions. This is becuase the three
rules above say to replace the original item. Note that the second two items listed
in each of the two states are the same as those two in the other state, thus the two
states are indeed identical; i.e. really just one state (call it I). In several
other instances, for example relative to the transition from state Letter back to
state Letter, this state identity has been recognized, but not emphasized in the
construction above.

We emphasize that itemswith [Rule (i)] to their right above are not actually in the
states, but have been replaced according to the indicated rule. State identity is
determined by comparing the other items.

To display more clearly the structure of our scanner for grammar GLEX we present its
state diagram:

i H
Start Exit
Identifier

Integer

Reduce to Spaces

IaI” Ibl’ IC',
al, b, ‘e ‘Letter; (] —»Reduce to Identifier

\\\g'// - »Reduce to Integer
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Note that we have indicated by {?} above that three of the states need look-ahead
sets to determine read-reduce decisions. Look-ahead sets can be computed for this
parser in essentially the same ways as for parsers for context-free grammars. In
this particular case, the unique transitions under the tokens Spaces, Identifier,
and Integer make it easy to see that the needed sets are:

£'1', 'at, 'b', ‘c¢', 'o', 17, '2'} for Spaces

{" " for Identifier

o for Integer.
Such scanners can be implemented directly as executable programs, or interpretively
via tables, as LR parsers usually are. However, it is noteworthy that these
scanners frequently have states with direct loops, such as states Blank, Letter, and
Digit, above. Such states should be implemented as fast as possible since they
typically do the bulk of the scanning. (The "translate and test" (TRT) instruction
of some models of the IBM 360 is useful for this purpose, for example.)

3.3. Hand-Written Scanners [Gries 1971]

Writing a scanner by hand is actually quite easy. In effect, we simply encode the
state diagram into a program, preferably in®the form of a case statement embedded in
a while Toop, as illustrated below.

This is not to imply that one need construct a state diagram for this purpose. On
the other hand, in designing the lexicon of the language, it is important for both
the human reader and the scanner to start each different kind of token with a

symbol from a set distinct from the sets of symbols beginning other kinds of tokens.
This should be readily apparent from the simplicity of the program structure illus-
trated below.

Several comments are appropriate before presenting the sample scanner:

We have related this program to GLEX and the state diagram given above by inserting
labels and comments and by using the names (constants) ID, IN, and SP. Note that
the outer while loop implements the "major cycle” in the state diagram, while the
inner while Toops implement the "minor {direct} cycles". HNote, however, that the
program differs from the state diagram in that there is no check for a blank (r")
after identifiers and integers in the program fragment.

"Token_type" is intended to map characters into the appropriate case number. "Is_
identifier_character” and “Is_digit" are intended to map characters into truthvalues
in an appropriate way. "Blank" and "End_of file" are intended as constants whose
values should be obvious.



c c
c A sample scanner program-structure. ¢
< <
Read (Next_character); ¢ Read the very first
character. c
Start: while Next_character == End_of_file ¢ Look for the end. 4
do case Token_type (Next_character) in ¢ What kind of token
is next? c
Identifier:
begin Read (Next_character);
while Is_identifier_character (Next_character)
do Read (Next_character) od; c state Letter c
Make_token (ID)
end,
Integer:
begin Read (Next_character) ;
while Is digit {Next_character)
do Read (Next_character) od; c state Digit c
Make_token (IN)
end,
Spaces:
begin Read (Next_ character);
while Next character = Blank
do Read (Next_character) od; ¢ state Blank c
Make_token (SP)
end
Error:
begin ... RECOVERY ... end
esac od
c We have not bothered with the detail of declarations c
c because the intent should be clear from the choices of c
¢ identifiers and the surrounding text. c

"Read" is assumed to read one character per call from the input stream ahd to

treat line or card boundaries appropriately. "Make token™ is intended to construct
tokens from the characters read since it was last called, except for the very last
character, and perhaps to detect reserved symbols, and communicate the tokens to the
parser in some way. We have specifically avoided irrelevancies, for our purposes
here, of how these variables are implemented; e.g. whether the scanner and parser
are coroutines or procedures, whether they operate in series or in parallel, whether
"Next_character” is actually a character or a numerical code, etc.
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3.4. Error Recovery

Little can be said about recovering from lexical errors for either the automatic or
the hand written case. The problem is a lack of redundancy at the lexical level of
language design.

While scanning a textual element, the scanner is always either in a context in which
it has seen some left context that must be matched by some right context {e.g. the
terminating quote on a string constant) or it is in a context that may legally end
at any point (e.g. an identifier). 1In the latter case, characters in error show up
as the beginning of the next textual element and can usually be skipped or replaced
with a blank (' ') to recover safely. In the former case a scan to the end of the
current line is usually in order to try to find the desired right context; if found
the intervening text can be considered part of the current textual element; other-
wise, the rest of the Tine is usually best skipped and the scanner is best restored
to its start state,

4. On Not Including "Conversion Routines" in Lexical Analysers

Probably most compilers have been written with "conversion routines" embedded in and
/or called by the lexical analyser. A call to such a routine usually occurs immed-
iately after each token is discovered. Such routines usually convert digit strings
to some “internal” integer representation, for example, or if a decimal point is
encountered, to some representation of reals; or they may interpret special charac-
ters inside string constants; etc.

A1l too often the "internal" representation chosen is that of the machine on which
the language is initially being implemented, with little or no thought that the com-
piler might later be moved to another machine or be modified to generate code for a
different machine. Such decisions are usually made in the name of "efficiency", of
course.

It is our thesis that such compiler design destroys modularity and portability.
Ultimately, conversion must be made into the representations defined as part of the
target language, i.e. target representations, and since the code generating parts
of the compiler are already, and of necessity, intimately dependent upon those re-
presentations, that is the place where such routines should be placed and called.
That is, dependencies on the target representations should be localized.

It is desirable to keep the entire front-end of the compiler independent of target
representations, if possible. If constants are translated to target representa-
tions by the lexical analyser, tables of several different types usually must be
mainained and some processors that do not need to know thoserepresentations, none-
theless must be programmed in terms of, or around them. For example, if constants
are converted and an error message should relate to one, it must be converted back
to source representation for printing.
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In summary, we suggest that the scanner, Screener, parser, standardizer (transform
er), declaration processor, type checker, and flattener, should all be independent
of target representations, if at all possible, (See section 2.E below on transfor-

mational grammars for a description of the compiler structure assumed in the pre-
vious sentence.)
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CHAPTER 2.E

TRANSFORMATIONAL GRAMMARS

F. L. DeRemer
University of California

Santa Gruz, California
u, S. A.

1. Language Processing as Tree Manipulation

One goal of researchers in the area of programming language translation techniques
has been, and will for some time be, to develop a language-description language such
that language descriptions can be mapped straight-forwardly into compilers. The
lessons' of structured programming would lead us to expect each compiler to be a col-
tection of modules, and correspondingly, each language description to be moduiar.

Some compiler modules would be expected to be language independent. Examples would
be imput and output modules, as well as a symbol table module for collecting attri-
butes associated with programmer-invented names. Such modules would, of course, not
be directly related to modules of any particular language description.

Other compiler modules would be expected to be, at least in part, directly specified
by modules of the language description. These might be table-driven modules, in
which all but the tables are language independent, or they might be totally rewrit-
ten for each language, depending upon implementation considerations. Examples of
such modules would be table-driven scanners, reserved word processors, parsers, and
as we shall see shortly, "transformers" and "flatteners".

Any programming system that aids in the construction of a translator (compiler) is
calted a "translator writing system" (TWS). A system which takes as input programs
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in a formally defined language-description langauge, and which is to produce a com-
piler (or equivalently, tables) as output, is called a "compiler compiler" (CC).

The ideal language-description language would be useable by a language designer who
is not necessarily also a compiler writer. That is, this user should be familiar
with the various levels of language description/processing, but need not be familiar
with the systems programming techniques employed in implementing a compiler.

In [ DeRemer 1973] we suggest that the ideal language description is a sequence of
grammars that corresponds to the sequence of modules that appears conceptually, if
not actually, in compilers. The corresponding phases or levels of language proces-
sing are illustrated in Figure 1.

COO0PEO®O®ROOOOOE®OEOECOOO

(a) The PAL program "let x = 3 in x + 1" in character stream form.

[identifier) {identifier] (=) (mteierl (identifTer) (identifier) (¥) (integer)

OO ©

(b) The program after scanning; i.e., after finding and classifying separate text-

ual elements.

(Tet) (identifier) (=) (integer) (in) (identifier) {integer)

(c) The program after recognition of reserved words.

(let)
(=) (+)

identifier/ (integer} (identifier] {integer)
D O ©® O

(d) The program after parsing; i.e., after determining the phrase structure.

identifier

(1dent1f1er}(1nte§eh

(e) The program after standardization.
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integer

(identifier}*(Z}-ﬂidentifier}ﬂ{integer}

(f) The program after ( partial) flattening.

Language Translation as a Tree-manipulating Process
Figure

1.1 Lexical and Syntactical Processing

Lexical and syntactical processing are assumed to produce an "abstract syntax" or
‘computation” tree, as definced by corresponding lexical and syntactical specifica-
tions. Language processing to the point of producing such a tree is illustrated in
Figure 1, parts a -~ d, where we have used a PAL program as an example(Evans 1968,
Aho 19727 PAL is particularly well suited for illustrations here, because it was
designed using a formalism similar to our own, albeit implicitly and informally.

The processing occuring between parts b and ¢ of Figure 1, that of recognizing re-
served words, can be conveniently described via transformations on the trees in-
volved. For example:

0f course, we already know how to implement an efficient processor corresponding to
such a transformation. In particular we would do so via a string-tabie look-up
mechanism, and in our compiler-writing language we would use strings rather than
trees to represent the words. But never mind the details; we are interested in the

processing on a conceptual, rather than an implementation level, for our purposes
here.

1.2 Standardization

Specification and processing beyond the syntactical level can usually be simplified
if the abstract syntax tree is transformed into a standard form according to lang-
uage-~specific rules. Since PAL is modelled on the lambda calculus [ Wozencraft
1969 ] several construcis in the language can be mapped into applications {y) of
lambda expressions (1) to other expressions. The processing occuring between parts
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d and e of Figure 1 implements this modelling via the transformation:

let (El\
(=) 2 => El

X El X E2

We emphasize that the reader need not understand the underlying semantics, but
should be concerned only with the tree transformation.

Another PAL construct, the where expression, has the same meaning as the let expres-
sion. The following is an alternate for the program of Figure 1:

X + 1 where x = 3

The semantic equivalence of the two constructs can be precisely stated {not the se-
mantics, but the equivalence) by mapping both intoy and A nodes:

2 (=) => 3
X E1 X E2
Alternatively, we could have mapped one construct into the other; e.g.
where let
E2 E2
X El X El

In any case we may regard the resulting tree, after transformation, as being in a
standard form.

1.3 ?lattening

Part f of Figure 1 shows the program partially flattened into "pseudo code” ready to
be further translated into "machine code". By "pseudo code" we mean the control
structure {program) for an "ideal" machine, ideal in the sense of conceptual simpli-
city for defining the semantics of the language being translated. By "machine code"
we mean the instructions for the actual {real) machine for which code is being com-
piled.

Pseudo code is typically prefix or postfix notation plus pointers. Expressions are
typically flattened into the simple 1inear notation, but control constructs and pro-
Cedures are linked together via pointers appropriately embedded in the linear nota-
tion. lLooked at another way, the pointers link the lists of linear notation {expres-
sions) together.
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Grammars to specify the partial flattening of (standardized) trees into pseudo code
are currently under research and are not a matter of main consideration here. How-
ever, for completeness we give & "flattening grammar" for PAL below. It is a "tree-
to-string transformational grammar" and is described briefly below after we further
describe and illustrate " gubtree transformational grammars",

2. Description of Subtree Fransformational Grammars

A transformational grammar consists of input and output vocabularies of node names,
and a vocabulary of variables, and a finite set of transformations. Each transfor-
mation consists'of two parts, an "input template" {tree pattern) and an "output
template”. These two correspond to the left and right parts, respectively, of a
type 0 grammar { Chomsky 1959], However, in this case the intent is to rcorder, ex-
pard and/or contract a local portion of a trce, rather than a local portion of a
string.

To “apply" a transformation we first find a subtree such that the input template
matches its top. This establishes a correspondence between the “"variables" in the
input template and subtrees of the matched one. We have used uncircled nodes,
labelled with identifiers, to indicate the variables above; i.e. X, E1, and E2.
Finaily, we restructure the part of the tree involved in the match, so that the
output template will match it, maintaining the correspondence between variables and
trees establishad by the input template match. In general, this will involve re-
erdering, duplicating, and/or deleting the subtrees corresponding to variables in
the initial match, as dictated by the number and position of occurrences of each
distinct variable in the input and output templates. In summary, each application
invalves a structural match and then a structural change,

Example. Consider the "let transformation”,indicated above,applied to the following
tree:

where w2 have indicated in an obvious way the subtrees matching the variables X, E1,
and E2. After applying the transformation the tree looks 1ike:
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(integer) h‘nteger}

rder of application of transformations. It happens that for PAL, almost all of its
mwodelling ru‘iesagaéz sbe%; reasonably expressed via transformatijons. Furthermore, these
transformaticns/have an innate bottom-up bent to them. The transformations may not
be applicable to one part of the tree until what is immediately below that part has
been transformed to standard form. We shall see this below, relative to the stand-
ardization of PAL's within construct, in particular, and relative to the unfactoring
of factored FL/1 attributes.
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Jhus. for PAL at least. and we suspect for other lanavages, there exists an important
class of transformations which we describe as being "bottom-up". It {s important,

then, that any corresponding language processor, or "transformer", search the tree
being standardized from the bottom up. In fact, even more “efficiency" may be
gained if the transformer is "fed” or "driven" by some other mechanism already pro-
cessing the tree in a bottom-up order, especially if that mechanism "knows" which
nodes are to be transformed. We conclude that it makes sense to attach a bottom-up
transformer to a bottom-up parser within our compiler... We emphasize, however, that
by "bottom-up parser® we mean one that builds its abstract syntax tree from the
bottom up; independent of the strategy it may use in parsing.

Some theoretical foundations for these transformational grammars already exist
[Rosen 1973]. In particular, Rosen gives sufficient conditions for guaranteeing
that, no matter what order of application of transformations is used, a unigue
standardized tree will result for a given set of transformations and a given fnitial
tree, assuming infinite loops are avoided, of course.

A linear notation for trees In light of the general lack of facilities for process-

ing two dimensional languages, it behooves us to provide a linear notation for re-
presenting trees. In our application we have no a priori knowledge of the number of
descendants associated with nodes labelled with any particular symbol. Furthermore,
we do not even require that a given symbol always be associated with the same number
of descendants; i.e. we do not 1imit ourselves to "ranked" trees.

An adequate convention for our purposes could be described as "Polish prefix nota-
tion with brackets, say <>, around interior branch nodes) sometimes called
“Cambridge Polish™. Consider the tree diagram:

<> <
& <6
ole

where we have added brackets around all nodes except the root and the leaves. The

3

tree's linear representation is:
l}eti < et lxl < l+ oyl tla> > < Pkt lxl 031 >
Informally, an algorithm for "printing" the linear representation of a tree is as
follows: starting at the root, traverse . the tree from left to right printing the
reorder
name of each node as you first come to igk except that if it is a branch node other

than the root, print a left bracket < just before the name and print a right bracket
> upon returning to the node for the last time.

Thus, our "let transformation" from above is written:

et! <'=!' X E1 >E2 & '¥ <M X E2>E]
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3. Compiler Structure

The implications regarding compiler structure of our examples and observations akove
are depicted in Figure 2. There we find the usual scanner module refined into two
components: The part that actually scans the characters (a finite-state machine)
and the part that recognizes reserved words (a trivial transformer). Similarly, we
have two "phases" at the syntactic level: the actual parser {a "tree-building"
deterministic pushdown automaton) and another transformer.

Source code
l characters

lexical SCAN finite state machine
level SCREEN trivial transformer
tokens
syntactical PARSE deterministic pushdown automaton
level STDIZE bottom-up transformer
standardized tree

static DECLARE top-down tree automaton
semantic TYPE bottom-up tree automaton
level semantic tree

I FLATTEN l top-down tree automaton

control structure (pseudo code)

z

GENERATE

CODE

4, instructions (machine code)
Target code

A Conceptual, if Not Actual, Compiler Structure
Figure 2

The transformations we envision happening at this second level are distinctly nontriv-
jal. In fact, in most current compilers they happen only implicitly and are buried
indistinguishably in that amorphous Tump called the "code generator" or “synthesizer".
One reason that this latter "semantic" phase of compilation is so complex is that we
have not yet recognized that, indeed, part of what happens in that phase is really
syntactic; i.e. is involved with changing, or working around, the original form of

the program.

We have little to say here about the "static semantic level” indicated in Figure 2.
Let us merely note the following. The module calla DECLARE is assumed to traverse the
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standardized tree from the top down, entering declarative information in a "symbol
table" {better termed a "declaration table"} and depositing that information at the
leaves of the tree; i.e. this module checks scopes of definitions to see that each
name is declared as it should be and associates declarative information with uses

of names. The module called TYPE is assumed to process the tree from the bottom up,
checking the type compatibilities of operators and operands {and perhaps transform-
ing the tree by inserting "coercion operators") by using the declarative information
distributed through the tree by DECLARE.

The "attribute grammars” of Knuth [Knuth 1968 Jappear to be an appropriate descrip-
tive mechanism for specifying the declarative and type compatibility aspects of
programming languages, and therefore, for specifying the modules DECLARE and TYPE.
Other lecturers have more to say about these and similar grammars.

The module FLATTEN is intended to change the representation of the program into a
mostly linear one. It also is a tree automaton that proceeds from the tep of the
tree to its bottom, flattening it mostly back into linear form.

In the module GENERATE CODE machine-dependent addresses are computed, registers are
allocated and machine code is generated. A well designed compiler will have all
dependencies on the target machine isolated in this moduie. As indicated in Figure

2 this module is a rather large one relative to the others found there. It appears
that further splitting of this large module into smaller ones requires horizontal
rather than vertical fragmentatien; i.e. its internal modules seem to need to operate
in parallel, even conceptually. Again, we leave further discussion of this point to
other lecturers.

4. Further Examples of Transformations

4.1 Local Effects

The Jet and where transformations given above have strictly local effects on the trees
to which they are applied. This is because they do not interact with themselves or
other transformations to have a global effect through repeated application.

4.2 Global Effects

The within construct of PAL is standardized as follows:
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Note that the '=' node with left descendant B moyes up the tree relative to the other
nodes and subtrees. Furthermore, if in an actual tree, a given 'within' node is the
right descendant of another one, the transformation will apply twice: first to the
lower node and then to the upper one. Consequently, the (B, '=') pair will move up
two levels. In general, the pair will "bubble” up the tree "through" any 'within'
nodes above it.

Let us consider a specific example:

where Ex’ Ef, and Eg denote subtrees whose internal structure is of no interest
here. We have given above all the transformations that relate to our specific PAL
example. Note that we have no choice of order of application in this case. We must
apply the within transformation to the lower 'within' node.

The result is:

Next we may only apply the within transformation to the remaining 'within' node, giv-
ing:
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Finally, the let transformation produces:

Semantic motivation The within construct defines an own variable "within" another

definition. The name actually being introduced by this let construct is "g". Its
scope of definition is the subtree which is the right descendant of the "let" node.
Imagine how difficult it is to describe scopes of definition, in general, in the
context of "within® nodes! However, after standardization, scopes of definition are
easy to describe: the scope of a bound variable {left descendant of the 'A' node)}
is the body of its lambda expression (right descendant of the ' node}...with the
usual stipulation that a contained lambda expression with the same bound variable
defines a "hole" in the scope.

For the sake of the programmer/reader, it was convenient at the source code level to
have "g" and =" grouped with E_. However, for the purposes of semantic~-definition,
translation, and evaluation {execution), it is convenient to have "g" grouped with
both the subtree over which it is defined and its total definition, including own
variables. Imagine the antics that would be necessary to get the desired effect via
a stack-1ike symbol table if a compiler had to work with the program in its original
order! The problem gets another order of magnitude more difficult when we add to the
langauge the and construct described below (for "simultaneous" definitions).

On the other hand, if we appropriately standardize our abstract syntax trees before
further processing, the addition of a new construct to a language is more likely to
have a linear, than a muitiplicative or exponential effect on the size of our com-
piler. In PAL's case, for example, the difference between the compilers for the
language with and without the and construct need be only: (1) one extra transforma-
tion to recognize the reserved word and; i.e. one extra entry in the string table,
plus (2) a few additional states in the parser, plus (3) one extra transformation to
standardize each occurance of and into other constructs already in the language. A
similar statement can be made about the within, let, and where constructs, since the
lambda notation is directly available in PAL.

4.3 Iterative Transformations
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In some cases a transformation must be applied to some of the same nodes it has just
been involved in transforming. A case in point is the well known optimization which
minimizes the number of registers necessary to sequentially compute nested sums.

The optimization can be described as follows:

9
A BU_)gf_m I

B c

We have emphasized above that the transformation works most simply if it is applied
in bottom-up (BU) order. Then, we can be sure that the subtree corresponding to

"B + C", relative to the input template, has already been "optimized". Thus, we can
guarantee that the subtree matching C does not have a '+' node as its root.

Still, the B stubtree may have a '+' root. Thus, after the initial transformation,
we must try to apply the transformation again, this time to the resulting "A + B"
subtree. We have indicated this necessity above via the key word xfm. In general,
the second application may result in the need for a third, and so on, until the tree
is converted to a left-linear 1ist of '+'-nodes.

If, instead of using BU order, we apply the transformation first to the topmost '+'
node of any connected set of '+' nodes, the initial application generates three
points at which the transformation must be tried again. In particular, since in
this case the tops of the three subtrees corresponding to A, B, and € may be '+'
nodes, we must try again at the two '+' nodes constructed by the previous applica-
tion, as well as at the top of the A subtree. Diagramatically:

xfm
=>
A (+ D xfm| c

B C xfm A B

Without going into details that are irrelevant to our purposes here, we note that in
general the top-down (TD) version of this tranformation causes fewer structural
changes to occur than the BU version when standardizing the same tree. In fact, the
BU version is probably exponentially worse for large trees (probably irrelevant to
compiler-writing practice since large expression trees are uncommon [Knuth 19711).

The probiem is basically that the BU version linearizes each subtree and then absorbs
it into a containing subtree, one node at a time. The TD version, on the other hand,
starts at the top and works only along the left edge of the tree, gradually absorbing
nodes to the right into a longer and longer left edge. Thus, it does not unnecessar-
ily linearize right subtrees, as the BU version does. The reader should get a feel
for this by trying an example with, say, seven or nine nodes, initially arranged in a
right 1ist.
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4.4 Extension to Regular Expressions

Given the linear notation used above, it seems natural to use regular notation, i.e.
Kleene closure {*} and union (]}, to indicate even larger classes of trees. The
closure operator, or “"star", allows us to describe "bushes": trees with nodes that
may have any arbitrary number of sons. The union operator, or "bar", allows us to
concisely describe trees with one of several alternate structures. The combination
of the two can substantially increase the linguistic power of our transofrmational
notation.
The following is a simple example using just a star:

fand' < '=' X E > * = "=l PN X k> < IR F >

or in a diagrammatic notation:

?
A o b

X E X E
This transformation is intended to standardize the and construct of PAL, which ex-

presses simultaneous definitions. (Semantics: 1In such, we evaluate all the expres-
sions (Es) before making any name-value associations.)

In words, the transformation states that an 'and' node having zero or more sons,
each of which is an '=' node with two sons, called X and E, respectively, should be

transformed to an '=' node having two sons: (left) a ',' node with the X subtrees
1 i

as descendants, and {right) a ',' node with the E subtrees as descendants. For
example:

it
v

(32 O,

X1 E1 X2 E2 X3 E3 xf x2 x3 E1 E2 E3
is one of an arbitrary number of specific transformations indicated by the above.
PL/I Attributes As a final substantial example, we give three transformations to
describe the unfactoring of factored attributes in PL/1 declarations. The transfor-
mations are described as they would operate in a bottom-up order. First we give a

sample tree to indicate what is to be standardized:
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( declare )

In the PL/1 program this would have appeared something 1ike:
declare {x, {y, z a6} a4 a5, w) al a2 a3;
where the a; denote attributes such as FIXED, BINARY, etc.
Compilation would be simpler for the equivalent form:
declare x al a2 a3,
y a4 ab al a2 a3,
z a6 a4 a5 al a2 a3,
wal a2 a3;
We intend the two transformations given below to standardize the former to the lat-
ter. First transformation:
“type' < ', ('type’ N AN* | X}* > A*
=> ',' < 'type' N AN* A* |'type' X A >*

Gype) o) .

A
* _ * *

N AN A

*
N
f ?*
X X A
*
That is, distribute the attributes A over the names X and N, the latter already

*
having attributes AN . Collect each name-attributes sequence under a "type" node,

and collect all of those under a '," node.
This transformation would first apply (BU order) to the middle 'type' node of the

above tree, converting it to a ',' node:

or:

e
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The second transformation, then causes a higher ',' node to absorb the members of
1ists below it:

L XR Y sk = X R | )k

or:
® © .
4 *
T :
N —
X Y
Y
To implement the latter transformation, we must consider each son of the

higher ',' node in turn. If it s itself a ',' node, we associate its sons

with ¥; otherwise we associate the entire node with Y. In the end, X is associated
with a 1ist of sublists and Y with a Tist of non-',' nodes. Furthermore, there is
an interspersed ordering among the members of X and those of Y. To build the trans-
formed tree, we build a ',' node whose descendants are the elements of Y and those
of the sublists of X, in their original order.

A11 of that is presumably implied by that single transformation above! The result
for our specific example above is:

One more application of the first transformation is necessary to standardize this

example, resulting in:
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We challenge anyone to describe this, or an equivalent effect, in general, in only
three lines (thirty is more likely) in any existing "compiler writing language". Of
course we are a long way from knowing how to implement the above efficiently, as
yet!

5. Summary and Conclusions

We have indicated the usefulness of a localized version of transformational gram-
mars. They are relevant to the specification and processing of programming lang-
vages on several distinct levels. They may be used to describe: (1) the notion of
reserved words, (2) the standardization of abstract syntax trees, {3) the insertion,
if not the movement, of declarative information in  trees, (4) the insertion of co-
ercion operators, {5) optimizations involving the shape of trees; and probably
others.

Transformational grammars can be mapped into tree-transforming modules, or "trans-
formers". Several purposes may be served by such transformers. For example, (1)
semantically equivalent but syntactically distinct constructs may be mapped into a
single form, (2) inconveniently ordered or structured forms in the tree may be
transformed to a more convenient form, (3) abbreviated constructs may be expanded in
the style of macro substitutions, (4) redundant or useless information may be delet-
ed from the tree, (5) distributed information may be collected, condensed, and even
sorted, and (6) optimizing transformations may be performed at the source level, and
after macro expansion, at lower levels.

We suggest that techniques such as "tree attributes” and “tree automata® are most
useful and appropriate when applied to a standardized tree, rather than to a deriva-
tion tree of a eontext-free grammar that describes the concrete syntax of a language.

Much more research is needed to find the best combination of these techniques. The
goal should be a technique of language description with a direct correspondence to
techniques of efficient language implementation.
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6. Appendix - Meta-grammars and PAL Grammars

The author of this section is currently supported by the National Science Foundation
of the United States to develop and implement a translator writing system based on
the conceptual framework presented in the current section and in the sections on LR
parsing and Lexical Analysis. /uecgsggggted two associated meta-grammars describing
the Texicon and phrase structure of an extended form of context-free grammars.

A third meta-grammar is presented next that describes the phrase structure of
subtree transformational grammars. We use the language defined by the previous

two meta~-grammars to define this third one.

Following the meta-grammar are four grammars describing PAL's lexicon, phrase struc-
ture, standardization, and flattening into control structure. PAL's declaration pro-
cessing and type checking are done at run-time so no attribute grammars for these
levels are given.

Unfortunately, we haven't the time nor the space to fully describe these grammars
here. Furthermore, the notations we are illustrating here are not fully developed
and perfected as yet.

Let us mention, however, that the "flattening grammar" for PAL should be interpreted
as a "tree-to-string transformational grammar". That is, the input template is to
be interpreted normally, but the output template should be interpreted as a string
rather than as a tree--unless this convention is specifically overridden by the
appearance of a pair of brackets < >, in which case a node is intended with name

and sons indicated by the contents of the brackets. W¥hen a variable appears in the
output template, the intention is to refer to the flattened form of the associated
subtree.

Another topic which we have not touched on at all above because it is still a matter
of research is the recursive definition of nested trees and re-entrant control
structures. Such definitions are marked in the grammars by the key words where and
rec.

We have included these grammars here more to illustrate the minimum possible sort of
input to a translator writing system than for their own sakes.
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CHAPTER 2.F.

TWO-LEVEL GRAMMARS

C. H. A. Koster
Technical University of Berlin

Berlin, Germany

1. Context sensitivity

1.1 On the borderline between syntax and semantics

In the definition of ALGOL 60, a clear distinction was maintained between the syntax
and the semantics of the language defined: syntax is concerned with the form of things,
semantics with their meaning.

The syntax was defined rather formally, in distinction to prose definitions which are
in use even now.

As an example, contrast the syntactic definition of arithmetic expressions now consid-
ered classical in section 3.3.1 of the ALGOL 60 Report [ Naur 62] with the following
definition, taken from the description of the BASIC-System of a large computer manu-
facturer:

EXPRESSIGNS

Two types of expressions are considered by BASIC, arithmetic and relational.
Arithmetic eypressions are rules for computing a value. Arithmetic operators may
not appear in seguence and must be explicitly stated. The following are invalid

arithmetic expressions:

OPERANDS

An operand itself is a valid expression.

There is no doubt that, for the compiier-maker, rigorous syntactic definition of the
language to be implemented is a help and not a hindrance, the use of CF grammars in
language definition has had a deep impact on the compiler-makers trade.
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Formalization of semantics has clearly been less successful: the definitions of
ALGOL 60, ALGOL W and ALGOL 68 all use some variant of the English language to state
semantics in, with consequent trouble for the implementers.

Upon closer scrutiny the semantics in, e.g., the ALGOL 60 Report can be divided into
two categories:

1) dynamic semantics: a definition of the effect and or value of some construct upon
execution {Example: Paragraph 1 of section 3.3.3 of the ALGOL 60 Report). The
dynamic semantics pertain to the execution phase of the program rather than its

compilation phase, since the execution of a program generally depends on values

supplied dynamically: In order to know what a program means, it has to be execut-
ed.

2) static semantics : admonitions, restrictions and other information about the form
of the program, obviously directed at the compiler-maker {telling, e.g., how to

treat borderline cases) or even at the programmer. (Examples: Section 2.4.3 of
the ALGOL 60 Report, the “context conditions" in [van Wijngaarden 19697 ).

Static semantics sails under false colours: it is syntax expressed verbally,

because of impossibility to treat it in a formal way.

The restriction in 4.3.4 of the ALGOL 60 Report is syntactical in nature, having to
do with matters which can be statically ascertained from the text of the program.

It is also impossible to formalize by means of CF syntax. If the means would have
been available, the authors of the ALGOL 60 Report would have included this restric-
tion into the syntax, where it belongs.

In the revised version of the ALGOL 68 Report [van Wijngaarden 19747 the context
conditions have disappeared from semantics and are now treated by syntax alone,
making far more use of the syntactic mechanism.

It is difficult to draw the optimal borderline between syntax and semantics in any
given language definition (indeed, cynics might argue that, at any point in time,
that part of language definition which we can treat formally will be termed syntax
and semantics starts where understanding ends). It is in the interest of compiler-
makers that all matters syntactical are treated by one same helpful syntactical
formalism. CF grammar is too weak for the purpose, a more powerful mechanism must be
used.
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2. Van Wijngaarden Grammars

Van Wijngaarden grammars arose from the need, felt in defining new programming
languages, for a type of grammar more powerful than context free grammar, allowing
the syntactic treatment of context dependencies. They are classified as "two-level-
grammars" because two superimposed syntactic levels can be discerned.

