

Computer
Programming for
Absolute Beginners

Learn essential computer science concepts
and coding techniques to kick-start your
programming career

Joakim Wassberg

BIRMINGHAM—MUMBAI

Computer Programming for Absolute
Beginners
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Karan Gupta
Senior Editor: Nitee Shetty
Content Development Editor: Tiksha Lad
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Nilesh Mohite

First published: July 2020
Production reference: 1300720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-686-2

www.packt.com

http://www.packt.com

To my mother, Anna-Lena, and to the memory of my father, Björn, who
gave me the chance to grow into the curious person I am today.

 - Joakim Wassberg

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Joakim Wassberg is a software developer who for the past 30 years has worked in a
variety of areas, such as security in financial systems, secure payment systems, and as a
specialist and architect of development methods.

Throughout his career, he has always worked with education in programming, from
introducing children in a playful way to take their first steps, to teaching senior developers
a new technology or development methodology, and from company training to university
courses. Since 2014, together with his wife, he has run the company Arthead, which works
exclusively in education and educational development.

I would also like to thank my wife, Susanne. Her input, suggestions, and
ideas have been brilliant, and without her support, writing this book would

have been much harder. She did not know anything about programming
before I started writing this book, but now she knows quite a lot. If she can

learn it, so can you.

About the reviewer
Dr. Jie Liu received his Ph.D. from Oregon State University in 1993. He is now a full
professor at Western Oregon University and has been working there for 31 years.
Dr. Liu has taught a wide range of classes, such as Computer Organizations, Theory
of Computation, Databases, Operating Systems, Introduction to Blockchain, and
graduate-level Data Mining, just to name a few.

Beside teaching and research, Dr. Liu enjoys working as a consultant for the industry
on big data and database-related projects. His recent projects involve DBMSes such as
Amazon's Redshift, Google's BigQuery, and Snowflake.

Dr. Liu's research interests are in blockchain, big data and data mining, distributed
systems, parallel processing, and software architecture.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents
Preface

Section 1:
Introduction to Computer Programs and
Computer Programming

1
Introduction to Computer Programs

A brief history of computing 4
A brief history of programming 6
What is a program? 7
How does a computer program work? 11

Understanding the binary
system 12

Understanding ASCII and Unicode 15
Representing other forms of data 16
Boolean algebra 17
Machine code – the native language of
the computer 19
Example machine code 20

Summary 21

2
Introduction to Programming Languages

Why do we have programming
languages? 24
How programming languages
have evolved? 27
The modern era of programming
languages 28
Why so many languages? 29

The family tree of programming
languages 29
Translating code into
something that the computer
understands 31
Interpreting 32
Compiling 32

ii Table of Contents

Comparing interpretation
and compilation 33
Languages that both compile
and interpret 35

Syntax and the building blocks
of a programming language 36

Keywords 38
Operators 39
Code blocks 40
Relations to mathematics 40

Summary 41

3
Types of Applications

Standalone applications 44
Client-server applications 44
Example of a chat application 45
Example of an email client 47
Client-server, a two-part solution 48

Web applications 48
Example of a social network 50
What makes web applications unique? 51

Mobile applications 52
Distributed applications 52

SETI@home 53
Peer-to-peer networks 54

Cloud-based applications 54
Advantages of adopting cloud-based
applications 55
Cloud service models 56

Other types of applications 59
Systems software 59
Programming software 59
Serverless applications 60

Summary 60

4
Software Projects and How We Organize Our Code

Code modules 64
Working with software projects 67
Working with packages to
share code 68
Package managers 68

Avoiding conflicts using
namespaces 70
Delving into namespaces 72

Namespaces in JavaScript 73
Namespaces in Python 74
Namespaces in C++ 75
Namespaces in other languages 76
Using namespaces in our
calculator application 76

Summary 77

Table of Contents iii

Section 2:
Constructs of a Programming Language

5
Sequence – The Basic Building Block of a Computer Program

The importance of sequences 82
Defining the problem 83
The solution to the problem 83
Understanding statements 90
Compound statements 92
Separating statements 95

Making the code readable by
indenting and using empty lines 98
Making the code understandable
using comments 101

Summary 108

6
Working with Data – Variables

Declaring and initializing
variables 112
Understanding variables 112

Primitive data types 117
Boolean type 117
Numeric type 117

Composite type 132
Operators – things we can do
with variables 140
The concept of values and
reference variables 143
Working with numbers 146
Manipulating strings 148

Summary 151

7
Program Control Structures

Controlling the execution path 154
Selection statements 154
Iteration statements 156
Conditional statements 157

Selection with the if statement 158
Selection with the switch
statement 162

Iteration with the for loop 168
Iteration with the while loop 172
Iteration with the do while loop 175
Iterating over sequences
using for each 177
Summary 179

iv Table of Contents

8
Understanding Functions

Deciding what goes into
a function 182
Writing a function 184
Moving code into a function 185

Returning values from
a function 188

Function arguments 190
Functions in action 192
Splitting the code further 198
Putting it all together 205

Local and global variables 208
Summary 211

9
When Things Go Wrong – Bugs and Exceptions

Understanding software bugs 214
NASA's Mars Climate Orbiter 215
The Morris worm 216
Defining a software bug 217

Understanding types of
software bugs 217
Arithmetic errors 217
Division by zero 218
Arithmetic overflow/underflow 218

Logical errors 220
Syntax errors 221

Finding bugs using a debugger 223
Breakpoints 225
Working with exceptions 229
Common reasons for exceptions 230
Exceptions and the call stack 231

Handling exceptions 234
Summary 237

10
Programming Paradigms

Understanding structured
programming 240
Statements 240
Program state 241
Comparing imperative and
structured programming 241

Understanding object-
orientated programming 243

Classes and objects 245
Understanding encapsulation 251
Class methods 253
Inheritance 257

Understanding functional
programming 261
Pure functions 262
Mutable and immutable data 264

Table of Contents v

Avoiding side effects 267
Declarative programming 268
First-class functions 271

Understanding logic
programming 274
Other paradigms 277

Function-level 277
Array programming 277
Quantum programming 278

Multi-paradigm languages 279
Summary 280

11
Programming Tools and Methodologies

Understanding version
control systems 282
Unit testing 290
Integration testing 292
Other types of tests 295
Software releases 297
Understanding software
deployment 298

Deployment automation 300
Code maintenance 300

Software development
process methodologies 302
Waterfall development 302
Spiral model 303
Agile development 305

Summary 307

Section 3:
Best Practices for Writing High-Quality Code

12
Code Quality

Defining code quality 312
CISQ's quality model 313
Understanding user quality 314
Putting them together 315

Writing code with readability
in mind 316
Using comments and
documentation wisely 316
Using names as documentation 317

Reading other people's code 318
Rewriting your code 322

Writing code with efficiency
in mind 323
Removing redundant or
unnecessary code 323
Optimizing the use of memory
and processors 324
Using efficient algorithms 325

vi Table of Contents

Is smart code smart? 329
Code quality – best practices 332
Limiting line length 332
Limiting function/method length 333

Avoiding deep nesting 337
Using the DRY principle 338
Using code conventions 341

Summary 348

Appendix A
How to Translate the Pseudocode into Real Code

The pseudocode examples 350
Hello world in pseudocode 350
Variables declaration in pseudocode 350
The for loop in pseudocode 350
Functions in pseudocode 350
while loops, user input, if, and for
loops in pseudocode 351

C++ 352
Hello world in C++ 353
Variable declaration in C++ 353
The for loop in C++ 354
Functions in C++ 355
while loops, user input, if statements,
and foreach loops in C++ 356

C# 357
Hello world in C# 358
Variable declaration in C# 358
The for loop in C# 360
Functions in C# 360
while loops, user input, if statements,
and foreach loops in C# 361

Java 363
Hello world in Java 363
Variable declaration in Java 364
The for loop in Java 364

Functions in Java 365
while loops, user input, if statements,
and foreach loops in Java 366

JavaScript 368
Hello world in JavaScript 368
Variable declaration in JavaScript 369
The for loop in JavaScript 369
Functions in JavaScript 370
while loops, user input, if statements,
and foreach loops in Java 370

PHP 372
Hello world in PHP 373
Variable declaration in PHP 373
The for loop in PHP 374
Functions in PHP 374
while loops, user input, if statements,
and foreach loops in PHP 375

Python 376
Hello world in Python 377
Declaring variables in Python 377
The for loop in Python 378
Functions in Python 378
while loops, user input, if statements,
and foreach loops in Python 379

Table of Contents vii

Appendix B
Dictionary

A 381
B 382
C 382
D 384
E 384
F 385
G 385
H 385
I 386
J 386
K 386

L 387
M 387
N 387
O 388
P 388
R 389
S 389
T 391
U 391
V 391
W 391

Other Books You May Enjoy
Index 397

Preface
Welcome to the beautiful world of programming. Programming is an art form in which
you will use your imagination and creativity to create things. If you know how to program,
your possibilities will be endless.

You can use it to create a fun game. Or maybe you want to automate things in your life.
Maybe you want to become a professional programmer, and then you will use your skills
to work in teams with others to create solutions that will be used by many people for a
long time.

Having programming skills is also something that is needed in more and more
professions. Your job title will not be that of a software developer. Instead, programming
will be a tool that you can use.

I have been teaching programming for over 30 years. I have been teaching people of all
ages, from beginners to senior professional developers. During this time, I have seen
patterns, especially among beginners.

It took some time before I realized what made so many of my beginner students struggle
with grasping programming. The problem was that they had to learn two things at once.
First, they needed to understand the very concepts of programming. There are so many
concepts and words, both new ones and some that they already know, but that have a
slightly different meaning. Secondly, they will also need to learn a programming language.
Taking in all this at the same time will become overwhelming for many people. For some,
it will be so much that they give up programming for good.

The idea of this book is to focus on one of the two things you need to learn. This book
will not focus on any language, but instead, teach you the concepts you need to know and
understand to become a programmer. After you have read this book, you can learn any
programming language you want, and when you do, you can focus on just learning the
language, as the rest you will already know.

x Preface

With this book, I also want to put things into context, so there will be a bit of history, and
some parts will be rather technical. I believe that if you are going to learn something, you
cannot just scratch the surface. You need to dive into it and see how things work.

And yes, I was that kid who disassembled my RC car to see how it worked.

Good luck with your endeavors to learn this fantastic art.

This book was written to the music of Talking Heads, and I suggest you listen to it as
you read it.

Who this book is for?
This book is written for everyone who is either just curious about computer programming
and wants to know more about the topic, or is about to learn their first programming
language and wants a solid introduction to the topic. It doesn't matter whether your goal
is to create small hobby applications or whether you want to be well prepared for your
university programming courses.

What this book covers?
Chapter 1, Introduction to Computer Programs, will give you an understanding of how
computer programs work and how they interact with the computer hardware.

Chapter 2, Introduction to Programming Languages, will teach you the evolution of
programming languages, how they are related, introduce different types of languages, and
give you a basic understanding of some fundamental programming concepts.

Chapter 3, Types of Applications, explores how software comes in many forms and is
created to solve a wide variety of problems. This chapter will introduce you to some of the
essential application types and give you an understanding of how they work.

Chapter 4, Software Projects and How We Organize Our Code, covers how, when writing
programs that are beyond the most trivial level, we will need to organize our code into
several code files. In this chapter, we look at how this can be done efficiently. We will also
see how we can incorporate code written by others into our software projects.

Chapter 5, Sequence – The Basic Building Block of a Computer Program, outlines how a
computer program is, at the most fundamental level, built by putting statements in the
correct sequence. We will see how this is done and how the computer will execute these
statement sequences when our programs run.

Preface xi

Chapter 6, Working with Data – Variables, explores how all computer programs will
perform operations on data and modify it in some way. In this chapter, we will get
to know the types of data we will work with when programming and what types of
operations we can perform on them.

Chapter 7, Program Control Structures, discusses how, when writing programs, we need to
control the path that the execution takes through our code. To help us, we have different
types of control structures that we can use to accomplish this.

Chapter 8, Understanding Functions, explores functions as a fundamental concept in
programming that let us package code into a reusable unit. In this chapter, we will see
what functions are and how they can be used.

Chapter 9, When Things Go Wrong – Bugs and Exceptions, reminds us that things will
not always go according to plan. The code we have written might contain errors, or we
might get data that we can't work with. In this chapter, we will see how we can deal with
both situations.

Chapter 10, Programming Paradigms, explores several ideas for how we should write and
structure our code to be able to write programs as efficiently as possible. These are called
paradigms, and we will look at the most prominent ones in this chapter.

Chapter 11, Programming Tools and Methodologies, examines how programmers use
different tools when developing software. We will look at some of them in this chapter,
and also consider how teams of programmers can collaborate efficiently.

Chapter 12, Code Quality, explores the many aspects of code quality. How can we write
programs that run fast, or efficiently use the computer's resources? How can we write code
that can easily be read and understood by other programmers that will need to modify
our code? These are some of the things we will cover in this chapter.

Appendix A – How to Translate the Pseudocode into Real Code, covers how to translate
pseudo code into different programming languages.

Appendix B - Dictionary has all the words which are unique or have a technical meaning
and are used in the book.

To get the most out of this book
If you are using the digital version of this book, we advise you to type the code yourself.
Doing so will help you avoid any potential errors related to copying/pasting of code.

xii Preface

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839216862_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "We know that as this function divides two values, we might get an
exception if y is given a value of 0."

http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839216862_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839216862_ColorImages.pdf

Preface xiii

A block of code is set as follows:

if current_time > sunset_time {

 turn_on_light()

}

Any command-line input or output is written as follows:

SyntaxError: invalid syntax in line 1 column 2

1:2 syntax error: unexpected apple at end of statement

Compilation error (line 1, col 2): Identifier expected

error: unknown: Identifier directly after number (1:2)

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xiv Preface

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

This section gives you an understanding of the relationship between computer programs
and programming languages, as well as providing you with an understanding of how
code is executed on a computer.

This section has the following chapters:

• Chapter 1, Introduction to Computer Programs

• Chapter 2, Introduction to Programming Languages

• Chapter 3, Types of Applications

• Chapter 4, Software Projects and How We Organize Our Code

Section 1:
Introduction to

Computer Programs
and Computer
Programming

1
Introduction to

Computer Programs
Programming is the art and science of writing instructions that a computer can follow to
accomplish a task. This task can be playing a game, performing a calculation, or browsing
the web, for example. However, before we can learn how to write programs, we should
understand what a program is and how a computer can understand and execute the
instructions we give it. In this chapter, we will study this in more detail, along with the
basics of what a computer is, how it works, and its history.

Even a basic level of understanding of these topics will help us later on when we discuss
the different aspects of writing programs, as we can then relate to how the computer will
treat the code we write.

In this chapter, we will cover the following topics:

• A perspective on the history and origins of the computer

• Background knowledge of the original ideas behind programming

• Understanding what a computer program is

• Learning how a computer program works

• An understanding of what machine code is

4 Introduction to Computer Programs

A brief history of computing
Humans have always built tools and made innovations to make life more comfortable and
to allow us to do more things faster and more efficiently. We need to go back in time a
few hundred years in order to see the first attempts at building a tool that could resemble
a computer. However, before we do that, we might want to define what a computer is.
Wikipedia offers the following definition:

A computer is a machine that can be instructed to carry out sequences of
arithmetic or logical operations automatically via computer programming.

So, a computer is a programmable machine that performs arithmetic or logical operations.
Let's review a few inventions from the past using this definition to ascertain which of
them could be considered a computer.

To begin, we can rule out the Jacquard machine, which was the automated loom invented
in the early years of the 19th century. These looms could be programmed using punch
cards, but they produced woven silk, which, of course, is not the result of an arithmetic or
logical operation. Programmability, using punch cards, was an idea that survived well into
the computer age, but these looms were not computers.

If we go even further back in time, we find devices such as the abacus that helped us to get
the results of arithmetic operations; however, they were not programmable.

In the 1770s, Pierre Jaquet-Droz, a Swiss watchmaker, created some mechanical dolls that
he called automata. These dolls could read instructions and could thereby be considered
programmable, but they did not perform arithmetic or logical operations. Instead, he
created one doll that could play music, one that could make drawings, and one that could
write letters (they are referred to as the musician, the draughtsman, and the writer):

Figure 1.1: The Jaquet-Droz automata (photograph by Rama, Wikimedia Commons; Cc-by-sa-2.0-fr)

A brief history of computing 5

In order to see something that resembles a computer, we will need to look at Charles
Babbage's inventions. He originated the concept of a programmable computer with
his ideas for a machine, called the Difference Engine, and later, a more advanced
version called the Analytical Engine. Of the two, the Analytical Engine was particularly
groundbreaking as it could be programmable, which meant it could be used to solve
different problems. He presented his work in the first half of the 19th century, and even if
the machines were never completed, we can agree that Babbage is a very important person
behind the basic concept of the programmable computer.

During the first half of the 20th century, we witnessed some analog computers, but it
was not until the second world war, and the years following, that we saw the birth of
real digital computers. The difference between an analog and a digital computer is that
the former is a mechanical machine that works with an analog input such as voltage,
temperature, or pressure. In comparison, a digital computer works with input that can be
represented by numbers.

Many people consider the Electronic Numerical Integrator and Computer (ENIAC),
constructed by J. Presper Eckert and John Mauchly between 1943 and 1946, as the first
digital computer because it was the first one that was both completed and fully functional:

Figure 1.2: Betty Jean Jennings and Fran Bilas, both programmers, operate ENIAC's
main control panel – U.S. Army Photo (Public Domain [PD])

6 Introduction to Computer Programs

Since then, we have seen tremendous development up until the point we are at today.
However, even though our modern computers can do so much more and at a much
faster rate than these earlier inventions, the basic principles of how they operate remain
the same.

A brief history of programming
A programmable computer needs to be, well, programmed. So, of course, the history of
programming goes hand in hand with the evolution of computers.

In 1833, Charles Babbage met Ada Lovelace, daughter of poet Lord Byron. She became
very impressed and interested in Babbage's plans for his programmable machines, and
their collaboration began. Among other things, she wrote some notes outlining her
ideas for how the Babbage Analytical Engine could be programmed. We can call her the
inventor of programming, even if we had to wait over 100 years until we had the machine
that could make her ideas come true. Her status today is summarized in a History Extra
article, from 2017, by James Essinger:

Today, Ada is quite rightly seen as an icon of feminist scientific
achievement, a heroine of the mind, and one of the earliest visionaries in

the early history of the computer.
In her notes, Lovelace did a couple of remarkable things. The first was that she wrote
an algorithm for how Bernoulli numbers, a sequence of rational numbers often used in
number theory, could be calculated by the Analytical Engine. This algorithm is considered
by many to be the first computer program. Second, she outlined the future of what these
machines could do, and, in her vision, she saw that they could be used to draw pictures
and compose music. The fact is that when we finally could build a computer, the way they
were programmed was heavily influenced by her ideas:

What is a program? 7

Figure 1.3: Ada Lovelace, aged 17 (portrait by Joan Baum; PD-Art)

The first digital computers were programmed using machine code – the only thing a
computer understands. Later in this chapter, we will talk more about machine code and
explore what it is. And, as you will discover, it is just a sequence of numbers.

In 1949, John Mauchly proposed something called Brief Code, which was later renamed to
Short Code. Short Code can be considered to be one of the first higher-level programming
languages. A higher-level programming language is a way for us to write instructions
to the computer in a way that is more understandable to humans, which is better than a
machine code. The Short Code program is then translated into machine code, and it is
that code that the computer executes.

In 1954, the language Fortran was invented at IBM, by John Backus, and this can be
considered to be the first widely used high-level, general-purpose programming language.
Fortran is, in fact, still in use.

The 1950s saw the birth of some other languages that have also survived, such as Lisp
and COBOL. Since then, we have had over 2,300 new programming languages. In the
next chapter, we will look at how programming languages have evolved and how they are
related, but also why people keep inventing new ones.

What is a program?
A computer is dumb in the sense that, without programs, it can't do anything. A computer
program is a set of instructions that the computer can execute, and it is our job, as
programmers, to write these programs using one or more programming languages.

8 Introduction to Computer Programs

Most applications that we run, such as a web browser, word processor, or mail client, can't
communicate with the computer hardware directly. They require a layer in between that
takes care of this. This layer is called the operating system. Windows and Linux are two
examples of well-known operating systems. The main purpose of an operating system is
to take care of the direct communication between the applications that we use and the
hardware, such as the processor, memory, hard drives, keyboards, and printers. To be
able to perform this communication, the operating system requires special programs that
are designed to communicate with a particular device. These programs are called device
drivers. A somewhat simplified diagram of how this works is shown here:

Figure 1.4: The system architecture

What is a program? 9

Programmers will write the user applications, the operating system, and the device
drivers, but the user applications category is by far the most common. The programs we
write will communicate with the system kernel, which is the core of the operating system.
The operating system will take care of the direct communication with the underlying
hardware. The good thing about this structure is that we only need to talk to the operating
system, so we don't need to think about what kind of mouse the user has or how to
send a line of text to a particular printer model. The operating system will talk to the
device drivers for the mouse and the printer, and the driver will know precisely how to
communicate with that device.

If we write a program and that program wants to print the text Hi there computer! to the
screen, then this request will be sent to the operating system. The operating system will
pass this on to the device driver for the monitor, and this driver will know how to send
this to the monitor connected to this computer:

10 Introduction to Computer Programs

The text entered will not magically appear on the screen, though. It will pass through
several layers inside the computer. In 1945, the Hungarian-American mathematician and
physicist John Von Neumann, and others, created a document titled First Draft of a Report
to the EDVAC. In this 101-page document, the first logical design of a computer using
the concept of a stored program was presented. Additionally, the design of an electronic
digital computer was described. This design is today known as the Von Neumann
Architecture, and it defines four different components that can be used to construct a
computer. These components are as follows:

• A processing unit that has an arithmetic logic unit and registers for the processing
unit to use.

• A control unit that contains an instruction register and a program counter. These
are used to execute programs.

• Memory that stores data and instructions. This memory is volatile, meaning that its
content will be erased when the power is turned off or the computer is restarted.

• External mass storage. This is long-time storage for programs and data that can also
be preserved after a computer restarts.

• Input and output mechanisms. Today, this is typically a keyboard, a mouse, and
a monitor.

All of these components, except external mass storage, come into play when text is entered
on the keyboard and displayed on the screen.

As mentioned in the previous section, the computer can only understand one thing, and
that is machine code. The machine code is a set of numerical values that the computer
interprets as different instructions. The computer only works with numbers in the
binary form, also known as base 2, and that is why we often hear that a computer only
understands zeros and ones.

To understand the different bases, let's consider how many digits they have. In our daily life,
we use the decimal system, called base 10, because we have 10 digits, from 0 to 9 (we assume
the reason for this is that we started counting on our fingers). In the base 2 binary system, we
only have two digits, 0 and 1. In base 16, the hexadecimal system, we have 16 digits. As we
only have digits for 0 to 9, we must use some letters in the hexadecimal system to represent the
values between 10 and 15. Those letters are A to F. We do this because we must understand
the difference between digits and numbers: a digit is a single symbol representing a value,
whereas a number is a sequence of one or more digits. So, for example, we can talk about the
digit 7, but not the digit 12 (as it is a number made up of 2 digits). In the hexadecimal system,
we need to represent 16 values; therefore, we need 16 digits. Since we only have 10 digits in
our decimal system, we need to use something else. In this case, it is the letters A to F.

What is a program? 11

Refer to the following table for a comparison between decimal, binary, and
hexadecimal numbers:

Table 1.1: The numbers 1-15 in the decimal, binary, and hexadecimal format

How does a computer program work?
All the tools that we, as humans, have created have helped us with physical labor. Finally,
we reached a point where we could invent a tool that would help us with mental labor:
the computer.

When planning the design of such a machine, the inventors discovered that it must
perform four different tasks. The computer would need to take data as input, store that
data, process the data, and then output the result.

These four tasks are common to all the computers we have ever built. Let's take a closer
look at these tasks:

1. We can provide input to the computer in many ways, such as with a keyboard, a
mouse, voice commands, and touch screens.

2. The input data is sent to the computer's storage: the internal memory.

3. The CPU (which is the central processing unit) retrieves the data from storage and
performs operations on it.

4. The result of these operations is then sent back to be stored in memory again before
it is sent out as output.

12 Introduction to Computer Programs

Just as different devices can be used to send input to the computer, so too can the output
be in different forms, and we can use various appliances to present the result, such as
text to a printer, music through the speakers, or video to a screen. The output from one
computer can even be inputted to another computer:

Figure 1.6: The four tasks of a computer

All four steps – input, storage, process, and output – handle data. Let's explore what this
data is and what form it takes.

