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PREFACE 

My principal goal in writing this book is to provide the reader with a clear exposition of 
the theory of compiler design and implementation along with plenty of opportunities to 
put that theory into practice. The theory, of course, is essential, but so is the practice. 

NOTABLE FEATURES 

• Provides numerous, well-defined projects along with test cases. These projects en-
sure that students not only know the theory but also know how to apply it. Instruc-
tors are relieved of the burden of designing projects that integrate well with the text. 

• Project work starts early in the book so that students can apply the theory as they are 
learning it. 

• The compiler tools (JavaCC, Yace, and Lex) are optional topics. 
• The entire book is Java oriented. The implementation language is Java. The princi-

pal target language is similar to Java's bytecode. The compiler tools generate Java 
code. The form of attributed grammar used has a Java-like syntax. 

• The target languages (one is stack oriented like Java's bytecode; the other is register 
oriented) are very easy to learn but are sufficiently powerful to support advanced 
compiler projects. 

• The software package is a dream come true for both students and instructors. It auto-
matically evaluates a student's compiler projects with respect to correctness, run time, 
and size. It is great for students: they get immediate feedback on their projects. It is 
great for instructors: they can easily and accurately evaluate a student's work. With a 
single command, an instructor can generate a report for an entire class. The software 
runs on three platforms: Microsoft Windows, Linux, and the Macintosh OS X. 

• Demonstrates how compiler technology is not just for compilers. In a capstone pro-
ject, students design and implement grep using compiler technology. 

• Includes a chapter on interpreters that fits in with the rest of the book. 

xv
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• Includes a chapter on optimization that is just right for an introductory course. Stu-
dents do not simply read about optimization techniques—they implement a variety 
of techniques, such as constant folding, peephole optimization, and register 
allocation. 

• The book uses a Java-like form of grammars that students can easily understand and 
use. This is the same form that JavaCC uses. Thus, students can make transition to 
JavaCC quickly and easily. 

• Provides enough theory that the book can be used for a combined compiler/automa-
ta/formal languages course. The book covers most of the topics covered in an au-
tomata/formal languages course: finite automata, stack parsers, regular expressions, 
regular grammars, context-free grammars, context-sensitive grammars, unrestricted 
grammars, Chomsky's hierarchy, and the pumping lemmas. Pushdown automata, 
Turing machines, computability, and complexity are discussed in supplements in 
the software package. The software package also includes a pushdown automaton 
simulator and Turing machine simulator. 

• Covers every topic that should be in a first course or in an only course on compilers. 
Students will learn not only the theory and practice of compiler design but also im-
portant system concepts. 

SOFTWARE PACKAGE 

The software package for the textbook has some unusual features. When students run one 
of their compiler-generated programs, the software produces a log file. The log file con-
tains a time stamp, the student's name, the output produced by the compiler-generated 
program, and an evaluation of the compiler-generated program with respect to correct-
ness, program size, and execution time. If the output is not correct (indicating that the stu-
dent's compiler is generating incorrect code), the log file is marked with NOT COR-
RECT. If the compiled program is too big or the execution time too long, the log file is 
marked with OVER LIMIT. 

The name of a log file contains the student's name. For example, the log file for the S3 
project of a student whose last name is Dos Reis would be S3.dosreis.log. Because each 
log file name is unique, an instructor can store all the log files for a class in a single direc-
tory. A single command will then produce a report for the entire class. 

The software supports two instruction sets: the stack instruction set and the register in-
struction set. The stack instruction set is the default instruction set. To use the register in-
struction set, a single directive is placed in the assembly language source program. The 
software then automatically reconfigures itself to use the register instruction set. 

The three principal programs in the software package are a (the assembler/linker), e 
(the executor), and 1 (the library maker). The software package also includes p (a push-
down automaton simulator) and t (a Turing machine simulator). 

The software package for this book is available from the publisher. The compiler tools 
are available on the Web. At the time of this writing, JavaCC is at http://java.net/down-
loads/javacc, Byacc/j is at http://byaccj.sourceforge.net/, and Jflex is at http://jflex.de/. 

PROJECTS 

This textbook specifies many well-defined projects. The source language has six levels of 
increasing complexity. A student can write a compiler for each level that translates to the 
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stack instruction set. A student can also write a compiler for each level that translates to 
the register instruction set, or incorporates optimization techniques. For each level, a stu-
dent can write a pure interpreter or an interpreter that uses an intermediate code. A student 
can implement several variations of grep using compiler technology. A student can write 
the code for any of these projects by hand or by using JavaCC or Yace. Many of the chap-
ter problems provide additional projects. In short, there are plenty of projects. 

For each project, the textbook provides substantial support. Moreover, many of the 
projects are incremental enhancements of a previous project. This incremental approach 
works well; each project is challenging but not so challenging that students cannot do it. 

Most projects can be completed in a week's time. Thus, students should be able to do 
ten or even more projects in a single semester. 
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1 
STRINGS, LANGUAGES, 
AND COMPILERS 

1.1 INTRODUCTION 

Compiler construction is truly an engineering science. With this science, we can methodi-
cally—almost routinely—design and implement fast, reliable, and powerful compilers. 

You should study compiler construction for several reasons: 

• Compiler construction techniques have very broad applicability. The usefulness of 
these techniques is not limited to compilers. 

• To program most effectively, you need to understand the compiling process. 
• Language and language translation are at the very heart of computing. You should 

be familiar with their theory and practice. 
• Unlike some areas of computer science, you do not typically pick up compiler con-

struction techniques "on the job." Thus, the formal study of these techniques is es-
sential. 

To be fair, you should also consider reasons for not studying compiler construction. 
Only one comes to mind: Your doctor has ordered you to avoid excitement. 

1.2 BASIC LANG UAGE CONCEPTS 

In our study of compiler design theory, we begin with several important definitions. An 
alphabet is the finite set of characters used in the writing of a language. For example, the 
alphabet of the Java programming language consists of all the characters that can appear 
in a program: the upper- and lower-case letters, the digits, whitespace (space, tab, new-
line, and carriage return), and all the special symbols, such as =, +, and {. For most of the 
examples in this book, we will use very small alphabets, such as {b, c} and {b, c, d}. We 

Compiler Construction Using Java, JavaCC. and Yace, First Edition. Anthony J. Dos Reis l 
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2 STRINGS, LANGUAGES, AND COMPILERS 

will avoid using the letter "a" in our alphabets because of the potential confusion with the 
English article "a". 

A string over an alphabet is a finite sequence of characters selected from that alphabet. 
For example, suppose our alphabet is {b, c, d}. Then 

cbd 
cbcc 
c 

are examples of strings over our alphabet. Notice that in a string over an alphabet, each 
character in the alphabet can appear any number of times (including zero times) and in 
any order. For example, in the string cbcc (a string over the three-letter alphabet {b, c, 
d}), the character b appears once, c appears three times, and d does not appear. 

The length of a string is the number of characters the string contains. We will enclose 
a string with vertical bars to designate its length. For example, |cbcc| designates the 
length of the string cbcc. Thus, |cbcc| = 4. 

A language is a set of strings over some alphabet. For example, the set containing just 
the three strings cbd, cbcc, ahd c is a language. This set is not a very interesting lan-
guage, but it is, nevertheless, a language according to our definition. 

Let us see how our definitions apply to a "real" language—the programming language 
Java. Consider a Java program all written on a single line: 

class C { public static void main(Stringf ] args) {} } 

Clearly, such a program is a single string over the alphabet of Java. We can also view a 
multiple-line program as a single string—namely, the string that is formed by connecting 
successive lines with a line separator, such as a newline character or a carriage 
return/newline sequence. Indeed, a multiline program stored in a computer file is repre-
sented by just such a string. Thus, the multiple-line program 

c l a s s C 
{ 

public static void main(String! ] args) 

{ 
} 

} 

is the single string 

c l a s s CD{ D p u b l i c s t a t i c void main (S t r ing! ] a r g s ) D {D } D} 

where D represents the line separator. The Java language is the set of all strings over the 
Java alphabet that are valid Java programs. 

A language can be either finite or infinite and may or may not have a meaning asso-
ciated with each string. The Java language is infinite and has a meaning associated with 
each string. The meaning of each string in the Java language is what it tells the com-
puter to do. In contrast, the language {cbd, cbcc, c} is finite and has no meaning as-
sociated with each string. Nevertheless, we still consider it a language. A language is 
simply a set, finite or infinite, of strings, each of which may or may not have an asso-
ciated meaning. 
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Syntax rules are rules that define the form of the language, that is, they specify which 
strings are in a language. Semantic rules are rules that associate a meaning to each string 
in a language, and are optional under our definition of language. 

Occasionally, we will want to represent a string with a single symbol very much like* 
is used to represent a number in algebra. For this purpose, we will use the small letters at 
the end of the English alphabet. For example, we might use x to represent the string cbd 
and v to represent the string cbcc. 

1.3 BASIC COMPILER CONCEPTS 

A compiler is a translator. It typically translates a program (the source program) written 
in one language to an equivalent program (the target program) written in another lan-
guage (see Figure 1.1). We call the languages in which the source and target programs are 
written the source and target languages, respectively. 

Typically, the source language is a high-level language in which humans can program 
comfortably (such as Java or C++), whereas the target language is the language the com-
puter hardware can directly handle (machine language) or a symbolic form of it (assem-
bly language). 

If the source program violates a syntax rule of the source language, we say it has a syn-
tax error. For example, the following Java method has one syntax error (a right brace in-
stead of a left brace on the second line): 

public void greetings () 

} // syntax error 

System.out.printIn("hello"); 

} 

A logic error is an error that does not violate a syntax rule but results in the computer 
performing incorrectly when we run the program. For example, suppose we write the fol-
lowing Java method to compute and return the sum of 2 and 3: 

p u b l i c i n t sum() 
) 

r e t u r n 2 + 30; / / l o g i c e r r o r 
} 

This method is a valid Java method but it tells the computer to do the wrong thing—to 
compute 2 + 30 instead 2 + 3. Thus, the error here is a logic error. 

A compiler in its simplest form consists of three parts: the token manager, the parser, 
and the code generator (see Fig. 1.2). 

The source program that the compiler inputs is a stream of characters. The token man-
ager breaks up this stream into meaningful units, called tokens. For example, if a token 
manager reads 
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i n t x; / / impor tan t example 
x = 55; 

it would output the following sequence of tokens: 

i n t 
x 

X 

55 

The token manager does not produce tokens for white space (i.e., space, tab, newline, and 
carriage return) and comments because the parser does need these components of the 
source program. A token manager is sometimes called a lexical analyzer, lexer, scanner, 
or tokenizer. 

A parser in its simplest form has three functions: 

1. It analyzes the structure of the token sequence produced by the token manager. If it 
detects a syntax error, it takes the appropriate action (such as generating an error 
message and terminating the compile). 

2. It derives and accumulates information from the token sequence that will be needed 
by the code generator. 

3. It invokes the code generator, passing it the information it has accumulated. 

The code generator, the last module of a compiler, outputs the target program based on 
the information provided by the parser. 

In the compilers we will build, the parser acts as the controller. As it executes, it calls 
the token manager whenever it needs a token, and it calls the code generator at various 
points during the parse, passing the code generator the information the code generator 
needs. Thus, the three parts of the compiler operate concurrently. An alternate approach is 
to organize the compiling process into a sequence of passes. Each pass reads an input file 
and creates an output file that becomes the input file for the next pass. For example, we 
can organize our simple compiler into three passes. In the first pass, the token manager 
reads the source program and creates a file containing the tokens corresponding to the 
source program. In the second pass, the parser reads the file of tokens and outputs a file 
containing information required by the code generator. In the third pass, the code genera-
tor reads this file and outputs a file containing the target program. 

1.4 BASIC SET THEORY 

Since languages are sets of strings, it is appropriate at this point to review some basic set 
theory. One method of representing a set is simply to list its elements in any order. Typi-
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cally, we use the left and right braces, "{" and " } " , to delimit the beginning and end, re-
spectively, of the list of elements. For example, we represent the set consisting of the inte-
gers 3 and 421 with 

{3,421} or {421,3} 

Similarly, we represent the set consisting of the two strings b and be with 

{b, be} or {be , b} 

This approach cannot work for an infinite set because it is, of course, impossible to list all 
the elements of an infinite set. If, however, the elements of an infinite set follow some ob-
vious pattern, we can represent the set by listing just the first few elements, followed by 
the ellipsis (.. .). For example, the set 

{b , b b , b b b , . . .} 

represents the infinite set of strings containing one or more b's and no other characters. 
Representing infinite sets this way, however, is somewhat imprecise because it requires 
the reader to figure out the pattern represented by the first few elements. 

Another method for representing a set—one that works for both finite and infinite 
sets—is to give a rule for determining its elements. In this method, a set definition has the 
form 

{E: defining rule} 

where E is an expression containing one or more variables, and the defining rule general-
ly specifies the allowable ranges of the variables in E. The colon means "such that." We 
call this representation the set-builder notation. For example, we can represent the set 
containing the integers 1 to 100 with 

\x : x is an integer and 1 < JC < 100} 

Read this definition as "the set of all x such that x is an integer and x is greater than or 
equal to 1 and less than or equal to 100." A slightly more complicated example is 

{n2 : n is an integer and n 2: 1} 

Notice that the expression preceding the colon is not a single variable as in the preceding 
example. The defining rule indicates that n can be 1, 2, 3,4, and so on. The corresponding 
values of«2 are the elements of the set—namely, 1, 4, 9, 16, etc. Thus, this is the infinite 
set of integer squares: 

{1,4,9, 16,. . .} 

In set notation, the mathematical symbol €E means "is an element of." A superimposed 
slash on a symbol negates the condition represented. Thus, ^ means "is not a element of." 
For example, if P = {2, 3,4}, then 3 G. P, but 5 £ P. 

The empty set [denoted by either {} or φ] is the set that contains no elements. The uni-
versal set (denoted by U) is the set of all elements under consideration. For example, if 
we are working with sets of integers, then the set of all integers is our universe. If we are 
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working with strings over the alphabet {b, c}, then the set of all strings over {b, c} is our 
universe. 

The set operations union, intersection, and complement, form new sets from given sets. 
The union operator is most often denoted by the special symbol u . We, however, use the 
vertical bar | to denote the union operator. The advantage of | is that it is available on stan-
dard keyboards. We will use n and ~ to denote the intersection and complement opera-
tors, respectively, n , the standard symbol for set intersection, unfortunately is not avail-
able on keyboards. However, we will use set intersection so infrequently that it will not be 
necessary to substitute a keyboard character for n . 

Set union, intersection, and complement are defined as follows: 

Union of/5 andö: P\ Q= {x :x G Ροτχ G Q) 

Intersection of P and Q: P r\Q= {x :x G P and x G Q) 
Complement of P: ~P = {x : x G U and JC £ P] 

Here are the definitions in words of these operators: 

P | Q is the set of all elements that are in either P or Q or both. 
P n Q is the set of elements that are in both P and Q. 
~P is the set of all elements in the universe U that are not in P. 

For example, ifP= {b, bb}, Q = {bb, bbb}, and our universe U= {b, bb, bbb , . . .},then 

P\Q = {b, bb, bbb} 
Ρ η ρ = {bb} 
~P = {bbb, bbbb, bbbbb,. ..} 
~Q = {b, bbbb, bbbbb, . . .} 

A collection of sets is disjoint if the intersection of every pair of sets from the collec-
tion is the empty set (i.e., they have no elements in common). For example, the sets {b}, 
{bb, bbb}, and {bbbb} are disjoint since no two have any elements in common. 

The set P is a subset of Q (denoted P QQ) if every element of P is also in Q. The set P 
is a proper subset of the set Q (denoted P CQ) if P is a subset of Q, and Q has at least one 
element not in P. For example, if P = {b, bb}, Q = {b, bb, bbb}, and R = {b, bb}, then P 
is proper subset of Q, but P is not a proper subset of/?. However, P is a subset of/?. Two 
sets are equal if each is the subset of the other. With P and R given as above, P C / ? and /? 
C P. So we can conclude that P = R. Note that the empty set is a subset of any set; that is, 
{} C 5 for any set 5. 

We can apply the set operations union, intersection, and complement to any sets. We 
will soon see some additional set operations specifically for sets of strings. 

1.5 NULL STRING 

When prehistoric humans started using numbers, they used the natural numbers 1 ,2 ,3 , . . . . 
It was easy to grasp the idea of oneness, twoness, threeness, and so on. Therefore, it was 
natural to have symbols designating these concepts. In contrast, the number 0 is hardly a 
natural concept. After all, how could something (the symbol 0) designate nothing? Today, 
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of course, we are all quite comfortable with the number 0 and put it to good use every day. 
A similar situation applies to strings. It is natural to think of a string as a sequence of one or 
more characters. But, just as the concept zero is useful to arithmetic, so is the concept of a 
null string—the string whose length is zero—useful to language theory. The null string is 
the string that does not contain any characters. 

How do we designate the null string? Normally, we designate strings by writing them 
down on a piece of paper. For example, to designate a string consisting of the first three 
small letters of the English alphabet, we write abc. A null string, however, does not have 
any characters, so there is nothing to write down. We need some symbol, preferably one 
that does not appear in the alphabets we use, to represent the null string. Some writers of 
compiler books use the Greek letter e for the null string. However, since e is easily con-
fused with the symbol for set membership, we will use the small Greek letter λ (lambda) 
to represent the null string. 

One common misconception about the null string is that a string consisting of a single 
space is the null string. A space is a character whose length is one; the null string has 
length zero. They are not the same. Another misconception has to do with the empty set. 
The null string is a string. Thus, the set {A} contains exactly one string—namely the null 
string. The empty set {}, on the other hand, does not contain any string. 

1.6 CONCATENATION 

We call the operation of taking one string and placing it next to another string in the order 
given to form a new string concatenation. For example, if we concatenate bed and ef g, 
we get the string bedef g. Note that the concatenation of any string x with the null string 
λ yields x. That is, 

χλ = Ax = x 

1.7 EXPONENT NOTATION 

A nonnegative exponent applied to a character or a sequence of characters in a string 
specifies the replication of that character or sequence of characters. For example b4 is a 
shorthand representation of bbbb. We use parentheses if the scope of the replication is 
more than one character. Hence, b(cd)2e represents bedede. A string replicated zero 
times is by definition the null string; that is, for any string x, x° = A. 

We can use exponent notation along with set-builder notation to define sets of strings. 
For example, the set 

{ti: 1 < / < 3 } 

is the set 

{b \b 2 , b3} = {b, bb, bbb} 

The exponent in exponent notation can never be less than zero. If we do not specify its 
lower bound in a set definition, assume it is zero. For example, the set 

{b ' ' : /<3} 
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should be interpreted as 

{bf: 0 < / < 3} = {b°, b1, b2, b3} = {A, b, bb, bbb} 

Exercise 1.1 

Describe in English the language defined by {b'c2': / ^ 0}. 

Answer: 

The set of all strings consisting of b's followed by c's in which the number of c's is twice 
the number of b's. This set is {A, bcc, bbcccc, bbbcccccc , . . .}. 

1.8 STAR OPERATOR (ALSO KNOWN AS THE ZERO-OR-MORE 
OPERATOR) 

We have just seen that an exponent following a character represents a single string (for 
example, b3 represents bbb). In contrast, the star operator, *, following a character (for 
example, b*) represents a set of strings. The set contains every possible replication (in-
cluding zero replications) of the starred character. For example, 

b* = {b°, b \ b2, b \ . . . } = {b" : n > 0 } = {A, b, bb, bbb , . . . } 

Think of the star operator as meaning "zero or more." 
The star operator always applies to the item immediately preceding it. If a parenthe-

sized expression precedes the star operator, then the star applies to whatever is inside the 
parentheses. For example, in (bed)*, the parentheses indicate that the star operation ap-
plies to the entire string bed. That is, 

(bed)* = {A, bed, bedbed, bedbedbed, . . . } 

The star operator can also be applied to sets of strings. If A is a set of strings, then A* is 
the set of strings that can be formed from the strings of A using concatenation, allowing 
any string in A to be replicated any number of times (including zero times) and used in 
any order. By definition, the null string is always in A*. 

Here are several examples of starred sets: 

{b}*= {A, b, bb, bbb, . . .} = b* 
jb, c}* = {A, b, c, bb, be, cb, cc, bbb, . . .} 
{A}*={A} 
Π*={λ} 
{bb, cc}* = {A, bb, cc, bbbb, bbec, cebb, cccc,. . .} 

{b, cc}* = {A, b, bb, cc, bbb, bcc, ccb, bbbb . . .} 

Notice that {b) * = b*. That is, starring a set that contains just one string yields the same 
set as starring just that string. 

Here is how to determine if a given string is in A*, where A is an arbitrary set of 
strings: If the given string is the null string, then it is in A* by definition. If the given 
string is nonnull, and it can be divided into substrings such that each substring is in A, 
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then the given string is in A*. Otherwise, the string is not in A*. For example, suppose A = 
{b, c c | . We can divide the string bccbb into four parts: b, cc, b, and b, each of which is 
in A. Therefore, bccbb €Ξ A*. On the other hand, for the string bccc the required subdi-
vision is impossible. If we divide bccc into b, cc, and c, the first two strings are in A but 
the last is not. All other subdivisions of bccc similarly fail. Therefore, bccc £ A*. 

We call the set that results from the application of the star operator to a string or set of 
strings the Kleene closure, in honor of Stephen C. Kleene, a pioneer in theoretical com-
puter science. 

Let us now use the star operator to restate two important definitions that we gave earli-
er. Let the capital Greek letter Σ (sigma) represent an arbitrary alphabet. A string over the 
alphabet Σ is any string in X*. For example, suppose Σ = {b, c}. Then 

Σ* = {A, b, c, bb, be, cb, cc, bbb,. . .} 

Thus, A, b, c, bb, be, cb, cc, bbb,... are strings over S. It may appear strange to view A 
as a string over the alphabet Σ = {b, c}. Actually, this view is quite reasonable since A has 
no characters not in Jb, c}. A is always a string over Σ regardless of the content of Σ be-
cause, by definition, A is always in Σ*. A language over the alphabet Σ is any subset of 
Σ*. For example {A}, {b} , and {b, cc} are each languages over Σ = {b, c}. Even the 
empty set is a language over Σ because it is a subset of X*. 

Exercise 1.2 

a) List all the strings of length 3 in {b, cc}*. 
b) Isccbcc e {b, cc}*? 

Answer: 

a) bbb, bec, ccb. 
b) Yes. To confirm this, subdivide ccbcc into cc, b, and cc, all of which are elements 

of (b, cc}. 

1.9 CONCATENATION OF SETS OF STRINGS 

Concatenation can be applied to sets of strings as well as individual strings. If we let A 
and B be two sets of strings, then AB, the concatenation of the sets A and B, is 

{xy :xGA and y €Ξ B} 

That is, AB is the set of all strings that can be formed by concatenating a string A with a 
string B. For example, if A = {b, cc} and B = {d, dd}, then 

AB = {bd, bdd, ccd, cedd} 
BA = {db, dec, ddb, ddec} 

As an example of concatenation, consider the set b*c*, the concatenation of the sets 
b* and c*. Each string in b*c* consists of some string from b* concatenated to some 
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string in c*. That is, each string consists of zero or more b's followed by zero or more 
c's. The number of b's does not have to equal the number of c's, but all b's must precede 
all c's. Thus, b*c* = {A, b, c, bb, be, cc, bbb, bbc, bec, c c c , . . . } . In exponent nota-
tion, b*c* = {b'd : i > 0 andy > 0}. 

A string can also be concatenated with a set. If x is a string and A is a set of strings, 
then xA, the concatenation of x with A is 

{xy.ytEA} 

Similarly, Ax is 

{yx : y £ A} 

For example, bbc*, the concatenation of the string bb and the set c*, is the set of all 
strings consisting of bb followed by a string in c*. Thus, 

bbc* = {bbA = bb, bbc, bbec, bbece, . . .} 

Notice that it follows from our definitions that xA = {x}A, where x is an arbitrary string 
and A is a set of strings. That is, we get the same result whether we concatenate x (the 
string) or {x) (the set containing just x) to a set A. 

Exercise 1.3 

a) List all strings in b*cb* of length less than 3. 
b) Write an expression using the star operator which defines the same set as {fc^e'd' : p 

> 0 , ? > l , r > 2 } . 

Answer: 

a) c, be, cb. 
b) b*cc*ddd*. 

■ 
The union operator implies a choice with respect to the makeup of the strings in the 

language specified. For example, we can interpret 

{b}({c}|{d}) 

as the set of strings consisting of a b followed by a choice of c or d. That is, the set con-
sists of the strings be and bd. 

Exercise 1.4 

Describe in English the set defined by b*({c} | {d})e*. 

Answer: 

The set of all strings consisting of zero or more b's, followed by either c or d, followed 
by zero or more e's. 
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1.10 PLUS OPERATOR (ALSO KNOWN AS THE ONE-OR-MORE 
OPERATOR) 

The plus operator is like the star operator, except that the former means "one or more" in-
stead of "zero or more." We can apply it either to an individual string or a set of strings. It 
appears as a + following the item to which it applies. For example, 

b+ = { b ' . b 2 , b \ . . .} = {b'':i > 1} 
{b, c}+ = {b, c, bb, be, cb, cc, bbb, . . . } 

A+, where A is a set of strings, contains the null string only if the set A itself contains 
the null string. A*, on the other hand, always contains the null string for any set A. 

Consider the set bb*. Each string in bb* consists of a single b followed a string in b*. 
Because the shortest string in b* is A, the shortest string in bb* is bA = b. Thus, every 
string in bb* contains one or more b's. That is, bb* = b+. In general, for a string x and a 
set of strings A, 

xx* = x*x = x+ 

and 

AA*=A*A =A+ 

We call the set that results from the application of the plus operator to a string or a set 
of strings the positive closure. 

Exercise 1.5 

Show that {A} |b+ = b*. 

Answer: 

{A} | b+= {A} | {b, bb, bbb } = {A, b, bb, bbb, . . .} = b*. 

1.11 QUESTION MARK OPERATOR (ALSO KNOWN AS ZERO-OR-ONE 
OPERATOR) 

The question mark operator specifies an optional item. We can apply it to either an indi-
vidual string or a set of strings. It appears as a ? following the item to which it applies. 
For example, be? specifies a b followed by an optional c—that is, a b followed by zero 
or one c. Thus be? is the set {b, be}. Think of c? as representing the set {A} | {c} = {A, 
c}. Thus, be? = b{A, c} = {b, be}. 

If A is a set of strings, then bA? specifies a b optionally followed by any single string 
in A, which is the set {b} \bA. For example, b{b, c}? is the set {b, bb, be}. 

Exercise 1.6 

Show that (b+)? = b*. 
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Answer: 

(b+)?={A} |b+= {A} | {b, bb, bbb, . . . } = {λ, b, bb, bbb, . . . } = b * . 

1.12 SHORTHAND NOTATION FOR A SET CONTAINING A SINGLE 
STRING 

{b} and b are not the same. The former is a set containing one string; the latter is a string— 
not a set containing a string. In spite of this distinction, it is common practice to represent 
the former (the set) by writing the latter (the string). We follow this practice only when the 
context clearly implies the correct interpretation, or where it does not make a difference. For 
example, instead of writing {c} | bd* , we can write c I bd* (recall we are using | to repre-
sent the set union). The union operator clearly implies that the c to its left must represent the 
set {c} and not the string c. In some expressions, it does not matter which interpretation we 
use. For example, whether we interpret b as a string or as a set makes no difference in the 
Kleene closure b*. Similarly, in b+ and bA, our interpretation makes no difference. 

1.13 OPERATOR PRECEDENCE 

If an expression contains more than one kind of operator, then the operations are per-
formed in an order determined by their precedence. Specifically, operations with higher 
precedence are performed before operations with lower precedence. Our string opera-
tions, ordered from highest to lowest precedence, with equal precedence operations listed 
on the same line, are 

Complementation 
Star, Plus, Question Mark 
Concatenation 
Intersection 
Union 

For example, in c I bd*, we first apply the star to the d, then we concatenate b and d*, 
and last, we take the union of c and bd*. We can override this order by using parentheses. 
For example, in ((c | b)d)*, we perform the union first, then the concatenation, and the 
star operation last. 

If the star, plus, or question mark operators appear consecutively, we perform their 
corresponding operations left to right. For example, in (bb)?+, we perform the question 
mark operation first, then the plus operation. Thus, (bb)?+ = {A, bb}+ = (bb)*. 

Exercise 1.7 

Write an expression without using ~ that defines the same set as ~(b*). Assume comple-
mentation is with respect to the set Σ*, where Σ = {b, c}. 

Answer: 

b* is the set of all strings over the alphabet with no c's. Therefore, its complement is the 
set of strings that have at least one c. Thus, every string in ~(b*) must be of the formjccy, 
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where x and v are arbitrary strings over {b, c}. Thus, ~(b*) = (b I c)*c(b | c)*. Another 
expression that defines the same set is b*c(b | c)*. 

1.14 REGULAR EXPRESSIONS 

Let us use our convention of designating a set containing a single string by writing just 
the string. For example, let us write b to represent the set {b} . Then each of these follow-
ing expressions designates a set of strings: 

Φ 
A 
b 
c 
A|b 
bbc 
b*c* 
b|(cc)* 
(b | c)* 

For example, φ, A, b, c, and A|b designate, respectively, the sets {}, {A}, {b} , {c}, 
and {A, b}. In every expression above, the only operations that appear, if any, are union, 
concatenation, and star. We call such expressions regular expressions. We can use regu-
lar expressions to define languages—that is, to define sets of strings. 

Let us look at a precise definition of a regular expression: A regular expression over 
the alphabet Σ is any of the following: 

Φ 
A 
any single symbol in Σ 

These expressions are the base regular expressions. In addition, we can construct addi-
tional regular expressions using the following construction rule: 

If/" and 5 are arbitrary regular expressions, then the following expressions are also reg-
ular: 

(r) 
r\s 
rs 
r* 

Our construction rule allows us to construct new regular expressions, using union, con-
catenation, star, and parenthesis, from our base regular expressions or expressions previ-
ously constructed using the construction rule. For example, since b and c are regular ex-
pressions, so are (b), b | c, be, and b* by our construction rule. We can continue applying 
our construction rule, producing ever more complex regular expressions. For example, 
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using our previously constructed regular expressions be and b*, we can now, in turn, 
construct be I b* with our construction rule. We are not allowed to apply our construction 
rule an infinite number of times when building a regular expression. This restriction im-
plies that any regular expression must be of finite length. 

Every regular expression defines (i.e., represents) a language. For example, b | c de-
fines the language {b, c}. We call any language that can be defined with a regular expres-
sion a regular language. 

Every regular language has more than one regular expression that defines it. For exam-
ple, bb*, Abb*, and b*b all define the language consisting of one or more b's. 

An assumption we have made about regular expressions over an alphabet Σ is that Σ 
does not contain |, *, (, or ). Thus, when we see b | c, we know the vertical bar is the 
union operator. However, if the vertical bar were in Σ, then b | c would be ambiguous. It 
could represent either the set {b, c} (if we regard | as the union operator) or the set con-
taining the single string "b | c" (if we regard | as a symbol from Σ). A simple way to dis-
ambiguate an expression like b | c is to quote the symbols in a regular expression that 
come from Σ. Accordingly, we would write "b | c" or "b" " I" "c" to represent the single 
string "b I c". Here, the vertical bar is a symbol from Σ. We know this because the vertical 
bar is in quotes. But we would write "b" | "c" to represent the set {b, c}. Here, the verti-
cal bar is the union operator. We know this because here the vertical bar is not in quotes. 

Exercise 1.8 

Give the strings in the set specified by "b" | "c" " |" "d". 

Answer: 

Two strings: "b" and "c | d". 

■ 

Let us look at some expressions that are not regular expressions: 

bb | bbb | bbbb | . . . (the ellipsis " . . . " is not allowed) 
(cc)+ (the plus operator is not allowed) 
(cc)? (the question mark operator is not allowed) 
{b': /' > 0} (exponent and set-builder notation is not allowed) 

Because we do not allow the ellipsis, the plus operator, the exponent notation, or the set 
builder notation in regular expressions, the expressions above are not regular expressions. 
The languages they represent, however, are regular because we can represent them with 
regular expressions, namely bbb*, cc(cc)*, A|cc, and b*, respectively. 

When we analyze regular expressions, it is often helpful to think of the union operator 
as indicating a choice. For example, we can think of the regular expression (b | c) d as 
representing the set of strings consisting of the choice b or c followed by d—that is, as 
the set consisting of bd and cd. 

If we allow our regular expressions to include the ~, +, and ? operators in addition to |, 
*, and concatenation, we get the class of expressions called extended regular expressions. 
Any language defined by an extended regular language can also be defined by a nonex-
tended regular language. In other words, extended regular expressions are no more pow-
erful than nonextended regular expressions in defining languages. Thus, every extended 
regular expression necessarily has a nonextended equivalent. For example, the extended 
regular expression (b | c)? has the nonextended equivalent A|b I c. 
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Although extended regular expressions are no more powerful than nonextended regu-
lar expressions, they are, nevertheless, useful because they are often easier to use and un-
derstand than their nonextended equivalents. 

1.15 LIMITATIONS OF REGULAR EXPRESSIONS 

Regular expressions have limitations. They cannot represent every language. For exam-
ple, consider the following language that we call PAIRED: 

PAIRED = {b'c':i >0} = {λ, be, bbcc, bbbccc, bbbbcccc,.. .} 

Each string in PAIRED consists of some number of b's followed by the same number of 
c's. With a regular expression, it is possible to capture the condition that all b's precede 
all c's (as in b*c*). But there is no way to capture the condition that the number of b's 
equals the number of c's unless we limit the length of the string (we give a proof for this 
in Chapter 17). The language represented by b*c* includes strings in which the number 
of b's is equal to the number of c's (for example, bbcc). But it also includes strings in 
which the number of b's is not equal to the number of c's (for example, bcc). PAIRED, 
on the other hand, contains only strings in which the number of b's is equal to the number 
of c's. PAIRED is not equal to b*c* but is, in fact, a proper subset of it. 

Another attempt at a regular expression for PAIRED is the infinite-length expression 

A|bc I bbcc | bbbccc | bbbbccc| . . . 

Although this expression does represent PAIRED, it is not a regular expression because 
regular expressions cannot be of infinite length. 

Let us place an upper bound on the exponent / in the preceding definition of PAIRED . 
We then get a new language that is, in fact, regular. For example, 

{ b ' c ' : 0 < / '<2} 

is a regular language represented by the regular expression 

A|bc I bbcc 

That a regular expression cannot represent the language PAIRED is a serious limita-
tion since similar constructs frequently appear in programming languages. For example, 
in Java, arithmetic expressions may be nested with parentheses to an arbitrary depth: 

( ( ( . · . ) ) ) 

Similarly, blocks of code may be nested to an arbitrary depth with braces: 

{ { { . . · } } } 

We cannot describe either of these constructs with regular expressions unless we place an 
upper limit on the depth of nesting. 

When we assert that the two regular expressions are equal, we are asserting that the 
languages defined by those regular expressions are equal. For example, when we write 
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A|bb* = b * 

we are asserting that the language defined by A|bb* is equal to the language defined by 
b*. 

Although regular expressions are too limited to fully describe the typical programming 
language, they are still quite useful to the compiler designer. Their usefulness appears in 
the design of the token manager. In particular, we can use regular expressions to describe 
the various tokens that the token manager provides to the parser. For example, if we let D 
represent any digit 0 through 9, then the regular expression DD* represents an unsigned 
integer token. We will see in Chapter 13 how regular expressions in conjunction with the 
software tool JavaCC can automate the implementation of the token manager. 

PROBLEMS 

1. How long is the shortest possible Java program? 
2. What is the advantage of organizing a compiler into a sequence of passes? 
3. Describe in words the set {b, c}*. 
4. What does the set {}* contain? 
5. Is it true that JC* = {x}* for any string x? 
6. Under what circumstances are P and ~P disjoint? 
7. What does P | Q = P imply? 
8. What does P n Q = P imply? 
9. If/> = {b} a n d ß = {bb, c}, then what does P* nQ* equal? 

10. If A = {A, b}, how many distinct strings are in ΑΑΊ List them. 
11. Is x* always an infinite set? If not, give an example for which it is not infinite. 
12. Does b*c* = {b, c}*? Justify your answer. 
13. Represent the set φ\ {A} |bbbc(bbbc)* with a regular expression that does not use the 

| operator. 
14. Using exponent notation, represent the set b*c*b*. 
15. Write a regular expression for the set of all strings over the alphabet {b, c} contain-

ing exactly one b. 
16. Write a regular expression for the set of all strings over the alphabet {b, c} contain-

ing at least one b. 
17. Write an expression using exponent notation for the set (bO'd7 : i > 0, j > 0 } n 

{b^c^d* : p S: 0 and q ^0} without using the n operator. 
18. Is (b*c*)* = {b, c}*? If not, provide a counterexample. 
19. List all the strings in {b, c c j * that are of length 3. 
20. Does (b*|b*ccc)* = {b, ccc}*? Justify your answer. 
21. Is concatenation distributive over a union. That is, for all sets of strings A, B, C, does 

A{B | Q = AB | AC? 
22. Is the star operation distributive over a union. That is, for all sets of strings A, B, does 

(A\B)* = A*\B*? 
23. Suppose X, A, and B are sets of strings, A Í B , and X= A\XB. What can be concluded 

about X? Hint: does Xcontain ΑΒΊ 
24. Does xA always equal {x}A, where x is a string and A is a set of strings? 
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25. The parser in a compiler does not need the tokens corresponding to white space and 
comments. Yet, syntax errors may occur if white space and comments are removed 
from the source program. Explain this apparent contradiction. 

26. Write a regular expression that defines the same language as b*c* n c*d*. 
27. Write a regular expression that defines the same language as {b, cc }* n c*. 
28. Write a regular expression that defines the same language as (bb)* n (bbb)*. 
29. Write a regular expression for the set of all strings over the alphabet {b, c] contain-

ing an even number of b's. 
30. Write a nonextended regular expression that defines the same language as (~b)*, 

where the universe is (b | c | d)*. 
31. Write a nonextended regular expression that defines the same language as ~({b, c} *), 

where the universe is (b | c | d)*. 
32. Prove that any finite language is regular. 
33. Describe in English the strings in (bb I cc|((bc | cb)(bb | cc)*(bc | cb)))*. 
34. Is (((b))) a regular expression over the alphabet {b, c}? 
35. Is () a regular expression over the alphabet {b, c}? 
36. Give three regular expressions that define the empty set. 
37. Suppose the alphabet for regular expressions consists of the symbols b, c, the back-

slash, the vertical bar, the single quote, and the double quote. Give an unambiguous 
regular expression that specifies the set consisting of b, c, the backslash, the vertical 
bar, the single quote, and the double quote. 

38. Convert (b | c?)+ to an equivalent nonextended regular expression. 
39. Show that extended regular expressions are not more powerful than regular expres-

sions. That is, show that any language that can be defined by an extended regular ex-
pression can also be defined by a nonextended regular expression. 





2 
CONTEXT-FREE GRAMMARS, PART 1 

2.1 INTRODUCTION 

One of the jobs of a compiler is to determine if the source program is indeed one of the 
strings that make up the source language. If it is not, we say that the source program has a 
syntax error. For example, in the following Java program, 

public class Bug 

{ 
public static void main(String! ] args) 

{ 
System.out.println("hello") // missing semicolon 

} 

} 

the missing semicolon at the end of the p r i n t l n statement is a syntax error. The compil-
er should detect this error and generate an appropriate error message. 

To detect every possible syntax error, the compiler obviously must have complete 
knowledge of the syntax of the source language. This knowledge should be embedded in 
the compiler in a form that is 

1. Concise, otherwise the compiler would be too big 
2. Precise, otherwise the compiler could not accurately check syntax 
3. Sufficiently powerful to completely describe the syntax 
4. Suitable for an efficient syntax-checking algorithm 

Let us consider how well a very common representation of syntax—the introductory 
programming textbook—meets these four requirements: 

1. Suppose our programming textbook has 1000 pages, half of which is devoted to 
syntax, with 2000 characters per page. In that case, the textbook uses a total of one 
million characters for syntax specification. Hardly concise. 

Compiler Construction Using Java, JavaCC, and Yace, First Edition. Anthony J. Dos Reis 19 
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2. Precise? No way. English descriptions of syntax always leave many fine points 
open to question. 

3. Powerful? Most textbooks for programming languages do not fully describe the 
syntax of the language they are presenting. For example, how many Java textbooks 
let you know if a field and a method in a class can have the same name? Normally, 
you would always want to use distinct names so this detail of Java syntax is not im-
portant from a programming perspective. However, it is a detail that is essential for 
the compiler to know. 

4. Does an algorithm exist that can read and correctly interpret a textbook? Maybe we 
will develop one by the year 2100. But even if we had such an algorithm, require-
ments 2 and 3 would still be problems. 

Clearly, embedding syntax knowledge in the form of a textbook into a compiler is not 
the way to go. We will now study context-free grammars, representations of syntax that 
are almost perfect on all four of our requirements. 

2.2 WHAT IS A CONTEXT-FREE GRAMMAR? 

A context-free grammar consists of four parts: 

1. A finite set N of symbols called the nonterminal alphabet 

2. A finite set T of symbols called the terminal alphabet 
3. A finite set of productions 
4. A start symbol from the set N 

Let us consider an example of a context-free grammar that we will call G2.1 ("G2.1" 
designates grammar 1 of Chapter 2). The four parts of G2.1 are 

1. A nonterminal alphabet N= {s, B, c} 
2. A terminal alphabet T= {b, c} 
3. A finite set of productions: 

1. S - > BC 
2. B -^ bB 
3. B - ^ λ 
4. C —* ccc 

4. The start symbol S 

The nonterminal alphabet N and the terminal alphabet T should not have any elements 
in common. We can state this requirement mathematically with 

ΝπΤ=φ 

We call the symbols in Wand Tnonterminals and terminals, respectively. We call a string 
over the terminal alphabet—that is, a string in T*—a terminal string. Note that λ (i.e., the 
null string) is always a terminal string since it is always in T*, regardless of the elements 
in T. However, λ is not a terminal symbol because it is never an element of T. We call N | 
T, the union of the nonterminal and terminal alphabets, the total alphabet. 
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Productions are string replacement rules. Each production consists of two strings sepa-
rated by the symbol —>. The symbol —» means "can be replaced by." For example, pro-
duction 1 in G2.1, S —> BC, says that s can be replaced by BC. Because the phrase "can 
be replaced by" is a mouthful, we will often use the shorter but less descriptive phrase 
"goes to." For example, we read the production S —> BC as "S goes to BC." 

The left side of every production must be a single symbol from N. Thus, only nonter-
minal symbols can be replaced. The right side, on the other hand, can be any string over N 
| 7"; that is, it consists of zero or more symbols from N and/or T. For example, in G2.1, 
each left side is a single symbol from N (either S, B, or C). Each right side is either 

• A string of symbols from N (as in production 1) 
• A string of symbols from N and T (as in production 2) 
• A string of symbols from T(as in production 4) 
• The null string (as in production 3) 

Using the string notation we developed in Chapter 1, we can describe the properties of 
a production very concisely: 

Each production in a context-free grammar has the form 

x^ y 

where x e N and y e (N\ T)* 

The fourth part of a context-free grammar, the start symbol, must always be a symbol 
from the nonterminal alphabet N. That is, 

Start Symbol e N 

2.3 DERIVATIONS USING A CONTEXT-FREE GRAMMAR 

Production 1 (s —> BC) in G2.1 says that we can replace s with BC. We can then, in turn, 
replace either the B (using either production 2 or 3) or the C (using production 4) in BC. 
Let us replace the C using production 4. We can show the resulting transformations by 
writing 

S => BC => Bccc 
1 4 

The symbol => means "directly derives." That is, the string on its left is transformed to the 
string on its right by a single application of a production in the grammar. Thus, S directly 
derives BC, and BC in turn directly derives Bccc. We may indicate the production we use 
to make a replacement by writing its number under the nonterminal replaced by that pro-
duction. Thus, we write 1 under s because we used production 1 to replace this S, and we 
write 4 under C because we used production 4 to replace this C. Continuing, by replacing 
B using production 2, we get 

S =i> BC => B c c c => b B c c c 
1 4 2 
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Finally, let us replace the B using production 3: 

S => BC => Bccc => bBccc => bccc 
1 4 2 3 

In this last step, the application of production 3 yields bAccc, but this string is simply 
bccc because λ is the null string. We call the preceding sequence of strings, which shows 
the step-by-step transformation of S into bccc, a derivation of bccc from S. Productions 
replace only nonterminal symbols. Thus, once we derive bccc (a string with no nonter-
minals) in the preceding derivation, the derivation must terminate. 

When we apply a production whose right side is λ in a derivation, we delete a nonter-
minal. For example, in the derivation above, applying production 3 has the effect of delet-
ing B. We call a production whose right side is A a lambda production. 

There are numerous ways in common use of asserting that we can obtain bccc from s 
using the productions in the grammar. We can use any of the following: 

S derives bccc. 
* 

S => bccc 
+ 

S => bccc 

In the second approach, the symbol => (which by itself means "derives in one step") is mod-
ified by the asterisk on top to mean "derives in zero or more steps." Similarly, the plus sym-
bol in the last approach modifies => to mean "derives in one or more steps." Since S derives 
bccc in three steps, we can use => with either an asterisk or a plus sign on top. 

You may be wondering what deriving a string in zero steps means. It means to take a 
string and do nothing to it. Obviously, every string derives itself in zero steps. That is, it is 
always the case that 

X = > X 

for any string x in the total alphabet regardless of the productions in the grammar. How-
ever, it is true that 

+ 
x => x 

only if x can be derived from itself though the application of one or more productions in 
the grammar. For example, if a grammar contains the productions 

S -» A 
A -> S 

then it would be correct to assert that s => S because we can derive S from S in one or 
more steps, as the following derivation demonstrates 

S => A => S 

Of course, it is not always the case that S => S. For example, it does not hold for G2.1. 
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Exercise 2.1 

a. Show that S derives ccc in G2.1. 
b. Show that B derives bb in G2.1. 

Answers: 

a. S => BC => C => ccc 
1 3 4 

b. B => bB => bbB => bb 
2 2 3 

If a derivation starts with the start symbol, then we call each string in the derivation a 
sentential form (see Fig. 2.1). 

If we think of the final terminal string as a "sentence", then each string in the deriva-
tion in Figure 2.1 is a form of this final sentence; hence, the name "sentential form" for 
each of these strings. 

2.4 LANGUAGE DEFINED BY A CONTEXT-FREE GRAMMAR 

It is easy to see that S in G2.1 derives many terminal strings. For example, S derives 
bbbccc, as the following derivation demonstrates: 

S => BC => bBC => bbBC => bbbBC => bbbC => bbbccc 
1 2 2 2 3 4 

Note that each time we use production 2, we get another b. In the preceding derivation, 
we use production 2 three times. Thus, we get three b's. If we do not use production 2 at 
all, that is, if we use production 3 without first using production 2, then we get no b's: 

S => BC => C => ccc 
1 3 4 

Thus, production 2 in combination with production 3 can produce any number (including 
zero) of b's. 

What exactly is the language defined by a context-free grammar? Let us take G2.1 as 
an example. As we have seen, the terminal strings bccc and bbbccc are derivable from 
the start symbol S in G2.1. The set of all such strings—that is, terminal strings derivable 
from the start symbol—is the language that G2.1 defines. 

Using the notation we have developed, we can concisely describe L(G), the language 
defined by a context-free grammar G: 
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L(G), the language defined by a context-free grammar G with start symbol S and ter-
minal alphabet T is 

{x : S => xandx e T*} 

That is, L(G) is the set of all strings x such that S => x (i.e., x is derivable from S) and x 
e T* (i.e., JC is a terminal string). We call any language that can be defined by some con-
text-free grammar a context-free language. 

Let us determine a regular expression that defines the same language as G2.1. First 
consider the effect of production 2. We can use production 2 zero or more times. Each 
time we use it, it produces a b. To derive a terminal string, we ultimately have to use pro-
duction 3 to delete B. Thus, from B we can get zero or more b's. That is, we can get any 
string in b*. From C with can get only one string: ccc. From production 1, we can see 
that S derives BC. Thus, S can derive any string in b*ccc. L(G2.1) is b*ccc. 

By now you can probably guess why the four parts of a context-free grammar—the 
productions, the nonterminal alphabet, the terminal alphabet, and the start symbol—are 
so-called. Consider: 

• A production produces the string on its right side. 
• Terminals are terminating symbols. That is, once they are generated, we cannot re-

place them because the left side of a production in a context-free grammar is always 
a nonterminal. 

• Nonterminals are nonterminating symbols. That is, they allow the derivation 
process to continue. 

• The derivations that determine the language defined by a grammar all start from the 
start symbol. 

A term that we will use frequently when discussing grammars is "generates." This 
term has slightly different meanings depending on its context. Roughly, it means "can 
produce." For example, we might say 

G2.1 generates b*ccc. 
Meaning: L(G2.1) = b*ccc 

G2.1 generates ccc. 
Meaning: ccc e L(G2.1) 

B —» bB generates a b. 
Meaning; B —> bB allows B to be replaced by a string that contains b. 

B generates b* 
Meaning: The set of strings derivable from B is b*. 

Exercise 2.2 

Is bcccbbccc e L(G2.1)? If yes, show its derivation. 

Answer: 

This string is not in L(G2.1). The B nonterminal generates the b's; the C nonterminal 
generates the c's. From production 1, we can conclude that all the c's must follow all 
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the b's. Thus, this string—with b's following c's— cannot be in the language defined 
by G2.1. 

■ 

A production in a grammar can be applied to a string whenever the nonterminal on the 
left side ofthat production appears in the string. Thus, the order in which the productions 
are listed is purely arbitrary. Changing the order in which the productions are listed does 
not affect how those productions can be used, nor does it affect the language defined by 
the grammar. 

2.5 DIFFERENT WAYS OF REPRESENTING CONTEXT-FREE GRAMMARS 

A common way of representing a group of productions with the same left side is to write 
the common left side once, followed by —*, followed by the several right sides, each sep-
arated by the vertical bar |. You should interpret the vertical bar as meaning "or." Using 
this approach, G2.1 becomes 

G2.2 
S —> BC 

B -> bB I A 
C —> ccc 

We call the special characters, such as the vertical bar, that we sometimes use in gram-
mars metasymbols. "meta" here means "beyond." Metasymbols are symbols beyond (i.e., 
in addition to) the terminal and nonterminal symbols. 

For the next several chapters in this textbook, we will use uppercase letters exclusively 
for nonterminals, lowercase letters exclusively for terminals, and S for the start symbol. A 
more versatile approach, which we will use when we write complex grammars, is to quote 
terminal symbols. Distinguishing terminals from nonterminals by quoting the terminal 
symbols allows us to use any character as a terminal and any character except a metasym-
bol for a nonterminal. Moreover, if we require a space between successive terminal and 
nonterminal symbols on the right side of each production, we can use multiple-character 
names for nonterminals. For example, consider the following production: 

expr —* term " | " term 

The vertical bar is a terminal symbol in this production—not the "or" operator. It cannot 
be a metasymbol because it is in quotes, term must be a nonterminal. It cannot be a ter-
minal because it is not quoted. Nor can it be the four consecutive nonterminals—t, e, r, 
m—because we require a space between successive components of the right side of a pro-
duction. If we wanted four nonterminals—t, e, r, and m—we would have to write the 
production this way: 

expr —» t e r m " | " t e r m 

The spaces on the right side of the preceding production are there to separate successive 
terminal and nonterminal symbols. They are not part of the strings the production gener-
ates. If, however, we wanted to specify a space as a terminal symbol, we can simply en-
close the space in quotes. For example, the right side of the production 
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expr —> term " " term 

consists of the two occurrences of the nonterminal term surrounding the terminal symbol 
" " (the space character). 

2.6 SOME SIMPLE GRAMMARS 

To reinforce your understanding of context-free grammars, we now will look at several 
simple examples. For each grammar, we will analyze the specific mechanisms it uses to 
generate strings. You should study these examples thoroughly. 

Our first grammar generates b*, the set of strings containing zero or more b's: 

G2.3 
1. S -» bS 
2. S ^ λ 

Here is how G2.3 works: Each time we use production 1, it generates b. Therefore, to 
generate a string of« b's, we use production 1 n times followed by a single use of pro-
duction 2 to delete S. For example, the derivation of bbbb is 

S => bS => bbS => bbbS => bbbbS => bbbb 
1 1 1 1 2 

We can generate the null string with G2.3 by using production 2 first in the derivation: 

s => λ 
2 

This derivation illustrates an important feature of context-free grammars: You do not 
have to use productions in the order listed. The order in which the productions in a gram-
mar are listed has no effect on the language defined by that grammar. 

Another grammar that generates b* is 

G2.4 
1. S -> Sb 
2. S - * λ 

The derivation of bbbb using G2.4 illustrates the difference between G2.3 and G2.4: 
G2.3 generates b's left to right but G2.4 generates b's right to left: 

S => Sb => Sbb => Sbbb => Sbbbb => bbbb 
1 1 1 1 2 

Grammars are like computer programs in that grammars that do the same thing (i.e, de-
fine the same language) may differ substantially in size (i.e., the number of productions), 
efficiency (i.e., the number of steps needed to generate terminal strings), or in their basic 
approach to generating strings. We call grammars that define the same language, like 
G2.3 and G2.4, equivalent grammars. 



2.6 SOME SIMPLE GRAMMARS 27 

Exercise 2.3 

Write a grammar that defines (bb)*. 

Answer: 

1. S-» bbS 
2. S->A 

■ 
Let us now write a grammar for b*|c*. We might try adding the production 

S ^ cS 

to G2.3. Since G2.3 generates b* and our new production generates zero or more c's, per-
haps our new grammar will generate b* | c* : 

G2.5 
1. S -> bS 

2. s ^ λ 
3. S -^ cS 

G2.3 

added 

Productions 1 and 2 generate b*. Similarly, productions 2 and 3 generate c*. Thus, G2.5 
can certainly generate every string in b*|c*. But, unfortunately, it can also generate many 
strings (an infinite number, in fact) that are not in b*|c*. Here is why: Every string in 
b*|c* is exclusively b's or exclusively c's or the null string, but G2.5 can generate strings 
containing both b's and c's. For example: 

S => bS => bcS => be 
1 3 2 

G2.5, in fact, can generate any string of b's and c's left to right by using production 1 
whenever a b is needed, production 3 whenever a c is needed, or production 2 when the 
string ends. That is, G2.5 generates (b|c)*. Note that b*|c* is not equal to (b|c)*. Rather, 
b*|c* is a proper subset of (b|c)*. 

A grammar that defines b*|c* must be able to generate both b's and c's. But once a b 
is generated in a string, then it should be impossible to generate any c's in that string, and 
vice versa. A grammar that does this is 

G2.6 
1. 
2. 
3. 
4. 
5. 
6. 
7. 

S - + A 

S - » B 

S - » C 

B - > bB 

B - > b 

C - > cC 

C - > c 

Notice that B generates only b's and c generates only c's. Thus, if we use production 2 
first, then only b's are generated; if we use production 3 first, then only c's are generated; 
if we use production 1 first, then the null string is generated. 
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Our next grammar also defines b*|c*: 

G2.7 
1. S -*A 
2. S -> bB 
3. S -* cC 
4. B -► bB 
5. B -> A 
6. C -> cC 
7. C ^ λ 

Productions 2 and 3 determine if b's or if c's are generated. These productions, unlike the 
corresponding productions in G2.6, generate a terminal symbol. Notice that to derive the 
terminal string b, we must use the lambda production B —* λ: 

S => bB => b 
2 5 

We have a similar situation for the string c. We need the lambda productions for B and 
C because, otherwise, B and C could not produce a string of length 0 and, thus, S—by 
virtue of productions 2 and 3—could not produce a string of length 1. 

Exercise 2.4 

Modify G2.7 by replacing productions 5 and 7 with B —* b and C —> c, respectively. 
Give a regular expression that defines the same language as the modified grammar. 

Answer: 

A|bbb*|ccc* 
■ 

The next language we will consider is b*cd*. We can easily construct a grammar for 
this language by allowing the start symbol to generate BcD and then using B and D to gen-
erate b* and d*, respectively: 

G2.8 
1. S -» BcD 
2. B -> bB 
3. B ^ λ 
4. D -> dD 
5. D ^ λ 

Alternatively, we can generate b*cd* strictly left to right with 

G2.9 
1. S -> bS 
2. S -» CD 
3. D -> dD 
4. D -»A 
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Production 1, used repeatedly, generates strings in b*, production 2 generate c, and pro-
ductions 3 and 4 generates strings in d*. The number of times productions 1 and 3 in 
G2.10 are used determines the number of b's and d's, respectively, in the generated 
string. For example, we generate the string b'cd' by using 

production 1 i times 
production 2 once 
production 3y times 
production 4 once 

For our final example we will consider two grammars that both define bb*. Note that 
every string in bb* has at least one b. The two grammars use different ways to force at 
least one b in every generated string. G2.10 forces a b at the end of a derivation; G2.11 
forces a b at the beginning of a derivation: 

G2.10 
1. S-» bS 
2. S —* b forces b at end of derivation 

G2.ll 
1. S —> bB forces b at beginning of derivation 
2. B -» bB 
3. B -*A 

For G2.10, every derivation of a terminal string must end with production 2. Thus, 
every terminal string must have at least one b. For G2.11, every derivation must start with 
production 1. Thus, in this grammar as well, every terminal string derivable from S must 
have at least one b. 

Exercise 2.5 

Indicate the order and the number of times each production in G2.11 
b", where » 5 1 , 

Answer: 

Production 1 once 
Production 2 (Λ-1) times 
Production 3 once 

2.7 TECHNIQUES FOR GENERATING LANGUAGES WITH CONTEXT-
FREE GRAMMARS 

One way to become skillful at analyzing and writing context-free grammars is to observe 
and catalog the various techniques that you can use to generate strings. You probably 
have already started doing this in your study of the examples in the preceding section. In 
this section, we describe and catalog five important techniques: 

is used to generate 
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1. Direct right recursion 
2. Direct left recursion 
3. Direct interior recursion 
4. Indirect recursion 
5. In parts 

Each technique is characterized by the application of a production of a particular form. In 
presenting these production forms, we will use capital letters to represent arbitrary nonter-
minal symbols and the lower-case letters x and y to represent arbitrary nonnull strings 
over the total alphabet (i.e., strings of terminals and/or nonterminals). 

Direct right recursion corresponds to a production of the form 

A —> xh 

Notice that the nonterminal on the left side also appears rightmost on the right side. We 
call productions of this form directly right recursive. Each application of a production of 
this form generates an occurrence of an x. Repeated applications create a list of x's, gen-
erated in left-to-right order. For example, if we use the directly right recursive production 

S - > dS 

three times, we get three d's: 

S => dS => ddS => dddS 

The d's are generated left to right. Thus, the leftmost d is the first d generated; the right-
most, the last generated. Since there is no limit on the number of applications of the pro-
duction S —» dS, the list of d's generated can be any size. The list is terminated when 
some other s production is used that eliminates the S nonterminal. We have already seen 
several grammars that use this technique. For example, G2.3 uses the S —» bS to generate 
a list of zero or more b's, and S —» λ to terminate the list. 

Direct right recursion generates a list left to right. 

Direct left recursion is like direct right recursion, except that it generates a list right to 
left instead of left to right. It corresponds to a production of the form 

A —> Ax 

We call productions of this form directly left recursive. For example, in 

G2.12 
1. S -» Sbc 
2. S -» d 

production 1 is directly left recursive. It generates the list (be)* from right to left. Produc-
tion 1 terminates the list by generating a leading d. It, therefore, generates the language 
d(bc)*. Here is the derivation of dbebebe: 

S => Sbc => Sbcbc => Sbcbcbc => dbebebe 



2.7 TECHNIQUES FOR GENERATING LANGUAGES WITH CONTEXT-FREE GRAMMARS 31 

Notice that the three occurrences of be are generated right to left. 

Direct left recursion generates lists right to left. 

Sometimes a language that contains lists cannot be generated using either direct left or 
right recursion. For example, let us consider two similar languages, b*c* = {b'c': i,j S: 
0} and PAIRED = {b'c' : / > 0}. In b*c*, unlike PAIRED, the number of b's does not 
have to equal the number of c's. We will see that b*c* can be generated using either the 
directly left or right recursive techniques, but PAIRED cannot. 

b*c* consists of a list of zero or more b's followed by a list of zero or more c's. A 
grammar that generates this language using direct right recursion is 

G2.13 
1. S ^ λ 
2. S -> bS 
3. S - » cC 

4. C - > cC 

5. C ^ λ 

Productions 2 and 4 are directly right recursive productions that generate, respectively, a 
list of b's and c's. 

Now consider the PAIRED language. For this language, an arbitrary number of b's 
must be generated followed by the same number of c's. Direct right recursion can certain-
ly generate the list of b's but it has no way of keeping count of the number generated so 
that it can subsequently generate the same number of c's. 

We, however, can generate PAIRED by our third technique, direct interior recursion. 
Corresponding to this technique is the production form 

A —> xAy 

Each application of a production of this form generates an x to the left of the A and a y to 
the right. Repeated applications, of course, produce the same number of JC'S and^'s. We 
call productions of this form directly interior recursive. Using such a production, we can 
easily write a grammar that generates the language PAIRED: 

G2.14 
1. S -> bSc 
2. S ^ λ 

In the derivation of bbbece in G2.14, we can see how the nonterminal S sits in the in-
terior of each intermediate string and generates b's to the left and c's to the right: 

S=> bSc => bbScc => bbbSccc => bbbece 
1 1 1 2 

G2.14 ensures that the number of b's and c's are equal by always generating b's and c's 
in pairs. Thus, the grammar does not have to keep count of the number of b's (which 
would be impossible) and then subsequently generate the same number of c's. 

Programming languages frequently have constructs that are similar in structure to the 
language PAIRED. These constructs can be generated by direct interior recursion but not 



32 CONTEXT-FREE GRAMMARS, PART 1 

direct left or right recursion. For example, consider the use of nested braces in Java and 
C++. The grammar for this construct must be able to generate exactly one right brace for 
each left brace. Another example of the PAIRED structure is the nesting of parentheses in 
arithmetic expressions. For example, consider 

( a + ( (b + c) + d ) ) ) 

Each right parenthesis must be matched by exactly one left parenthesis. 

Exercise 2.6 

Write a grammar that generates {b'c': /' S: 1}. 

Answer: 

Note that {b'c' : i s 1} is the language PAIRED less the null string. Two grammars for 
this language are 

1. S -> bSc 1) S —>· bAc 
2. S —> be 2) A —>· bAc 

3) A ^ A 

The two grammars differ in how they force at least one be pair in every terminal string. 
The grammar on the left does it at the end of a derivation using production 2. The gram-
mar on the right does it at the beginning of a derivation using production 1. 

■ 

As a final example of direct interior recursion, let's write a grammar for the language 
{b'^'e'd* :j, k > 0}. Since bi+k = fc/'b* = b*^, we can write this language as {b'to'e'd* :j, 
k S: 0}. In this form, we see that the number of d's on the right is matched by the same 
number of b's on the left. Nested within these exterior strings are strings that have an 
equal number of b's and c's. A grammar that generates this language is 

G2.15 
1. S -> bSd 
2. S ^ λ 
3. S -> bAc 
4. A -» bAc 
5. A -H»A 

Production 1 generates the exterior b's and matching d's. Productions 3 and 4 generate 
the interior b's and matching c's. 

Exercise 2.7 

Write a grammar that generates {ti+kc/dk :j,k— 1 }· 

Answer: 

This language is a subset of L(G2.15)—it does not include the strings corresponding toy = 
0or/t = 0. 

1. S -» bSd 
2. S -+ bAd 
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3. A -» bAc 
4. A -> be 

To generate b/'+*c'd*, use 

production 1 (k - 1) times 
production 2 once 
production 3 (/' - 1) times 
production 4 once 

Since both production 2 and 4 must be used once, at least one exterior b-d pair and interi-
or b-c pair are always generated. 

■ 

Direct interior recursion can generate two lists with the same number of elements. 
However, it cannot generate more than two lists with the same number of elements. Con-
sider the language TRIPLED = {b'e'd': /' >0} which consists of strings made up of three 
lists: a list of b's, a list of c's, and a list of d's. The three lists have equal lengths. Direct 
interior recursion can generate any two of the three lists. It, however, cannot generate all 
three lists. TRIPLED, in fact, cannot be generated by any context-free grammar (we give 
a proof for this in Chapter 4). Fortunately, programming languages rarely have constructs 
like TRIPLED, so this limitation of context-free grammars is not a problem for the com-
piler designer. 

In all of the variations of direct recursion—right, left, or interior—we use a production 
in which the nonterminal on the left side also appears on the right side. Thus, an applica-
tion of such a production causes the left-side nonterminal to immediately regenerate it-
self. Indirect recursion also causes a nonterminal to regenerate but the regeneration takes 
at least two derivation steps. Let us look at an example of a grammar with indirect recur-
sion: 

G2.16 
1. S - > b A c 
2. S - > e 

3. A -» cSd 

None of the productions in G2.16 are directly recursive. However, S can generate an A 
(by production 1) which can, in turn, regenerate S (by production 3): 

S => bAc => bcSdc 
1 3 

Since the regeneration takes more than one derivation step, this recursion, by definition, is 
indirect. 

It is not hard to determine L(G2.16). Here is our analysis: Any derivation of a terminal 
string from S requires n applications of productions 1 and 3 where n ^ 0 , followed by a 
single application of production 2. Each application of production 1 and 3 produces a be 
on the left and a dc on the right. The application of production 2 at the end of a derivation 
generates an e in the middle of the terminal string. Thus, L(G2.16) = {(bc)'e(dc)' : / s 
0}. 

We can convert the indirect recursion in G2.16 to direct recursion by allowing S to 
generate bcSdc immediately. The equivalent grammar that results is 



34 CONTEXT-FREE GRAMMARS, PART I 

G2.17 
1. S —> bcSdc 
2. S - > e 

We can characterize indirect recursion, like direct recursion, as right, left, or interior, 
depending on where the regenerated nonterminal appears in the string it generates. G2.16 
is an example of indirect interior recursion since 

S => bcSdc 

Some conversions on recursive grammars are not possible. For example, the lan-
guage PAIRED requires a grammar with interior recursion (direct or indirect). Thus, any 
grammar for PAIRED cannot be converted to an equivalent grammar without interior re-
cursion. There are, however, some conversions on recursive grammars that are always 
possible. For example, we can always convert an indirectly recursive grammar to a di-
rectly recursive grammar, and a left recursive grammar to a right recursive grammar, 
and vice versa. In Chapter 3, we study procedures for performing these recursion con-
versions. 

Exercise 2.8 

Write an indirectly right recursive grammar that generates (be)*. 

Answer: 

1. S -> bA 
2. S - ^ λ 

3. A -> cS 
■ 

Our final technique for generating strings with context-free grammars is the in-parts 
technique. The corresponding production form is 

A -» A,A2 ...Up 

where p s 2. With this technique, the strings generated by A are generated in p parts. 
These component parts are generated by A,, A2 . . . , Ap using one of our five basic tech-
niques. For example, we generate the language bb*c*dd* in three parts, bb*, c*, and 
dd*, with the nonterminals B, C, and D, respectively, in 

G2.18 
1. S -> BCD 
2. B -+ bB 
3. B -H> b 
4. C -» cC 
5. C ^ · λ 
6. D -> dD 
7. D -> d 
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2.8 REGULAR AND RIGHT LINEAR GRAMMARS 

A regular grammar is a context-free grammar in which each production must be of one of 
the following forms: 

1. A —► bB 
2. A -> b 
3. A ^ λ 

where A and B are any nonterminal symbols (not necessarily different), and b is any sin-
gle terminal symbol. For example, a regular grammar that generates bd* is 

G2.19 
1. S -» bD 
2. D -H> dD 
3. D ^ λ 

Of the three production forms allowed in a regular grammar, only the first form has a 
nonterminal on its right side. Since this nonterminal is rightmost on the right side, regular 
grammars can be right recursive but never left or interior recursive. Thus, languages 
whose generation requires interior recursion (for example, PAIRED in Section 2.7) cannot 
be generated by any regular grammar. In spite of their limitations, regular grammars are 
quite useful to the compiler designer. 

Now let us consider two more production forms: 

4. A -»zB 

5. A ->z 

where z is a sequence of two or more terminals and A and B are arbitrary nonterminal 
symbols, not necessarily distinct. Neither of these forms is allowed in a regular grammar. 
However, we can always convert productions in either form to an equivalent set of regular 
productions. For example, consider the production A —* bcdB. We can achieve the effect 
of this nonregular production with three regular productions, the first generating b, the 
second generating c, and the third generating dB: 

A -» bP 
P -> cQ 
Q -» dB 

where P and Q are new nonterminals that are not already in the grammar. Clearly, these 
three productions have the same effect as the single production A —» bcdB, as demon-
strated by the following derivation: 

A => bP => bcQ => bcdB 

We call a grammar all of whose productions are of form 1-5 a right linear grammar. 
We can always convert a right linear grammar to an equivalent regular grammar (just re-
place its nonregular productions with their regular equivalents). Thus, right linear gram-
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mars can never generate a language that regular grammars cannot. Right linear grammars, 
however, can often generate a language in a more obvious, straightforward way than can a 
regular grammar. For example, consider the right linear grammar for the language 
(bcd)*e: 

G2.20 
1. S-> beds 
2. S ^ e 

Rewritten as a regular grammar, the grammar becomes considerably more obtuse: 

G2.21 
1. 
2. 
3. 
4. 

1 
s 
s 
c 
D 

-> 
-> 
-» 
—» 

b C 
e 
cD 
dS 

Exercise 2.9 

a. Write a right linear grammar that generates (bbb)+. 
b. Write a regular grammar that generates (bbb)+. 
c. Write two grammars that generate b*c*—one regular, the other using direct left recur-

sion 

Answers: 

a. 1. S —> 
2. S -» 

b. 1. S -H> 

2. A -» 
3. B - * 
4. B -> 

c. Regular 
1. S -> 
2. S -» 
3. S -» 
4. C -> 
5. C -> 

bbbS 
bbb 

bA 
bB 
bS 
b 

bS 
λ 
cC 
cC 

λ 

Directly Left Recursive 
1. S -> Sc 
2. S ^ λ 
3. S - ^ Bb 
4. B —> Bb 
5. B ^ λ 

A regular language is any language that can be defined with a regular grammar. Re-
call from Chapter 1 that we defined a regular language as any language that can be de-
fined with a regular expression. This dual use of "regular language" is permitted since 
regular expressions and regular grammars have exactly the same power to define lan-
guages. That is, any language that we can define with a regular expression, we can also 
define with a regular grammar, and vice versa (we prove this in Chapter 17). Thus, the 
two definitions of regular languages are equivalent. 

Since every regular grammar is also a context-free grammar, every regular language is 
also a context-free language. However, not every context-free language is regular 
(PAIRED is one such language). Thus, context-free grammars are more powerful than 
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regular expressions and regular grammars. To define the syntax of the typical program-
ming languages, we need the superior power of context-free grammars. 

Although most programming languages are not regular, the various categories of to-
kens into which the token manager decomposes the source program are almost always 
regular. For example, we can nicely describe an identifier that starts with a letter followed 
by zero or more letters and/or digits with the regular expression 

L(L|D)* 

where L represents any letter and D any digit. 

2.9 COUNTING WITH REGULAR GRAMMARS 

In our discussion of the language PAIRED = jb'c' : t > 0} in Section 2.7, we observed 
that we cannot use a right-recursive grammar because the grammar would have to do 
something it cannot, namely, keep count of the number of b's it generates. We will see 
that regular grammars can, in fact, count, but their counting ability is not sufficient to han-
dle the language PAIRED. 

A grammar can count by using distinct nonterminal symbols to represent distinct 
counts. For example, in G2.22, which generates bbb, the nonterminals S, A, B, and C rep-
resent the count of the number of b's generated so far. 

G2.22 
1. S - > bA 
2. A -» bB 
3. B -» bC 
4. C -> A 

As the derivation of bbb shows, each nonterminal appears in a sentential form when its 
corresponding count (s = 0, A = 1, B = 2, C = 3) equals the number of b's generated: 

S => bA => bbB => bbbC => bbb 

Since distinct nonterminals are used to count, the number of nonterminals in a gram-
mar determines an upper limit on how high the grammar can count. Since the number of 
nonterminals in a grammar must be finite, any counting grammar necessarily has an upper 
limit on how high it can count. 

A more complex type of counting is illustrated by G2.23, which generates PAIRED3 = 
{b'c':/ '<3} = {A, be, bbcc, bbbccc}: 

G2.23 
1. S -^ A 
2. S -> bA 
3. S -> bE 
4. A —» bB 
5. A -» bD 
6. B -» bC 
7. C -> cD 
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8. D -> cE 
9. E -^ c 

Here, S, A, B, and C count the number of b's generated so far in a derivation. C, D, and E 
count the c's. However, instead of counting the number c's generated so far, C, D, and E 
count the number of c's needed for the derivation to terminate. C means three more c's 
are needed; D means two more c's are needed; E means one more c is needed. S, A , B, 
and C are used to count up. C, D, and E are used to count down. For example, whenever a 
D appears in an intermediate string, exactly two more c's must be generated to yield a ter-
minal string. As the four derivations in this grammar (only four derivations of terminal 
strings are possible) illustrate, a derivation can terminate whenever the count is zero— 
that is, whenever the number of c's equals the number of b's: 

S => A 
S => bE => be 
S => bA => bbD => bbcE => bbec 

S => bA => bbB => bbbC => bbbcD => bbbccE => bbbece 

With the up-down counting we used in G2.23, we can easily construct a similar gram-
mar for PAIRED4 = {b'c' : / < 4} = {A, be, bbec, bbbece, bbbbcccc}. In fact, with 
this approach we can construct a grammar for every language PAIREDn = {b'c' : / < « } , 
where n is fixed positive integer. For large values of n, the corresponding grammar must 
count high and, therefore, have many nonterminal symbols. We cannot, however, extend 
this technique to produce a grammar for PAIRED = {b'c': /' S: 0} since this language has 
no upper bound on the number of b's and c's and would, therefore, require an infinite 
number of nonterminals. Grammars are not allowed to have an infinite number of nonter-
minals. Thus, no matter how high a given grammar can count, there are always strings in 
PAIRED that would exceed that grammar's counting capability. 

Exercise 2.10 

Write a regular grammar that generates {b, bb, bbb} by counting the number of b's gen-
erated. 

Answer: 

1. S -> bA 
2. A -^ bB 
3. A -*A 
4. B -» bC 
5. B - ^ λ 
6. C ^ λ 

■ 
The counting ability of a context-free grammar is limited, just like the counting ability 

of regular grammars, by the number of nonterminals in the grammar. Thus, context-free 
grammars are no better at counting than regular grammars. However, context-free gram-
mars can do something regular grammars cannot: generate any number of symbols or 
groups of symbols in pairs using the interior recursive technique. With this technique, we 
can generate a language like PAIRED. The context-free grammar that generates PAIRED 
is not counting b's and c's. It is simply generating b's and c's in pairs. 
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2.10 GRAMMARS FOR LISTS 

Lists occur very frequently in programming languages. Let us look at several examples. 
For each list, we will see if it uses a separator character (a character to separate successive 
elements) and if the null list (the list without any elements) is permitted. 

Our first example is a variable list that appears in a Java or C++ declaration: 

i n t w , x , y , z ; 

Following the keyword i n t is a list of identifiers with the comma used as the separator. 
A null list in this context, believe it or not, is permitted in C++ but not Java. That is, in 
C++ the statement, 

i n t ; 

is legal (but useless) code. 
Our next example is a compound statement in Java or C++: 

{ 

x = 1; 
y = 2; 

} 

The list here, consisting of the two assignment statements, uses no separator character. 
The semicolons are terminators rather than separators (we will clarify the distinction be-
tween a terminator and a separator later when we examine grammars for compound state-
ments). Like our first example, this list may also be null. That is, 

{ 

} 

is legal. 
Our third example is an arithmetic expression: 

w + x - y + z 

Here, we have a list of operands, w, x, y, and z, separated by the operators + and - . Ex-
pressions may or may not be null depending on where they are used in a program. 

Our last example is a positive integer constant consisting of a list of digits: 

4523 

Here, the list has no separators and must be nonnull. 
Now let us write grammars for the following four categories of lists: 

1. Lists that do not use a separator and may be null 
2. Lists that do not use a separator and are always nonnull 
3. Lists that use a separator and are always nonnull 
4. Lists that use a separator and may be null 
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To keep things simple, we will consider lists in which each element is a single b and the 
separator, if used, is the comma. 

We can view lists in category 1 as strings in the language b*, for which we have the 
simple grammar 

G2.24 
1. S —» bS no separator, may be null 
2. S - > λ 

Category 2 corresponds to the language bb*. The simplest grammar for this language 
is 

G2.25 
1. S -> bS 
2. S -* b 

Another grammar is 

generates a leading b no separator, nonnull 

generates zero or more additional b's 

In G2.26, production 1 generates a leading b. Then L generates a list of zero or more ad-
ditional b's. Alternatively, we can have L generate only nonnull lists of b's. Then S must 
be allowed to generate the initial b without an L list following it: 

G2.27 
1. S —> b generates an initial b 
2. s —> bL generates an initial b followed by an L list 
3. L —* bL L generates one or more b's 
4. L -> b 

Thus, if we use production 2, any string generated will have at least two b's. Production 1 
allows G2.27 to generate a string with only one b. 

Let us look at the three shortest strings in category 3: 

b 
b , b 
b , b , b 

We can view each string in this category as a member of b(, b)*—that is, as a single b 
followed by a list of zero or more occurrences of " , b " . For example, b , b , b , b consists 
of b followed by three occurrences of ", b": 

b , b , b , b 

G2.26 
1. S -> bL 
2. L -> bL] 
3. L ->λ I 

With this interpretation, we can easily write the grammar: 
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G2.28 
1. S —» bL forces an initial b separator, non-null 
2. L —» ,bL generates the rest of the list 
3. L -» A 

Production 1 forces the generation of the initial b . L generates the zero or more occur-
rences of", b" . Another approach is to have L generate only nonnull lists. Then S must be 
allowed to generate the initial b without an L list following it: 

G2.29 
1. S —> b generates an initial b without list 
2. S —* bL generates an initial b with list 
3. L —* ,bL generates a nonnull list 
4. L ->· , b 

A third approach is to view each string as a member of (b,)*b. This gives rise to: 

G2.30 
1. S —> b , S generates (b,)* 
2. s —» b generates the last b 

All of the grammars above generate strings left to right. For each, there is the "mirror-im-
age" grammar that generates the same language right to left. 

Exercise 2.11 

Write a grammar that defines the language consisting of strings of one or more b ' s , with 
successive b ' s separated by exactly one space. Use meaningful names for your nontermi-
nal symbols. Enclose terminal symbols with quotes. 

Answer: 

bList —> "b" blistTail 
blistTail -» " " "b" blistTail 
blistTail —» A 

Category 4 is the same as category 3 except for the addition of the null string. Can our cat-
egory 3 grammars, G2.28, G2.29, and G2.30, be converted to grammars for category 4 lists 
simply by adding the production S —» A? This modification does, in fact, work for G2.28 and 
G2.29 but not for G2.30. The category 4 grammar obtained from G2.28 by adding S —* A is 

G2.31 
1. S —» bL forces an initial b separator, may be null 
2. s —» A allows S to generate the null string 
3. L —» ,bL generates the rest of the list 
4. L -H>A 

The category 4 grammar obtained from G2.29 by adding S —* A is 

G2.32 
1. S —* b generates b 
2. S —» bL generates an initial b when there is more than one b 
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3. S —» A allows S to generate the null string 
4. L —» ,bL generates the rest of list 
5. L -* , b 

What about G2.30? Why can we not simply add S —* A to it to create a category 4 
grammar? Unfortunately, in G2.30, adding S —* A adds more than the null string to the 
language generated. The problem with G2.30 is that S appears on the right side of produc-
tion 1. Thus, S —» A can be used to eliminate this S, allowing the grammar to generate 
new strings. For example, with S —> A, it can generate b followed by a comma: 

S => b , S => b , 

To modify G2.30 so it can generate category 4 lists, we first create a new start symbol S' 
(S then is no longer the start symbol) and add the production S' —* S. In our modified 
grammar, S' generates S, which, in turn, can generate anything G2.30 can. Thus, we have 
not changed the language generated by adding this production. Next, we add the produc-
tion S' —> λ, which adds the null string and only the null string because our new start 
symbol S' never appears on the right of any production. Our new grammar is 

G2.33 1. S' -> S new start symbol S' 
2. S' —» λ allows S' to generate the null string 
3. S —* b ,S generates (b, )* 
4. S —* b generates the last b 

Exercise 2.12 

List the three shortest strings in each of the following languages. Write a grammar for 
each language. 
1. (b,)* 
2. (b,)+ 
3. b(,b)*; 
Answers: 

1. A S-> b ,S 
b , S-> A 
b , b , 

2. b , S-> b ,S or S-» b,L 
b , b , S -> b , L—> b,L 
b , b , b , L —»A 

3. b ; S-> bL 
b , b ; L—> ,bL 
b , b , b ; L—> ; 

Now let us write a grammar for a compound statement of the form 

s t a t emen t 
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s t a t e m e n t 

s t a t e m e n t 
} 

in which the statements within the braces use the semicolon as a terminator (as in Java 
and C+). To keep our grammar simple, we will restrict a statement to an assignment state-
ment. In this grammar, we will use descriptive names for nonterminals and enclose termi-
nals in quotes: 

G2.34 
1. compoundStatement —> "{ " statementList "} " 
2. statementList —* statement statementList 
3. statementList —> λ 
4. statement —» assignStatement 
5. assignStatement —* identifier "=" expression ";" 

Productions 2 and 3 produce a category 1 list; they generate a list of zero or more s t a t e -
ment nonterminals within the braces that delimit a compound statement (notice the paral-
lel between these productions and the productions in G2.24). Production 4 generates an 
a s s i g n S t a t e m e n t for each s t a t e m e n t . a s s ignS ta t emen t , in turn, generates an 
assignment statement. Production 5 clearly shows that the semicolon is both part of and 
terminates an assignment statement. Thus, we call the semicolon a terminator as it is used 
here. 

Now suppose we use a different grammar for a compound statement: 

G2.35 
1. compoundStatement —> "{ " statementList "} " 
2. statementList —* statement statementListTail 
3. statementList —» λ 
4. statementListTail —* ";" statement statementListTail 
5. statementListTail —»A 
6. statement —* assignStatement 
7. assignStatement —* identifier " = " expression 

Productions 4 and 7 in this grammar show that the semicolon functions as a separator of 
successive statements rather than as a terminator. Thus, the last assignment statement in a 
sequence will not be terminated by a semicolon. For example, in the following compound 
statement, which G2.35 can generate, a semicolon is not at the end of the second assign-
ment statement: 

x = 1; // this semicolon separates this statement from the next 
y = 2 //no semicolon at the end of this statement 

Notice the parallel between productions 2, 3, 4, and 5 in G2.35 and the productions in 
G2.31. Production 7 shows that the semicolon is not part of the assignment statement. 
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2.11 AN IMPORTANT LANGUAGE THAT IS NOT CONTEXT-FREE 

Let us write a grammar that generates a list of one or more elements separated by com-
mas. Each element of the list should be an arbitrary string in (b|c)+. Here are some exam-
ples of lists that the grammar should generate: 

b , c , b b 
b , c , b e 
c, b , c 
b 

Notice that the same string can appear more than once in a list. For example, in the third 
list above, the element c appears twice. Each list can have an arbitrarily large number of 
elements and each element can be an arbitrarily long string of b's and/or c's. 

One straightforward grammar that generates these lists is 

G2.36 
1. S -» Q 
2. S -> Q,S 
3. Q -> bQ 
4. Q —> cQ 
5. Q -> b 
6. Q -» c 

Productions 1 and 2 generate a list of one or more Q' s separated by commas. Productions 
3 through 6 allow each Q to generate a nonnull string of b ' s and/or c 's . 

Now let us consider lists in which each element must be distinct. Can we write a gram-
mar that will generate just these nonrepeating lists? Our grammar would have to remem-
ber which elements it has already generated to avoid repeating them. Thus, to generate 
nonrepeating lists of arbitrary length would require a context-free grammar that has un-
limited memory. Unfortunately, just as a regular grammar's counting ability is limited by 
the number of nonterminals it contains, so is the memory of a context-free grammar. 
Thus, a context-free grammar cannot generate nonrepeating lists if the lists can be arbi-
trarily long. Take a few minutes to try to write a grammar for our nonrepeating lists. You 
will not be able to find a grammar that works. 

We now have seen two languages that are not context-free: the TRIPLED language in 
Section 2.7 and nonrepeating lists. That TRIPLED is not context-free is of little concern 
to compiler designers since constructs similar to TRIPLED rarely appear in programming 
languages. Nonrepeating lists, on the other hand, commonly appear in programming lan-
guages. For example, consider this variable declaration in Java: 

int b, c, bb; // three distinct identifiers 

The variable list that follows i n t should be a nonrepeating list. A compiler has to detect 
and flag any declaration in which a variable identifier repeats, as in, for example, 

int b, c, b; // syntax error—b repeats 

Obviously, in order for a compiler to perform complete syntax checking, it must have at 
its disposal complete syntax information. But a context-free grammar alone cannot pro-
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vide this complete information since it cannot represent nonrepeating lists. Thus, a com-
piler based on a context-free grammar must be provided with additional information. Oth-
erwise, it would not be able to completely check the source program. Later on, when we 
design and implement a simple compiler, you will see the exact form that this additional 
information takes. 

Context-free grammars are not perfect—they cannot describe some features of com-
mon programming languages. However, they can describe most features, and whatever 
remains we can relatively easily describe by some other means. 

PROBLEMS 

1. Write a grammar that generates the language j} . 
2. Write a grammar that generates the language {A}. 
3. Write a grammar that generates bbb* cc* that uses directly left recursive produc-

tions. 
4. Write a regular grammar that generates bbb* c*. 
5. Write a regular grammar that generates b* | c* | d* . 
6. Write a grammar that generates the language consisting of all strings of b's in which 

successive b's are separated by at least one comma. Successive commas are allowed. 
For example, b , b , , , b , b , , b . 

7. Write a regular grammar equivalent to 
1. S -> Sb 
2. S ^ c 

3. S -^ d 
4. S -* e 

8. Write a regular grammar equivalent to 
1. S -> bcdS 
2. S —>■ cbaS 
3. S -^ bbA 
4. A -» bbc 

9. Write a grammar that generates a list in which each element is either b, c, or d, and in 
which successive elements are separated by exactly one comma. Your grammar 
should also generate the null string. Sample strings: 
λ 
b 
b , b , b , c, d, b 

10. Write a grammar that generates {b2'c': / > 0}. 
11. Given arbitrary grammars Gl and G2, show how to construct grammars G3 and G4 

such that L(G3) = L(G1)|L(G2) and L(G4) = L(G1)L(G2). 
12. Describe the language generated by 

1. S -» SS 
2. S -> bSc 
3. S -> cSb 
4. S -> A 

13. Write a regular grammar that generates (bcd)*eee. 



46 CONTEXT-FREE GRAMMARS, PART 1 

14. Write a right linear grammar that generates (bcd)*eee. 
15. Prove that a finite language is always regular. 
16. Convert the following grammar to a right linear grammar: 

1. S —> Sbcd 
2. S -> fg 

17. Write a grammar that generates {b'c'*-'d/: i 5: \,j>2). 
18. Describe the language generated by 

1. S -> bB 
2. B -> cC 
3. C -+ dS 
4. C ^ d 

19. How many distinct derivations of bcde are possible using 
1. S -> BCDE 
2. B -* b 
3. C ^ c 
4. D ^ d 
5. E -> e 

20. Write a grammar that generates all properly nested parenthesized strings. Some ex-
amples of strings in the language are 
0 
0 0 0 
( 0 0 ) 
( ( ( ) ) ) ( ) ( ) ( ( ) ( ) ) 

21. Write a grammar that generates {b'c': / > 2,j ^ 3}. 
22. How many times (in terms of/, j , and k) and in what order must the productions be-

low be used to generate the string b'c'd*? 
1. s -> bSd 
2. S -^ bA 
3. A —> bAc 
4. A -^- c 

23. Write a grammar that generates (bc*)+. 
24. Prove that any grammar that generates the language {b'c': / > 0} cannot contain the 

production S —* bS, where S is the start symbol. 
25. Write a regular grammar that generates {b'c': i i s 4} by counting. 
26. Write a regular grammar equivalent to G2.36. 
27. Let L denote the language defined by the following grammar: 

1. S -» bcS 
2. S -> d 
Modify this grammar so that it generates the language L\ {A}. 

28. Give a summary of the proof that the language PAIRED in Section 2.7 is not regular 
(see Section 17.12). 

29. Give a regular expression for the language defined by G2.30 to which S —* λ has 
been added. 
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30. Give a summary of the proof that the language TRIPLED in Section 2.7 is not con-
text-free (see Section 4.10). 

31. Prove that the language consisting of arbitrarily long nonrepeating lists is not con-
text-free. 

32. Convert the following grammar to a regular grammar: 
1. S —> bcdeS 
2. S —» edcb 

33. If you make no assumptions about the terminal alphabet for the grammar below, can 
you determine how many strings are in the language it generates? 
S -+ b | c 
If you know the terminal alphabet is {b, c}, how many strings are in the language? 

34. Give a regular expression that defines the same language as the following grammar: 
1. b -> "b" b 
2. b -^ "b" 

35. Is production 1 in G2.32 necessary? 





3 
CONTEXT-FREE GRAMMARS, PART 2 

3.1 INTRODUCTION 

Although the notion of a context-free grammar is straightforward, there is, nevertheless, 
much about context-free grammars for the compiler designer to learn. In this chapter, we 
continue our study of context-free grammars. We start by introducing parse trees. A parse 
tree is a graphical representation of the replacements that occur during a derivation. We 
then describe several language-preserving transformations on context-free grammars, that 
is, transformations that do not affect the language generated. 

3.2 PARSE TREES 

We can represent the replacements that occur during a derivation of a string graphically 
with a parse tree. In a parse tree, the root is the start symbol of the grammar. Each nonter-
minal in the tree has immediately below it the symbols—each as a separate node—used to 
replace it in the derivation. For example, if B is replaced by bcD in a derivation, the corre-
sponding portion of the parse tree would look like this: 

B 

/ i \ 
b c D 

Let us look at an example of a derivation and its corresponding parse tree. Consider the 
following grammar: 

G3.1 
1. S - > BD 
2. B -^ be 

Compiler Construction Using Java. JavaCC. and Yace. First Edilion. Anthony J. Dos Reis 49 
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3 . D -> dD 
4. D - > λ 

A derivation of the string bcdd in this grammar is 

S => BD => bcD => bcdD => bcddD => bcdd 

1 2 3 3 4 

The corresponding parse tree is given in Figure 3.1. The leaf nodes (i.e., the nodes with no 
children) spell out left to right the symbols in the generated string. 

A parse tree may be constructed in step with a derivation. Each intermediate string has 
a corresponding intermediate tree. For example, the first two steps in the derivation above 
produces the intermediate string bcD. The corresponding intermediate parse tree is given 
in Figure 3.2. 

Notice that the leaf nodes in this tree spell out the intermediate string bcD. 
A derivation tree makes it easy to see the replacements made in the derivation of a string. 

However, it does not completely specify the order in which replacements are made. For ex-
ample, the tree in Figure 3.1 does not tell us if the replacement of B occurred before, after, 
or in between the replacements of the three D nonterminals. There are, in fact, four distinct 
derivations of bcdd using G3.1, all of which have the parse tree in Figure 3.1. They are 

=> bcdd 

=> bcdd 

=> bcdd 

bcdd 

Unlike the tree in Figure 3.1, some parse trees have only one corresponding derivation. 
Such trees have the following property: all the nonterminals must lie on a single path 
starting with the start symbol. For such a tree, nonterminals must be replaced in the order 
in which they lie on this path. There is never any choice. Thus, only one derivation is pos-
sible. For example, in a derivation corresponding to the tree in Figure 3.3, the nontermi-
nals S, D, and B must be replaced in that order. 

1. 

2. 

3. 

4. 

s 
1 

s 
1 

s 
1 

s 
1 

=> 

=> 

=> 

=> 

BD 

2 

BD 

3 

BD 

3 

BD 

3 

=> 

=> 

=> 

=> 

bcD 

3 

BdD 

2 

BdD 

3 

BdD 

3 

=> 

=> 

=> 

=> 

bcdD 

3 

bcdD 

3 

BddD 

2 

BddD 

4 

=> 

=> 

=> 

=> 

bcddD 

4 

bcddD 

4 

bcddD 

4 

Bdd =: 

2 
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3.3 LEFTMOST AND RIGHTMOST DERIVATIONS 

Among the possibly many derivations corresponding to a parse tree, two are particularly 
important to the compiler designer. We call one the leftmost derivation and the other the 
rightmost derivation. In a leftmost derivation, we replace the leftmost nonterminal at 
every step; in a rightmost derivation, we replace the rightmost nonterminal at every step. 
For example, consider: 

G3.2 
1. S —> AB 

2. A - > CD 

3. B --> EF 

4. C -> c 
5. D - > d 

6. E -^ e 
7. F -* f 

In this grammar the leftmost derivation of cde f is 

S => AB => CDB => cDB => cdB => cdEF => cdeF => cdef 
1 2 4 5 3 6 7 

In Figure 3.4, we subscript the nonterminals in the corresponding parse tree according 
to the order in which we replace them in the leftmost derivation. We can see that the non-
terminals are replaced in depth-first order with preference given to the leftmost. That is, 
we always replace the nonterminal at the greatest depth from the root. When there is more 
than one nonterminal at the greatest depth, we replace the leftmost. For example, after we 
replace S in Figure 3.4, A and B are of equal depth. So we replace A next because it is left-
most. We then replace C because it is the leftmost nonterminal at the greatest depth. 

A rightmost derivation corresponds to an order in which we replace the nonterminal at 
the greatest depth at every step, with preference given to the rightmost. Thus, a rightmost 
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derivation, like a leftmost derivation, corresponds to a depth-first order, but with prefer-
ence given to the rightmost nonterminal when there is more than one nonterminal at the 
greatest depth. In Figure 3.5, we have subscripted the nonterminals of the parse tree ac-
cording to the order in which we replace them in a rightmost derivation. 

The first step in the design of a compiler is the writing of a grammar that defines the 
source language (i.e., the language the compiler must translate). We then write a parser 
for this grammar. We generally construct a parser to determine a particular derivation, 
usually either the leftmost or rightmost. 

Parsers can be written either by hand or automatically by a computer program called a 
parser generator. A parser generator (see Figure 3.6) inputs a grammar and outputs the 
parser for that grammar. The parser that is generated can then be "plugged into" a compil-
er. A parser generator can substantially cut the amount of time needed to program a com-
piler. In Chapters 13 and 23, we will study parser generators. 

Starting with the next section, we begin our study of language-preserving transforma-
tions of context-free languages. Such transformations modify grammars in a way that 
does not affect the language generated; hence, the name "language-preserving." Why 
would a compiler designer need to transform a grammar if the new grammar is going to 
generate the same language as the old grammar? The answer is that parsing algorithms 
generally require grammars in a very specific form. If a given grammar is not in the re-
quired form, one of these transformations may be able to convert it to the required form. 
Why doesn't the compiler designer write a grammar in the required form to begin with? 
Sometimes it is easier to write a grammar in the wrong form and then convert it to the re-
quired form than to write a grammar directly in the required form. 

3.4 SUBSTITUTION 

Substitution is a language-preserving transformation. Let us look at an example using the 
following grammar: 
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G3.3 
1. S —> BC 
2. B -^ bB 
3. B -» d 
4. C —> c 

In this grammar, s generates BC. We can then replace the B in BC using productions 2 or 
3, yielding bBC or dC. An alternative approach is to allow S to generate bBC and dC di-
rectly by adding the following productions: 

la. S -» bBC 
lb. S -» dC 

Then we do not need production 1. Our new grammar, equivalent to G3.3, is 

G3.4 
la. 
lb. 
2. 
3. 
4. 

S - > 
s - > 
B - » 
B - » 
C - » 

bBC 
dC 
bB 
d 
c 

In this example, we obtain our two new productions by substituting the right sides of the 
B productions for B in production 1. The transformed grammar is equivalent to the origi-
nal grammar. 

We may generalize what we have done with G3.3 with the following rule: Suppose a 
grammar contains p productions for some nonterminal N: 

N ->z, 
N ->z2 

Suppose the grammar also contains the A production 

A —>xNy 

where x and y are arbitrary strings over the total alphabet. We can then eliminate this A 
production from the grammar if we add the following new productions: 

A —* xzty 
A —* xz-¡y 
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We obtain each new A production from the original A production, A —*■ jcNy, by substitut-
ing for N. The resulting grammar generates the same language as the original. We call this 
procedure substitution. 

Let us do another example of substitution. If we wish to replace production 1 in the 
following grammar using substitution, 

G3.5 
1. S -» dB 
2. B -+ bB 
3. B -> d 
4. B -» cccS 

we must add three new s productions, one for each B production. We obtain each new S 
production by replacing the B on the right side of production 1 with the right side of an B 
production. The equivalent grammar that results is 

G3.6 
la. S -> dbB 
lb. S -^ dd 
le. S —> dcccS 
2. B -* bB 
3. B -> d 
4. B —» cccS 

Exercise 3.1 

Replace production 1 in the following grammar using substitution. Give the equivalent 
grammar that results. 

1. S -» bS 

2. S -> b 

Answers: 

We must substitute the s on the right side of production 1 with bS (from production 1) 
and with b (from production 2, yielding two new productions. These two production re-
place production 1. The new grammar is 

la. S —> bbS (from production 1) 
lb. S —> bb (from production 1) 
2. s —» b (original production 2) 

3.5 AMBIGUOUS GRAMMARS 

Let us consider the parse trees for the strings b, bb, and bbb in the following grammar: 
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G3.7 
1. S -» SS 
2. S -» b 

The parse tree for b is 

s 

to which there corresponds exactly one derivation. The parse tree for bb is 

s 
/ \ 

s s 
I I 
b b 

This tree corresponds to two distinct derivations: 

S => SS => bS => bb 
1 2 2 

S => SS => Sb => bb 
1 2 2 

That more than one derivation corresponds to a single tree is no surprise. This is true 
for most parse trees. Note that both derivations correspond to the same parse tree. For the 
string bbb, however, we have quite a different situation: There is more than one parse tree 
(see Figure 3.7). 

Although the two trees are similar (one is "left-handed"; the other, "right-handed"), 
they are nevertheless distinct. We call a grammar like G3.7 that generates at least one 
string that has more than one parse tree an ambiguous grammar. G3.7, in fact, generates 
an infinite number of strings with more than one parse tree (bbb, bbbb, bbbbb, ...). It 
takes only one string, however, with more than one parse tree to make a grammar am-
biguous. For example, consider 

G3.8 
1. S -» b 
2. S -> B 
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3. 
4. 
5. 
6. 

S 
B 
C 
C 

-> 
-> 
-> 
— ► 

cC 
b 
cC 
λ 

This ambiguous grammar generates an infinite number of strings of which only one—the 
string b—has more than one parse tree. 

Exercise 3.2 

a. What language is generated by G3.8? 
b. Draw the two parse trees for b using G3.8. 

Answers: 

a. b | c+ 
b. 

s s 
I I 

b B 
I 

b 

We can almost always convert an ambiguous grammar to an equivalent grammar (i.e., 
one generating the same language) that is not ambiguous. Let us see if we can develop some 
general techniques for converting ambiguous grammars to unambiguous equivalents. 

One useful technique is to study the ambiguous grammar to determine the language it 
defines. Then it is usually easy to write a completely new grammar for the language that, 
hopefully, is unambiguous. Let us consider an example. Refer back to the ambiguous 
grammar G3.7, which generates the language b+. We can easily write a grammar that 
generates b+ in strict left-to-right order. Since grammars which generate strictly left-to-
right or right-to-left are rarely ambiguous, we can be reasonably confident we will get an 
unambiguous grammar. Our result is, indeed, an unambiguous equivalent grammar: 

G3.9 
1. S 
2. S 

- » b S 
-H> b 

Exercise 3.3 

For each of the following grammars, determine the language defined and write an equiva-
lent unambiguous grammar: 

1. 
2. 
3. 
1. 

2. 
3. 
4. 

S - > b S 
S - * Sb 
S -> c 

S —> BSD 
S -* λ 
B -^ bB 
B -H> b 
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5. D -* dD 
6. D -» d 

Answers: 

a. b* cb* 
1. S -» 
2. S -> 
3. A -> 
4. A -> 

b. A|b+d+ 
1. S -> 
2. S -» 
3. B -» 
4. B -> 
5. D -»· 
6. D -> 

bS 
cA 
bA 
λ 

λ 
bB 
bB 
dD 
dD 
A 

Another useful technique in converting ambiguous grammars is to use a type of pro-
duction that we aptly call a one-way street. Consider the following grammar: 

G3.10 
1. S —* bSd (generates b's and d's) 
2. S —* bS (generates excess b's) 
3. S —* A (eliminates S) 

The language defined by G3.10 is {b'd': / ^j}. To derive the string b'd7, the productions 
in G3.10 should be used as follows: 

1. production 1 j times (to generate y b's and d's). 
2. production 2 (/' -j) times (to generate the b's that are in excess of the d's). 
3. production 3 once (to eliminate the nonterminal S). 

We must use production 3 (which terminates the derivation) last. However, until we use 
production 3, we may use productions 1 and 2 in any order, and therein lies the ambiguity 
of the grammar. For example, we can generate the string bbd by applying productions 1, 
2, and 3, in 1-2-3 order or in 2-1-3 order. These two derivations correspond to different 
parse trees (see Figure 3.8). 
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The trick in converting G3.10 to an unambiguous grammar is to force a particular or-
der in which the productions may be used. The following grammar is equivalent to G3.10 
but is not ambiguous. It forces the generation of the b's and d's first, then the excess b's. 

G3.ll 
1. S —♦ bSd (generate b's and d's) 
2. S —* B (take one-way street) 
3. B —» bB (generate excess b's) 
4. B —> λ (eliminate B) 

Production 1 generates b's and matching d's to the right. However, once we use pro-
duction 2 in G3.11, we eliminate the S nonterminal. We can, therefore, no longer use pro-
duction 1. We can think of production 2 as a "one-way street" away from production 1. 
Once we use it, there is no going back. Thus, the generation of excess b's, if any, by pro-
duction 3 in G3.11 must follow the generation of b-d pairs by production 1. For G3.ll, 
there is only one order that generates the string b'd7: 

1. production 1 y times 
2. production 2 once 
3. production 3 (i -j) times 
4. production 4 once 

Exercise 3.4 

Eliminate the ambiguity in G3.10 by forcing the generation of excess b's before the b-d 
pairs, rather than in the reverse order as we did in G3.11. Again use a one-way street. 

Answer: 

1. S —* bS (generate excess b's) 
2. S —*■ C (one-way street) 
3. C —* bed (generate b's and d's) 
4. c —> A (eliminate C) 

Here is one more technique for eliminating ambiguity. Sometimes a grammar has two 
or more productions that do, in effect, the same thing and thereby cause the ambiguity. By 
deleting all but one of these productions, we sometimes get an equivalent unambiguous 
grammar. You should use this technique with care—deleting productions usually results 
in a nonequivalent grammar. However, in the following grammar, this deletion technique 
works: 

G3.12 
s 
B 
B 
B 
C 
C 
C 

—> 
—» 
-> 
-» 
-» 
-> 
_> 

BC 
bBc 
Be 
λ 
cCd 
cC 
A 
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G3.12 defines the language {bncpdm : p s n + m). In this language, there must be at least 
as many c's as there are b's and d's combined. The middle c's that are not balanced ei-
ther by b's on the left or d's on the right (i.e., those in excess of« + m) can be generated 
by either production 3 or 6. We can eliminate this ambiguity by deleting either production 
3 oró. 

You might be wondering why we are making all the fuss about ambiguous grammars. 
The problem is that ambiguity can result in multiple meanings. A famous example of 
multiple meanings in the English language is the sentence, "Time flies like an arrow." 
This single sentence has three quite distinct meanings. These three meanings correspond 
to the three possible verbs in the sentence: "Time", "flies", or "like." If "Time" is the 
verb, then you should use your stop watch to time the insects the same way you time ar-
rows; if "flies" is the verb, then you are commenting on how quickly the years go by; if 
"like" is the verb, you are asserting that the insects called "time flies" have an affection 
for an arrow. In a similar fashion, if a grammar for a programming language is ambigu-
ous, then a single program could have more than one "meaning" (a program's meaning is 
what it tells to computer to do). How then is a compiler supposed to translate such a pro-
gram? Although ambiguous grammars are problematical, a compiler designer can some-
times put them to good use. We will see how to use them in Chapter 7. 

We have just seen several language-preserving techniques that eliminate ambiguity 
from a context-free grammar. Unfortunately, these techniques work only in very specif-
ic circumstances. In fact, there are some context-free languages for which no unam-
biguous context-free grammar exists. In other words, it is impossible to write an unam-
biguous context-free grammar for these languages. We call such languages inherently 
ambiguous. Thus, there can be no general algorithm for eliminating ambiguity that will 
work for every grammar. In fact, even if we consider only languages that are not inher-
ently ambiguous, there still is no general procedure for eliminating ambiguity. It is im-
possible for such an algorithm to exist! The problem of eliminating ambiguity in an ar-
bitrary context-free grammar has a subtle complexity that makes it unsolvable in the 
general case. 

3.6 DETERMINING NULLABLE NONTERMINALS 

A nonterminal is nullable if it can generate the null string. For example, consider 

G3.13 
1. S - > AB 

2. S -> a 
3. A - » aA 

4. A -> λ 
5. B -» bB 
6. B -» λ 

The nonterminals A and B are obviously nullable since they appear on the left sides of 
lambda productions. It follows that AB, the right side of production 1, is nullable, which, 
in turn, implies that S is nullable. 

Here is an algorithm that marks a nonterminal if and only if it is nullable: 

1. If a nonterminal appears on the left side of a lambda production, then mark every 
occurrence of this nonterminal. 
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2. If an unmarked nonterminal appears on the left side of a production whose right 
side has every symbol marked, then mark every occurrence of this nonterminal. 

3. Continue marking according to step 2 until no more marking is possible. 

Let us apply this algorithm to the grammar in Figure 3.9. We will mark a symbol by 
placing an x above it. In step 1 of our algorithm, every occurrence of A and B is marked 
because the grammar has A and B lambda productions (see Figure 3.9a). Now the right 
side of production 1 is completely marked. Thus, in step 2, we mark every occurrence of 
S (see Figure 3.9b). The algorithm then terminates because no more marking is possible. 
The nullable terminals are those that are marked, namely, S, A, and B. The nonnullable 
nonterminals are those that are not marked, namely, C. 

3.7 ELIMINATING LAMBDA PRODUCTIONS 

We generally view a production in a context-free grammar as a replacement rule. An 
occurrence of the left side of a production in a string can be replaced by the right side 
of the production. A lambda production, on the other hand, is more correctly viewed as 
a deletion rule whose application deletes an occurrence of the lambda production's left 
side. 

Now consider this: If a nonterminal in a derivation is to be deleted, why generate it in 
the first place? If we do not generate the nonterminal, then we do not have to delete it. If 
we do not have to delete it, then do not need the lambda production, in which case we can 
eliminate the lambda production from the grammar without affecting the language de-
fined. For example, suppose we would like to convert the following grammar to an equiv-
alent grammar that does not have any lambda productions: 

G3.14 
1. S —>· dBC 
2. B - ^ bB 
3. B -> λ 
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4. C -> cC 
5. C -> A 

When we use production 3, a lambda production, it deletes a B that comes from the right 
side of either production 1 or 2 (see Figure 3.10a). But if we add the productions 

S -^ dC 
B -> b 

to our grammar, we can use them in place of productions 1 and 2 whenever we want to 
generate dC or b, respectively, from S or B. These new productions do not generate the 
B's that productions 1 and 2 generate. So after using them, there are no B's that we have to 
delete (see Figure 3.10b). We can then throw away production 3 without affecting the lan-
guage defined. Of course, we need to keep productions 1 and 2 to generate the B's that are 
not eventually deleted but, instead, expanded into nonnull strings by production 2. Simi-
larly, since production 5 is a lambda production, we add 

S -> dB 
C -> c 

to our grammar and use them in place of productions 1 and 4 to generate dB and c, re-
spectively. Because these productions do not generate C's that have to be deleted, we can 
throw away production 5 without affecting the language defined. 