2.1 One-level van Wijngaarden grammars

As a first step in defining two-level van Wijngaarden grammar, we will introduce one-
level van Wijngaarden grammar.

2.1.1 Definition: 1VWG
A 1VWG is a 4-tuple
G =<S,T,E,P>, where

S=alphabet, a finite nonempty set of syntactic marks, which does not contain the
delimiters 1, , , : , ; or . .

T=symbols, a finite subset of S*.

initial notion e S*,
productions, a finite subset of (;(S+-T)x) x (LS*;)*.

1.1.2 Notation

If (4x;,¢y1¢.Ly21...1yn4)e p, then we write x: y1., y2, ..., yn. .

When both x:w,. and x:w.. we write XiW,; W

1 2 2t

2.1.3 Terminology

A protonotion is any member of st
A notion is any protonotion P such that
3yip:v.]

A member is either a notion and is then termed productive, or is a symbol, or is some
other protonotion, which we will then term a blind alley.

A Tist of notions is a sequence of members separated by comma's.

A direct production of a notion X is a list of notions ¥V such that X:V¥..

A production of a notion X is either a direct production of X or a list of notions

obtained by replacing in a production of X some productive member ¥ with a direct
production of V.
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A terminal production of a notion X is a production of X all of whose members are
either a symbol or empty.

A sentence of a 1VWG G is any terminal production of the initial notion of G. The
language of a 1VWG G is the set of sentences of G.

For every symbol, one or more graphics, its representations, are given.

2.1.4 Properties

The definition just given for a 1VWG is clearly functionally identical to that of a
Context Free grammar. The only unusual aspect is the insistence that the members are
denoted by strings rather than being treated as abstract elements of the set of pro-
tonotions. This property will be utilized in the definition of the second level.

2.1.5 Example

Following is a transscription in the present notation of section 4.2.1 of the

ALGOL 60 Report.
left part: variable,becomes symbol;

procedure identifier., becomes symbal.
left part list: left part;

left part list, left pert.
assignment stetement:

left part list, arithmetic expression;

left part list. boolean expression.
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Here, 'becomes symbol® is the only symbol.

Problem: an assignment statement consists of a left part list followed by an
arithmetic Or boolean expression, independent of the types of the variables in the
left part list. Solved by static semantics in section 4.2.4.

2.2 two-level Van Wijngaarden grammars

The basic idea of 2VWG is to generate the productions of a 1VWG by means of a
grammar.

2.2.1 Definition: 2VWG

A 2VWG is a 6-tuple
G =<M,S,T,E,R,P>, where

M = meta alphabet, a finite set of metasyntactic marks, which does not contain the

delimiters «, 1, 5, 5, » OF . .
S = alphabet, a finite nonempty set of syntactic marks, which does not contain the
delimiters + , 1, :, ;, or . and such that SaM = @.

T = symbols, a finite subset of st.
E = initial notiones'.
R = metarules, a finite subset of

M) x (STULMte)¥ |

et L = {xeM*|3 y[(4xs,y)eR]}.
P = rules, a finite subset of
(L((SutLe)*-T)1) x (1(Susld) 1),

2.2.2 Notation

When (sxt,y(t £yt ... %yn:&)eR, then we write

XE3YYo ene Yoo Notation of metarules

When (1x1,;y111y2 vee LynL)G.P, then we write

X3 Yaa¥or wees Yoo Notation of rules

When no ambiguity arises, the delimiter £ may be omitted. Indeed it is only introd-
uced in this definition to assert unambiguous deconcatenability of rules and meta-
rules.

When both x: wi. and x: w2. then we write x: wi: w2. .

2.2.3 Terminology
Observe that for every mel the 4-tuple Gm={M,S*,m,R) forms a 1VWG with as delimit-
er. In particular L(m) is the set of terminal productions of m. For string x,y and z,
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let subst (x,y,z) denote the result of substituting x for every occurrence of xyz
in z.

A metanotion is any member of L.

A hypernotion is any member of (SuiLi)+.
A protonotion is any member of s*,

A notion is any protonotion P such that there is a rule (U,V)eP and there are termin-

al productions ﬁl, ﬁz, vy m of Mys Moy ey mneL such that

subst(ﬁl,ml,subst(ﬁz,mz,...sugst(ﬁn,mn,U)...))=P.

A member is either a notion, and is then termed productive, or is a symbol, or is
empty, or is some other protonotion, which we then term a blind alley.

A list of notions is a sequence of members separated by comma's.

A direct production of a notion X is a list of notions ¥ such that there is a rule

{U,¥}e P and there are terminal productions ﬁl, Moy ooes . of the metanotions

Mis Moy cues M such that

n
1) subst(ﬁl,ml, subst(mz,mz,... subst(ﬁn,mn,u)...)) = X, and
2) subst(ﬁl,ml, subst(ﬁz,mz,... subst(ﬁn,mn,V)...)) =Y.

The terms production, terminal production, sentence and language can now be introd-

uced for a 2VWG in the usual way.

2.2.4 Properties

Let us call a Finite State grammar, all of whose rules are of the form A—a, where
A is nonterminal and a is terminal, a Finite Choice grammar FC.

We thus have a hierarchy of grammars
FC<FS < CF = (S.

If in some 2VWG for every mel, Gm is a grammar of type T or weaker, we will indicate
that 2VWG as a (EF) .

(gg) = CF
(EE) = semiThue system [Sintzoff, 1967

It is extremely difficult to visualize a recogniser for general 2VWG; just ponder
for instance over section 7.1.1. cc to jj of [van Wijngaarden, 1969].

Consider also the problem of finding out what rules are applicable after a certain
rule, more precisely:

Referencing problem

Given a 2VWG G and two hypernotions U and V, is it decideable whether there are

terminal productions ﬁi and ﬁ% of the metanotions m; such that
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subst(ﬁl,ml, subst(ﬁz,mz,... subst(ﬁn,mn,u)...)) =

subst(ﬁi,ml, subst(ﬁé,mz,... subst(m ,m ,V}...)) ?

The referencing problem is undecideable because of the undecideability of the empty-
ness problem of the intersection of Context Free languages .

2.2.5 Example: assignment statement

Metasyntax:
TYPE::ARITHMETIC; boolean.
ARITHMETIC::real; integral.
ARITHMETIC2::ARITHMETIC.

Syntax:
TYPE left part: TYPE variable, becomes symbol;
TYPE procedure identifier, becomes symbol.
TYPE left part list: TYPE left part;
TYPE left part list, TYPE left part.
assignment statement:
ARITHMETIC left part list, ARITHMETIC2 expression;

boolean left part list, boolean expression.
The delimiter & has as usual been elided.

This example introduces directly into the syntax the constraint given only verbally
in the ALGOL 60 Report that the data types of all elements of a "left part list" must
agree.

As it stands the example might have been written directly in context free notation,
it would only have been more lengthy. Consider however the problem if ARITHMETIC had
had an infinite number of terminal productions, as indeed the equivalent metanotion
in ALGOL 68 has. Since there would need to be one "left part list" per terminal
production of ARITHMETIC it would be quite impossible to write such a Context Free
grammar. Either one uses the power of the 2VWG to impose the constraint syntactically
or one must be content with a verbal statement of "static semantics".

2.2.6 Example: defining and applied occurrences

Consider a bare-bones language containing defining and applied occurrences of identi-
fiers but nothing else:
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program: statement sequence.
statement seguence:
statement sequence, defining occurrence;
statement sequence, applied occurrence;
defining occurrence.
defining occurrence: define symbol, tag symbol.
applied occurrence : apply symbol, tag symbol.
tag symbol: letter symbol, tag symbol; letter symbol.
letter symbol: letter a symbol; ...; letter z symbol.

The above 1VW grammar allows us to write programs where the applied and defining
occurrences of identifiers may appear in any order {except that one defining
occurrence must come first). There might be multiple defining occurrences of the
same identifier and perhaps some appliied occurrence might have no corresponding
defining occurrence.

Our goal is to impose two constraints on the language:

(1} each applied occurrence of an identifier must correspond to some preceding
defining occurrence
{2) only one defining occurrence of each identifier is allowed.

To accomplish this we will proceed in several stages. First, a two-level grammar
will be written whcih recognizes the same language as above but contains information
about the occurring identifiers in the (nonterminal) notions themselves.

Second, additional notions will be added to the grammar which yield £ if the con-
straint they represent is satisfied and otherwise are blind alleys and block the
parsing of the program,

Metasyntax:

(A) TAGS :: TABS TAG; TAG.

(B) TAG :: LETTER TAG ; LETTER symbol.

(C) LETTER :: lstter ALPHA.

(D) ALPHA :: asbiesdse;figshsdsdskelsminsospsqsmsestusvawsx;ysz.
Syntax:

(a) program: TAGS statement sequence.

(b) TAGS TAG statement sequence:

(c) TAGS stetement sequence, TAG defining occurrsnce;
(d) TAGS statement sequence, TAG applied occcurrence.
(e} TAG statement sequence : TAG defining occurrence.

(f) TAG defining cccurrence : define symbol, TAG symbol.
(g) TAG applied occurrence : apply symbol, TAG symbol.

(h) LETTER TAG symbol : LETTER symbol, TAG symbol,
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As promised this grammar recognizes exactly the same language as the foregoing. It
does it however in the rather peculiar manner of having the initial notion produce

an infinite number of alternatives, only one of which will not be a blind alley since
the 1ist of identifiers represented by that production of the metanotion TAGS will
correspond exactly to the identifiers which actually appear in the input stream.

Say that we now want to introduce the constraint that an applied occurrence of an
identifier must appear after its defining occurrence. This is equivalent to demanding
in line(d) that the production for TAG must be a substring of the production for TAGS
in that same line. (TAGS is the list of all the identifiers appear to the left of the
one being applied). Let us modify that alternative so that it will recognize the
input if and only if the condition is satisfied.

{b) TAGS TAG statement sequence:
(d) TAGS statement sequence, TAG applied occurrence, where TAG is in TAGS.

(1) where TAG is in TAGSETY TAG TAGSETYZ2:EMPTY.

The production rule {i), which we call a predicate, needs some extra metasyntax to
be complete:

(D)} TAGSETYZ2::TAGSETY.
(E) TAGSETY::TAGS;EMPTY.
(F) EMPTY::.

Observe that instances of the production rule (i) exist only when the left side TAG
is embedded somewhere in the right side TAGSETY TAG TAGSETYZ. This is insured by the
Uniform Replacement Rule where the two occurrences of TAG must be replaced by the
same (meta-)production. In the cases where an instance of (i) exists, the terminal
production is the empty string and the parsing may continue. Otherwise this is a
blind alley, the condition is not respected, and the parsing is blocked for that
particular input string. Thus the permissible sentences of the language have been

reduced to those where the first occurrence of an identifier is not an applied
occurrence (and thus must be defining).
Multiple definitions are still possible. Let us eliminate those using the same

technique:

(b) TAGS TAG statement sequence:
(c) TAGS statement sequence, TAG defining occurrence,

where TAG is not in TAGS;

The predicate we need here is just the inverse of the one we used before. This time
it is little bit harder since we cannot exploit the Uniform Replacement Rule direct~
ly:
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(i) whers TAG is not in TAGZ TAGS :
where TAG is not TAGZ, where TAG is not in TAGS.
(k} whers TAG is not in TAGZ : where TAG is not TAGZ.

Hence an identifier is not in an identifier list when it is neither identical to the
first element of the 1ist nor somewhere in the rest of the list. We must use a meta-

notion TAGZ here which again yields TAG directly. Since this kind of construction
will be frequently needed let us impose the {metameta?} rule that any metanotion
followed by a digit will produce that metanotion.

Now we need to verify if two identifiers are not identical:

(1) where LETTER TAG is not LETTERZ TAGZ2 :
where LETTER symbol is not LETTERZ symbol ;
where TAG is not TAGZ2.

They are not identical when either the first letters are not identical or the re-
mainders of each identifier are not identical.

(m) where LETTER TAG is not LETTERZ symbol : EMPTY.
(n) where LETTER symbol is not LETTER2 TAG : EMPTY.

The two identifiers are certainly not identical if they have different lengths.
The job is done now if we can verify that two letters are different:

{0} where LETTER symbol is not LETTER2 symbol :
where LETTER precedes LETTER2 in ALPHABET ;
where LETTER2 precedes LETTER in ALPHABET .,

ALPHABET is exactly what you think it is:
(G} ALPHABET :: abcdefghijklmnopgrstuvwxyz.

Now finally we can exploit the Uniform Replacement Rule to determine if one letter
comes before another in the alphabet:

{p) where letterALPHA precedes letter ALPHA2
in ALPHSETY ALPHA ALPHASETY2 ALPHA2 ALPHSETY3 : EMPTY.

This requires some more metysyntax:

{H}) ALPHSETY :: ALPHAS ; EMPTY.
(I} ALPHAS :: ALPHA ; ALPHAS ALPHA.

Thus the last piece falls into place and we have defined a language obeying both
of the initially proposed constraints. We have accomplished this purely within the
bounds of the formal notation and hence have avoided the pitfalls inherent in a
natural language presentation of "semantics".
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3. Conclusion

We hope to have shown that two-level grammars allow to define precisely context-
dependencies such as those that provide much of the compiler-makers daily sweat,
and that even the forbidding armatory of van Wijngaarden grammars is understandable
and usable by the normal compiler writer.

To conclude we should mention the fact that there exist other and rather different
forms of two-level grammars, the most well known being Attribute Grammars [Knuth,
1968; Lewis et al, 1973; Bochmann, 1973; Rosenkrantz et al, to appeaf] which time
and space do not allow us to treat here.

Acknowledgement the timely production of this lecture note would have been impossible
without the help of Bruce Willis, who wrote the harder part.
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CHAPTER 2.G.

SEMANTIC ANALYSIS

W. M. Haite
University of Colorado

Boulder, Colorado, USA

We have already seen how the syntax of a language allows us to analyze the
structure of a program and display it as a tree, but this is only a part of the
story. Structural analysis can be used to deduce the fact that the program contains
a binary expression whose left operand is the identifier A, whose right operand is
the identifier B and whose operator is +; it cannot tell us how to evaluate that
expressjon. The purpose of the semantic analyzer is to derive an evaluation
procedure from the structure of an expression and the attributes of its components.

An evaluation procedure is a sequence of primitive operations on primitive
operands, and is completely specified by the definition of the source language. The
semantic analyzer must deduce the attributes of the various components of a
structure, ensure that they are compatible, and then select the proper evaluation
procedure from those available. For example, if the semantic analyzer of an ANSI
FORTRAN compiler sees a binary expression with integer operands and a + operator it
selects the evaluation procedure for integer addition. When the operands are both
real it selects the procedure for real addition, and if one is integer and the other
real it signals an error [ANSI 1966, Section 6.1].

The input to the semantic analyzer consists of the structure tree (abstract
program tree, abstract syntax tree) which specifies the algorithm, and the
dictionary which pravides attribute information. Twe transformations, attribute

propagation and flattening, must be performed to obtain the evaluation procedure.
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Attribute propagation is the process of deriving the attributes of a tree from those
of its components, while flattening {Chapter 3.E) transforms a tree into a sequence
by making explicit the order in which the operators are executed. The result of the
semantic analysis 1is an instruction sequence which may be thought of as a program

for an abstract machine (spurce language machine, SLM} having the primitives of the

source language [Newey 1972].

1. Tree Traversal

The structure tree may be subjected to various optimizing transformations, in
addition to attribute propagation and flattening [Hopgood 1969]. These
transforrations may involve tree traversals, and are discussed in Chapter 5.E.
Conceptually, each transformation takes place on the entire tree; practically, the
scope of a particular transformation is quite Timited. This property allows us to
reduce the amount of random-access storage which must be devoted to the tree during
semantic analysis.

During a particular traversal of the tree, each node might be encountered in

three contexts:

a. As a descendent of another node (prefix)
b. After traversing a subtree descended from the node, when further subtrees
remin to be traversed (infix)

c. After the last descendent subtree has been traversed (postfix)
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If a node has only one subtree (e.g. the node for a unary operator), then no infix

(type b} encounters occur. Many infix encounters will occur, however, if a node has
many subtrees {e.g. the node for a conditional or a case statement.) Actions may
be taken each time a node is encountered, and may depend upon the type of encounter

as well as information contained in the tree.

The first "traversal" of the structure tree can be performed as it s being
built:  Each node of the tree corresponds to some production of the grammar for the
source language. Suppose that the syntax analyzer can determine, without actually
analyzing its components, that a particular production must derive a segment of the
input text. ({Such a determination would usually be made on the basis of some unique
prefix, such as the if which begins on AL&GOL conditional.) Making this
determination is equivalent to a prefix encounter with a node in the structure tree.
Any action which is appropriate to such an encounter, and which does not require the
actual Tlinkages of the tree, may therefore be taken. Similarly, if the completion
of one component can be detected appropriate infix actions may be taken at that
time; any postfix actions may be taken when the production is actually applied to

reduce a segment of the input.

The evaluation procedures specified by the language definition, plus the degree
and type of optimization desired, determine the number of traversals which must be
made over the structure tree and the pattern in which they are to be made. This, in
turn, determines the storage requirements of the semantic analyzer. For exampie,

suppose that a small part of the tree must be traversed several times in sequence,
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no other part of the tree is examined during the sequence, and this part of the tree
is not examined at any other time. If the entire tree is composed of subtrees with
these properties, then random-access storage is required only for the largest
subtree. Many existing compilers make such assumptions, although in some cases
there 1is no theoretical limit to the size of the subtree which must be stored. The
compiler then either accepts subtrees whose size depends upon the amount of storage
which the usef has allocated for the compiler during the current run, or it sets an
arbitrary limit. Examples of the subtrees picked are FORTRAN statements and program

units, ALGOL expressions, and PASCAL procedures.



161

When more extensive trees must be traversed several times, they are usually

represented by some Tlinear encoding and written to an intermediate file. The
encoding is obtained from an initial traversal, which may be combined with the
construction of the tree. Two basic strategies are available for processing a
linearized structure tree, depending upon the manipulations which are required:

a. The fully-linked form of each relevant subtree can be reconstituted from

the linearized intermediate form.

b. The linearized intermediate form can be used directly.
Care must be taken when using strategy {b) to ensure that the nodes of the tree are
specified in the proper order.

One of the simplest 1inearizations of a tree is postfix notation: Prefix and

infix encounters are ignored during the traversal which creates the linear encoding;
a postfix encounter causes the specification of the node to be written to the
intermediate file. In many cases the linearized form can be used directly, and
recovery of the complete tree is a straightforward task.

Some operators influence the interpretation of their operands, but in a postfix
string the operator is not encountered until after the entire operand has been
processed. If a prefix encounter of a node in the structure tree causes output of
the node specification, while infix and postfix encounters are ignored, each
operator preceeds its operands in the Tinearized form. This prefix notation allows
an operator to influence the processing of its operands when the Tinearized form is
used directly, but considerably more storage 1is required to generate it. An
arithmetic operator, for example, is not encountered in most source language text
until after its first operand. To obtain the prefix notation, the subtree
representing the entire expression would have to be built before any specifications
were output.

Anather useful representation of the structure tree is a 1ist of n-tuples. Each
node is represented by the n-tuple (operator, operand 1, ... , operand k, name.)
“Name" is a unique identification associated with this node, and each operand is the
name of a descendent node. Nodes with different numbers of descendents could be
represented by different-length tuples, or by tuples of the same length with a

special operand to indicate "no descendent." The most common case is n=4, with all
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tuples the same length.

Because each node of the tree is given an explicit name, the n-tuple notation can
describe general directed graphs. This property is useful for certain kinds of
optimization, such as common subscript elimination, but the presence of explicit
names increases the bulk of the intermediate file and requires additional
capabilities for cross-referencing. If the order of the n-tuples is fixed, the
explicit name is unnecessary, Each descendent would then be represented by the
index of the descendent tuple in the 1ist, with 0 indicating that the descendent is

absent.

2. Attribute Propagation

The declarative part of the program specifies the attributes of the leaves of the
structure tree. These attributes must be used to deduce the attributes of entities
resulting from the evaluation of subtrees. For example, consider the ALGOL 60
expression of Figure 2.1a. The syntax of the Tlanguage allows us to create the
structure tree of Figure 2.1b, and the mode indicated for each leaf is given in the
declarative part of the program. By using the semantic rules stated in Section
3.3.4 of the ALGOL 60 Report [Naur 1963], we can deduce the modes of the subtrees as
shown in Figure 2.lc.

A sipple mechanism suffices for the case illustrated in Figure 2.1: Maintain a
stack of modes (the semantic §§ggk) which is updated as the structure tree is being
buitt. A postfix encounter with a Teaf places the mode of the corresponding entity
onto the stack; a postfix encounter with an interior node causes the semantic
analyzer to apply the appropriate rule to the two modes on top of the stack. These
modes are removed and the proper result mode is entered in their place. (The result
mode would also be used to modify the tree.)

Suppose that the rightmost leaf of Figure 2.1c were -2. According to Section
3.3.4.3 of the ALGOL 60 Report, the mode of k#(-2) is real. Addition is defined for

integer and real operands, but the result is integer only if both operands are;

otherwise the result is real. This leads to & semantic error, because the result of

an integer division is defined only if both of its operands are integer,
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i+ (J+ke2) 1,§.k integer

a) An ALGOL 60 expression

1 ///// \\\\\+
integer ///// \\\\
intgger ////T\\\\

k 2
integer integer

b) The structure tree for (a)

+ _integer
intlger //////+\\;iii =
4+ integer
1ntege /////’ \\\\\
1nteger nteger

c) After attribute propagation

Figure 2.1

Attribute Propagation
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Finally, suppose that the rightmost leaf were the integer variable n. The report

states that the wode of k n depends upon the value of n: for n20 it is integer, and
for nd0 it is real. Since the semantic analyzer has no way of determining the value
of n, it cannot determine the mode of fhe result.

Even though the mode of the result cannot be determined precisely, it can be
restricted to either integer or real {i.e. it is not Boolean, nor is it a string.)
Thus the semantic analyzer could recognize a new mode {say, arith) which describes a
value that might be either integer or real. Such a mode is called a union in ALGOL
68.

Application of the integer division operator to an operand of mode arith may or
may not constitute a semantic error. If this error is to be detected, a dynamic
mode check must be included in the program. Unfortunately, most hardware does not
permit a definitive mode check on values computed during execution {Chapter 3.A.)

Another problem is that most computers would implement integer and real mode objects

in different ways, and would have distinct instructions for performing addition on
them. When one of the operands of + is an arith mode object, the compiler will not
be able to select the proper instruction.

S far, 1 have considered only the bottom-up propagation of attribute
information; top~down propagation is also possible, and will solve our difficulties
in Figure 2.1. The integer division operator requires operands of mode integer,
Hence the result of the addition must be an integer, and this implies in turn that
its Operands must both be of integer mode. If the rightmost leaf is replaced by n,
then there is a semantic error unless nZ0. A dynamic check must still be inserted
into the program, but now it tests the sign rather than a mode,

Top~down attribute propagation cannot generally occur as the tree is being built.
(Suppose, for example, that the operands of the integer division were reversed in
Figure 2.1a.) If the structure tree is represented in postfix notation, a backward
pass over the 1linearized intermediate form can be used for top-down attribute
propagation. The algorithm is virtually identical to that for the bottom-up case:
A semantic stack is used to hold specifications of the required operand modes, which

are then tested for compatibility with the modes derived previously.
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3. Operator Identification and Coercion

Sections 3,3.4 and 4.2,4 of the ALGOL 60 report [Naur 1963] describe the

relationship between operators and modes. For example, the mode of the result of an
addition, subtraction or muitiplication "will be integer if both of the operands are
of integer type, otherwise real." There is no attempt to specify how this result is
obtained, beyond the statement that the operators "have the conventional meaning.”
When the compiler designer specifies evaluation procedures for these operators,
he must use his knowledge of mathematics and of the structure of the target computer
to implement "the conventional meaning" of each operator. One possibility would be
to specify twelve distinct algorithms, four for each operator (e.g. integer +

integer, integer + real, real + integer and real + real.) This approach is still

feasible for ALGOL 60 because the number of combinations is not very large. As the
number of modes and operators increase, however, the number of combinations rapidly
becomes unmanageable.

The solution to the problem lies in the fact that most hardware offers only a
limited number of algorithms for performing a given operation. For example, a
target machine might provide only two add instructions: one implementing integer +
integer and the other implementing real + real. The other two possibilities,

integer + real and real + integer, would have to be implemented by converting the

integer aperand to a real and then performing real + real.

By stating "the conventional meaning" of addition, subtraction and multiplication
in terms of two algorithms per operator and a single transfer function (Chapter
3.A., Section 1.3) which converts an integer operand to real, I can reduce the
number of distinct algorithms from twelve to seven. This approach partitions the
problem, reducing the rate at which the number of algorithms increases, but it
introduces the possibility of semantic ambiguity.

Cansider, for example, the ALGOL 60 expression of Figure 3.la. Two possible
evaluation procedures for this expression are shown in Figures 3.1c and 3.1d. (The
expression to be evaluated at each step is enclosed in parentheses, with only the
operand modes given. The result mode follows the parentheses; it 1is omitted if
there is no result.) Note that there is no guarantee that these two evaluation

procedures are equivalent. From the general considerations discussed 1in Chapter
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a := i+j a real

i,j integer

a) An ALGOL 60 expression

+
.rs.g.l, /\
i J

integer integer

b) The structure tree derived from (a)

{integer+integer)integer; {integer)real; (real:=real);

c) A possible evaluation procedure

{integer)real; (integer)real; {real+real)real; (real:=real)

d) Another possible evaluation procedure

Figure 3.1

A Semantic Ambiguity
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3.A, Section 1, we can conclude that Figure 3.1c might result in an overflow and
Figure 3.1d might result in a loss of precision.

Semantic ambiguities such as this must be avoided in the language definition.
The ALGOL 60 Report [Naur 1963] and the FORTRAN Standard [ANSI 1966] do so by
specifying distinct algorithms for each operator and combination of operands. Each
delimiter token, such as the + of ALGOL 60, may be considered to represent some set

of algorithms, such as {integer + integer) integer, {(real + real) real . Whenever

this delimiter occurs in the structure tree, the semantic analyzer must select one
of the algorithms in the set which the delimiter represents. In general, this

selection (known as operdtor identification) depends upon both the modes of the

operands and the context in which the entire subtree occurs. Once the algorithm has
been selected, the operand modes which it requires are known. If the apriori modes
of the operands do not agree with those required by the algorithm, then a sequence
of transfer functions must be added to the structure tree. This process is known as

coercion, and the sequence of transfer functions is called a coercion sequence,

It 1is important to note that the operator identification and coercion performed
by the semantic analyzer are those specified by the language definition rather than
by any particular hardware. In ALGOL 60, for example, there is no coercion
associated with arithmetic operators; Section 3.3.4 of the report specifies distinct
algorithms for each possible pattern of operand modes. A coercion 1is, however,
associated with the ALGOL 60 assignment: "“If the type of the arithmetic expression
differs from that associated with the variables and procedure identifiers,
appropriate  transfer functions are understood to be automatically invoked."
{Section 4.2.4 of the ALGOL 60 Report.} Further transfer functions may be inserted
by the code generator in the course of implementing an algorithm on a particular
target computer, but these transfer functions are machine-dependent and hence
outside the scope of semantic analysis.

The operand modes of a language may be thought of as nodes in a directed graph
[Hext 1967, Jorrand 1971]. Branches represent transfer functions which convert an
object of one mode into an equivalent object of another mode {Chapter 3.A.)
Operator identification 1is then performed by finding paths from the nodes

representing the apriori modes of the operands to nodes representing the operand
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modes of some algorithm for the given delimiter. Each path defines a coercion
sequence, and if more than one set of paths can be found a semantic ambiguity
exists.

More than one graph may be specified for a given language. The semantic analyzer
would then select a particular graph on the basis of context. In ALGOL 68 [van
Wijngaarden 1969], for example, different graphs are used for the right-hand side of
an assignation {a strong position) and for an operand of a formula (a firm
position.) The latter is a subgraph of the former in the case of ALGOL 68, but such
a relationship is not necessary.

I shall not discuss specific algorithms for operator identification and coercion,
because most of those in wuse depend strongly upon the characteristics of a

particular language [Hext 1965, Scheidig 1970, 1971, Woessner 1970, 1971].
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CHAPTER 3.A.

RELATIONSHIP OF LANGUAGES TO MACHINES

W. M. Waite
University of Colorado

Boulder, Colorado, USA

Selection of the proper interface between code generation and the analysis steps
which preceed it s an engineering decision which balances two properties of the
compilation:

a. Most of the structure of the program is determined solely by the source
language.
b. Most of the representational details are determined solely by the target
machine,
The interface should be chosen so that most of the structure is dealt with by the
analysis steps, while most of the representational decisions are made by the code

generation steps. This choice can be made in a way which is largely independent of
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a particular source language and target machine, 1f the fundamental concepts of

programming Tanguages and machine organization are understood.

We are interested in such features of the source language as the elementary data
objects and operators which it provides, the methods available for constructing data
aggregates and control structures, and the lifetime of objects during execution.
The features of the target machine which are of interest are its register
organization, 1its memory layout and addressing structure, and the facilities which
it provides for instruction sequencing and environment specification. (We must
regard the operating system, along with any software conventions 1in use by other
systems, as a part of the target machine because they may act as constraints to fix
the representation of certain data and operations.) It is not possible to explore
all of these points in detail during this brief series of Tlectures; I shall

therefore only attempt to outline the most important ones.
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1. Data Objects

When we solve a problem on a computer, we use an algorithm to manipulate a set of
ohjects which describe data that is relevant to the solution. The interpretation of
these data objects depends upon the problem being solved. To implement the solution
in a particular programming language, we must encode the data objects in terms of
the primitive constructs available in that Tanguage; a further encoding is performed
by the translator when it represents the data objects in terms of machine
primitives, Most encodings are many-to-one, and hence we must distinguish two
properties of each object: its value and the interpretation of that value. For
example, consider the pattern of 32 bits specified in Figure 1.1a. If this pattern
happened to be the contents of four consecutive bytes aligned on a fullword boundary
in the memory of an IBM System/360 computer, it could be interpreted as any one of
the values shown in Figures 1.1b-f. Unless the interpretation of the data item is
known, it is impossible to choose the "correct" value from among those given.

1.1. Encodings. When an operator is applied to data objects, the interpretation
of their values could be determined either by the operator or by the data objects

themselves, For example, consider the addition of two integers. On Control Data

0100 0000 1000 0111 1001 0110 0101 1101

a) A 32-bit pattern

1 082 627 677

b) The pattern of {a) interpreted as a binary integer

-4 087 965

c) The pattern of {a) interpreted as packed decimal

.529 638 111 591 339 111 328 125

d) The pattern of {a) interpreted as a real
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go) (The first character is a space)

e) The pattern of (a) interpreted as a character string

STH 8,1629(7,9)

f) The pattern of (a) interpreted as an instruction

Figure 1.1

Interpretations of a Bif Pattern

6000 series machines, this could be done by executing the instruction IX6 X1+X2. Xi
and X2 are registers containing 60~bit words. These words are interpreted according
to the encoding of integers, and the encoding of the integer sum is placed in
register X6, The interpretation of the words stored in X1 and X2 is determined
solely by the operator IXX+X, and not by any property of the data objects. If the
instruction FX6 X1+X2 had been executed with the same words in X1 and X2, they would
have been interpreted according to the encoding of floating point numbers, and the

encoding of the floating point sum would have been placed in X6.
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In contrast, consider the fragment of an ALGOL program shown in Figure 1.2a. I
and J are references to data objects which are interpreted according to the encoding
of integers, and the encoding of the integer sum is the value of the formula I+d.
The interpretation of the objects referred to by I and J s determined by the
declarations of the identifiers I and J, and not by any property of the operator
indication +. In Figure 1.2b the operands are interpreted according to the encoding
of real numbers, and the encoding of the real sum is the value of the formula I+J.