Understanding the binary system
Why is it that computers only work with zeros and ones? Why can't they work directly
with text or images, for example? The answer is that it is rather easy to build circuits
that can represent two states. If you have an electrical wire, you can either run electricity
through it or not. The flow or no flow of electricity could represent several things, such as
on or off, true or false, or zero or one. Let's think of these two states as zero and one for
now, with zero representing no electricity flowing and one symbolizing that we do have
flow. If we can serve these two states, we could add more wires and, by doing that, have
more zeros and ones.

But what could we possibly do with all of these zeros and ones? Well, the answer is that
we can do almost anything. For example, with only zeros and ones, we can represent any
integer by using the binary numeral system. Let's demonstrate how that works.

Understanding the binary system 13

To understand binary numbers, we must start by looking at the decimal numeral system.
In the decimal system, we work with 10 digits, from 0 to 9. When we count, we go through
these digits until we reach 9. Now we have run out of digits, so we start over from zero and
add a one in front of it, forming the number 10. Then, we continue until we reach 19, then
we do the same thing again; start over from zero and increase the value in front of the zero
by one, so we get 20.

Another way to think about different numeral systems is to think about the value a
position represents. Let's consider an example. The number 212 has the digit 2 in two
places, but their position gives them two different values. If we start from the right and
move to the left, we can say that we take the first digit, 2, and multiply it by 1. Then,
we take the second digit, 1, and multiply it by 10. Finally, we take the last digit, 2, and
multiply it by 100. If we move from right to left, each step is worth 10 times as much as the
previous step. Take a look at this calculation represented in the following table:

Table 1.2. The positional values of a decimal number

When using the binary system, we do the same thing, but only using the digits 0 and 1.
We start our counting with 0, followed by 1. At this point, we run out of digits, so we start
over from 0, adding a 1 in front of it.

Counting in binary looks like this:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, and so on

When it comes to the values each position has for binary numbers, it works just as it does
with decimal numbers. However, the value for each position is not multiplied by 10 but
instead by 2. We multiply the first digit by 1, the second digit by 2, the third digit by 4, and
so on. To make things simpler, we could say that a one in a particular position means that
the number representing that position shall be a part of the final value, and zero means it
shall not. Take a look at this table for binary number 11010100:

Table 1.3: Interpreting binary number 11010100

14 Introduction to Computer Programs

Here, we have ones at the positions represented by 128, 64, 16, and 4, so now we can add
them together (we can ignore the positions with zeros as adding zero to something will
not make any difference) to get what the binary number of 11010100 is in decimal form,
which is 212.

If we want to convert a decimal number, say 27, into binary, we start by thinking how far
we can go through the sequence of positional values: 1, 2, 4, 8, 16, and so on. Which is the
largest of these that we can find that is smaller than or equal to 27? The answer is 16, so
the first 1 in this binary number will be at this position. On all positions before 16, we can
insert 0:

Figure 1.7: Finding the first position that is less than or equal to 27

We then subtract 16 from 27 and get 11 and repeat the process with this value. The largest
value that is less than or equal to 11 is 8:

Figure 1.8: Finding the first position that is less than or equal to 8

We subtract 8 from 11 and get 3. The next value, 4, is larger than 3, so we insert a 0 at
this position:

Figure 1.9: We encounter a position that is greater than 3 so we insert a 0

Understanding the binary system 15

As we have not inserted a 1 yet, we keep the value of 3 and try to find a value that works
for it. The next one, 2, is less than or equal to 3, so we insert a 1 here and then subtract 2
from 3 and get 1:

Figure 1.10: 2 is less than 3, so we insert a 1 at this position

We repeat this until we reach 0:

Figure 1.11: When we have reached the end, we have arrived at the complete binary number

We now know that 27 will be 11011 in binary. We can ignore the leading zeros.

When we have one single binary digit, we call it a bit, and if we place them in groups of 8
bits, we call them a byte. One byte can hold values between 0 and 255. This is because a 1
in all positions (11111111) will be 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1= 255.

By using lots of zeros and ones, the computer can represent any number in binary form,
and if it can represent numbers, it can serve other things too, such as text.

Understanding ASCII and Unicode
If you give each letter of the English alphabet a numerical value, you could represent text
with numbers. We could, for example, say that A=1, B=2, and so on. The computer does
not use these values for the letters, but instead, it can either use something that is called
the ASCII table (pronounced as-key) or another representation that is called Unicode. It is
not important to understand exactly how they work; the only thing we need to understand
is that a number can represent every character. This number can then be looked up using
either the ASCII table or Unicode.

16 Introduction to Computer Programs

The ASCII table uses one byte to represent different characters. The table starts with
characters that are non-printable. Eventually, it reaches the characters in the English
alphabet. So, A, for example, is 65, B is 66, and so on. 255 characters will not take us far as
we have lots of different alphabets around the world, and we also want to represent other
symbols. That is why we also have Unicode. Its mapping to individual characters is not as
direct as it is in the ASCII table, but all we need to know right now is that with it, we can
use numbers to represent characters.

Note
Non-printable characters are symbols that are not used for visual
representation; for example, when we need a way to indicate a tab or a new line,
or if printing text to a printer, we want the printer to continue to the next page.

Representing other forms of data
We've learned how to represent text in binary, but what about things other than text and
numbers? What about images? And video? And sound?

Images are made up of pixels, and three values, RGB, represent each pixel. These values
tell the computer how much red, green, and blue a pixel has:

Figure 1.12: Three values represent a single pixel, indicating how much red, green, and blue it has

A video is nothing more than a composite of many images, so every frame is an image;
therefore, it can be represented the same way.

A waveform can represent sound. Each peak and valley can be a number:

Figure 1.13: Audio depicted as a waveform

Understanding the binary system 17

Now that we know how the computer can represent data, we have to find out how it
processes it. To understand that, we must first dive into a corner of mathematics that is
called Boolean algebra.

Boolean algebra
George Boole, who lived between 1815 and 1864, was a self-taught English mathematician
and the inventor of Boolean logic, which is the basis of how all our computers work.

Boolean logic, sometimes referred to as Boolean algebra, is a form of mathematics that
works with only two values: true and false. It also defines three operations that we can
perform on these two values: AND, OR, and NOT.

NOT is the simplest of these operations as all it does is just switch the value, so not true
is false, and not false is true. For example, if I say, "It is raining today," this statement can
be true or false. It is true if it rains and false if it is not. If I instead say, "It is NOT raining
today," then the statement will be true if it doesn't rain and false if it does.

AND takes two statements that can be either true or false and evaluates them into a
single value. The outcome will be true if both incoming values are true and false in all
other situations. If I say, "It is raining today, AND I have a blue umbrella," the statement
will only be true if both parts are true, that is, if it is actually raining and my umbrella is
actually blue. However, if it is raining but my umbrella is pink, what I say will be false,
even though half of it was true.

OR works on two parts, just like AND, but now only one of the two must be true to make
the statement true. If I say, "Today I will go to the beach OR I will go to town," then the
statement will be true whether I either go to the beach or to town, and also if I manage to
do both.

We can illustrate how these three operations work in something called a truth table. A
truth table is a way to describe how an input of the true and false values is transformed by
an operation. The input is often referred to as P if we only have one input value, or P and
Q if we have two. The result is shown in the last column.

If P is the input value, the truth table for NOT will look like this:

Table 1.4: The truth table for NOT

18 Introduction to Computer Programs

For AND, the truth table looks like this if P and Q are the input:

Table 1.5: The truth table for AND

For OR, the truth table looks like this:

Table 1.6: The truth table for OR

As you can see, the only way an AND operation can be true is if both parts are true, and
the only time OR can be false is if both parts are false.

When Claude Shannon, an American mathematician and electrical engineer, published
his master's degree thesis in 1937, A Symbolic Analysis of Relay and Switching Circuits, he
based his work on the ideas of Boole. From Shannon's ideas, Boolean logic made its way
into our modern computers because, with the help of the simple operations that Boole
defined, we could transform any value that can be in one of two states: true or false, on or
off, or, in the case of binary numbers, one or zero.

We can accomplish these operations with the help of transistors. There is no need for
us to go into the details of how a transistor works – just knowing that it can be used to
represent true/false, on/off, or 0/1 is enough. We can then connect several transistors into
different configurations to accomplish operations such as AND, OR, and NOT. These
combinations are called gates, so we will have a group of transistors called an AND gate,
one that is called an OR gate, and one that is called a NOT gate. These gates can then be
connected further to construct circuits that can add, subtract, multiply, and divide. We
have now built a machine that can represent both numbers and these basic operations. We
have done this using only numbers, and all these numbers will be in binary, so we have a
machine that only works with zeros and ones: the computer.

Understanding the binary system 19

Machine code – the native language of the computer
Now that we have circuits that can perform some basic operations on numbers, and
we have data in the form of numbers, we can start to write programs that will perform
operations on the data. We can do that with the only thing the computer understands:
machine code. As numbers can represent everything, the instructions we give to the
computer will be – yes, that's right – just numbers.

Each processor type has a specific set of instructions. That is why a program written
for a Mac can't run on a PC running Windows, for example. So, the instructions can be
machine code. Machine code has several operations, called opcodes. The operations can
be things such as AND, OR, ADD, and so on. Each opcode has a unique number. For
example, AND could have an opcode value of 1, and OR could have an opcode value of 9.

The processor will also have several registers. A register is a small area, sometimes referred
to as a data holding place, where the processor can store data it is currently working with.
Before executing an operation, we will need to move the data we want as input to the
operation, from memory, into some of these registers. The result of the operation, the
output, is also stored in a register. In reality, things are a bit more complicated than this,
but we do not need to go into all the details here.

We can now recall the image of the four operations that were common for all computers:
input, storage, process, and output. We first get some input, and it will go to the
computer's memory for storage. The processor will then retrieve it from its registers
and perform operations on it, which is the process part. When we have the result of the
operations, it will go back into the memory so that it can later be sent to the output.

One way to write these instructions is to use something called an assembly. This is a
way of writing a program where we use three-letter abbreviations for the opcodes and
have names for the registers. By doing this, it will be easier to read and understand the
instructions we give. We can then use a program that can translate the assembly code into
machine code.

The assembly language is the first programming language we encounter. The assembly
language can look like this:

mov eax, 14

mov ebx, 10

add eax, ebx

Here, we are moving (mov) the value of 14 into one of the registers, called eax, and then
we are moving the value of 10 into another register, called ebx. We are then performing
the add operation on the contents of these two registers. The result will be written back
into a register; perhaps eax will be reused for this.

20 Introduction to Computer Programs

If the move operation has an opcode of 136 and the add operation has an opcode of 1, we
can use these values together with the numerical representations of the registers to have
all of this in only numerical format. And, as we know, everything that is numerical can be
represented in binary form, that is, with zeros and ones.

Now we have all that, we need to look at some machine code.

Example machine code
Remember that the instructions we give will be different depending on what processor
and operating system we use. The following is an example of what machine code can look
like for a program printing the text Hello, World! to the screen on a computer using the
Linux operating system:

b8 21 0a 00 00

a3 0c 10 00 06

b8 6f 72 6c 64

a3 08 10 00 06

b8 6f 2c 20 57

a3 04 10 00 06

b8 48 65 6c 6c

a3 00 10 00 06

b9 00 10 00 06

ba 10 00 00 00

bb 01 00 00 00

b8 04 00 00 00

cd 80

b8 01 00 00 00

cd 80

When looking at this program, we can write the numbers in binary or decimal format if
we want to. However, to make it easier to read, we often use hexadecimal numbers as we
can then use fewer digits. For example, 15 in the decimal format (two digits) is 1111 (four
digits) in binary, but only F (one digit) in hexadecimal. It is just more compact – that is
the only reason we do this.

Don't worry if you don't understand anything about the machine code program. It is not
supposed to be readable for humans; however, for the computer, this all makes sense.

Summary 21

Writing code in machine code is error-prone. A number in the wrong place can be the
difference between success and disaster. The natural next step, therefore, has been to create
something more comfortable for humans to read and write, which the computer can then
translate into machine code. One such measure has been the creation of the assembly
language that we talked about earlier.

Here is the same program, written in the assembly language:

section .text

global _start

_start:

 mov edx,len

 mov ecx,msg

 mov ebx,1

 mov eax,4

 int 0x80

 mov eax,1

 int 0x80

section .data

msg db 'Hello, world!',0xa

len equ $ - msg

As you can see, this is still not that easy to understand. In the next chapter, we will learn
how to write the same program using languages that resemble human language to a much
higher degree.

Summary
In this chapter, we have gone back in history and explored the development of computers.
The history of computers is a vast topic, but we touched on some important events that
have made computers the fantastic machines that we know today.

For a computer to be useful, it requires programs, and to be able to write programs, we
need programming languages. We learned that the development of programming was
closely related to the development of computers, even if Lady Ada Lovelace managed to
write what was considered to be the first computer program about 100 years before the
first computer was built.

22 Introduction to Computer Programs

With the history of computers covered, we then turned our attention to what a computer
program is and how the computer can use the instructions given in the program to
accomplish the intentions of the programmer. To do that, we examined the smallest
parts of data a computer can handle, the bits, which are the zeros and ones of the binary
representation of numbers. We learned that the ideas of George Boole and his Boolean
logic are the core of how a computer can transform data. Boole's ideas will return in later
chapters, as we will use them when writing programs as well.

Finally, we took a closer look at the language of computers, machine code. We saw how hard
it is for us to read and understand, and because of that, we will appreciate the next chapter,
where we will learn what we can do to avoid working with this difficult code directly.

2
Introduction to

Programming
Languages

To be able to write a computer program, we need a programming language. However,
we don't have just one or two to pick from; there are thousands of different languages
available at our disposal. In this chapter, we will talk about what a programming language
is, why there are so many languages available, how all of these languages are related, and
how a computer can understand the code that we write. Toward the end, we will talk
about the grammar of a programming language, also known as its syntax.

By the end of this chapter, you will be able to do the following:

• Understand why we have programming languages

• Understand how programming languages evolved from one language to another

• Understand how programming languages are related

• Understand the difference between interpreted and compiled languages

• Understand the concepts of syntax, keywords, and reserved words in a
programming language

24 Introduction to Programming Languages

Why do we have programming languages?
Machine code is very difficult. As we saw in the previous chapter, machine code is not
made for us humans. It is perfect for computers, but we need something more comfortable
to read, write, and understand.

The time it takes to write a program, find errors and bugs in code, and update a program
to add new features costs money. If the language we use can help us reduce the chance
of introducing errors in code, it will reduce the costs. If it helps us understand the code
when we read it, it will let us add new features faster, and so reduce costs. One goal of a
programming language is that it must help us be efficient when we write programs.

It is at this point that the higher-level programming languages enter the scene. They
enable us to write our code in something that often, at least to some degree, resembles
English. In Chapter 1, Introduction to Computer Programs we saw one attempt to do this:
assembly language. The introduction to this language helped somewhat, but it was still not
good enough. What we need is something closer to human language.

Look at the following code snippet:

.data

 msgEqual db "Equal","$"

 msgNotEqual db "Not Equal","$"

.code

main proc

 mov bl,"Alice"

 mov bh,"Bob"

 cmp bh,bl

 jne NotEqual

 mov ax, seg msgEqual

 mov ds, ax

 mov ah, 09h

 lea dx, msgEqual

 int 21h

 mov ah, 4Ch

 int 21h

Why do we have programming languages? 25

NotEqual:

 mov ax, seg msgNotEqual

 mov ds, ax

 mov ah, 09h

 lea dx, msgNotEqual

 int 21h

 mov ah, 4Ch

 int 21h

main endp

end main

Now, compare it to the following code:

IF "Alice" == "Bob" THEN

 print "Equal"

ELSE

 print "Not Equal"

ENDIF

Believe it or not, they both do the same thing. The first one is in assembly language and
the second one is something that resembles a high-level language. Even if you have never
seen code before, it is not hard to understand what this program is doing. It compares two
text strings, Alice and Bob, and if they are equal, prints this result to the screen, and if
not, prints Not Equal. Of course, they are not equal, so the output here is Not Equal.

What these two examples show is the leap that was taken to prove how easy code could be
if we compare machine code and assembly code.

In Chapter 1, Introduction to Computer Programs we saw a program that was first written
in machine code and then in assembly that printed the text Hello, World to the screen.
What would that program look like in some of the high-level languages that we use today?
Let's look at some examples.

In Python, it would look as follows:

print("Hello, World")

26 Introduction to Programming Languages

In C, it looks as follows:

#include <stdio.h>

int main(void)

{

 printf("Hello, World");

 return 0;

}

In C++, we have the following:

#include <iostream.h>

int main()

{

 std::cout << "Hello, World" << std::endl;

 return 0;

}

In Java, we would see the following:

class HelloWorld {

 static public void main(String args[]) {

 System.out.println("Hello, World");

 }

}

In C#, we have the following:

class HelloWorld

{

 static void Main()

 {

 System.Console.WriteLine("Hello, World");

 }

}

Finally, in JavaScript, we would observe the following:

console.log("Hello, World");

How programming languages have evolved? 27

We can see that they all are different and that some have some extra stuff surrounding the
part that prints the text, but this comparison makes clear that the step from machine code
is huge.

This step clears the path for several different ways to organize and structure code, and
since the advent of the first high-level programming languages in the 50s, we have seen
tremendous development. Right up to today, a vast amount of languages have been
developed.

How programming languages have evolved?
Between 1943 and 1945, Konrad Zuse, a German civil engineer, developed a programming
language called Plankalkül. Even though this language was not implemented at the time, it
held the foundations for what we now call high-level programming languages and was an
inspiration for other languages that followed.

In late 1953, John W. Backus, an American computer scientist working at IBM, submitted
a proposal to his superiors to develop an alternative to assembly. In 1954, Backus and
his team published the first draft specification for this language, and in April 1957, the
first version of the FORTRAN (the all caps naming standard later changed to Fortran)
programming language was released. At first, this language was met with some skepticism
as it could not produce programs that ran as fast as the ones written in Assembly.
However, the fact that programs written in this new language had far fewer lines and
were more comfortable to write and understand soon outweighed the fact that it ran a bit
slower than the handwritten assembly programs.

Fortran became a success and is still used today, even if it is only used for some very
specialized applications, such as how to measure the performance of supercomputers.

Fortran was soon followed by some other programming languages that have influenced
how we write programs today.

In 1958, a programming language called Lisp was created by John McCarty, an American
computer scientist working at MIT. Lisp originated many concepts that were later adopted
by other programming languages. In Chapter 10, Programming Paradigms, we will talk
about the different paradigms used in programming, and Lisp introduced one such
paradigm called functional programming. Lisp lives today through several languages,
often referred to as Lisp dialects. Among them, we find languages such as Clojure,
Common Lisp, and Scheme.

28 Introduction to Programming Languages

In 1958, another important language was created that has influenced several of the most
popular languages we use today. It is called ALGOL and was developed by a committee
of American and European computer scientists at a meeting in Zurich. The most
important legacy of ALGOL is how we structure code into separate blocks, a concept
widely used today.

The 1950s finally saw one more language that is worth mentioning as it is still in use, and
that is COBOL. The idea was to create a language that was English-like and oriented toward
business applications. The name is an abbreviation for Common Business-Oriented
Language. A group of representatives from academia, computer users, and manufacturers
developed COBOL at the University of Pennsylvania in 1959. One member of this group
was Grace Hopper. She had earlier invented an English-like data processing language called
FLOW-MATIC, which became an essential source of inspiration for COBOL. For a long
time, COBOL was the number one language for developing business applications and is
still in use today in the financial sector.

The modern era of programming languages
These languages created the foundation and served as an inspiration for languages
developed during the 60s and 70s. We will mention a few languages developed during this
time as they have been essential in either introducing new concepts to programming or
have served as an inspiration to others.

In the late 1960s, two Norwegian computer scientists, Ole-Johan Dahl and Kristen
Nygaard, invented a language called Simula, which popularized another paradigm,
object orientation. We will talk more about what object orientation is in Chapter 10,
Programming Paradigms. It has inspired several modern languages that use this paradigm,
such as C++, Java, and C# (pronounced C sharp).

Between 1969 and 1973, Dennis Ritchie and Ken Thomson at Bell Labs developed a
programming language called C, which is still one of the most popular programming
languages and the primary influencer for many of today's top languages. Among these,
we find languages such as C++, Java, Go, JavaScript, Perl, PHP, Python, and C#. What is
it that makes C so popular and influential? There are several answers to this. One reason
is the way the code looks and the rules for how the code is structured. This style inspires
many languages, and they reuse it with minor or no modifications. Another reason is that
programs written in C run fast and for that reason, when an application requires high
speed or in some other way needs high performance, C or some of its related languages
are perfect for the job.

The family tree of programming languages 29

Why so many languages?
There are several reasons why someone will develop a new language. One can be that the
person uses language but doesn't think the structure of the code is good enough, or they
think that some things could be done more efficiently. It can also be that a language is
developed to target a special kind of application. In Chapter 3, Types of Applications we
will look at some different types of applications, and these might have some requirements
that make one language better suited to meet them than other languages will.

A programming language can give a programmer direct access to computer hardware.
This means that it will let the programmer have more control over how data will be
represented and stored in the computer's memory. The benefit of this is that programs
written in this sort of language have the potential of being more efficient or running
faster. However, this comes at the cost of complexity. When more control is given to the
programmer, we also give the programmer more chances to make errors.

Some languages give us less control but are easier to use. The disadvantage here is that
programs written in these languages tend to run slower.

For example, if we want to write a high-end game where we want the best possible
graphics, the best sound, advanced computer AI, and multiplayer capabilities, we will
need to do our best to get as much performance as possible out of the computer hardware.
We will then select a language that will give us as much control as possible as we want to
fine-tune all aspects of our program to their optimum configurations.

If we instead write some administrative software, the speed of the application will
not be our focus; rather, we want a programming language that will help us write
high-quality software with as few errors as possible. Some programming languages also
have a structure that makes writing programs easier, which in turn reduces the time spent
by the programmer in writing the software.

Requirements like this can also be the motivation for creating a new programming
language. A programming language is nothing more than a tool that we use to create
programs, and as with all tools, we want it to be as functional for the task as possible.

The family tree of programming languages
Forming a family tree of how programming languages are related is not easy as we can
argue for a while over how much they have influenced each other. It would also be
impossible for us to draw a tree that includes all of the existing languages as there are so
many that fitting them into even a page of this book would be impossible. What we can
do, however, is draw a tree that includes languages that are either popular right now or
that have influenced these languages in a significant way.

30 Introduction to Programming Languages

The selection of languages we will use here is based on their popularity—that is, they
are the languages that you are most likely to use. To know what languages are the most
popular ones today, we can turn to several sources. The question is how to measure how
popular a language is, and different sources use different criteria to make this selection.
If we browse through several top lists online, we will soon discover that there are some
languages that make it into all of these lists. So, let's start with them and see how we can
build a tree from there.

The languages I will include, in no particular order, are JavaScript, Java, Python, PHP, C,
C++, C#, and Ruby.

If we start with one language—for example, C—and look at what languages it is influenced
by, we will find assembly language, Fortran, and ALGOL (if we just focus on the ones
we mentioned earlier). We can now start to draw this tree. If we then do the same for
the other languages and see which ones have influenced them and which ones they have
influenced, we will end up with a tree that looks something like this:

Figure 2.1: Family tree of some programming languages

Translating code into something that the computer understands 31

We could have lengthy discussions on whether this is an accurate representation, but it
gives us a general idea of how languages inspire each other. Of the languages we have
talked about, only COBOL can't directly be linked to any of these languages. This does
not mean that COBOL is not essential, but to the languages that made it into this tree,
COBOL has not had any significant influence.

Another thing to note about this diagram is that languages that have ALGOL as their
common ancestor are overrepresented. The reason for this is that among the most popular
languages today, they all come from a group often referred to as the ALGOL family of
languages. I have also taken the liberty to leave out some intermediate languages from
some of these relationships to reduce the size of the tree. What we don't see in this family
tree is a language that springs up that is totally unrelated to any existing language. What
that means is that new languages are created as a reaction to an existing language. When
creating a new language, we take the parts we like from one or more languages and change
the parts we don't like.

The reason this tree can be interesting is that if I learn one programming language,
then learning a related language is much easier then learning one that is further away
in the tree.

Translating code into something that the
computer understands
The code that a programmer writes is called source code. As we saw in Chapter 1,
Introduction to Computer Programs this code must be translated into machine code so that
the computer can understand it. There are two main principles of how this translation is
done. We will first explore these two concepts and look at their pros and cons before we
look at a combination of these two concepts.

32 Introduction to Programming Languages

Interpreting
One way to carry out this translation is by using an interpreter. An interpreter will look at
a single line of source code, translate it into machine code, let the computer execute this
line, and then move on to the next line of code. The way the interpreter works is a bit like
how a simultaneous translator works with human languages. A simultaneous translator
will, for example, work for the UN. In the UN, everyone is entitled to speak in their native
language. A group of translators listens to the talk, and as they listen, they will translate it
into another language. Delegates can then listen to the speech in real time in their native
language through headphones, in this way:

Figure 2.2: A simultaneous translator will translate everything in real time

Next, let's see how compiling works.