There is one more possibility to consider. What if we delete both B and C in production 
1 with the lambda productions? Then S effectively generates a single d. To accomplish 
the same effect without using lambda productions, we need the production 

S -> d 

By adding the five productions above to G3.14, we make the lambda productions un-
necessary. Whatever we can generate with lambda productions we can now generate 
without them. Thus, our new grammar with the lambda productions deleted is equivalent 
to our original grammar, G3.14. Our new grammar is 

G3.15 
1. S -» dBC 
2. S -> dC 
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3. 
4. 
5. 
6. 
7. 
8. 

s 
s 
B 
B 
C 
C 

-» 
-^ 
-> 
-> 
-^ 
-^> 

dB 
d 
bB 
b 
cC 
c 

Comparing G3.15 with G3.14, we see an obvious advantage of using lambda productions: 
there are fewer productions. G3.15, however, has the advantage of having shorter deriva-
tions than G3.14 since it does not have the overhead associated with the generation and 
subsequent deletion of nonterminals. This "space" (i.e., the number of productions) ver-
sus "time" (i.e., the length of the derivation) trade-off is characteristic of the elimination 
of lambda productions. 

Exercise 3.5 

Convert the following grammar to an equivalent grammar without lambda productions: 

1. S 
2. B 
3. B 
4. C 
5. C 
6. D 
7. D 

Answers 

—* 
-» 
-> 
-> 
-» 
-» 
-»· 

eBCD 
b 
λ 
c 
λ 
d 
λ 

In the first production of this grammar, we may or may not delete each of its three nonter-
minals. That is, there are two possibilities for B, two for C, and two for D. We, therefore, 
have 2 * 2 x 2 = 8 variations (see productions 1 to 8 in the following grammar). Our new 
grammar, therefore, has the original S production plus seven new ones, one for every pos-
sible variation. The new grammar is 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
0. 
1. 

s -» 
s -> 
s -+ 
s -» 
s -> 
s -* 
s -> 
s -^ 
B -> 
C -+ 
D -> 

eBCD 
eBC 
eBD 
eCD 
eB 
eC 
eD 
e 
b 
c 
d 

B, C, and D all n 
Only D null 
Only C null 
Only B null 
C and D null 
B and D null 
B and C null 
B, C, and D null 

If we apply our procedure for eliminating lambda productions to the following gram-
mar, we get a new twist: our procedure creates a new lambda production: 

G3.16 
1. S -> bB 
2. B -» CD 
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3. c -+ c 
4. C - * A 
5. D -»· d 
6. D - * A 

To make the two lambda productions in G3.16 unnecessary, we add productions to the 
grammar for any production that has C or D on its right side. Thus, for production 2, we 
must add 

B —* D (production 2 with C deleted) 
B —> c (production 2 with D deleted) 
B —> A (production 2 with both c and D deleted) 

In adding productions to make the lambda productions unnecessary, we have introduced a 
new lambda production. We must now make the new lambda production unnecessary by 
adding the appropriate productions. The only production with B on the right side is pro-
duction 1. If we add the production 

S -> b 

then the new lambda production is also unnecessary. Our general procedure, then, is to 
continue adding productions until all lambda productions—original and new—are unnec-
essary, which we, therefore, can delete. Our final grammar equivalent to G3.16 but with-
out lambda productions is 

G3.17 
1. S -» bB 
2. S -» b 
3. B -» CD 
4. B -> C 
5. B - » D 
6. C —> c 
7. D -> d 

Our procedure for eliminating lambda productions breaks down for one case: if the 
grammar generates the null string. Such a grammar must contain at least one lambda pro-
duction, or else it could not generate the null string. Thus, our procedure applied to such a 
grammar must fail. Let us try an example and see what happens: 

G3.18 
1. S -> AB 
2. A -> dS 
3. A -> A 
4. B -» b 
5. B -» A 

Since we have lambda productions for nonterminals A and B, we must add the follow-
ing productions, derived from production 1, to make these lambda productions unneces-
sary: 
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S -> A 
S -> B 
S -* A 

Now, however, we have a new lambda production, S —* A. To make this new lambda 
production unnecessary, we must add the production A —* d (derived from production 
2). Then, instead of using production 2 to generate dS and subsequently deleting the S 
with the production S —» A, we can generate d by itself with our new production A —* 
d. There is, however, one use of S —> A that remains necessary: using it in the first step 
of a derivation to generate the null string. Thus, if we now eliminate all the lambda pro-
ductions including S —» A, our new grammar can do anything G3.18 can do except gener-
ate the null string. We get 

G3.19 
1. S 
2. S 
3. S 
4. A 
5. A 
6. B 

-» 
-H> 

-> 
-> 
-> 
—). 

AB 
A 
B 
dS 
d 
b 

G3.19 and G3.18 are almost equivalent; G3.19 generates everything G3.18 generates ex-
cept for the null string. 

Our procedure for eliminating lambda productions is not language preserving if the lan-
guage for the original grammar contains the null string. The new grammar produced by our 
procedure will generate everything the original grammar does except for the null string. 

The procedure we have described for eliminating lambda productions may create new 
lambda productions, as illustrated by G3.16 above. We then have to eliminate these new 
lambda productions. It is, however, easy to avoid creating any new lambda productions. We 
simply use the algorithm described in Section 3.6 to determine the nullable nonterminals. 
We then add productions depending on which nonterminals are nullable. For example, in 
G3.16, production 1, s —> bB can ultimately generate b by itself since B is nullable. Once 
we remove all the lambda productions, B will no longer be nullable. Thus, we should add the 
production S —» b so that S can generate a b by itself without the aid of lambda productions. 
Because C and D are nullable, production 3, B —» CD, requires that we add the productions 
B —> C and B —» D. But now we do not have to add the production B —> A because we 
have already identified B as a nullable and have transformed the grammmar accordingly. 

3.8 ELIMINATING UNIT PRODUCTIONS 

A unit production is a production whose left and right sides consist of a single nontermi-
nal. For example, in the following grammar, the unit productions are productions 2 and 4: 

G3.20 
1. S -> 
2. B -> 
3. D -» 
4. D -> 
5. E -» 

bBDE 
D 
d 
E 
e 
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Productions 3 and 5 are not unit productions because their right sides are not nontermi-
nals. 

Unit production elimination uses the same basic approach that we used in lambda pro-
duction elimination: add productions that make the production to be eliminated unneces-
sary. However, unlike lambda production elimination, our unit production elimination 
procedure is always language preserving. Let us consider an example. Consider produc-
tion 2 in G3.20. If we allow B to generate directly anything that D can generate directly, 
then this unit production becomes unnecessary. In G3.20, D can generate d (see Figure 
3.11 a). So we add the production B —> d so B can generate d directly (see Figure 3.11b). 

Because D can also generate E, we add B —» E. Another unit production! We can, 
however, make this new unit production unnecessary by adding the appropriate produc-
tions. In particular, we have to allow B to generate directly anything E can generate di-
rectly. Checking with G3.20, we see that the only E production is E —> e. Therefore, we 
have to add B —» e to our grammar. Next, we work on production 4. We allow D to gen-
erate directly anything E can generate directly. We have to add only D —* e. We now 
have made all our unit productions unnecessary. We can, therefore, delete them all and 
get a grammar without any unit productions equivalent to G3.20: 

G3.21 
1. S -» bBDE 
2. B -H» d 
3. B -+ e 
4. D -+ d 
5. D -» e 
6. E -> e 

Our general procedure to eliminate unit productions is like our procedure to eliminate 
lambda productions: we keep adding productions until all unit productions—original and 
new—are unnecessary. We then can delete all the unit productions. For a variation of this 
procedure, see Problem 3.14. It describes a procedure that eliminates unit productions 
without ever producing new ones. 

Exercise 3.6 

Transform the following grammar to an equivalent one that does not contain any unit pro-
ductions: 

1. S -» B 
2. B ->■ S 
3. B -» b 
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Answer: 

For the unit production s —» B, we should add the productions S —* S (because of B —* 
S)ands -* b (because of B —» b). We can delete the "do nothing" production S —» S 
immediately without affecting the language generated by the grammar. For the other unit 
production B —* S, we should add the B —» B (because of S —» B). But we can also 
delete this production immediately. Our final grammar consists of s —> b and B —> b. 

3.9 ELIMINATING USELESS NONTERMINALS 

A useless nonterminal is a nonterminal that can never be used in a "successful" deriva-
tion; that is, a derivation that starts with the start symbol and ends with a terminal string. 
Therefore, we can delete all productions that contain any useless nonterminals without 
changing the language generated by the grammar. There are two types of useless nonter-
minals: unreachable and dead. 

An unreachable nonterminal is one that can never appear in a derivation that starts 
with the start symbol. Consider the nonterminals B, C, D, and U in 

G3.22 
1. S -> bSc 
2. S -> bBc 
3. B -Η> bB 
4. B -> λ 
5. B --> BC 
6. C -> c 
7. U -> dU 
8. U -» d 

The start symbol S can produce a B (by production 2), which, in turn, can produce a C (by 
production 5). The nonterminals B and C, therefore, are reachable from S. However, S 
cannot produce u, either directly through a single production or indirectly through multi-
ple productions. Thus, U is unreachable. Productions containing unreachable nontermi-
nals are useless, that is, they can never participate in the derivation of a terminal string 
from the start symbol. Thus, in G3.22, we can delete productions 7 and 8 without affect-
ing the language generated. 

Here is a simple algorithm that marks a nonterminal if and only if it is reachable. Note 
that this algorithm marks only the left sides of productions. 

1. Mark every left-side occurrence of the start symbol. 
2. Mark every left-side occurrence of any nonterminal not already marked that ap-

pears on the right side of a production whose left side is marked. 
3. Continue the marking according to step 2 until no more marking is possible. 

On completion of this procedure, the marked nonterminals are reachable; the un-
marked nonterminals are unreachable. Let us apply this procedure to G3.22. First, we 
mark all left-side occurrences of S: 

x 
1. S -» bSc 

x 
2. S -»· bBc 
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3. B -> bB 
4. B -» A 
5. B -» BC 
6. C - » c 
7. U - » dU 
8. U -> d 

Because B is on the right side of a production whose left side is marked (production 2), 
we now mark all left-side occurrences of B: 

x 
1. S -> bSc 

x 
2. S -> bBc 

x 
3. B -»· bB 

x 
4. B -» A 

x 
5. B - » BC 
6. C -> c 
7. U -» dU 
8. u -> d 

Because C is on the right side of a production whose left side is marked (production 5), 
we now mark all left-side occurrences of C: 

X 

1. S -» bSc 
x 

2. S -» bBc 
x 

3. B -» bB 
x 

4. B -> A 
x 

5. B -» BC 
x 

6. C - » c 
7. U -^ dU 
8. U -* d 

At this point we cannot mark any more productions. Only u remains unmarked, and is, 
therefore, the only unreachable nonterminal. 

Exercise 3.7 

Determine the unreachable nonterminals in 

1. S -> fB 
2. B - » b 
3. B ->· cC 



68 CONTEXT-FREE GRAMMARS, PART 2 

4. C -+ c 
5. C ^> dD 
6. D -» d 
7. E -> e 

Answer: 

x 
1. S -► fB 

x 
2. B -> b 

x 
3. B —> cC 

x 
4. C -» c 

x 
5. C -> dD 

x 
6. D -> d 
7. E -► e 

E is the only unreachable nonterminal. 

■ 
The second kind of useless nonterminal, a dead nonterminal, is one from which a ter-

minal string cannot be derived. For example, consider the following grammar: 

G3.23 
1. S -> bBC 
2. S -> D 
3. B -> bB 
4. B -H> λ 

5. C -» c 
6. D -> dE 
7. E —>■ dD 

D and E are reachable from the start symbol. But notice that the only D production re-
places a D with a string that contains an E, and the only E production replaces an E with a 
string that contains a D. Thus, once a D appears in an intermediate string, all subsequent 
intermediate strings must have either a D or an E. D and E can never derive a terminal 
string. Thus, D and E are dead nonterminals. We can, therefore, delete any productions 
containing a D or E, without changing the language generated by the grammar. 

Here is an algorithm that marks a nonterminal if and only if it is not dead: 

1. Mark every occurrence of a nonterminal that appears on the left side of a produc-
tion whose right side is a terminal string (including the null string). 

2. Mark every occurrence of a nonterminal not already marked that appears on the left 
side of a production whose right side contains no unmarked nonterminals. 

3. Continue marking according to step 2 until no more marking is possible. 

On completion of this procedure, all the nondead nonterminals are marked; all the dead 
nonterminals are not marked. 
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Let us apply this procedure to G3.23. In step 1, we mark every occurrence of B (be-
cause of production 4) and c (because of production 5): 

XX 

1. S -> bBC 
2. S -» D 

x x 
3. B —> bB 

x 
4. B - * λ 

x 
5. C -» c 
6. D -H> dE 
7. E -> dD 

Now production 1 has no unmarked nonterminals on its right side. Therefore, in step 2, 
we mark every occurrence of S: 

X XX 

1. S -^ bBC 
x 

2. S -H> D 
x x 

3. B - * bB 
x 

4. B -> λ 
x 

5. C -> c 
6. D -» dE 
7. E -» dD 

At this point, we cannot mark any more nonterminals. Only D and E are unmarked and, 
therefore, are the only dead nonterminals. 

Exercise 3.8 

Give a grammar in which a nonterminal occurs that is both unreachable and dead. 

Answer: 

1. S ->· b 
2. B -* bB 

B is both unreachable and dead. 

When we eliminate dead nonterminals from a grammar, we can create new unreach-
able nonterminals, but not vice versa. For example, consider the following grammar: 

G3.24 
1. S -> e 
2. S - * BD 
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3. B -+ b 
4. D —> dD 
5. U -> c 

In this grammar, D is dead and U is unreachable. When we eliminate all productions con-
taining D, we get 

G3.25 
1. S -^ e 
2. B -> b 
3. u -> c 

Now, in G3.25, B, as well as U, is unreachable. If we now eliminate our unreachable non-
terminals, we are left with a single production: 

G3.26 
1. S -> e 

Since eliminating dead nonterminals can produce new unreachable nonterminals but not 
vice versa, we should always eliminate useless nonterminals in the following order: 

1. Dead 
2. Unreachable 

We call this the "duh rule" (the "du" in "duh" indicates proper order: "d" (i.e., dead) first, 
then "u" (unreachable). If we eliminate dead nonterminals first, any unreachable nonter-
minals created will then be eliminated when, in step 2, we eliminate unreachable nonter-
minals. If, on the other hand, we eliminate unreachable nonterminals first, we may be left 
with new unreachable nonterminals after we eliminate the dead nonterminals. For exam-
ple, if we first eliminate unreachable nonterminals from G3.24, we get 

G3.27 
1. S -> e 
2. S -» BD 
3. B -* b 
4. D -» dD 

If we now eliminate the dead nonterminals, we get 

G3.28 
1. S -> e 
2. B .-> b 

The nonterminal B is a new unreachable nonterminal. 
An important check to perform on any grammar is to determine if it has any useless 

nonterminals. Useless productions generally mean that the creator of the grammar made 
a mistake when writing it, and, thus, the grammar does not correctly define the intend-
ed language. In this case, the proper course of action is to correct the grammar rather 
than transform it to an equivalent (and also incorrect) grammar without useless nonter-
minals. 
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3.10 RECURSION CONVERSIONS 

Recall from Chapter 2 that direct left recursion refers to a production whose left-hand side 
starts its right side, that is, a production of the form 

A —> Ax 

where JC is any nonnull string. Directly left recursive productions generate lists from right 
to left. For example, the following grammar generates a list of d's and e's preceded by b 
or cc: 

G3.29 
1. s —> Sd (generates a d on the right) 
2. S —» Se (generates an e on the right) 
3. S —» b (generates an initial b) 
4. S —♦ cc (generates an initial cc) 

We can use productions 1 and 2 any number of times and in any order. Thus, these two 
productions generate the list (d|e)*. Then production 3 or 4 terminates the derivation by 
generating a leading b or cc. Thus, G3.29 defines the language (b|cc)(d|e)*. Here is the 
derivation bdde in this grammar: 

S => Se => Sde => Sdde => bdde 

Notice the derivation starts by generating a string in (d|e)* in right-to-left order using 
productions 1 and 2. It then terminates by generating a b with production 3. 

It is generally a simple matter to eliminate direct left recursion; simply generate the list 
from left to right rather than from right to left. For example, a grammar equivalent to 
G3.29 that generates the list left to right is 

(generate an initial b) 
(generate an initial cc) 
(L generates a list of d's and/or e's left to right) 

Note that the resulting grammar, G3.30, is directly right recursive. We eliminate direct 
left recursion by converting it to direct right recursion. Similarly, if we start with a gram-
mar with direct right recursion, we can eliminate it by converting it to direct left recur-
sion. 

In G3.30, the list generated by L can be null. Alternatively, we can have L generate 
only nonnull lists. But then we have to add the productions S —» b and S —» cc so S 
can generate a b or cc (we cannot use S —* bL and S —* ccL because L now cannot 
generate λ) The grammar then is 

G3.31 
1. S —» bL (L generates a nonnull list) 
2. S —* ccL (L generates a nonnull list) 
3. S —* b (allows generation of just b) 

G3.30 
1. 
2. 
3. 
4. 
5. 

S 
s 
L 
L 
L 

-» 
-> 
-> 
-> 
_» 

bL 
ccL 
dL 
eL 
A 
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4. 
5. 
6. 
7. 
8. 

S —* cc 
L -» dL 
L -̂ · eL 

L -* d 
L —> e 

(allows generation of just cc) 

Observe that if we eliminate the lambda production in G3.30 using our procedure from 
Section 3.7, the result is G3.31. 

Exercise 3.9 

Eliminate the direct left recursion in the following grammar: 

1. 
2. 
3. 
4. 
5. 
6. 

S -
S -

s -
s -
s -
B -

■* Sc 

■» SBBB 

-> ScB 

■* B 

-» c 

■* b 

Answer: 

Notice that the grammar generates a leading B, c, or b followed by a list consisting of 
zero or more occurrences of c, BBB, and cB. Two equivalent grammars, one with lambda 
productions and one without, are: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

S -H> 

s -̂  
s -> 
L -> 

L —> 

L -> 

L —> 

BL 

cL 

bL 

cL 
BBBL 

cBL 

λ 

1. S -»· 

2. s -* 
3. S -► 
4. S -> 
5. S -> 
6. S -» 

7. L -» 
8. L -» 
9. L ->· 

10. L -
11. L -

12. L -

13. B -

BL 

cL 

bL 

B 

c 

b 
cL 

BBBL 
cBL 

► c 

► BBB 

> cB 

> b 

Another type of recursion, called indirect recursion, is illustrated by 

G3.32 
1. 

2. 

3. 
4. 
5. 

s 
A 
B 
B 

C 

-» 

—> 
-» 
-» 
_» 

ABC 

Bd ^ 
Ce 
b 

Ac 

three nonterminal cycle 

Although none of the productions in G3.32 are directly recursive, it is possible to get the 
same effect by using multiple productions. For example, we can derive the string of Acbd 
from A using productions 2, 3, and 4: 
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A => Bd => Ced => Aced 
2 3 4 

We have a three nonterminal cycle in G3.32: A to B, B to C, and C back to A. We cate-
gorize indirect recursion as left, right, or interior, depending on where the regenerated 
nonterminal appears in the string it generates. If the regenerated nonterminal reappears in 
the leftmost, rightmost, or interior position, we call the recursion left, right, or interior, re-
spectively. Since A reappears leftmost in the derivation above, we categorize the recur-
sion in G3.32 as indirect left recursion. 

We can eliminate indirect recursion—left, right, and interior—by converting it to di-
rect recursion. We do this by progressively reducing the size of the recursive cycle until it 
is equal to one. We do this conversion by using the substitution technique (see Section 
3.4) on the nonterminals in the recursive cycle. For example, in G3.32, if we substitute Bd 
for A in production 5 (as allowed by production 2), we reduce our recursive cycle by one: 

G3.33 
1. S -
2. A -
3. B -
4. B -
5. C -

■> ABC 
■* Bd 
■* Ce 
■> b 

■* B d c 
two nonterminal cycle 

Our cycle is now from B to c (production 3) and from C back to B (production 5). Our 
next step is to again reduce the size of the cycle. This time we substitute Ce and b for B in 
production 5 (as allowed by productions 3 and 4). Since there are two B productions in 
G3.33, we get two new productions, one by substituting Ce for B, the other by substitut-
ing b for B: 

G3.34 
1. S -» ABC 
2. A ^ · Bd 
3. B -^ Ce 
4. B -► b 
5. C —» Cede (direct left recursion) 
6. C -» bdc 

In G3.34, the recursive cycle size is now one—that is, we have direct left recursion. No-
tice that productions 5 and 6 generate right to left the strings in bdc(edc)*. We can easi-
ly eliminate the direct left recursion by replacing production 5 and 6 with productions that 
generate bdc(edc)* from left to right: 

C -» bdcL 
L —> edcL 
L -» A 

Our final grammar has no left recursion, either direct or indirect: 

G3.35 
1. 
2. 
3. 

s 
A 
B 

-> 
- » 
_» 

ABC 
Bd 
Ce 
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4. B -H> b 
5. C -> bdcL 
6. L —> edcL 
7. L - ^ λ 

Exercise 3.10 

Convert the following grammar to an equivalent grammar that contains no left recursion: 

1. S -» Be 
2. S - * d 
3. B - > Sc 

4. B -» b 

Answer: 

First, convert the indirect left recursion to direct left recursion: 

1. S -» Be 
2. S -> d 
3. B —» Bee 
4. B -> dc 
5. B -» b 

Now eliminate the direct left recursion: 

1. S -» Be 
2. S -» d 
3. B -» dcL 
4. B -» bL 
5. L —» ecL 
6. L ^ λ 

A slightly more complicated example of left recursion is 

G3.36 
1. S -» Af 
2. A ->· Sb 
3. A -» Ac 
4. A -» Bd 
5. B -»· e 

G3.36 contains both indirect left recursion (productions 1 and 2) and direct left recursion 
(production 3). To eliminate both recursions, we first reduce the size of the indirect recur-
sive cycle to one using the substitution technique: Substitute the right side of production 1 
for S in production 2. We get 

G3.37 
1. S -» Af 
2. A -> Afb 
3. A -> Ac 
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4. A -* Bd 
5. B -> e 

We now have two directly left recursive productions, which we can eliminate easily. We 
get 

G3.38 
1. S -» Af 
2. A -> BdL 
3. L -» fbL 
4. L -> cL 
5. L -» λ 
6. B -H> e 

When eliminating left recursion, it is helpful to think of each production whose right 
side starts with a nonterminal as "pointing" to that nonterminal. For example, production 
1 in G3.36, S —> Af, points to the A nonterminal. Furthermore, since the A productions 
are listed after the S production in G3.36, we can say this production "points forward." 
Similarly, production 4 points forward. Production 2 "points backward" (since the S pro-
duction precedes the A production). Production 3 is "self-pointing" (i.e., it is directly left 
recursive). Production 5 is "nonpointing" since its right side does not start with a nonter-
minal. In terms of this terminology, we can summarize the general technique for eliminat-
ing left recursion: 

1. Group productions by their left sides. 
2. Process each group in order. For each group, 
3. First eliminate any backward pointing productions using the substitution technique. 
4. Then eliminate any self-pointing productions using the technique for eliminating 

direct left recursion. 

After we apply this procedure, each group of productions can contain only forward 
pointing and nonpointing productions (since we have eliminated all the backward point-
ing and self-pointing productions). The grammar, therefore, contains no left recursion, di-
rect or indirect. Furthermore, the very last group of productions processed—because it 
has no successor group—must contain only nonpointing productions (for example, the B-
production in G3.38). The technique works regardless of the order in which the groups of 
productions are placed for processing. 

Exercise 3.11 

Eliminate left recursion in the following grammar by 

a. processing the S-production first; 
b. processing the A-productions first. 

1. S —> Ag 
2. A -^ Sb 
3. A -^ Sc 
4. A -» Ad 
5. A —> Ae 
6. A -» f 
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Ai 

a. 

b. 

nswers: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

s -> 
A -» 

L -^ 
L -> 

L -> 

L -> 

L -> 

S -> 

M —s 

M —s 

M -s 

A —¡ 

A -s 

A -¡ 

L —3 

L -s 

L —¡ 

Ag 

fL 

gbL 
gcL 

dL 
eL 

λ 

• fLgM 

- bLgM 

> cLgM 

> A 
> SbL 

- ScL 

> fL 

. dL 

• eL 

► λ 

3.11 ADDING THE NULL STRING TO A LANGUAGE 

With the exception of lambda production elimination, the context-free grammar transfor-
mations we have discussed so far are language preserving (recall that lambda production 
elimination is language preserving only if the language does not contain the null string). 
We now look at another transformation that is not language preserving. It adds the null 
string and only the null string to a language that does not already contain the null string. 

To add the null string to the language defined by a grammar, can we simply add the 
production S —* A? Unfortunately, this transformation does not always work. If S appears 
on the right side of some production, then the added production may allow nonnull strings 
to be derivable that were not previously derivable. For example, suppose we add the pro-
duction s —* A to the following grammar: 

G3.39 
1. S -> bS 
2. S -» c 

The new production now allows the new grammar to generate not only the null string but 
any string containing b's exclusively, none of which can be generated by the original 
grammar. For example, with the addition of S —* A to G3.39 we can generate b: 

S =*· bS => b 

G3.39 defines is b*c but the new language is b*|b*c. We want a grammar that generates 
b*c | A. To correctly transform G3.39, we first create a new start symbol S' and add the 
production S' —» S. Since S' generates S, and S generates the original language, the new 
grammar still generates the original language. Now, however, the start symbol, S' , does 
not appear on the right side on any production. Thus, if we add S' —* A, we add the null 
string and only the null string to the language. The final grammar is 
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G3.40 

1. S' -» λ 
2. S' - > S 

3. S -+ bS 
4. S —> c 

We can now, of course, eliminate the unit production S' —* S if we want, using the pro-
cedure in Section 3.8, yielding 

G3.41 
1. S' - > λ 

2. S' -► bS 
3. S' - » c 

4. S -> bS 
5. S - » c 

Exercise 3.12 

Transform the following grammar so that it defines the null string plus the original lan-
guage. 

1. S - » SS 

2. S -» d 

Answers: 

Using the new start symbol approach, we get: 

1. S' -> λ 
2. S' -» S 
3. s -^ ss 
4. S -» d 
Alternatively, we can write a completely new grammar. Since the original language is d+, 
we need a grammar for a*: 

1. S ->· dS 
2. S -► λ 

PROBLEMS 

1. How many different parse trees does bbbbb have in grammar G3.7? 
2. How many different words can be generated by the following grammar? Show the 

parse tree for each word. 
1. S -»· CBADE 
2. A -> N 
3. B -> R 
4. C -» E 
5. D -» I 
6. E -» b 
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7. E -» λ 
8. I -> t 
9. N -» r 

10. R -> e 
3. Convert the following grammar to an equivalent grammar that contains no left recur-

sion: 
1. S -* Sb 
2. S -> Sc 
3. S -> Sd 
4. S -» b 
5. S -» c 
6. S -» d 

4. Convert the following grammar to an equivalent unambiguous grammar: 
1. S -» SbS 
2. S -»■ e 

5. Using a "one-way street" production, convert the following grammar to an equivalent 
unambiguous grammar: 
1. S -* bS 
2. S -> Sbe 
3. S -»· d 

6. Show that the deletion of all productions in a grammar containing unreachable non-
terminals never creates new dead nonterminals. 

7. Convert the following grammar to an equivalent grammar that contains no left recur-
sion: 
1. S -> Ad 
2. S -> d 
3. A -> Bb 
4. Ά -» b 
5. B -» Sc 
6. B —► c 

8. Convert the following grammar to an equivalent grammar with no lambda produc-
tions: 
1. S -» BD 
2. B -* bBBBDd 
3. B -* λ 
4. D - > e 

9. Convert the following grammar to an equivalent grammar that contains no left recur-
sion: 
1. S -> Af 
2. S -> f A 
3. A -> Bb 
4. A -> bB 
5. B -> Cc 
6. B -> cC 
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7. C -» dS 
8. C -»· Sd 
9. C ^ e 

10. Convert G3.8 to an equivalent grammar with no unit productions. 
11. Convert the following grammar to an equivalent grammar that has no lambda produc-

tions: 
1. S -» BcD 
2. B -» BB 
3. B -» b 
4. B -» λ 
5. D -> DdD 
6. D -»· dD 
7. D -» A 

12. Can a string have more than one leftmost derivation in a grammar but only one right-
most derivation? Justify your answer. 

13. Eliminate the useless nonterminals in the following grammar: 
1. S -» AB 
2. A -» CD 
3. C -> CC 
4. C -> A 
5. D —> DdD 
6. D —> eE 
7. E —> ee 

14. Does the following procedure correctly eliminate unit productions: 

For every pair of nonterminals A and z such that z can be derived 
from A using only unit productions, add the production A -r* x for 
every nonunit production z —> x. After adding all such productions, 
delete all unit productions. 

Note that this procedure never creates new unit productions. 
15. Another technique for eliminating unit productions can be based on the following ob-

servation: Suppose a grammar contains the production A —* B, which replaces A 
with B. Instead of generating A and then replacing it with B, why not generate B di-
rectly? Then the unit production would not be needed. Eliminate the unit productions 
in G3.20 using this technique. Does the technique ever fail? 

16. Find an algorithm that for every pair of nonterminals A, B in a context-free grammar 
determines if 

+ A => B 
How could such an algorithm be used in eliminating unit productions from a grammar? 

17. Convert the following grammar to an equivalent grammar that has only five produc-
tions: 
1. S -> d 
2. S -> bB 
3. S -> Be 
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18. 

19. 

20. 

21. 

4. S —> cc 
5. B —> bB 
6. B —> Be 
7. B —> cc 
Convert the following grammar to an equivalent grammar that has only seven pro-
ductions: 

1. S -^ BCD 
2. S -» BC 
3. S -* BD 
4. S -> CD 
5. S -» B 
6. S -» C 
7. S -» D 
8. S ->· λ 
9. B -» bBBb 

10. B -» bBb 
11. B -» bb 
12. C -* cC 
13. C -> c 
14. D —> Dd 
15. D -H> d 
Is the following grammar ambiguous? 
1. S -» bbbS 
2. S -» Sa 
3. S -»· d 
Convert the following grammar to an equivalent unambiguous grammar: 
1. S -» bSd 
2. S -»· bS 
3. S -^ Sd 
4. S ->■ c 

Prove that any context-free grammar can be converted to an equivalent grammar that 
has at most one lambda production. 

22. Convert the following grammar to an equivalent grammar that contains no left recurr 
sion. Process productions both in the order given and in the reverse order. 
1. S -» Ag 
2. S -» g 
3. A -»· Sb 
4. A -» Bd 
5. A -» b 
6. B -» Sd 
7. B -» Ae 
8. B -> f 

23. When eliminating left recursion, in what order should the groups of productions be 
processed to minimize the total number of productions in the final grammar? 
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24. Write a program that determines the useless nonterminals in a context-free grammar. 
25. Write an ambiguous grammar that defines 

{a'b'c': ij > 0 } | { a^ ' c* : p, q > 0} 

Try writing an unambiguous grammar for the language. Warning: this language is an 
inherently ambiguous context-free language. That is, no unambiguous context-free 
grammar exists for it. 

26. Consider the procedures described in Sections 3.7 and 3.8 for eliminating lambda and 
unit productions. Is it possible that adding productions to make one production un-
necessary may make another production previously made unnecessary once again 
necessary? Justify your answer. 

27. Is the following grammar ambiguous: 
1. S - » SS 

2. S - > dA 
3. A - > bB 
4. B - > cS 

28. Can we use the procedure in Section 3.7 for eliminating lambda productions to deter-
mine the nullable nonterminals in a grammar? 

29. Convert the following grammar to an equivalent grammar that has no unit produc-
tions: 
1. S - » Bd 
2. B - > C 
3. B -H> b 
4 . C - » D 
5. C - > c 
6. D —> E 
7. D -* d 
8. E -► e 
Do this convers ion two w a y s : Use the approach descr ibed in Problem 3.14, and use 
the approach descr ibed in Sect ion 3.8. 

30. Convert the following grammar to an equivalent grammar that is not ambiguous: 
1. S -> bS 
2. S -> cS 
3. S -> Sd 
4. S -> Se 
5. S - » f 





4 
CONTEXT-FREE GRAMMARS, PART 3 

4.1 INTRODUCTION 

In this chapter, we finish our general investigation of context-free grammars. First, we 
give several important grammars for a "real" language—the language of arithmetic ex-
pressions. These grammars are extremely important to the compiler designer. Next, we 
present two alternative methods of representing context-grammars: the Backus-Naur 
form (which is similar to the representation we have been using so far) and syntax dia-
grams (which resemble railroad track diagrams). Next, we introduce essentially noncon-
tracting grammars, a grammar type to which every context-free grammar can be convert-
ed. Finally, we present a property that every infinite context-free language has—the 
pumping property. Since every infinite context-free language has the pumping property, 
any infinite language that does not have this property cannot be context-free. We will use 
the pumping property to show that some languages are not context-free. 

4.2 GRAMMARS FOR ARITHMETIC EXPRESSIONS 

We now depart from our study of languages from an abstract point of view and consider 
several grammars for a "real" language—namely, the language of arithmetic expressions. 
To keep our discussion simple, we will limit our language to the operations of addition 
denoted by +, multiplication denoted by *, and the operands b, c, and d. Let us list sever-
al strings in our language to get some sense of its syntax: 

1. b 
2. b+b+b 
3. b+c 
4. b*c+d 
5. (b+c+d)*b 
6. b+(c+d) 

Compiler Construction Using Java, JavaCC, and Yace. First Edition. Anthony J. Dos Reis 83 
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7. (b) 

8. ( ( b ) ) 

An arithmetic expression can consist of a single operand (string 1) or several operands 
separated by either the + or * operators (strings 2,3, and 4). We can use parentheses to in-
dicate a specific order of evaluation (strings 5 and 6). For example, in string 5, the paren-
theses indicate that the two addition operations should occur before the multiplication op-
eration. An arithmetic expression that is enclosed in parentheses is also an arithmetic 
expression, even if the parentheses are not needed to indicate a specific order of evalua-
tion (strings 7 and 8). 

The following strings are not arithmetic expressions: 

9. be 
10. () 
11. b++c 
12. b* )c+d( 

Multiplication cannot be specified simply by juxtaposing (i.e., placing next to each 
other) two operands, as we commonly do in conventional mathematical notation (string 
9). Parentheses cannot be used without enclosing an expression (string 10). Operators 
cannot be juxtaposed (string 11). A left parenthesis cannot be used without a balancing 
right parenthesis to its right, and a right parenthesis cannot be used without a balancing 
left parenthesis to its left (string 12). 

Now that we have a sense of its syntax, let us write a grammar that generates the lan-
guage of arithmetic expressions. In this grammar, we distinguish terminals from nonter-
minals by quoting terminals. We also place a space between successive terminals and 
nonterminals, and use descriptive names for nonterminals. 

G4.1 
1. expr —» expr " + " expr 
2. expr —»· expr "* " expr 
3. expr -^ "b" 
4. expr —* "c" 
5. expr -► "d" 
6. expr -> " (" expr ") " 

Let us consider the parse tree for the string b+c* d in this grammar. There are, in fact, 
two parse trees (see Figure 4.1). The first parse tree (Figure 4.1a) suggests that we per-
form the addition operation first since the substring b+c corresponds to a subtree. This in-
terpretation is inconsistent with the mathematical convention that multiplication has 
precedence over addition. The second parse tree (Figure 4.1b), on the other hand, is con-
sistent with mathematical convention; that is, it implies that the multiplication operation 
is performed first. Clearly, G4.1 is ambiguous with respect to operator precedence. 

Let us devise a grammar that does not have the multiplication-addition precedence 
ambiguity of G4.1. We will use the "one-way street" technique (see Section 3.5) to force 
an ordering on the use of the productions, thereby eliminating this ambiguity. We get 

G4.2 
1. expr —» expr " + " expr 
2. expr —* term (one-way street) 
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3. term —» term " * " term 
4. term -> "b" 
5. term —> " c " 
6. term -» "d" 
7. term -» " (" expr " ) " 

Production 2, the "one-way street," forces multiplication below addition in the parse tree, 
thereby giving multiplication higher precedence. Now, only one parse tree exists for 
b+c* d (see Figure 4.2). 

Parentheses in an arithmetic expression can change the order of operation. For exam-
ple, consider the string b* (c+d), whose parse tree using G4.2 is in Figure 4.3. 

Because the parenthesized expression is a term in the multiplication operation, it must 
be evaluated before the multiplication operation. Note that the parentheses in Fig. 4.3 
force the addition operation to occur lower than multiplication in the parse tree. 

Although G4.2 does not have the addition-multiplication ambiguity that is in G4.1, it, 
along with G4.1, has an ambiguity regarding the evaluation order of like operations (for 
example, successive additions or successive multiplications). There are, for example, two 
parse trees for the string b+c+d (see Figure 4.4). 

In Figure 4.4a, b+c corresponds to a subtree, suggesting, therefore, that the addition 
operations in b+c+d are performed in left-to-right order. The second parse tree (Figure 
4.4b), however, has c+d as a subtree, suggesting a right-to-left order. 

Let us now convert G4.2 to a grammar that implies that left associativity, that is, equal 
precedence operations (which, of course, includes like operations), are performed in left-
to-right order unless parentheses override that order. We will do this by forcing the gener-
ation of the addition operators and associated terms in right-to-left order. Because we 
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generate the leftmost operator last, it ends up lowest in the parse tree. Thus, the resulting 
parse tree implies the leftmost addition is performed first. Our new grammar is 

G4.3 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

expr 

expr 
term 
term 

factor 

factor 

factor 

factor 

-» 
— > 
-> 
- ► 

-» 
-> 
-> 
-> 

expr " 

term 
term '" 
factor 

"b" 
"c" 
"d" 
" (" ex; 

The use of production 1 zero or more times generates a list of of zero or more occur-
rences of 

" + *' term 

from right to left. Production 2 then generates a single term that precedes this list. Simi-
larly, production 3 generates a list of zero or more occurrences of 

This grammar is good 
for bottom-up parsers. 
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from right to left. Production 4 then generates a single f a c t o r that precedes this 
list. Figure 4.5 shows the parse tree for b+c+d in G4.3. Note that the left addition op-
erator is lower in the tree than the right addition operator, thereby implying left asso-
ciativity. 

We obtained G4.3 from G4.2 by eliminating the remaining ambiguity in G4.2. G4.3 
captures both the desired precedence and the desired associativity rules for addition and 
multiplication, in addition to specifying the language of arithmetic expressions. 

Exercise 4.1 

Construct the parse tree for b+c+d* b* c* d using G4.3. 

Answer: 

term * factor 
I I 

factor b 

Notice that the subtree corresponding to b+c is the left operand for the right addition op-
erator. This configuration implies left associativity for addition. The multiplication opera-
tors are similarly configured, implying left associativity for multiplication as well. Notice 
also that the subtree corresponding to d* b* c* d is the right operand for the right addition 
operator. This configuration implies the higher precedence of multiplication relative to 
addition. 
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Although G4.1 and G4.3 are equivalent grammars, G4.3 provides more information, 
namely, operator precedence and associativity. If we design a compiler based on G4.3, the 
proper precedence and associativity are specified by the grammar. However, if we use 
G4.1, then we would have to specify precedence and associativity information elsewhere, 
since it is not provided by the grammar. 

Grammar G4.3 has two left recursions, one in production 1 and one in production 3. 
Each of these left recursions generates a list right to left. Production 1, along with produc-
tion 2, generates a list of terms, separated by +: 

term + term + . . . + term 

Production 3, along with production 4, generates a list of factors, separated by *: 

factor * factor * ... * factor 

Some parsing techniques are incompatible with grammars that have left recursion, 
so let us eliminate the left recursions in G4.3 by converting them to right recursions us-
ing the technique that we studied in Section 3.10. To generate the list of terms, we can 
use 

expr —» term termList 
termList —» "+" term termList 
termList —>λ 

Here the expr production generates the initial term. t e r m L i s t then generates zero or 
more occurrences of 

"+" term 

to the right. To generate the list of factors, we can use 

term —» factor factorList 
factorList —» "*" factor factorList 
factorList —»λ 

Here the term production generates the initial f a c t o r . f a c t o r L i s t then generates 
zero or more occurrences of 

"*" f a c t o r 

to the right. Our new grammar is 

G4.4 This grammar is good 
1. expr —* term t e r m L i s t for top-down parsers. 
2. t e rmLis t —-» " + " term t e r m L i s t 
3. t e r m L i s t —» λ 
4. term —» factor factorList 
5. factorList —* "*" factor factorList 
6. factorList —* λ 
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7. 
8. 
9. 
10. 

factor 

factor 
factor 

factor 

-» "b" 
-H> "c" 

-» "d" 
^ fl / II expr ") 1 " 

G4.4 creates rather unusual parse trees. Let us look at the parse trees for b+c*d and 
b+c+d given in Figure 4.6. From Figure 4.6, it is not clear what associativity or prece-
dence, if any, G4.4 implies. However, in Chapter 7 we will see that G4.4 does, indeed, 
imply the desired associativity and precedence for addition and multiplication. 

G4.3 and G4.4 are two important grammars for the compiler designer. Both specify the 
language of arithmetic expressions and, in addition, capture the desired associativity and 
precedence. 

Parsers fall into one of two categories: top-down or bottom-up. Grammars with left re-
cursion are good for bottom-up parsers but not for top-down parsers; grammars with right 
recursion are good for top-down parsers but not bottom-up parsers. Thus, G4.3 is well 
suited for bottom-up parsers, and G4.4 is well-suited for top-down parsers. We will see 
both of these grammars again when we study top-down parsers (in Chapter 7) and bot-
tom-up parsers (in Chapter 22). 
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Exercise 4.1 

What is the effect of changing production 1 in G4.3 to 

expr —» term " + " expr 

and production 3 to 

term —> f a c t o r "*" term 

Answer: 

The modified grammar generates the same language but implies right associativity for ad-
dition and multiplication. Because the modified grammar does not capture the associativ-
ity we want for addition and multiplication, it is not a good grammar for either top-down 
or bottom-up parsing. 

4.3 SPECIFYING ASSOCIATIVITY AND PRECEDENCE IN GRAMMARS 

G4.1 in the preceding section has an ambiguity with respect to operator precedence. We elim-
inated this ambiguity with a "one-way street" (production 2 in G4.2). The effect of the one-
way street is to position multiplication below addition in the parse tree. This structure implies 
a higher precedence for multiplication. G4.1 and G4.2 illustrate the the following rule: 

Force an operation lower in the parse tree to give it higher precedence. 

In G4.3 in the preceding section, we saw that the productions 

expr —» expr " + " term 
expr —* term 

imply left associativity. If we use these productions to generate 

term "+" term "+" term 

we get the parse tree in Figure 4.7a. Because the left addition is lower than the right addi-
tion, the tree implies left associativity. 

Now let us use the "mirror-image" productions, that is, productions that use right-re-
cursion rather than left recursion: 

expr —» term + expr 
expr —» term 

If we use these productions to generate 

term "+" term "+" term 

we get the parse tree in Figure 4.7b that clearly implies that the right addition is per-
formed before the left addition because it is lower in the tree. These two examples illus-
trate the following rule: 

Left recursion implies left associativity; right recursion implies right associativity. 



4.3 SPECIFYING ASSOCIATIVITY AND PRECEDENCE IN GRAMMARS 91 

However, this rule applies only to situations in which operators, along with their 
operands, constitute subtrees of operands higher in the tree (as we have in Figure 4.7a and 
4.7b). Notice we do not have this situation for G4.4 (see Figure 4.7c). G4.4 uses right re-
cursion (see productions 2 and 5) but, in fact, implies left associativity for both addition 
and multiplication (we will show this in Chapter 7 where we revisit G4.4). 

Let us now augment G4.3 with the exponentiation operator (denoted with "Λ"). Mathe-
matical convention gives exponentiation right associativity and higher precedence than 
multiplication. To get higher precedence, we simply have the multiplication operands 
(i.e., the f a c t o r nonterminal) generate the exponentiation expressions. Exponentiation 
operations will, therefore, appear lower than multiplication operations in a parse tree. To 
get right associativity, we use right recursion. Our new grammar is 

G4.5 

1. expr —» expr " + " 
2. expr —» term 

3. term —» term "* " 

4. term —» factor 

t e rm Use left recursion for 
left associativity 

f a c t o r 
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5. 
6. 
7. 
8. 
9. 
0. 

f a c t o r 
f a c t o r 
p r i m a r y 
p r i m a r y 
p r i m a r y 
p r i m a r y 

-» 
-» 
- » 
—̂  
-> 
-» 

p r i m a r y Λ 

p r imary 
" b " 
" c " 
"d" 
" (" expr 

f a c t o r 

II \ 1! 

Use right recursion for 
right associativity 

Exercise 4.2 

Draw the parse tree for b"cAd using G4.5. 

Answer: 

b primary A factor 

primary 
I 
d 

4.4 BACKUS-NAUR FORM 

Jim Backus and Peter Naur are two pioneers in programming languages and compiler de-
sign, after whom the Backus-Naur form is named. Backus-Naur form (BNF) is a particu-
lar form in which we can represent context-free grammars. Actually, there are a number 
of variants of BNF. In the one we will use: 

• ":" is used instead of "—» " to separate the left side of a production from its right 
side. 

• Productions with the same left side are written together, with the left side appearing 
once and the right sides separated by "|". 

• Terminal symbols are surrounded by quotes. 
• Spaces separate successive symbols on the right side of productions. 

For example, G4.4 in BNF is 

G4.6 
expr 
termList 
term 
factorList 
factor 

term termList 
"+" term termList I λ 
factor factorList 
"*" factor factorList | λ 
"b" | "c" I "d" | "(" expr 
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Since lists and optional items occur so frequently in programming languages, BNF is 
usually extended to allow the direct specification of lists and optional items. In extended 
BNF: 

• An asterisk indicates that the preceding item is repeated zero or more times. 
• A plus indicates that the preceding item is repeated one or more times. 
• A question mark indicates that the preceding item is optional. 
• The vertical bar can not only separate the right sides of productions with the same 

left side but also separate choices within the right side of one production. 
• Parentheses specify the scope of the vertical bar, asterisk, plus, and question mark 

symbols. 

Let us rewrite G4.6 in extended BNF. We get: 

G4.7 
expr : term ("+" term)* 
term : factor ("*" factor)* 
factor : "b" | "c" | "d" | "(" expr " ) " 

The expr production indicates that an expression consists of a leading term followed by 
zero or more occurrences of 

"+" term 

Similarly, the term production indicates that a term consists of a leading factor followed 
by zero or more occurrences of 

"*" f a c t o r 

The f a c t o r production above is actually four separate productions, one for each alterna-
tive listed. Here, the vertical bar separates the right sides of these four productions. The 
vertical bar can also separate choices within the right side of a production. For example, 
in the production 

B : "c" ("d" | "e") 

the vertical bar indicates there is a choice between "d" and " e " after a " c . " The paren-
theses show the scope of the vertical bar operator. Thus, this BNF production represents 
two productions: 

B —> cd 
B —> ce 

Suppose we omit the parentheses in the BNF production above to get 

B : " c " "d" | " e " 

Then the left alternative includes both " c " and "d. " Thus, this BNF production repre-
sents the following two productions: 

B -> cd 
B -► e 
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If we want the symbols |, ?, ( , ) , * ,+ , or the blank in extended BNF to be part of the 
language (i.e., to be treated as terminal symbols of the grammar), we simply enclose them 
in quotes. For example, "b" "* " represents b followed by the terminal symbol *; but 
("b") * represents zero or more b's. 

4.5 SYNTAX DIAGRAMS 

Another way to represent a context-free grammar is to use a syntax diagram, a graphical 
structure that represents the grammar's productions. Every group of productions in a 
grammar with the same left side can be represented by one syntax diagram. Every path 
through a syntax diagram for some nonterminal "spells out" an allowable sequence of 
symbols for that nonterminal. Nonterminals are enclosed in rectangles. Let us start with a 
simple example. The grammar 

G4.8 
1. 
2. 
3. 
4. 
5. 
6. 
7. 

S - > 

A - > 

A - > 

A - » 

A —> 

A - > 

A - > 

AAd 
e 
f 
ec 
e d 
f c 
f d 

represented by syntax diagrams is 

The first diagram spells out AAd, indicating that S generates AAd. The second diagram 
spells out the various strings that A generates. It shows that A generates either an initial e 
or f (since every path through the diagram starts with either e or f) optionally followed 
by c or d. We know c and d are optional because there is a path along the bottom arrow 
on the right that is unlabeled. Thus, we can exit to the right without spelling out c or d. 
This diagram illustrates how a syntax diagram represents choice (by a fork in the dia-
gram) and an optional item (by a fork with one arrow unlabeled). 

Lists in a syntax diagram are represented with a loop. Consider 

G4.9 
1. S 
2. S 

bS 
c 

Every string generated by this grammar consists of a list of zero or more b's followed by 
a single c. Its syntax diagram is 
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We can also represent G4.9 with 

s 

However, this syntax diagram simply reflects the recursion in the grammar. Thus, the lan-
guage it defines is somewhat obscure compared to the previous syntax diagram. 

Exercise 4.3: 

Represent G4.4 using syntax diagrams. 

Answer: 

expr 

term 
J i 

term 

term 

factor 

factor 

factor 

expr ) ► 

A disadvantage of syntax diagrams is that they take up a lot of space. Their advantage 
is that they are essentially "pictures" of the grammatical structure of a language and are, 
therefore, easy for us to comprehend. 
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4.6 ABSTRACT SYNTAX TREES AND THREE-ADDRESS CODE 

To translate a source program, a compiler has to determine its structure. The structure of a 
program can be represented by its parse tree. However, a more efficient and easier-to-
work-with representation of the structure of a program is its abstract syntax tree. In an ab-
stract syntax tree, each nonleaf contains an operator. An operator can be an arithmetic op-
erator, such and + or *. It can also be a symbol that represents a more complex action such 
as that performed by an i f statement. For example, Figure 4.8a shows the parse tree for 
b+c+d corresponding to G4.3. Figure 4.8b shows its corresponding abstract syntax tree. 
Figure 4.8c shows the abstract syntax tree for the i f statement 

i f (x) y = 2; 

Notice that the abstract syntax trees specify only the essentials: the operator and the 
operands on which it operates. 

Parsers in compilers often translate the source code to an abstract syntax tree. Other 
components of the compiler then operate on the abstract syntax tree. For example, the se-
mantic analyzer can add attributes to the tree, such as data types, and perform type check-
ing. The optimizer can modify the tree so that the target code that is ultimately generated 
from it by the code generator is more efficient (see Figure 4.9). 

An abstract syntax tree is one type of internal representation that a compiler can use. 
Another type of internal representation is three-address code. Three-address code con-
sists of instructions each containing an operation and up to three addresses—one address 
for up to two operands, and one address for the result. For example, the three-address 
code for the abstract syntax tree in Fig. 4.8b is 

(+, @tl, b, c) // add b and c and assign to @tl 
(+, @t2,@tl,d) // add @tl and d and assign to @t2 

where @tl and @t2 are compiler-generated temporaries. For Figure 4.8c, the three-ad-
dress code is 

(if_false, x, @L0, null) // if x is false, goto @L0 
(=, y, 2, null) // assign 2 to y 
@L0: 
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For the compilers we will develop in this book, we will stick with the simple approach 
shown in Figure 1.2. That is, the principal components of our compilers will be the token 
manager, the parser, and the code generator. In our compilers, we will incorporate the 
functions of the semantic analyzer and the optimizer into the parser and code generator. 
Thus, we will not need separate components for these functions. 

4.7 NONCONTRACTING GRAMMARS 

A noncontracting grammar is a grammar in which the right side of each production is at 
least as long as its left side. We call such productions noncontracting productions. Obvi-
ously, in a noncontracting grammar, the application of a production in a derivation results 
in a string at least as long as the one to which it is applied. Thus, noncontracting gram-
mars yield derivations in which every sentential form is at least as long as its preceding 
one. For example, consider the following noncontracting grammar: 

G4.10 
1. S -> bS 
2. S -* b 

In the derivation, 

S => bS => bbS => bbb 

the first sentential form (S) is length one, the second (bS) is length two, the third (bbS) is 
length three, and the fourth (bbb) is length three. Each sentential form is at least as long 
as the preceding one. 

In context-free grammars, all productions except for lambda productions are noncon-
tracting. Lambda productions, however, are contracting because the left side of a lambda 
production has length one and its right side has length zero. 

4.8 ESSENTIALLY NONCONTRACTING GRAMMARS 

An essentially noncontracting grammar is either 

1. A noncontracting grammar. 
2. A grammar in which the start symbol does not appear on the right side of any pro-

duction, and whose only contracting production is a lambda production whose left 
side is the start symbol. 

The word "essentially" here means "in all cases except for one minor exception." For ex-
ample, the following grammar is essentially noncontracting: 
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G4.ll 
1. S ^ λ 
2. S - » BC 
3. B -» bb 
4. C -^ c 

We allow production 1, the lambda production, because its left side is the start symbol, 
and the start symbol does not appear on the right side of any production. Production 1 is, 
of course, a contracting production. However, this production can be used only once and 
only at the very beginning of a derivation. Observe that any derivation that does not start 
with the application of production 1 must start with production 2 (the other S production). 
Since production 2 eliminates S, we can never use production 1 later on in the derivation. 
If we use production 1 at all, we must use it in the first step of a derivation. If a contrac-
tion can occur in an essentially noncontracting grammar, it can occur only in the first step 
of a derivation. Thus, the impact of the lambda production is limited: it can only add the 
null string to the language. 

The following grammar is not essentially noncontracting because the start symbol, S, 
appears on the right side of the first production: 

G4.12 
1. S -» bS 
2. S -^ \ 

Its lambda production can produce a contraction in any step of a derivation, at which 
point the derivation ends. For example, in 

S => b S => b b S => b b 

contraction 

a contraction occurs in the third step of the derivation. 

4.9 CONVERTING A CONTEXT-FREE GRAMMAR TO AN ESSENTIALLY 
NONCONTRACTING GRAMMAR 

As we have seen in the preceding section, some context-free grammars are essentially 
noncontracting and some are not. We will now see that every context-free grammar that is 
not essentially noncontracting can be converted to an equivalent context-free grammar 
that is essentially noncontracting. Thus, we can define every context-free language with 
an essentially noncontracting grammar. 

We need to consider two cases when converting a context-free grammar to an essen-
tially noncontracting grammar: 

1. The grammar does not generate the null string. 
2. The grammar generates the null string. 

In the first case, we simply eliminate all lambda productions using the transformation de-
scribed in Section 3.7. For example, consider 
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G4.13 
1. S -» dB 
2. B -* bB 
3. B ^ λ 

Since production 1 is the only s production and, therefore, has to be used in the first step of 
any derivation, we can conclude that every string generated by G4.13 must start with the d 
that appears on the right side of production 1. Thus, G4.13 does not generate the null string. 
To convert it to a noncontracting grammar, we eliminate the lambda productions to get a 
grammar that is noncontracting and, therefore, by definition, essentially noncontracting: 

G4.14 
1. S -» dB 
2. S -> d 
3. B -» bB 
4. B -> b 

Now consider an example of the second case (a grammar that can generate the null 
string): 

G4.15 

S -» bcS 
S -»A 

For this case, our conversion involves a two step procedure. First, like case 1, we elimi-
nate all lambda productions. We then get a grammar that generates everything G4.15 
does, except the null string: 

G4.16 
1. S -> bcS 
2. S -* be 

Next, we modify the grammar so it can also generate the null string by 

1. Creating a new start symbol, say S' (then S is no longer the start symbol) 
2. Adding the productions 

S' ^ λ 
S' - » S 

We get 

G4.17 

1. S' -»A 
2. S' - » S 

3. S -> bcS 
4. S -» be 

G4.17 can generate every nonnull string that G4.16 can generate. Simply use production 2 
to generate the old start symbol S, and then use the productions from G4.16 (all of which 
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are in G4.17) to generate whatever G4.16 can generate. For example, a derivation of 
bebe in G4.17 is 

S' => S => bcS => bebe 

G4.17, however, can also generate the null string, by virtue of production 1. Thus, G4.17 
is equivalent to our original grammar G4.15, and, moreover, it is essentially noncontract-
ing since the only lambda production it contains has the start symbol on its left side, and 
the start symbol does not appear on the right side of any production. 

If an essentially noncontracting grammar has any unit productions, we can eliminate 
the unit productions using the technique given in Section 3.8. Note that the equivalent 
grammar without unit productions that results remains essentially noncontracting. For ex-
ample, if we eliminate the unit production (production 2) from G4.17, we get a new gram-
mar that is also essentially a noncontracting grammar: 

G4.18 
1. S' - ^ λ 
2. S' -» bcS 
3. S' -> be 
4. S -» bcS 
5. S -H> be 

We can conclude that 

Any context-free grammar can be converted to an equivalent essentially noncon-
tracting context-free grammar that contains no unit productions. 

Exercise 4.4: 

Convert 

S -> BC 
B —> bB 
B - * λ 
C -^ cC 
c - ^ λ 

to an equivalent essentially noncontracting grammar. 

Answer: 

S' ^>λ 
S' -^ S 
S -+ BC 
S -> B 
S -> C 
B -> bB 
B -^ b 
C -> cC 
C —> c 
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4.10 PUMPING PROPERTY OF CONTEXT-FREE LANGUAGES 
(OPTIONAL) 

Finite languages are always context-free. To see this, consider an arbitrary finite language 
F consisting of n strings: 

F={xt,x2,.. .,x„} 

A context free grammar that defines F consists of n S productions with right sides xt, x2, 
...,x„: 

G4.21 
1. S —»x, 
2. S —> x2 

n. S —* x„ 

We can even make a stronger assertion about finite languages: they are all regular. To es-
tablish this assertion, all we have to do is give a regular expression that defines F: 

xi\x2\...\x„ 

Of course, the actual regular expression would list all the strings rather than using the el-
lipsis " . . ." . 

Infinite languages, unlike finite languages, are not always context-free. Some like 
PAIRED = {b'c': / > 0} are context-free and some like TRIPLED = {b'c'd': / > 0} are 
not (we have yet to prove this). 

We now wish to describe a property called the pumping property that all infinite con-
text-free languages have. But before we do, we need to make a few observations about in-
finite context-free languages and their parse trees. 

Suppose all strings in a language L have lengths less than or equal to some number n. 
We say that n is an upper bound on the length of strings in the language. An upper bound 
on string length implies that L is finite. For example, suppose that n = 2 and our lan-
guage's alphabet is Σ = {b, c}. Then Σ* has only seven strings whose length is less than 
or equal to 2 (λ, b, c, bb, be, cb, cc). Thus, any language over Σ with 2 as an upper 
bound on string length can have at most seven strings. With larger alphabets and upper 
bounds, the number of strings is larger but still finite. 

If an upper bound on string length implies that a language is finite, it follows that an 
infinite language has no upper bound on string length. Thus, for any number n, an infi-
nite language must have strings whose length is greater than n. Longer strings, in gen-
eral, require taller parse trees. Because there is no upper bound on the length of strings 
in an infinite context-free language, there similarly cannot be an upper bound on the 
height of parse trees. All infinite context-free languages, therefore, have the following 
property: 

For any number m, we can always find a string in an infinite context-free language 
that is long enough that the height of its parse tree has to be greater than m. 
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Suppose L is an infinite context-free language. From Section 4.9, we know that there 
must exist an essentially noncontracting grammar G with no unit productions that defines 
L. Suppose G has k nonterminals. Let us select a string z in L that is long enough that the 
height of its parse tree is at least k + 2, that is, the tree has at least k + 2 levels, k + 2 or 
more levels implies that there must exist at least one path from the bottom of the tree to 
the top that contains at least k + 1 nonterminal symbols plus one terminal symbol at the 
bottom (see Figure 4.10). Now here is a critical observation: Since there are only k dis-
tinct nonterminals in the grammar, there must be at least one repetition of a nonterminal 
along this path. Let us say this repeated nonterminal is R. Let us examine a derivation in 
which the nonterminal R repeats as in Figure 4.10. Consider the grammar 

G4.22 

1. S —> bbbRccc 

2. R -^ dddReee 
3. R -H> fff 

The derivation of bbbdddf f f eeeccc is 

S => bbb R ccc => bbb ddd R eee ccc => bbb ddd f f f eee ccc 
u | y u v * x y u v w x y 

upper R lower R 

We have designated various substrings in the derivation above with the letters u, v, w, x, 
and y. We have also inserted spaces to set off these substrings. We can see that as the de-
rivation proceeds from S to the upper occurrence of R, the substrings u and y appear to the 
left and right, respectively, of the upper R. Then, as the derivation continues to the lower 
R, two additional substrings, v and*, appear to the left and right, respectively, of the low-
er R. Finally, the lower R generates the substring w. Let us summarize the essential fea-
tures of this derivation. 

Whenever we have a nonterminal repetition as in Figure 4.10, the derivation structure 
shown in Figure 4.11 necessarily exists. This derivation structure produces five sub-
strings—u, v, w, x, y—as described above, of the generated string z such that uvwxy = z. 
Figure 4.12 shows the form of its corresponding parse tree. 
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The substrings w, w, w, x, and y in Figure 4.12 have some very interesting properties. 
Let us see what they are. Because our grammar is essentially noncontracting and has no 
unit productions, v and x cannot both be null. If both v and JC were null, then the portion of 
the parse tree from the upper to lower R would have to have nothing sprouting off to the 
left and right. This feature, in turn, would imply that only unit productions were used 
from the upper R to the lower R. But our grammar has no unit productions. Thus, v and x 
cannot both be null. Mathematically stated, we have that |VJC| > 0. 

In the path from the terminal symbol up to the start symbol in Figure 4.8, we know 
there has to be at least one repetition of a nonterminal symbol. Assume the upper R in Fig-
ure 4.10 is the first nonterminal repeated as we proceed up from the terminal symbol at 
the bottom (there may be more than one repetition). We can then conclude that the subtree 
rooted at the upper R has at most k + 2 levels (k distinct nonterminals plus one terminal 
symbol at the bottom plus one repeated nonterminal). That is, the subtree rooted at the up-
per R has an upper bound on its height, namely, k + 2. But this implies that there is an up-
per bound on the length of substring the upper R ultimately generates. That is, there is an 
upper bound on the length of vwx. Moreover, this upper bound does not depend of the 
particular string z we pick. It depends only on the grammar. In other words, there is a sin-
gle upper bound that applies to any z we might pick. Mathematically stated, we have that 
\vwx\ < p, for some constant p that does not depend of z. 

Consider the tail end of the derivation in Figure 4.11: 

* 
uvKxy => uvwxy 
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It tells us that 

R => W 

But then that implies the following derivation—a new derivation—is possible: 

The first 
part of the 
original 
derivation 

uRy => uwy 

Thus, uwy is also a string in the language because we have a derivation of it from S. Now 
consider the middle portion of the derivation in Figure 4.9: 

* 
uRy => uvRxy 

It tells us that 

* 
R => VRX 

But this means that the following derivation is also possible: 

From the 
* 

original derivation Because R => w 

S => uRy => uvRxy => wvvRxxy => uwwxxy 
· * ■ - * 

Because 
* 

R => vRx 

Thus, the terminal string, uwwxxy, is also in the language. In the derivation above, the 
third R generates w. We, of course, can have this R generate vRx, producing yet another 
v-x pair. In fact, we can generate as many v-x pairs as we want. We simply have each R 
generate vRx until we have the desired number of v-x pairs. We then have the last R gen-
erate w. All the terminal strings we can get in this fashion are in the original language be-
cause they all can be derived from the start symbol. Stated mathematically, we have that 
uVwx'y G L for all / s 0. 
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We now can state the pumping property of infinite context-free languages: 

Let L be an infinite context-free language. If z is in L and is long enough, then there exists 
a u, v, w, x, and y such that 

z = uvwxy 

where 

1. |vx|>0 
2. |VWJC| < p for some constant p that does not depend on z 
3. uv'wx'y G L for all / > 0 

■ 
Keep in mind that the pumping property does not assert that properties 1-3 above hold for 
every decomposition of z into five substrings u, v, w, x, and y. It asserts only that there 
must be at least one decomposition for which 1-3 hold. 

Since every infinite context-free language has the pumping property, any infinite lan-
guage that does not have the pumping property cannot be context-free. Thus, if we show 
that an infinite language does not have the pumping property, we have proven that the 
language is not context-free. Let us prove that TRIPLED = {b'c'd': / > 0} is not context-
free using this approach. 

Take the string z = b"c"d" in TRIPLED. Select n big enough so that z is long enough for 
the pumping property to apply. If TRIPLED is context-free, then, according to the pumping 
property, z = b"c"d" must be decomposable in at least one way into uvwxy such that uv'wx'y 
e TRIPLED for / > 0. Let us try to find one decomposition that works. Suppose v spans a 
b-c boundary in z. For example, suppose v = bbccc. Then vv = bbcccbbccc. Since c's 
precede b ' s in vv, any string that contains w cannot be in TRIPLED. Thus, uvvwxxy cannot 
be in TRIPLED so this decomposition does not work. Similarly, any decomposition in 
which v spans a c-d boundary or* spans a b-c or c-d boundary does not work. The only 
remaining possible decompositions is to have v and x each entirely in the b, c, or d regions. 
But then at least one region—b, c, or d—has neither v nor x. But then uvvwxxy cannot be 
in TRIPLED because the region without v or x will not be affected by the replication of v 
and JC in uvvwxxy. uvvwxxy will not have an equal number of b's, c's, and d's. As we "pump 
up" z (i.e., increase the exponent / in uv'wx'y) or "pump down" z (by setting i in uv'wx'y to 
0), we get strings that are not in the given language TRIPLED. 

Regardless of how we decompose z into uvwxy, the set {uv'wx'y : / > 0} has strings not 
in TRIPLED. Thus, TRIPLED does not have the pumping property, proving that 
TRIPLED is not a context-free language. 

PROBLEMS 

1. Add the operations subtraction and division to grammars G4.1, G4.2, G4.3, and G4.4. 
2. Draw the parse tree for b+ (((b+c) ) ) using grammar G4.4. 
3. Convert G4.3 to a grammar that implies a right-to-left evaluation of like operations. 
4. Write a grammar that generates all the strings over the alphabet {b, c} in which the 

number of b's equals the number of c's. (Hint: You need only four productions.) 
5. Draw the parse tree of b* c* d+c* d+d using G4.3, G4.4, and G4.5. 
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6. Write a grammar that generates arithmetic expresions in postfix notation (i.e., the op-
erator appears after the two operands). Use left recursion. Parentheses are never 
needed in postfix notation. Why? How are operator precedence and associativity han-
dled in postfix notation? 

7. Rewrite G4.1 in BNF and extended BNF. 
8. Rewrite G4.2 in BNF and extended BNF. 
9. Represent G4.5 using syntax diagrams. 

10. Represent G4.10 using syntax diagrams. 
11. Draw the parse tree for b+c* c^b using G4.5. 
12. Convert the following grammar to an equivalent essentially noncontracting grammar: 

1. s -* BCD 
2. S -* bS 
3. B -> bBB 
4. B ^ λ 
5. C -> c 
6. D -* D 
7. D -*A 

13. Convert the following grammar to an equivalent essentially noncontracting grammar: 

1. S -> A 
2. A -* B 
3. B -> C 
4. C - > λ 
5. C -> c 

14. Suppose G is a grammar that does not generate the null string. Does adding S —» λ to 
G (where S is the start symbol) add the null string and only the null string to L(G)? 
Explain. 

15. Prove that the language {b'c'd'e': / > 0} is not context-free. 
16. Prove that the set of all strings over the alphabet {b, c, d} in which the number of b's 

is equal to the number of c's, and the number of c's is equal to the number of d's, is 
not context-free. Note that the b's, c's, and d's can appear in any order in this 
language. 

17. Prove that the language of nonrepeating lists in Section 2.11 is not context-free. 
18. Prove that the language {ww : w G (b | c)*} is not context-free. 
19. Prove that the language {b'c'd* : i > j > k} is not context-free. Hint: use z = 

b«+2cfi+id« an(j pUmp b0th up and down. 
20. Prove that the language {b'c'd'e': i,j ^ 0} is not context-free. 
21. Can a language that is not context-free have the pumping property? 
22. Does it follow from our discussion in Section 4.10 that if an infinite language has the 

pumping property, it is necessarily a context-free language? 
23. Show that the context-free languages are closed under union. That is, let ¿, and L2 be 

arbitrary context-free languages. Show that L, | L2 is also a context-free language. 
24. Let ¿, = {b'c'd': i,j > 0} and L2 = {b'c'd': i,j > 0}. What is the language ¿, n L2? 

Are the context-free languages closed under intersection? That is, does the intersec-
tion of two context-free languages always yield a context-free language? 
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CHOMSKY'S HIERARCHY (OPTIONAL) 

5.1 INTRODUCTION 

In Section 2.9, we saw that context-free grammars are more powerful than regular gram-
mars. That is, every language that can be defined with a regular grammar can also be de-
fined by a context-free grammar, but not every language that can be defined by a context-
free grammar can be defined by a regular grammar. In this chapter, we study 
context-sensitive grammars and unrestricted grammars, two new types of grammars. Con-
text-sensitive grammars are more powerful than context-free grammars. Unrestricted 
grammars, in turn, are more powerful than context-sensitive grammars. Thus, our four 
types of grammars—regular, context-free, context-sensitive, and unrestricted—define 
languages that form a hierarchy; each language type in this hierarchy includes all the lan-
guages in the preceding language type: All regular languages are context-free, all context-
free languages are context-sensitive, and all context-sensitive languages are unrestricted 
(see Figure 5.1). We call this hierarchy of languages Chomsky's hierarchy, named after 
Noam Chomsky, a pioneer in formal language theory. 

Although context-sensitive and unrestricted grammars are more powerful than con-
text-free grammars, we do not use them in compiler design for two reasons: 

1. Context-free grammars are powerful enough. 
2. Processing a language based on a context-sensitive or unrestricted grammar is more 

complex than processing a language based on a context-free grammar. 

Although we do not use context-sensitive and unrestricted grammars in compiler de-
sign, we should, nevertheless, familiarize ourselves with them. They provide a valuable 
insight into grammars. 

5.2 CONTEXT-SENSITIVE PRODUCTIONS 

The substrings that immediately precede and immediately follow a symbol in a string are 
called, respectively, the left and right contexts ofthat symbol. For example, in the string 
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bBcAdC, the left contexts of A are the substrings that extend up to A, namely, bBc, Be, 
and c. The right contexts of A are those substrings that start with d, namely, dC and d. We 
call the entire substring that precedes A (i.e., bBc) and the entire substring that follows A 
(i.e., dC) the full left context of A and the full right context of A, respectively (Figure 5.2). 

All the productions in a context-free grammar are rules that specify a replacement 
without regard to context (hence, the name "context-free"). For example, we can use the 
production A —> db to replace A anywhere A appears, regardless of its left and right con-
texts. A context-sensitive production, on the other hand, can specify both a replacement 
and the required context in which the replacement can occur. For example, the production 
A —> db together with the requirement that A must be preceded by c and followed by d is 
a context sensitive production. With this production, we can replace the A in bBcAdC 
with db. But we cannot replace the A in eAe since the context requirements are not met 
by eAe. 

A simple way to represent a context-sensitive production is to have the left side of the 
production specify the required context. For example, we can represent the preceding 
context-sensitive production with cAd —* cdbd. This production is really specifying a re-
placement for A only, in the context of c d. The initial c and trailing d on the left side 
of the production—the required contexts—are carried over to the right-hand side. We can 
also use this technique to specify just a left context or just a right context. For example, 
the production cA —> cdb specifies that A can be replaced by db whenever its left context 
is c. In this case, we do not require a particular right context. 
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Now consider the production that commutes A and B: 

AB ->BA 

It is certainly not context-free since its left side is not a single nonterminal. Neither is it a 
context-sensitive production (if A is a left context, then A should be leftmost on the right 
side; if B is a right context, then B should be rightmost on the right side). 

Now suppose we start with the string AB and apply the following productions, all of 
which are context-sensitive, in the order given: 

AB —> AQ A is the left context 
AQ —> BQ Q is the right context 
BQ —> BA B is the left context 

Using these productions, we can get the derivation 

AB => AQ => BQ => BA 

Notice that the effect of these three context-sensitive productions is the same as the effect 
of AB —* BA, namely, to commute AB. Because we can realize the effect of a production 
like AB —> BA with a set of context-sensitive productions, we classify such productions as 
context-sensitive, although in a strict sense, they are not. 

For a grammar with nonterminal set N and terminal set T, we can show that any pro-
duction of the form x—*y where x G {N\T)+ and y G (N]T)* is either context-sensitive al-
ready or can be converted to an equivalent set of context-sensitive productions using the 
technique we applied to AB —» BA. Thus, it is quite reasonable to classify all such produc-
tions as context-sensitive. 

Observe that a context-sensitive production can contract (i.e., have a right side shorter 
than its left side). For example, cAc - ^ c c and ABA —> cD are both contracting produc-
tions, neither of which is a lambda production. Thus, a grammar with no lambda produc-
tions is not necessarily noncontracting (unless, of course, it is a context-free grammar). 

An example of a grammar with context-sensitive productions is 

G5.1 
1. 
2. 
3. 
4. 
5. 

S 
bS 
Ac 
Ae 
eAe 

-> 
-» 
-> 
-> 
— > 

bSc 
beA 
Aec 
Aee 
ede 

The derivation of bedeec in this grammar is: 

S => bSc => beAc => beAec => beAeec => bedeec 
1 2 3 4 5 

In each intermediate string above, we give the number of the production used and under-
line the substring replaced. On inspection of this grammar, we can see that we must use 
the productions in the following order: 

production 1 /' times ( i s 1) which generates b'Sc' 
production 2 once which generates b'eAc' 
production 3 once which generates b'eAec' 
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production 4 y times (j > 0) which generates b'eAe/+1 c' 
production 5 once which generates b 'ede^ 'c ' 

The language generated, therefore, is {b'ede/+1c' : / s l,j — 0}· This language can 
also be generated by a context-free grammar (see Problem 5.2). Providing an equivalent 
context-free grammar for a grammar that uses context-sensitive productions, however, 
is not always possible. That is, languages exist that can be generated by grammars 
containing context-sensitive productions that cannot be generated by any context-free 
grammar. 

5.3 CONTEXT-SENSITIVE GRAMMARS 

A context-sensitive grammar is any essentially noncontracting grammar (see Section 4.8). 
Thus, a context-sensitive grammar can include context-sensitive productions but not con-
tracting productions (such as ABC —* aC or A —> A) with one exception: It can contain a 
lambda production for the start symbol as long as the start symbol does not appear on the 
right side of any production. The only restriction on the left side of a production is that it 
must be nonnull. A context-sensitive language is any language that can be defined by a 
context-sensitive grammar. 

Not all context-free grammars are context-sensitive grammars—only those context-
free grammars that are essentially noncontracting. However, we can always convert a 
context-free grammar that is not a context-sensitive grammar to an equivalent context-
sensitive grammar. We simply convert it to an essentially noncontracting grammar us-
ing the technique in Section 4.9. For example, consider the following context-free gram-
mar: 

G5.2 
1. S ->bS 
2. S - ^ λ 

G5.2 is not essentially noncontracting, and, therefore, not a context-sensitive grammar. 
Converting G5.2 to an essentially noncontracting grammar using the technique in Section 
4.9, we get: 

G5.3 
1. S' -» S 
2. S' -H»A 
3. S ->■ bS 
4. S -» b 

G5.3 is equivalent to G5.2 and is both a context-free grammar and a context-sensitive 
grammar. Since we can define every context-free language with a context-sensitive gram-
mar, we can conclude that 

All context-free languages are also context-sensitive languages. 

Recall from Section 4.10 that the language TRIPLED = {b'c'd': / 2 0) cannot be gen-
erated by any context-free grammar. Let us now examine a context-sensitive grammar 
that can generate this language: 
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G5.4 
1. 
2. 
3. 
4. 
5. 
6. 

S 

s 
Q 
Q 
Cb 
Cc 

^ λ 

-> Q 
- » bCQd 
-> b e d 
-* bC 
—» cc 

The heart of this grammar is production 3 which allows Q to generate b's and C's to its 
left and d's to its right. 

The number of b's, C's, and d's produced by the repeated use of production 3 are al-
ways equal (since each single application of production 3 produces an equal number of 
b's, C's, and d's—exactly one). Because each C will ultimately generate c, the b's and 
C's produced by production 3 are not in the proper order to generate a string in 
TRIPLED. All the b's should precede all the C's. Production 5, however, allows any Cb 
pair to be commuted. With its repeated use, production 5 can rearrange the b's and C's 
so that all the b's precede all the the C's, and all the C's precede all the d's. Repeated 
use of production 6 can then convert the C's to c's. Here is the complete derivation of 
bbcedd: 

S => Q => bCQd => bCbcdd => bbCccdd => bbcedd 
2 3 4 5 6 

It is not hard to see that G5.4 can generate every string in TRIPLED. We must also 
make sure G5.4 can generate only strings in TRIPLED. For example, G5.4 should not be 
able to generate bebedd. Let us try to derive bebedd and see what happens: 

S => Q => bCfid => bCbcdd 
2 3 4 

When we reach bCbcdd, we are stuck. We cannot change C to c unless it has c to its 
right. Thus, we have to commute C and b using production 5 and then use production 6. 
But then we get bbcedd, not bebedd. 

From G5.4, we can conclude that 

Not all context-sensitive languages are context-free languages. 

5.4 UNRESTRICTED GRAMMARS 

An unrestricted grammar is a grammar in which no restrictions are placed on the form of 
productions, except for the requirement that the left side of a production be nonnull. The 
difference between context-sensitive and unrestricted grammars is that the latter allow 
contracting productions. Contracting productions provide unrestricted grammars with ad-
ditional power relative to context-sensitive grammars. That is, there are languages that 
can be defined by an unrestricted grammar but not by a context-sensitive grammar. 

Since every type of production allowed in a context-sensitive grammar is also allowed 
in an unrestricted grammar, every context-sensitive grammar is also an unrestricted gram-
mar. The reverse, however, is not always true. For example, G5.5 is unrestricted but not 
context-sensitive because it can contract (remember that in a context-sensitive grammar 
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we allow the production S 
tion): 

G5.5 
1. S 
2. S 
3. S 
4. Cb 
5. Cc 

-► bCSd 
-*A 
-> b e d 
-H> bC 
—» c c 

λ only if S does not appear on the right side of any produc-

G5.5 also generates TRIPLED but with fewer productions than in G5.4. 
One interesting property of unrestricted grammars is that they have the same power to 

define languages as computer programs running on general-purpose computers. That is, if 
a computer program exists that can recognize all the strings in a given language, then that 
language can also be defined by an unrestricted grammar, and vice versa. A Turing ma-
chine is an abstract model of a general-purpose computer. It has the same power to define 
languages as a general-purpose computer. Thus, a Turing machine also has the same pow-
er to define languages as unrestricted grammars. For more information on Turing ma-
chines, see the files t u r i n g . t x t and t . t x t in the Jl Software Package. 

1. Describe the language 

1. 

2. 

3. 

4. 

5. 

6. 

s 
B 

bB 

AB 

Ab 

dA 

-» 

-> 

-> 

-> 

-> 
-» 

dB 

bB 

AB 

Ab 

Ba 

de 

defined by 

2. Write a context-free grammar equivalent to G5.1. 
3. Write a context-sensitive grammar that defines {b'e'd' : ι ' ϊ 1}. 
4. Write a context-sensitive grammar that defines {ww : / ε (b|c)*}. 
5. Write a context-sensitive grammar that defines {b'e'd* :i<j<k). 
6. Write a context-senstive grammar that defines QUADRUPLED = {b'c'd'e' : / > 1}. 
7. Devise an algorithm that will work with any essentially noncontracting grammar that 

will determine if an arbitrary string is generated by the grammar. Does your algo-
rithm also work for unrestricted grammars? 

8. Try using the same technique we used to convert a contracting context-free grammar 
to a noncontracting grammar on contracting unrestricted grammars. Why does this 
technique fail? 

9. Convert the production WXYZ -» ZYXW to an equivalent set of genuine context-sensi-
tive productions (i.e., productions that specify a left and/or right context). 

10. Contracting productions increase the power of a grammar to generate languages. In a 
context-free grammar, contracting productions increases power minimally; they al-
low the grammar to generate the null string. On the other hand, in an unrestricted 
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grammar, contracting productions substantially increase the power of the grammar. 
Why this difference? 

11. Describe an unrestricted language that is not a context-sensitive language. You will 
probably have to consult a textbook on formal languages to answer this question 
(look under the topic of Turing machines or recursive languages). 





6 
TOP-DOWN PARSING 

6.1 INTRODUCTION 

Toparse a string means to determine its parse tree. Parsing techniques can be divided into 
two categories: top-down and bottom-up. These two terms refer to the order in which we 
determine the parse tree. In top-down parsing, we determine the parse tree starting from 
the root (i.e., the start symbol), working down to the terminals. In bottom-up parsing, we 
determine the parse tree starting from the terminals at the bottom, working up to the root 
(i.e., the start symbol). 

This chapter is devoted to the basic techniques used in top-down parsing. We will re-
strict ourselves to grammars whose productions have right sides that start with a terminal. 
In the next chapter we will consider more general grammars. In Chapter 22, we consider 
bottom-up parsing. 

6.2 TOP-DOWN CONSTRUCTION OF A PARSE TREE 

Let us see how the parse tree for a string can be constructed top down. Our construction 
will follows these three rules: 

1. At any point in the construction, always expand the leftmost nonterminal that has 
not already been expanded. 

2. If the nonterminal to be expanded has more than one production, then use the cur-
rent token—that is, the leftmost token in the input string not yet generated—to de-
termine which production to use. 

3. Whenever the current token is generated, advance to the next input symbol. 

An example should make this approach clear. Consider the grammar 

G6.1 
1. S -► dBC 
2. B -> dC 
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3. B -^ b 
4. C -> bB 
5. C -^ c 

Let us construct the parse tree for the string ddcbb. We will call this string the input 
string. We call each character of the input string a token. Figure 6.1 shows the parse tree 
in its successive stages of construction. In each picture, the current token is marked with 
the caret symbol, "Λ". 

Initially, the current token is the leftmost symbol of the input string. The root of the 
tree is S, the start symbol of the grammar (Figure 6.1a). To expand the S node, we must 
use production 1 since it is the only s production. Figure 6.1b shows its effect: The first 
token of the input string and the nonterminals B and C are generated. In addition, we ad-
vance to the next token in the input string because production 1 generates the current to-
ken. 

From Figure 6.1b, it is clear that the remainder of the input string (dcbb) must come 
from the nonterminals B and c. In particular, B must generate the current token d. 

Our next step is to expand the leftmost nonterminal node (the B node). Suppose we 
wanted to expand the C node instead. How would we determine which C production to 
use? We would need to know which tokens in the remaining input c generates. But we do 
not know where these tokens start since that depends on what B generates. Moreover, 
even if we did know the location of the tokens generated by C, we would have to pay a 
penalty to examine them: We would have to look ahead (i.e., look beyond the current to-
ken) in the input string—an operation that would add to the complexity of the parsing 
process. If, on the other hand, we expand the B node, then the current token immediately 
tells us which B production to use. We do not have to look ahead in the input string. Be-
cause the current token is d, we must use production 2. Production 2 is the only B produc-
tion that generates a leading d. 
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The remainder of Figure 6.1 shows the rest of the construction of the parse tree. At 
each step, we use the current token to determine which B production to use when we have 
to expand B, and, similarly, which C production to use when we have to expand C. 

Now compare the leftmost derivation of ddcbb, 

S => dBC => ddCC => ddcC => ddcbB => ddcbb 

with the trees in Figure 6.1. Observe that the leaf nodes read left to right in the successive 
trees in Figure 6.1 spell out the successive strings in the leftmost derivation. This corre-
spondence, of course, is no surprise since we construct the tree by replacing the leftmost 
nonterminal at every step. Our parsing technique determines the leftmost derivation of the 
input string and constructs the parse tree in step with this derivation. Moreover, as we al-
ready know from Section 3.2, a parse tree constructed in step with a leftmost derivation is 
constructed in depth-first order with preference given to the leftmost node. That is, the 
node at the greatest depth is always expanded next. If there is more than one node at the 
greatest depth, the leftmost is expanded next. Let's summarize these important points: 

The top-down parsing technique determines the leftmost derivation of the input 
string and constructs the derivation tree in depth-first order with preference given 
to the leftmost node. 

"Top-down" is a somewhat imprecise description of a top-down parse. Although a top-
down parse starts at the top and ends at the bottom, there is usually up-and-down move-
ment in between. For example, in Figure 6.1c, we expand the first C. But next we expand 
the second C (Figure 6.Id), which is above the first C in the parse tree. That is, we move 
up in the parse tree at this point in the top-down parse. 

6.3 PARSES THAT FAIL 

If the string to be parsed is not in the language defined by the grammar, then the parse will 
fail at some point. For example, a parse using G6.1 would fail immediately on any input 
string that starts with b since the S production cannot generate it. A parse would also fail 
if there are too many or too few nonterminals. For example, consider the parse in Figure 
6.2 of dbb using G6.1. After the last step (Figure 6.2d), the entire input string has been 
generated, but the nonterminal B remains. There are too many nonterminals, and, there-
fore, the parse fails. 

The opposite situation—too few nonterminals—is illustrated by the parse of dbcc giv-
en in Figure 6.3. After the last step (Figure 6.3d), one input token remains. But there are 
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no more nonterminals to generate it. There are too few nonterminals, and, therefore, the 
parse fails. 

A parse can also fail if the nonterminal to be expanded next cannot generate the current 
token. In Figure 6.4, the parse fails when we have to expand B. The current token is c, but 
B can generate only a leading d or b (see productions 2 and 3 in G6.1). 

6.4 A BAD GRAMMAR FOR TOP-DOWN PARSING 

The success of our parsing technique depends on selecting at each step the correct produc-
tion to use. Unfortunately, this is not possible for some grammars. For example, consider 

G6.2 
1. 
2. 
3. 
4. 
5. 

S -H> 

B - > 

B - > 

C - > 

C - > 

dBC 
dC 
d 
bB 
c 

Whenever B has to be expanded and the current token is d, the parser will not be able to 
determine which B production to use because both B productions generate a leading d. 
Our parser would have to either 

• Look at the tokens following the current token to determine the correct B production 
to use 

• Take a guess at the correct B production and continue the parse. If it succeeds, then 
all is well. If not, backtrack (i.e., return) to this point in the parse, try the other the B 
production, and continue the parse. 
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Both of these approaches are undesirable. They result in a more complex and time-con-
suming parse. 

6.5 DETERMINISTIC PARSERS 

We call a parser that never has to guess at the correct production to use a deterministic 
parser. The term "deterministic" means that every step is completely determined. That is, 
there never is any choice. Deterministic parsers never have to guess and backtrack. At 
each step, they determine the production to use from the nonterminal to be expanded next 
and the remaining input. The most desirable type of deterministic parser is one that never 
has to look beyond the current token at any point. Such a parser, in general, is less com-
plex and more efficient than parsers that have to look beyond the current token to deter-
mine the production to use. 

We call grammars like G6.1, which allow deterministc top-down parsing without look-
ing beyond the current token, LL(I) grammars. This rather strange name is derived from 
the characteristics of our parsing technique. The first "L" in "LL(1)" is for "Left" and in-
dicates that the parser scans the input string from left to right. The second "L" is for "Left-
most" and indicates that the parser determines the leftmost derivation. The " 1 " indicates 
that at every step of the parse, the parser never needs to look at more than one input to-
ken—the current token—from the input string. 

Note that G6.1 has more than one production whose right side starts with d (produc-
tions 1 and 2). However, these productions have distinct left sides (S and B). G6.2, also 
has more than one production whose right side starts with d. However, two of these pro-
ductions (the B productions) have the same left side, making G6.2 a non-LL(l) grammar. 

At every step of a parse with an LL(2) grammar, we never need to look at more than 
two tokens from the input string—the current token and the token that follows it. By def-
inition, an LL(1) grammar is also LL(2) (if one input token suffices then, of course, two 
tokens would also suffice). However, an LL(2) grammar is not necessarily LL(1). For ex-
ample, consider 

G6.3 
1. S -> bS 
2. S -> b 

Suppose the current token is b in a top-down parse. From this current token alone we can-
not determine which production to use because both productions generate a leading b. 
Thus, G6.3 is not LL(1). However, if we inspect both the current token and the following 
token, we can always select the correct production using the following criteria: 

• If the current token and the token that follows the current token are both b, then use 
production 1. Production 2 would not work here since it generates only a single b 
and eliminates s, terminating the derivation. 

• If the current token is b and the end-of-input marker follows it (i.e., the b is the last 
token in the input string), then use production 2. Production 1 would not work here 
since its right side ultimately generates at least two b's. 

• For all other cases, the input string is not in the language defined by the grammar. 

Since two tokens—the current token and the token that follows it—are sufficient to select 
the correct production, G6.3 is LL(2). G6.3 requires a lookahead of 2: the current token 
and the token that follows it. 
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Parsing with an LL(2) grammar is more complex than parsing with an LL(1) grammar. 
With an LL(2) grammar, we must do more work to determine the correct production to 
use. At each step in the parse, we have to look at two input tokens to determine the next 
production to use. Grammars that require even longer lookaheads [LL(3), LL(4), and so 
on] are even worse. For top-down parsing, an LL(1) grammar is the best kind of grammar. 

Exercise 6.1: 

Give a grammar 

Answer: 

1. S -H> bS 
2. S -> bb 

that is LL(3) but not LL(2). 

6.6 A PARSER THAT USES A STACK 

The parsing technique that we described in Section 6.1 constructs the parse tree corre-
sponding to the input string. The construction of the actual parse tree, however, is not a 
necessary part of the parsing process. One alternative to the construction of the parse tree 
is to use a stack in place of the actual parse tree. 

Before we learn how to use a stack in a parser, let us see what information the parsing 
process needs. Consider the partially constructed parse tree in Figure 6.1b, reproduced 
here: 

This tree provides information that determines what happens next in the parse. Here, the 
tree indicates that we should expand the B node next. Then, after we expand every non-
terminal node below the B node, we should expand the C node. The parse tree at every 
step of its construction tells us which nonterminals still need to be expanded and in what 
order. A stack can easily provide the same information. When applying the production 
S —> dBC, the parser simply pushes B and C in reverse order (i.e., C first, then B) onto 
a stack: 

-top of stack 

Stack 

The stack then contains those nonterminals that need to be processed. The nonterminal 
symbols on the right side of S —» dBC are pushed in reverse order so that the symbol to 
be processed next is on top. When we use a stack, it is easy to determine each step in the 
parse: the top of the stack provides the next nonterminal to expand; the current token, 
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along with the nonterminal on the top of the stack, determines the production to use. We 
call a parser that uses a stack in this way a stack parser. 

Let us parse the string ddcbb using G6.1 and a stack parser. We will show the input 
string and the stack at each step in the parse. To save space, we will show the stack hori-
zontally, with its top to the left. We will use the caret (A), the pound sign (#), and the dol-
lar sign ($) to indicate, respectively, the current token, the end of the input string, and the 
bottom of the stack. We call the operation in which we move to the next token in the input 
string an advance operation. 

Here is the initial configuration of the input string and stack: 

Input string Stack 

ddcbb# S$ 

The current token initially is the leftmost symbol of the input string; the stack contains 
only the start symbol and the bottom-of-stack marker. 

The successive configurations in the parse have a direct correspondence to successive 
trees shown in Figure 6.1. In fact, to understand the operations of our stack parser, it is 
very helpful to compare each configuration with its corresponding tree in Figure 6.1. 

At each step in the parse, the parser must determine the appropriate production to use. 
In our initial configuration, S is on top of the stack. Thus, we need an S production. Be-
cause there is only one S production in G6.1, the parser does not need the current token to 
determine which S production to use. However, it should make a check on the current to-
ken to confirm that it is d, since any other input symbol would indicate an invalid string, 
in which case the parse would fail. 

If S ultimately generates the input string ddcbb, and S —> dBC is used to expand S, 
then BC must ultimately generate dcbb, which is the input string less its initial d (see Fig-
ure 6.1b). Therefore, our next configuration should be 

ddcbb# BC$ 

The operations necessary to reach this configuration from the preceding one are 

pop, push(C), push(B), advance 

These operations makes perfect sense. The production S —> dBC generates two nonter-
minals, B and C, that ultimately have to be expanded. So the parser should push them onto 
to the stack in C, B order after popping the S. Because the production S —» dBC generates 
the current token, the parser should also advance to the next token. 

After the parser performs these operations, the top of the stack is B, and the current 
token is d. Thus, the next production to use is B —» dC. To get the next configuration, 
we reason as follows: if the parser uses B —* dC to expand B, BC becomes dCC. Thus, 
if BC ultimately generates dcbb, dCC must also ultimately generates dcbb, which, in 
turn, implies that CC must ultimately generate ebb (see Figure 6.1c). Therefore, the next 
configuration is 

ddcbb# CC$ 
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The operations necessary to reach this configuration are 

pop, push(C), advance 

The parse continues until the accept configuration occurs—that is, until the top of the 
stack is $ (i.e., the stack is empty) and the current token is # (i.e., there is no more input). 
Figure 6.5 shows the complete parse. 

Associated with each production is a sequence of operations that the parser performs 
when it uses that production. If we assume each production in our grammar starts with a 
terminal, these operations are 

1. Pop. 
2. Push in reverse order everything to the right of the leading terminal. If the right 

side contains only a single terminal, then do not push anything. 
3. Advance. 

For example, the operations for S -* dBC are pop, push(C), push(B), and advance: 

S -» d B 
k i 

C 
t 

1 λ Μ Λ » ftV\o C\ 
i) pop ^me o) 

- 2) push(C), push(B) 

3) advance (past the d) 

For B —» b, the operations are pop and advance. 



6.6 A PARSER THAT USES A STACK 123 

We do not have to do the advance operation last. It does not affect the pop and push 
operations, so we can do it at any time. However, the pop must precede the push opera-
tions. Moreover, the pushes must be performed in the correct order. 

Here is one case for which the stack operations can be optimized. Suppose a grammar 
contains the following production: 

C -> cABC 

For this production, the operations specified by 1, 2, and 3 above are pop, push(C), 
push(B), push(A), and advance. But the pop, which pops C, and the push(C) cancel each 
other out. Therefore, the parser should omit both, resulting in the more efficient sequence 
push(B), push(A), and advance. The parser should use this optimization whenever the 
symbol on the left side of a production matches the rightmost symbol on the right side. 

With this special case incorporated, the operation sequence for a production that starts 
with a terminal symbol becomes 

1. Pop if the left side is different from the rightmost symbol on the right side. 
2. Push in reverse order everything to the right of the leading terminal, except for the 

rightmost symbol if it also appears on the left side of the production. If the right 
side contains only a single terminal, then do not push anything. 

3. Advance. 

Look again at Figure 6.5. For each configuration, let us concatenate the input generat-
ed so far with the symbols on the stack. For example, for the second configuration, we 
concatenate d with BC to get dBC. Here are the results for the six configurations in Figure 
6.5: 

1. S 
2. dBC 
3. ddCC 
4. ddcC 
5. ddcbB 
6. ddcbb 

Now compare this sequence with the leftmost derivation of ddcbb: 

S => dBC => ddCC => ddcC => ddcbB => ddcbb 

We see that they are the same. We, of course, expect this correspondence because the 
stack parser determines the leftmost derivation. At each step, it replaces the leftmost non-
terminal. 

One aspect of our stack parser that may be hard to understand is the accept configura-
tion (i.e., an empty stack together with the end of input). How can we convince ourselves 
that a parse ending in this configuration implies that the input string is in the language 
generated by the grammar? Here's our reasoning: An empty stack implies that the parse 
tree constructed is complete, that is, all its nonterminals have been expanded. End of input 
implies that the entire input string has been generated by whatever portion of the parse 
tree has been constructed so far. Thus, the two together imply that the constructed parse 
tree generates precisely the input string. 
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The string ddcbb is in L(G6.1) so the parse in Figure 6.5 ends in the accept configura-
tion. If, on the other hand, the input string were not in L(G6.1), then sooner or later the 
parse would get stuck—it would not be able to apply any production and it would not be 
in an accept configuration. We describe this situation as a reject configuration. If a parser 
enters a reject configuration, it should take the appropriate action. For example, it might 
generate an error message and terminate. 

Figure 6.6 shows the parse for an input string not in the language defined by G6.1, and 
its final parse tree. 

In the last configuration in Figure 6.6, the parser has reached the end of input. But the 
stack is not empty, indicating that the corresponding parse tree is not complete. 

Figure 6.7 shows another parse that ends in the reject configuration, and its final parse 
tree. This time, the stack is empty but end of input has not been reached, indicating that 
the parse tree generates only an initial substring of the input string. 

The third possibility for a reject configuration is shown in Figure 6.8. When this parse 
ends, both the stack is not empty and the end of input has not occurred, indicating, respec-
tively, that the tree is incomplete and only an initial substring of the input has been generated. 

We sometimes refer to a stack parser as a pushdown automaton, particularly in text-
books that treat languages and language processing from a theoretical point of view. The 
term "pushdown" refers to the action of a stack. An automaton is a computing model 
whose operations are precisely specified and, therefore, can theoretically operate auto-
matically, that is, without human intervention. 

6.7 TABLE REPRESENTATION OF A STACK PARSER 

The operations of a stack parser can be specified compactly in table form. We call such a 
table a parse table. Each row of a parse table corresponds to a stack symbol or the bot-
tom-of-stack marker $. Each column corresponds to an input token or the end-of-input 
marker #. Each entry in the table contains the parser operations appropriate for its row 
and column. Blank entries in the table correspond to reject configurations. 
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Take a look at the parse table given in Figure 6.9 of the stack parser for G6.1. 
Suppose S is on top of the stack and the current token is d. The operations the parser 
would take are given in the entry at row S column d [pop, push(c), push(B), advance]. 
Now suppose S is on top of the stack but the current token is b. Then the entry at row 
S column b gives the appropriate operations. This entry is blank, indicating a reject con-
figuration. 

Exercise 6.2: 

Construct the parse table for the stack parser for 

1. S -» bS 
2. S ^ c 
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Answer: 

s 

$ 

b 

advance 

c 

pop 
advance 

# 

accept 

6.8 HANDLING PRODUCTIONS WITH NONLEADING TERMINALS 

One form of a production we have yet to consider is a production that has one or more 
nonleading terminals in addition to a leading terminal. For example, in the production, S 
—» bSc, b is the leading terminal and c is a nonleading terminal. With a little thought, 
you should be able to convince yourself that the operation sequence given in Section 
6.6—pop, push in reverse order everything to the right of the leading terminal, and ad-
vance—also applies to this production. Notice that c now becomes a stack symbol as well 
as an input symbol. The c that is pushed on the stack should match a c somewhere in the 
remaining input. When the c on the stack reaches the top, the matching c in the input 
should then be the current token. When this occurs, the appropriate operation is to get rid 
of both c's, that is, to pop and advance. 

Let us look at the parse table in Figure 6.10 for the following grammar: 

G6.4 
1. S -> bSc 
2. S -» c 

Notice that the table contains a row corresponding to the stack symbol c. The operations 
in the c column of this row—pop and advance—get rid of both the c on top of the stack 
and the matching c in the current token. 
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Exercise 6.3: 

Construct the parse table for the stack parser for 

1. S -> bcSbSS 
2. S -^ c 

Answer: 

s 

b 

c 

$ 

b 

push(S) 
push(b) 
push(s) 
push(c) 
advance 

pop 
advance 

c 

pop 
advance 

pop 
advance 

# 

accept 

6.9 WRITING A STACK PARSER IN JAVA 

So far in this chapter, we have learned how to convert a grammar to a parse table that de-
fines the operation of the grammar's stack parser. We now will learn how to go from the 
parse table to a Java program. Actually, there is very little to learn. We can convert the 
operations specified by the parse table in an obvious way to i f and swi tch statements in 
Java. What is remarkable is how little creative work is necessary to produce a parser in 
Java, given the grammar. Each step in the design and implementation process follows al-
most trivially from its preceding step. Let us go through a complete example for the fol-
lowing grammar: 

G6.5 
1. S -» bScA 
2. S -»· cbd 
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3. A -» bcA 
4. A -» d 

First, we construct the parser's parse table using our rules for determining operation 
sequences. The table is in Figure 6.11. Next, we design the Java program based on this 
table. Let us start by determining the overall structure of the program. The program con-
tains a loop, each iteration of which will perform one step of the parse. The code inside 
the loop must inspect the top of the stack and the current token and then perform the ap-
propriate operations. There are two conditions under which our loop should terminate: 

1. The stack is empty. Then the stack parser accepts the input string if the current to-
ken is #, and rejects otherwise. 

2. The top of the stack and the current token correspond to a blank (i.e., reject) entry 
in the parse table. Then, of course, the stack parser rejects. 

If either of these conditions occurs, the code within the loop sets a boolean variable done 
to t r u e , which, in turn, causes the loop to terminate. 

We provide the program for the string it is to process via the command line. For exam-
ple, to process the string cbd, we run the program (which is in the class Fig0612) with 

java Fig0612 cbd 

Because cbd is in the language defined by G6.5, the program responds with 

input = cbd 
accept 

The complete program is given in Figure 6.12. 
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The program in Figure 6.12 starts by creating a token manager and a parser (the line 
numbers on the following Java code are the line numbers from Figure 6.12): 

14 // create token manager 
15 ArgsTokenMgr tm = new ArgsTokenMgr(args); 
16 
17 // create parser, pass it the token manager 
18 Fig0612Parser parser = new Fig0612Parser(tm); 



132 TOP-DOWN PARSING 

On line 15, a rgs is passed to the constructor for the token manager. On line 18, tm, the 
reference to the token manager, is passed to the constructor for the parser. 

Each time the parser calls its advance () method, advance () in turn calls g e t -
NextToken () in the token manager. getNextToken () returns the next token (i.e., the 
next character) from the command line argument, advance () then places this token in 
the instance variable currentToken: 

63 private void advance() 
64 { 
65 // get next token and save in currentToken 
66 currentToken = tm.getNextToken(); 
67 } 

Thus, at any time during the parse, the parser has access to the current token in the vari-
able currentToken. To advance in the input, the parser simply calls advance ( ) . 

The ge tNext token () method in the token manager returns the next character in the 
input string unless all the characters have been processed, in which case it returns #: 

39 public char getNextToken() 
40 { 
41 if (index < input.length ()) 
42 return input.charAt(index++); // return next char 
43 else 
44 return '#'; // # signals end of input 
45 } 

The call of the p a r s e () method in the parser starts the parse: 

20 parser.parse(); // do parse 

On line 56, the constructor FigO 612 Pa r se r for the parser saves the tm reference it is 
passed in an identically named instance variable tm, "primes" the input by calling ad-
vance () on line 57, and creates and initializes the stack on lines 58 to 60: 

54 public Fig0612Parser(ArgsTokenMgr tm) 
55 { 
56 this.tm = tm; // save tm 
57 advance(); // prime currentToken 
58 stk = new Stack<Character>(); // create stack 
59 stk.push('$'); // mark stack bottom 
60 stk.push('S'); // push start symbol 
61 } 

The stack is initialized with $ (the bottom-of-stack marker) and S (the start symbol in the 
grammar). We use the Stack class is in the j ava . u t i l package so we do not have to 
define our own. We use its push () , pop () , and peek () methods, peek () returns the 
top of the stack without popping it. 

The whi le loop that starts on line 73 performs the parsing operations. The swi tch 
statement starting on line 75 implements the parse table: 

75 s w i t c h ( s t k . p e e k ( ) ) 
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The swi tch statement passes control to the appropriate sequence of operations based 
on the character peek () returns. For example, if peek () returns S (i.e., S is on top of 
the stack), then control goes to the statements that implement the S row of the parse 
table: 

77 

78 

79 

80 
81 

82 

83 

84 
85 

86 
87 

88 

89 
90 

91 

92 

93 
94 

95 

96 

case 'S': 

if (currentToken 

{ 
stk.popO ; 
stk.push('Α'); 

stk.push('c'); 
stk.push('S'); 

advance(); 

} 
else 

if (currentToken 

{ 
stk.popO ; 

stk.push('d'); 

stk.push('b'); 

advance(); 

} 
else 

done = true; 
break; 

•b') 

/ / apply production 1 

'c') 

// apply production 2 

// exit on reject config 

Following the whi le loop is the code that tests the final configuration: 

133 if (currentToken == '#' && stk.peek() == '$') 
134 System.out.printIn("accept"); 
135 else 
136 System.out.printIn ("reject"); 

If the input is completely consumed and the stack is empty, accep t is displayed Other-
wise, r e j e c t is displayed. 

Notice that we specify an argument of type char when we call the push () method. 
For example in 

81 s t k . p u s h ( ' A ' ) ; 

the argument is Ά ' (whose type is the primitive type char), but the stack consists of 
Cha rac t e r objects. This type mismatch, however, is not an error because the character 
we specify is automatically converted to a Cha rac t e r object which is then pushed onto 
the stack. The Java terminology for this automatic conversion is autoboxing. Because of 
autoboxing, the statement above has the same effect as 

stk.push(new Character('A')); // convert to Character 

Here, we are explicitly specifying the conversion of Ά ' to an object whose type— 
Character—is the wrapper class for the argument Ά ' . An automatic conversion also 
occurs on line 75: 
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75 s w i t c h ( s t k . p e e k ( ) ) 

Here, the Cha rac t e r object returned by peek () is automatically unboxed—that is, the 
character it contains is extracted. This character is then used by the swi tch statement. 

PROBLEMS 

1. Rewrite the program in Figure 6.12, using the empty () method in the Stack class 
in place of the bottom-of-stack marker $. Test your program with cbd and ebb. 

2. Rewrite the program in Figure 6.12 so that it uses the i n t 0 instead of ' # ' to signal 
the end of input. Why is using 0 better? 

3. Using a regular expression, specify the language specified by G6.1. 
4. Imitating Figure 6.1, construct step-by-step the parse tree for dbbdc using G6.1. 
5. Imitating Figure 6.5, show the parse of dbbdc using G6.1. 
6. Construct the parse table for 

1. S -»· bSb 
2. S - » cAc 

3. A -» bAA 
4. A -> cASAb 
5. A -> deb 

7. Implement the stack parser for the grammar in Problem 6.6. Test your parser with the 
strings edebe, bedebeb, cbdcbdcbc, ccdcbcdcbcdcbbcr, edebbb, edeb, and 
A. 

8. Construct the parse table for the following grammar: 

1. S -> bSc 
2. S -> d 

9. Implement the stack parser for the grammar in problem 6.8. Test your parser with the 
strings d, bde, bbdec, b, c, bbed, and bedd. 

10. Implement the stack parser for the following grammar: 

1. S -> bedefg 

11. What should you do to a grammar before using it to construct a parser? Consider, for 
example, 
1. S -* bABCD 
2. S - * c 

3. A -» bA 
4. B -» bB 
5. C -H> bC 
6. D -» d 

12. Show that the following grammar is LL(2): 

1. S -> bbbS 
2. S -> b 

13. Give an example of a grammar that is LL(4) but not LL(3). 
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14. Show that the following grammar is not LL(k) for any k: 
1. S -H> Ab 

2. S -» Ac 

3. A -» bA 
4. A -> λ 

15. What operations should a top-down parser take when it is using a production whose right 
side starts with a nonterminal. Consider, for example, D —> ABC. 

16. Give the grammar that corresponds to the following table: 

s 

B 

$ 

b 

pop 
push(B) 
push(B) 
advance 

c 

advance 

pop 
advance 

# 

accept 

17. Give an example of a RR(1) grammar (for those of us who like to read backward). 
18. Write a parser for G6.2 that uses the backtracking technique. Test your program with 

ddc, cdbdbdc, ddd, and bcc. 
19. Write a parser for G6.2 that uses the lookahead technique. Test your program with 

ddc, cdbdbdc, ddd, and bcc. 
20. Write a Java method that traverses a binary tree in depth-first order using the same 

general technique that we used in a stack parser. 
21. Write a grammar for b*c*d*, design a stack parser based on your grammar, and 

write a program that implements your parser. Test your parser with b, c, d, be, bd, 
cd, bed, A, bedb, cb, and db. 
An alternative approach a stack parser can take is to push the entire right side of pro-
duction in reverse order (rather than everything up to but not including the leading 
terminal symbol). In what way, would our stack parser have to be modified to handle 
this alternative approach? Give the parse table for G6.1 using this alternative 
approach. 
Modify the program in Fig 6.12 so that it constructs the parse tree as it parses the in-
put string. When the parse is completed, the program should display every node of 
the constructed parse tree by traversing it in depth-first order. 

24. Is this statement true: An LL(1) grammar is LL(k) for all k s 1. 
25. Is the following grammar LL(k) for some k"? Justify your answer. 

22 

23 

1. 
2. 
3. 
4. 
5. 
6. 