Languages in which the interpretation of a data object 1is determined by the
operator applijed to it are called typeless languages; those in which the
interpretation is determined by the data object itself are called typed languages.
The attribute of a data object which specifies its interpretation in a typed
language is called its mode. If the mode of a particular object can be deduced
solely by examination of the program text, it is termed a manifest mode. Latent
modes, on the other hand, cannot be deduced until the program is actually executed.
An object whose mode is Tlatent must therefore carry an explicit mode indication
during execution. FORTRAN, COBOL and ALGOL 68 are examples of languages whose data
objects have manifest modes: All variables are declared (either explicitly or
implicitly) to have values of a certain mode, and there are different forms of
denotation for constants of different modes. {(The ynion modes of ALGOL 68 are an
explicit provision for controlled latency.) In contrast, SNOBOL4 has neither
declarations nor implied mode specifications for its variables and hence the modes
of its data objects are latent.

The major advantage of mode specification is that it enlarges the class of

diagnosable errors to include inconsistent use of data objects. Such errors may
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integer I, J;
R € 3

a} I and J interpreted as integers

b} I and J interpreted as real numbers

Figure 1.2

Fixing Interpretation by Declaration
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occur either when an object is created or when it is used. If the wmodes are

manifest, then either kind of error is detected at the point of occurrence. When
the modes are latent, however, both kinds are detected when the object is used
incorrectly. Unfortunately, the actual error might have been the creation of an
incorrect object. When an object forms part of a complex data structure, it is
sometimes very difficult to determine the point at which it was created and the
state of the computation at that point [Dunn 1973]. Thus the error-detection
capabilities of a Tlanguage will be enhanced if the modes are manifest rather than
latent. Moreover, manifest modes can be checked statically by the translator,
avoiding the necessity of a dynamic check which may be costly in execution.

Most machine languages are typeless, but in some cases mode information is
carried by additional bits attached to each value [ITiffe 1972]. For example, on
the Burroughs 5000 and 6000 series computers, descriptors {which represent addresses
of various kinds) are distinguished from operands (which represent values.) A
further distinction between single- and double~precision operands is made by the
6000 series. Even when the machine language of a particular computer is typeless,
however, there may be redundancies in the encoding which make certain
interpretations of certain data objects impossible. As a concrete example, consider
the representation of decimal integers on a character-oriented computer. Not all
bit patterns can be interpreted as valid digits, and hence an attempt to perform
integer arithmetic on arbitrary character data may lead to a processor error. Qther
examples of this kind of redundant encoding are the addresses on IBM 1400 series
computers and the packed decimal representation on System/360.

Mode specification and redundancy in machine Tlanguage encoding of data items
imply that machine-independent source languages must defer representational
decisions by providing a variety of interpretations for data objects. This variety
may be achieved in either a typed or a typeless language. In the former, many wmodes
would be available; in the latter, many operators. I shall restrict my attention in
these notes to typed source languages.

1.2. Primitive Modes. The set of all modes available in a typed Tanguage can be
divided into two classes, the primitive modes and the derived modes. A data object

whose mode is primitive has no internal structure which can be discussed in terms of
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the language. Derived modes, on the other hand, imply that the data object has
components which can be accessed and manipulated explicitly within the language. In

Section 2 I shall discuss the formation rules which allow the user of a typed

language to construct objects with derived modes; here I shall review some of the
data objects which have direct realizations in the hardware of current computers,
and how these realizations are vreflected in the primitive modes of current
languages. The purpose of this review is to provide a basis for determining which
decisions regarding representation of data objects should be taken during analysis
of the source program, and which should be deferred until code for the target
computer is being generated.

Integer data objects reflect the concept of counting which is fundamental to the
design of current computers. They are used to index ordered sets of both data
(arrays) and computations (iterations.) Every computer with which I am familiar
provides hardware to implement addition and subtraction operations on non-negative
integers. Usually there is also a natural interpretation of negative integers which
is preserved by the addition and subtraction operations. Integer multiplication is
often used in the mapping of a multidimensional array to a one-dimensional array,
but this 1is really more dependent upon the implementation than upon the
specification of the algorithm. On the Burroughs 5500, for example, two-dimensional
arrays are represented as arrays of descriptors (Figure 1.3.) To reference such an
array, the program places two subscript values in the stack and specifies the base
descriptor. The first subscript value and base descriptor are used by the hardware
to obtain a descriptor for the desired row, and the second value indexes the desired
element. Arrays with more dimensions are treated in the same way; no integer
multiplication is required for subscript calculations.

Integer arithmetic is exact. Integers can therefore be used to encode operands
for business applications such as bank automation which require a larger range than
that needed to {say) encode the indices of an array. Some hardware reflects this
fact by distinguishing several Tlengths of integer ({(e.g. half- and full-word
integers on the IBM System/360.) A machine-independent language should therefore
permit the programmer to specify ranges of values which are relevant for his

algorithm, leaving the choice of representation to the translator. HNote that the
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Figure 1.3
Array Storage on the B5500
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set of possible ranges must not be fixed, since that would require a specification
by the programmer which does not reflect the true needs of his algorithm. If the
language is machine-independent, any fixed set of possibilities probably has no
relevance for most target machines either!

The concept of a range of values must be distinguished from the concept of a
mode. Range affects the manner in which a data object is accessed, but not its
interpretation as an operand. This can be seen in the description of the halfword
add instruction of the IBM System/360 [IBM 1967]: “The halfword second operand is
expanded to a fullword before the addition by propagating the sign-bit value through
the 16 high-order bit positions. Addition is performed by adding all 32 bits of
both operands..." (The last sentence quoted and the remainder of the description is
identical to that for a fullword add instruction,)

If a set has N elements, they may be placed in one-to-one correspondence with the
integers 0,1, ... ,N-1. The definition of such a correspondence is a
representational decision which might specify more properties of the set than
necessary. For example, it would impose an irrelevant ordering on a set which was
conceptually unordered. To avoid this problem, we must recognize the independent
existence of finite sets. The programmer or Tlanguage designer can then specify
certain sets with exactly those properties needed, leaving the choice of encoding to
the translator. Examples of such sets are iﬁiﬁﬁb EKHSS and the set of characters
used in input/output communication. These occur 50 frequently that they are

distinguished as Boolean and character modes respectively.

Most hardware does not make explicit provision for the encoding of Boolean mode
objects. The representation should be chosen on the basis of the available
instructions and storage access mechanisms, 1in an attempt to balance speed and
space. You should realize that actual computation involving these objects is quite
rare. In most cases, what appears to be a Boolean expression is really a test
sequence which does not require any use of Boolean mode objects at all,

Different manufacturers use different encodings for characters, some of which (as
I pointed out earlier) are not valid representations of integers. Hardware performs
the conversion from external to internal representation, and special instructions

are often available to manipulate these internal representations, In order to
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retain machine independence, the character set must be assumed to be unordered.
Thus two character mode objects may be tested for equality but not for relative
magnitude, nor is a successor function defined. Also, range is a meaningless
concept because of the lack of order.

There is another important finite set whose characteristics are determined by the
hardware and operating system of the target computer: the set of memory locations.
A memory location is represented by an object of address mode, which may be encoded
in many ways. As in the case of character encodings, an address may not be a valid
representation of an integer. The set of memory locations must also be assumed to
be unordered, due to the different storage allocation algorithms used in various
situations. For example, on the Burroughs 5000 and 6000 series computers, arrays
are allocated to different segments of memory. The relationship between the
addresses of two segments may vary during execution, and hence no ordering of these
addresses may be assumed. {The order of elements within a single array is defined,
however, as discussed in Section 2.3.)

The lack of order in the sets of characters and memory locations precludes
implementation of algorithms such as text sorting and most dynamic storage
allocation. Each of these algoritims requires some additional ordering property
which 1is not specified for the set. In the case of a sort, the desired order is
fixed by the problem specifications -and is independent of the internal
representation of characters. The storage allocation problem, on the other hand,
does not demand a particular order; it merely requires that there be some successor
function defined on memory locations so that linear scans of the entire allocatable
area are possible. Both kinds of order can easily be imposed by providing
additional primitive functions on the elements of the set. These additional
functions would be used to access the required property explicitly, and only when
that property was relevant. Then implementation would vary from one machine to the
next, depending upon the representation chosen for the set.

Most engineering and scientific applications require operands which have a larger
range than can be economically provided by a single value interpreted as an integer.
Also, most of these computations involve measurements which are subject to inherent

errors. Precision wmay be traded for range without increasing the storage required
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for an object by interpreting it as a mantissa-exponent pair rather than a single
integer. Precision is lost because some bits of the object are devoted to the
exponent, thus leaving fewer available for the mantissa. This new interpretation of
the object is distinguished as the primitive mode floating point. Floating point
objects are ordered, but a successor function cannot be defined if machine-
independence 1is to be preserved. Specification of explicit ranges is also
impossible on the same grounds.

1.3. Mode Conversions. It is often useful to define an equivalence between

values of different modes. For example, Section 2.2.3.1 {d) of the ALGOL 68 report
[van Wijngaarden 1969] states: "Each integer of a given length number is equivalent
to a real number of that length number." It goes on to say (in paragraph f of the
same section) that there is a value of mode int equivalent to each character, but
that the equivalence is "defined only to the extent that different characters have
different integral equivalents.”

Equivalent values of different modes generally have different hardware

representations. This means that specific operations, called transfer functions,

are usually required to implement the equivalences. Some transfer functions {such
as int to real) may be provided as primitive actions in the instruction set of the
target computer; others may be implemented by a sequence of instructions. (Nate
that when the objects of two different modes have identical encodings no target
machine actions are needed to implement a transfer function.)

There are two distinct classes of transfer function: those which can be executed
without loss of information and those which cannot. It is obvious that a general
transfer function from floating point to integer cannot be managed without loss of
information, because there are floating point objects (such as 3.14) which have no
integer equivalent. A transfer function from integer to floating point does not
have this problem, but remember that it must pack an integer exponent and an integer
mantissa to form a floating point number. If the original integer has a Tlarger
range than that represented by the mantissa portion of a floating point object, then
information would be Tost in the conversion.

Some care must be exercised in selecting representations for the primitive modes

of a language to ensure that the equivalences defined by the language are preserved



182

by the transfer functions used to implement the necessary mode conversions. For
example, on the IBM System/360 the range of an ALGOL 68 int must be limited to the
mantissa range of a floating point object (24 bits) rather than using the full range
of an integer object (32 bits.) This limitation would be unnecessary for a EORTRAN
or ALGOL 60 integer because the specifications for those two 1languages do not

precisely define eguivalence between integer and floating point objects.

2. Formation Rules

Program structure is provided by the formation rules of a language. They are
concerned with the grouping of data objects into conceptual units, and the
definition of control structures. In this section I shall not explore the full
range of formation rules available to the user of the 1language, but vrather shall
concentrate upon those which are relevant for the analyzer/generator interface
specification because they are reflected in the architecture of contemporary
computers,

2.1. Expressions. The concept of an expression is borrowed from normal
mathematics. It is a tree written in linear form (Figure 2.1), with each node
representing an elementary computation. A leaf of the tree represents a computation
which can be carried out 1independently of all other nodes in the tree, while an
interior node represents a computation which requires as operands the results of the
computations represented by its descendants. One possible evaluation procedure for
this tree is the following:

a. Select any leaf and perform the computation which it represents.
b. If the selected leaf is the root, then stop. The result of the computation
is the value of the tree.
¢. Otherwise, transmit the result to the parent of the leaf and delete the
leaf from the tree.
d. Go to (a).
This evaluation procedure jis strictly sequential, but nothing 1is said about the
order in which the leaves are selected. In ALGOL 68 terminology, the elaboration is

collateral. One could also specify evaluation procedures which performed parallel
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{a+b)*c

a) A typical expression

/N
/N

b) The equivalent tree

Figure 2.1

The Meaning of an Expression



184

computations or which selected leaves in some particular order.

The major reason for wusing an expression 1is to avoid naming each of the
intermediate results created in the course of a computation: When a leaf of an
expression is evaluated, the result is anonymous. The compiler is free to do what
it will with these anonymous results because it has explicit control over the times
at which they are created and the times at which they are no longer of interest; it
does not need to worry about whether the programmer may access them unpredictably.

The concept of an anonymous operand appears in hardware as the register
structure. Details vary widely, but five broad categories cover most computers:

a. No programmable registers. All instructions take their operands from
memory and return their results to memory. (IBM 1400 series, IBM 1620)

b. A single arithmetic register, Unary operators take their operand from the
register, binary operators use its content as their left operand and take
their right operand from memory. Al1 operators return their result to the
register. The arithmetic register often has an extension, which does not
have the full capability of the major register, (IBM 7090, Control Data
3000 series, many minicomputers)

c. Multiple arithmetic registers. Binary operators may take their right
operand either from a register or from memory; all operators return their
result to a register. Some registers may be paired to provide an analog of
the extension in a single~register machine, but all have essentially the
same capabilities. (IBM System/360)

d. Hierarchy. Both operands of a binary operator must be in registers, and
all registers have essentially the same capabilities. A1l operators return
their result to a register. This type of machine could be considered
identical to type ({(a), with the registers and memory forming a two-level
storage hierarchy. {Control Data 6000, 7000 series)

e. Stack. The top n locations of the stack hold the operands of an n-ary
operator, with the rightmost at the top. They are removed by the operator,

which pushes its result in their place. (ICL KDF9, Burroughs 5000 and 6000

series)
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The number of anonymous operands may exceed the number of registers in all cases
except {e). Excess operands must be stored in memory, thus effectively naming them.
This is a representational decision which must be made on the basis of the target
machine characteristics, and hence the interface should simply deal with anonymous
results as such.

2.2. Names, A name is an object which refers to another object. This concept
appears 1n hardware as the random-access memory: Each name defines a cell which may
contain any object referred to by the name. The name has a definite lifetime,
called its extent, during which the content of the defined cell may be changed
without affecting the name itself. When the extents of two names overlap, those
names must define disjoint cells.

Names can be represented by identifiers, and accesses to the cells which the
names define are indicated by the appearance of these identifiers. A particular
identifier is made to represent a particular name®by means of a declaration. This
declaration has a scope which defines the part of the program over which it is
valid. Scope is a static property of the program, whereas extent 1is a dynamic
property. Figure 2.2 illustrates the meaning of these two terms in the context of
an ALGOL 60 program.

A single occurrence of an identifier may represent more than one name. For
example, consider a Tocal variable of a procedure in ALGOL 60. Conceptually, a new
name is created each time the procedure is entered and an occurrence of the
jdentifier represents each of these names 1in turn. The extents of the names
represented by a local variable are not disjoint if the procedure is invoked
recursively, according to Section 4.7.3 of the ALGOL 60 Report [Naur 1963].

Objects of address mode are used to dimplement names. When a particular
occurrence of an identifier represents only one name, then the address used to
implement that name can be completely specified by the translator. If the
occurrence of the identifier represents more than one name, and if their extents do
not overltap, then the transiator can implement all of them by the same address. If
the extents of any pair of names represented by the same occurrence of an identifier
overlap, then the translator cannot specify a complete address to implement that

occurrence of the identifier. There are three common mechanisms for providing the
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begin real A;

begin integer A;

t—o Scope and extent

of integer A
Scope of real A

Extent of real A

Figure 2.2

Scope and Extent in ALGOL 60




187

information to complete the specification at execution time:

a. Program modification. The complete memory address is computed by the
program and placed into an instruction which is then executed. (IBM 1400
series, IBM 1620)

b. Indirect addressing. The complete memory address 1is computed by the
program and placed into some memory location. The instructisn references
that Tocation, and the hardware interprets its content as an address. (IBM
1620, Burroughs 6000 series, many minicomputers)

c. Address modification. The complete memory address 1is computed by the
hardware at the time the reference is made. Part of the data required to
compute the address is supplied by the referencing instruction, the
remainder is obtained from one or more processor registers. (IBM
System/360, Control Data 3000, 6000, 7000 series, Burroughs 5000, 6000
series)

Selection of a particular mechanism 1is obviously a representational decision
which should be deferred until the characteristics of the target machine are known.
This means that access information must be included in the specification of a named
operand. For example, a iocal variable in ALGOL 60 might be distinguished from an
own variable or a variable Tocal to a containing block. The code generator might
then use different mechanisms to complete the address specification in each case.

2.3. Aggregates. An aggregate is a single object which is made up of a number
of distinguishable component ohjects. These components may be unordered or ordered,

and may be of the same or different modes. (Most programming languages provide only
for ordered aggregates in which all components are of the same mode.) If the
component s are unordered, then each is identified by a component name; if they are
ordered, then each 1is identified by an integer index. Component names are not
computable, and hence are specified 1iterally 1in the source program. Indices,
however, may be computed during the execution of the program.

In many programming languages, the indices of an aggregate are restricted to a
range of integers. This restriction is unnecessary; any object which belongs to a
finite set could be used to index an array which had one element for each object in

that set. In order to allocate storage for the array and to access an element, a
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one-to-one correspondence must be established between the N elements of the set and

the integers 0,1, ... ,N~1. This correspondence might not be implied by the
definition of the set, and might not be a relevant property of the set for any
operation except array indexing. Such constraints do not affect the wuse of the
object as an index, although they would restrict the operations allowed in index
expressions. For example, consider an array indexed by characters. On eagh
computer, the character encoding used by the manufacturer provides an obvious one-
to-one correspondence with a range of integers. The size of the array will vary
from one machine to another, as will the particular element selected by a given
character.

Each aggregate is usually implemented as a contiguous area of memory defined by a
base, with the position of each component specified relative to that base. When the
companents are unordered, then the translator is free to rearrange them if this
would be advantageous. The component name is translated into a displacement,
defined in terms suitable for the target computer, which does not change during
execution of the program. An aggregate with ordered components cannot be rearranged
by the translator, but component references which do not change during execution can
certainly be converted to displacements. Even if the index must be computed during
execution, it may be possible to decompose the index expression into the sum of a
constant apd a variable part. The constant part can then be converted to a
displacement by the transiator. Thus a general reference to a component of a data
aggregate consists of a base, a displacement and an index which must be combined at
the time the program is executed. The hardware mechanisms listed in Section 2,2 are
used to perform this combination.

It is important to distinguish all three parts of the reference because of the
ways 1in which machines access these aggregates. For example, it may be that a
particular machine instruction specifies an address and an index register whose
content is to be added to that address when the instruction is executed. In this
case, it is possible for the translator to combine the displacement with the base to

obtain an effective base address. Such a strategy will not work, however, on a

machine which addresses data aggregates indirectly. For example, on the Burroughs

6700 the base is the address of a descriptor which contains a pointer to the



189

aggregate itself and specifies its size. In this case, even though the displacement
is available at compile time, it must be added to the value of the index at run time
to form an effective index. The hardware then combines this effective index with
the descriptor to yield the final reference.

It may be that each component of an aggregate occupies only a part of an
addressable memory location on the target computer. The number of memory locations
which the entire aggregate occupies could then be reduced by packing the components
instead of allotting one Tocation to each, This usually lTeads to a tradeoff,
because the components may be more difficult to access individually when the
aggregate is packed. On the other hand, if the aggregate is heavily used as a unit,
the difficulty of accessing individual components may be irrelevant. The optimum
representation depends upon the number of aggregates involved, the size of each, the
frequency of access to components and the frequency of use of the entire aggregate
as a unit.

When an aggregate is packed, the access algorithms change: The displacement must
specify the position within a memory location as well as the memory location itself.
Some computers allow an instruction to specify the extraction of the relevant field
directly as a part of the operand while a sequence of instructions may be required
on others. In any case, the actual instruction would be constructed by the code
generator on the basis of information about the structure of the aggregate and about
the position of the relevant component.

2.4. Procedures. There are two aspects of procedure invocatien: control
interaction and data interaction. The control interaction is realized by
instructions that transfer control to the procedure and back to the calling program,
a process that involves saving status before the transfer and restoring it upon
return. Data interaction 1is established when a procedure accesses global data or
arguments passed by the calling program, and when it returns a value to the calling
program.

It is useful to distinguish three components of the control interaction: call,

entry and return. Implementation of a procedure invocation 1is distributed among

these components, which occur at different points in the program and have access to

different kinds of information. The status of the calling program (consisting of a
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program address and an environment specification) is passed to the procedure as an
jmplicit argument. Like all arguments, its value is known only at the point of
call. Transfer of control to the procedure requires establishment of only a minimal
status ({consisting of the program address and argument values.) Any further
environment is established at the point of entry to the procedure, where such items
as the lexicographic level and the amount of local storage are known. The status of
the calling program 1is available at each point of return, since this status is an
implicit argument of the procedure. If a value is to be returned explicitly, it is
also known at this point. Restoring the caller's status returns control, and the
value may be passed as though it were a parameter. Further action may be required
at the point of call to incorporate this value into the caller's environment.

Control interaction is manifested in hardware by the mechanisms for status saving
and transfer of control. There are four common methods:

a. Relevant status is placed on a stack by the hardware when a subroutine jump
is executed., ({Burroughs 5500, ICL KDF9)

b. Relevant status 1is placed in a register by the hardware when a subroutine
jump is executed. {Data General NOVA, UNIVAC 1108, IBM System/360)

c. Relevant status is placed in memory by the hardware when a subroutine jump
is executed. The memory location bears some fixed relationship to the
target of the subroutine jump. (CDC 3000, 6000, XDS 940, UNIVAC 1108)

d. Separate instructions are provided for saving the relevant status and
performing the subroutine jump. (GE 645)

The makeup of the "relevant status" depends entirely upon the computer. At the
least, it contains the return address.
There are five common parameter mechanisms used to pass data to a procedure:

a. Call by value - The argument is evaluated and 1its value passed to the
procedure. Assignments to the corresponding bound variable (if permitted)
do not affect the argument value in the calling program.

b, Call by result - This mechanism is used to return values to the calling
program. Before the call, an address is computed for the argument. As
control is returned to the calling program, the value of the corresponding

bound variable is assigned to the memory element specified by that address.
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The assignment takes place upon a normal exit from the procedure, and hence

is not made if a direct jump to a global label is executed within the
procedure.

c. Call by value-result - This js a combination of {(a) and (b}, The argument

value is passed to the procedure and the value of the corresponding bound
variable is copied back into the calling program when control is returned.

d. Call by reference -~ The address of the argument is computed before the

procedyre is invoked, and this address is passed., Access to the
corresponding bound varijable from within the procedure is indirect, and
thus the argument itself is being manipulated.
e. Call by name - The argument expression 1is converted to a parameterless
procedure which, when invoked, yields the same result as the argument,
Whenever the corresponding bound variable is accessed, this procedure is
invoked.
Methods {a) and {b) are the basic ones; the other three can be synthesized from
them,

Figure 2.3 9llustrates the effect of the different parameter mechanisms, The
program in Figure 2.3a is written in ANSI FORTRAN, except that the interaction
between the main program and the function violates Section 8.3.2 of the standard
[ANSI 1966] (if a bound variable becomes associated with an entity in COMMON,
assignments to either within the function are prohibited.) The final values of M
and N depend on the parameter mechanism that is used; possible values are listed in
Figure 2.3b, {Call by result cannot be used in the example since that mechanism
does not pass values to the function.) Most Tanguage standards do not explicitly
state the parameter mechanisms which must be provided. By careful study of their
effects, however, some of the possibilities can wusually be eliminated as
incompatible with various statements in the standard. Only method {(c) or method (d)
could be used in an implementation of ANSI FORTRAN, for example.

The element 1in the calling program that defines each argument sets up a value
that is passed to the procedure. This value is an address in cases (d) and (e); the
ohject program must therefore have the ability to manipulate addresses as values if

either of these mechanisms 1is to be used. Call by result does not require that
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FUNCTION I{J,K)
COMMON L

J=d+1
L=L+K
I

J+L
RETURN
END
COMMON M
M=1

N = I(M,M+3)

STOP
END
a) A FORTRAN Program

N
Call by value 7
Call by value-result 7
Call by reference 12
Call by name 14

b) Passible results

Figure 2.3

The Effect of the Parameter Mechanisms
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anything be passed to the procedure, but each argument must be updated when the
invocation of the procedure has been completed.

The implementation of the data interaction may also be distributed aver the call,
entry and return components of the procedure invocation: Argument values must be
set up at the point of call, and additional manipulations may be required after
entry to the procedure. For example, if the call by value and call by value-result
mechanisms pass addresses, then code must be generated to move the argument values
into local storage. When call by result or call by value-result is used, values
from local storage must be moved back to argument locations at the point of return.
Generally, this will also require actions at the point of call after control has
actually returned from the procedure.

Each of the three components of the procedure invocation must be distinguished in
order to defer the representational decision until the characteristics of the target
computer are known. The "point of call" is actually a broad area which begins just
before the computation of the first argument value and ends just after any actions
required to incorporate returned values into the caller's environment. It is
necessary to distinguish both of these 1imits, since procedure invocations on some
computers require distinct operations at each of them. (The "mark stack" and
"enter" dinstructions of the Burroughs 6700 are an example of this situation.)
Similarly, the "point of entry" must be considered to begin just before the first
declaration of the procedure and end just before the first executable statement;
both 1imits must be marked to permit flexibility in the choice of representation. A
procedure may have several returns, each involving a sequence of actions. Again,
both the beginning and end of such a sequence could be marked. In this case,

however, my experience has been that a single return operation is sufficient.
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I - INTRODUCTION -

This short course is an introduction to classical storage allocation and
access techniques used by compilers (see [Randell 641, [Gries 711, [Griffiths 711).
It will be follmwed by a discussion of some more advanced features in chapter 3.C.

One of our aims will be to show which language features require dif-
ferent types of storage management, in which we distinguish a hierarchy. At the
bottom end is the static allocation scheme for languages like FORTRAN, in which it
is possible to know the address that each object will occupy at run time. The next
level comes with the introduction of stack techniques for languages Tike ALGOL60,
where space is allocated on a stack at block entry and released at block exit. The
stack is not a sufficient model if the language allows store allocation and libera-
tion in a non-nested fashion. List processing languages, like languages which allow
parallel or pseudo-parallel processing, are in this category, and require more
sophisticated treatment. Languages like PL/1 require all three types of storage
management.

2 - STATIC ALLOCATION -

In a static allocation scheme it must be possible to decide at compile
time the address that each object will occupy at run-time. In turn, this requires
that the number and size of the possible objects be known at compile time, and also
that each object may only have one occurrence at a given moment in the execution of
the program. This is why, for example, in FORTRAN, arrays have constant bounds and
procedures cannot be recursive.

The process through which the compiler goes in doing storage allocation
for a static language is thus very simple. During a first pass of the text, the com-
piler creates a symbol table in which is kept the name, type, size and address of
each object encountered. During code generation {which may be in the same or a sub-
sequent pass), the address of each object is thus available for insertion into the
object code.

Consider a FORTRAN program in which occur floating point variables A, B,
a floating point array T of size 10 x 100, and fixed point variables I, J. He will
suppose that floating point variables occupy four bytes and fixed point variables
two. The symbol table could contain the following information :
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Name Type Size Address
A float 4 0

B float 4 4

T float array 4000 8

I fixed 2 4008
d fixed 2 4010

The information under 'address’® may, of course, be the absolute or the relative
address of the object concerned, and will most often be a relative address, to be
used, for example, as a displacement with respect to an implicit or explicit regis-
ter.

The above is not meant to be a complete storage allocation scheme for
FORTRAN, since no attempt has been made to trent COMMON statements or SUBROUTINES.
The important thing is the basic principle, which states that the position of each
object at run time can be foreseen at compile time, and any one object can always
occupy one same storage address during the complete execution of the program. This
does not mean that every FORTRAN compiler follows this principle, in particular the
second part, since a particular compiler may, for other reasons, allocate, for
example, different addresses to local variables during successive calls of a given
SUBROUTINE.

3 - DYNAMIC ALLOCATION -

Modern programming languages allow recursive procedure calls, and this
precludes any attempt at a static storage allocation scheme, since to a variable
which is declared within a recursive procedure may correspond more them one value
at a given moment during the execution of the programme. Note that recursive proce-
dures are not the only perturbing factor, since the existence of arrays with calcu-
Tated bounds means that it is no longer possible to know where each object starts
and ends, since their size is unknown to the compiler.

The usual storage allocation model in these circumstances is a stack,
on which entry to a block or a procedure causes a new allocation, the space being
freed at exit from the block or procedure. The use of a stack to model nested struc-
tures is a standard device. Consider a program with the following block structure,
where the blocks are numbered for convenience :
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We consider the run-time stack at different moments during the execution of the
program. Within block 4 :

Direction
of growth *

The figures indicate that the zone contains the values of variables declared in the
block of the same index.

Within block 5 :
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Notice that the values corresponding to variables declared in block 5 use the same
physical space as those from block 4. Thus the stack allow the continual reutilisa-
tion of the available space.

We now suppose that block 2 is in fact a procedure, which is called
from block 5. The stack will have the following form while the procedure is being
executed :

The order of occurrence of data zones in the stack is no longer that which indicates
static inclusion {the procedure 2 is included in block 1 but not in block 5). We
will say that the procedure is statically contained in block 1 and dynamically cal-
Ted from block 5. If procedure 2 calls itself, a further data zone, with new values
corresponding to the same variables, is opened on the stack.

3.1 - Block Linkage -

At any moment in time, a base register B points at the start of the
most recent data block in the stack (we will ignore hardware problems which may
lead to slightly different solutions). B allows reference to be made to all those
values which correspond to local variables. Consider the following simple program
in ALGOLED :

1. begin integer a, b, ¢ ;

2. begin integer x, y, z ;

“ae

yt+tz;

X
a b+c;

n

end
end



201

When the execution of the program arrives at the two assignments, the form of the
stack will be :

The Tetters indicate the position
,,\

of their corresponding values.

B TO XN

X, ¥ and z are accessible by their displacements from the value of B, say dx(B),
dy(B), dz(B}. This allows us to compile the first assignment, but not the second,
since reference is made to a, b and ¢, which are not indicated by the base register.
To solve this problem, the data zone corresponding to each block will indicate the
start of the preceeding block, together with its own block number :

z
d X
B ——a 2| ~
c
b Preceeding block.
a

This pointer is simply the value of B before entry to the block. We see that the
blocks are Tinked together on a chain (which always ends with block 1). When refe-
rence is made to a non-local variable, the compiler produces instructions which
descend the chain looking for the block number, and positions a base register on
the relevant data zone. The non-local value is accessed by displacement from this
base register.

The same pointer in the stack serves both in searching for non-local
variables, and in resetting the stack at block exit. As can be seen from the
diagram, the base register points at the word which contains its preceeding value.
At the end of a block, the stack is returned to its former state by replacing the
base by this former value. The values declared within the block which has just been
teft are lost, and the space can be re-used.
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However, in the case of a procedure, the two uses of this pointer do not
necessarily indicate the same point, since reference to non-locals considers statical-
ly containing blocks, whereas procedure exit is to the dynamically calling block. Con-
sider the following program :

1. begin integer a, b, ¢ ;
2. procedure f ;

begin ...
a:=b+c;
end ;
3. éééiﬂ_integer X, ¥, 2
.

end
end

When the program executes f the stack is as follows :

B— 2
Y
X
4 3 e
a
1 0

Within f, no reference can be made to x, y or z, and no purpose is served in
examining block 3 on the chain when looking for non-local values. A second pointer
should be included in the data zone of f, which indicates its statically contai-
ning block (block 1}. In the particular example we give, this may seem to be
simply an optimisation, but in certain cases this pointer becomes a necessity :
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203
—_—
B 2 Static pointer

z Dynamic
N pointer
X

3 ———
c
b

110 je

The static pointer is used in searching for non-locals, the dynamic pointer being
used to reset the stack at exit from the procedure. The reason why this is unne-
cessary with blocks is that the two pointers would always have the same value.