Compiling
Another way to carry out the translation is by using a technique called compiling. When
we compile source code into machine code, we first translate every line of code, and it
is not until the translation of all of the lines of code has been done that the program is
executed. We can compare this to the concept of translating a book. First, an author writes
the book in one language. A translator will then translate the whole book into another
language. It is not until the translation of all of the text in the original book is done that it
will be available to read:

Figure 2.3: When translating a book, a translator will translate all of the text before the book is published

Translating code into something that the computer understands 33

After this, we will see how interpretation and compilation compare.

Comparing interpretation and compilation
Interpreting and compiling are two of the main techniques for translating source code. A
programming language can use either one of these techniques, and a language is therefore
often referred to as either an interpreted or compiled language.

Let's look more closely at these two techniques so that we can understand them better
before we compare them.

When translating source code written by a programmer, a specialized program called
an interpreter can do the job. The interpreter will read the source code line by line and
translate each line immediately.

Let's see a diagram of this process:

Figure 2.4: An interpreter translates one line of source code into machine code

First, the interpreter will read a line from the source code on the left. In this diagram, it
reads the first line, called Code line 1. It will then translate this line into machine code
and send it to the processor of the computer, the CPU, which will execute the instructions.

It will then go on to the next line, shown in the following diagram, and repeat the process
for that line:

Figure 2.5: When one line has executed, the interpreter continues with the next line

34 Introduction to Programming Languages

The interpreter will repeat this process until there are no more lines to process in the
source code.

A compiler will instead translate all the code in the source code document and store it in
a file containing the machine code instructions. When we want to run the program, we
can use this file to run it; it is at this point that the CPU will execute the machine code.

The following diagram illustrates this process:

Figure 2.6: A compiler translates all of the source code and stores the resulting machine code in a file

What are the advantages and disadvantages of these two methods of translation? Let's start
with interpretation and look at some of the benefits first:

• It has a smaller program size.

• If we have the code and an interpreter, we can run it on any platform (for example,
Windows, Linux, macOS, and so on).

• Interpreted languages tend to be more flexible for programmers to use. One
example of this is called dynamic typing, which is something we will talk more
about in Chapter 6, Working with Data – Variables.

Some disadvantages of the interpreter approach are as follows:

• The program runs slower as it takes some time to do the translation.

• Anyone who wants to run the program must have an interpreter installed.

• The user of the program has access to the source code, so if it is a commercial
application, all the code we have written will be accessible to anyone, including any
potential business secrets.

Translating code into something that the computer understands 35

For a compiled solution, the advantages and disadvantages are pretty much the opposite of
those for an interpreter. The advantages are as follows:

• It runs faster as the translation is done all at once.

• No extra program is needed to run the application—that is, the application has
all the information it needs to run, so the user does not need to have any other
programs installed.

• Compiled programming languages tend to help the programmer with things such
as type checking to a higher degree. Type checking is something we will discuss in
Chapter 6, Working with Data – Variables.

The disadvantages are as follows:

• The programs tend to be larger as they need to come with instructions on how they
will be executed.

• We need to make versions for all of the platforms that we intend the program to run
on—that is, we need a Windows version, a macOS version, and a Linux version.

• The time it takes to complete the translation can be long, making it harder to try
things out as we write the program.

As we can see, there are pros and cons to both techniques. A programming language is
either interpreted or compiled, with some exceptions that we will look at soon.

Note:
Some examples of interpreted languages are PHP, Ruby, and JavaScript.

Some examples of compiled languages are C, C++, COBOL, ALGOL, Fortran,
and Lisp.

Languages that both compile and interpret
We also have a group of languages that both compile and interpret. When they compile
the source code, they do not directly compile it into machine code. They follow an
intermediate step where they compile the source code into byte code. This byte code is
then interpreted as the program executes. The benefit of doing this is that we get some
of the advantages of both techniques. For example, this byte code can be distributed to
anyone who wants to run the program, and then an interpreter will interpret the byte code
into machine code for the current system that the program is executed on.

36 Introduction to Programming Languages

Another advantage that compiled languages have—and this applies to the technique
of mixing them, too—is that if there is an error in the source code, the compiler will
detect this because the syntax (remember that the syntax is the grammar of a language)
has to be correct and if it is not, the compiler can't proceed and will stop the translation.
The programmer then needs to go back and correct the error before the program can
compile again.

Mixed technique languages share a disadvantage with interpreted languages, which is that
programs written with them will run slower than programs written in a compiled language.

Note:
Some examples of mixed technique languages are Python, Java, C#, and Perl.

Syntax and the building blocks of a
programming language
Just as human languages have grammar to dictate the rules of the language, a
programming language has syntax. The syntax is the rules for how we write a program
using a language. There is one big difference between grammar and syntax and that is
about forgiveness for errors. If you meet someone who speaks your native language but
makes some errors here and there, you will still be able to understand what that person
is trying to communicate to you. That is not the case for the syntax of a programming
language. It does not forgive at all, and you will need to get it spot on:

Figure 2.7: Humans understand each other even if the grammar is wrong

As we discussed earlier, the code we write will be translated by either a compiler or an
interpreter, and for that translation to work, the syntax must be flawless.

Syntax and the building blocks of a programming language 37

Each programming language has its own syntax rules, but as we saw in the family tree
earlier, languages can be related. So, many languages share a syntax with only slight
variations, where others have a more specialized syntax. When learning a new language,
we must learn the syntax for that language. That is why moving between closely related
languages is easier as they will most likely share a lot of their syntax.

If we have an error in the syntax, it will be discovered during the translation, and here
is where a compiled and an interpreted language will differ. For a compiled language,
all the translation will be done before we can execute the program. If we have an error
in the syntax, the compilation will stop as soon as the compiler discovers the mistake.
We must then find the fault and correct it, then let the compiler try to translate the code
again. It is not until our code does not have any syntax errors that we have something we
can run completely:

Figure 2.8: A compiler will not produce any output until there are no errors in the syntax

This is different for an interpreted language as it will translate line by line as we run the
program. This means that a syntax error can be hidden in a corner of the program that
is rarely executed and will not be discovered until we eventually want to run that line of
code. When this happens, the program will crash with an error message letting us know
what problem was there with our syntax:

Figure 2.9: An interpreter will translate every line it encounters and
executes it until it finds a syntax error

38 Introduction to Programming Languages

This means that a source code document that we have written can either be syntactically
correct or incorrect. The syntax is a set of rules defining how the source code will be
written and structured. But that is not all. The syntax also defines other things, such as the
words that make up the language. These are called keywords.

Keywords
When learning a new language, we must keep track of its keywords as these words are
reserved by the language and so we can't use them to name things in our program. If we
use a keyword by accident for something other than its intended use, we will get an error.
Keywords are sometimes also referred to as reserved words.

A language will typically have between 30 and 50 keywords. Here is a list of some
common keywords in many languages:

• for

• if

• else

• break

• continue

• return

• while

Most programming languages are case sensitive, so the use of uppercase and lowercase
letters matters—for example, if is not the same thing as If or IF.

Apart from keywords, we also have something called operators, which we can use to
represent the actions we want to perform on data.

Syntax and the building blocks of a programming language 39

Operators
A programming language will also have several operators, and these are what we use to
accomplish things such as addition and multiplication, as well as to compare items. The
symbols that can be used are also defined as part of the language syntax. Here is a list of
some commonly used operators:

Table 2.1 – Commonly used operators in programming languages

Operators are so-called because they perform operations on data. As we can see in the
preceding table, there are operators to perform arithmetic operations, such as addition
and multiplication. Other operators are used for comparison—for example, to see whether
two values are equal, whether one is greater than another, and so on. In Chapter 6,
Working with Data – Variables we will see more about what operators are typically found
in a programming language and how they can be used.

Having our code in one long sequence would make it difficult to read. It would be like
having a book with no chapters or paragraphs. To add the concept of chapters and
paragraphs to our code, we use something called code blocks.

40 Introduction to Programming Languages

Code blocks
It is common for a language to also allow us to define blocks of code. There are several
reasons why you would want to do that, and we will talk more about them in later
chapters. However, for now, we can think of a block of code like a paragraph in standard
text. The language then defines how we mark the beginning and end of the block. A
common technique that many languages employ is using parentheses, also called braces or
curly brackets—{}. Everything within these parentheses is considered part of the block.
Other languages might have different ways to do the same thing, so again, when switching
between languages, we must learn what the syntax rules are for that language.

Now that we have covered some of the basic concepts that a programming language uses
to define its syntax, we should make one clarification. Many concepts that come up in
programming share names with concepts in mathematics. So, let's see how programming
is related to mathematics.

Relations to mathematics
Programming is closely related to mathematics as programming has borrowed many
concepts from it. One of these concepts is the use of variables. In Chapter 6, Working
with Data – Variables, we will talk about what a variable is and how it works, but they are
essentially the same as they are in mathematics in the sense that we can use a name to
represent a variable (a value that can change). The rules for how we can name variables are
also part of the language syntax.

Another concept borrowed from mathematics is functions. In mathematics, a function
is something that takes an input value and transforms it in some way to produce an
output. This is close to how we can describe functions in programming as well, but that
is not all there is to functions in programming. We will talk about functions in Chapter 8,
Understanding Functions, and then we will see that we need to think about programming
functions in a different way than how we view their mathematical equivalent.

One thing we must remember when approaching programming is that if we understand
how these concepts work in mathematics, that does not mean that we can apply this
knowledge directly to programming, even if they happen to share the same name. They
will be related, but how things are done in programming will differ from how things work
in math.

Summary 41

Summary
In this chapter, we started by talking about why machine code is so difficult to understand
and the motivation for creating programming languages that are easier to use for
programmers. We then saw how programming languages have evolved over the years, and
how most of them are similar as they have influenced each other as they evolved.

We also discussed some different techniques—interpreting and compiling—that are used
to translate source code into machine code. We also saw how some languages use a mixed
technique, employing both compiling and interpreting to complete translation.

At the end of this chapter, we learned about the grammar or syntax of a programming
language and that each language has its own syntax rules. We also learned that there is a
close relationship between mathematics and programming, and that programming has
borrowed some ideas and concepts from mathematics but that even if they share the same
name, they do not necessarily do the same thing.

All of this knowledge will give you a solid base to build on with what we will learn in the
next chapter, where we will look at some of the main types of applications that we can
develop. We will also learn about the ways in which they are related to each other.

3
Types of

Applications
Computer programs, or applications as we sometimes call them, come in many types.
Each type solves a special kind of problem. Some applications, such as a solitaire game
or a word processor, just run on a local computer, and others need to communicate with
other computers or networks to work, such as web browsers or email clients.

In this chapter, we will look at some special types of applications and discuss what
considerations we need to take when creating them.

It would be impossible for us to cover all types of applications as there are way too many
of them. Instead, we will look at some common types that we will encounter when writing
our applications.

We create programs to solve problems, and in the process of designing our application
and deciding what it needs to do, we will often look at solutions others have found
for similar problems. The goal of this chapter is to familiarize you with some of these
solutions so you can recognize the problem they solve when, in the future, you need to
create your own solutions.

44 Types of Applications

By the end of this chapter, you will be able to do the following:

• Understand what is typical for the different types of applications that the
chapter covers

• Understand how the application type affects how we structure our applications

• Understand the importance of connected applications

• Understand the benefits of using cloud-based solutions

• Understand the problems the different kinds of applications we talk about can solve

Standalone applications
A standalone application is a program that can work offline, that is, it does not necessarily
require a network connection. Therefore, when writing such an application, we will need
to provide all the resources the program will require. These resources can be images, such
as icons used in the application, files to store program configuration, and so on.

When learning to write applications, most of your programs will likely fall into this
category. It is usually a rather straightforward affair to create these applications as we will
not need to interact with other programs.

Examples of programs that fall into this category are text editors such as Notepad on
Windows or TextEdit on Mac, simple games such as solitaire, and paint programs.

Client-server applications
Client-server is a model we can use to create distributed applications, which are
applications that run on more than one machine.

The idea behind the client-server model is that we have at least two computers involved.
One acts as the server, and all the others have the role of the client. Clients and
servers need to communicate with each other. It is always the client who initiates the
communication. Sometimes the server communicates with several clients at once; other
times, the server only communicates with a single client at a time.

This means that we can use different computers to take care of different parts of an
application's responsibility. We can let one computer deal with one aspect of a problem
and another computer work on a different aspect of the same problem. These two
computers then need to communicate their results, usually to a single computer, which
can then assemble the different results into one solution.

Client-server applications 45

We can also use this model when we have different roles for different parts of an
application. For example, we have one role that is to display data to and get input from
a user (user interaction) and another role that is to process and store this data. We can
divide these roles so the processing and storing role is done by one computer and the user
interaction role by another computer.

Figure 3.1 – A server connected to several clients

To illustrate this, let's take a couple of scenarios where we would use a client-server
solution and see what the solutions would be.

Example of a chat application
Let's assume that you want to create an application where you and your friends can chat
with each other. Everyone that will use this chat application will need the client software;
this is the program we start when we want to chat.

46 Types of Applications

When we start thinking about how to design this application, we will face our first
problem. Imagine that you start your chat application because you want to chat with your
friend Alice. Our application needs to connect to Alice's computer, running her version of
our program. Both you and Alice will run identical programs, but how can they connect?
How can our application find Alice's computer among all the computers connected to
the internet? It would be like if you want to call Alice but don't have her phone number.
Our chat application will be our phone, and Alice's client will be her phone. You can't just
randomly enter a number in the hope of reaching Alice.

Figure 3.2 – How can you find Alice's computer when you want to chat?

An IP address (IP is an abbreviation for Internet Protocol and is part of a larger protocol
stack, called TCP/IP, that describes how computers communicate over the internet)
identifies all computers and other devices connected to the internet. We can think of this
address as a phone number. This number can uniquely identify a telephone anywhere in
the world. The same is true for an IP address; it can uniquely identify any device that is
connected to the internet.

The problem is, how can we know what address Alice's computer has? And even if we
knew what it was, we must understand that it is subject to change. If she is connected to
her home Wi-Fi network, she will have one IP address, but if she takes her computer to a
café downtown and connects to their Wi-Fi network, she will get another IP address. This
is because when connecting to a Wi-Fi network, it is the network router that assigns an IP
address to your computer.

A better solution would be if all clients connected to a computer that always has the same
address. This would be our server. If both you and Alice connect to the same server, this
server will know about both your addresses, and when you want to chat with Alice, you
send a message to the server and the server will relay this message to Alice. When her chat
client receives the message, it will make a sound so she knows a new message has arrived,
and the problem is solved. To simplify things even more, we will use a domain name for
the server instead of the IP address, as a domain name such as company.com is easier to
remember than an IP address.

Client-server applications 47

Figure 3.3 – Using a server to handle the communication between you and Alice

If more than two users are connected to the server, then the server will need to keep track
of who is the recipient of the message. When you send your message to Alice, your client
application will need to provide the identity of who should get the message so the server
can make sure it is sent to the right client.

Example of an email client
Assume that you have been using several different applications to read and write emails,
but you are not happy with how they work and you decide to write your own. What you
will write is an email client.

Let's take our friend Alice again. What happens if she sends you an email? Your emails must
be stored somewhere as you can't have your client application running all the time. The
email Alice sends to you will end up on an email server. When you start the email client you
wrote, it will connect to the server and ask for all new emails that have been received since
the last time you connected. These will now be transferred to your client application.

Figure 3.4 – An email server will handle incoming and outgoing emails,
and the client only connects to receive and transmit messages

48 Types of Applications

Client-server, a two-part solution
In both these examples, we saw that the solution to a problem is divided into two
parts. We need one part that will be the client, and the other will be the server. The
characteristics of these two are that we have a server with its location known by its IP
address, and we will have a client that will know about the server address and will be the
part that initiates the communication. An IP address can also be in the form of a domain
name, such as http://some-server.com. A domain name is a one-to-one mapping
between an IP address and a name. In other words, a domain name is tied to one single IP
address and is used because it is easier to remember a domain name than an IP address
that is just four numbers in the form 123.123.123.123.

This format is true for the version of IP addresses called IPv4 (Internet Protocol
version 4.) A new version of the Internet Protocol is now starting to get widespread. The
main reason for the upgrade is that we are running out of possible combinations to give
all devices unique addresses. The new version is called IPv6 (which is Internet Protocol
version 6) and an address in IPv6 will look like 2001:db8:a0b:12f0::1. These
numbers are separated by colon instead of a period. In IPv4 the address was represented
as a 32-bit value, and in IPv6 it is 128 bits. This means that we have many more addresses
to distribute.

Sometimes these two roles are only distinct for how the two parts will connect; the client
connects to the server, and when the connection is made, they can act as two identical
parts. If we take the chat application as an example, if we knew Alice's address, we could
connect directly to her application. Our application will initially be the client, and Alice's
application would act as the server. But as soon as we have a connection, both parts
will act in the same way, and the roles of who is the client and who is the server will
be unimportant.

Next, we move to understanding web applications.

Web applications
A web application is a special form of client-server application where we have a client that
interacts with a user in the form of a web page. The server is responsible for producing the
results the user will see and to accept and process the input from the user.

http://some-server.com

Web applications 49

This process works something like this:

1. Imagine that you visit a website and are prompted to log in. You enter your
username and password. When you press the Log in button, the information you
entered is sent to the server:

Figure 3.5 – When logging in to a web application, your credentials will be sent to the server

2. The server requests the information stored in a database about this user:

Figure 3.6 – The web server requests the user information stored in a database

3. The database returns the information it has for this user. Note that usually, the
password will not be stored in plain text as illustrated here, but for clarity, we ignore
that in this scenario:

Figure 3.7 – The database returns the information

50 Types of Applications

4. The server application now verifies that the username and password are correct.
If they are, it then produces a web page for this user and transmits it to the client's
computer so that a web browser running on this computer can display this page:

Figure 3.8 – The server produces a web page and transmits it to the client

Let's see what this means if we want to create our very own social network.

Example of a social network
You would need to create both the client and the server part of this application. First, the
user needs to log in. To do this, the client will ask the user for their credentials. The client
will then send the username and password to the server, and the server will verify if the
information is correct. The result will be sent back to the client. If the login fails, the user
will be asked to try again. If it is successful, the user will see the main window with all the
posts from friends and relatives.

It might feel like there is some magic going on here, because how did we get the most
recent post your uncle did 5 minutes ago on the other side of the world?

Your uncle uses his client to create his post. The information about this post is sent to the
server, which stores it in a database. When you log in, the server asks the database for all
users you are connected to, and among them, it finds your uncle. Then the server checks if
your uncle has made any recent posts and then finds his post. This post is now part of the
result, together with posts from other friends, that is sent to you:

Web applications 51

Figure 3.9 – Your uncle posts a new status update that gets included in your feed

Next, we will see how these apps are unique.

What makes web applications unique?
As we have seen, a web application is more-or-less just a client-server solution, but there is
a twist that makes it not just a client-server application, and that is how the client interacts
with the user.

If we think back to the client-server applications we talked about previously, the chat and
email programs had been designed as standalone applications. This means that we have
a program on our computer that we can start. That is not the case for our social network
application. When users want to access it, they will start a web browser and navigate to
the server's address. We can say that the web browser is a general-purpose client as it is
not made to serve one solution but can be used to access any page on the web, our social
network being one of them.

We will still need to design what this page will look like and what information will be
displayed to the user, but the client usually has very little program logic built into it. The
logic of our application is done on the server side, and it's the server that will produce the
pages the user sees. They are transmitted to the client, which is the user's web browser,
which then displays the result.

Next, we'll look at mobile applications.

52 Types of Applications

Mobile applications
When we talk about a mobile application, we usually mean a program that is designed
to run on a mobile device, such as a smartphone. These devices have some special
characteristics that we need to consider when writing an application. First, their screen is
smaller than a computer monitor. The screen can also be rotated in landscape or portrait
orientation. We will also use the touchscreen of the device for input.

The mobile application might also use other features of the device, such as the GPS,
sending text messages, or sensing the movement of the device using its accelerometer.
These are things we usually can't do if an application runs on a normal computer.

A mobile application can be connected, but it does not have to be. Being connected means
that it can communicate with another computer, maybe using the client-server techniques
we discussed earlier.

When writing a mobile application, the platform the application will run on is very
important. The reason is that the programs we write need to interact with the device more
directly. This means is that it can dictate what programming language we will use to write
these applications. The developers of the operating systems for mobile devices have some
preferred programming languages. For iOS, Apple's operating system for mobile devices
uses two languages, the old Objective-C and the new Swift. These are two languages you
will hardly ever encounter if you are not creating applications for Apple devices. For the
Android operating system, the preferred language used to be Java, but Google, which is
the company behind Android, changed this in 2019 and now use a language called Kotlin
as the preferred development language.

Having a preferred language for these systems does not mean that we can't use other
languages. Still, Apple and Google recommend using these languages, so it is usually
easier for us to use these languages when developing mobile applications. The reason is
that the tools we use when writing our programs will be better suited to them than any
other language.

Next, we look at distributed applications.

Distributed applications
A distributed application is an application that does not run on one single machine, but
instead lets different parts of the program run on multiple computers that communicate
with each other over a network. This might sound like the client-server solutions we
talked about earlier, but here we don't have the distinct roles of a client and a server.

Distributed applications 53

There could be several reasons to use this solution. One may be that what we are doing
requires so much computing power that a single computer will not be enough. The idea is to
use the computing power of many computers and distribute the calculations to all of them,
letting each computer work on a small section of the problem and communicate the results
to the other machines in the network. This will give us something of a supercomputer that
will act as a very powerful single machine running a single application, when it is actually
thousands of computers running small individual parts of the application.

Let's explore distributed applications in more detail.

SETI@home
An example of a project that uses this technique is SETI (short for Search for
Extraterrestrial Intelligence), a scientific project trying to find extraterrestrial
intelligence in outer space. To do this, they use radio telescopes to collect lots of data. The
problem is that all this data needs to be analyzed in the search for a signal that can be of
intelligent origin. The solution they use is to let people help them out either by installing
a screensaver on their computer or a special program that will use the computing power
of that computer when it is not used for any other task. By doing this, they will have the
power of all these computers to do the analysis, and they will report back the result of the
part of the data that was assigned to them.

You can try this out yourself by visiting https://setiathome.berkeley.edu/ and
installing the program:

Figure 3.10 – SETI@home analyzing data. Copyright 2019 UC Regents. Used with permission

https://setiathome.berkeley.edu/

54 Types of Applications

Peer-to-peer networks
A peer-to-peer network, also known as P2P, is a network of computers that are equal
participants in the network. Each computer in the network is called a node, or a peer, and
they make portions of their resources, such as processing power or disk storage, directly
available to other participants in the network. This technique was popularized by file-
sharing systems such as Napster in the late '90s. A peer in the network is both a supplier
and a consumer of resources. This is what makes this solution different from a traditional
client-server model in which the supply and consumption of resources are divided
between the server and the client:

Figure 3.11 – A P2P network where computers, or peers, are connected without a server

Today, P2P networks are used by most cryptocurrencies making up a large portion of
the blockchain industry (simply put, a blockchain is a database stored in separate copies
on many nodes in a P2P network.). P2P is also used by web search engines, streaming
platforms, and online marketplaces.

Next, we look at cloud-based applications.

Cloud-based applications
Cloud computing was first mentioned in 1996, but it was not until Amazon released its
Elastic Compute Cloud in 2006 that it became widely popular. The idea behind cloud-
based computing is to move away from the need to host your servers and other resources
needed to run your project, and instead buy time from large data centers to use their
computing power. There are many advantages to this. You don't have to make sure that
your computers are up and running, that operating systems are updated, that you have
implemented back-up solutions for your data, and so on. You can set up your server to be
online, and then you can deploy your software on this server and run it from there.

Cloud-based applications 55

The companies providing these services soon began to add other features that we can
use as well. These are ready-made parts that we can use in our applications. What this
means is that there will be parts of our application that we won't need to write ourselves.
Instead, we can buy these ready-made parts from the provider and integrate them into our
application that will run on a server, also provided by them.

There are many variations of this: we can buy a server, we might only buy storage, or we
might buy one or more services that we will use, and these can then be combined in any
way we want.

There are many reasons we would like to make our application using cloud-based
resources. Let's look at some of them.

Advantages of adopting cloud-based applications
Here are a couple of reasons why using cloud-based applications is beneficial for us.

Reduced costs
By having our application on a cloud-based server, we will not need to buy a server
computer, and we will not need to maintain this computer. We can pay for services so
the cloud service provider will take care of ensuring that our server's operating system is
updated and that security patches are installed as they are released.

If our application is storing data, we can let the provider take care of making backups,
making sure we don't lose any data. We can also let these backups be stored at different
locations in the world, so even if one of the data centers our provider is using gets
destroyed or affected for some reason, our data will remain safe.