S 

s 
B 

B 

C 

r 

-* 

-> 
-> 

-» 

-> 
_> 

bB 

bC 

bB 

d 

bC 

e 





7 
LL(1) GRAMMARS 

7.1 INTRODUCTION 

Recall from the last chapter that an LL(1) grammar is a grammar that permits top-down 
parsing without backtracking or looking beyond the current token. In our investigation so 
far of top-down parsing and LL(1) grammars, we have limited ourselves to grammars 
whose productions all have right sides that start with a terminal symbol. In this chapter, 
we do away with this restriction. We will learn how to determine if an arbitrary context-
free grammar is LL(1), and, if it is, how to construct its corresponding top-down parser. 

7.2 FIRST SET OF THE RIGHT SIDE OF A PRODUCTION 

Let us construct the parse tree for bde in parallel with a top-down parse using the follow-
ing grammar (for now, ignore the sets shown to the right of each production). 

G7.1 FIRST set of right side 
1. S -> BC {b, d} 
2. S -» CB {c, e} 
3. B -» bB {b} 
4. B -» d {d} 
5. C -» cC {c} 
6. C -» e {e} 

Figure 7.1 shows the tree in its successive stages of construction. At each stage, the 
symbol Λ marks the current token. Initially, b, the leftmost symbol in the input string, is 
the current token, and S is the nonterminal to expand. The first step in the construction of 
the parse tree is to determine which S production to use (see Figure 7.1a). Neither S pro-
duction has a right side that starts with a terminal symbol. Thus, we must examine the 
right side of each s production to determine which one can ultimately generate the current 
token. Notice that the right side of production 1 starts with B. B can generate either a lead-
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ing b (by production 3) or a leading d (by production 4). Thus, the right side of produc-
tion 1 can ultimately generate a leading b or d as demonstrated by 

S => BC => bBC 

S => BC => dC 

Now consider the right side of production 2. It can generate either a leading c or e as 
demonstrated by 

S => CB => cCB 

S => CB => eB 

Since production 1 can ultimately generate a leading b (the current token), but production 
2 cannot, production 1 must be the one to use in the parse of the input string bde. Figure 
7.1b shows its effect. Notice that the current token marker does not advance because pro-
duction 1 does not directly generate it. 

In the next step of our construction, we must expand the B node. Since the current to-
ken is still b, we must use the B production that ultimately generates a leading b. Clearly, 
production 3 is our only choice. Because production 3 generates the current token b (pro-
duction 3 has a leading b on its right side), we advance to the next token (see Figure 7. lc). 
Next, we use production 4 because it generates d, the current token at this point. In Figure 
7.Id, we use production 6 because it generates e, the current token at this point. At each 
step in the parse, we use the current token to determine which production to use. 

It is helpful at this point to introduce an important definition: Suppose x is a string over 
the total alphabet of a grammar. Then, FIRSTS) is the set of leading terminals that x can 
generate. FIRST(JC) is sometimes defined to include λ if JC can generate A. There are some 
notational advantages in doing so. But it is illogical: Every string can be viewed as start-
ing with A so why should A be in FIRST(JC) only if JC can generate A? In this book, we de-
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fine FIRST(JC) as the set of leading terminals x can generate. Thus, FIRST(x) never con-
tains λ because A is not a terminal. 

If x starts with a terminal, then every string derived from x has to start with that termi-
nal. Thus, FIRST(x) is the set that contains just that terminal. For example, FIRST(bA) = 
{b}. 

Let us restate the technique we used in the construction of the parse tree in Figure 7.1 
in terms of FIRST sets. When we expanded the S node, we selected the S production 
whose right side has a FIRST set that contains the current token. That is, we selected the S 
production whose right side could ultimately generate the current token as a leading ter-
minal. We similarly used FIRST sets to select the B or C production when expanding B or 
C, respectively. 

In G7.1 above, we show the FIRST set of the right side of each production to the right 
of each production. Since these sets determine which productions we select during a top-
down parse, we call them selection sets. 

A selection set is an important concept so let us formally define it: The selection set of 
a production is the set of current tokens for which that production should be used in a top-
down parse. Thus, in G7.1, when s must be expanded and the current token is either b or 
d, we should use production 1; if the current token is c or e, we should use production 2; 
if the current token is other than b, c, d, or e, then the input string is not in the language 
defined by the grammar. 

In G7.1, the selection set of each production is just the FIRST set of its right side. Is 
the selection set of a production always the FIRST set of its right side? The answer is yes 
if the grammar does not contain any lambda productions. We shall consider the selection 
sets for grammars with lambda productions in Section 7.4. 

G7.1 has an important property: Each group of productions with the same left side has 
disjoint selection sets (i.e., has no members in common). For example, the selection sets, 
{b, d} and {c, e}, for the two s productions have no members in common. Similarly, the 
two B productions and the two C productions have disjoint selection sets. There is, there-
fore, never more than one possible production to use during a top-down parse. Whenever 
we have to expand an s, B, or c, the current token determines which production to use. 
Thus, during a top-down parse, it is never necessary to guess or look beyond the current 
token. In other words, G7.1 is an LL(1) grammar. 

Now consider 

G7.2 FIRST set of right side 
1. S -> BC {b, c} 
2. S -» CB {c, e( 
3. B -» bB {b} 
4. B -> c jc} 
5. C -► cC {c( 
6. C -> e {e} 

Notice that the selection sets for the two S productions are not disjoint—they have c in 
common. Therefore, when we must expand S in a top-down parse and the current token is 
c, we cannot determine from the current token alone which S production is the correct 
one to use. We would have to either arbitrarily choose one (and later backtrack if it did 
not yield a successful parse) or look beyond the current token to determine the correct one 
to use. In other words, G7.2 is not LL(1). 

In the preceding chapter, we defined an LL(1) grammar as a grammar that allows top-
down parsing without backtracking and without looking beyond the current token. Clear-
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ly, any LL(1) grammar must have the property that any group of productions with the 
same left side has disjoint selection sets. Conversely, any grammar with this property 
must be LL(1). In fact, an LL(1) grammar is usually defined as any grammar with this 
property. Let us state the formal definition of an LL(1) grammar: An LL(1) grammar is a 
grammar without any useless nonterminals in which each group of productions with the 
same left side have disjoint selection sets. 

Exercise 7.1 

If the input string starts with c, how can you determine which S production in G7.2 to use 
in a top-down parse? 

Answer: 

If the input string ends with e, use production 1; if it ends with c, use production 2. No-
tice that we have to look beyond the current token. 

7.3 DETERMINING OPERATION SEQUENCES 

In the preceding chapter, we learned the operations that a top-down stack parser must per-
form corresponding to various types of productions. As a review, consider the following 
productions and their operation sequences: 

Production Operation Sequence 

A -» bAcB pop, push(B), push(c), push(A), advance 
A —* b pop, advance 
A —» cBA push(B), advance 
A —» dA advance 

Do you understand why each one of these operation sequences is required by its corre-
sponding production? If not, you should carefully reread Chapter 6 before continuing in 
this chapter. 

Now let us determine the appropriate operation sequence for a production that starts 
with a nonterminal. Consider Figure 7.1a. The corresponding configuration in a stack 
parser is 

bde# S$ 

The first step in the top-down parse is to replace S with BC, yielding the tree in Figure 
7.1b. If S can generate bde and we replace S with BC, then BC should be able to generate 
bde. Clearly, the next configuration should be 

bde# BC$ 

Notice that we have not advanced to the next token because production 1 does not directly 
generate the current token. To go from the first configuration above to the second, we must 
pop the stack and then push the entire right side of production 1 in reverse order. That is, the 
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operation sequence is pop, push(C), and push(B). Our rules for determining stack opera-
tions, amended to handle productions whose right sides start with nonterminals, are 

1. Pop if the left side is different from the rightmost symbol on the right side. 
2. Push in reverse order the right side of the production, except for the leftmost sym-

bol if it is a terminal, and the rightmost symbol if it also appears on the left side. 
3. Advance if the production starts with a terminal. 

The parse table for G7.1 is 

Symbol 
on top 
of stack 

s 

B 

C 

$ 

b 

pop 

push(C) 

push(B) 

advance 

Current 

c 

pop 

push(B) 

push(C) 

advance 

token 

d 

pop 

push(c) 

push(B) 

pop 

advance 

e 

pop 

push(B) 

push(C) 

pop 

advance 

# 

accept 

Since the selection set for production 1 is {b, d}, its operation sequence appears in the b 
and d columns of the S row. Similarly, the operation sequences for the other productions 
appear in the columns corresponding to their selection sets. 

Exercise 7.2 

Determine the selection sets for each production and construct the parse table for 

1. 
2. 
3. 
4. 

S -> bS 
S -> CS 

S -> c 

C ->■ d 

Answer: 

The selection set of each production is the FIRST set of its right side since the grammar 
has no lambda productions. The selection sets, in order, are {b}, {d}, {c}, and {d}. Since 
the three S productions have mutually disjoint selection sets, the grammar is LL(1). The 
parse table is 

s 

c 

$ 

b 

advance 

c 

pop 
advance 

d 

push(C) 

pop 

advance 

# 

accept 
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7.4 DETERMINING SELECTION SETS OF LAMBDA PRODUCTIONS 

The selection set for a production in a grammar that has no lambda productions is easy to 
determine, it is simply the FIRST set of the right side of the production. In a grammar 
with lambda productions, however, the selection sets are more difficult to determine. 
Consider the following grammar: 

G7.3 Selection Set 
1. S -» BC {b, c} 
2. B -H> bB {b} 
3. B — A {cj 
4. C -H> c {c> 

Suppose we wish to construct the parse tree for the input string be. We start by using 
the only S production, production 1, after which the current token is still the leading b 
in the input string (see Figure 7.2a). In the next step of the construction, we must select 
one of the two B productions. If we use production 3, the lambda production, we elim-
inate the B nonterminal. Thus, the current token must be generated by the symbol that 
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follows B, namely, C (see Figure 7.2b). But C cannot generate a leading b. Thus, we 
cannot use production 3. If, on the other hand, we use production 2, we directly gener-
ate the current token. The current token marker then advances to c, and we must again 
expand B (see Figure 7.2c). At this point, we cannot use production 2 because it gener-
ates a leading b. We can, however, use production 3 to eliminate B. Then we can gen-
erate the current token, c, with c, the symbol that follows B in the parse tree (see 
Figures 7.3d and 7.3e). 

Based of the preceding example, we can formulate the following rule for lambda pro-
ductions: Use a lambda production whenever the current token can be generated by a 
symbol that can follow the symbol on left side of the lambda production. For example, in 
G7.3, we should use B —* A whenever the current token can be generated by a symbol 
that can follow B. We can see from production 1 that c can follow B and, from production 
4, that C can generate a leading c. Thus, we should use the production B —* λ whenever 
the current token is c. For productions 1, 2, and 4 in G7.3, their selection sets are the 
FIRST sets of their right sides. For production 3, the lambda production, its selection set 
is the set of inputs that can follow the symbol on its left side. 

Let us introduce some new terminology: 

The FOLLOW set of a nonterminal N | denoted by FOLLOW(N)| is the 
set of inputs that can immediately follow N in some derivation (not neces-
sarily leftmost) that starts with the start symbol. The FOLLOW set of the 
start symbol always contains the end-of-input marker #. 

We will explain in Section 7.7 why # is always in the FOLLOW set of the start symbol. 
The selection set of a lambda production is the FOLLOW set of the symbol on its left 
side. For example, in G7.3, the selection set of production 3 is FOLLOW(B). 

The determination of FIRST sets is made somewhat more complicated by lambda pro-
ductions. If x is a nonnull string over the total alphabet of a grammar without lambda pro-
ductions, then FIRSTS) is always equal to FIRST(x). However, in a grammar with 
lambda productions, x could be nullable, in which case FIRST(xy) is FIRST(x)|FIRST(y), 
because any leading terminal that y can generate can also be generated by xy by nulling 
out*. For example, in G7.3, C can generate a leading c: 

Therefore, BC can also generate a leading c by taking B to A: 

BC => C => c 

Thus, FIRST(BC) = FIRST(B)|FIRST(C) = {b}|{c} = {b, c}. Accordingly, the selection 
set for production 1 is {b, c}. 

Notice that the selection sets for the two B productions in G7.3 are disjoint. 
Therefore, G7.3 is LL(1). Now consider the grammar obtained from G7.3 by changing 
production 4: 

G7.4 
1. S -> BC 
2. B -Η> bB 
3 . B -> A 
4 . C - » b 

Selection Set 
{b} 
{b} 
<b} 
{b} 
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C still follows B but C now generates b. Therefore, the selection set for production 3 is {b}. 
Now, whenever we must expand Bina top-down parse and the current token is b, we have 
to choose between productions 2 and 3, both of whose selection sets contain b. To deter-
mine the correct choice, we have to look beyond the current token. If the current token is a 
b and is followed by another b, then we should use production 2 (see Figure 7.3a). If, on the 
other hand, the current token is b and is followed by the end-of-input marker, then we 
should use production 3 (see Figure 7.3b) followed by production 4 (see Figure 7.3c). 

Because we must look beyond the current token to determine which production to use, 
G7.4 is not LL(1). It is, however, LL(2). 

Let us consider a second example of a grammar with lambda productions: 

G7.5 Selection Set 
1. S -> BCd {b, c, d} 
2. B -> bb {b} 
3. B -+ λ {c, d} 
4. C —> cc {c} 
5. C -» A {dj 

Let us start by computing the selection set, FIRST(BCd), of production 1. Since B is nul-
lable, FlRST(BCd) = FIRST(B)|FIRST(Cd). But C is also nullable so FIRST(Cd) = 
FIRST(C)|FIRST(d). Thus, FIRST(BCd) = FIRST(B)|FIRST(C)|FIRST(d) = {b}|{c}|{d} 
= {b, c ,d} . 

The selection sets for productions 2 and 4 are obvious—each contains just the leading 
terminal. The selection set for production 5 is FOLLOW(C). By examining the right side 
of every production, we find only one case of something following C: d in production 1. 
Thus, FOLLOW(C)={d}. 

The selection set for production 3 is FOLLOW(B). We see in production 1 that Cd fol-
lows B. Thus, FOLLOW(B) = FIRST(Cd). Since C is nullable, FIRST(Cd) = 
FIRST(c)|FIRST(d). Thus, FOLLOW(B)={c}|{d} = {c, d}. 
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From the preceding example, it is obvious that we need to know which nonterminals 
are nullable when computing both FIRST and FOLLOW sets. In a simple grammar such 
as G7.5, the nullable nonterminals are obvious. However, for a more complex grammar, 
we should use the algorithm to identify nullables given in Section 3.6. 

7.5 WHATEVER-FOLLOWS-LEFT-FOLLOWS-RIGHTMOST RULE 

The next grammar illustrates some additional points to consider when we are computing 
FOLLOW sets: 

G7.6 Selection Set 
1. S -» Bd jb} 
2. B -> bC {b} 
3. C -> cC {c} 
4. C -* A {d} 

The selection set for production 4 is FOLLOW(C). But, in G7.6, nothing appears to fol-
low C: In each production in which C appears on the right side, C occupies the rightmost 
position. However, consider the partial parse tree that appears in Figure 7.4a correspond-
ing to production 1. 

If we expand B using production 2, as in Figure 7.4b, then d follows C, since C is 
rightmost in production 2. Thus, any symbol that follows B also follows C. We can ar-
rive at the same conclusion by considering derivations instead of parse trees: Suppose d 
follows B. Then, by definition, there must exist a derivation in which d immediately fol-
lows B: 

* 
S => xBdy 

where x and y are strings over the total alphabet. But if we now replace B with be accord-
ing to production 2, we get 

* 
S => JcBdv => JCbCdy 

Thus, d also follows C. Our conclusion: Anything that can follow B can also follow C or, 
mathematically stated, FOLLOW(B) C FOLLOW(C). Figure 7.4 shows that whatever fol-
lows the nonterminal on the left side of a production also follows the rightmost symbol on 
its right side. In G7.6, since d follows B, it also follows C by virtue of the production B —> 
bC. Thus, the selection set for production 4 is {d}. 
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Let us apply the same sort of reasoning that we used with G7.6 to our next grammar: 

'.7 
1. S -» Be 
2. B -* bCD 
3. C -+ cC 
4. c -H» λ 
5. D -> dD 
6. D ^ λ 

Selection Set 
{b} 
{b} 
{c} 
{d , e} 
{d} 
{e> 

First, note that F O L L O W ( B ) = {e}. Since D is the rightmost symbol in production 2, 
whatever follows B also follows D. Moreover, because D is nullable, the C on the right 
side of production 2 can effectively be the rightmost symbol (by taking D to the null 
string). Thus, whatever follows B follows not only D but also C (see Figure 7.5). 

In light of these observations, we need to generalize our rule on FOLLOW sets: 

Whatever follows the non-terminal on the left side of a production also 
follows the rightmost symbol on the right side. It also follows any symbol 
on the right side that has exclusively nullable nonterminal symbols to its 
right. 

Since we will use this rule frequently, we need to give it a name. Let us call it the whatev-
er-follows-left-follows-rightmostrule. 

Exercise 7.3 

Determine the nullable nonterminals; the FIRST and FOLLOW sets for S, A, B, c, and D; 
and the selection set for each production: 

1. S -> Ae 
2. A -» fBCD 
3. B -> b 
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4. B -> A 
5. C -> c 
6. C -» A 
7. D -> d 

8. D -» A 

Answers: 

Nullable nonterminals: B, C, and D 

FIRST Set FOLLOW Set 
S {f} 
A {f> 
B {b} 
C {c} 
D {d} 

1. S -> Ae 
2. A -* fBCD 
3. B -> b 
4. B -» A 
5. C -» c 
6. C -> A 
7. D -» d 
8. D -» A 

{#} 
{e} 
{c, d, e} 
R e } 
{e} 

Selection Set 

FIRST(Ae) = { f } 
FIRST(fBCD)={f} 
FIRST(b) = {b} 
FOLLOW(B) = {c, d, e} 
FIRST(c) = {c} 
FOLLOW(C) = {d, e} 
FIRST(d) = { d } 
FOLLOW(D) = {e} 

7.6 SELECTION SETS FOR PRODUCTIONS WITH NULLABLE RIGHT 
SIDES 

We have seen two rules for determining selection sets for the grammars we have seen so 
far: for a lambda production, the selection set is the FOLLOW set of its left side; for any 
other production, the selection set is the FIRST set of its right side. There is, however, one 
type of production we have yet to consider whose selection set contains both the FIRST 
set of its right side and the FOLLOW set of its left side. Consider: 

G7.8 
1. S -> AD 
2. A —► BC 
3. B -> b 
4. B ^ A 
5. C -» c 
6. C -» A 
7. D -» d 

FIRST(AD) = 
FIRST(BC) | FOLLOW(A) = 
FIRST(b) = 
FOLLOW(B) = 
FIRST(c) = 
FOLLOW(C) = 
FIRST(d) = 

Selection Set 
{b, c, d} 
jb , c } | { d } = jb , c, d> 
{b} 
{c ,d} 
{c} 
{d} 
{d} 

Notice that both B and C are nullable. Therefore, BC, the right side of production 2 is 
also nullable. The selection set for production 2 is the union of the FIRST set of its right 
side and the FOLLOW set of its left side. Thus, the selection set for production 2 is 
FIRST(BC) | FOLLOW(A) = {b, c, d} . 
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Let us try to understand why this new rule makes sense. Consider the construction of 
the parse tree for bd at the point illustrated in Figure 7.6a. The current token is b and we 
must expand A. Since b is in the FIRST set of the right side of production 2, this produc-
tion can ultimately generate the current token. Thus, it makes sense to expand A with pro-
duction 2 and then to expand the B in production 2 with production 3 (see Figure 7.6b). 

Now let us consider another scenario. Suppose the current token is d, and we must ex-
pand A (see Figure 7.7a). Since d is in the FOLLOW set of A, the current token can be 
generated by the symbol that follows A. Thus, it makes sense to use production 2 because 
we can null out its right side, and let D, the symbol that follows A, generate the current to-
ken d (see Figure 7.7b). These two possible scenarios imply that the selection set for pro-
duction 2 in G7.8 includes both FIRST(BC) and FOLLOW(A). 

Our rule for determining a selection set for a production with a nullable right side actu-
ally applies to lambda productions as well. For example, let us apply this rule to produc-
tion 4 [whose selection set is F O L L O W ( B ) in G7.8]. Our rule tells us its selection set is 
FIRST(A) | FOLLOW(B). But the FIRST set of λ is {}. Thus, FIRST(A) | FOLLOW(B) = 
{} | FOLLOW(B) = FOLLOW(B). We, therefore, have only two rules for selection sets. 
These two rules apply to all types of productions. The rules are 

1. The selection set of a production with a nonnullable right side is the FIRST set of 
its right side. 

2. The selection set of a production with a nullable right side (which, of course, in-
cludes lambda productions) is the union of the FIRST set of its right side and the 
FOLLOW set of its left side. 

Exercise 7.4 

Determine the selection sets for 

1. S -> 
2. A -> 
3 . B -+ 
4 . C -> 
5. C - * 

Answers: 

1. S - » 
2. A - » 
3 . B -> 

Ad 
B 
C 
c 
A 

Ad 
B 
C 

FIRST(Ad)={c, d} 
FIRST(B) | FOLLOW(A)= {c} | {d} = {c, d} 
FIRST(C) | FOLLOW(B) = {c} | {d} = {c, d} 
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4. C -+ c FIRST(C)={c} 
5. c -+ A FIRST(A) | FOLLOW(C) = {} |{d} = {d} 

7.7 SELECTION SETS CONTAINING THE END-OF-INPUT MARKER 

Suppose we wish to determine the leftmost derivation of a terminal string z in an LL(1) 
grammar. Suppose at some point during the derivation, the sentential form zBCD appears. 
What should we do? We have generated the desired terminal string z, but we have extra non-
terminals, B, c, and D, on the right. Obviously, we need to get rid of B, C, and D, leaving just 
z, our desired terminal string. To do this, we need to apply a B production whose right side is 
nullable, and then proceed to null it out. We should then similarly null out c and then D. 

Now consider a different scenario. Suppose we produce zBCD in our derivation, and B 
and c are nullable but D is not. What should we do? There is no point in nulling out B and 
C since the derivation is doomed to fail—the derivation cannot generate just z since D will 
generate at least one terminal symbol to the right of z. Thus, in this case, we should termi-
nate the parse and reject the input string. 

Let us consider examples of these two cases. Suppose we wish to generate f ef e using 
G7.9: 

'.9 
1. S -> f eS 
2. S -» BCD 
3. B -> b 
4. B -> A 
5. C -> c 
6. C -> A 
7. D -+ d 
8. D -» A 

Selection Set 

if) 
{b, c, d, #} 
{b} 
{c,d, #> 
{c} 
R # } 
id} 
{#} 

Let us start the derivation of f ef e: 

S => feS => fefeS => fefeBCD 

At this point, we have generated our desired string f ef e. Now we eliminate B, C, and D 
using productions 4, 6, and 8, respectively. The complete derivation is 

S => feS => fefeS => fefeBCD => fefeCD => fefeD => fefe 
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In this derivation we have applied productions 2, 4, 6, and 8, after the end-of-input has 
been reached. Thus, # should be in the selection sets for these productions to indicate that 
they can be applied when the current token is # (i.e., when we have reached the end of in-
put). 

Now consider a slightly different grammar in which D is not nullable: 

MO 
1. S - * feS 
2. S -» BCD 
3. B -^ b 
4. Β ^ λ 
5. C --> c 
6. C -» A 
7. D -> d 

Selection Set 
i f } 
{b, c, d} 
{b} 
{c ,d} 
{c} 
id} 
id} 

If we attempt to derive f ef e using G7.10, we get 

S => feS => fefeS => fefeBCD 

At this point, we have generated the complete input string, so we now need to get rid of B, 
C, and D (the current token at this point is #). Should we, therefore, delete B and C using 
productions 4 and 6, respectively? No, we should not because the derivation is doomed to 
fail. To get a successful derivation, we have to eliminate B, c, and D. But D is not nullable. 
For G7.10, we should not apply any of its productions once we have reached the end of 
input. Thus, # should not be any of its selection sets. 

Clearly, it does not make sense to use a production whose right side is not nullable 
when the current token is # (because the production will ultimately generate a nonnull 
string for which there is no corresponding input). But it also does not make sense to use 
a production (like production 4 in G7.10) whose left side can never appear rightmost in 
a leftmost derivation, or have only nullables to its right because the symbols to its right 
will necessarily generate a nonnull string for which there is no corresponding input. 
These two observations lead to the following rule: Include # in a selection set if and 
only if 

1. The production's right side is nullable 
2. The symbol on the production's left side can appear in a leftmost derivation either 

as the rightmost symbol or with only nullable nonterminal symbols to its right 

Applying this rule to G7.9, we find that # should be in the selections sets for productions 
2,4, 6, and 8. 

Let us call any symbol that satisfies requirement 2 above a righty. Using our new term 
righty, we can restate our "#-rule" very simply: 

Include # in a selection for any production whose left side is a righty and 
whose right side is nullable. 

In G7.9, productions 2,4, 6, and 8 all have nullable right sides and righty left sides. These 
productions, therefore, have # in their selection sets. In G7.10, however, only S and D are 
righties. But there is no S or D production with a nullable right side. Thus, none of the se-
lection sets for G7.10 contain #. 
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Let us determine the selection sets for the following grammar: 

G7. l l 
1. S -» dA 
2. A -> BC 
3. B - » b 
4. B -* A 
5. C -H> c 
6. C -» A 

Selection Set 
{d} 
{b, c, #} 
{b} 
{c, #} 
{c} 
{#} 

We first determine which nonterminals are righties. Obviously, S always qualifies since S 
appears alone (and, therefore, rightmost) in the first line of any derivation. If S is right-
most, then by replacing S with dA (according to production 1), A becomes rightmost. 
Then by replacing A with BC (according to production 2), C becomes rightmost. Further-
more, B will then have only c (which is nullable) to its right. Thus, B is also a righty. For 
G7.11, S, A, B, and C are all righties. Accordingly, the selection sets for productions 2, 4, 
and 6 (the productions with nullable right sides and righty left sides) include #. 

By definition, # is in FOLLOW(S). Let us now use the whatever-follows-left-follows-
rightmost rule to determine which FOLLOW sets for G7.11 contain #. From production 
1, we know that whatever follows S also follows A. Thus # is in FOLLOW(A). By pro-
duction 2, we know that whatever follows A follows C. Moreover, C is nullable. Thus, 
production 2 also implies that whatever follows A also follows B. Because # is in FOL-
LOW(A), # is also in FOLLOW(B) and FOLLOW(C). Notice that to determine which 
FOLLOW sets contain #, we do precisely what we do to determine which nonterminals 
are righties. We can conclude that 

A nonterminal is a righty if and only if its FOLLOW set contains #. 

To determine the righties in a grammar, we simply place # in FOLLOW(S) and use the 
whatever-follows-left-follows-right rule to compute FOLLOW sets. # will end up in the 
FOLLOW set of every righty. But this means that if we use our standard rules for com-
puting selection sets, # will end up in the selection set of any production whose left side is 
a righty and whose right side is nullable, that is, in precisely the selection sets in which # 
belongs. For example, consider the following production: 

A -> BCD 

Suppose # belongs in its selection set (i.e., A is a righty and BCD is nullable). Because BCD 
is nullable, our rules for computing selection sets tell us that the selection set for this pro-
duction is FIRST(BCD) | FOLLOW(A). But FOLLOW(A) necessarily includes # because 
A is a righty. Thus, our rules for computing selection sets correctly places # in the selec-
tion set for this production. 

In summary, handling the end-of-input marker is easy: we simply place # in the FOL-
LOW set of the start symbol, and then compute selection sets as we normally do. # will 
then end up in the appropriate selection sets. 

Exercise 7.5 

Determine the selection sets for 

1. S -* ABC 
2. A -> dSd 
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3. 
4. 
5. 
6. 
7. 

A 

B 

B 

C 

C 

-> 
-> 
-> 
-> 
_> 

A 
bBe 
A 
c 
A 

Answer: 

FOLLOW(s) contains d (by production 2) and # (by definition). By the what-follows-left-
follows-rightmost rule and production 1, FOLLOW(A), FOLLOW(B), and FOLLOW(C) 
all contain FOLLOW(S). F O L L O W ( A ) also contains FIRST(BC) (by production 1). FOL-
LÓ W(B) also contains FIRST(C) (by production 1) and e (by production 4). FIRST(ABC) 
= {d, b, c}, FIRST(BC) = {b, c}, and FIRST(C) = {c}. 

1. S -> ABC FIRST(ABC) | FOLLOW(S) = {d, b,c} | {d, #} 
2. A -+ dSd FIRST(dSd)= jd} 
3. A -► A FIRST(A}| FOLLOW(A) = {} | {b, c, d, #} 
4. B -> bBe FIRST(bBe)= {bj 
5. B -» A FIRST(A}|FOLLOW(B)= { } | { c , d , e , # } 
6. C -* c FIRST(c)= {c} 
7. c -> A FIRST(A) | FOLLOW(C) = {} | {d, #} 

7.8 A STACK PARSER FOR A GRAMMAR WITH LAMBDA PRODUCTIONS 

When we use a lambda production during a top-down parse, we eliminate the nonterminal 
to which we apply the lambda production. For example, suppose our input-stack configu-
ration is 

bc# BC$ 

If we now apply a lambda production to B, we eliminate B to get 

bc# C$ 

The operation sequence we need to transform the first configuration above to the second 
is simply a pop operation. Notice that the steps we listed in Section 7.3 for determining 
stack operation sequences already correctly indicate the operation for a lambda produc-
tion: Step 1 says to pop. Step 2 says to push A (the right side of the production in reverse 
order). But pushing A is, in effect, concatenating A to the top of the stack, the effect of 
which is to leave the stack unchanged. Step 3 does not apply. 

Let us construct the parse table for the following grammar: 

G7.12 
1. S -> BC 
2. B -> bB 
3. B -► A 
4. C -> cCb 
5. C -» A 

Selection Set 
{b, c, #} 
{b} 
{c, #} 
{c} 
{b, #} 
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The selection set for each production determines in which columns its corresponding op-
eration sequence appears. For example, since the selection set for production 5 is {b, #}, 
its operation sequence (pop) appears in row C, columns b and #. The parse table appears 
in Figure 7.8. 

7.9 CONVERTING A NON-LL(l) GRAMMAR TO AN LL(1) GRAMMAR 

There are several useful techniques for converting a non-LL( 1) grammar to an equivalent 
LL(1) grammar. These techniques are usually successful in producing the desired LL(1) 
equivalent grammar. If, however, these techniques fail to produce an LL( 1) grammar, the 
compiler designer should study the given grammar to "understand" the language defined, 
and then write a completely new grammar. Hopefully, the new grammar will be LL(1) or 
can be converted to an LL( 1) grammar by these techniques. Beware, however, that some 
context-free languages cannot be defined by any LL( 1) grammar. For such languages, any 
conversion technique is doomed to fail. 

We have already learned two of these techniques in Chapter 3, namely, the elimination 
of ambiguity and the elimination of left recursion. A grammar that is ambiguous or con-
tains left recursion (direct or indirect) is never LL(1). Let us convince ourselves that this 
assertion is true. 

If a grammar is ambiguous, then the corresponding top-down parser must somewhere 
exhibit a choice in its operation, reflecting the multiple parse trees that are possible for at 
least one input string. But a top-down parser based on an LL(1) grammar is determinis-
tic—there is never any choice in its operations. Thus, an ambiguous grammar is never 
LL(1). Let us consider an example: 

G7.13 Selection Set 
1. S -> bS {b} 
2. S -* B Jb} 
3. B -^ bB {b} 
4. B -> b {b} 

Two parse trees exist for bb in this grammar (see Figure 7.9). 
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The parse trees in Figures 7.9a and 7.9b initially use production 1 and production 2, re-
spectively. A top-down parser should be able parse according to either of these trees, and, 
therefore, must allow a choice in the production to use first in a derivation. This choice is 
reflected in the selection sets for productions 1 and 2: they both contain b. 

It is easy to rewrite G7.13 as an unambiguous grammar. The simplest equivalent un-
ambiguous grammar is 

G7.14 Selection Set 
1. S -» bS {b} 
2. S -> b {b} 

which, unfortunately, is not LL(1). But there is another simple unambiguous grammar 
that is, in fact, LL( 1): 

G7.15 Selection Set 
1. S -> bB {b} 
2 . B -H>· bB {b} 
3. B -> A {#} 

Converting an ambiguous grammar to an LL(1) always requires the elimination of the 
ambiguity. However, just eliminating the ambiguity does not guarantee that the result is 
LL(1), as demonstrated by G7.14 above. 

Like ambiguous grammars, left-recursive grammars are never LL(1). Here is the basis 
for this assertion: Suppose a grammar contains a left-recursive production, A —* Ax. Then 
it must also contain at least one more A production, A -> y. Otherwise A would be a 
dead nonterminal, which, in itself, would make the grammar non-LL(l) [by definition, an 
LL(1) grammar cannot contain any dead or unreachable nonterminals]. The selection set 
of A —» Ax contains everything in FIRST(Ax), which contains everything in FIRST(A), 
which—because we have the production A —> y—contains everything in FIRST(y). But 
the selection set for A —* y also includes everything in FIRST(y). Thus, the selection sets 
for the two productions have the elements in the FIRST(y) in common, making the gram-
mar non-LL( 1). To complete our argument, we have to consider the special case in which 
FIRST(y) is empty. We leave this as an exercise (see Problem 35). 

Let us consider the following example of a left-recursive grammar: 

G7.16 Selection Set 
1. S -» Sb {d, e} 
2. S -» Sc {d, e} 
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3. S -» d {d} 
4. S -» e {e} 

Notice the overlap in selection sets. Let us eliminate the left recursion in G7.16 and see if 
the resulting grammar is LL( 1). Each string in the language starts with either d or e and is 
followed by a list of zero or more b's and/or c's. We eliminate the left recursion by creat-
ing a grammar that generates the strings in the language left to right. The result is LL( 1): 

M7 
1. S -» dL 
2. S -» eL 
3. L -> bL 
4. L -» cL 
5. L -> λ 

Selection Set 
{d} 
{e} 
{b} 
{c} 
{#} 

Another example—a very important example—of a conversion to an LL(1) grammar 
by the elimination of ambiguity and left recursion is illustrated by the four grammars for 
arithmetic expressions in Section 4.2. We repeat the four grammars here as G7.18, G7.19, 
G7.20, and G7.21. G7.18 has two types of ambiguities—precedence and associativity— 
and is, therefore, not LL(1): 

G7.18 
1. expr 
2. expr 
3. expr 
4. expr 
5. expr 
6. expr 

-> 
-» 
-» 
-> 
-> 
-> 

expr "+" expr 
expr "*" expr 
" b " 
" c " 
"d" 

" ( " expr " ) " 

G7.19 results by eliminating the precedence ambiguity in G7.18. Since G7.19 still has 
the associativity ambiguity, it is not LL(1): 

G7.19 
1. expr —» expr " + " expr 
2. expr —» term (one-way street) 
3. term —» term "*" term 
4. term -» "b" 
5. term -> "c" 
6. term -»· "d" 
7. term -> " (" expr ") " 

G7.20, which results from G7.19 by eliminating the remaining ambiguity, is still not 
LL( 1) because it uses left recursion: 

G7.20 
1. expr 
2. expr 
3. term 
4. term 

-» 
-» 
-> 
_» 

expr "+" term 
term 
term "*" f a c t o r 
f a c t o r 

(left recursive) 

(left recursive) 
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5. factor -+ "b" 
6. factor -> "c" 
7. factor -> "d" 
8. factor -

The final grammar, G7.21, obtained by eliminating the left-recursion in G7.20 is 
LL(1): 

.21 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

expr 

termList 
termList 

term 

factorLis 

factorLis 

factor 

factor 

factor 
factor 

t 

t 

-> 
-> 
-> 
-^ 
-^ 
-> 
-^ 
-► 

-+ 

-* 

term termList 
»1 i II 

λ 
term termList 

factor factorList 
» * II 

A 
"b" 

"c" 
"d" 
II / II 

factor factorList 

expr " ) " 

G7.21 is a grammar that anyone who has constructed a top-down parser for arithmetic 
expressions knows (and appreciates), since it is LL(1) and, therefore, can be used in a top-
down parser. Moreover, it captures the correct the operator precedence and associativity. 
In Chapter 4, we commented that the operator precedence and associativity implied by 
G4.4 (which is repeated above as G7.21) is not obvious. For example, consider the parse 
tree for b + c + d in Figure 7.10. 

What associativity for the addition operator is implied by this parse tree? We know 
from Section 6.2 that a top-down parse determines the left-most derivation of the input 
string. Moreover, during a top-down parse, we process nodes in depth-first order with 
preference given to the leftmost. In Figure 7.10, we have indicated this order with sub-
scripts. It is this order that tells us the associativity of the addition operation implied by 
the parse tree. Note that we process the left addition operator, along with its operands 
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(term2 and term6), before we process the right addition. The result of the left addition 
functions as the left operand of the right addition. Its right operand is tenri|0. Thus, the 
implied associativity is left. That is, the left addition operation is performed before the 
right addition operation, even though the right addition is lower in the tree. 

The order associated with depth-first processing tells us the precedence 
and associativity implied by a parse tree for a top-down parse. 

Exercise 7.6 

Convert the following grammar to an equivalent LL(1) by eliminating left recursion: 

Selection Set 
1. S -+ SSb {c} 
2. S - » c { c } 

Answer: 

Each string in the language starts with c followed by a list of zero or more occurrences of 
Sb. The grammar that generates this language left to right is 

1. S -> cL 
2. L -» SbL 
3. L -> A 

Selection Set 
{c} 
{c} 
{#} 

A third conversion technique is left factoring. In left factoring, a common initial part of 
the right sides of two or more productions with the same left side is "factored" out. The 
best way to describe the technique is through an example. Consider the following gram-
mar: 

G7.22 
1. S -> eBd 
2. S -> eCd 
3. B -> bB 
4. B -> A 
5. C -» c 

Selection Set 
{e} 
{e} 
{b} 
{d} 
{ci 

G7.22 is not LL(1) because the two S productions have overlapping selection sets. 
Through left factoring, however, we can combine the two S productions into a single pro-
duction. In particular, we factor out the left portion of the right sides that are common to 
both productions (i.e., e) and let a new nonterminal R generate the remaining portions 
(i.e., Bd and Cd) of the two right sides: 

'.2. 
1. 
2. 
3. 
4. 
5. 
6. 

3 
S -> eR 
R -> Bd 
R -> Cd 
B -» bB 
B -> A 
C -> c 

Selection Set 
{e} 
{b,d} 
{c} 
{b} 
<d} 
{c> 
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The first three productions in G7.23 generate what the first two productions in G7.22 
generate. In G7.23, however, there is only one S production. We have eliminated the 
problem associated with the two S productions, making the new grammar LL(1). 

Another example of left factoring is given by 

G7.24 Selection Set 
1. S -* b ,S {b} 
2. S -> b {b} 

This grammar generates a list of one or more b's, with commas separating successive 
b's. Similar lists occur frequently in programming languages (e.g., in variable declara-
tions). To convert the grammar to an LL(1) grammar, we factor out the leading b in 
both productions, leaving ", S" in the first production and the null string in the second 
production. Again, in the new grammar, we use a new nonterminal R to generate the 
two "leftovers": 

G7.25 
1. S -» bR 
2. R -» , S 
3. R -> λ 

Selection Set 
{b} 
{,} 
{#} 

Exercise 7.7 

Convert the following grammar to an equivalent LL(1) grammar by left factoring: 

1. S -> 

2. s -» 
3. A - » 
4. A -► 

Answer: 

1. S ^ 
2. R -» 
3. R -» 
4. A -» 
5. T -> 
6. T -* 

bA 
b 
bb 
be 

bR 
A 
A 
bT 
b 
c 

Selection Set 
{b} 
{b} 
{b} 
{b} 

Selection Set 
{b} 
{b} 
{#} 
{b} 
{b} 
{c} 

An extension of left factoring is left-right factoring. In left-right factoring, we factor out 
the common left and right sides. For example, in G7.22, we can factor out both e on the 
left and d on the right in the two S productions. We get 

G7.26 Selection set 
1. S -» eMd {e} 
2. M -> B {b, d} 
3. M -> C {c] 
4. B -* bB ib} 
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5. B -> A {d} 
6. C -> c {c} 

One advantage of left-right factoring over left factoring is that the right factor appears 
only once in the resulting grammar. For example, in G7.26, the right factor, d, appears in 
only production 1. Thus, the processing of d in a top-down parser would appear in only 
one location. In contrast, with left factoring, d appears twice (see productions 2 and 3 in 
G7.23), and, therefore, its processing would appear in two locations in a top-down parser. 

Our final conversion technique is corner substitution. A corner is the leftmost symbol 
of the right side of a production (unless the production is a lambda production, in which 
case a corner does not exist). In corner substitution, all the productions for a corner are 
used to replace that corner. For example, consider 

G7.27 Selection Set 
1. S -> bA {b} 
2. S -» Ac {b, c} 
3. A ^ bA {b} 
4. A -> λ {c, #} 

In production 2, A is the corner. We substitute for this A using the two A productions. The 
two new productions that result—productions 2 and 3 in G7.28 below—replace produc-
tion 2 in G7.27: 

G7.28 Selection Set 
1. 
2. 
3. 
4. 
5. 

S -> bA 
S -> bAc 
S -> c 
A -> bA 
A -> A 

{b} 
{b} 
{c} 
{b} 
{c, #} 

Our new grammar is still not LL(1). However, we can now left factor productions 1 and 2. 
We factor out bA in both productions, leaving the null string in production 1 and c in pro-
duction 2. The result is an LL(1) grammar: 

G7.29 Selection Set 
1. S -> bAR 
2. S -> c 
3. R -> A 
4. R -> c 
5. A -» bA 
6. A ^ A 

{b} 
{c} 
{#} 
{c} 
{b} 
{c,#} 

Exercise 7.8 

Convert the following grammar to an equivalent LL(1) grammar by using corner substitu-
tion: 

Selection Set 
1. S -» bA {b} 
2. A -> Sb {b} 
3. A -> b {b} 
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Answer: 

Corner substitution on production 2 produces 

Selection Set 
1. S -» bA {b} 
2. A -H> bAb {b} 
3. A -> b {bj 

Left factoring b in productions 2 and 3 produces 

1. S -» bA 
2. A -> bR 
3. R -> Ab 
4. R -* A 
5. A -H> b 

Selection Set 
{b} 
{b} 
{b} 
{b,#} 
{b} 

which, unfortunately is still not LL(1). Thus, we must study the grammar to "understand" 
the language defined and then to write a completely new grammar. Our study reveals the 
language is (bb)+, which is generated left to right by 

1. S -> bbB 
2. B -» bbB 
3. B -» A 

Selection Set 
{b} 
{b} 
{#} 

Alas! An LL(1) grammar. 

7.10 PARSING WITH AN AMBIGUOUS GRAMMAR 

An ambiguous grammar is a grammar for which at least one input string exists that has 
two or more distinct parse trees. If we perform a top-down parse on such an input string, 
which parse tree will the parse construct? Let us perform a top-down parse with an am-
biguous grammar and see what happens. Consider the following grammar: 

G7.30 Selection Set 
1. S - ► A {c,#} 
2. s -H> bSQ {b} 
3. Q -> cS {c} 
4. Q —* A {c, #} delete c to disambiguate 

G7.30 is ambiguous as demonstrated by the two parse trees for bbc in Figure 7.11. 
Let us perform the top-down parse for the input string bbc to determine which of these 

two distinct parse trees will be constructed. Figure 7.12 shows the parse. 
In each of the first three steps, the current token determines the production to use. In 

Figure 7.12a, the current token is b. Thus, we use production 2. Similarly, in Figure 
7.12b, the current token is again b, again requiring the use of production 2. In Figure 
7.12c, the current token is c, which cannot be generated by either S production. Thus, we 
must eliminate the S (with production 1 and let what follows the S generate the c. After 
these three steps, the parse produces what the two parse trees in Figure 7.11 have in com-
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mon (compare Figure 7.12d with Figure 7.11). What happens next determines which of 
the two possible variants in Figure 7.11 ultimately results. We can allow either the lower 
or upper Q in Figure 7.12d to generate c, with the other Q generating A. This choice is re-
flected by the presence of c in the selection sets for both Q productions. If we select pro-
duction 3 at this point, then the lower Q generates the c. If, on the other hand, we select 
production 4, then the upper Q must generate the c. Figs. 7.12e through 7.12g show what 
happens for each choice. The parse trees on the left corresponds to the lower-Q choice and 
those on the right correspond to the upper-Q choice. 

Clearly, every top-down parser based on an ambiguous grammar must be faced with a 
choice when the input string has multiple parse trees. This choice must be reflected in the 
selection sets of the grammar. In particular, there must be at least two productions with 
the same left side that do not have disjoint selection sets. We can conclude that an am-
biguous grammar is never LL( 1). 

What should we do if we wish to parse strings in a language defined by an ambiguous 
grammar? One approach, of course, is to convert the ambiguous grammar to an equivalent 
unambiguous LL(1) grammar, and then construct the parser based on this new grammar. 
Another approach is to construct a parser based on the ambiguous grammar. The parser, if 
it is to be deterministic, must be forced to make a particular choice whenever one exists. 
To do this, we simply delete elements from the offending selection sets until all produc-
tions with the same left side have disjoint selection sets. We then construct a parser ac-
cording to these new selection sets. We call this process disambiguating the grammar. 
For example, for G7.30, we simply delete the c in the selection set for production 4. Thus, 
in the corresponding parser, there is never a choice. Whenever the current token is c and 
Q must be expanded, the parser uses production 3. For those strings in L(G7.30) that have 
only one parse tree, our parser determines that tree. For those strings that have multiple 
parse trees (for example, bbc), our parser determines one particular variant—namely, the 
variant that is produced when Q is always expanded with production 3 when the current 
token is c. 

Our disambiguating technique does not always work (in fact, for most ambiguous 
grammars it does not work). The problem with disambiguating is that the corresponding 
parser may be constrained from constructing any parse tree for certain input strings. For 
example, consider the following ambiguous grammar that generates bb*: 

G7.31 Selection Set 
1. S -* SS {b} 
2. S -H> b jb} 
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If we delete the b in the first selection set, the corresponding parser can construct the 
parse tree only for the input string b. For all other input strings in L(G7.31), the parser 
fails. If, instead, we delete the b from the second selection set, then the corresponding 
parser fails for all input strings (the parser would use production 1 ad infinitum). Thus, 
disambiguating fails for G7.31. However, for this grammar, it is not hard to write an 
equivalent grammar that is LL(1): 
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G7.32 Selection Set 
1. S -> bL {b} 
2. L -* bL jb} 
3. L -» A {#} 

7.11 COMPUTING FIRST AND FOLLOW SETS 

Up to now, we have computed FIRST and FOLLOW sets using an odd collection of tech-
niques. Our last task in this chapter is to collect and formalize these techniques. In so do-
ing, we achieve several benefits. First, formalization provides a check on the complete-
ness and correctness of our techniques. Second, formalization forces us to "think through" 
and thoroughly understand our techniques. Finally, formalization provides a precise and 
organized form for our techniques that can serve as the basis of a computer program for 
computing FIRST and FOLLOW sets. 

Here is our approach: we will construct a FIRST/FOLLOW graph that represents all 
the FIRST and FOLLOW relationships that can be determined from each production, tak-
en one at a time, in the grammar. You may be confused by the term "graph." It has two 
very different meanings: 

1. A graph is a structure that consists of a set of axes on which points are plotted. 
2. A graph is a structure that consists of nodes and arrows. The arrows connect the 

nodes and represent a relationship on the nodes. 

The graph that we will construct corresponds to the second definition. Each node rep-
resents a set. Each arrow connecting two nodes indicates that the set pointed from is a 
subset of the set pointed to. For example, the graph 

FIRST(A)^ FIRST(S) 

indicates that FIRST(A) is a subset of FIRST(S). 
The first step in the construction of the graph is to determine the nullable nonterminals 

in the grammar using the algorithm in Section 3.6. Next, we create a node for the FIRST 
set of each nonterminal, for the FOLLOW set of each nonterminal, for each input symbol, 
and for the end-of-input marker #. Then we add an arrow to the graph from {#} node to 
the FOLLOW(S) node [since FOLLOW(S) always contains #]. Last, we inspect the 
grammar, one production at a time. For each production, we determine all the set relation-
ships that we can from that production in isolation, adding an arrow to the graph for each 
relationship we determine. 

Let us apply this graphical approach to the following grammar: 

G7.33 
1. S -> BC 
2. B -H» bB 
3. B -» A 
4. C -+ c 
5. C -* A 

We start by determining the nullable nonterminals. S, B, and C are nullable. Next, we cre-
ate nodes for FIRST(S), FIRST(B), FIRST(C), FOLLOW(S), FOLLOW(B), FOLLOW(C), 
{b}, {c}, and {#} (see Figure 7.13). We then draw an arrow from {#} to FOLLOW(S) and 
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additional arrows for each relationship that can be determined from the productions. For 
example, from production 1, s —> BC, we know from our whatever-follows-left-follows-
rightmost rule that FOLLOW(S) is a subset of both FOLLOW(B) (since C is nullable) and 
FOLLOW(C). Furthermore, we know that FIRST(C) is a subset of both FOLLOW(B) 
(since C follows B in production 1) and FIRST(S) (since C appears on the right side of pro-
duction 1 with only a nullable to its left). We also know FIRST(B) is a subset of FIRST(S) 
(because B starts the right side of the production). We, therefore, add five arrows to our 
graph corresponding to these five relationships derived from production 1 alone. In Figure 
7.13, we have labeled the arrows with the production number from which they are derived. 

In our completed graph, a path exists from an input symbol to a set if and only if the set 
contains that input symbol. For example, in Figure 7.13, the path that exists from {#} to 
FOLLOW(B) implies FOLLOW(B) contains #. Similarly, the paths from {#} to FOL-
LOW(S) and FOLLOW(C) indicate these sets also contain #. Thus, the problem of deter-
mining FIRST and FOLLOW sets is transformed to the problem of constructing a graph 
and determining paths in it. We can readily incorporate this process—the construction of 
the graph and the determination of the FIRST and FOLLOW sets implied by its paths— 
into in a computer program. 

Let's complete our example. From Figure 7.13, we get 

FIRST(S)={b, c} FOLLOW(S)={#} 
FIRST(B)={b} FOLLOW(B)={c, #} 
FIRST(C) = {c} FOLLOW(C) = {#} 

Exercise 7.9 

a) Construct the FIRST/FOLLOW graph for 

1. 
2. 
3. 
4. 
5. 

S - > 

B -> 

C - > 

C - » 

D - ► 

BCD 
b 
c 
A 
d 
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b) Using the FIRST/FOLLOW graph, determine the FIRST and FOLLOW sets of each 
non-terminal. 

Answers: 

{#} -> FOLLOW(S) -> FOLLOW(D) 
{b} -> FIRST(B) -* FIRST(S) 
{c} -» FIRST(C) -► FOLLOW(B) 

A 
FOLLOW(C) 

Í 
{d} -> FIRST(D) ' 

FIRST FOLLOW 
S {b} {#} 
B jb} ¡C,d) 
C {c} {d} 
D {d} {#} 

PROBLEMS 

1. Determine the selection sets for G7.18, G7.19, G7.20, and G7.21. 
2. a) Determine the selection sets for 

1. S -» Ad 

2. A -> Bf 
3. B -* Cb 
4. C -» Dc 

5. D -» e 

b) Construct the parse table for this grammar. 
c) Show the sequence of input-stack configurations that occurs when your stack pars-

er operates on the input strings ecbf d and ecbf f. 
d) Implement the stack parser. 

3. Same as question 7.2 but for the input strings d and dd and the grammar 

1. S -> A 

2. A -> B 
3. B -> C 
4. C -> d 

4. Same as question 7.2 but for the input strings bccdddeeee and bccdddeee and the 
grammar 

1. S -> BCDE 
2. B -» b 
3. C —> cc 
4. D -> ddd 
5. E —» eeee 



166 LL(I) GRAMMARS 

5. Same as question 7.2 but for the input strings b c d c d e , b c d e , b d e , e , and b e d and 

the grammar 

1. S -> ABCe 

2. A -»■ bB 

3. A -> λ 

4. B -> cC 

5. B -> λ 

6. C - » d 

7. C - * A 

6. Same as question 7.2 but for the input string b e d e d and grammar 

1. S - » ABC 

2. A -> bB 

3. A - » A 

4. B -> cC 

5. B - » A 

6. C - » d 

7. C - » A 

7. Same as question 7.2 but for the input strings d and d d and the grammar 

1. S -> ABCD 

2. A -> A 

3. B - » A 

4. c -> A 

5. D -> d 

8. Same as question 7.2 but for the input string A and d and the grammar 

1. S - » ABCD 

2. A -> A 

3. B - * A 

4. C -> A 

5. D -> A 

9. Is the following grammar LL(1)? 

1. S -> A 

2. S -> Ad 

3. A -> bAS 

4. A - > A 

10. Determine the selection sets for 

1. S - » ABC 

2. A —> bAS 

3. A -> A 

4. B - » cASB 

5. B -> A 

6. C —> AB 
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11. Convert the following grammar to an equivalent LL(1) grammar by eliminating left 
recursion: 

1. s ^ s+s 
2. S -> S*S 

3. S -> b 

12. Convert the following grammar to an equivalent LL(1) grammar: 

1. s -> SS+ 
2. s -^ ss* 
3. S -> b 

Note: + and * are terminal symbols in this grammar. 
13. Suppose corner substitution is performed on a grammar that is already LL(1). Is the 

resulting grammar always LL(1)? 
14. Suppose substitution (not necessarily corner substitution) is performed on a grammar 

that is already LL(1). Is the resulting grammar always LL(1)? 
15. Convert the following grammar to an equivalent LL(1) grammar by left factoring: 

1. S -> BCe 

2. S -> Bd 
3. S -> BCc 
4. B -> b 
5. C -> c 

16. Convert the following grammar to an equivalent LL(1) grammar by left-right 
factoring: 

1. S -> BCe 
2. S -> Bde 
3. S - * BCee 

4. B -> b 
5. C -> c 

17. Convert the following grammar to an equivalent LL( 1) grammar: 

1. S -» Bd 
2. S -> bed 
3. B -* bB 
4. B -> λ 

18. Give an example of an unambiguous grammar that is not LL(k) for any k. 
19. Show that the language defined by the following grammar has no LL(1) grammar 

that defines it: 

1. S -> aSa 
2. S -> bSb 
3. S -> A 

20. Give an example like G7.30 in which disambiguating works. Hint: Consider the con-
trol structures in Java. 

21. Does disambiguating work for 



168 LL(I) GRAMMARS 

1. S ->· bS 
2. S -> Sb 
3. S -> c 

22. Suppose the end-of-input symbol were always included in the selection set of any 
production whose right side is nullable. Would the top-down parser using these selec-
tion sets still work, that is, ultimately accept all and only input strings generated by 
the grammar? 

23. Construct the FIRST/FOLLOW graph for G7.6. Using the graph, determine the 
FIRST and FOLLOW sets for each nonterminal. 

24. Construct the FIRST/FOLLOW graph for G7.7. Using the graph, determine the 
FIRST and FOLLOW sets for each nonterminal. 

25. Construct the FIRST/FOLLOW graph for G7.8. Using the graph, determine the 
FIRST and FOLLOW sets for each nonterminal. 

26. Construct the FIRST/FOLLOW graph for G7.9. Using the graph, determine the 
FIRST and FOLLOW sets for each nonterminal. 

27. Construct the FIRST/FOLLOW graph for G7.10. Using the graph, determine the 
FIRST and FOLLOW sets for each nonterminal. 

28. Construct the FIRST/FOLLOW graph for G7.ll. Using the graph, determine the 
FIRST and FOLLOW sets for each nonterminal. 

29. Construct'the FIRST/FOLLOW graph for G7.12. Using the graph, determine the 
FIRST and FOLLOW sets for each nonterminal. 

30. Construct the FIRST/FOLLOW graph for 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

S 

s 
s 
A 

A 

B 

B 

C 

C 

-> 
-> 
-> 

-> 
-> 
-» 
- ► 

-» 
_> 

ABC 

BC 

C 

a A b 

B 

dAb 

C 

cd 
c 

Using the graph, determine the FIRST and FOLLOW sets for each nonterminal. 
31. If a grammar G is LL(£), does there necessarily exist an LL( 1) grammar equivalent to 

G? 
32. Show that for an arbitrary nonterminal A, if FOLLOW(A) = {}, then A is useless. 
33. In an LL(1) grammar, can more than one production with the same left side have a 

nullable right side? Justify your answer. 
34. Determine the selection sets for 

1. S -> eBbCD 
2. S -> λ 

3. B -» bBc 
4. B -» BSe 
5. B -> λ 
6. C -* CC 
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7. C -H» d 
8. C -> λ 
9. D -> SdD 

10. D ^ λ 

35. Suppose a grammar has two productions of the form 

1. A —> Ax 
2 . A - » >> 

Show that these productions do not have disjoint selection sets when FIRST(y) is 
empty. 

36. Construct the parse table for the following grammar: 

1. 
2. 
3. 
4. 
5. 

S - > 

c -> 
c - » 
D - > 

D - » 

CDe 
cC 
A 
dD 
λ 

Optimize the S row of the operational table as much as possible. 
37. Determine the selection sets for 

1. S -
2. B -
3. B -
4. C -
5. C -
6. D -

BCD 
BcCc 
A 
CSc 
A 
dBf 

. Consider the following grammar: 

1. S 
2. S 
3. A 
4. A 
5. A 
6. B 
7. B 
8. B 
9. C 

10. C 

-> 
-» 
-» 

-> 
-» 
-* 
-» 
-> 
-> 
-> 

ABSdC 
ABC 
BbSAfA 
Ba 
A 
BeB 
Sc 
A 
SgC 
A 

Given that A, B, and C are nullable, does the second production, S —* ABC, imply that 
FIRST(A), FIRST(B), and FIRST(c) are subsets of FIRST(S)? What other relations 
on the FIRST sets do the other productions imply? What can you say about all the 
FIRST sets? What does the production S -> ABC imply about FOLLOW(S), FOL-
LOW(A), FOLLOW(B), and FOLLOW(C). What other relations on the FOLLOW 
sets do the other produtions imply? What can you say about all the FOLLOW sets. 
What is the selection set for each productions of the grammar? 





8 
TABLE-DRIVEN STACK PARSER 
(OPTIONAL) 

8.1 INTRODUCTION 

In Chapter 6, we examined a Java program (see Figure 6.12) that implements a stack pars-
er for a particular grammar (G6.5). Recall that the heart of this program is a swi tch state-
ment that selects and executes the operation sequence called for by the top of the stack and 
the current token. If we wanted this program to perform a parse for another grammar, we 
would, of course, have to change the swi tch statement to reflect this new grammar. 

Now consider this very important question: Is there some way to implement a stack 
parser so that it can handle different grammars without modification? You might think 
that this is a clear impossibility but that is not the case. We can implement our stack pars-
er with two distinct parts: a data part and a code part. The data part consists of tables that 
describe a particular grammar. The code part contains the instructions that perform the 
parse for the grammar described in the data part. Nothing in the code part itself has any 
dependency on the particular grammar for which it is parsing. Thus, the code part works 
without modification for any grammar. The parser can be set up to handle any grammar 
simply by "plugging in" the data part that describes that grammar. We call a stack parser 
implemented in this way a table-driven stack parser because its operation is controlled by 
the tables in the data part. 

The table-driven approach makes it easy to construct a stack parser for a given gram-
mar. We can even write a program to do it for us. We call such a program is a stack-pars-
er generator (see Figure 8.1). A stack-parser generator typically inputs a grammar and 
outputs the tables that make up the data part of a table-driven stack parser. These tables 
are then combined with the code part of the stack parser to produce a complete parser for 
the input grammar. We have a really remarkable capability here: A stack-parser generator 
automates the entire process of implementing a complex piece of software. Moreover, 
once we have completely debugged our stack-parser generator, we are certain to produce 
a bug-free parser every time. Our only obligation is to provide the parser generator with 
the correct LL( 1) grammar. 
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In this chapter, we will design two table-driven stack parsers. Our first stack parser 
will be as simple as possible, and, therefore, will be somewhat limited in its capabilities. 
The second parser, will be a modification of the first that will not have the limitations of 
the first parser. 

8.2 UNIFYING THE OPERATIONS OF A STACK PARSER 

In Chapters 6 and 7, we learned a variety of rules for determining the operation sequences 
corresponding to the productions in a grammar. Recall that the operation sequence de-
pends on the form of the production. For example, if the production has a leading terminal 
on its right side, then its operation sequence includes an advance operation. Otherwise, it 
does not. Let us see if we can come up with an operation sequence that works for any pro-
duction and does not depend on the production's form. 

Consider the stack parser based on the following grammar (notice that the productions 
are numbered starting from 0 instead of the usual 1; we will give the reason for this later): 

;.i 
0. 
1. 
2. 
3. 
4. 
5. 
6. 

S-> fBC 
B ^ · bb 
B-> CD 
C-» cC 
C-^λ 
D - > dD 
D—> e 

Selection Set 

m {b} 
jc, d, e} 
{c} 
{d,e, #} 
{d} 
{e} 

The initial input-stack configuration in a parse of the string f e is 

Input Stack 
fe# S$ 

Recall that $, #, and Λ are the markers for the bottom of the stack, the end of input, and 
the current token, respectively. 

In its first step, the stack parser selects production 0 and performs its corresponding 
operation sequence: namely, pop, push in reverse order the right side of production 0 (ex-
cept for the leading terminal), and advance. The stack-input configuration becomes 

fe# BC$ 
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There is, however, a different operation sequence that a stack parser can perform when 
applying production 0: It can replace S on the stack with the entire right side of produc-
tion 0 and not advance. If we apply this operation sequence to the initial configuration, we 
get 

fe# fBC$ 

This new configuration makes perfect sense. Here is why: The initial configuration as-
serts that s can generate f e. Since, in a leftmost derivation of f e, S is replaced by f BC, it 
follows that f BC can generate f e, which is what our new configuration asserts. Further-
more, since f BC can generate f e, it follows that BC can generate e. Thus, it makes sense 
for the parser in its next step to get rid of both the f on the stack (by popping) and the f in 
the current token (by advancing). The configuration then becomes 

fe# BC$ 

This configuration is the same as the one that results from the original operation sequence 
for production 0. The difference between the two operation sequences is that the new se-
quence has an additional step in which the f pushed on the stack is popped and the current 
token marker is advanced. In the original sequence, the f is never pushed on the stack so 
we can avoid this extra step. 

We know from Chapter 7 that the operation sequence for a production whose right side 
does not start with a terminal is a pop followed by a push of the entire right side. From our 
example above, we see that this sequence of operations also works if the production's 
right side starts with a terminal. Thus, it works for any production. We call a stack parser 
that uses this single type of operation sequence for every production a uniform stack pars-
er because it treats every production uniformly. 

A uniform stack parser is easier to construct because the parser (and the person writing 
the parser or the parser generator) does not have to treat productions with leading termi-
nals as special cases. The parser does, however, take extra steps when applying produc-
tions that start with leading terminals, or whose operation sequences would have been op-
timized in a nonuniform parser. 

Let us construct the parse table for the uniform stack parser that is based on G8.1. The 
table is given in Figure 8.2. 

Since a uniform stack parser pushes the entire right side of every production it applies 
during a parse, every terminal symbol is also a stack symbol. Accordingly, in Figure 8.2, 
there is a row as well as a column for every terminal symbol. Whenever a terminal sym-
bol is on top of the stack and a matching symbol is the current token, the parser discards 
both by popping and advancing. 

We can considerably abbreviate Figure 8.2 without losing any essential information. 
Since every operation sequence is a pop followed by a push in reverse order of the right 
side of some production, we can specify an operation sequence unambiguously with just 
the number of the corresponding production. In addition, we can eliminate the rows in 
the parse table corresponding to the terminal symbols since the parser always treats a 
terminal on top of the stack in the same way, regardless of the grammar. For the same 
reason, we can omit the row corresponding to the bottom-of-stack marker $. With these 
changes, the parse table given in Figure 8.2 becomes the abbreviated parse table given 
in Figure 8.3. 
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Exercise 8.1: 

Construct the abbreviated parse table for the following grammar: 

0. S -> BC 

1. B-» bB 
2. Β - » λ 
3. C —» ccc 

Answer: 

s 

B 

C 

b 

0 

1 

c 

0 

2 

3 

# 

8.3 IMPLEMENTING A TABLE-DRIVEN STACK PARSER 

A good starting point for any software design is to consider the data structures that are 
needed. Here are the data structures that we need for our table-driven stack parser: 

1. java.útil.Stack stk 

2. int [ ][ ] parseTable 

pa r seTab le is a two-dimensional integer array that corresponds to our abbreviat-
ed parse table discussed in Section 8.2. Entries that correspond to reject configura-
tions contain - 1 . All other entries contain production numbers. The stack parser 
must translate the top of the stack symbol and the current token into the appropriate 
row and column index, respectively, before it can access the parse table. 
p a r s e T a b l e for G8.1 is essentially what appears in Figure 8.3, except that 

• All blank (i.e., reject) entries contain -1 . 
• Row and column indices are integers starting from zero. 

The declaration in Java of this array is 

int[ ] [ ] parseTable 

{ 

{ -1, -1, -1, -1, 0, 

{ 1, 2, 2, 2, -1, 

{ -1, 3, 4, 4, -1, 

{ -1, -1, 5, 6, -1, 

} ; 

3. String! ] pTab 

pTab is a S t r i n g array that contains the right side of each production in reverse 
order. For example, if production 0 is S —> fBC, then pTab[0] is the string 
"CBf." Since indexing in Java starts from zero, it is convenient to number produc-

- 1 } , 

- 1 } , 

4} , 

- 1 } 
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tions starting from zero. Then the production number is the index ofthat production 
in pTab. The Java declaration for the grammar in G8.1 is 

String! ] pTab = 

{ 

"CBf", 

"bb" , 

"DC" , 

"Cc" , 
It If 

/ 

"Dd", 

"e" 
} ; 

4. String nonTerms 

Since pa r seTab le has integer indices, the parser must translate a nonterminal 
symbol on top of the stack to its corresponding row index in pa r seTab le . This 
translation makes use of nonTerms. nonTerms holds a string consisting of the 
nonterminal symbols arranged in the same order as their corresponding rows in 
pa r seTab le . Rows 0 through 3 in pa r seTab le correspond to nonterminals S, 
B, C, and D. Thus, nonTerms contains "SBCD." Whenever a nonterminal is on top 
of the stack, the stack parser searches for that nonterminal in nonTerms. The index 
of the nonterminal in nonTerms gives the row index ofthat nonterminal in the 
pa r seTab le . The Java declaration of nonTerms forG8.1 is 

String nonTerms = "SBCD"; 

5. S t r i n g tokens 

tokens functions like nonTerms except it is used to map token symbols to 
pa r seTab le column indices. The Java inputs forG8.1 is 

String tokens = "bcdeff"; 

The complete listing for the table-driven stack parser appears in Figure 8.4. Its basic 
structure is similar to the stack parser that we implemented in Chapter 6 (see Figure 6.12). 
The principal difference is inside the loop. Our table-driven stack parser uses 
pa r seTab le to determine the appropriate operation sequence whereas our parser in 
Chapter 6 uses a rather complicated swi tch statement. Both parsers use the same token 
manager, ArgsTokenMgr (see Figure 6.12). 

Each time through the loop, the table-driven stack parser converts the current token 
into a column index into pa r seTab le : 

75 tokenlndex = tokens.indexOf(currentToken); 

It also converts the symbol on top of the stack into a row index into pa r seTab le : 

83 nonTermlndex = nonTerms.indexOf(stk.peek()); 

If the top of the stack contains a terminal symbol, indexOf returns -1 (because the ter-
minal symbol does not appear in the nonTerms string). If, on the other hand, the top of 
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the stack contains a nonterminal symbol, then indexOf returns a nonnegative value 
which is then assigned to nonTermlndex. In this case, the parser retrieves a production 
number from p a r s e T a b l e using nonTermlndex and token lndex as indices: 

88 pNumber = parseTable[nonTermlndex] [ tokenlndex] ; 

It then pops the nonterminal off the stack and pushes—character by character—the string 
it retrieves from pTab onto the stack: 

94 s t k . p o p O ; 
95 for (int i = 0; i < pTab[pNumber] .length(); i++) 
96 stk.push(pTab[pNumber] .charAt (i)); 

Otherwise, if the symbol on top of the stack is a terminal that matches the current token, it 
pops and advances: 

101 if (currentToken == stk.peekO) 
102 { 
103 stk.popO; // discard term on top of stack 
104 advance(); // discard matching current token 
105 } 

Whenever an accept or reject configuration occurs, the loop terminates (via the b reak 
statements on lines 79, 91, or 107). The test that follows the loop determines if the final 
configuration is an accept or reject configuration: 

111 if (currentToken == '#' && stk.empty()) 
112 System.out.printIn("accept"); 
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113 e lse 
114 System.out .printIn ( " re j ec t " ) ; 

8.4 IMPROVING OUR TABLE-DRIVEN STACK PARSER 

The table-driven stack parser that we described in the previous section follows the same 
convention for context-free grammars that we have been using in most of our examples: 
Uppercase letters designate nonterminals and lowercase letters designate inputs. Al-
though convenient, this convention leads to some unnecessary limitations on our stack 
parser. In particular, we cannot handle any grammar with more than 26 (the number of 
uppercase letters) nonterminals. Although this restriction has not been a problem with any 
of our examples so far, any grammar for a real programming language is likely to exceed 
this 26 nonterminal limit. 

We need to rewrite our table-driven stack parser to make it more versatile. Here are the 
distinguishing features of our new table-driven stack parser: The stack is now a stack of 
integers instead of characters. We use the nonpositive integers, 0, - 1 , -2 , etc., to repre-
sent the nonterminal symbols, with 0 always designating the start symbol. For example, 
for G8.1 the nonterminals S, B, C, and D are represented on the stack by 0, - 1 , -2 , and 
- 3 , respectively. We represent tokens (i.e., input symbols) with positive integers. 

Using the zero and negative integers for the nonterminal symbols has some advan-
tages. First, the parser can easily determine if the symbol on top of the stack is a nonter-
minal (by checking if its value is less than or equal to zero). Second, the parser does not 
have to use indexOf to convert the symbol on top of the stack into a row index into 
pa r seTab le . Instead, it simply negates the integer representing a nonterminal to obtain 
the correct index. For example, for G8.1,-3 represents D. Its negation, 3, is the row index 
of D in pa r seTab le . 

Changing the stack requires changes to some of the tables in the parser. Since the pars-
er now pushes integers onto the stack, we represent the right sides of productions as ar-
rays of integers. We this new approach, the Java declaration for pTab for G8.1 is 

int[ ] [ ] pTab = 
{ 

- 2 , - 1 ' f } , 
* b ' , ' b ' } , 
- 3 , -2} , 
- 2 , ' C } , 

} , 
- 3 , 'd '} , 
' e ' } 

/ / 0) S 
/ / 1) B 
/ / 2) B 
/ / 3) C 
/ / 4) C 
/ / 5) D 
/ / 6) D 

} 

Note that in pTab, we are representing characters with their binary codes, all of which are 
positive integers. The integers 0, - 1 , -2 , and -3 represent S, B, C, and D, respectively (0 
does not appear in the pTab for G8.1 only because S does not appear on the right side of 
any production). For example, row 0, 

{ - 2 , - 1 , ' f } 

represents "BCf", the reversed right side of s —» f BC. 

fBC 
bb 
CD 
cC 
lambda 
dD 
e 
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8.5 PARSERS THAT ARE NOT DETERMINISTIC—A DIGRESSION ON 
THEORY (OPTIONAL) 

A palindrome is a string that reads the same forwards and backwards. For example, "otto" 
is a palindrome. A grammar that defines all even-length palindromes over the alphabet 
{b, c} is 

G8.2 Selection Set 
1. S -+ bSb {b} 
2. S - » cSc { c } 

3. S - + λ {b, c, #} 

As we can see from the selection sets, G8.2 is not LL(1). To parse the language de-
fined by this grammar, a stack parser must first push all inputs up to the middle of the 
string onto the stack (we call this activity the "pushing phase"). It then must switch to a 
"comparing phase" in which it compares the contents of the stack with the remaining in-
put. If they are identical, then the original string is a palindrome. The transition from 
pushing to comparing must occur exactly at the middle of the input string. Unfortunately, 
the only way for the stack parser to determine the middle of the input string is to first look 
ahead to determine the location of the end of the input string. Because there is no upper 
bound on the length of input strings for this grammar, the length of the lookahead that the 
parser has to perform has no upper bound. Thus, this grammar is not only not LL(1), it is 
not LL(lc) for any k. 

Although G8.2 is not LL(i) for any k, we can still construct a stack parser for it in 
our usual way. However, the parser will lack determinism. It will necessarily allow a 
choice, reflecting the fact that the selection sets for s are not disjoint. Such a parser is 
not suitable for a compiler. It is, however, interesting from a theoretical point of view. 
Consider the parse table for G8.2 in Figure 8.5. Notice that when S is on top of the 
stack and the input is b, there are two distinct operation sequences: push(b), push(S), 
push(b) (the actions for production 1), or pop (the action for production 3). That is, we 
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have a choice. We have a similar situation when s is on top of the stack and c is the 
current token. 

Let us see what happens when our stack parser parses bccb: 

Input 
b c c b # 

b c c b # 

bccb# 

b c c b # 

b c c b # 

bccb# 
Λ 

bccb# 
A. 

b c c b # 

Stack 
s$ 

bSb$ 

Sb$ 

cScb$ 

Scb$ 

cb$ 

b$ 

$ 

pushing phase 

pop S and ch* 

accept 

In this particular parse, the parser applies production 1 or 2 until it reaches the middle of 
the input string. It then applies production 3, which eliminates the S nonterminal on the 
stack. By eliminating S from the stack, the parser forces a change from the pushing phase 
to the comparing phase. The parser then repeatedly compares the top of the stack with the 
current token. On each match, it gets rid of both the symbol on top of the stack and the 
matching input by popping and advancing, ultimately yielding an accept configuration. 

The parse above ended in an accept configuration because the parser made the transi-
tion from pushing to comparing (by applying production 3) in the middle of the input 
string. If it makes this transition at any other point, the parse will fail. If it applies produc-
tion 3 before the middle of the input, then the parse necessarily fails; even if all the com-
pares match, the stack will empty before the end of input. Similarly, if the parser applies 
production 3 after the middle, the parser necessarily fails; even if all the compares match, 
the end of input occurs before the stack is empty. For example, initially S is on top of the 
stack and b is the current token. Thus, according to the parse table, one choice is to sim-
ply pop the stack (i.e., apply production 3). If it does, the following reject configuration 
immediately results: 

b c c b # $ 

For every string in L(G8.2), it is possible for our parser above to accept. However, for 
any string not in L(G8.2), our parser necessarily rejects, regardless of the choices it 
makes. Thus, although our parser lacks determinism, it still precisely defines a lan-
guage^—namely, the set of strings for which it is possible to accept; and this set is 
L(G8.2). 

From our example above, it is easy to see that for any context-free grammar, we can 
construct a stack-parser than defines the same language as the grammar on which it is 
based. For some grammars, the stack-parser may lack determinism, but it, nevertheless, 
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precisely defines the same language as the grammar on which it is based. It is also true 
(but not easy to show) that any language that can be defined by a stack-parser can also be 
defined by a context-free grammar. Thus, context-free grammars and stack parsers have 
exactly the same power to define languages. 

If you read any textbooks on formal language theory, you will probably encounter a 
discussion of pushdown automata. A pushdown automaton is an abstraction of a stack 
parser. It uses a stack in exactly the same way a stack parser uses a stack. You will find in 
most formal language textbooks a proof of the equivalence of context-free languages and 
languages defined by pushdown automata, that is, a proof that every language that can be 
defined by a context-free grammar can be defined by a pushdown automaton, and vice 
versa. If you would like to experiment with the pushdown automaton model, see the files 
pda . t x t and p . t x t in the Jl Software Package. 

Exercise 8.2: 

Show the successive input-stack configurations that occur when the parser in Figure 8.5 
parses bb. Make choices that result in an accept configuration. 

Answer: 

bb# S$ 

bb# bSb$ 

bb# Sb$ 

bb# b$ 

bb# $ accept 

PROBLEMS 

1. Construct the full and abbreviated parse tables for the following grammars: 

a) S-> b 
S - » c 

b ) S ^ A 
c) S —> ABCD 

A ^ A 
B - + A 
C ^ A 
D ^ A 

d)G7.1 
e) G7.3 
b) G7.8 
g)G7.12 

2. Implement the improved table driven stack parser described in Section 8.4. 
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3. a) Show the nondeterministic parse table for 
S-» bSb 
S-> b 

b) Show a successful parse of bbb. 
c) Give a grammar that defines the same language whose parse table is deterministic. 

Show its parse table. 
d) Show a parse of bbb corresponding to your parser in part c. 

4. Is it possible to construct a stack parser for {ww :wE. {b, c}*}? 
5. Is it possible to construct a deterministic stack parser for {b'cy'd* : Í =j or / = k}l 
6. Construct a deteministic parse table for for {b'c2': i > 0}. Show a parse of bcc. 
7. Construct a deterministic parse table for {b'c': / ^ 1 }|{c}. Show a parse of be, bcc, 

and c. 
8. Are there any regular languages for which no deterministic stack parser exist? Try to 

find one such regular language. 



9 
RECURSIVE-DESCENT PARSING 

9.1 INTRODUCTION 

Recursive-descent parsers—like the stack parsers we studied in the previous chapters— 
perform a top-down parse. They are particularly easy to implement. We simply write a 
method for each nonterminal in the grammar. Because the structure of each of these meth-
ods closely parallels the structure of the corresponding production, we do not have to do 
any creative programming. The productions for each nonterminal symbol, along with 
their selection sets, tell us precisely how to write the corresponding method. 

Recursive-descent parsers have one important advantage over a stack parser: They are 
easy to extend so that they support translation. To do this, we simply embed calls to the 
code generator within the methods that make up the parser. These calls pass information 
on the source program collected by the parser to the code generator. With this informa-
tion, the code generator can output the target program. 

If the productions for a nonterminal are recursive, then the corresponding method in a 
recursive-descent parser is also recursive—hence, the use of "recursive" in the name "re-
cursive-descent parsing." "Descent" refers to the top-to-bottom action of the parser. 

In this chapter, we will learn how to implement recursive-descent parsers. Then, in the 
next chapter, we will learn how to extend them so that they support translation. 

9.2 A SIMPLE RECURSIVE-DESCENT PARSER 

Let us write a simple recursive-descent parser corresponding to 

G9.1 
1. S-> BD 
2. B ^ bB 
3. B - » c 
4. D-> de 

Selection Set 
{b , c} 
{b} 
{c} 
{d} 
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This grammar defines the language b*cde. The b*c part comes from B in production 1; 
the de part comes from D in production 1. 

Let us call any terminal string that can be generated by S an S string. Similarly, let us 
call any string that can be generated by B and D a ß string and a D string, respectively. 
Thus, in bbcde, the substring bbc is a B string, de is a D string, and the entire string, 
bbcde, is an S string. 

Suppose we have a method B () that advances in the input stream across a B string, after 
which the current token is the first token after the B string. For example, suppose the cur-
rent token is at the beginning of the following string (the caret marks the current token): 

bbcde* 

Notice that for this string, the initial substring bbc is a B string. If we call the B () method 
at this point, it will advance in the input stream to just beyond the end of the B string: 

bbcde# 

If the current token is not at the beginning of a B string when we call B () , the B () 
method throws an error exception. For example, if we call B () when the current token is 
at the beginning of 

bdbcde* 

B () throws an error exception because no substring starting at the current token is a B 
string. 

Let us also assume we have a D () method that behaves like B () , except that it ad-
vances across a D string. For example, if we call D () when we have 

bbcde# 

then it advances to # (the first character beyond the end of the D string de): 

bbcde# 

Like B () , D () throws an error exception if the current token initially is not at the start of 
the appropriate string. For example, if we call D () when the current token is d in 

bbcd# 

then D () throws an error exception because a single d is not a D string. 
Once we have our B () and D () methods, we can easily write an S () method that be-

haves similarly—that is, it advances across any S string, or, if the string is not an S string, 
throws an exception. Our S () method simply calls B () and then D () , the combined ef-
fect of which is to advance across an S string. 
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In our implementation of the B () and D () methods, we will use a consume method 
that tests the current token and advances past it. For example, if we call consume with 

consume( ' d ' ) ; 

consume checks if the current token is d. If it is, consume advances to the next token in 
the input stream. Otherwise it throws an exception that contains the message Expec t ing 
"d" . The ca t ch block that subsequently catches the exception displays this message. 
Here is the implementation of the consume method (the line numbers are from Figure 
9.1): 

51 private void consume(char expected) 
52 { 
53 if (currentToken == expected) 
54 advance(); 
55 else 
56 throw new RuntimeException( 
57 "Expecting \"" + expected + " \ " " ) ; 
58 } 

advance () , which consume calls, gets the next token from the token manager and as-
signs it to currentToken: 

4 6 p r i v a t e vo id advance() 
47 { 
48 currentToken = tm.getNextToken() ; 
49 } 

Let us now implement the B () method. Because there are two B productions, the B () 
method has to determine which production to apply. If cur ren tToken is in {b} (the se-
lection set of the first B production), B () applies the first production. If cur ren tToken 
is in {c} (the selection set of the second B production), B () applies the second produc-
tion. Otherwise, B () throws an exception. A swi tch statement nicely implements this 
test and multi-way branch, giving us the following structure for B () : 

sw i t ch (cu r r en tToken) 
{ 

case ' b ' : 
apply first production here 
break; 

case ' c ' : 
apply second production here 
break; 

defau l t : 
throw exception 

} 

What should B () do when it "applies" production 2 (B —» bB)? Recall that B () is oblig-
ed to advance past the substring that comes from the right side of the production. To do 
this, B () first advances past initial b by calling consume (' b ' ) . It then advances past 
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the part of the substring that comes from the recursive B by simply calling B () recursive-
ly. To apply production 3 (B —* c), B () simply advances past the c by calling con-
sume (' c ' ) . Thus, the code for B () is 

74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

private void B() 

{ 

switch(currentToken) 

{ 

case 'b': 
consume('b'); 
B(); 
break; 

case 'c': 
consume('c'); 
break; 

default: 
throw new RuntimeException( 

"Expecting \"b\" or \ " c \ " " ) ; 

// apply B -> bB 

// apply B -> c 

89 

When we call B () , the current token should be either b or c. Thus, the default case in 
B () gets control only if the current token is neither b nor c. In that case, B () throws an 
exception that contains the message Expec t ing "b" or " c " . Here, the error message 
lists the expected tokens at the point the error occurs. Alternatively, we can indicate the 
category of the expected token. For example, for B (), we could use the message Ex-
p e c t i n g B s t r i n g . However, we should use a category in a message only if the cate-
gory would be meaningful to the intended recipient. 

Now let us implement the D () method. The D () method should advance past a de se-
quence. To do this, it can simply make two calls to consume: 

91 private void D() 

92 { 

93 consume('d'); 

94 consume('e'); 

95 } 

// apply D -> de 

Because there is only one D production, we do not need a swi tch statement as we did in 
the B () method. The first call of consume checks if the current token is ' d ' . If it is not, 
consume throws an exception. Similarly, the second call of consume checks if the cur-
rent token toke is ' e ' . 

Our only S production is S —* BD. Thus, to implement S ( ) , we simply call B () and 
D(): 

68 
69 
70 
71 
72 

private void S() 

{ 
B(); 

D O ; 

// apply S -> BD 
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Using S ( ) , Β ( ) , and D ( ) , we can now write our p a r s e () method, which calls S () 
to perform the parse: 

60 p u b l i c void p a r s e ( ) 
61 { 
62 S ( ) ; 
63 if (currentToken != '#') // trailing-garbage test 
64 throw new RuntimeException ( 
65 "Expecting end of input"); 
66 } 

In addition to calling S () to parse the input string, p a r s e () checks the final current to-
ken (i.e., the current token after the call of S ()). If the current token is not the end-of-in-
put marker #, then some garbage follows the S string, in which case p a r s e () throws a 
RuntimeException. 

main O creates the token manager (identical to the one we used for our stack parsers 
in Chapters 6 and 8) and the parser and then calls the p a r s e () method in the parser ob-
ject. If a RuntimeException does not occur during the parse (which indicates the parse 
completed successfully), main () displays accep t . Otherwise, it displays r e j e c t . 

The complete parser corresponding to G9.1 appears in Figure 9.1. Note that the parser 
contains the consume method, which calls advance () , which in turn calls ge tNex t -
Token () in the token manager to get the next token from to input stream. 

Let us examine the calling structure that occurs when the program in Figure 9.1 parses 
bcde. We depict this structure in Figure 9.2. Figure 9.2 shows each terminal symbol un-
der the method call that consumes it. For example, under the D () method call, we have d 
and e, because this call consumes d and e. We have labeled each node in Figure 9.2 with 
a subscript that indicates the order in which that node is processed. 

The parse method starts by calling S ( ) . S 0 , in turn, calls B () , which consumes b 
and then recursively calls B () . This recursive call consumes c and then returns to the pre-
vious call of B () , which, in turn, returns to S () . S () then calls D () consumes d and e. 
D () then returns to S () , at which point S () is done. 

This structure is clearly the parse tree for the input string bcde. This result is no sur-
prise because at every step, a recursive-descent parser processes the leftmost symbol not 
yet processed. The parser, in effect, traverses the parse tree of the input string in depth-
first order—the order associated with a leftmost derivation. 

Exercise 9.1 

Convert the following set of B productions to the corresponding recursive-descent 
method: 

B-> bBdD 
B-» c 

Answer: 

private void B() 
{ 

switch(currentToken) 
{ 

case 'b': 
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consume('b'); 
B(); 
consume('d'); 
D(); 
break; 

case 'c ' ; 
consume('c'); 
break; 

default: 
throw new RuntimeException("Expecting B string"); 

} 
} 

9.3 HANDLING LAMBDA PRODUCTIONS 

How should a recursive-descent parser handle a lambda production? Recall that each 
method in a recursive-descent parser corresponding to a nonterminal advances across the 
substring generated by that nonterminal symbol, and then returns to the caller. Because a 
lambda production does not generate any terminal symbols, the method in a recursive-de-
scent parser should simply return to the caller when it applies a lambda production. For 
example, the S () method for the following grammar 

G9.2 Selection Set 
1. S-* bS {b} 
2. S^· λ {#} 

is 

private void S() 
{ 

switch(currentToken) 
{ 

case 'b1: // {b} is selection set for prod 1 
consume('b'); // apply production 1 
SO; 
break; 
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case '#': // { #} is selection set for prod 2 

; // apply lambda production 

break; 

default: 

throw new RuntimeException( 

"Expecting \"b\" or end of input"); 

} 

} 

If the current token is b, SO applies production 1 (by consuming ' b ' and recursively 
calling SO) . If the current token is #, S () applies production 2 by executing the null 
statement (a statement that consists of the semicolon only), after which control returns to 
the caller. Because the null statement does nothing, the effect is simply to return to the 
caller. Equivalently, we could have omitted the null statement or replaced it with a r e -
t u r n statement. We include it to emphasize that we are applying a lambda production. 

Exercise 9.2 

What are the productions that correspond to the following B () method: 

private void B() 

{ 

switch(currentToken) 

{ 
case 'b': 

consume('b'); 

B(); 

C O ; 

D O ; 
consume('e'); 
break; 

case 'c': 

break; 

case 'd': 

consume('d'); 

break; 

default: 

throw new RuntimeException("Expecting B string"); 

} 

} 

Answer: 

B—> bBCDe 
Β ^ λ 
B^> d 

Another possible S () method for G9.2 is 

p r i v a t e vo id SO 
{ 
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switch(currentToken) 
{ 

case ' b ' : 
consume('b'); 
S(); 
break; 

default: // do not perform selection set test 
; // apply lambda production 
break; 

} 
} 

In this version, the lambda production is the default production. That is, S O applies the 
second production (the lambda production) whenever it cannot apply the first production 
(i.e., whenever the current token is not b). When it applies the lambda production, it does 
not first check to see if the current token is in the selection set of the lambda production. 
Because the first production generates a leading b, it makes sense to apply it only if the 
current token is b. However, the second production—the lambda production—does not 
generate anything. Thus, it is reasonable to apply it no matter what the current token is as 
long as the current token is not b. Our second version of S () behaves just like the first 
version if the current token is b or #. However, the two versions behave differently if the 
current token is neither b nor #: The first version generates an error message; the second 
version simply returns to the caller. For example, suppose the input is 

bb? 

This input consists of a string from S ("bb") followed by some garbage ("?") at the end. 
The first version of S () flags this trailing garbage. The second version, however, does 
not. When it reaches the garbage, it applies the lambda production, the effect of which is 
to cause s () to return to its caller. No error message is generated. Moreover, the error 
will not be detected later in the parse because the parse is essentially done at this point. 
Our first S () method detects trailing garbage because it performs a selection set test for 
each production. Our second S () method does not detect trailing garbage because it does 
not perform a selection set test for each production. 

To ensure that trailing garbage is detected, our parsers should perform the following 
trailing-garbage test: 

After calling the start-symbol method, the top-level caller of the start-
symbol method should check if the current token is the end of input. If it 
is not, trailing garbage is present. 

Then if our parsing methods do not detect trailing garbage, the trailing-garbage test will. 
Notice that we included a trailing-garbage test in Figure 9.1 on line 63 after the call of S () : 

62 S O ; 
63 if (currentToken != '#') // trailing-garbage test 
64 throw new RuntimeException("Expecting end of input"); 

If we perform a selection set test for every production in a grammar, can we omit the 
trailing-garbage test? We cannot because performing selection set tests for every produc-
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tion does not guarantee that trailing garbage will be detected. For example, consider the 
following grammar: 

G9.3 Selection Set 
1. S -» be { b} 

Its corresponding method is 

private void SO 
{ 

consume('b') ; 
consume ('e ' ); 

} 

Here, the first call to consume performs the selection set test (it checks if the current token 
is ' b ' ) . If the input is "be?," the S () method advances past the "be" sequence by calling 
consume (' b ' ) and consume (' e ' ) . It then returns to its caller without detecting the 
trailing garbage. 

Why does the standard parsing method for S in G9.2 detect trailing garbage but the 
standard parsing method for S in G9.3 does not? Both perform a selection set test for each 
production (for G9.3, the selection set test is perfomed by the consume method). The 
reason has to do with the structure of the languages defined by these grammars. G9.2 gen-
erates a list. If a string in a language is a list, and something follows an element of the list, 
it, of course, should be another element of the list or the end of input. If is not, we have an 
error. For example, a Java program consists of a list of classes. If a class in a Java pro-
gram is followed by something, that something should be another class. Thus, if some-
thing follows a class, the compiler will naturally start compiling it. If it is trailing garbage, 
the compiler will, of course, generate an error message. Because of the list structure of a 
Java program, a Java compiler will naturally detect trailing garbage. 

Now consider G9.3. It does not generate a list. An s string is a single "be" sequence. 
A parser for G9.3 only has to consume the b and e to complete the parse. There is no rea-
son for the parser to continue parsing beyond the e. Thus, a parser will not detect trailing 
garbage unless it has an explicit trailing-garbage test. A programming language with a 
structure like the language of G9.3 is Pascal. A standard Pascal program has the following 
form: 

Program program name 
declarations 
begin 

end 

The end keyword that balances the initial begin keyword marks the end of the program. 
Thus, there is no reason for a Pascal compiler to compile beyond the terminating end. 
Unless a Pascal compiler performs an explicit trailing-garbage test after the parse of the 
program has completed, it will not detect trailing garbage. If you have access to a Pascal 
compiler, try compiling a valid program that has trailing garbage. Most likely, it will not 
detect the trailing garbage. 
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We have seen that an error may go undetected if a parser applies a lambda production 
as the default production, that is, if it applies the production without checking if the cur-
rent token is in the production's selection set. In most cases, if there is an error, it will be 
detected, but later in the parse as the parse proceeds. But if the parse is done, then there is 
no further parsing that will detect the error. We, however, can ensure that errors will not 
go undetected by including a trailing garbage test in the parser. As long as we do that, 
then there is nothing fundamentally wrong with applying a lambda production as the de-
fault production. In fact, there is a benefit: We do not have to compute the selection set 
for the lambda production. One further consideration, the error message may be affected 
(see Exercise 9.20). 

Exercise 9.3 

Construct the S () method and two versions of the B () method for the following grammar. 

1. S-> Bd { b , d} 
2. B -» bB { b} 
3. B -> λ { d} 

One version of B () should perform a selection set test for production 3; the other should 
not. Compare the error messages generated by both versions for the inputs bbbf. 

Answer: 

private void S() 

( 
B (); // apply production 1 
consume('d'); 

} 
// 

private void B() // version 1 

{ 
switch(currentToken) 

{ 

case 'b': 
consume('b'); // apply production 2 
B(); 
break; 

case 'd': 
; // apply production 3 
break; 

default: 

throw new RuntimeException( 

"Expecting \"b\" or \ " d \ " " ) ; 

} 

} 
// 

private void B() // version 2 

{ 
switch(currentToken) 

{ 
case 'b': 
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consume('b'); // apply production 2 

B O ; 
break; 

default: 

break; 

} 
} 

The first version produces the error message Expec t ing "b" or "d"; the second ver-
sion produces the error message Expec t ing "d" (from the call of consume in the S () 
method), which is misleading because b is also a possible input. 

9.4 A COMMON ERROR 

Suppose a grammar has the following Q productions: 

Q ^ ; {;} 
Q ^ λ {d} 

What is the Q () method corresponding to these productions? The first production gener-
ates a single terminal symbol ( ' ; ' ) . Thus, the Q () method should advance past this sym-
bol for this case. The second production is a lambda production. Thus, the Q () method 
should do nothing for this case (i.e., it should execute the null statement). The corre-
sponding Q () method is 

private void Q() 

( 

switch(currentToken) 

Í 

case '; ' : 
consume(';'); // apply Q -> ; 
break; 

case 'd': 
; // apply Q -> lambda 
break; 

default: 
throw new RuntimeException( 

"Expecting \";\" or \ " d \ " " ) ; 

} 

} 

Note that if the current token is a semicolon, we consume it, as required by the first Q pro-
duction. If the current token is ' d ' , we simply return (by executing the null statement) as 
required by the second Q production. If you are not thinking carefully when you write this 
method, you might incorrectly write 

private void Q() 

{ 
switch(currentToken) 
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; // null statement here is wrong! 
break; 

case 'd': 
consume('d'); // consume here is wrong!!! 
break; 

default: 
throw new RuntimeException( 

"Expecting \";\" or \"d\""); 
} 

Do not make this mistake! 

9.5 JAVA CODE FOR PRODUCTIONS 

Let us summarize the code we need in a recursive-descent parser for the various compo-
nents of the right side of a production. 

Component on right side of production Java code 

terminalt consume ( ' t ' ) ; 
nonterminal N N () ; 
λ ; (the null statement) 

For example, if the right side of a production is bBCd, the corresponding Java code is 

consume('b'); 
BO; 
CO; 
consume('d'); 

Because a simple correspondence exists between productions and their corresponding 
Java code in a recursive-descent parser, writing this code is a trivial process. In fact, be-
cause of this correspondence, it is possible to write a program that will write the Java code 
for a recursive-descent parser for us. We simply supply the grammar. We call such a pro-
gram a parser generator. We will learn more about recursive-descent parser generators in 
Chapters 13. 

Exercise 9.4 

Construct the method that corresponds to the following Q productions: 

Q—> bBDe 
Q—» Ec assume selection set is {c} 
Q—» A assume selection set is {d, e} 

Answer: 

p r i v a t e void Q() 
{ 
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switch(currentToken) 

{ 

case 'b': 
consume('b'); 
B () ; 
DO; 
consume('e'); 
break; 

case 'c': 
EO; 
consume('c'); 
break; 

case 'd': 
case 'e': 

break; 
default: 
throw new RuntimeException( 

"Expecting \"b\", \"c\", \"d\", or\"e\""); 

9.6 LEFT FACTORING IN A RECURSIVE-DESCENT PARSER 

Consider the following grammar: 

G9.4 
1. S - * dB 
2. S^> dC 
3. S - » f 
4. B - » b 
5. C-> c 

Selection set 
{d} 
{d} 
{ f } 
{b} 
{c} 

This grammar is not LL( 1). The selection sets for the first two S productions both contain 
d. Thus, if the current token is d, a top-down parser with a lookahead of 1 would not be 
able to decide which S production to apply. We, however, can easily transform G9.4 to an 
equivalent LL(1) grammar using left factoring, the technique we studied in Section 7.9. 
By factoring out the leading d in the two S productions, we get the following LL(1) gram-
mar: 

new S production 
G9.5 

1. S-> dR 
2. S - » f 
3. R - » B 
4. R-> C 
5. B - » b 
6. C^> c 

Selection Set 
( d ) 
{ f } 
{b} 
{c} 
{b} 
{c} 

production added by left factoring 
production added by left factoring 
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The S () method corresponding to the S nonterminal in G9.5 is 

private void S() 
{ 

switch(currentToken) 
{ 

case 'd': 
consume('d'); 
R() ; 
break; 

case 'f': 
consume(' f ' ) ; 
break; 

default" 
throw new RuntimeException( 

"Expecting S string"); 
} 

} 

The R () method corresponding to the R nonterminal is 

private void R() 
{ 

switch(currentToken) 
{ 

case 'b': 
B() ; 
break; 

case 'c': 
C O ; 
break; 

default: 
throw new RuntimeException( 

"Expecting \"b\" or \"c\""); 
} 

} 

Notice that the S () method calls R () only once. Thus, a simple alternative is to place 
the body of R () into S () at the point of call, and eliminate the separate R () method. If 
we do this, we get the following S () method: 

private void S() 
{ 

switch(currentToken) 
{ 

case 'd': 
consume('d'); 

// start of body of R() method ================== 
switch(currentToken) 
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{ 

case ' b ' : 
B(); 
break; 

case ' c ' : 
CO; 
break; 

defaul t : 
throw new 

RuntimeException("Expecting \"b\" or \"c\"") 

} 
// end of body of R() method ===================== 

break; 
case 'f ' : 

consume('f'); 
break; 

default: 
throw new RuntimeException("Expecting S string"); 

The two versions of S () work identically. The only difference is that the second ver-
sion is slightly more efficient because it does not have the overhead associated with the 
call to R () . This difference in efficiency, however, is insignificant. Thus, either ap-
proach is perfectly acceptable. However, if the R nonterminal introduced by left factor-
ing represents a set of strings that we would like to view as a separate syntactic catego-
ry, then it probably makes sense to use a separate R () method. Otherwise, it makes 
sense to eliminate the R () method by placing its code into the S () method. If we do 
the latter, it is helpful to rewrite the S productions in G9.5 so that there is a closer cor-
respondence between them and the S () method. Here is the new grammar: 

>.6 
1. S-» 
2. s-> 
3. B ^ 
4. C-> 

d 
f 
b 
c 

(B|C) 

In production 1, we are using the vertical bar to specify a choice within the right side 
of one production. Associated with each alternative is a selection set: We choose B if the 
current token at that point is in FIRST(B); we choose C if the current token at that point is 
in FIRST(C). Thus, the first S production above has three selections sets: 

FIRST(d (B | C)) = {d} = the selection set for the entire production 
FIRST(B) = {b} = the selection set for the B alternative 
FIRST(C) = {c} = the selection set for the C alternative 

The analysis above on left factoring also applies to left-right factoring (see Section 
7.9). Specifically, when we left-right factor, we can either create a new nonterminal and 
its corresponding method, or we can simply include this code within the method for the 
nonterminal that is left-right factored. 
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If an alternative within a production can be null, then the selection set for that alterna-
tive includes inputs than can follow it in that production as well as inputs in its FIRST set. 
For example, suppose the S production in a grammar is 

S -H> d (B|C) e 

and B is nullable but C is not. Then the selection set for the B alternative would be 
FIRST (B) I { e} , and the selection set for the C alternative would be FIRST (C). To de-
termine the selection of an alternative, it is helpful to rewrite a grammar so that the choic-
es are represented with a new nonterminal. For example, we can rewrite the production 
above as 

Selection Set 
S-* bMe {b} 
M-» B FIRST(B) | FOLLOW(M) (assuming B is nullable) 
M -» C FIRST(c) (assuming C is not nullable) 

In this form, we can easily determine the selection set of the B alternative: Our rules for 
selection sets tell us it is FiRST(B) | FOLLOW(M). The selection set for the c alternative 
is FIRST(C). Because FOLLOW(M) = {e}, the structure in pseudocode of the M nontermi-
nal is 

swi t ch (cu r ren tToken) 
{ 

case FlRST(B)or '<?': 
B ( ) ; 
b reak ; 

case FIRST(C): 
C O ; 
b r eak ; 

d e f a u l t : 
error 

} 

and this is the code we would embed in the s () method if we did not want to create a sep-
arate M method—that is, if we wanted to implement s () in the form that matches 

S ->■ b (B | C) e 

Notice that the selection set for the B alternative is not FIRST(B)|FOLLOW(B). Instead, it 
is FIRST(B) plus whatever can follow this particular instance ofB. 

Let's consider one more example. Suppose the S production is 

S -> b (B | C) D 

where both B and D but not C are nullable. Then the selection set for the C alternative is 
FIRST(C). However, the selection set for the B alternative is FIRST(B)|FIRST(D)|FOL-
LOW(S). Because B has only nullables to its right, we get, from the whatever-follows-
left-follows-rightmost rule, that whatever follows S also follows B. Thus, we should in-
clude FOLLOW(s) in the selection set for the B alternative. 
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Exercise 9.5 

Write the S method corresponding to the productions below. Use left factoring. Do not in-
troduce any new nonterminals. Then redo with left-right factoring. Again, do not intro-
duce any new nonterminals. 

S -> b e d 
S -* b e d 

For each of your answers, give an s production whose form matches the form of your 
S () method. 

For these productions, which is better: left factoring or left-right factoring? 

Answers: 

Left-factored version: s -» b (cd | ed) 

private void S() 

( 
consume('b'); 

switch(currentToken) 

{ 

case 'c' : 

consume('c'); 

consume('d'); 

break; 

case 'e ' : 

consume('e'); 

consume('d'); 

break; 

default: 

throw new RuntimeException( 

"Expecting \"c\" or \ " e \ " " ) ; 

} 

} 

Left-right-factored version: s —* b ( c | e )d 

p r i v a t e void S() 
{ 

c o n s u m e ( ' b ' ) ; 

swi tch (currentToken) ' 
f 

case ' c ' : 
consume('c'); 
break; 

case ' e ' : 
consume('e'); 
break; 

default: 

throw new RuntimeException( 

"Expecting \"c\" or \ " e \ " " ) ; 
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} 

c o n s u m e ( ' d ' ) ; 
} 

Left-right factoring is more space efficient—only one call to consume (' d ' ) ; 

9.7 ELIMINATING TAIL RECURSION 

If any of the productions for a nonterminal are recursive, then the corresponding method 
in a recursive-descent parser is also recursive. Recursive methods, unfortunately, involve 
some extra overhead. Each recursive call takes time to execute and requires space on a 
run-time stack. Thus, if the recursion proceeds to a great depth, the time or space over-
head can become significant. The stack may even overflow, causing the parse to fail. 
Thus, we should be careful when we use recursion. In some cases, we can use a simple 
loop in place of a recursive structure. 

Let us examine the operation of the recursive method r l in Figure 9.3. Suppose we in-
voke this method with 

r l ( 2 ) ; 

After 2 is assigned to the parameter n, we execute the i f part of the i f - e l s e statement 
(line 5) because n is greater than zero. That is, we execute 

5 S y s t e m . o u t . p r i n t l n (n ) ; 

which displays 2. We then execute the recursive call on line 6: 

6 r l ( n - l ) ; / / t a i l r e c u r s i o n 

Because n equals 2, the value of the argument in this call is 1. Thus, when we reenter r l , 
the value of parameter n is 1. We again execute the i f part of the i f - e l s e statement, 
displaying 1. When we again execute the recursive call on line 6, we reenter r l with n 
equal to 0. At this point, there are three instances of the parameter n, one for each level of 
the recursion. At the bottom level, n equals 0. At the next level up, n equals 1, and above 
that n equals 2 (see Figure 9.4). 
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When we enter r l with n equal to 0, we execute the e l s e part of the i f - e l s e state-
ment because the true/false expression in the i f statement is now false. The e l s e part 
displays goodbye and then returns to the caller one level up. But when it does, there is 
nothing more to do at that level because there is nothing to be executed following the call 
of r 1 on line 5. Thus, that level immediately returns to the next higher level. This return-
ing action continues until we reach the initial call of the method. Figure 9.4 shows the se-
quence of events (follow the arrows). 

By examining Figure 9.4, we can see that we execute the p r i n t l n statement that dis-
plays n once for each positive value of n starting at 2 working down to 0. When n is equal to 
0, we execute the p r i n t l n statement that displays goodbye once. The output displayed is 

2 
1 
goodbye 
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The recursive call creates a loop, in effect, in which the line 5 is repeated executed for 
successively smaller values of the parameter n until 0 is reached. 

We can achieve the same effect as the recursion in Figure 9.3 with a simple whi l e 
loop. Replacing the recursion with this loop, we get the method in Figure 9.5. 

The nonrecursive method n r l in Figure 9.5 is equivalent to the r l method in Figure 
9.3. Moverover, it is more efficient because it does not have the time and space overhead 
associated with the recursive calls in the r l method. 

We call the type of recursion in Figure 9.3 tail recursion because the recursive call ap-
pears at the "tail" of the method. In tail recursion, there are no statements to be executed 
after the recursive call. 

We can always simulate the action of tail recursion with a simple whi le loop. We 
have, however, a much more complicated situation if the recursion is not tail recursion. 
For example, consider the method in Figure 9.6. The recursive call on line 6 is not tail re-
cursive because it is followed by the p r i n t l n statement on line 7. As a result, this 
method does not have a simple looping action. Unfortunately, to eliminate recursion that 
is not tail recursion, we generally need a complicated logic structure along with a stack. 
Moreover, the resulting method may not be any more efficient than the recursive imple-
mentation. Thus, it is generally best to not eliminate nontail recursion. 

Now let us consider the following grammar: 

'.5 

1. S-> bS 

2. S-> d 

{b} 

{d} 

Because production 1 is right recursive, the method corresponding to S in a recursive-de-
scent parser is tail recursive: 

1 

2 

3 
4 

5 

6 
7 

8 

9 

10 
11 

P 
{ 

rivate void S() 

switch(currentToken) 

{ 
case 'b': 

consume('b'); 

S O ; 
break; 

case 'd': 

consume('d'); 
break; 

// tail recursion 
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12 defaul t : 
13 throw new RuntimeExcéption("Expecting S string"); 
14 } 
15 } 

Notice that the recursive call of S () (line 7), in effect, forms a loop in which initial b's 
are consumed by line 6, after which the final d is consumed (line 10). If we now apply the 
same type of transformation we used on the recursive method in Figure 9.3, we get 

p r i v a t e vo id S() 
{ 

while (currentToken == 'b') 
consume('b'); 

consume('d1); 
} 

This new form of S () makes sense: Each input string in the language of G9.5 is a list of 
zero or more b's followed by a single d. The whi le loop is a simple structure that 
processes the list of b's. 

We should use with care these techniques for eliminating tail recursion in a recursive-
descent parser. When we eliminate recursion from a method for a nonterminal, the struc-
ture of the method no longer parallels the structure of the productions for that nontermi-
nal. Thus, errors are more likely to creep into our implementation. Moreover, the 
improvement in run-time performance may be insignificant. Thus, we risk more bugs 
without gaining any significant reduction in run time. 