3.2 - Displays -

References to non-local variables can be inefficient with the above
method if nesting is deep. One way to avoid this is to use the DISPLAY introduced
in [Dijkstra 601. The idea is to have a table in which are kept pointers to the
currently active data block corresponding to each block of the program. References
to non-local variables are made by displacement from the value of the relevant dis-
play, which contains those values which would be inserted in the base register
after searching down the chain for the relevant block level.

The simple DISPLAY defined above is thus a table with one entry per
block :
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2
1 4
2 ' 3
3 —
1 0
DISPLAY STACK

Extra information needs to be kept in the stack to facilitate the resetting of the
DISPLAY at block or procedure exit.

An improvement to the above scheme is to create a new DISPLAY at each
block or procedure entry, and keep it in the stack. This time the table can contain
just those pointers which would be useful within the block, that is to say the
position in the stack of those data blocks to which reference may be made during
the execution of the current block or procedure. The data blocks referenced cor-
respond to blocks in which are declared variables which are referred to as non-
locals in the current block. The values of the pointers can be deduced at block
entry by following the static chain, and this chain is thus followed only once per
block instedad of once per non-local reference. We consider an example :
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1. begin integer a, b, ¢ 3

begin integer d, e,  ;
3. procedure p(x} ; value x ; integer x ;
begin integer i, j, k ;
im=a+d;

end ;

P(a)
end
end

The stack will have the following form when the assignment is executed as a result
of the call of p at the bottom of the program :

k
J
i
Pointer
for the 4
reference
to d. X
3
Static ¢
pointer
L 2
c
b
1 0 I <
pointer for the

reference to a
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Since block 4 contains two non-local references (to a and d), two pointers are pre-
pared, which indicate the corresponding data blocks.

3.3 Compaction of the Stack -

Consider the small ALGOL60 program that we have already seen :

1. begin integer a, b, c ;

.

2. begin integer x, y, z ;
end
end

When block 2 is being executed, the form of the stack is always the following :

This means that it is not necessary to do the linkage joining block 2 to block 1.
Suppose that the base register points as usual, that a register S indicates the
first free space in the stack, and also that integers occupy one address. Just
before entry into block 2 we have.

S

B 5 1|0

The addresses of a, b and c avec 1(B), 2(B) and 3(B). To enter block 2 it is suf-
ficient to augment the value of S by 3 and refer to x, y and z as 4(B), 5(B), 6(B).
The base does not move, no linkage is done, and reference to non-locals is shorte-
ned in many cases. In general, if the inner block is not a procedure and the outer
block contains no array, this may always be done. Arrays are a problem, since the
amount of space allocated to the outer block is unknown at compiletime. The compac-
tion can nevertheless be done at the price of always keeping the space for simple
variables in the outer block. Consider the following program :
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1. begin integer a, b, ¢ ;
array t [+..] ;

2. begin integer x, y, z ;
array u [...1;
end

In block 1 the stack has the form :

> N ot

[}

The space for t starts at 7(B), and the spaces for x, ¥y, z are not used, but must be
reserved. In block 2, we arrive at :

T X KON

With this mechanism it becomes possible to allocate space for data of fixed size
only at procedure level, as is suggested in [Gries 717 and [Wichmann 73]. Array
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space is allocated at block level, but only procedures need link information. The
space for simple variables in inner blocks (x, ¥, z in the example) can be reused
for parallel inner blocks, this part of the stack being modelled at compile-time.

3.4 - Parameter Linkage -

In chapter 3.1 the different methods of passing parameters were discus-
sed. In terms of stack structure, the methods of value, result, reference or dif-
ferent combinations of them cause no problem. Parameters by name {or by procedure)
are more difficult. The actual parameter corresponding to a formal parameter by
name is re-evaluated at each reference to the formal, and the evaluation takes place
in the environment of the call of the procedure. For example :

1.  begin procedure f(x) ; integer x

2. begin ...
X
end ;
3. begin integer a, b ;
f(at+b)
end
end

Procedure f is statically contained in block 1. However, the reference to x requires
re-evaluation of a+b, and hence reference to variables of block 3. The stack will
have the following form :

Static
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Since block 3 is not on the static chain of f, a and b cannot be referenced. In fact,
the evaluation of actual parameters corresponding to formal parameters by name is by
creation of a parameterless procedure (called a 'thunk') which is linked to the
calling block.

Thunk for
x (= a+b) Static
T
Static
2 -
b
a
3] —F e
1 0 i e—u

The static pointer of a thunk points to the data zone towards which points the dyna-
mic pointer of the procedure of which the formal is a parameter. This allows access
to a and b, and ensures the correct environment in all circumstances.

3.5 - Labels -

Whether he approves of goto or not, the compiler writer usually has to
implement it. A goto a non-local label reguires that the stack be in the right
state on arrival. Since the scope of a label, like the scope of any variable, is
known at compile-time, and thus has a block number, finding the right environment
is simply a matter of descending the static chain. That is to say that the local
base register points at the level of data which corresponds to the block in which

the label occurs. As usual, all data at a higher level is lost and the space can be
reused.
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4 - AGGREGATES -

We have already seen that the definition of arrays has a considerable
influence on storage allocation algorithms, since it may be that the size of an
array is unknown at compile time, which means that some part of the storage alloca-
tion mechanism must be dynamic. But arrays are not the only way of forming aggre-
gates, and we will also consider storage allocation for structures.

4.1 - Arrays -

If the size of an array is known at compile time, its space can be
allocated statically, as in FORTRAN. Arrays may follow each other in the run-time
data zone, and the compiler can always foresee the address of each one. In a lan-
guage in which the 1imits can be calculated at run-time, allocation must be dyna-
mic. On an ALGOL60 stack, for example, arrays are stored in two parts. One space
will be allocated by the compiler in the same way as those allocated to simple
variables ; this space will contain a pointer to the actual location of the array.
Space for the array is seized at block entry, after calculation of the amount neces-
sary, and this on top of the stack. For example :

1. begin integer n ;

read (n) 3
2. begin integer array pfl : nl, qfl : 10, 1 : nl ;
end

end

When the program is being executed, and inside block 2, the stack will have the
following form :
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contents of g
4 contents of p
root of q
root of p
2 —
n
1 0

We call the pointer which indicates the address of an array, its ‘root'.

In the following paragraphs, we will discuss different ways of ordering
the elements of arrays in order to facilitate references to different elements.

The definition of FORTRAN, which will be used as an example of this
method, specifies the order in which array elements are stored, and chooses to
store them with the first subscript varying the most rapidly. This is the opposite
of usual mathematical convention, but in most cases the order is of no importance.
Consider an array defined by

DIMENSION A(5, 10)

A is a matrix of size 5 x 10, and will occupy 50 consecutive storage locations in
the order ;

A(L, 135 A(25 1)s veus A5, 1) A(L, 2) ouvy A5, 2), o..y A(L, 10), ...,
A(5, 10).

When making a reference, element A(I, J) is to be found in position
(J-1)x5+1-1

from the start of the array. In general, given an array 7 with bounds 8_i :
DIMENSION T(Bl, 82, vees Bn}

Element T(Il’ Los -ens In) is to be found at position :
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(...((In-l)*Bn_1+In_1-1)*Bn‘2+...+12-1)*B1+11—1

This sequence of calculations must be made at run-time by the instructions generated
for each reference to an array element. Note that, if any I,i is a constant, parts of
the calculation may be done at compile time. A displacement address is of course
calculated by multiplying the position by the size of each element, and adding the
result to the address of the first element of the array.

The case of FORTRAN is the simplest possible, but other languages may
equally well be treated by the same method. ALGOL60 is a typical example, in which
an array declaration has the form :

integer array t [11 U 12 Pl eees ]n : un]

Both lower and upper bounds are given, and both may be calculated at run-time. Con=-
sider a reference :

t [y, 12, ceey 1.1

If the elements are stored as in FORTRAN ( ALGOL60 leaves the decision to the com-
piler writer), the position of the element is found by replacing (Ij - 1) bys

i, -1, =1, 4 i i :
(1J }J) and Bj by (uJ 13 1), which gives

O L R P I e U U PP MNP )
T I S (AL M I M I

Whereas in FORTRAN the bounds are constants known at compile time, in ALGOL60 they
are calculated at run-time, at block entry, and must therefore be stored in the stack.
For each dimension, the quantity (uj - ]j + 1) is also calculated at block entry

and stored in the stack in order to improve the speed of references. Thus the dia-
gram given in § 4.1 was incomplete, and in practice, the stack will look like :
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values of q

values of p

n u, = 12 +1
4 1, n bounds of Z"d dimension
up +1
1, 10 bounds of 1St dimension

root of q

n up - 11 +1

1, n bounds of p

root of p

The compiler will once again take advantage of each time bounds or subscripts are
constants to optimise the calculations.

However, since ALGOL and similar languages leave a choice, another
method is often used which follows pointers instead of doing arithmetic :

4.1.2 - Reference by Code Words -

" == =

A better title for this methode would be repeated indexing, since a
matrix is treated as a vector of vectors, a three-dimensional array as a vector of
matrices, each of which is a vector of vectors, and so on. The method will be
illustrated by an example :

integer array t [3 : 10, - 5 : 77 ;

The root of t points at a vector of pointers to the vectors of elements :
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-5
-4
0 it
3 « -5
5 -4
root
-5
-4
10 > ves
7

Every pointer points at the element zero of the next vector (whether this element
exists or not), thus avoiding substraction of the lower bound. The sequence of ins-
tructions for a reference calculates the address by adding the first subscript to
the root, which gives an address. Add the second subscript to the contents of that
address to get another, and so on. That is to say, in general, an element is found
by :

(... contents {contents {contents {root) + il) + 12) ceo in)

This sequence can be coded very efficiently in many computers.

An important source of errors in certain types of program is that resul-
ting from using subscripts which are outside the declared bounds. A good compiler
will allow the programmer to specify whether he wishes the object code to test sub-
scripts, since this testing is a process which may slow down considerably the run-
ning program. A compromise which is useful in the multiplication method is Jjust to
test if the final address is in fact part of the array, thus avoiding the overwri-
ting of instructions of the program, for example.

This need to test subscripts is, for some people, a criticism of cur-
rent language design, since in most cases it is clearly wasteful. It would be more
efficient to write

for 1 index of t do t[i] := ...

than the standard step - until construction, the compiler handling bounds.
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4.2 - Structures -

Structures are sets of named fields which are variously defined in dif-
ferent languages, for instance in PL/1 or ALGOL6S :

DCL 1 POINT
2 X, Y FIXED ;

struct point (integer x, y) 3

References are made by

POINT.X or x of point

Other languages have other definitions. In the run-time memory, a zone is created
which will contain the successive fields of the structure. Structure references are
resolved at compile time, since at least the address of the root of each field is
known.

The quantity of memory given to each field depends on the type of the
field. If a field is of simple type (as in the above example), space is directly
reserved for the corresponding value ; otherwise a pointer serves as a root, as in
the method of storing arrays.

The fields of a structure may themselves be structures or arrays, but
this causes no inconvenience with the methods that have already been described.

5 - LISTS -

1t is not always possible to manage store as a stack, since this requi-
res that storage be released at known moments, in the opposite order from its allo-
cation, and in a completely nested manner. Languages which allow the use of heavily -
structured data and the manipulation of pointers do not follow this rule. Examples
of language features of this type are own in ALGOL60, the 1ist-processing primitives
hd, t1 and cons, reference in ALGOL W, ref ref in ALGOL68. In all these cases, the
programme requires allocation of memory as the result of the execution of statements,
and this in unforeseeable quantities ; the allocation lasts as long as some live
pointer references the element of memory, and liberation can take place when no live
pointer allows access to the object. Allocation and liberation are at arbitrary
moments.

As an example, let us add the Tist primitives to ALGOL60, which allows
the writing of programs like :
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1 := null
for 1 :=cons {hd {2}, 1) while ti(a) # null do
a := tl{a)

Which transfers the contents of list a to 1, supposing that a contains at least one
element. Each execution of the function cons causes the allocation of a new space
in memory, which will have the form :

head tail

Thus the 1ist (a (b c) d) is represented as follows :

1 ] 7l 1 7 l
: / !
} ] 1
! !

The diagonal stroke represente null, the end of a 1ist or the empty list. The sta-
tement

1 := cons (a, cons (cons (b, cons (c, null)), cons (d, null)))

would create the above 1ist structure, and a pointer would be placed in the memory
space corresponding to 1.

New manipulations may mean that some or all of the elements of a list
structure are no longer accessible ; the space can them be recovered by a techni-
que called 'garbage collection’.

5.1 - Free Lists and Garbage -

The storage spaces seized by cons have to be taken from a special zone,
for which we will use the ALGOL68 term 'heap'. Since, in the example seen above,
the space seized was always the same size, it is possible to cut the space availa-
ble for the heap into elements of this size. These elements are initially linked
together in a special Tist called the 'free 1ist'. When space is required within
cons, an element is taken from the free 1ist and used by the routine. When the free
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list is empty, no more space is available. However, as we have already seen, it is
usually possible to recover space as a result of the inaccessibility of no lon-
ger used elements by the process of garbage collection.

Garbage collection is a process which usually works in two phases,
the first being to mark all useful elements and the second to recover space at the
same time as removing the marks. Marking requires that the algorithm consider in
turn each pointer defined in the program ; the pointer is followed, marking each
accessible element. If the element marked contains pointers, these also must be
followed, and so on, A bit may be available within the element to be marked, or
otherwise a heap model is kept which consists of one bit per heap word., When mar-
king is complete, the whole heap space is examined., Marked words have their marks
removed, and unmarked words are put into the free list.

The main problems of garbage collection are its inefficiency, and the
fact that it logically takes place when there is no space left in the memory, and
so the garbage collection algorithm has no work space. Sufficient space must there-
fore be kept in reserve.

5.2 - Storage Collapse -

Many languages allow space to be taken from the heap in elements of
arbitrary and differing sizes. In this case the idea of a free 1ist no longer works,
and the following problem can arise. Consider a memory in which the unused spaces
are shaded :

The memory is shared between three items, A, B and C, which leave two holes H1 and
HZ' If we now wish to store an item D of size greater them that of Hl or H2 but
less than their sum, them a difficulty has arisen. The existing items must be



218

moved towards one end of the memory in order to lTeave a consecutive piece of store
of large enough size. This process is called 'storage collapse'.

It may be necessary to use storage collapse even if the heap consists
of elements of like size, for example if, in a fixed storage space, the stack
grows from one end and the heap from the other. When the two meet, garbage collec-
tion with a free list would not allow the stack to expand, and so the heap must be
collapsed.

Storage collapse is preceeded by a marking algorithm, but is even Tess
efficient than was the use of a free 1ist, since items are moved. In this case, all
pointers to a moved item must be updated, which is a costly process. It is usual to
use a mixture of free list and storage collapse techniques in order to keep a cer-
tain level of efficiency. In particular, since objects may be moved, it may be prac-
tical to direct all pointers to these objects via individual pointers which are
themselves in a zone which is garbage collected by free Tist techniques. Only these
individual pointers need updating, since they themselves are not moved :

Pointer to A Object A
T M
Zone collected by Zone for variable
free list. size elements.

A1l references to A are to the pointer in the pointer zone and not to A itself.

A complete garbage collection method will be given in chapter 3.C.

6 - PARALLEL PROCESSES -

Another situation in which it is not possible to use a stack is that
in which the time-scale of the execution of a program is not that indicated by con-
secutive execution of the instructions, for instance in the control of real-time
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processes, or in their simulation. A given task may activate a second one, activa-
tion which Tooks like a procedure call, except that the relative order of evalua-
tion of the two tasks is unknown. Thus it is possible for the calling task to
finish before the called task, which is in contradiction with the necessity of a
completely nested calling structure. What is more, the called task may need access
to data furnished by the calling task, and thus, at its completion, the calling
task may not be able to liberate its data space.

Consider an example from an operating system. A routine P can acti-
vate an input-output operation as a task, in order to transfer data to be found in
the data zone of P. But P may well terminate before the input-output operation ;
in this case, the data space of P cannot be liberated, since the input-output task
continues to make use of the space.

We see that compilers for languages which allow parallel processing,
or which simulate such processes, must use a storage allocation technique which
allows storage recovery by methods similar to those used for lists: space is sei-
zed at block or procedure entry, the space being taken from the heap. At any one
moment, the different active tasks indicate their data zones. Within each zone
exist pointers to those zones to which access may be required, exactly as in the
case of the second type of display seen above. When it is necessary to recover
storage, a garbage collection algorithm can follow the pointers from the different
tasks in order to mark their data zones. These zones is their turn point to any
other data zones to which the task may make reference, and these zones are also
marked. Space can then be recovered by storage collapse :

Description blocks

Corresponding
to active
tasks

Pointers to
their data
\ zones

Pointers to
other zones
which may be
referenced
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This represents only one method of keeping track of used and unused
store, and there exist many variations on the same theme.

7 - CONCLUSION -

The generation of executable machine code is obviously completely con-
ditioned by the storage allocation techniques which are to be used at run-time. We
have tried to give some idea of the basic storage allocation mechanisms, without
going into too much detail. It should be noted that an extremely wide variety of
techniques exist, and many interesting ideas have not been discussed here. However,
" most of the variety stems from efforts to improve the basic themes that we have
developped, or to adapt them to particular machines.

One point of importance is the very close relationship between sto-
rage allocation mechanisms and the type of operations which may exist in the lan-
guage. Small changes in language design can lead to large changes in the architec-
ture of the compiler and in the complexity of the run-time system.
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CHAPTER 3.C.

SPECIAL RUN~-TIME ORGANIZATION TECHNIQUES FOR ALGOL 68

Ursula Hill
Technical University of Munich

Munich, Germany

1. INTRODUCTION

In the previous lectures, in particular those of W. M. Waite and of M. Griffiths,
basic concepts 1ike mode and object etc. in higher programming languages were intro-
duced and their equivalents in the machine discussed. Especially, I refer to the pre-
sentation of the principles of data storage management, such as static and dynamic V
storage allocation, procedure calls, realization of more complex data structures, and
the illustration by examples of storage allocation models for FORTRAN and ALGOL 60.

The intention of this lecture is to discuss the realization of those principles for a
more ambitious language, ALGOL 68. This language requires the study of a great deal

of the general principles, although some important concepts, coroutines or partial pa-
rametrization for instance, are missing. There are still other restrictions in connec-
tion with modes - e.g., there are no arrays of arrays 2> - and the manipulation of da-
ta - e.g., changing the length of flexible arrays by joining new components is not

possible - as examples which should simplify the handling for the compiler without be-
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ing inconvenient for the user of the language. On the other hand, ALGOL 68 contains
features of questionable usefulness which can only be integrated into the general
storage mechanism with special additional provisions.

This discussion is based on the concrete Munich implementation of ALGOL 68 for the
Telefunken TR4 [9]; the basic design of the compiler was developed by G. Goos [5], [6].
Many of the details to be mentioned can be realized in different ways. Especially, I
should call your attention to the work of the Brussels ALGOL 68 implementation group
which, at the same time, in some cases came to the same, in others to gquite different
solutions, and which published detailed descriptions [2].

v Throughout this lecture the term statie is connected with tasks which can be carried
out at compile-time, whereas dynamic means that the execution is only possible at
run-time; the attribute dynamic is used, in particular, for run-time stack opera-
tions.

2} Instead of the ALGOL 68 technical term multiple value we shall mostly use the more
usual term array.
Furthermore, we shall use the terms block and procedure in the following sense: a
block corresponds to a serial clause containing at least one declaration or genera-
tor, a procedure is an object the mode of which begins with proc.
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1.1. SHORT OQUTLINE OF DATA STORAGE PRINCIPLES

Qur first task is to give a summary of data storage allocation principles applicable
to ALGOL 68. We begin with a brief survey of basic concepts such as handling objects
of more usual modes and the mechanisms for run-time stack and heap (7], [81, [9].

1.1.1. FIXED AND VARIABLE PARTS OF OBJECTS

Each object consists of a fixed and a variable part. In this context fixed means that
the size of the needed storage area is known at compile-time, whereas for the variable
part this size can only be determined at run-time. The variable part may be empty. In
any case, it is not empty if the considered object is, or contains as subvalue, a dyna-
mic array or a string. At run-time, fixed and variable part may be stored in disjoined
data areas, furthermore, the variable part can consist of several components which

need not stand in consecutive storage cells (see Figure 1).

It is essential that within the fixed part relative addressing is possible at compile-
time.

object
A """ denotes
possible pointers

fixed part,
length known
at compile-
time

/
\\\\\

\\\\\\\- > variable part

Figure 1. Fixed and variable part of an object

1.1.2. MODES AND OBJECTS IN ALGOL 68

ALGOL 68 contains several primitive standard modes as int, real, char, etc. Objects
of these modes have only a fixed part of constant length (depending on the machine).
Furthermore, there are standard modes string, bits, and bytes, which can be considered

as special array modes. Objects of these modes need not be handled like general multi-
ple values: for objects of modes pits or bytes the length normally is restricted to
one or two machine words:
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bits: Lo 1101 ’ bytes: | BYTES ...

An object of mode string is of flexible length. It can be represented as a fixed part,
which is nothing more than a (internal) pointer, and a variable part composed of the
length as a particular entry and the actual string (see Figure 2).

fixed part variable part

pointer {. [:::::EEEEEE}—---——nw length of string

string

Figure 2.  S$tring

Starting from the standard modes, new modes can be defined. Most important (and also
known from other languages) are references, multiple values (arrays) and structured
values {records}.

An object of a reference mode consists of a fixed part containing an address {see also
3.2 ).

A multiple value consists of a descriptor (information vector) as fixed part and the
set of the elements as variable part, which at least in the case of a subvalue, need
not be stored in consecutive storage cells {see Figure 3). The Tength of the descrip-
tor depends only on the dimension. For arrays with fixed bounds the set of elements
can be considered to belong to the fixed part; but we don't go further into the dis-
cussion of such optimization possibilities.

fixed part:
descriptor variable part:

> elements

Figure 3. Multiple value (array)
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A structured value is the collection of the objects of the component modes. The fixed
part is the sequence of the fixed parts of the components, the variable part is the
collection of the appropriate variable parts. In particular, the length of the fixed
part 1is X Li, where Li = length of fixed part of i-th component.
;

An example is given in Figure 4.

r 7 / 3 ™
8$S§r1pt°r ,///// e]ements
fixed of J
part descriptor variable
of k ~\\\\‘~\\\\\\" J >part
z
\ ; elements
of k
J J

Figure 4. Object of mode struct (int i, [2,:u;1 real 4, [l,:uylreal k, compl 1)

Objects of procedure modes can be handled quite simply. They only require a fixed
space for the reference to the corresponding code in the program storage part together
with a reference to (the beginning of the data storage of) the static predecessor.

See also 4.1.
Other, more special objects are treated in section 2.

We conclude the paragraph with a remark on one of the most widely discussed features
of the ALGOL 68 mode declarations: modes in ALGOL 68 can (with certain restrictions)
be defined recursively and, by consequence, modes can be "infinite".

For example

mode = struet (int i, refmg ) implies

m
m = struct (int <, ref struct (int i, ref struct (...
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Now, the mode conditions guarantee that objects of "infinite" modes are always finite,
that means the storage needed is finite. There may occur only more or less complicated
cycles but only through references, as e.g., with the above mode m :

max, y; x:= (1,y); yi= (2,z) delivers: x

=52 | ]

For every object occurring in an ALGOL 68 program the mode is known at compik-time. For
a1l these modes representations are stored in a mode-table. For the further handling

of modes and objects in the compiler it is convenient to store together with each mode
the length of the fixed part of an object of this mode (note that this Tength only de-
pends on the mode}. In the case of a structured mode the relative addresses of the
fixed parts of the components are also stored. See Figure 5.

e —

} entry for <nt

™™™ row M

<length of descriptor>

e > entry for m ,
~— <mode of elements> mode m = [L:u] int
o
~N
gtruct

<length of fixed part>
2&£;F5mm_““m » entry for n ,
<relative address>

<mode of j>
<relative address>

mode n = struct(int <, m j)

/\/’\_W

Figure 5. The mode-table. Example
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The mode-table is used for a number of purposes, amongst them code generation at
compile~-time and interpretation of complicated operations or garbage collection at
run-time.

Access to subvalues is in general more expensive but no more complicated than in
ALGOL 60. For each fixed part of an object a pair consisting of relative address and
base register is known at compile-time. Code tan be generated for accessing the ele-
ments of a multiple value by means of the descriptor in the usual ways. For accessing
a component of a structured value a simple relative addressing within the fixed part
is sufficient.

1.1.3. STATIC AND DINAMIC DATA STORAGE AREAS

Qur main task is to discuss the storage allocation for the objects occurring in an
ALGOL 68 program. At first we can distinguish two cases: There are objects given by
denotations {constants in the sense of ALGOL 60 for instance); these objects are
stored in a constant-list at compile-time (with the exception of procedures, of course)
and we can forget about them. A1l other objects are created during run-time, e.g.,by
copying values from the constant-Tist or by building structures from other objects.

We shall concentrate on this case where storage reguirements are determined explicitly
by generators and declarations, or implicitly by intermediate resuits.

In ALGOL 60 ([71, [8]), for each block the fixed parts of the local data can be col-
lected into the statie data area, the variable parts form the dynamic data area.
Length and structure of static data areas are determined at compile-time. These areas
can be handled according to the block structure.

In a procedure-oriented (as opposed to the usual block-oriented) stack organization,
to the main program and to each procedure corresponds one static data area consisting
of the static data areas of the local blocks joined or overlapped according to the
tree structure inherent in block structure, and of certain items required for organi-
zational purposes {see Figure 6}. The organization of dynamic data areas is still
block-oriented. We use a vector of block pointers (stacktop locations) for the main
program and each procedure whose Tength is given by the respective maximum Tocal block
level. Dynamic composition of procedural static and dynamic data area gives the run-
time stack. Base registers (displays) for addressing all accessible data are allocated
according to the static procedure Tevel structure. The contents of these registers are
kept in the organizational storage parts of procedures to allow eventually necessary
reloadings of the base registers. Details may be taken from the Figures 7 and 8.
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with local blocks:

<formal parameters>

Bl p——

B2

B4

B3

Figure 6.
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Procedural static data area:

Procedural static data area

organizational storage cells:
static and dynamic chain

stacktop locations
for local blocks

static data area of the
outermost "block"” (formal

parameters) : B0

static data area
of BI

L static data
area of B2| static data

area of B4

-
static data
r area of B3




Example of a program structure:

The stacktop pointer
is stored in a stack
top location at the

beginning of an inne
block.

Bl

B4

Bz

B3
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procedure 2 , BO

B2 )

B2

BSﬁ

B4

inserted) outermost
Tocal block

local blocks of P

Run~time stack at the moment denoted by " -« "

r

—

stacktop
pointer

Figure 7.

e

B1,B4
B2, B3

stacktop
locations

dynamic data area
of B0 {formal
parameters)

dynamic data area
of B1

dynamic data area
of B3

Procedural static and dynamic data areas

procedural
static data area

Ps

procedural

Pq

is the (internally

dynamic data area
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stack
base register .
of main program
L procedural
static data area
of main program
<L procedural
dynamic data area
base register
of first Lt J
procedure level procedural
static data area
of a procedure
L procedural called
dynamic data area
<
stacktop
pointer - J

Figure 8. Procedure-oriented organization of the run-time stack

In principle, the above used terms and the stack organization can be applied to ALGOL
68. Deviations concern mainly the fact that in ALGOL 68 the static data area of a
block needs not contain all Tocal fixed parts, the corresponding fact holds for the
dynamic data areas (see 4.2 ). Nevertheless, these areas can be defined and handled
as for ALGOL 60, but with the mentioned modifications and with the observation that
there are still other parts of objects (which form what may be called heap-areas) to
be stored on the heap.

1.1.4. THE HEAP

The heap is realized as a portion of unstructured free storage. There are diverse
mechanisms of allocating storage needed for an object on the heap and of releasing
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it, e.g., the boundary tag method [10], or the use of an additional bit 1ist for mark-
ing free or used words.

Since in ALGOL 68 objects and subvalues of any mode and length may be stored on the
heap, storage in the area provided for the heap is allocated in consecutive locations.
When the whole area is used up, the heap is collapsed by the garbage collector (see
Figure 9).

stack unused heap
P e -

T

-
=
m
o
R -

stacktop T :
pointer pointer

Figure 8. Data storage at run-time

1.2, GENERATIVE AND INTERPRETATIVE HANDLING

In compiler theory generation and interpretation are well-known terms. In practice it
seems that only compilers of mixed forms exist with more or less tendency to either
generative or interpretative handling. Pure interpreting is out of the question (not
only} for ALGOL 68. And most of the so-called interpreters for other languages are
based on material collected in prepasses, and thus are "partial”-interpreters only.
Sometimes, it is a matter of taste how far to go with generation and interpretation.

In the case of ALGOL 68 a more generative handling seems appropriate. A1l information
necessary for handling objects is known at compile-time. Apart from the "actual modes"
of union objects for each ALGOL 68 object the mode is kown statically. Difficulties
for code generation result only from the immense work to be done for general modes.

Obviously, the code for, e.g.,

= b where mode of a is ref m, mode of % is m and
[

.1 struet (..o, [o..] struct (v.o.)uul)

s expensive; nested loops must be generated. This is, of course, possible. The same
holds for the implementation of declarations of such objects, for parameter transfers
etc. In our implementation we decided to use a partly interpretative method in these
cases. Certain preparations, such as coercions, are performed at compile-time. But

the code generated consists (for general modes) of a macro or subroutine call of the

form ASSIGNATION (a,b, mode (a), mode (b))
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where the first two parameters deliver the actual storage addresses, the last ones are
references to the corresponding entries in the mode-table mentioned above. The sub-
routine ASSIGNATION is designed in a way enabling it to handle all possible objects
and modes.

A more generative method could mean that instead of the general subroutine a special
subroutine is generated at compile-time for each actually occurring mode.

Different possibilities exist analogously for the garbage collector. The Munich imple-
mentation contains a general garbage collection program applicable to all ALGOL 68 pro-
grams. Another proposal, made by Branquart et al. [2], provides for generating special
garbage collector parts for the actually occurring modes.

2. SPECIAL OBJECTS IN ALGOL 68

In this section special ALGOL 68 objects are briefly considered.

2.1. FLEXIBLE ARRAYS

Subscript bounds in array declarers may contain the symbol flex. Objects declared by
means of such declarers are called flexible arrays. (Note, however, that in ALGOL 68
flex does not belong to the mode.)

Example:
mode m = [1 flex : 3 flex] zint:

mx;,  struct(int i, m j) y

The values referred to by « and § of y are flexible arrays.

The bounds cannot be changed by using "out of bounds" components, but only through
assignations to the whole array.

2.2, OBJECTS GENERATED BY SLICING

Slicing of an array means a) selecting a single component (subscripted variable in
ALGOL 60), and b) selecting a subvalue which is itself an array. We consider here the
second case: The result of slicing a given array is an object consisting of a new des-
criptor as fixed part and of the set of selected elements as variable part, which are
not copied (see Figure 10).
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fixed part variable part fixed part
descriptor /////”///J' -
[
! !
| 1
L set of elements
e J
\ v J Y
given array subarray

Figure lo.

STicing

descriptor

2.3. OBJECTS GENERATED BY ROWING

Objects may be rowed to arrays. Some different cases are to be distinguished:

Rowing a vacuum means generation of a descriptor referring to an empty variable part.
If the given value is not an array and the result is not a reference, then an object
is generated consisting of a descriptor and of the given value as only component.

If the given value is an array the result of rowing is a new array of higher dimension.
At least a new descriptor must be generated.

If the mode of the result begins with ref, only a new descriptor is generated; the
variable part of the new object is the value referred to by the given object, or its
variable part if the given object is already an array (see Figure 11).