These are just two examples of how we can reduce our costs as the amount we pay to the
cloud service provider will be drastically lower than if we had done all of this ourselves.

Scalability
Scalability is how we can adapt when the amount of work our application is doing
changes. If we, for example, have a web application running and suddenly it gets very
popular overnight, we might go from a couple of hundred users that are simultaneously
connected to it to several thousand. If the hardware running our application is not capable
of handling this growing popularity, our users will soon get tired of using it as they need
to spend too much time waiting for a response from our application. If we manage the
hardware ourselves, we will need to get more and better server computers, install our
application on them, and make sure everything works. If the interest in our application
then drops, we will now have invested in hardware we no longer need.

56 Types of Applications

If we, on the other hand, are using a cloud-based solution, we could, with a few clicks,
pay to get more power to our servers. And if the demand drops, we can downgrade again
and only pay for what we use. This process can also be automated, so the server hardware
adapts to the demand.

Cloud service models
Cloud computing providers offer different services according to three different models.
These models define what parts the provider will handle and what is handled by us, the
creators of the application. These different models can also be viewed as different layers, so
when deciding what we need for our application, we can pick things from all three layers.

Let's look at these layers so that we understand what they can help us with.

Infrastructure as a Service (IaaS)
This is the layer that handles hardware resources such as servers, storage, firewalls, and
so on. Investing in services on this layer means that you don't need to buy the hardware,
you don't need to spend time on configuration, and space for data storage will be managed
for you.

Some examples when IaaS is a good option for us are as follows:

• Big data: More and more applications need a huge amount of data. This can, for
example, be data used when training artificial intelligence (AI) applications or
applications that rely on a significant amount of what is known as unstructured data
(that is, images, email, or social media content, for example). These applications
will need to handle large workloads that can change over time. IaaS gives us tools to
add storage and processing power with a click of a button; in fact, this can even be
automated to suit our needs.

• Disaster recovery: The most valuable asset we have in software is data, and we
should always ensure that we can recover from a disaster. If we store copies of our
data in different geographical locations, we can rest assured that we can recover it
even if the worst happens. IaaS makes it easy and affordable to do this.

• Testing and development: When developing applications, we often want to test
them on different hardware configurations running different operating systems.
Setting up different IaaS solutions is a cheap and easy way to do this.

Cloud-based applications 57

Platform as a Service (PaaS)
In this layer, you will, among other things, find applications that will act as servers. Some
examples are web servers that will handle web resources so users can access your website,
and database servers that will manage storage and retrieval of data. This layer can also
contain readily configured environments that are targeted to a programming language.

This level builds upon the IaaS level, so usually, you get the benefits of that layer plus the
things that are included in this layer.

Here's some examples of some benefits of using PaaS:

• Faster time to market: Going from an idea to a product that we can start to earn
money from is essential when developing software. Using PaaS will dramatically
reduce the time for acquiring hardware and installing and configuring software. There
are examples of start-up companies that had an idea on Friday and a product that
could be used on the next Monday. This can be made possible with the help of PaaS.

• Reduced costs: Without the need to invest time and money acquiring hardware,
configuring it, installing software, and ensuring all software is updated, our costs will
be greatly reduced. The time we save can instead be used to develop our product.

Software as a Service (SaaS)
This layer will provide you with everything—the hardware, the server software, as well
as applications—and the only thing you need to do is to configure it to work the way
you want it to. A well-known example of SaaS is the array of Google apps. These are the
applications provided by Google, such as Docs, Sheets, and Calendar.

Here's some examples of why you may want to use SaaS:

• Less maintenance of office software: When running a business, we need to
provide email addresses to all our employees; we need to provide them with office
applications such as word processors, spreadsheet applications, and presentation
software. If we let someone else handle the installation, configuration, and updates,
and reduce the time we spend on handling software licenses, we will free up
resources and save money.

• Sharing information: Using services such as cloud storage will make it easier to
share files and documents between co-workers and customers.

This completes our coverage of all the pertinent cloud service models.

58 Types of Applications

As a software developer, you will most likely work on the PaaS layer as it is the one
providing the tools we need to develop our applications:

Figure 3.12 – What the different cloud system layers handle

Other advantages of cloud-based solutions
These are just some examples of the advantages we get from using cloud-based solutions.
In a 2017 article, The Business Journal lists what they think are the five biggest benefits of
cloud-based solutions. They are as follows:

• Boost cost efficiency

• Provide flexible pay options

• Promote collaboration

• Increase mobility

• Aid in disaster recovery

If you search the web for the benefits of moving to the cloud, you will find similar lists.
Some will also add environmental advantages.

We should also consider that there are risks of using cloud-based solutions. The major
one is the security and personal integrity issues that can be hard to handle when you don't
have full control over where and how the data is stored.

Other types of applications 59

Next, let's look at some other types of applications.

Other types of applications
Of course, we have several other categories that software can fall into. Let's look at some
of them.

Systems software
The software in this category helps the user, applications, and computer hardware to
interact and function together. These applications create an environment that other
programs can work in. When a computer is powered on, the first thing that is loaded
into the computer's memory is system software applications. They will mostly run in
the background, even if some of them can have a visual user interface. Because these
programs work directly with the computer's hardware, they are often referred to as
low-level software.

The most well-known type of application we find in this category is operating systems. As
we saw in Chapter 1, Introduction to Computer Programs, they let other software run and
take care of the direct communication with the hardware.

The most well-known operating systems for desktop computers and laptops are as follows:

• Microsoft Windows

• macOS and macOS X (for Apple devices)

• Linux

For smartphones and tablets, we have the following operating systems:

• Android

• iOS (for Apple devices)

• Microsoft Windows Mobile

Programming software
In this category, we find the tools and applications used by programmers when they
write and test software. First, we need the programs that are the actual language the
programmers use. To be able to write a program in C++, Java, Python, or any other
language, we must first install the software that will take care of the translation of the
source code into machine code (see Chapter 2, Introduction to Programming Languages).

60 Types of Applications

A programmer often uses specialized text editors that will assist them when writing code.
Some programs are even more advanced and will provide not only an editor for writing
the code but a range of other built-in tools that are useful to have access to when writing
programs. These are called Integrated Development Environments (IDEs). An example
of a built-in tool is a debugger, which is a program that will help the programmer to find
errors in the code.

Serverless applications
A serverless application is a specialized variant of cloud-based applications. It can come
in several different forms. Common to all these variants is that the cloud provider runs
the servers needed, and dynamically manages all the resources the application needs.
What this means is that we, for example, will not need to buy storage of a fixed size. The
provider will add more storage as we need it, and we will pay for the storage we use. We
can compare this to a scenario where if our hard disk is full, it just keeps increasing its
storage capacity to meet our needs for more space.

This kind of software is interesting if you want to automate the maintenance of servers,
storage, and other aspects of your infrastructure. These solutions are intelligent, so they
can adapt to changes, for example, by giving us more storage when we need and reducing
it again when the need drops.

Summary
In this chapter, we have talked about some typical types of applications and what makes
them special.

We learned what a standalone application is and that this is the first type of application
you will write when learning to program. After that, we looked at different types of
applications that, in one way or the other, were divided to run parts of the program
on different computers, and we saw that the parts communicate with each other.

We learned that a web application runs on a server but communicates with its users
through web pages. We saw that mobile applications are special in that they can take
advantage of the features of modern mobile devices including smartphones and tablets,
such as the GPS and the camera.

Another category of applications is those that need lots of computing power and let
many computers share the workload and perform parts of the computing. These are often
referred to as distributed applications. Then we looked at a category that is growing fast,
and that is cloud-based applications. The benefit of using these services is that it is usually
much cheaper and more secure than if we manage everything ourselves.

Summary 61

Finally, we talked about a couple of other categories: system software, programming
software, and serverless applications.

All software will need to be written by programmers and, in this chapter, we saw that
applications can come in many forms. You have different resources available to suit
your application development needs. As a developer, you can specialize in one or a couple
of categories, or you can choose to jump between technologies. No matter what you
choose, the challenges will be very different depending on what type of application you are
currently developing.

In the next chapter, we will take a closer look at what a software project is and how we
can structure our code as our projects get larger. We will also talk about some details that
have to do with problems we might run into as our projects grow, and how we can resolve
those issues.

4
Software Projects

and How We
Organize Our Code

When we write software and our program grows, we will need to organize our code so
that it is easy to read when we need to maintain it. An application can be hundreds of
thousands or millions of lines of code long, so having it all in a single file is impossible.
We will need to divide the code into multiple files, but how will we do this? And even if
we put the code into separate files, then we'll have lots of files, so we will need to organize
them into folders. How can we do this so that the compiler or interpreter can find them?
How will we know where to look when we need to edit a part of the application? In this
chapter, we will discuss this and learn about some patterns that we can use.

64 Software Projects and How We Organize Our Code

The following topics will be covered in this chapter:

• Understanding code modules

• The concept of a code project

• Working with package managers to share code

• Delving into a namespace

• Using namespaces to avoid naming conflicts

Code modules
If programs are used, they are also updated, and if you are the developer of a program, this
means that you will need to edit the source code in order to add features and fix errors. If
your code is not well organized, it will be hard to read and maintain because you will need
much more time to find where to insert your new code or where that nasty error might be.

One measure to make your code easier to handle is to distribute it into several logical
blocks. But how do we decide what will go into such a block? There are no fixed rules for
how this is done, but the language you use might give you some hints, depending on how
it wants you to structure the code. In the end, it is up to you to make the final decision.

The code we write is logically connected, so to be able to do something, we often need
to do a couple of other things first. It is as if you wake up in the morning and, while still
in bed, you remember that there is nothing at home to make breakfast with, so first, you
need to go shopping. But before you can do that, you need to do several other things, such
as get out of bed and get dressed. These tasks are done to enable you to go shopping. In a
way, you can say that these things are related and, by that logic, belong together. You could
also see this differently and say that you want breakfast, but to be able to get it, you need to
get out of bed, get dressed, go shopping, and finally prepare the breakfast.

In the same way, you will have sections of your code that logically belong together, where
some things are done to enable you to do other things. We need to keep this in mind when
deciding on how to split the code into some logical blocks.

There can be other reasons, other than readability, for having code separated from other
parts of the program. You might have developed this smart thing that you want to reuse in
other programs or even distribute it to others so they can also use it. To be able to do that,
the code that defines this smart thing must be separate from the rest of the program. This
means that it cannot be tightly entangled with other parts of the code. If it is, it will be
hard to reuse this section of your program.

Code modules 65

Let's look at an example. Imagine you are writing an application that goes online and
gathers data from several different websites and then analyzes this data. This could be
stock market values or temperature readings from several weather services. If we were to
create this program, we would need to define the websites that our program will visit, go
to each of them, download and store each page, and go through all the stored pages to
extract the data we need.

Overall, we know what we need to do, and in what order we need to do things. We also
know that the result will be that we have gathered the data we need so that we can start to
analyze it. This is good, as we can think of these things as separate tasks that should be as
independent of each other as possible. Why is it so important that they are independent?
Let's explore the development process of this application further to understand this.

If we start with the first task, how do we define what websites to visit? Shall we ask the user
of the application to provide us with the addresses by asking them to write them down
in the user interface, or should we have them in a file that we can read from? Both work,
but what we don't want to do is store the addresses in the actual code, even if it would be
possible to do so. The reason for this is that we want to enable the users of our application
to define what sites they visit. We can't ask them to change the code of the program, as we
can't assume that all our users are programmers. However, we can give them a text file that
they can edit and save, and we can then read this file to get their input. Another reason
is that we want to be flexible. Today, reading the addresses might be the best option, but
in the future, we might discover another way to get the addresses into our application.
We don't want to hardwire a solution into our program, but instead make the program as
independent as possible from the source that provides us with this data.

The next thing we will need to do is go to each of the sites that we defined in the previous
step and download that page. Now, let's assume that we have written the code that can do
this. We want to keep it independent of the previous step; that is, this part of the program
should not care about how the addresses to the sites came into the application. It should
be given an address that downloads that page and returns that page data. That is all. It
does not know how the address to this page came and knows nothing about what happens
to the page data when it completes its task. In that way, a part of the code can be reused
in other projects, which might receive its addresses in other ways and do something
completely different from the downloaded page.

66 Software Projects and How We Organize Our Code

For the remaining tasks, that is, storing the downloaded pages and processing the data
within each page, we strive to do the same thing: construct them as independent parts of
the code. The following diagram shows this concept:

Figure 4.1 – An application that uses several independent blocks of code to fulfill its task

We can now say that we have independent code modules. The term module will have a
slightly different meaning, depending on what language we are using. However, all of
them will agree that it is a section of code that is independent, though how it is handled
will differ. Some languages say that each module will go into a separate file, or multiple
files if it is a large and more complex module. Others will have ways to define several
modules within one single file. In some circumstances, the term module will hardly ever
be used, even if the concept of independent sections of code exist.

Working with software projects 67

One benefit of treating code as independent modules is, as we already stated, to be able to
reuse the module in other applications. Another reason to do this is that it will be easier
for us to change or replace a module. If our code sections are intertwined and depend
heavily on each other, changing parts of the code will be harder as we need to make these
changes at multiple locations throughout the code, and we need to make sure that we have
found all occurrences where we need to make changes.

When we have broken up our code into these smaller modules, we need to put everything
together into what will be our final application. To do this, we will need to store the
modules in a project.

Working with software projects
The term project can be used in two different ways when talking about
software development:

• A collaborative enterprise used to develop the actual program – in other words, as a
group of people working together. For that, we need a project plan, a project leader,
and so on.

• A container for all the files that make up the program we develop.

It is the latter meaning – a container for all the files that make up a program – that we will
discuss here as the former is about project management and not software development.

When our code is broken up into well-defined modules – most likely in the form of
several files – we need a way to let the compiler or interpreter find all the files so that they
can be assembled into the executable machine code.

Creating the correct structure for the project is usually done by tools that programmers
use to develop software. These tools come in many categories, but the most advanced form
is called an Integrated Development Environment (IDE). The central part of an IDE is
the editor that's used to write the code. It will also assist us with creating software projects.
A programming language defines how a project shall be organized. This can, for example,
be in a form where the different files shall be in relation to each other. Some languages will
do this with the help of things called packages.

68 Software Projects and How We Organize Our Code

Working with packages to share code
In software developer culture, sharing code for free is very natural. This makes the
industry unique as programmers share and use each other's code all the time. Using
someone else's solutions to a problem is as natural as sharing my good ideas and code. It
is usually wise to reuse the work of others as the code is often well developed, well tested,
and well maintained. In software development, the term open source is well known. It
means that someone has an idea for an application, writes the code for it, and then shares
it online. Others are then encouraged to help with the development of this project. Several
programmers will join in, and together they keep the project going. Everyone interested
can then use this code free of charge.

The code that's developed in such a project is often in the form of one or several modules.
If you want to use such a module, you must find it, and then you need to download it. The
question is, how we can find it, download it, and make sure it is put in a location so that
our application can find it?

Luckily, there is a solution to this: package managers.

Package managers
A package manager is a piece of software that will help us find, download, and install
code. Most languages will have at least one package manager that can help us with this.
It works by storing the code modules, now referred to as packages, in a central location.
This central storage is called a repository, or just repo. This means that when you write
a program, you can visit the package manager's website to search for any packages that
might be useful in your project.

Here is a list of package managers for some popular languages:

Table 4.1

Working with packages to share code 69

Let's look at the project example where we downloaded web pages. You decide that the
coding part of downloading a page feels a bit too hard to write yourself, so instead, you
search the package manager site for your language, find a package that does what you
want, and then download a web page, when given an address.

You can now use the package manager application to download and install this package
and then call the functionality in that package from your code.

Let's say we are using Python. Even if we know that we could go to the PyPI website, we
might not be sure what to search for. Instead, we could do a Google search for something
such as Python download web page, and we will find several suggestions for how to
do it. We are likely to stumble upon several suggestions to use something called requests.

If we decide that we want to try the requests package and see if it is useful for us, we
can go to the pypi.org website and search for requests. We will then see a page like this:

Figure 4.2 – The project page for requests at pypi.org

If we scroll down on this page, we will find installation instructions and even an example
of how it can be used. There is also a link to the project website for this project where we
can find documentation and more examples.

The installation instructions might look something like this:

pip install requests

70 Software Projects and How We Organize Our Code

Here, pip is the package manager. When installing the Python programming language,
the package manager, pip, will also be installed. We can open a Command Prompt
(if we are using Windows) or a Terminal window (if we are using Mac or Linux) and run
this command.

The package manager will then go to its central repository online and download the
package that was asked for, which is requests in our case. If this package is using
other packages, we don't need to download them ourselves. The package manager will
take care of this, and everything we need to be able to use this package will be downloaded
and installed.

Now that we can download the package, we will soon be dealing with another problem.
We must make sure that, when naming things in our code, all the names are unique. If
not, the program will not run. This can be tricky, especially when using packages that
others have written. How do we know that the names we're using are not already being
used? The solution is in namespaces.

Avoiding conflicts using namespaces
When writing code, you will constantly name things. The problem is, what if you
give something a name that is already being used? We now know that the code for an
application can consist of thousands of lines of code divided into hundreds of files. How
can you make sure that the names you give something are not already taken? We also
learned that we can install packages with code that others have written. How can we make
sure that they have not given their packages names that we have already used? Or how can
we make sure that a package we install is not using names that another package we already
installed is using?

As you can see, handling names can be tricky. Let's look at an example. In Chapter 8,
Understanding Functions, we will discuss what a function is and how it works. For this
example, all we need to know about functions is that they have a name and consist of
several lines of code. We use the function name to call it, which will make the code
inside it run.

In this example, we are constructing a calculator app. First, let's have a look at what the
application might look like:

Avoiding conflicts using namespaces 71

Figure 4.3 – Our calculator application

When the user clicks on the square root button, (√) , we have to calculate the square root
of the number currently in the display. This means that we need to connect some code
with the event that occurs when this button is clicked. This code needs to perform the
following steps:

1. It needs to get the value currently in the display.

2. Then, it needs to calculate the square root of that value.

3. Finally, it needs to put the result in the display of the calculator.

These instructions will be carried out when the square root button is pressed, and we stick
them in a function. Now, this function needs a name. The name squareroot is rather long,
so you might decide to shorten it to sqrt.

72 Software Projects and How We Organize Our Code

When you reach the point where you want to calculate the square root, you will most
likely use a built-in function that will help us with this. Most languages will have such a
function, and often, its name will be sqrt. This is a problem, as we gave our function
the same name as a function that comes shipped with the language. We could, of course,
rename our function to something else. Don't despair – namespaces will solve this
problem for us.

Delving into namespaces
To understand what a namespace is, we can think of files and folders on our computer.
Assume that you are going to have two parties soon: one summer party and a birthday
party. You write two invitations to the parties and try to store them in a folder on
your computer.

You have named both files Party Invitation, but you can't have two files with the
same name in the same folder:

Figure 4.4 – Two files in the same folder can't have the same name

Instead of renaming one file, you can create two folders and store the files in one folder
each. This way, the files can still have the name Party Invitation, and there is
no longer a conflict between the names as they are in separate folders, as shown in the
following diagram:

Avoiding conflicts using namespaces 73

Figure 4.5 – Storing files in separate folders to avoid naming conflicts

To summarize this, on a computer, we can have multiple files with the same name, but
within a folder, the filenames must be unique.

Many programming languages use a similar technique, called namespaces. Namespaces
let us reuse the same name multiple times within an application, but in a namespace, all
the names must be unique. The namespace acts like the folders on the computer, and the
things we are naming are like the files.

How namespaces are implemented will differ between languages. Let's examine how some
of the more popular languages have implemented them.

Namespaces in JavaScript
In JavaScript, when we define things such as functions, we can create a namespace by
surrounding the part we want to belong to the namespace with curly brackets, {}.

If we represent our sqrt function in a namespace called myCalc, it will look something
like this:

var myCalc = {

 sqrt: function() {

 }

}

On the first line, we define a namespace called myCalc. We use an open bracket to
indicate the beginning of the namespace; the closing bracket on the last line marks the
end of the namespace.

74 Software Projects and How We Organize Our Code

Within the brackets, we find a function named sqrt. The function also uses open and
close brackets to indicate where it starts and ends. In this example, the function is empty,
so there is nothing there.

We can now access both our own function and the built-in function, even if both are
named sqrt. It could look something like this:

myCalc.sqrt();

Math.sqrt(9);

The first line calls the sqrt function within the myCalc namespace. The second line calls
the built-in sqrt function. It is in a namespace called Math. That function will accept a
value (the value we want to take the square root of), and here, we pass the value 9.

Namespaces in Python
In Python, namespaces are defined by individual modules. A module in Python is a file, so
everything in a file (that is, a Python module) is in the same namespace.

We can now create a file called myCalc.py. The.py extension indicates that this file
contains Python code. It is in this file where we add our sqrt function:

Figure 4.6 – Project structure in Python

Avoiding conflicts using namespaces 75

Look at the preceding diagram. The main_application.py file is our main program
that uses the code inside myCalc.py.

Inside the main_application.py file, we can now access both the built-in sqrt
function and the sqrt function we created, as follows:

import math

import myCalc

myCalc.sqrt()

math.sqrt(9)

From the preceding code, we can see the following:

1. In the first line, we say that we want to be able to use things from the math module.
Remember that Python uses the concept that a module is a namespace, so math is
both a module and a namespace.

2. The second line does the same for our myCalc module, which contains our
sqrt function.

3. On line three, we call the sqrt function in the myCalc module.

4. On the last line, we call the sqrt function in the math module and pass 9 to it.

Namespaces in C++
In C++, we have a keyword. A keyword is a word that is reserved by the language and has
a special meaning. Refer to Chapter 2, Introduction to Programming Languages, for a more
thorough explanation of keywords. Here, we have a keyword called namespace that we
can use to define a namespace. It could look something like this:

namespace myCalc{

 void sqrt() {

 }

}

Here, we first create a namespace called myCalc, containing a function called sqrt.
Note that just as in the JavaScript example, the function has an opening and a closing
bracket, indicating the start and the end of the function, and just as in that example, the
function is empty.

76 Software Projects and How We Organize Our Code

C++ then uses a special syntax to access something within a namespace. First, we state
what namespace we want to use, followed by two colons, ::, and then what it is within
this namespace we want to use. This can look like this:

myCalc::sqrt();

std::sqrt(9);

The first line calls the sqrt function in the namespace we defined previously.

The second line calls the sqrt function in the standard namespace, called std in C++,
passing the value c to it.

Namespaces in other languages
These were just a few examples of how namespaces are used in some languages. Other
languages have their own variants of this. For example, in Java, namespaces are closely
connected to how packages are used. In C#, namespaces are implemented almost in the
same way as they are in C++, but not accessed with a double colon. Instead, they are
accessed with a dot, ..

Now that we know a little bit about namespaces, let's return to our calculator application.

Using namespaces in our calculator application
We are at the point where we want to name a sqrt function, and we have realized that
the language we use also has a function called sqrt. This built-in sqrt function will
calculate the square root for any number we pass to it. We don't want to rename our
function; instead, we want to solve the naming conflict with the use of namespaces.

The first thing we need to do is understand how namespaces are used in the current
language. As we saw previously, the way we define and use namespaces will differ
between languages.

By adding our sqrt function inside its namespace, we don't need to worry about a
naming conflict with the built-in sqrt function or any other function that we might get
when importing packages using a package manager. Everything is defined within different
namespaces and we will need to state in what namespace the function we want is located.

We already know what our sqrt function needs to do: get the value from the display,
calculate the square root of that value, and then put the resulting value back into the display.

We will add our sqrt function to a namespace to avoid a naming conflict with the
built-in version. We also want to use the built-in sqrt function from within our function.
We can do that by specifying what namespace the built-in sqrt resides in.

Summary 77

Summary
In this chapter, the focus has been on organizing our code and how to name things so that
we can avoid naming conflicts.

A book is divided into chapters to make it easier to read and navigate. In the same way,
we want our code to be easy to read and understand. We don't have the concept of
chapters in programming, but we do have modules. A module is a part of our application
where the code is logically related; that is, one way or the other, it works with the code.
A module is often defined as a separate code file.

In larger projects, we can end up with a large number of modules. Due to this, we need a
way to organize them so that the compiler or interpreter can locate the correct file when
all the pieces needs to be put together. We do this with the help of a project. We can see
the project as a form of container for all our modules, but also for other resources that our
application might use, such as images, configuration files, and so on.

Writing programs is about being efficient and focusing our time and attention on what is
important to make the program do what it is intended to do. We will often face situations
where we need to solve a problem that we know others have solved before us. It is therefore
not considered a bad thing to reuse the work of others in our application. The software
programming community/industry is very open and helpful, and programmers share and
reuse code from others all the time. By doing this, we can focus our efforts on what makes
our application unique and not spend time reinventing the wheel again and again.