Exercise 9.6 

Without using recursion, write the S () method corresponding to the following produc-
tions 

S-» bcS 
S ^ A 

Answer: 

pr iva te void S() 
{ 



208 RECURSIVE-DESCENT PARSING 

whi le (currentToken == ' b ' ) 
{ 

c o n s u m e ( ' b ' ) ; 
consume ( ' c ' ) ; 

} 
if (currentToken == '#') 

else 

throw new RuntimeExcept ion( 
"Expect ing \ " b \ " or end of i n p u t " ) ; 

} 

9.8 TRANSLATING THE STAR, PLUS, AND QUESTION MARK 
OPERATORS 

One of the advantages of extended Backus—Naur form (BNF; see Section 4.4) is that it 
can explicitly specify lists. For example, using the variant of BNF that uses * and + to 
specify lists, we can define the language consisting of zero or more b's followed by d 
with 

S : ("b")*"d" 

whose corresponding code is 

private void S() 
{ 

while (currentToken == 'b') 
consume('b'); 

consume('d'); 

} 

Similarly, we can define the language consisting of one or more b's followed by d with 

S : ("b")+"d" 

whose corresponding code is 

private void S() 

{ 

do { 

consume('b'); 

} 

while (currentToken == 'b'); 

consume('d'); 

} 

Notice that the star operator corresponds to a whi l e loop. Because the star operator allows 
for zero occurrences of the starred item, we need to determine if we have any occurrences 
before we enter the loop body that processes the starred item. Thus, we need the leading exit 
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test of a whi le loop. The plus operator, on the other hand, requires at least one occurrence 
of the plussed item. Thus, we should always enter the loop body that processes the plussed 
item. This requirement is met by the trailing exit test of the do-whi le loop. The question 
mark operator corresponds to an i f statement. For example, if we have the grammar 

S : ( " b " ) ? "d" 

then the corresponding code uses an i f statement: 

private void SO 
{ 

if (currentToken == 'b') 
consume('b'); 

consume('d'); 
} 

In the preceding examples, the starred, plussed, and question-marked items are all sin-
gle terminals. What if these items were complex sequences of nonterminals and/or termi-
nals? In that case, the corresponding code would still have the same structure as the pre-
ceding examples. We would simply perform tests with FIRST sets rather than with a 
single terminal. For example, suppose Q is an arbitrary sequence of nonterminals and/or 
terminals. Then the code for 

S : (Q)* "d" 

would have the following structure: 

private void S() 
( 
while (currentToken in FIRST(Q)) 
QO ; 

consume('d'); 
} 

For example, if the FIRST(Q) = {b, c}, then our s() method would be 

private void SO 
{ 
while (currentToken == 'b' || currentToken == 'c') 

QO; 
consume('d'); 

} 

If we wish to parse lists using loops rather than recursion, it makes sense to write our 
grammar using the star and plus operators of extended BNF. With a grammar in this form, 
we can determine the required loops from the grammar in an obvious way. We simply use 
the following rules: 

The starred structure becomes a whi le loop. 
The plussed structure becomes a do-whi le loop. 
The question-marked structure becomes an i f statement. 
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9.9 DOING THINGS BACKWARD 

The recursive method r 1 in Figure 9.3 has a p r i n t l n statement before the recursive call 
that displays the value of the parameter n. Thus, as r l recurses down, it displays the suc-
cessive values of the parameter. For example, if we pass 2 to r 1, it will display 2 and 1 in 
that order, followed by goodbye. Suppose we reposition the p r i n t l n statement so that 
it immediately follows the recursive call (i.e., switch lines 5 and 6). Then r l will display 
the successive values of the parameter n as it recurses up. Now if we pass 2 to r l , it will 
display goodbye followed by 1 and 2 in that order. Notice the order is reversed (follow 
the arrows in Figure 9.7) from that produced by original r l method. 

From Figures 9.4 and 9.7, we can see a very important pattern that occurs when we ex-
ecute recursive methods: 
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1. As we recurse down, we execute the statement(s) before the recursive call. 
2. We hit bottom. 
3. As we recurse back up, we execute the statement(s) after the recursive call. 

With recursion, we have a choice of the order in which actions are performed. If we 
place actions before the recursive call, they will be performed in the normal order. If, 
however, we place actions after the recursive call, they will be performed in reverse order. 
For another example, see the t r a v e r s e method in Figure 9.8. It traverses a linked list in 
which each node consists of a d a t a field and a l i n k field. Each l i n k field, except the 
last, contains the reference to the next node on the list. The last l i n k field contains null. 

Because the p r i n t In statement follows the recursive call, it displays the data in the 
linked list in reverse order (i.e., from the last node to the first). If, on the other hand, the 
p r i n t l n statement preceded the recursive call, it would display the data in its normal or-
der (i.e., from first node to last). 

With recursion, we can process the elements of a list in their given order or in 
their reverse order. 

Using recursion to process lists in reverse order is a common technique used in 
parsers. For example, we will encounter a parser in Chapter 16 that has to associate suc-
cessive integers (starting from 2) with the parameters in a method definition in right-to-
left order. For example, in the method definition that starts with 

vo id f ( i n t b , i n t c, i n t d) 

the parser has to associate 2, 3, and 4, with the parameters d, c, and b, respectively. 
Unfortunately, this task is not easy because the parser parses the parameter list in left-to-
right order. When it parses the first parameter, it does not know its corresponding integer 
because it depends on the number of parameters. In this example, b should be associated 
with 4. If, however, there were 10 parameters, then b should be associated with 11. We do, 
however, have an elegant solution for this problem: With recursion, we can scan the list left 
to right but process it right to left. We will see the details of this technique in Chapter 16. 

PROBLEMS 

1. Implement a recursive-descent parser for 

1. E-> +EE 
2. E-» -EE 
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3. E -> *EE 
4. E - » /EE 
5. E^> b 
6. E - » c 
7. E - ^ d 

Test your program with b, c, d, +bc, - / b e * cd, +-* / b e b e d , b e , +b , *bcd , and A. 
2. Implement a recursive-descent parser for 

1. S-> BCD 
2. B - » bB 
3. B-> A 
4. C - » cC 
5. C - » A 
6. D-> dD 
7. D ^ A 

Test your program with A, b, c, d, be , bd, cd, c e c , b e b , db, and dc . 
3. Implement a recursive-descent parser for the same language processed by the stack 

parser in Figure 6.12. Test your program with cbd, b c b d c b c b c d , cbdd , bed , ddd, 
and A. 

4. Implement a recursive-descent parser for the same language processed the stack 
parser in Figure 8.4. Test your program with fbb, f b b e c , f c c d e c , bb , fbbed , 
and A. 

5. Implement a recursive-descent parser for G4.4. Test your program with b , (b) , 
( ( ( b ) ) , ( b + c * d ) , ( b + c ) * d , b b , b ) , ) b ( , a n d A . 

6. What is the B () method corresponding to 

B-> bBbBbB 
B —* c c c c 
B-> e 

7. Write both a recursive and a nonrecursive S () method for 

S-> bS 
S ^ cS 
S-»· d 

8. Write the S () method corresponding to 

S^> bSc 
S - » A 

9. Implement a top-down nonrecursive parser for the grammar in problem 8. Do this in 
two ways: 

a) Implement a stack parser. 
b) Eliminate the recursion in the S () method of a recursive-descent parser. 

Test your two programs with A, be , b b e c , b e b , b b e c e , b b c , c e b b , and b e b e . 
Compare your two parsers. In what ways are they similar? 
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10. Implement a recursive-descent parser for the language { wdwr: w G (b|c)*} .Note: 
wr is the reverse of w. Test your program with d, b c d c b , c d c , b c d c b b , b c c d c b , 
and λ. 

11. Convert the following grammar to an LL(1) grammar by left factoring. 

1. S—> bcC 
2. S-» bcDf 
3. C-» dD 
4. D-> eD 
5. D^> λ 

12. Write the S ( ) , C ( ) , D ( ) , and R () methods for the grammar in problem 11. Note: 
R () corresponds to the nonterminal R that left factoring introduces. 

13. Incorporate the code body of R () in problem 12 into S ( ) . 
14. Rewrite G4.4 in extended BNF. 
15. Implement a recursive-descent parser for G4.4. Do not use recursion in your methods 

for t e r m L i s t and f a c t o r L i s t . Test your program as specified by problem 5. 
16. Write a Java program that creates a linked list and then traverses it in its natural order 

and in reverse order using recursive methods. 
17. Write a Java program that displays the contents of an array in bottom-to-top order 

and top-to-bottom order using recursive methods. 
18. In a LL(1) grammar, there can never be more than one production with the same left 

side that is nullable. Why? In a recursive-descent parser, we do not have to test if the 
current token is in the selection set for this nullable production. Why? Thus, the only 
selection sets we have to compute are the selection sets for the nonnullable produc-
tions. What does this imply about the computation of FOLLOW sets? 

19. Will a recursive-descent parser always detect trailing garbage at the end of the input 
if the parser performs selection set tests for every production? 

20. Does a parser that performs a selection set test for every production produce better er-
ror messages than a parser the performs a selection set test only when it is absolutely 
necessary? 

21. Show the structure of the code for 

S : <Q)* "d" 

22. Show the structure of the code for 

S : (Q)* 

23. Show the structure of the code for 

S: (A)* " b " | (B)* "d" I (C)* " d " 

Assume A and c but not B are nullable. 
24. What is the problem with converting the following grammar to parser code: 

S: ( B ) * "d" 

B: " b " | "d" 

25. Write the recursive method corresponding to 

S ^ bS 

S ^ λ 
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Write the iterative method corresponding to 

S : (b)* 

In what way will the two methods behave differently? 
26. Implement the parser for the following extended BNF grammar: 

S : B* "e"? D+ 
B : "b" B | " c " 
D : "d" L 
L : "d" L I λ 

Use recursion in your B () and L () methods. Use loops (for B* and D+) in your S () 
method. Test your parser with the following input strings:d, ed, cd, ced, bced, 
bbceddd, b, bedb, λ. 

27. Under what circumstances can a call of the advance () method be used in place of a 
call of the consume method . Is the result more efficient code? Consider the follow-
ing grammar: 

1. S-> b 
2. S-» c 

3. S^> dBe 
4. B-> bB 
5. B-> d 



10 
RECURSIVE-DESCENT TRANSLATION 

10.1 INTRODUCTION 

We can easily extend a recursive-descent parser so that it both parses and translates. We 
do this by embedding actions in the various methods of the parser. These actions perform 
the translation function. An action is usually a call to a method in the code generator. 

When the parser calls a method in the code generator, the parser generally has to pass 
it information obtained earlier in the parse. Thus, one of the additional jobs of the parser 
in a parser/translator is to collect this information and provide it to the actions that require 
it. We can easily implement this flow of information in a recursive-descent parser/transla-
tor using Java's r e t u r n statement and its parameter-passing mechanism. Using r e t u r n 
statements, we can pass information up a chain of method calls; using parameters, we can 
pass information down a chain of method calls. The parser can also provide information 
to the code generator via shared data structures. 

In the previous chapter, we learned that an LL( 1) grammar and its corresponding recur-
sive-descent parser have parallel structures. The grammar, along with its selection sets, is es-
sentially a flowchart that tells us how to implement the parser. If we augment our grammar 
with symbols that represent the actions performed by a parser/translator, then the augmented 
grammar becomes, in effect, a flowchart of a parser/translator. We call a grammar augment-
ed in this way is a translation grammar. A translation grammar uses a syntax-defining mech-
anism (the grammar) to define not only a language but also its translation. Accordingly, we 
call a translation based on a translation grammar a syntax-directed translation. 

10.2 A SIMPLE TRANSLATION GRAMMAR 

The following grammar defines the language be* d: 

GlO.la Selection Set 
1. S -> bCd {b} 
2. C -» cC {c} 
3. C -H> λ (d) 

Compiler Construction Using Java, JavaCC. and Yace. First Edition. Anthony J. Dos Reis 
© 2012 the IEEE Computer Society. Inc. Published 2012 by John Wiley & Sons. Inc. 
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We can also represent this grammar in extended Backus-Naur form (see Section 4.4). We 
get 

GlO.lb 
S : "b" C "d" 
C : " c " C | A 

In this form, we group all the productions with the same left side and separate their right 
sides with vertical bars. We also replace "—*" with " :", arid enclose terminal symbols 
with double quotes. 

Let us add an action to GlO.lb specifying that c should be outputted whenever c in the 
input string is parsed. The natural location for this action is between the c and C on the 
right side of first c production: 

S : "b" C "d" 
C : " c " C | A 

— put action here that outputs c 

In the corresponding parser, this point corresponds to the point right after the advance 
past c in the input string. Thus, if the parser outputs c at this point, it will output c for 
each c in the input. Because we not do have a similar action for b and d, the output string 
will contain only c's. That is, it will be the input string from which the initial b and the fi-
nal d have been stripped. 

A convenient way to represent an action is to use the Java statement that performs that 
action, enclosed in braces. For example, we can specify the action that outputs c with the 
Java statement 

{System.out.print ('c');} 

We will write translation grammars using extended Backus-Naur form within a struc-
ture that is similar to a Java method. For each nonterminal in the grammar, there will be a 
corresponding Java-method-like structure that contains the productions for that nontermi-
nal. For example, the translation grammar that corresponds to G10. lb with the embedded 
action that outputs c is 

G10.2 
void S ( ) : {} -< use S () in place of S and : in place of —» 
{ 

"b" CO "d" -* use C() in place of C 

void C ( ) : {} -< use C () in place of C 
{ 

" c " { S y s t e m . o u t . p r i n t ( ' c ' ) ; } C() 
I -< the vertical bar separates alternatives 

{} -< empty action represents λ 
} 
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It contains two Java-like methods, S () and c () , that represent the S and C productions, 
respectively. Like Java itself, a translation grammar can be formatted in a variety of ways. 
For clarity, we place the right side of each production and each vertical bar on a separate 
line. Notice that we enclose the action in the C () method in braces, and we represent non-
terminals with their corresponding method names. We represent A with a line on which 
only an action appears. The action can be empty. That is, we can use {} to represent A. As 
in Backus-Naur form, we use " : " in place of"—»", and we separate the right sides of pro-
ductions with vertical bars. The empty braces that immediately follow " : " are for local 
variables (we will discuss local variables in Section 10.3). 

10.3 CONVERTING A TRANSLATION GRAMMAR TO JAVA CODE 

It is easy to convert a translation grammar to Java code. We simply use the procedure we 
learned in Chapter 9 to convert grammars to Java code. The only feature that is new in 
translation grammars are actions. These we simply carry over, as is, to the Java code. 

The following table summarizes the Java code we need in a parser/translator for the 
various components of a translation grammar: 

Translation grammar Java code 

terminal " t " consume (' t ' ) ; 
nonterminal N () within a method N () ; (i.e., call the N () method) 
A represented with {} ; (i.e., the null statement) 
{action written in Java} action written in Java 

In a translation grammar, we list the alternatives for a nonterminal, separating each 
from the next with a vertical bar. This multichoice structure converts to a swi tch state-
ment in the corresponding Java code. For example, the Java code that corresponds to 
G10.2is 

private void SO 

{ 
consume('b'); 
CO; 
consume('d'); 

} 
// 

private void C() 
( 

switch(currentToken) 
{ 

case 'c' : 
// apply first C production 

consume('c'); 
System.out.print ('c') ; // action 
C O ; 
break; 

case 'd': 
// apply second C production 
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break; 
default: 
throw new RuntimeException("Expecting \"c\" or \"d\""); 

} 
} 

Consider the C () method. The action {System, out . p r i n t ( ' c ' ) ; } in the transla-
tion grammar is carried over to the C () method. We test cur rentToken with a swi tch 
statement to determine which C production to apply. If cur rentToken is in the selec-
tion set for the first c production (its selection set is {c} ), we apply the first production. 
Similarly, if cur ren tToken is in the selection set for the second C production (its selec-
tion set is {d}), we apply the second production. 

A translation grammar and its corresponding Java code are similar in structure. So be 
sure to not confuse the two. A common error is to use swi tch statements and calls to 
consume in a translation grammar. Remember that it is the Java code that has swi tch 
statements and calls to consume, not the translation grammar. 

The translation grammar G10.2 specifies not only a language be* d, but also the trans-
lation of each string in this language. Although the form of a translation grammar that we 
are using may be confusing at first, you will quickly get used it. Its form is not unlike that 
of Java methods. With this form we can precisely specify not only grammars but transla-
tions as well. 

10.4 SPECIFICATIONS FOR A TRANSLATION GRAMMAR 

Let us more precisely define the form of our translation grammars. We will observe the 
thirteen conventions listed below. They allow us to specify a source language and its 
translation. Given such a translation grammar, we can easily—indeed, mechanically— 
convert it to the Java code that performs the specified translation. 

1. To emphasize the correspondence between nonterminals in the grammar with 
method calls in a recursive-descent parser, we will represent nonterminals with 
their corresponding method calls. For example, in place of the nonterminal S, we 
will use S ( ) . Thus, S () represents both a nonterminal symbol and the method in 
a recursive-descent parser corresponding to it. We will also use meaningful names 
for methods and their corresponding nonterminals. For example, we will use 
expr () rather than e () for the method that parses expressions. 

2. We will separate the parts of the right side of each production with spaces. 
3. We will use " : " in place of "—*" to separate the left and right sides of a 

production. 
4. We will enclose terminal symbols in double quotes. For a sequence of terminal 

symbols, we can either enclose each symbol in quotes or enclose the entire se-
quence. However, the two alternatives are not equivalent. If we specify 

"b" "c" "d" 

then spaces are allowed between "b" and " c " and between " c " and "d". How-
ever, if we specify 

"bed" 

then the three characters must be contiguous, that is, have no intervening spaces. 
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5. We will start the specification of each production using a form similar to method 
definitions in Java. For example, suppose that the N () method corresponding to 
the N nonterminal in a grammar returns an i n t value, has an double parameter 
d, and uses a local S t r i n g variable s. Then the specification of N in a translation 
grammar would start with 

in t N(double d) : {String s;} 

L, ndicates N () uses local S t r i n g variable s 
indicates N () is passed an double argument 
indicates N () returns an i n t value 

If N () does not return a value, does not use any parameters, and does use any lo-
cal variables, then the specification of N () would start with 

vo id N() : { } 

Note that we must include the braces for local variables even if the method does 
not use any local variables. 

6. We will group together productions with the same left side, separating the succes-
sive right sides with " | " (without the quotes), and enclosing the list of right sides 
with braces. Let us look as an example. Suppose the B productions in a grammar 
are 

B -> CD 
B -> DE 
B -> b 

and have no embedded actions. If the corresponding B () method does not return 
a value, does not use any parameters, and does not return a value, then we would 
represent these productions in a translation grammar with 

void B() : { } 
{ 

C() DO 
I 

DO E() 
I 

"b" 
} 

7. We will enclose actions within braces. For a sequence of actions, we can either 
surround each individual action with braces or surround the entire sequence with 
just one set of braces. 

8. An alternative that consists solely of an action represents A. We will use an empty 
action to represent A when no action is required. For example, in the translation 
grammar below, the second alternative for S () and Q () both consist of an action 
alone. Thus, they both represent A. 

void SO : { } 
{ 

"b" Q() 

action alone represents A 
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v o i d Q ( ) : {} 
{ 

" c " 
I 

{ System, out . p r i n t l n ("bye") ;} -< action alone represents A 
} 

9. We will omit the semicolon at the end of method calls corresponding to nontermi-
nal symbols but not omit it within the Java code that specifies actions. For exam-
ple, we will write 

SO 

without a terminating semicolon, but we will write 

{ S y s t e m . o u t . p r i n t ( ' b ' ) ; } 

with the terminating semicolon at the end of the p r i n t statement. 
10. If a token corresponds to a category, we will represent that token with an upper-

case descriptive name surrounded by angle brackets. For example, suppose a cate-
gory of tokens is unsigned integer. We will represent such tokens with 
<UNSIGNED>. 

11. We can use the star operator (meaning zero or more), the plus operator (meaning 
one or more), or the question mark operator (meaning zero or one). For example, 
consider the following grammar that specifies a list consisting of one or more b's: 

list -> "b" listTail 
listTail --> "b" listTail 
listTail —>· A 

In a translation grammar, we represent these productions with 

void list() : { } 

{ 
"b" listTail() 

} 
void listTail() : { } 
{ 

"b" listTail() 
I 

{ } -< use action alone to represent A 
} 

However, in a translation grammar, we can specify the same list with 

void l i s t O : { } 
{ 

" b " ( " b " ) * 
} 

Here, the asterisk means zero or more. Thus, we are specifying a list that consists 
of an initial "b" followed by zero or more additional occurrences of "b". In a 
translation grammar, the item to which the asterisk, plus, or question mark is ap-
plied must be enclosed in parentheses. For example, we must write ("b")* rather 
than "b"*. 
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12. We can specify comments in a translation grammar in the same way we specify 
comments in a Java program: Start a one-line comment with " / /"; bracket a mul-
tiline comment with "/* " and "* /". 

13. The vertical bar (also known as the alternation operator) separates one alternative 
from the next. For example, in the following translation grammar, the alternation 
operator divides the S () into two alternatives: one that displays h e l l o and pars-
es b, and the other that parses c and displays goodbye: 

v o i d S ( ) : { } 
{ 

{ System.out.println("hello"); 

"b" 

I 
"c" 

{ System.out.println("goodbye"); 

} 

Thus, if the input is b, the output is h e l l o . If the input is c, the output is "good-
bye". The corresponding Java code is 

private void S() 

{ 

switch(currentToken) 

{ 

case 'b' : 
System.out.println ( "hello" ) ; 
consume('b'); 
break; 

case 'c': 
consume( ' c ' ) ; 
System.out.println("bye"); 
break; 

default: 

throw new RuntimeException("Expecting S string"); 

} 

Using parentheses, we can restrict the scope of the alternation operator. For example, 
in the following grammar, the parentheses restrict the scope of the alternation operator so 
that it does not include the two p r i n t l n statements: 

v o i d S O : { } 
( 

{ System.out.println("hello"); 
( 

"b" 
I 

"c" 
) 

( System.out.println("goodbye"); 
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Thus, if the input is b, the output is h e l l o followed by goodbye. If the input is c, the 
output is also h e l l o followed by goodbye. Because the actions are out of the scope of 
the alternative operator, they are executed regardless of which alternative is taken. The 
corresponding Java code is 

private void S() 

{ 
System.out.println("hello"); 
switch(currentToken) 

{ 

case 'b': 
consume(' b ' ) ; 
break; 

case 'c': 
consume('c'); 
break; 

default: 

throw new RuntimeException("Expecting S string"); 

} 

System.out.println("bye"); 

} 

For most translation grammars, we will provide the selection sets on the right. The se-
lection sets, however, are not part of the translation grammar. The form of our translation 
grammars is essentially extended Backus-Naur form (see Section 4.4), further extended 
to allow the specification of actions, parameter passing, and value returning. 

When writing a translation grammar, be sure to remember this semicolon rule: A non-
terminal on the right side of a production in a translation grammar is not followed with a 
semicolon. For example, the right side of the production B —* CD is represented in a 
translation grammar with 

CO D() 

rather than with the method calls 

C O ; D () ; 

In the corresponding Java code, however, nonterminals on the right side of a production 
in a translation grammar become method calls in Java, which, of course are terminated 
with semicolons. 

Exercise 10.1 

Modify G10.2 so that it also outputs a newline character at the end of the output string. 

Answer: 

v o i d S O : { } 
{ Selection Set 

"b" C() "d" { S y s t e m . o u t . p r i n t l n ( ) ; } { "b"} 
} 
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v o i d C() : {} Selection Set 
{ 

" c " { S y s t e m . o u t . p r i n t l n ( ' c ' ) ; ) C() {"c"} 
I 

<} {"d"} 

Let us examine the recursive-descent parser/translator in Figure 10.1 that is based on 
G10.2. 

The action in G10.2 corresponds to line 85 in Figure 10.1. We execute this line when-
ever the current token is c. Thus, for every c in the input string, line 85 outputs a match-
ing c. There is, however, no similar action if the current token is b or d. Thus, the output 
string produced is the input string from which the initial b and final d have been stripped. 
When we run this program with the input bccd, the computer display screen will show 
the following: 

i npu t = bccd 
cc -< this is the output string produced by the parser/translator 

Notice that in Figure 10.1 we consume a terminal whenever when we reach a point 
where the grammar generates a terminal. On line 74, we consume b; on line 84, we 
consume c; on line 76, we consume d. However, we do not consume anything on line 
89. On this line, we are applying a lambda production which, of course, does not gen-
erate a terminal symbol. The code corresponding to a lambda production is simply the 
null statement. 

Because we are now focusing on translation, we did not include in our parser/translator 
in Figure 10.1 the statements that display accep t and r e j e c t . The program, however, 
still generates an error message if the input string is invalid. 

The program in Figure 10.1 is actually a simple compiler. It contains the three essential 
components of any compiler: the token manager, the parser, and the code generator. Of 
course, its code generator is minimal; just a single action statement (line 85) embedded in 
the parser. 

Figure 10.2 shows the parse tree for bccd using G10.2. We have subscripted each 
node of the tree with a number that indicates the order in which the node is processed dur-
ing a recursive-descent parse. 

If we read the leaf nodes left to right, excluding the actions, we get the input string 
bccd. If, instead, we read the actions left to right, we get the actions in the order in which 
they are executed. 

Let us now consider a more complex translation grammar: 

G10.3 
void S() : { } 
{ Selection Set 

"b" S() { S y s t e m . o u t . p r i n t ( ' b ' ) ; } {"b"} 
I 

" c " S() { S y s t e m . o u t . p r i n t ( ' c ' ) ; } {"c"} 
I 

{} {"#"} 

} 
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When production 1 generates b, it also outputs b, but only after all the actions associat-
ed with the intervening S () nonterminal have completed. Thus, the b that is outputted 
corresponding to the initial b in the input string appears last in the output string. Look 
at the parse tree for bbc in Figure 10.3. The input string, read left to right, is bbc, 
but the actions, left to right (which is the order in which they are executed) display 
ebb. The output string is the reverse of the input string. In Figure 10.3, we have num-
bered the nodes in the order in which they are processed during a recursive-descent 
parse. Notice that this numbering confirms that the actions are performed in left-to-right 
order. 

Exercise 10.2 

What would be the effect of inserting System, out . p r i n t In () in the empty action on 
the right side of the last production in G10.3? 

Answer: 

The p r i n t l n () would output a newline character at the beginning of the output string. 
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Exercise 10.3 

Modify G10.3 so that a newline character appears at the end of the output string. 

Answer: 

void newStar t() : {} 
{ 

S() { System.out .println () ;} 

} 

void S () : {} 

{ 

"b" S() { System.out.print('b');} 

I 

"c" S() { S y s t e m . o u t . p r i n t ( ' c ' ) ; } 
I 

Another interesting translation grammar is 

G10.4 
void S ( ) : {} Selection Set 
{ 

expr() { System, out. println O ;} {" + ", *'-", "*", 

"/", "b", "c", "d"} 

} 

void expr() : { } 

{ 

" + " exprO exprO { System.out.print(' + ');} {" + "} 

"-" expr() expr() { System.out.print ('-');) {"-"} 

"*" expr () expr () { System, out .print ('*') ;} { "* "} 

"/" expr(') expr() { System, out .print ('/') ;} {"/"} 

"b" { System.out.print('b');} {"b"} 

"c" { System.out.print('c');} {"c") 

"d" { System.out.print('d');} {"d") 

This translation grammar specifies the translation of arithmetic expressions in prefix nota-
tion to their corresponding postfix notation. In prefix notation, the operator precedes its 
operands. In postfix notation, the operator follows its operands. In infix notation (the nota-
tion we use in everyday mathematics), the operator is between its operands. For example, 
the prefix expression + + b c d, the postfix e x p r e s s i o n b c + d +, and the infix 
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expression b + c + d are equivalent. They all specify the addition of b, c, and d in 
left-to-right order. 

In the prefix expression + + b c d, the operands for the second + are b and c (the two 
operands that follow it). The operands for the first + are the result of the computation for the 
second + and d. Thus, this expression specifies the addition b and c, followed by the addi-
tion of d. That is, it specifies a left-to-right order of evaluation. Similarly, in the postfix ex-
pression b c + d +, the first + operates on the bände that precedes it. The second + op-
erates on the result of the first addition and d. Thus, this expression, too, specifies the 
addition of b, c and din left-to-right order. The infix expression b + c + d does not spec-
ify an order of evaluation. However, by convention, additions are performed left to right, 
unless parentheses indicate otherwise. Thus, we view this expression as also specifying a 
left-to-right order of evaluation. 

In prefix notation, as well as in postfix notation, we never need parentheses. We can 
specify any order of evaluation by simply arranging the operands and operators in the ap-
propriate order. For example, the prefix expression for the sum of b, c, and d added in 
right-to-left order is +b+cd; the postfix expression for the same sum is bcd++. In the 
equivalent infix expression, we have to use parentheses: b+ (c+d). 

The last three productions in G 10.4 output operands as soon as they are parsed. However, 
the four productions that start with an operator defer outputting the operator until after their 
two operands have been parsed. Thus, in the output, each operator follows its operands. That 
is, each output string is the postfix expression equivalent to the prefix string in the input. 

The method call of expr () in S () in G10.4 parses the input string, and outputs an 
output string. The output string appears on one line because of the use of the 
System. out . p r i n t method (which does not advance the cursor to the beginning of the 
next line) within the expr () method. On return to S () , the System. o u t . p r i n t l n ac-
tion positions the display screen cursor at the beginning of the next line. 

The recursive descent parser/translator for G10.4 in given in Figure 10.4. When we run this 
program and enter the prefix string + /bed, the computer screen will display the following: 

i npu t = +/bcd 
bc/d+ -< this is the output string produced by the parser/translator 

Exercise 10.4 

Construct the parse tree for *b+cd in G10.4. What is the corresponding output string? 
Abbreviate the action { System, out . p r i n t } with{ p r i n t } 

Answer: 

expr ( ) expr () { p r i n t ( ' * ' ) ;} 

b { p r i n t ( ' b ' ) } + expr ( ) expr ( ) { p r i n t ( ' + ' ) ;} 

c f p r i n t ( ' c ' ) ;} d ( p r i n t (' d" ) ;} 

The output string is bcd+* followed by the new line. 
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10.5 PASSING INFORMATION DURING THE PARSE 

In the translation grammars we have seen so far, the actions do not need information from 
earlier in the parse. For example, in the production 

v o i d S ( ) : { } 
{ 

"b" S() { S y s t e m . o u t . p r i n t ( ' b ' ) ; } 
I 

} 

the action { System, out . p r i n t I n ( 'b ' ) ;} is completely defined. It does not need in-
formation from earlier in the parse. 

Now consider the following incomplete translation grammar: 

G10.5 
vo id S O : {) Selection Set 
{ 

QO { output what Q () generates] {"b", "c"} 
I 

{} {"#"} 
} 

v o i d Q ( ) : {} 
{ 

" b " {"b"} 
I 

" c " {"c"} 
> 

In production 1, the action is supposed to output whatever Q O to its left generates. If Q () 
generates b, the action should output b ; if Q () generates c, the action should output c. 
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Thus, Q () must provide to S () information it uncovers during the parse, namely, the ter-
minal symbol it generates. S () can then pass this information to the action so that the ac-
tion can output it. 

We can easily implement the flow of information required by G10.5 using the r e t u r n 
statement and the parameter passing mechanism in Java. Q() simply uses a r e t u r n 
statement to return the terminal symbol it generates. S () saves this terminal symbol in a 
local variable r. S () then passes r to the action. The translation grammar that describes 
the required information flow is 

G10.6 
void S () : { char r;} 

{ 

r=Q(){ System.out.print (r);} 

I 
{} 

I 

char Q() : {} 

{ 
"b" (return 'b';} {"b"} 

I 
"c" {return 'c';} {"c"} 

Notice that within the braces that follow " : " in the S () production, we declare the local 
variable r. From the first S () production, we can see that Q () returns a value which is 
then assigned to r. r is then passed to the System. o u t . p r i n t action. The Q () produc-
tions indicate that Q () returns either b or c, depending on the terminal symbol it gener-
ates. Notice that we have prefixed the specification of Q () with char to explicitly indi-
cate the type of value Q () returns. With this additional information in the translation 
grammar, the grammar specifies precisely how it should be converted into a computer 
program (see Figure 10.5) 

Recall from Section 9.2 that a recursive-descent parser, in effect, traverses the parse 
tree of the input string in a depth-first order with preference given to the leftmost. 
Associated with this type of traversal are three directions of motion: down, up, and 
across. 

Any information the parser uncovers during a parse can be passed to any point later on 
in the traversal. In Figure 10.5, when the direction of the traversal is up (from Q () back to 
S ()), we use the r e t u r n statement to carry the information. When the direction is across 
a production (from the call of Q () in the S () method to the action 
S y s t e m . o u t . p r i n t (r) to its right), we use a local variable to carry the information. 
And when the direction is down (from S () to the action System, out . p r i n t (r) ), we 
use the parameter passing mechanism in Java to carry the information. 

Another interesting translation grammar is 

G10.7 
void S ( ) : { i n t r;} Selection Set 
{ 

r=B(0) { S y s t e m . o u t . p r i n t l n ( r ) ; } {"b", "#"} 
} 

Selection Set 

{"b", "c") 

{#} 
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i n t B ( i n t p) : { i n t t ;} Selection Set 
{ 

"b" t=B(p+l) { r e t u r n t ;} {"b"} 
I 

{ r e t u r n p;} ( #} 
} 

In this translation grammar, the method that corresponds to the B () nonterminal returns 
an integer value, uses a local integer variable t , and is passed an integer value. Accord-
ingly, its specification in the translation grammar starts with 

i n t B ( i n t p ) : { i n t t ;} 

G10.7 translates a string of zero or more b's to the number of b's in the input string. For 
example, if the input string is bbb, then the output string is 3 (which is the number of b's 
in the input string). Notice that 
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t=B(p+l) 

in the specification of B () is both an action (an assignment to t ) and a nonterminal (B). 
Because it includes a nonterminal, we do not enclose it in braces. 

The easiest way to understand G 10.7 is to examine the implementation of the S () and 
B () methods corresponding to the S () and B () nonterminals in G10.7 (see Figure 10.6). 

When B () applies its first production, it consumes b (line 25) and then recursively 
calls itself (line 26), passing a count one more than it received from its caller. Because the 
count starts at 0 (S () passes 0 to B () on line 9), the count at any point in the parse is 
equal to the number of b's in the input string processed so far. B () applies its second pro-
duction when the current token is the end-of-input marker. At this point, the count that 
B () receives is the final count because the entire input string has been processed. This 
last invocation of B () echoes this count back to its caller, which, in turn, returns it to its 
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caller, and so on, until it reaches S ( ) . S () saves it in a local variable r (line 9), and then 
passes the value in r to the p r i n t l n method. For this example, the information flow is 
first down the parse tree (by means of Java's parameter passing mechanism), then up the 
tree (by means of Java's r e t u r n statement), horizontally across the tree (by means of the 
local variable r in s ()), and finally down to the p r i n t l n action (by means of the para-
meter passing mechanism). The information flow follows the parser as it performs, in ef-
fect, a depth-first traversal of the parse tree. 

Exercise 10.5 

Rewrite B () in Figure 10.6 without using t . 

Answer: 

int private B(int p) 
{ 

switch(currentToken) 
{ 

case 'b': 
consume('b'); 
return(B (p+1)); // increase count 

case '#': 
return p // return final count 

default: 
throw new RuntimeException("b" or end of input); 

} 
} 

Exercise 10.6 

In G10.7, the b's are counted as we recurse "down" (i.e., as the recursive calls are oc-
curring). For each b in the input string, we call B () recursively. For each recursive call, 
we add one to the parameter. Thus, the parameter at each level equals the number of b's 
processed so far. When we reach "bottom" (i.e., when cur ren tToken is #), the value 
of the parameter is equal to the total number of b's in the input string. We then pass 
this final value back "up" as each level returns to the level above it. To summarize, 
we count as we recurse "down". As we recurse back "up", we simply return the final 
count. 

An alternative approach is to count as we return back "up" rather than as we recurse 
"down". In this approach, we start with a count of 0 when we reach "bottom". Then as we 
recurse back "up" (i.e., as each level returns to the level above it), we add one to the value 
returned as each level. Thus, when B () finally returns to S () , the value returned will be 
equal to the number of b's in the input string. Write a translation grammar that corre-
sponds to this approach. 

Answer: 

void S(): { int r;} 
{ 

r=B() { System.out.println (r);} 
} 
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i n t B() : { i n t t ;} 
{ 

"b" t=B() {return t+1;} / / counting as we recurse "up" 
. I 

{ return 0;} 
} 

Exercise 10.7 

Write a translation grammar that outputs the input string if the length of the input string 
is even. Otherwise, it should output the input string plus one additional ' b ' . The input 
string is any string of zero of more b's. You may use an i f statement as an action with-
in a translation grammar. Hint: one solution to this problem is a simple extension of 
G10.7 

Answer: 

void S ( ) : { i n t r;} Selection Set 
{ 

r=B(0) {"b", "#"} 
( i f (r mod 2 == 1) 

System.out.println('b'); 
else 

System.out.println(): 
} 

} 
int B(int p) : { int t;} 

"b" {System.out.print('b');} {"b"} 
t=B(p+l) { return t;} 

{ return p;} {"#"} 

10.6 L-ATTRIBUTED GRAMMARS 

When the code in Figure 10.6 is executed, a value (equal to 0) is passed from S () to B () . 
B () , in turn, passes a value (equal to 1) to B () in a recursive call. B () repeatedly calls it-
self (line 26), once for each b in the input string. At the end of the input string, the recur-
sion "hits bottom", at which point the final count of b's is returned (line 29) to the next 
level up, where it, in turn, is returned to the next level up. This process continues all the 
way up to the S () method. When the final count is returned to Ξ () on line 9, S () then 
passes the final count to the a p r i n t l n statement (line 10). We can see that associated 
with each call of B () are two values: the value passed to it from above, and the value re-
turned to it from below. The p r i n t l n action has one value associated with it (the value 
S () passes to it). Figure 10.7 shows the parse tree corresponding to the input string bb. 
We have labeled each B () node with a pair of values. The first value is the value passed 
to it from above; the second value is the value returned to it from below. We also show 
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the p r i n t l n statement labeled with the argument 2—the value it receives from S () . We 
call the values associated with symbols and actions in a parse tree—like the pair of values 
on each B () node and the argument in the p r i n t l n statement in Figure 10.7—attribut-
es. A translation grammar defines these attributes: what they are and how they are com-
puted. For example, from the definition of B () in G 10.7, we can see that one of the attrib-
utes of B () comes from above in the parse tree (the parameter p that is passed to B ()), 
and one comes from below (the value returned by the recursive call). 

There are two types of attributes in an attributed grammar: synthesized and inherited. 
A synthesized attribute is an attribute that depends on the attributes of symbols below it 
in the parse tree. In Figure 10.7, the second number on each B () node is a synthesized 
attribute because it comes from below in the parse tree. An inherited attribute is an at-
tribute that depends on the attributes of symbols above it or on the same level in a parse 
tree. In Figure 10.7, the first number on each B () node is an inherited attribute since it 
comes from above in the parse tree. The value of the argument in the p r i n t l n state-
ment is also an inherited attribute. Its value comes from the B () node to its left in the 
parse tree. 

Dependencies can exist between attributes. For example, in G10.7, the inherited at-
tribute of the p r i n t l n statement (i.e., its argument) depends on the synthesized attribute 
of the B () nonterminal to its left. 

For our compilers, we would like translation grammars with attribute dependencies 
that have no forward dependencies. For example, when the parser reaches the p r i n t l n 
statement in G 10.7, its inherited attribute (i.e., the value of its argument) is available from 
the preceding call of B () . Now suppose the p r i n t l n action preceded rather than fol-
lowed the call of B () . That is, suppose we define the S () production as follows: 

void S() : { i n t r;} Selection Set 
{ 

{ S y s t e m . o u t . p r i n t l n ( r ) ; } r=B(0) {"b", "#"} 
} 

When the parser reaches the p r i n t l n action, it has not yet determined its inherited at-
tribute (i.e., the value of its argument). The value depends on the following call of B (0). 
Thus, we cannot perform this action when we reach it in a top-down parse because it has a 
forward dependency. 
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Parsers based on translation grammars with no forward dependencies are easy to im-
plement. The parser computes attributes as it proceeds through the parse using attributes 
previously computed and, therefore, available. We call a translation grammar without for-
ward dependencies an L-attributed grammar. 

Programming languages are usually designed without forward dependencies. Java is 
an exception: In Java, a method call can precede the method's definition. 

No forward dependencies in a language yield translation grammars that do not have 
forward dependencies that are L-attributed. For example, in Java, the declaration of a lo-
cal variable has to precede the use of that variable. Thus, any use of a local variable is 
necessarily a backward reference to its declaration, which necessarily precedes it. 

Having no forward dependencies in a language is good not only for translation gram-
mars but also for us humans; it makes programs easier to read because we never have to 
look ahead to understand a line of code. The meaning of any line of code can depend only 
on that line and the lines that precede it, never the lines that follow it. 

Can a compiler be constructed that is based on a grammar that is not L-attributed? 
The answer is yes, but the compiler will necessarily be more complex. Such a compiler 
would typically create some representation of the parse tree in which nodes have asso-
ciated attributes (like the tree in Figure 10.7). On the first pass, it would create the parse 
tree and enter all the attribute values it can compute. It would then make additional 
passes over the tree to determine the values of attributes associated with forward refer-
ences. 

10.7 A NEW TOKEN MANAGER 

Up to now, all the input languages for which we have written token managers have a sim-
ple token structure: Each token is a single character. Thus, all our token managers have 
been quite simple. They get the next token simply by returning the next character in the 
input string. However, our next translation grammar will require a more complex token 
manager. It will specify the translation of arithmetic expressions in prefix notation (i.e., 
expressions in which the operator precedes its two operands) to their corresponding val-
ues. For example, if the input string is "+ 17 * 2 5", then the output string is "27". No-
tice that in our input string, "17" is a multiple-character token. Our token manager has to 
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identify these multiple-character tokens, and return each to the parser as a single unit. It 
also has to filter out whitespace (i.e., spaces, tabs, newlines, and carriage returns). For ex-
ample, the sequence of tokens in "+ 17 * 2 5" is "+", "17", "* ", "2", and "5". 

Our new token manager handles input differently from the token managers we have 
seen so far. It inputs from a file rather than from the command line. It reads one line at a 
time. Each time the token manager reads a line, it stores it in a buffer. It then processes the 
characters in the buffer one at a time. After processing all the characters in the buffer, the 
token manager then reads the next line into the buffer, and so on. 

The principal method in our new token manager is the method getNextToken () , 
which returns the next token from the input stream in the form of an object. This object, 
which is instantiated from the class Token (see Figure 10.8), contains all the information 
that the parser requires of a token. The Token class contains the following fields: 

• p u b l i c i n t kind 

kind contains an integer that identifies the token kind (i.e., category). The kind 
values for the various tokens handled by our new token manager are defined in the 
following interface: 

interface FiglOlOConstants 
{ 

// integers that identify token kinds 
public int EOF = 0; 
public int UNSIGNED = 1; 
public int PLUS = 2; 
public int MINUS = 3; 
public int TIMES = 4; 
public int DIVIDE = 5; 
public int ERROR = 6; 

} 

For example, the kind value for an unsigned integer token is UNSIGNED (which is 
equal to 1). The kind value for a "+" token is PLUS (which is equal to 2). 

• public int beginLine, beginColumn, endLine, endColumn 

These fields specify the position in the source file of the first character of the token 
(beginLine and beginColumn) and the last character of the token (endLine 
and endColumn). 

• p u b l i c S t r i n g image 

image contains the string of characters that make up the token. For example, for 
the token "17", image would contain the string "17". The image of the end-of-
file token is set to "<EOF>". 

• p u b l i c Token next 

next contains a link to the next token. 

Figure 10.9 shows the values in the Token object returned by getNextToken () for a 
source file with a single line containing 

+ 17 * 2 5 



240 RECURSIVE-DESCENT TRANSLATION 

With our new token manager in place, the parser identifies a token during the parsing 
process by examining its kind field. For example, to determine if cur ren tToken is a 
" + " token, the parser checks if cu r ren tToken . kind is equal to PLUS (PLUS is the 
kind value for a " + " token). Let us examine an example. Suppose our translation gram-
mar contains the following alternative: 

"+" expr ( ) expr ( ) 

With our old token manager, it would translate to 

switch (currentToken) 

{ 
case ' + ': 

consume (' + ')»' 
expr (); 
expr () ; 
break; 

} 

We identify the token by inspecting the character in currentToken. We also specify to 
the consume method the expected token by passing it the expected character, consume 
then compares this character with the character in currentToken. Now compare this 
code with the code we need with our new token manager: 

switch(currentToken.kind) // test kind value in currentToken 

{ 

case PLUS: 
consume(PLUS); // pass kind value to consume 
expr (); 
expr(); 
break; 

} 
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We identify the token by inspecting cu r ren tToken . kind. We also specify the expect-
ed token to consume by passing it the kind value of the expected token, consume then 
compares this kind value with the kind value in currentToken. 

10.8 SOLVING THE TOKEN LOOKAHEAD PROBLEM 

Let us examine what our new token manager must do when the parser calls its 
getNextToken () method. getNextToken () triggers the processing of the next to-
ken in the input stream. When getNextToken () is processing an unsigned integer 
constant, it must look ahead, that is, it must read one character beyond the end of the 
constant to determine where constant ends. For example, when getNextoken () reads 
the " 7 " in "17", it has no way of knowing that it has reached the end of the constant. 
It must repeatedly read characters until it reads a nondigit. Only then does it know 
where the end of the integer constant is. But then when getNextToken () is again 
called, it may already have read in on its previous call the first character of the next to-
ken. So getNextToken () should never start with a read because an initial read would 
overlay the last character read in from the previous call. Instead, it should always start 
by processing the character it already has from the previous call. But that means that 
getNextToken () should read one character past every token, including those (like + 
and *) whose ends can be determined without reading past them. In other words, if the 
token manager looks ahead when it processes some types of tokens, then it should look 
ahead for every type of token. 

10.9 CODE FOR THE NEW TOKEN MANAGER 

At this point, the structure of our new token manager may seem complex to you. You will 
see that it is, in fact, quite straightforward. Let us examine its code, which appears on 
lines 58 to 186 of Figure 10.10. Note that Figure 10.10 shows the code for the entire pre-
fix expression compiler, which, of course, includes the token manager. In this section, we 
will examine only the token manager portion of Figure 10.10. In the subsequent sections, 
we will consider the rest of the compiler. 

Notice on line 81 that getNextToken () acceses the value in cu r r en tCha r with-
out first reading a value into it: 

81 while (Character.isWhitespace(currentChar)) 
82 g e t N e x t C h a r ( ) ; 

This sequence make sense because getNextToken () always reads one character be-
yond the end of a token. Thus, on every call, except the first, it already has a character in 
cu r r en tCha r to process. If this character is whitespace, getNextToken () discards it 
by calling getNextChar (((getNextChar () places the next character in c u r -
rentChar) . If not, it falls through to line 85 where it creates an object of type Token: 

8 5 token = new Token( ) ; 

On line 102, getNextToken () tests cu r r en tCha r to determine if it is a digit: 

102 if (Character.isDigit(currentChar)) 
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If it is, then it is the start of an unsigned integer constant, which is then proocessed with 

105 do // process unsigned int 
106 { 
107 // append currentChar to buffer 
108 buffer.append(currentChar); 
109 
110 // save token end location 
111 // must do this before calling getNextChar() 
112 token.endLine = currentLineNumber; 
113 token.endColumn = currentColumnNumber; 
114 
115 getNextChar(); 
116 } while (Character.isDigit(currentChar)); 

The do-whi le loop reads in the digits that make up an unsigned integer constant. After 
it reads each digit, it appends it to bu f f e r (line 108). Thus, when the do-whi le loop is 
done, b u f f e r holds the complete sequence of characters corresponding to the unsigned 
integer constant. From line 116, we can see that the do-whi le loop iterates until c u r -
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r e n t C h a r becomes a nondigit. Thus, for unsigned integer constants, g e t N e x t T o -
ken () reads one character beyond the end of the token. 

Following the d o - w h i l e loop, g e t N e x t T o k e n () converts the sequence of charac-
ters in b u f f e r to a string and assigns it to the image field of the t o k e n object: 

117 token . image = b u f f e r . t o S t r i n g ( ) ; 

Next, getNextToken () assigns UNSIGNED to the k ind field in the token object: 

118 token.kind = UNSIGNED; 

UNSIGNED is the constant 1 defined in the F i g l O l O C o n s t a n t s interface (see line 38). 
Because the class F ig lOlOTokenMgr implements this interface (see line 58), UN-
SIGNED is available to the methods in the FiglOlOTokenMgr class. 

If a token does not start with a digit, the d o - w h i l e loop within ge tNextToken () is 
skipped. Instead, the s w i t c h statement on line 123, which sets the k i n d field of the to-
ken object according to c u r r e n t C h a r is executed: 

123 

124 

125 

126 
127 

128 
129 

130 

131 
132 

133 

134 
135 

136 
137 

138 

139 

140 

switch(currentChar) 

{ 
case '+': 

token.kind 

break; 

case '-' : 
token.kind 

break; 

case '*': 
token.kind 

break; 

case '/': 
token.kind 

break; 

default: 
token.kind 

break; 

} 

= PLUS; 

= MINUS; 

= TIMES; 

= DIVIDE; 

= ERROR; 

For example, if cu r r en tCha r contains the plus sign, then t o k e n . k i n d is assigned 
PLUS, the constant defined in the constants interface with 

39 p u b l i c i n t PLUS = 2; 

The character in cu r r en tCha r is then converted to type S t r i n g and assigned to t o -
ken .image: 

143 token . image = C h a r a c t e r . t o S t r i n g ( c u r r e n t C h a r ) ; 

t oken . endLine and t o k e n . endColumn fields are then set: 

146 token.endLine = currentLineNumber; 

147 token.endColumn = currentColumnNumber; 
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After processing a single-character token, getNextToken () reads the next character by 
calling getNextChar () : 

149 getNextChar (); // read 1 char beyond end of token 

This call is necessary because the code at the beginning of getNextToken () (line 81) 
assumes that getNextToken () always reads one character past the end of every token. 
Thus, getNextToken () must work in that way for every token. 

Before any calls of getNextToken () , cu r r en tCha r is initialized to the newline 
character: 

72 cu r r en tCha r = ' \ n ' ; / / \ n w i l l t r i g g e r read 

This initialization ensures that cu r r en tCha r has a value when it is tested on line 81 
during the first call of getNextToken () . In response to the newline character, g e t -
NextToken () calls getNextChar () to get the next (i.e., first) character from the 
source file. Because cu r r en tCha r is initialized to ' \ n ' (which indicates the end of a 
line), this first call of getNextChar () reads a line from the source file: 

166 if (currentChar == '\n') // need line? 
167 { 
168 if (inFile.hasNextLine()) // any lines left? 
169 { 
170 inputLine = inFile.nextLine(); // get next line 

Because the nextLine () method in the Scanner class returns the input line without a 
line separator, getNextChar () attaches a newline with 

171 inputLine = inputLine + "\n"; // mark line end 

Then after incrementing the line number and resetting the column number, it assigns the 
first character in i npu tL ine to cu r ren tChar : 

183 currentChar = 
184 inputLine.charAt(currentColumnNumber++); 

On subsequent calls of getNextChar () , getNextChar () simply retrieves the next 
character in i npu tL ine until it reaches the newline character. 

Each time getNextToken () is entered after its initial call, cu r r en tCha r contains 
the character in the input that follows the last character of the token processed on the pre-
vious call. 

Lines 37 to 43 of the F ig l 01 OConstants interface define the constants that identify 
the various tokens: 

37 public int EOF = 0; 
38 public int UNSIGNED = 1; 
39 public int PLUS = 2; 
40 public int MINUS = 3; 
41 public int TIMES = 4; 
42 public int DIVIDE = 5; 
43 public int ERROR = 6; 
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The array t o k e n l m a g e provides a descriptive string for each token kind: 

46 
47 

48 

49 

50 

51 

52 

53 
54 

55 

String! ] toke 

{ 
"<EOF>", 
"<UNSIGNED> 
"\"+\ "", 

"\"-\"", 

"\"*\"", 
"\ " Λ " " , 
"<ERROR>" 

} ; 

For example, tokelmagefUNSIGNED] provides the descriptive string "<UN-
SIGNED> ". The consume method in the parser uses t o k e n l m a g e when it creates an er-
ror message: 

268 private void consume(int expected) 

269 { 

270 if (currentToken.kind == expected) 
271 advance(); 
272 else 

273 throw genEx("Expecting " + tokenlmage[expected] ); 
274 } 

consume first checks if c u r r e n t T o k e n . k i n d matches the kind of the expected token 
(given by the parameter k i n d ) . If there is a match, consume advances to the next token. 
Otherwise, consume throws an exception. The error message in this exception includes 
the descriptive string of the expected token obtained from the t o k e n l m a g e array (see 
line 273). 

To advance to the next token, the parser calls its a d v a n c e () method, a d v a n c e () 
first saves the cur ren tToken in previousToken: 

226 previousToken = cur ren tToken ; 

If the next token is already available via the n e x t field of the current token, a d v a n c e () 
moves cur ren tToken to it: 

229 if (currentToken.next!=null) 

230 currentToken = currentToken.next; 

Otherwise, a d v a n c e () calls g e t N e x t T o k e n () in the token manager: 

234 else 

235 currentToken = 
236 currentToken.next = tm.getNextToken(); 

a d v a n c e () assigns the token that g e t N e x t T o k e n () returns to the n e x t field of c u r -
r e n t T o k e n . It then assigns this token to c u r r e n t T o k e n itself (note that the two as-
signments on lines 235 and 236 are performed right to left). Figure 10.11 shows the pic-
tures before and after lines 235 and 236 are executed. 
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The parser in Figure 10.10 chains all the tokens together using the next field in each 
token. However, it does not make use of this chain. We will see in later chapters that the 
chaining of tokens can be very useful. In particular, it allows the parser to look ahead in 
the token stream to make parsing decisions [which is necessary if the grammar in not 
LL(1)]. The parser in Figure 10.10 does not need to look ahead. Thus, it does not make 
use of the token chain it creates. 

cur rentToken and previousToken are fields within the parser object. Thus, the 
parser has access to the current and previous tokens via these fields. 

If the parser needs to advance to the next token but needs to save information on the 
current token, it can simply save cur ren tToken in a local variable. For example on line 
312, the parser saves cur ren tToken in a local variable t : 

312 t = cur ren tToken ; / / save in t 



10.10 TRANSLATION GRAMMAR FOR PREFIX EXPRESSION COMPILER 253 

where t is defined with 

287 Token t ; 

If the parser needs to know anything about the saved token in t , it can simply examine the 
fields of the object referenced by t . For example, to obtain the image of the saved token, 
the parser accesses t . image on line 314: 

314 p = Integer.parselnt(t.image); // now use t 

Just before getNextToken () returns a token to the parser, it displays on the display 
screen the fields of the token it is returning: 

153 System.out.printf ( 
154 "kd=%3d bL=%3d bC=%3d eL=%3d eC=%3d im= %s%n", 
155 token.kind, token.beginLine, token.beginColumn, 

156 token.endLine, token.endColumn, token.image); 

For example, if the source file contains 

+ 17 * 2 5 

then the trace displayed is 
kd= 

kd= 
kd= 

kd= 
kd= 

kd= 

2 

1 
4 

1 

1 

0 

bL= 

bL= 
bL= 

bL= 

bL= 

bL= 

1 

1 

1 

1 

1 

2 

bC= 

bC= 
bC= 

bC= 

bC= 
bC= 

1 

3 
6 

8 

10 
1 

eL= 

eL= 
eL= 

eL= 

eL= 

eL= 

1 

1 
1 

1 

1 

2 

eC= 

eC= 

eC= 

eC= 

eC= 
eC= 

1 

4 
6 

8 

10 

1 

im= 

im= 
im= 

im= 

im= 

im= 

+ 

17 
* 

2 

5 
<EOF> 

This trace is useful when debugging the token manager. 

10.10 TRANSLATION GRAMMAR FOR PREFIX EXPRESSION COMPILER 

From a parser's point of view, each token provided by the token manager is a single ter-
minal symbol. Thus, although an unsigned integer constant can consist of multiple char-
acters, the parser treats every unsigned integer constant as a single terminal symbol. 
"Unsigned integer constant" represents a category of tokens. We represent such token cat-
egories in a grammar with an uppercase name enclosed in angle brackets. In G 10.8 below, 
the right side of production 6 is <UNSIGNED>. This name identifies a token correspond-
ing to the category "unsigned integer constant". Be sure to understand that <UNSIGNED> 
represents a terminal symbol. It is not a nonterminal. 

G10.8 
1. S —» expr 

2. expr —* " + " expr 
3. expr —* "-" expr 
4. expr —» "* " expr 

expr 

expr 

expr 



254 RECURSIVE-DESCENT TRANSLATION 

5. expr —» " / " <expr> expr 
6. expr —> <UNSIGNED> 

Recall that in a translation grammar, we represent nonterminals with method names that are 
not enclosed with angle brackets. Suppose we specified token categories like <UNSIGNED> 
without angle brackets. Then, we might confuse them with nonterminals symbols. For this 
reason, we always enclose token categories in a grammar with angle brackets. 

Let us now create a translation grammar based on G10.8 that specifies the translation 
of a prefix expression to its value. The prefix expression will be read in from an input file; 
its value will be outputted to the display screen. This particular translation is somewhat 
unusual. Typically, compilers translate one language to another. In contrast, our proposed 
translation grammar is going to specify the translation of a prefix expression to its value. 
For example, this translation would convert the prefix expression 

+ 20 30 

to 50. To do this, the parser/translator has to perform the computation specified by the 
prefix expression. Thus, we should expect in the translation grammar actions that perform 
computations. 

The two key considerations are 

1. Where to perform the addition, subtraction, multiplication, and division actions 
2. How to pass the required values to these actions 

During the parse, we can perform a computation using the value of an expression only af-
ter that expression has been parsed (because only then is its value available). Clearly, we 
have to perform the addition operation at the end of production 2 in G10.8. The action 
should add the values of the two expressions to its left. Similarly, the other operations 
should be performed at the end of their corresponding productions. We should also have 
an action (a p r i n t l n ) on the far right of production 1 that displays the value of the ex-
pression to its left. 

The expr () method should return the value of the expression it parses. Then in pro-
ductions 2 to 5, the two calls of expr () would provide the required values for the actions 
at the right of those productions. Similarly, the call of expr () in production 1 would pro-
vide the required value for the p r i n t l n action to its right. G10.9 shows the complete 
translation grammar. 

G10.9 
void S ( ) : { i n t p;} Selection Set 
{ 

p=expr() { S y s t e m . o u t . p r i n t l n ( p ) ; } {" + ", " - " , "*" , 
" / " , <UNSIGNED>} 

} 

/ / 
int expr() : ( int p, q; Token t} 
{ 

"+" p=expr() q=expr() {return p+q;} {"+") 
I 
"-" p=expr() q=expr() {return p-q;} {"-"} 
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Selection Set 
"*" p=expr() q=expr() {return p*q;} {"* ") 

I 
"/" p=expr() q=expr() (return p/q;} {"/"} 

I 
t=<UNSIGNED> {<UNSIGNED>} 
{ p=Integer.parselnt(t.image);} 

{ return p;} 

} 

Note the the assignments in G10.9 to p, q, and t are actions, but they involve nonterminal 
or terminal symbols. For example, in 

p=expr () 

expr () is a nonterminal, and in 

t=<UNSIGNED> 

<UNSIGNED> is a terminal. Because these actions involve nonterminals or terminals, 
they are not enclosed in braces. If we did enclose them in braces, they would effectively 
be removed from the grammar. For example, if we wrote the first alternative for expr () 
this way, 

" + " {p=expr()} {q=expr()} { r e t u r n p+q;} 

with braces surrounding the two assignment actions, then this line would represent the 
production 

expr —> " + " 

rather than 

expr —> " + " expr expr 

Notice that in the last production in G10.9, we have the following assignment state-
ment: 

t=<UNSIGNED> 

The left side of this statement is a local variable of type Token, and its right side is the to-
ken in the input corresponding to <UNSIGNED>. This statement represents the assign-
ment to t of the token object that getNextToken () creates for an unsigned integer con-
stant. The corresponding code in the parser is 

312 t = cu r ren tToken ; / / save in t 

When the parser parses a token (i.e., a terminal symbol), it calls consume to advance 
past that token. For example, consider the code that corresponds to 

t=<UNSIGNED> 
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in G10.9. When the parser reaches the unsigned integer token, it calls consume: 

313 consume(UNSIGNED) ; 

However, the line 

t=<UNSIGNED> 

in the translation grammar implies that the assignment to t occurs before the call to the 
consume. Accordingly, on line 312, the parser saves cur ren tToken by assigning it to 
t before calling consume on line 313: 

311 case UNSIGNED: 
312 t = currentToken; // save in t 
313 consume(UNSIGNED); // consume token 

Because our actions in this translation grammar perform numerical computations, we 
need to convert the image of the unsigned integer constant (which has type S t r i n g ) to 
type i n t , which we do with the action 

314 p = Integer.parselnt(t.image); // now use t 

Here, the p a r s e l n t method in the I n t e g e r class converts the string of digits in t . im-
age to its corresponding i n t value. For example, if t . image contains the string "17", 
p a r s e l n t converts this string to the i n t value 17, which is then assigned to the i n t 
variable p. The value in p is then returned with 

315 return p; - // return int val 

It not hard to come up with the translation grammar G 10.9. It requires just a little com-
mon sense. And once we have our translation grammar, it is simple to write the corre-
sponding Java code in Figure 10.10. 

If the parser in Figure 10.10 detects an error, it throws a RuntimeException created 
with a call to genEx: 

212 private RuntimeException genEx(String errorMessage) 
213 { 
214 return new RuntimeException("Encountered \"" + 
215 currentToken.image + "\" on line " + 
216 currentToken.beginLine + " column " + 
217 currentToken.beginColumn + 
218 System.getProperty("line.separator") + 
219 errorMessage); 
220 } 

This method creates a RuntimeException object whose error message contains the 
current token's image and location, and the expected token. The caller of genEx passes to 
it a string describing the error via parameter er rorMessage . genEx appends this string 
to the error message with an intervening line separator. Thus, it appears as a second line. 
The line separator is system dependent. On Microsoft systems, it is a carriage return/new-
line sequence. On most non-Microsoft systems is simply a newline character. The call of 
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System, ge t P r o p e r t y ( " l i n e . s e p a r a t o r " ) on line 218 returns this system-depen-
dent line separator. 

Let us look at an example of an error and its corresponding error message. The follow-
ing input string 

+ 2 

is missing a second operand. This operand can be either another prefix expression or an 
unsigned integer. In the former case, the missing operand would start with an operator. 
Thus, either an operator or an unsigned integer is missing immediately following the 2 in 
the preceding input. The error message that genEx creates for this case is 

Encountered "<EOF>" on line 1 column 4 
Expecting operator or <UNSIGNED> 

The second line of this error message originates in the call of genEx and is passed to 
genEx as a parameter: 

317 throw genEx("Expecting operator or " + 

318 tokenImage[UNSIGNED] ); 

To run the program in Figure 10.10, we must first compile it with 

j avac F ig lOlO. j ava 
We then run the program by entering the j ava command. When entering this command, 
we have to specify both the FiglOlO compiler and the file that contains the prefix ex-
pression to be translated. For example, suppose the file p r e f i x . t x t contains the fol-
lowing expression: 

+ 17 * 2 5 

If we enter the j ava command to run the compiler and specify the file p r e f i x . t x t on 
the command line, the compiler will display a token trace and the value of the expression 
provided by the file p r e f i x . t x t : 

j ava FiglOlO p r e f i x . t x t 
kd= 
kd= 
kd= 
kd= 
kd= 
kd= 
27 

2 
1 
4 
1 
1 
0 

bL= 
bL= 
bL= 
bL= 
bL= 
bL= 

1 
1 
1 
1 
1 
2 

bC= 
bC= 
bC= 
bC= 
bC= 
bC= 

1 
3 
6 
8 

10 
1 

eL= 
eL= 
eL= 
eL= 
eL= 
eL= 

1 
1 
1 
1 
1 
2 

eC= 
eC= 
eC= 
eC= 
eC= 
eC= 

1 
4 
6 
8 

10 
1 

im= 
im= 
im= 
im= 
im= 
im= 

+ 
17 
* 

2 
5 
<EOF> 

10.11 AN INTERESTING USE OF RECURSION (OPTIONAL) 

In C, C++, and Java, we use a list to declare variables. Preceding the list we specify the 
type of the variables on the list. A semicolon terminates the list. For example, in 

i n t x, y; 
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we are declaring x and y to be of type i n t . When a compiler processes such a list, it typ-
ically makes an entry into a symbol table recording the name of each variable and its type. 
If it needs to know the type of any variable later on, it can simply look up that variable in 
the symbol table. Compilers typically use an arbitrary code to represent the various types 
stored in the symbol table. For example, it might use 0 to represent the type i n t , 1 to rep-
resents the type long, and so on. Figure 10.12 shows the entries in the symbol table cor-
responding to the preceding declaration of x and y. 

To make a complete entry into the symbol table, the compiler has to know both the 
variable name and its type. Because the type precedes the identifier list in C, C++, and 
Java, the compiler can make complete entries into the symbol for each variable as soon as 
it parses that variable's name. For example, as soon as it parses "x", it can enter "x" and 
the type i n t (represented by the integer 0) into the symbol table. 

In some languages (Pascal is one example), the type in a declaration comes at the end 
of the list of variable names, rather than at the beginning. For example, to declare x and y 
of type i n t , we use 

x, y: i n t ; 

Unfortunately, with the type at the end, the compiler cannot make complete entries into the 
symbol table as it parses the variable names in the list. It does not know the type until after 
it parses the type at the very end of the statement. Because of this awkwardness, the de-
signers of C, C++, and Java wisely decided to place the type at the beginning of a declara-
tion list. 

With the type at the end of a declaration list, how can the compiler make the proper en-
tries into the symbol table? Let us consider two approaches that work. In the first ap-
proach, when the compiler is about to start parsing the list of variable names, it saves 
c u r r e n t l n d e x (the index of the next available slot in the symbol table) in a variable 
named savedlndex. As the compiler then parses the names of the variables on the list, it 
enters only the name of each variable into the symbol table, incrementing c u r r e n t l n -
dex after each entry. When it ultimately parses and determines the type, the compiler can 
then enter that type into those symbol table slots whose indices run from savedlndex 
up to but not including c u r r e n t l n d e x (see Figure 10.13). 

The translation grammar that describes this method is (we have numbered each line for 
easy reference) 

G10.10 
1 void declaration(): (int savedlndex, r;} 
2 { 
3 (savedIndex=symTab.getCurrentIndex() ;} 
4 identifierList() ":" r=type() ";" 
5 { symTab.updateSymbolTable(savedlndex, r);} 
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6 } 
7 
8 void i d e n t i f i e r L i s t () : {Token t ;} 
9 { 

10 t=<ID> 
11 { symtab.enter(t.image} ;} 
12 identifierTail() 
13 } 
14 
15 void i d e n t i f i e r T a i l () : {Token t ;} 
16 { 
17 
18 t=<ID> 
19 { symtab.enter(t.image);} 
20 identifierTail () 
21 I 
22 <} 
23 } 

symTab is the symbol table object. In the d e c l a r a t i o n () method, the 
g e t C u r r e n t Index () method in the symTab object returns the current index of the 
symbol table, which is then saved in savedlndex (line 3). On line 4, d e c l a r a -
t i o n () then parses the list of identifiers (by calling i d e n t i f i e r L i s t ( ) , the colon, 
the type (by calling type ()), and the semicolon. The call of type () on line 4 returns 
the type parsed, which is then assigned to r. Finally, updateSymbolTable is called 
to which savedlndex and r is passed. updateSymbolTable updates the entries just 
created. updateSymbolTable is in the symbol table object. Thus, it has access 
to c u r r e n t l n d e x . Using r, savedlndex and c u r r e n t l n d e x , it updates those 
entries in the symbol table with indices from savedlndex up to but not including 
c u r r e n t l n d e x . In the i d e n t i f i e r L i s t and i d e n t i f i e r T a i l modules, the 
e n t e r method enters the identifiers only into the symbol table (lines 11 and 19). <ID> 



260 RECURSIVE-DESCENT TRANSLATION 

(lines 10 and 18) is the token category that represents the identifier for each variable. 
Our second approach is more elegant. It requires an interesting use of recursion. Here 

is its translation grammar: 

G10.il 
1 void declara t ion () : {Str ing p; in t q; Token t;} 
2 { 
3 t=<ID> 
4 q=declarationTail() 
5 { symTab.enter(t.image, q);} 
6 } 
7 
8 int declarationTail () : (String p; int q; Token t;} 
9 { 
10 
11 t=<ID> 
12 q=declarationTail() 
13 { symTab.enter(t.image,q); return q;} 
14 | 
15 " : " q=type() " ; " 
16 { r e t u r n q;} 
17 } 

Let us see what happens when the parser applies the d e c l a r a t i o n () production. It first 
parses <ID>, saving it in t (line 3). It then calls d e c l a r a t i o n T a i l () (line 4) which 
recurses until it parses the colon, the type, and the semicolon (line 15). d e c l a r a -
t i o n T a i l () then returns the type (line 16) to all its callers, all the way up to d e c l a r a -
t i o n () , where it is saved in q (line 4). t . image and q are then passed to the e n t e r 
method (line 5), which makes a complete entry into the symbol table. Similarly, when the 
parser applies the first d e c l a r a t i o n T a i l () production, it gets the type from the recur-
sive call of d e c l a r a t i o n T a i l () (line 12). This type can then be passed to the call of 
the e n t e r method (line 13). 

Figure 10.14 shows an abbreviated parse tree for the input string 

x, y: i n t ; 

It shows how recursive calls of d e c l a r a t i o n T a i l () proceed down the tree until 
d e c l a r a t i o n T a i l () calls t y p e ( ) . t ype ( ) returns the type to its caller 
d e c l a r a t i o n T a i l () , which returns it to its caller—also d e c l a r a t i o n T a i l () — 
which passes the type and "y", to the e n t e r method. Finally, this call of 
d e c l a r a t i o n T a i l () returns the type to d e c l a r a t i o n () , which passes the type 
and "x" to the e n t e r method. 

Notice that the call of e n t e r in production 1 is the last action performed. That is, the 
first variable listed in the input string is entered into the symbol table last. This technique 
enters the variable names in reverse order from the order in which they appear in the input 
string. We expect this reversal because the call of e n t e r in d e c l a r a t i o n T a i l () fol-
lows the recursive call. As we learned in Section 9.9, this calling structure processes a list 
in reverse order. 
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PROBLEMS 

1. Show the parse tree for bccd in G10.2. 
2. Show the parse tree for +* /bebe in G 10.4 
3. Write a translation grammar whose input language is bb*. Each output string should 

be the same as the input string, but with a comma separating successive b's. For ex-
ample, if the input string is "bbb", the output string should be "b , b , b" . 

4. Implement the parser/translator corresponding to your answer for problem 3. Test it 
with b, bb, bbb, dd, and λ. 

5. Write a translation grammar whose input language is (b | c)* . Each output string 
should be the input string with its characters rearranged so that all the b's precede all 
the c's. 

6. Implement the parser/translator corresponding to your answer for problem 5. Test it 
with λ, b, c, cbcb, and ccebbbb. 

7. Write a translation grammar whose input language is (b | c) *. Each output should be 
the number of b's minus the number of c's. For example, if the input string isbbbc, 
the output should be 2; if the input string is cbccccb, the output should be - 3 . 

8. Write a translation grammar whose input language is (b | c) (, (b I c)) * . This 
language consists of nonnull lists of b's and c's with successive letters separated by a 
comma. The output string should be the same as the input string, but with its first ele-
ment removed and appended on the end. For example, if the input string is "b , b , c", 
the output string should be "b , c , b" . 

9. Implement a parser/translator corresponding to your answer in Problem 10.8. Test it 
with "b", " c" , " b , c " , "c ,b" ,and " b , c , c , c " . 

10. Write a translation grammar that translates an arithmetic expression in infix notation 
to its corresponding decimal value. Limit your grammar to the addition and multipli-
cation operations. 

11. Implement the parser/translator corresponding to your answer for problem 10. Test it 
with 21, ( (22) ), 3* (4 + 5), and 3*4+5. 

12. Write a translation grammar that translates a list of unsigned integer constants to the 
maximum constant on the list. For example, if the input is 54 3416 17 then the out-
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put is 341. Assume successive constants in your input are separated by at least one 
white space character. 

13. Implement the parser/translator corresponding to your answer for problem 12. Test it 
with the list given in problem 12. 

14. Write a translation grammar that translates a list of unsigned integer constants into 
another list that contains each number from the input list followed by "b igger" , 
" sma l l e r " , or " e q u a l " depending on its size relative to the average of all the 
numbers. For example, the input 1 98 99 is translated to 1 sma l l e r 98 b i g g e r 
99 b igge r . 

15. Implement the parser/translator corresponding to your answer for problem 14. Test it 
with the list given in problem 14. 

16. Construct the parse tree for the input 

x, y, z: i n t ; 
using G10.U. 

17. On line 314 in the prefix expression compiler in Figure 10.10, the parser converts the 
image of an unsigned integer constant to type i n t . Would it be better if the token 
manager performed this conversion and supplied the resulting i n t value to the pars-
er via the token object the token manager returns? 

18. Would the program in Figure 10.10 work correctly if it used the following version of 
the getNextChar () method: 

private void getNextChar() 

{ 

if (currentColumn = inputLine.length()) 

if (inFile.hasNextLine()) 

{ 
inputLine = inFile.nextLine(); 
currentLine++; 
currentColumn = 0; 
currentChar = inputLine.charAt(currentColumn++); 

} 
else 

currentChar = EOF; 

else 

currentChar = inputLine.charAt(currentColumn++); 

} 

19. Convert the following grammar to a translation grammar that translates each input 
string to its maximum nesting level: 

1. S - > ( S ) 
2. s — A 

For example, the null string should be translated to 0; the string " ( ( ) ) " should be 
translated to 2. 

Provide three translations grammars: (1) Count the left parentheses as you recurse 
"down" to the center of the input string. As you recurse "up", return the final count. 
(2) Count the right parentheses as you recurse "up". (3) Like approach 1, except do 
not return the final count as you recurse "up". Instead, display the final count when 
you reach the center of the string. 
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20. Implement the parser/translators for your answers in problem 19. Test with the input 
strings λ, () , ( () ), ((,and () ). 

21. Implement the parser/translator corresponding to G10.4. Test your program with the 
input strings b, +bc, +b* cd, +* / -bbcde , +b, +bcd, and A. 

22. Convert G 10.8 to a translation grammar that translates prefix expressions to infix ex-
pressions. 

23. Implement the parser/translatior for your answer in problem 22. Test with the input 
strings b, c, d, +bc, /cd, +b+cd, *b-cd. 

24. Write a translation grammar that defines b* dd* and translates each input string by 
outputting each b in the input but only the first d. For example, bbdd should be 
translated to bbd, and ddd should be translated to d. 

25. Why is the getToken () method in Figure 10.10 in the parser rather than in the to-
ken manager? What does it do? 

26. Why are tokens chained by the parser in Figure 10.10 rather than by the token man-
ager? 





11 
ASSEMBLY LANGUAGE 

11.1 INTRODUCTION 

The only instructions the central processing unit (CPU) of a computer can directly exe-
cute are machine language instructions. Assembly language instructions are essentially 
machine language instructions written in symbolic form. Before the CPU can execute a 
program written in assembly language, the program must be assembled, that is, translated 
to a machine language program. We call the program that translates assembly language to 
machine language an assembler. 

Compilers typically translate the source programs they input to an assembly language, 
and then translate the assembly language to machine language using an internal assem-
bler. The compilers that we will write, however, will simply translate to assembly lan-
guage. We will then use an external assembler to translate to machine language. 

Each computer type has its own unique machine language and corresponding assembly 
language. Our compilers will translate to the assembly language for the JJ computer. The 
Jl computer is well suited to our purposes for several reasons. First, its assembly lan-
guage is easy to learn. Second, the Jl Software Package that accompanies this textbook 
will make your computer act like a Jl computer. Thus, you will be able to execute Jl pro-
grams on your own computer. Third, the Jl Software Package has several features that we 
will rjut to good use. For example., it can dstemuue if the, compiles, you v/tite M e viotkmg 
correctly. 

11.2 STRUCTURE OF THE J l COMPUTER 

The J1 computer consists of a central processing unit (CPU), main memory, a keyboard 
input device, and a display output device. The two principal registers in the CPU are the 
pc (program counter) register and the sp (stack pointer) register (see Figure 11.1). A reg-
ister in the J1 computer is a memory area within the CPU that can hold 16 bits of infor-
mation. 
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O 2012 the IEEE Computer Society, Inc. Published 2012 by John Wiley & Sons. Inc. 



266 ASSEMBLY LANGUAGE 

The pc register points to (i.e., contains the address of) the machine instruction in main 
memory that the CPU will execute next. The sp register points to the top of the stack in 
main memory. The stack grows downward in main memory. That is, as items are pushed 
onto the stack, the top of the stack moves toward location 0 in main memory. Figure 11.2 
shows the stack before and after the value 5 is pushed onto the stack. Notice that the top 
of the stack is at location 711 before the push and 710 after the push. 

Main memory consists of 4096 cells, each 16 bits wide. Thus, main memory addresses 
run from 0 to 4095 in decimal. 4095 in decimal equals 111111111111 in binary—a 12-bit 
number. 

Because an address in the Jl computer is only 12 bits wide, only the rightmost 12 bits 
of the pc and sp registers are needed to hold an address. Jl ignores the leftmost four bits 
of these registers. 

The word size of the Jl computer is 16 bits. That is, the circuits in the CPU of the Jl 
computer operate on data items that are 16 bits wide. A word is any 16-bit item stored in 
the Jl computer. Because each register and each memory location is 16 bits wide, each 
can hold exactly one word. 

11.3 MACHINE LANGUAGE INSTRUCTIONS 

Most machine instructions on the J1 computer consist of an opcode followed by either the 
address of an operand or by the operand itself. The opcode specifies the operation (add, 
subtract, multiply, etc.) that the CPU is to perform. The operand is the item on which the 
instruction operates. For example, in the following machine language instruction, 

12-bit address of the operand 

0000000000000100 

4-bit opcode for push 



11.3 MACHINE LANGUAGE INSTRUCTIONS 267 

the first four bits, 0000, is the opcode. This particular opcode specifies the push opera-
tion. The 12 bits to the right of the opcode in the machine instruction (000000000100 
in this example, which equals 4 decimal), is the main memory address of the operand. 
When the Jl computer executes this instruction, it goes to location 4 in main memory, 
makes a copy of the 16-bit word at that location, and then pushes the copy onto the 
stack. 

Some machine language instructions contain the operand itself rather than the address 
of the operand. For example, in the push constant instruction, the operand to be pushed is 
in the instruction itself. Thus, the operand is "immediately" available to the CPU once the 
machine instruction is in the CPU. Accordingly, we call the push constant instruction an 
immediate instruction, that is, an instruction that contains the operand rather than the ad-
dress of the operand. In the push constant instruction, the four leftmost bits are the op-
code, leaving the 12 rightmost bits for the operand. With 12 bits, we can represent the 
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numbers 0 to 4095 decimal. Thus, a push constant instruction cannot push a number out-
side of this range. In the following push constant instruction, the four leftmost bits, 0001, 
are the opcode, and the 12 rightmost bits, 000000000111 (7 decimal), are the constant 
to be pushed: 

12-bit constant 
equal to 7 decimal 

0001000000000111 

4-bit opcode for 
push constant 

When the Jl computer executes this instruction, it pushes 7 extended to 16 bits onto the 
stack. 

Another immediate instruction is the push word constant instruction. It is like the push 
constant instruction, except that it pushes an entire word. Thus, it is not limited to a 0-to-
4095 range as is the push constant instruction. The push word constant instruction is a 
two-word instruction. The first word contains the opcode; the second word contains the 
word constant to be pushed. For example, in the following push word constant instruc-
tion, the 16 leftmost bits are the opcode, and the 16 rightmost bits, 0000000000000011 
(3 decimal), are the word constant to be pushed: 

one-word constant 
equal to 3 decimal 

1111011100000000 0000000000000011 

16-bit opcode for 
push word constant 

Some machine language instructions contain only an opcode. For example, in the dec-
imal out instruction, 

1111111111111101 

the entire 16-bit instruction is the opcode. When the Jl computer executes this instruc-
tion, it pops the binary number on top of the stack, converts it to decimal, and displays 
it on the display monitor. Another instruction with a 16-bit opcode is the halt instruc-
tion: 

1111111111111111 

This instruction causes a program to terminate execution. 

11.4 ASSEMBLY LANGUAGE INSTRUCTIONS 

A useful reference at this point is Appendix A. This appendix also appears in the file 
s t a c k , t x t in the Jl Software Package. It describes the instruction set for the Jl com-
puter. We call this instruction set the stack instruction set because its instructions make 
use of a stack. Its basic structure is similar to that of the Java Virtual Machine (the virtual 
machine on which Java programs execute). 
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Assembly language instructions are symbolic forms of machine language instructions. 
For example, the following assembly language instructions correspond to the machine in-
structions we discussed in the preceding section: 

p 4 ; push the word at address 4 
pc 7 ; push 7 
pwc 3 ; push 3 
dout ; pop and display 
halt ; terminate program 

In assembly language, we use a mnemonic (an easy-to-remember name) in place of the 
opcode, and a decimal number in place of a binary constant or address. The mnemonics 
for the push, push constant, push word constant, decimal out, and halt instructions are p, 
pc, pwc, dout, and h a l t , respectively. We start single-line comments in the assembly 
language for the Jl computer with the semicolon. We, however, can also start a single-
line comment with either a single slash or, as in Java, with double slashes. 

In assembly language, we can specify data as well as instructions. For example, the 
following assembly language statement defines a data word (dw stands for "define word") 
that contains the binary number equivalent to 15 decimal: 

dw 15 

The assembler translates this statement to 0000000000001111, the 16-bit binary num-
ber equal to 15 decimal. 

The Jl computer cannot execute a program in assembly language form. It can execute 
only machine language instructions. Thus, to execute an assembly language program, we 
first have to translate it to a machine language program. We, however, do not have to do 
this translation ourselves. A computer program, called an assembler, will do it for us. 

11.5 PUSHING CHARACTERS 

The Jl computer uses ASCII to represent characters. In ASCII, each character is repre-
sented by a unique number. For example, Ά ' is represented by 65, ' Β ' by 66, ' C by 
67, and ' \ n ' (the newline character) by 10. Thus, to push a character onto the stack, we 
simply push the number that represents it using a pc instruction. For example, to push 
' \ n ' , we can use 

p c 10 

A better approach, however, is to specify the character itself in the pc instruction. That 
way, we do not have to remember the ASCII codes for the characters we want to push. 
For example, to push ' \ n ' , we can use 

pc ' \ n ' 

When the assembler translates this instruction to machine code, it replaces the character 
' \ n ' with 10, its ASCII code. 

The ASCII codes ranges from 0 to 127. Thus, they are all within the 0-to-4095 range of 
the pc instruction. 
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11.6 a o u t INSTRUCTION 

When the aout (ASCII out) instruction is executed, an ASCII code should already be on 
top of the stack. The aout instruction pops this ASCII code and displays its correspond-
ing character if it is displayable. If, however, the code is for a control character (such as 
newline), then the indicated control operation is performed. For example, the following 
sequence displays A: 

pc Ά' ; push 'A' onto the stack 
aout ; pop and display ASCII 

Note that we get a different result if we use dout in place of aout: 

pc 'A' ; push Ά' onto the stack 
dout ; pop and display decimal code 

dout displays in decimal the value of the item popped from the stack. Thus, this se-
quence displays 65, the ASCII code for ' A'. 

The sequence 

pc '\n' ; push newline character 
aout ; pop and move cursor 

causes the cursor on the display screen to move to the beginning of the next line on the 
screen. 

11.7 USING LABELS 

In assembly language, we can use a label to represent the location (i.e., the address) of a 
line of code. For example, consider the program in Figure 11.3. The label x at the begin-
ning of the third line (the dw statement) represents the address ofthat line. Addresses start 
at 0 and increase by one for each line of code. Thus, the address corresponding to the la-
bel x in Figure 11.3 is 2. 

A label is a symbolic address. In Figure 11.3, x is a symbolic address that corresponds 
to the absolute address 2. When the assembler translates an assembly statement to ma-
chine language, it translates labels to their corresponding absolute addresses. It also trans-
lates mnemonics to their corresponding opcodes. For example, in Figure 11.3, the assem-
bler would translate p and x in the first instruction to 0000 (the opcode for p) and 
000000000010 (the absolute address of x) to get the machine instruction 
0000000000000010. When this instruction is executed, it pushes the value at address 2 
(which is 12) onto the stack. 
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We can also write the p instruction in Figure 11.3 as 

P 2 

in which case we would not need the label x on the dw statement. However, the version 
that uses the label x is better because we then do not have to determine the address of the 
operand. The assembler will do that for us. Because the program in Figure 11.3 is so 
short, it is easy to determine that the operand 12 is at the address 2. However, if the pro-
gram were long and the operand 12 appeared at its end, it would be far more difficult to 
determine the address of the operand (we would have to count all the lines of code up to 
the operand). Fortunately, we do not have to determine the addresses of operands. We 
simply use labels. Then the assembler determines their addresses for us. 

The label x does not convey any information about the constant it labels. A better ap-
proach is to use labels on constants that do provide useful information. Accordingly, for a 
nonnegative integer constant, we will use a label that starts with " @ " followed by the 
number written in decimal; for a negative integer constant, we will use a label that starts 
with " @_" followed by the absolute value of the number written in decimal. For example, 
to define the constants 3 and - 3 in an assembly language program, we will use 

@ 3 : dw 3 
@_3: dw - 3 

If we then see the labels @ 3 or @ 3 in a program, we will immediately know their corre-
sponding values. We will not have to search for their dw statements to determine their 
values. 

A label at the beginning of a statement must be separated from the rest of the statement 
with a colon. The label/colon pair can either appear on the statement to which it applies or 
it can precede it. For example, in the following code, the label s t a r t precedes the p in-
struction, but nevertheless, applies to it: 

s t a r t : 
P x 

This code is equivalent to 

s t a r t : p x 

We can also use multiple labels for one statement, as long as each one is on a different 
line. For example, in the following code, the labels dog, ca t , and b i r d all apply to the p 
instruction: 

dog: 
c a t : 
b i r d : p x 

The following format, however, is illegal: 

dog: c a t : b i r d : p x ; i l l e g a l format 

The mnemonic and the operand of an instruction must be on the same line. Thus, the 
following format is illegal: 
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P 
x ; i l l e g a l format 

The columns in which the parts of an assembly language instruction start are not critical. 
However, to make our programs easy to read, we will always start a label/colon sequence 
in column 1, a mnemonic in column 11, and the operand or operand address in column 21. 

Labels may consists any sequence of letters, digits, "@", "$" , and "_" that does not 
start with a digit. 

11.8 USING THE ASSEMBLER 

Let us write, assemble, and run a simple assembly language program that adds 1, 2, and 4 
and displays the result. To add 1, 2, and 4, we have to push them on the stack. To do this, 
we can use the p instruction, the pc instruction, or the pwc instruction. To illustrate all 
three approaches, we will use the p, pc, and pwc instruction to push 1, 2, and 4, respec-
tively (see Figure 11.4). 

In this program, we first push 1 (with a p instruction) and 2 (with a pc instruction). 
Next we add these two numbers with the add instruction. This instruction pops the top 
two items, adds them, and pushes the sum back onto the stack. Next we push 4 with the 
pwc instruction. Thus, the stack now has two items: 4 and 3 (the 3 is the sum of 1 and 2 
from the add instruction). When we execute the second add instruction, the 4 and 3 are 
popped and added. The sum, 7, is pushed back onto the stack, dout then pops and dis-
plays this result. The second pc instruction pushes the newline character onto the stack. 
The aout instruction then pops the newline character and moves the cursor to the begin-
ning of the next line. Finally, the h a l t instruction terminates execution. 

Suppose the current directory on your computer system is the directory that contains 
the Jl Software Package. The file f i g l l 0 4 . a in this directory contains the program in 
Figure 11.4. We can assemble f i g l l 0 4 . a b y entering 

a f i g l l 0 4 . a 

a is the name of the assembler in the Jl Software Package. If you are using a non-Mi-
crosoft system and it cannot find the a program, try entering 

. / a f i g l l 0 4 . a 

The leading period (which represents the current directory) in this command forces your 
operating system to search for the a program in your current directory (see the file 
readme. t x t in the Jl Software Package for more details). 

When you invoke the a assembler program with one of the commands above, it reads 
in f i g l l 0 4 . a and outputs the corresponding machine language program to the file 
f i g l l 0 4 .e . We use the extension " . a " for files containing assembly language code, 
and " . e" for files containing executable machine code. You must specify the " . a" exten-
sion on the input file name when you invoke a. Thus, you may not enter 

a f i g l l 0 4 <— wrong because missing the ". a" extension 

In addition to an " . e" file (which contains the executable machine code), the a program 
outputs a list file whose base name matches the base name of the input file and whose ex-
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tension is " . 1st" . For example, if the input file is f i g l l 0 4 . a, then the assembler pro-
duces the list file f i g l l 0 4 . 1 s t . List files produced by the a program show the assem-
bly language source code and its corresponding addresses and machine code (see Figure 
11.5). 

To execute the program in f i g l l 0 4 .e (the executable file produced by the assembler 
when it assembles f i g l l 0 4 . a), we enter either 

e f i g l l 0 4 

or 

e f i g l l 0 4 . e 
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On a non-Microsoft system, if your operating system cannot find the e program, try enter-
ing . / e in place of e in the commands above, e is the program in the Jl Software Pack-
age that makes your computer act like the Jl computer. 

The first time you run e, it will start by prompting you for your family name, first 
name, and middle initial. After you enter this information (you may omit the middle ini-
tial), e runs the program in f i g l 104 .e , the effect of which is to display 7 on the screen. 
e also creates a log file named f i g l 104.<family name> . log, that contains a record of 
the run (see Figure 11.6). The <family name> component of the log file name is the fam-
ily name that you enter when you run e for the first time. 

The log file shows your name, the results of your run, and some statistics on your pro-
gram. Machine code s i z e is the number of words in the executable program. Ma-
chine i n s t count is the total number of machine instructions executed. Execut ion 
t ime is a precise relative measure of the execution time of the program. Because the ac-
tual execution time depends on the computer on which you are running e, this statistic 
provides only a relative measure of execution time. For example, suppose you have a pro-
gram whose execution time statistic is 100. You then modify this program so that its exe-
cution time statistic becomes 50. This new statistic indicates that your modified program 
runs in exactly half the time as the original. 

You can also run f i g l l 0 4 . e with the following command: 

e f i g l l 0 4 / c 

The / c command line argument causes e to check your program in addition to running it. 
However, you can specify / c only if a check file is available for the program you are run-
ning. A check file name has the extension " . chk". Its base name should match the base 
name of its corresponding program. For example, the check file for f i g l 104. e is 
f i g l l 0 4 . c h k . Because f i g l l 0 4 . c h k is in the Jl Software Package, we can use / c 
when we run f i g l l 0 4 . e . Figure 11.7 shows the log file that e creates when we invoke it 
with / c . It includes the output generated by f i g l l 0 4 . e , enclosed within two lines of 

e Version 1.7 
Log file figll04.dosreis.log 

Your name: DosReis Anthony J 
Machinecode file: figll04.e 

= = = = = „ = = = = = = = = = = = = T h u J u l 28 12:30:34 2011 ======= 

Report for: DosReis Anthony J 
Program output: not tested 
Machine code size: 11 
Machine inst count: 9 
Execution time: 101 

r(d24b) terminated Thu Jul 28 12:30:34 2011 

Figure 11.6. 
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equal signs. It also shows an evaluation of f i g l l 0 4 .e (which is also written to the log 
file), indicating whether its output is correct, and how its machine code size, machine in-
struction count, and execution time compare with predetermined limits. For this program, 
the limit on the machine code size is 11. The line 

Machine code size: 11 (at limit) 

indicates that the machine code size of the program is 11 and this size is at the limit,that 
is, it is equal to the predetermined limit, e would flag any machine code size above 11 
with a warning message OVER LIMIT. For example, Figure 11.8 shows the results e 
would display if f i g l l 0 4 .e were completely substandard, that is, if it produced incor-
rect output, and had a machine code size, machine instruction count, and execution time 
that exceeded their limits. 

11.9 s t a v INSTRUCTION 

We use the s t a v instruction to store a value into a memory location. For example, con-
sider the program in Figure 11.9. Before we use the s t a v instruction, we have to push the 
address at which we want to store and the value to be stored, in that order. To push the 
address of x (which is 4), we use 

pc x 

Recall from Section 11.7 that the assembler translates labels to their corresponding ab-
solute addresses. Thus, the assembler translates this instruction to a machine instruction 
in which the rightmost 12 is the address ofx. When the pc machine instruction is execut-
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ed, it pushes this address. Addresses can range from 0 to 4095. Thus, they are always 
within the 0-to-4095 range of the pc instruction. 

The pc instruction is, in effect, a push address instruction when its operand is 
a label. 

After we push the address at which we want to store, we push the value we want to 
store. To push the value of y (which is 77), we use 

p y 

We now are ready to use the s t a v instruction to perform the store operation. When execut-
ed, it pops the value and address from the stack. It then stores the popped value into the loca-
tion corresponding to the popped address. In Figure 11.9, the s t a v instruction pops 77 (the 
value of y) and 4 (the address of x), and then stores the 77 at location 4 in main memory. 

It is easy to remember that the s t a v instruction requires the address and value to be 
pushed in that order. The "av" in the mnemonic s t a v indicates the required order: first 
"a" (the address), then "v" (the value). 
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11.10 COMPILING AN ASSIGNMENT STATEMENT 

Let us look at the code that corresponds to the following assignment statements: 

b = 5000; 
c = - 3; 
d = b + c + 7000; 

First, we have to push the address of b onto the stack. We need the address of b on the 
stack so we can assign it a value with the s t a v instruction. Suppose b corresponds to the 
address 8. Then to push the address of b, we can use the following pc instruction, 

pc 8 ; push t h e a d d r e s s of b 

which pushes 8 (the address of b) onto the stack. However, it is better to use 

pc b ; push the a d d r e s s of b 

With this form, we do not have to determine the actual address that corresponds to b; the 
assembler does it for us. When the assembler translates this instruction, it replaces b (a 
symbolic address) with 8 (the absolute address of b). Thus, both instructions above yield 
the same machine instruction. 

After pushing the address of b, we push the value of the right side of the assignment 
statement with 

pwc 5000 ; push 5000 onto the stack 

We cannot use a pc instruction here because 5000 is out of its range. To complete the as-
signment statement, we execute 

stav ; pop twice and store 5000 in b 

The s t a v instruction pops the value and the address from the stack, and then stores the 
value in the location specified by the address. Thus for this example, it stores 5000 in b. 

We handle the next assignment statement 

c = - 3 ; 

in the same way with 

pc c ; push the a d d r e s s of c 
pwc -3 ; push -3 

stav ; pop twice and store -3 in c 

For the third assignment statement, 

d = b + c + 7000; 

we first push the address of d: 
pc d 
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Next, we have to perform the computation specified by the right side of the assignment 
statement. This computation will occur at the top of the stack, just above the address of d 
that we just pushed. To perform the indicated computation, we use the following se-
quence of push and add operations: 

P 

P 
add 

pwc 
add 

b 

c 

7000 

; push the value of b 

; push the value of c 

; pop twice, add, push 

; push 7000 

; pop twice, add, push 

The two p instructions push the values of b and c. The first add instruction then pops and 
adds these values and places the result back on the stack. We then push 7000 with the pwc 
instruction. Thus, when we execute the second add instruction, the top two items on the 
stack are 7000 and the sum of b and c. This add instruction pops these two items, adds 
them, and pushes the result back onto the stack. At this point, the top of the stack has the 
sum of b, c, and 7000. Just below the top is the address of d (pushed there by the initial 
pc instruction). To complete the assignment, we execute the s t a v instruction: 

stav ; pop twice and store result 

This instruction pops the value on top of the stack and the address below it and then 
places the popped value into the main memory location specified by the popped address. 

A program containing the assembly language code above would also have a dw state-
ment for b, c, and d. These dw statements would appear at the end of the program after 
the halt instruction: 

b 
c 
d 

halt 
dw 
dw 
dw 

0 
0 

0 

; terminate 
; create b variable 

; create c variable 
; create d variable 

Figure 11.10 shows the complete sequence of assembly code needed for our three assign-
ment statements, along with some informative comments. 

To perform subtraction, multiplication, and division on the Jl computer, we have the 
sub, mult, and d iv instructions, respectively. These instructions are similar to the add 
instruction. Each pops the two top items from the stack, performs a computation on them, 
and pushes the result back onto the stack. For example, the assignment statement 

f = b*c - d / e ; 

corresponds to the following assembly instructions: 

; push the address of f 
; push the value of b 
; push the value of c 
; pop twice, mult, push 
; push the value of d 
; push the value of e 
; pop twice, div, push 

pc 

P 
P 
mult 

P 

P 
div 

f 

b 
c 

d 

e 
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s u b 
s t a v 
h a l t 

b : dw 0 
c : dw 0 
d : dw 0 
e : dw 0 
f: dw 0 

Exercise 11.1 

Write the assembly language statements that correspond to the following statements: 

x = b + -20 + c; 

Answer: 

pc x 

P b 
pwc -20 
add 

P c 

add 

stav 

halt 

; pop twice, sub, push 

; store result in f 
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x : dw x 
b : dw 0 
c : dw 0 

11.11 COMPILING p r i n t AND p r i n t l n 

The p r i n t and p r i n t l n statements output values to the display screen. For example, 

p r i n t ( q ) ; 

displays the value of q in decimal on the current line of the display, and 

p r i n t l n ( q ) ; 

similarly displays the value of q but also outputs a newline character, causing the cursor 
to move to the beginning of the next line on the display. These statements have the fol-
lowing assembly code counterparts. For 

p r i n t ( q ) ; 

we have 
p q 

d o u t 

For 

p r i n t l n ( q ) ; 

we have 

p q 
d o u t 
pc ' \ n ' 
a o u t 

Exercise 11.2 

Write an assembly language statements that correspond to the following statements: 

x = (b+c)* (d+e) - f / g ; 
p r i n t l n ( x ) ; 

Answer: 

p c x 
P b 
P c 
add 
P d 
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P 
add 
mult 

P 
P 
div 
sub 
stav 

P 
dout 
pc 
aout 

halt 
dw 
dw 
dw 
dw 
dw 
dw 
dw 

e 

f 

g 

X 

'\n' 

0 
0 
0 
0 
0 
0 
0 

11.12 OUTPUTTING STRINGS 

Strings in an assembly language program are defined with dw statements. For example, to 
define the string "Dog" and label it with @L0, use 

@L0: dw "Dog" 

This single statement is translated to four consecutive words: one word for the ASCII 
code of each character in the string plus a fourth word at the end that holds the null char-
acter. The null character (a word with all zero bits) marks the end of the string. The label 
is optional. 

When the assembler translates assembly code to machine code, it replaces labels with 
absolute addresses. Thus, for the pc instruction in the following program, 

pc @L0 ; pushes the address of @L0 
sout ; outputs the string "Dog" 
halt 

@L0: dw "Dog" ; address of this dw is 3 

the assembler will output a machine instruction consisting of the opcode for the pc in-
struction and the address corresponding to the label @L0 (which is 3 in this example). 
Thus, the immediate operand that the pc instruction pushes is the address of @L0 (which 
is the address of the string "Dog"). The sou t (string out) instruction then pops this ad-
dress and outputs the string that starts at this address to the display monitor. Thus, in this 
example, it outputs Dog. 
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In the example above, we placed the dw statement for the string constant, "Dog", at 
the bottom of the program, out of the flow of control. It would be wrong to place the dw 
statement between the sou t and h a l t instructions, like so: 

pc @L0 
sout 

@L0: dw "Dog" ; WRONG! CPU will execute. 
halt 

If we did this, the program would assemble without error. However, during its execution, 
the CPU would attempt to fetch and execute the string constant "Dog" because it is in the 
"flow of control." To avoid this problem, we must position the dw statement in the pro-
gram so that it cannot be executed by the CPU. Placing it after the h a l t instruction, as 
we did in the correct version, satisfies this requirement. Another alternative, however, is 
to precede the label on the dw statement with the caret symbol " Λ ". When the assembler 
scans a line with a caret, it automatically places that line at the end of the program, out of 
the flow of control. For example, in the following program, the string "Dog" appears in 
line with instructions: 

pc @L0 
sout 

A@L0: dw "Dog" 
halt 

However, because of the caret on the label @L0, the assembler places the string at the end 
of the machine language program, after the h a l t instruction. The list file that the assem-
bler produces (the file with the " . 1 s t " extension) shows the string in the position it oc-
cupies in the machine language program (see Figure 11.11). Note that the string constant 
"Dog" appears after the h a l t instruction. 
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Let us examine some statements that output a string, along with the corresponding as-
sembly code. The following statements 

y = - 2 ; 
x = y; 
p r i n t ( " x = " ) ; 
p r i n t l n ( x ) ; 

output 

x = -2 

The p r i n t statement outputs the string "x = " but does not advance to the next line. 
Thus, the p r i n t l n statement outputs the value of x on the same line and then advances 
to the next line. The corresponding assembly code is in Figure 11.12. The string "x = 
" is defined with a dw statement. The p c - s o u t sequence outputs this string. 

We will follow the convention of labeling strings with labels that start with "@L" fol-
lowed by sequence numbers starting from 0. That is, we will use the labels @L0, @L1, 
@L2, and soon. 

11.13 INPUTTING DECIMAL NUMBERS 

The din (decimal in) inputs decimal numbers from the keyboard, d in converts the num-
ber entered on the keyboard from decimal to binary and pushes the binary value onto the 
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stack. Let us look at an example that reads in a decimal number and stores it in the loca-
tion whose label is x. We first push the address of x with 

pc x 

We do this because we ultimately want to store a value into x using the s t a v instruction. 
So we need to push the address of x onto the stack. Next, we read in a decimal number 
and push its binary equivalent onto the stack with 

d in 

After the din executes, the inputted value in binary is on top of the stack with the address 
of x right below it. Thus, if we then execute 

s t a v 

the inputted value is stored in x. 
Whenever we use din, we should precede it with the instructions that display an ap-

propriate prompt message to inform the user that keyboard input is expected. For exam-
ple, the following sequence of instructions displays a prompt message ("Enter i n t e -
ger \ n") and reads in a decimal value into x: 

pc @L0 ; push address of prompt message 
sout ; display prompt message 

~@L0: dw "Enter integer\n" 
pc x ; push address of x 
din ; input decimal number 
stav ; store inputted value in x 

We included the newline character ( ' \ n ' ) at the end of the prompt message to force the 
user input to start on the next line. Thus, when this sequence is executed, the display 
would look like this (assuming we enter 2 3): 

Enter integer 
23 

If, however, we define the prompt message with 

^@L0: dw "Enter i n t e g e r : " 

then the display would look like this: 

Enter i n t e g e r : 23 

Either approach works well. 

11.14 ENTRY DIRECTIVE 

In all the assembly language programs we have examined so far, execution starts at the 
physical beginning of the corresponding machine code. For example, the execution of the 
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machine code corresponding to the following assembly program starts with the initial p 
instruction. 

/ / e x e c u t i o n s t a r t s he re 

x: 
y : 

P 
P 
add 
dout 
h a l t 
dw 
dw 

x 
y 

3 
4 

We call the location within a program at which execution starts its entry point. 
Using the entry directive, we can specify any entry point we want. For example, the 

e n t r y directive in the following program indicates that execution should start at the label 
ca t (which is at the first p instruction following the x and y data): 

entry cat ; specifies entry point 
x: dw 3 
y: dw 4 
cat: p x 

P y 
add 
dout 
halt 

If we omit the e n t r y directive in this program, the CPU would start execution at the the 
physical beginning of the program. That is, it would attempt to execute the data at x as if 
it were an instruction. 

An e n t r y directive can appear on any line in a program. In the example above, we 
placed it at the very beginning. Alternatively, we could have placed it at the end or any-
where in between. 

11.15 MORE ASSEMBLY LANGUAGE 

In the next chapter, we will write our first serious compiler. It translates simple assignment 
and pr i n t l n statements to the assembly code. We will call this first compiler SI. Because 
we already know enough assembly for S1, we will dispense for now with our investigation 
of assembly language. As we develop more powerful compilers in later chapters, we will 
concurrently learn the additional assembly language required by those compilers. 

PROBLEMS 

1. Translate to an assembly language program: 

b = 1; 
c = 2; 
e = 3 ; 
d = b - c ; 
e = e*e /d ; 
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println (b); 
println(c); 
println(d); 
println (e); 

Do not optimize. For example, do not initialize b, c, and e to 1,2, and 3, respective-
ly, in their dw statements. Instead, initialize them to 0 in their dw statements. Place 
your program in a file named p i 101 . a. Assemble and run with 

a pllOl.a 
e pllOl /c 

2. Assemble and run the following program. What happens? 

s t a r t : pc 5 
dout 
j a s t a r t 

The j a instruction is the "jump always" instruction. 
3. Translate the following statements to assembly language. Do not optimize. For exam-

ple, for the first statement, you should provide assembly code that performs all the 
specified additions. Specifically, after pushing the address of x, push the operands, 1, 
2,... , 10. Then perform the specified additions, followed by a s t a v instruction. Use 
the pc instruction to push each constant. 

x = (1 + (2 + (3 + (4 + (5 + (6 + (7 + (8 + (9 + 1 0 ) ) ) ) ) ) ) ) ) ; 
p r i n t ( " x = ") ; 
p r i n t l n ( x ) ; 

Place your program in a file name p i 10 3 . a. Assemble and run with 

a pll03.a 
e pll03 /c 

Change your program so that it pushes the constants with the pwc instruction instead 
of the pc instruction. Assemble and run. Compare the two log file reports. Which 
version is better? Why? 

4. Translate the following statements to assembly language. Do not optimize. For exam-
ple, for the first statement, you should provide assembly code that performs all the 
specified additions. Specifically, after pushing the address of x, push 1 and 2, then 
add. Then push 3 and add. Continue in this fashion until all ten numbers have been 
added. Use the pwc instruction to push the constants. 

x = l + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 0 ; 
p r i n t ( " x = " ) ; 
p r i n t l n ( x ) ; 

Place your program in a file name p i 10 4 . a. Assemble and run with 

a pll04.a 
e pll04 /c 

5. Compare the efficiencies of the assembly language programs for problems 3 and 4. 
Are they different? 

6. Assemble and run the following program. What happens? Why? 

dout 
h a l t 
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7. Which bits of the s p register are used to determine where in memory an item is 
pushed? All 16 bits? 

8. The stack pointer initially contains 0. What is the address of the memory location that 
receives the first value pushed? Hint: the stack pointer is decremented by 1 before 
each push operation. 

9. Without using the m u l t instructions, write the most efficient assembly language se-
quence you can that multiplies 23 by 48 and displays the result. Display the result 
with no newline after the result and with no labels. Assemble and run with 

a pll09.a 

e pll09 /c 

Hint: You may want to use the dupe instruction. It duplicates the top of the stack. 
For example, if 5 is on top of the stack and you execute dupe , then an additional 5 is 
pushed onto the stack. 

10. Which instruction below is better? Why? 

pc 5 

or 

Ρ @5 

where @5 is defined with 

@ 5 : dw 5 

Which instruction below is better? Why? 

pwc 5 

or 

p @5 

where @5 is defined shown above. 
11. Write an assembly language program that prompts the user for two integers, adds the 

two integers, and displays the sum. Your program should produce output that looks 
exactly like that in the sample session below: 

Ente r i n t e g e r 
1 
Enter integer 

2 

Sum = 3 

After outputting the sum, your program should position the cursor at the beginning of 
the line that follows the sum. Place your program in a file name p i 1 1 1 . a. Assemble 
and run with 

a pllll.a 
e pllll /c 

12. Suppose you delete the e n t r y directive in the program in Section 11.14. What hap-
pens when the program is executed? 





12 
SI—A SIMPLE COMPILER 

12.1 INTRODUCTION 

In this chapter, we design and implement a simple compiler that translates assignment and 
p r i n t l n statements to the assembly language of the Jl computer. Our compiler is mod-
est on two counts. First, the source language it processes is very restricted. Second, it 
makes no attempt to produce the optimal assembly code. We want our compiler to be as 
simple as possible because it is our first compiler for a programming language. We call 
this compiler SI. "S" in "SI" stands for the stack instruction set—the instruction set of 
the J1 computer. 

Although SI is quite simple, it, nevertheless, provides us with a base on which we can 
build. Once we understand its structure and operation, we can add to it, ultimately produc-
ing a compiler for a full-fledged programming language. 

12.2 THE SOURCE LANGUAGE 

Before we define a grammar for the source language, let us look at the following sample 
program: 

x = 5000; 
y = x*2 + -10; 
println(y + 3); 

This program uses two variables, x and y. Note that the program does not contain any de-
clarations for x and y. We do not need variable declarations because all variables in our 
source language have the same type, namely, i n t . That is, they hold signed integers. The 
initial value of all variables is 0. 

The expressions that appear on the right side of assignment statements and within the 
p r i n t l n statements are limited to the operations of addition and multiplication. Unary 
plus and minus are not supported. Thus, the following statements are illegal: 

x = +y; *< unary plus not legal 
x = x + - y ; -< unary minus not legal 

Compiler Construction Using Java, JavaCC, and Yace, First Edition. Anthony J. Dos Reis 289 
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However, constants can be signed. For example, the following statements are legal: 

x = +5; 
x = x + - 2 0 ; 

The p r i n t In statement must have exactly one argument. Thus, the following state-
ments are all legal: 

println (5); 
println(5 + 20); 
println(y); 
println(x + y + -3); 

but these statements are illegal: 

p r i n t l n O ; ■< null argument list not legal 
p r i n t l n ( x , y ) ; -< more than one argument not legal 

An identifier for a variable must be a sequence of letters and/or digits, it must start 
with a letter, and it must not be a keyword word (the only keyword in our source language 
i s p r i n t l n ) . 