@ [ —— - e
reference reference
value scriptor
referred to element descrip
\_.._v_.._.__/ AN v 2
given value rowed object result
O e - - -]
reference reference
descriptor
elements descriptor
- A v JLWJ
given value rowed object result
Figure 11. Rowing, where the result is of reference mode
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2.4. OBJECTS OF UNION MODES

An object of a union mode is actually an object of one of the component modes. It con-
sists of a fixed part containing the fixed part of the actual value and a mode inform-
ation, that is a reference to the corresponding entry in the mode-table, and of the
actual variable part. Sufficient storage place must be reserved for actual values of
any possible component mode; in consequence, it is reasonable to reserve as fixed part
the maximum storage needed, as shown in Figure 12.

fixed part variable part

actual mode

actual //////

(L = ?ax Ly,

Fixed part L where Li = fixed part length
_______ of objects of i-th component
mode)

Figure 12. Object of union mode

A variable part exists only if the actual value is or contains an array. The storage
area needed is , in general, not known at the moment of elaboration of declaration;
it is reserved in connection with assignations.

3. SCOPES OF VALUES (LIFE-TIME)

Up to now we have discussed the overall structure of the data storage, of run-time
stack and heap, and we considered the representation of objects of the different modes.
Qur next task is to study in which part of storage the objects and in particular where
fixed and where variable parts can be placed. This does not only depend on the modes
of the considered objects but alsc on the scopes. There is a close relation between
scopes and storage allocation; of course, at least during its life-time, storage must
be reserved for any object. In this section we give at first the definition of scopes.

3.1. DEFINITION

The scope of a value is some block or the entire program; it covers the proper 1ife-
time which, however, begins with the generation of the object.
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In detail:

The scope of a primitive object is the entire program.

The scope of a composed value {array or structure} is the minimum of the scopes of
its elements; the scope of a subvalue of an array is the scope of the array.

The scope of a generator (reference) in the case of a global generator is the entire
program and otherwise the block containing the ({local) generator.

For procedures see 4.1,

Access to a value is, of course, only possible within its scope (or more exactly
during its life-time).

For scopes two conditions must be observed:

1) The scope of the result of a block (or procedure) must strictly contain the
block (or procedure).

2) For assignations the scope of the left hand value must be contained in the scope
of the right hand value.

3.2. CHECKING THE SCOPE CONDITIONS

In simple cases, the scope conditions can be checked statically, otherwise checks at
run-time must be provided [5].

Static checkings:

In general, it is not possible to determine at compile-time for each expression and
subexpression the block which is the scope of its value. One can give only estimates,
that means we define a minimum and a maximum scope for each expression {which are, in
the worst case, an innermost block, and the entire program, resp.). At compile-time,
to each block and procedure B a block level number 57¢B) can be attached, with the
property

bZ(BZ) < bZ(BZ) if B, 4 BZ for blocks or procedures BZ’BZ'

These block level numbers can be used for static checkings {provided that identifica-
tions have been made correctly). We denote the block level number of the minimum
(maximum) scope by bi, (bZa).

{1} For a result » of a block or procedure B:
if bt (r) < bL(B) then correct else
if bZa(r) 2 bL(B) then incorrect,
otherwise dynamic checking is necessary.
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(2) For an assignation Zw := rhv :
if b1 (1hv) 2 bl (rhv) then correct else
if bli(lhv) < bla(rhv) then incorrect,
otherwise dynamic checking is necessary.

Dynamic checkings:

At run-time the use of block level numbers is not sufficient, since there may exist
several incarnations of one block with different life-times. In our implementation the
absolute addresses of the stacktop locations »lst in the run-time stack are a suitable
representation of the corresponding blocks or scopes.

For two active blocks Bl and B2

szt(Bl) < szt(Bz) if the Tife-time of B, is greater than the one of By
Thus, the dynamic checkings reduce to comparisons of addresses bZst. The checks are
necessary for objects of reference modes, and these objects are conveniently repre-
sented by a pair of addresses:

address of the object referred to
blst of the block which is the scope

{The scope is known at the moment when the reference is generated).

4, SCOPES AND DATA STORAGE ALLOCATION

We already stated that there is a connection between scope and storage allocation.

There are two groups of objects to be handled, that is Zocal and global ones. We saidthat
two data storage areas are available and we shall examine in section 4.2 where to

store the different objects.

But, at first, we consider another consequence of the scope definition in ALGOL 68
which concerns the general stack mechanism.

4.1. SCOPE_OF ROUTINES AND ALLOCATION OF BASE REGISTERS

The scope of a routine is the smallest of those embracing blocks which contain the
declarations (defining occurrences) of identifiers, indications and operators used
but not defined within the routine, or eventually the entire program. The allocation
of the base registers for the stack organization depends on these scopes:
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In ALGOL 60 static predecessors, static chains, procedure levels and the corresponding
allocation of base registers are directly given by the text of the program. As may be
seen from the example in Figure 13, for ALGOL 68 these correspondences are possible in
the same manner only after each procedure has been lifted to the level of the block

which is its scope (together with appropriate replacements). Otherwise the static chain
could have gaps which would require a modification of the stack organization (especial-

1y of procedure calls).

Program example:

( proc(int)int P ;

proe @ = (int i) proc(int)int :

(proc R = (int j) proc(int)int :

R(2) A

procedure level < <> base register BR,

Static chains

b)

when executing

R(p)(1)

BR, - main program j
4

BR, - procedure ¢
)

BR, - procedure R(0)
BR, - main program )
)

( 2R, >} procedure ¢
¢
BR, - procedure RO®)

Procedure levels

when executing
P(4)

BR, - main program j
{

BR, - procedure R(2)
BR} - main program 3
i

BR, - procedure R(2)

Figure 13. Static chains and base registers
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Dynamic scope checking (see 3.2) requires that the objects of procedure modes too con-
tain information on their scope. We represent these objects in the form:

address of code

address of the beginning of the data
storage of the static predecessor

blst of the block which is the scope

4.2. STORAGE FOR DATA

We have pointed out that the size of the storage area needed for any object depends
on its mode and on actual subscript bounds, if any. Furthermore, we stated that the

scope of an objec’ must have an influence on where to store its fixed and variable
part, in the data stack or on the heap.

For this aspect of data storage allocation we distinguish four classes of objects.

4.2.1. LOCAL OBJECTS GENERATED IN THE BLOCK WHICH IS THEIR SCOPE

These objects correspond to the ALGOL 60 objects; the usual simple stack mechanism
applies. See Figure 14.

run-time stack:

Program example: /ﬂ\/ril\“MN\“
. . 3
B : _’éZ’LJZ o ; £ 0 )
[7:3] real a3 descr-iptor static data
of ¥: area of B
: : J
N
: elements
: of y: L dynamic data
area of B
stacktop )
pointer—» <

Figure 14. Local objects
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4.2.2. LOCAL OBJECTS GENERATED IN AN "INNER'" BLOCK

There are local objects (that means objects, the scope of which is a block) which are
not generated in the block defining their scope, but in an inner block. Such objects
must be stored on the heap, since they don't fit into the stack mechanism.

This in particular concerns
descriptors of slices whose mode begins with ref
and rowed expressions whose mode begins with ref
{see Figure 15).

Program example:

BI: N [ 1t nl int x;
ref [ 1 int aw ;
Ba: xzx =x [ 1:4at2]; co scope (x [ 1:4at2])
= goope (x)
= Bl co
run-time stack: heap:
descriptor {: static data
of x: area of BI
xx: —
static .
area of T
€ B2 descriptor of
. - subarray
clements r“;/
of = and of L 33%?%“
subarray:
dynamic data T
area of B2
stacktop
pointer

Figure 15. Local objects generated in an "inner" block
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4.2.3. LOCAL OBJECTS WITH FLEXIBLE LENGTH

For these objects the need of storage for the variable part changes during life-time
(flexible array or string). For the variable part the storage must be allocated on the
heap, whereas the fixed part can be placed in the stack. By the way, the same is true
for variable parts of union objects. In the case of a stringthe fixed part is an inter-
nally introduced pointer to the heap. See Figure 16.

Program example:

[ 1 :2flex, 1 :2 flex] inta;
a

((1,2) , (3,4)) ; €

((1,2,3) , (4,5,6) , (7,8,9)); (:)

Q
I

data storage at (:)

e
' heap
pointe } elements
e .
descriptor static data of a
of a: area of p
stqc%top
ointer —»
pot stack heap
heap
pointer. g
data storage at (:) S}GEGNtS
T T ——— 1
, * "01d" elements of
descriptor 2, ng more accessible
of a: static data
area of B
stacktop _
pointer stack heap

Figure 16. Local objects with flexible length
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4.2.4. GLOBAL QBJECTS

Apart from constants which can be stored in a constant 1ist at compile-time, and mul-
tiple values with unrestricted scope, global objects must be stored on the heap. Yet
for each such entry on the heap an internal pointer is inserted in the stack within
the storage area for the block in which the global object is generated. See Figure 17.

Program example:

BI1: I—ref[

real yy ;

B2: ]_he }n_tx 5
heap [1:3] real y ;

¥y =Y
L
Yy
-
run-time stack: heap:
pointer—e- -
static data - : ¢
elements
area of Bz of y
Iy,
internal 2 descriptor
pointers for x -~~\_\:>_<:::_‘k of ¥
static data
area of B2 for y — z
stacktop
pointer

Figure 17. Gliobal objects



243

5. SPECIAL TOPICS

Though 1in principle for ALGOL 68 the well-known mechanisms for run-time stack and
heap can be used, some special problems arise for which special provisions are to be
considered. In certain more or less obvious points a modification of the storage
allocation scheme is necessary.

5.1. RESULTS OF BLOCKS AND PROCEDURE CALLS

In ALGOL 68, blocks and procedure calls may have results of any general mode. More-
over, it may occur that such a result is stored in the data area of the block con-
cerned, and is lost, if storage is released by the usual simple reloading of the
stack pointer. These results must be saved as illustrated by Figure 18.

Program exampie:

BI: r[1:4] int x ;
z 1=

B2: (11:33 strwet (int 2, [1:4]1intd ) as;

J of a [11  ¢o result of block B2 co ) ;

L

run-time stack at the end of B2 :

/\/T"""\ /VT/j
} dynamic data
B1
- area of 7 dynamic data
% 77- {—// ////A area Of B.z
T
elements e o — — = /%/
of a 9 /q.-.. stacktop
I pointer
[ result of B2
elements dynamic data
of 4 - area of B2
stacktop - J
pointer

Figure 18. Result of a block
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This saving can be interpreted as
assignment to an intermediate variable declared in an outer block
or as

a certain garbage collection-1ike collapsing of the data area of the top block
in the stack which preserves only the compacted block result, with resetting
of the stack pointer to the last word of the result.

In order to avoid overwriting this transfer requires already a suitable storage scheme
for objects of general modes. In particular it is possible that the variable parts of
objects are not stored in consecutive storage cells (e.g., in the case of subvalues
of multiple values).

A simple solution of the problem is the transfer of the objects to the heap.

5.2, GENERAL ACTUAL PARAMETERS

Actual parameters in ALGOL 68 may contain e.g. blocks and jumps which cause certain
modifications for the stack operations.

One of the points to be considered is how to insert blocks occurring in actual para-
meters into the block and procedure structure of the whole program. According to the
semantics of the ALGOL 68 procedure call the actual parameter is transferred into the
(copy of the) routine where it is elaborated during elaboration of the routine. Thus,
blocks in actual parameters are local blocks of the procedure called. For the static
chain (used. for reaching non-locals) this is, however, not true. Since actual para-
meters are in effect value-parameters (with the restriction that the formal parameters
pack contains no semicolon) they should be elaborated before actually entering the
routine called. In our implementation this is done and the values of the actual para-
meters are directly stored in the places for the formal parameters.

In a block-oriented stack scheme special provision must be made for the static chain
such as shown for the example in Figure 19.

In a procedure-oriented version the same modification of the static chain is necessary,
because procedures, too, may occur in actual parameters. But there are still other
difficulties in handling the dynamic storage areas of blocks in actual parameters.
Among other possibilities ére a special handling of block ends concerned or the in-
sertion of those blocks into the static block level structure of the calling pro-
cedure together with an additional stacktop location for the call (see Figure 20).
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program example: run-time stack:
— - sl
Bl: l——pmc P B7
- L —
: after
L Bz “entering P
— 41
Be: [ i
pree ¢ P !
ng (. i-_ during
elaboration
. P pranmpangu o 3
B3: r_} of actual
L; 13 parameters
L ’ — o
B3 . .
Le ... dynamic static chain
[or chain ‘

Figure 19. Actual parameters. Block-oriented run-time stack

5. 3. LOCAL GENERATORS

Storage for local generators cannot be reserved in a static data area in general,
because the number of objects actually generated in the same block depends on program
flow.

Local generators occurring as actual parameters in identity declarations, e.g.,

ref real x = loc real := 3.1 , cause no problems. In the Munich implementation we

restricted the handling of local generators to those cases. Otherwise, difficulties

arise in storagé allocation and scope checking [3]. (Moreover, in most cases the use
of global generators is more reasonable.)

A case in point is the occurrence of a local generator in an actual parameter of a
procedure call. Consider, for example

B: begin real y;
proc P = (ref ref real x): ...% = loc real; ... ;
P(Zoc@freal =y)

_______ {Z’ffﬁfreazx:locygfreal =y

x = loec real; ...)
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co nested blocks within

I P(...) co
: )3
stack
e P
BI P ~
P() d
B&
Y|
B3
stacktop
Tocations
of calling
procedure ,
stacktop
pointer

Figure 20.

Stacktop locations for calls

procedural
static data area
of calling procedure

dynamic
data area
of B (calling block)

procedural
static data
area of p

dynamic
data area
of B2

dynamic
data area
of B3
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The scope of a local generator is the innermost range {block) containing it. The call
mechanism prescribes the call to be replaced by the routine, that is a block contain-
ing identity declarations derived from formal and actual parameters. This block con-
tains the generator and, in consequence, the scope and thus the stacktop location re-
presenting it, is in general determined only dynamically, depending on the routine
called. A call P( ax := loc regl:= ... ) for instance, where xx is of mode

ref ref reql and declared in the calling block, is undefined. The general storage
allocation scheme leads to reserving space in the dynamic area for the local (or even
actual) parameters, where the generator must be kept until the routine is left.

5.4. GENERAL MODE DECLARATIONS

In a mode declaration the actual declarer may contain actual bounds. Each applied
occurrence of the defined mode indication must be replaced by the actual declarer.
For example:

mode m = [1:n] real ;
max ; struct (m i, ...)
—A A

[1:n] real [1:n] real

Therefore, in generating code, this insertion is conveniently done by calling a closed
subroutine derived from the mode declaration.

These subroutines may contain procedure calls and thus become even {implicitly} re-
cursive:
proc P = (int x) int:
r@_(zgl_gﬂ= [1:...P(1) ... 1 real; _I

The easiest way to deal with this fact is to handle mode declarations with actual
bounds 1ike procedures without parameters with all consequences concerning base re-
gisters and storage allocation. Our previous definition of procedures, therefore, must
be supplemented. A scope definition is not necessary since modes cannot be handled
like other data.

5.5, "EMPTY" FLEXIBLE ARRAYS

At the time of elaboration of a declaration for a flexible array the space initially
required for the elements may be empty. This causes problems when the elements again
may contain arrays.
For examples [I : 0 flexl struct ( [m :n] int i, ... ) x

x has initially an empty set of elements.

Normally the values of m and n are stored in descriptors contained in these elements.
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m and n are furthermore needed when assignments to x are made, e.g. Since a subsequent
access to m and » would be rather cumbersome, we decided to reserve store for just one
element where the necessary local information can be held.

8. GARBAGE COLLECTION

In this section we consider an ALGOL 68 garbage collector; we restrict ourselves to
the storage collapse technique used in the Munich implementation. Possible optimiza-
tions of the underlying principle are not discussed here.

The garbage collector works in 3 phases:

{1) Marking phase:

A1l objects or subvalues stored on the heap can be reached by reference chains start-
ing in static data areas in the run-time stack.

One of the tasks is now to find all static areas of active blocks and procedure calls
in the stack. This is possible by means of the dynamic chain for procedure calls.
Furthermore, we introduce a {static) numbering of all blocks and procedures. This
number is stored, together with the stacktop pointer, in the stacktop location of the
block (procedure) concerned. Thus, the number of all active incarnations of blocks
and procedurescan be found (see Figure 21).

Each static data area must be examined whether it contains pointers leading into

the heap (possibly, through dynamic areas). For static data areas the structure is
known at compile-time (and it is the same for any incarnation). That is, a storage
allocation list can be set up at compile-time for each static data area, which
specifies for each item whether or not its content is relevant for the garbage collec-
tor. To these Tists the aforementioned block number can be attached. A model of such

a list is given in Figure 22. For each item in a static data area it contains

a sequence of n zeroes (0) if the item needs n storage cells and is or
contains no pointer,

a one (1) if the item is or contains a pointer; in addition a reference
to the entry of the mode table for the item concerned is given.

These 1ists allow us to analyze at run-time all chains in a partly interpretative
manner with regard to modes. All objects (storage cells} on the heap reached in this
way are marked {in our case by using a marking bit list}).
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Example:

B: begin real a;
(2 : ul ref real b;

heap real c;

int d;

end
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stack

(1,

Y

Figure 22.

Y

o R

mode-table

a

descriptor
of b

pointer to ¢
d

elements
of b

possible
references
to the heap

heap

storage allocation

1list for B

entry for

entry for

Garbage collection

ref real

[1 ref real
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(2) Compactification phase:

In the compactification phase all {sequences of) storage cells marked on the heap are
joined into an uninterrupted seguence. A special requirement of ALGOL 68 is that even
if only a subvalue of an array is marked, then in general the whole array is kept,
with the exception that dynamic parts of the irrelevant elements of the original array
are discarded. This was deemed advisable, in particular, since redefinition of des-
criptors would be necessary, otherwise.

(3) Addressing phase:

Collapsing requires (almost) all pointers into the heap (possibly within the heap) to
be changed according to the transfers performed. The problem is to find all these
pointers, which would require a great deal of the work done in phase (1) to be repeat-
ed. Instead, during phase (1) a 1ist of all respective pointers can be set up which
facilitates the work of this phase.

One of the problems in garbage collection is posed by the storage which the collector
itself needs for 1ists and for the stack used for analyzing modes and composed objects.

Two additional remarks should be made: The use of storage allocation 1ists does not
allow objects of different non-primitive modes to be stored in the same storage cells
of one static data area. Thus, the use of a "number cellar" for intermediate results
is only possible for objects of primitive ({irrelevant for garbage collection) modes.
Furthermore, the initialization of storage cells with a suitable skip-value is ne-
cessary at each block begin, dynamic storage allocation, and procedure call and re-
turn; otherwise, the garbage collector might work with undefined values.
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Chapter 3.D

SYMBOL TABLE ACCESS

University of California at

Santa Cruz, U.S.A.

"The butterfly collector likes to
catch elusive little things and
1ine them up in rows. He should
enjoy symbol tables."

1. INTRODUCTION

During the translation of many -programming languages it is necessary to asso-
ciate each occurrence of an identifier with its collected attributes. This is
accomplished by means of a symbol table which holds relevant information about all
active identifiers encountered in the source text. Information required for trans-
lation, and held in the symbol table, may include the name, type, location, diagnos-
tic information, scope nesting, etc. An entry is made into the symbol table when a
new identifier is declared. When an identifier is otherwise used the symbol table

is interrogated for the information on which to base translation decisions.
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If the same identifier has been declared in nested scopes, the declaration in
the innermost scope controls its use. As a result the symbol table search mechanism

must insure that the first occurrence found will be the innermost.

A1l entries local to a scope (e.g., local variables to a procedure)} become ir-
relevant upon exit from that scope and are removed from the symbol table. This
serves the dual function of freeing space in the symbol table and "uncovering” any

previous use of those symbols in outer scopes.

Symbol tables access consumes a major portion of the processor time during
translation. For example, a study of an efficient translator for the PL-1ike lan-
guage XPL revealed that one-fourth of its translation time was spent interrogating
the symbol table when a linear search method was employed. Changing to a hashed
table Tookup algorithm, a faster access method for this application, saved nearly all

of that time.

There are four methods for symbol table access presented here for evaluation

and comparison {linear, hash, sorted, and tree}. HNone are new and all have their

merits depending on the application for which they are being used.

2. OPERATIONS

Certain programming languages, such as ALBOL-60 and PL/I, have nested scopes of
application for their identifiers. A scope is delimited by matching bracketing sym-
bols (such as begin-end). The appearance of a declaration for an identifier within
the brackets makes the identifier local to that scope {i.e., not available outside
the brackets). When a single identifier is declared in more than one level of

nested scopes, the innermost declaration takes precedence {see Figure 2.1).
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/* A PL/1 PROGRAM FRAGMENT */
BEGIN;
DECLARE (A, B) FIXED;
A=1;
BEGIN;
DECLARE {C, A) FIXED;
A, B, C=1;
BEGIN;
A=1;
END;
BEGIN;
DECLARE A FIXED;
A=1;
END;
A=1;

A Program Exhibiting Nested

Figure 2.1

Scopes
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The symbol table for a nested language holds a record of identifiers and the
information associated with them. Upon encountering the deciaration of an identi -
fier (explicit or implicit), a translator must first check thdt there has been no
previous declaration of it in the present scope and then enter it into the table.
Upon encountering the use of an identifier, the translator must find the symbol
table entry for the corresponding declaratton to make available the associated in-
formation. The scope bracketing symbols must also cause the translator to react
appropriately.

The simplest table organization for symbols in a nested language is a stack.
Upon scope entry the stack must be marked to delimit the new scope; upon encounter-
ing a declaration the new identifier is stacked; upon encountering the use of an
jdentifier the stack is searched from newest entry to oldest to find the most re-
cently declared occurrence of that name; upon scope exit the identifiers local to
the scope must be discarded.

The speed with which the above operations can be accomplished is often a criti-
cal design criterion for the symbol table mechanism. There are several access
methods that can be superimposed on the stack organized table to improve performance.
The choice ‘between them is based on various considerations of table size and fre-
quency of access; several choices are given below. In each case there are four
procedures corresponding to the four access actions as noted in Figure 2.2.

Two other auxiliary functions are needed to deal with the attributes associated
with each symbol: "new-attribute" and "old-attributer . The first records a newly
discovered attribute and checks that it does not conflict with previously recorded
information. The latter simply retrieves an attribute from the symbol table.

Let "id" be the character string form of a name, "n" be its location in the
symbol table, "atr" be the designation of an attribute, and "atrval" the vaiue of
the designated attribute. The the following six lines are the standard calls of

the six functions {in PL/I).
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i

n = new_id (id);

n = old.id (id);

call enteruscope;

call exit_scope;

call new_attribute (., atr, atrval);

atrval = old_attribute {n, atr});

procedure name action accomplished

nev_id An identifier has just been declared.
Check that no previous conflicting
declaration has been given and then
enter the symbol into the table.

old id An identifier has just been used. Find
the table location corresponding to its
most recent declaration.

scope_entry A beginning bracket for a scope has been
encountered. Prepare a new local naming
scope.

scope_exit An ending bracket for a scope has been

encountered. Discard identifiers no
Tonger accessible and reestablish the next
outer scope.

Symbol Table Access Primitives
Figure 2.2
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3. Method of Presentation

The presentation here is primarily in terms of some running programs
written in XPL. The advantage of presenting complete programs is in immediate
transfer to a working translator. All of the details are spelled out so that the
user can simply translate into his implementation language and use the algorithms.
Another advantage is in immediate comparison of the four algorithms presented. They
have been made as similar as possible so that the differenceswill stand out.

The running programs contain the implementation of the four access primitives
that are needed to define the symbol table module (See Section 1.A .5 of these notes).
The "language" that drives the symbol table module is given by the grammar in Figure

3.1,

define_actions = scope-entry action_list scope-exit

action_list=({new_id |old_id| define_actions )*

The Intermodular Communication
with the Symbol Table Module

Figure 3.1

The test programs read in a stylized example of the intermodular communication
and obey the implicit commands. Other tests {See Section 1.A.4.3 of these notes)
can be presented to the program by simply changing the input. The code words in the
data correspond to the actions as listed below:

IN scope_entry
OUT  scope_exit
NEW  new id

0D olg_id
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The trace output prints the driving input data as well as all the table con-
tents at each stage. The output is a bit cryptic but, since the program that pro-

duced it is there, it should be understandable.

4, LINEAR SYMBOL TABLE ACCESS

] 4§ ] TABLE_TOP
attribute

table - .\_ 5 L

- = 2

wl o] X

Ale—0

ID_TABLE SCOPE_MARKER

Linear Access Method
Symbol Table Configuration
Figure 4.1

The diagram in Figure 4.1 depicts the linear search method symbol table as it
would appear after a translator has processed 1ines 1-6 of the program fragment in
Figure 2.1. ID_TABLE holds the identifiers A, B, C, and A while SCOPE_MARKER sig-
nifies that the first two are in the cuter scope and the second two are local to the
inner scope. The variables LL and TABLE TOP point to the next available cell in
their respective tables. The attributes of the identifiers are held in another
table which is accessed by the same pointer as ID TABLE allowing the translator to
first locate an identifier then use its location to sample or add to the associated
attributes.

The 1inear access method is expressed and tested in the following XPL program.
{The language XPL is close enough to PL/I so that the reader should easily under-
stand the meaning of its constructs.} The output of the program consists of a
series of snapshots of the table contents and pointers after each action triggered

by the program in Figure 2.1. INDEX records the location found by the procedure
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invoked. The signals IN and OUT correspond to scope entry and exit caused by
BEGIN and END; NEW A signifies the declaration of the identifier A and OLD A the
use of A. The table configuration in Figure 4.1 is reached after the seventh

event in the test run.

1 /* SYMBOL TABLE ALGORITHMS */
2 /* LINEAR SEARCH METHOD */
3

4 /* DATA STRUCTURE DEFINITIONS:

5

6 ID_TABLE() HOLDS THE IDENTIFIERS.

7 TABLE_TOP POINTS TO THE NEXT AVAILABLE CELL IN ID_TABLE().
8 TABLE_LIMIT IS THE BOUND ON TABLE_TOP.

9

10 SCOPE_MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE.

11 LL IS THE PRESENT LEVEL OF PROGRAM NESTING.

12 LL_LIMIT IS THE BOUND ON LL.

13

14 INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES.
15 */

16

17 DECLARE TABLE_LIMIT LITERALLY '100*, TABLE_TOP FIXED,

18 ID_TABLE(TABLE LIMIT) CHARACTER ;

19 DECLARE LL_LIMIT LITERALLY '10', LL FIXED, SCOPE_MARKER(LL_LIMIT) FIXED;
20 DECLARE INDEX FIXED;

21

22 ERROR: PROCEDURE; OUTPUT, OUTPUT = 'ERROR'; CALL EXIT; END ERROR;
23

24 NEW_ID:

25 PROCEDURE ( IDENTIFIER);

26 DECLARE IDENTIFIER CHARACTER;

27 DECLARE SB FIXED;

28

28 /* SEARCH FOR DUPLICATE DECLARATION */

30 SB = SCOPE_MARKER(LL-1)3

3 INDEX = TABLE_TOP;

32 DO WHILE INDEX > SB;
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42
43
2
45
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a7
a8
19
50
51
52

70
7
72
73
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INDEX = INDEX - 1;
IF IDENTIFIER = ID_TABLE(INDEX) THEN CALL ERROR;
END;

/* CHECK FOR ID TABLE OVERFLOW */
IF TABLE_TOP = TABLE_LIMIT THEN CALL ERROR;

/% ENTER NEW IDENTIFIER */
INDEX = TABLE_TOP; TABLE_TOP = TABLE_TOP + 1;
ID_TABLE(INDEX) = IDENTIFIER;

END NEW_ID;

OLD_ID:
PROCEDURE ( IDENTIFIER)
DECLARE IDENTIFIER CHARACTER;

/* SEARCH ID _TABLE FOR THE IDENTIFIER */
INDEX = TABLE_TOP;
DO WHILE INDEX > 0;
INDEX = INDEX -1;
IF IDENTIFIER = ID TABLE(INDEX) THEN RETURN;
END;

/* RECORD FAILURE TO FIND THE IDENTIFIER */
CALL ERROR;
END OLD_ID;

SCOPE_ENTRY; "
PROCEDURE 3
/* MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED */
IF LL = LL_LIMIT THEN CALL ERROR;
SCOPE_MARKER(LL) = TABLE_TOP;  /* POINT TQ FIRST LOCAL */
LL = LL + 15 /* INCREASE LEXIC LEVEL */
END SCOPE_ENTRY;

SCOPE_EXIT:
PROCEDURE ;
LL = LL -1;
TABLE_TOP = SCOPE_MARKER(LL)3
END SCOPE_EXIT;
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74 /* TEST PROGRAM FOR SYMBOL TABLE ALGORITHMS */
75 DECLARE (CARD, LINE) CHARACTER;
76 DECLARE I FIXED;

77 OUTPUT = ' SIMULATION OF EVENTS DURING TRANSLATION ' ;
78 OUTPUT = ' '3

79 OUTPUT = 'EVENT: TABLE STATUS:';

80 OUTPUT = ' '3

81 LL = 0; TABLE_TOP = 03
82 DO WHILE LL »>= 03

83
84 /* PRINT STATUS OF TABLES AND POINTERS */

85 ouTPUT = * TABLE_TOP="||TABLE_TOP||* LL="||LL||* INDEX=*]]INDEX:;
86 LINE = * 1D TABLE{)= '3

87 DO I = O TO TABLE_TOP -1;

88 LINE = LINE || ID_TABLE(I) |] ' *3

89 END:

90 QUTPUT = LINE:

91 LINE = * SCOPE_MARKER() = ';

92 DO I= 0TOLL-1;

93 LINE = LINE }| SCOPE_MARKER(I)} || * *3

94 END

95 OUTPUT = LINE:

96

97 /* SIMULATE ACTIONS OF A TRANSLATOR */

98 CARD, OUTPUT = INPUT:

99 IF SUBSTR(CARD,0,2) = 'IN' THEN CALL SCOPE_ENTRY:

100 ELSE IF SUBSTR(CARD,0,3) = 'OUT' THEN CALL SCOPE_EXIT;

101 ELSE IF SUBSTR(CARD,0,3) = 'NEW' THEN CALL NEW_ID(SUBSTR(CARD,5,1));
102 ELSE IF SUBSTR(CARD,0,3) = 'OLD' THEN CALL OLD_ID{SUBSTR(CARD,5,1));
103 END;

104 EOF EOF

Test Module for Linear Access

Figure 4.2



EVENT:

IN

NEW A

NEW B

OLD A

IN

NEW €

NEW A

OLD A

OLb 8

TABLE STATUS:

n
o

TABLE_TOP = 0 LL
ID_TABLE() =
SCOPE_MARKER() =

TABLE_TOP = 0 LL
ID_TABLE() =
SCOPE_MARKER() = 0

(]
—-—

TABLETOP = 1 LL =1
ID_TABLE() = A
SCOPE_MARKER() = 0

s

TABLE TOP = 2 LL =1
1D TABLE() = AB
SCOPE_MARKER() = 0

TABLE_ TOP = 2 LL = 1
ID TABLE() = AB
SCOPE_MARKER() = 0

TABLE TOP = 2 LL =2
I0_TABLE()= AB
SCOPE_MARKER() = 0 2

TABLE_TOP = 3 LL = 2
ID_TABLE() = A B C
SCOPE_MARKER() = 0 2

TABLE_TOP = 4 LL =2
ID_TABLE() = ABCA
SCOPE_MARKER{} = 0 2

TABLE_TOP = 4 LL = 2
ID_TABLE() = AB CA
SCOPE_MARKER() = 0 2

TABLE TOP = 4 LL =2
IDTABLE() = ABCA
SCOPE_MARKER() = 0 2
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INDEX

INDEX

INDEX

INDEX

INDEX

INBEX

INDEX

INDEX

INDEX

INDEX
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oLd ¢
TABLE_ TOP = 4 LL = 2 INDEX
ID TABLE() = AB CA
SCOPE_MARKER() = 0 2

N
TABLE_TOP = 4 LL =3 INDEX
ID_TABLE() =AB CA
SCOPE_MARKER{) = 0 2 4

OLD A
TABLE_TOP = 4 LL = 3 INDEX
ID_TABLE() = AB CA
SCOPE_MARKER{) = 0 2 4

out
TABLE TOP = 4 LL =2 INDEX
ID TABLE() = AB CA
SCOPE_MARKER() = 0 2

N
TABLE_TOP = 4 LL =3 INDEX
ID_TABLE() = ABCA
SCOPE_MARKER() 0 2 4

NEW A
TABLE_TOP = 5 LL = 3 INDEX
ID TABLE() = ABCAA
SCOPE_MARKER() = 0 2 4

OLD A
TABLE_TOP = 5 LL = 3 INDEX
ID_TABLE() = ABCAA
SCOPE_MARKER() = 0 2 4

out
TABLE TOP = 4 LL =2 INDEX
ID_TABLE{) = AB C A
SCOPE_MARKER() = 0 2

oLD A
TABLE_TOP = 4 LL = 2 INDEX
ID TABLE() = AB CA
SCOPE_MARKER() = 0 2

out

TABLE_TOP = 2 LL =1 INDEX
ID TABLE() = A B
SCOPE_MARKER() = 0

L]
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0LD A
TABLE_TOP = 2 LL =1 INDEX = 0
IDTABLE() = AB
SCOPE_MARKER() = 0

out
TABLE_TOP = 0 LL = 0 INDEX = 0
ID_TABLE() =
SCOPE_MARKER() =

ouT

Trace Output: Linear Access

Figure 4.3

5. SORTED SYMBOL TABLE ACCESS

——t 4]  TABLE_TOP
A
C __/{:Ej LL
B 2
1 A 0
POINTER ID_TABLE SCOPE_MARKER

Sorted Table Access Methoa
Symbol Table Configuration
Figure 5.1

If a table is ordered and we can locate the middle item, half of the table can
be discarded with a single comparison. The remaining half can be treated similarly,
etc., until only one item remains. Since the requirement of nested language scope
predetermines the table order, a second ordering is imposed via a table of
pointers.