One way we can make use of code that others have written is by using tools that often
come shipped with the language, called package managers. These tools will store code that
we can reuse in a central location online. They will also help us find what we need and
download install, and configure it for us.

However, as our applications grow and we use code that's been written by others, we will
need a way to avoid naming conflicts. If I use a name for something that has already been
used elsewhere in my application, the language must have a way to distinguish between
the two. This is done with something called namespaces. A name that we give something
must only be unique within a namespace. If we divide our applications into several
namespaces, we will reduce the risk of name clashes dramatically.

Now, we are finally ready to dig into the process of writing programs. In the next chapter, we
will look at the most fundamental building blocks of any program in terms of sequences.

In this section, we will look at all the key things that any mainstream programming
language consists of, including coverage of how they work and when to use them.

This section has the following chapters:

• Chapter 5, Sequence – The Basic Building Block of a Computer Program

• Chapter 6, Working with Data – Variables

• Chapter 7, Program Control Structures

• Chapter 8, Understanding Functions

• Chapter 9, When Things Go Wrong – Bugs and Exceptions

• Chapter 10, Programming Paradigms

• Chapter 11, Programming Tools and Methodologies

Section 2:
Constructs of a

Programming
Language

5
Sequence – The Basic

Building Block of a
Computer Program

When it comes to programming, the most fundamental concept is the sequence. It
indicates what we do and when we do it, one after another. However, when we take a
closer look, we find that there is more to this, and, in this chapter, we will learn what it is.

We will also use the concept of a sequence to decide what steps a program will need to
perform to accomplish its overall task. Since it can be tough to have both an overview
of everything that needs to be done and, at the same time, look at all the details, we will
require a concept that can assist us. Thinking of the sequence in which the program needs
to do things in, for instance, could be such a tool.

When learning how to program, one problem many people face is how to transform
an idea to go. Where should you start? In this chapter, we will learn that we can use the
concept of sequential thinking to break down an idea into smaller tasks that we then can
deal with. We will also see that we can apply the same concept to the code that we write to
ensure that we do things in the right order.

82 Sequence – The Basic Building Block of a Computer Program

In this chapter, you will look at the following topics:

• Understanding the importance of sequences

• What a statement is and how it is defined

• How different statements are separated

• How to format the code to make it more readable

• Different kinds of comments and ways to document our code

The importance of sequences
One day, when you come home, you start craving a pie, so you decide to make one. The
reason you will bake a pie is not that you wish to cook, but to satisfy your desire for pie.
However, to be able to get the pie, you need to perform several steps. First, you need a
recipe, and then you need to get all of the ingredients. When you acquire them, you will
follow each step in the recipe. Then, finally, after the pie has been in the oven and cooled
down a bit, you can enjoy your well-deserved treat.

You just performed a few tasks in sequence. Some of them need to be completed in the
right order, while others can be done in any order (or, at least, in a more relaxed order).
You must turn on the oven before you can bake the pie, but it is not essential that you
bring out the flour before the butter.

Programming is like baking a pie. We will have goals, such as we want pie, and to be able
to achieve that goal, we will need to do several things: in some instances, the order is
essential, while others are less dependent on the order.

Programming is all about problem-solving and the art of breaking things down into
smaller steps. This will be done in iterations where you first have an overall solution and
then break this solution down into smaller and smaller steps until you are on a level where
you understand each step that needs to be taken.

This is one of the more difficult skills to master when you begin to learn programming.
As with all new skills, it takes lots of practice before you will feel comfortable doing this.
Some tricks can make it easier for you to acquire this skill. The essential ability you require
is an overview of the full problem that you are trying to solve and, at the same time, a
focus on details of one or more subproblems that need to be resolved. This means that you
will need to zoom in and out on the details while keeping an overall view of the whole
problem. You can practice this without doing any programming. Playing logical puzzle
games such as Sudoku will train your brain to keep an eye on the overall game and, at
the same time, focus on individual parts of the game such as what numbers can go into a
certain cell.

The importance of sequences 83

Let's take a look at how we can go from a problem to a solution on a sequential level. First,
we need to define the problem.

Defining the problem
You often arrive home after dark, and you always forget to turn on the outdoor lighting
before you leave home. It is so dark that you are afraid of stumbling on your way to the
door, and finding the keyhole is always a gamble.

On the other hand, you don't want the light to be on all day. You don't like the idea
of those automatic lights that react to motion either, as it will be activated when the
neighbor's cat passes by. There must be a better solution.

The solution to the problem
One solution would be if you could use your smartphone's GPS. If you had a program
running on it that continually monitors your position, then when you come into a given
radius from your home, it could somehow activate the lights. You soon realize that your
solution will need to be a two-part application. One part runs on your phone, and the
other part runs on a computer in your home. The program running on a computer in your
house would get a signal from your mobile app that you now are close to home. It could
then check with an online service to see what time the sun sets at your home's location
during this time of year. If it is past sunset, the program can activate the lights.

What we have done so far is to start to define a solution. Now we must break down this
solution further.

Solution breakdown
We now have an overview of what we want, and, at the same time, we have zoomed in
on a couple of details. We have decided that we would like to use the phone's GPS. We
don't know how this can be done yet, but that is not important at this stage. We know that
other applications can use GPS. This means that we know it is possible to do it and even if
we, at the moment, have no idea how this is done, we can learn it later on in the process.
We have also decided that this will be a two-part application. The part on the phone will,
aside from monitoring the GPS, also need a way to contact the other part of our solution,
which is the application running on a computer in your home. Again, we don't know how
this will be done, but we know it can be done, and that is good enough for now. We also
understand that we need a way to detect that we are coming from outside the defined
range and then entering it. It is only then that the lights should be turned on. If we don't
do this, the lights would always be on when the phone is within a stipulated range and we
don't want that.

84 Sequence – The Basic Building Block of a Computer Program

The home application will need to wait for a signal from the mobile app and then contact
a service that can tell us about the time the sun will set. On our to-do list, we add that we
need to find such a service. Again, we don't need to bother about how this can be done.
We will also find a way for our home application to control the lights. We will most likely
require some hardware for this step, but that will be a problem that we can deal with later.

What we now have is a sequential list of steps that we need to take. That list looks
something like this.

Here is a list of steps for the mobile application:

• Is the phone within the predefined range?

• If yes, was it previously outside the range, that is, have we just entered this range?
Let us check:

Figure 5.1: The phone enters the predefined region

• If yes, send a signal to the home application:

Figure 5.2: The phone application contacts the application running on the home computer

The importance of sequences 85

Here is a list of steps for the home application:

1. Wait for a signal from the mobile app.

2. When a signal is received, check the current time:

Figure 5.3: The application that is running on the home computer checks the local time

3. Check the online service for the local sunset time:

Figure 5.4: The application that is running on the home computer contacts
an online service to get the local sunset time

86 Sequence – The Basic Building Block of a Computer Program

4. If the time is after sunset, turn on lights:

Figure 5.5: If the time is after sunset, the home application turns on the light

This is still a slightly rough breakdown of the sequential steps that we need to take. But
now that we have them, we can zoom in on each of them and think about the things we
need to do for each of the preceding steps.

A detailed breakdown for the phone application
Let's take each of the steps, one by one, and closely examine what we need to do for each
of them.

So, how can we know whether the phone is within the predefined range? To understand
this, we must first do some research. The first thing we need to understand is how the
phone GPS knows where it is. Searching online will soon reveal that a GPS works with
two coordinates: longitude and latitude. These two coordinates will pinpoint any location
on the earth. This means that when we request the current location from the GPS, we will
be given these coordinates.

When we have these coordinates, we need to check how far away we are from home. To do
this, we will need to know where home is, so the application on the phone needs to store
this location somehow, and it will also be in the form of a longitude and a latitude.

Calculating the distance between two geocoordinates is not a trivial task, but we don't
need to worry as this is something that has been done many times before. In addition
to this, no matter what language we are using, a simple Google search will give us many
solutions for how this can be done. We might even be able to use the language package
manager (refer to the Package managers section in Chapter 4, Software Projects and How
We Organize Our Code, to learn what a packet manager is and how it works) to find a
package that can do this calculation.

The importance of sequences 87

No matter what solution we use, we can assume that we will use the two coordinate pairs
that we have, the phone's location, and our home location, and what we get back is a
distance between them. We also need to decide how close to home we need to be for the
lights to activate. This can be any distance.

Next, we have to check whether we have come from outside the predefined range. We
need a way to tell whether we have entered the predefined range or whether we already
were within the range. We could do this by keeping track of what the distance to home
was before we check the current position. If we were outside the range and are now inside
it, then we know that we are close enough to home to send the signal to turn on the lights.

So, now we need to send a signal to the home application. When we have entered the
range, we need a way for the phone application to contact the home computer. This can
be done in several ways, and there is no need for us to decide what technique to use at
this point.

We can now summarize the sequence for the phone application.

Phone application sequence
Now we have the logic for the phone application in place. We also know what the
sequence will need to look like. It will look something like this:

1. Get the current position.

2. Calculate the distance from home.

3. Is the distance within the range that defines when we are close enough to turn on
the lights?

4. Was our previous distance, that is, the distance of the last time we checked our
position, outside the given range?

5. If the answer to the questions in step 3 and step 4 are both yes, tell the home
computer to turn on the light. If it is no, we can go back to step 1.

6. Store the distance from home as our old distance.

7. Start over from step 1.

88 Sequence – The Basic Building Block of a Computer Program

These steps are illustrated here:

Figure 5.6: Sequence for the phone application

These seven steps will be repeated over and over. We will need to consider what will
happen when we perform the first iteration as we will not have a value for the old distance.
We can give this an initial default value that is well outside the range, for example, a
negative number.

We now have a well-defined sequence of steps, and we have not written a line of code yet.
This is good because it will help us when we start to write the code as we can zoom in and
focus on each of these steps without losing track of the overview.

We can now turn our attention to the home application.

A detailed breakdown of the home application
At first, the home application will have absolutely nothing to do as it will just sit and wait
for a signal from the phone app. However, when it gets that signal, it will wake up and
start to do its work.

When the home application gets the message from the phone, the first thing it needs to do
is one of two things. Either it can check the local time, or it can contact the sunset service
to get the current sunset time. The order of these two operations is not essential as we
need both, so we can compare them.

When we have the local time and the sunset time, we need to compare them to see
whether it is after dark. If it is, all the conditions for turning on the light are met, and we
get a signal that the phone is within range and that it is dark outside.

The importance of sequences 89

Now we need to turn on the outside light. We still need to figure out how this can be done.
One way to do this is to use LED lamps that can be controlled wirelessly. These can often
be interacted with from an application such as the one we are about to create. We should
do some research before buying the lights since we need to select a brand that can be
controlled by our application.

Home application sequence
The sequence for the home application is as follows:

1. Wait for a signal from the phone app.

2. When the signal is received, get the local time.

3. Contact the sunset service to get the local sunset time.

4. Compare the current time with the sunset time.

5. If it is after sunset, turn on the light.

6. Go back to step 1.

Step 2 and step 3 can be performed in any order. If the current time is before the sunset
time, the application will skip turning on the light and go back to step 1. The sequence is
depicted here:

Figure 5.7: Sequence for the home application

We now have an excellent starting point regarding how to build this application. Even if
several things are still unclear to us, such as how the phone application shall contact the
home application, what service the home application will use to check the sunset time and
how it will get in touch with it, and how the home application will turn on the light, the
sequence that the different things must be performed in, is now clear to us.

90 Sequence – The Basic Building Block of a Computer Program

At this point, we have a good idea of what our application needs to do, but we still have a
number of things we need to do. First of all, we need to learn the necessary things to create
this application. How can we get the position from the phone GPS? When learning things
like this, it is usually a good idea to create a toy project where you can just try to get the
coordinates and print them to the screen. When you have figured that out, you can then
take this solution into your real project. Doing it in a separate project is smart because you
can focus on learning one particular thing at a time. Another example is that we need to
implement a way to calculate the distance between two geocoordinates. Apply the same
principle of doing it in a separate application when testing different solutions. When you
get a result, you should find an online service that does this calculation so that you can
verify your results. In programming, you never stop learning new things and technologies.
There are always things you have never done before. But don't let that stop you.

This is one aspect of sequencing in a computer program. Another point is what happens
on a smaller level. In the code that we write, every step we perform needs to be broken
down into something known as a statement, and those statements will be performed
in sequence.

Understanding statements
In many programming languages, the sequence of code that we write is made up of what
are called statements. A statement expresses some action to be carried out and is made up
of several internal components. These are called expressions.

Expressions
Statements are made up of expressions, and expressions are made up of even smaller parts.
Let's refer to an example:

5 + 4

This is an expression made up of three parts. Here, we are operating using the addition
operator, +. On both sides of the operator, we have the operands in the form of two
constant values, 5 and 4.

A statement can be made up of more than one expression. Take a look at the
following code:

result = 5 + 4

The importance of sequences 91

Here, we have the same expression as we had earlier, 5 + 4, but now with a new
expression to the left:

Figure 5.8: A statement with two expressions, one addition and one assignment

Again, we have two operands, the result of the addition, 9, to the right, and to the left, we
have something called a variable, named result. A variable is a way for us to store data
in memory using a name we define:

Figure 5.9: When the result of the addition is calculated the assignment expression can be performed

We will talk more about variables in Chapter 6, Working with Data – Variables. We also
introduced a second operator, =. This operator is called the assignment operator. It takes
what is on the right and stores it in what is on the left:

Figure 5.10: The variable called result can be visualized as a box;
the assignment stores a value in that box

To be able to complete this statement, the expressions must be dealt with in the correct
order. This is called the order of operations.

Order of operations
To store the result of the addition in the variable called result, we must first perform the
expression to the right; that is the addition, as follows:

result = 5 + 4

 9

When the expression to the right is completed, we can imagine that our statement will
look like this:

result = 9

Now, this final expression can be executed. The value of 9 is assigned (it is stored) in the
result variable.

92 Sequence – The Basic Building Block of a Computer Program

A statement can be made up of more expressions. Consider the following:

result = 5 + 4 * 2

The first thing we must understand here is the order of operations, that is, in which order
the addition and the multiplication is performed. If we do the addition first, we will do 5 +
4, which is 9, and then 9 times 2, which is 18.

If we instead do the multiplication first, we would get 4 times 2, which is 8, and then 5 +
8, which is 13. So, the order is important. Every programming language has a well-defined
order of operations, which is in what different order the operations must be performed.

In this example, the order will be the same as in mathematics; multiplication will be
performed before addition:

result = 5 + 4 * 2

 8

result = 5 + 8

 13

result = 13

If we want to override the built-in order of operations, we can use parentheses like this:

result = (5 + 4) * 2

Now the addition is performed first because it is within parentheses, so the variable result
will now store the value of 18 (9 times 2).

Some statements are made up of more than one single line. These are often called
compound statements. Let's explore what those are next.

Compound statements
A compound statement is a statement that spans several lines. These compound
statements are made up of one or more normal one-line statements. They can also
consist of other compound statements, as we will learn later on. For example, in our
application that turns on the light, we have some conditions that must be met before we
do something. One condition is that we only turn on the light if the current time is after
sunset. The logic can be visualized in a flowchart:

The importance of sequences 93

Figure 5.11. Flowchart for the home application

As you can see, the part where we turn on the light is only executed if it is after sunset. So,
for that statement to be performed, we have a condition that must be met. That condition
is a statement, but that statement includes the statement that turns on the light.

In code, it can look something like this:

wait_for_phone_signal()

current_time = get_current_time()

sunset_time = get_sunset_time()

if current_time > sunset_time then

 turn_on_light()

end_if

94 Sequence – The Basic Building Block of a Computer Program

The first line of the preceding code contains one single statement. It is a function call.
We will discuss functions in more detail in Chapter 8, Understanding Functions. We can
see that it is a function because it ends with parentheses. For now, we can regard these
parentheses as an indication that something is a function. Calling a function means
that, somewhere, there are several lines of code that have been given a name. Calling the
function means that we will jump to that location and execute those lines. In this example,
the content of the function is not visible. This function will halt the program until a signal
comes in from the phone.

The statement on the second line is made up of one operation, with one operator and
two operands. We recognize the equals sign as the assignment operator. That means that
whatever is to the right will be assigned (remember that we can see an assignment because
the thing to the right will be stored in the item to the left) to what's on the left-hand side.
To the left, we have a variable that can contain a value. It has the name current_time.
What we have to the right is another function call. This function will grab the current time
and return it. When this statement has been executed, the present time will be stored in
the current_time variable.

Line 3 is like line 2. This statement is also made up of one operator and two operands.
The operand on the right is again a function call. This is the function that will contact
the sunset service online and return the sunset time for our location. To the left, we have
a sunset_time variable and we assign the time we get back from the function to this
variable. When this statement has been executed, we have the sunset time stored in the
sunset_time variable.

Line 4 starts with an if. This is a special kind of statement, spanning over several lines.
This one covers lines 4 to 6. It contains another statement, the one on line 5. Line 4 is a
condition. It checks whether the value in the current_time variable is greater than
the value in the sunset_time variable. This can either be true or false. If it is greater,
that is, the statement is true, then the code inside this compound statement is executed.
If it is false, the value in current_time is not greater than the value in sunset_time;
the code inside the statement will not be executed. In this case, the end of the compound
statement is the last line: end_if. It indicates that everything between the line starting
with if and the end_if line is a part of that statement. It should be noted that there is a
flaw in the logic as this condition will not work if the current time is after midnight, but
let's ignore that for now.

The statement on line 5 that turns on the light is yet again a call to a function. Also, note
that this line starts with some spaces. This is called an indentation and is something we
will discuss in more detail later in this chapter.

The importance of sequences 95

We now know that statements are made up of expressions or other statements. To be able
to figure out where a statement ends and another begins, a language will define how they
are separated. How this is done will be a part of the language syntax. Let's explore how we
can do that next.

Separating statements
A programming language will separate statements by defining where a statement ends. If
the language can figure out where one statement ends, it also knows that what comes after
it must be the beginning of another statement.

Languages have different ways to define this. If we compare how different languages
terminate statements, we will see that we have three main ways for it to be done. Many
languages will terminate a statement by inserting a new line. This means that, in general,
every line is a single statement if it is not a compound statement, as it will need to be
handled uniquely.

Another popular way to terminate statements is by using a semicolon, ;. For languages
that use this technique, we can have several statements on a single line. The language
knows that a statement ends as soon as it sees a semicolon.

A third variant is to use a period, ., instead of a semicolon. Apart from that, it works the
same way as when a semicolon is used so that we can have more than one statement on a
single line.

A few languages will use other techniques, such as using a colon instead of a semicolon.

Some languages that terminate statements with a new line include the following:

• BASIC

• Fortran

• Python

• Ruby

• Visual Basic

Some languages that end statements with a semicolon include the following:

• C

• C++

• C#

• Go (even if the compiler automatically inserts them)

96 Sequence – The Basic Building Block of a Computer Program

• Java

• JavaScript

• Kotlin

• Pascal

• PHP

• Rust

Some languages that use other symbols to terminate statements include the following:

• ABAP (period)

• COBOL (whitespace, such as a space, tab, or newline; sometimes, a period)

• Erlang (period, comma, and semicolon)

• Lua (whitespace such as a space, tab, or newline)

• Prolog (comma, semicolon, and period)

For compound statements, we will need a way to define where they begin and where they
end. As a compound statement is made up of one or more statements, many languages
will use another method to terminate them.

Here, we will find three main techniques that languages use. One is to use curly brackets,
{}, to indicate where a compound statement begins and ends. Everything that is placed
between the brackets is considered to be part of the compound statement.

In such a language, the compound if statement that we saw in the preceding code should
look like this:

if current_time > sunset_time {

 turn_on_light()

}

As you can see, there is an open bracket at the end of the first line and a closing bracket on
the last line.

Examples of languages that use this technique include the following:

• C

• C++

• C#

The importance of sequences 97

• Go

• Java

• JavaScript

• PHP

Another way to do this is to use end statements. Different languages will have slight
variations on this.

Here are some examples.

In the Ada programming language, an if statement looks like this:

if current_time > sunset_time then

 turn_on_light();

end if

The same statement in Modula-2 is just slightly different:

IF current_time > sunset_time THEN

 turn_on_light();

END;

Ruby has another variant that is along the same lines:

if current_time > sunset_time

 turn_on_light()

end

The last variant is the language that will use indentation to accomplish the same thing.
Remember that indentation is when we use a space to push in the code.

If you look at all of the preceding examples, the line containing turn_on_light is
always indented. In those languages, it is only because it makes the code easier to read
for us as humans. However, some languages will use this to define where a compound
statement begins and ends.

One such language is Python. The code example for Python should look something
like this:

if current_time > sunset_time:

 turn_on_light()

98 Sequence – The Basic Building Block of a Computer Program

Here, everything that is indented is part of the compound statement. To indicate that
something that comes afterward is not part of the statement, it would be written on the
same level as the if statement, like so:

if current_time > sunset_time:

 turn_on_light()

result = 4 + 5

Here, the last line is not part of the compound statement as it is written without
any indentation.

As mentioned, an indentation can be used to make the code easier to read, while some
languages will use it for compound statement termination. Let's go on to discuss why
the readability of code is important and how we can use indentation and blank lines to
improve it.

Making the code readable by indenting and using
empty lines
Ever since we moved away from machine code, the motivation has been that we want
code that is easier to read and write for humans. We shall keep this in mind when we
are writing code, as code does not just consist of instructions to the computer, but also
something that needs to be maintained by either us or others.

As we have learned, one tool that we can use to make the intentions of the code clearer to
whoever reads it is indentation.

The indentation technique
Indentation is a technique that we use to show that certain code lines belong together in a
block. This is typically done for compound statements. Since a compound statement can
be constructed of other statements or other compound statements, indentation becomes
essential to be able to see what code block a statement belongs to:

Figure 5.12: Indented code will be a visual aid that indicates how compound statements are constructed

The importance of sequences 99

Even if the lines in the preceding diagram are just lines, we could make out the individual
components they represent. If we color them, as in figure 5.13, we can see that this
page is made up of four statements. The first line is a single statement, but then we
have the green lines: these are compound statements, starting at line 2. Again, the purple
lines are compound statements and, in the end, we have a single line that makes up a
one-line statement.

The dashed lines represent compound statements and are made up of single-line
statements and a compound statement, as indicated by the indentation. It is the same
thing with the dotted lines:

Figure 5.13: The dashed lines are a compound statement containing another compound statement; the
same is true for the dotted lines

As you can see, the indentation will carry lots of information to the reader if we know
how to interpret it. It is, therefore, crucial that we are careful to get the indentation right
when writing our code. In most languages, this information is only interesting to human
readers. The compiler or interpreter will ignore the indentation. But some languages,
such as Python, use indentation as their tool to define compound statements, making the
indentation mandatory and a part of the language's syntax.

Commonly, the text editor that a programmer uses to write the code will help with code
indentation, either by automatically indenting code within a compound statement or by
providing built-in commands that, when executed, will adequately format the code.

There is another formatting trick that we can use to make our code more readable to
humans. One such trick is the use of blank lines.

Blank lines
Blank lines separate the paragraphs in this book. The reason is apparent. Without them,
the text would be hard to read. These empty lines are not inserted at random. The text
within a paragraph is logically connected. We can indicate that the text changes focus by
creating a new paragraph, which is by inserting a blank line in the text.

100 Sequence – The Basic Building Block of a Computer Program

The same thing applies to code. Blank lines are inserted for human readers. It is used to
show the intent the programmer has. If three statements are somehow connected logically,
we can indicate this by adding a blank line after the last statement.

The following is some Python code. It is not important to know what this code does, but
look at the use of indentation and blank lines:

for n in range(1000,3001):

 str_num = str(n)

 split_str = list(str_num)

 all_even = True

 for x in split_str:

 if int(x) % 2 != 0:

 all_even = False

 if all_even:

 print(n, ",", end = "")

Here, we can see that all the code is within one single compound statement as all lines,
except the first, are indented. Further down, we can see other compound statements.
Every time the indentation level increases, a new compound statement begins, and when
it decreases, one ends.

There are also some blank lines. This indicates that there is a logical connection between
the lines preceding the empty line.

Let's take a look at lines 2 and 3 and how they are connected. In line 2, we are preparing
some data so that it will be in the right form for what we want to do on line 3. Here, we
can see the importance of the sequence. Line 3 will require a number in a particular
format. So, line 2 prepares the number so that it can be used on line 3.

When these two lines are completed, the program changes its focus slightly. Even if we
don't understand anything about what the code does, the information carried by the
indentation and the blank lines will give us clues that will make it easier to read the code.

Blanks lines are also something that compilers and interpreters will ignore, so they are
there for us humans. Just as it is vital to use paragraphs in a line of text correctly, we must
use blank lines in a way that makes sense and assist the reader of our code.

There is another tool that we also can use to make things easier to understand for a human
reading our code, and that is comments.