Programs can have zero or more statements. A program with zero statements is trans-
lated to an assembly language program that contains only the h a l t instruction. 

12.3 GRAMMAR FOR SOURCE LANGUAGE 

Now let us write a grammar that defines our source language. We will use program for 
the start symbol. Because a program consists of a list of statements, we define program 
with 

Selection Set 
program -> statementList <EOF> (<ID>, "println", <EOF>} 

Notice that we have placed <EOF> at the end of this production. Its inclusion here explic-
itly indicates that <EOF> should follow s t a t e m e n t L i s t . A s t a t e m e n t L i s t is a list 
of zero or more statements: 

statementList —> statement statementList {<ID>, "println"} 
statementList —» λ { <EOF>} 

We have two types of statements: the assignment statement and the p r i n t l n statement. 
So we have 

statement —» assignmentStatement { <ID>) 

statement —» printlnStatement { "println"} 

where 

assignmentStatement -» <ID> " = " expr ";" { <ID>} 

printlnStatement -» "println" "(" expr " ) " "/"{"println"} 
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The productions for an expression are 

expr 
termList 

termList 
term 

factorList 

factorList 
factor 

factor 

factor 
factor 

factor 

—> term termList 
—* " + " term termList 
->· A 

—» factor factorList 

-» "*" factor factorLi 

-> A 

-> <UNSIGNED> 

-> " + " <UNSIGNED> 

-> "-" <UNSIGNED> 

-> <ID> 

-► " (" expr ") " 

St 

"(", 
" + "} 

" ) " . 
"(", 
..* .., 

" ) " , 

II ί II It It 

";") 
ti i It It It 

Il . tl It i 1 

<UNSIGNED>) 
" + "} 

"-") 
<ID>} 

"("} 

<UNSIGNED>, 

<UNSIGNED>, 

} 

<ID>} 

<ID>} 

Although there are a variety of grammars that define infix arithmetic expressions (see 
Section 4.2 and Section 7.9), most are not LL(1). As you can see from the selection sets 
above, this group of productions is LL(1), and, therefore, is appropriate for top-down 
parsing. These productions also capture the correct associativity and precedence rules for 
addition and multiplication. 

12.4 THE TARGET LANGUAGE 

We now need to convert our grammar from Section 12.3 to a translation grammar. How-
ever, to do this, we first need a thorough understanding of our target language—the stack 
instruction set of the J1 computer—and how it corresponds to the source language. Let us 
look at the target code corresponding to 

x = 5000; 

y = x*2 + -10; 
println(y + 3); 

For the statement 

x = 5000; 

we first need the assembler instruction that pushes the address of x: 

pc x 

Next, we need a pwc instruction that pushes 5000: 

pwc 5000 

We complete the assignment of 5000 to x with 

s t a v 

which pops the value and address from the stack and then stores the value at the address. 
In the instruction, 

y = x*2 + - 1 0 ; 
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we have two constants, 2 and -10. We can push 2 but not -10 with a pc instruction (re-
call that a pc instruction can push constants only in the range of 0 to 4095). Rather than 
complicate the compiler by having it use the pc instruction to push constants within the 
range of a pc instruction, and the pwc instruction for other constants, our compiler will 
use the pwc instruction exclusively to push constants. However, our compiler will contin-
ue to use the pc instruction to push addresses. Addresses are always within the 0 to 4095 
range, and, therefore, can always be pushed by the pc instruction. Here is the code for our 
assignment statement: 

; code 
pc 

P 
pwc 
mult 
pwc 
add 

for y = 
y 
X 

2 

-10 

x*2 + -10; 
; push address of y 
; push value of x 
; push 2 
; compute x* 2 
; push -10 
; compute x*2 + -10 

s t a v a s s i g n r e s u l t t o y 

The p r i n t l n statement displays the value of y + 3 and then outputs the newline char-
acter: 

; code for println(y + 3); 

P 
pwc 
add 
dout 
pc 
aout 

y 
3 

•\n' 

t 

; 
t 

r 

r 

r 

push value of y 
push 3 
compute y + 3 
pop and display in decimal 
push newline character 
pop and output 

Finally, we have some "endcode" (i.e., code the compiler outputs after it has completed 
the parsing of the source program) consisting of the h a l t instruction followed by the dw 
statements that the program requires: 

x: 

y: 

halt 
dw 
dw 

0 
0 

12.5 SYMBOL TABLE 

Because the compiler outputs at the end of the assembly language program a dw statement 
for each variable, it obviously has to create a data structure during the compilation 
process in which it records the names of each variable. We call this data structure a sym-
bol table. The symbol table in SI is a separate object constructed from the class 
SISymTab. We use the variable s t to reference this object. The symbol table uses an 
Ar rayLi s t<S t r ing> named symbol to record the names of the variables used in the 
program. In addition to symbol, the symbol table object contains an e n t e r method 
(which makes an entry into the symbol table), a getSymbol method (which retrieves a 
symbol table entry at a specific index), and a g e t S i z e method (which returns the size of 
the symbol ArrayList). 
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12.6 CODE GENERATOR 

The code generator in SI is a separate object constructed from the class SICodeGen. We 
use the variable eg to reference this object. Its two principal methods are 
e m i t l n s t r u c t i o n and endCode. The e m i t l n s t r u c t i o n method emits (i.e., outputs 
to the assembly language file the compiler creates) an assembly language instruction. For 
example, 

eg.emitlnstruction("mult"); 

emits the instruction 

mult 

e m i t l n s t r u c t i o n can take one or two S t r i n g arguments. For example, if t . image 
is "x" , then 

e g . e m i t l n s t r u c t i o n ( " p c " , t . i m a g e ) ; 

emits the instruction 

pc x 

The endcode method emits a h a l t instruction and the dw statements—one for each en-
try in the symbol table—that appear at the end of the assembly language program. For ex-
ample, if the symbol table has two entries "x" and "y" , then endCode emits 

h a l t 
x: dw 0 
y: dw 0 

12.7 token CLASS 

The token manager in SI is essentially the token manager for the prefix expression com-
piler we studied in Section 10. 9. Recall that this token manager provides tokens to the 
parser in the form of objects of the following type: 

c l a s s Token 
{ 

// integer that identifies kind (i.e., category) of token 
public int kind; 

// location of token in source program 
public int beginLine, beginColumn, endLine, endColumn; 

// String consisting of characters that make up token 
public String image; 

// link to next Token object 
public Token next; 

} 
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The kind field contains an integer that represents the token's kind (i.e., category). For 
example, the kind field value for unsigned integer constants is UNSIGNED. In SI, 
UNSIGNED is a named constant defined with 

int UNSIGNED = 2; 

The kind field value for all identifiers is ID (equal to 3 in SI). The kind field value for 
a " p r i n t l n " token is PRINTLN (equal to 1 in SI), 

The beginLine , endLine, beginColumn, and endColumn fields specify the lo-
cation of the token in the source code. 

The image field contains the string consisting of the characters from the source code 
that make up the token. For example, the image field in the Token object for 123 would 
contain the string "123". 

The next field links each token object to the next one in the order in which tokens ap-
pear in the source program. 

12.8 WRITING THE TRANSLATION GRAMMAR 

Once we understand the output that our compiler has to generate, it is easy to figure out 
where to put actions in our grammar to accomplish the required translation. Let us start by 
considering the assignment statement 

x = y + 1; 

The corresponding assembly code is 

pc x ; push address of x onto stack 

p y ; push value of y onto stack 
pwc 1 ; push 1 onto stack 
add ; double pop, add, and push sum 

stav ; pop and store value at address 

When the s t a v instruction is executed, the address of x and the value of y + 1 are on 
the stack, with the latter on top. The s t a v instruction pops both the value and the address, 
and then stores the value at the address. In addition to generating the assembly code 
above, the compiler has to enter " x " and " y " into the symbol table. Note that the order of 
operations in the assembly code above is 

1. The initial pc instruction that pushes the address of the variable on the left side of 
the assignment statement 

2. The code corresponding to the expression on the right side of the assignment 
statement 

3. The s t a v instruction 

The placement of actions in the a s s ignmen t s t a t emen t production will reflect this or-
der. 
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Actions in a translation grammar, in general, require information. For example, the ac-
tion 

{ e g . e m i t ( " p c " , t . i m a g e ) ; } 

requires the information in t . image. The longer we postpone an action, the longer we 
have to maintain the information the action needs. Thus, a good rule to follow regarding 
the placement of actions is 

Place actions in a translation grammar as early as possible. 

We call this rule the early-as-possible rule. Keeping this rule in mind, let us determine at 
what points to put actions in the production for the assignment statement. We have identi-
fied the five possible points within the production: 

void a s s i g n m e n t S t a t e m e n t ( ) : {Token t ;} 
{ 

-< point 1 
t=<ID> 

-< point 2 
I I _ I I 

-< point 3 
expr ( ) 

-< point 4 
t l . I I 

/ 
-< point 5 

} 

Let us first consider the point at which we should enter the identifier into the symbol 
table with the following action: 

{ s t . e n t e r ( t . i m a g e ) ; } 

where s t is the reference to the symbol table object, and t is a local variable of type To-
ken to which the <ID> token is assigned. Thus, t . image is the image of the identifier. 
This action can appear at points 2, 3, 4, or 5. It must appear after point 1 because at point 
1 we have not yet parsed the identifier so we do not yet have access to it. Applying our 
early-as-possible rule, we will place it at point 2. 

There are two constraints on where we emit the pc instruction: It must be after point 1 
because we need the identifier for the operand in the pc instruction). It must also precede 
the assembly code associated with expr () . Thus, we have a choice: point 2 or point 3. 
Applying our early-as-possible rule, we will place it at point 2. We emit the pc instruction 
with 

{ e g . e m i t ( " p c " , t . i m a g e ) ; } 

where eg is the reference to the code generator object, and t is the local variable to which 
the identifier token is assigned. 
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The point at which we emit the s t a v instruction must follow the code for expr ( ) . 
Thus, it can appear at point 4 or 5. Using our early-as-possible rule, we will place it at 
point 4. We emit the s t a v instruction with 

{ e g . e m i t ( " s t a v " ) ; } 

Incorporating these actions into the assignment statement production, we get 

void a s s i g n m e n t S t a t e m e n t ( ) : {Token t ;} 
{ 

t=<ID> 
{ st.enter(t.image);} 
{ eg.emitInstruction("pc", t.image);} 
11 — 11 

expr () 
( eg.emitlnstruction("stav");} 
I I . I I 

} 

We need a local variable t . Thus, we declare it within the first set of braces (that is 
where local variables are declared in a translation grammar). Note that we do not need to 
include any actions corresponding to expr () . The expr () production itself will provide 
those actions. ' 

Our actions include the following two methods: 

1. public void enter (String s) 

This is a method in the s t object (the symbol table) that makes an entry into the symbol 
table, e n t e r is passed t . image (the image of the identifier). If the identifier is already 
in the symbol table, then e n t e r simply returns to its caller. 

2. public void emitlnstruction(String op) 
public void emitlnstruction(String op, String opnd) 

This is a method in the eg object (the code generator) that outputs an assembly language 
instruction. It is passed either a mnemonic alone (for instructions like s t a v that consist of 
a mnemonic only) or a mnemonic and an operand (for instructions like pc that consist of 
a mnemonic and an operand). For example, if t . image is "x", then the action 

{eg.emitInstruction("pc", t.image);} 

outputs to the output file the instruction 

pc x 

The translation grammar entry for the p r i n t l n statement is even simpler than the en-
try for the assignment statement: 

void p r i n t l n S t a t e m e n t ( ) : (} 
{ 
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"p r in t ln" 
t l / It 

expr ( ) 
{ eg.emitInstruction("dout");} 
{ eg.emitInstruction("pc", " '\\n'");} 
{ eg.emit Instruction ("aout");} 
I I V f l 

I I . I I 

} 

We call e m i t l n s t r u c t i o n three times. The first call outputs the dout instruction. 
The second call outputs 

pc ' \ n ' 

In second argument of the second call, we use a double backslash to represent a single 
backslash. If the second call were 

{ e g . e m i t l n s t r u c t i o n ("pc", " ' \ n ' " ) ; } / / wrong! 

we would get three characters in the operand: two single quotes surrounding the newline 
character. What we want is four characters: single quotes surrounding a backslash and the 
letter n. The third call of e m i t l n s t r u c t i o n in the translation grammar entry for 
p r i n t l n outputs the aout instruction. 

The actions for the productions associated with t e r m L i s t are also simple to deter-
mine. Consider the t e r m L i s t production: 

termList —* " + " term termList 

Right after we parse the input corresponding to term on the right side of this production, 
we should emit an add instruction, which adds the value of this term with the value of 
the term that is to the left of the " + ". The term to the left of " + " comes from higher up 
in the parse tree and earlier in the parse (see Figure 12.1). 

The entry in the translation grammar for t e r m L i s t is 

void t e r m L i s t ( ) : {} 
{ 

I I i II 

te rm() 
{ eg.emitlnstruction("add");} 
termList() 

I 
{ } // the empty set represents lambda 

} 

We similarly output the mult instruction after f a c t o r in 

factorList —> "*" factor factorList 

The entry for f a c t o r L i s t in the transíafíon grammar is 
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void f a c t o r L i s t () : {} 
{ 

I · * I I 

factor() 
{ cg.emitlnstruction("mult");} 
factorList() 

{ } // the empty set represents lambda 
} 

The only additional actions we need are for the productions 

factor -> <UNSIGNED> 
factor -> "+" <UNSIGNED> 
factor -^ "-" <UNSIGNED> 
factor -> <ID> 

For the first three of these productions, we emit a pwc instruction that pushes the con-
stant. For the fourth factor production, we enter the identifier into the symbol table, and 
we emit a p instruction that pushes the value of the identifier. For example, if the identifi-
er is x, we enter "x" into the symbol table and emit 

P x 

We do not need any actions for the f a c t o r production that generates another expression 
within parentheses: 

f a c t o r -> " ( " expr " ) " 

For this production, the actions required will be provided by the expr production. 
The entry in the translation grammar for f a c t o r is 

void factor (): {Token t;} 
{ 

t=<UNSIGNED> 
{ eg.emitInstruction("pwc", t.image);) 

I 
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t = <UNSIGNED> 
{ e g . e m i t I n s t r u c t i o n ( " p w c " , t . i m a g e ) ; } 

I 
I I _ I I 

t = <UNSIGNED> 
{ c g . e m i t l n s t r u c t i o n ( " p w c " , " - " + t . i m a g e ) ; } 

I 
t=<ID> 
{ st.enter(t.image);} 
{ cg.emitlnstruction("p", t.image);) 

I 
I I / I I 

expr () 
II \ II 

} 

The entry in the translation grammar for program is 

void p r o g r a m ( ) : {} 
{ 

s t a t e m e n t L i s t ( ) 
{ cg .endCode() ; ) 
<EOF> // make sure no garbage at end 

} 

It contains the action, { eg . endcode ()} , which outputs the h a l t instruction and the dw 
statements that appear at the end of the assembly language object program. Notice that the 
<EOF> token follows s t a t e m e n t L i s t ( ) . The inclusion of <EOF> at this point indi-
cates that the <EOF> token must immediately follow the tokens that correspond to 
s t a t e m e n t L i s t ( ) . That is, we test for end of file after parsing s t a t e m e n t L i s t . 
Thus, if garbage were to follow the last statement in a program, and it was not detected by 
s t a t e m e n t L i s t () or any of the methods below it, the end-of-file test in program () 
would trigger a parsing error, as it should. 

The complete translation grammar for SI appears in Figure 12.2. It is also in the file 
S I . t g in the Jl Software Package. 

12.9 IMPLEMENTING THE SI COMPILER 

Our last step in creating the SI compiler is to write the Java code corresponding to the 
translation grammar in Figure 12.3. This step is the least creative. We simply follow the 
structure specified by the translation grammar, using selection sets to determine which 
production to apply. The token manager in SI is essentially the token manager in the pre-
fix expression compiler we studied in Chapter 10 (see Figure 10.10). The Java code for 
the SI compiler is in the file SI . j a v a in the Jl Software Package. A listing of this file 
appears in Figure 12.3. 

Most of the code in Figure 12.3 should be self-explanatory. For a discussion of the to-
ken manager in S1, see the discussion of the token manager for the prefix expression 
compiler in Section 10.9. These two token managers are nearly identical. One minor dif-
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ference concerns the token trace. The token manager in Section 10.9 always generates a 
token trace. The token manager in S1 generates a token trace only if debug is set to true 
(see lines 19 and 242 in SI). 

The service methods in the parser—genEx, advance, getToken, and consume— 
are identical to the corresponding methods with the same names that we studied in 
Section 10.10. genEx (see lines 305 to 313 in SI) constructs and returns an exception 
object that contains a detailed error message. When calling genEx, you should pass it 
a string that lists or describes the tokens that are expected at the point of the error. 
genEx then incorporates this string in the error message it creates, advance (see lines 
317 to 330 in SI) advances in the token stream to the next token, consume (see lines 
361 to 367 in SI) determines if the current token is the expected token. If it is, con-
sume advances in the token stream by calling advance. Otherwise, it throws an ex-
ception. getToken provides a lookahead capability. Let us examine getToken more 
closely: 

337 private Token getToken(int i) 
338 ( 
339 if (i <= 0) 
340 return previousToken; 
341 
342 Token t = currentToken; 
343 for (int j = 1; j < i; j++) // loop to ith token 
344 { 
345 // if next token is on token list, move t to it 
346 if (t.next != null) 
34 7 t = t.next; 
348 
349 // Otherwise, get next token from token mgr and 
350 // put it on the list. 
351 else 
352 t = t.next = tm.getNextToken(); 
353 } 
354 return t; 
355 } 

SI does not use getToken. But you may want to use it in a more advanced compiler you 
build from SI. Do not confuse this method with the getNextToken method in the token 
manager. getToken in the parser returns any token from previousToken (the token 
just before the current token) onward, depending on the argument it is passed. For exam-
ple, getToken (0) returns previousToken; getToken (1) returns cur rentToken; 
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getToken (2) returns the token following the current token, and so on. The argument 
passed to getToken should be nonnegative. 

getToken places any tokens it obtains from the token manager on the linked list of 
tokens (see line 352). Thus, when the parser subsequently advances to these tokens, it ob-
tains them from the linked list rather than from the token manager (see lines 321 to 323 in 
SI). 

A lookahead beyond the current token is necessary if the parser is based on a grammar 
which is not LL(1). For example, suppose a translation grammar contains the following 
two alternatives: 

"b" 
"c" 
"d" 
{ System.out.println("hello");} 

I 
"b" 

{ System.out.println("bye");) 
} 

Each alternative starts with a "b" , " c " sequence. Thus, the grammar is not LL(1). How-
ever, we can decide between these two alternatives by looking at getToken (2) and 
getToken (3) (the two tokens following the current token). Assume that the kind val-
ues for the tokens "b" , " c" , "d", and "e " are the named constants B, C, D, and E, re-
spectively. Then the corresponding Java code is 

switch (currentToken.kind) 
{ 

case B: 

if (getToken(2).kind == C && getToken(3).kind == D) 
{ 

consume(B) 
consume(C) 
consume(D) 
System.out.println("hello"); 

} 
else 
if (getToken(2).kind == C && getToken(3).kind == E) 
( 

consume(B); 
consume(C); 
consume(E); 
System.out.println("bye"); 

} 
break; 
default: 
throw genEx("Expecting \"bcd\" or \"bce\""); 
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In the example above, the grammar is LL(3). It, however, can be easily converted to an 
equivalent LL(1) grammar by left factoring. Thus, an alternative approach is to create the 
parser from the equivalent LL(1) grammar, in which case getToken would not be need-
ed. If, however an LL( 1) grammar were not easily obtainable, then the lookahead capabil-
ity provided by getToken could be put to good use. 

12.10 TRYING OUT SI 

To use SI, we first have to compile it. We do this by entering 

j avac S I . j a v a 

which compiles our S I . j ava compiler to the file S I . c l a s s . We can then use 
S I . c l a s s to translate the sample source program in S I . s (included in the Jl software 
package). S1 . s is the test program for the S1 compiler. It performs a computation (the re-
sult of which should be 4107). It then displays the result of the computation and 4107. 
Thus, it should display 4107 twice. To compile S I . s, enter 

java SI SI -< be sure to use uppercase S 

t t 
' S 1 . s (source code to be compiled) 

1 S I . c l a s s (SI compiler) 

The java interpreter assumes the extension " . c l a s s " for the first command line argu-
ment (the first SI in the preceding command line). The SI compiler assumes the exten-
sion " . s" for the source code file (the second SI in the command line above). Thus, the 
first argument in the command line above specifies SI . c l a s s (the compiler), and the 
second argument specifies SI . s (the source code file the SI compiler is to translate). 
When the SI compiler compiles S I . s, it outputs the corresponding assembly code to the 
file S I . a . 

Next, we have to assemble S I . a. We do this with 

a S I . a -< you must specify the " . a " extension 

The a assembler will then produce the file S I . e containing the executable program. You 
must specify the " . a" extension in the input file name when you invoke the a program. It 
you do not, it will assume the extension " .o" , which is the extension for an object file 
(we discuss object files in Chapter 16). 

After assembling S I . a to get S I . e, we can run S I . e with 

e SI / c 

e is the program that simulates the Jl computer. The optional / c command line argument 
causes e to check the correctness of the S 1 . e program. It also causes e to provide input 
to the program if it requires any. With or without / c , e produces a log file named 
S I . <family name> . log that contains the results of the run (the first time you run e, it 
will prompt you for your name). Figure 12.4 shows the S I . s, S I . a, and SI.<family 
name> . log files. Note that the S I . a file contains as comments the source code and, op-
tionally, the token trace (if debug on line 19 is true). If your token manager is not work-
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ing correctly, you should be able to isolate the problem by examining the token trace in 
the output file. 

S I . s, like all our test cases, displays not only the result of a computation but also what 
the result should be. Thus, when we run the translated program with e, we should see two 
identical numbers displayed. For the test case S I . s, we see 4107 displayed twice (see 
Figure 12.4c). The first 4107 is the computed result; the second 4107 is what the com-
puted result should be. Because the two values displayed in Figure 12.4c are equal, we 
know immediately that our compiler has translated S I . s correctly. If you invoke e with 
the / c argument, then the report in the log file explicitly indicates whether the output is 
correct. With or without / c , the log file also provides the size, instruction count (i.e., the 
number of machine language instructions executed), and execution time of the translated 
program. But if you use the / c argument when you invoke e, the log file also indicates 
how the size, instruction count, and execution time compare with predefined limits. If the 
translated program is over any of these limits, then your compiler is generating inefficient 
code. Figure 12.4d shows a log file for a SI compiler that is not working correctly. 

12.11 ADVICE ON EXTENDING THE SI COMPILER 

Now that you understand the structure and operation of S1, you should extend S1 as spec-
ified in Section 12.12. Call the extended compiler S2. You should copy SI . j a v a in the 
J1 Software Package to S2. j ava, and then change all occurrences of "S1" in S2 . j ava 
to "S2". Then extend the code in S2 . j ava as specified in Section 12.12. Be sure to in-
sert your name into the statements that output the name of the author of the compiler (see 
lines 10 and 30 in SI). 

Although our list of extensions to SI to get S2 is extensive, implementing S2 should, 
in fact, be quite straightforward. The translation grammar, which we give in Figure 12.5, 
completely defines the parser. Thus, implementing the parser should be a "no-brainer." 
The symbol table, the code generator, and the main () method in SI and in S2 are essen-
tially identical. The only difference is that in S2, the class names start with "S2" rather 
than "SI" . The token manager in S2 has to support a few new token types and single-line 
comments. The code that adds this support is not complex and is similar to the code al-
ready in the token manager for SI. Thus, if you understand the token manager for SI, you 
should be able to extend it easily so that it works for S2. The new tokens for S2 also re-
quire a few simple additions to the constants interface (lines 55 to 87 in SI). 

12.11.1 Updating the Token Manager 

The token manager for S2 has to recognize two new tokens: the keyword r e a d i n t and 
" / " (the division operator). Thus, the constants interface should be updated with con-
stants for these new tokens. Use constants named READINT and DIVIDE. The t o k e n -
Image array in the constants interface should also be extended in accordance with these 
new tokens. 

Because keyword tokens start with letters, they are processed by the do-while loop in 
the token manager that handles identifiers (lines 184-190 in SI). Following this loop, 
check the token image. If it is " p r i n t l n " or " r e a d i n t " , set the token's kind field to 
PRINTLN or READINT, respectively. If the token image is not either of these keywords, 
then set the kind field to ID. 

Do not forget to set the kind field of the keyword tokens. 
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Recall from Section 10.8, we solved the token lookahead problem by having the token 
manager read one character beyond the end of every token even if doing so is not neces-
sary to determine the end of the token. This requirement is the reason for the call of g e t -
NextChar on line 238 in SI. 

Do not forget that for every token, the token manager should read one 
character beyond the token's end before returning that token to the 
parser. 

12.11.2 Debug Your Token Manager First 

The parser depends on the token manager. So what looks like a parser error may, in fact, 
be a token manager error. 

Make sure your token manager is working correctly by inspecting the to-
ken trace before you debug your parser. 

To generate a token trace, set the debug variable to true (see line 19 in SI). Reset it back 
to false once you have your token manager working correctly. 

12.11.3 Selection Sets 

The source language for S2 is an extension of the source language for SI. Thus, its gram-
mar is different from the grammar for SI. Whenever a grammar changes, selection sets 
also change, necessitating changes to the cases in the swi tch statements in the parser. 
One of the errors you will make most likely make when you implement S2 is to forget to 
update the parser code according to the new selection sets that result from changes to the 
grammar. 

Be sure your implementation of the parser is based on the correct selec-
tion sets. 

12.11.4 Using the Required Break Statements 

Each method in the parser corresponding to a multiple-production nonterminal uses a 
swi tch statement to determine which production to apply. 

Do not forget to include a b r e a k statement at the end of each alternative 
in the s w i t c h statements, except for the cases in which a throw state-
ment appears. 

If you include a break statement following a throw statement, the Java compiler will 
flag it because the break statement in that case would be unreachable. 

12.11.5 Using the Required Calls to the Consume Method 

A translation grammar does not explicitly indicate where the calls of the consume 
method should appear. But it is not hard to determine where they belong: they are wher-
ever a terminal symbol is parsed. 
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Do not forget to include in the S2 parser a call of consume wherever a to-
ken is parsed. To consume the current token, pass the consume method 
the kind field value of the expected token. 

For example, to consume an unsigned integer token, call consume with 

consume(UNSIGNED); 

To consume a " + " token, call consume with 

consume(PLUS); 

Note that UNSIGNED is the kind field value for unsigned integer tokens, and PLUS is the 
kind field value for " + " tokens. Do not pass consume the token object itself or its image. 
For example, do not do this: 

consume(currentToken); // wrong! 
consume('+'); // wrong! 

12.11.6 Interpreting the Translation Grammar Correctly 

In several places in the translation grammars for SI and S2, a Token variable t and a to-
ken category appear in an assignment statement. For example, in the f a c t o r () produc-
tions in the translation grammar for S2 (see line 120 in Figure 12.5), we have the assign-
ment 

t = <UNSIGNED> 

The Java code in the parser that corresponds to this statement is an assignment of the cur-
rent token (which is in the variable currentToken) to t . Thus, the Java code for this 
statement is 

t = cur ren tToken ; / / c o r r e c t 

Do not do this: 

t = UNSIGNED; / / wrong! 

We want to assign the current token to t . UNSIGNED is not the current token. Rather, it is 
a constant declared in the constants interface that is the value in the kind field for an un-
signed integer token. 

12.12 SPECIFICATIONS FOR S2 

The S2 compiler is the SI compiler with the following extensions: 

1. The subtraction and division operations are supported. Subtraction and division 
have the same precedence as addition and multiplication, respectively. Thus, the 
parser should handle subtraction like addition, and division like multiplication. You 
need to add the following productions to your grammar: 
termList —» "-" term termList 

factorList —» "/" factor factorList 
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2. The null statement—the statement that consists of the semicolon only—is support-
ed. You need to add the following productions to your grammar: 

statement —» nullStatement 
nullStatement -» 

The code generator should generate no code for the null statement. But if that is the 
case, what good is a null statement? Situations can occur in programming where a 
statement that does nothing is useful. For example, suppose in Java we want the 
e l s e to associate with the first i f in the following structure: 

i f ( . . . ) 
i f ( . . . ) 

statement 1 
else // associates with second if 

statement 2 

In this structure, however, the e l s e associates with the nearer (i.e., the second) if. 
If, however, we use another e l s e and a null statement, we can force the e l s e on 
statement 2 to associate with the first if: 

i f ( . . . ) 
i f ( . . . ) 

statement 1 
else // this else associates with the 2nd if 

; // use null statement here 
else // this else now associates with the 1st if 

statement 2 

The first e l s e associates with the second if. Thus, the second e l s e is now forced 
to associate with the first if. 

3. The compound statement is supported. You will need it when you add support for 
the i f and whi le statements in the next chapter. You need to add the following 
productions to your grammar: 

statement —> compoundStatement 
compoundStatement —» " { " statementList "}" 

4. The p r i n t statement is supported. The p r i n t statement works like the p r i n t l n 
statement except that it does not output the newline character after it outputs the 
value of its argument. You need to add the following production to your grammar: 

p r i n t S t a t e m e n t -> " p r i n t " " ( " expr " ) " ' " ; " 

5. Single-line comments in the source program are supported. These comments start 
with a double slash, " / / " . The best place to check for comments is in the g e t -
NextChar () method in the token manager (line 278 in SI). Just before returning 
from the getNextChar () method, check if the character in cu r r en tCha r and 
inputLine[cur ren tColumn] are both ' / ' - I f they are, then reassign ' \ n ' to 
cu r ren tChar . This action effectively terminates the line right at the beginning of 
the comment. On the next invocation of getNextChar (), the ' \ n ' in c u r -
ren tChar forces getNextChar () to read the next line from the input file. 

The complete translation grammar for S2 appears in Figure 12.5. It is also in the file 
S2 . tg in the Jl Software Package. 
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PROBLEMS 

1. Copy S I . j ava to S2 . j ava . Then replace every occurrence of "SI" in S2. j ava 
with "S2". Enter your name in S2 . j ava on lines 10 and 30. Modify S2 . j ava so 
that it meets the specifications for S2 described in Section 12.12. Compile your S2 
compiler with 

j avac S 2 . j a v a 

Compile S2 . s (which is in the Jl Software Package) with your S2 compiler with 

java S2 S2 

Assemble the output file S2 . a created by your S2 compiler with 

a S2.a 

Finally run the executable program in S2. e created by the assembler with 

e S2 /c 
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Submit to your instructor S2 . java , S2 . a and S2 .<family name> . log (the log file 
that the e program creates when it runs S2 . e). 

2. Is it possible to output the dw for a variable as soon as that variable is encountered in 
the source program. If that is the case, can we eliminate the symbol table from SI? 
Hint: see the discussion of caret lines in Section 11.12. 

3. Give two examples for which a null statement in Java is useful. 
4. SI does not close the input file. It this a bug? What problem results if SI does not 

close the output file? 
5. In the translation grammar for the assignment statement, we emit the s t a v instruc-

tion before we parse the semicolon at the end of the statement (see line 32 in Figure 
12.2). Is the reverse order possible? Is the reverse order better? 

6. If we were to change our target assembly language, we would have to change the 
parser in S1. That is, our parser implementation is dependent on the target language. 
Is it possible to implement the parser in SI so that it is largely independent of the tar-
get language? What would be the advantage of such an implementation? 

7. Copy SI . j a v a to S1207. j ava . Change all occurrences of "SI" in S1207 . j a v a 
to " S12 0 7 ". Then rewrite S1207 . j avaso that the expr () method corresponds to 
the production 

expr —» term (" + " term)* 

and the term () method corresponds to the production 

term -* f a c t o r ("*" f a c t o r ) * 

That is, use loops instead of recursion for these productions. Test your new compiler 
by entering 

javac S1207.java 
java S1207 SI 
a SI .a 
e SI /c 

8. What error message does SI generate if the source program is 

x = 3; & 

What error message does SI generate if the source program is 

x = 3 ; y 

9. To support comments, you have to check in getNextChar () if the current charac-
ter and the character that follows it are both ' / ' . Before you check for the second 
' / ' , do you have to make sure that you are not already at the end of inpu tLine? 
Could an index-out-of-bounds exception occur? 

10. What does your S2 compiler do when it compiles 

x = 32768; 
y = 5555555555; 

Assemble the resulting assembly language program. What happens? Why? 
11. Why are the assignments to endLine and endColumn inside the loop rather than 

after the loop on lines 171, 172, 187, and 188 in S1 ? Would not executing the assign-
ments to endLine and endColumn once suffice? 
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12. The token managers in SI and S2 perform a serial search to determine if an identifier 
token is actually a keyword (see lines 195 to 198 in SI). An alternative approach is a 
binary search of a table preloaded with all the keywords in ascending order. In SI, 
there is only one keyword ( " p r i n t l n " ) . Thus, is does not make sense to use the 
more complicated binary search in place of a serial search. How many keywords 
would justify using a binary search? 

13. Copy S2. j ava to S1213. java. Change all occurrences of "S2" in S1213. j ava 
to "S1213". Modify S1213. j ava so that it using a binary search to detect key-
words (see Problem 12.12). Test your compiler as specified in Problem 12.1. 

14. Examine the assembly code that your S2 compiler produces for the source code in 
S2 . s. Try to write by hand more efficient code. Assemble with a and run with e us-
ing the / c command argument. Examine the performance statistics in the log file. 
How much better is your hand-written assembly code? 

15. Copy SI . j a v a to S1215. java . Change all occurrences of "SI" in S1215. j ava 
to "S1212". Then rewrite S1215 . j a v a so that it uses the following optimization 
technique: Evaluate constant expressions at compile time rather than at run time. This 
technique is called constant folding. For example, translate the following statement 

x = 1 + 2; 

by evaluating the expression at compile time to get 3. Then generate the assembly code 

pc x 
pwc 3 
s t a v 

Without this optimization technique, S2 would generate assembly code that performs 
the addition at run time: 

pc x 
pwc 1 
pwc 2 
add 
s t a v 

Run your optimized S1215 compiler against S I . s. Examine the performance statis-
tics in the log file. Is the code generated more efficient that the code generated by SI? 

16. The main method in SI outputs the compiler/author information to the output file 
(see line 30 in Figure 12.3). Would it be better for the code generator's constructor to 
output this information? 

17. Copy S I . j a v a to S1217. java. Change every occurrence of "S I" in 
S1217 . j ava to "S1217". Then rewrite S1217 . j ava so that it compiles directly 
to machine code. That is, it should output a machine code file (with extension " . e") 
rather and an assembly code file. Test your compiler by entering 

javac S1217.java 
java S1217 SI 
e SI /c 

The machine code file that your S1217 compiler produces should start with the 
ASCII code for the capital letter "T" followed by the machine code in binary. 

The best way to implement SI217 is to have its code generator enter machine 
code into an i n t array whose contents are then outputted at the end of the compile. 
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Let us call this array code. Note that the index of an instruction in the code array is 
also the address ofthat instruction. 

When the code generator enters an instruction that references a variable into the 
code array, it should enter its instruction's index into the symbol table entry for that 
variable. For example, suppose the instruction at index 0 references x. Then 0 should 
be recorded in the symbol table entry for x. If the instruction at index 4 also refer-
ences x, then 4 should also be recorded in the symbol table entry for x. Thus, the 
symbol table entry for x will contain a list of indices—an index for every instruction 
that references x. 

For each symbol in the symbol table, the endcode () method should 

1. Insert the index of the next available slot in the code array into every instruc-
tion that references that symbol, endcode () can determine where these in-
structions are in the code array by examining the list of indices for that symbol 
table entry. 

2. Insert 0 into the code array (this action allocates the variable and gives it an 
initial value). 

After processing the symbol table, endcode () should then output in binary the ASCII 
code for the capital letter "T" (54 in hex) followed by the contents of the code array. 

For example, consider the source program 

x = 1; 
p r i n t l n ( x ) ; 

The corresponding machine and assembly code is 

1009 
F700 

F300 

0009 
FFFD 

100A 

FFFB 
FFFF 

0000 

0001 
pc 

pwc 
stav 

P 
dout 

pc 

aout 
halt 
dw 

X 

1 

X 

'\n' 

0 

; x = 1 

; println(x 

When the code generator in S1217 enters the machine code for the intial pc instruc-
tion into the code array, it does not know the address of x. Thus, it enters the machine 
code for a pc instruction with zero in its address field. For the same reason, the p in-
struction will have 0 in its address field. Then, when endcode () starts processing 
the symbol table, the code array will contain 

1000 0 in address of pc instruction 
F700 
0001 
F300 
0000 0 in address of p instruction 
FFFD 
100A 
FFFB 
FFFF 

x will go here. This slot has index 9. 
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At this point, the zero value for x has not yet been entered into the code array. Thus, 
the next available slot in the code array corresponds to x. This slot has index 9. Thus, 
the address of x is 9. When endcode () processes the symbol table entry for x, it 
has to insert 9 (the address of x) into all the instructions in the code array that refer-
ence x. Using the symbol table entry for x, endcode () can determine that the in-
structions at indices 0 and 4 reference x. Thus, encode () then inserts (by adding) 9 
into the code array at indices 0 and 4. It then enters 0 into the next slot of the code ar-
ray (this is the slot for x). Finally, endcode () outputs in binary the ASCII code for 
the capital letter "T" (54 in hex) followed by the contents of the code array. 

18. Could the code that produces the token trace in the SI compiler be placed in the pars-
er rather than in the token manager? Could the code that outputs the source code as 
comments be placed in the parser rather than in the token manager? 

19. Copy S I . j ava to S1219. java . Change every occurrence of "SI" in 
SI 219. j ava to "SI 219". Then rewrite SI 219. j ava so that so that it uses the pc 
instruction in place of the pwc instruction wherever possible. Using your modified 
compiler, compile the source code in S I . s. How does the modified compiler com-
pare with the original S1 compiler with respect the size and execution time of the 
generated target code? Next, further modify your compiler so that it uses the p in-
struction in place of the pwc instruction. A p instruction that replaces a pwc instruc-
tion requires a dw for the constant. For example, the following pwc instruction, 

pwc -1 

can be replaced by 

Ρ @_1 

where @_1 is defined with 

@_1: dw -1 

How does this modification affect the size or execution time of the S I . s program? 
20. The genEx method in SI returns a RuntimeException to its caller (which the 

caller throws). Would it be better if genEx threw the exception rather than return it? 
21. The error messages on line 461 and 487 in S1 include the right parenthesis even when 

a right parenthesis is not an expected token for the given input. For example, when SI 
compiles the following program 

x = 2 

it displays the error message 

Expect ing op, " ) " , or " ; " 

even though the right parenthesis is not expected after 2 (because there is no preced-
ing left parenthesis). Modify S1 so that it does not include the right parenthesis in an 
error message if it is not among the expected tokens. 

22. Could the kind value of single-character tokens be the character itself? What 
changes would be required to SI? How does this approach compare with the ap-
proach used by S1. 

23 Is it possible for line 379 in SI to be executed? If so, give a source program that will 
cause it to be executed. 

24. Would the following replacement for the s t a t e m e n t L i s t () method in SI work 
correctly? In what way, if any, would SI behave differently? 
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private void statementList() 
{ 

switch(currentToken.kind) 
{ 

case ID: 
case PRINTLN: 
statement (); 
statementList(); 
break; 

default: 
break; 

25. Modify SI so that on a parsing error, a Pa r s ingExcep t ion rather than a Run-
t imeExcept ion is thrown, where Pa r s ingExcep t ion is a class of your own 
creation. What is the advantage of doing this? 

26. Modify SI so that it appends the ". s" extension to the input file name only if it does 
not have an extension. 
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13.1 INTRODUCTION 

We can use a program—a token manager generator (often called a lexical analyzer gener-
ator)—to write a token manager for us. We simply input regular expressions that define the 
tokens we want to identify. The token manager generator will then output the correspond-
ing token manager in Java code or in some other programming language (see Figure 13.1). 

We can also use a program—a parser generator—to write a parser for us. We input a 
grammar and the parser generator outputs the corresponding parser in Java code or in 
some other programming language (see Figure 13.2). 

There are two distinct types of parser generators: those that generate top-down parsers 
and those that generate bottom-up parsers. In this chapter, we will examine an example of 
the former (JavaCC); in Chapter 23, we will examine an example of the latter (yace). 

There is more than one way a parser generator can accomplish its task. In one ap-
proach, the parser generates tables based on the grammar it is provided. These tables are 
then combined with a code part to form a complete parser (see Figure 13.3). The code part 
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is fixed. That is, every parser generated uses exactly the same code part, yace, a parser 
generator that generates bottom-up parsers, uses this approach. 

Another approach a parser generator can take—one that works well for parser genera-
tors that generate top-down parsers—is to do precisely what we do when we write a top-
down recursive-descent parser by hand: namely, write a method for each nonterminal 
based on the productions in the grammar and their selection sets. JavaCC uses this ap-
proach. 

If we give a parser generator a grammar, the parser generator creates a parser. If, how-
ever, we give it a translation grammar, a parser generator creates a parser/translator— 
code that not only parses but also translates. Thus, given the appropriate input, a parser 
generator can output not only the parser but also the code generator components of a com-
piler. A parser generator, together with a token manager generator, can produce all three 
essential components of a compiler: the token manager, the parser, and the code genera-
tor. 

JavaCC is a program that combines a token manager generator with a parser generator. 
It inputs a file that contains regular expressions (that specify how the token manager 
should work) and a translation grammar (that specifies how the parser/translator should 
work). It outputs a file that contains Java code for the corresponding compiler (see Figure 
13.4). That is, JavaCC writes the entire compiler for us! 

JavaCC performs a translation. It translates its input—regular expressions and a trans-
lation grammar—to a compiler. Thus, we can view JavaCC, itself, as a compiler, whose 
"source program" consists of regular expressions and a translation grammar, and whose 
"target program" is Java code for the corresponding compiler. For this reason, we call 
JavaCC a compiler-compiler—that is, a compiler of a compiler. The two C's in "JavaCC" 
stand for "compiler-compiler." 

JavaCC provides us with two important advantages. First, it substantially reduces the 
time required to produce a compiler. Second, it allows us to produce more reliable com-
pilers. The majority of bugs in hand-written compilers are introduced during the tedious 
process of computing selection sets and grinding out the code from the translation gram-
mar. Because JavaCC will do these tasks for us and will do them correctly, it produces 
compilers with fewer bugs. If we give it the correct regular expressions and translation 
grammar, it will give us a bug-free compiler. 
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In this chapter, we will learn how to use JavaCC. There is really not much to learn. The 
form of translation grammar that JavaCC requires is precisely the form we have been using. 

Once we learn how to use JavaCC, we will then use it to produce Sl j , the JavaCC 
equivalent to our handwritten compiler SI from Chapter 12 ("Sl j" stands for "SI JavaCC 
version"). By doing so, we will get a good sense of how writing a compiler by hand com-
pares with writing one with JavaCC 

13.2 JavaCC EXTENDED REGULAR EXPRESSIONS 

In the extended regular expressions used by JavaCC, symbols of the underlying alphabet 
or strings of these symbols are enclosed in double quotes. For example, the expression 
representing " b " or " c " is 

" b " | " c " 

The quotes enclosing alphabetical symbols allow us to distinguish them from symbols not 
in the underlying alphabet, such as the operators and parentheses. For example, in the pre-
ceding expression, the vertical bar is an operator. We know this because it is not enclosed 
in quotes. Thus, this expression represents " b " or " c " . In contrast, the expression 

" b l c " 

represents the single string "b I c" . Here, the vertical bar is not the union operator be-
cause it is enclosed in quotes. 

In JavaCC extended regular expressions, we can use the * (zero or more), the + (one or 
more), and the? (zero or one) operators (see Section 1.14 for a discussion of these opera-
tors). JavaCC requires that the item to which these operators apply be enclosed in paren-
theses. For example, to indicate zero or more b ' s , we write 

( " b " ) * 

not 

" b " * 

Using square brackets, we can specify a set of individual characters. For example, to 
specify the set containing, " b " , " c " , and "d" , we can use 

[ " b " , " c " , " d " ] 

Note that we must separate successive items within square brackets with commas. We, of 
course, can also specify the same set with 

" b " | " c " | " d " 

The advantage of the square-bracket approach, however, is that it allows us to specify 
ranges of symbols with hyphens. For example, to specify all the upper- and lower-case 
letters in the English alphabet, we can specify the ranges "A" through "Z" and " a " 
through " z " within square brackets: 

[ " A " - " Z " , " a " - " z " ] 
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This expression is very convenient shorthand for the longer expression 

["A", "B", . . . , "Z", " a " , " b " , . . . , "z"] 

that lists all 52 letters. We use square brackets to specify sets of individual characters 
only. We cannot specify any elements that are character sequences. For example, in 

[ " b " , "cd" , " \n"] -< "cd" is illegal within square brackets 

"b" and "\ n" are both legal because they are both single characters ("\ n" represents the 
newline character, which is a single character). However, "cd" is not legal because it is a 
character sequence. 

The complement operator, ~, can be applied only to a set defined by square brackets. 
For example, 

~[ "b"] 

represents every single character except for "b" . Thus, the following expression is not le-
gal: 

~"b" -« not legal 

Unlike the *, +, and ? operators, parentheses should not be used with the ~ operator. For 
example, the following expressions are not legal: 

~ ([ "b"] ) -* not legal 
~ (" b ") -* not legal 

As you would expect, [ ] represents the empty set. Thus, ~[ ] is the complement of the 
empty set, and represents the complete alphabet—that is, the entire set of characters avail-
able. 

Exercise 13.1 

Write a JavaCC extended regular expression that represents the universe of strings. 

Answer: 

( - [ ] ) * 

By starring the alphabet ~[ ] , we get the universe. Notice we have to use a pair of paren-
theses for the "* " operator but not for the "~" operator. 

■ 

Any spaces not inside quotes in a JavaCC extended regular expression are ignored. 
Thus, 

" b " I " c " 

and 

b 
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are equivalent. However, 

" b " | " c " 

and 

"b " | " c " 

are not because the space following the b in the latter expression is within quotes. 
Let us define the unsigned integer token category with an extended regular expression. 

An unsigned integer consists of one or more digits. We can define this token category with 

([ " 0 " - " 9 " ] ) + 

Suppose, however, we wanted to specify numbers that include both unsigned integers and 
numbers with a decimal point. For example, we want to include all these numbers: 

32 
3 . 2 0 
4 5 . 
. 1 1 

An expression that appears to define these numbers is 

([ "0"-"9"] )* " . " ([ "0"-"9"] )* 

Preceding and following the decimal point in the middle, we can have zero or more digits. 
This expression specifies all the numbers we listed above, except 32 (every number de-
fined by the regular expression above necessarily has a decimal point—thus, it cannot de-
fine 32 without a decimal point). Moreover, it also specifies a nonnumber: a decimal 
point without any preceding or following digits. To get just the decimal point, we take 
zero occurrences (as allowed by the star operators) of the parenthesized expressions be-
fore and after the decimal point. To get a correct expression for our numbers—one that 
does not include nonnumbers—we need to consider four possibilities for our numbers: 

1. Digits but no decimal point (like 32) 
2. Digits both before and after the decimal point (like 3.20) 
3. Digits only before the decimal point (like 45.) 
4. Digits only after the decimal point like (.11). 

We can construct a correct expression by simply defining each of these four possibilities 
separately and combining them with the vertical bar. We get 

([ "0"-"9"] )+ I 
( [ " 0 " - " 9 " ] ) + " . " ( [ " 0 " - " 9 " ] ) + | 
([ "0"-"9"] ) + " . " | 

([ "0"-"9"] ) + 

If we make the left side of the second alternative optional, we do not need the fourth alter-
native. We can make it optional either by using "* " (which allows zero occurrences) in 
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place of " + " or by applying the question mark operator to it. Using the former approach, 
we get 

([ "0"-"9"] )+ I 
([ "0"-"9"] )* " . " ( [ " 0 " - " 9 " ] ) + I 
([ "0"-"9"] ) + 

Exercise 13.2 

Suppose an identifier consists of an initial letter followed by zero or more letters and/or 
digits. Give the corresponding JavaCC extended regular expression. 

Answer: 

[ "A"-"Z", "a" -"z" ] ([ "A"-"Z", " a " - " z " , "0"-"9"] )* 
■ 

The double quote and backslash characters are special characters in a string. Thus, if 
we want to specify an ordinary double quote or backslash, we must backslash them. For 
example, to specify the string consisting of "A", backslash, double quote, and "B", we 
have to write 

" A \ \ \ " B " 

The first two backslashes represent a single ordinary backslash; the third backslash and 
the following double quote represent an ordinary double quote (which, therefore, does not 
terminate the string). A few ordinary characters, if backslashed, have special meanings. 
For example, "\ n", "\ r", and "\ t " represent the newline, return, and tab characters, re-
spectively. 

Exercise 13.3 

1. What will "A\nB" match? 

2. What will "AWnB" match? 

Answers: 

1. the sequence "A", newline, "B" 
2. the sequence "A", backslash, "n", "B" 

■ 
JavaCC allows us to associate names with regular expressions. To do this, we enclose 

the name and regular expression in angle brackets, separating the two with a colon. For 
example, to associate the name UNSIGNED with the regular expression for unsigned inte-
gers, we write 

<UNSIGNED: ([ "0"-"9"] )+> 

By convention, we use all capital letters for the names of regular expressions. Once we 
give a regular expression a name, we can refer to the token category it specifies by that 
name. For example, consider the definition of f a c t o r () in the translation grammar for 
SI given in Chapter 12: 
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void factor() : { Token t;} 

{ 
t=<UNSIGNED> 
{ eg.emitInstruction("pwc", t.image);} 

I 
" + " 
t = <UNSIGNED> 
{ eg.emitInstruction("pwc", t.image);) 

I 
I I _ I I 

t = <UNSIGNED> 
{ c g . e m i t l n s t r u c t i o n ( " p w c " , " - " + t . i m a g e ) ; } 

I 
t=<ID> 
{ symTab.enter(t.image);} 
{ cg.emitlnstruction("p", t.image);} 

expr() 

} 

If we provide this definition of f a c t o r () to JavaCC along with the following named 
regular expressions 

<UNSIGNED: ([ "0"-"9"] )+> 

and 

<ID: [ "A"-"Z", "a" - "z" ] ([ "A"-"Z", " a " - " z " , "0"-"9"] )*> 

then JavaCC will interpret <UNSIGNED> and <ID> in the definition of f a c t o r () ac-
cordingly. That is, it will view them as tokens defined by their corresponding regular ex-
pressions. 

If we give a name to a regular expression, we can use that name (with angle brackets) in 
the definitions of other regular expressions. For example, suppose we have the definition 

<DIGIT: [ "0"-"9"] > 

Then we can use <DIGIT> in other definitions. For example, we can define an expression 
for unsigned integers with 

<UNSIGNED: (<DIGIT>)+> 

13.3 JavaCC INPUT FILE 

By convention, we use the extension " . j j " for a JavaCC input file. For example, 
SI j . j j in the Jl Software Package contains the JavaCC input file that defines the Slj 
compiler. Figure 13.5 shows the structure of a typical " . j j " file. Java-style comments 
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are allowed in a JavaCC input file, either single-line comments that start with " / / " or 
multiple-line comments that are bracketed with " /* " and "* / ". 

The o p t i o n s block is used to set options for JavaCC. For example, the following 
statement in the o p t i o n s block 

STATIC = false; 

sets the STATIC option to false. This setting causes JavaCC to generate nonstatic rather 
than static methods from the translation grammar it is provided. All the JavaCC options 
have default values. The default value of the STATIC option is true. Thus, if we want 
STATIC to be false, we have to set it to false. To see a list of all the JavaCC options and 
their default values, enter j avacc on the command line without any arguments. 

The PARSER_BEGIN/PARSER_END block contains the Java code we want to pro-
vide to JavaCC. This block must contain at the least the parser class. The parser class is 
required because it is this class into which JavaCC places the Java code it produces 
when it translates the translation grammar in the ". j j " file. Because the PARSERBE-
G I N / P A R S E R E N D block may optionally contain additional classes (such as the symbol 
table or code generator classes), you must tell JavaCC which class in this block is the 
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parser class. You do this by specifying the parser class name within parentheses in the 
PARSER_BEGIN and PARSER_END statements. For example, if the parser class is 
named Sample, then you should use 

PARSER_BEGIN(Sample) 

PARSER_END(Sample) 

The parser class within the PARSER_BEGIN/PARSER_END block does not have to con-
tain any Java code. It can be an empty shell. For example, we can have 

PARSER_BEGIN(Sample) 
public class Sample 
{ 
} 
PARSER_END(Sample) 

In this case, the Sample class that JavaCC outputs will contain only the Java code pro-
duced by JavaCC from the translation grammar it is provided. Alternatively, we can in-
clude some methods (such as main ()) in the parser class. For example, we can have 

PARSER_BEGIN(Sample) 
c l a s s Sample 
{ 

public static void main(String[ ] args) 
{ 

} 
} 
PARSER_END(Sample) 

In this case, the Sample class that JavaCC outputs will contain main () as well as the 
methods corresponding to the translation grammar. If we also include the symbol table 
and code generator classes in the PARSER_BEGIN/PARSER_END block, then JavaCC 
will output a complete compiler. This is what we do in SI j . j j . Figure 13.6 shows the 
structure of the PARSER_BEGIN/PARSER_END block for SI j . j j . 

The TOKENMGRDECLS block in a " . j j " file contains declarations of variables and 
methods for use by the token manager. In Section 13.3, we will see an example that 
makes use of the TOKEN_MGR_DECL block. 

A SKI P block in a " . j j " file contains regular expressions for those tokens the token 
manager should not pass to the parser. For our Slj compiler, we want the token manager 
to skip whitespace (space, newline, carriage return, and tab). So the SKIP block should 
contain a regular expression for each whitespace character (see Figure 13.7). 

The TOKEN block contains regular expressions for the tokens the token manager 
should pass to the parser. It should also provide names for the tokens that we use in the 
translation grammar. For the Slj compiler, we can use the TOKEN block in Figure 13.8. 

Because we have associated the names PRINTLN, ID, and UNSIGNED with the regular 
expressions in this TOKEN block, we can use these names (enclosed in angle brackets) in 
the translation grammar to represent the corresponding tokens. 

The order we list regular expressions in a TOKEN block can be significant. If two regu-
lar expressions match the same image from the input stream, then the JavaCC-generated 
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token manager will use the first one listed. For example, suppose " p r i n t l n " appears in 
the input stream that the token manager is processing. Both the <PRINTLN> and <ID> 
regular expressions in the TOKEN block in Figure 13.8 match this image. Because, the 
PRINTLN expression is listed before the ID expression, the token manager treats a 
" p r i n t l n " in the input stream as a <PRINTLN> token. If, however, the <ID> expres-
sion preceded the <PRINTLN> expression in the TOKEN block, then " p r i n t l n " would 
be treated as an < ID> token. Then the parse of a p r i n t l n statement would fail because 
it would get from the token manager an < ID> token instead of the expected <PRINTLN> 
token. Because of this leading bogus < I D> token, the parser would think it had an assign-
ment statement and would proceed to parse it accordingly. The parser would then detect 
an error on the next token, which should be "=" for an assignment statement but would 
be " (" for the actual p r i n t l n statement it is parsing. 

Because the <PRINTLN> token corresponds to the single string " p r i n t l n " , we may 
use the string itself instead of <PRINTLN> in a translation grammar (see Figure 13.9). 
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If we do this, then we do not have to give " p r i n t l n " a name in the TOKEN block. We 
still must list it, however, in the TOKEN block. Moreover, we must list it before the < ID> 
token for the reason given above. We call unnamed tokens, like " p r i n t l n " in Figure 
13.10, anonymous tokens. 

What if we we list neither " p r i n t l n " nor<PRINTLN: " p r i n t l n " > in the TOKEN 
block but we use " p r i n t l n " in the translation grammar? Then JavaCC will, in effect, 
place the " p r i n t l n " token at the end of the TOKEN block. In other words, JavaCC 
builds a token manager as if the TOKEN block included " p r i n t l n " after the listed to-
kens, as in Figure 13.11. 

But then the <ID> regular expression, not " p r i n t l n " , would match a " p r i n t l n " 
in the input stream, resulting in a parsing error on a valid p r i n t l n statement. Note that 
we do not have to list anonymous single character tokens such as "=", " (", and ") ". All 
these tokens do not match any of the expressions in the TOKEN block in Figure 13.11. So 
when JavaCC places them at the end of the TOKEN block, incorrect matches cannot occur. 
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We must delimit each alternative listed in a TOKEN and SKIP block with angle 
brackets if it is not a quoted string. For example, the first alternative in the following 
SKIP block is illegal because it is neither a quoted string nor a string enclosed in angle 
brackets: 

SKIP: 
{ 

("b") + -< Illegal (must surround with angle brackets) 
I 

" h e l l o " -< okay with or without angle brackets 
} 

The correct SKIP block is 

SKIP: 
( 

< ("b") +> -< angle brackets required 
I 

" h e l l o " -< okay with or without angle brackets 

Because the second alternative, " h e l l o " , is a quoted string, we do not need angle brack-
ets. However, we can still use them if we want. That is, we could have used 

<"he l lo"> 

for the second alternative above. 
The token manager that JavaCC generates follows two rules when it matches regular 

expressions in the SKIP and TOKEN blocks with the characters in the input stream: 

1. Always use the longest match possible. For example, suppose a TOKEN block is 

TOKEN: 
{ 
< T 1 : ( "b" )+> 
} 

and the input to the token manager is "bbbccc". Then <T1> matches three sub-
strings of the input: the first "b" , the first two b's. and all three b's. The token 
manager in this case returns the longest matched token, which is "bbb". 
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2. If more than one expression provides the longest match, then use the one listed the 
first. We have already seen this rule in action with " p r i n t l n " and the expression 
for ID. Both match " p r i n t l n " . So the order in which we list them in the TOKEN 
block determines which one is used when " p r i n t l n " appears in the input stream. 

Exercise 13.4 

If the input to the token manager is "ABCDEF" and the TOKEN block is 

TOKEN: 
{ 

<T1: "ABC"> 
I 

<T2: "ABCDEF"> 
} 

Which token is returned? 

Answer: 

T2 because it matches the longer substring. 

■ 
With the TOKEN block in Figure 13.10, the JavaCC-generated token manager will 

match those tokens listed ( " p r i n t l n " , <UNSIGNED>, and <ID>) plus all those tokens 
JavaCC automatically includes in TOKEN block. The latter are all the quoted strings in the 
translation grammar that are not already listed in the TOKEN block. For Slj, these tokens 
are " = ", " ; " , " ( " , " ) " , " + ", and "* ". Now suppose the JavaCC-generated token man-
ager scans the following input: 

x = Λ 3 ; 

The token manager will have no problem with the first two tokens, "x" and "=". Howev-
er, when it reaches "Λ", it will throw an exception because no expression in the TOKEN 
block can match it. Unlike the parser, the token manager does not know what is expected 
in the input stream at the point the invalid character appears. As a result, the error mes-
sage associated with the exception thrown by the token manager will lack some important 
information. A better approach is for the token manager to return the bad token to the 
parser. The parser would then detect the error and throw an exception with a more infor-
mative error message. We would not have to modify the parser in any way: It already in-
cludes a c a t c h block that catches parse exceptions and displays their associated error 
messages. 

To force the JavaCC-created token manager to return bad tokens to the parser rather 
than throwing exceptions, we simply include the following expression at the bottom of 
the TOKEN block: 

<ERROR: ~[ ] > 

The regular expression ~[ ] is the complement of the empty set. Thus, it represents any 
single character. It will match any single character that is not matched by the expressions 
above it in the TOKEN block. Unfortunately, if we use single-character tokens such as " = " 
in the translation grammar, then JavaCC includes them in the TOKEN block after the ER-
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ROR expression. Then when a single character token, such as "=", appears in the input 
stream, the ERROR expression will be first expression in the TOKEN block to match it. 
Thus, the token manager will return the ERROR token to the parser, incorrectly causing an 
error. If we want to use the ERROR token, we must explicitly list all the possible tokens in 
the TOKEN block before the ERROR token. Then the token manager will return the ERROR 
token only on an invalid character. 

Although the TOKEN block in Figs. 13.8 will work for Slj, the best TOKEN block to use 
is the TOKEN block in Figure 13.12, in which we list all possible tokens, with the ERROR 
token at the end. 

Although the only token names we use in the translation grammar for Slj are <UN-
SIGNED> and <ID>, we have given names to all the token expressions in Figure 13.11. 
That way, if we ever need the name of a token expression, one is available. 

Here are some good rules to follow when creating a TOKEN block: 

Always list a regular expression for every possible token in the TOKEN 
block. Give every expression a name. List the ERROR expression last. 

13.4 SPECIFYING ACTIONS FOR REGULAR EXPRESSIONS 

Actions can be associated with the regular expressions we use in a " . j j " file to define 
the operation of the token manager. If a regular expression has an action associated with 
it, that action is executed whenever that regular expression is used in a match. We specify 
actions in the same way we specify them in a translation grammar: with Java code en-
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closed in braces. An action should follow the regular expression to which it applies. Let 
us look at an example. Suppose we define an unsigned integer with 

TOKEN: 
{ 

<UNSIGNED: ([ "0"-"9"] )+> 
( System.out.println("UNSIGNED");} 

I 

} 

Then every time the token manager scans an unsigned integer in the input stream, it 
would display UNSIGNED just before it returns the unsigned integer token to the parser. 

When the token manager has found a match with a regular expression and is about to 
return a token to the parser, the reference to that token is available in the variable 
matchedToken. The actions in TOKEN and SKIP blocks can make use of this variable. 
For example, if we define an unsigned integer with 

TOKEN: 
{ 

I 
<UNSIGNED: ([ "0"-"9"] )+> 
{ System.out.println("image is " + matchedToken.image);} 

I 

} 

then every time the token manager scans an unsigned integer, it would display the image 
field of its token. Thus, if the input were 

123 456 

then the token manager would display 

image is 123 
image is 456 

Suppose we wanted the token manager to display the image for every token returned to 
the parser, not just unsigned integer tokens. We, of course, could add the action to do this 
to every regular expression in the TOKEN block. But there is an easier way: We simply 
place the action in a method named CommonTokenAction, and place this method in the 
TOKEN_MGR_DECLS block. We also set the COMMON_TOKEN_ACTlON option to true in 
the o p t i o n s block. Then the token manager will call the CommonTokenAction 
method, passing it the current token, each time it is about to return the token to the parser. 
Figure 13.13 shows the structure of a " . j j " file in which we use this technique with the 
TOKEN block from Slj. 
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Given the input 

x = 17; 

the token manager corresponding to Figure 13.13 would display 

image is x 

image is = 
image is 17 
image is ; 

We can set JavaCC options, like STATIC and COMMON_TOKEN_ACTION, with either 
an assignment statement in the o p t i o n s block (see the o p t i o n s block in Figure 13.13) 
or with a command line argument. For example, suppose we invoke JavaCC with 

j avacc -NOSTATIC -COMMON_TOKEN_ACTION F i g l 3 1 3 . j j 

Then the -NOSTATIC and -COMMON_TOKEN_ACTION arguments would set the corre-
sponding options to false and true, respectively, when JavaCC processes F i g l 3 1 3 . j j . 

Each true/false option has two possible corresponding arguments: one with a "NO" 
prefix, and one without a "NO" prefix. The NO variation sets the option to false; the varia-
tion without NO sets the option to true. For example, the argument -STATIC sets the 
STATIC option to true, but -NOSTATIC sets it to false. The default value for the STATIC 
option is true. Thus, if we want it to be false, we must set it to false in the o p t i o n s block 
or on the command line with the -NOSTATIC option. Similarly, the default value for the 
COMMONTOKENACTION option is false. Thus, if we want it to be true, we must set it to 
true in either the o p t i o n s block or on the command line with the -COMMON_TOKEN_ 
ACTION argument. If we use both the o p t i o n s block and a command line argument for 
an option, the command line argument dominates. 

The CommonTokenAction method in Figure 13.13 provides a useful debugging ca-
pability. It displays a token trace. Specifically, it displays the image of every token re-
turned to the parser. With a token trace, we can easily check if our token manager is 
working correctly. Once we confirm that the token manager is working correctly, we can 
create a new token manager that does not produce the token trace: We simply run JavaCC 
again, supplying it with a " . j j " file in which the -COMMON_TOKEN_ACTION option in 
the o p t i o n s block is set to false or omitted (in which case it defaults to false). Alterna-
tively, we can supply JavaCC the original " . j j " file but specify -NOCOMMONTO-
KEN ACTION on the command line. 
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Rather than use the CommonTokenAction method to display token information, we 
can have JavaCC provide token information automatically. We simply set the 
DEBUGTOKENMANAGER option to true. Then the token manager that JavaCC generates 
will display voluminous information on the tokenizing process and on each token it pro-
vides the parser. Similarly, you can get information useful for debugging the parser by 
setting the DEBUGPARSER option to true. 

13.5 JavaCC INPUT FILE FOR Slj 

The listing of the JavaCC input file SI j . j j for the Slj compiler appears in Figure 13.14. 
The file S1 j . j j is in the J1 Software Package. The symbol table and code generator 
classes in SI j . j j are identical to those classes in the hand-written SI compiler. 

The translation grammar in S1 j . j j (lines 200 to 299) is identical to the translation 
grammar for SI that we provided in Chapter 12. It assumes that tokens are provided to the 
parser in the form of Token objects, where Token is a class generated by JavaCC. The 
JavaCC-generated Token class is similar to the Token class we used in our handwritten 
SI compiler. It has kind, beginLine , endLine, beginColumn, endColumn, im-
age, and next fields, just like our Token class in SI. It also has a few additional fields 
that we will discuss later. The compiler JavaCC produces for SI j . j j behaves exactly 
like our handwritten SI compiler with one exception: The source code does not appear as 
comments in the output file. In SI, these comments are generated by our handwritten to-
ken manager (see line 262 in Figure 12.4). However, in our Slj compiler, our token man-
ager is generated for us by JavaCC, and this generated token manager does not output 
source lines as comments. If we want our JavaCC-generated token manager to output the 
source code as comments, we have to provide JavaCC with the code that performs that 
function (see problem 34). Alternatively, we can have the parser do it (see Section 13.12). 

The code generator and the symbol table classes in the PARSER_BEGIN/ PARSER_END 
block are essentially identical to those we used in SI. The only difference is that S l j ap-
pears in the class names in place of SI. However, the main () method in the PARSERBE-
GIN/PARSEREND block is slightly different from the main () method in SI. This differ-
ence is because the two versions use different token managers and parsers. In SI, we use 
our handwritten versions; in S1 j . j j , we use the JavaCC-produced versions. In addition, 
ma i n () is in its own class in S1 but within the parser class in S1 j . j j . Another difference 
is the type of exception thrown. Notice that line 59 of the S l j . j j file catches a 
ParseExcept ion rather than a RuntimeException. In SI, a RuntimeException is 
thrown on a parse error. However, in Slj, a ParseExcept ion is thrown on a parse error. 

Because the TOKEN_MANAGER_USES_PARSER option is set to true on line 10 in 
SI j . j j , the reference to the parser is passed to the token manager, which stores it in a 
variable named p a r s e r . Via this variable, the token manager can access the public meth-
ods and variables in the parser. For example, on line 160, the CommonTokenAction 
method in the token manager invokes the makeComment method in the parser via the 
p a r s e r reference, passing it the reference to the current token. makeComment then 
writes the fields of the token it is passed in the form of a comment to the output file, the 
effect of which is to create a token trace in the output file. This mechanism is in effect, 
however, only if COMMONTOKENACTION is set to true (see line 7). In SI, the token 
manager creates the token trace. But in Slj, the parser creates the token trace. Why does-
n't the token manager in Slj create the token trace? It does not have direct access to the 
output file. Specifically, it does not have access to o u t F i l e , the reference to the output 
file. 
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To convert S l j . j j to a Java program, enter 

j avacc S l j . j j 

JavaCC will then create a Java program from S l j . j j and output it to the file 
S l j . java . 

To compile the Java program produced by JavaCC, enter 

j avac S l j . j a v a 

To then use our new compiler to compile S I . s, enter 

java S l j SI 

This command invokes the Slj compiler, which then creates an assembly language pro-
gram from the source program in S I . s and places it in a file named S I . a. 
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To assemble the assembly language program S1 j .a, enter 

a SI .a 

which creates the file S I . e containing the executable program. To then execute the exe-
cutable program in S 1 . e and verify its correctness, enter 

e SI / c 

13.6 FILES PRODUCED BY JavaCC 

When JavaCC processes the input file SI j . j j , it outputs the following files: 

SI j . j a v a 
ParseException.java 
Token.java 
SIjConstants.java 
SIjTokenManager.java 
TokenMgrError.java 
SimpleCharStream.java 

SI j . j ava contains all the Java code that we provide in the PARSER_BEGIN/PARS-
EREND block. In addition, it contains the Java code produced by JavaCC corresponding 
to the translation grammar. This code is inserted into the S l j parser class within the 
PARSER_BEGIN/PARSER_END block. 

The S l j . j a v a also contains the getToken () method. This method returns a token 
without advancing the current input. getToken ( i ) returns the /th token relative to the 
current token. For example, getToken (1) returns the current token, getToken (2) re-
turns the next token, and so on. The argument we pass to getToken () should not be a 
negative integer. However, we can pass it 0. getToken (0) returns the token preceding 
the current token. 

The token returned by getToken () depends on the context in which the call of g e t -
Token () appears. For example, in the sequence 

vo id p r i n t l n S t a t e m e n t () : {Token t ;} 
{ 

" p r i n t l n " 

If V It 

{ t = g e t T o k e n ( l ) ; } 
I I . I I 

t 

} 

getToken (1) returns the ") " token. However, in the sequence 

( s t a t e m e n t ( ) ) * 
{ t = g e t T o k e n ( l ) ; } 

I I . I I 

/ 

getToken (1) returns the "; " token. In the latter case, the parser has to reach the "; " 
before it can determine that the statement list has ended. Thus, when getToken (1) is 
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executed the current token is already "; ". However, in the former case, getToken (1) 
is called just before the parser advances past the ") "■ So it returns the ") " token. 

To obtain the token at the very beginning of a sequence, you should call ge tTo-
ken (1) before the initial token. For example, in the sequence 

void p r i n t l n S t a t e m e n t ( ) ; {Token t ;} 
{ 

{ t=getToken(1);} 
"pr in t ln" 

} 

getToken (1) returns the " p r i n t l n " token. This behavior makes sense: For the parser 
to select this sequence, the parser has to have already reached the " p r i n t l n " token. 
Thus, the initial call of getToken (1) returns the " p r i n t l n " token. 

The S l j class implements the SI j C o n s t a n t s interface (see Figure 13.15). Thus, all 
the constants in SI j C o n s t a n t s . j ava are available to the parser. 

When the parser generated by JavaCC detects an error, it generates a ParseExcep-
t i o n . This type of exception is defined in the file ParseExcept ion . j ava . 

Token . j a v a is similar to the Token class that we used in SI. It contains the same 
fields as the Token class in SI (kind, beginLine , beginColumn, endLine, end-
Column, image, and next) as well as additional fields that support some advanced 
functions. 

S l j C o n s t a n t s . j ava (see Figure 13.15) corresponds to the S ICons tan t s inter-
face we used in SI. As in SI, the tokenlmage array provides a displayable string for 
every token kind. Note that all the strings in the tokenlmage array include the quotes, 
except for the token categories < EO F>, < UN SIGNE D>, and < I D>. For example, 

S y s t e m . o u t . p r i n t l n ( t o k e n l m a g e [ I D ] ) ; 

would display 

<ID> 

without quotes. However, 

Sys t em.ou t . p r in t l n ( token Image [ASSIGN]) ; 

would display 

l l _ l l 

with the quotes. JavaCC includes the quotes in the latter to make it easier to construct er-
ror messages. For example, to construct and display the message 

Expect ing "=" 

we would not have to insert the quotes enclosing the equal sign. We simply use the entry 
in the tokenlmage array. This entry already has the quotes. 
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As we mentioned earlier, if we associate a name with a regular expression in a TOKEN 
block, then that name, enclosed in angle brackets, represents that type of token in a trans-
lation grammar. Thus, a statement such as 

t=<PLUS> 

in a translation grammar represent the assignment of a <PLUS> token to the Token vari-
able t . If, however, we specify PLUS without the angle brackets in a translation grammar, 
then we get the value defined for the PLUS constant in the constants interface. We see 
from line 26 of Figure 13.15 that we would get the value 12. This value is the index into 
the tokenlmage[ ] array corresponding to a <PLUS> token. It is also the value in the 
kind field for a <PLUS> token. Of course, it would be incorrect to assign PLUS (without 
the angle brackets) to t : 

t=PLUS // ERROR: need angle brackets around PLUS 

This statement attempts to assign the integer constant PLUS (which is 12) to the Token 
variable t . However, we might want to use PLUS (without the angle brackets) in the fol-
lowing way in the translation grammar for some future compiler: 

i f ( t . k i n d == PLUS) 
{ 

} 

Here we are testing the kind field of token t to determine if t is a PLUS token. We nev-
er have to perform this test in S1 j . j j . However, we will see (in the next section) that 
there are circumstances in which we do need to perform such a test. 

In a translation grammar, a token's name enclosed in angle brackets rep-
resents the token's object. A token's name without angle brackets repre-
sents the value in the kind field of the token. It is also the index into the 
tokenlmage array for that token kind. 

JavaCC also generates the file SI jTokenManager. j ava that contains the SI jTo-
kenManager class (the token manager). This class contains the method getNextTo-
ken () which the parser calls each time it needs a token. Like getNextToken () in SI, it 
returns the next token in the form of an object. On an error, the JavaCC-generated g e t -
NextToken () method throws a TokenErrorExcept ion, which is defined in To-
kenMgrError . java . 

JavaCC also generates an input stream defined in SimpleCharStream. java . The 
token manager uses this stream for character input. 
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13.7 USING THE STAR AND PLUS OPERATORS 

Up to now, we have avoided using the star and plus operators in grammars (see Section 
9.8 for a discussion on the use of these operators in grammars). For example, we have 
avoided using 

expr —> term (" + " term)* 

preferring instead the recursive equivalent 

expr —> term termList 
termlist —» " + " term termList 
termList —* λ 

Both approaches are perfectly acceptable. If we use the star approach, it makes sense to 
use loops in the corresponding parser. If, in the other hand, we use the recursive approach, 
it makes sense to use recursion in the corresponding parser. By using the structure in the 
parser that more closely parallels the productions in the grammar, we minimize the possi-
bility of introducing bugs in our code. 

In translation grammars we provide JavaCC, we can use the star and plus operators to 
represent lists, or we can avoid them by using recursive productions. JavaCC will generate 
correct code with either approach. However, the star and plus operators yield slightly more 
efficient code (loops, in general, are more efficient than recursive code). 

Let us look at some of the changes we can make to our translation grammar for SI if 
we use the star and plus operators. Currently, we define expr () andd term () with 

void expr() : { ) 

{ 
term() 
termList() 

} 

// 

void termList (): {} 

{ 
II i II 

term() 
{ eg.emitInstruction("add");} 
termList() 

I 
{} 

} 

We can replace all this with 

void expr () : {} 

{ 

term() 
( 

II _f_ II 

term() 
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{ e g . e m i t I n s t r u c t i o n ( " a d d " ) ; } 
)* 

Wherever we have specified a list in the translation grammar in Figure 13.14, we can, al-
ternatively, specify it using the star or plus operator. If we do so, we may produce a more 
efficient compiler (see Problem 13.6). Incidentally, we can also use the question mark op-
erator in the translation grammars for which we provide JavaCC. 

Recall that S2 is the extension of SI that we implemented in Chapter 12. S2 supports 
both the addition and subtraction operators. If we try to use the star and plus operators to 
replace some of the recursive productions in the translation grammar for S2, we run into a 
problem. Consider the productions for expr () and t e r m L i s t O in the translation 
grammar for S2: 

void expr () : {) 

{ 
term() 

termList() 

// 

void termListO: {} 

( 

term() 
{ codeGen.emitlnstruction("add");} 

termList() 

term() 

{ codeGen.emitlnstruction("sub");} 

termList() 

I 

{} 

} 

If we attempt to simplify expr () by using the star operator, we get 

expr () : { } 

{ 
term () 

( 

("+"|"-") 

term() 

{ codeGen.emitInstruction(???); } 
)' 

} 
"add" or "sub" here? 

Which assembly instruction—add or sub—should the e m i t l n s t r u c t i o n method out-
put? It, of course, depends on the operator in between the two terms just parsed. If the op-
erator is " + ", then we should output add; if it is " - " , then we should output sub. 
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To solve this problem, we have to save the operator when we parse it. Then we can test 
it later to determine which instruction—add or sub—to emit. Using this approach, we get 

vo id e x p r e s s i o n () : {Token t ;} 
{ 

term() 
( 

( t = " + " I t = " - " ) / / save o p e r a t o r in t 
term() 
{ 

i f ( t . k i n d = = ? ? ? ? ? ) -< what is the kind ofa"+" token? 
codeGen.emitlnstruction("add" ) ; 

else 

codeGen.emitlnstruction("sub" 

)* 

} 

But now we run into another problem: We have to test t to determine if it is a " + " token. 
But to do that, we need to know the value in the kind field ofa " + " token. But this value 
is given by PLUS—the name we gave the regular expression for the plus operator in the 
Token block (see line 26 Figure 13.15). We can then specify the kind of the " + " token with 
PLUS (without the angle brackets). With this approach, our expr () production becomes 

void expr(): (Token t;} 

{ 

term() 
( 

(t="+"It="-") // save operator in t 
term() 

i 
if (t.kind == PLUS) 

codeGen.emitlnstruction("add" ); 
else 

codeGen.emitlnstruction ("sub"); 

) 

)* 

} 

For the sake of consistency, you can then replace " + " and " - " in the translation grammar 
with <PLUS> and <MINUS>, respectively. In that case, the line 

( t = " + " | t = " - " ) / / save o p e r a t o r in t 

becomes 

(t=<PLUS>|t=<MINUS>) // save operator in t 

This example illustrates the reason why it is important to give names to the token regular 
expressions in the TOKEN block. These given names provide the values in the kind fields 
of the corresponding tokens. 
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13.8 CHOICE POINTS AND LOOKAHEAD 

Let us put the following grammar into the form JavaCC requires: 

G13.1 
1. S -H> b e d 
2. S -» d e f 

We get 

G13.2 
PARSER_BEGIN(G1302) 
c l a s s G1302 
{ 
} 
PARSER_END(G1302) 
v o i d S( ) : { } 
{ 

~* choice point is here 
"b" " c " "d" -< selection set is {"b"} 

I 
"d" " e " "f" ~* selection set is {"d"} 

} 

The S () method specifies two alternatives, each corresponding to an S production. If 
we provide this translation grammar to JavaCC, it will produce the corresponding pars-
er. This parser chooses between the two alternatives that we list in the grammar on the 
basis of the selection set for each production. Because the selection set for the first al-
ternative is {"b"} , the parser uses this alternative if the current token is a "b" . If, how-
ever, the current token is "d", the parser uses the second alternative because its selec-
tion set is {"d"} . 

We call the point in a translation grammar corresponding to the location in the corre-
sponding parser at which a choice is made between alternatives a choice point. The choice 
point in the grammar above is just before the two alternatives. A choice has to be made 
there to determine which alternative to take. 

If a grammar is LL(1), then at every choice point, the choice is completely determined 
by the current token. Thus, the parser never has to guess which alternative is the correct 
one to take. If, however, a grammar is not LL(1), then there will be choices not com-
pletely determined by the current token. For example in the grammar 

G13.3 
PARSER_BEGIN(G1303) 
c l a s s G1303 
{ 

) 
PARSER_END(G1303) 
v o i d S ( ) : { } 
< 

"b" " c " "d" -* selection set is {"b"> 
I 

"b" " e " "f" -« selection set is {"b"} 
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the selection set for both alternatives is {"b"} , so the parser cannot determine the correct 
alternative from the current token alone. If, however, it were to look ahead at the token 
following the current token, it could determine the correct alternative. If it is " c" , then 
the current token/next token sequence is "b" "c" , so the parser should use the first alter-
native. If the next token is "e" , the parser should use the second alternative. 

The parser that JavaCC generates looks at, by default, only the current token at each 
choice point. If there are multiple alternatives possible for the current token, the one listed 
first in the grammar is the one the parser takes. For the grammar above, if the input stream 
is "bed", the parser takes the first alternative, which matches the "b" , " c" , and "d" in 
the input stream. So the parse completes successfully. If, on the other hand, the input 
stream is "bef ", the parser also takes the first alternative (it does not know at the choice 
point that the second token is "e"—it is looking at only the current token "b" at the 
choice point). The first alternative matches the current token "b", but not the " e " that 
follows it. The parser, accordingly, throws a parse exception when it reaches the "e" . Al-
though this grammar is defective, JavaCC nevertheless, converts it to a parser. However, 
it does generate a warning message of this form: 

"Warning: cho ice c o n f l i c t . . . " . 

We can fix the problem with G13.3 by forcing the parser to look ahead when it is at the 
choice point. Specifically, we can force it to look at two tokens: the current token and the 
next. We do this with the LOOKAHEAD (2) directive placed at the choice point as G13.4 
illustrates: 

G13.4 
PARSER_BEGIN(G1304) 
c l a s s G1304 
{ 
} 
PARSER_END(G1304) 
void SO : { } 
{ 

LOOKAHEAD(2) // Put LOOKAHEAD(2) at choice point 

"b" "c" "d" 

I 
III·-. II l i p II II ψ II 

} 

Because of the LOOKAHEAD (2) directive, the parser that JavaCC generates will look at 
two tokens—the current and the next—at the choice point, allowing it to choose the cor-
rect alternative. The argument in the LOOKAHEAD directive determines the number of to-
kens used in the lookahead. For G 13.4, we need only a lookahead of 2. JavaCC, however, 
permits larger lookaheads if you need them. 

Exercise 13.5 

Fix the following grammar using the LOOKAHEAD directive: 

void S () : () 
{ 

"b" " c " "d" 
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I 
"b" " c " " e " 

} 

Answer: 

Insert LOOKAHEAD (3) before the first alternative. By looking at three tokens (the current 
token and the next two), the parser can choose the correct alternative. 

■ 

Now let's consider a variation of G 13.3: 

G13.5 
PARSER_BEGIN(G1305) 
c l a s s G1303 
{ 
} 
PARSER_END(G1305) 
v o i d S O : { } 
{ 

"bed" ~* selection set is {"bed"} 
I 

"bef" -< selection set is {"bef"} 
} 

In this grammar, "bed" and "bef" are both single tokens. Thus, if "bed" is in the input 
stream, the token manager produced by JavaCC returns the single token "bed". It does 
not return three tokens, "b" then " c " then "d", as was the case for G13.3. Similarly, if 
"bef" is in the input stream, the token manager returns the single token "bef". This 
grammar is, in fact, LL(1). The two alternatives have disjoint selection sets. Thus, we do 
not need a LOOKAHEAD directive as we did in G13.3. 

LOOKAHEAD directives can appear only at choice points. For example, in Figure 13.16, we 
cannot place a LOOKAHEAD directive before or immediately after the B () alternative because 
these points are not choice points. However, we can put one just before the C () alternative. 

Choice points occur when we use " | ". They also occur when we use "* ", " + ", and 
"? " because these operators involve choices as well. Figure 13.16 shows the location of 
the choice points for these operators. 
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At the choice point for the star operator, the parser decides if it should proceed with the 
parse using the starred expression or what follows it. For example, the structure of the 
code in a JavaCC-created parser for 

( "b" " c " ) * "d" 

t 
1— choice point (LOOKAHEAD (2) not needed here) 

is 

whi le (current token is "b") 
{ 

consume "b" 
consume " c " 

} 
consume "d" 

The choice point corresponds to the exit test for the whi le loop. The exit test ensures that 
whenever the first consume in the loop body is executed, the current token is "b" . Note 
that the exit test here checks only the current token. If, however, we place LOOKA-
HEAD (2) at the choice point (right after the left parentheses), then the structure of the 
JavaCC-generated code becomes 
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whi le (current token is " b " and the next token is " c ") 
{ 

consume "b" 
consume " c " 

} 
consume "d" 

In this example, the LOOKAHEAD(2) directive is not needed because the current token 
alone is enough to determine if the body of the whi le loop should be executed. However, 
in the following structure, we do need the LOOKAHEAD (2) directive: 

(LOOKAHEAD(2) "b" " c " )* "b" "d" 

1— choice point (LOOKAHEAD (2) needed here) 

Here, the body of the whi le loop corresponding to the starred expression should be exe-
cuted only if "b" is the current token, and it is followed by a "c". This test requires a 
lookahead of 2. The corresponding code is 

whi le (current token is " b " and the next token is " c ") 
{ 

consume "b" 
consume "c" 

} 

consume "b" 
consume "d" 

The code structure for a plus expression is like that for a star expression except that 
it corresponds to a do-whi le loop instead of whi le loop. For example, the structure 
for 

(LOOKAHEAD(2)"b" " c " ) + " b " 

is 

d o 

{ 
consume "b" 
consume " c " 

} whi le (current token is "b" and the next token is "c") 

Note that the choice occurs after the first "b" is consumed. However, the choice point in 
the grammar (i.e., the location at which a LOOKAHEAD statement can be inserted) is be-
fore the first "b". 

The code structure for a question mark expression is an i f statement. For example, the 
code structure of 

( " b " ) ? 
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is 

i f (current token is "b") 
( 

consume "b" 
} 

Exercise 13.6 

Fix the problem with the following production: 

v o i d S ( ) : { } 
{ 

( " b " " c " ) * 
" b " 

} 

Answer: 

v o i d S () : {} 
{ 

( 
LOOKAHEAD(2) 
" b " " c " 

) * 
" b " 

} 

13.9 JavaCC'S CHOICE ALGORITHM 

Consider the following two productions: 

A -^ B 
A -> C 

If B and C are both nullable, then we know from Section 7.6 that the selection set of each 
production contains FOLLOW(A). Because the selection sets of the two productions in-
clude FOLLOW(A), we do not have an LL(1) grammar. It follows that in an LL(1) gram-
mar, for each group of productions with the same left side, there can be at most one pro-
duction with a nullable right side. 

Suppose P is nonterminal in an LL(1) grammar with the following productions: 

P -> Q 
P - ^ R 
P -> T 

then there is at most one production that has a nullable right side. Let us assume it is the 
last one we listed, P —» T. Because it has a nullable right side, its selection set is 
FIRST(T) | FOLLOW(P). Because the other productions do not have nullable right sides, 
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their selections sets are simply the FIRST sets of their right sides. Figure 13.18a shows 
the structure of the corresponding method in a recursive descent parser. However, the 
parser does not have to perform a selection set test for the last production. It can simply 
call T() as the default option when the current token is neither in FIRST(Q) nor 
FIRST (R). With this approach, we get the structure in Figure 13.18b. Selection set tests 
precede the calls of Q () and R () , but not the call of T () . With this approach, the nullable 
alternative has to be last. By not performing a selection set test on the nullable alternative, 
we benefit in the following way: We do not need to compute any FOLLOW sets because 
the selection sets for the nonnullable alternatives are simply their FIRST sets. 

When JavaCC generates parser code, it uses the approach illustrated by 13.18b. The 
code it generates for a production whose right side is nullable does not perform a selection 
set test. It simply applies the production unconditionally if the preceding alternatives do not 
apply. Thus, we must always list the nullable alternative last. If we do not, we will not get 
a correct parser. For example, consider the JavaCC input file in Figure 13.19. Notice that 
the first alternative for the S () productions consists of an action only. It does not generate 
any terminals or nonterminals. Thus, it corresponds to a lambda production. Because this 
alternative is nullable, we should have listed it last. Although the grammar in Figure 13.19 
is LL(1), JavaCC complains that the first alternative "can expand to the empty token se-
quence." This message is an indication that we have not listed the nullable alternative last. 
JavaCC, nevertheless, generates the parser. The code created by JavaCC for S () is 

final public void S() throws ParseException { 
System.out.printIn("hello"); 

} 

Because the first alternative is nullable, the code for it has no selection set test. It is exe-
cuted unconditionally. But then the code for the second alternative is unreachable. Un-
reachable code is useless, so JavaCC does not even generate it. The fix for the grammar in 
Figure 13.11 is simple: reverse the order of the two alternatives. 
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Notice in the JavaCC input file for Slj (see Figure 13.14) that we test for<EOF> at the 
end of the program () method: 

202 void p r o g r a m ( ) : {} 
203 { 
204 statementList() 
205 { cg.endCodeO ;} 
206 <EOF> 
207 } 

Suppose we omitted this test. Let us see what would then happen if the source program is 

x = 5; 7 

The parser should, of course, detect the error in this program (the extraneous "7" at the 
end of the program). We start by calling p rog ramo which, in turn, calls s t a t e -
mentLis t (): 
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209 void s t a t e m e n t L i s t ( ) : {} 
210 { 
211 statement() 
212 statementList () 
213 | 
214 {} 
215 } 

s t a t e m e n t L i s t () calls s t a t e m e n t () (line 211) which parses the assignment state-
ment. It then calls itself recursively (line 212). At this point " 7 " is the current token. 
In this call of s t a t e m e n t L i s t () , we take the second alternative because " 7 " is 
not in the selection set of the first alternative. But the second alternative is A, represent-
ed by the empty action. Because no selection set test is performed for the nullable al-
ternative, the error (the "7") is not detected. Instead, s t a t e m e n t L i s t () simply re-
turns to its caller (also s t a t e m e n t L i s t ) , which, in turn, returns to p r o g r a m o , 
which (assuming we omit line 206) returns to main () . We have a problem here: The 
parser terminates without detecting the error. This problem occurs because the JavaCC 
parser does not perform a selection set test for second alternative in 
s t a t e m e n t L i s t () . To fix this problem, we must force a test for the end of input on 
return to program () . We do this by specifying the <EOF> token on line 206 in p r o -
gram () . 

If JavaCC processes a translation grammar without complaint, the grammar may still 
be defective. For example, consider the grammar in Figure 13.20. The parser that 
JavaCC generates for this grammar can successfully parse "bb" but not "b" , although 
the grammar can generate both strings. When attempting to parse "b", the JavaCC pars-
er uses the first alternative for the Q () productions to match the "b" in the input. But 
then there are no more occurrences of "b" left in the input to match the "b" in the S () 
production. To parse a single "b" , we have to use the second alternative in the Q() 
method. This alternative specifies lambda so it does not consume the "b" in the input, 
making it available to match the "b" in the S () production. This grammar is, in fact, 
not LL(1). The selection sets for the two Q() alternatives are both { "b"} . 
Unfortunately, JavaCC does not detect this because it does not compute the selection set 
for the second alternative in Q () . Thus, JavaCC does not know that the Q () alternatives 
violate the requirements of an LL(1) grammar. In this case, JavaCC generates a defec-
tive parser without giving us any warning. 
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13.10 SYNTACTIC AND SEMANTIC LOOKAHEAD (OPTIONAL) 

In the examples of the LOOKAHEAD directive we have seen so far, we have specified the 
lookahead with a number. For example, in 

void S() : { } 
{ 

LOOKAHEAD(2) 
B() 

I 
CO 

the LOOKAHEAD directive specifies the number 2. This number indicates that the parser 
should examine two tokens (the current token and the next token) to determine which al-
ternative (B () or C ()) to take. There are, however, two other forms in which we can 
specify a lookahead: syntactic and semantic. 

In syntactic lookahead, we specify the syntactic expectation for the first alternative. If the 
input meets this expectation, the parser takes the first alternative. Otherwise, it takes the next 
alternative. For example, consider the LOOKAHEAD directive in Figure 13.21. The LOOKA-
HEAD directive specifies two syntactic components, D () and "b". Accordingly, the parser 
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will look ahead in the input stream (starting at the current token) for a substring that corre-
sponds to D (), followed by "b". If it is successful, it takes the first alternative B (). Otherwise 
it takes the next alternative. Thus, if the input stream is " ddbb ", then the parser takes the B () 
alternative. We could have also used a LOOKAHEAD (3) directive. But this lookahead works 
in this example only because the string corresponding to D () has a fixed length of 2. Thus, a 
lookahead of 3 provides the parser with the token that follows the D () substring in the input 
from which it can determine the correct alternative. If, on the other hand, D () were defined as 

v o i d D( ) : { } 

{ 
( " d " ) + 

} 

then no fixed-size lookahead would work since the D () substring can be arbitrarily long. 
However, the syntactic lookahead that we used in Figure 13.14 would still work. 

In semantic lookahead, the lookahead is a true/false condition enclosed within braces. 
If the condition is true, the parser takes the first alternative. Otherwise, it takes the next al-
ternative. For example, consider the example of semantic lookahead in Figure 13.22. The 
semantic lookahead checks if the current and the next tokens are <UNSIGNED> and 
< I D>, respectively. If they are, the parser takes the first alternative E () . Otherwise, it 
takes the second alternative F () . Recall that getToken returns the specified token with-
out advancing in the input stream. getToken (1) returns the current token; ge tTo-
ken (2) returns the token that follows the current token. 

13.11 USING JavaCC TO CREATE A TOKEN MANAGER ONLY 

We can use JavaCC to generate a token manager only. We simply omit the translation 
grammar. Then JavaCC does not generate any parser code. Moreover, we can use the 
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PARSER_BEGIN/PARSER_END block for Java code that uses the token manager. For ex-
ample, the JavaCC input file in Figure 13.23 creates only a token manager. Its class name 
is F ig l32 3TokenManager. The main () method creates the token manager (line 20). 
It then calls getNextToken () repeatedly to get each token (lines 24 and 29). For each 
token, it displays the token name and image (line 27). 

Because main() in Figure 13.23 displays the image of each token, it is handy for 
checking the correctness of the token manager as specified by the SKIP and TOKEN 
blocks. We simply run it against a test file to see the tokens that getNextToken () re-
turns. For example, if we have a test file t e s t . t x t that contains 

1 2 3 p r i n t l n xy z+ 

and we enter 

javacc Figl323.jj 
javac Figl323.java 
java Figl323 test.txt 

We should see on the screen 

<UNSIGNED> 123 
" p r i n t l n " p r i n t l n 
<ID> xy 
<ID> z 
<ERROR> + 

13.12 USING THE TOKEN CHAIN 

The token objects that the token manager returns to the parser are chained together by 
their next fields. For example, suppose the token manager returns token objects for "b" , 
"c" , and "d" in that order to the parser. Then the token for "b" points to (i.e., has the 
reference of) the token for " c " , which, in turn, points to the token for "d" (see Figure 
13.24). In other words, the next field of each token contains the reference of the next to-
ken. 

Given a reference to a token, we can easily get the reference to the next token. We sim-
ply access the given token's next field. However, we cannot get the reference to the pre-
vious token. For example, given a reference to the " c " token in Figure 3.24, we can get 
the reference to the "d" token but not the "b" token. The token chain is a "one-way 
street": we can go forward but not backward. 

Suppose the parser saves the reference to the "b" token when it receives the "b" to-
ken from the parser. Then at any time later on in the parse, the parser can use the saved 
reference to access not only the "b" token but also all the tokens that follow the "b" to-
ken. It can do this simply by traversing the token chain starting with the token for "b" . 

The S1 j . j j compiler does not comment the assembly code for each statement with 
the corresponding source statement. However, we can, in fact, implement this feature us-
ing the token chain. We simply save the reference to the current token when we are about 
to parse a statement. We then parse the statement (which causes assembly code for the 
statement to be outputted). We then output all the tokens from the saved token up to but 
not including the current token by traversing the token chain. These tokens are the tokens 



374 JavaCC (OPTIONAL) 



13.12 USING THE TOKEN CHAIN 375 

that make up the statement just parsed. Incorporating this technique into S l j . j j and 
then compiling S I . s we get the assembly output in Figure 13.25. The source code for 
each statement appears as a comment following its corresponding assembly code. Figure 
13.26 shows the two changes to S l j . j j that are required: we overload the makeCom-
ment () method by adding two new versions to the parser, and we modify the s t a t e -
ment () method in the translation grammar.. 

Before parsing a statement, we save the reference to the current token in t (line 22). 
After the statement is parsed, we call makeComment (line 30), which traverses the token 
list from the saved token t up to the current token (given by getToken (1)), writing the 
image of each token to the output file. Finally, makeComment terminates the comment 
line with a call to p r i n t l n () (line 10). The outComment variable allows us to inhibit 
the call of makeComment () on line 30. We will want to do this for the statements that 
contain statements, such as the compound statement. For example, to inhibit the call to 
makeComment () for a compound statement, we set outComment to f a l s e for the 
compoundStatement () alternative within the s t a t e m e n t () method: 

I 
printlnStatement() 

I 
compoundstatement() 

{ outComment=false;) 
I 

After a compound statement has been parsed, all the statements within its braces have 
already been parsed and outputted as comments. Thus, if we call makeComment () for a 
compound statement, the source code for the statements within the compound statement 
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will appear a second time as comments. What about the leading and trailing braces in a 
compound statement? What method should output them as comments? The compound-
Sta tement () should do this. As it parses the braces, it simply outputs them as com-
ments by calling the third version ofmakeComment () : 

void compoundStatement() : {Token t ;} 
{ 
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{ makeComment ("{ ") ;) 
s t a t e m e n t L i s t () 
111 II 

{ makeComment <"} ") ;} 
} 

13.13 SUPPRESSING WARNING MESSAGES 

Whenever a choice occurs during the execution of a JavaCC-generated parser, the parser 
will apply the first alternative listed. For example, consider the following definition of the 
Q productions in a JavaCC translation grammar: 

v o i d Q ( ) : {} 
{ 

"b" T() // selection set is { "b"} 
I 
U() // selection set is {"b", "e", "f") 

} 



378 JavaCC (OPTIONAL) 

Suppose the selection sets for the first and second alternatives are {"b"} and {"b", "e", 
" f "} , respectively. Because "b" is in the selection sets of both alternatives, a choice oc-
curs whenever the corresponding Q () method in the generated parser is called and the 
current token is "b". Q () , in this case, will resolve the choice in favor of the first alterna-
tive listed. That is, it will consume "b" and call T () rather than call U (). If resolving a 
choice in favor of the first alternative in Q () is precisely the behavior you want the parser 
to have, then this translation grammar needs no modification. However, in that case you 
would probably want to suppress the warning message that JavaCC generates. To do this, 
simply insert a LOOKAHEAD (1) statement before the first alternative: 

void Q() : {} 

{ 
LOOKAHEAD(1) 

"b" T() // selection set is { "b"} 
I 

U() // selection set is {"b", "e", "f"} 

} 

The only effect of the LOOKAHEAD (1) statement here is to suppress the "choice conflict" 
warning message that JavaCC would otherwise generate. 

PROBLEMS 

1. Implement S2 as described in Chapter 12 using JavaCC. Call your JavaCC-generated 
compiler S2j. You should 
a. Copy S l j . j j to S2j . j j . 
b. Insert your name into S2 j . j j on lines 25 and 43. 
c. Replace the translation grammar in S2 j . j j with S2 . tg . 
d. Add an entery to the SKIP block that defines a single-line comment. Hint: a sin-

gle-line comment consists of two slashes, followed by zero or more occurrences 
of any character except \n and \r. 

e. Add entries to the TOKEN block for the new tokens: " p r i n t " , " / " , "{ ", "} ". 
f. Add actions so that source code is output as comments (see Section 13.12). 
g. Test your compiler by entering 

javacc S2j.jj 
javac S2j.java 
java S2j S2 
a S2.a 
e S2 /c 

Submit to your instructor S2 j . j j , S2 . a, and S2 ,<family name> . log (the log file 
that the e program creates). 

2. Compile 

x = ? 5; 

with the Slj compiler. Then delete the ERROR entry in the TOKEN block in SI j . j j . 
With this modified Slj compiler, compile the above statement. How do the error 
messages of the two versions of Slj compare? 
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3. Move the ERROR entry in the TOKEN block in Slj to the beginning of the TOKEN 
block. Compile S I . s with the modified Slj compiler. What happens? Why? 

4. Is this translation grammar acceptable to JavaCC? 

v o i d S ( ) ; { } 

{ 
{ int x;} // declare local variable as action 

x = B() 

{ System.out.println (x);} 

} 

int B() : { } 

{ 

{ return 5;} 

} 

5. A JavaCC input file consists of several components: the PARSER_BEGIN/PARS-
EREND block, the SKIP block, the TOKEN block, and the translation grammar. Can 
these components be placed in any order? Experiment with JavaCC to determine 
your answer. 

6. Represent all the lists in the translation grammar in SI j . j j using the star or plus op-
erators. Compare the resulting code with that produced by that in the original 
SI j . j j . Is it smaller? Is it faster? 

7. Write a JavaCC extended regular expression that defines all strings with one or more 
occurrences of the substring "be". Test your expression using JavaCC against the 
following input: 

b , c , be , cb, bbbbbbccccccc, cccbbb 

8. Write a JavaCC extended regular expression that defines all strings with exactly one 
occurrence of the substring "be". Test your expression using JavaCC against the fol-
lowing input: 

b , c, be , cb , beebe , bebbbbbbbbbbbbbe 

9. Write a JavaCC extended regular expression that defines a Java multiple-line com-
ment (i.e., a comment bracketed with " /* and * / " that can span lines). Assume nest-
ed comments are not allowed. Test your expression using JavaCC. 

10. Determine if command line arguments for JavaCC are case sensitive. 
11. Write a JavaCC extended regular expression that defines a quoted string that can span 

multiple lines as long each newline is backslashed. Test your expression using 
JavaCC. 

12. Suppose an expression in the SKIP block and an expression in the TOKEN block both 
match the same string. Which expression has precedence? Does the order in which 
the SKIP and TOKEN blocks appear matter? 

13. Implement the compiler in Figure 10.10 using JavaCC. Call your JavaCC version 
FiglOlOj . j j . Test by entering the expression 

+ * - / 1 0 9 8 7 6 

14. In what ways does Slj function differently from SI from Chapter 12? 
15. What are the disadvantages of using JavaCC compared to writing the compiler 

yourself? 
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16. Fix the following grammar with a LOOKAHEAD directive: 
v o i d S () : { } 
{ 

B() " b " " c " 
} 
v o i d B() : { } 
{ 

( " b " " c " ) * 
} 

17. Fix the following grammar with a LOOKAHEAD directive: 

v o i d S( ) : { } 
{ 

( " b " " c " ) + " b " " d " 
} 

18. Can the last alternative for a nonterminal be applied without first performing a selec-
tion set test if the alternative is not nullable? 

19. Show the structure of the code corresponding to 

v o i d S ( ) : { } 
{ 
( " b " | " c " ) ? 

} 

20. Show the structure of the code corresponding to 

v o i d S ( ) : { } 
{ 
( " b " " c " ) + " b " " b " 

} 

Repeat but with LOOKAHEAD (2) inserted at the choice point. 
21. Suppose we delete line 206 in Figure 13.14. What would the Slj compiler do if the 

source program is 

x = 5 ; 
7 = 8 ; 
y = 9; 

22. What will the following regular expression match: 

<WHAT: - [ ] - [ ] > 

23. Create a Java program with JavaCC that inputs a text file and outputs the same text 
file with a line number inserted at the beginning of each line. For example, if the in-
put file contains 

a a a 
bbb 

j j j 
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then the output file would be 

1 aaa 
2 bbb 

10 j j j 

The line numbers in the output file should be right justified and have a field width of 3. 
24. Create a program with JavaCC that inputs a text file and outputs the number of words 

in the file. Test your program with a file that contains 

Let us, you and I, have a really good time studying compilers. 

Your program should produce a count of 12 for this file. 
25. Compile the following program using the Slj compiler. 

x = - 32768; 
println(x); 

Then assemble. Try the do the same with 

x = 5 - 327 68; 
p r i n t l n ( x ) ; 

What happens? Why? 
26. How are the symbol table and token manager objects passed to the parser in S1 ? In S1 j? 
27. Can an identifier for a regular expression be used before its definition in a Token 

block in a JavaCC input file? For example, is the following sequence legal: 

<UNSIGNED: (<DIGIT>)+> 
<DIGIT: [ "0"-"9"] > 

28. Would it be correct to test only getToken (2) . k ind on line 3 in Figure 13.22? Try 
a test case with JavaCC to confirm your answer. 

29. Can syntactic and semantic lookahead in JavaCC be placed at the multiple choice 
points in a list of alternatives? Confirm your answer with a test case. 

30. Can you test the image field of a token instead of the kind field to determine the to-
ken type? For example, can you do this: 

i f ( t . i m a g e . e q u a l s ( " + " ) ) 
{ 

} 

What are the disadvantages of this approach? 
31. Does the JavaCC-generated parser perform a selection set test for a nonterminal if 

there is only one production in the grammar with that nonterminal on the left side? 
Determine your answer by inspecting the code JavaCC generates for this case. 

32. What happens if you move the SKIP block in SI j . j j to after the TOKEN block? 
33. Why does the parser rather than the token manager produce the token trace? 
34. Replace the SimpleCharStream class that JavaCC generates with a class you 

write. It should implement the interface CharStream, which Java CC generates if 
the USER_CHAR_STREAM option is set to true. 





14 
BUILDING ON S2 

14.1 INTRODUCTION 

In this chapter, we build on the S2 compiler described in Chapter 12 to get a more power-
ful compiler we call S3. If you have mastered the principles of compiler construction we 
have presented so far, you should have little trouble implementing S3. If you like, you 
may use JavaCC to generate the S3 compiler. But if you do, call it S3j to distinguish it 
from the handwritten S3 compiler. 

S3 supports a cascaded assignment statement, that is, a single statement that performs 
multiple assignments. For example, the following cascaded assignment statement 

x = y = z = 7 ; 

assigns 7 to z, y, and x, in that order. The grammar will we use for the cascaded assign-
ment is not LL( 1). Thus, the S3 parser has to look ahead in the token stream to make pars-
ing decisions when it processes a cascaded assignment statement. The parser can easily 
look ahead without advancing in the token stream. It simply calls the getToken method 
in the parser, specifying the index of the desired token. 

Be sure you do not confuse the getToken method in the parser with the ge tNex t -
Token method in the token manager (the former permits lookahead and the latter returns 
the next token). You do not have to create getToken yourself; it appears fully imple-
mented in the SI compiler (see lines 337-355 in Figure 12.3) 

S3 also supports strings in the p r i n t and p r i n t l n statements, unary plus and minus, 
and the r e a d i n t statement. The r e a d i n t statement reads an integer constant from the 
keyboard. 

14.2 EXTENDING p r i n t l n AND p r i n t 

The S3 compiler allows the argument in the p r i n t l n and p r i n t statements to be either 
an expression or a string. It also allows the p r i n t l n statement to have no arguments. For 
example, the following statements are legal for the S3 compiler: 

Compiler Construction Using Juva, JavaCC. and Yace, First Edition. Anthony J. Dos Reis 383 
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print ("hello"); // display hello 
println (); // go to next line 
println("bye"); // display bye, go to next line 

The p r i n t statement displays h e l l o . The first p r i n t l n , with no arguments, moves the 
cursor to the beginning of the next line. The second p r i n t l n statement displays bye and 
then moves the cursor to the beginning of the next line. The output produced looks like 
this: 

h e l l o 
bye 

Let us examine the assembly code corresponding to the following p r i n t l n state-
ment: 

p r i n t l n ( " u p \ n d o w n " ) ; 

It first outputs the string with an sout instruction, and then outputs the newline character 
with an aout instruction: 

pc @L0 
sout 

A@L0: dw "up\ndown" 
pc '\ n ' 
aout 

where @L0 is a compiler-generated (i.e., compiler-created) label. The caret symbol (Λ) 
causes the assembler to place the dw for " up\ ndown " at the end of the program, out of the 
flow of control (see Section 11.12). The aout instruction outputs the newline character, 
causing the display cursor to move to the beginning of the next line. The backslash-n se-
quence in the dw also causes the cursor to move to the next line. Thus, when executed, this 
code outputs up and down on successive lines and positions the cursor at the beginning of 
the line following down. Note that the string constant in the source code is carried over as 
is—including the backslash-n sequence—to the dw statement in the assembly code. Thus, 
the token manager does not have to modify a string constant it reads before passing it to the 
parser. It simply passes it, as is, to the parser which outputs it, as is, in a dw statement in the 
assembly code. Thus, a backslash-n sequence (two characters) in a string constant in the 
source code appears as a backslash-n (two characters) in the corresponding string constant 
in the assembly code. The loop in the token manager that processes strings should simply 
place all the characters in the string, including the initial and final quotes, into the image 
field of the Token object it creates for the string constant. 