Figure 5.1 depicts the sorted table method after processing lines 1-6 of

Figure 2.1. The order:



ID_TABLE(POINTER(1)) = A
1D_TABLE(POINTER(2)) = A
ID_TABLE(POINTER(3))} = B
ID_TABLE(POINTER{4)) = C

is in increasing collating sequence allowing the subdivision to be accomplished.
Multiple entries are handled by always taking the higher one (e.g., ID_TABLE
(POINTER(2)) for A in this instance).

Exercise Verify that the simulation output corresponds to the

correct symbol table actions.

Exercise Hand simulate the look-up implied by action 8 (OLD A)

of the simulation.

1 /* SYMBOL TABLE ALGORITHMS *

2 /* SORTED TABLE ACCESS METHOD *
3

4 /* DATA STRUCTURE DEFINITIONS:

5

6 1D_TABLE() HOLDS THE IDENTIFIERS,

7 TABLE_TOP POINTS TO THE NEXT AVAILABLE CELL IN 1D_TABLE(),

8 TABLE_LIMIT IS THE BOUND ON TABLE_TOP,

9

10 SCOPE_MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE,

N LL IS THE PRESENT LEVEL OF PROGRAM NESTING,

12 LL_LIMIT IS THE BOUND ON LL,

13

14 INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES.
15 */

16

17 DECLARE TABLE_LIMIT LITERALLY *100', TABLE TOP FIXED,

18 ID TABLE(TABLE_LIMIT) CHARACTER;

19 DECLARE LL_LIMIT LITERALLY '10', LL FIXED, SCOPE_MARKER(LL_LIMIT) FIXED:
20 DECLARE INDEX FIXED:

21
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22 /* POINTERS FOR INDIRECT SORT */

23 DECLARE POINTER(TABLE_LIMIT) FIXED;

4

25 ERROR; PROCEDURE; OUTPUT, OUTPUT = 'ERROR'; CALL EXIT; END ERROR;
26

27 NEW_ID:

28 PROCEDURE( IDENTIFIER);

29 DECLARE IDENTIFIER CHARACTER;

30 DECLARE (R, M, T) FIXED:

3

32 /* SEARCH FOR DUPLICATE DECLARATION */

33 8 = -1; M, T = TABLE_TOP;

34 DO WHILE B+1 < T

35 M = SHR(B+T, 1);

36 IF IDENTIFIER < ID_TABLE(POINTER(M)) THEN T = M;
37 ELSE B = M;

38 END;

39 IF B = M THEN

40 IF IDENTIFIER = ID_TABLE(POINTER(M)) THEN
LA IF POINTER(M} >= SCOPE_MARKER(LL-1) THEN CALL ERROR;
42

43 /* CHECK FOR ID TABLE OVERFLOW */

44 IF TABLE_TOP = TABLE_LIMIT THEN CALL ERROR;
45

46 /* ENTER NEW IDENTIFIER */

47 INDEX = TABLE_TOP; TABLE_TOP = TABLE TOP + 1;
48 ID_TABLE(INDEX) = IDENTIFIER;

49

50 /* KEEP THE POINTER TABLE IN ORDER */

51 T = INDEX:

52 DO WHILE B+1 < T3

53 POINTER{T) = POINTER(T-1};

54 T=T-1;

55 END;

56 POINTER{T) = INDEX;

57 END NEW_ID;

58

59 OLD_ID:

60 PROCEDURE( IDENTIFIER);

61 DECLARE IDENTIFIER CHARACTER;

62 DECLARE (R, M, T) FIXED;
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63

o4 /* SEARCH ID_TABLE FOR THE IDENTIFIER */

65 IF TABLE_TOP = O THEN CALL ERROR;

66 B =-13 M, T = TABLE_TOP;

67 DO WHILE B + 1 < T3

68 M = SHR(B+T, 1);

69 IF IDENTIFIER < ID TABLE(POINTER(M)) THEN T = M;
70 ELSE B = M3

71 END;

72

73 /* RECORD FAILURE TO FIND THE IDENTIFIER */

74 IFB <0 THEN CALL ERROR;

75 INDEX = POINTER(B):

76  IF IDENTIFIER = ID_TABLE(INDEX) THEN CALL ERROR;
77 END OLD_ID;

78

79 SCOPE_ENTRY:

80  PROCEDURE:

81 /* MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED */

82 IF LL = LL_LIMIT THEN CALL ERROR;

83 SCOPE_MARKER(LL) = TABLE_TOP; /* POINT TO FIRST LOCAL */
84 LL = LL + 13 /* INCREASE LEXIC LEVEL */

85 END SCOPE_ENTRY;

86

87 SCOPE_EXIT:
88  PROCEDURE:

8s DECLARE (SB, B, T) FIXED;

90

91 LL = LL -13

82 /* DISCARD POINTERS INTO LIMBO */
93 T, B = 03 SB = SCOPE_MARKER(LL});
94 DO WHILE T < TABLE_TOP;

95 IF POINTER(T) < SB THEN

96 DO; /* SAVE GOOD ONES */
97 POINTER(B) = POINTER(T);
98 B=B+1;

89 END;

100 T=T+1;

101 END;

102 TABLE_TOP = SB;
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103 END SCOPE_EXIT;

104

105  /* TEXT PROGRAM FOR SYMBOL TABLE ALGORITHMS */
106 DECLARE (CARD, LINE, LINET) CHARACTER;

107 DECLARE I FIXED;

108 OUTPUT = '  SIMULATION OF EVENTS DURING TRANSLATION ';
109 OUTPUT = ' '

110 OUTPUT = 'EVENT: TABLE STATUS:';

M1 OUTPUT = ' '

112 LL = 0; TABLE_TOP = 0;
113 DO WHILE LL >= 03

114

115 /* PRINT STATUS OF TABLES AND POINTERS */

16 QUTPUT = * TABLE_TOP = * ||TABLE_TOP||' LL = * ||LL}| ' INDEX='||INDEX,
M7 LINE = ID_TABLE() = G

18 LINED = POINTER() = '

119 DO T =0 TO TABLE_TOP-1;

120 LINE = LINE |}1D_TABLE(T) 1] * ' 3

121 LINE1 = LINE1 |} POINTER(I) [} ' ';

122 ENDs

123 OUTPUT = LINE;
124 OUTPUT = LINET;

125 LINE = ' SCOPE_MARKER{) = '3

126 DO1=0TO0LL-1;

127 LINE = LINE |} SCOPE_MARKER(I) || ' '3
128 END;

129 OUTPUT = LINE;

130

i3 /* SIMULATE ACTIONS OF A TRANSLATOR */
132 CARD, OUTPUT = INPUT;
133 IF SUBSTR{CARD, 8,2) = 'IN' THEN CALL SCOPE_ENTRY;
134 ELSE IF SUBSTR{CARD,0,3) = 'OUT' THEN CALL SCOPE_EXIT;
135 ELSE IF SUBSTR(CARD,0,3) = 'NEW' THEN CALL NEW_ID(SUBSTR(CARD,5,1)});
136 ELSE IF SUBSTR(CARD,0,3) = 'OLD' THEN CALL OLD_ID{SUBSTR(CARD,5,1});
137 END;
138 EOF EOF
Jest Module for Sorted Access
Figure 5.2
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OLD A
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TABLE STATUS:

TABLE_TOP = 0 LL
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SCOPE_MARKER( )
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ID_TABLE() =
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TABLE TOP = 4 LL
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NEW A
TABLE_TOP = 5 LL = 3 INDEX = 4
ID_TABLE() = ABCAA
POINTER{) = 03412
SCOPE_MARKER() = 0 2 4

LD A
TABLE TOP = 5 LL = 3 INDEX = 4
ID_TABLE() = ABCAA
POINTER() = 03412
SCOPE_MARKER() = 0 2 4

ouT
TABLE_TOP = 4 LL = 2 INDEX = 4
ID_TABLE() = ABCA
POINTER() = 0312
SCOPE_MARKER() = 0 2

LD A
TABLE_TOP = 4 LL = 2 INDEX = 3
ID_TABLE() = ABCA
POINTER() = 0312
SCOPE_MARKER() = 0 2

out
TABLE_TOP = 2 LL =1 INDEX = 3
ID_TABLE() = AB
POINTER() = 01
SCOPE_MARKER() = 0

LD A
TABLE_TOP =2 LL =1 INDEX = 0
ID_TABLE() = AB
POINTER() = 01
SCOPE_MARKER() = 0

out
TABLE_TOP = 0 LL =0 INDEX =0
ID_TABLE() =
POINTER() =
SCOPE_MARKER() =

out

Trace Output: Sorted Access
Figure 5.3
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6. TREE SYMBOL TABLE ACCESS

LL

RIREN e

JE TABLE_TOP
_] _] o ——

3l | 2 D__ . \—2

L of—| 4 1 g~——=>| & 0

ROOT LEFT RIGHT 1D TABLE SCOPE_MARKER

w || >

Binary Tree Access Method
Symbol Table Configuration
Figure 6.1

An access tree is a structure that has nodes corresponding to each identifier
in the table (Figure 6.1). Starting from some root position, an identifier is com~
pared with the identifier at the root and either the left or right branch taken
{unless marked with -1, signifying the node is a leaf of the tree}. The tree
corresponding to the table configuration above (which itself corresponds to the
processing of lines 1-6 of Figure 2.1 as usual) is more readily understood from
the diagram in Figure 6.2.

ROOT—m- A

\
B
A‘f/ h c
Figure 6. 2
A is at the root. Since nothing will sort “<" than A, everything else hangs off
the right branch of the tree. The next node, B, allows the second A to sort left

and the C to sort right where the tree terminates in leaves. Because the tree is

grown from oldest entry out to recent entries at the leaves, the last entry
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found is the correct one.

Exercise Hand simulate the access algorithm for action 8 (OLD A) of the

simulation output.

1 /¥ SYMBOL TABLE ALGORITHHMS %/

2 /* BINARY TREE ACCESS METHOD *
3

4 /* DATA STRUCTURE DEFINITIONS:

5

6 ID_TABLE() HOLDS THE IDENTIFIERS

7 TABLE_TOP POINTS TO THE NEXT AVAILABLE CELL IN ID TABLE(),
8 TABLE_LIMIT IS THE BOUND ON TABLE_TOP,

9

10 SCOPE_MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE,

1 LL IS THE PRESENT LEVEL OF PROGRAM NESTING,

12 LL_LIMIT IS THE BOUND ON LL,

13

14 INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES.
15 %/

16

17 DECLARE TABLE_LIMIT LITERALLY '100°, TABLE_TOP FIXED,

18 ID_TABLE{TABLE_LIMIT) CHARACTER;
19 DECLARE LL_LIMIT LITERALLY '10°, LL FIXED, SCOPE_MARKER (LL_LIMIT) FIXED;
20 DECLARE INDEX FIXED;

22 /* DATA STRUCTURES FOR TREE ACCESS */
23 DECLARE (LEFT, RIGHT)(TABLE_LIMIT) FIXED, ROOT FIXED;

25 ERROR: PROCEDURE 3 OUTPUT, QUTPUT = 'ERROR'; CALL EXIT; END ERROR;

27 NEW_ID:

28  PROCEDURE (IDENTIFIER)3

29 DECLARE IDENTIFIER CHARACTER;
30 DECLARE (I, K) FIXED;
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/* SEARCH FOR DUPLICATE DECLARATION */
K = ROOT 3 INDEX = -1;
DO WHILE K = -1;
IF IDENTIFIER = ID_TABLE(K) THEN INDEX = K;
I=Ksi
IF IDENTIFIER < ID_TABLE(K) THEN K = LEFT(K); ELSE K = RIGHT(K);
END;
IF INDEX  >= SCOPE_MARKER(LL-1) THEN CALL ERROR;

/* CHECK FOR ID_TABLE OVERFLOW */
IF TABLE_TOP = TABLE_LIMIT THEN CALL ERROR;

/* ENTER NEW IDENTIFIER */
INDEX = TABLE_TOP; TABLE_TOP = TABLE_TOP + 1;
ID_TABLE(INDEX) = IDENTIFIER;
IF ROOT =-1 THEN ROOT = INDEX;
ELSE IF IDENTIFIER < ID TABLE(I) THEN LEFT(I) = INDEX;
ELSE RIGHT(I) = INDEX;
LEFT(INDEX), RIGHT(INDEX) = -1;
END NEW_ID;

0LD_ID:
PROCEDURE ( IDENTIFIER);
DECLARE IDENTIFIER CHARACTER;
DECLARE K FIXED;,

/* SEARCH ID_TABLE FOR THE IDENTIFIER */
K = ROOT; INDEX = -13;
DO WHILE K = =13
IF IDENTIFIER = ID_TABLE(K) THEN INDEX = K;
IF IDENTIFIER < ID_TABLE(K) THEN K = LEFT(K); ELSE K = RIGHT(K};
END3

/* RECORD FAILURE TO FIND THE IDENTIFIER */
IF INDEX = -1 THEN CALL ERROR;
END OLD_ID:

SCOPE_ENTRY:
PROCEDURE ;
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/* MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED */

IF LL = LL LIMIT THEN CALL ERROR;

SCOPE_MARKER(LL) = TABLE_TOP;  /*POINT TO FIRST LOCAL */

LL = LL + 735 /* INCREASE LEXIC LEVEL */
END SCOPE_ENTRY;

SCOPE_EXIT:
PROCEDURE 3
DECLARE I FIXED;
L= LL -1;

TABLE_TOP = SCOPE_MARKER(LL) 3

/* DISCARD LEAVES CORRESPONDING TO LOCAL IDENTIFIERS */

IF ROOT »>= TABLE_TOP THEN ROOT =-1;
ELSE
DOI = 0 TO TABLE_TOP -1;

IF LEFT(I) = TABLE_TOP THEN LEFT{I} = -1;
IF RIGHT(I) > TABLE_TOP THEN RIGHT(I) = -1;

END;
END SCOPE_EXIT;

/* TEST PROGRAM FOR SYMBOL TABLE ALGORITHMS */
DECLARE (CARD, LINE, LINEY, LINE2) CHARACTER;
DECLARE I FIXED:

OUTPUT = ' SIMULATION OF EVENTS DURING TRANSLATION ';

UTPUT = * '3

OUTPUT = 'EVENT:  TABLE STATUS: ' 3
QUTPUT = ' '3

LL = 03 TABLE_TOP = 0;

ROOT = -13

DO WHILE LL > = 03

/* PRINT STATUS OF TABLES AND POINTERS */

QUTPUT = ' TABLE_TOP = ' ||TABLE_TOP]| *
LINE = ID TABLE() = '3
LINEI= ' LEFT() = '
LINE2 = RIGHT() = i
DO I = 0 TO TABLE TOP-1;
LINE = LINE ||ID_TABLE(I) [} * '3

LINET = LINET [ILEFT{I)} {] ' '3

L=l

INDEX= " JINDEX:
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110 LINEZ = LINE2 ||RIGHT(I)|| ' ' ;
111 END;
112 QUTPUT = LINE;
113 OUTPUT = ROOT = ' || ROOT;
114 QUTPUT = LINE1;
115 OUTPUT = LINEZ;
116  LINE = ¢ SCOPE_MARKER{} = *;
117 D01 =070 LL-1;
118 LINE = LINE || SCOPE_MARKER(I) }] ' '
119 END;
120 OUTPUT = LINE ;
121
122 /* SIMULATE ACTIONS OF A TRANSLATOR */
123 CARD, OUTPUT = INPUT;
124 IF SUBSTR(CARD, 0,2) = 'IN' THEN CALL SCOPE_ENTRY;
125 ELSE IF SUBSTR(CARD,0,3) = 'OUT' THEN CALL SCOPE_EXIT;
126 ELSE IF SUBSTR(CARD,0,3) = 'NEW' THEN CALL NEW ID(SUBSTR(CARD,5,1));
127 ELSE IF SUBSTR(CARD,0,3) = ‘OLD' THEN CALL OLD_ID(SUBSTR(CARD,5,1));
128 END;
129 EOF EOF
Test Module for Binary Tree Access
Figure 6.3
EVENT: TABLE STATUS:
TABLE_TOP = 0 Li = 0 INDEX = O
ID_TABLE() =
ROOT = -1
LEFT() =
RIGHT{} =
SCOPE_MARKER() =
N
TABLE TOP = 0 LL =1 INDEX =0
ID_TABLE() =
ROOT = -1
LEFT() =
RIGHT() =

SCOPE_MARKER() = 0
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NEW A
TABLE_TOP =1 LL =1 INDEX =
ID TABLE() =
ROOT = -1
LEFT() =
RIGHT() =
SCOPE_MARKER() = 0

NEW B
TABLE TOP = 2 [l =1 INDEX =
ID_TABLE() = AB
ROOT = 0
LEFT() = -1 -1
RIGHT() = 1 -
SCOPE_MARKER() = 0

OLD A
TABLE_TOP = 2 LL =1 INDEX =
10_TABLE() = AB
ROOT = 0
LEFT () = -1 A
RIGHT() = 1-1
SCOPE_MARKER() = 0

N
TABLE_TOP = 2 LL = 2 INDEX =
ID_TABLE() = AB
ROOT = O
LEFT() = -1 -1
RIGHT() = 1-1
SCOPE_MARKER() 02

NEW C
TABLE_TOP = 3 LL = 2 INDEX =
1D_TABLE() = ABC
ROOT = 0
LEFT() = -1 -1 -1
RIGHT() = 12 -1
SCOPE_MARKER() = 0 2

NEW A
TABLE_TOP = 4 LL = 2 INDEX =
ID_TABLE() = ABCA
ROOT = 0
LEFT{) = -13-1-1
RIGHT() = 1211

SCOPE_MARKER() = 0 2



OLD A

OLD B

oLb C

IN

OLD A

out
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TABLE_TOP =4 LL =2 INDEX=3

ID_TABLE() =
ROOT = 0

LEFT() =

RIGHT() =
SCOPE_MARKER() =

TABLE_TOP = 4 LL
ID_TABLE() =

ROOT = 0

LEFT{} =

RIGHT{) =
SCOPE_MARKER() =

TABLE_TOP = 4 LL
ID_TABLE() =

ROOT = 0

LEFT() =

RIGHT() =
SCOPE_MARKER() =

TABLE_TOP = 4 LL
Ib_TABLE() =
ROOT = 0

LEFT() =

RIGHT() =
SCOPE_MARKER() =

TABLE_TOP = 4 LL
ID_TABLE() =

ROOT = 0

LEFT() =

RIGHT() =
SCOPE_MARKER(} =

TABLE_TOP = 4 LL
ID_TABLE() =

ROOT = 0

LEFT() =

RIGHT() =

it

ABCA

~13-1 -1
12-1-
02

2 INDEX =1
ABCA

-13-1-1
12-1-
02

2 INDEX =
ABCA

=13 -1 -1
1211
02

3 INDEX = 2
ABCA

-13-1-1
12-1-
024

3 INDEX = 3
ABCA

-13-1-1
12-1-1
024

2 INDEX = 3
ABCA

-13 -1 -1
12-1-1

2



IN

NEW A

0D A

ouT

OLb A

out
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SCOPE_MARKER() = 02

TABLETOP = 4 LL =3 INDEX =3
ID_TABLE() = ABCA

ROOT = 0

LEFT() = 21341 -1
RIGHT() = 1214
SCOPE_MARKER() = 02 4

TABLE TOP = 5 LL = 3 INDEX = 4
1D_TABLE() = ABCAA
ROOT = 0

LEFT() = “13-1 -1 -1
RIGHT() = 12-14-
SCOPE_MARKER() = 02 4
TABLE_TOP = 5 LL = 3 INDEX = 4
1D_TABLE() = ABCAA
ROOT = 0

LEFT() = 1341419
RIGHT() = 12-14-
SCOPE_MARKER() = 024

TABLE TOP = 4 LL =2 INDEX = 4
1D_TABLE() = ABCA

ROOT = 0

LEFT() = 2131 -1
RIGHT() = 121 -1
SCOPE_MARKER() = 0 2

TABLE_TOP = 4 LL =2 INDEX = 3

1D_TABLE() = ABCA

ROOT = 0

LEFT() = 213 -1 -1
RIGHT() = 12-14
SCOPE_MARKER() = 0 2

TABLE TOP = 2 LL =1 INDEX = 3
ID_TABLE() = AB

ROOT = 0
LEFT() = -1
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RIGHT() = 1-1
SCOPE_MARKER() = 0

OLD A
TABLE_TOP = 2 LL =1 INDEX =0
1D_TABLE() = ASB
ROOT = 0
LEFT() = -1 -1
RIGHT(} = 1 -1
SCOPE_MARKER() = 0

ouT
TABLE TOP = 0 LL =0 INDEX = 0
1D _TABLE() =
ROOT = -1
LEFT() =
RIGHT() =
SCOPE_MARKER() =

ouT

Trace Output: Binary Tree Access
Figure 6.4

Scope exit and removal of identifiers from the tree symbol table de-
picted in Figure 6.1 requires a linear search of the left and
right pointers to delete the entries greater than the SCOPE_MARKER. This is a
linear process. A faster variation is shown in Figure 6.5. A table of pointers
corresponding to each entry in the ID_TABLE is maintained. Each entry in this
table points to the entry in the LEFT/RIGHT table for the corresponding identifier
in the 19 _TABLE. Scope exit removal of identifiers from the symbol table would be
accomplished by deleting all entries in the LEFT/RIGHT table pointed to by entries
in the POINTER table above the SCOPE_MARKER being returned to. This method would
be an N']ogzN process and the additional memory required for the backward

pointers would be the cost.
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'/E( TABLE_TOP

LL

-1 -1 j—] L2

A

-1 1= =] R2 c
3 2 22-—- Ri B ‘k\\\-._~ 2
B l —1{ ROCF A 0

o3 [o [

ROOT LEFT  RIGHT  POINT_TBL ID TBL SCOPE_MARKER

Binary Tree Access Method
With Backward Peinters

Figure 6.5

7. HASH SYMBOL TABLE ACCESS

-1
-1 '_/@ TABLE_TOP
R
-1 |
. N P

AR ---= ¢ 1
3
. aH---- ~ B 3
-1 / B I > A |-t 0
: -/ POINTER IDTABLE  SCOPE_MARKER
2.
‘1—
3~
R
A
ROOT

Hash Access Method
Symbo} Table Configuration
Figure 7.1
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A hash or scramble is an integer valued function on the identifier itself. A
good hash will give an even distribution of integer values over the set of-identi-
fiers actually presented to the translator, effectively separating them into a large
number of small classes. The access method only examines members of the hash class
which reduces search time by roughly a factor equal to the range of scrambled
values {in this case, 16).

The diagram in Figure 7.1 depicts the table as it would appear after the
translator had processed lines 1-6 of Figure 2.1 (refer to the previous example).

Two arrays, ROOT AND POINTER, appear in addition to the identifier table and
scope marker. Each entry in ROOT points to the first identifier in its hash class
(or is -1 if the class is empty). Each entry in POINTER points to the next number
of the hash class (or is -1 if there are no more}. To access an identifier, we
scramble it, look into ROOT then follow the pointers until we find the identifier
or come to the end of the chain. The pointers are arranged to point from new to

old so that the first match found is correct.

Exercise Verify that the simulation output corresponds to the correct symbol

table actions.

Exercise Hand simulate the algorithm for action & (OLD A) in the simulation.

1 /*SYMBOL TABLE ALGORITHMS */
2 /*HASH SEARCH METHOD */
3

4 /* DATA STRUCTURE DEFINITIONS

5

6 ID_TABLE{) HOLDS THE IDENTIFIERS,

7 TABLE_TOP POINTS TO THE NEXT AVAILABLE CELL IN THE ID_TABLE(},
8 TABLE_LIMIT IS THE BOUND ON TABLE_TOP,

g

10 SCOPE_MARKER POINTS TO THE FIRST ENTRY IN EACH SCOPE,
N LL IS THE PRESENT LEVEL OF PROGRAM NESTING,
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12 LL_LIMIT IS THE BOUND ON LL,

13

14 INDEX IS THE SYMBOL TABLE LOCATION FOUND BY THE ACCESS PROCEDURES.
15 */

16

17 DECLARE TABLE_LIMIT LITERALLY '100', TABLE_TOP FIXED,

18 ID_TABLE{TABLE_LIMIT) CHARACTER;

19 DECLARE LL_LIMIT LITERALLY *10', LL FIXED, SCOPE_MARKER{LL_LIMIT) FIXED;
20 DECLARE INDEX FIXED;

21

22 /* DATA STRUCTURES REQUIRED FOR HASH'ACCESS METHOD */

23 DECLARE HASH_SIZE LITERALLY '15', ROOT(HASH_SIZE) FIXED,

24 POINTER{TABLE_LIMIT} FIXED;

25

26 SCRAMBLE:

27  PROCEDURE{IDENTIFIER} FIXED;

28 DECLARE IDENTIFIER CHARACTER;

29 /* FIND A NUMBER BETWEEN O AND 15 */

30 RETURN (LENGTH{IDENTIFIER) +BYTE{IDENTIFIER))} & HASH SIZE;
31 END SCRAMBLE;

32

33 ERROR: PROCEDURE; OUTPUT, OUTPUT = 'ERROR' ; CALL EXIT, END ERROR;
34

35 NEW_ID:

36 PROCEDURE(IDENTIFIER);

37 DECLARE IDENTIFIER CHARACTER;

38 DECLARE (SB, K) FIXED;

39

40 /* SEARCH FOR DUPLICATE DECLARATION */

a1 K = SCRAMBLE(IDENTIFIER) 3 INDEX = ROOT(K);
42 SB = SCOPE_MARKER(LL-1)3

43 DO WHILE INDEX > = SB;

a4 IF IDENTIFIER = ID_TABLE{INDEX) THEN CALL ERROR;
45 INDEX = POINTER{INDEX);

46 END;

47

48 /* CHECK FOR 1D_TABLE OVERFLOW */

49 IF TABLE_TOP = TABLE_LIMIT THEN CALL ERROR;
50

51 /* ENTER NeW IDENTIFIER */
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INDEX = TABLE_TOP; TABLE_TOP = TABLE_TOP + 1;
ID_TABLE(INDEX) = IDENTIFIER;
POINTER{INDEX) = ROOT(K); ROOT(K) = INDEX;
END NEW_ID;
OLD ID:
PROCEDURE ( IDENTIFIER)
DECLARE IDENTIFIER CHARACTER;
/* SEARCH ID TABLE FOR THE IDENTIFIER %/
INDEX = ROOT({SCRABLE(IDENTIFIER)):
DO WHILE INDEX —= -1;
IF IDENTIFIER = ID TABLE{INDEX) THEN RETURN;
INDEX = POINTER(INDEX);
END;
/* RECORD FAILURE TO FIND THE IDENTIFIER */
CALL ERROR;
END OLD_ID;
SCOPE_ENTRY:

PROCEDURE ;
/* MAKE SURE PROGRAM TEXT IS NOT TOO DEEPLY NESTED */
IF LL = LL_LIMIT THEN CALL ERROR;
SCOPE_MARKER(LL) = TABLE_TOP;  /*POINT TO FIRST LOCAL*/
Lt = LL + 15 /*INCREASE LEXIC LEVEL */
END SCOPE ENTRY;

SCOPE_EXIT:
PROCEDURE 3
DECLARE K FIXED;
DECLARE K FIXED;
INDEX = TABLE_TOP;
LL = LL -13
TABLE_TOP = SCOPE_MARKER(LL);

/*DE-LINK IDENTIFIERS BEING DISCARDED */
DO WHILE INDEX > TABLE_TOP;

INDEX = INDEX -13

K = SCRAMBLE(ID TABLE{INDEX));
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92 ROOT(K) = POINTER(ROOT{K));
93 END;

94  END SCOPE_EXIT;

95

96 /* TEST PROGRAM FOR SYMBOL TABLE ALGORITHMS */
97 DECLARE {CARD, LINE, LINE?) CHARACTER;
98 DECLARE I FIXED;

99 OUTPUT = '  SIMULATION OF EVENTS DURING TRANSLATION ';
100 OUTPUT = * * 3
101 OUTPUT = 'EVENT:  TABLE STATUS :';

102 OUTPUT = * 5

103 DO I = 0 TO HASH_SIZE;

104 ROOT(I} = -15 /* MARK ALL HASH CLASSES EMPTY */
105 END;

106

107 LL = 0; TABLE_TOP = 03

108 DO WHILE LL >= 0;

109
110 /* PRINT STATUS OF TABLES AND POINTERS */
111 OUTPUT = ' TABLE_TOP =' |[|TABLE_TOP|| * LL=" [|LL|}' INDEX="'|]INDEX;
M2 LINE = ID TABLE() = '3

113 LINE} = ° POINTER() = i

114 D0 I =0 TO TABLE_TOP-1;

15 LINE = LINE || ID_TABLE(I) |} ' '3

16 LINE1 = LINE1|| POINTER(I)|| ' ';

117 END;

118 OUTPUT = LINE;

1M¢  OUTPUT = LINEI;

120 LINE = ° SCOPE_MARKER() = '3

121 DO I +0TO0LL-1;

122 LINE = LINE || SCOPE_MARKER(I) || ' '3
123 END;

124 QUTPUT = LINE;

125 LINE = ROOT() = '

126 DO I =0 TO HASH SIZE;

127 LINE = LINE || ROOT(I)|{ * *;

128 END;

129 OUTPUT = LINE;

130

131 /*SIMULATE ACTIONS GF A TRANSLATOR */



287

132 CARD, OUTPUT = INPUT;

133 IF SUBSTR{CARD, 0,2) = 'IN' THEN CALL SCOPE_ENTRY;

134 ELSE IF SUBSTR{CARD,0,3) = 'OUT' THEN CALL SCOPE_EXIT;

135 ELSE IF SUBSTR(CARD,0,3) = 'NEW' THEN CALL NEW_ID{SUBSTR{CARD,5,1));
136 ELSE IF SUBSTR{CARD,0,3) = 'OLD' THEN CALL OLD_ID{SUBSTR{CARD,5,1));