The importance of sequences 101

Making the code understandable using comments
Indentation and blank lines are not always enough to make the intent of the code clear.
In such cases, we can use comments. A comment is a line of normal text, inserted in
the code, which is only for humans. We use them to explain lines of code that are not
obviously understood at first glance.

As the compiler or interpreter ignores comments, we need a way to indicate that
something is a comment. We have two variants of comments; one that runs to the end
of the line, called a line comment, and one that spans multiple lines, often referred to as a
block comment. Let's understand each in turn, in the following sections.

Line comments
A line comment has some symbols indicating the beginning of the comment, and it
continues for the rest of that line. These can be inserted on a separate line or at the end
of a line with code that will execute.

As a part of the language syntax, the symbol used to indicate the beginning of these
comments is defined. Some are common, even if some languages will use more
obscure variants.

The most common symbol used by many languages is a double slash, //, which is two
slashes without any space between them. Even if this symbol is made up of two characters,
it is treated as a single symbol.

The languages that use this method for line comments include the following:

• C

• C++

• C#

• Go

• Java

• JavaScript

• Kotlin

• PHP

Another common symbol used by a number of languages is the hash symbol, #. Despite
being a different symbol, it is handled in the same way as the double slash.

102 Sequence – The Basic Building Block of a Computer Program

The hash symbol is used for line comments by languages such as the following:

• Perl

• Python

• Ruby

Some languages have other ways to indicate a comment. In BASIC, the abbreviation REM
(short for Remark) is used. Several BASIC versions have a variant as an option to REM
and that is a single apostrophe, '.

The A Programming Language (APL) language is known for its use of odd symbols, and
it uses a symbol that looks like this: ⍝.

Ada and Lua are two languages that use double hyphens, --, to indicate a line comment.

Haskell also uses this. Haskell also has another unique way to handle comments, called
Bird Style. If used, all lines with code begin with a greater than character, >. All other
lines are considered to be comments.

Pascal, and languages closely related to Pascal, such as Modula-2, use (* to indicate the
beginning of a comment and *) to mark the end.

Languages that are related to Lisp, such as Common Lisp and Clojure, use a semicolon, ;,
to indicate line comments.

Using line comments can look like this:

result = 4 + 5 //Adds 4 and 5 and stores the sum

The first part is the normal code that will be executed, but as soon as the compiler or
interpreter sees the comment symbol, //, it will ignore the rest of this line.

The same code in a language that uses the hash symbol for comments will look like this:

result = 4 + 5 # Adds 4 and 5 and stores the sum

These comments can also be on a separate line like this:

// Adds 4 and 5 and stores the sum

result = 4 + 5

The importance of sequences 103

Alternatively, the comments can also appear like this:

Adds 4 and 5 and stores the sum

result = 4 + 5

This separation will depend on the language.

Sometimes, we want a comment to span multiple lines. Instead of having a line comment
symbol at the start of every line in the comment, we can use block comments.

Block comments
Block comments have one symbol that indicates the beginning of the comment and
another symbol that marks the end.

Languages that use the double slash symbol for line comments will often use /* to
indicate the beginning of a block comment and */ to indicate the end. Languages that
use these symbols include the following, among others:

• C

• C++

• C#

• Go

• Java

• JavaScript

• PHP

Perl uses =begin to indicate the start of a block comment and =cut to mark the end.

Ruby has a similar concept, with =begin and =end marking the beginning and end,
respectively.

Python does not have a block comment but, instead, something called a docstring can
be used as a block comment. Docstrings both start and end with three single or three
double quotes: ''' or """. They end with the same three characters that were used at
the beginning. So, use three single quotes to end the comment if you used single quotes
at the beginning; otherwise, use three double quotes.

104 Sequence – The Basic Building Block of a Computer Program

In code, a block comment can look something like this if we use /* and */:

/* Program that receives a signal

 from a mobile phone, checks the local time,

 and sunset time and if it is after sunset

 turns on the outside light. */

wait_for_phone_signal()

current_time = get_time()

sunset_time = get_sunset_time()

if current_time > sunset_time then

 turn_on_light()

end_if

A programmer can also use several commonly used tags within comments to indicate
certain things.

Tags
Sometimes, a programmer wants to mark a section in the code using a tag so that it is easy
to find this location. These tags are informal, but some are commonly used:

• BUG: A known bug in the code that should be corrected.

• FIXME: Either a known bug or something else that must be corrected.

• HACK: Marking a section of code that is not structured or written optimally and
should be rewritten.

• TODO: This marks a location where something will be inserted later.

These tags are written in comments and are mainly used so that they can be found with
tools such as the Unix grep tool (a tool for searching in text files). Some programming
editors will even highlight some of these tags.

Comments can also be used to remove code.

The importance of sequences 105

Commenting out code
Sometimes, a programmer needs to remove a couple of lines of code to try something out
or to isolate a bug. Instead of deleting these lines, they can be commented out with either
a line comment or block comments. It is then easy to remove the comment symbol to
make the code active again.

This technique can also be used if we are rewriting a code section. In that case, it is a good
idea to have the old code as a reference when we are constructing the new code, so we
don't forget something we need to do. We can place the old code in a comment; however,
when we are done, we should remove the old commented out code as it will distract us
when reading the code.

The compiler or interpreter will ignore most comments, but not all. Some might have a
special directive meaning.

Directive comments
There are some examples where a comment can have a meaning for the language compiler
or interpreter.

Some languages, such as Python, can if we use it on a Unix system and use a symbol that
looks like a comment on the first line in a code file. This symbol is called a shebang and is
made up of the hash symbol followed by an exclamation mark, #!.

This is used as an instruction, not to other humans, but to the Python interpreter so that it
knows what version of Python should be used to interpret this program.

Python also has something called a magic comment, which identifies the character
encoding that the source code file is using. It begins with # -*- coding: and ends
with -*-.

A Python program using both directives can start with two lines that look something
like this:

#!/usr/bin/env python3

-*- coding: UTF-8 -*-

106 Sequence – The Basic Building Block of a Computer Program

As Python uses # as the symbol for line comments, it might look like these are two normal
comments. This can be a bit confusing when reading the code, and we should be aware
that these are instructions to the interpreter and not to humans.

As you can see, comments can be used in several different ways. Let's take a look at some
typical uses in more detail.

Making use of comments
How to use comments in the best way is subject to dispute, and, often, you will get
conflicting advice. Let's examine some typical uses before we discuss some of the opinions
people have regarding comments.

Planning and reviewing
Comments can be used to plan the structure of the code before it is written. When writing
an intricate part of an application, some people prefer to map out the logic with comments
before focusing on the real code.

Code description
One everyday use of comments is to summarize what a section of code is doing and
explain the programmer's intent. You should not use comments to rewrite what the
code does in English. If you feel that you need to do that, the code is most likely too
complicated and should be revised.

Algorithmic description
Sometimes, we implement complex algorithms that need an explanation with maybe
both text and diagrams. This is usually the prerequisite knowledge required to be able
to understand the code. This can, sometimes, be rather extensive explanations. Look at
the following diagram as an example. This comment is taken from a part of the Python
language itself. If we count the number of lines that are comments in that module, we will
see that they are over 77%:

The importance of sequences 107

Figure 5.14: Example of comment describing the process.py module in the
Python programming language

108 Sequence – The Basic Building Block of a Computer Program

The Python language is open source, so anyone can look at or download the code for it. If
you want to see what the code for a programming language looks like, you can view it at
https://github.com/python/cpython.

Comments controversy

There is a never-ending debate regarding how and when comments should be used.
Some people argue that code should be written using few comments, arguing that the
source code should be written in a way so that it is self-explanatory or self-documenting.
The motivation for this standpoint is that if you know a language, you should be able to
understand the intent by just reading the code. If you can't, the code needs to be rewritten.

Others will argue that code should be extensively commented, as per the example in the
preceding diagram.

In between these standpoints, you will find some that argue that comments, by
themselves, are not beneficial nor harmful and should be used with care where they
provide added value.

So, to sum it up, in this section, we learned that comments are a tool to explain the code.
But they are also used for documentation. Additionally, tags can be used to make notes of
things that need to be dealt with in the future.

Summary
In this chapter, we discussed the most fundamental concept that we have in programming:
a sequence.

Sequential thinking can help us structure our ideas so that we can break them down into
smaller pieces. As we have mentioned in this chapter, grasping everything a program
needs to do can be hard, so we need a way to be able to focus on the details without losing
the overview of what the program needs to do.

The concept of doing things in sequence is also at the very heart of any program, since the
instructions we write are executed one after the other. This is important because we need
to make sure that these instructions come in the right order.

The instructions we write are made up of statements, and we learned that some statements
are short and simple, while others can span several lines and be made up of other
statements. Some are smaller building blocks, called expressions. We are now on an
abstraction level where we can deal with details such as adding two numbers together.

https://github.com/python/cpython

Summary 109

Breaking down the code into smaller and smaller chunks allows us to think about how to
structure our solution. Sometimes, we will need to document our line of thought to help
us or other readers of our code see what made us choose this solution. We learned that
comments can be used for this.

Comments can also be used as a documentation of the code so that it is clear what it
does and how it can be used. Additionally, we saw that comments can be directed to the
language compiler or interpreter to give instructions to it.

As we know from previous chapters, a computer program takes data as its input, stores it
in memory, processes this data, and produces new data as its output. Data is a key concept,
so, in the next chapter, we will learn how to interact with it and why this type of data has
such importance.

6
Working with

Data – Variables
In previous chapters, we stated that a program is something that takes data as input
and performs operations on it to produce new data. So, handling data is crucial in
any application, regardless of whether it is used for accounting or whether it is
a game.

When we work with data, it must be stored in the computer's memory, and this is done
with variables. It is variables that let us store and retrieve data. In this chapter, we will
get to know variables, see how they work, and, in the end, look at some operations that
we can perform on them.

112 Working with Data – Variables

In this chapter, you will learn about the following:

• Declaring and initializing variables

• Understanding data types and applying them to variables

• Using composite types to handle multiple values

• Performing operations on variables using operators

• Operating on numbers and manipulating strings

• When programming, we need to work with data, and that data will be stored in
the computer's memory. To be able to use this data, we need to have a way to
reference where in the memory the data is. This is done by using a nice abstraction
called variables. Variables hide the difficult stuff, such as working with memory
addresses, and give us easy access to data by letting us assign a name to it. Let's see
how this works.

Declaring and initializing variables
When writing programs, we continuously work with data. As we are using this data, we
need a way to keep track of it. To do this, we use variables. Let's look at how this works in
the following sections.

Understanding variables
To understand what a variable is, we can start with some code where we assign a value
to a variable:

x = 13

Here, we have the value 13, which is a whole number. Usually, in programming, we refer
to these as integers as they can be both positive and negative. Different programming
languages treat integer values differently. Most languages will specify how much memory
an integer will use. Let's assume that this size is 4 bytes, which is a common size used to
store an integer value. Remember that one byte is 8 bits and that each bit can be either 0
or 1. With 4 bytes, we have 4 times 8 bits, which is 32 zeros or ones, at our disposal.

To store 13 in the computer's memory, the programming language will need to reserve
enough space—4 bytes, in our case.

Declaring and initializing variables 113

Each byte of computer memory has an address. A memory address works like a street
address; it is used to help us navigate to the correct location:

Figure 6.1 – Part of the computer's memory. Each square is a byte and has a unique address

In our example, 4 bytes that are not occupied by something else need to be located. These
bytes need to be in continuous order.

The address of the first byte in this sequence is of interest to us. The programming
language knows that we are storing an integer value at this location, and it knows how
many bytes an integer occupies, so the first address is enough to locate this integer. The
following diagram shows this:

Figure 6.2 – The programming language reserves enough space in memory for an integer value to be
stored

When writing a program, we don't want to remember numeric memory addresses, so we
give this memory address a name. It is up to us, as programmers, to come up with this
name, and we should pick a name that describes the data that we are storing. We will talk
more about what considerations we need to make when naming variables soon:

Figure 6.3 – The first address in the reserved sequence is given a name—in this case, x

114 Working with Data – Variables

Now that we have enough room for the reserved integer value and a name that can be
used to refer to this memory address, the actual value can be stored at this memory
location. This value will be stored in binary format. We talked about binary numbers in
Chapter 1, Introduction to Computer Programs. In the preceding code snippet, we wanted
to save the value 13, and 13 in binary is 1101. All of the bits preceding this value are
filled with zeros. As you can see in the following diagram, one byte would have been
enough, but as many languages have a fixed size for its integer type, all the bytes will be
reserved, regardless of whether we need them:

Figure 6.4 – The binary representation of the value we want to be stored is inserted at this memory
location

Now, the value is stored in memory and we have a name that refers to this location. We
can use this name to access this value.

We call x in our example a variable. A variable consists of several things. It has a name,
which is x in our sample. It also has a type. The type defines how much memory the data
needs. We wanted to store an integer and we assumed that the language we are using has
decided to use 4 bytes for integers. This is the size of this variable. We also know that if an
integer has a fixed size, there is a maximum value that it can store. Later in this chapter, we
will talk about this limitation.

We also need to explore how we can name our variables and what types they can have.
Let's start with the names.

Naming variables
The name we give a variable should reflect what data it represents, so if we use a
variable to store an email address, a good name would be email, whereas b45 would
be rather lousy.

Declaring and initializing variables 115

The syntax of each language has rules for how we can name our variables. Some standard
rules for naming variables are as follows:

• It must begin with a letter of the alphabet or an underscore (_).

• After the first character, the name can contain letters, underscores, and numbers.

• You cannot use names that are used as keywords in the language—that is, words
that are reserved by the language, such as for, if, and else.

• Spaces or other special characters, such as +, -, and *, are not allowed to be part of
the name.

Some examples of legal and illegal names are as follows:

Table 6.1

Many languages are also case sensitive when it comes to variable names. What that means
is that the name, Name, and nAmE variables will be treated as three different variables.

Many languages will also have what is known as naming conventions when it comes to
how we construct and format variable names. There are also conventions for how to create
names that are made up of more than one word. We will study these conventions next.

Camel case
Camel case is where the words that make up a name are separated by an uppercase letter
that starts each word. There are two sub-types—upper camel case (also known as Pascal
case) and lower camel case (also known as Dromedary case). Some examples of variable
names using upper camel case are as follows:

• FirstName

• EmailAddress

• ZipCode

The same names would look like this in lower camel case:

• firstName

• emailAddress

• zipCode

116 Working with Data – Variables

As we can see, the first variant capitalizes all of the first letters of the words that make
up a name, whereas the second variant leaves the first word in lowercase and only uses
uppercase with the second word's first letter.

Languages that recommend this naming convention are Java, C#, and Pascal.

Snake case
Separating words with an underscore is called snake case. When using this convention,
we only use lowercase letters and separate words with an underscore character. Using this
casing for the same variable names as the preceding examples would look like this:

• first_name

• email_address

• zip_code

Languages that use this convention for naming variables include Python, Ruby, C, and
C++, in some circumstances.

What does it mean when we say a language has a convention for naming variables?

Naming conventions
Usually, a naming convention is a recommended way for naming things, such as variables.
This means that we can break these rules and the program will still work. However, there
are several good reasons for us to obey these recommendations. One could be that if
many programmers are involved in writing some code, the style will be consistent and,
therefore, more straightforward to interpret for human readers.

Some software companies have their own naming conventions. This is typically the case
when the language itself has a weak or non-existing convention.

When coming across a new language, we should always learn its conventions. If you
work on several projects that use different programming languages, it can be tricky to
remember what convention to use.

Read more about naming conventions in Chapter 12, Code Quality in the Using code
conventions section.

Now that we know how to name a variable, let's explore the different types that a variable
can have.

Primitive data types 117

Primitive data types
Every variable has both a name and a type. The type defines what kind of data can be
stored in the variable. Typically, a language will have some built-in types, called primitive
or basic types, to handle a single value.

Primitive types can be divided into two categories—Boolean and numeric—which we will
look at next.

Boolean type
In Chapter 1, Introduction to Computer Programs, we talked about George Bool and his
Boolean algebra. This defined how we can combine values of true and false with and,
or, and not. To be able to use these values in our programs, we have a type that is named
after Bool, called Boolean. A variable that uses this type can only have one of two values—
true or false. For languages that have these types, we use the actual true and false
words.

Languages that have this type either call it Boolean or just bool.

Numeric type
Numeric types fall into one of two categories—integer types and floating-point types.
We will look at them in detail, next.

Integer data types
The first question you could ask yourself here is why are we talking about types in plural
when it comes to integers? You could argue that data is either an integer or not. As it turns
out, many languages will have several types for representing integer values and the reason
for this has to do with how much memory is used for the data and how that data should
be interpreted.

As we saw earlier in this chapter, a language will define how much memory to use when
storing data in a variable. When working with integers, we might only work with small
values in a predefined range, such as the age of a human, or the values might be huge, such
as the distance between stars.

If we think about the characteristics of the data we are working with, we will discover that
it has natural limitations. The age of a human, for example, will never have a negative value,
and if we take the highest human age recorded (122 years, at the time of writing) and add
some years to be on the safe side, we could state that a valid human age will fall into the
range of 0 to 150. One byte—remember that one byte is 8 bits (8 zeros or ones)—can work
with numbers in the range 0 to 255, so that is more than enough to store human age.

118 Working with Data – Variables

If we instead talk about the distance between us and other stars, we have a different range
of values. The closest star, except for our own sun, are the two stars in the Alpha Centauri
system. They are just over 4 lightyears away. The furthest star that we have observed,
known by the name MACS J1149+2223 Lensed Star 1, is 9 billion lightyears away. So, if
we are working with these values, we still would not need any negative numbers and the
range would be between 4 and 9,000,000,000.

Sometimes, we need to work with both negative and positive numbers—for example, if we
are writing some accounting software.

This means that integer values can have different properties, and for that reason, we
have more than one integer type so that we can find one that fits our needs. As we don't
need any negative numbers and the maximum won't ever exceed 150 as a value for
human age, a type that can work with huge or negative numbers would be a waste of the
computer's memory.

With this knowledge, programming languages are often implemented with several
different integer types that differ in how much memory (measured in bytes) they will use
to represent a value. The programmer's task is to pick one that matches the properties for
the data that will be handled by the variable that has this type.

Different languages will have a different set of integer types, but here are some typical
integer types, their sizes, and the range of values that they can handle:

Table 6.2

As you can see, all the preceding types include negative as well as positive values.
Representing both will limit how a type can serve large numbers. Taking human age as
an example again, we will see that the byte type wouldn't really work as although it has a
maximum value of 127, it has 128 negative values that we would never use.

The reason why we have this restriction has to do with how negative numbers
are represented.

Primitive data types 119

Signed and unsigned integers
If we look at the smallest type in the preceding table—the byte—and think about how
negative numbers can be represented, we will see that we have a problem. When working
with binary numbers, we have several bits that can store either 0 or 1, but we don't have
any other values, so we can't just insert a minus sign to indicate that this is a negative
number. Instead, one of the following three methods can be used.

Let's see how they work.

Signed Magnitude Representation (SMR)
Even if the name is a bit complicated, this is the easiest way to represent negative values
in binary form. Imagine that we are working with one byte that gives us eight bits to
represent a value. However, if we assign one of the bits to represent whether this is a
positive or negative value, we are left with just seven bits for the actual value:

Figure 6.5 – A byte using only 7 bits to represent a value—127, in this case

If we use the bit to the left in the preceding diagram—often referred to as the most
significant bit as it is the bit representing the highest value—to represent whether the
rest should be considered either positive or negative, the rest of the bits can form a
maximum value of 127:

Figure 6.6 – Using the most significant bit to represent a positive value—29, in this case

If we designate the first position to indicate whether this is a positive or a negative value,
we can use 0 to show that this is a positive value and 1 to show that this is a negative one:

Figure 6.7 – Using the most significant bit to represent a negative value, -29, in this case

120 Working with Data – Variables

Using this technique, we have a range of values from -127 to 127 using a single byte. We
will also have two representations for 0—positive and negative. This is one disadvantage of
this method and a reason why it is not used so often.

Another problem with this technique is found when performing mathematical operations,
such as addition, on two values that use SMR.

Figures 6.8 to 6.12 illustrate what happens if we add 3 and c together if we have used SMR
to represent a negative value. To understand the diagrams, imagine that you add two
decimal numbers. If you want to add 495 and 572, we will put one above the other and
start to add them column by column:

We then do the same for the next column, but as we get a value larger than 9, we have
to carry:

When adding the last column, we use the carried number as part of the numbers we add:

We can apply the same principle for adding binary numbers. The only difference is that we
now work with just two digits. So, instead of 10, we will need to carry a value as soon as
the result is greater than 1. Now, when adding two bits that can be either 0 or 1, we only
end up with three different results—0, 1, or 2 (in decimal). If we consider that we need to
add two values and one potential carried value, the maximum will be 1 + 1 + 1 = 3. Now
that we know the maximum value we can possibly get (3), we can translate it into binary.
3 in binary is 11. This means that our possible results will be 0, 1, 10, and 11. 0 and 1 fit
within a single bit, but 10 and 11 do not, so here, we will need to carry 1.

Primitive data types 121

As guidance, let's use a table to convert between decimal and binary values:

Table 6.3

Let's also see another table that helps us understand how binary addition works:

Table 6.4

As you can see, the last three operations resulted in two digits, so all of them will result in
a carry.

122 Working with Data – Variables

Let's see how we can apply this principle when adding binary numbers:

Figure 6.8 – Adding two values, 3 and -3, where the negative number is represented using SMR

When we want to add two binary numbers, we do the same thing that we did with
decimal numbers. The only difference is that we can only handle results that are 0 or 1. If
the result is 2, we need to carry 1 to the next position:

Figure 6.9 – Step one is to add the two rightmost bits—1 + 1 = 2

From the preceding diagram, we can see that as 2 in binary is 10, we insert 0 at this
location and carry 1.

Primitive data types 123

This means that in the next step, we have three values—1 + 1 + 1. As the result will be 3,
which is 11 in binary, we insert a 1 in this position and carry 1 to the next round:

Figure 6.10 – Repeating the operation for the next two bits

In this example, we now have several positions where we add zeros together, but we must
remember that we have carried 1 the first time:

Figure 6.11 – For the third pair of bits, we are adding two zeros with the carry

124 Working with Data – Variables

We can now repeat this all the way to the last position. This is our sign bit:

Figure 6.12 – The next four bits are just zeros with no carry, so they will all result in zeros

As we are adding a positive value (3) with a negative value (-3), we have 0 at this position
for the first value and 1 in the second to indicate that the value is negative. As 0 + 1 is 1,
this indicates that the result is negative:

Figure 6.12 – When we add the bit used as a sign bit, the result will be 1, indicating
that the result is negative

Primitive data types 125

To our surprise, we discover that the result of adding 3 and -3 is not 0 as we expected
but -6, as we have 4 plus 2, which is 6, and 1 at the first position, indicating that this is a
negative number.

This is another reason why this method is not used that often.

Ones' complement
Another approach to representing negative numbers that will address the problem we saw
when we tried to add a positive and a negative value is the use of something called ones'
complement. It also uses the most significant bit (the leftmost bit in our illustrations) as
the sign bit but stores negative numbers differently compared to SMR.

If we have a positive value, we can use 3 again as an example, and if we store it in a byte,
we get 0000 0011, as we can see here:

Figure 6.13 – Storing positive 3 in a byte

To store -3, we flip all the bits, so 0 becomes 1 and vice versa, as follows:

Figure 6.14 – Storing -3 using ones' complement. All values are the opposite of when we store positive 3

126 Working with Data – Variables

As we can see, all the bits are the opposite compared to when we stored a positive 3. When
this number is interpreted, the sign bit is checked first. If it is 1, all the other bits are then
flipped to form the actual value. This might seem like a strange thing to do, but let's see
what happens when we add the two together:

Figure 6.15 – Adding 3 and -3 where the negative number is represented using ones' complement

As we can see in the preceding diagram, we add 1 and 0 for each location. The result will,
therefore, be 1 in every position, as we can see here:

Figure 6.16 – The result of adding the two bytes will be 1 in all locations

Primitive data types 127

As we have 1 for the signed bit, this means that we have a negative result, so all the
other bits need to be flipped and the result will be -0. Now, this is better as 3 + (-3) is 0,
but negative 0 does not mean anything. This means that this method also has the same
problem as SMR, where we have two representations of the value 0—one positive and
one negative:

Figure 6.17 – As the sign bit is 1, all the other bits need to be flipped, forming negative 0

Let's see whether we can tackle this problem and find a representation that works.

Two's complement
To solve the problem of two zeros in ones' complement, a third method for representing
integer values exists, which is called two's complement. It works in the same way as ones'
complement but with a twist.

The first step is to use ones' complement to represent a negative number, which takes the
positive value and flips all the bits. But when that is done, we add 1 to the result. Now,
this might seem like we are messing the result up totally, but as we will see, it solves the
problem with the double zero representation.