If you are using JavaCC to create the S3j compiler, it is easy to extend the token man-
ager so that it supports strings. A string consists of a double quote, followed by zero or 
more characters other than the newline, return, or double quote, followed by a terminating 
double quote. Simply define a regular expression that captures this definition and place it 
in the TOKEN block. 

A p r i n t l n statement with no arguments simply causes the cursor to move to the be-
ginning of the next line. Thus, the assembly code for 

p r i n t l n ( ) ; 
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is 

pc " \ n ' 
aout 

To support string constants, we have to add another loop to the getNextToken method 
in the token manager. This loop is executed if the current character at the beginning of a to-
ken is the double quote. The loop executes until the matching quote is found. The token im-
age that the loop constructs should include the quotes. For example, if the string in the source 
code is "yes" (with the quotes), then the image provided by getNextToken should be 
"yes" (also with the quotes). We keep the quotes for the following reason: If we were to 
strip them from a string constant, the code generator would have to reinsert them when it out-
puts the string constant to the assembly language program. By keeping the quotes as part of 
the image, they do not have to be reinserted later on. getNextToken should set the kind 
field to STRING (defined as an appropriate integer constant in the constants interface). Be 
sure you set the endLine and endColumn fields of a S t r i n g constant correctly—they 
should reflect the position of the quote at the end of the string. 

The source language that S3 handles does not allow a string to span a line. For exam-
ple, the following statement is illegal: 

p r i n t l n ( " u p 
down"); 

If a string spans a line, the token manager should return a token whose kind field is ER-
ROR, where ERROR is a constant defined in the constants interface. This ERROR token will 
cause the parser to generate an error message. It is easy to detect if a string spans a line: 
simply check if it contains any line separator character (i.e., ' \ n ' or ' \ r ' ) . The string in 
the preceding p r i n t l n statement contains a line separator between up and down (that is 
why down appears on a separate line). The string in 

p r i n t l n ( " u p \ n d o w n " ) ; 

does not contain a line separator, and, therefore, should be regarded as a legal string by 
the S3 compiler. But what about the backslash-n sequence in this statement? This se-
quence is not a newline character. It is, in fact, a two-character sequence in the source 
program: the backslash and the letter n. 

Whenever the parser parses a string constant within a p r i n t or p r i n t l n statement, it 
should execute the following code: 

t = currentToken; // save string token 
consume(STRING); 
label = eg.getLabel(); // get label for string 
eg.emitInstruction ("pc", label); 
eg.emitInstruction("sout"); 
cg.emitdw("A" + label, t.image); 

where t is a local Token variable, l a b e l is a local S t r i n g variable, and eg is the code 
generator. On each call of eg . ge tLabe l () , it returns the next string in the sequence 
"@L0", "@L1", "@L2", and so on. This string is assigned to l a b e l . For example, sup-
pose the string in 
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p r i n t i n ( " h e l l o " ) ; 

is the first string in a program. Then during the parse of this statement, ge tLabe l () 
would return "@L0", which would be assigned to l a b e l . The call of emitdw would 
then output 

"@L0: dw " h e l l o " 

We implement ge tLabe l () in the code generator class with a simple method that con-
catenates "@L" to a sequencing number, which is incremented on each call of ge tLa -
b e l (): 

public String getLabel() 
{ 

return "@L" + labelNumber++; 
} 

where labelNumber is an instance variable within the code generator that is initialized 
toO. 

When S3 parses a string in the source program, it outputs a dw statement for it, even if 
the string is identical to a string previously encountered. For example, the two instruction 
sequence, 

p r i n t ( " h e l l o " ) ; 
p r i n t ( " h e l l o " ) ; 

would produce the following assembly code: 

pc @L0 
sout 

~@L0: dw "hello" 

pc @L1 
sout 

A@L1: dw "hello" 

A more space-efficient approach is to output 

pc @L0 
sout 
pc @L0 
sout 

and then have a single dw at the end of the program for " h e l l o " : 

@L0: dw " h e l l o " 

However, this optimization should be used only for source languages, like Java, in which 
strings are immutable. In a language, like C, in which strings can be modified, this opti-
mization might cause problems. For example, consider the following C code: 
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char *p , *q; 
p = " h e l l o " ; 
* p = ■ m' ; 
q = " h e l l o " ; 
p r i n t f ("%s", q ) ; 

The statement 

*p = ' m ' ; / / o v e r l a y s ' h ' wi th 'm' 

stores 'm' in the location to which p points, p points to the first character in " h e l l o " . 
Thus, this assignment statement overlays the ' h ' in " h e l l o " with 'm' . Suppose at the 
assembly level there were only one dw for " h e l l o " . Then both p and q would point to 
this single instance of " h e l l o " . In that case, any modification of the string to which p 
points would affect the string assigned to q. The p r i n t f of q would display mel lo 
rather than h e l l o , even though q appears to be assigned " h e l l o " . This problem does 
not occur in C because C compilers generate a separate dw for each occurrence of a 
string. Thus, in the preceding C code, the modification of the " h e l l o " to which p 
points would not affect the " h e l l o " to which q points. Let us assume that the compil-
ers we are developing will ultimately support a source language that can modify strings. 
Thus, our compilers, like C compilers, should generate a dw for every occurrence of a 
string. 

Let us see what productions we need to define our new p r i n t l n and p r i n t state-
ments. For S2, the p r i n t l n and p r i n t productions are 

printlnStatement -> "println" "(" expr " ) " ";" 
printStatement -» "print" "(" expr " ) " ";" 

When extending a grammar, it is most natural to simply add productions to those we al-
ready have. Thus, the most natural set of productions for our extended p r i n t l n and 
p r i n t statements are the preceding two to which we add 

printlnStatement -> "println" "(" <STRING> " ) " ";" 
printlnStatement -» "println" "(" " ) " ";" 
printStatement -> "print" "(" <STRING> " ) " ";" 

However, with the addition of these productions, our grammar is no longer LL(1). The 
three p r i n t l n S t a t e m e n t productions start with " p r i n t l n " . Thus " p r i n t l n " is in 
each of their selection sets. Similarly, the two p r i n t S t a t e m e n t productions start with 
" p r i n t " . Thus " p r i n t " is in each of their selection sets. 

We, however, can easily convert this new set of productions to an equivalent LL(1) set 
by left-right factoring (see Sections 7.9 and 9.6). We get 

p r i n t l n S t a t e m e n t -> " p r i n t l n " " ( " (printArg|A) " ) " " ; " 
p r i n t S t a t e m e n t -> " p r i n t " " ( " p r i n t A r g " ) " " ; " 

where p r i n t A r g is defined with 

p r i n t A r g —* exp r 
p r i n t A r g - * <STRING> 

/ / o v e r l a y s ' η ' wi th 'm' 

/ / d i s p l a y s mel lo 
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On the right side of the preceding p r i n t l n S t a t e m e n t production, we have two alterna-
tives: p r i n t A r g and A, separated by the "|". We can use exactly the same structure in the 
corresponding translation grammar (see Figure 14.1). Note that we must surround the list 
of alternatives with parentheses. We need them to specify the scope of the alternatives. The 
first parenthesis (without the quotes) marks the beginning of the first alternative; the bal-
ancing right parenthesis marks the end of the last alternative. Without the parentheses, the 
first alternative would include the initial " p r i n t l n " and " (" tokens; the last alternative 
would include the two calls of the emit I n s t r u c t ion method at the end. 

14.3 CASCADED ASSIGNMENT STATEMENT 

In a cascaded assignment, the assignment operations are performed right to left. For ex-
ample, when the following statement is executed, 

x = y = z = 7 ; 

7 is assigned to z, y, and x, in that order. We say that the assignment operator is right as-
sociative because of its right-to-left order of evaluation. 

Recall from Section 4.3 that right recursive productions imply right-associativity. So 
let us define a cascaded assignment using right-recursive productions: 

assignmentStatement —> <ID> "=" assignmentTail 
assignmentTail —> <ID> "=" assignmentTail 
assignmentTail —» expr ";" 

The first a s s ignmen tTa i l production is right recursive. Thus, these productions will 
capture the right associativity of the cascaded assignment operator. Unfortunately, the 
two a s s ignmen tTa i l productions make the grammar not LL(1). Both productions 
have < I D> in their selection sets. Left factoring is awkward here because the two produc-
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tions do not start with the same prefix: one starts with <ID>, the other starts with expr. 
So we will use the productions as is. How then does the parser decide which a s s i g n -
mentTai l production to apply? It simply looks one token beyond the current token. If it 
is " = ", then the production to apply is necessarily the first a s s ignmen tTa i l produc-
tion above. Otherwise, it is the second a s s ignmen tTa i l production. 

The translation grammar for the assignment statement is given in Figure 14.2. In this 
translation grammar, we specify the required lookahead with the LOOKAHEAD (2) direc-
tive on line 13. The argument 2 here indicates that the choice should be based two con-
secutive tokens, starting with the current token. That is, it should be based on the current 
token and the token that follows it. Similarly, LOOKAHEAD (3) would indicate that the 
choice should be based on the three consecutive tokens starting from the current token. In 
general, LOOKAHEAD («), where n is a positive integer, indicates that the choice should 
be based on the n consecutive tokens starting from the current token. 

The parser can easily look ahead in the token stream using the getToken method. 
This method can provide any token from the one preceding the current token forward. 
getToken (n), where n is a positive integer, returns the nth token relative to the current 
token. For example, getToken (0) returns the token preceding the current token, 
getToken (1) returns the current token, getToken (2) returns the token following the 
currentToken (),and so on. 

The structure of the parser code that implements the LOOKAHEAD (2) function for the 
cascaded assignment statement is 

i f ( ge tToken(1 ) .k ind == ID && 
g e t T o k e n ( 2 ) . k i n d == ASSIGN) 

apply first a s s ignmen tTa i l production 
e lse 

apply second a s s i g n m e n t T a i l production 

When getToken looks ahead in the token stream, all the tokens it reads from the in-
put file are placed on the token chain linked by the next field in each token (see Section 
10.9). Thus, these tokens will be available to the parser when it continues to access the to-
ken stream. 

If you are using JavaCC, then to implement the lookahead mechanism you simply 
place LOOKAHEAD (2) at the choice point in the translation grammar as shown on line 13 
in Figure 14.2. 

When the s t a v instruction performs a store operation, it pops the value to be stored. 
Thus, this value is no longer available on the stack. If we want to perform multiple stores 
with the same value, we need to duplicate the value on the stack before each time we exe-
cute s t av . If we do that, the duplicated value is available for the next s t a v operation. 

To perform the cascaded assignment, we use the dupe and r o t instructions as well as 
the s t a v instruction, dup duplicates the top item on the stack, r o t pops the top item and 
then reinserts it into the stack so it is the third item from the top. Figure 14.3 shows the 
stack activity during the execution of the statement 

x = y = z = 7 ; 

The address of each variable is pushed onto the stack in left-to-right order. The value 7 is 
then pushed onto the stack (see Figure 14.3a). Next, a d u p e / r o t / s t a v sequence (see 
lines 19, 20, and 21 in Figure 14.2) is executed. The dupe instruction duplicates the 7 on 
the stack (see Figure 14.3b). The r o t instruction then moves the top 7 on the stack down 
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two positions (see Figure 14.3c). The s t a v instruction then pops the top 7 and the ad-
dress of z, and performs the assignment to z, leaving the stack in a configuration (see Fig-
ure 14.3d) that allows this sequence to be repeated (so that 7 can be subsequently assigned 
to y and then x). 

Now let's consider the code that our S3 compiler has to generate for a cascaded assign-
ment statement. When ass ignmentS ta tement () parses the leftmost variable (x in 
our example), it emits code that pushes the variable's address onto the stack (line 5 in Fig-
ure 14.2). It then calls the recursive a s s ignmen tTa i l () . Recall from Section 9.9 that 
the statements preceding a recursive call are executed as the recursion recurses "down". 
Thus, on each recursive call of a s s ignmen tTa i l () , it emits code that pushes the ad-
dress of the next variable (line 16). When it hits "bottom" (line 23), a s s ignmen t -
T a i l () parses the expression at the right of the cascaded assignment, the effect of which 
is to emit code that pushes the expression's value onto the stack. Recall from Section 9.9 
that the statements that follow a recursive call are executed as the recursion proceeds back 
"up". Thus, the d u p e / r o t / s t a v sequence (lines 19, 20, 21) is repeatedly emitted as 
ass ignmentTai 1 () recurses "up." For example, the code emitted corresponding to 

x = y = z = 7; 

is 

pc x ·< pushes address of x 
pe y -< pushes address of y 
pc z -< pushes address of z 
pwc 7 ·* pushes value of expr 
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dupe 
r o t 
s t a v -< assigns 7 to z 

dupe 
r o t 
s t a v -< assigns 7 to y 

s t a v -< assigns 7 to x 

14.4 UNARY PLUS AND MINUS 

S3 supports the unary plus and minus operators. The unary plus operator is easy to han-
dle. On a factor that starts with a unary plus, the compiler simply consumes the plus and 
then calls f a c t o r () to parse the rest of the factor. However, for the unary minus, the 
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compiler has to generate a neg assembler instruction after it parsers the rest of the factor. 
For example, consider the statement 

y = -x; 

When the compiler parses the right side of this assignment statement, it should generate 
code to push the value of the right side onto the stack. To do that, it must first push the 
value of x, then negate it. To negate the top of the stack, we use the neg instruction. Thus, 
the code for this statement is 

pe y ; push the address of y 
p x ; push the value of x 
neg ; negate the value on top of the stack 
stav ; perform the assignment 

If a minus precedes a constant, then S3 simply carries over the constant to the assembler 
code, prefixing it with a minus sign. SI and S2 handle constants in exactly the same way. 
For example, the assembler code for 

z ='+3 + - 4 ; 

IS 

pc 
pwc 
pwc 
add 
stav 

z 
3 
-4 

; push the address of z 
; push 3 
; push -4 
; compute sum 
; perform the assignment 

Here are the new factor productions we need to fully support unary plus and minus: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

factor 
factor 
factor 
factor 
factor 
factor 
factor 
factor 
factor 

-> 
-* 
-» 
-» 
-* 
-^ 
-> 
-^ 
-» 

<UNSIGNED> 
<ID> 
"C 
" + ■ 
It _ I 

"-' 
II _ I 

»' _ » 
II _ 1 

• expr " ) " 
' factor 
' <UNSIGNED> 
' <ID> 
' "(" expr " ) " 
' "+" factor 
' "-" factor" 

If a factor starts with a plus, then what follows the plus is also a factor. We generate such 
factors with the preceding production 4. Similarly, if a factor starts with a minus, then 
what follows the minus is also a factor. However, we do not generates such factors with 

f a c t o r f a c t o r 

Although this production would correctly generate the factors that start with minus, it 
does not distinguish among the different types of factors that can follow the minus. Thus, 
in the translation grammar, we would not be able to specify different actions for the dif-
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ferent types of factors that can follow the minus. For example, if 5 (a constant) follows 
the minus, the corresponding action should output 

pwc -5 

If, however, x (an identifier) follows the minus, the action should output 

P * 
neg 

Following a unary minus, we have five possibilities: a constant, an identifier, an expres-
sion within parentheses, unary plus, or another unary minus. By having a separate produc-
tion for each of the possibilities (see the preceding productions 5, 6, 7, 8, and 9), we can 
specify a distinct action for each in the translation grammar. Unfortunately, our grammar 
is not LL(1) because productions 5 to 9 all start with the same terminal symbol. However, 
we can easily convert it to the following equivalent LL(1) grammar by left factoring: 

factor -* <UNSIGNED> 
factor -* <ID> 
factor -> "(" expr " ) " 
factor -> "+" factor 
factor -» "-" ( 

<UNSIGNED> 
I 
<ID> 

I 
"(" expr ") " 

I 
"+" factor 

I 
"-" factor" 

) 
Figure 14.4 shows the f a c t o r portion of the translation grammar. Note that if a mi-

nus sign follows the minus sign, then the two minus signs cancel each other out. Thus, in 
this case, the parser simply parses the factor that follows the second minus sign (see line 
35). It does not output a neg instruction. For example, S3 would translate 

y = - - x ; 

to the following assembler code: 

pe y 
P * 
s t a v 

14.5 r e a d i n t STATEMENT 

When the following r e a d i n t statment is executed, 

r e a d i n t ( x ) ; 
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execution stops until the user enters a decimal integer. When the user enters an integer 
and hits the Enter key, execution of the r e a d i n t proceeds: It converts the decimal inte-
ger entered to the equivalent binary number and stores it in x. The assembly code that cor-
responds to this statement is 

pc x 
d in 
s t a v 

The pc instruction pushes the address of x in preparation for the s t a v instruction that 
will perform the store. Next, the din (decimal in) instruction reads in the number, con-
verts it to binary, and pushes it on the stack. Finally, the s t a v performs the store. 
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You need to add the following productions to your grammar for r e a d i n t : 

s t a t e m e n t —* r e a d i n t S t a t e m e n t 
r e a d i n t S t a t e m e n t -+ " r e a d i n t " " ( " <ID> " ) " " ; " 

14.6 CONTROLLING THE TOKEN TRACE FROM THE 
COMMAND LINE 

In S3, the token trace is controlled from the command line when the compiler is in-
voked. Specifically, if - d e b u g t o k e n m a n a g e r is specified on the command line 
when S3 is invoked, then S3 creates a token trace. Otherwise, it does not. Implementing 
this feature is simple. The d e b u g variable in ma in should be initialized to false. If 
d e b u g t o k e n m a n a g e r is specified on the command line, S3 should set d e b u g to 
true. 

When the d e b u g _ t o k e n _ m a n a g e r argument is specified, it should precede the in-
put file name on the command line. For example, to compile S 3 . s with the S3 compiler 
and generate a token trace, enter 

j a v a S3 - d e b u g _ t o k e n _ m a n a g e r S3 

To compile S3 with no token trace, enter 

j a v a S3 S3 

For the token trace to be optional in the handwritten S3 compiler, S3 has to be able to 
access the command line to determine if the - d e b u g t o k e n m a n a g e r argument is 
specified. S3 accesses this argument with a r g s [ 0] , where a r g s is the S t r i n g array 
parameter for main . 

Like - d e b u g _ t o k e n _ m a n a g e r , any command line arguments we support in the fu-
ture will be specified on the command line before the input file name. Because the input 
file name is last, it can always be accessed with a r g s [ a r g s . l e n g t h - 1] . 

The comparison tests performed on the command line arguments should be case insen-
sitive. Test if a r g s [ 0] is the - d e b u g _ t o k e n _ m a n a g e r argument using the e q u a l s -
i g n o r e C a s e () method in the following i f statement: 

i f ( a r g s [ 0 ] . e q u a l s I g n o r e C a s e ( " - d e b u g _ t o k e n _ m a n a g e r " ) ) 

e q u a l s I g n o r e C a s e () performs a case insensitive comparison of strings. 
The token trace is already controllable from the command line in Slj and S2j (the 

JavaCC versions of SI and S2). Thus, if you are creating S3j by extending Slj or S2j, you 
do not have to do anything to make the token trace controllable from the command line. 
To get a token trace with your S3j compiler, specify the -COMMON_TOKEN_ACTlON ar-
gument (in upper or lower case) on the command line when you invoke JavaCC. For ex-
ample, to create a S3j compiler that generates a token trace, enter 

j a v a c c -COMMON_TOKEN_ACTION S 3 j . j j 
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14.7 SPECIFICATIONS FOR S3 

S3 is the S2 compiler with the following extensions: 

1. The p r i n t l n allows zero arguments. 
2. Both p r i n t l n and p r i n t can take a string (as defined in Section 14.2) as an 

argument. 
3. Unary plus and minus are supported. 
4. Cascaded assignments are supported. For example, in S3, the following statement 

is legal: 

x = y = z = 7 ; 

Support this statement using recursive productions that require a lookahead, as de-
scribed in Section 14.3. 

5. The r e a d i n t statement is supported. It reads in a single integer from the key-
board, converts it to binary, and places the binary value in the variable specified in 
the r e a d i n t statement. For example, 

r e a d i n t ( x ) ; 

reads an integer into x. 
6. The token trace is optional. S3 (the handwritten version) should generate a token 

trace only if the d e b u g t o k e n m a n a g e r argument (case insensitive) is specified 
before the input file name on the command line when the S3 compiler is invoked. 
The S3j compiler(the JavaCC version of S3) should generate a token trace only if 
the S3j compiler is created with a j avacc command in which you specify the 
-COMMONTOKENACTION argument before the input file name. 

7. The assembly language file generated by the compiler should contain the source 
code as comments. 

PROBLEMS 

1. Implement the handwritten S3 compiler or the equivalent JavaCC-generated S3j 
compiler by extending your S2 or S2j compiler. Test your compiler by entering 

javac S3.java or javacc S3j.j j 
java S3 S3 javac S3j.java 
a S3.a java S3j S3 
e S3 /c a S3.a 

e S3 /c 

Submit to your instructor your source file (S3. j ava or S3 j . j j) , the assembly file 
created by your compiler, and the log file. Do not generate a token trace on the final 
version you submit. Note: you will probably get OVER LIMIT warnings when you 
execute the compiled program because your compiler does not produce optimal code 
for the unary minus operator (see problem 2). 

2. Modify Figure 14.4 so that two unary minus operators separated by one or more 
unary plus operators are optimized out. For example, the statement 

y = - + + - x ; 
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should be translated to 

pe y 
p x // no neg instructions needed 
stav 

Hint: Change line 30 in Figure 14.4 so that it matches one or more unary plus signs. 
Also change line 31 so that if the current token at that point is a unary minus, f a c -
t o r () is called but not e m i t l n s t r u c t i o n ("neg") . This action optimizes out 
the current token unary minus along with the unary minus on line 15. If, on the other 
hand, the current token at line 31 is not a unary minus, then both f a c t o r () and 
e m i t l n s t r u c t i o n ("neg") should be called (for this case, we need the neg in-
struction for the unary minus on line 15). The selection sets for both of these alterna-
tives will include the unary minus sign. Thus, the modified grammar will not be 
LL(1). However, you can still use it for deterministic parsing: Simply perform the 
first alternative whenever it is consistent with the current token. This approach is pre-
cisely what JavaCC-generated parsers do when they encounter a choice—they per-
form the first choice given in the grammar. Thus, if you are using JavaCC to imple-
ment S3j, you can use Figure 14.4 modified as we have described. However, you 
may want to add LOOKAHEAD (1) directives to suppress the "choice conflict" mes-
sages that JavaCC will generate (see Section 13.13). You will need two LOOKA-
HEAD (1) statements—one for the choice conflict on the modified line 30 and one 
for the choice conflict on the modified line 31. 

3. What does your S3 compiler do if a string is specified in the source program that is 
missing the terminating quote? 

4. Execute the following Java code. Do p and q point to the same object? 

S t r i n g p , q; 
p = " h e l l o " ; 
q = " h e l l o " 
i f (P == q) 

System.out.printin("p, q sharing one string object"); 
else 

System.out.printin ("p, q not sharing"); 

5. Execute the following C++ code. Do p and q point to the same string? 

char *p , *q; 
p = " h e l l o " ; 
q = " h e l l o " ' 
i f (P == q) 

cout << "p, q sharing one string"; 
else 

cout << "p, q not sharing"; 

6. A unary minus preceding a constant is detected and handled by the f a c t o r () 
method. Why not have the getNextToken () detect and handle a unary minus pre-
ceding a constant. For example, for -500 0, it would return the token <INTEGER>, 
whose image is " -5000". 

7. Do these productions indicate a good way to add support for unary plus and minus? 

factor -» <UNSIGNED> 
factor —> <ID> 
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factor -> "(" expr " ) " 
factor —> " + " factor 
factor —> "-" factor 

Is the language defined any different from the source language for S3? 

8. What error message does S3 generate if the source program is 

x = 3; & 

What if the source program is 

x = 3 ; y 
9. What happens if during the execution of the r e a d i n t statement, the user enters a 

noninteger or an integer too big? 

10. If you define <STRING> is S3 j . j j with 

<STRING: "\ " (~[ " \ n " , " \ r " ] )* "\ ""> 

what happens when you compile 

pr int ln("ABC"DEF"); 

11. Using EBNF and no recursion, define the cascaded assignment statement. 
12. Compile the following statements with a C or C++ compiler: 

Y = - + - + - - - - χ ; 

When you invoke the compiler, specify the command line argument that causes the 
compiler to output an assembly listing of the translated program. From this listing, 
determine if the generated code performs any negation operations. Repeat with a 
Java compiler. To get the JVM assembly code for a Java class file X. c l a s s , enter 

j avap - c X 

13. Can you think of any reason why consecutive unary minus signs should not be opti-
mized out—that is, not be translated to any code. For example, is there any reason 
why a compiler should generate six negation operations for the statement in Problem 
12? What changes to Figure 14. 4 are required if consecutive unary minus signs are 
not to be optimized out? 

14. Copy your version of S3 or S3j to S1414 . j ava or S1414 j . j j , respectively. Then 
extend S1414 . j ava o r S 1 4 1 4 j . j j so that it supports the increment operator (++) 
and the decrement operator (-). Test your compiler by entering 

java S1414 S1414 or java S1414J S1414 
a S1414.a a S1414.a 
e S1414 /c e S1414 /c 



15 
COMPILING CONTROL STRUCTURES 

15.1. INTRODUCTION 

In this chapter, we enhance our S3 compiler from Chapter 14. We add support for 

• The whi le statement 
• The i f statement 
• The do-whi le statement 
• Strings with embedded double quotes 
• Strings that span lines 
• Error recovery 

We call the resulting compiler S4. If you prefer, you may use JavaCC to generate the S4 
compiler. But if you do, call it S4j to distinguish it from the handwritten S4 compiler. 

We will see that control structures—like the whi le , if, and do-whi le statements— 
require the parser to pass labels. These labels function as the targets of jump instructions 
in the target program. 

We will add support for the whi le , if, and do-whi le statement to our compiler by 
performing the following five steps: 

1. Determine the productions for the new statement. 
2. Analyze the assembly code required by the new statement. 
3. Determine the actions required to produce the required translation. 
4. Write the translation grammar. 
5. Convert the translation grammar to Java code by hand or by using JavaCC. 

15.2. w h i l e STATEMENT 

The whi le statement requires instructions that transfer control from one point in a pro-
gram to another. We call these instructions jump instructions. The Jl computer has nine 
Compiler Construction Using Java. JavaCC. and Yace. First Edition. Anthony J. Dos Reis 399 
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types of jump instructions. However, we will need only three: j a (JumP always), j z 
(jump on zero), and jnz (jump on nonzero). The j a instruction is an unconditional jump 
instruction. When it is executed, it always causes a transfer of control to the target label. 
For example, 

j a @L0 

causes an unconditional jump to the label @L0. 
The j z and jnz instructions are conditional jump instructions. When they are exe-

cuted, they cause a transfer of control only if a certain condition is true. The j z and 
jnz instructions pop and test the value from the top of the stack. The j z instruction 
transfers control if this value is zero; the jnz instruction transfers control if this value 
is nonzero. 

The production for the whi le statement is 

whileStatement -> "while" "(" expr " ) " statement 

where expr represents the arithmetic expressions that we handled in the S3 compiler. As 
in C and C++, an arithmetic expression in S4 is interpreted as true or false if its value is 
nonzero or zero, respectively. Note that a single statement constitutes the body of a 
whi le loop. But recall that one of the productions for s t a t e m e n t in S3 is 

s t a t emen t —> compoundStatement 

Thus, the body of a whi le loop can be a compound statement consisting of multiple 
statements surrounded by braces. 

Let us examine the assembly code that corresponds to the following whi le statement: 

whi le (x) 
{ 

p r i n t ( x ) ; 
x = x - 1 ; 

} 

The whi le statement has a leading exit test. That is, the exit test is performed before the 
body of the loop is executed. For this whi le loop, the exit test determines if x is false 
(i.e., zero). If it is false, the exit occurs; otherwise, the body of the loop is executed. Fig-
ure 15.1 shows the corresponding assembly code. 

The assembly code uses two labels. In the example in Figure 15.1, the labels are @L0 
and @L1. Both appear in the exit test code at the beginning of the loop (@L0 as a label and 
@L1 as an operand in a jump instruction). Both also appear at the end of the loop. The 
parser has to call the code generator at the corresponding points during the parse to output 
these labels. At the beginning of the whi le loop, the parser obtains the two labels and 
provides them to the code generator (which uses them in the code for the exit test). The 
parser then reuses the same labels when it is at the end of the whi le loop it is processing. 

Each label, of course, must be unique. Once we use @L0 and @L1, we cannot reuse 
them for another loop. The parser obtains a unique label each time it requires one by call-
ing eg . ge tLabe l () , a method in the code generator. This method generates labels by 
generating strings that start with "@L" concatenated to sequencing numbers that start 
from 0: 
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p u b l i c S t r i n g ge tLabe l f ) 
{ 

r e t u r n "@L" + labelNumber++; 
} 

where labelNumber is an integer variable in the code generator whose initial value is 0. 
We have already used this method in S3 to generate labels for string constants. 

Now let us look at the production for the whi le statement and compare it with the as-
sembly code in Figure 15.1 to determine where in the production we need actions. From 
Figure 15.1, we can see we need a label at the beginning of the loop. Immediately after 
expr is parsed, we need our exit test (a j z that jumps to the second label). After the body 
of the loop, we need an unconditional jump to the first label. On the next line, we need the 
second label: 

whi leS ta tement —> "whi l e " 
-< emit first label 

I I / II 

expr 
If \ I I 

-< emit j z instruction to second label 
s t a t e m e n t 

-< emit j a instruction to first label 
-< emit second label 

Once we have identified the actions we need, it is simple to write the translation grammar. 
Let us use cg . emi tLabe l (label) to emit a target label, c g . e m i t l n s t r u c t i o n 
( " j z " , label) to emit a j z instruction, and c g . e m i t l n s t r u c t i o n ( " j a " , label) to 
emit a j a instruction, where label is the appropriate S t r i n g label. We get the translation 
grammar in Figure 15.2. 

Let us go through the translation grammar in Figure 15.2 step by step to see what hap-
pens during the parse of 

whi le (x) 
{ 
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p r i n t ( x ) ; 
x = x - 1; 

} 

Let us assume labels @L0 through @L10 have been used earlier in the parse. Thus, the 
first label the parser gets from c g . g e t L a b e l () when it parses the preceding whi le 
statement i s @ L11. After parsing the wh i 1 e keyword, the parser gets a label that it saves 
in the local variable l a b e l l : 

l a b e l l = c g . g e t L a b e l ( ) ; 

It then executes 

c g . e m i t L a b e l ( l a b e l l ) ; 

which emits the label in l a b e l l : 

@L11: 

expr () then parses the expression within parentheses. When it does this, it emits code 
that, when executed, will place the value of the expression on top of the stack. For the ex-
pression x, it emits 

P x 

The parser then executes 

l a b e l 2 = e g . g e t L a b e l ( ) ; 

e g . e m i t I n s t r u c t i o n ( " j z " , l a b e l 2 ) ; 

which emits 

j z @L12 

s t a t emen t () then emits the code for the loop body: 
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P * 
dout 
pc x 
P * 
pwc 1 
sub 

stav 

Finally, the parser executes 

e g . e m i t l n s t r u c t i o n ( " j a" , l a b e i l ) ; 

which emits the jump back to the exit test 

j a @L11 

and 

c g . e m i t L a b e l ( l a b e l 2 ) ; 

which emits the label used in the exit test: 

@L12: 

15.3. i f STATEMENT 

To determine the translation grammar for the i f statement, we use the same approach we 
used for the whi le statement: We determine the grammar, analyze the assembly code, 
determine the actions, and, finally, write the translation grammar. As in the whi le state-
ment, the parser gets the required labels from eg. ge tLabe l () and passes them to the 
code generator at various points during the parse of the i f statement. There are, however, 
two aspects of the i f statement that make it more difficult to handle. First, there are two 
variations of the i f statement: one without an e l s e part and one with an e l s e part. Here 
are the productions that define both variations: 

ifStatement -» "if" "(" expr " ) " statement elsePart 
elsePart —> "else" statement 
elsePart —» A 

Second, this grammar, which is the standard grammar for the i f statement, is ambiguous. 
We can demonstrate this by showing two parse trees for the nested i f statement 

i f (a) 
i f (b) 

c = 1; 
e l s e 

d = 2; 

One parse tree associates the e l s e with the first i f (see Fig 15.3a); the other associates 
the e l s e with the second i f (see Figure 15.3b). 
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As we learned in Section 3.5, an ambiguous grammar cannot be LL(1). Thus, it is no 
surprise that the selection sets for the two e l s e P a r t productions have a common mem-
ber, the token " e l s e " : 

Selection Set 
elsePart —* "else" statement { "else") 
elsePart -> λ { "else", <ID>, "println", 

i "print", ";", "{ ", "} ", 
"while", "if", "do" } 

delete this e l s e 
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Suppose we delete e l s e from the selection set of the e l s e P a r t lambda production, and 
then write the e l s e P a r t () method accordingly. How will our parser handle our nested 
i f statement in Figure 15.3? Figure 15.4 shows its top-down parse at the point in the 
parse at which e l s e is the current token. At this point, the input remaining is 

e l s e d = 2; 

and the lower e l s e P a r t nonterminal in Figure 15.4 is to be expanded next. 
With " e l s e " in the selection set for the production e l s e P a r t —* λ the parser has a 

choice at this point in the parse. This choice determines which parse tree in Figure 15.3 
results. However, with " e l s e " deleted from the selection set for the e l s e P a r t —» λ 
production, there is no choice: Our parser must expand e l s e P a r t with 

e l s e P a r t —* " e l s e " s t a t e m e n t 

The right side of this production will then generate the remaining input. The upper 
e l s e P a r t on the parse tree will generate the null string. The result is the tree in Figure 
15.3b. Our selection set modification forces the e l s e to associate with the nearest unas-
sociated if. The i f statement in C, C++, and Java works this way, and it is precisely how 
the i f statement in the S4 source language should work. If we are using JavaCC to con-
struct S4, we should simply list the nonnull e l s e P a r t alternative first. Then the parser 
will always select it whenever the current input is e l s e . 

The ambiguity in our grammar for the i f statement does not present a serious prob-
lem. We simply delete a member from a selection set to disambiguate the parsing process. 
However, we cannot always use this trick. Sometimes if we delete a member from a se-
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lection set, the parser will not be able to successfully parse the input string in any way 
(see Section 7.10 for an example). 

Let us now look at the assembly code for 

i f (b) c = 2; 

Let us assume the parser has used the labels @L0 through @L20 earlier in the parse. Thus, 
the first label it gets from eg. ge tLabe l () when it process the preceding i f statement 
will be @L21. Then the corresponding assembly code for this i f statement is 

P 
jz 

pc 
pwc 
stav 

b 
@L21 

c 
2 

emitted by i f S ta tement () 

@L21: emited by e l s e P a r t O 

i f s t a t emen t (), the method corresponding to i f statement, first parses "if", " (", 
b, and ")". It then gets "@L21" by calling e g . g e t L a b e l (). It then emits the jz in-
struction that jumps to this label, e l s e p a r t () , the method corresponding to e l s e P a -
rt, then emits this label at the end of the statement. Thus, i f statement () must pass 
"@L21" to e l s e p a r t ( ) . 

Now consider the assembly code for 

if (b) c = 2; e l se c = 3; 

Again, assume the next available label is @L21. Then for this statement, i f s t a t e -
ment () also passes the label "@L21" to e l s e P a r t () : 

P 
jz 

pc 
pwc 
stav 

b 
@L21 

c 
2 

generated by i f S ta tement () 

@L21: 

@L22: 

: a 

pc 
pwc 
s t a v 

@L22 

generated by e l s e P a r t () 
(@L21 is the label i f S ta tement () 
passes to e l s e P a r t ()) 
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But for this case, e l s e P a r t does not immediately emit the label it is passed ("@L21" in 
this example). Instead, it emits it after emitting an unconditional jump to the end of the 
entire statement. This j a instruction is executed if the expression tested by the i f state-
ment is true. It causes a transfer of control over the e l s e p a r t code. 

Once we understand the assembly code for the i f statement, we can easily write its 
translation grammar (see Figure 15.5). 

15.4. d o - w h i l e STATEMENT 

The do-whi le loop in C, C++, and Java creates a loop with a trailing exit test. That is, 
the exit test occurs after the body of the loop has been executed. The do-whi le loop in 
the S4 source language works the same way. Let us consider the following example: 

do 
{ 

p r i n t ( x ) ; 
x = x - 1 ; 

} whi le (x) ; 

This loop executes until x goes false (i.e., equals zero). Like the body of the whi le loop, 
the body of a do-whi le loop must consist of a single statement. But this single statement 
can be a compound statement. Thus, the body of a do-whi le loop can, in fact, contain 
multiple statements as long as they are surrounded by braces (which makes them into a 
single compound statement). 
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You should analyze the assembly code required by the do-whi le statement, deter-
mine the actions you need, and write the translation grammar for it. Then incorporate the 
required Java code into the S4 compiler. This procedure is not difficult—simply parallel 
the steps we used to handle the whi le loop. 

15.5. RANGE CHECKING OF NUMERICAL CONSTANTS 

Suppose we use our S3 compiler to compile 

x = 5555555; 

This statement is illegal because the integer constant is too large. However, S3 does not 
detect this error because it does not perform range checking on numerical constants. It 
generates the following assembly code: 

; from S3 compiler written by ... 
; x = 555555; 

pc x 
pwc 555555 
stav 

halt 
x: dw 0 

However, when we assemble this code, the assembler will detect the error in the constant. 
It produces the following error message: 

ERROR on l i n e 4 (decimal) 
pwc 555555 

Address or operand out of range 

Although the assembler ultimately detects this error, it would be better if the compiler de-
tected it. Then we would not waste time attempting to assemble an invalid program. But 
more important, the compiler would be able to produce a more useful error message. For 
example, it could specify the line number of the error in the source code file. The assem-
bler, in contrast, provides the line number of the error in the assembly code file. We have 
to fix the source code, not the assembly code. Obviously, the line number of the error in 
the source code would be more useful. 

Within the compiler, should the token manager or the parser detect out-of-range nu-
merical constants? Before we answer that question, let us consider the following two 
statements. 

x = -32768; // legal 
y = 5 - 32768; // not legal 

In the first statement, the minus sign is part of the integer constant. That is, -327 68 here 
is a negative integer constant. Because this value is within range (the range of an integer 
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constant on the Jl computer is from -32768 to 32767), this statement is legal. But in the 
second statement, the minus sign is the subtraction operator. It is followed by the positive 
integer constant 32768. This constant it out of range. We have two instances of 32768, 
one of which is legal and one of which is illegal. Clearly, to determine if an integer con-
stant is out of range, we sometimes need to know the context in which it appears (as the 
two statements above illustrate). Whenever the parser processes an integer constant, it 
knows the context in which it appears. Thus, it is better able to perform out-of-range 
checking than the token manager. 

Let us see how we can modify our translation grammar so that it specifies an out-of-
range check on integer constants. Consider the f a c t o r productions of the translation 
grammar for SI in Figure 15.6. <UNSIGNED> on line 11 has a minus sign on line 10 that 
precedes it. Together, they represent a negative integer constant. Thus, at line 11, the 
maximum legal value for<UNSlGNED> is 32768. <UNSIGNED> on line 7 has a preceding 
plus sign. Together, they represent a positive integer constant. Thus, at line 7, the maxi-
mum legal value for <UNSIGNED> is 32767, not 32768. The <UNSIGNED> on line 3 
might be preceded by a minus sign. But if it is, the minus sign is the subtraction operator 
and not the unary minus of a negative constant. Thus, here the maximum value is also 
32767. 

To specify range checking in our translation grammar, we simply insert actions to per-
form the required checks. We insert 

{ 

if (t.image.length () > 5 II 
Integer.parselnt(t.image) > 32767) 

throw genEx("Expecting integer (-32768 to 32767)"); 
} 
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after lines 3 and 7 in Figure 15.8, and we insert 

{ 

if (t.image.length() > 5 I I 

Integer.parselnt(t.image) > 32768) 

throw genEx("Expecting integer (-32768 to 32767)"); 

} 

after line 11. 

15.6. HANDLING BACKSLASH-QUOTE IN A STRING 

In addition to supporting the control structures that we described above, S4 should also 
support escape sequences within strings. For example, we should be able to compile the 
statement 

p r i n t ( " h e l l o \ n g o o d b y e " ) ; 

in which an escape sequence appears within a string. For this statement, the S4 compiler 
should generate the following code (assuming @L0 is the next available label): 

pc @L0 
sout 

A@L0: dw "hello\ngoodbye" 

Notice that the string in the dw statement is identical to the string in the p r i n t statement. 
Thus, the token manager simply has to pass the string, as is, to the parser. When the as-
sembler processes this dw statement, it will substitute a newline character for the escape 
sequence ' \ n ' . The translation of the escape sequence ' \ n ' to the newline character oc-
curs at assembly time, not at compile time. Thus, we do not need to have any special code 
in our token manager to support this particular escape sequence. 

Now consider the statement 

p r i n t ( " h e l l o \ " g o o d b y e " ) ; 

Again the dw statement in the assembly code should contain a string identical to the string 
in the p r i n t statement: 

A @ L 1 : d w "he l l o \ "goodbye" 

However, for this case, our token manager must have special code to handle it. The prob-
lem here is the quote embedded within the string. If we do not program our token manag-
er to handle it properly, it will incorrectly think that the embedded quote is the terminat-
ing quote (i.e., the quote that marks the end of the string). In that case, it would incorrectly 
return the token " h e l l o \ " rather than " h e l l o \ "bye". To avoid this problem, the to-
ken manager must check if a quote is preceded by a backslash. If it is, it should treat the 
quote as an embedded quote—not as the quote that marks the end of the string. 

To add support for quotes embedded within strings does not appear at first to be a dif-
ficult task. Unfortunately, there are complications. Consider the following statement: 
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p r i n t ( " h e l l o W " ) ; 

Here the second quote should be treated as the terminating quote even though it is preced-
ed by the backslash. The double backslash sequence represents a single ordinary back-
slash. So in reality, the second quote is not escaped with a backslash. Consider also 

p r i n t ( " h e l l o \ \ \ " g o o d b y e " ) ; 

Here the embedded quote is escaped with a backslash. The first two backslashes represent 
the ordinary backslash. So the third backslash starts a backslash-quote escape sequence. 
From these two examples, we can formulate the following rule: 

If a quote in a string constant is preceded by an even number (including 
zero) of backslashes, the quote is the terminating quote. If, however, it is 
preceded by an odd number of backslashes, then it is not the terminating 
quote. 

To support embedded quotes, the token manager must use this rule to distinguish em-
bedded quotes from the terminating quote. When it encounters a string, it should move all 
its characters, including the initial and the terminating quote into the image field of the 
token it creates. 

15.7. HANDLING BACKSLASH-QUOTE WITH JAVACC (OPTIONAL) 

How do we add support for the backslash-quote escape sequence in a string if we are 
using JavaCC to generate our token manager? One obvious approach is to determine a 
regular expression that correctly describes strings that can have this escape sequence. 
We can then use that regular expression in the TOKEN block to define a STRING token. 
For example, in S3 j . j j (the JavaCC file for the S3 compiler), we can define a string 
with 

<STRING: "\ "" ( ~ [ " \ n ' \ " \ r " , " \ " » ] ) * »\»"> 

It defines a string that starts with a quote and ends with a quote with no newline, carriage 
return, or quote in between. Unfortunately, this expression does not work correctly when 
the string contains the backslash-quote sequence. It works for the S3j compiler only be-
cause the S3j compiler does not support the backslash-quote escape sequence. But the S4 
and S4j compilers are supposed to support the backslash-quote sequence. 

To see the problem with the STRING expression above, consider the following state-
ment: 

p r i n t l n ( " h e l l o \ " ) ; 

This string has no terminating quote (the second quote is backslashed, so it should be 
treated as an embedded quote). Thus, the compiler should generate an error message for 
it. However, the STRING expression above will match it. Thus, the token manager that 
JavaCC generates will return " h e l l o \ " as a valid string to the parser. The parser will 
then output assembly code that contains this invalid string. 

We need to replace the STRING expression above with one that correctly captures 
strings that allow backslash-quote. Although such a regular expression exists, it would be 
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difficult to determine. An alternative approach is to use two features of JavaCC we have 
yet to discuss: MORE blocks and lexical states. 

A MORE block, like a TOKEN block, contains regular expressions that the token manag-
er uses to identify tokens in the input stream. However, if an expression in a MORE block 
matches the next token in the input, the token manager does not return it to the parser. In-
stead, it saves it. It continues to save the strings matched by expressions from the MORE 
block, concatenating all of them together, until a match occurs with an expression in a 
block that is not a MORE block. Then the entire saved string plus the last string matched is 
returned to the parser as a single token. 

Let us look at an example. Suppose we have the following MORE and TOKEN blocks: 

MORE: 
{ 

"x" 
} 

TOKEN: 
{ 

<T1: "y"> 
} 

If the input stream is "xxxy", the MORE block expression matches and saves the three 
x's. The Token block expression then matches the "y" and returns a <T1> token whose 
image is "xxxy". 

The token manager that JavaCC generates is initially in the DEFAULT state. However, 
we can force it to change state whenever a match occurs. Let us look at the following ex-
ample: 

TOKEN: // Active when in DEFAULT state 
{ 

<T1: "A"> : DOG // On match, change to DOG state 
} 

<DOG> 
TOKEN: // Active when in DOG state 
{ 

<T2: "A"> : DEFAULT // on match, change to DEFAULT state 

} 

The second TOKEN block is prefixed with the state name DOG inside angle brackets. This 
state prefix means that the TOKEN block that follows it is active only when the token man-
ager is in the DOG state. The first TOKEN block, on the other hand, has no state prefix so it 
is active only when the token manager is in the DEFAULT state. 

Now suppose the input stream is "AAA". Both the Tl and T2 expressions match the 
initial "A" in the input stream. But only the first TOKEN block is active since the token 
manager is initially in the DEFAULT state. Thus, the token manager returns the Tl token 
with the image "A". However the Tl match also triggers a state change to the DOG state 
because of the " : DOG" construct that follows the Tl definition: 

<T1: "A"> : DOG 
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Thus, the first TOKEN block becomes inactive and the second becomes active. With the 
second TOKEN block active, T2 matches the next "A" in the input stream, triggering a 
state change back to DEFAULT: 

<T2: "A"> : DEFAULT 

For successive A's, the token manager provides tokens alternating between <T1> and 
<T2>. For the input "AAA", it provides the token sequence <T1>, <T2>,<T1>. 

Notice that in the example above, the same input token ("A") can be matched by differ-
ent expressions, depending on the state of the token manager. This capability is precisely 
what we need to handle strings with embedded quotes. We need to treat a quote within a 
string differently from the quotes that start and end a string. With lexical states, we can do 
this easily. We can put the token manager in the INSTRING state whenever it is within a 
string, and in the DEFAULT state whenever it is outside a string. The default block can then 
handle the initial quote, and the INSTRING TOKEN block can handle "inside" and termi-
nating quotes. Figure 15.7 shows specification of the token manager for S3j extended to 
support embedded quotes. At the beginning of a string (i.e., at the initial quote), the default 
MORE block saves the initial quote and switches to the IN_STRING state: 

15 MORE: 
16 { 
17 »\»": IN_STRING // matches initial quote in string 
18 } · 

When the token manager subsequently reaches the terminating quote, the INSTRING 
TOKEN block returns the entire string as a <STRING> token, switching back to the DE-
FAULT state: 

65 <IN_STRING> 
66 TOKEN: 
67 { 
68 <STRING: "\ ·'"> // matches terminating quote 
69 } 

Between the initial and terminating quotes, the INSTRING MORE block accumulates and 
saves the characters that make up the string: 

55 <IN_STRING> 
56 MORE: 
57 f 

58 "\\\"" // matches backslash, quote (embedded) 
59 I 

60 "\\\\" // matches backslash, backslash 
6 1 I 
62 <~[ " \ " " , " \ n " , " \ r " ] > / / matches a l l excep t " , \ n , \ r 
63 } 

Line 68 should match only a terminating quote. If it were able to match an embedded 
quote, then it would incorrectly treat an embedded quote as the terminating quote. For ex-
ample, it would match the second quote in the string in the following statement 
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p r i n t l n ( " h e l l o \ " ) ; 

in which case an invalid string, " h e l l o \ ", would be returned to the parser as a valid 
string. This error, however, cannot occur because of line 58: 

58 "\\\"" // matches backslash, quote (embedded) 

An embedded quote—that is, a quote preceded by an escaping backslash—is always 
matched by line 58. Thus, an embedded quote cannot be matched by line 68 (which treats 
a quote as the terminating quote). In other words, an embedded quote always gets treated 
an as embedded quote (by line 58); a terminating quote always gets treated as a terminat-
ing quote (by line 68). 

In a sequence of consecutive backslashes within a string, each pair of backslashes is 
matched by 

60 "\\\\" // matches backslash, backslash 

in the INSTRING MORE block. Thus, only the rightmost backslash in a backslash se-
quence of odd length can escape a quote. For example, suppose the string ends with ex-
actly four backslashes: 

. . . \ \ \ \ " 

Then the two pairs of backslashes are matched by line 60. The terminating quote, there-
fore, cannot be matched by line 58 because the backslashes have already been matched by 
line 60. Thus, the terminating quote will be matched by line 68, as it should. If, on the oth-
er hand, we have exactly three backslashes preceding an embedded quote 

. . . \ \ \ " . . . 

then the first pair would be matched by line 60. Then the remaining backslash-quote would 
be matched by line 58. Thus, line 68 would not be able to match the embedded quote. 
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15.8. UNIVERAL BLOCKS IN JAVACC (OPTIONAL) 

Recall from Section 13.3 that it is advisable to include at the bottom of your TOKEN block 
the "catch-all" expression 

<ERROR: ~[ ] > 

Then, if an invalid character appears in the input stream, this expression matches it. In 
that case, the token manager returns an ERROR token to the parser. The parser then detects 
the invalid token and throws an exception. If we did not include the ERROR expression in 
our token block, then the token manager, not the parser, would throw an exception on an 
invalid character. It is better for the parser to throw the exception because it, in general, 
produces more meaningful error messages. For example, the parser knows what is expect-
ed in the input stream at the point of the error. Thus, it can include this information in the 
error message. Suppose we use several TOKEN blocks that have the following structure: 

TOKEN: // active when token manager in the DEFAULT state 
{ 

I 

<ERROR:~[]> / / c a t c h - a l l e x p r e s s i o n 
} 

<DOG> / / a c t i v e when token manager i s in DOG s t a t e 
TOKEN: 
{ 

// no catch-all expression in this block 
} 

<CAT> // active when token manager is in CAT state 
TOKEN: 
{ 

// no catch-all expression in this block 
} 

Each TOKEN block is associated with a different state. Suppose only the first TOKEN 
block has the ERROR catch-all expression. Thus, the ERROR expression can be used only 
when the token manager is in the DEFAULT state. If an invalid character occurs when the 
token manager is in the DOG or CAT states, the token manager will not match the invalid 
character, and, therefore, throw an exception. To insure that the token manager matches 
all possible inputs, we can include the ERROR expression for every possible state (note 
that we did this in Figure 15.7). Then, regardless of the current state of the token manag-
er, any invalid input would be matched by one of these ERROR expressions. 

An alternative approach to placing the same expression in all the TOKEN blocks is to 
include it only once in a universal TOKEN block. A universal TOKEN block is active for all 
states. We designate a universal block by preceding the block with "<*>". Applying this 
approach to the example above, we get 

TOKEN: // active when token manager in the DEFAULT state 
{ 
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/ / no ca t ch -a l l expression in t h i s block 
} 

<DOG> // active when token manager is in DOG state 

TOKEN: 

{ 

// no catch-all expression in this block 

} 

<CAT> // active when token manager is in CAT state 
TOKEN: 

{ 
// no catch-all expression in this block 

} 

<*> // <*> marks a universal block 

TOKEN: 

{ 
<ERROR: ~[ ] > 

Now the DEFAULT, DOG, and CAT blocks do not have the catch-all expressions. But the 
universal block at the bottom does. Thus, regardless of the state, the token manager will 
use the catch-all expression in the universal block if none of the expressions in the active 
TOKEN block match the current input. 

Another use of a universal TOKEN block is to associate an action with the end of the 
source file. End of file obviously can occur at any point, regardless of the state of the 
token manager. Thus, we should specify the expression to match the end-of-file condi-
tion in a universal block. For example, suppose we wanted the token manager to display 
the total number of tokens in the source file when it encountered end of file. To do this, 
we 

1. Set the C0MM0N_T0KEN_ACTI0N option to true (see Section 13.4). 
2. Include the following TOKENMGRDECLS block (see Section 13.4): 

TOKEN_MGR_DECLS: 
{ 

i n t tokenCount = 0; 
vo id CommonTokenAction(Token t ) 
{ 

tokenCount++; 
} 

} 

3. Include the following universal TOKEN block after the other TOKEN blocks: 

<*> 
TOKEN: 
{ 

<EOF> 
{ System.out.println("Token count = " + tokenCount);} 

} 
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With this setup, for each token matched, the CommonTokenAction () method is execut-
ed, the effect of which is to increment tokenCount. The <EOF> expression in the uni-
versal block matches the end-of-file condition, resulting in the display of the final count 
in tokenCount on end of file. 

15.9. HANDLING STRINGS THAT SPAN LINES 

The string constant in the following statement does not span a line: 

p r i n t l n ( " h e l l o \ n b y e " ) ; 

All the characters from the initial quote to the terminating quote are on the same line. Of 
course, when the machine code for this statement is ultimately executed, the display will 
show two lines. Nevertheless, the string in the source code is all on one line. Note that the 
sequence \ n in this string is not the newline character. It is a two-character sequence— 
the backslash followed by the letter n—that ultimately is translated by the assembler to 
the newline character. 

Now let us consider a string that does span a line. Here is an example: 

p r i n t l n ( " h e l l o \ 
b y e " ) ; 

The string here appears on two lines because it contains a line separator (i.e., the newline 
character, the return character, or the return-newline sequence, depending on the system) 
right after the slash. 

We require line separators within strings to be backslashed to minimize the impact of 
forgetting to include the terminating quote. For example, consider 

p r i n t l n ( " h e l l o \ 
b y e ) ; -^ missing quote detected when newline here is scanned 

The missing terminating quote in the string would be detected by the token manager when 
it reaches the line separator that follows the semicolon on the second line (because this 
line separator occurs within a string, and it does not have the required backslash). But 
suppose we did not require line separators to be backslashed, and we made the same error 
in the following sequence of instructions: 

p r i n t l n ( " p r o 
blem 1 ) ; ~* missing terminating quote 

x = 1; 
y = 2; 
p r i n t l n ( x + y ) ; 

In this example, the token manager would consume all the characters from the quote in 
the p r i n t l n to the end of the program, looking for the terminating quote. Thus, it would 
flag the last line rather than the line that is missing the quote (the second line). This exam-
ple clearly demonstrates that requiring backslashes before line separators in strings is a 
good policy: it allows the detection of a missing quote on the line on which the error oc-
curs. 
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The a assembler does not support strings that span lines. If the token manager passes, 
as is, a string that spans lines to the parser, we will get that same string in the assembly 
code. For example, the string in 

p r i n t l n ( " g o o d \ 
b y e " ) ; 

would appear in the assembly code as 

A@L0: dw "good\ 
bye" 

which is illegal assembly code. But what if the token manager passed the string to the 
parser with the backslash-line separator sequence removed, that is, it passed the string 
"goodbye"? Then the assembly code would contain the legal statement 

AL0: dw "goodbye" 

Thus, to handle strings that span lines, the token manager simply passes them to the pars-
er with their backslash-line separator sequences removed. Here is the rule on how the to-
ken manager should handle all the escape sequences: 

Pass all escape sequences, as is, to the parser, except for the backslash-
line separator sequence. Backslash-line separator sequences should be 
removed before the string is passed to the parser. The backslash-n 
sequence, on the other hand, should be passed as is to the parser. 

15.10. HANDLING STRINGS THAT SPAN LINES USING JA VACC 
(OPTIONAL) 

Supporting strings that span lines is easy if you are using JavaCC. Simply remove any 
backslash-line separator sequence in a string token before it is returned to the parser. We 
can do this by modifying the matchedToken variable. Recall that on a match, the token 
manager returns matchedToken to the parser (see Section 13.4). Thus, we can change 
the token returned by the parser simply by changing the matchedToken token. Figure 
15.8, the specification of the S3j token manager, illustrates this technique. 

Line 72 matches the terminating quote in a string constant. When a match occurs with 
this expression, the token manager returns matchedToken to the parser. However, be-
fore it does, it performs the associated actions on lines 74 to 79. These actions remove any 
backslash-line separator sequences in the image field of the Token object to be returned 
(by replacing them with the null string "" ) . The r e p l a c e method is a method in 
S t r i n g objects (matchedToken has the type S t r ing ) . 

The " : DEFAULT" construct on line 80 causes a switch to the DEFAULT state. To cause 
a state switch, we can alternatively call the SwitchTo method. For example, if we insert 

SwitchTo(DEFAULT); 

between lines 79 and 80, we then can omit the " : DEFAULT" construct on line 80. The 
SwitchTo method is useful when we want to specify conditional state switches within 
actions. For example, the following action 
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{ 
if (flag) 

SwitchTo(DOG); 
else 

SwitchTo(DEFAULT); 
} 

switches to either the DOG or DEFAULT state depending of the true/false value of f l ag . 
The approach we used in Figure 15.8 removes the backslash-line separator sequence 

in the image field of a string token after the creation of the token object. An alternative 
approach is to create a modified version of the image field during the creation of the to-
ken. We do this by modifying a special variable in the token manager whose type is 
Str ingBuf fer . As the token manager scans the characters that make up a token, it 
places them in this special variable. We can monitor this variable during this process. 
Whenever a backslash-line separator sequence is placed in this special variable, we can 
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immediately remove it. Thus, when the token manager completes the scan of the token, 
this special variable has the image we desire. We can then assign it to the image field of 
matchedToken. When the token manager then returns matchedToken to the parser, 
the token object has the desired image (i.e., the string with all backslash-line separator se-
quences removed). Now for the confusing part: the name of this special variable is im-
age. image, unfortunately is also the name of a field in a Token object. Do not confuse 
these two quite distinct uses of the name image. Figure 15.9 illustrates this technique. 

The expressions on lines 56, 59, and 62 match the possible backslash-line separator 
sequences. When any of these three expressions match the input, we remove it from the 
image variable by resetting its length back by 2 or 3 using the se tLength () method, 
depending on the length of the line separator sequence. Then when the expression on line 
75 matches the terminating quote, the string in the image variable (which has all the 
backslash-line separator sequences removed) is converted to type S t r i n g (line 77) and 
assigned to the image field of the matchedToken object. 

15.11. SPECIALTOKEN BLOCK IN JAVACC (OPTIONAL) 

We have seen three types of blocks that determine how the token manager works: the TO-
KEN block, the SKIP block, and the MORE block. A fourth type of block, the SPE-
CIALTOKEN block, causes the token manager to save the strings it matches in the form 
of a chain. Let us look at a simple example that illustrates the effect of a SPECIALTO-
KEN block. Suppose we have the following blocks and the input stream is "dbce": 

SPECIALJTOKEN: 
{ 

< B : "b"> 

I 
<C: "c"> 

} 
TOKEN: 
{ 

<D: "d"> 

<E: "e"> 
} 

The "d" in the input stream is matched by the TOKEN block. In response, the token man-
ager creates a token object for "d", and returns this token to the parser (see Figure 
15.10.a). Next, the "b" in the input stream is matched by the SPECIALTOKEN block. In 
response, the token manager creates a token object for "b" , but it does not return this ob-
ject to the parser (see Figure 15.10b). Next, " c " is matched by the SPECIALTOKEN 
block. The token manager creates a token for it, and chains it to the previous special token 
using the spec ia lToken field of the token object (see Figure 15.10c). This token, like 
the previous special token, is not returned to the parser. Finally, " e " is matched by the 
TOKEN block. The token manager creates a token for "e" . It chains the previous regular 
token (the token with "d") to this new token using the next field. It also chains this new 
token to the previous special token using the spec ia lToken field (see Figure 15.10d). 
It then returns this token to the parser. Thus, the parser does, in fact, receive special to-
kens from the token manager, but not directly. Special tokens are, in effect, skipped. But, 
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at the same time, they are available to the parser if it wants them via the spec ia lToken 
chain. 

One use of a S P E C I A L T O K E N block is to process comments. Comments then are not 
directly returned to the parser so they do not interfere with the parsing process. However, 
the parser can still access them if it, for example, wants to output them to the target file it 
is creating. 

15.12. ERROR RECOVERY 

Our S1, S2, and S3 compilers have no error recovery capability. That is, they do not contin-
ue to compile once they detect an error. On an error, they simply generate a message and ter-
minate. If we want SI, S2, or S3 to detect the next error in the source program, we have to fix 
the first error and recompile. A better approach is for the compiler to recover from an error, 
that is, to continue compiling in spite of the error. That way, the compiler can flag multiple 
errors in a single run. A compiler designer must implement error recovery very carefully. 
Improperly implemented, error recovery can result in a cascade of bogus error messages. 
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The implementation of error recovery we describe here works well. In most cases, it will 
not result in bogus error messages. Here is how it works: On an error, the parser advances 
in the input stream to just beyond the next semicolon. Because the semicolon is a statement 
terminator, advancing past the next semicolon positions the parser at the beginning of the 
statement that follows the error. The parser can then recommence parsing at that statement. 
The code to implement this approach to error recovery is quite simple. Figure 15.11 shows 
the changes required to the s t a t e m e n t () method in the SI compiler. 



426 COMPILING CONTROL STRUCTURES 

If an exception is thrown during the parse of a statement, the s t a t e m e n t () method 
catches it. s t a t emen t () on lines 19 and 20 first outputs an error message to the display 
monitor and to the target file ( e m i t s t r i n g is a new method in the code generator that 
outputs the string it is passed to the output file), s t a t e m e n t () then advances the current 
input to just beyond the next semicolon (lines 23 to 27), after which it returns to s t a t e -
mentLis t () . If the current input is not EOF, s t a t e m e n t L i s t () calls s t a t e m e n t () 
again, s t a t e m e n t () then continues the parse starting at the current input which is now 
positioned at the beginning of the statement that follows the error. 

Suppose we input the following program to our modified SI compiler: 

x = 3 3 ; 
y = 4 ; 
z == 5; 

Figure 15.12 shows the corresponding output file. We can see that the modified SI com-
piler flags the error on the first line, correctly translates the second line, and flags the error 
on the third line. A single compile yields an error message for every error in the source 
program. 

Our implementation of error recovery in SI is not quite complete. Consider the follow-
ing source program: 
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x = 1; 
7 y = 2; 

z == 3; 

s t a t e m e n t L i s t () in our modified SI calls s t a t e m e n t () for the first statement, 
which advances the current input to the 7 at the beginning of the second line. It then calls 
itself recursively (line 8 in Figure 15.13a). However, on this call, s t a t e m e n t L i s t () 
does not call s t a t e m e n t () because at this point "7" , the current input, cannot be the 
start of any statement. s t a t e m e n t L i s t () calls s t a t e m e n t () only if the current input 
is an identifier or " p r i n t l n " (see lines 5 and 6). Thus, at this point in the parse, 
s t a t e m e n t L i s t () throws an exception (line 14). This exception propagates back to 
main () where it is caught, resulting in the termination of the compile. For this case, our 
modified SI compiler terminates at the first error. 

Error recovery does not work for this case because the error is detected at the s t a t e -
mentLis t () level, but our error recovery mechanism is at the s t a t e m e n t () level, 
which is below the s t a t e m e n t L i s t () level. Our error recovery mechanism works only 
for errors detected at or below the s t a t e m e n t () level. We can fix this problem with a 
simple modification to the s t a t e m e n t L i s t () method: We modify it so it always calls 
s t a t emen t () unless the current token is EOF (see line 3 in Figure 15.13b). Thus, 
s t a t emen t () in this example will now detect and recover from the " 7 " input. 

Note that the implementation of s t a t e m e n t L i s t () in Figure 15.13b is consistent 
with selection set criteria. s t a t e m e n t L i s t () represents two productions: 

statementList —* statement statementList 
statementList —> λ 

The selection set for the lambda production is {EOF} . s t a t e m e n t L i s t () performs a 
selection test for the lambda production (by testing if the current token is EOF). The other 
production is the default to be applied whenever the lambda production cannot be applied. 
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With the modifications in Figure 15.11 and Figure 15.13b, error recovery will work 
well in S1. Unfortunately, when we carry these changes over to S2 and later versions of 
our compiler, they create a bug: the parse of a compound statement fails. The reason for 
the failure is a selection set error. Recall that a compound statement is defined with 

compoundstatement —* "{ " s t a t e m e n t L i s t " } " 

Thus, with a compound statement in our language, the selection set for 

s t a t e m e n t L i s t —» A 

includes the right brace as well as EOF. Thus, we should change line 3 in Figure 15.13b to 

if (currentToken.kind == EOF || 
currentToken.kind == RIGHTBRACE) 

This change fixes the compound statement problem. But it also disables error recovery 
slightly. Consider what happens when the following program is compiled: 

} x = 2 ; 
y = 3 ; 
z = 4 ; 
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Here, s t a t e m e n t L i s t () does not call s t a t e m e n t () at all (because the initial token 
is the right brace). Instead, it returns to program () , which throws an exception. No error 
recovery occurs for this case. 

The correct way to fix the.compound statement problem is to 

1. Leave s t a t e m e n t L i s t () as it is in Figure 15.13b to keep error recovery fully in 
effect. 

2. Create a new nonterminal compoundList () similar to s t a t e m e n t L i s t () in 
Figure 15.13b: 

p r i v a t e void compoundList() 
{ 

i f ( cu r r en tToken .k ind == RIGHTBRACE) 
r e t u r n ; 

s t a t e m e n t ( ) ; 
compoundList() ; 

} 

3. Replace the call of s t a t e m e n t L i s t () in compoundStatement () with a call 
ofcompoundLis t ( ) . 

With these changes, the selection set for 

s t a t e m e n t L i s t —» λ 

becomes {EOF} . Thus, the version of s t a t e m e n t L i s t () in Figure 15.13b is now cor-
rect. We have eliminated the compound statement problem, and, at the same time, we 
have a fully enabled error recovery mechanism. 

15.13. ERROR RECOVERY IN JAVACC (OPTIONAL) 

We can implement error recovery for the JavaCC-generated Slj compiler using exactly 
the same approach that we described above for SI. Figure 15.14 shows the new version of 
s t a t emen t () that implements error recovery. 

In our modified Slj compiler, p rog ramo always calls s t a t e m e n t L i s t () , and 
s t a t e m e n t L i s t () always calls s t a t e m e n t () unless the current input is EOF. 
s t a t emen t () catches any exceptions and advances the current input to just beyond the 
next semicolon in the source program. Our modified Slj compiler works exactly like our 
modified SI compiler. Note that we write t r y and ca t ch blocks in a JavaCC translation 
grammar without enclosing braces. We do not distinguish t r y and c a t c h blocks from 
the grammatical symbols in the grammar with any special delimiters, as we do with ac-
tions. getNextToken () is a method in the Slj compiler that corresponds to the ad-
vance() method in SI. Like SI, it calls getNextToken () (a method with the same 
name) in the token manager to get the next token. 

For versions that include the compound statement, you should define a compound-
Statement 0 without using s t a t e m e n t L i s t () to avoid the selection set problem 
with compoundStatement () that we discussed in preceding section. For example, you 
can use 
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void compoundStatement() : {Token t ;} 
{ 

i i r i i 

( s t a t e m e n t ( ) ) * 
") " 

} 

15.14. SPECIFICATIONS FOR S4 

S4 is the S3 compiler with the following extensions: 

1. The whi le , if, i f - e l s e , and do-whi le control statements are supported. Do 
not support relational or boolean operators and expressions. The true/false expres-
sions in the whi le , if, i f - e l s e , and do-whi le statements are all arithmetic. A 
zero value represents false; a nonzero value represents true. 
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2. Perform range checking on integer constants. 
3. String constants with embedded quotes are supported. An embedded quote must be 

preceded by an odd number of backslashes. For example, the following statement is 
now legal: 

p r i n t l n C ' H e s a i d \ " H e l l o \ " t o me . " ) ; 

The string in this statement should be passed as is by the token manager to the 
parser. 

4. String constants that span multiple lines are supported. Every line separator in a 
string constant must be preceded immediately by a backslash. For example, the fol-
lowing statement has two line separators, each preceded by a backslash: 

p r i n t l n ("one\ 
two\ 
t h r e e " ) ; 

Because the assembler does not support strings that span lines, a multiple-line 
string constant should be returned by the token manager to the parser as a single-
line string (i.e., with its backslash-line separator sequences removed). For example, 
the string in the preceding statement should be returned as "one twothree" . 

5. Error recovery as described in Sections 15.12 and 15.13 is supported. 

PROBLEMS 

1. Implement the S4 or S4j compiler. Test your compiler by entering 

javac S4.java or javacc S4j.jj 
java S4 S4 javac S4j.java 
a S4.a java S4j S4 
e S4 /c a S4.a 

e S4 /c 

Also enter 

java S4 pl501 or java S4j pl501 

Your compiler should recover from all the errors in p i 5 0 1 . s (this file is in the Jl 
Software Package). Submit S4 . j ava or S4 j . j j , the assembly files produced by 
your compiler, and the log files to your instructor. 

2. Modify SI j . j j so that the Slj compiler can handle both single-line comments that 
start with " / / " and multiline comments that are bracketed with "/* " and "* / " . 
Your modified Slj compiler should not comment the assembly code file with the 
source code it is translating. Test your modified compiler by compiling the file 
pl502 . s (in the Jl Software Package) by entering 

javacc Slj.jj 

javac Slj.java 

java Slj pl502 

a pl502.a 

e pl502 /c 

Submit to your instructor your modified S l j . j j , p l502 . a , and pi502.<family 
name> . log (the log file that the e program creates). 
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Further modify SI j . j j from Problem 2 so that the Slj compiler's output includes as 
comments the source code in the input file (see Section 13.11). Test your modified 
Slj compiler as specified in Problem 2. Use a SPECIALTOKEN block to capture the 
comments in p i 502 . s so you can output them to the assembly file. 
Write the translation grammar for the do-whi le statement. 
Using your S4/S4J compiler, compile the following program: 

x = -32768; 
y = 32767; 
z = 5 - 32768; 

What error messages, if any, does your compiler produce? 
If the do-whi le loop below were legal, what ambiguity would we encounter? 

do 
x = x + 1; 
y = y + 1; 

whi le (x) ; 

Why does C, C++, and Java have a do-whi le but not a d o - u n t i l statement. 
Write a translation grammar for a loop statement defined by 

loopStatement —» "loop" expr statement 

When executed, a loop statement will execute its body (a statement) the number of 
times equal to the value of the expression following the keyword loop. If the value 
of the expression is less than or equal to 0, then the statement is not executed. 
Write out the assembly code corresponding to the code below that your S4/S4J com-
piler should generate. Then check your answer by compiling the code with your com-
piler and examining the output file. 

if (b) 
if (c) 
if (d) 
d = 1; 
else 
d = 2; 
else 
c = 1 
else 
b = 1; 

Write out the assembly code corresponding to the code below that your S4/S4J com-
piler should generate. Then check your answer by compiling the code with your com-
piler and examining the output file. 

whi le (a) 
whi le (b) 
whi le (c) 
{ 

a = 0 ; 

b = 0 ; 

c = 0 ; 
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11. Suppose a compiler labels a point in the assembly code it generates with multiple la-
bels. For example, 

L3: 
L2: 
LI: 

pc x 

Do these multiple labels cause a space or time inefficiency in the executable code to 
which the assembly code is translated? 

12. Write a nonambiguous grammar for the i f statement. Is your grammar suitable for 
top-down parsing? 

13. Compute the selection set for the production 

e l s e p a r t —> A 

in the grammar for the S4 compiler. Explain why it includes "; ", "{ ", and "} ". 
14. Describe what happens when the token manager defined by Figure 15.7 processes the 

input string "A\ nB". What matches the backslash? What matches the "n"? 
15. The productions for the i f statement are not LL(1). Why does JavaCC accept the i f 

statement productions without complaint? 
16. What happens when S4/S4J, modified with error recovery as described in Sections 

15.12 and 15.13, translates 

i f (x) 
{ 

x = 5; 
e l s e 
x = 6; 

17. Give a source program for which the error recovery mechanism as described in Sec-
tions 15.12 and 15.13 does a poor job. 

18. Where does your S4j compiler detect the error in 

println("hello 
goodbye"); 
println("yes"); 

19. Would it be all right to move the MORE block on lines 15 to 18 to after the TOKEN 
block on lines 20 to 53 in Figure 15.7? Justify your answer. 

20. Would error recovery work correctly if p rog ramo were changed to 

void program)): (} 
{ 

(statement 0 ) * 
{ codeGen.endCode();} 

<E0F> 

} 

Justify your answer. 
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21. Modify your S4/S4J compiler so that error recovery is at the s t a t e m e n t L i s t level 
rather than at the s t a t e m e n t level. Run your modified compiler against p l 5 2 1 . s 
and p l 5 0 1 . s. Compare with the error recovery for your original S4/S4J compiler. 
Are there any differences? 

22. Will this definition of a string constant 

< S T R I N G : " \ " " ( ~ [ " \ n " , " \ r " ] ) * " \ " " > 

match the entire string in 

p r i n t l n ( " a b c \ " c d e " ) ; 
Use JavaCC to check your answer. Does this definition of a string correctly handle 
embedded quotes? 



16 
COMPILING PROGRAMS IN 
FUNCTIONAL FORM 

16.1 INTRODUCTION 

In this chapter, our source programs finally start looking like programs written in a real 
programming language. With the exception of the input/output statements, our source lan-
guage is a subset of C. In C, we organize code segments into functional units called func-
tions. Functions in C are like static methods in Java. We will call the hand-written com-
piler that handles this source language S5, and the JavaCC version S5j. 

If we examine a program in the source language for S5, we will see that it consists 
mostly of lists. A program is a list of global declarations and function definitions. A glob-
al declaration is a list of variables with optional initial values. Within a function defini-
tion, we have a parameter list and local variable declarations. Each local variable declara-
tion is a list of variables with optional initial values. In short, lists are everywhere. 

We, of course, know how to handle lists. We can write grammars that define them 
(Section 2.10). We know how to process them recursively or iteratively (Section 9.7). We 
know how to process them left to right or right to left (Section 9.9). We can do just about 
anything we want with lists. So our job in this chapter should not be too difficult. 

Our first step is to learn more about the assembly language for the Jl computer. 
Specifically, we need to learn how to handle separately assembled modules, function 
calls, returns, and relative instructions (we use relative instructions to access parameters 
and local variables). Next, we extend our grammar for S4 so that it encompasses all the 
new features to be handled by S5. Finally, we incorporate actions into our grammar that 
generate the required target language. 

16.2 SEPARATE ASSEMBLY AND LINKING 

It is possible to create a large program in a single file. However, a better approach is to 
break up a large program into small modules, each in its own file. We can then indepen-
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dently compile, assemble, and test each module. To create a complete executable pro-
gram, we have to combine the separate modules into a single executable file using a pro-
gram called a linker. 

The a program in the Jl Software Package is both an assembler and a linker. If the in-
put file to a is a complete program, it translates it directly to an executable file (a file with 
the extension " . e"). Otherwise, it translates the input file to an object module (a file with 
the extension " . o"). An object module contains machine code. However, it is not a com-
plete program. So we have to link it with other object modules to get an executable file. 

Every C program consists of one or more modules. When these modules are compiled 
and assembled, we get the corresponding object modules. To create an executable pro-
gram, these object modules, along with a special module called start-up code, have to be 
linked together. When the resulting executable program is run, start-up code always gets 
control first. After performing some necessary initializations, start-up code calls the main 
function. Thus, every C program must have at least the main function. 

When the main function in a C program completes, it returns control back to the start-
up code. The start-up code then performs a final "clean-up" and returns to the operating 
system. 

Just like C, the modules that our S5 compiler generates have to be linked with start-up 
code. Let us consider an example in which we create an executable program. Suppose we 
have two source modules ml. s and m2 . s that together constitute a single program (see 
Figure 16.1a). The use of x in the p r i n t statement in ml. s is an external reference. That 
is, it is a reference to an item defined outside of ml. s. The e x t e r n statement in ml. s 
informs the compiler that x is defined externally. Without it, the compiler would flag the 
p r i n t statement with the message 

Undeclared Symbol 

To create an executable program, we first have to compile ml. s and m2. s with our S5 
compiler by entering 

java S5 ml 
java S5 m2 

These two compiles produce two assembly modules ml . a and m2 . a (see Figure 16.1b) 
Next, we assemble these modules and link their resulting object modules with the object 
module for the start-up code. This start-up code is in the file sup . o. We can do all this 
with just one command: 

a ml. a m2.a sup . o you may omit the " . o" extension on sup . o 

The a program will then assemble ml. a and m2. a and link the resulting object modules 
with sup . o, producing the executable file ml. e. The base name of the executable file is ob-
tained from the base name of the first file specified on the command line when the a program 
is invoked. Because the first file specified by the preceding command is ml. a, the name of 
the executable file is ml. e. We can now execute our executable program in ml. e with 

e ml 

or 

e ml / c 
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The reference to x in the p instruction in ml. a is an external reference. Thus, when the 
assembler assembles ml. a, it has no way of knowing the location of x. It is completely 
unaware of the m2 . a module and the definition of x within it. Thus, when it assembles 
the p instruction, it places 0 in the address field of the instruction. However, when we link 
the two modules, the linker will find the actual address of x and insert it into the p in-
struction. Thus, when the program is ultimately executed, the p instruction will correctly 
access x. 

Notice in Figure 16.1, ml. a contains the statement 

e x t e r n x 

This statement informs the assembler that x is an external symbol. Without this statement, 
the assembler would view the x in the p instruction as an undefined label, in which case, 
it would flag the p instruction with the following error message: 

Undefined label in operand field 

A call of a function in one module from a different module is also an external refer-
ence, and, therefore, requires an e x t e r n statement. For example, if an assembly module 
contains the call 

c a l l f 

and f is in another, separately assembled module, then the call of f here is an external ref-
erence. Thus, the module that contains this call must also contain 

e x t e r n f 
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In m2 . a , we have the statement (see Figure 16.1b) 

p u b l i c x 

This statement makes the scope of x global. Without it, x would be unknown outside the 
m2 . a module, in which case the linker would not be able to find the address of x (which 
it needs for the p instruction in ml. a). Without the p u b l i c statement, m2. a would as-
semble without error. However, at link time, the linker would complain with the message 

LINK ERROR: Unresolved external symbol x 

and terminate without creating an executable program. Similarly, main in ml .a must 
also be declared p u b l i c so start-up code can call it. 

Every assembly module that contains the definition of a function should contain a 
p u b l i c statement for the name ofthat function. Every global variable should also have a 
p u b l i c statement. The effect of these p u b l i c statements is to make the scope of func-
tion and global variable names global. For example, corresponding to the source code 

i n t x; 
void f ( ) 
{ 

} 

is the assembly code 

p u b l i c x 
x: dw 0 

p u b l i c f 
f : 

p u b l i c and e x t e r n statements may appear on any line in an assembly language pro-
gram. They can appear at the beginning, in the middle, or at the end. 

The assembler does not translate p u b l i c and e x t e r n statements to machine code. 
The purpose of these statements is to direct the assembler to treat identifiers in a certain 
way. For this reason, we call them assembler directives. 

Only one identifier may appear on each p u b l i c or e x t e r n statement in an assembly 
language program. Thus, we cannot use 

p u b l i c x, y, z ; i l l e g a l 

Instead, we should use 

public x ; legal 
public y 
public z 



16.3 CALLING AND RETURNING FROM FUNCTIONS 439 

16.3 CALLING AND RETURNING FROM FUNCTIONS 

To call a function in assembly lanaguage, we use the c a l l instruction, specifying the 
name of the function. For example, the assembler code corresponding to 

f(); // calls the f function 

is 

call f 

The c a l l instruction not only transfers control to the specified function, it also pushes 
the return address (the address of the instruction that physically follows the c a l l instruc-
tion) onto the stack. To return to its caller, the called function executes the r e t instruc-
tion. This instruction pops the return address off the stack into the pc register, causing the 
desired return (see Figure 16.2). 

Consider the following function call: 

f ( 2 , y, y + 3) ; 

Just before the c a l l instruction, we must push the values of the arguments onto the 
stack. Immediately after the call, we must remove them from the stack. Thus, the code for 
the above function call is 

; push v a l u e s of a rgs onto s t a c k t o c r e a t e 
; t he co r r e spond ing pa rame te r s 
pwc 2 
P Y 
P Y 
pwc 3 
add 

; call the function f 
call f 

; add 3 to sp which effectively pops three values previously pushed 

asp 3 

The asp instruction after the call adds three to the sp register, effectively popping the 
three values previously pushed onto the stack. Unlike C, which pushes the values of argu-
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ments in a function call in right-to-left order, our language pushes arguments values in 
left-to-right order (translation is easier for the left-to-right approach). 

By pushing the values of the arguments in a function call, we create and initialize the 
corresponding parameters. For example, suppose the definition of f starts with 

void f ( i n t a, i n t b , i n t c) 

Pushing the values of 2, y, and y + 3 in the call 

f ( 2 , y, y + 3) ; 

creates the parameters a, b, and c. 
Let us look at the complete example of a function call and return in Figure 16.3. 
Figure 16.4a shows what the stack looks like immediately after we execute the c a l l 

instruction on line 21. The sp register points to the return address pushed by the c a l l in-
struction. Above the return address (i.e., at higher memory addresses), we have the three 
parameters c, b, a initialized, respectively, to 4, 1, and 2. 

The first instruction we execute when we enter the f function is the esba instruction. 
Its effect is to save the current value in the bp register by pushing it onto the stack. It then 
copies the sp register to the bp register. 

We then create the local variables d and e, respectively, by subtracting 1 from the sp 
register to create d (line 34) and by pushing 5 to create and initialize e. Thus, d has no 
guaranteed initial value but e has the initial value of 5. Figure 16.4b shows the stack at 
this point. 

bp is the base register. It provides the base address from which we access items on the 
stack. For example, to access c (which is two slots above the slot to which bp is point-
ing), we use the pr (push relative) instruction 

pr 2 

The address in this instruction is a relative address. That is, it is the address relative to the 
location to which bp points. To access the parameters c, b, and a, we use the relative ad-
dresses 2, 3, and 4, respectively. Note that the relative address of the rightmost parameter 
is always 2. To access the local variables d and e, we use the relative addresses -1 and -2 
(we use negative numbers because the local variables are below the base address in bp). 
The relative address of the first local variable is always - 1 . 

The global variables are created with dw statements (lines 2 and 4). Thus, we can re-
fer to them using their corresponding labels. For example, to push the address of x, we 
use 

pc x 

However, we cannot do this for parameters and local variables because they do not cor-
respond to dw statements. How then do we push the address of a parameter or a local vari-
able? We use the cora (convert relative address) instruction. This instruction converts 
the specified relative address to the absolute address and pushes it onto the stack. For ex-
ample, to push the address of the local variable d whose relative address is -1 (see line 
47), we use 

cora -1 ; push d add res s 
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Thus, the assembler code for 

d = e; 

is 

cora -1 ; push address of d 
pr -2 ; push e value 
stav ; do assignment 

Just before the called function returns, it executes the reba instruction (line 51). This 
instruction copies the bp register contents into the sp register, the effect of which is to 
pop all the local variables. It then pops the top of the stack into the bp register which re-
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stores bp with its previous value. The stack at this point is back to the configuration in 
Figure 16.4a. The r e t instruction (line 52) then pops the return address into the pc regis-
ter, returning control to the asp instruction on line 24 in main. The asp instruction then 
removes the three parameters from the stack by adding 3 to the sp register, completing 
the call. 

16.4 SOURCE LANGUAGE FOR S5 

The source language for S5 is essentially the source language for S4 extended to support 
the program structures illustrated by Figure 16.3. Here are the distinguishing features of 
S5 and its source language: 

1. All variables must be declared before they can be used. 
2. The scope of a global variable starts from the point of declaration and extends to 

the end of the file. It also extends to other files that contain an e x t e r n declaration 
for that variable, starting at the point of the e x t e r n declaration and extending to 
the end of the file. 

3. The scope of a local variable starts from the point of declaration and extends to the 
end of the function in which it is declared. A local variable with the same name as a 
global variable has precedence over that global variable. For example, suppose we 
have both a global variable x and a local variable x. If the following statement is in 
he scope of both the local and global x variables, 

x = 1; 

then S5 treats the x in this statement as the local x. 
4. Local variable declarations, if any, in a function must appear before any executable 

statements in that function. 
5. The return type of all functions must be void. That is, a function cannot return a 

value. 
6. S5 does not check if the argument list in a function call is compatible with the para-

meter list of the corresponding function. 
7. S5 allows references to external variables (i.e., variables defined in a separately 

compiled file). However, such references must be preceded by e x t e r n declara-
tions. For example, in the following main function, we are making external refer-
ences to x and y: 

extern int x; 
extern int y; 

void main() 
{ 

x = y; // external reference to x and y 
} 

Thus, we must precede main with the e x t e r n declarations to explicitly indicate 
that x and y are external symbols. An e x t e r n declaration in the source language 
can list one or more identifiers. For example, in the example above we could have 
used 

e x t e r n i n t x, y; 
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in place of the two e x t e r n declarations. However, in the corresponding assembler 
program, we must have a separate e x t e r n statement for each external symbol. For 
the preceding e x t e r n statement, S5 outputs the following assembler code: 

extern x 
extern y 

8. S5 treats a function call without an accompanying function definition as an external 
reference. For example, the following module, 

void main() 
{ 

h ( ) ; 
1 

does not contain a definition of the function h () . Thus, S5 assumes that the defini-
tion of h () is in a separately compiled module. Accordingly, S5 includes an ex -
t e r n declaration for h in the assembler code it outputs: 

main: 

public main 

esba 
call h 
reba 
ret 

extern h ; h assumed to be an external symbol 

S5 has to wait until it reaches the end of the input file before it can output this ex -
t e r n statement because it is only then that S5 can confirm that the definition of 
h () is not in the input file. 

16.5 SYMBOL TABLE FOR S5 

The symbol table class for S5 uses three parallel ArrayLists: symbol, relAdd, and 
c a t e g o r y (see Figure 16.5b). relAdd holds the relative address of local items (i.e., pa-
rameters and local variables). It is not used for nonlocal items. So for those items, 
relAdd entries are set to zero. Each entry in c a t e g o r y holds one of five possible cate-
gory constants. These constants indicate the type of the entry: 

LOCAL—a parameter or local variable 
GLOBALVARIABLE—global variable 
EXTERNVARIABLE—external variable declared with the e x t e r n statement 
FUNCTIONDEFINITION—function definition 
FUNCTIONCALL—a function call for which there is no matching function definition in 

the input file 

For example, when the parser process lines 1 through 5 in Figure 16.5a, it enters "q", 
"r", "main", and "x" into the symbol table with categories GLOBALVARIABLE, EX-
TERNVARIABLE, FUNCTIONDEFINITION, and LOCAL, respectively. When the parser 
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reaches line 6, it first enters "g" as a FUNCTIONCALL. But when it then reaches the defi-
nition of g on line 8, it converts this entry to a FUNCTIONDEFINITION entry. On line 11, 
the parser enters "h" as a FUNCTIONCALL. Because the definition of the h () function 
does not appear in this file, this entry remains a FUNCTIONCALL entry. At the end of the 
parse, the endCode () method outputs an e x t e r n statement for each FUNCTIONCALL 
entry. Figure 16.5b shows the final symbol table. 

The symbol table class has the following methods: 

public void enter(String sym, int ra, int cat) 

If sym does not match any entry in the table, sym, ra, and c a t are added to the sym-
bol , relAdd, and c a t e g o r y ArrayLists, respectively. 

If sym matches an entry in the table, what happens depends on the parameter c a t and 
the category of the matched symbol in the table as indicated in the following table: 
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Category of matched 
cat symbol in table Action 

FUNCTIONCALL FUNCTIONCALL none 

FUNCTIONCALL FUNCTIONDEFINITION none 

FUNCTIONDEFINITION FUNCTIONCALL change category of matched 
symbol in table to 
FUNCTIONDEFINITION 

LOCAL GLOBALVARIABLE or add new LOCAL entry 

EXTERNVARIABLE 

For other matches, e n t e r throws an exception. 

public int find(String sym) 

This searches symbol for sym. If it finds it, it returns its index. Otherwise, it throws an 
exception, f ind searches in reverse order, that is, from the most recent entry to the least 
recent entry. 

p u b l i c S t r i n g ge tSymbol ( in t i ) 

This returns symbol entry at index i . 

p u b l i c I n t e g e r ge tRe lAdd( in t i ) 

This returns relAdd entry at index i . 

p u b l i c I n t e g e r g e t C a t e g o r y ( i n t i ) 

This returns c a t e g o r y entry at index i . 

p u b l i c i n t g e t S i z e O 

This returns the size of the symbol table. 

p u b l i c void localRemove() 

This removes all LOCAL entries in the symbol table. 

16.6 CODE GENERATOR FOR S5 

The code generator for S5 has the following methods: 

public void emitString(String s) 

which calls outFile .println (s). 

public void emitlnstruction(String op) 
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which outputs instruction that consists of the mnemonic op only. 

p u b l i c vo id e m i t l n s t r u c t i o n ( S t r i n g op, S t r i n g opnd) 

which outputs instruction that consists of a mnemonic op and an operand opnd. 

p u b l i c vo id emi tdw(S t r ing l a b e l , S t r i n g va lue) 

which outputs l a b e l , " : ", "dw", and va lue by calling p r i n t f ( ) . 

p u b l i c void endCode() 

which outputs an e x t e r n statement for every FUNCTIONCALL entry in the symbol table. 

p u b l i c S t r i n g g e t L a b e l O 

which returns the strings in the sequence "@L0", "@L1", ... to serve as labels for string 
constants and for the jump instructions. 

public void emitLabel(String label) 

which outputs l a b e l followed by " : " 

p u b l i c void p u s h ( i n t p) 

If the index p corresponds to a non-LOCAL entry, push outputs the p mnemonic fol-
lowed by the variable name obtained with s t . ge tSymbol (p) ( s t is the reference to 
the symbol table). For example, 

p x ; g l o b a l 

For a LOCAL entry, push outputs the pr mnemonic followed by the variable's relative 
address (obtained by s t . getRelAdd (p)). For example, 

pr - 1 ; l o c a l 

p u b l i c void p u s h A d d r e s s ( i n t p) 

Similar to push, except it outputs the mnemonics pc or cora if the variable is non-
LOCAL or LOCAL, respectively. For example, for the global variable x, it outputs 

pc x 

For the local variable with relative address - 1 , it outputs 

cora -1 ; l o c a l 

16.7 TRANSLATION GRAMMAR FOR S5 

Figure 16.6 shows a partial translation grammar for S5 (it is available in the file S5. t g in 
the Jl Software Package). Components of this grammar that are identical to components 
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in the translation grammar for S4 have been omitted. The specification of range checking 
and error recovery has also been omitted. The translation grammar for S5j (the JavaCC 
version of S5) is the same except that it has additional actions that output the source code 
as comments (see Section 13.12). These actions are not needed by S5 because in S5 the 
token manager outputs the source code as comments. 

Wherever possible, we have used the "* " operator rather than recursion to represent 
lists in our translation grammar for S5. For example, the production for g l o b a l D e c l a -
r a t i o n () is 

43 void g l o b a l D e c l a r a t i o n () : {} 
44 { 
45 " i n t " 
46 global() // process one global variable 
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47 ( 
4 8 
49 global () // process one global variable 
50 )* 
51 
52 } 

We use the "* " operator on line 50 to specify a list of zero of more occurrences of the se-
quence 

g l o b a l () 

We, however, have used recursion to specify the list associated with the parame-
t e r L i s t O production: 

95 void p a r a m e t e r L i s t () : {Token t ; i n t p;} 
96 { 
97 t=parameter() 
98 p=parameterR() 
99 { st.enter(t.image, p, LOCAL);} 
100 } 

parameter () on line 97 parses the first parameter in a parameter list. Then parame-
te rR () , a recursive method, parses the remaining parameters. We use recursion here be-
cause we have to enter the parameters into the local symbol table in right-to-left order. 
Right-to-left order is necessary to determine the relative address for each parameter. For 
example, in the parameter list in 

void f ( i n t a, i n t b , i n t c) 

the relative addresses of a, b, and c are 4,3, and 2, respectively. The relative address of the 
first parameter depends on the number of parameters. Thus, the parser cannot determine 
this relative address until it has parsed all the parameters. If, however, the parser processes 
the parameter list right to left, it can simply assign the relative address 2 to the rightmost pa-
rameter and successively higher addresses to the other parameters as it moves to the left 
through the list. Here is where recursion is very handy. Recall from Section 9.9 that we can 
use recursion to process a list in reverse order. We simply perform the required processing 
after the recursive call. This is precisely what we do inparameterRO : 

109 i n t p a r a m e t e r R ( ) : {Token t ; i n t p;} 
1 1 0 { 

// p is the rel address 
LOCAL) ;} 
// return next relative address 

// at end of parameter list 

111 
112 
113 
114 
115 
116 
117 
118 } 

tl If 

t = parameter() 
p = parameterR() 
{ st.enter(t.image, 
{ return p + 1;} 

1 
{ return 2;} 
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parameterR () recurses to the right end of the parameter list. When it reaches the end, it 
returns 2 (line 117), the relative address of the rightmost parameter. At the next level up, 
parameterR () assigns this address to p (line 113). The e n t e r method then enters 
t . image (the name of the parameter), p (the parameter's relative address), and the LO-
CAL category into the symbol table (line 114). Next, parameterR () returns p + 1 
(line 115), the relative address of the next parameter to the left (which is one more than 
the relative address in p of the current parameter). As parameterR () continues to re-
curse back to the leftmost parameter, it returns successively higher relative addresses. 
Thus, at each level on the way back to the leftmost parameter, it can make the required 
entry into the local symbol table. 

l o c a l D e c l a r a t i o n s () processes local declarations, if any, within a function defi-
nition. These declarations must appear right after the opening brace of the function's 
body. Each time we call the l o c a l method (which processes one local variable) from 
within l o c a l D e c l a r a t i o n s () , we pass it the current value of r e l a t i v e A d d r e s s 
and then decrement this value: 

120 void localDeclarations(): { int relativeAddress = -1;} 
121 { 
122 ( 
123 "int" 
124 local(relativeAddress-) // process 1 local var 
125 ( 
126 
127 local(relativeAddress-) // process 1 local var 
128 )* 
129 
130 )* 
131 ) 

Thus, each local variable is given a relative address of one less than its predecessor. Be-
cause we initialize r e l a t i v e A d d r e s s to -1 (line 120), these relative addresses form 
the sequence -1 , -2 , - 3 , . . . These are the correct relative addresses for local variables (re-
call from Figure 16.4d that local variables appear on the stack just below the location to 
which the bp register points, and, therefore, have relative addresses - 1 , -2, -3,. . .) . 

l o c a l () processes one local variable declaration: 

133 vo id l o c a l ( i n t r e l a t i v e A d d r e s s ) : {Token t ; S t r i n g s ign;} 
134 ( 
135 t=<ID> 
136 ( st.enter(t.image, relativeAddress, LOCAL);} 
137 ( 
138 ( //do if local variable initialized 
139 
140 ( sign = "";} 
141 (<PLUS> I <MINUS> { s ign = " - " ; } )? 
142 t=<UNSIGNED> 
143 ( e g . e m i t l n s t r u c t i o n ( " p w c " , s ign + t . i m a g e ) ; } 
144 ) 
145 | 
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146 { c g . e m i t l n s t r u c t i o n ( " a s p " , " -1" ) ; } 
147 ) 
148 } 

On line 136, l o c a l enters the local variable's name into the symbol table with the correct 
relative address and the LOCAL category. If an initial value is specified for the local vari-
able, l o c a l then outputs a pwc instruction (line 143) that both creates and initializes the 
variable. Otherwise, it outputs an asp instruction (line 146), which creates but does not 
initialize the variable. 

On line 276 in f u n c t i o n C a l l ( ) , a rgumentLis t () returns the count of the num-
ber of arguments in the argument list it has just parsed: 

276 (count = a r g u m e n t L i s t ( ) ) ? 

The parser needs this count because it has to generate an asp instruction that removes the 
parameters from the stack (see line 24 in Figure 16.3). The number of parameters is equal 
to the number of arguments in the function call. Thus, this count is the number of parame-
ters to remove. The operand in the asp instruction should be this count. For example, if 
the count is 3, then the asp instruction should be 

asp 3 

The productions for s t a t e m e n t () (lines 157 to 179) are not LL(1) because both an 
assignment statement and a function call start with an < ID>. We resolve this problem by 
placing a LOOKAHEAD (2) directive on line 159. 

16.8 LINKING WITH A LIBRARY 

The a program not only assembles modules but links them as well. If external references 
still exist after the a program links all the modules specified on the command line, it will 
then search a library for modules that will satisfy the remaining external references. If it 
finds such modules, it will link them with the modules it has already linked to create a 
complete executable program. 

A library is a collection of object modules combined into a single file. Each module in 
a library typically performs some general-purpose function. If you write an assembly lan-
guage program that needs one or more of these modules, you can simply call those mod-
ules from your program. The a program will then automatically link those modules with 
your program. For example, suppose the library has a module named m that you would 
like to use in your program. To call m from your program, you simply include the follow-
ing code in your assembly language program: 

e x t e r n m 
c a l l m 

If you have additional calls of m in the same program, just specify the c a l l instruction. 
Do not repeat the e x t e r n statement. 

The a program uses the library in the file a. 1, if one exists. You can easily create your 
own a. 1 library with the 1 (this is a lowercase "L") program in the Jl Software Package. 
For example, suppose you want to create a library containing the ml, m2, and m3 modules 
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obtained from the ml . a, m2 . a, and m3. a files, respectively. To do this, we first assem-
ble (but not link) the three assembly modules with 

a / a ml .a m2.a m3.a 

The / a command line argument suppresses the link step that the a program normally per-
forms. Thus, this command only assembles the three modules, yielding the three object 
modules ml. o, m2 . o, and m3 . o. To create the a. 1 library containing these modules, we 
invoke the 1 program specifying the three object modules (we do not have to include the 
" . o" extensions): 

1 ml m2 m3 

16.9 SPECIFICATIONS FOR S5 

55 is S4 extended to support 

1. Function definitions and function calls 
2. Parameter passing but not checking for argument-parameter compatibility 
3. Global and local i n t variables, both initialized and uninitialized 
4. Separate compilation and linking 

To test your S5 compiler, enter 

j avac S5 . j ava (compile S5 compiler) 
j ava S5 S5a (compile S5a. s) 
j ava S5 S5b (compile S5b. s) 
a S5a .a S5b.a sup (assemble S5a .a, S5b .b and link with start-up code sup . o) 
e S5 / c (execute and verify S5 .e) 

16.10 EXTENDING S5 (OPTIONAL) 

56 is the extension of S5 that includes the following added features: 

1. Functions can return values. The assembler code for 

y = f (x) ; 

is 

p c 
a s p 
P 
c a l l 
a s p 
s t a v 

The assembler code for 

i n t f ( i n t z) 

y 
- 1 
X 

f 
1 

push address of y 
reserve slot for return value 
push value of x, creating parm 

remove parameter 
store returned value in y 
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return z + 1; 

IS 

public 

esba 
cora 
pr 
pwc 
add 
stav 
reba 
ret 

3 
2 
1 

push address of reserved s lo t 
push z 
push 1 
compute and push value of z+1 
store value in address 

Figure 16.7 shows the stack just before the s t a v instruction in the f method is 
executed. 

2. S6 supports the relational operators (<,<=,>,>=, ==,! =) and the remainder opera-
tor (%). Operator precedence from highest to lowest is 

* , / , % 
+ , -
< , < = , >, >= 

Use the cmps (signed compare) instruction to perform comparisons. The cmps 
instruction pops and compares the top two numbers on the stack. If any of the re-
lational conditions tested for are true, the cmps instruction pushes true (i.e., 1) 
onto the stack; otherwise it pushes false (i.e., 0). The conditions to be tested are 
specified by a mask in the cmps instruction. For example, in the following in-
struction 

cmps 6 

the mask is 6 (110 in binary). The three bits in the mask, left to right, correspond to 
the conditions <, ==, and >, respectively. A 1 bit indicates that the corresponding 
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test should be performed. Thus, the mask 110 specifies that the tests for the < and 
== conditions should be performed (see Figure 16.8). 

When an cmps instruction with a mask of 6 is executed, it pops the top two 
numbers from the stack. It then compares the second number popped with the first 
number popped. If the second number is less than or equal to the first number, it 
pushes true (i.e., 1); otherwise, it pushes false (i.e., 0). For example, the code for 

i f (x <= y) 
x = 0; 

is 

P 
P 
cmps 
j z 
p c 
pwc 
s t a v 

X 

y 
6 
@L0 
X 

0 

@ L 0 : 

3. S6 supports the break statement, which causes an immediate exit from a loop. 
4. S6 supports I* * I comments. A /* * / comment may span lines. It starts with any 

occurrence of /* outside a string constant or a comment. It ends with the next occur-
rence of* / , regardless of the context in which the * / appears. Thus, * / will termi-
nate a comment even if it appears within a string constant or a single-line comment. 

5. S6 pushes integer constants with a p instruction instead of a pwc instruction. For 
example, the code for 

x = 2; 

where x is a global variable is 

pc x 
p @2 

s t a v 

where @2 is defined with 

@2: dw 2 
Using p in place of pwc results in more efficient code. The pwc instruction con-
tains the constant it pushes. Thus, if a constant appears multiple times in the source 
program, it appears multiple times in the corresponding machine program (once in 
every pwc instruction). However, if p is used in place of pwc, then the constant ap-
pears only once in the machine program. Moreover, the pwc instruction is slower 
than the p instruction because the pwc instruction has a longer opcode (which 
means the CPU takes longer to decode it). 

; 6 = 110, tests for < and == 
; jump on false to @L0 
; x = 0; 
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PROBLEMS 

1. Implement the handwritten S5 compiler or the S5j JavaCC version. A partial transla-
tion grammar for S5 (Figure 16.6) is available in the Jl Software Package in S5 . tg . 
Test your S5 or S5j compiler by entering 

javac S5.java or 
java S5 S5a 
java S5 S5b 
a S5a.a S5b.a sup 
e S5a /c 

javacc S5j . jj 
javac S5j.java 
java S5j S5a 
java S5j S5b 
a S5a.a S5b.a sup 
e S5a /c 

Submit S5. j ava or S5 j . j j , the assembly files created by your compiler and the 
log file, to your instructor. Also test error recovery by entering 

java S5 pl601 or java S5j pl601 

2. What happens if you link S5a.o and S5b.o without sup .o? Does the link com-
plete? If so, what happens when you execute the resulting program? 

3. Create an a. 1 library that contains the S5b.o module created in problem 1. Then 
link the S5a. o with S5b. o in the library by entering 

a S5a sup 

Test the resulting S5a. e executable module. 
4. Implement the handwritten S6 compiler or the S6j JavaCC version. Test your S6 or 

S6j compiler by performing the following steps: 

a. Compile S 6b. s with your S6 or S6j compiler. 
b. Using the 1 program, create a library containing the object module S6b.o ob-

tained from S6b. s. 
c. Enter 

a S6a.a sup 
e S6a / c 

Submit S6. j ava or S6j . j j , S6a.a , S6b.a and the log file to your instructor. 
5. Would it be difficult for the parser to generate code to push the values of the argu-

ments in a function call in right-to-left order? How would this approach affect the 
implementation of p a r a m e t e r L i s t () ? See Problem 17. 

6. Describe how you would implement p a r a m e t e r L i s t () nonrecursively. 
7. Describe how you would implement the for statement. 
8. Why does the compiler prefix the labels it generates with "@ "? 
9. An alternate structure for the whi le loop is 

I jump always to exit test 

f 
loop body 

- exit test 

jump on true to loop body -
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In what way is this structure superior to the structure we have been using for the 
whi l e loop? Incorporate this structure into your S5 compiler. Test your modified S5 
compiler with S5a. s and S5b. s, as specified in Problem 16.1. 

10. Create an a. 1 library that contains three modules. One displays " l e f t " , one dis-
plays "middle", and one displays " r i g h t " . Write an assembly language program 
that displays 

left middle right 

by calling these three modules. Place your program in a file named pi610 .a. As-
semble and run with 

a p l 6 1 0 . a sup 
e pl610 

11. Modify S5 . j ava or S5 j . j j so that a local variable can be declared anywhere with-
in a function definition body. The scope of a local variable should start at the point of 
declaration and extend to the end of the function body. Test your new compiler as 
specified in problem 1. Also use your compiler to compile p i 611 . s, which is in the 
Jl Software Package. Assemble, link with sup . o and run with 

a p l 6 1 1 . a sup 
e p l611 

12. Modify your compiler from Problem 11 so that the scope of a local variables ends at 
the end of the block in which it is declared. Thus, if it declared within a compound 
statement, it ends at the end of the compound statement. Test your new compiler as 
specified in Problem 1. Also use your compiler to compile p i 612. s, which is in the 
J1 Software Package. Assemble, link with sup . o, and run with 

a pl612.a sup 
e pl612 

13. Add support to your S5 or S5j compiler for the scope resolution operator ": :". 
When this operator precedes an identifier, it indicates that the identifier should be in-
terpreted as the globally defined one even if it is within the scope of an identically 
named local identifier. Test your new compiler as specified in Problem 1. Also use 
your compiler to compile p i 613. s, which is in the Jl Software Package. Assemble, 
link with sup . o, and run with 

a p l 6 1 3 . a sup 
e p l613 

14. Suppose the f ind method for a LOCAL symbol returned its negated index, but for a 
non-LOCAL symbol returned its nonnegated index. Could push and pushAddress 
then be implemented more efficiently. If so, how? 

15. Are the local entries in the symbol table always grouped together at the bottom 
of the symbol table? If so, can you make the method localRemove more 
efficient? 

16. Would it be better to have all local entries in the symbol table in a separate table? In 
that case, how would the f ind method work? 

17. Modify your S5 or S5j compiler so that it pushes arguments in right-to-left order (the 
same order C and C++ uses). Then the relative address of the parameters are num-
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bered starting from 2 from left to right. Test your compiler as specified in Problem 
16.1. 

18. Is there any reason not to use the star operator to define the list of statements in 
s t a t e m e n t L i s t () (lines 150 to 155 in Figure 16.6)? 

19. Evaluate the effectiveness of the error recovery mechanism you implemented in 
S5/S5J. Extend your recovery mechanism so that it recovers from most errors. 





17 
FINITE AUTOMATA 

17.1 INTRODUCTION 

Regular expressions, regular grammars, context-free grammars, and context-sensitive 
grammars all define languages. Regular expressions and regular grammars are equally 
powerful in defining languages (we have yet to show this equivalence). That is, if we can 
define a language with a regular expression, we can also define it with regular grammar, 
and vice versa. Context-free grammars are more powerful than regular expressions and 
regular grammars. Context-sensitive grammars, in turn, are more powerful than context-
free grammars. In this chapter, we will study another mechanism for defining languages: 
the finite automaton. Finite automata ("automata" is the plural form of "automaton") have 
the same power to define languages as regular expressions and regular grammars. Finite 
automata are important for three reasons: 

1. A simple algorithm exists that will optimize any finite automaton—that is, convert 
it to the least complex finite automaton that defines the same language. 

2. We can use a finite automaton directly to determine if an arbitrary string is in the 
language defined by that finite automaton. That is, a finite automaton not only de-
fines a language, it is essentially an algorithm that determines if an arbitrary string 
is in that language. 

3. It is often easier to work with finite automata than with regular expressions or regu-
lar grammars. 

In this chapter, we will learn how to convert between regular expressions, regular 
grammars, and finite automata. The conversions are important for two reasons. First, they 
establish that regular expressions, regular grammars, and finite automata are equally pow-
erful in defining languages. Second, they allow us to obtain the form of language defini-
tion that is best suited for the task at hand. For example, suppose we are given a regular 
expression, and our job is to create an algorithm that will determine if an arbitrary string 
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is in the language defined by the given regular expression. If we simply convert the regu-
lar expression to the equivalent finite automaton, we are done. The equivalent finite au-
tomaton, itself, is the algorithm we need. JavaCC, which generates token managers for us, 
does precisely this. We give it regular expressions that describe the various tokens in the 
source language. It converts these regular expressions to finite automata. The token man-
ager it generates then uses these finite automata to identify the various tokens that appear 
in the source programs it processes. 