137 END;
138 EOF EOF
Test Module for Hash Access
Figure 7.2

EVENT: TABLE STATUS:

TABLE TOP = 0 LL =0 INDEX =0

ID_TABLE() =

POINTER() =

SCOPE_MARKER() =

ROOT(} = -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
IN

TABLE_TOP = 0 LL =1 INDEX =0

ID_TABLE() =

POINTER() =

SCOPE_MARKER(} = 0

ROOT{} = -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
NEW A

TABLE_TOP =1 LL =1 INDEX=10

ID_TABLE() = A

POINTER() = -1

SCOPE_MARKER(} = 0

ROOT{) = <1-10-1 -1 -1 -1-7-1-1-1-1-1-1-1-1
NEW B

TABLE_TOP =2 LL =1 INDEX =1

1D _TABLE() = AB

POINTER({) = -1 -1

SCOPE_MARKER() = 0

ROOT() = -1-101-1-1-1-1-1-17T-1-1-1-1-1-1

OLD A



IN

NEW C

NEW A

OLD A

OLD B

TABLE_TOP = 2 LL
ID_TABLE() =
POINTER() =
SCOPE_MARKER{) =
ROOT() =

TABLE TOP = 2 LL
1D TABLE() =
POINTER() =
SCOPE_MARKER() =
ROOT() =

TABLE_TOP = 3 LL
ID_TABLE() =
POINTER() =
SCOPE_MARKER() =
ROOT{) =

TABLE_TOP = 4 LL
1D_TABLE() =
POINTER() =
SCOPE_MARKER(} =
ROOT() =

TABLE_TOP = 4 L
1D_TABLE() =
POINTER() =
SCOPE_MARKER() =
ROOT() =

TABLE_TOP = 4 LL
ID_TABLE()
POINTER() =
SCOPE_MARKER{) =
ROOT() =

288

1 INDEX =3
AB

-1 -1

0

-1-101-1-1-1-1-1-1-1-1-1-1-1-1

2 INDEX =0
AB

-1 -1

02

-1-101-1-1-1-1-1-1-1-1-1-1-1-1

2 INDEX =2
ABC

-1 -1 -1

g2
-1-1012 -

2 INDEX = 3
ABCA
-1-1-10
02
“1-13124

2 INDEX = 3
ABCA
-1-1-10
02
“1-1312-

2 INDEX =1
ABCA
-1-1-10
02
~1-1312-1

4

—_

-1 -1

-1 -1

-1 -1



oLb ¢

IN

oD A

oyt

IN

NEW A

TABLE_TOP = 4
ID_TABLE() =
POINTER() =

LL

SCOPE_MARKER{) =

ROOT() =

TABLE_TOP = 4
1D_TABLE() =
POINTER{) =

SCOPE_MARKER() = -

ROOT() =

TABLE_TOP = 4
ID_TABLE() =
POINTER() =

LL

LL

SCOPE_MARKER() =

ROOT() =

TABLE_TOP = 4
1D_TABLE{) =
POINTER() =

LL

SCOPE_MARKER() =

ROOT() =

TABLE_TOP = 4
ID_TABLE () =
POINTER() =

LL

SCOPE_MARKER() =

ROOT()} =

TABLE_TOP = 5 LL

ID_TABLE() =
POINTER() =

SCOPE_MARKER() =

ROOT() =

289

2 INDEX = 2
ABCA
-1-1-10
02
-1-1312-1

3 INDEX = 2
ABCA
A1-1-10
024
-1-1312 4

3 INDEX = 3
ABCA
-1-1-10
024
-1-1312-

2 INDEX = 4
ABCA
-1-1-10
02
-1-1312-1

3 INDEX = 4
ABCA
-1-1-10
024
-1-13124

3 INDEX = 4
ABCAA
-1-1-103
024
~1-1412-

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

A1

-1

-1

-1

-1

-1

-1

-1

-1

-1
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oL A

TABLE_TOP = 5 LL = 3 INDEX = 4

ID_TABLE() = ABCAA

POINTER() = -1-1-103

SCOPE_MARKER() = 02 4

ROOT() = A-1412-1-1-1-1-1-1-1-1-1-1 -
ouT

TABLE_TOP = 4 LL = 2 INDEX = 4

ID_TABLE() = ABCA

POINTER() = 1-1-10

SCOPE_MARKER() = 0 2

ROOT() = 1131211 -1-1-1-1-1-1-1-1-1
0LD A

TABLE_TOP = 4 LL = 2 INDEX = 3

ID_TABLE() = ABCA

POINTER() = 1-1-10

SCOPE_MARKER{) = 02

ROOT() = A -1312-1-1-1-1-1-1-1-1-1-1-1
out

TABLE_TOP = 2 LL =1 INDEX = 2

ID_TABLE() = AB

POINTER() = -1 -1

SCOPE_MARKER() = 0

ROOT{) = 2121071 -1 -1-1-1-1-1-1-1-1-1-1-1
OLD A

TABLE_TOP = 2 LL = 1 INDEX = 0

ID_TABLE() = AB

POINTER() = -1 -1

SCOPE_MARKER() = 0

ROOT() = 1101 -1 -1-1-1-1-1-1-1-1-1-1-
out

TABLE_TOP = 0 LL =0 INDEX =0

ID TABLE() =

POINTER() =

SCOPE_MARKER{) =

ROOT() = -1 -1 =121 -1 <1 =1 =1 =1 <1 =1 =1 -1 -1 -]
out

Trace Output: Hash Access
Figure 7.3
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7.1 Hash Functions

Numerous algorithms can be developed for scrambling the bits of an identifier
to produce an index for entering a symbol table lockup. Some standard methods em-
ployed in these algorithms inciude concatenation of N select bits of the identifier
where N is the size of the required index, or multiplication of a portion of the
identifier, usually a machine word, by a constant value and selecting the middle
bits of the product as the index.

Execution speed of the algorithin and the distribution of the indices across
the range of the table are the considerations for selecting an algorithm for calcu-
lating the hash index. In order to choose the most efficient hashing algorithm, the
trade-off between the time taken to produce the hash and flatness of the distribu-
tion of indices over the hash table must be found for each candidate algorithm and
evaluated in respect to the specific application.

Concerning the speed of an algorithm, when dealing with filing systems of
large size, where the hash tables tend to be large and not always resident in
primary store it may be necessary to carefully develop an efficient hash in order
to minimize the need to fetch tables. In translators the complete hash and symbol
tables reside in primary store and the time spent in developing the hash is a factor
in the overall efficiency of the hash algorithm. The accuracy of the hash produced
is not critical as long as it is sufficiently distributive. In this case the faster
the hash algorithm the faster will be the symbol table access. However, the speed
of the hash algorithm tends to become unimportant as the average number of symbols
to be interrogated during each symbol taple access increases. If more than one
symbol is to be looked at the time taken in development of the hash will be masked
out by the time spent in the comparison of each symbol. In the examples of the hash
algorithms given in the next section the average number of symbols looked at was
slightly less than two and the overall access speed was only slightly effected by

the faster algorithms.
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Concerning the randomness of the distribution of an algorithm the ideal case
is the algorithm which, given a table length L with positions ElEZ""EL’ produces
hash keys to cover the entire range of L without any predictable grouping.

Consider implementation on an IBM 360 of a hash table of 256 positions which
would require an index of 8 bits length. The identifier is presented as the key
and the hashing algorithm consists of the least significant four bits of the first
letter plus the length shifted left four bits all masked to 8 bits. The indices
produced by this algorithm will cover.a range of only 144 numbers out of the
possible 286; 112 of the table locations would never be used. The reason is that
the least significant four bits of the hexadecimal code for letters maps into only
9 of the entire range of 16 possible numbers. The least significant four bits of
the key would always be 0-9 instead of O-F.

A test of six hash algorithms was performed on an IBM 360/40 using as input
the actual identifiers taken from a studenttranslator interpreter program. The in-
tent was to determine the overall efficiency of each algorithm, speed, against dis-
tribution, using data representative of a normal pregramming problem.

The algorithms are shown imbedded in the actual procedures used in the test
program. In each procedure the parameter ID contains the identifier to be hashed

and the procedure returns an index value of the range O to 255.

1

2

3 ALGORITHM 1 :

4 PROCEDURE {ID) FIXED;

5 DECLARE ID CHARACTER;

6 IF LENGTH (ID) = 1 THEN

7 =10 ||

8 RETURN {{BYTE(ID)&"OF)+{BYTE(ID,1} & "OF")+SHL{LENGTH(ID),4))&"FF";
9 END ALGORITHM 1;

10

11 /* ALGORITHM 1 PRODUCES AN INDEX FROM THE SUM OF THE LOW ORDER

12 FOUR BITS OF THE FIRST TWO CHARACTERS CONCATENATED WITH THE LENGTH
13 OF THE IDENTIFIER AS THE HIGH ORDER FOUR BITS OF THE INDEX.

14 %/



15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
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ALGORITHM_2:
FROCEDURE (ID) FIXED;
DECLARE ID CHARACTER, L FIXED;
L = LENGTH(ID):
RETURN{(BYTE(ID) &"3F")+(BYTE{ID,L-1)8"3F"} + SHL{L.4))& “FF";
END ALGORITHM 23

/* ALGORITHM 2 PRODUCES AN INDEX FROM THE SUM OF THE LOW ORDER
SIX BITS OF THE FIRST AND LAST CHARACTERS AND THE LENGTH OF THE
IDENTIFIED SHIFTED LEFT FOUR PLACES.

*/

ALGORITHM_3:
PROCEDURE (ID) FIXED 3
DECLARE ID CHARACTER;
RETURN (BYTE(ID) + LENGTH(ID)) & "FF";
END ALGORITHM_3;

/* ALGORITHM 3 PRODUCES AN INDEX FROM THE PRODUCT OF THE LENGTH
OF THE IDENTIFIER TIMES THE FIRST CHARACTER OF THE IDENTIFIER.
*/

ALGORITHM_4:
PROCEDURE (ID) FIXED:
DECLARE ID CHARACTER, L FIXED;
L = LENGTH(ID)
RETURN(BYTE (ID) + BYTE(ID,L-1) + SHL(L,4) & "FF";
END ALGORITHM 4;

/* ALGORITHM 4  PRODUCES AN INDEX FROM THE SUM OF THE EIGHT BITS
OF THE FIRST AND LAST CHARACTER AND THE LENGTH OF THE IDENTIFIER
SHIFTED LEFT FOUR PLACES.

*/
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55
56

57  ALGORITHM 5:

58 PROCEDURE (ID) FIXED;

59 DECLARE ID CHARACTER, L FIXED;

60 L = LENGTH(ID);

61 RETURN (BYTE(ID) + SHL{BYTE(ID,L-1),3) + SHL(L.4) & "F";
62 END ALGORITHM_5;

63

64 /* ALGORITHM 5  PRODUCES AN INDEX FRQM THE SuM OF THE FIRST
65 CHARACTER AND THE LAST CHARAETER SHIFTED LEFT THREE PLACES AND
66 THE LENGTH OF THE IDENTIFIER SHIFTED LEFT FOUR PLACES.

67 */

68

69

70

71 ALGORITHM 6:

72. PROCEDURE (ID) FIXED 3

73 DECLARE 1D CHARACTER

74 RETURN (SHR((BYTE(ID)*“585C3D5A"),20) + SHL(LENGTH(ID),4))& "FF";
75 END ALGORITHM_6;

76

77 /* ALGORITHM 6 PRODUCES AN INDEX BY MULTIPLYING THE FIRST CHARACTER
78 OF THE IDENTIFIER BY A CONSTANT AND EXTRACTING THE MOST RANDOM BITS
79 OF THE PRODUCT TO SUM WITH THE LENGTH OF THE IDENTIFIER IN THE

80 HIGH ORDER OF FOUR BITS.

81 %

82

83

84

85

Hashing Algorithms
Figure 7.4

The results of the symbol table test on each algorithm is shown in

Figure 7.5.
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BUCKETS SYMBOLS SECONDS
ALGORITHM # USED INTERROGATED CONSUMED
1 183 27,969 29.32
2 202 27,428 26.58
3 151 36,044 28.01
4 203 27,428 24.20
5 198 26,823 26.15
6 182 28,564 25.42

Table 7.5 Symbol Table Test Results

The results of the tests are inconclusive. Thus we conclude that even

a fair hash is pretty close to optimal.

7.2 Secondary Store

The technique of superimposing an access method on the basic table has
allowed for quite uniform programs with nevertheless different attributes. A more
serious test of the technique comes when the strings of identifiers themselves
cannot be kept in main memory. If the characters are on secondary store, then
every comparison (1ine 34 of Figure 4.2, for example) implies an access to second-
ary store. That is unacceptable.

An interesting solution, involving & second hash, can be applied to all of
the methods already proposed. Instead of having the characters available for com-
parison, keep a suitably short code for each one of them in main memory (say eight
bits). The code is to be generated by a second hash function and recorded when
the symbol is first placed onto secondary store (by new_id). Now, when another
occurrence of the identifier appears, we first Took through the table to see if the
second hash function of the new occurrence matches that already recorded. Only 1f
the codes are the same can the two symbols be the same. We then must actually look

at the symbol on secondary store to verify that the comparison holds, and continue
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on with the look-up if it turns out to have been an accidental match of the codes.
In the case of hash access, where we were already looking at only 1/N of the
jdentifiers (those in the same hash class) we now look at only 'I/N2 (assuming both

hashes have a range of N).
Exercise Modify one of the symbol table algorithms to add & secondary store and
secondary hash to keep the number of accesses down. What is the cost? In memory

accesses? In secondary accesses? In memory residence?

8. EVALUATION OF ACCESS METHODS

The choice between the four methods presentad {or others} depends upon which
is the most economical, a criterion easier to state than to measure. In a practical
situation one simply tries 1ikely algorithms and measures gross performance against
an actual computational joad. We can also analyze the algorithms to give a
reasonable predictive analysis to eliminate those not even near the optimum. The
critical resource is memory and the two bottlenecks are memory access and memory
residence. The most meaningful parameters are t, the average number of symbols in
the table, t', the average number of symbols in the most local scope, t", the
largest number of identifiers the algorithms must be prepared to tabulate at one
time, H, the range of the hash function, and f;, f,, f3s T4s the predicted relative
frequency of the actions scope entry, scope exit, declaration of an identifier,and
use of an identifier.

We want to predict the load on the mechanisms of memory residence and memory
access due to the symbole table activity. We need not consider the load on the
other devices of the computer {e.g.,CPU) since they are largely idle and we can
choose not to tabulate loads common to all methods (such as calling the access
proceduras). We will assume that the appearance of an identifier is equivalent to
a memory access and that certain Toops in the algorithms are terminated on the
average after 1/2 their maximum run. On that basis Figure 8.1 defines the memory

access Yoad for each primitive symbol table action. {Int stands for the logarithm

of t to the base 2).
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ACCESS SCOPE SCOPE

METHOD ENTRY EXIT DECLARATION USE
Linear 7 5 7L'+14 3t+2
Hash 7 19147 (8/H)t'+32  (3.5/H)t+10
Sort 7 13t +9 4+(11)1nt+20  (11)Int + 12
Tree 7 10t +8 (16)1nt+31 (15)Int + 4

Memory Access Counts

Figure 8.1

Counting the actions in one of the small test programs for the symbol table
algorithm and extrapelating for a somewhat larger program, we predict the actual

access actions in the numbers:

Program fl f2 f3 f4
Size Entry Exit Declaration Use
Small 5 5 20 100
Medium 10 10 100 700

Symbol Table Actions

Figure 8,2

Then for each action we need to evaluate the formulas of Figure 8.1 with

weights given in Figure 8.2, The resulting formula

M= f]M‘ + sz2 + f3M3 + f4M4

simplifies to the formulae given in Figure 8.3.
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M]inear 335t + 540
Mhash =  25.6t + 1710
Msort = 145t + 1320Int + 1680
Mtree = 50t + 18201nt + 1095

"Small program"
Memory access as a function of table contents

Figure 8.3

In calculating the equations in Figure 8.2 we have assumed t' = t/4 and H =
256. It might be more realistic to assign t' a constant value (such as 10} since it
is not necessarily valid to assume that the number of variables declared locally
in a program will increase with the size of the program. The effect of assigning
a constant term would be to remove the linear term from the Linear and Hash equa-
tions. Their graph lines represented in Figure 8.4 would then slope slightly
downward. One can get a feeling for which algorithm makes the least demand on the
memory access circuitry by a graph of the functions (Figure 8.4) over a reasonable
range {t = 1, 100}.

Observing Figure 8.4, we conclude that except for very small table sizes the
hash scheme places the least load on the memory access mechanism. It does not make
sense to extrapolate the curves further since they are based on frequency counts
from small programs, but the analysis can be repeated with new figures for the
Targer load as suggested in Figure 8.2. The disappointing performance of the sorted
table is due to the term 145t 1in the equation which is due to the necessity to re-
sort upon scope exit and each new addition to the table. The larger weights reduce
the importance of both actions so we should expect some improvement there. The
tree algorithms should gain even more radically. We conclude that algorithm per-
formance is sufficiently dependent upon environment that it is meaningless to ask
which is "best" overall but performance can be estimated once the environment is

specified.
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LINEAR

/

20 40 60 80

100

Memory Accesses vs, Active Contents

Figure 8,4
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Exercise Repeat the analysis of Figure 8.3 and Figure 8.4 with the "medium®

figures from Figure 8.2

Exercise Verify in detail the formulae in Figure 8.1 by counting the potential

memory references in each symbol table algorithm.

Another view of what has just been described is shown in Table 8.5. Here
the order of the number of memory ‘accesses caused by each symbol table operation

is given for the four methods.

SCOPE SCOPE
; ENTRY EXIT DECLARATION USE
LINEAR 0 0 t" t
HASH 0 t" £ t
H H
SORT 0 t t" int
TREE 1] t"Int Int Int

Table 8.5 Memory Accesses

Memory access is not the whole picture; memory residence is also expensive.
If it were not we would simply increase the size of the hash function so as reduce
cost of hash access arbitrarily far. Ignoring the difference in actual program
size, the extra memory required over the symbol table itself is given in Figures

8.6 and 8.7.
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Linear 0 Linear 0
Hash t"+ H Hash 356
Sort t" Sort 100
Tree 2t Tree 200
Figure 8.6 Figure 8.7
Extra Memory Required Extra Memory Cells Occupied

Assuming modest value of 100 for maximum table size and 256 for an 8-bit hash, we
see that the speed of the hash algorithm is paid for in used memory. The combina-
tion of the figures for memory residence and memory access depends upon the computer
organization in a way that cannot be predetermined. It depends upon where the
critical resource is and what will happen to idle resources (e.g., can some other

process use them via multiprogramming).

Exercise Pick a computer you are familiar with and attempt to weigh the consider-
ations of memory access vs. memory residence to make a choice of symbol table

algorithms for a translator that is going to handle streams of small student jobs.

Exercise Gather an actual set of numbers f}.... f4 by modifying an existing com-
piler, writing a special processing program or doing some manual examination of
the input set to some compiler. Also obtain estimates of t, t', t". How does the
ratio f4/f3 vary with t and t'? What implication does this have on the choice of
algorithms? State a mathematical analysis which allows a comparison of the algo-
rithms over the distribution of values you have determined. Would a policy of
using one algorithm for small programs and another for large programs pay large

dividends?
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A source Tlanguage definition specifies the evaluation procedures for the
constructs of the language in terms of a set of primitive operators and operands
provided for this purpose. If the source language is machine-independent, then
these primitives are necessarily abstractions, as discussed in Chapter 3.A. Code
generation 1is the process of implementing an evaluation procedure in terms of the
primitives of a particular target computer. The basic approach is to simulate the
evaluation procedure in the environment (register organization and addressing
structure) provided by the target computer: A description of the run-time contents
of the environment is maintained by the code generator. When the evaluation

procedure indicates that the contents should be altered, then code to perform the
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alteration is emitted and the description is updated.

The data for the code generator consists of the structure tree, as modified
during the semantic analysis, and the dictionary. These two components can be
considered as one, since the dictionary is simply a means of recording the
attributes of certain structure tree nodes. (In the GIER ALGOL compiler [Naur
1964}, for example, the attributes of each identifier were recorded in the
intermediate text at every occurrence of that identifier.) The evaluation
procedures specify the sequence 1in which the nodes of a structure tree are to be
consjdered when performing the evaluation, and this sequence is largely independent
of the particular target computer. I shall therefore assume that the structure tree
is traversed by the semantic analyzer or by an optimizer which considers entire
subtrees before deciding upon the best sequence of operations to perform. (This is
the flattening process mentioned in Chapter 2.6.) Thus the code generator input is
a sequence of tokens specified by the nodes of the structure tree. Conceptually,
the input is derived from an intermediate text file; actually, it may be specified
by a sequence of procedure or coroutine calls upon the code generator by another
module. Regardless of the source of the input stream, it is assumed to represent a
program which is correct. (Any errors detected during analysis must be patched up

by the analyzer, and not passed on to the code generator.)
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1. A Model for Code Generation

I have assumed that the code generator does not have arbitrary access to the
structure tree, and must therefore operate on the basis of limited information. The

mode] which I advocate [Wilcox 1971] consists of two parts:

a. A pushdown store transducer, which maintains the contextual information
that can be derived from the sequence of input tokens.

b. A target wmachine simulator, which maintains the run-time contents of the
environment and produces sequences of target computer instructions to

jmplement the abstract primitives.

{Wilcox terms these components the translator and the coder, respectively.) The

transducer passes a sequence of commands to the simulator, each consisting of an

abstract operator and its associated operands. Each command is interpreted by the

simulator in the light of the environment which will exist at that point in the
execution of the program, It generates appropriate code and then updates the

environment to reflect the effect of that code.



305

1.1. The Transducer. A pushdown store transducer has four components: an input
tape, an output tape, a finite-state control and a pushdown store. In our case the
input tape models the stream of tokens which encodes the structure tree, and the
output tape models the abstract instructions which will be delivered to the
simulator. The finite-state control and the pushdown store encode the Timited
contextual information derived from the sequence of input tokens.

Information pertaining to the ancestors of the current node, and the status of
the current node itself, is encoded by the finite-state control. This information
can be used to distinguish regions of the program in which a particular construct
may have different meanings. For example, a string expression appearing as the
argument of a LENGTH function in PL/1 and the same expression appearing as the right
hand side of a string assignment should be translated differently. In the former
case, we are not interested in the actual string produced by the expression, but
merely in its length; hence concatenation operators should be translated as
additions, Similar situations arise with expressions appearing in array subscripts
{where we wish to do 1inear subscript optimization)} and on the 1left hand side of
assignment statements (where we need to obtain an address rather than a value.)

The pushdown store contains information derived from subtrees which have been
completely traversed. After all subtrees whose roots are descendants of a
particular node have been traversed, their entries are deleted from the pushdown
store and replaced by a single entry for the entire tree rooted at that node.
Information from the pushdown store is used to identify the operands of an operator.

State information may also be retained in the pushdown store during the traversal
of the subtree rooted in a given node. When this is done, the state would be
entered into the pushdown store at the prefix encounter with the node and removed
during processing of the postfix encounter. The seguence of actions which
implements the postfix encounter would be: remove subtree entries, remove state,

insert result entry.
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During the flattening of the structure tree by the semantic analyzer, encounters
with interior nodes result in input tokens for the transducer only if the evaluation

procedure requires it. These tokens are the operators and delimiters of the input

stream, and I shall discuss specific examples in Section 2. Operand tokens are
always created for leaves of the tree. The transducer has four basic actions which
it may perform, singly or in combination, for each token:

a. Request simulation of a given token with given arguments, accepting a

description of the result if one exists.

b. Remove the top k entries of the pushdown store (K»0).

c. Insert a given enfry into the pushdown store.

d. Make the state of the control a given value.
The first action allows the transducer to supply information to the simulator. Its
arguments may include the value of the transducer state, and the top k entries of
the pushdown store. (This 1is a violation of the strict definition of a pushdown
store transducer, but it dis a reasonable assumption for any practical
implementation.) In action (c) the "given entry" may be the current value of the
transducer state, and in action {d) the "given value" may be the top entry of the
pushdown store.

1.2. The Simulator. 1In order-to interpret the primitives of the source language
in terms of the target machine, the simulator must maintain descriptions of the
values being manipulated {(value image} and of the target machine environment
(machine image.) A particular value may be represented in many different ways in
the target computer, and the purpose of the value image is to specify the current
representation of each value. Similarly, the registers of the target machine may
contain many different values during the course of execution, and the purpose of the
machine 1image dis to specify the current contents of each register. The
relationships between values and the registers which contain them are expressed by
cross-linkages between the two images. I shall discuss the detailed structure and
contents of the images in Section 3.

A value comes under the control of the code generator when the transducer
requests simulation of an operand token, giving the current transducer state as an

argument. At that point the simulator creates an entry for the operand in the value
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image and, if appropriate, links it to the machine image.

Values pass out of the control of the code generator when they are used as
operands (but see Section 1.3.} This is signalled when the transducer requests
simulation of an operator token giving the current state and one or more wvalues as
arguments. At that point the simulator deletes the operand entries from the value
image, breaking any 1inkage to the machine image. If a result is specified, a
description of the result value is created and linked to the appropriate entry in
the machine image.

1.3. Common Subexpressions. The model which I have presented above is based on

the vrepresentation of a program as a structure tree in which the leaves correspond
to named operands or constants. These entities lie outside of the ken of the code
generator. Their values are obtained when the corresponding leaves are encountered,
and the values so obtained are then treated as distinct entities which are under the
code generator's total control. In effect, the code generator deals anly with
anonymous results (Chapter 3.A, Section 2.1.)

Common subexpression elimination is an optimization which creates a directed
acyclic graph rather than a structure tree to describe the program (Figure T.1).
This graph can be represented by an equivalent tree which contains an additional
named operand, as shown in Figure 1.1c. The new operand, hawever, is not one which
was named by the programmer, Control of this operand should therefore be the
responsibility of the code generator. Since it is not anonymous, however, it will
be used more than once and hence it cannot be modelled by an entry in the
transducer's pushdown store.

This problem can easily be circumvented 1f we realize that the value image
maintained by the simulator may encompass more than Jjust the contents of the
transducer's pushdown store. In general, the pushdown store contains a subset of
the values being managed by the code generator at any given dinstant. When the
simulator creates a value image entry for an operand, it might set a counter to
indicate the number of uses Jeft for that value. Each time the value appears as an
argument this count would be decremented; the entry would be deleted only when it

reaches zero.
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4-3% (1+J )+ (I+d )42

a) An expression with a common subexpression

/N,
\
/\/\

I/%/ \\\J

b) The directed acyclic graph for (a)

/\
/\
7\ /\/\

I J LR

¢} An equivalent tree

Figure 1.1

Representing Common Subexpressions
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2. Sequencing and Control

An operator is postfix-translatable if code for its operands can be generated in

the same state as code for the operator/operand combination, and if the semantics of
the operator do not require prologue code or intervening code between eperands.
These conditions imply that the transducer will never take action (d) (Section 1.1),
and only postfix encounters with interior nodes of the structure tree will result in
transducer input tokens. Most infix operators in current programming Tlanguages
satisfy these constraints, provided that certain kinds of sptimization are not
required,

As an example of the problems caused by optimization, consider the two
expressions (I+J)*K/L and {I+J+K)}/L. Using an appropriate syntax for expressions,
these two could be translated to the postfix forms IJ+K*L/ and IJ+K+L/ respectively.
Note that the translations are identical over the first four characters; in
particular the summation of I and J is the same in both, If we assume that the
operators are postfix translatable, then the code generated from IJ+ must be the
same 1in both expressions because we have no information about text to the right of
this subexpression,

Let us now consider the translation of these two expressions into object code for
the IBM System/360. Integer multiplication on this machine is specified as follows
[IBM 1967]: “Both multiplier and multiplicand are 32-bit signed integers. The
product is always a 64~bit signed integer and occupies an even/odd register pair.
Because the multiplicand is replaced by the product the register field of the
instruction must refer to an even numbered register ... the multiplicand is taken
from the odd register of the pair. The content of the even numered register
replaced by the product is ignored unless that register contains the multiplier."
Integer division 1is defined as follows: "The dividend is a 64-bit signed integer
and occupies the even/odd pair of registers specified by the ... instruction. ...
A 32-bit signed remainder and a 32-bit signed quotient replace the dividend in the
even numbered and odd numbered registers respectively. The divisor is a 32-bit

signed integer." Given these instruction definitions, the best code for each of the
tw expressions is shown in Figure 2.1. Notice that the operator following K

determines the register in which I+J is computed.



L RT,I
A R1,d
M RO,K
D RO,L

a) Code for the expression {{I+J)}*K/L)

L RO, I
A RO,
A RO,K
SRDA RO, 32
D RO,L

b) Code for the expression ({I+J+K)/L)

Figure 2.1

Optimum Instruction Sequences for System/360
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To produce the optimum code, the code generator could recognize that it is
processing the first operand of a division. In other words, the two operands of the
division would be translated in different states of the code generator. A further
change in state when the first operand is an expression containing a wmultiplication
would guarantee that the multiplicand is Teft in the proper register of the pair.
Alternatively, the registers could be allocated but not assigned on a first pass,
with a second pass substituting the actual register numbers [Beatty 1974].

Figure 2.2 is a flow chart showing the basic sequencing algorithm for postfix-
translatable operators. It assumes that the 1input tape to the code generator
consists of a sequence of identifier and operator tokens, plus a distinguished
terminator. The assumption that the token stream is correct makes it unnecessary to
provide an exit for an unrecognizable token. In Figure 2.2 I use Wilcox' notation
0{IT,S} to denote the action of simulating the operand token IS with the current
state S of the transducer as its argument, and R(IT,5,Z) to denote the action of
simulating the n-ary operator token IS with the current state S of the transducer
and the current contents Z of the pushdown store as its arguments. Each of these is
an action of type (a), which constructs the description of a result value. It s
this value description ({denoted by "d" in Figure 2.2) which is inserted into the
pushdown store before the next symbol of the token stream is read.

The algorithm of Figure 2.2 assumes that the number of operands is known for each
operator, which is not always the case. ({For example, the FORTRAN intrinsic
functions MAX0 and MINO could be considered to be postfix-translatable operators
with two or more operands.) Figure 2.3a illustrates possible ambiguities which
could arise unless extra information is included in the token stream to delimit the
operand list of a varijadic operator. As Figure 2.3b shows, the addition of the
single delimiter token "(" is sufficient to resolve this ambiguity. This token is
considered an operand, and the function 0{"(",S) creates a special descriptor to
mark the beginning of the operand 1ist., When IT represents a variadic operator,
R(IT,S,Z) scans the pushdown store for this marker and thus determines the value of
n. The value of n is set to one more than the number of operands in this case, to
ensure removal of the marker. (I should perhaps note that the example of Figure 2.3

is somewhat contrived; it would probably be more satisfactory to translate MING into
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IT = Next
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input token
Is IT Yes

an operand
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>
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Remove top
n pushdown
store entries

Wrapup

Sequencing for Postfix-Translatable Operators

Figure 2.2




313

A B C MINO D MAXO

a) A sequence of input tokens

MAXO(A,MINO(B,C),D)
MAXO(MINO(A,B,C),D)

b) Possible interpretations of (a)

(A (B CMINOD MAXO

¢) Forcing the first interpretation

Figure 2.3

Correction of Ambiguity due to Varijadic Operators
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a sequence of dyadic MIN operators.)