See figures 6.18 to 6.21 to see how this works:

Figure 6.18 – Representing the value 3 in a byte

128 Working with Data – Variables

Representing a positive value is done just the same as before. However, when dealing with
negative numbers, we do things differently:

Figure 6.19 – Representing -3 in the two's complement form

Here, we take all the bits from the positive representation and flip them, so 0 becomes 1
and vice versa:

Figure 6.20 – When adding 3 and -3, we do what we did before. 1 + 1 = 10, so 0
goes to this position and 1 is carried

Primitive data types 129

Adding the bits together is done in the same way as before:

Figure 6.21 – For all positions, we have 1 carry, so we will add 1 + 1 + 0 = 10

When adding the sign bit to the left, we get a carry. The two's complement method states
that this carry should be discarded.

We can see that the result of this operation is a byte with only zeros, giving us a single
representation of 0 as a result.

As two's complement solves both the problem with the binary representation of zero and
the problem of adding two values together, this is the one that is most frequently used.

Unsigned integers
Some languages will let us work with integer types that use all bits as values. This allows
us to work with only positive integers, but they can, on the other hand, be twice as big
because we use all the bits to store values.

Not all numerical values are integers, so let's now look at another group of numerical data
types—floating-point types.

130 Working with Data – Variables

Floating-point types
Representing floating-point numbers using the binary form is tricky, and as a programmer,
we soon discover some oddities that relate to this. Let's look at the following code:

result = 0.1 + 0.2

We would expect the result stored in the variable result to be 0.3, but in many languages,
this will instead be something like 0.30000000000000004.

The reason we get odd results like this is that we try to represent a decimal floating-point
number as a binary floating-point number. We will not go into too much detail about
how floating-point numbers are represented in a computer as it will get a bit complicated.
If you want to learn how this is done, you can search for it online and see lots of detailed
explanations for how it works.

But what we will do is to think about the problem the computer faces when dealing with a
binary representation of a decimal number.

In our decimal positional system, each position in a number has a value, as we saw earlier.
This is just as true for floating-point numbers as for integers. For a floating-point number,
the positions have values, as illustrated:

Figure 6.22 – The values that the different positions have in the decimal system, to the left
and right of the decimal point

Using this system makes it easy for us to store a value—for example, one-tenth can be
written as 0.1. In binary, the positions are as follows:

Figure 6.23 – The values that the different locations have in the binary system,
to the left and right of the decimal point

Primitive data types 131

As we can see, no value represents one-tenth, so something else needs to be done. What
computers do is store floating-point values in scientific notation. Representing the 300
decimal value in scientific form come to 3 × 102 . The computer does this but in binary
form and divides the value into three parts. The first is the sign, just as we saw for integer
values. The second part is the exponent used and the last part is called the mantissa. The
mantissa is the decimal part of a logarithm to base 10 (that is, a decimal number). If that
means nothing to you, don't worry. You don't need to understand the math to be able to
use floating-point numbers. However, we must understand why numbers don't always
come out the way we expect them to.

To illustrate this, we can think about what happens if we calculate 1/3. We will get
0.333333333…, where we will have an infinite number of threes. The same thing
happened when we tried to represent 0.1 using binary numbers. The result will be a
value that goes on forever in the binary form. The problem is that the computer does not
have an infinite amount of memory, so when the amount that is assigned to this type runs
out, it will just stop, which means that we will not have an accurate representation of the
number. That is why we got 0.30000000000000004 instead of 0.3 when we added
0.1 and 0.2 together in the preceding example.

Without going into the math of how floating-point numbers are represented, we need
to understand the two most frequent types for representing them that we find in
programming. They are usually called float and double.

The difference between them is that a float will usually use 32 bits and a double will use 64
bits. This means that the double has more memory to use before it chops off a number. It
is named double because it has double precision compared to the float type.

What we can learn from this is that if precision matters in our application, we should
use a double, but if not, we can use a float. If, for example, we want to store outside
temperatures, a float will be fine to use as we never deal with that many decimals.

We can now work with integer and floating-point numbers, but sometimes we want to
represent other kinds of values, such as complex numbers.

Some programming languages have a special type for working with complex numbers.
Some examples of languages that use this type are Go, C++, Python, and Ruby.

There is also another numeric type, even if we often think of it as something else—the
character type.

132 Working with Data – Variables

A character that is a letter, a punctation mark, or any other character that we can come
up with can be represented as a number. Many programming languages will provide a
special type that is meant to handle a single character, but under the hood, it is an integer
type. It is treated in a different way than the other numeric types that we have seen, as
we can assign not only numbers to it but also characters, surrounded by some quotation
marks—often single quotes. It can look something like this:

character_a = 'a'

Here, we assign the a character to a variable called character_a. The character is
surrounded by single quotes to indicate that this is a character and not a variable named
a. What happens is that the numerical value for this character is assigned to the variable.
The character value for lowercase a is 97, so in this case, that is what will be stored in
the variable.

To print the content of the variable to the screen, type the following code:

print character_a

We will see a printed, not 97, as the programming language will know that this is a
character type and not a normal numeric type and will translate the numerical value back
to the character representation again.

Sometimes, we need to store more than one value at a time. Then, we can use what are
called composite types.

Composite type
A composite type is a data type that is made up of more than one value. There are
situations when keeping several related values together makes sense. In our everyday life,
we do this often. A shopping list is an example. Instead of having several papers, each one
having one item we need to buy, we store all the items on one piece of paper and call this
a list.

This is how a composite type works in programming as well. We have several types that all
have some specific characteristics. The first one can be used when we want to represent a
sequence or list of things. This is often called an array.

An array—also called a vector, list, or sequence—is a data type that stores several
elements. This number can be fixed or flexible.

Composite type 133

Fixed array
When we have a fixed size array, we say how many slots we want it to have when we create
it. This size will not change. If we create an array that can store 10 integers, it will reserve
space for 10 integers, even if we only use 3 or 5.

Typically, we would create a fixed-size array as follows:

numbers[10]

Here, we say that we want an array that can store 10 integers and we call it numbers. We
are not storing any values in the array, so we say that these 10 locations are unassigned,
but we have space in memory reserved for us, and we have a name that we can use to
access this space.

We can see this as if we have 10 different variables. The only difference is that we store all
10 variables under the same name.

We will now need a way to address these variables individually. This is done by indexing.

We can index into the array by using its name and an index value:

numbers[2] = 44

Here, we store 44 at position 2 in the array. You might think that position 2 is the second
value in the array, but it is actually the third. The reason for this is that the index starts at
0, as shown:

Figure 6.24 – Inserting 44 at index 2 will place the value in the third position of the array

The reason that the indexing starts at 0 and not 1 is that we can think of the name that we
used for this array as a reference to the first location in the array. When using an index,
we say how many places we should move forward. So, numbers[2] means we start at
the first location and move forward 2 integers in memory. That is the location you should
store the value at.

We can also retrieve a value from a given index, as follows:

print numbers[2]

134 Working with Data – Variables

The preceding code prints the value that is located at index 2, which is the third value in
the array.

Having an array of a fixed size can be problematic as it is not always the case that we know
how many values we need to store. If this is the case, then we can use another type of array
that can grow and shrink as we use it. This is sometimes called a dynamic array.

Dynamic array
A dynamic array (or list, vector, or sequence) is an array that can grow and shrink as we
use it. Initially, this kind of array will be empty when we first create it, but we can then
add and remove things from it as we go along. How we create these arrays will differ from
language to language, but it can look something like this:

numbers = []

Here, we are creating an empty dynamic array.

We can now add and remove things from this array:

numbers.add(10)

numbers.add(11)

numbers.add(12)

numbers.remove(11)

Here, we first add three values—10, 11, and 12. Values are usually added at the end, so
they will be stored in the 10, 11, 12 order.

On the last line, we remove the 11 value. The array now has the 10 and 12 values.

Often, we will have different ways to dictate where in this array new values should be
added and removed. We might, for example, be able to do something like this:

numbers.addBack(10)

numbers.addFront(11)

numbers.addBack(12)

numbers.addFront(13)

From the preceding code, we can see the following:

1. We add the 10 value to the back of the empty array.

2. Then, we add the 11 value to the beginning of the array. We now have 11, 10.

Composite type 135

3. Then, we add 12 to the back, giving us 11, 10, 12.

4. In the last line, we add 13 to the front of the array. We now have the 13, 11, 10,
and 12 values.

We can often use an index, just as with a fixed size array, to retrieve individual values
from a dynamic array. The problem is that we need to keep track of how many items we
currently have in the array. This is important because if you have an array of let's say five
things and you say that you want to get item number 10, you are looking outside the array
and your programming language will most likely halt the execution of the program as you
are doing something that is considered illegal (according to your language, that is.)

Dynamic arrays come at another cost as well. When we create a fixed-size array, a big
enough chunk of memory will be found, and we can then go ahead and use this. All the
items in the array must come sequentially in memory because that is what makes indexing
work. As we saw, the name of the array will tell us the starting location for this array, and
we then use an index to say how many steps into the memory we need to move to come to
the correct place.

When using a dynamic array, this might be a problem. If we add item after item, we will
eventually hit a memory location where something else is located. Our array will now
need to move to another location that is big enough for all the values we already had in
it, plus the new value that we want to add. As a programmer, this is not a usual task. The
language does this for us, but copying all the old values from the original location to this
location will take time. This is the cost we pay for the freedom of having a structure that
can grow and shrink depending on our needs.

Most programming languages will only let you store data of the same type in an array.
There are a few, however, that will allow you to mix the types as you wish.

Sometimes, we want to store values that are related in another way—let's say information
about a person. Then, we can use what is called a record.

The record type
If you are writing an application and you want to represent information about, say,
customers, you will first need to decide what information you want to handle. This might
be the customer's first and last name, a street address, a city, a ZIP code, and so on. This
might include data of different types. It would also be handy if you could retrieve the
different items with the help of a name.

136 Working with Data – Variables

Records are sometimes called structures or structs. To use them, we first need to define
what they look like. This can look something like this:

struct Person

 firstName,

 lastName,

 streetAddress,

 city,

 zip

end_struct

What we are doing here is defining a new type called Person. One variable of this type
can store a first name, last name, street address, city, and ZIP code.

Creating a variable of this type might look something like this:

Person person1

We now have a variable called person1, but we do not store any data in it yet. Doing so
might look like this:

person1.firstName = "Anna"

person1.lastNamme = "Smith"

person1.streetAddress = "34 Main Street"

person1.city = "Home Town"

person1.zip = "123 456"

All the information we have about this person is now stored in the person1 variable. We
can now create other person variables to store information about other people:

Person person2

Person person3

person2.firstName = "Bob"

person3.firstName = "Colette"

We can also retrieve the data stored within these variables, as follows:

print person1.firstName

print person2.firstName

print person3.firstName

Composite type 137

The output of this will be as follows:

Anna

Bob

Colette

Here, we have a relationship between a variable name, firstName, for example, and
some data—Anna, Bob, and Colette. We know about this relationship beforehand, so
the record structure is perfect for us. Sometimes, we might not know what we will get,
but the data might still come in pairs. Then, we can use another data type known as a
dictionary.

The dictionary type
A dictionary (also known as a map, hash map, or associative array) is a collection type that
uses key-value pairs. The key needs to be a unique value that we can use to retrieve the
value that is associated with it.

A colon often separates the key and the value.

They might look something like this:

dictionary books

 "Pride and Prejudice": "Jane Austen",

 "David Copperfield": "Charles Dickens",

 "Madame Bovary": "Gustave Flaubert"

end_dictionary

Here, we are using the name of some famous books as the keys, and the value associated
with each key is the author of that book. As we stated before, the key needs to be unique.
If we reuse the key and assign another value to it, the old value will be overwritten by the
new one.

We can access the values—the names of the authors, in our case—by using the key as
an index:

print books["David Copperfield"]

This will give the following output:

Charles Dickens

138 Working with Data – Variables

As it is only the key that needs to be unique, we can have multiple items that have the
same value. We can, for example, add a book to the dictionary as follows:

books["Oliver Twist"] = "Charles Dickens"

We now have two values containing Charles Dickens, but they are associated with
two different and unique keys.

Sometimes, we have other reasons for storing unique values. We might want to represent
what in mathematics is known as finite sets. For that, we also have the set type.

The set type
A set is a composite type that will store unique values without any order. As this type is
unordered, we cannot retrieve items from it with an index. This is usually not a problem as
this type is often used to test for membership. You might, for example, have two sets with
some values in them and would like to know which values occur in both sets.

Let's see how we might create these two sets and then print the values that occur in both:

firstSet = {2, 5, 7, 9}

secondSet {2, 3, 4, 8, 9}

print firstSet.intersection(secondSet)

In set theory, an intersection between two sets are the values that exists in both sets.

The output of this will be as follows:

2, 9

This output is represented as follows:

Figure 6.25 – Representation of two sets that has an intersection of 2 and 9 as
these two values exist in both sets

Sometimes, we want to create a new type so that we can dictate what values can be
assigned to variables that are of this type. For this, we have enumeration.

Composite type 139

Enumeration
Enumeration, often called just enum, is an enumerated type with distinct values. We can
use this to create our types and dictate what values can be assigned to a variable that has
this type.

It can look something like this:

enum TrafficLight

 red,

 yellow,

 green

end_enum

TrafficLight is now a type and we can use it to create variables:

TrafficLight light1

TrafficLight light2

As both light1 and light2 are of the TrafficLight type, we can only assign the
things we described inside this type:

light1 = yellow

light2 = green

Behind the scenes, there are numerical values associated with each of the items in the
enum. In our case, red will be 0, yellow is 1, and green is 2.

Now, we have seen that we can work with Boolean values, numbers, characters, and
different composite types, but you might notice that we're missing one type. We have still
not seen a type that can handle text. It is time to look at strings.

Strings
A string is a composite type as it is stored as an array of characters. Most languages will
use double quotes to designate that something is a string and will use single quotes for
single characters. Some languages will let you use either single or double quotes for both
types. Here, we will use double quotes for strings and single quotes when we only have a
single character.

Usually, we will not consider a string an array. We can create a string as follows:

greeting = "Hello there"

140 Working with Data – Variables

Here, we created a variable of the string type, called greeting, and assigned a Hello
there value to it. Behind the scenes, an array of characters will be created and each
character in the string will be assigned to one location in this array, as shown:

Figure 6.26 – The Hello there string stored as an array, where each item is a character

As a string is an array of characters, we can use an index to access individual characters.
As an example, let's print the character at position 7, which is the eighth character:

print greeting[7]

The output will be as follows:

h

Now that we can handle data in different formats, we can move on to do something with
this data. It is time to look at operators.

Operators – things we can do with variables
In Chapter 5, Sequence – The Basic Building Block of a Computer Program, we talked
about how a statement is made up of expressions and that expressions can be made up
of operations or operands.

Let's see an example of this. Here, we will create two variables and assign a value to each of
them. Then, we will add the two values together and store the result in a new variable:

number1 = 10

number2 = 15

result = number1 + number2

In line one, we created a variable called number1 and assigned a value of 10 to it. We
now know that this means several things:

• The variable name is number1.

• As it is assigned an integer, it must be of an integer type.

• The = sign is an operator, taking whatever is on the right and assigning it to what we
have on the left.

Composite type 141

• Somewhere in the computer's memory, enough space for an integer has
been reserved.

• The name, number1, will act as an alias for this address.

We then do the same thing in line two, the only difference being that we have another
name for the variable, number2, and we assign it another value, 15.

On the third line, we use the addition operator. This operator has two operands—
number1 and number2. It will now extract the values in these two variables, add them
together, and return the result.

This operation will result in a value of 25, which is what will be assigned to the variable
result. As a result of the addition operation giving us another integer, we now also know
that the variable result will also have the integer type.

Let's look at some operators for basic arithmetic.

Arithmetic operators
Most programming languages share the symbols used for basic arithmetic operations.
Refer to the following table to see the most common ones:

Table 6.5

The last one, the modulus operator, might not be familiar to you. It is often used in
programming as it has some features that can be handy when working with numbers. We
can illustrate what it does with a simple example. If we calculated 16/13, we would get
a result of 1.230769…. The integer part, 1, tells us that 13 goes once into 16. What the
modulus operator does is tells us how much there is left to get to 16. So, if 13 goes once
into 16, we must add 3 to 13 to get to 16.

We would express that with 16 % 13 and get a result of 3. If you have not worked with
modulus before, I suggest you search it up online to get an understanding of how it works
as it is something that you will find very useful as a programmer.

Next up, we have some operators that we can use to compare things.

142 Working with Data – Variables

Relational operators
Relational operators are used when we want to compare two values. They can be equal or
not equal. We might want to know whether one value is greater than the other. The following
table lists the relational operators that are typically found in programming languages:

Table 6.6

With these operators, we can compare two values, but sometimes we have more values to
compare. In this case, we will need logical operators.

Logical operators
These operators are used to represent and, or, and not. Some languages will use these
exact words to represent them, but others will have special signs for them. They are used
in statements such as if the age is greater than 12 and age is less
than 20. In code, that would look something like this:

if age > 12 && age < 20 then

Composite type 143

The three operators we can use are as follows:

Table 6.7

Most languages will have more operators than the ones we have seen here. We will not
cover them here as some are combination operators, which is a combination of two of the
operators we have seen here, and others are specialized for one or a few languages.

Next up, we will look at two different ways that variables can be stored in memory and
why that concerns us.

The concept of values and reference variables
There are two ways that a variable can store its value in memory. We could think of these
ways as direct and indirect. This might sound strange, but let's use an analogy to explain.

The variables that directly store their data are like boxes. When we create them, we can
think of them as a box that has the name of the variable stuck to it with a label. We can
store the value inside the box and look in the box later to see what value is in there.
Variables that store their values like this are called value variables:

Figure 6.27 – A variable that stores its data by value is like a box

144 Working with Data – Variables

Variables that use indirect storage will act as an index card in a library. It will not store
the book but will have the location where it is stored, so it only contains the address
to where in memory the actual value is. Variables that store values like this are called
reference variables:

Figure 6.28 – Variables that store data by reference are like a library index card

Let's see how they both work.

Value variables
When we create a variable—or declare it, as we would usually say—of a type, several
things will happen, as we saw at the beginning of this chapter. Let's see what will happen
when the following code line is executed:

x = 10

As we now know, a chunk of memory that is large enough to host an integer is located,
and this location has an address. The name we give the variable—x, in the preceding
example—is just an alias for this address. It is much easier for us to remember that a
variable called firstName stores a name instead of having to remember that the first
name was at the 38892819283 address.

When our code is interpreted or compiled, the variable name is changed to the actual
address, but that is luckily not anything that we will ever see. As this is a variable that
stores its data by value, there is a direct relationship between where the data is and the
variable name.

Composite type 145

Reference variables
When it comes to reference variables, there is an extra step between the variable name and
where the data is. Let's see what happens when we create a reference variable with another
code example:

weather = "Sunny"

In this example, the data will still need to be stored somewhere, so a memory location
for it is found and as before, the address of where this is is noted. However, the difference
is that the variable name is not an alias for this address. Instead, the address for where
the data is is stored at another location in memory and the variable is an alias for that
location. The following diagram illustrates this:

Figure 6.29 – A variable named weather as a reference variable

This might seem pointless. Why can't we store the text string at the location pointed out
by the weather variable? What is the point of this extra step? The answer is efficiency. In
a program, we need to pass data around. The data that we have in a variable in one part
of the program needs to be passed along to another part. Imagine that the data stored
is much larger than the short text string in the preceding example; the actual passing of
the data would mean that we need to make a copy of all the data. This takes some time,
and we will now have two copies of the data, which will use twice as much memory. If a
variable is of this reference type, we will not need to copy all the data. In the preceding
example, this will mean that we will not need to copy Sunny. Instead, the weather
variable contains the address to where this data is, so it can just pass the address.

How a language uses these two types will differ from language to language. When learning
a new language, it is vital to learn how it works with value and reference variables.

Now that we have covered lots of things related to variables, we are now ready to use
them. We will now see how we can work with numbers, and after that, we will look at
text strings.

146 Working with Data – Variables

Working with numbers
Numbers are essential in computer programs. We use them to represent real-world
concepts, such as the number of items in a shopping cart, the weight of a package, and the
distance to a location. We also use them to represent internal things within our program,
such as the number of characters in a name so that we can calculate whether it will fit on
an address label if we print it. The point is, we use numbers all the time, so let's see what
we can do with them.

First, we can do basic arithmetic, such as addition, subtraction, multiplication, and
division, as in the following code snippet:

age1 = 34

age2 = 67

mediumAge = (age1 + age2) / 2

In this example, we have two ages and we are calculating the medium age.

We often use numbers as counters of things. What this means is that we will use them
to keep track of how many times we have done something. This means that we need to
increase (and sometimes decrease) them by 1. We could do this as follows:

count = count + 1

To understand what happens here, we need to look to the right of the = sign first. Here, we
have a variable called count. As this is just a line that is ripped out of its context, we can
assume that it already has a value stored. This value is now used, and we add 1 to it. The
result of this addition is then stored back in the variable count, and we have increased its
value by 1.

As this is such a common thing to do in programming, some shorthands for this have
been developed. As we are using the same variable on both sides of the = operator, we can
skip one of them and instead use a different operator that looks something like this:

count += 1

This is the same as in the last example, but just shorter. We can read it as taking the value
that is stored by the count variable, adding 1 to it, and storing the result back in count.

Some languages have taken this further and shortened this even more:

count++

Again, the result will be the same as the other two. We can read this as increasing the
value stored in count by 1.

Composite type 147

All of the three examples we just saw can, of course, be done with subtraction too,
as shown:

count = count - 1

count -= 1

count--

When working with numbers, they can either be stored in a variable, as with count, or
digits directly in the code, as is the case with 1 in the preceding examples.

Sometimes, we will work with more complex mathematical formulas and do several
things in one single line.

We could have something like the following:

𝑥𝑥 = 𝑎𝑎 + 3
7 − 𝑏𝑏

How would we write that in a program?

First, x, a, and b are variables in mathematics and will be variables in our program, too.
a + 3 and 7 – b must be done before we can divide. We use an equation such as this as
a recipe to calculate something. To use it, we insert some values for a and b. Then, we do
the math, and x will be the result.

In our program, we can, therefore, assume that a and b have some values given to them
earlier in the program. So, let's see how we can let the computer do the math for us:

x = (a + 3) / (7 – b)

Adding parentheses means that what is inside of them will be calculated first. So, if we
imagine some values for a and b—let's say a = 3 and b = 4—then a + 3 will be
calculated first, so we have 3 + 3 = 6. Then, 7 – b will be calculated, so 7 – 4 =
3. At this point, we can imagine that a + 3 is replaced by 6 and 7 – b by 3; we are left
with 6 / 3. The result, 2, will be stored in x.

If basic algebra is not enough for us, most programming languages come with a vast
library of mathematical functions that we can use, such as cosine, tangent, square root,
and absolute value.

Another data type that programmers use a lot is strings. Let's look at some of the things
we can do with them.

148 Working with Data – Variables

Manipulating strings
A string is a sequence of characters, and a character does not have to be a letter, it can
be punctuation marks, a space, a hyphen, or any other character we can produce using a
computer. A string can also contain digits.

The first thing we must understand is that a string only containing digits will not be the
same as if it were an integer. Look at the following code:

numberA = 1234

numberB = "1234"

Notice the quotation marks around the digits in the last number. This turns it into a string.
The first one, numberA, will be of the integer type, so it can be used for counting
and other mathematical operations. For the computer, the second one is just as much a
number as the word dog is—that is, not at all.

When working with strings, there are several typical things we can do with them. Let's
look at some frequent string operations.

String concatenation
When we take two strings and add them together to form a new string, we call it
concatenation. How this is done will differ a bit from language to language, but often, we
can use the + operator, as in the following example:

word = "day" + "break"

Here, we have two strings—day and break. The quote marks tell us that they are strings.
They will now be concatenated into a new string that is stored in the word variable. This
variable will contain the daybreak word.

Splitting strings
Sometimes, we want to split a string into multiple strings. To do this, we will often use
a delimiter inside the string, which we can use to indicate where the string should be
divided. Let's assume that we have a string that contains a first name and last name and
that the names are separated by a comma, such as Sue,Smith.

If that is stored in a variable called name, in some languages, we could do something
like this:

firstName, lastName = name.split(",")

Composite type 149

As usual, we will begin by looking at the right side of the = operator. Here, we say that we
have a string in a variable called name. We want to break up this string into two parts, so
we use split. Inside the parentheses, we see a string. Again, we know that it is a string
because it has quote marks and contains a comma. This is the character that will be used
for the split. All characters that precede the comma inside the variable name will be sent
to the first variable to the left, firstName. Everything after the comma will be sent to
the second variable, lastName. The comma itself that is inside the variable name will
be discarded.