17.2 DETERMINISTIC FIN ITE AUTOMATA 

There are two variations of finite automata: deterministic finite automata (DFA) and non-
deterministic finite automata (NFA). An DFA does not allow choice in its operation, but a 
NFA does. Both variations contain a finite number of states; hence, the name "finite au-
tomata." 

Let us examine the DFA in Figure 17.1. The circles in Figure 17.1 represent the states 
of the DFA. We typically give each state a name. In Figure 17.1, the states are named qO, 
q l , q2, q3, and q4. Exiting each state are labeled arrows. We call these labeled arrows 
transitions. The labels on these arrows are characters from the alphabet of the DFA. The 
alphabet for this DFA is { b , c} . Each state has exactly one arrow exiting it for each 
character in the alphabet of the DFA, labeled with that character. Because the alphabet for 
this DFA has two characters, b and c, each state has two arrows exiting it, one labeled 
with b and one labeled with c. A single arrow with multiple labels is a shorthand repre-
sentation of multiple arrows, one for each label. For example, the arrow from qO to ql la-
beled with b and c represents two arrows, one labeled with b and one labeled with c. Ex-
actly one state in a DFA, designated by the arrowhead, is the start state. In Figure 17.1, 
qO is the start state. Zero or more states, designated by concentric circles, are accept 
states. All states that are not accepting (i.e., those that are not designated by concentric 
circles) are reject states. In Figure 17.1, q2 and q3 are the accept states; qO, q l , and q4 
are reject states. 

Let us list the components that make up the DFA in Figure 17.1: 

1. The set o f States Q = { qO, q l , q 2 , q 3 , q4} 

2. The input alphabet Σ = { b , c} 
3. The initial state qO G Q 
4. The set of accept states A = { q2, q3} C Q 
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5. The set of arrows. These arrows constitute a function that maps each state/char-
acter pair to a state (the state to which the arrow points). For example, the arrow 
from qO labeled with b that points to q l maps the qO/b pair to q l . 

When we input a string to a DFA, the DFA starts in the start state. As we input 
each character of the string, the DFA follows the arrow with the same character. For 
example, when we input bcc to the DFA in Figure 17.1, the following sequence oc-
curs: 

1. The initial b takes the DFA from qO to q l . 
2. The first c then takes the DFA from ql to q3. 
3. The second c takes the DFA from q3 back to q3. 

Because q3, the state in which the DFA ends when we input bcc, is an accept state, we 
say that the DFA accepts the input string bcc. 

Now let us input bcbb to our DFA. The string takes the DFA from qO to ql to q3 to 
q4 and, finally, back to q4. Here, the last state, q4, is a reject state. We say the DFA re-
jects the input string bcbb. Note that the DFA rejects this string even though its input 
causes the DFA at one point to be in state q3, an accept state. Acceptance and rejection of 
a string depend only on the state in which the DFA ends. 

As we input a string to a DFA, there is never any choice on which arrow to take. There 
is always exactly one arrow whose label matches the next character in the input string. Its 
operation at any step is completely determined. Hence, we call this type of automaton de-
terministic. 

The language defined by a DFA is the set of strings it accepts. That is, it is the set of 
strings that take the DFA from the start state to some accept state. For the DFA in Figure 
17.1, the regular expression for the set of strings that take the DFA to q2 or q3 (the two ac-
cept states) are (b | c) b and (b | c) cc*, respectively. Thus, the regular expression for the 
language defined by this DFA is the two preceding expressions joined by the union opera-
tor: 

( b | c ) b | ( b | c ) c c * 

which equals (by factoring out (b I c)) , 

( b | c ) ( b | c c * ) 

Note that the loop at q3 in the DFA corresponds to the star operator in the corresponding 
regular expression. 

Inputting λ (i.e., the null string) to a DFA does not cause a state transition. Thus, when 
the input string is λ, the DFA stays and, therefore, ends in the start state. Thus, a DFA ac-
cepts λ if an only if its start state is an accept state. 

q4 in Figure 17.1 is a rejecting state from which the DFA can never leave (because 
both b and c loop on q4). We call such states trap states. Suppose the first portion of a 
string causes a DFA to enter a trap state. Then regardless of what remains in the string, 
the DFA will necessarily reject the string. Not all DFAs have trap states. For example the 
DFA whose alphabet is { b , c} that defines (b I c) * obviously cannot because it must 
accept every string over the alphabet { b , c} . 
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Exercise 17.1 

Give a DFA that defines (b | c) *. 

Answer: 

b,c 

* ( ( qO 

Exercise 17.2 

Convert the following DFA to a regular expression: 

Answer: 

bcc* Icbc* 

17.3 CONVERTING A DFA TO A REGULAR EXPRESSION 

An algorithm exists that converts an arbitrary DFA to a regular expression that defines the 
same language. Because this algorithm is difficult to describe precisely, we will not cover 
it here. Instead, we will describe a simple technique that will allow us to determine for 
many DFAs the corresponding regular expression by inspection. This technique is based 
on the following observation: If a string is accepted by a DFA, it must take the DFA from 
the start state to an accept state and optionally loop on that accept state. A regular expres-
sion defining these strings has 

1. An initial part that takes the DFA from the start state to the accept state for the first 
time 

2. A second part that corresponds to strings that cause the DFA to loop on the accept 
state 
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To determine the regular expression for a DFA, we simply determine the regular ex-
pressions for these two parts and concatenate them together. Let us consider the DFA in 
Figure 17.2. To go from qO (the start state) to q l (the accept state) the first time, we op-
tionally loop with c's at qO and then go to q l on a b. The corresponding regular ex-
pression is c*b. At q l , there are two loops. One corresponds to a single c. The other 
corresponds to a b, followed by a c, followed by zero or more c's, followed by one 
more b. We can describe the strings corresponding to one circuit of the first loop with 
c; we can describe the strings corresponding to one circuit of the second loop with 
bcc*b. When the DFA reaches q l , it can follow either loop any number of times (in-
cluding zero times). Thus, the regular expression corresponding to the two loops at ql 
is ( c | bcc*b)* . By concatenating the regular expression corresponding to strings that 
get us from the start state to the accept state the first time (c* b) with the regular ex-
pression corresponding to loops at q l (c | bcc*b) *, we get the regular expression for 
the entire DFA: 

c* b (c | bcc*b) * 

In general, the regular expression for the strings accepted by accept state q is given by 

a lpha (beta j | b e t a 2 | . . . | b e t a j * 

where a lpha is the regular expression for the strings that takes the DFA from the start 
state to q for the first time, and be t a l 5 beta 2 , . . . , be t a n are the regular expressions cor-
responding to one circuit of the loops at q. 

Exercise 17.3 

Convert the following DFA to a regular expression that defines the same language: 

Answers: 

For qO: c* 
Forq l : c*b (c |bcc*b)* 
Forq3: c* be* be (c | be* be) * 
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For the entire DFA (the three expressions joined by the union operator): 

c* I c*b (c |bcc*b)* | c*bc*bc (c |bc*bc)* 

Suppose we want to determine a regular expression for the type of comment allowed in 
Java programs that starts with " /* " and end with "* / ". Between the " /* " and "* / " de-
limiters, any characters can appear except for a "* / " sequence. Because it is easier to 
construct the DFA than the regular expression for this type of comment, we will first con-
struct the DFA and then convert it to a regular expression. 

One of the problems we immediately encounter when we try to construct the DFA for 
comments is the size of its alphabet. It contains every character that can appear within a 
comment: all the letters, digits, and special symbols. Every state in our DFA has to have 
an arrow exiting it for each character in its alphabet. Thus, every state will have about 100 
arrows exiting it—one for each symbol in the alphabet. However, there is a simple tech-
nique we can use to minimize the number of arrows we have to draw: We represent all the 
arrows that exit some state p that point to some state q with a single arrow from p to q. 
We then label this single arrow with the set of characters that correspond to this transition. 
For example, suppose a " / " causes a transition from state qO to q l , and all other charac-
ters cause a transition from state qO to q5 (see Figure 17.3b). We can then draw a single 
arrow from qO to ql labeled with " / " , and a single arrow from qO to q5 labeled with 
~t " /"] . The operator ~ is the complement operator. But note that here it specifies the 
complement with respect to the alphabet of the DFA, not with respect to the set of all 
strings over that alphabet. Thus ~[ " / "] is the set of all single characters in the alphabet 
except for " / ". To ensure that there is no ambiguity in this notation, we will double quote 
the characters from the alphabet that make up the strings in the language we are defining. 
The special symbols, like ~, [ , and ] , will be unquoted. That way, we can always distin-
guish characters of the alphabet from the special symbols (the former will be quoted; the 
latter will not be quoted). 

A good starting point in the construction of the required DFA is to create the states and 
arrows that will accept the shortest possible comment, namely /** / . This input requires 
five states with arrows from one to the next labeled with " / " , "* ", "* ", and " / " (see 
Figure 17.3a). 

Next, we add all the missing arrows (see Figure 17.3b). We use ~[ "* "] to represent 
all characters except "* " Similarly, we use ~[ "* ", " / "] to represent all characters ex-
cept "*" and " / " . 
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q2 is the state that corresponds to the inside of the comment (i.e., inside the delimiting 
"/* " and "* / " ) . When in q2, if we get anything other than "* ", we remain inside the 
string. Thus, we should stay in q2. If, however, we get "* ", we have to go to a different 
state, q3, because the asterisk might be the beginning of the terminating "* / " sequence. 
When we are in q3, if we get a " / " , we are done—we have a complete comment. If, in-
stead, we get another "* ", we stay in q3 (this new asterisk might also be the beginning of 
the terminating " * / " sequence). And if we get any character other than " / " or "* ", we 
are back inside the comment, so we should go back to q2. q5 is the trap state we go to if 
some input makes it impossible for the input string to be a comment. 

Now that we have our DFA, we can easily convert it to a regular expression. We will 
do this in four steps: 

1. Determine the regular expression describing the strings that take the DFA from qO 
to q3 for the first time. We get 

2. Determine the regular expression associated with looping on q3. Note that there are 
two distinct loops. We get 
( " * " I ~ [ » * " " / " I / ^Γ i i * l l l \ * 11*11 \ * 

3. Concatenate the expression from step 1 with the expression from step 2. We get 
» / * II ( ~Γ 1 1 * » " | \ * I I * " / 11*11 I ^T 11*11 11 /111 / ^Γ 11*111 \ * " * » \ * 

This expression corresponds to the set of strings that start at qO and end at q3. 
4. Concatenate the expression from step 3 with "/": 

1 1 / * " / ^Γ 11*111 \ * I t * " / 1 1 * " I ^Γ H * l l "/"] ( ~Γ H * " ] \ * " * " ) * " / " 
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Our final regular expression is a real monster of an expression. To determine it directly 
would be very difficult. However, by constructing the DFA for comments first, we can 
easily determine this complex expression. 

Exercise 17.4 

Construct the DFA that defines the set of all strings over the alphabet { b , c} with an 
odd number of b's. Convert your DFA to a regular expression. 

Answer: 

c c 

c * b ( c | b c * b ) * 

17.4 JAVA CODE FOR A DFA 

A DFA provides us with a step-by-step procedure to determine if an arbitrary string is 
in the language defined by the DFA. We simply input the string to the DFA and exam-
ine the state in which the DFA ends. If it is an accept state, then the string is in the lan-
guage. Otherwise, it is not. Because a string, by definition, is of finite length, this pro-
cedure necessarily halts in a finite number of steps. Thus, a DFA meets the standard 
definition of an algorithm: a precise, step-by-step procedure that always halts. 

Given an algorithm in the form of a DFA, we can, of course, convert it to other 
forms. For example, Figure 17.4 shows the Java code for the DFA in Figure 17.1. It 
uses our standard advance () method. Each time advance)) is called, it updates 
currentToken with the next character in the input string. c u r r e n t S t a t e holds the 
number of the current state of the DFA. The input string is provided on the command 
line. For example, to process the string bcc, enter 

java Figl704 bcc 

The program will respond by displaying 

input = bcc 
accept 

The Java code in Figure 17.4 consists of a whi le loop that executes once for each 
character in the input string. Each state is represented by one case in the swi tch state-
ment. For each case, the i f - e l s e statement determines the next state and assigns its 
number to the c u r r e n t S t a t e variable. After the loop completes, a ccep t or r e j e c t 
is displayed depending on the final current state. 
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17.5 NONDETERMINISTIC FINITE AUTOMATA 

A nondeterministc finite automaton (NFA) has the same general structure as a DFA. 
However, it is allowed to have some features not allowed in a DFA: 

1. There can be more than one arrow leaving a state with the same label. For example, 
it can have 

2. There can be no arrow leaving a state for one or more of the characters of the alpha-
bet. For example, suppose the alphabet of an NFA is { b , c, d} . It can have 

3. An arrow can be labeled with λ. For example, it can have 

O-HO-HT-O 
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The NFA can follow an arrow labeled with λ regardless of the current input. More-
over, when the NFA follows an arrow labeled with A, the NFA does not advance in the in-
put. In contrast, when the NFA follows an arrow labeled with a character from the alpha-
bet, the current input must be that character, and the NFA must advance to the next 
character in the input. In other words, when an NFA follows an arrow labeled with a char-
acter, it necessarily "consumes" that character in the input stream. 

Let us examine the NFA in Figure 17.5. Its start state has a choice for a b input: the 
NFA can go to either state q l or state q2. There is no arrow at all for c. In states q l and 
q4, there are no arrows for b; in states qO, q2, q3, and q4, there are no arrows for c. 

Let us see what the NFA in Figure 17.5 does for various input strings. 

• For c, the NFA runs into a "dead end" in state qO because there is no outgoing 
arrow labeled with c. Whenever, a dead-end situation occurs, the NFA immedi-
ately rejects the input string. Thus, any string that starts with c is immediately 
rejected. 

• For b in state qO, we have a choice: we can go to either state q l or state q3. Both 
states are accept states. Thus, regardless of the choice we make, the NFA accepts 
the input string. 

• For be, the NFA accepts this string if we make the right choices. In state qO, if we 
go to state ql on the initial b, then the c takes us back to state q l . The NFA ac-
cepts. However, in state qO, if we go to state q2 on the initial b, then we run into a 
dead end on the c. In this case, the NFA rejects. 

From the three cases above, we see that the NFA in Figure 17.5 necessarily rejects 
some strings (like c), necessarily accepts some strings (like b), and for some strings (like 
be), it accepts or rejects depending on the choices we make. What then is the language 
defined by this NFA? Does this language include be (because this NFA can accept it) or 
exclude it (because this NFA can reject it)? The language defined by an NFA is the set of 
strings for which it is possible to accept. Thus, be is in the language defined by the NFA 
in Figure 17.5 because, with the correct choices, the NFA can accept it. 

The language defined by the NFA in Figure 17.5 is the set of strings that take can take 
the NFA from state qO to one of its accept states: states q l , q2, and q4. The sets of 
strings that can take the NFA to these states are be*, b, and bbb. Thus, the language de-
fined by this NFA is be* | b | bbb. Note that b is in the language defined by be*. Thus, a 
simpler but equivalent expression is be* | bbb. 

Exercise 17.5 

What language is defined by 

Answer: 

b(cc )* | b c ( c c ) * = ( b | b c ) ( c c ) * 
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The NFA in Figure 17.6 contains a λ-transition. A λ-transition is a "one-way street": it al-
lows the NFA to move from one state to the next in the direction of the arrow, but not in the re-
verse direction. 

Remember, when a NFA follows a λ-transition, it does not consume the current in-
put character. The start state in the NFA in Figure 17.6 is qO. Without consuming any 
input, the NFA can immediately take the λ-transition to q l , an accept state. Thus, the 
NFA accepts A (i.e., the null string). If we input one or more b's, the NFA loops on qO. 
After we input the b's, the NFA ends up in state qO. However, it can then take the A-
transition to the accept state q l . Thus, the NFA can accept any string of b's. It also can 
accept any string of c's. To accept a string of c's, the NFA starts by taking the A-tran-
sition to q l . It then loops on ql as we input the string of c's. It ends in q l . Any string 
of b's followed by c's can also be accepted. The NFA loops on qO as we input the b's. 
It then takes the λ-transition to q l where it loops as we input the c's. Clearly, this NFA 
accepts any string consisting of zero or more b's followed by zero or more c's. Thus, it 
defines the language b* c*. Because of the "one-way" property of the λ-transition, the 
c's must follow the b's. 

17.6 USING AN NFA AS AN ALGORITHM 

A DFA is clearly an algorithm. It provides a precise step-by-step procedure for recogniz-
ing strings in the language defined by the DFA. Is an NFA also an algorithm? An NFA al-
lows choice during its operation. So can it be considered an algorithm? The answer is that 
an NFA is, indeed, an algorithm. However, the algorithm it specifies is more complex 
than the algorithm a DFA specifies. For a DFA, we have to keep track of only the current 
state at each step of the input process. For an NFA, we have to keep track of all the states 
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the NFA might be in at every step of the input process. Because an NFA allows choice, it 
can be in more than one state at each step of the input process. Thus, we have to keep 
track of the set of these possible current states. After applying the entire input string, we 
check the last set of states. If this set contains at least one accept state, then the input 
string is in the language defined by the NFA. 

Let us use the NFA in Figure 17.7 to determine if bbb is in language it defines. The 
start state is qO. Because we can reach q3 and q4 from qO via one or more λ-transitions, 
the state set (i.e., set of possible states) initially is 

{ qO, q 3 , q4) 

When we input the first b in bbb, we hit dead ends at q3 and q4. However, we can go 
from qO to q l . Thus, our state set becomes { ql} . When we input the second b in bbb, 
we go from ql to q2. Moreover, from q2 we optionally can go back to q l via a A-transi-
tion. Thus, our set of possible current states becomes { q l , q2) . When we input the third 
b in bbb, we hit a dead end at q2. However, we go from ql to q2, and optionally from 
q2 we can go back to q l via the λ-transition. Thus, our final state set is { q l , q2} . 
These are all the possible states the NFA can be in after we input bbb. Because this set 
contains an accept state (ql is an accept state), we know it is possible for the NFA to ac-
cept the input string (by making the right choices during the input of bbb). Thus, bbb is 
in the language defined by the NFA. 

Suppose A' is a set of states. We call the set obtained from X by adding to it any state 
reachable from some state in X via λ-transitions exclusively the λ-closure of X. For ex-
ample, for the NFA in Figure 17.7, the A-closure of { qO} is { qO, q3 , q4} because 
q3 and q4 are reachable from qO via λ-transitions exclusively. Let us describe the 
process of inputting a string to an NFA using the concept of λ-closure. We start by tak-
ing the λ-closure of the set containing just the start state. For example, for the NFA in 
Figure 17.7, we take the λ-closure of { qO} . The set we obtain—( qO, q3 , q4} for 
the NFA in Figure 17.7—is the set of possible starting states. Then for each input 
character, 

1. We obtain the set of states reachable from the current state set via that character. 
2. We take the λ-closure of the set we get in step 1. 

The set that results from step 2 is the set of all possible states at that point in the input 
process. For example, when the current state set is { ql} in Figure 17.7, and we input b, 
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the set of reachable states via b is { q2} . We then take the A- closure of { q2} to get { q l , 
q2} . Thus, the current state set becomes { q l , q2} . 

Figure 17.8 shows the complete sequence of sets we get when we input bbb to the 
NFA in Figure 17.7. The arrows with λ correspond to the A-closures. 

Exercise 17.6 

Show the sequence of state sets when bbcc is input to the NFA in Figure 17.6. Is bbcc in 
the language defined by the NFA? 

Answer: 

{qO} - ^ { q O , q l } -» { qO} - ^ { q O , q l } -+ { qO} ^ { q O , q l } -^ { ql} 

A c A 
-» { ql) -► { ql) -> { ql} 

bbcc is in the language. 
■ 

Exercise 17.7 

What is the state set when A is applied to the NFA in Figure 17.7? Is A in the language de-
fined by the NFA? 

Answer: 

{ qO} -> { qO, q3 , q4} 

Because the final state set includes an accept state (q4), A is in the language defined by 
the NFA. 

■ 

17.7 CONVERTING AN NFA TO A DFA WITH THE SUBSET ALGORITHM 

An NFA allows choice and A-transitions but it does not require them. Thus, every DFA is 
a special case of an NFA, but not vice versa. However, we can convert every NFA to an 
equivalent DFA. Thus, DFAs and NFAs have equal power to define languages. 

The algorithm to convert an NFA to an equivalent DFA is called the subset algorithm. 
It constructs a DFA that keeps track of the set of current states the NFA can be in at each 
step of the input process. The set of current states is, of course, a subset of the states in the 
NFA; hence, the name "subset algorithm." The constructed DFA does precisely what we 
do when we use an NFA to determine if a string is in the language it defines: it keeps 
track of state sets—the set of possible current states—during the input process. 

Let us apply the subset algorithm to the NFA in Figure 17.7. Each state in the con-
structed DFA is labeled with a set of states from the NFA. For space considerations, we 
omit the "q" prefix in each state name. Initially, we can be in only qO, q3, or q4 in the 
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NFA in Figure 17.7. Thus, we label the initial state of the DFA with {0, 3,4} (see Figure 
17.9a). On a b, we can end up in q l only. Thus, in our DFA, we go from the initial state 
to a state labeled {11 on a b (see Figure 17.9b). On a c in q l , we hit a dead end. Accord-
ingly, in the DFA we go on a c to a state labeled with the empty set (see Figure 17.9c). 
Reaching this state in the DFA for some input means that in the NFA there are no states 
reachable for the same input. Thus, the DFA should reject regardless of what input fol-
lows. If the DFA reaches this state, it stays in it, that is, it is a trap state (see Figure 17.9d). 
We continue constructing the DFA in this fashion, adding new states in the DFA as we 
need them until we have completed the DFA (see Figure 17.9e). This process has to ter-
minate because there are only a finite number of subsets of the states in the NFA. The fi-
nal step in the subset algorithm is to double circle (i.e., make an accept state) any state in 
the constructed DFA labeled with a state set that includes at least one accept state from 
the NFA (see Figure 17.9f). 

Exercise 17.8 

Convert the NFA in Figure 17.6 to an equivalent DFA using the subset algorithm. 

Answer: 

17.8 CONVERTING A DFA TO A REGULAR GRAMMAR 

It is simple to convert a DFA to a regular grammar. The procedure consists of three steps: 

1. Give a capital letter name to each state in the DFA. Give the start state the name s. 
These names will be the nonterminals in the equivalent regular grammar. For ex-
ample, in Figure 17.10, we give the names S, B, and T to the three states qO, q l , 
and q2, respectively. 

2. For each arrow, create a production of the form P —» bQ, where P is the name of 
the state from which the arrow leaves, b is the label on the arrow, and Q is the name 
of the state to which the arrow points. For example, in Figure 17.10, there is an ar-
row from the S state to the B state labeled with the letter c. This arrow yields the 
production s —» cB. We also have an arrow from the S state back to the S state la-
beled with b. This arrow yields S —* bS. We have four arrows associated with state 
T. These arrows yield the productions 

B - » bT 

B - » cT 

T —>· bT 

T -^ cT 
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3. For every accept state, we include a λ production whose left side is the name of the 
accept state. For example, in Figure 17.10, B is an accept state. Thus, we include 
the production B —> λ. 

Our final grammar is 

S -H>· bS 
S -> cB 
B -^ bT 
B -> cT 
T -> bT 
T -> cT 
B -> A 

In a derivation of a terminal string in this grammar, the nonterminal takes the place of 
the current state in the DFA. For example, consider the following derivation of bbc, be-
low which we have displayed the state transitions in the DFA: 

S => bS => bbS => bbcB => bbc 

b b c 
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The nonterminal at each step of the derivation matches the state of the DFA. Moreover, 
the terminal generated by the grammar at each step matches the input to the DFA. 

All the productions in our final grammar that include T are dead, and, therefore, use-
less (see Section 3.9). Thus, they can be deleted without changing the language defined. 
This is no surprise because T is a trap state in the DFA. Instead of creating these produc-
tions and then deleting them, we can initially remove the trap state T and its associated ar-
rows from the DFA. Then our procedure will not generate any productions involving T. 
We can also remove any states that are not reachable from the start state because their 
corresponding productions will also be useless. 

Exercise 17.9 

Convert the following DFA to a regular grammar: 

Name qO, q l , q2, and q3 S, A, B, and C, respectively. 

Answers: 

s 
s 
A 

A 

B 

B 

B 

C 

C 

— > 
-» 
-> 
-» 
-> 
-* 
-+ 

-H» 

— > 

c S 

bA 

cA 

bB 

cB 

λ 
bC 

cC 

bS 

17.9 CONVERTING A REGULAR GRAMMAR TO AN NFA 

To convert a regular grammar to an NFA, we do the reverse of the procedure to convert a 
DFA to a regular grammar (see Section 17.8). For every production of the form P —» bQ, 
we create a transition in the NFA from a state P to state Q labeled with a b. For every λ-
production, we make the state corresponding to its left side an accept state. To handle a 
production of the form P —> b, we can use the following trick: We replace the production 
with 

P -> bX 

X — A 
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where X is a new nonterminal. This modification does not change the language defined by 
the grammar. We can then create the transition corresponding to P —> bX: namely, a tran-
sition from state P to state X labeled with a b, where X is an accept state. The start state in 
our DFA is the state labeled with the start symbol of the grammar. For example, let us 
convert 

S -H> bS 

S -> b 

to an NFA. First, let us replace the second production to get a new grammar: 

S -+ bS 

S -> bX 

X - » λ 

Next, create states for each nonterminal: 

Θ Θ 
Finally, add transitions, make S the start state, and make states accepting as required by 
the modified grammar. We get the following NFA: 

b 

If we want a DFA that corresponds to the grammar, we can convert the preceding NFA to 
a DFA using the subset algorithm (see Section 17.7) 

Exercise 17.10 

Convert the following grammar to a NFA. Then convert the NFA to a DFA. 

S -> A 

S -> bS 

S -» cC 

C -» cC 

C -> cS 

Answers: 

NFA: 
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DFA: 

17.10 CONVERTING A REGULAR EXPRESSION TO AN NFA 

Recall from Section 1.14 that a regular expression over the alphabet {b, c} is defined in-
ductively: 

• Base regular expressions 
φ (the empty set) 
A (the null string) 
b 

c 

• Construction rules: 
If r and s are regular expressions, then ( r ) , r | s, r s and r* are also regular ex-
pressions. 

We can provide NFAs for the base regular expressions. Moreover, whenever we con-
struct a new regular expression with a construction rule, we can construct in parallel the 
equivalent NFA (i.e., the NFA that defines the same language). Thus, for every regular 
expression, we can construct an equivalent NFA. The NFAs we construct will all have the 
following properties: 

1. They have exactly one accept state. 
2. No state will have more than two arrows leaving it. 
3. For every state with two arrows leaving it, at least one of the arrows will be labeled 

with λ. 
4. The accept state has no arrows leaving it. 

Let us see how we can construct an NFA for any regular expression over the alphabet 
{ b , c} . First, we provide NFAs for the base regular expressions: 

Φ 
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-o-

Note that all four of these NFAs have properties 1 to 4. 
Now suppose we have regular expressions r and s and their corresponding NFAs that 

satisfy properties 1 to 4 above. We show only the start states (rO and sO) and the accept 
states (ra and sa): 

NFA for r 

NFA for s 

Then for each regular expression we construct with a construction rule, we can construct 
an NFA as follows. 

NFA for (r) 
Same as the NFA for r 

r | s 
Add two new states, tO and ta . tO becomes the start state, t a becomes the accept state. 
ra and sa are no longer accept states. Add λ-transitions as shown. 
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rO stays the start state, sa stays the accept state, r a is no longer an accept state. Add the 
λ-transition as shown. 

-~Θ £>Λ-Θ 
Add two new states, tO and t a . tO becomes the start state, t a becomes the accept state. 
r a is no longer an accept state. Add A-transitions as shown. 

Note that if the NFAs for r and s have properties 1 to 4 listed above, then all the con-
structed NFAs also have these properties. 

Let us construct the NFA for be | d*. First, we construct the NFA for b and c: 
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Next we construct the NFA for be using our NFAs for b and c: 

l W q 2 ^ C 
qO -H ql 

Next we construct the NFA for d: 

- N q4 -W( q5 

Next we construct the NFA for d* using our NFA for d: 

Finally, we construct the NFA for be | d* using our NFAs for be and d*: 

Exercise 17.11 

Construct the NFA for b* c* 
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Answer: 

17.11 FINDING THE MINIMAL DFA 

Suppose e l and e2 are two states in a DFA. If we start in state e l and apply some input 
string x, we end up in some state. Similarly, if we start is state e2 and apply the same 
string JC we end up in some state. Suppose for all strings x (including λ), the two ending 
states are either both accept states or both reject states. We then say that e l and e2 are 
equivalent or indistinguishable. If this is not the case (that is, if there is at least one string 
for which the two ending states are not both accept states or both reject states), then we 
say that e l are e2 are distinguishable. 

For example, let us apply λ to states qO and q2 in Figure 17.11. If we apply λ to qO, 
we of course, end up in qO (A does not cause a transition in a DFA). Similarly, if we apply 
λ to q2, we end up in q2. Both ending states (qO and q2) are reject states. Now let us ap-
ply b to qO and q2. If we start in qO, we end up in q l ; if we start in q2, we end up in state 
q3. Both ending states (ql and q3) are accept states. In fact, for all strings x, if we apply 
x to qO and q2, the two ending states will be either both accept or both reject. Thus, qO 
and q2 are equivalent. 

Now let us apply b to qO and q l in Figure 17.11. The ending states are ql and q2. q l 
is accepting; q2 is rejecting. Thus, qO and ql are not equivalent. The string b distinguish-
es between these two states. That is, it results in one ending state accepting and one re-
jecting. λ also distinguishes between qO and q l (for λ, the two ending states are the re-
jecting qO and the accepting ql) . c, however, does not distinguish between qO and q l . 
For c, the ending states are both q4. Nevertheless, qO and q l are not equivalent because 
there is at least one string (such as λ or b) that distinguishes them. 

Suppose the following conditions hold in a DFA (see Figure 17.12a): 

1. e l and e2 are equivalent states. 
2. The input z takes the DFA from e l to s i . 
3. The input z takes the DFA from e2 to s2. 

What can we conclude about s 1 and s2? They must be both accepting or both nonac-
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cepting, otherwise, e l and e2 would not be equivalent because the string z would distin-
guish between them. In fact, we can make an even stronger assertion about s i and s2: 
they would have to be equivalent. Suppose, to the contrary, that s i and s2 were not 
equivalent. Then, by definition, there would be some string u that distinguishes between 
s i and s2. But then zu would distinguish between e l and e2, and e l and e2 would not 
be equivalent (see Figure 17.12b). In other words, the nonequivalence of s 1 and s2 im-
plies the nonequivalence of e l and e2, or, equivalently, the equivalence of e l and e2 im-
plies the equivalence of s i and s2. To summarize: 

Equivalent states on the same input go to equivalent states. States that go 
to nonequivalent states on the same input are necessarily non-equivalent. 
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Suppose that (see Figure 17.13a) 

1. a DFA has states s, e l , e2, s i , and s2, where s is the start state and e l and e2 are 
equivalent states. 

2. yb is a string that takes the DFA from s to e l . 
3. z is a string that takes the DFA from e 1 to s 1. 
4. z is a string that takes the DFA from e2 to s2. 

Let us now redirect all arrows entering e l to e2 (see Figure 17.13b). ybz takes the 
original DFA from s to si.ybz takes the modified DFA from s to s2. s i and s2 must be 
both accepting or both rejecting because e l and e2 are equivalent. Thus, redirecting ar-
rows entering e l to e2 does not affect the accept/reject result for the string ybz (or, for 
the same reason, any other string that causes the DFA to visit e l ) . Nor does it affect the 
accept/reject result of any string that does not cause the DFA to visit state e l at some 
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point (how could it if e l is never visited?). Thus, our redirection of arrows does not affect 
the accept/reject result of any string. It follows that 

Redirecting all arrows entering a state to an equivalent state does not af-
fect the language defined by a DFA. 

Moreover, the state away from which arrows are directed becomes unreachable from the 
start state. Thus, we can remove it and all its outgoing arrows without affecting the lan-
guage defined by the machine. 

If a DFA has a group of states which are all equivalent to each other, we can use our 
redirection technique to eliminate all the states in the group except one: we keep one to 
which the incoming arrows to the other states are redirected. If we do this state reduction 
for every group of equivalent states, and we remove any states that are inaccessible from 
the start states (inaccessible states can be removed without affecting the language de-
fined), we get the minimal DFA. Let M represent the original DFA, and let L represent the 
language it defines. Then the minimal DFA we obtain from M is the best (i.e., having the 
fewest states) DFA that defines L. 

In Figure 17.12b, we saw that two states are necessarily nonequivalent if on the same 
input they go to nonequivalent states. For example, suppose on a b input, states p and q 
go to distinguishable states r and s, respectively. Because r and s are distinguishable, 
there must be some string x that distinguishes then. But then the string hx would distin-
guish p from q. Using this property, we can easily determine the equivalent and non-
equivalent states in any DFA. 

Let us illustrate the technique by applying it to the DFA in Figure 17.11. We first par-
tition the set of states into two blocks: rejecting and accepting states. We identify these 
blocks with Roman numerals I and II, respectively. If we start in a block I state and input 
λ, we simply stay in the same block I state (inputting λ does not cause a transition in a 
DFA). Thus, we end in a rejecting state. On the other hand, if we start in a block II state, 
and input A, we end in the same block II state. That is, we end in an accepting state, λ dis-
tinguishes every state in block I from every state in block II. Thus, every state in block I is 
nonequivalent to every state in block II. 

Next, we construct a table that shows the next block for each state and input charac-
ter (see Figure 17.14a). For example state qO on a b goes to state q l , which is in block 
II. Thus, in the qO row and b column of our table, we show II. We also group states in 
the table by block. Thus, we list states qO, q2, and q4 first (block I states), and then ql 
and q3 (block 11 states). Examining our table, we can see that state q4 on b goes to a 
block I state; qO and q2 on b go to a block II state. Because every block I state is non-
equivalent to every block II state, q4 must be nonequivalent to qO and q2. Thus, block 
I breaks up into two subblocks: block l a (qO and q2) and block lb (q4). Each of our 
three blocks—la, lb, and II—contain states that are nonequivalent to the states in the 
other two blocks. Next, we again construct our table. But this time, the table entries are 
la, lb, or II (see Figure 17.14b), reflecting the three blocks of the latest partition. Now, 
however, we get no further break-up of any of our blocks. This condition means that all 
the states in each block are equivalent. Specifically, qO and q2 are equivalent, and q l 
and q3 are equivalent. We then eliminate qO and ql using the arrow-redirection tech-
nique to get Figure 17.1 Id. We label each state in the minimal DFA with all the states 
from the original DFA that correspond to that state. For example, we label the start state 
with q0q2, indicating that it is the representative of states qO and q2 in the original 
DFA. 
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Exercise 17.12 

Construct the minimal DFA equivalent to 

Answer: 

States qO, q2, and q4 are equivalent; states q l , q3, and q5 are equivalent. The minimal 
DFA is 

17.12 PUMPING PROPERTY OF REGULAR LANGUAGES 

Suppose we input a string of length one to a DFA. The DFA will either loop on the state it 
is in (see Figure 17.15a) or move to another state (see Figure 17.15b). In both cases, the 
DFA visits two states, not necessarily distinct. Similarly, if we input a string of length 
two, the DFA will visit three states, not necessarily distinct. Generalizing, if we input a 
string of length «, the DFA will visit n + 1 states. 

Suppose we have an infinite regular language L. Then, by definition, we can define L 
with some DFA. Let n denote the number of states in this DFA. We know that if we input 
a string whose length is n or greater, the DFA will visit at least n + 1 states. Because the 
DFA has only « states, it follows that the DFA has to visit at least one state more that once 
during the input of the first n characters. In other words, there has to be a state repetition 
at some point during the input of the first n characters. 
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Let us input a string whose length is greater than or equal to n, the number of states in 
the DFA. Suppose this input string is accepted by the DFA. Let us denote the first state to 
repeat during the input process with s, and state in which the DFA ends when the input is 
complete with t (see Figure 17.16). Because the DFA accepts our input string, t is neces-
sarily an accept state. Let x be the initial portion of the input string that brings the DFA 
from the initial state to s for the first time. Let y be that portion of the input string be-
tween the initial visitation of s and its first repetition. Let z be the input string from the 
first repetition of s to the end of the string. 

Now let us consider what occurs when we input the string xz to the DFA (xz is the origi-
nal input string with 'tis y portion extracted). The initial JC portion will take the DFA to state 
s. The z portion will then take the DFA from s to t (we can see that z will do this from Figure 
17.16). Because t is an accepting state, xz will also be accepted by the DFA. Using similar 
reasoning, it is easy to see that xyyz will also be accepted by the DFA (x takes the DFA to s; 
yy causes the DFA to loop twice on s; z then takes the DFA from state s to state t ) . Similarly, 
xyyyz is also accepted. In fact, we can "pump" (i.e., replicate) y within xyz any number of 
times. All the resulting strings are accepted by the DFA. Each occurrence ofy simply caus-
es the DFA to loop on s. When we then input z, the DFA goes from s to the accept state t , 
and, therefore, accepts the input string. That all these strings are accepted by the DFA is 
called the pumping property of regular languages. Let's formally state this property: 

Let L be an infinite regular language. There exists an n such that if u is in L 
and \u\ s «, then u = xyz where 

(0 M>o 
(ii) [ xy |£» 
(iii) χγζ G L for all / > 0 
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n is the number of states in the defining DFA. y takes the DFA from s back to s. This 
loop requires the input of at least one character. Thus, (i) is true. The first state repetition 
has to occur by the «th character. Thus, (ii) is true. Because j ; corresponds to the state s-
to-state-s-loop, it can be replicated any number of times (including zero times) without 
affecting the acceptance of the resulting string. Thus, (iii) is true. 

Note that to apply the pumping property to a string in a regular language, the string 
must be "long enough." That is, its length must be equal to at least the number of states in 
the defining DFA. 

The pumping property is a property of every infinite regular language. Thus, if an infi-
nite language does not have this property, it cannot be regular. What about finite lan-
guages? All finite languages are regular. 

To prove an infinite language is not regular, we perform the following two steps: 

1. Assume that the language is regular. 
2. Show that the language does not have the pumping property, from which we con-

clude that our initial assumption (that the language is regular) is false. 

For example, consider the language 

PAIRED= {bjcJ : / > 0 } = {A, be , bbec , bbbece, bbbbcccc, . . . } 

Let us assume that PAIRED is a regular language. The string b*c* is in PAIRED for all val-
ue of k 5: 0. There is no upper limit on k. So let us use a value of k that is greater than or 
equal to the n in the pumping property. Then b^c* is more than long enough for the pump-
ing property to apply. By the pumping property, there must exist an x, y, and z such that 

b*c* = xyz 

such that (i), (ii), and (iii) of the pumping property are satisfied. By (ii), we know that y is 
exclusively in the b portion of b*c*. Moreover, from (i), we know >> is nonnull. Thus, xz 
necessarily has fewer b's than c's and, therefore, cannot be in PAIRED. But, by (iii) xz 
has to be in PAIRED. We resolve this contradiction by concluding that our initial assump-
tion (that PAIRED is regular) is false. 

PROBLEMS 

1. What is the difference between a nondeterministic FA and an FA that is not 
deterministic? 

2. Construct a DFA that defines b* c* d*. Write a computer program that simulates its 
operation. Test it with A, b, c, d, be, bd, cd, bed, bbdd, beb, bede, and dc. 

3. Construct a DFA that defines b* cb*. Write a computer program that simulates its 
operation. Test it with c, be, cb, beb, bbeb, bb, bebe, and becb. 

4. Construct a four-state NFA that defines all strings over {b, c} that end in bee. Using 
the subset algorithm, convert your NFA to. an equivalent DFA. 

5. Construct a four-state NFA that defines the set of strings over {b, c} that contains at 
least one occurrence of bee. Using the subset algorithm, convert your NFA to an 
equivalent DFA. 

6. Construct a DFA that defines the set of strings that contain at least one occurrence of 
bec and at least one occurrence of ccb. 
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7. Construct a DFA that defines C-type strings. In C-type strings, embedded quotes and 
line separators are permitted as long as they are immediately preceded by a back-
slash. Thus, the string 

"A\"B\\C\ 
D" 

is legal. Convert your DFA to a regular expression. 
8. Convert the following grammar to an NFA. Then convert your NFA to a DFA using 

the subset algorithm. 

S - » b S 
S -» bB 
B -» bB 
B -> cC 
C -+ c 

9. Convert the following grammar to a NFA. Then convert your NFA to a DFA using 
the subset algorithm. 

S -H> bB 
B -» bS 
B -» b 
B -» cC 
C -► cC 
C -> A 

10. Convert the DFA in Figure 17.11 to a regular grammar. 
11. Convert the DFA in Figure 17.14 to a regular grammar. 
12. Using the construction technique in Section 17.10, construct the NFA for b I c | d. 
13. Using the construction technique in Section 17.10, construct the NFA for b* * *. 
14. Using the construction technique in Section 17.10, construct the NFA for bed. 
15. Using the construction technique in Section 17.10, construct the NFA for 

b* I (c*) Id*. 
16. Construct the minimal DFA for 
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17. Construct the minimal DFA for 

18. Construct the minimal DFA for 

19. Prove that the set of all strings over {b, c} in which the number of b's equals the 
number of c's is not regular. 

20. Show that the regular languages are closed under union, intersection, and comple-
mentation. 

21. Prove that {b'c7 : /' Φ j] is not regular. Hint: take the complement of this language 
and intersect it with b* c*. What language do you get? Also see Problem 20. 

22. Prove that {b'c': /' >j] is not regular. 
23. Prove that {b': i is a perfect square} is not regular. 
24. Prove that {b' : i is a prime} is not regular. 
25. Prove that the union of a nonregular language and a finite language is always nonreg-

ular. That is, you can never change a nonregular language into a regular one by 
adding only a finite number of strings. 





18 
CAPSTONE PROJECT: IMPLEMENTING 
GREP USING COMPILER TECHNOLOGY 

18.1 INTRODUCTION 

In this chapter, we will design and implement grep. grep is a standard utility program 
available on Linux and other operating systems. When you invoke grep, you provide it 
with a regular expression and one or more files. It then searches the files for any sub-
strings that match the regular expression. For example, if you enter 

grep bo*t f . t x t 

grep will search the f. t x t file for substrings that "match" the regular expression bo* t . 
That is, it searches for substrings that are in the language defined by the regular expres-
sion. Thus, in this example, it would search for substrings that start with b, are followed 
by zero or more o's, and end with t . grep displays each line of the file in which it finds 
such a substring. 

Implementing grep is an ideal capstone project in your study of compilers for the fol-
lowing reasons: 

1. It illustrates the broad applicability of compiler design techniques, grep is not a 
compiler in the traditional sense, but its design and implementation uses compiler 
design techniques. 

2. It requires you to put into practice virtually all the compiler design theory you have 
learned. 

3. It illustrates the usefulness of finite state automata theory. Many compiler text-
books present this theory without showing how it can be put to good use. 

4. A translation grammar and its corresponding Java code are so similar that it is hard-
ly a mystery how the parser generator component of JavaCC works. But how does 

Compiler Construction Using Java. JavaCC, and Yace, First Edition. Anthony J. Dos Reis 499 
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its token manager generator component work? Right now, you could probably 
write your own parser generator but not your own token manager generator. How-
ever, by implementing grep, you will learn the techniques essential for implement-
ing a token manager generator. 

Using Java, we will implement grep in three stages. In the first stage, we implement 
Gl. Gl is the "front end" of our grep program. It parses the regular expression provided 
on the command line. If the expression is a regular expression, Gl simply terminates. If, 
however, the expression is not a regular expression, Gl displays an error message and 
then terminates. For example, if we enter 

j ava Gl be 

Gl simply terminates because be is a regular expression. If, however, we enter 

java Gl )b 

then Gl responds by displaying 

Encountered " ) " at position 1 in regular expression 
Expecting factor 

because ") b" is not a regular expression. Gl includes a token manager and a parser, but 
no code generator. 

In stage two, we add a code generator to Gl. We call the resulting program G2. The 
code generator constructs a nondeterministic finite automaton (NFA) from the regular ex-
pression provided on the command line. For example, if we enter 

java G2 be 

G2 constructs the NFA that defines the same language as the regular expression be. G2 is 
a compiler in every sense. It has a token manager (to tokenize the regular expression), a 
parser (to parse the regular expression), and a code generator (to output the NFA corre-
sponding to the regular expression). The source language is the set of regular expressions. 
The target language is the set of corresponding NFAs. Thus, it is entirely accurate to call 
G2 a regular expression compiler. 

In stage three, we add a pattern-matching capability to G2. We call the resulting pro-
gram G3. G3 is our finished grep program. When we invoke G3, we specify both a regu-
lar expression and a file. For example, in the following command, 

j ava G3 be f . t x t 

we are specifying the regular expression be and the file f . t x t . In response, G3 con-
structs an NFA corresponding to the regular expression be. It then determines which lines 
in f. t x t have a substring accepted by the NFA, and, therefore, match the regular expres-
sion. G3 displays all such lines. 

That portion of JavaCC that creates the token manager is similar to G3. Like G3, 
JavaCC converts the regular expressions it is provided to finite automata. It then outputs a 
program (the token manager) that uses these automata to identify the corresponding 
tokens. 
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18.2 REG U LAR EXPRESSIONS FOR OUR GREP PROGRAM 

When you invoke Gl, G2, or G3, you specify a regular expression on the command line. 
This expression can be any regular expression in the form described in Section 1.14, ex-
cept λ and φ. The regular expression can also use the period, which acts as a wild-card 
character, that is, it matches any single character. For example, the regular expression 
b . t matches ba t , but , b7t, andb! t , but not b t or boot . 

You should surround the regular expression on the command line with quotes if it con-
tains any characters that are treated in a special way by the shell program of the operating 
system you are using. The use of quotes on the regular expression on the command line 
ensures that the shell program of the operating system passes it as is to your grep pro-
gram. Suppose, for example, you omit the quotes around the regular expression, as in the 
following command: 

j ava Gl be* 

On some systems, the shell program would expand be* to a list of file names that start 
with be. In that case, Gl would not be passed the regular expression. 

An asterisk in a regular expression represents the star operator. But what if we want to 
represent an "ordinary" asterisk (i.e., an asterisk that is not the star operator)? To specify 
an "ordinary" asterisk, we simply prefix the asterisk with a backslash. For example 
"b \* c" matches a b followed by an asterisk and a c (here the asterisk is an "ordinary" 
character). But "b* c" matches zero or more b's followed by a c (here the asterisk is the 
star operator). Similarly, to represent the ordinary versions of any of the other special 
characters (the period , vertical bar, left parenthesis, right parenthesis, backslash, and 
quote), simply backslash the character. For example, to represent a sequence consisting of 
an ordinary period, an ordinary vertical bar, and an ordinary backslash, use "\ A I \ \ ". 

18.3 TOKEN MANAGER FOR REGULAR EXPRESSIONS 

In a nutshell, here is how the our grep program works: It compiles the regular expression 
obtained from the command line to an NFA. It then scans the specified input file using 
this NFA to detect matches. Thus, the first part of our grep program is a regular expres-
sion compiler that translates a regular expression to its corresponding NFA. Just like the 
compilers we have already written, this compiler consists of a token manager, a parser, 
and a code generator. 

Let us start by considering the design of the token manager for our regular expression 
compiler. We will represent each token with an object of type Token—the same class we 
used for our compilers in previous chapters (see Figure 10.8). 

However, we will use only the kind, beginColumn, and image fields. 
For ordinary characters, the kind field contains the constant CHAR defined in the 

GlConstants interface (see Figure 18.1), and the image field contains the character in 
string form. For the special characters period, left parenthesis, right parenthesis, vertical 
bar, and asterisk, the kind field contains the constants PERIOD, LEFTPAREN, RIGHT-
PAREN, OR, or STAR, respectively, all of which are defined in the GlCons tan ts inter-
face. To mark the end of the regular expression, a token whose kind field contains the 
constant EORE is used. For example, consider the regular expression b * \ * . It consists of 
a b, a star operator, and an escape sequence that represents an "ordinary" asterisk. It 
yields the sequence of tokens in Figure 18.2. 
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In most cases, each token corresponds to a single character in the regular expression. 
Thus, the logic for the getNextToken () method in the token manager is simple: 

1. If at the end of the regular expression, return an EORE token. 
2. If the current character is a special character, return a special character token (i.e., a 

token with PERIOD, LEFTPAREN, RIGHTPAREN, OR, or STAR in its k i n d field 
and the character in string form in its image field). 

3. If the current character is the backslash, advance to and return the next character as 
CHAR token (i.e, a token with CHAR in its kind field and the character in its image 
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field). For example, for the escape sequence \ *, getNextToken () returns the as-
terisk as a CHAR token rather than as a STAR token. Thus, an escaped asterisk spec-
ifies an "ordinary" asterisk. getNextToken () handles all escape sequences this 
way. Thus, for \ n, \ r, and \ t , it returns "n", " r" , and " t " , respectively, not the 
newline, carriage return, and tab characters. 

4. Otherwise, return the current character as a CHAR token (i.e., a token with CHAR in 
its kind field and the character in S t r i n g form in its image field). 

In addition, for all tokens the beginColumn field should be set to the starting position of 
the token in the regular expression. 

The regular expression to be compiled is obtained from a r g s [ 0] , where a r g s is the 
parameter in the main method. To provide the token manager with the regular expres-
sion, we simply pass args[ 0] to the token manager constructor: 

GITokenMgr tm = new GITokenMgr(args[0] ); 

18.4 GRAMMAR FOR REGULAR EXPRESSIONS 

G18.1 is the grammar for our regular expressions. It is similar to the grammar we have 
been using for arithmetic expressions. 

G18.1 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 

expr 

termList 

termList 
term 

factorList 

factorList 

factor 
factor 

factor 
factorTail 

factorTail 

-^ 
-> 
-> 
-* 
-+ 

-^ 
-» 
-> 
-> 
^ 1 

term termList 

" | " term termList 

A 
factor factorList 
factor factorList 

A 
<CHAR> factorTail 
<PERIOD> factorTail 

"(" expr " ) " factorTail 
"*" factorTail 

-> k 

In regular expressions, successive factors have no intervening operator; we simply 
concatenate factors together. Thus, the first f a c t o r L i s t production does not start with 
an operator symbol. The f a c t o r T a i l productions add zero or more star operators to the 
end of a factor. 

At this point, you should implement Gl—the first version of our grep program that 
only parses the regular expression it is provided. It should display an error message if the 
expression provided is not a valid regular expression. 

The structure of Gl is given in Figure 18.3. 

18.5 TARGET LANGUAGE FOR OUR REGULAR EXPRESSION COMPILER 

Our next step is to extend our G1 regular expression parser to a regular expression com-
piler, which we will call G2. Accordingly, its various classes will have names prefixed 
with "G2" rather than "G1." G2 translates the regular expression it is provided when it is 
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invoked to an NFA that corresponds to that regular expression. Thus, the target language 
for our G2 compiler is the set of nondeterministic finite automata (NFAs) corresponding 
to the regular expressions we can provide G2. The source language is the set of regular 
expressions we can provide to G2. A new class G2CodeGen (the code generator) pro-
vides the methods that construct the required NFAs. 

G2 represents each state of the NFA it builds with an object of type NFAState (see 
Figure 18.4). The NFAState class includes a static method displayNFA that displays 
an NFA, given its start state. The implementation of this method is not shown in Figure 
18.4. However, the complete NFAState class is in the file NFAState. j ava in the Jl 
Software Package. 

Each state has at most two exiting arrows. NFAState has two fields—arrowl and 
arrow2—to represent these arrows. Note that there is a l a b e l 1 field for a r rowl in 
NFAState (see line 4 in Figure 18.4). The second arrow, if there is one, necessarily has λ 
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as its label. Thus, a l a b e l 2 field for arrow2 is unnecessary. The a c c e p t S t a t e field 
points to the accept state of the NFA (there is only one). However, this field is valid only 
for the start state of the NFA. 

G2 constructs NFAs as described in Section 17.10. Using the construction technique 
described there, G2 produces NFAs that have the following properties: 

1. One and only one state is an accept state. 
2. Each state has at most two arrows leaving it. 
3. If a state has two arrows leaving it, one necessarily is labeled with A. 
4. The accept state has no arrows leaving it. 

Thus, the representation of a state need include only 

1. a r rowl and arrow2, which represent the two arrows (at most) that leave a state. 
A lack of an arrow leaving a state is indicated with a null value. For example, if 
arrow2 is null, then the state has no second arrow leaving it. 

2. l a b e l 1, the label on a r rowl . The label λ is represented with 0. We do not need 
l a b e l 2 , the label for arrow2, because arrow2, if used, always has the label A. 

3. a c c e p t S t a t e , the pointer to the accept state of the NFA. All states have this 
field. However, it is valid only for the start state of the NFA. That is, only the 
a c c e p t S t a t e field of the start state necessarily points to the accept state of the 
NFA. 

The methods that make up the parser pass states via the parameter and return mecha-
nisms of Java. For example, let us consider the productions for expr and t e rmLis t : 

expr —» term termList 
termList —» "I" term termList 
termList —> A 
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The corresponding translation grammar is in Figure 18.5. The expr production tells us 
that the expr method calls the term method and then the t e r m L i s t method ( lines 5 
and 6 in Figure 18.5). term returns to expr the pointer (i.e., reference) to the start state 
of the NFA corresponding to the term it just parsed, expr then calls t e rmLis t , passing 
it this pointer. t e r m L i s t parses the rest of the expression and returns the pointer to the 
start state of the NFA for the entire expression. The expr method then returns this point-
er to its caller. 

t e r m L i s t calls term (line 18 in Figure 18.5). term parses the input corresponding 
to the next term in the regular expression and constructs its corresponding NFA. It then 
returns the pointer to the start state of this NFA to t e rmLis t . Now t e r m L i s t has ac-
cess to pointers to two start states: 

1. p, the pointer it is passed (see line 10). 
2. q, the pointer returned by the call of term (see line 18). 

t e rmLis t then passes the constant OR (which represents the vertical bar operator), p, 
and q to the make method in the code generator (line 19). This method constructs a new 
NFA from the NFAs associated with p and q, and returns the pointer to its start state. This 
new NFA is the combination of the p and q NFAs as required by the OR (i.e., vertical 
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bar) operator. t e r m L i s t then calls itself (line 20), passing it the start state of the new 
NFA. Through recursive calls, t e r m L i s t repeats this process—once for each additional 
term in the expression, each time building an increasingly more complex NFA that in-
cludes the latest term just parsed. When the end of the expression is reached (which is sig-
naled by the appearance of a right parenthesis or EORE in the input), the recursion of 
t e r m L i s t stops. Lines 25 and 29 are executed. At this point, the parameter p points to 
the final NFA (the NFA for the entire expression). Line 29 returns this pointer to the 
caller of t e rmLis t , which, in turn, returns it to its caller, and so on, all the way back to 
expr. expr then returns it to its caller (see line 7). For example, suppose an expression 
consists of four terms: 

term i | term2 \ term, \ term4 

On its first call, t e r m L i s t constructs (by calling make) the NFA for term, \ term2 using 
the NFAs for term, and term2. On its first recursive call, t e r m L i s t constructs the NFA 
for term, \ term2 | term, using the NFA just constructed for term, \ term2 and the NFA for 
term,. On its second recursive call, t e r m L i s t constructs the NFA for term, \ term2 \ 
term, \ term4 using the NFA just constructed for term, \ term2 \ term¡ and the NFA for 
term4. Each recursive call uses the NFA constructed on the previous recursive call by 
make. Finally, on its third (and last) recursive call, t e r m L i s t stops recursing. Instead, it 
returns the pointer to the NFA it was just passed (which is the pointer to the NFA for 
term, \ term2 | term, \ term4). This pointer is then returned back up the call chain, all the 
way to expr, which, in turn, returns it to its caller. 

The structure of the term and f a c t o r L i s t methods parallels that of expr and 
t e rmLis t . f a c t o r L i s t calls make with 

p = eg.make(CONCAT, p , q ) ; 

Because the first argument in this call of make is CONCAT, make constructs the NFA that 
results from the concatenation of the p and q NFAs. 

f a c t o r calls make to construct the NFAs corresponding to CHAR and PERIOD to-
kens. For example, when f a c t o r is parsing b, it calls make to construct the correspond-
ing NFA. This NFA has a start state, an accept state, and one arrow from the start state to 
the accept state labeled with b (see lines 32-38 in Figure 18.7). 

f a c t o r T a i l calls make to construct NFAs corresponding to a starred expression. 
Whenever it is called, it is passed the pointer to the start state of an NFA for a factor in the 
regular expression. If it then consumes a STAR operator, it calls make to construct the 
NFA corresponding to that factor starred (see Figure 18.6). There are two f a c t o r T a i l 
productions, one of which is a lambda production (see G18.1). In f a c t o r T a i l , the 
lambda production is the default production, that is, it is applied by default if the other 
production cannot be used. 

Figure 18.7 shows the structure of the make method in the code generator. It is an 
overloaded method that can take a variety of arguments. Note that some of the code has 
been omitted (see lines 19, 40, and 54). Figure 18.7 is available in the Jl Software pack-
age in the file make. j ava. 

Let us examine the operation of make when it is passed the OR operator and the point-
ers p and q to the start states of two NFAs (see Figure 18.8a). Note that in Figure 18.8, 
each state is labeled with the pointer variable that points to it. For example, the state to 
which p points is labeled with p. Thus, when we say "the p state," we mean the state la-
beled with p, that is, the state to which p points. 



508 CAPSTONE PROJECT: IMPLEMENTING GREP USING COMPILER TECHNOLOGY 

On lines 9 and 10 in Figure 18.7, make creates the s and a states (see Figure 18.8b). 
On lines 11 and 12, it creates arrows from the s state to the p and q states (see Figure 
18.8c). The labels on these arrows default to λ. Next, on lines 14 and 15, it creates arrows 
from the accept states of the p and q NFAs to the a state (see Figure 18.8d). Finally, on 
line 16, it sets the a c c e p t s t ä t e field in the s state to a (see Figure 18.8e). It then re-
turns s, the pointer to the start state of the new NFA. 

At this point, you should extend your Gl program so that it compiles the regular ex-
pression it is provided to an NFA. Call this version of your grep program G2. The expr 
method should return to the p a r s e method the start state of the final NFA. p a r s e should 
then return this start state to main, main should then call displayNFA, passing it the 
start state returned to p a r s e . 

18.6 USING AN NFA FOR PATTERN MATCHING 

Our last step in the creation of our grep program is to extend G2 so that it can perform 
pattern matching using the NFA it constructs. We call the resulting program G3. It in-
cludes a G3Matcher class that provides the pattern matching function. This class con-
tains three methods: 

private boolean lambdaClosure() 
private void applyChar(char c) 
public void match() 

l ambdaclosure performs the λ-closure operation described in Section 17.6. a p p l y -
Char determines the set of states reachable from the current set of states via the character 
it is passed, match calls lambdaClosure and applyChar to determine if a match oc-
curs on any line on the input file, match displays any line on which a match occurs. 

The G3Matcher class contains the following instance variables: 

• ArrayList<NFAState> c u r r e n t S t a t e s , which contains all the possible cur-
rent states at each step of the input process. Remember that there can be more than 
one current state in an NFA as it processes its input. 
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• ArrayList<NFAState> n e x t S t a t e s , which is used to hold the set of states 
reachable from the current state set when a character is applied to the NFA. 

• State s t a r t S t a t e , which contains the pointer to the start state of the NFA 
• Scanner i n F i l e , which provides access to the input file. 

Let's now examine the methods in G3Matcher more closely. lambdaClosure per-
forms the λ-closure operation (see Section 17.6) on the set of states in c u r r e n t s t a t e s . 
Its pseudocode is in Figure 18.9. 

In addition to performing the λ-closure operation, lambdaClosure returns a 
true/false value in the variable gotAccept that indicates if the set of current states in-
cludes the accepting state of the NFA. This return value is used by the match method to 
determine if a match has occurred. The initial i f statement checks i f s t a r t S t a t e . a c -
c e p t s t a t e (the accept state of the NFA) is s, where s is one of the current states. 

The applyChar method determines which states are reachable from the current states 
via the character it is passed. It uses a local variable n e x t S t a t e s whose type is Ar-
rayList<NFAState>. Its pseudocode is in Figure 18.10. 

Now let us consider what match must do to process one line of the input file. The 
NFA might match a substring that starts at column 1 of the current line. If it does, match 
should display the line, and move on to the next line. If, however, it does not match the 
substring starting in column 1, it has to move on to column 2 in the same line and repeat 
the test. That is, it has to check to see if the substring starting in column 2 provides a 
match. Again, if a match is detected, match displays the line and moves on to the next 
line. If a match does not occur, it moves on to the next column of the current line. It con-
tinues this process until either a match is detected or the line has been completely tested. 
Figure 18.11 shows the Java code in match that processes one line of the input file (this 
code is in the file match, j ava in the Jl Software Package), match has to execute this 
code for every line in the input file, buf holds the current input line. 
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With the G3Matcher class, you can easily extend your G2 regular expression compil-
er to get G3. Figure 18.12 shows the structure of the main method in G3. On line 20, 
main passes the constructor for G3Matcher both the input file and the NFA (whose start 
state is given by s t a r t S t a t e ) . 

G3 displays the lines in the input file on which a match occurs. If the expression pro-
vided to G3 is not a valid regular expression, G3 displays an appropriate error message. 
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PROBLEMS 

1. Implement Gl. Test your program with b, be, b | c, b*, ( (b) ), bc |b*, b | , * b , b ) , 
(b, b | * c, λ. Be sure to surround the regular expressions that contain the star opera-
tor with quotes when you enter them on the command line. Also try b \ (b followed 
by a backslash), both with and without surrounding quotes. 

2. Implement G2. Test your program with the regular expressions from Problem 18.1. 
3. Implement G3. Test your program by entering 

java G3 xyz g r e p . t x t > p l 8 0 3 a . t x t 
j ava G3 " n . t | b o * t " g r e p . t x t > p l 8 0 3 b . t x t 
java G3 " b \ * t " g r e p . t x t > p l 8 0 3 c . t x t 

g r e p . t x t is in the Jl Software Package. Hand in your G3 program, p l 8 0 3 a . t x t , 
p l 8 0 3 b . t x t , a n d p l 8 0 3 c . t x t . 

4. In the implementation of grep described in this chapter, every state has an a c c e p t -
S t a t e field. An alternate approach is to represent an NFA with an object that has 
both the start state and the accept state. Then each state would not have to have an 
a c c e p t s t a t e field. Rewrite your implementation of G3 using this approach. How 
does it compare with the original approach? 
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5. Add support to your implementation of G3 for the + (one or more) and ? (zero or one) 
operators. Call this version G4. Test your program by entering 

java G4 xyz grep.txt > pl805a.txt 
java G4 "n.t|bo*t" grep.txt > pl805b.txt 
java G4 "b\*t" grep.txt > pl805c.txt 
java G4 "n.?t grep.txt > pl805d.txt 
java G4 "bo+t" grep.txt > pl805e.txt 

grep.txt is in the Jl Software Package. Hand in your G4 program, pl805a.txt, 
pl8 05b.txt, pl80 5c.txt, pl805d.txt, andpl805e.txt. 

6. Add support of the command line arguments -v (invert match) and -n (line num-
bers) to your G3 program. Call this version G5. I f -v is specified, G5 displays every 
line not matched by the given regular expression. If -n is specified, G5 displays the 
line number within the input file of every line displayed. Test your program by enter-
ing 

java G5 -v -n xyz g r e p . t x t > p l 8 0 6 a . t x t 
j ava G5 -n -v xyz g r e p . t x t > p l 8 0 6 b . t x t 

g r e p . t x t is in the Jl Software Package. Hand in your G5 program, pl80 6 a . t x t , 
a n d p l 8 0 6 b . t x t . 

7. Would it make sense to convert the NFA that your grep program creates to a DFA 
and then use the DFA for pattern matching? How would you represent the DFA? 

8. Would it be better to use an array representation of the NFA rather than a linked 
structure? Describe the structure of the array that you would use. 

9. Implement a grep program that supports JavaCC-type regular expressions. 
10. Using the standard grep program (for example, the grep on a Linux system), deter-

mine what strings are matched by the following regular expressions: 

b\ I c (do not enter with enclosing quotes) 
"b\ " I c" (enter with enclosing quotes) 
"b I c" (enter with enclosing quotes) 

Now repeat using the standard egrep program. 



19 
COMPILING TO A REGISTER-ORIENTED 
ARCHITECTURE 

19.1 INTRODUCTION 

The J1 computer that we have been using has a stack-oriented architecture. Most the in-
structions in its instruction set operate on operands obtained from the stack. For example, 
the assembly code for 

z = x + y; 

is 

; push address onto the stack 

; push value in x onto stack 
; push value in y onto stack 
; pop top two, add, and push result 
; pop value and address, store value 

All five of these assembly instructions involve pushing and/or popping items from the 
stack. The Jl computer, however, has a second, alternate architecture—one that is reg-
ister oriented. In a register-oriented architecture, the CPU uses registers (one-word stor-
age areas within the CPU) rather than a stack to hold operand values and to accumulate 
results. For example, to add x and y and place the result in z when the J1 computer is 
configured with its register-oriented architecture, we would use the following assembly 
instructions: 

; load value of x into ac register 
; add value of y to ac register 
; store value in ac register in z 

p c 
P 
P 
add 
s t a v 

z 
X 

y 

I d 
add 
S t 

X 

y 
z 
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The Id instruction loads the contents of the main memory location specified by x into 
the ac register. The add instruction adds the contents of the main memory location 
specified by y to the ac register. Finally, the s t instruction stores the value in the ac 
register into the main memory location specified by z. The Id, add, and s t instructions 
work only with the ac register. Thus, the specific register to be loaded, added to, or 
stored does not have to be (and should not be) specified in these instructions. The ac 
register is typically used to accumulate the result of a computation, hence the name ac 
(which stands for "accumulator"). Comparing the two assembly sequences above, we 
see that the sequence for the register-oriented architecture is shorter. A more dramatic 
difference appears if we compare the total number of main memory accesses. For the 
stack-oriented architecture, we get 14 (one for pc, one for each p, three for add, three 
for s t av , and one for each instruction to fetch it from main memory). For the register-
oriented architecture, we get only six (one for Id, one for add, one for s t , and one to 
fetch each instruction from main memory). The number of memory accesses is impor-
tant because memory accesses are time-consuming. The total number of memory ac-
cesses is a rough measure of the execution time of an instruction sequence. The stack-
oriented architecture is clearly inferior in this respect. Unless it has special circuits to 
speed up accesses to its stack, it will generally be significantly slower than a compara-
bly priced register-oriented architecture. A register-oriented architecture does have some 
disadvantages, however. In this chapter, we will see that compiling to a register-orient-
ed architecture is more difficult than compiling to a stack-oriented architecture. 
Moreover, compilers for register-oriented architectures, unlike compilers for stack ar-
chitectures, generally produce significantly less-than-optimal code unless they use spe-
cial techniques to optimize the generated code. Thus, a good compiler for a register-ori-
ented architecture is typically more complicated and more difficult to write than one for 
a stack-oriented architecture. 

When the Jl computer is configured with its stack-oriented architecture (this is its de-
fault configuration), its instruction set is the stack instruction set. When configured with 
its register-oriented architecture, its instruction set is the register instruction set. We will 
call the SI compiler from Chapter 12 modified to generate code in the register instruction 
set the R1 compiler. 

19.2 USING THE REGISTER INSTRUCTION SET 

To use the register instruction set on the Jl computer, we simply place a ! r e g i s t e r di-
rective at the beginning of our assembly language program. With this directive, both the a 
and e programs in the J1 software package reconfigure to the register instruction set. For 
example, Figure 19.1 shows a complete assembly language program that uses the register 
instruction set. It adds x and y and displays the sum. Note the ! r e g i s t e r directive on 
the first line. 

The sout , dout, and aout instructions in the register instruction set work the same 
way they do in the stack instruction set except that they use the ac register instead of the 
top of the stack. For example, sou t displays the string pointed to by the ac register (not 
the string pointed to by the top of the stack); dout displays the value in the ac register 
(not the value on top of the stack). The l dc instruction is like the pc instruction in the 
stack instruction set, except that it moves the immediate value into the ac register instead 
of pushing it onto the stack. For example, in the instruction 

l d c @L0 
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the immediate value in the machine instruction is the memory address corresponding to 
@L0. Thus, when executed, this instruction loads the address of @L0 into the ac register. 

With the register instruction set, the Jl computer has two modes: absolute and relative. 
In the absolute mode, the addresses in the Id, s t , add, sub, d iv , and mult instructions 
are treated as absolute addresses. In the relative mode, the addresses in these instructions 
are treated as relative addresses—relative to the location to which the bp register points. 
For example, suppose bp points to location 100 and the Jl computer is in the relative 
mode. Then 

Id 3 

would load the ac register from location 103. The same instruction, however, would load 
from location 3 if the J1 computer were in the absolute mode. 

The start-up code for the register instruction set is in the file r up . o in the Jl Software 
Package (see Section 16.2). For a description of all the instructions in the register instruc-
tion set, see Appendix B or the r e g i s t e r . t x t file in the Jl Software Package. 

19.3 MODIFICATIONS TO THE SYMBOL TABLE FOR Rl 

The endcode method in our SI compiler for the stack instruction set outputs dw state-
ments all of whose values are zero. Because the value of every symbol is zero, it is not 
necessary to record the value of each symbol in the symbol table. However, in the Rl 
compiler, the dw statements that endCode generates can have nonzero as well as zero 
values. For example, the assembly code Rl generates for 

x = y + 5000; 

is 

Id y 
add @5000 
s t x 
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For this statement, endCode in Rl has to output three dw statements, one of which has a 
nonzero value: 

x: dw 0 
y: dw 0 
Θ5000: dw 5000 

To record the value of each symbol, the symbol table in Rl uses an ArrayList named 
symbol (to record the symbol) and an ArrayList named dwValue (to record the sym-
bol's value). These two ArrayLists (as well as a third ArrayList named needsDW, 
which we will discuss shortly) are parallel structures. Whenever the e n t e r method 
adds a symbol to symbol, it also adds its corresponding value to dwValue (see Figure 
19.2a). 

Our SI compiler for the stack instruction set did very little passing of information from 
one point in the parse to another. However, our Rl compiler will have to do considerably 
more passing of information. The best way to pass information on a variable encountered 
during a parse is to pass its symbol table index. A symbol table index provides easy ac-
cess to not only a variable's name but any other information on that variable that is in the 
symbol table. Moreover, a symbol table index uniquely identifies a variable, whereas the 
variable's name does not. For example, a source program could have two variables named 
x: one global and one local. The two variables have the same name, but they would have 
distinct symbol table indices. 

In all our compilers for the stack instruction set, the endCode method in the code gen-
erator emits a dw statement for every entry in the symbol table. What if we want to pass 
something via its symbol table index but do not want a dw statement generated for it? We 
will not need to do this in Rl but we will for more advanced compilers that use the regis-
ter instruction set. In anticipation of this future requirement, we will use in Rl 's symbol 
table a third ArrayList of type boolean named needsDW. For each symbol in the sym-
bol table, the corresponding element in needsDW indicates if a dw statement should be 
generated by endCode. encode outputs a dw statement only for those symbols whose 
needsDW value is true (see Figure 19.2b). The symbol table also includes some new ac-
cessor and mutator methods (see Figure 19.2c). 

19.4 PARSER AND CODE GENERATOR FOR Rl 

Let us consider the stack instruction set code that is generated by our SI compiler when it 
parses the expression x + y: 

P x 
p y 
add 

Where in SI is the add instructions produced? Recall that when the current token is " + ", 
the t e rmLis t method parses " + " and term, and then recursively calls itself (see Figure 
19.3). 

Between the call of term and the recursive call, t e r m L i s t generates an add instruc-
tion (line 5 in Figure 19.3. The call of term () produces the code that pushes the right 
operand of the add operator onto the stack. Under this operand on the stack is the left 
operand, pushed there by code emitted earlier in the parse. Thus, the code we need to add 
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these two operands is simply an add instruction. At execution time, the two operands will 
be the top two items on the stack. The add instruction pops them, adds them and places 
the result back on the stack. Now let us see what kind of add instruction we need when we 
are compiling to the register instruction set. Unfortunately, determining the appropriate 
add instruction is considerably more complex when we use the register instruction set. 
Consider, for example, the expression x + y. For this expression, t e r m L i s t should 
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emit not only an add instruction (which adds the right operand), but also a i d instruction 
which loads the left operand: 

Id x 
add y 

Thus, both left and right operands must be passed to t e rmLis t . Could the code to load 
the left operand be generated when term or f a c t o r parses the left operand? But if term 
or f a c t o r did that, it would also do it for the right operand. Thus, we would get the code 

Id x 
Id y 

The second load (of y) would overlay the value loaded by the first load (of x). Thus, if 
t e rmLis t then generated 

add y 

the resulting code would incorrectly add y and y instead of x and y. We conclude that 
both left and right operands must be passed to t e r m L i s t so it can generate the necessary 
Id as well as the add instruction. Similarly, both left and right operands in a multiplica-
tion must be passed to f a c t o r L i s t (the method that generates the multiplication code). 

Now consider the expression x + y + z. For this expression, t e r m L i s t is called 
twice, once to parse "+ y" and once to parse "+ z". On its first call, t e r m L i s t should 
emit a i d and an add: 

Id x 

add y 

However, on its second call, it should emit only an add of the right operand: 

add z 
because the left operand is already in the ac register by virtue of the first add instruction. 

We have seen that under some circumstances, t e r m L i s t should generate both a Id 
and add instruction. But under other circumstances, it should generate only an add of the 
right operand. Now consider x + y* z. For this expression, t e rmLis t calls term, which, 
by calling f a c t o r L i s t , generates 



19.4 PARSER AND CODE GENERATOR FOR RI 521 

Id y 

mult z 

Thus, t e r m L i s t in this case should generate an add of the left (not the right) operand: 

add x 
Clearly, to generate the correct instruction, t e rmLis t has to consider the special cases: 
sometimes it should emit a i d and an add, sometimes only an add of the right operand, 
sometimes only an add of the left operand. But there is yet another complication. Consid-
er w* k + y* z. When w* x is parsed, we get the code 

Id w 
mult x 

When executed, this code leaves the result in the ac register. But we cannot simply leave 
the result in the ac register because the ac register is needed to evaluate the second term, 
y* z. The code we need for this expression must save the value of w* x in a temporary lo-
cation, thereby making the ac register available for the evaluation of y* z. Here is the 
code we need: 

Id w 
mult x 
st @t0 ; save value of w*x in @t0 

Id y 
mult z ; value of y*z now in ac reg 
add @t0 ; add value of w*x to value of y*z 

where @t0 is a temp variable (a compiler-generated variable whose name is selected from 
the sequence @t0, @tl, @t2, . . .) defined by 

@t0: dw 0 

To make our Rl compiler as simple as possible, we will design t e r m L i s t to handle 
all cases we discussed above in a uniform way. Specifically, we will pass both the left and 
right operands to t e rmLis t . t e r m L i s t will then emit code to 

1. Load the left operand 
2. Add the right operand 
3. Store the result in a temp 

With this approach, we will not get efficient code (we will fix this shortcoming in the next 
chapter). On the positive side, our compiler will be as simple as possible. We will design 
f a c t o r L i s t , which generates the mult instruction, with the same approach. That is, it 
will emit code to 

1. Load the left operand 
2. Multiply by the right operand 
3. Store the result in a temp 
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Let us examine the translation grammar in Figure 19.4 for our simplified t e r m L i s t 
method, which we will use for Rl. When we call t e rmLis t , we pass it l e f t , the symbol 
table index of the left operand (see line 1). On line 4, we call term, which returns the sym-
bol table index of the right operand. Then on line 5, we call the add method in the code gen-
erator, passing it the left and right operands, add emits the required ld-add-s t sequence. 
It also returns the symbol table index of the temp it uses in the s t instruction. This temp be-
comes the left parameter in the recursive call of t e r m L i s t on line 6. Thus, as t e r m L i s t 
recurses, the left parameter represents that portion of the expression parsed so far. When 
t e r m L i s t finally reaches the end of the expression, the second alternative is taken (line 
9). At this point, the l e f t parameter is the symbol table index of the item that holds the val-
ue of the entire expression. t e r m L i s t returns this index to its caller, which, in turn, returns 
it to its caller, and so on, all the way back to expr. Figure 19.5 shows the code for the add 
and getTemp methods in the code generator, add first emits the Id and s t instructions. It 
then calls getTemp to get the next available temp in the sequence @t0, @tl, @t2, .... It 
then emits a s t to this temp and returns its symbol table index. getTemp creates the temp, 
enters it into the symbol table, and returns its symbol table index. We have to enter the temp 
into the symbol table so we have an index to return. We also have to enter it so that a dw 
statement will ultimately be generated for it by endCode. 
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Let us see what assembly code we get using our new t e r m L i s t method for several 
expressions. For x + y, we get 

Id x 
add y 
st @t0 

For x* y + z, we get 

Id x 
mult y 
st @tl 

Id @tl 
add z 
st @t2 

For w* x + y* z, we get 

Id w 
mult x 
st @t3 

Id y 
mult z 
st @t4 

Id @t3 
add @t4 
st @t5 

Figure 19.6 gives the entire translation grammar for the parser in Rl. The translation 
grammar for Rl differs from the translation grammar for SI in two significant ways. 
First, it does not directly call the e m i t l n s t r u c t i o n method in the code generator. 
e m i t l n s t r u c t i o n is now a private method in the code generator. For example, to emit 
code for the assignment statement, the Rl parser calls the a s s i g n method in the code 
generator (see line 31 in Figure 19.6) which, in turn, calls e m i t l n s t r u c t i o n . Second, 
the f a c t o r method does not emit any code. It simply returns a symbol table index. The 
code to load a factor into the ac register is emitted by either the add method in 
t e rmLis t or the mult method in f a c t o r L i s t . 

The methods in the Rl code generator that are not in the SI code generator are 

public void assign(int left, int expVal) 

This outputs the l d - s t sequence for an assignment statement by making calls to 
e m i t l n s t r u c t i o n (see line 31 in Figure 19.6). l e f t and expVal are symbol table in-
dices. 

public void println(int expVal) 
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This outputs the ld-dout - ldc-aout sequence for a p r i n t l n statement by making calls 
to e m i t l n s t r u c t i o n (see line 40 in Figure 19.6). expVal is a symbol table index. 

p u b l i c void a d d ( i n t l e f t , i n t r i g h t ) 

This outputs the ld-add-s t sequence for an add operation by making calls to e m i t l n -
s t r u c t i o n (see Figure 19.5a and line 56 in Figure 19.6). l e f t and r i g h t are symbol 
table indices. 

p u b l i c void m u l t ( i n t l e f t , i n t r i g h t ) 

This outputs the ld-mul t - s t sequence for a multiplication operation by making calls to 
e m i t l n s t r u c t i o n (see line 74 in Figure 19.6). mult is similar to add. 

p r i v a t e i n t getTempO 

This generates the next temporary variable from the sequence "@t0", "@tl", "@t2",... 
, enters it into the symbol table, and returns its symbol table index (see Figure 19.5b). 
getTemp is called by add and mult (see Figure 19.5a). 

private void emitlnstruction(String op, int opndlndex) 

The code in this method consists of the following call to the e m i t l n s t r u c t i o n method 
that has two string parameters : 

e m i t l n s t r u c t i o n ( o p , s t . g e t S y m b o l ( o p n d l n d e x ) ) ; 

PROBLEMS 

1. Implement the hand-written Rl compiler or the equivalent JavaCC-generated Rlj 
compiler. Rl is SI modified to generate code in the register instruction set. Test your 
compiler by entering 

javac Rl.java or javacc Rlj.jj 
java Rl SI javac Rlj.java 
a SI.a java Rlj SI 
e SI /c a SI.a 

e SI /c 

Start by copying S I . j a v a to R l . j a v a or S l j . j j to R l j . j j . Then modify 
Rl . j ava or Rl j . j j . Because you are compiling S I . s, the performance statistics 
that the program generates will be relative to the SI compiler. You will probably find 
that Rl is over the limit in size but under the limit in execution time. 

2. Compare your SI (or Slj) compiler with your Rl (or Rlj) compiler with respect to 
size and execution time of the generated code. Does Rl generates inefficient code rel-
ative to the code generated by SI? 

3. Do temps have to be unique? Or can they be reused? 
4. What is the minimum number of temps required for each of the following statements: 

x = b + c + d + e + f; 
x = b + (c + (d + (e + f) ) ) ; 
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5. Implement R2 or R2j, the register instruction version of S2 or S2j. Test your program 
with S2 . s . 

6. Implement R3 or R3j, the register instruction version of S3 or S3j. Test your program 
with S3 .s . 

7. Implement R4 or R4j, the register instruction version of S4 or S4j. Test your program 
with S4 . s. 

8. Implement R5 or R5j, the register instruction version of S5 or S5j. Test your program 
with S5a . s and S5b. s. Be sure to link with rup . o, not sup . o. r u p . o is the start-
up code for the register instruction set. 

9. Implement R6 or R6j, the register instruction version of S6 or S6j. Test your program 
with S6a. s and S6b. s. Be sure to link with rup . o, not sup . o. r u p . o is the start-
up code for the register instruction set. 





20 
OPTIMIZATION 

20.1 INTRODUCTION 

We observed in the Chapter 19 that the code generated by our Rl compiler (the register 
instruction set version of SI) is inefficient. In this chapter, we will fix this shortcoming by 
incorporating the following code optimization techniques in our Rl compiler: 

1. Use the ldc instruction in place of the Id instruction to load constants in the range 
0-4095. The ldc instruction does not require a dw for the constant (the constant is 
in the ldc instruction itself). Moreover, an l dc instruction executes faster than an 
Id instruction. Thus, using l dc in place of Id saves both time and space. 

2. Reuse temps (i.e., temporary variables) to minimize their number. For example, 
suppose a program consisted of three assignment statements, each requiring a sin-
gle temporary variable. Without the reuse of temps, the compiler would create @t0, 
@tl, and @t2. With reuse, the compiler would create only @t0 and use it for all 
three assignment statements. Reuse of temps reduces the size but not the execution 
time of the target program. 

3. Constant folding. With constant folding, constant expressions (i.e., expressions or 
subexpressions containing constants exclusively) are evaluated at compile time 
rather than at run time. For example, without constant folding, the code for the ex-
pression 5000 + 6000 is 

Id 05000 
add 86000 

where @ 5 0 0 0 and @ 6 0 0 0 are defined with 

Θ5000: dw 5000 
@6000: dw 6000 

The computation—adding 5000 and 6000—is performed at run time, when the 
target program is executed. With constant folding, however, the code is 

Id 011000 

Compiler ConstructUm Using Java, JavaCC, and Yace, First Edition. Anthony J. Dos Reis 529 
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where @ 110 0 0 is defined by 

@11000: dw 11000 

The computation—adding 5000 and 6000—is performed by the compiler at com-
pile time. Constant folding reduces both the size and execution time of the target 
program. 

4. Register allocation. With register allocation, the compiler keeps track of what will 
be in registers during execution time. It can then generate code that accesses these 
values via the registers that contain them. For example, without register allocation, 
the code for 

x = y ; 

z = x ; 

is 

Id y 
s t x 

Id x 
s t z 

The first s t instruction stores the value in the ac register into the x variable in 
main memory. Thus, after its execution, the value of x is also in the ac register. 
With register allocation in effect, the compiler records this fact. Then, when it 
translates the second assignment statement, it knows it does not have to emit a i d 
instruction to load the value of x into the ac register. It can simply emit a s t in-
struction to store the value in the ac register (which already is the value of x by 
virtue of the preceding s t instruction) into z. The code produced is 

Id y 
s t x 

s t z 

The register allocation technique is easy to implement. Moreover, it can yield an 
impressive improvement in both the size and execution time of the target program. 

5. Peephole optimization. In peephole optimization, the compiler passes a "peephole" 
over the generated code. In any given position, the peephole allows the viewing of 
only a few lines. For each position of the peephole, the viewable code is optimized, 
if possible. For example, suppose the peephole is currently viewing the two-instruc-
tion sequence 

s t x 
Id x 

In this sequence, the compiler can eliminate the Id instruction because the ac reg-
ister already contains the value of x by virtue of the preceding s t instruction. Peep-
hole optimization is a localized optimization technique. That is, for each position of 
the peephole, the optimization that occurs is based on only the viewable code,not 
on the code that precedes it or follows it. 

In this chapter, we will implement several extensions of Rl using various optimization 
techniques. These compilers are 
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Rla Rl with Idc in place of Id wherever possible 
Rib Rla with temporary variable reuse 
R1 c R1 b with constant folding 
Rid R1 c with register allocation 
R1 e R1 c with peephole optimization 

By comparing the performance of these compilers, we will get a good sense of the effec-
tiveness of these optimization techniques. We will also see how compiler-generated code 
for the register instruction set compares to compiler-generated code for the stack instruc-
tion set (see Problems 6 and 7 at the end of the chapter). 

20.2 USING THE Idc INSTRUCTION 

Rl emits an Id instruction in the a s s i g n , p r i n t l n , add and mult methods in the code 
generator. To emit an Idc instruction in place of the Id instruction wherever possible, we 
simply replace the code that emits a Id instruction with a call of a new method e m i t -
Load. For example, in a s s ign , we replace 

emitlnstruction("Id", expVal); 

with 

emitLoad(expVal); 

emitLoad checks if the value corresponding to the symbol table index it is passed is in 
the range is 0-4095 (see Figure 20.1). If it is, it emits a Idc instruction; otherwise it emits 
a Id instruction. 

i s l d c C o n s t a n t is a new method in the symbol table. It accesses the item in the 
symbol table corresponding to the index it is passed, and checks if it is a constant (by call-
ing another new method i sCons t an t ) . If it is, it converts the constant to type i n t using 
I n t e g e r . p a r s e l n t , checks if its i n t value is in the range 0-4095, and returns true or 
false accordingly. 

You should now do Problem 1 at the end of the chapter (implement Rla by extending 
Rl so that it uses Idc wherever possible). Rla has the following new methods: 

• In the symbol table: 

public boolean isConstant(int index) 
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Returns true if the symbol at the given index is a constant (i.e., if the symbol starts 
with "@" or "@_" followed by at least one digit). Otherwise, it returns false. 

p u b l i c boolean i s l d c C o n s t a n t ( i n t index) 

Determines if the symbol at given index is a constant (by calling i sCons tan t ) . 
If it is, and if its value is in the range 0—4095, returns true. Otherwise, it returns 
false. 
In the code generator: 

private void emitLoad(int opndlndex) 

Emits an ldc in place of an Id if opndlndex corresponds to a constant in the 
range 0-4095 (see Figure 20.1). 

20.3 REUSING TEMPORARY VARIABLES 

Temps (i.e., temporary variables) are never accessed more that once for the value they are 
holding. Thus, whenever they are accessed, they immediately become available for reuse. 
Consider the code Rl generates for 

a = b + c + d; 

It contains two temps, @t0 and @tl: 

Id 
add 
St 

Id 
add 
St 

Id 
St 

b 
c 
@to 
@to 
d 
@tl 
@tl 
a 

@t0 reusable at this point 

can use @t0 here 
can use @t0 here 

When the compiler emits 

Id @t0 

@t0 becomes available for reuse. Thus, at this point the compiler should free (i.e., mark 
as available for reuse) @ 10. Then, when the compiler subsequently needs another temp (it 
needs one to hold the result when d is added), it will reuse @t0 instead of using @tl. 
With temp reuse in effect, the code for the assignment statement above is 

Id 
add 
st 
Id 
add 
st 
Id 
st 

b 
c 
dto 
@to 
d 
dto 
@to 
a 

; @t0 reusable at this point 

; reuse @t0 



20.3 REUSING TEMPORARY VARIABLES 533 

In Rl, temps are provided by the getTemp method (see Figure 20.2). The specific 
temp that getTemp provides depends on the value of templndex. For example, if 
templndex is equal to 0, then a call to getTemp returns @t0 (or, more precisely, it re-
turns the symbol table index of @t0). It also increments templndex so the next call of 
getTemp will provide the next temp in the sequence. Thus, after providing @t0, g e t -
Temp increments templndex to 1. How does the compiler subsequently free @t0 so that 
it can be reused? The compiler simply decrements templndex back down to 0. g e t -
Temp will then provide @t0 again on its next call. Each time the compiler decrements 
templndex, it frees the most recently created temp. 

When multiple temps are in use at the same time, they are accessed in reverse order to 
which they were created. Thus, they should be freed in reverse order as well. That is, it 
will never be the case that when temps @t0, @tl, and @t2 are in use, @t0 is accessed 
(and therefore should be freed) but not @tl or @t2. For example, consider the assembly 
code in Figure 20.3 that corresponds to 

a = (b + c) +((d + e) + (f + g ) ) ; 

After the sum of f and g is stored in @t2 (line 9 in Figure 20.3), three temps—@t0, @tl, 
and @t2—are is use. @tl and @t2 are then accessed. Thus, the compiler should immedi-
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ately free them for reuse. Since these two temps were the most recently created temps, the 
compiler can free them simply by decrementing templndex twice. 

The decrementation of templndex is performed by the f reeTemp method in Figure 
20.4a. f reeTemp decrements templndex only if the index it is passed corresponds to a 
temp in the symbol table. This check is necessary because f reeTemp is sometimes 
passed an index that does not correspond to a temp. For example, consider the code for 
the a s s i g n method (see Figure 20.4b). 

On line 3 of Figure 20.4b, a s s i g n emits a load instruction that loads the value of the 
expression on the right side of an assignment statement. If this expression is represented 
by a temp, the call of f reeTemp on line 4 frees it immediately. However, the expression 
may not be represented by a temp. For example, in the call of a s s i g n for 

x = y ; 

the indices of x and y would be passed to the parameters l e f t and expVal, respective-
ly, in a s s ign , a s s i g n would then call f reeTemp passing it expVal (the index of y). 
f reeTemp in this case should not decrement templndex because y is not a temp. For 
the add method (see Figure 20.4c), both the left and right operands may or may not be 
temps. Accordingly, add calls f reeTemp twice, once for each operand (see lines 5 and 
6). f reeTemp decrements templndex only if they are temps. 



20.4 CONSTANT FOLDING 535 

The isTemp method that f reeTemp calls (line 3 in Figure 20.4a) is a new method in 
the symbol table. It determines if an index corresponds to a temp by checking if the corre-
sponding symbol is longer than two characters and starts with "@t". 

You should now do Problem 2 at the end of the chapter (implement Rib by extending 
Rla so that it reuses temps). Rib has the following new methods: 

• In the symbol table: 
public boolean isTemp(int index) 

Returns true if the symbol corresponding to index is a temp. 
• In the code generator: 

p u b l i c void f reeTemp(int opndlndex) 

Decrements templndex if the symbol corresponding to opndlndex is a temp. 

20.4 CONSTANT FOLDING 

Constant folding requires a simple modification to the t e r m L i s t and f a c t o r L i s t 
methods in the parser. Before we consider these modifications, lets review the structure of 
the t e r m L i s t method as it is intheRl compiler (see Figure 20.5). On line 9, t e r m L i s t 
calls term to parse the right operand of the plus operator. The left operand is provided by 
the parameter l e f t . t e r m L i s t then calls add, passing it the left and right operands 
(line 10). add emits the required ld-add-s t sequence and returns the temp (or more pre-
cisely, the index of the temp) it uses in the s t instruction. This temp then becomes the left 
parameter in the recursive call of t e r m L i s t on line 11. Thus, as t e r m L i s t recurses, the 
l e f t parameter represents that portion of the expression parsed so far. When t e r m L i s t 
finally reaches the end of the expression, it executes line 15. At this point, l e f t is the 
symbol table index of the entry that will hold the value of the entire expression at execu-
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tion time. t e r m L i s t returns this index to its caller, which, in turn, returns it to its caller, 
and so on, all the way back to expr. 

To support constant folding is easy: If the left and right operands are both constants, 
the compiler does not emit assembly code to compute the result. Instead, it adds the two 
constants, creates a new constant corresponding to their sum, and then continues the parse 
using this new constant. In other words, the compiler computes the sum at compile time 
rather than generating assembly code to compute the sum. Figure 20.6 gives the specifics 
of the code we need in place of line 10 in Figure 20.5. 

If the left and right operands are not both constants, then we do what we normally do 
(line 13): call add, which emits the assembly code to perform the addition. However, if 
both operands are constants, then we convert their values to type i n t , add them, create a 
new constant for their sum, and then continue the parse using this new constant. 

To convert the values of constants to type i n t , we first get their values from the sym-
bol table using the getdwValue method (see Figure 19.2c). Because the values returned 
by getdwValue are type S t r i n g , we have to convert them to type i n t (using I n t e -
ger . p a r s e l n t ) before we can add them. 

Note that the second argument in the call of e n t e r on lines 8 and 10 in Figure 20.6 is 

"" + r e s u l t 

e n t e r requires its second parameter to be type S t r i n g . But r e s u l t is type i n t . 
Thus, to pass a string, we concatenate the null string to r e s u l t , which yields a string. 
For example, if result is the i n t -7 , the concatenation of "" to result yields the string 
I I _ T I I 

Note that the third argument on lines 8 and 10 is false. This value is assigned to the 
needsdw flag for the new constant in the symbol table (see Figure 19.2a). We do this be-
cause we will not necessarily need a dw for the new constant. For example, consider the 
following assignment statement: 

x = - 1 + 3 + - 7 ; 

The corresponding assembly code with constant folding is 

Id @_5 
s t x 
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On its first call, t e r m L i s t creates the constant @2 whose value is "2" by adding -1 and 
3. Thus, on the recursive call, the left and right operands are 2 and -7 . On this call, 
t e r m L i s t creates the constant @_5 whose value is " - 5 " by adding 2 and -7 . The con-
stant 2 is folded with the constant -7 . Thus, constant 2 never appears in the assembly 
code. So we do not need a dw for it. However, we do need a dw for some constants, for 
example, for @_5 in the current example. To get the dw statements we need, we simply 
monitor the assembly code that is emitted. If an instruction is emitted that uses a constant, 
then the needsdw flag for that constant is set to true at that time. Then, when endCode is 
subsequently executed, it will emit a dw for that constant. Figure 20.7 shows the required 
modification. Of the three e m i t l n s t r u c t i o n methods, we have to modify only one— 
the one with a S t r i n g parameter and an i n t parameter. 

To complete the implementation of constant folding, we have to modify f a c t o r L i s t 
in the same way we modified t e rmLis t . Then a sequence of factors that are constants 
will fold into a single constant. For example, the assembly code for 

x = 2*3 + 4*.5; 

will be 

ldc 26 
s t 

In this statement, 2 and 3 are folded into 6; 4 and 5 are folded into 20. Then 6 and 20 are 
folded into 26. Because 26 is in the range 0-4095, an ldc is used to load it. We do not 
need any dw statements! 

You should now do Problem 3 at the end of the chapter (implement Rlc by extending 
Rib so that it performs constant folding). Rlc does not require any new methods. Howev-
er, it requires modifications to the t e rmLi s t , f a c t o r L i s t , f a c t o r , and e m i t l n -
s t r u c t i o n methods. 

20.5 REGISTER ALLOCATION 

Register allocation is a technique that can produce substantial reductions in the size and 
runtime of the target programs produced by a compiler. The impact of register allocation 
is particularly significant on computers with multiple registers available to hold operands. 
But even with only one register available, as is the case with the Jl computer configured 
for the register instruction set, register allocation can yield substantial improvements. 

To support register allocation, the code generator at compile time keeps track of what 
variable or temp will be in the ac register at execution time. It uses a variable named ac 
for this purpose. This variable holds the symbol table index of the item whose value will 
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be in the ac register during execution time. For example, consider the code for the a s -
s ign method in Figure 20.8. 

Suppose that during the execution of a s s i g n , l e f t contains the index of the variable 
x. Then e m i t l n s t r u c t i o n on line 6 would emit the instruction 

s t x 

Thus, at this point at execution time, the ac register would contain the value of x. On line 
7, a s s i g n records this fact by assigning l e f t (which contains the index of x) to the ac 
variable in the code generator. Now suppose the next statement in the source code is the 
assignment statement 

y = χ ; 

When a s s i g n is called for this statement, the parameter expValwill have the index 
of x. Because at this point the index of x is in the ac variable, the i f statement on line 3 
will not execute the call of emitLoad. Thus, the unnecessary Id from x will not be emit-
ted. For this assignment statement, the code generator emits 

s t y 

instead of 

Id x ; unnecessa ry load 
s t y 

With register allocation, temps are initially held in the ac register. Store instructions 
that store a temp in main memory are emitted only if they are necessary. For example, 
consider the statement 

x = (a + b) + (c + d) ; 

a + b is evaluated first, the result of which is represented by @t0. Immediately after 
this evaluation, the ac register holds the result of a + b. But the ac register then has to be 
used to evaluate c + d. Thus, @t0, the temp that represents a + b, has to be stored before 
the evaluation of c + d can proceed. The corresponding assembly code is 

Id a 
add b 
st @t0 ; must store @t0 because ac reg needed 

Id c 
add d ; c + d now in ac reg 
add @t0 ; a + b in @t0 

st x 

Figure 20.9 gives the code for the add method modified to support register allocation 
If the left operand is in the ac register, then an add from the right operand is emitted (line 
4). We obviously do not need a i d because the left operand will already be in the ac reg-



20.5 REGISTER ALLOCATION 539 

ister at execution time If, on the other hand, the right operand is in the ac register, then an 
add from the left operand is emitted (line 7). Again, we do not need a Id. If neither is the 
case, then a Id has to be emitted (line 15). However, before the Id is emitted, a s t into a 
temp is emitted (line 12) if ac has the index of a temp. A s t into a temp necessitates a dw 
for that temp. Thus, if a s t is emitted, its needsdw value is set to true (line 13). A temp 
is created to represent the result of the add operation (line 20). However, a s t into this 
temp is not emitted. Instead, the ac variable is assigned the index of the temp, which ef-
fectively allocates the temp to the ac register (see line 21). 

When temps are created by getTemp, their needsdw value should initially be false. If 
a store instruction is emitted that stores a temp in main memory, then the needsdw for 
that temp is changed to true (for example, by line 13 in Figure 20.9). 

You should now do Problem 4 at the end of the chapter (implement Rid by extend-
ing Rlc so that it performs register allocation). Rid does not require any new methods. 
However, it requires modifications to the getTemp, a s s ign , add and mult methods. 
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20.6 PEEPHOLE OPTIMIZATION 

The peephole optimizer in the code generator monitors the instructions to be emitted. If 
the code generator is to emit a s t - l d sequence with matching operands, then the peep-
hole optimizer emits only the s t instruction. For example, when the code generator is to 
emit 

s t x 
Id x 

the peephole optimizer emits only the s t instruction. We don't need the Id instruction 
because the ac register and x would already have identical values by virtue of the preced-
ing s t instruction. If, however, we had the following sequence, 

s t y 
Id x 

then the Id instruction is necessary. From these two examples, we can make the follow-
ing observation: the decision to emit a Id instruction depends on the instruction that pre-
cedes it. 

If the code generator is to emit a s t - l d sequence with matching operands that are 
temps, the peephole optimizer emits neither instruction. For example, in the sequence 

s t @t0 
Id @t0 

we do not need the Id instruction because the value we need in the ac register is already 
there. Moreover, we also do not need the s t instruction because we will never need this 
temp value again. Thus, we do not have to store the temp in memory for later access. If, 
however, we had the following sequence 

s t e to 
Id x 

then we would need both the s t and the Id. From these two examples, we can make the 
following observation: the decision to emit a s t into a temp in main memory depends on 
the instruction that follows it. 

To modify the code generator in Rlc to support peephole optimization, we add a 
peephole method that performs the peephole optimization. We change every call of 
e m i t í n s t r u c t i o n or emitLoad to a call of the peephole method. Thus, all instruc-
tions go through peephole . For example, on lines 5, 6, 10, and 11 in the add method in 
Figure 20.10a, we can see the calls to peephole that were calls to e m i t l n s t r u c t i o n 
in Rlc. Similarly, on lines 3, 5, 6, and 7 in the p r i n t l n method in Figure 20.10b, we 
have calls to peephole that were calls to e m i t l n s t r u c t i o n in Rlc. 

When add emits the Id instruction (line 5 or 10 in Figure 20.10a), it selects the 
operand that is a temp, if there is one. For example, suppose the l e f t and r i g h t para-
meters are the indices of x and @t0, respectively. Then add emits 

Id @t0 
add x 
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It emits a Id is from r i g h t (the temp). If, on the other hand, the l e f t and r i g h t para-
meters are the indices of @t0 and x, respectively, then add would emit a Id from l e f t 
(which now is the temp). Thus, we would get the same sequence: 

Id @t0 
add x 

add gives precedence to the temp if there is one when it is emitting the Id instruction to 
make possible the following peephole optimization: A i d from a temp is often preceded by 
a s t into the same temp, in which case the peephole optimizer would emit neither the Id 
nor the preceding s t . For example, if the preceding l d - s t sequences were preceded by 

s t @t0 

then the peephole optimizer would emit neither the s t nor the Id. If, however, add emit-
ted the Id from x rather than @t0, then this optimization would not be possible. That is, if 
it emitted 

Id x 
add @t0 
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and the 1 d were preceded by 

s t @t0 

all three instructions would be necessary. 
When we call peephole , we normally pass it a string and an i n t (as on lines 5,6, 10, 

and 11 in Figure 20.10a). However, we can also pass peephole a string only (as on lines 
5 and 7 in Figure 20.10b), or two strings (as on line 6 in Figure 20.10b). Thus, peephole 
must be an overloaded method to accommodate these three variations in arguments. 

Figure 20.1 la shows the structure of the principal version of peephole (the one that 
has a s t r i n g parameter and an i n t parameter). Before returning to the caller, peep -
ho le stores the operation, operand, and the operand index of the current instruction in 
previousOp, previousOpnd, and previousOpndlndex, respectively. Thus, on the 
next call, peephole has access to the instruction passed to it on that call (in op, opnd, 
and opndlndex) as well as the instruction passed to it on the preceding call (in p r e v i -
ousOp, previousOpnd, and previousOpndlndex). In addition to peephole opti-
mization, the peephole methods performs the l dc optimization. That is, it uses an l dc 
in place of a Id, if possible (see lines 6 to 19 in Figure 20.1 la). 

The structure of the two-string version of peephole is given in Figure 20.1 lb. It is 
simpler than the version in Figure 20.1 la because it is never passed a s t or Id instruc-
tion. The one-string version of peephole is given in Figure 20.11c. It simply calls the 
two-string version, passing the null string as the second argument. 

You should now do Problem 5 at the end of the chapter [implement Rle by extending 
Rlc (not Rid) so that it performs peephole optimization]. Rle requires three new meth-
ods: the three variations of peephole that we described above. emitLoad from Rlc is 
not needed in Rle because its function is assumed by peephole in Rle. 

PROBLEMS 

1. Implement Rla by extending Rl so that it replaces Id with ldc wherever possible. 
Test your compiler with S I . s. 

2. Implement Rib by extending Rla so that it supports the reuse of temps. Test your 
compiler with S 1 . s. 
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3. Implement R lc by extending R lb so that it supports constant folding. Test your com-
piler with SI . s . 

4. Implement Rid by extending Rlc so that it supports register allocation. Test your 
compiler with SI . s . 

5. Implement Rle by extending Rlc (not Rid) so that it supports peephole optimization. 
Test your compiler with S 1 . s 

6. Incorporate the following optimizations into the SI compiler: 

a) Use the pc instruction in place of pwc instruction wherever possible. 
b) Use the p instruction in place of those instances of the pwc instruction not re-

placed by the pc instruction. For example, 

pwc -5 

should be replaced with 

p @_5 

where @_5 is defined with 

@_5: dw -5 

c) Constant folding 

Call this compiler Sic. 
7. Create a chart that shows the size and execution time of the S I . s program as created 

by the SI, Sic (see Problem 6), Rl, Rla, Rib, Rlc, Rid, and Rle compilers. How do 
the SI and Sic compilers compare with the register instruction set compilers? 

8. Suppose the following code is compiled with a compiler that uses the register alloca-
tion technique described in Section 20.5: 

x = 7; 
wh i l e (x - 5) 
{ 

x = x - 1; / / ac var iable has index of x 
} 

y = x; / / no Id x e m i t t e d 

After the assignment statement in the whi le loop is compiled , the ac variable used 
in register allocation will contain the index of x. Thus, the compiler will not emit a 
Id instruction that loads from x for the assignment statement after the loop (because 
the ac variable indicates that the value of x is already in the ac register). But will the 
ac register have the value of x at this point during execution time? Describe how you 
would modify the register allocation scheme so that Id instructions are emitted 
whenever they are necessary. 

9. In the register instruction set, why is it better to use a Id instruction with a dw than a 
ldw instruction without a dw? Similarly, in the stack instruction set, why is it better 
to use a p instruction with a dw than a pwc instruction without a dw? 

10. What code is generated by Rlc for 

x = 2 + 3 + y; 
x = 2 + y + 3; 
x = y + 2 + 3; 

11. Extend the constant folding mechanism in Rlc so it can fold variables whose values 
can be determined at compiler time. For example, the assembly code for 



PROBLEMS 545 

x = 5; 
y = x + 

should be 

ldc 
St 

ldc 
St 

7; 

5 
x 
12 

y 

x and 7 folded to get 12 

In this example, the compiler can determine the value of x in the second assignment 
statement. Thus, it folds this value with 7 to get 12. Call your compiler Rice. Test 
your compiler with S I . s. How does it compare with Rlc? 

12. The code Rid produces for the following program 

X = 

X = 

is 

ldc 
St 

add 
St 

halt 

x: 
@5: 

3; 
x + 5; 

3 
X 

@5 
X 

dw 
dw 

; version 

0 
5 

Because x is assigned the constant 3 before it is used, would it make sense to initial-
ize x to 3 in its dw and then dispense with the instruction that stores into x? If the 
compiler did this, it would generate 

Id 
add 
St 

halt 
x: 

@5: 

X 

@5 
X 

dw 
dw 

; version 

3 
5 

Serially reusable code is code that can be used by multiple users as long as one user 
finishes before the next one starts. A fresh copy of the program does not have to be 
loaded into memory for each user. Which version above is serially reusable? 

In the following problems, the letter in a compiler's name indicates the optimizations 
supported: 

a use of ldc in place of Id wherever possible 
b a optimizations plus reuse of temps 
c b optimizations plus constant folding 
d c optimizations plus register allocation 
e c optimizations plus peephole optimization 

The number in a compiler's name indicates the level of language support. 1, 2, 3, 4, 
5, and 6 corresponds to the levels supported by the SI, S2, S3, S4, S5, and S6 com-
pilers, respectively. 
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13. What assembly code should be generated by R4c for 

x = 5 ; 
w h i l e (x) 
{ 

x = x - 1 ; 
y = y + 1; 

} 
χ = y ; 
do 
( 

y = y - 1 ; 
x = x - 1 ; 

} w h i l e ( x ) ; 

14. What assembly code should be generated by R4c for 

i f (x) 
y = 3 ; 

z = y ; 
i f (x) 

y = 4 ; 
e l s e 

x = y ; 

15. What assembly code should be generated by R5c for 

e x t e r n i n t x , y ; 
v o i d f ( ) 
Í 

x = 5 ; 
g ( ) ; 
y = x ; 

} 

16. Implement R2a, R2b, R2c, R2d, and R2e compilers. Test your compilers with S 2 . s. 
17. Implement R3a, R3b, R3c, R3d, and R3e compilers. Test your compilers with S 3 . s. 
18. Implement R4a, R4b, R4c, R4d, and R4e compilers. Test your compilers with S4 . s. 
19. Implement R5a, R5b, R5c, R5d, and R5e compilers. Test your compilers with S 5 a . s 

and S 5 b . s . 
20. Implement R6a, R6b, R6c, R6d, and R6e compilers. Test your compilers with S 6 a . s 

and S 6 b . s . 
21. Why is line 12 in Figure 20.9 executed only for temps? 



21 
INTERPRETERS 

21.1 INTRODUCTION 

In Chapter 10, we saw two programs that processed prefix expressions. The first (Figure 
10.4) translated the prefix expression in the input to the equivalent postfix expression. 
The second (Figure 10.10) did something quite different: As it parsed the infix expression 
in the input, it performed the operations specified by it. We call the former program a 
compiler—it translates the source program to the target program. We call the latter pro-
gram an interpreter—it performs the operations specified by the source program. 

We can easily convert the compilers we have written to interpreters. For example, to 
convert SI to an interpreter (which we will call 11), we simply replace actions that gener-
ate assembly code with actions that perform the operations specified by the source pro-
gram. We keep the token manager as is, throw away the code generator, and make a few 
changes to the parser. We also have to make a slight change to the symbol table. In an in-
terpreter, we use the symbol table to record the current value of each variable. For exam-
ple, when the 11 interpreter processes the statement 

x = 5; 

it first parses it (to determine the type and structure of the statement), and then it performs 
its operation—it assigns 5 to x. Obviously, the interpreter has to have a slot for x in which 
it can store 5. A natural place for this slot is the symbol table entry for x. In 11, the symbol 
table consists of two parallel ArrayLists: symbol (to hold the name of a variable) and 
va lue (to hold its current value). 