Array referencing can be treated as a postfix-translatable operator in a single-
state language, but not in a Janguage whose transducer yses multiple states. Again,
a simple example is provided by the PL/1 LENGTH function: The prefix operator
LENGTH switches the code generator into the "Tength" state, in which only the length
of string variables is of interest., The subscript of the array reference in
LENGTH(A[I]), however, should not be evaluated in this state. Hence, the array-
reference operator must be prefixed in order to change the state to one suitable for
evaluation of the subscript. Upon completion of the subscript, the previous state
of the <code generator 1is restored. Similar problems arise with function
invocations, in which it is necessary to mark parameters uniquely.

Figure 2.4 shows the basic sequencing algorithm for prefix operators. D(IT,S)
denotes the simulation of a prefix operator token IT with the current state S of the
transducer as its argument. Like O{IT,S), it constructs a description which is to
be entered into the pushdown store. Instead of an operand value, however, this
description specifies the current state of the transducer. The action of resetting
the transducer state is denoted by S=N(IS,S). Note that N does not depend
explicitly upon the contents of the pushdown store. This reflects the fact that the
state is used to encode information pertaining only to the current node and its
ancestors. Finally, T{S,Z) denotes the action of simulating the postfix encounter
with the node. In addition to constructing a description of the result value, it
restores the state from the information originally created by D(IS,S) at the prefix
encounter. Thus T{S,Z) includes both type (a) and type (d) actions.

Figure 2.4, 1like Figure 2.2, assumes that the number of arguments is known for
each operator. An obvious modification is to have a delimiter token ")" to mark the
end of a variable Tlength argument T1ist: When IT="}", control would transfer
directly to the T(S,Z) action.

A hybrid code generation scheme which permits both prefix and postfix eperators
requires a delimiter token to flag the end of an intermediate operand for a prefix
operator. This delimiter signals an infix encounter with the node representing the
prefix operator; if it were not present the.code generator would continue to process

the stream of tokens, under the assumption that sooner or later a postfix operator
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would show up. Figure 2.5 illustrates the token stream which would resuit if the
Fortran intrinsic function MINO were implemented as a prefix operator with a
variable number arguments. Two delimiter tokens, "," and ")", are used to terminate
operands: The former indicates an infix encounter with the parent node, while the
latter marks a postfix encounter.

Figure 2.6 describes the basic sequencing algorithm which accepts a stream of
input tokens consisting of prefix operators, postfix operators, delimiters and
operands. It is a simple combination of Figures 2.2 and 2.4, except that now the

operands of a prefix operator are terminated explicitly. Hence there is no need to

Toop on the completion test for the prefix operand 1ist.

3. Generator Data Structures

The three data structures used by the code generator model of Section 1 are" the
pushdown store, the value image and the machine image. In Section 1.3 I argued that
the pushdown store contained entries for a subset of the elements of the value
image. If the transducer and the simulator coexist in memory, then the pushdown
store could be formed simply by linking appropriate elements of the value image.
Each element of the value image would carry information for both the transducer and
the simulator, and would have provision for the necessary linkage. Wilcox calls

these elements value descriptors; I shall discuss their structure in Section 3.1.

Not all of the pushdown store entries specify value information. Recall that the
state of the transducer may also be saved on the pushdown store during <the
processing of a subtree. This state is of no interest to the simulator and does not
resemble a value descriptor. Practically speaking, there is no reason to use the
same pushdown store for values and transducer states; only an ardent theoretician
would object to the use of a separate state stack.

The transducer and simulator need not coexist in memory. Action (a) of Section
1.1, which requests the simulation of a token with arguments, could simply write
that request to a file which would be scanned by the simulator in another pass. In
this case the pushdown store and value image would be disjoint. Only the

information relevant to the transducer would appear in a pushdown store entry, and
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A*MINO(B,C-D,E)

a) A typical expression

AMINOB,CD-, E)

b) Input stream for the expression of (a)

Figure 2.5

Input for a Hybrid Code Generator
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only that relevant to the simulator would be held in the value descriptor. It might
still be useful, however, to have a separate state stack for the transducer.

Each target computer requires a machine image based upon the peculiarities of its
internal organization. Accessible processor components would be represented by
various elements capable of holding their status. I shall Tump all of these

together under the title register descriptor, although they might not actually

represent registers. The machine image contains representations not only of
processor components, but also of temporary storage. These memory locations are
used by the code generator when the number of values which it must manage exceeds
the capacity of the target computer's registers, and when it must store the values
of Titeral constants. They are represented by descriptors which might correspond to
individual elements of storage or entire areas. The number of such memory
descriptors might be fixed, or it might grow and shrink as storage was allocated and
released.

Named operands are modelled by certain entries in the translator's dictionary,
which specify all attributes of these operands. Three general attribute classes can
be distinguished:

a. Source language: Mode, scope, associated identifier. These are maintained
by the semantic analyzer,
b. Target computer: Encoding, size, environment. These are maintained by the
code generator.
c. Memory image: Memory address, reference chains, defined origin. These are
maintained by the assembler.
The values of named operands are not managed by the code generator, since it does
not have complete control over the manner in which they are changed.

3.1. Value Descriptors. An access function is a procedure for obtaining the

contents of the cell defined by a name; it exists at all points within the scope af
the declaration which associates an identifier with that name. When the access
function of a name is realizable within a given addressing structure, we say that
the object referred to by the name is addressable. If an object required by the
computation is not addressable, then the code generator must issue instructions

which manipulate the environment in order to make it addressable before it can be
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used.

The manipulations of the environment required to make an object addressable can
be divided into two groups, those required by source language constructs and those
required by Timitations on the addressing structure of the target computer,
Implementation of a reference through a pointer variable would be an example of the
former, while 1loading a value into an index register illustrates the latter. The
exact division between the groups is determined by the structure of a value
descriptor. When an operand token 1is encountered in the input stream, a value
descriptor is constructed for that operand. If the operand is not a constant, then
the value descriptor must specify a location at which the operand may be found.
This means that the value descriptor must realize some addressing structure, and if
the operand is not addressable within that structure then primitive operators must
be used to make it addressable. When an operator is applied to an operand described
by a value descriptor, it may happen that the operand Tocation is not addressable
with the single target machine instruction which implements the operator. In that
case, the function which is processing the operator must emit further addressing
code. Thus we see that addressing code may appear both at the point where the
reference to a variable was first encountered in the structure tree, and at the
point where it was finally used as an operand.

Value descriptors should employ a uniform addressing mechanism to insulate the
operator processors from the original source language form of the operand. We have
already seen {Chapter 3.A, Sections 2.2 and 2.3) that a base, index and displacement
can provide such a mechanism for addressing locations in memory: The base is a name
which refers to an area of memory, and which may be computed at execution time. It
would be represented in the value descriptor by a pointer to the dictionary (if its
value were known at compile time) or to another value descriptor (if its value were
computed.) The index is always a computed value, and is therefore represented by a
pointer to another value descriptor; the displacement is simply an integer value.
This mechanism can easily be extended to cover constants and values held in
registers,

Initially, a constant value has no Tocation; the value descriptor must therefore

specify the constant itself. This permits the code generator to perform certain
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machine-dependent optimizations ({such as implementing multiplications by shifts.)}
The constant value would also be required if evaluation of constant expressions were
left to the code generator. Most such expressions would probably be handled by the
optimizer, since it can combine evaluation with other optimizations such as strength
reduction, but the simulator should have this capability in order to handle
constants introduced during code generation.

On most computers, constants must be stored in memory unless they are small
integers which can be placed in the address fields of certain instructions. When
the constant is used, the code generator will decide whether it must be placed in
memory. Thus the value descriptor for a constant must provide space for a memory
reference as well as for the constant value. If the constant has no Tocation, this
fact would be indicated by a null pointer in the base field.

If a value is held in a register, then the base field of its descriptor contains
a pointer to the descriptor for that register. Note that this case cannot be
confused with that of an indirect reference to memory through an address held in a
register: When the reference is indirect, the base field of the value descriptor
points to another value descriptor which describes the address. (Figure 3.1
illustrates the distinction.)

In addition to the location and value specifications, a value descriptor must
define the encoding of the operand and provide some housekeeping information.
Figure 3.2 is an example of a typical value descriptor layout, adapted from Wilcox'
description of the PL/C compiler [Wilcox 1971]. (PL/C is a variant of PL/1, and the
compiler runs on the IBM System/360 [Conway 1973].)

3.2. Register Descriptors. There 1is one register descriptor for each target

computer register which could be of interest to the code generator. This includes
dedicated registers whose contents might be used as operands, as well as registers
that are actually managed by the code generator. Fach register descriptor contains
all of the information needed to use the register as an operand, and to control its
allocation. The code generator specifies a register simply by a pointer to the
register descriptor,

When a value is in a register, the value descriptor contains a pointer to the

register descriptor. The register descriptor must point to the value descriptor
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Value Register
Descriptor Descriptor
Base .
Index
Displacement

a) Value is in a register

Value Value Register
Descriptor Descriptor Descriptor
Base . .
Index
Displacement

b} Value is in memory, address is in a register

Figure 3.1

Indirection
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1 VALUE_DESCRIPTOR UNALIGNED BASED(P)
2 DERIPTOR MANAGEMENT

3 STATUS
4 YSES LEFT FIXED BIN(7) /*USED BY OPTIMIZER*/
4 VALUE BIT{1) INIT{1) /*1 INDICATES A VALUE DESCRIPTOR*/
4 STORAGE BIT(1) /*0 INDICATES ITEM IN A REGISTER*/
4 TEMPORARY BIT(1) /*1 INDICATES A TEMP IS ALLOCATED*/
4 IMAGE BIT(1) /*1 INDICATES ANONYMQUS OPERAND*/

4 OTHER_FLAGS BIT(20)
3 FORWARD LINK POINTER
3 BACK_LINK POINTER
2 ACCESS_FUNCTION
3 BASE POINTER
3 DISP FIXED BINARY(31)
3 INDEX POINTER
2 ATTRIBUTES
3 MACHINE TYPE
4 3360 _STORAGE BIT(8)
4 SCALE FIXED BINARY(7) /*RADIX POINT POSITION*/
4 PRECISION FIXED BINARY({7) /*SIGNIFICANT DIGITS*/
3 SOURCE_TYPE BIT{8)
2 VALUE BIT{64) /*IF KNOWN*/

Figure 3.2

PL/C Value Descriptor
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also, since it may be necessary to free the register by storing the value which it
contains. This action would normally be taken in response to a request which had
nothing to do with the value currently in the register, and hence the value
descriptor for the evicted operand must be accessible from the register descriptor.

In some cases the content of a register is duplicated in some memory Tocation
managed by the code generator. If it becomes necessary to free a register, one
whose content is also available in memory need not have that content stored again;
all that 1is necessary is to reset the value descriptor to refer to the memory
location, This requires that we provide space to store a base, index and
displacement 1in the register descriptor. When a register is loaded, the value
descriptor's location specification could be copied into the register descriptor.
Similarly, when a value is stored from a register the register descriptor would be
set to address the target location of the store.

Note that the linkage between the register descriptor and storage is quite
independent of any particular value descriptor. It represents a condition which
happens to exist in the run-time environment, and which is not connected with the
particular values currently being used in the computation. This is particularly
important in connection with address modification. Consider a reference to a
variable local to a containing block in ALGOL 60. In order to access that variable,
it may be necessary to Joad a register with the base address of the containing
block's local storage. This value is not relevant to the computation once the
reference has been made, and hence no value descriptor will be retained for it.
However, if the register is not needed, its descriptor will remain Tinked to the
memory Tlocation containing the base address. When another reference occurs to a
local variable of the same block, the base register load can be avoided by checking
the register contents. This is done in the PL/C compiler, which uses the register
descriptor defined in Figure 3.3. Note the close similarity between it and the

value descriptor of Figure 3.2.
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REGISTER_DESCRIPTOR UNALIGNED BASED(P)
2 DESCRIPTOR_MANAGEMENT

3 STATUS
4 USES LEFT FIXED BIN(7) /*USED BY OPTIMIZER*/
4 VALUE BIT(1) INIT{O) /*0 INDICATES A REGISTER DESCRIPTOR*/
4 DEDICATED BIT(1) /*0 INDICATES MANAGED REGISTER*/
4 GENERAL BIT(1) /*0 INDICATES FLOATING PT REG*/
4 PAIRED BIT(1) /*1 INDICATES USE IN A PAIR*/
4 SAVED BIT(1) /*1 INDICATES COPY IN MEMORY*/

4 OTHER FLAGS BIT(3)
4 REGISTER_INFORMAT ION
5 REGNUM BIT(4)
5 ALLOCATION CLASS BIT(4)
5 STORE_OP BIT(8)
3 FORWARD_LINK POINTER
3 BACK LINK POINTER
2 CONTENT_ADDRESS
3 OLD_BASE POINTER
3 0LD_DISP FIXED BINARY(31)
3 OLD_INDEX POINTER
2 CONTENT ATTRIBUTES
3 MACHINE_TYPE
4 $360_STORAGE BIT(8)
4 SCALE FIXED BINARY(7)
4 PRECISION FIXED BINARY({7)
3 SOURCE_TYPE BIT(8)
2 CONTENT DESCRIPTION POINTER /*VALUE DESCRIPTOR FOR CONTENT*/

Figure 3.3

PL/C Register Descriptor
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4, Instruction Generation

Synthesis of the actual instruction encodings acceptable to the control unit of
the target machine is an assembly task, as is the allocation of target -computer
storage. The simulator generates a sequence of specifications for wmachine
instructions and assembly directives, which it passes to the assembler [Capon 1972].
Conceptually, an intermediate file is used for this communication; actually, the
simulator may call assembly procedures directly or the two may interact through a
coroutine linkage.

The simulator is generating an assembly Tlanguage program and, like a human
programmer, it must maintain its image of the environment within which the generated
code will operate., For a given target computer, the operations one uses to maintain
the machine image (such as register management and storage area management) are
independent of the particular assembly language program being generated. The
simulator routines which perform such functions can therefore be written without
regard for the source language, and could form the basis for many different
simulators.

If wvalue descriptors are not used to implement the transducer's pushdown store,
then they are also independent of the source language. Each represents a tfarget
machine value, and the mapping from the source language to the target machine is
carried out when the descriptor is constructed. No information regarding the source
language attributes is required by the simulator, since the evaluation procedure is
chosen by the transducer on the basis of those attributes. Thus the value
descriptor management utilities can also be used in many simulators.

To create a simulator for a particular source language, we must specify the
evaluation procedures 1in terms of sequences of machine instructions, assembly
directives and simulator functions. These procedures tend to be bulky because they
perform extensive analysis of special cases in an attempt to generate good code, but
most of their execution time 1is spent in the various utilities. An evaluation
procedure is thus a prime candidate for interpretation: The sequence is encoded in
a compact form which is scanned by a central control routine. This routine sets up
parameters for the simulator utilities specified by the sequence, and calls them to

perform the actual operations.
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4.1. Primitive Operations. Table 4.1 is a typical set of simulator primitives.

1 present it as a concrete basis for discussion, not as an exhaustive list of
possibil ities. (Remember that the particular operations which are relevant depend
upon the target machine.)} My purpose is to explain the major tasks, and to indicate
specific operations which are useful,

Instruction generation always results in a call on an assembly procedure., Before
this call is made, however, the simulator guarantees that the aperand of the
instruction 1is addressable within the structure of the target machine. This may
involve generation of additional instructions to Tload base and index registers,
Some care must be taken to ensure that allocating these registers does not free
other registers needed by the instruction.

Assembly directives are used for the actual allocation of target computer memory
and definition of symbols. The assembler also has facilities for multiple storage
areas {Chapter 3.F, Section 3.2), with allocation and initialization. It does not
usually provide complex recovery strategies for use in temporary storage areas, and
those are best handled within the simulator.

The LOCK operation of Table 4.1 allows an evaluation procedure to guarantee that
a particular register will not be realiocated. Normally, the register manager would

base its reallocation policy on the allocation state of the register, which

specifies whether the register is in use and whether a copy of its content can be
found in memory. (The memory reference for the content is also considered part of
the allocation state.)

LINK is used to attach a value descriptor to a register descriptor, linking the
two and setting the allocation state. This operation does not generate instructions
to load the value into the register, it simply updates the relevant descriptors.
Presumably it would be preceeded or followed by the appropriate LOAD instruction.

There is no "delink" gperation. When the content of a register has been stored,
the register's allocation state can be set to "not in use, copy in memory at
reference --" if this is the intent. However, the value remains in the register,
and that is the most accessible copy. Hence the value descriptor stays linked to
the register descriptor. If the register is now reallocated and another value

linked to it, the old value descriptor 1is altered to reference memory. Thus



328

Table 4.1

Simulator Operations

Instruction Generation

Generate 15-bit instruction

Storage Management

Create storage area
Allocate element

Define Tocation

Register Management

Allocate
Lock
Link
Save

Descriptor Management

Create
Protect

Copy descriptor

Generate 30-bit instruction

Establish default area

Free eTement

Free

Unlock

Set allocation state
Restore

Join

Destroy
Release

Make working copy
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"delinking" is a function of the LINK operation, and is only done when a new value

is brought into the register.

On most machines a transfer of control does not alter the contents of the
registers., Consider the implementation of the if-then-else~fi construct in ALGOL 68
{van Wijngaarden 1969]. The contents of the registers will be the same just before
then and just after else; they may differ just before glse and just before fi.
These facts can be reflected in the evaluation procedure by the use of SAVE, RESTORE
and JOIN, each of which operates on the complete register status and the contents of
a specified register status save area in the simulator {Figure 4.1.)

Wilcox defines JOIN as follows [Wilcox 1971]: "For each currently managed
register, if its [allocation state] differs from that recorded in [the specified
register status save area] it is marked empty. If they agree, it remains
unchanged." Thus none of the three operations generate code in his simulator, and
memory must contain copies of the contents of all registers in use at else and fi,
A simple modification allows JOIN to generate only necessary STORE instructions at
fi, but all active registers must still be saved at else {unless an extra jump is
inserted.} A backwards pass of a multiple-pass code generator could be used to move
the necessary information from JOIN B to SAVE B, thus eliminating redundant STOREs
at else also.

When a value is no longer needed by an evaluation procedure, its descriptor is
RELEASEd. This frees all resources ({register, storage) allocated to the value,
unless the descriptor indicates that uses are left. PROTECT increments the count of
uses left. |

Sometimes it is necessary to have a copy of a value which can be destroyed. For
example, on the IBM System/360 an ADD instruction replaces its first operand with
the result. If the first operand is a value which will be needed again (i.e. oane
which indicates that uses are left), then another copy of that value must be used in
the ADD. This new copy inherits all of the attributes of the original except the
number of uses left.

4.2. Interpretive Coding Language. The primitive operations of Figure 4.1 form

the nucleus of an interpretive coding language (ICL) suitable for describing the

manipulation of values necessary to implement evaluation procedures. Since each
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L2: JOIN B

Figure 4.1

Saving Register Status
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value under the control of the code generator is represented by a value descriptor,

value descriptors are the basic problem-oriented operands of this language.

Algorithm-oriented operands (e.g. integers, booleans, finite sets, labels) and

operators {e.g. transfer of control, declaratives) are also required if the ICL s
to have a conventional structure.

An assembly language 1is one obvious tool to use for describing seguences of
machine instructions. In conventional assembly languages, each line is a statement
made up of four fields:

a. The location field may contain a symbol or be empty.
b. The operation field must contain a symbol
c. The content and layout of the operand field depends upon the symbol in the
operation field.
d. The comment field is for documentation only; its content is ignored.
The operations which the language provides include all of the machine instructions,
plus a set of pseudos which access the compile-time facilities of the assembler,
The particular pseudos supplied vary widely; the following four will, however, be
available in even the simplest assembler:
a. END. Causes the assembler to wind up its processing of this program.
b. DATA. Causes the assembler to initialize the contents of a block of
memory.
C. RESERVE. Causes the assembler to reserve a block of memory without
initializing its contents.
d. DEFINE. Causes the assembler to define the value of a symbal,
As we study the assembly process, I shall present additional pseudos which are
useful for the simulator [Mealy 1967].

The assembly language for a particular computer can serve as a starting point far
the design of an ICL for that computer: It §s familiar to the system programmers
who must construct simulators, and it provides access to the assembly procedures for
instruction encoding and storage allocation. Additional pseudos can be provided to
access the simulator utilities discussed in Section 4.1 and to provide the
algorithm-oriented facilities mentioned above. The ICL statements must be

translated into a compact sequence of data items, which is then incorporated into
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the compiler, This translation 1is simplified by the structure of an assembly

language. {If the assembler for the target machine has a macro facility, then
appropriate macros allow the existing assembler to perform the translation.)

Several authors have employed the basic strategy of using an ICL to create a
description of the final code generation process [IBM 1968, Arden 1969, Elsen 1970,
Wilcox 1971]. Most of these languages were based on assembly code, and some were

actually implemented by macro definitions for a conventional assembler

References

Arden, B.W., Galler, B.A., Graham, R.M.: The MAD definition facility. CACM 12,
432-439 (1969).

Beatty, J.C.: Register assignment algorithm for generation of highly optimized
object code, IBM J. Res. Dev. 18, 20-39 {1974).

Capon, P.C., Morris, D., Rohl, J.S., Wilson, I.R.: The MU5 compiler target language
and autocode. Computer J. 15, 109-112 (1972).

Conway, R.HW., Wilcox, T.R.: Design and implementation of a diagnostic compiler for
PL/I. CACM 16, 169-179 {1973).

Elson, M., Rake, S.T.: Code Generation Techniques for large-language compilers.
IBM Systems J. 9, 166-188(1970).

IBM: IBM System/360 Principles of Operation. Sixth Edition, IBM Corp. 1967.

IBM: IBM System/360 Operating System FORTRAN IV (H) Compiler Program Logic Manual.
Fourth Edition, IBM Corp. 1968.

Mealy, G.H.: A generalized assembly system. In Rosen, S. (ed.) Programming
Systems and Languages. McGraw-Hill 1967.

Naur, P.: The design of the GIER ALGOL compiler. Ann. Rev. in Automatic
Programming 4, 49-85 {1964).

van Wijngaarden, A. (ed.); Report on the algorithmic language ALGOL 68. Num.
Math. 14, 29-218 (1969).

Wilcox, T.R.: Generating Machine Code for High-Level Programming Languages. Ph.D.

Thesis, Cornell University 1971.



CHAPTER 3.F.

ASSEMBLY AND LINKAGE

W. M. WAITE
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Assembly is the final step 1in the translation to machine code, Instruction
specifications are converted into the actual patterns recognized by the control unit
of the computer, and these patterns are placed into a memory image. Some of the
instruction specifications normally contain references to other items 1in the
program; during assembly, these references are replaced by the addresses in the
memory image of the referenced items.

In many respects, assembly is machine-dependent: The number and layout of fields
within an instruction, the Tlength of an instruction and the representation of a
memory address are all jtems which vary from one computer to another. Nevertheless

it is possible to derive a general model of the overall assembly process which
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highlights its basic machine-independence. By studying the model, we can ‘identify
important interfaces and specify a collection of procedures which can be used to
carry out an assembly. These procedures are machine-dependent only in their
detailed operation; their functions and interconnections are independent of any
particular computer or class of computers,

1t is often convenient to split an assembly into several passes. The most common
reason is to permit separate translation of modules in a large program. Each module
is partially assembled, and the text placed in a file., Wuhen the program is to be
executed, the files for all modules are combined in a final assembly pass. This
final pass is usually termed "loading”, "linkage editing” or *“binding”®, but 1in

reality is a completion of assembly.
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1. A Model for Assembly

Figure 1.1 summarizes the major data structures used during assembly, and shows
how they are interconnected. MEM is the memory image which is being created by the
assembly, LCNTR is the location counter which indicates the current position of the
assembly in MEM, and DICT is the dictionary, which is used to retain certain
constant values and positions 1in MEM, I assume that the assembly procedures may
access MEM and DICT randomly, and that LCNTR may address any "relevant position" in
MEM. ({The "relevant positions" are determined by the architecture of the target
computer.} At the completion of assembly, the contents of MEM can be executed
immed jately by the target computer; no further processing is required.

The data structures of Figure 1.1 are manipulated by a collection of procedures
which can be grouped into the classes shown in Figure 1.2. Procedures 1in the
object, reference and definition classes provide an interface to the assembly data
structures, while statement procedures interface to the remainder of the translator.
Each basic instruction generation step is a call on a statement procedure, passing
arguments which describe the desired instruction. The interpretation of these
arguments depends entirely upon the statement procedure which is called.

T.1. Object and Statement Procedures. Ohject procedures insert information into

MEM and maintain LCNTR. They are called by the code generator, and their functions
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Figure 1.1
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Figure 1.2
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can be placed into the following broad categories:

a. Enter a given item into MEM.

b. Advance LCNTR by a given amount,

c. Advance LCNTR if necessary to address an element of a particular storage

class.

Category {c) reflects the fact that in some computers certain information must fall
on particular "boundaries" in memory. For example, on a computer which can store
several instructions in each word it may be necessary to guarantee that an
instruction which is the target of a jump falls at the beginning of a word.

Some object procedures may perform functions in more than one category, the most
usual combination being (a) and {b). Care must be taken with category (c) functions
because LCNTR can affect the values of operands used in the instruction, This means
that if a category {c) function is necessary, it should be carried out before the
jnstruction is generated and not combined with (say} a category {a) function carried
out at the end of the generation process.

A& statement procedure interprets and processes its argument, calling upon
procedures in the other classes to obtain the desired effect. For example, consider
the processing of an instruction which specifies an address and an 1index register.
The statement procedure called would be one which processes instructions with index
and address fields; the arguments passed would specify the operation code for the
particular instruction, the number of the index register, and the address. After
building the instruction pattern required by the control unit, the statement
procedure would call an object procedure to place the instruction into MEM at the
address specified by the location counter. This object procedure would probably
update the location counter to address the space immediately foilowing the
instruction.

1 shall assume for the moment that each statement procedure can determine the
proper ohbject procedures to use simply by examining its arguments. This seems at
first glance to be a trivial assumption, but consider a computer which provides jump
instructions of several lengths: The short jump is used when the Jjump target is
within {say} 128 Tocations of the jump instruction, while the long jump is used when
the jump target is more distant. It would be useful to simply specify that a jump
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was required, and let the statement processor sort out which to use [Richards 1971].
This means, however, that the statement processor cannot determine the proper object
procedure from its arguments alone, because the instruction Tength depends upon the
position of the instruction and the position of the jump target.

There will be one statement procedure for each distinct class of instruction
patterns, because the statement procedure must know how to interpret and pack the
fields which specify its arguments. At least two procedures are needed to provide
direct access to category (a) and (b) object functions. These procedures are used
to specify arbitrary data items {patterns which cannot be expressed as instructions)
and to reserve blocks of storage. Sometimes it is useful to provide a third
procedure to access category (c) functions; this depends strongly upon the target
computer organization.

1.2. Cross Referencing. Some of the operands of an instruction may depend upon

the Tocation of other instructions. An obvious example is the address field of a
jump instruction, which depends upon the location of the jump target. Such operands
present a cross-referencing problem which is solved through the use of the
dictionary: Each operand is associated with an entry in the dictionary holding the
value of LCNTR at the defining occurrence of the operand. Access to these entries
is provided by procedures in the reference and definition classes.

The only probiem which arises in providing cross-references is that of a forward
reference: An operand for which one or more applied occurrences preceed the
defining occurrence. It fs possible {at some cost in convenience} to eliminate
forward references to data objects by re-arranging the source program. Forward
references to instructions, however, can only be eliminated in certain simple cases;
thus we must deal with the forward reference problem.

A conceptually simple solution to the problem is to make two passes over the
input specifications. During the first pass, the statement routines request anly
object functions in categories (b) and (c). Thus they maintain the value of the
tocation counter, but place no information into MEM, Applied occurrences of all
operands are ignored, but definition procedures are called to process defining
occurrences. At the end of this pass, the dictionary contains the values of all

cross-referenced symbois. A second pass is now made in which defining occurrences
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of operands are ignored and all categories of object functions are used, (Note that

this solution is possible only because of the assumption made in Section 1.1. If
the length of a jump instruction depended upon the position of its target, we would
not be able to decide which ohject function to use during pass 1.)

In order to show that a second pass can be avoided, we must first show that it is
possible to remember each Tocation where information must be supplied, and what
information is required, in an amount of space which grows with the number of
distinct items vrather than the number of references., The basic strategy is the
following [Wilkes 1957]:

a. Consider an instruction which makes a forward reference, We do not know
what to put into the field containing the forward reference, and hence this
field may be used (ftemporarily) to hold anything.

b. In particular, it may be used to address the last forward reference to the
same location by setting it equal to the difference between the current
address and the address at which the last reference occurred. (If this is
the first reference, the field would contain 0.)

¢. The dictionary entry contajns the address of the most recent forward
reference,

This technique is called back chaining. The back chains are constructed by the
procedure invoked when an undefined identifier is referenced, and the values are
filled in by the procedure invoked when an identifier is defined.

An obvious problem with back chaining is that the field containing the forward
reference must be large enough to address the last forward reference €o the same
symbol. In practice, it is usual to allow forward references only in address fields
because this is where they are most useful. Unfortunately, a restriction of forward
references to address fields does not always solve the problem completely.
Consider, for example, a computer which permits several instructions to be stored in
one word, but in which an address field of an instruction is oniy Jarge enough for a
word address, Thus it is not possible for a back chain to specify which address
field of a given word contained the last forward reference to the same symbol. 1In
this case, however, it is usually true that the number of possible positions for an

address fjeld is small. (On CDC 6000 series computers the address field of an
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instruction must appear in one of three positions.) It is therefore feasible to
maintain a separate back chain for each address field position in the word.

A somewhat more challenging example is the class of machines with short address
fields in which the effective address is constructed by using the contents of the
address field and the contents of a base register. The simple case is that in which
the base register is the location counter. Here the address distance between the
first forward reference to a symbol and the definition of the symbol must be
repesentable 1in the short address field. Since all entries on the back chain 1ie
between the first reference and the definition, all 1inks must be representable in
short address fields.

If the base register is not the Tocation counter, then it may be impossible to
maintain all of the links of the back chain in the address fields of the instruction
making the forward references. One possible solution is to use several back chains,
starting a new one for each reference which is too far from the preceeding one to
permit the normal Tinkage. Although this violates the one-pass criterion, it is
usvally successful because the references tend to cluster and hence the number of
back chains 1is much smaller than the number of references. When using this
technique, only the head of the most recent back chain is kept 1in the dictiocnary
entry. Earlier back chain headers are kept in a pushdown 1list accessible from the
dictionary entry. This means that the reference procedure needs to take special
action only when it discovers that linkage to the previous entry of the current back
chain is impossible. (Note that the full address of the last entry in the chain
must be kept in the dictionary.)

There is a more serious problem with machines (such as the IBM System/360) having
a number of base registers: The base register which must be used for any given
reference may depend both upon the symbol being referenced and upon the point at
which the reference occurs.

The effects of these complexities are Tocalized in the reference and definition
procedures, and in the structure of the dictionary. If it is necessary to cater for
link fields of several sizes which fall into several positions with respect to the
location counter, then more than one reference procedure might be specified. Each

of these procedures would have access to the location counter and to the dictionary
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entry for the forward reference; knowing the peculiarities of jts particular fields,
it would be able to construct appropriate 1ink values and dictionary modifications.

When a forward-referenced operand becomes defined, then the back chain must be
followed and the proper values filled in. This task can be split into two parts:
following a chain and performing a certain action at each element. It would be
useful to implement the £wo parts of the task by separate procedures if you
anticipated tracing the back chain for purposes other than definition (one example
would be to print a 1list of references to an undefined symbol at the end of the
assembly.) Even if the task is implemented as a single procedure, however, a
conceptual split can help in understanding the design.

The back-chain trace procedure must visit every entry, in any order. At each
entry it must provide the action procedure with both the value of the location
counter at the 