Whenever we "mentally execute" a program to determine how it works, we are, in ef-
fect, interpreting the program. Let us do this for the program in Figure 21.1. We read the 
first statement and see that it is an assignment statement. We then identify its left and 
right sides. What have we just done? We have, in effect, parsed the first statement. We 
then assign 5 to x. That is, we record in our memory or on a piece of paper that x now has 
the value 5. What have we just done? We have executed the statement. Next, we process 
the second statement in the same way: We see that it is an assignment statement. We iden-

Compiler Construction Using Java, JavaCC, and Yace. First Edition. Anthony J. Dos Reis 547 
© 2012 the IEEE Computer Society. Inc. Published 2012 by John Wiley & Sons. Inc. 



548 INTERPRETERS 

tify its left and right sides. We determine the structure of the expression on the right side. 
We see that it adds x and 2. We then retrieve the previously recorded value of x, add it 
and 2 to get 7, which we record in our memory or on a piece of paper as the value of y. Fi-
nally, we process the last statement: We see that it is a p r i n t l n statement. We identify 
its argument as y. We then retrieve the previously recorded value of y and announce it as 
the output produced by the program. 

The parsing process we engage in when we mentally execute the program in Figure 
21.1 requires a tokenizing subprocess. For example, when we read the p r i n t l n state-
ment, we see the sequence of individual letters "p" , " r" , " i " "n", " t " , " 1 " , and "n". 
We put these letters together to get " p r i n t l n " . What have we just done? We have cre-
ated a token which we then use in the parsing process. Thus, our mental execution of the 
program in Figure 21.1 involves the tokenizing as well as the parsing and execution of 
each statement. The 11 interpreter we will write will similarly perform these processes. 

Interpreters are inherently inefficient because statements that are executed repeatedly 
are parsed repeatedly. For example, consider the following program: 

x = 100; 
do 
{ 

p r i n t l n (x ) ; 
x = x - 1; 

} whi le (x ) ; 

Because the parser in an interpreter performs the execution of statements, parsing is a 
necessary step in the execution of a statement. In other words, a statement has to be 
parsed each time it is executed. Because the statements in the preceding do-whi le loop 
are executed 100 times, they have to be parsed 100 times as well. In contrast, a compiler 
would parse them only once. Moreover, with a compiler, the parsing occurs at compile 
time—not at run time. 

To minimize the parsing overhead in an interpreter, the source code can first be trans-
lated to an internal code that is particularly well-suited for interpretation. This internal 
code, rather than the original source code, can be then be interpreted. Statements within 
loops in this internal code still have to be repeatedly parsed. However, the internal code is 
so simple that interpreting it can be done quickly. We will call a program of this type a 
compiler-interpreter because it is a combination of a compiler and an interpreter. Its 
compiler component translates the source code to the internal code; its interpreter compo-
nent interprets the internal code. We will call the other type of interpreter—the interpreter 
than interprets the original source code—apure interpreter. Most commercial interpreters 
are compiler-interpreters, although they are simply called interpreters. 

In this chapter, we will implement both pure interpreters and compiler-interpreters. 
The former will be designated by names that start with "I"; the latter, by names that start 
with "CI". For example, 11 is the pure interpreter version of the SI compiler from Chapter 
12; CI1 is the compiler-interpreter version of the SI compiler. Our compiler-interpreters 
use an internal code that we call s-code. 
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The token managers for our interpreters are almost the same as the token managers for 
their corresponding compilers. For example, we can use SITokenMgr—the token man-
ager for SI—almost as is in the 11 and CI1 interpreters. 

Only two changes are required to the compiler token managers to adapt them for use in 
our interpreters: 

1. The token managers for our interpreters should not output the token trace or the 
the source code to the assembly language output file (the interpreters do not trans-
late the source code to assembly language so there is no assembly language out-
put file). 

2. The token managers for our interpreters should return strings without the enclosing 
quotes and with escape sequences processed. For example, if the source code con-
tains the string "up\ ndown", the token manager should return this string without 
the quotes and with the escape sequence "\ n" replaced with the newline character. 

21.2 CONVERTING SI TO II 

It is very easy to convert the SI compiler from Chapter 12 to the pure interpreter II. We 
start by copying S I . j ava to I I . java , and replacing every occurrence of "S I" in 
1 1 . j ava with " I I " . We then modify 1 1 . j ava as follows. 

To execute statements, 11 has to have a slot for each variable into which it can store the 
variable's value. The simplest way to provide this storage is to extend the symbol table. In 
II, the symbol table contains of two parallel ArrayLists, symbol and va lue : 

private ArrayList<String> symbol; 
private ArrayList<Integer> value; 

II uses va lue to hold the values of variables whose names are stored in symbol. The 
symbol table also includes an accessor method and a mutator method for va lue (see Fig-
ure 21.2) and an e n t e r method. When called, e n t e r is passed a symbol in S t r i n g 
form. It enters the symbol into the symbol ArrayList if it is not already there. It then re-
turns the index of the symbol in the symbol ArrayList. 

The parser for 11 performs actions where S1 outputs assembly code. For example, 
wherever SI emits a push instruction, 11 has to perform a push operation. Thus, the parser 
in 11 needs a stack. Rather than write the code that implements a stack, we can simply cre-
ate a stack in the parser with 

s = new S tack<In teger> ( ) ; 
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where s is an instance variable in the parser defined with 

p r i v a t e S tack<In teger> s ; 

Stack is a predefined class in the j a v a . u t i l package. 
Now let us look at some of the code in SI and its corresponding code in II. The code in 

SI for an unsigned integer constant in the f a c t o r method is 

case UNSIGNED: 
t = currentToken; 
consume(UNSIGNED); 
eg.emitInstruction("pwc", t.image); 
break; 

After parsing the unsigned integer, it emits an pwc instruction, which, when executed, 
pushes the constant on the stack of the Jl computer. The corresponding code in 11 does 
exactly the same thing except that it pushes the constant on its own stack at compile time 
rather than generate an assembler instruction to do it at execution time: 

case UNSIGNED: 
t = currentToken; 
consume(UNSIGNED); 
s.push(Integer.parselnt(t.image)); 
break; 

The code for t e r m L i s t in SI emits an add assembler instruction: 

1 pr iva te void termList() 
2 { 
3 switch(currentToken.kind) 
4 { 
5 case PLUS: 
6 consume(PLUS); 
7 term(); 
8 eg.emitlnstruction("add"); 
9 termList(); 
10 break; 
11 case RIGHTPAREN: 
12 case SEMICOLON: 
13 
14 break; 
15 default: 
16 throw genEx("Expecting \"+\", \ " ) \ " , or \ " ; \ " " ) ; 
17 } 
18 } 

The corresponding code in II performs the add by popping the parser's stack twice, 
adding, and pushing the result back on the stack: 

1 p r iva te void termList() 
2 { 
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3 i n t r i g h t ; 
4 
5 switch(currentToken.kind) 
6 { 
7 case PLUS: 
8 consume(PLUS); 
9 termO; 
10 right = s.pop(); 
11 s.push(s.pop() + right); 
12 termList (); 
13 break; 
14 case RIGHTPAREN: 
15 case SEMICOLON: 
16 
17 break; 
18 default: 
19 throw genEx("Expecting \"+\", \ " ) \ " , or \ " ; \ " " ) ; 
20 } 
21 } 

Thus, when II completes the parsing of an expression, the expression's value will be on 
top of the parser's stack. 

The code in SI for the assignment statement emits a pc-s tav assembly sequence: 

1 private void assignmentStatement() 
2 { 
3 Token t; 
4 
5 t = currentToken; 
6 consume(ID); 
7 st.enter(t.image); 
8 eg.emitlnstruction("pc", t.image); 
9 consume(ASSIGN); 
10 expr(); 
11 eg.emitlnstruction("stav"); 
12 consume(SEMICOLON); 
13 } 

The corresponding code in 11 performs the assignment by popping stack and storing the 
value so obtained in the variable specified by the left side of the statement: 

1 private void assignmentStatement() 
2 { 
3 Token t; 
4 int left, expVal; 
5 
6 t = currentToken; 
7 consume(ID); 
8 left = st.enter(t.image); 
9 consume(ASSIGN); 
10 expr(); 
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11 s t . setValue ( l e f t , s . popO) ; 
12 consume(SEMICOLON); 
13 } 

To perform the store, 11 uses the mutator method se tVa lue in the symbol table (see Fig-
ure 21.2). The expr method in II does not generate assembly code to evaluate the corre-
sponding expression. Instead, it evaluates the expression using the parser's stack. Thus, 
the value of the expression will be on top of the parser's stack when the se tVa lue 
method is called in the preceding code. 

As the preceding examples illustrate, a few simple transformations will convert the SI 
parser to the 11 parser. 11 does not generate any code. Thus, it does not need a code gener-
ator. 

To use our 11 interpreter, we first have to compile it: 

j avac I I . j a v a 

We can then execute it, at which time it displays the output of the program it is interpret-
ing. For example, to interpret the S 1 . s source program, enter 

j ava I I SI 

The interpreter responds with 

II interpreter written by ... 

4107 
4107 

The two lines containing 4107 are the output produced by the s 1. s program as 11 inter-
prets it. 

21.3 INTERPRETING STATEMENTS THAT TRANSFER CONTROL 

The 14 interpreter (the interpreter that corresponds to the S4 compiler) has to handle state-
ments that transfer control, such as the whi le , do-while, and i f statements. These 
statements require special treatment. To see why, consider what the 14 interpreter must do 
when it interprets the following statement: 

whi le (x + 3) 
x = x - 1 ; 

Because a w h i l e loop has a leading exit test, the parser has to jump over the body of the 
loop when the exit test expression evaluates to false (i.e., zero). The only way for the 
parser to accurately jump over the loop body is to parse it (how else could it determine 
where the loop body ends?). But when it parses the loop body, it also executes it. Thus, it 
executes the loop body after the loop exit has occurred. 

There are three solutions for this problem: 

1. We can design our source language so that the subparts of its control structures are 
bracketed with special symbols so that the ends of these subparts can be accurately 
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identified without parsing. For example, suppose we require that the body of a 
whi le loop be a compound statement. Then, it would necessarily start with a left 
brace and end with a matching right brace. With this structure, an interpreter can 
identify the end of the loop body simply by advancing in the token stream until it 
detects the matching right brace. 

2. We can design our interpreter to have two modes of operation: execute mode or no-
execute mode. When the interpreter has to advance in the token stream but not exe-
cute the code it is parsing, it places itself in the no-execute mode, and parses up to 
the desired point in the token stream. It then places itself back in the execute mode. 
Although this approach is simple in concept, its implemention is somewhat messy. 
For example, consider the whi l eS ta tement method in Figure 21.3. The do-
whi le that starts on line 11 repeatedly parses and executes a whi le loop. When 
the value of the exit test expression is zero, the parser should advance over the 
whi le loop body without executing it. It does this by setting the exMode flag to 
false on line 16. Then when the loop body is parsed on line 17, it is not executed 
(because exMode is false). 

3. Use a compiler-interpreter rather than a pure interpreter (see Section 21.4). 

21.4 IMPLEMENTING THE COMPILER-INTERPRETER Cll 

Pure interpreters have the drawback of excessive parser overhead because statements 
that are executed repeatedly are necessarily parsed repeatedly. Moreover, as we pointed 
out in Section 21.3, control structures are difficult to handle unless the source language 
is designed in a special way. A better approach is to first translate the source program 
to an internal code that can be interpreted quickly, and then to interpret this internal 
code. The CI 1 compiler-interpreter takes this approach. We call the internal code that 
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the CI 1 compiler uses s-code. It is the machine language for a simple stack machine we 
call the s-machine. 

CI 1 does not first translate the source program to assembly language, and then trans-
late the assembly language to s-code. Instead, it translates the source program directly to 
s-code. s-code consists of a sequence of integers, s-code instructions that consist of just an 
opcode are single integers, s-code instructions that consist of an opcode and an operand 
are two consecutive integers. 

The code generator for CI1 emits s-code to an internal ArrayList named scode—not 
to an external file. After the parser finishes parsing the source program, it calls the i n -
t e r p r e t method in the code generator. This method interprets the s-code in the scode 
ArrayList. i n t e r p r e t uses a stack s to hold values during the execution of the s-code. It 
also uses an i n t array v tab . v t a b provides storage for each variable in the source pro-
gram. Each slot in v t ab corresponds to one variable. Operand addresses in s-code are in-
dices into v tab . For example, the s-code instruction 12 5 is a push instruction. 12 is the 
opcode for push. 5 is the address of the variable to be pushed, that is, it is the v t a b index 
of the variable to be pushed. 

The size of v t ab should equal the number of variables in the source program. Because 
this size is not known until the parse is done, the creation of v t a b has to be deferred until 
then. The parse() method in the parser first calls program (), which parses the source 
program and creates the s-code (see Figure 21.4). It then calls makevtab in the code gen-
erator, passing it the size of the symbol table (which equals the number of variables in the 
source program). Finally, it calls i n t e r p r e t in the code generator in the code generator 
to interpret the s-code created by the parser. 

Let us now examine the i n t e r p r e t method in the code generator for CI1 (see 
Figure 21.5). The i n t e r p r e t method contains a do-while loop, each iteration of 
which executes one instruction of s-code. It starts by accessing the opcode of the next 
instruction: 

•34 opcode = s c o d e . g e t ( p c + + ) ; 

pc acts as a program counter. That is, it points to the instruction to be executed next. Each 
time an instruction is executed, pc is incremented by the size of that instruction. The 
swi tch statement that starts on line 37 identifies the opcode and performs the corre-
sponding operations. For example, if the opcode is PLUS, then the swi tch statement ex-
ecutes the following case: 

45 case PLUS: 
4 6 right = s.popO; 
47 s.push(s.pop () + right); 
48 break; 
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This case functions just like the add instruction in the stack instruction set: It pops the top 
two values from the stack, adds them, and pushes their sum. If the opcode is PUSH, then 
the swi tch executes the following case: 

56 case PUSH: 
57 s.push (vtabf scode.get(pc++) ] ); 
58 b reak ; 

Line 57 accesses the second integer of the instruction. This integer is the index of the vari-
able to be pushed. It is used to index into v t ab to the access the value of the correspond-
ing variable. This value is then pushed onto the stack. Notice line 57 increments pc, mak-
ing pc point to the beginning of the next instruction. Thus, the next time the swi tch 
statement is executed, pc will have the scode index of the next instruction. The con-
stants in the swi tch statement (PRINTLN, ASSIGN, PLUS, etc.) are defined in the 
C l l c o n s t a n t s interface. 

The parser emits code by calling the emit method in the code generator: 

16 public void emit(int inst) 
17 { 
18 scode.add(inst); // emit instruction to scode 
19 } 

For example, if the current token is an unsigned integer, the f a c t o r method executes 

case UNSIGNED: 
t = currentToken; 
consume(UNSIGNED); 
eg.emit(PUSHCONSTANT); 
eg.emit(Integer.parseInt(t.image)); 
break; 

It calls emit twice, once passing it PUSHCONSTANT (the opcode for the push constant s-
code instruction) and once passing it the integer itself (the push constant instruction is a 
two-integer instruction), i n t e r p r e t executes it with 
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53 

54 

55 

case PUSHCONSTANT: 

s.push(scode.get(pc++) 

break; 

This code accesses the integer that follows the opcode and pushes it onto the stack. 
The translation of source code to s-code in CI1 is easy. However, it is more complicat-

ed in CI4, the version that supports the i f statement and loops. The added complexity 
comes from the transfer of control these statements trigger. For example, consider the 
method for the do-whi l e loop in CI4 (see Figure 21.6). 

Line 5 consumes the keyword do. Line 6 then saves the current s c o d e address by 
storing it in the variable a d d r e s s . This address is provided by the g e t C u r r e n t A d -
d r e s s method, and is equal to the current size of the s c o d e ArrayList. At the bottom of 
the loop, a JNZ instruction is emitted that transfers control when executed to the address 
saved by line 6. 

As we add support for new statements in the source language, we have to add new in-
structions to our s-machine to handle these new source instructions. CI4 requires the fol-
lowing s-code instruction in addition to those in C l l : 

PRINT pop and display the top of the stack 
MINUS double pop, subtract, and push result 
DIVI DE double pop, divide, and push result 
READ read an integer from the keyboard 
DUPE duplicate the value on top of the stack 
PRINTSTRING display string specified by the given index 
NEWLINE moves cursor to the beginning of the next line 
NEG negate the value on top of the stack 
JA jump always 
JZ pop stack and jump if zero 
JNZ pop stack and jump if non-zero 

The READ operation should recover from an invalid input. Specifically, if the user enters a 
noninteger in response to a read, the READ operation should prompt the user to reenter 
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and then read again from the keyboard. It should continue this process until the user en-
ters a valid integer. 

When CI4 parses a string, it enters it into s t a b , a S t r i n g ArrayList in the code gen-
erator. The address of a string that appears in s-code is its index in s t a b . For example, 
consider the pr in tArg () method in CI4 (see Figure 21.7). When it parses a string, it en-
ters it into s t a b by calling the e n t e r S t r i n g method (line 11). e n t e r S t r i n g returns 
the index of the string just entered into s t a b . p r i n t A r g then emits a PRINTSTRING in-
struction, consisting of its opcode (line 12) and the index of the string to be displayed 
(line 13). 

21.5 ADVANTAGES OF INTERPRETERS 

Interpreters have three advantages over compilers: 

1. They are easier to write because you do not have to know the details of the machine 
on which they run. In contrast, to write a compiler, you have to know the details of 
the assembly and/or machine language of the target machine. 

2. Interpreters are portable. For example, our II interpreter will run as is on any com-
puter that supports Java, which is just about every computer there is. A compiler, 
however, typically will produce target code for only the target machine for which 
the compiler is designed. For example, if you have a C compiler that runs on a 
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Macintosh that generates machine code for a Macintosh, you cannot run the ma-
chine code it generates on other types of computers. 

3. It is easy to write an interpreter that produces meaningful error messages. Pure in-
terpreters directly execute the source code. Thus, if an error occurs, an interpreter 
can easily identify and display the line in source code in which the error occurred. 

The big disadvantage of interpreters is inefficiency. An interpreted program will typi-
cally run ten times slower than a comparable compiled program. This inefficiency is the 
result of the parsing that occurs during execution of an interpreted program. Compiler-in-
terpreters minimize this inefficiency, but it is still significant for two reasons: 

1. Compiler-interpreters require time to perform the initial compile. In contrast, com-
piled code can be executed immediately. 

2. The execution of each s-code instruction requires the execution of multiple ma-
chine instructions in the computer on which the interpreter is running. For example, 
the execution of the push s-code instruction requires the execution of 

case PUSH: 
s .push(v tab[ scode .ge t (pc++) ] ) ; 
b r eak ; 

But each one of these Java statements requires the execution of multiple machine 
instructions in the computer which is running the CI1 program. In contrast, a push 
instruction in compiled code requires the execution of just itself—of just one in-
struction. 

PROBLEMS 

1. Why do interpreters but not compilers have to process escape sequences? 
2. Why is it not good if a compiler-interpreter uses a very low-level internal code? 
3. Evaluate the merits of this approach to interpreter design: Use an internal code 

that is only a slightly modified version of the source code. Only those components 
of the source code that have substantial structural complexity and, therefore, 
would require a substantial amount of time to parse should be translated to a form 
easier to interpret. For example, we might use an internal code that has the same 
form as the source code except that arithmetic expressions are replaced with their 
postfix equivalents. 

4. Implement II (the interpreter version of SI). Test your program with SI . s 
5. Implement 12 (the interpreter version of S2). Test your program with S2 . s 
6. Implement 13 (the interpreter version of S3). Test your program with S3 . s. 
7. Implement 14 (the interpreter version of S4). Test your program with S4 . s. 
8. Implement CI1 (the compiler-interpreter version of SI). Test your program with 

S l . s . 
9. Implement CI2 (the compiler-interpreter version of S2). Test your program with 

S2 .s . 
10. Implement CI3 (the compiler-interpreter version of S3). Test your program with 

S3 .s . 
11. Implement CI4 (the compiler-interpreter version of S4). Test your program with 

S4 .s . 
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12. Run both 14 and CI4 on a program that contains a loop that iterates many times. Is 
there a difference in execution time? 

13. If we limited the integer variables in our source programs to a single lower-case 
letter followed by an optional single digit, how could we improve the run time of 
our interpreters? Note: the BASIC programming language limited its variables in 
this way 

14. Run 14 on a program that contains a loop that iterates many times. Compile the 
program with S4. Run the compiled program. How does the run time for 14 com-
pare with the run time for the compiled program? Why are the results of this test 
not a reliable measure of the relative run times of interpreted versus compiled 
code? 

15. Why is exMode saved and then restored in the whi leS ta tement method in 
Figure 21.3? 



22 
BOTTOM-UP PARSING 

22.1 INTRODUCTION 

In top-down parsing, we start at the top of the parse tree (with the start symbol), and we 
end up at the bottom of the parse tree (with the terminal string). In bottom-up parsing, we 
do the reverse: we start at the bottom of the parse tree and end up at the top. 

Bottom-up parsing is more powerful than top-down parsing. That is, bottom-up pars-
ing works with a larger variety of grammars than top-down parsing. For example, bottom-
up parsers can use left-recursive as well as right-recursive grammars. In contrast, top-
down parsers can use right-recursive but not left-recursive grammars. Bottom-up parsers, 
however, do have a major disadvantage: they are more complex than top-down parsers. In 
fact, bottom-up parsers are so complex that it is, in general, not practical to build them by 
hand. We can, however, use a parser generator to build them for us. 

Although bottom-up parsing is more powerful than top-down parsing, it is not the case 
that we should always use bottom-up parsing. In most cases, top-down parsing is power-
ful enough to get the job done. Thus, the additional power of bottom-up parsing does not 
always provide any advantage. 

In this chapter, we will learn how bottom-up parsers work, and how to build them by 
hand. Then in the next chapter we will learn how use build them with a parser generator. 

22.2 PRINCIPLES OF BOTTOM-UP PARSING 

Let us perform a bottom-up parse using the following grammar: 

G22.1 
1. S -> BC 
2. B -* b 
3. C -> c 

Compiler Construction Using Java, JavaCC, and Yace. First Edition. Anthony J. Dos Reis 561 
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Figure 22.1 shows the bottom-up parse of be, the only string that G22.1 generates. The 
symbols in this terminal string (i.e., b and c) will become the leaf nodes of the parse tree 
will we construct. Because we scan be left to right, the current token (marked with a " Λ ") 
is initially b (Figure 22.1a). This b results from the application of production B —* b in 
G22.1. Accordingly, we add a B node that generates this b to the tree we are constructing 
(Figure 22.1b). Next, we advance in the input string so that c becomes the current token 
(Figure 22.1c). This c results from the application of the production C —> c. So we add a 
C node that generates this c (Figure 22.1 .d). At this point, we have two nonterminals, B 
and C. They obviously come the application of the production S —> BC. So we add an S 
node that generates the B and c (Figure 22.le). At this point, the parse is done: The tree 
generates the entire input string, and its top node is the start symbol of the grammar. 

In the bottom-up parse in Figure 22.1, we use the productions of the grammar in this 
order: 

B -H» b 

C - » c 

S -> BC 

If we use these productions in reverse order, starting from S, we get the get the rightmost 
derivation of be: 

S => BC => Be => b e 

This is no accident. Bottom-up parsing always uncovers a rightmost derivation of the ter-
minal string, but in reverse order. If the grammar is unambiguous, then there is only one 
parse tree for any terminal string defined by the grammar, and therefore, only one right-
most derivation. Thus, for unambiguous grammars, we can say that bottom-up parsing 
uncovers the rightmost derivation rather that a rightmost derivation. 

If we use a stack, we can perform a bottom-up parse without building a parse tree. In 
this approach, we shift the characters in the input string one by one onto the stack. When-
ever both of the following two conditions hold during this shifting process, we replace the 
symbols on top of the stack corresponding to the right side of the production with the left 
side ofthat production. 

Condition 1: The top symbol or symbols match the right side of a production. 
Condition 2: The production is the one used to generate the symbol (or symbols) on 

top of the stack in a rightmost derivation of the input string. 

Using this approach, let us perform the bottom-up parse of be using G22.1 (see Figure 
22.2). We start with an empty stack (line 1). Recall that $ and # are the bottom-of-stack 
and end-of-input markers, respectively. We shift b onto the stack to get line 3. Note that 
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1. b (the symbol on the top of the stack) is the right side of production 2 (i.e., condi-
tion 1 holds). 

2. Production 2 is the production used that generates this b in the rightmost derivation 
of the input string (i.e., condition 2 holds). 

We replace b (the right side of production 2) with B (the left side of production 2) to get 
line 5. We say that we are "reducing by production 2," and designate this operation with 
reduce(2). We call the symbol or symbols we replace on top of the stack when we reduce 
a handle, and the production used in the reduce operation the handle production. Using 
this terminology, we can concisely describe the steps in a bottom-up parse: 

Shift the input string onto the stack. Whenever during this shifting process a 
handle appears on top of the stack, reduce it using the handle production. 

Continuing with our parse in Figure 22.2, we shift c onto the stack to get line 7. c is a 
handle so we reduce by production 3, resulting in BC on top of the stack (line 9). BC is 
also a handle, so we reduce by production 1, at which point S is on top of the stack (line 
11), and the parse ends. 

Recall that a sentential form is any string (not necessarily terminal) that can be derived 
from the start symbol of a grammar that can ultimately yield a terminal string. A right 
sentential form is any sentential form in a rightmost derivation. For example, in the right-
most derivation of be using G22.I, 

S => BC => Be => be 

S, BC, Be, and be are all right sentential forms, 
If for every line in a bottom-up parse we concatenate the stack symbols with the re-

maining input, we will get all the right sentential forms in the derivation of the input 
string. For example, if we concatenate the stack-input components of each line in the 
parse in Figure 22.2, we get 

be (line 1) 
be (line 3) 
Be (line 5) 
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Be (line 7) 
BC (line 9) 
S(line 11) 

We get repeats whenever we shift in the parse. Eliminating the repeats, we get the follow-
ing sequence of strings: 

be 
Be 
BC 
S 

These strings are precisely all the right sentential forms in the rightmost derivation of be . 
Remember before you can reduce in a bottom-up parse, both condition 1 and 2 given 

above must hold. Consider, for example, the grammar 

G22.2 
1. S -» cS 
2. S -^ c 

Using this grammar, let us parse c c (see Figure 22.3). We first shift the initial c. c is 
the right side of production 2, but the c on the stack is not a handle. The initial c in our in-
put strings comes from production 1 and not production 2, as the rightmost derivation of 
c c demonstrates: 

S => cS => cc 
n 

' this c comes from production 1 

The initial c by itself is not a handle because it does not satisfy condition 2. So we contin-
ue shifting. We get c c on the stack (line 5). The second c, in contrast to the first c, is a 
handle corresponding to production 2: 

S => cS => cc 

this c comes from production 2 



22.3 PARSING WITH RIGHT- VERSUS LEFT-RECURSIVE GRAMMARS 565 

So we reduce by production 2 to get cS on the stack (line 7). cS is a handle corresponding 
to production 1. So we reduce by production 1 to get s on the stack (line 9). 

22.3 PARSING WITH RIGHT- VERSUS LEFT-RECURSIVE GRAMMARS 

We learned in Chapter 7 that top-down parsing can use right-recursive grammars but not 
left-recursive grammars. Bottom-up parsing, however, can use either right-recursive or 
left-recursive grammars. For example, the parse in Figure 22.3 uses the right-recursive 
grammar G22.2. A left-recursive grammar that is equivalent to G22.2 is 

G22.3 
1. S -> Sc 
2. S -+ c 

Here is the derivation of cc using this grammar: 

S => Sc => cc 
n 

this c comes from production 2 

Notice that the initial c comes from production 2. Thus, this c is a handle corresponding 
to production 2. Accordingly, the parse of cc using G22.3 immediately reduces after 
shifting the initial c onto the stack (see Figure 22.4). 

For both grammars, the parser shifts twice and reduces twice. However, the order is 
different. With the right-recursive grammar, the two shifts occur first, then the two re-
duces. With the left recursive grammar, the parser alternates shifting and reducing. Which 
grammar is better for bottom-up parsing? The parsers for both grammars do the same 
about of work: one shift and one reduce for each c in the input string. However, they dif-
fer with respect to the maximum stack size. In the right-recursive case, the parser pushes 
the entire input string onto the stack before is reduces. The maximum stack size is equal 
to the size of the input string. Because there is no upper limit on the size of the input 
string, there is no upper limit on stack size required to parse strings. In the left-recursive 
case, the parser alternates shifting with reducing. Thus, the stack size never exceeds 2 re-
gardless of the length of the input string. Although the work both parsers do is the same, 
the left-recursive parser is better because we do not have to worry about a possible stack 
overflow. 
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For bottom-up parsing, left-recursive grammars are better than right-re-
cursive grammars. 

Of course, we also have to consider other factors when designing the grammar. For ex-
ample, a left-recursive grammar that generates a list of operands usually implies left asso-
ciativity; a right-recursive grammar implies right associativity. Thus, the associativity we 
want would determine the type of grammar to use. 

22.4 BOTTOM-UP PARSING WITH AMBIGUOUS GRAMMARS 

If a grammar is ambiguous, then there necessarily is at least one string with more than one 
parse tree. For example, in the following grammar, two parse trees exists for the string 
b+b+b (see Figure 22.5): 

G22.4 
1. E -> E + E 

2. E -> b 

The parse tree in Figure 22.5a implies left associativity (i.e., the operations are per-
formed left to right). The parse tree in Figure 22.5b implies right associativity (i.e., the 
operations are performed right to left). 

Because there are two parse trees for b+b+b, there must be a choice at some point in the 
bottom-up parse of b+b+b. One alternative will lead to the tree in Figure 22.5a. The other 
alternative will lead to the tree in Figure 22.5b. Let us look at the parse of b+b+b in Figure 
22.6. Up to line 11, there is no choice in the operations that the bottom-up parser performs. 
However, on line 11, there is a choice between shift and reduce. We call this situation a 
shift/reduce conflict. If the parser reduces at this point, it, in effect, creates a new E node 
whose children are the symbols on the stack on line 11. These stack symbols come from the 
initial b+b in the input string. This structure is in the parse tree in Figure 22.5a. It implies 
that the left addition is performed before the right addition. If, however, the parser chooses 
shift on line 11, then the reduce on 17b in Figure 22.6 creates a new node whose children 
make up the b+b substring at the end of the input string. This structure is in the parse tree 
in Figure 22.5b. It implies that the right addition is performed before the left addition. 

In the first case (when the parser reduces on line 11), the parser reduces the left opera-
tor first (on line 12a), then the right operator (on line 20a). In the second case (when the 
parser shifts on line 11), it reduces the right operator first (on line 18b), then the left oper-
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ator (on line 20b). In the first case, we get a parse tree (Figure 22.5a) that implies the ad-
ditions are performed left to right. In the second case, we get a parse tree (Figure 22.5b) 
that implies that the additions are performed right to left. From this example, we can for-
mulate the following principle, which we call the reduce-order principle: 

The order ¡n which operators are reduced determines the order in which 
their corresponding operations are performed. 

Suppose we add the production E —> E * E to G22.3. With this new grammar, we 
can get four types of shift/reduce conflicts illustrated by the following configuations: 

1. Parsing b+b+b, and the parser is in the configuration 

$E+E +b# 

2. Parsing b* b* b, and the parser is in the configuration 

$E*E *b# 

3. Parsing b* b+b, and the parser is in the configuration 

$E*E +b# 

4. Parsing b+b* b, and the parser is in the configuration 

$E+E *b$ 
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Assume that we want the normal associativity and precedence for addition and multi-
plication and higher precedence for multiplication than addition. What should the parser 
do in the preceding configurations? The reduce-order principle tells us we should reduce 
the operators in the order in which their operations should be performed. Thus, for cases 
1, 2, and 3, the parser should resolve the shift/reduce conflict in favor of the reduce so the 
left operator is reduced first. In case 4, it should shift so that the right operator will be re-
duced first. 

If we use the right grammar, we can avoid shift/reduce conflicts altogether. For exam-
ple, if in place of G22.4 we use 

G22.5 
1. E - » E + b 
2. E - » b 

then the parse of b+b+b produces no shift/reduce conflicts. This grammar, itself, implies 
left associativity. Recall from Section 4.3 that a left-recursive production like production 
1 in G22.5 implies left associativity. Thus, this grammar does not have the ambiguity that 
G22.4 has with respect to operator associativity. 

Exercise 22.2 

Draw the parse tree for b+b+b using G22.5. Show its bottom-up parse. 

Answer: 
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Unfortunately, a simple grammar that does not produce any shift/reduce conflicts is 
not always available. The classic example of this is the i f statement. Here is the standard 
grammar for an i f statement: 

ifStatement -* "if" "(" expr " ) " statement elsePart 
elsePart —> "else" statement 
elsePart —» λ 

With this grammar, two parse trees exist for 

i f (a) i f (b) c = 1; e l s e d = 1; 

In one parse tree, the e l s e associates with the inner if. In the other, the e l s e associates 
with the initial if. When e l s e is the current input in a bottom-up parse of this input 
string, a shift/reduce conflict occurs. If the parser reduces at this point, it replaces 

i f (b) c = 1; 

with the i f S t a t e m e n t production, making the inner i f is a simple i f statement rather 
than an i f - e l s e statement. Thus, a reduce at this point has the effect of associating the 
e l s e with the initial if. If, instead, the parser shifts, the e l s e associates with the inner 
if. Typically, we want the e l s e to associate with the inner if. Thus, the parser should 
resolve this shift/reduce conflict in favor of a shift. 

22.5 DO-NOT-REDUCE RULE 

As we observed in Section 22.2, every configuration in a bottom-up parse corresponds to 
a right sentential form in the derivation of the input string. For example, consider the 
parse of be using G22.1 in Figure 22.7. If for each line we concatenate the stack symbols 
with the remaining input, we get the following sequence of strings (with repeats omitted): 

b e , B e , BC, S 

Here is the rightmost derivation of the input string be: 

S => BC => Be => b e 
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Notice that its sentential forms are precisely the sequence of strings above, but in reverse 
order. 

Suppose the current configuration in a bottom-up parse is 

$a- w# 

where a and · strings over the total alphabet of the grammar and w, the remaining input, is 
a terminal string. If the parser reduces with the production 

B —> a-

we get the configuration 

$aB w# 

The corresponding right sentential form we get by concatenating the stack part with the 
input part is 

aBw 

Because the first symbol in w follows B in this sentential form, this symbol must be in the 
FOLLOW set of B (see Section 7.4). For example, on line 3 in Figure 22.7, we reduce by 
the production B —» b. The right sentential form for the new configuration that results is 
Be. Because Be is necessarily a sentential form, c—the first symbol in the remaining in-
put—is necessarily in the FOLLOW set of B. 

Now suppose the current input is not in the FOLLOW set of the left side of some pro-
duction. If the parser were to reduce using that production, it would result in a configura-
tion that is not a right sentential form. Thus, to reduce by that production could not possi-
bly be a correct step in a bottom-up parse. This observation gives us the following 
do-not-reduce rule: 

Do not reduce by a production if the current input is not in the FOL-
LOW set of the production's left side. 

22.6 SLR(l) PARSING 

We now describe a specific algorithm for bottom-up parsing that is called SLR(l) pars-
ing. The letters "S", "L", and "R", and the number 1, respectively, stand for 

Simple because this parsing algorithm is simple relative to a more general technique 
we will study in the next section. 

Left because the input is scanned left to right. 
Rightmost because this parsing algorithm uncovers the rightmost derivation of the in-

put string. 
One token lookahead because the parsing actions depend on one input symbol, name-

ly, the current token symbol, as well as the top of the stack. 

How does a bottom-up parser know when it should reduce? One approach would be 
for the parser to examine the top of the stack and the symbols below it to determine if it 
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contains a handle. But to examine multiple symbols on the stack would be complex and 
time-consuming. Here is a better approach: whenever the parser has to push a grammati-
cal symbol onto the stack, it pushes instead a state that represents not only the grammati-
cal symbol but what is currently on the stack. With this approach, the parser uses a stack 
that initially contains the state 0: 

$0 

The state 0 represents the empty stack. Suppose the parser has to shift b onto the stack. It 
would, instead, push a state that not only represents the b but also indicates what is below 
the b on the stack. Let us say our parser uses state 1 to indicate a b on top of stack that 
otherwise is empty. Then at this point, it would push 1 to get 

$01 

Suppose the parser now has to shift c onto the stack. It would push a state (assume it is 
state 2) onto the stack that represents the c on top of a b: 

$012 

Suppose the parser now has to shift d onto the stack. It would push a state (assume it is 
state 3) that represents a d on top of a c on top of a b: 

$0123 

Suppose the parser now has to reduce by the production 

B -H> cd 

The parser would first pop the top two symbols (these symbols—23—represent cd, the 
right side of the reducing production) and then push B, the left side of the production. But 
instead of pushing B, it would push a state (assume it is state 4) that represents a B on top 
of state 1, that is, a B on top of a b: 

$014 

With this approach, the state of top of the stack provides the parser with the information it 
needs about the contents of the stack. Thus, the parser never has to look below the top of 
the stack. 

The state on the top of the stack does not have to represent the entire stack. It need rep-
resent only those aspects of the stack that the parsers needs to know to make its parsing 
decisions. 

When a state is on top of the stack, we say the parser is "in that state." For example, 
when the state contains 

$014 

we say the parser is in state 4. 
To determine the stack states needed for a given grammar, we construct a finite au-

tomaton (FA) based on the grammar. The states of this finite automaton are the states the 
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parser pushes onto the stack during a bottom-up parse. Let us construct the required finite 
automaton for the following grammar: 

G22.6 
1. S - > BC 

2. B -> bB 
3. B -> b 
4. C -> c 

First, we create a new start symbol, Q, and add the production Q —» S. Let us number this 
new production with the number 0. Our grammar becomes 

G22.7 
0. Q -* s 
1. S -» BC 
2. B -> bB 
3. B -^ b 
4. C -* c 

This modification does not change the language defined by the grammar. 
We will label the states of the finite automaton we construct with productions from our 

grammar. Each production will have an embedded period that indicates the current loca-
tion of the parse in the input string. We call a production with an embedded period an 
item. For example, the item 

S - > B . C 

indicates that the parse is between the B and C. That is, the state for B is on top of the stack 
and the parser is about to process the terminals that correspond to C. In other words, the 
period marks the line between the stack contents and the remaining input. 

We label the start state (state 0) of the finite automaton with the item 

Q -> . S 

The period before the S indicates that the parser is about to process the terminals in the in-
put string that correspond to S (which should be the entire input string). If the parser is 
about to start to process the terminals for S, and by production 1, S goes to BC, then the 
parser is also about to start to process the terminals corresponding to BC in production 1. 
Thus, the item above implies a second item by virtue of production 1: 

S -» .BC 

This item indicates that the parser is about to process terminals for B. But because B goes 
to bB (production 2) or b (production 3), the parser is also about to process the terminals 
corresponding to either bB in production 2 or b in production 3. Thus, the item S —* . BC 
implies two more items: 

B -> .bB 
B -^ .b 
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The items above together represent the possible starting configurations of the parser. So 
we label the starting state of our finite automaton with them. We get 

state 0 

Q -> 

S - » 

B —> 

B —> 

. S 

.BC 

. b B 

. b 

this is the kernel item 

these are the nonkernel items 

Our initial item, Q —* . S, that gives rise to the other three items is called the kernel 
item. 

In state 0, the period abuts S in the first item, B in the second item, and b in the third 
and fourth items. For each of three cases, we create a new state. The kernel items of the 
new state are obtained from the items in state 0 by moving the period over one position. 
For example, to get state 1, we move the period over one position in Q —* . S to get Q —» 
S. We also draw an arrow from state 0 to state 1 labeled with S to indicate that S causes 
this state change. We get 

state 0 state 1 

Q - > 

S -H> 

B -^ 

B -* 

. S 

.BC 

.bB 

. b 

S 
Q - > S . 

To get state 2, we move the period one position in S 
implies the item C —> . c. We get 

•.BC to get s —> B.C. This item 

state 0 state 1 

state 2 

Q - * 

S - » 

B - > 

B - > 

1 

s - > 

c --> 

.s 

.BC 

. b B 

. b 

B 

B . C 

. c 

S 

Q --> S . 

To get state 3, we move the period one position in B —». bB and B —* . b in state 0 to get 
B—> b . B a n d B ^ · b. B—> b . B implies B —> .bBandB^· .b. We get 
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state 0 state 1 state 3 

Q -* 

S - s 

B - s 

B - s 

B , 

S — 

C — 

• .s 

• .BC 

> . b B 

> . b 

' 
► B .C 

► . c 

S 
Q - » 

b 

S . B - » b . B 

B - * b . 

B - » . b B 

B -> . b 

state 2 

At this point, we are finished with state 0. We then continue the same process for each 
new state. On a C in state 2, we go to a state 4, whose kernel item is 

B -> BC. 

On a c in state 2, we go to state 5, whose kernel item is 

C -» c . 

On a B in state 3, we go to state 6, whose kernel item is 

B -> b B . 

On a b in state 3, we go to a state, whose kernel items are 

B 

B 

b . B 

b . 

But we already have this state (state 3). So we simply draw an arrow from state 3 to itself 
labeled with b. At this point, every state has all the required outgoing arrows (there 
should be one outgoing arrow for every distinct symbol in the item that has a period to its 
immediate left). Our final automaton is 

state 6 state 0 

Q - » . S 

S -> .BC 

B -> .bB 

B - » . b 

S 
state 1 

Q -> S . 

b 

state 3 

B - > b . B 

B - » b . 

B - > . b B 

B - » . b 

bB. 

u 
state 4 

state 2 

C .-* . c 

' 

C - » c . 

c 
S -> BC. 

state 5 
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From this automaton, let us determine what the parser should do in various states. An 
item with the period to the extreme right indicates that a handle (the right side of the item) 
is on the stack. Thus, when in these states, the parser should reduce. For example in state 
5, the parser should reduce using the production c —> c. But remember our do-not-reduce 
rule. The parser should reduce using C —* c only if the current input is in the FOLLOW 
set of C. Similarly, the parser should reduce using S —> BC when in state-4 only if the cur-
rent input is in FOLLOW(S). When the parser is in state 1, the parse is done. If there is no 
more input, the parser should accept. Otherwise it should reject. For those states that have 
an outgoing arrow labeled with a terminal, the parser should change state indicated by the 
arrow if the current input matches the label on the arrow. For example, if the parser is in 
state 0 (i.e., 0 is on top of the stack) and the current input is b, the parser should go to state 
3 (i.e., it should push 3 onto the stack). This operation is indicated by the arrow from state 
0 to state 3 labeled with b. 

The operations of a parser can be specified in compact form with a parse table. In a 
parse table, we use the letter "s" to represent a shift operation and the letter "r" to rep-
resent a reduce operation. For example, s3 means to shift into state 3 (i.e., push 3 onto 
the stack). r3 means to reduce by production 3. The left half of a parse table specifies 
the shift and reduce actions. The right half specifies the state that is pushed when a re-
duce is performed. The table has an entry for each arrow and for each item in which the 
period is on the extreme right. The blank entries in a parse table represent reject con-
figurations. Figure 22.8 gives the parse table for the finite automaton we constructed for 
G22.6. 

When in state 3, the parser can perform a shift or a reduce operation. We do not have a 
shift/reduce conflict here, however, because our do-not-reduce rule tells use the parser 
should not reduce by production 3 unless the current input is in the FOLLOW set of B. 
The FOLLOW set of B contains only c. Thus, the parser performs the r3 operation in state 
3 only when the current input is c. Because the parser shifts when in state 3 only when the 
current input is b, the shift and reduce operations do not conflict. 
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Let us now parse bbc using the parse table in Figure 22.8. We start in state 0: 

$0 bbc# 

The table tells us that in state 0 with a current input of b, the parser should s3 (i.e, push 
state 3). We get 

$03 bc# 

The next operation is another s3: 

$033 c# 

In state 3, when the current input is c, the parse should r3 (i.e., reduce by production 3). 
Production 3 is B —* b. To reduce by this production, the parser pops the b (or, more pre-
cisely, the state that represents b) and then pushes B (or more precisely, the state that rep-
resents B). Thus, it pops the 3 on top, making the stack 

$03 

It then pushes 6, the state that represents B on top of state 3. We get this state from row 
3/column B in the parse table. Thus, after the r3 operation, the configuration is 

$036 c# 

Next, the parser reduces by production 2, B —» bB. Because the right side of this pro-
duction has two symbols, the parser pops two symbols (these symbols represent bB). It 
then pushes 2 (from row 0/column B), the state that represents a B on top of state 0, to 
get 

$02 c# 

The next operation is s5 after which the configuration is 

$025 # 

The next operation is r4 (i.e., reduce by C —» c). The parser pops the 5 (corresonding to 
the c) and pushes 4 (representing C) onto the stack: 

$024 # 

The next operation is rl (i.e., reduce by production 1, s -» BC). Because the right side of 
this production has two symbols, the parser pops the top two symbols from the stack 
(these symbols represent B and C). It then pushes 1, the state that represents an S on top of 
state 0 (see row 0/column S). The configuration becomes 

$01 # 

at which point the parser accepts. 
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22.7 SHIFT/REDUCE CONFLICTS 

The SLR(l) parse table for some grammars have shift/reduce conflicts. That is, for some 
configurations, both a shift and a reduce are called for. For example, let us construct the 
SLR( 1) finite automaton for the following grammar: 

G22.8 
1. E -> E + E 
2. E -^ b 

First, we add a new start state Q and the production Q —> E. We then construct the fi-
nite automaton (Figure 22.9a) and its corresponding parse table (Figure 22.9b). Notice 
that state 4 calls for a shift if the current input is +. But it also calls for a reduce by pro-
duction 1 if the current input is in the follow set of E (the FOLLOW set of E is { +, #} ). 
Thus, the parser has a shift/reduce conflict when it is in state 4 and the current input is +. 

When a shift/reduce conflict occurs in a SLR(l) parser, we can often, but not always, 
fix the problem by 

1. Using the more complex parsing algorithm we discuss in the next section with the 
same grammar, or 

2. Changing the grammar so the corresponding SLR(l) parser does not have any 
conflicts 

3. Forcing the SLR(l) to always shift or always reduce when the shift/reduce conflict 
occurs 

For G22.8, fixes 2 and 3 work but not fix 1. G22.8 is ambiguous. Ambiguity means 
that for at least one input string, there are multiple parse trees. A parsing algorithm uncov-
ers the parse tree for the input string. Thus, for an ambiguous grammar, there must be 
some choice reflecting the multiple parse trees than can be constructed for some inputs. 
Thus, our more complex parsing technique is doomed to fail (i.e., have conflicts) for 
G22.8. We, however, can convert G22.8 to the following equivalent grammar: 

G22.9: 
1. E -» E+b 
2. E -> b 

The SLR(l) parser for this grammar has no conflicts. We also can force the SLR(l) gram-
mar for G22.8 to always shift or always reduce when the shift/reduce conflict occurs. The 
action the parser takes at a conflict determines which of the possible parse tree it uncov-
ers. If the SLR(l) parser for G22.8 always shifts at a conflict, then for the input string 
b+b+b, the parser uncovers parse tree in Figure 22.5b. If, however, the parser always re-
duces at a conflict, then the parser uncovers the parse tree in Figure 22.5a. We have to be 
careful using this technique. If the grammar is not ambiguous, a shift/reduce conflict in 
the SLR(l) parse means that to successfully parse some strings, the parser must some-
times shift at the conflict. But for other strings, it must reduce at the conflict. Thus, if the 
parser is forced to always shift or always reduce at a conflict, there neccessarily would be 
some input strings in the language of the grammar for which the parse would fail. For ex-
ample, consider the following grammar: 



578 BOTTOM-UP PARSING 

G22.10 
1 . S -H> bSb 
2. S —> cSc 

3. S -> A 

Its SLR(l) parser has shift/reduce conflicts. If you force the parse to always shift or al-
ways reduce at a conflict, then the parse will fail for all the strings in the language of the 
grammar except for the null string. 
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22.8 REDUCE/REDUCE CONFLICTS 

If a parser has a choice between two reduce operations for some configuration, we say the 
parser has a reduce/reduce conflict. Let us construct the parse table for the following 
grammar to see if there are any reduce/reduce conflicts. 

G22.ll 
1. S -> b 
2. S -» BcB 
3. B -* b 

First, we add a new start state Q and the production Q —» S. Next, we construct the finite 
automaton (Figure 22.10a) and its corresponding parse table (Figure 22.10b). We can see 
from the parse table that a reduce/reduce conflict occurs when the parser is in state 3 and 
the input is #. In this configuration, the parser has a choice between rl and r3 when the in-
put is #. 

We can avoid the reduce/reduce conflict in the parse table in Figure 22.7b by using a 
grammar that does not produce any conflicts. Alternately, we can use the original gram-
mar with the more complex bottom-up parsing algorithm that we discuss in the next sec-
tion. 

If the parse table for a grammar contains no shift/reduce or reduce/reduce conflicts, we 
say that the grammar is SLR(l). If at least one grammar exists for a language that is 
SLR(l), we say the language is SLR(l). G22.11 is not an SLR(l) grammar (because of 
the reduce/reduce conflict in its parse table). However, the language it defines is SLR(l) 
because the following grammar is equivalent to G22.11 and its parse table has no con-
flicts: 

G22.12 
1. S -> bx 
2. X -» cb 
3. X -» A 

22.9 LR(1) PARSING 

The LR(1) parsing algorithm is the same as the SLR( 1) parsing algorithm. The difference 
between an LR(1) and an SLR(l) parser is in the construction of finite automaton and its 
corresponding parse table. The items used in the finite automaton for an LR(1) parser 
contains two components: 

1. A production with an embedded period 
2. One or more lookahead inputs 

For example, in the following LR(1) item, 

S -> B.CbD, c /d 

S —» BCbD is the production and c and d are the lookahead inputs. The lookahead input 
in an LR( 1) item indicate the possible current inputs at that point later in the parse when 
the states representing the right side of the production are on the stack, ready for reduc-
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tion. For example, the lookahead tokens in the preceding LR(1) item indicate that when 
the states corresponding to B, C, b, and D have been pushed onto the stack, the current in-
put should be either c or d. Thus, at that point the parse should reduce if the current input 
is c or d. 

Let us construct the LR( 1) finite automaton and parse table for 

G22.13 
1. S -> Sb 
2. s -> c 

First we add a new start state Q and the production Q —> s to the grammar to get 

G22.14 
0. Q -> s 

1. S -> · S b 
2. S - » c 

Next, we construct the finite automaton. The kernel item in the start state is 

Q -> . S , # 

The derivation of every string in the language defined by G22.14 starts with the produc-
tion Q —* s. Obviously, if the input string is in the language of the grammar, the S in this 
production must generate it. Thus, after the parser processes the input corresponding to 
the S in this production, the current input should be #. Accordingly, the lookahead input 
in the preceding above is #. The kernel item above gives rise to 

S -> .Sb, # 
S -» . c , # 

The S of the left side of these items is the S in the kernel item. Thus, after the right sides 
of these productions are processed, the current input must be the same as when the input 
corresponding to the right side of the kernel item has been processed. Thus, these items 
also have the lookahead #. The first of these items, 

S -+ .Sb, # 

gives rise to another item because the period is abutting the S on the right side. However, 
b follows this S. Thus, the items we get from it have a b lookahead: 

S -> .Sb, b 
S —► . c , b 

Thus, the start state consists of these items: 

Q -> . S , # 
S -+ .Sb, # 
S -> . c , # 
S -> .Sb, b 
S -» . c , b 
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Continuing in this fashion, it is easy to construct the entire finite automaton (see 
Figure 22.11a). We can then construct the parse table (see Figure 22.11b). The looka-
head inputs indicates the inputs for which the production should be reduced. For exam-
ple, the items in state 2 indicate the parse should reduce by the production 2 if the cur-
rent input is b or #. 

An LR(1) grammar is a grammar whose LR(1) parse table contains no conflicts. LR(1) 
parsing is more powerful than SLR(l) parsing. That is, all SLR(l) grammars are also 
LR(1), but not all LR(1) grammars are SLR(l). In other words, if SLR(l) parsing works 
(i.e., no conflicts) then so will LR(1) parsing. But for some grammars, LR(1) parsing 
works but not SLR(l) parsing. As an example of the latter, consider G22.ll, whose 
SLR(l) parse table is in Figure 22.10. We can see that a reduce/reduce conflict occurs in 
state 2. Now let us use LR(1) on the same grammar. We get the finite automata in Figure 
22.12a and the corresponding parse table in Figure 22.12b. 



22.9 LR(I) PARSING 583 



584 BOTTOM-UP PARSING 

Notice that the items in state 2 have different lookaheads. When in this state, the pars-
er reduces by production 1 if the current input is #, or by production 3 if the current input 
is c. The lookaheads have eliminated the reduce/reduce conflict that is present in the 
SLR(l) parser for the same grammar. Thus, this grammar is LR(1) but not SLR(l). 

One disadvantage of LR(1) parsing is that the number of states can be excessive, re-
sulting in a very large parse table. However, generally many of the states for an LR(1) 
parser can be merged, reducing significantly the total number states. The resulting parser 
is called a LALR(l) parser to distinguish it from a straight LR(1) parser (the "LA" in 
"LALR" stands for "lookahead"). For example, suppose a LR(1) parser has the following 
states, among others: 

state 5 

state 7 

state 6 

B -> BC. , d 
C -> . c , d 

c 
C —» c . d 

state 8 

B -> BC. , e 
C —» . c , e 

C —> c . e 

Notice the first components of the items in state 5 match the first components of the items 
in state 7. We have a similar match between states 6 and 8. Thus, we can merge states 5 
and 7, and states 6 and 8, combining the lookahead inputs. We get a parser that works the 
same as the LR( 1) parser but has two fewer states: 

state 5/7 state 6/8 

B -^ B C , d / e 
C -> . c , d / e 

c 
C -» c . d / e 

PROBLEMS 

Construct the SLR(l) finite automaton for G22.9 and its corresponding parse table. 
Show the parse of b, b+b, b+b+b, b++, +b, and b+b+. 
Construct the SLR(l) finite automaton for G22.10. Modify the parse table so that it 
always shifts at a shift/reduce conflict. Which strings in the language of the grammar 
can the corresponding parser successfully parse? Which strings can it not parse 
successfully? 
Construct the SLR(l) finite automaton for G22.12 and its corresponding parse table. 
Are there any conflicts? 
Construct the SLR(l) parsing table for 

E 
E 
T 
T 
F 
F 

E + 
T 
T * 
F 
b 
( E 
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Show the parse of b* (b+b). Implement your parser using Java. Test your parser 
with b+b, b* b, b+b* b, b* (b+b), bb, b* , b* * b, b* b+. 

5. Using Java implement the SLR(l) parser for 

E -» E + <UNSIGNED> 
E -> <UNSIGNED> 

Add actions along with any necessary data structures that allow your parser to com-
pute the value of the input expression. Test your program with 2, 2 + 3, and 2 + 3+4. 

6. Construct the SLR( 1) parser for 

S -H> b 
S - > Sd 
S -+ Bde 
B -* b 

Are there any conflicts? Construct the LR( 1) parser for the grammar. Are there any 
conflicts? Is this grammar SLR(l)? Is it LR(1)? 

7. Show that the merging of states in the process of constructing a LALR(l) parser nev-
er creates a shift/reduce conflict. 

8. Construct the SLR(l) parse table for G 18.1 in Chapter 18. 
9. Are LR(1) grammars ever ambiguous? Justify your answer. 

10. Construct the LR(1) finite automata and the LALR(l) finite automaton for 

S -» BB 
B -> Bb 
B -* c 
D -^ Dd 
D -> e 





23 
yace 

23.1 INTRODUCTION 

yace is a LALR(l) parser generator available on Unix systems. The letters in yace stand 
for "yet another compiler compiler." This is a curious name, given that there were hardly 
a plethora of compiler compilers (i.e., parser generators) when yace was released. Perhaps 
the yacc's name reflects the many preliminary versions that were created during its devel-
opment. Because of the popularity of yace, a number of yace look-alike programs have 
been developed, most notably the GNU bison program and the Berkeley yace. 

Most versions of yace generate C/C++ parsers only. However, one version— 
BYACC/J—can generate either C/C++ or Java parsers. In keeping with the Java theme of 
this book, we will use this version of yace. It is available for the Microsoft, Linux, Macin-
tosh, and SUN Solaris platforms. 

yace is different from JavaCC in two significant ways: 

1. It generates a bottom-up parser rather than a top-down parser. 
2. It does not include a lexical analyzer (i.e., a token manager) generator. 

To use a parser created by yace, you must provide it with a lexical analyzer method named 
yylex that provides tokens in the form required by the yacc-generated parser. You can ei-
ther write the lexical analyzer by hand or use a lexical analyzer generator program to gener-
ate it for you. The lexical analyzer generator typically used with yace is lex or its look-alike 
versions flex, jflex, and jlex. The latter two programs generate lexical analyzers written in 
Java. In this chapter, we will use both handwritten and jflex-generated lexical analyzers. 

23.2 yace INPUT AND OUTPUT FILES 

A yacc input file consists of three parts (see the left side of Figure 23.1). Part 1 is divided 
from part 2 with a line containing %%. Similarly, part 2 is divided from part 3 with a line 
containing %%. Part 1 is subdivided into subparts la and lb. Subpart la contains Java code 

Compiler Construction lining Java, JavaCC, and Yacc, First Edition. Anthony J. Dos Reis 587 
© 2012 the IEEE Computer Society. Inc. Published 2012 by John Wiley & Sons. Inc. 



588 yace 

bracketed with %{ and %} . This code is carried over as is to the beginning of the output file 
(see the right side of Figure 23.1). Subpart lb contains yace declarations. For example, in 
part lb you list the token (i.e., terminal) symbols in the translation grammar to distinguish 
them from the nonterminal symbols (JavaCC uses a different approach: token symbols are 
enclosed in angle brackets to distinguish them from the nonterminal symbols). 

Part 2 contains the translation grammar in BNF (see Section 4.4). Actions are embed-
ded in the grammar using Java code enclosed in braces. Part 3 contains Java code for ad-
ditional methods. This code is carried over as is to the output file. 

By convention, we use the extension " . y" in the names of yace input files. The de-
fault output file name is P a r s e r , java . P a r s e r , j ava contains the Java code from 
subpart la in the input file followed by a class named Parse r . The P a r s e r class con-
tains the methods generated by yace: yyparse , which is the parser, as well as several 
support methods. It also contains the Java methods from part 3 of the input file. 

yyparse expects two methods to be available that yace does not generate: yylex 
(the lexical anaylzer) and y y e r r o r (the method yyparse calls on a error). If we place 
yylex and y y e r r o r in part 3 of the yace input file, along with a main method, then the 
output file created by yace will be a complete program. 

yace also outputs a second file named P a r s e r V a l . java . We will discuss this file in 
Section 23.3. 

23.2 A SIMPLE yacc-GENERATED PARSER 

Let us examine the simple yace input file in Figure 23.2. The line numbers are not part of 
the input file—we have added them so that we can easily refer to specific lines. The trans-
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lation grammar is in part 2 (lines 6-12). The productions for each nonterminal are termi-
nated with a semicolon. For example, the semicolon on line 10 in Figure 23.2 terminates 
the B productions. The productions and actions do not have to be formatted in a particular 
way. For example, we could have placed each component of the B productions on a sepa-
rate line, each starting in column 1 to get 

B 

' b ' 
B 
{ S y s t e m . o u t . p r i n t l n ( " P r o d 2");} 

I 
• b ' 
{ S y s t e m . o u t . p r i n t l n ( " P r o d 3");} 

Actions appear within braces. In the example in Figure 23.2, each production has an ac-
tion to its right. These actions are performed when the corresponding production is used 
in a reduce operation by the parser. Character constants (such as ' b ' and ' c ' ) and any 
symbol declared to be a token in subpart lb are treated as tokens (i.e., terminal symbols). 
Because this example does not declare any symbols to be tokens (there is no subpart lb), 
the only tokens in the grammar are the character constants ' b ' and ' c ' . S, B, and C are 
the nonterminals. The left side of the first production listed is the start symbol. 

A lambda production is represented in a yacc translation grammar by writing nothing 
on the right side of a production. For example, the following S productions 

S -* cS 

S -> A 

would appear in the following form in a yacc translation grammar as 

S : ' c ' S 

I -^ nothing after vertical bar means A 

or, if we listed the lambda production first, as 

S : -* nothing before vertical bar means A 
I c ' S 

Part 3 contains the yylex and y y e r r o r methods that the yacc-generated parser re-
quires. Because it also includes a main method, the output file produced by yacc for this 
example is a complete program, yylex returns the ASCII code for character constants, 
and zero on end of input. On an error, it calls yye r ro r , passing it an error message. 
There is no specific function y y e r r o r has to perform. In this example, it simply displays 
the error message and terminates the program. 

y y t e x t is a S t r i n g variable created by yacc. It is typically used by yylex () to pro-
vide the parser with the image of the current token. On line 34 in Figure 23.2, yylex sets 
yy t ex t to the token image. However, the parser itself makes no use of yy t ex t . To 
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make parsing decisions, the parser uses the value returned by yylex () via the r e t u r n 
statement; it does not use what is in yy t ex t . However, actions can access yy t ex t , as il-
lustrated by the C production in the translation grammar in Figure 23.2: 

11 C : ' c ' { System.out .print ln("Prod 4 " + yytext);) 

To process the input file Fig2302 . y in Figure 23.2, enter 

yace -J Fig2302.y 
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The - J command line argument (use a capital J) causes yace to generate Java code. 
Without it, yace would generate C code. To compile the P a r s e r , j ava file produced 
by yace, enter 

j avac P a r s e r . j a v a 

To run the parser and test it with the input string bbc, enter 

j ava Pa r se r bbc 

The parser responds with 

Prod 3 

Prod 2 
Prod 4 c 
Prod 1 

Each time the parser performs a reduce operation, an action displays the number of the 
production used. Now let us look at the rightmost derivation of bbc (the production in 
each step used is shown below the nonterminal replaced). 

S => BC => Be => bBc => bbc 
1 4 2 3 

We can see that the order in which the productions are used—1,4, 2, 3—is the reverse or-
der of the productions used in the bottom-up parse of bbc. The bottom-up parse deter-
mines the rightmost derivation, in reverse order. 

If you specify the -v command line argument when you invoke yace, yace will output 
a file y. ou tpu t containing the parse table used by the parser. For example, if you enter 

yace -v - J Fig2302.y 

yace outputs the file in Figure 22.3. 
At the beginning of this file, we can see the grammar, augmented with a new start sym-

bol, $accept , and a new production $accept —» S: 

0 $accept : S $end 

$end represents the end of input that should follow the input string generated by the S in 
this production. Next, for each state, we have the kernel item (the nonkernel items are 
omitted) and a description of each arrow out ofthat state. Let us look at state 3: 

state 3 
S : B . C (1) 

'c' shift 5 
error 

C goto 6 

The kernel item is production 1: 

S -^ B.C 
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We can see that state 3 has two outgoing arrows: to state 5 on a ' c ' , and to state 6 on a 
C. The period in the line 

e r r o r 

represents any input other than the ones listed. Here it means any input other than ' c ■. 
Thus, this line indicates that any input other than ' c ' is an error. The information given 
for state 3 tells us that state 3 in the underlying finite automata looks like this: 

state 3 

S - > B . C 

C - > . c 

c 

C 

state 6 

state 5 

The parser performs an action for a production only when it reduces with that produc-
tion. Actions are generally specified to the right of the productions to which they apply. 
However, they can also be specified in the interior of a production. For example, suppose 
we modify the translation grammar in Figure 23.2 so that it is 

B 

{ S y s t e m . o u t . p r i n t l n ( " h e l l o " ) ; } 
C 
{ System.out.println("goodbye");} 

B : 'b' B { System.out.println("Prod 2");} 
I *b' { System.out.println("Prod 3");} 

■ c ' { S y s t e m . o u t . p r i n t l n ( " P r o d 4") ; ) 

The S production contains two actions, one between the B and the C and one at the end. 
The one at the end is performed when the parser reduces with the S production. The one 
between the B and the C is performed right after the parser reduces by a B production that 
creates the B nonterminal in the S production. Thus, for an input of bbc, Figure 23.2 with 
the modified grammar would output 

Prod 3 
Prod 2 
hello 
Prod 4 
goodbye 
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The reduction by production 3 pushes a B on the stack, but this is not the B in the S pro-
duction. It is the reduction by production 2 that pushes the B in the S production. Thus, af-
ter the reduction by production 2, the first action—which displays "hel lo"—is per-
formed. 

yace handles actions that are not at the end of a production by replacing the action with 
a nonterminal. It then adds to the grammar a lambda production for the new nonterminal 
with the action on its right. In the example above, yace replaces 

S : B 
{ S y s t e m . o u t . p r i n t l n ( " h e l l o " ) ; } 
C 
{ S y s t e m . o u t . p r i n t l n ( " g o o d b y e " ) ; } 

with 

S : B 
$$1 
C 
{ System.out.println("goodbye");} 

where $$1 is a new nonterminal. It also adds to the grammar a lambda production with 
$ $ 1 on its left side with the replaced action on its right: 

$$1 : { S y s t e m . o u t . p r i n t l n ( " h e l l o " ) ; } 

The parser, as usual, performs the action in this production when it reduces by this pro-
duction. From the S production, we can see that this reduction occurs right after the re-
duction that pushes the B (the one in the S production) onto the stack. 

The variables that are declared in part 3 of the yace input file are included in the 
Pa r se r class. Thus, all the methods in the P a r s e r class as well as the actions have ac-
cess to them. We can use these variables to pass information from yylex to the parser, or 
from one point in the parse to another. For example, in Figure 23.4, yylex counts the 
number of b's. This count is then displayed at the end of the parse when the reduction 
with the S production occurs. bCount (line 16) is the variable yylex uses to pass the 
count information to the parser. Alternatively, the parser can do the counting. The corre-
sponding translation grammar is 

S : B C { System.out.println("b count = " + bCount);} 

B : 'b' { bCount+ + ;} B 
I 'b' { bCount+ + ;} 

C : 'c* 

Here we are using bCount, a variable declared in part 3 of the input file, to accumulate 
information during the parse. This count is then used later in the parse in the action for the 
S production. 



23.2 A SIMPLE yacc-GENERATED PARSER 595 

To create the executable program from Figure 23.4, enter 

yace -J Fig2304.y 
javac Parser.java 

To process the input bbbc, enter 

java Parser bbbc 
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The Parser program will then respond with 

b count = 3 

23.4 PASSING VALUES USING THE VALUE STACK 

We learned in Chapter 22 how a bottom-up parser pushes states representing symbols 
onto a stack until a handle appears on top of the stack. It then reduces by the correspond-
ing handle production. This stack is called the parsing stack. The parsers generated by 
yace, however, have a second state, called a value stack. The value stack is used in paral-
lel with the parsing stack. That is, each entry in the value stack provides the value of the 
corresponding item in the parsing stack. 

Where do the values in the value stack come from? For the terminal symbols, the 
values come from the terminal symbols themselves. For example, the value of the un-
signed integer token could be the string "123" or the integer 123, depending on what 
we want the parser to do. In the example in this section, the parser performs an arith-
metic computation during the parse using the values from the tokens. Thus, in this ex-
ample, the values we want for our terminals are their integer values, not their string rep-
resentations. 

Let us work through the example in Figure 23.5. The left side of the first production 
listed (line 6) is S. Thus, S is the start symbol for this grammar. On line 3, we declare UN-
SIGNEDtobeatoken: 

3 %token UNSIGNED 

Thus, in the grammar, UNSIGNED is a token (i.e., terminal symbol) but expr is not. ' - ' 
is also a token because it is enclosed in quotes. In response to line 3, yace creates the fol-
lowing constant for UNSIGNED: 

public final static short UNSIGNED = 257; 

This constant, 257, represents the unsigned integer token. When yylex returns an un-
signed integer token to the parse, it returns this constant (to indicate the category of the to-
ken). The integer constants yace uses for tokens are all greater than 256. Thus, they will 
never conflict with any ASCII codes (all of which are less than 128). 

Now look at the action on line 8: 

8 expr : expr ' - ' UNSIGNED { $ $ . i v a l = $ 1 . i v a l - $ 3 . i v a l ; } 

$ $ represents the left side of the production. $ 1 and $ 3 represent, respectively, the first 
and third symbols on the right side of the production. Thus, $$ . i v a l represents the inte-
ger value of the left side of the production. $ 1 . i v a l and $3 . i v a l represent the integer 
values of the first and third symbols on the right side of the production. The action in this 
production subtracts the values associated with the production's right side and assigns the 
result to the left side. 

The second production for expr (line 9) has no action. However, when no action is 
specified for a production, the action defaults to 

{ $ $ . i v a l = $ l . i v a l ; } 
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Thus, the action for this production is to assign the value of the right side (the UNSIGNED 
terminal) to the left side (the expr nonterminal). As the parse proceeds, each nonterminal 
in the parse tree receives its value based on the values of the node or nodes below it. 
When the expr nonterminal in the S production is reduced, it will have a value equal to 
the entire expression. This value (in $ 1. va l ) is then displayed by the action in the S pro-
duction: 

6 S : expr { System.out.println($1.ival);} 

The actions in the translation grammar in Figure 22.5 specify the computation that is to 
take place during the parse. But where do the values used in the computation originally 
come from? They come from yylex. For each token, yylex assigns y y l v a l an object 
whose type is ParserVal (see Figure 23.6). The Parse rVal object contains the to-
ken's value. The parser can then access this value via its y y l v a l variable. 

Let us examine the structure of yylex in Figure 23.5 to see how this works. This ver-
sion of yylex should be familiar—it is like the token manager in the SI compiler. Lines 
30 and 31 throw out white space: 

30 while (Character.isWhitespace(currentChar)) 
31 getNextChar(); 

If after white space is discarded, the current character is a digit, then that digit must be the 
start of an unsigned integer token. In that case, the following code is executed: 

36 b u f f e r . s e t L e n g t h ( 0 ) ; 
37 do 
38 { 
39 buffer.append(currentChar); 
40 getNextChar(); 
41 } while (Character.isDigit(currentChar)); 
42 yytext = buffer.toString(); 
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43 kind = UNSIGNED; 
44 // assign yylval object that contains value 
45 yylval = new ParserVal(Integer.parselnt(yytext)); 

The do-whi le loop reads the digits that make up the unsigned integer token and ap-
pends them to buf fe r . At the conclusion of the loop, the sequence of characters in 
buf fe r is converted to a string and assigned to y y t e x t (line 42). kind is set to UN-
SIGNED (the constant yace creates to represent an unsigned integer because of line 3). 
The next line (line 45) then creates a Parse rVal object and assigns it to y y l v a l . y y l -
va l is a variable defined by and available to the parser. Thus, whatever yylex assigns to 
y y l v a l is accessible by the parser. The I n t e g e r . p a r s e l n t method on Line 45 con-
verts the unsigned integer in string form in y y t e x t to type i n t . This value is then 
passed to the Parse rVal constructor, which stores it in the i v a l field of the P a r s e r -
Val object (see line 12 in Figure 23.6). The parser has access to y y l v a l through which 
is has access the the value of the token. When on line 55 yylex returns to the parser, it 
returns kind (which contains UNSIGNED). The parser gets the category of the token via 
the return value; it gets the value of the token via the y y l v a l variable. 

If on entry into yylex, the token to be processed is not an unsigned integer, then 
yylex returns the next nonwhite-space character as the token. For this case, it sets y y l -
va l to null (line 52 in Figure 23.5) because there is no i n t value associated with this 
type of token. 

The dollar sign notation ($1, $2, ...) we use in actions designates various slots in the 
value stack. Because these slots contain references to Parse rVal objects that contain 
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i n t values in the i v a l field, we access these i n t values by specifying the i v a l field. 
For example, $3 . i v a l in the action on line 8 in Fig 23.5, 

8 e x p r : e x p r ' - ' UNSIGNED { $ $ . i v a l = $ l . i v a l - $ 3 . i v a l ; ) 

specifies the value in the i v a l field in the ParserVal object pointed to by the $3 slot in 
the value stack. Because $3 corresponds to the UNSIGNED token on the right side of the 
production, $3 . i v a l is the integer value of this token. 

Let us simulate a parse of the expression 9 - 2 using the parse table that yace con-
structs for Figure 23.5 (see Figure 12.7). In this simulation (see Figure 23.8), we show 
both the parsing stack (P$) and the value stack (v$). Whenever the parser performs a shift 
operation, it shifts a state onto the parsing stack. It also shifts the value of the token (i.e., 
the contents of yyl va l ) onto the value stack. To simplify the picture of the value stack in 
Figure 22.7, we show the value stack as containing i n t values or "* ", the latter indicat-
ing no value. But please be aware that each slot really contains a ParserVal reference. 

Figure 23.8a shows the initial configuration. 0 is on top of the parsing stack; 9, an un-
signed integer, is the current input. Our parse table in Figure 23.7 specifies si for this con-
figuration. Thus, the parser shifts 1 onto the parsing stack, and 9 (more precisely, the ref-
erence to the Parse rVal object that contains 9) onto the value stack to get the 
configuration in Figure 23.8b. The next step is r3, a reduction by the production on line 9 
in Figure 23.5. Because the right side of this production has only one symbol, only one 
symbol is popped from the parsing stack, exposing the state 0, on top of which the parser 
has to push the state representing expr. Our parse table tells it to push state 3. We get the 
configuration in Figure 23.8c. Because this production does not have an associated action 
that assigns a value to the value stack, the value stack is unaffected by the reduce opera-
tion. Thus, the value on top of the value stack before the reduce is still there (compare 
Figure 22.8b and Figure 22.8c). Thus, the effect is as if we specified the action 

{ $$ = $ l . v a l ; ) 

on the production on line 9 in Figure 23.5. Let us now skip ahead to the configuration in 
Figure 22.8e. In this configuration, the parser reduces with the production 

8 expr : expr ' - ' UNSIGNED { $ $ . i v a l = $ 1 . i v a l - $ 3 . i v a l ; } 
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To do this, it 

1. Pops three items from the parsing stack to expose the state 0 
2. Pushes 3, the state that represents expr on top of state 0 
3. Pops three items—$3, $2, and $1—from the value stack 
4. Computes $1 . i v a l - $3 . i v a l , and pushes the result onto the value stack 

We get the configuration in Figure 22.8f. In its final step, the parser reduces by production 1 
and performs its action (to display $1 . i v a l ) . $ 1 . i v a l is the value at the top of the stack. 

6 S : expr { System.out.println($1.ival);} 

When you execute the program derived from Figure 23.5, be sure to enclose the input 
string on the command line in quotes if it contains any embedded spaces (otherwise, it 
will be treated as multiple arguments). For example, to create the executable program and 
then use it to process 7 - 2 - 1, enter 

yace -J Fig2305.y 
javac Parser.java 
java Parser " 7 - 2 - 1 " 

The P a r s e r program will then respond with 

4 
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23.5 USING yace WITH AN AMBIGUOUS GRAMMAR 

The grammar in Figure 23.9 is ambiguous with respect to both operator associativity and 
operator precedence. For example, there are two parse trees for 2 + 3+4, one implying left 
associativiy, the other implying right associativity. There are two parse trees for 2+3* 4, 
one implying addition has higher precedence than multiplication; the other implying that 
multiplication has higher precedence than addition. The ambiguities in this grammar 
manifest themselves as shift/reduce conflicts in the parser. 

Suppose during a parse, the stack contains the states corresponding to 

expr ' + ' expr 

and the current input is ' + ' . The parser faces a shift/reduce conflict here. Should the 
parser shift or reduce? Recall from Chapter 22 the reduce-order principle: 

The order in which operators are reduced is the order in which they are 
performed. 

Thus, if the parser reduces at this point, it will reduce the left ' +' (the one on the stack) 
before the right ' +' (the current input). Then by the reduce-order principle, we can con-
clude that a reduce here imparts left associativity to the addition operator. A shift here, 
on the other hand, means the right ' +' (the current input) will be reduced before the left 
' +' (the one on the stack), thereby imparting right associativity to the addition operator. 
Addition should be left associative. Thus, the parser should reduce here. Unfortunately, 
the parser shifts by default at shift/reduce conflicts. We have a similar problem if 

expr ' * ' expr 

is on the stack and the current input is ' + ' . Here, the parser faces a shift/reduce conflict. 
If the parser reduces here, it imparts higher precedence to ' * ' relative to ' + ' , which is 
what we want. Unfortunately, the parser shifts here. 



23.5 USING yace WITH AN AMBIGUOUS GRAMMAR 603 

The parse table for Figure 23.9 has 16 shift/reduce conflicts. Let us examine the parse 
table to locate these conflicts. To do this first, get yace to output the parse table by enter-
ing 

yace -v - J F ig2309.y 

where Fig2309.y is the file in the Jl Software Package that contains the input file in 
Figure 23.9. In response, yace will output the file y. ou tpu t that contains the parse table. 
This is what state 8 looks like: 

shift/reduce conflict (shift 4, reduce 2) on 
shift/reduce conflict (shift 5, reduce 2) on 
shift/reduce conflict (shift 6, reduce 2) on 
shift/reduce conflict (shift 7, reduce 2) on 

state 8 
expr : expr . '+' expr (2) 
expr : expr '+' expr . (2) 
expr : expr . '-' expr (3) 
expr : expr . '*' expr (4) 
expr : expr . '/' expr (5) 

I * I 

'+' shift 4 
'-' shift 5 
'* ' shift 6 
'/' shift 7 

Shift/reduce conflicts are 
resolved in favor of the shift 

$end reduce 2 

One of the items, 

expr : expr ' + ' expr . 

calls for a reduce (because the period is rightmost) on a ' +' , ' - ' , ' * ' , and ' / ' . But the 
other items in state 8 call for a shift on these inputs. In all four of these conflicts, the pars-
er shifts (you tell this from the actions specified in state 8 for the inputs ' + ' , ' - ' , ' * ' , 
and ' / ' ) . 

Let us make a small modification to Figure 23.9: change lines 4 and 5 to 

%left ' + ' ' - ' 
%left ' * ' '/' 

These two lines specify the associativity (left in this example) and precedence of the four 
operators. Precedence is specified by the position in which the operators are listed. By 
listing ' * ■ and ' / ' below ' +' and ' - ' , we are indicating that the ' * ' and ' / ' should 
have a higher precedence than ' +' and ' - ' . With these lines included, the parser that re-
sults will resolve shift/reduce conflicts so that ' + ' , ' - ' , '* ' , and ' / ' have the specified 
associativity and precedence. 

By specifying the associativity and precedence of the operators on line 8 and 9, we have, 
in effect, disambiguated our ambiguous grammar. Here is what state 8 now looks like: 
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state 8 
expr 
expr 
expr 
expr 
expr 

" * · 
·/' 
$end 
· + ' 
1 _ 1 

: expr . '+' expr 
: expr '+' expr . 
: expr . '-' expr 
: expr . '*' expr 
: expr . '/' expr 

shift 6 
shift 7 
reduce 2 
reduce 2 
reduce 2 

(2) 
(2) 
(3) 
(4) 
(5) 

All the conflicts are gone. The parser now resolves shift/reduce conflicts based on the as-
sociativity and precedence specified by our new lines 4 and 5. For example, when the 
right side of 

expr : expr ' + ' expr 

is on the stack and ' +' is the current input, the parser now resolves the shift/reduce con-
flict in favor of the reduce, thereby imparting left associativity to ' + ' . Similarly, when 
the right side of 

expr : expr ' + ' expr 

is on the stack and ' * ' is the current input, the parser resolves the shift/reduce conflict in 
favor of the shift, theereby imparting higher precedence to '* ' relative to ' + ' . 

If we add the unary minus operator to our grammar in Figure 23.5, we run into another 
problem: unary minus has higher precedence than subtraction (as well as addition, multi-
plication, and division). But both subtraction and unary minus are represented by ' - ' . So 
how can we indicate the correct precedences to yace? We simply make up a name that rep-
resents the unary minus (let us use "UNARYMINUS") and list it below the other operators: 

%left '+' '-' 
%left '*' '/' 
%right UNARYMINUS 

We then tag the production that has the unary minus with %prec UNARYMINUS: 

expr : expr ' + ' expr { $ $ . i v a l = $ l . i v a l + $ 3 . i v a l ; ) 
expr ' - ' expr { $ $ . i v a l = $ l . i v a l - $ 3 . i v a l ; } 
expr ' * ' expr { $ $ . i v a l = $ l . i v a l * $ 3 . i v a l ; } 
expr ' / ' expr { $ $ . i v a l = $ l . i v a l / $ 3 . i v a l ; } 
' - ' expr %prec UNARYMINUS { $ $ . i v a l = $ 2 . i v a l ; } 
UNSIGNED 

23.6 PASSING VALUES DOWN THE PARSE TREE 

During a bottom-up parse, information is usually passed up the parse tree. For example, 
when the following production is used in a reduce operation, a value derived from the two 
expr nonterminals on the right is passed to the expr nonterminal on the left: 
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expr : expr ' + ' expr { $ $ . i v a l = $ l . i v a l + $ 3 . i v a l ; } 

In the parse tree, the expr nonterminal on the left sits above the two expr nonterminals 
on the right. Thus, here the information flow is up the tree. We also, however, can pass in-
formation down a tree. Consider the grammar in Figure 23.10. Suppose we would like the 
action in the E production to display the sum of the unsigned integers that B, C, and E gen-
erate. To do this, we have to pass the unsigned integers that B and C generate down to the 
action in the E production. The action in the E production is performed when the parser 
reduces with the E production. At that point in the parse, states for B, C, and the two un-
signed integers from E are on the parsing stack with their corresponding values on the val-
ue stack. For example, the parsing and value stacks would look like the following when 
the B, c, and E integers are 6, 7, 8, and 9, respectively and 1, 2,4, and 5 are the states that 
represent, respectively, B, C, and the two integers from E: 

P$01245 

V$*6789 

Note that the four values we want to sum are the four top values on the stack. We can ac-
cess the top two in the action for the E production with $ l . i v a l and $ 2 . i v a l . 
$2 . i v a l is the value of the second unsigned integer in the E production. Thus, this value 
is on top of the stack. $ 1. i v a l is right below it. The two other values we need—of B and 
C—are right below $ l . i v a l on the stack. We can access them with $ 0 . i v a l and 
$ - 1 . i v a l . Decreasing numbers in the dollar notation refer to successively lower loca-
tions on the stack. Thus, the top four values on the stack from top down can be accessed 
with $2 . i v a l , $ 1 . i v a l , $0. i v a l , and $ - 1 . i v a l . We can display the sum of these 
values when the E production is used in a reduce by defining the E production with 

E : UNSIGNED UNSIGNED { System.out.println($2.ival + 
$l.ival + $0.ival + $-l.ival);} 
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When we use the dollar notation with 0 and negative numbers, we are, in effect, passing 
information down the parse tree. 

23.7 IMPLEMENTING S l y 

Now that we know how to use yace, it is easy to create a yacc-generated SI compiler. 
We call this compiler compiler Sly. S l y . y, the yace input file for the Sly compiler is 
in the Jl Software Package. It is also shown in Figure 23.11. Let us examine its notable 
features. 

The Sly compiler uses the same symbol and code generator classes we used in the SI 
compiler. To create the symbol table and code generator, it simply executes 

137 SISymTab st = new SISymTab (); 
138 SICodeGen eg = new SICodeGen(outFile, st) ; 

The lexical analyzer (i.e., token manager) in Sly (lines 154—250) works in the same way 
as the token manager in SI. In particular, getNextChar (lines 225-250) buffers each 
line and provides yylex with one character at a time, yylex records the starting and 
ending location of each token in the following variables: 

111 int yybeginLine, yyendLine, yybeginColumn, yyendColumn; 

On an error, the parser calls yye r ro r , passing it an error message, y y e r r o r creates 
an new error message consisting of the message it is passed from the parser, the current 
token's image (in yy tex t ) , and the starting location (in yybeginLine and yybegin-
Column). It then outputs this new message, after which it returns to the parser: 

252 private void yyerror(String s) 
253 { 
254 String message = 
255 s + " while scanning \"" + yytext + "\" on line " + 
256 yybeginLine + " column " + yybeginColumn; 
257 System.err.println(message); 
258 outFile.println(message); 
259 } 

Error recovery is provided by line 35 in the s t a t e m e n t production: 

30 statement: 
31 assignmentStatement 
32 | 
33 printlnStatement 
34 | 
35 error ';' // matches from error to the next semicolon 
36 ; 

e r r o r on line 35 is a yacc keyword which matches all the tokens in the input from the 
current token up to the token specified after the e r r o r keyword. Because the semicolon 
appears after e r r o r on line 35, line 35 matches everything in the input through the next 
semicolon. Thus, if the parser reduces with line 35, the effect is to consume the current 
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Statement—that is, the statement on which the error occurred through its terminating 
semicolon. The parser then continues the parse with the next statement. 

The lexical analyzer places the image of each token in the sva l field of the P a r s e r -
Val object. Thus, to access these images from within actions, we specify the sva l field. 
For example, to access the operand for the pwc instruction in the following action, we use 
$ 1 . sva l : 

83 { c g . e m i t l n s t r u c t i o n ( " p w c " , $ l . s v a l ) ; } 

23.8 jflex 

jflex is a lexical analyzer generator that produces lexical analyzers written in Java. We 
can use jflex to create the lexical analyzer for the Sly compiler instead of writing one by 
hand. But we can also use jflex to create a variety of useful stand-alone programs. A jflex 
input file consists of three parts (See Figure 23.12). By convention, we use the extension 
" . 1" on jflex input files. 

jflex outputs a file named Yylex. j ava that contains the Yylex class. Within this 
class is the lexical analyzer method yylex. The Java code in part 1 of the jflex input file 
is inserted at the beginning of Yylex. java, before the Yylex class. The Java code 
bracketed %{ and %} in part 2 is inserted into the Yylex class. Part 3 contains regular 
expressions with actions. The Java code in yylex that jflex generates is based on these 
regular expressions and actions. 

In jflex regular expressions, quotes are needed to mark a character as ordinary when it 
otherwise would be interpreted as special. For example, to represent a b followed by an 
asterisk, we use b"* " . We need the quotes around the asterisk because otherwise it 



23.8 jflex 613 

would be interpreted as the zero-or-more operator. The backslash can also be used to 
mark the character that follows it as ordinary. For example, b\ * represents a b following 
by an ordinary asterisk. Within a character class (i.e., the square bracket construct), most 
of the characters that can be interpreted as special are not allowed. Thus, these characters 
within a character class are interpreted as ordinary even if they are not within quotes. For 
example [ b* c] is the character class that consists of b, *, and c. Because it is within a 
character class, the asterisk here is interpreted as ordinary even though it is not enclosed 
in quotes. Figure 23.13 lists a variety of JavaCC regular expressions with their jflex 
equivalents. 

Let us create a program using jflex that counts the words in a text file. Figure 23.14 is the 
jflex input file we need (note that the line numbers are not part of the jflex input file). The 
regular expression [ Λ \ n\ r \ t] on line 26 specifies a set of characters. Λ is the comple-
ment operator. Thus, this expressions specifies the set of all characters except space, return, 
newline, and tab. That is, it is the set of all nonwhite-space characters. By following this ex-
pression with a + (the one-or-more operator), we get an expression that will match any 
word—that is, it will match any sequence of nonwhite-space characters. The lexical ana-
lyzer that jflex produces will always use the longest match possible. For example, if a file 
contains the word "yes", the lexical analyzer will match the entire word "yes", rather than 
just "y" or "ye". If more than one regular expression provides the longest match, the lex-
ical analyzer will use the one listed first in part 3 of the jflex input file. 

The period on line 27 is a wild card. It matches any single character except \ n. Thus, 
the regular expression . | \ n on line 27 matches any single character. However, the lexi-
cal analyzer will use it only if the expression on line 26 does not match the input. Suppose 
a file contains 

yes no goodbye 
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Then the expression on line 26 will match yes, no, and goodbye, and the expression on 
line 27 will match all the white space. Each time the lexical analyzer matches a word with 
the expression on line 26, it increments wordCount. At the end of the scan, wordCount 
contains the number of words in the input file. This number is then displayed by line 20 in 
the main method. 

yylex (the lexical analyzer) returns to its caller only if the action includes a r e t u r n 
statement, or if the end of the file is reached. The actions on lines 26 and 27 do not include 
a r e t u r n . Thus, once yylex () is called, it executes until the end of file is reached. 

The declaration %byaccj on line 6 sets jflex to byacc/j compatibility mode. We have 
to set this mode if we are using jflex to produce a lexical analyzer for a parser generated 
by byacc/j. For our word count program, we are setting it only because the byacc/j com-
patibility mode is the easiest to use (in byacc/j compatibility mode, jflex creates a lexical 
analyzer that returns an i n t value, rather than a reference to a token object). 

Suppose the jflex input file in Figure 23.14 is in the file Fig2314 . 1 . To create the 
program from this file, enter 

jflex Fig2314.1 

jflex creates the corresponding Java program in a file named Yylex. java. To compile 
this program, enter 

j avac Yy lex . j ava 
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To run the Yylex program with an input file f. t x t , enter 

j ava Yylex f . t x t 

The Yylex program will then count and display the number of words in f. t x t . 
Let us use jflex to create a program that inputs a text file and outputs the same file but 

with line numbers added. The required jflex input file is given in Figure 23.15. The ex-
pression on line 29 matches any single line of the input file. Its action outputs this line 
prefixed with its line number, y y t e x t () is a method that jflex creates that returns the 
substring matched. 

Now let us look at the jflex input file that creates the lexical analyzer we need for our 
Sly compiler (see Figure 23.16). The Yylex class that jflex creates has a Yylex con-
structor. However, this constructor is passed only the input file. We need a constructor 
that is passed both the input file and the parser object (the lexical analyzer needs the pars-
er so it can access y y l v a l and the token constants in the parser object). For this reason, 
we include a Yylex constructor in the jflex input file that receives both the input file and 
the parser (see lines 8-12 in Figure 23.16). This constructor calls the jflex-generated con-
structor, passing it the input file: 
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10 t h i s ( i n F i l e ) ; 

It then saves the parser reference it is passed in p a r s e r , an instance variable in the lexi-
cal analyzer: 

11 this.parser = parser; 

The lexical analyzer can then access y y l v a l using its p a r s e r variable. For example, on 
line 21, the lexical analyzer assigns to y y l v a l the Parse rVal object that contains in its 
sva l field the image of the current token: 

21 parser.yylval = new ParserVal(yytext()); 

It can also access the token constants defined in the parser. For example, on line 22, it ac-
cesses the PRINTLN token constant using p a r s e r : 
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22 r e t u r n parser.PRINTLN; 

On line 15, we set IDENT equal to a regular expression: 

15 IDENT = [A-Za-z] [A-Za-zO-9] * 

We can then use IDENT in place of the regular expresson in part 3. For example, on line 
28, we specify {IDENT} instead of the complicated regular expression it represents. We 
have to enclose IDENT in braces here to indicate that it represents a regular expression 
defined in part 2. Without the braces, the IDENT would match the string "IDENT", and 
not the string defined by the regular expression on line 15. 

Line 19 discards whitespace. Line 32 starts with a period. Recall that the period match-
es every character except the newline character. Thus, line 32 will match anything the 
lines preceding it do not. For this case, the lexical analyzer returns the ASCII code of the 
matching character, y y t e x t () provides the string containing the matching character. 
Thus, y y t e x t () . charAt (0) provides the matching character: 

34 return yytext().charAt(0); 

S l y . y uses our handwritten lexical analyzer. Let us copy S l y . y t o S l l y . y and then 
modify S l l y . y so that it uses the jflex-generated lexical analyzer (Sly . y and S l l y . y 
are both in the Jl Software Package). Figure 23.17 shows the new part 3 we need in 
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S l l y . y. Line 34 creates the lexical analyzer object from the Yylex class that jflex cre-
ates: 

34 parser.lexer = new Yylex(inFile, parser); 

This object contains the yylex method that the parser has to call, yace assumes yylex is 
a method within the parser. Thus, for the parser to call the yylex in Yylex, the yylex 
method in the parser (see lines 46-58) has to call the yylex method in Yylex (see line 
51). 

PROBLEMS 

1. In a yacc-generated parser, a value can be passed up the parse tree and down the parse 
tree (see Section 23.6). Can a value be passed across the parse tree? That is, can a val-
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ue associated with a symbol in a production be passed to a symbol or an action to the 
right in the same production? 

2. Implement the yace version of the S2 compiler. 
3. Implement the yace version of the S3 compiler. 
4. Implement the yace version of the S4 compiler. 
5. Implement the yace version of the S5 compiler. 
6. Implement the yace version of the G3 grep program in Chapter 18. 
7. Implement the yace version of the Rl compiler. 
8. Implement the yace version of the Rla compiler. 
9. Implement the yace version of the Rib compiler. 

10. Implement the yace version of the Rlc compiler. 
11. Implement the yace version of the Rid compiler. 
12. Implement the yace version of the II compiler. 
13. Implement the yace version of the 12 compiler. 
14. Implement the yace version of the 13 compiler. 
15. Implement the yace version of the 14 compiler. 
16. Implement the yace version of the CI1 interpreter. 
17. Implement the yace version of the CI2 interpreter. 
18. Implement the yace version of the CI3 interpreter. 
19. Implement the yace version of the CI4 interpreter. 
20. Create the parse table for the following grammar: 

S -> bSc 
S -» λ 

Determine the parse table yace creates for this grammar by invoking yace with the 
-v command line argument. Compare your parse table with yacc's table. 

21. On line 52 in Figure 23.5, y y l v a l is set to null if the current token is not an un-
signed integer. Would it be better if y y l v a l were assigned a reference to a 
pa r s e rVa l object? 

22. Are the values assigned to endLine and endColumn ever used in S ly . y (Figure 
23.11)? 

23. On line 96 in Figure 23.11, can y y t e x t be used in place of $1 . s v a l ? 
24. Create a program with jflex that outputs a file identical to the input file except that 

each run of spaces is replaced by a single space. Test your program with the input file 
p2324 . t x t in the Jl Software Package. 

25. Create a program with jflex that capitalizes the first letter of every sentence. Test 
your program with the input file p2325. t x t in the Jl Software Package. 

26. Create a program with jflex that displays the character count, word count, and line 
count for the input file. Test your program with the input file p2326. t x t in the Jl 
Software Package. 

27. Create a program with jflex that displays the percent of words in the input file that 
contain at least one letter "e". Test your program with the input file p2 327 . t x t in 
the J1 Software Package. 





APPENDIX A 
STACK INSTRUCTION SET 

Opcode Assembly 

(hex) Form 
Name Description 

0 
1 
2 

P 
pc 

pr 

X 

X 

s 

Push 
Push 

Push 
constant 

relative 

Fl 

convert rel addr 

4 

5 

6 
7 

8 

9 
A 

B 

C 
D 

E 

FO 

asp 

call 

ja 
jet 

jp 

jn 
jz 
jnz 

jodd 

j zon 

jzop 

ret 

s 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Add to sp 

Call 

Jump 
Jump 

Jump 

Jump 
Jump 

Jump 
Jump 

Jump 

Jump 

always 

count 

positive 

negative 

zero 

nonzero 
odd 

zero or neg 

zero or pos 

Return 

add Add 

mem[--sp] = mem[x] ; 
mem[--sp] = x; 
mem[--sp] = mem[bp + s] ; 

mem[—sp] = (bp + s)12; 

sp = (sp + s) 12; 

mem[--sp] = pc; pc = x; 

pc = x; 

if (--ct) pc = x; 
if (mem[sp++] > 0) pc 
if (mem[sp++] < 0) pc 
if (mem[sp++] 
if (mem[sp++] 
if (mem[sp++] 
if (mem[sp++] 

= x; 
= x; 

== 0) pc = x; 
!= 0) pc = x; 
% 2 == 1) pc = 
<= 0) pc = x; 

if (mem[sp++) >= 0) pc = x; 

pc = mem[sp++] ; 

temp = mem[sp++] ; 

mem[sp] = mem[sp] + temp; 
cy = carry; 
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F2 sub Subtract temp = mem[sp++] ; 
mem[sp] = mem[sp] - temp; 

F3 stav Store addr/value temp = mem[sp++] ; 

mem[mem[sp++] ] = temp; 

F4 stva Store value/addr temp = mem[sp++] ; 

mem[temp] = mem[sp++] ; 

F5 load Load mem[sp] = mem[mem[sp]] ; 

F6 awc w Add word constant mem[sp] = mem[sp] + w; 

cy = carry; 

Push word constant mem[—sp] = w; 

Dupe top of stack temp = mem[sp] ; 

mem[—sp] = temp; 

Estab base addr mem[—sp] = bp; bp = spl2; 

Restore base addr sp = bp; bp = mem[sp++] ; 

Zero sp sp = 0; 

cmps y Compare signed tempi = mem[sp++] ; 
temp2 = mem[sp] ; 
mem[ sp] = 
(y » 2) & 1 if temp2 < tempi 
(y » 1) & 1 if temp2 == tempi 
(y & 1) if temp2 > tempi 

FD cmpu y Compare unsigned Same as scmp except 
unsigned comparison 

FE rev Reverse tempi = mem[sp++] ; 

temp2 = mem[sp] ; 

mem[sp--] = tempi; 

mem[sp] = temp2; 

FFO shll z Shift left logical mem[sp] « z; (inject 0's) 
FF1 shrl z Shift right logical mem[sp] » z; (inject 0' s) 
FF2 shra z Shift right arith mem[sp] » z; (inject sign) 

FF3 neg Negate mem[sp] = -mem[ sp] ; 

FF4 mult Multiply temp = mem[sp++] ; 

mem[sp] = mem[sp] * temp; 

FF5 div Divide tempi = mem[sp++] ; 

F7 

F8 

F9 

FA 

FB 

FC 

pwc w 

dupe 

esba 

reba 

zsp 

cmps 
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FF6 rem 

FF7 addy 

FF8 or 

FF9 xor 

FFA and 

FFB flip 

Remainder 

Add with carry 

Bitwise incl or 

Bitwise excl or 

Bitwise and 

Bitwise complement 

temp2 = sp; 

if (tempi ==0) ct = -1; 

else mem[sp] = mem[sp] / temp; 

temp = mem[sp++]; 

if (temp == 0) ct = -1; 

else mem[sp] = mem[sp] % temp; 

temp = mem[sp++] ; 
mem[sp] = mem[sp] + temp 

+ carry; 
cy = carry; 

mem[sp] = mem[ sp++] I mem[sp] ; 

memtsp] = mem[ sp++] Λ mem[sp] ; 

memfsp] = mem[ sp++] & mem[sp] ; 

memfsp] = -memfsp] ; 

FFC cali 

FFD set 

FFE rot 

FFFO psp 

FFF1 bpbp 

FFF2 pobp 

FFF3 pbp 

FFF4 bepy 

FFF5 uout 

FFF6 sin 
FFF7 sout 

FFF8 hin 

FFF9 hout 

Indirect call 

Set ct 

Rotate 

Push sp 

Bp to bp 

Pop bp 

Push bp 

Block copy 

Unsigned out 

String input 

String output 

Hex input 

Hex output 

temp = mem[sp] ; mem[sp] = pe-

pe = templ2; 

ct = mem[sp++] ; 

rotate top 3 stack items up 

temp = sp; 

mem[--sp] = temp; 

bp = mem[bp] ; 

bp = mem[sp++] ; 

mem[--sp] = bp; 

tempi = mem[sp++] ; 
temp2 = mem[sp++] ; 
while (ct--) 

mem[temp2 + +] = mem[templ++] ; 

Output mem[sp++] as 

unsigned decimal number 

Input str to mem[sp++] 
Output str pointed to by mem[sp++ 

Input hex number to mem[--sp] 
Output number in mem[sp++] 

FFFA ain 

FFFB aout 

ASCII input 

ASCII output 
Input ASCII char to mem[--sp] 
Output ASCII char in mem[sp++] 
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FFFC din Decimal input 

FFFD dout Decimal output 

FFFE noop No operation 

FFFF halt Halt 

Input decimal number (signed 

or unsigned) to mem[--sp] 

Output number in mem[sp++] as 

a signed decimal number 

None 

Trigger halt 

Instruction Fields 

s: 12 rightmost bits of instruction, 
x: 12 rightmost bits of instruction, 
y: 8 rightmost bits of instruction, 
z: 4 rightmost bits of instruction, 
w: Second word in instruction 

-4095 <= s <= 4095 
0 <= x <= 4095 
0 <= y <= 255 
0 <= z <= 15 

32768 <= w <= 65535 

Registers 

pc: program counter register 
sp: stack pointer register 
ct: count register 
cy: carry register 
bp: base pointer register 
temp: designates a work register within the CPU 
tempi: designates a work register within the CPU 
temp2: designates a work register within the CPU 

Note: An item followed by "12" in the instruction set 
descriptions denotes the 12 rightmost bits of that item. 
Main memory references (i.e., wherever "mem[...] " appears) 
use only the 12 rightmost of the address specified. 
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REGISTER INSTRUCTION SET 

Opcode Assembly Name Description 
(hex) Form 

0 Id x Load if (ar == 0) ac = mem[x] ; 

else ac = mem[bp + x]; 

1 st x Store if (ar == 0) mem[x] = ac; 

else mem[bp + x] = ac; 

2 add x Add if (ar == 0) ac = ac + mem[x] 

else ac = ac + mem[bp+x]; 
cy = carry; 

3 sub x Subtract if (ar == 0) ac = ac - mem[x] 
else ac = ac - mem[bp+x]; 

4 mult x Multiply if (ar == 0) ac = ac * mem[x] 

else ac = ac * mem[bp+x] ; 

5 div x Divide if (ar == 0) temp = mem[x] ; 

else temp = mem[bp+x] ; 

if (temp == 0) ct = -1; 

else ac = ac / temp; 

6 

7 

8 
9 
A 

ldc 

ja 

jp 
jn 

jz 

X 

X 

X 

X 

X 

load constant 

Jump always 

Jump positive 

Jump negative 
Jump zero 

ac 

pc 
if 

if 

if 

= x; 

= x; 

(ac > 
(ac < 

(ac == 

0) 

0) 

0) 

pc 

pc 

pc 

= x; 
= x; 

= x; 
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B 
C 

D 

E 

FO 

Fl 

F2 

F3 
F4 

F5 

F6 
F7 

F8 
F9 

FA 

FB 

FC 

FD 

jnz 
j zon 

jzop 

call 

ret 

ldi 

sti 

push 

pop 

X 

X 

X 

X 

asp w 

gsp 

ssp 

addw w 

ldw w 

esba 

reba 

cora 

cmps y 

Jump nonzero 
Jump zero or neg 

Jump zero or pos 

Call procedure 
Return 

Push indirect 

Store indirect 

Push onto stack 

Pop from stack 

Add to sp 

Get sp 

Set sp 

Add word 
load word 

Estab base addr 

Restore base add 

Convert rel addr 

Compare signed 

i f (ac != 0) pc = x; 
i f (ac <= 0) pc = x; 
i f (ac >= 0) pc = x; 

mem[— sp] = pc; pc = x; 

pc = mem[sp++]; 

ac = mem[ac] ; 

mem[ac] = mem[sp++] ; 

mem[— sp] = ac; 

ac = mem[sp++] ; 

sp = (sp + w)12; 

ac = sp; 

sp = ac; 

ac = ac + w; cy = carry; 

ac = w; 

mem[—sp] = bp; bp = spl2; 

ac = (ac + bp)12; 

temp = mem[sp++] ; 

ac = 
(y » 2) & 1 

(y » 1) & 1 

(y & 1) 

if temp < ac 

if temp == ac 

if temp > ac 

FE cmpu Compare unsigned Same as scmp but for 
unsigned numbers 

FFO shll z Shift left logical ac = ac « z; (inject 0' s) 

FF1 shrl z Shift right logical ac = ac >> z; (inject 0' s) 

FF2 shra z Shift right arith ac = ac >> z; (inject sign) 

FF3 abs Set absolute mode ar = 0; 
FF4 rel Set relative mode ar = 1; 

FF5 neg 

FF6 rem 

Negate 

Remainder 

ac = -ac; 

if (ac == 0) ct = -1; 

else ac = mem[sp++] % ac; 

FF7 addy Add with carry ac = mem[sp++] + ac + cy; cy 
= carry; 

FF8 or 

FF9 xor 
Bitwise or 

Bitwise excl or 

ac = ac | mem[sp++] ; 

ac = ac Λ mem[ sp++] ; 
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FFA and Bitwise and 
FFB flip Bitwise complement 

ac = ac & mem[sp++] ; 

ac = -ac; 

FFC cali Call indirect memt—sp] = pc; pc = acl2; 

FFD 

FFE 
set 

dct 

Set ct 

Decrement et reg 
et = ac; 
if (-ct == 0) pc++; 

FFFO sodd Skip on odd if (ac % 2 == 1) pc++; 

FFF1 
FFF2 

FFF3 

bpbp 
pobp 

pbp 

Bp to bp 

Pop bp 

Push bp 

FFF4 bepy Block copy 

bp = mem [ bp] ; 

bp = mem[sp++] ; 

mem[—sp] = bp; 

temp = mem[sp++] ; 

while (ct~) 
mem[ac++] = mem[temp++] ; 

FFF5 uout 

FFF6 sin 
FFF7 sout 

FFF8 hin 

FFF9 hout 

Unsigned out 

String input 

String output 

Hex input 

Hex output 

Output number in ac reg as 

unsigned decimal number 

Input str to address in ac 

Output str pointed to by ac 

Input hex number to ac reg 

Output number in ac in hex 

FFFA ain 

FFFB aout 

ASCII input 

ASCII output 

Input ASCII char to ac reg 

Output ASCII char in ac reg 

FFFC din 

FFFD dout 

Decimal input 

Decimal output 

Input decimal number (signed 
or unsigned) to ac register 
Output number in ac reg as 
a signed decimal number 

FFFE noop 

FFFF halt 
No operation 

Halt 
None 

Trigger halt 

Instruction Fields 

x: 12 rightmost bits of instruction, 0 <= x <= 4095 (FFF hex) 

y: 8 rightmost bits of instruction, 0 <= y <= 255 (FF hex) 

z: 4 rightmost bits of instruction, 0 <= z <= 15 (F dec) 
w: Second word in instruction -32768 <= w <= 65535 

Registers 

pc: program counter register 
sp: stack pointer register 
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ac: accumulator register 
ct: count register 
cy: carry register 
bp: base pointer register 
ar: absolute/relative register 
temp: designates a work register within the CPU 

Note: An item followed by "12" in the instruction set 
descriptions denotes the 12 rightmost bits of that item. 
Main memory references (i.e., wherever "mem[...] " appears) 
use only the 12 rightmost of the address specified. 
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constant folding, 535-537 
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context-free grammar, 19-105 
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context-sensitive grammar, 110, 111 
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context-sensitive production, 107-110 
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error recovery, 424-430 
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FIRST set, 137-140, 163-165 
FOLLOW set, 143, 163-165 
full left context, 108 
full right context, 108 

ge tNex tCha r ( ) , 239, 241 
ge tToken 0 ,313 , 389 
grep, 499 

handle, 563 
handle production, 563 

11,549-552 
i f statement, 403-407 
immediate instruction, 267 
in-parts technique, 30 
indirect recursion, 30-33 
indistinguishable states, 227 
infix notation, 227 
inherited attribute, 237 
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add, 272 
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asp , 439 
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cmps, 459 
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dou t , 268 
dupe, 389-391 
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s t ,515 
s t a v , 275-280 
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interpreter, 547-559 
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advantages, 558-559 

intersection, 6 
item, 572 

ge tNex tToken( ) ,239 , 241 
J1 computer, 265-266 
Ji Software Package, 265 
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input file, 337-344 
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suppressing warning messages, 377-378 
universal block, 416-418 

jflex, 612-618 

kernel item, 573 
Kleene closure, 9 

I program, 457-458 
L-attributed grammar, 236-238 
label, 270-272 
LALR parsing, 584 
lambda closure, 477, 511 
lambda production, 22 

eliminating, 60-64 
parsing, 152-153, 192-196 
determining selection set, 142-145 

language, 2 
language-preserving transformation 

eliminating lambda productions, 60-64 
eliminating unit productions, 64-66 
eliminating useless productions, 66-70 
recursion conversions, 71-75 
substitution, 52-54 

language defined by a context-free grammar G, 
23-25 

language over an alphabet, 2 
left-right factoring, 158-160, 201 -204 
left and right contexts, 107-109 
left factoring, 157-160, 199-204 
leftmost derivation, 51,52 
lex, 587 
lexer, 4 
lexical 587, analyzer generator 
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