It is also important to note that the content of the variable name has not changed, so if
we peek into the variables after this line has executed, we can see that they contain the
following:

firstName = Sue

lastName = Smith

name = Sue,Smith

The result can also be an array that contains the two strings. This would look something
like the following:

splitName = name.split(",")

The splitName variable will now be an array that contains two strings. Remember that
the first position in an array is 0, and in that location, we will find the Sue string, and at
position 1, we will find Smith.

Substrings
Substrings are used when we take part of a string to form a new string. How this is done
will change from language to language. Here are some examples of what it might look like
if we want to extract the car substring out of the phonocardiogram string.

First, we store phonocardiogram in a variable, as follows:

word = "phonocardiogram"

In some languages, we can then do something like this:

newWord = word[5:8]

150 Working with Data – Variables

This will begin extracting the substring from location 5 in the string. Just as with arrays, the
counting will start at 0. As the letter c is the sixth letter, the index we use will be 5. Then, as
per the code given, we end at 8. But that looks like we went one letter too far. Commonly,
we use two values as the start and end index. The first will state where to start and the
second will point out the first things that are outside the range. We can read the preceding
example as starting at location 5 and stopping at location 8 without including it.

After this line has executed, the newWord variable will contain the car string, and as
before, the word variable will be unchanged.

Other languages will do something like the following instead:

newWord = word.substr(5,8)

Here, we use substr instead of square brackets. Also, note that 5 and 8 are separated by
a comma here and that we used a semicolon in the first example.

A third variant would look something like this:

newWord = word.substr(5, 3)

In languages that use this form, the second value indicates how many characters we want
instead of the end index. However, the result will be the same.

Case conversion
Converting string casing is something we often want to do. The reason for this can, for
example, be so that we can ask the user of our program to enter a text command, and then
we will need to check what command the user entered. As an example, we can imagine
that they entered the following commands:

• Start

• Pause

• Stop

We will need to compare what the user wrote against these strings, but we have a problem.
When we compare strings, they need to be cased the same to be equal. This means that
start, Start, and START will all be different.

We can't compare all the combinations as they would be rather too many. For just the
start word, we have the following variants:

• start

• Start

Summary 151

• STart

• StArt

• STArt

• SRArT

• sTART

• starT

We could go on, but instead, let's just convert a string into either all uppercase or all
lowercase. Then, we will know what form the string has.

We can do this as follows:

answer = answer.lower()

Alternatively, the string can be converted as follows:

answer = answer.upper()

lower and upper will not change the original string that is inside the variable answer,
but instead will create a new lowercase or uppercase version of this string. We will store
this new version back into the variable, and by doing so, we will overwrite the old string
with the new version where we know how it is cased.

We have seen a few examples of things we can do with strings. This not all we can do,
but consider these as some examples of some frequent operations that we can perform
on strings.

Summary
In this chapter, we covered one of the two main pillars that programming rests on—how
we can store, retrieve, and change data in the computer's memory using variables.

We learned that a variable has a name and a data type and that the type of the variable
dictates what can be stored in it and how much memory it will use. We also learned how
we could concisely name our variables and that there are naming conventions that we can
use for guidance.

With that covered, we then talked about primary or primitive data types and saw that
numbers are handled either as integers or floating-point numbers, which are further
divided into different sizes, so we can pick a type that suits our needs and make sure we
don't waste memory space.

152 Working with Data – Variables

Some data naturally comes in a sequence or in natural groups. For this data, we used a
composite data type, and we saw that this type lets us work with groups of data.

We then talked about what operators are and how we can perform operations on
variables using them, as well as what common operators are and some examples of
how to use them.

A variable can be stored in memory either as a value or reference type. We learned that
when it is stored as a value, the data it stores is located at the memory address of the
variable. A reference variable does not save its value directly but stores an address to
where the data can be found.

We used variables with numbers and performed some basic operations on them using
our operators. In the end, we turned our attention to strings and looked at how we can
manipulate them.

In the next chapter, we will introduce logic to our programs with proper selection so that
we can do things only if a condition is met. We will also see how we can repeat the same
thing several times with the help of loops.

7
Program Control

Structures
If all of our code was simply executed in sequence, our programs would always do the
same thing, no matter what data we provided them with. We must be able to control the
path through the program so that some part of the code executes at the designated time,
and other parts at other times, depending on the values provided by the data. For instance,
only if it is cold outside do you put on warm clothes, not always. The same thing applies to
our code. When things are a certain way, we want something to happen.

In a way, we can say that we, by this, will introduce some sort of intelligence, or at least
some decision-making capabilities into our code. If things are this way, do this, if not,
do that.

In this chapter, you will learn the following topics:

• Controlling the execution path of the program

• Making decisions with the help of if statements

• Selecting one out of many options with switch statements

• Repeating code execution with for loops

• Iterating over code until a condition is false using while and do while

• Going over a sequence of data, one item at the time using for each

154 Program Control Structures

In this chapter, we will dive into some real programming. In the topics that we will cover
here, we will be able to control the execution path of the program. Let's first explore what
that means.

Controlling the execution path
In Chapter 5, Sequence – The Basic Building Block of a Computer Program, we learned that
the code within a program is executed in sequence.

A sequence is one of the three basic logical structures we have in programming. So, in this
chapter, we will cover the other two, selection and iteration.

Selection statements
There are situations when we only want to execute some code if a condition is met. For
example, if you recall our application from Chapter 5, Sequence - The Basic Building Block
of a Computer Program which turned on the outdoor light, we had a condition that said
if our phone detected that we were within a given range from our house, it should send
a signal to the home computer. To refresh your memory, let's take a look at some images
you have seen before. Figure 7.1 was used to illustrate the action of us entering the range:

Figure 7.1: The phone detects that it is within a given range from our house

Then, we have a condition. We used the illustration shown in Figure 7.2 to indicate that
when the condition was true, that is, we are within the range, a signal should be sent to the
home computer:

Controlling the execution path 155

Figure 7.2: The condition is met, so the code for sending the message can be executed

Let's break it down a bit more and consider the actual steps involved. The application on
the phone would need to do the following:

1. Ask the GPS on the phone for the current position.

2. With the help of the given coordinates, calculate the distance to our home.

3. If the distance is within a given range from our house, then send a signal to the
home computer.

As you can see, in step 3, we have a condition that states that the signal will only be sent if
the condition is true. So, here, we have some code that will not always be executed. We call
this selection. We could define selection like this: selection is the ability to execute a section
of code only if a condition is met.

Now we can ask ourselves another question. What should we do if the condition is false,
that is, we are not within the range? Well, for this application, the answer is nothing. If we
are not in the range, then we won't need to do anything.

The phone app also had another feature that is interesting to us now. When we have
finished checking whether we are within the range or not, we will either send a signal to
the home computer or do nothing. After that, we will go back to the beginning and repeat
everything again so that we can be ready to check whether, after the movement, we are in
the given range. We call this an iteration. We will learn what this is next.

156 Program Control Structures

Iteration statements
An iteration is when we want to repeat something several times. It can also be referred to
as a loop. The number of times we want to iterate something can be in the range of 2 to
infinity. Now, in programming, infinity has a somewhat different perspective on things
than you and I would usually have. Infinity in programming does not mean forever and
ever, but more like as long as the program is running. So, in programming, infinity ends
when the program ends.

In the outdoor light app, we had an iteration. The following diagram illustrates the
sequence for our phone app, and here we can clearly see the iteration:

Figure 7.3: The two arrows pointing at the top item indicate iteration

The diamond shape in the diagram is a condition. If the condition is true, that is, the
answer is yes, that we send the signal. We can also see that no matter whether the
condition was true or false, we will go back to the beginning. This app will continue to
repeat these steps over and over an infinite number of times, that is, until you close the
app or turn off your phone.

Controlling the execution path 157

Sometimes, we only want to iterate a fixed number of times. Let's say that you are
implementing an e-commerce solution, and a customer wants to check out all of the items
that are currently in the shopping cart. You would need to iterate over all of the items in
the cart to calculate the total price. If there were 5 items in the cart, then you would need
to iterate 5 times.

Both selection and iteration use conditions, so before we look at the different kinds of
selection and iteration statements, let's take a closer look at what a conditional statement
is and how it works.

Conditional statements
We have covered the basics of this in several chapters already. A conditional statement is
just a statement that can result in either true or false. The following is a list of examples:

• It is raining today.

• Your age is below 20.

• Your credit card has expired.

• Your coffee cup is empty.

All of these will result in either true or false. There are no maybes. It is either raining or
not; you are either below 20 or not, and so on.

We have also seen that conditional statements can be combined with logical AND, or
logical OR, to form a new, compound conditional statement. Here are some examples:

• It is raining today, and I have blue shoes.

• Your age is below 20, or it is above 60.

• Your credit card has expired, and you have no cash.

• Your coffee cup is empty, and your coffee machine is broken.

These compound, or full, statements are made up of two individual statements. It is raining
today is one part, and I have blue shoes is another part. The two now need to be combined
to form a full statement that can be either true or false. In the preceding example, we use
and to combine them. This means that both individual statements need to be true for the
whole statement to be true. It must be raining, and I must have blue shoes.

If we look at the second statement, the two smaller statements are combined with an or.
This means that, for the whole statement to be true, at least one of the parts must be true.
Either your card has expired, or you have no cash. It could also be unfortunate that both
are true, and then the entire statement will be true.

158 Program Control Structures

Now we know that we have selection and iteration statements and that they work with
conditions, so let's see how we can write code that uses them. Let's start with the most
common selection statement, if.

Selection with the if statement
When using selection in our programs, we could argue that the application uses some sort
of intelligence because it can now make decisions and do different things depending on
various conditions. So, how can we make our applications smart? Well, the easiest way is
with the use of if statements, which are, sometimes, just referred to as conditions. In most
languages, they will have a similar structure.

If we write a small program that asks the user for their age, the first part might look
something like this:

print "Enter your age: "

input age

Here, the program prints Enter your age: on the screen. The user then enters an
age and presses the Enter key to confirm the input. The value entered will be stored in the
age variable.

Now we want to give different feedback depending on the age entered:

if age < 18 then

 print "You are young"

end_if

Here, we have the condition where we check whether the age is below 18. If so, we will
print the message, You are young. The condition is that the age must be below 18. If
it is 18 or above, nothing will happen, as the program will skip everything between them
and end the if statement.

If, instead, we want to check for an interval, we could create a compound conditional
statement, as follows:

if age >= 13 and age <= 19 then

 print "You are a teenager"

end_if

Selection with the if statement 159

As you can see, we are combining the two parts that make up the condition with an and.
This means that both conditions must be true for the whole condition to be true. The age
must be greater or equal to 13, and, at the same time, it must be less than or equal to 19.
This will give us a range between 13 and 19, with both values included. If the age falls into
this range, we will enter the if statement and print the text. If it is either less than 13 or
greater than 19, nothing will happen.

The if statement comes with an optional part. This section is called else and marks a
block of code that will be executed only if the condition in the if statement is false. This
is shown in the following code:

if age >= 13 and age <= 19 then

 print "You are a teenager"

else

 print "You are not a teenager"

end_if

The difference here is that, now, we will always have something printed on the screen.
Either the condition is true, and the message will be printed, or the condition is false and
the section between else and end_if will be executed. Additionally, note that the part
that will be executed when the condition is true now ends with the else keyword.

We can have more than one statement in each of the sections if we want to:

if age >= 13 and age <= 19 then

 print "You are a teenager"

 print "I hope you are having fun."

else

 print "You are not a teenager"

end_if

Now, if the age falls into the teenage range, we will print two lines. And, if it is false, we
will still only print one line.

If we want to have more complex logic, we can have nested if statements. That means we
can have new if statements either in the section that executes if the condition is true or
on the part that only executes if the condition is false.

160 Program Control Structures

For example, if the condition in the preceding code is false, we know that you are either
younger or older than the teenage years. If we want to distinguish this further, it is in this
section of the code that we can check it:

if age >= 13 and age <= 19 then

 print "You are a teenager"

 print "I hope you are having fun."

else

 if age < 13 then

 print "You are a child"

 else

 print "You are getting old"

 end_if

end_if

Now the logic is a bit more complicated. If the user of our program responded with an age
that is between 13 and 19, nothing has changed. However, if the age is anything else, we
have a new if statement. As this one is located within the else section of the first one,
we know that the age is either below 13 or above 13. The second if statement checks
whether it is less than 13. And, if so, prints the You are a child message.

Now, think about what condition we have if we enter the second else section. First, we
know that age is not between 13 and 19, or we would not be in this part of the program at
all. We also know that the age is not below 13 because, if it was, we would have executed
the You are a child part. We only have one option left; the age must be above 19.

To have an if statement directly following an else statement, like we just saw, is so
common that some languages have a special construct for it, called elif. In such a
language, the same code would look something like this:

if age >= 13 and age <= 19 then

 print "You are a teenager"

 print "I hope you are having fun. "

elif age < 13 then

 print "You are a child"

else

 print "You are getting old"

end_if

Selection with the if statement 161

The logic of the program is the same, but the code is more compact. As you can see,
we have the second condition, if the age is below 13, on the same line as the old else
statement, and the else statement has now changed into an elif statement. The word,
elif, is just made up of the two words, else and if.

Additionally, note that, in the first example, the program ended with two lines containing
end_if. The second version just has one.

If you look at the second program, you can now clearly see that there are three different
sections and that only one of them will be executed:

• If the age is between 13 and 19, we enter the first section and execute the code
within that block. After that, we are done, and the rest of the code will be skipped.

• If the age is below 13, we will first skip the first part and go to the elif part. The
condition here is true, so we will enter this part and execute the code within. After
that, we are done and can, again, skip to the end.

• Finally, if the age is greater than 19, we will first skip over the first section and go to
the elif part. The condition found here will also be evaluated to false, so we skip
ahead to the else part. As this part does not contain any condition, we will always
end up here if none of the preceding conditions were true.

Even if the language we are using does not have an elif statement, we can create the
same logic anyway. Consider the following code:

if age >= 13 and age <= 19 then

 print "You are a teenager"

 print "I hope you are having fun. "

else if age < 13 then

 print "You are a child"

else

 print "You are getting old"

end_if

You can see that the only thing that has changed here is that the elif statement has
been replaced with the two words, else and if. The rest is the same and the logic is
also unchanged.

162 Program Control Structures

To use this idea with nested if statements such as this can be very efficient. First, we
must understand that we can have as many of these as we need. The structure can then
look like this:

if condition1 then

 do option1

elif condition2 then

 do option2

elif condition3 then

 do option3

elif conditon4 then

 do option5

else

 do option6

end_if

If you look at this structure, you can see that this looks like a fork, where we only can
choose one of the tines:

Figure 7.4: Nested if statements are like a fork

When we have one out of many things that can be true, we do have an option. It is another
fork-like structure that works pretty much the same way as the nested if statement we
just saw. It is called a switch statement. We will study this next.

Selection with the switch statement
One alternative, when we have one option out of many that can be true, is the switch
statement. It also works with conditions even if they are not as apparent as they are in
an if statement.

Selection with the switch statement 163

Another difference is that a switch statement only compares values for equality. The
reason for it is that it is not suitable for the age logic we used when we explored the
if statement, as we wanted to see whether the age was between two values. Instead, it
is perfect if we're going to match it to a value that is fixed. We will soon look at a real
example. However, first, let's explore the structure of a switch statement.

What a switch statement looks like depends on what language we use. What we will see
here is a structure that is rather common, but when applying it, you will need to look up
the correct syntax for your language.

A switch statement begins by stating what variable we want to check. It is common for
languages to use the switch keyword for this.

The structure looks something like this:

switch(variable)

end_switch

In this example, the name, variable, is just a placeholder for the actual variable we want
to work with. Between the switch keyword and end_switch, we will need to specify
each value we want to compare the variable to. It could look something like this:

switch(variable)

 case 1:

 …

 case 2:

 …

 case 3:

 …

end_switch

Each case specifies the value that we compare the variable to. The first case compares it to
1, the second to 2, and so on. The ellipsis (...) marks the location where we will insert
the code for each option. The first ellipsis is to indicate which code will be executed if the
variable is 1, the second for when the value is 2, and so on.

In many languages, we have something that is called a fallthrough. What this means is that
when the right value is found, the code within that case statement will execute, but then
the code in all the case statements that follow will also execute. So, if the value of the
variable is 2, the code for both 2 and 3 will execute. The reason it does that is so that we
can have multiple case instances following each other and just one code block for them.

164 Program Control Structures

To indicate that we want the fallthrough to stop, we must give an instruction that we are
done, and we can now jump to the end of the switch statement. This instruction is,
usually, break. It is shown in the following example:

switch (variable)

 case 0:

 print "Zero"

 break

 case 1:

 case 3:

 case 4:

 case 7:

 case 8:

 print "Odd value"

 break

 case 2:

 case 4:

 case 6:

 case 8:

 print "Even value"

 break

end_switch

Normally, we have one value for each case block, so the code will look like this:

switch(variable)

 case 1:

 …

 break

 case 2:

 …

 break

 case 3:

 …

 break

end_switch

Selection with the switch statement 165

If the value of the variable is 2, the code within that block will execute, and when the
break statement is reached, the execution of the whole switch statement will end. This
is good, as only one of the options can be true. So, if one has been executed, we know that
we are done.

You could argue that the break statement in the case block for the value of 3 is
unnecessary as we don't have any more statements that we can fall through to. However,
it is a good practice to have it there because we might add more options in the future, and
then we wouldn't want to take the risk of forgetting to add that break.

switch statements also have something that resembles the else part of an if statement,
that is, a block that would execute if no other values evaluated to true. In a switch
statement, this is called default. It usually comes at the very end, after all of the case
statements. It can look like this:

switch(variable)

 case 1:

 …

 break

 case 2:

 …

 break

 case 3:

 …

 break

 default:

 …

 break

end_switch

Again, the last break statement is optional, but we keep it there for consistency. Note that
now we can appreciate that we had a break within number 3, since, without it, a value of 3
would first execute the code in the 3 block and then fall through to the default block.

Now we have all the parts of a switch statement in place, so let's look at an example of
when and how it can be used.

166 Program Control Structures

Here, we will ask the user of our program to input the numeric value for a month, that is,
1 for January, 2 for February, and so on. We will store the number the user entered in a
variable we call month. We can now use this variable in a switch statement to figure out
the name that matches the number the user gave us. Consider the following code:

print "Enter a month number: "

input month

switch (month)

 case 1:

 month_string = "January"

 break

 case 2:

 month_string = "February"

 break

 case 3:

 month_string = "March"

 break

 …

 case 12:

 month_string = "December"

 break

 default:

 month_string = "Invalid"

 break

end_switch

print "The name of the month you entered is " + month_string

In the preceding code, months 4 to 11 are left out, but they are repeated using the
same pattern.

Let's say the user enters 8. The program will start at the top and check case 1. If this has
been an if statement instead of a switch, case 1 would be equivalent to this:

if month == 1 then

Selection with the switch statement 167

Since the user entered 8 and not 1, this is false, so the program will go to the next case,
case 2, and try again. There is still no luck, so it will continue all the way down to case
8, where it finally gets a match. It will now enter this block and create a variable called
month_string and assign the value of August to it.

On the next line, it hits a break. This means, "get me out of here," so the program will
now skip all of the other tests because it knows that it is done.

If the user entered an invalid month, say 14, all cases will first be checked, but as none will
be true, the code in the default block will execute and the month_string variable
will get an Invalid value.

On the very last line, the text, The name of the month you entered is, will
be printed, and the value we have in our month_string variable will be appended to
the end.

The execution of the program would look something like this:

Enter a month number: 8

The name of the month you entered is August

With the help of the selection structures, if and switch, we can build complex logic.

When designing a solution, you should keep a couple of things in mind:

• It is easy to get a bit confused as the logic will, at times, feel entangled and hard to
understand. It is, therefore, essential to remember what we said earlier in this book:
try to zoom in to one small subproblem, understand it, and design a solution for it.
When that is in place, you can zoom out a bit and examine how it works in a bigger
context. Then, you can repeat this process. This might sound very abstract but
keep it in the back of your mind, and try to use this approach when you feel that a
problem is getting too complex.

• Always remember that the readability of your code counts. What this means is that
if you have a solution that works but the code is very complex and hard to read,
you should go back and try to rewrite it, making sure that it still works but also that
another programmer (or you in the future) easily can read and understand what the
code does.

Now that we have covered two of the three fundamental pillars that programming rests
upon, sequence and selection, it is time to tackle the last one, iteration.

168 Program Control Structures

Iteration with the for loop
The first type of iteration we will look at is the for loop. This is a kind of loop when we,
in one way or the other, know how many times we want to repeat something. This can be
a fixed number of times, such as iterating over a list using the days of the week. We know
it is always 7. It can also be that we have values in an array. We might not know precisely
how many items there are in the array at any given time; however, as we will see, there are
ways to ask the array how many objects it is currently holding.

When using a for loop, we will work with a variable that keeps track of how many times
we have iterated. We can decide what value this variable shall start on. It is this variable
that helps us to know when to stop iterating. Let's look at an example:

for i = 0 to 10

 …

end_for

Here, we create (or declare, as a programmer would say) a variable called i. The name, i,
is frequently used as the name for this variable since it is often used as an index. However,
we will discuss that in more detail later. After the assignment operator (=), we say that we
want to give i a starting value of 0. We will then repeat the code within the for block and
i will be increased by one for each iteration. The value of 10 is the stop condition. When
i has reached this value, it should stop repeating and continue executing the code that
comes after the loop.

If we print the value that i currently has inside the loop, the code will look like this:

for i = 0 to 10

 print i

end_for

Most languages will print the values of 0 to 9 and not 0 to 10. That might seem strange,
but if we look at the logic that the for loop uses, we can understand why that is.

When we first hit the line with the for loop, the variable, i, is created and initialized with
the value of 0, since we said that we want this as our starting value.

Iteration with the for loop 169

It will then compare the value that i has with the second value we gave, 10. If they are
equal, the loop will stop. As this is the first iteration, the value is 0 and they are not equal;
therefore, the code inside the loop will execute. When we come back up to the line with
the for loop again, the value in i is incremented by one, that is, 0 + 1 = 1. This value is
now compared to our end value, 10. This is still not a match. It will continue like this until
the value of i is 9. When returning to the line with the for loop again, it will increase i
by 1, making it 10. Now, when the values are compared, they will be equal and the for
loop will end. So, we will never enter the loop when i has the value of 10 and that is why
we only see the values of 0 to 9 printed.

As mentioned before in this book, the C programming language has had a huge impact
on the syntax of many other languages. The way in which for loops are written is such an
example. Let's examine what the same for loop would look like in C:

int i;

for (i = 0; i < 10; i++)

{

 printf("%d", i);

}

On the first line, we declare the variable, i, also stating that it shall work with the data
type, int. In the C language, statements end with a semicolon. That is why we have one
after the i variable.

Then comes the for loop. In C, we have three sections in a for loop. They are separated
using semicolons. The first is the initialization. That is where we say i = 0. This means
that i will have a value of 0 in the first iteration.

The second part is the condition that states how long we shall continue to loop. Here, we
say i < 10. We can read this as continue as long as i is less than 10.

The last section indicates how i will change in each iteration. Here, we say i++. This is
C's way of saying, take whatever is in the variable, i, right now and increase it by one, then
store the new value in i.

The line inside the loop might look a bit strange. But there is no need to go into all of
the details of how C handles printing values, as it is far more complicated than in most
languages. The only thing we need to know is that it will print the current value of i.

170 Program Control Structures

The output will be the same as in our earlier example, 0 to 9. Here, we can see why the
value of 10 is not printed because the condition says i < 10. When i is 10, this is no
longer true, and the loop will exit. If we, instead, had i <= 10, the value of 10 would
be included.

The languages that use this style include C++, C#, Java, JavaScript, PHP, and Go. With
slight variations, they all have for loops that use the three sections that we saw in the
C loop.

For simplicity, we will not use the C-style loops in this book but stick to the first version
we looked at instead. This will help us to focus on how for loops work without being
distracted by the syntax for writing them.

If we want to change the loop variable in any other way than just increasing it by one, we
can do that as follows:

for i = 0 to 10 step 2

 print i

end_for

Here, we will increment the value that i has by 2 each time. The output of this program
will be similar the following:

2

4

6

8

It still starts at 0, but as we increment by 2, all the odd numbers will be skipped. Just like
earlier, we are exiting the loop when i reaches 10.

Sometimes, we want to put a for loop inside another for loop. This is called a nested
for loop. We will need two different variables for these loops so that they don't interfere
with each other. As an example, we might want to go over all 7 days of the week. We will
print the days such as day 0, day 1, and so on. We will start at 0 for simplicity, but we
could, of course, have started at 1 if we wanted to.

For each day, we want to print all of the hours of that day. If we think about it, we will
need a loop for the days. When we are inside this loop, we can imagine that we are
working with one single day. For this day, we will need to print all of the hours. Then,
when we are done, we will need to repeat the process for the next day. Instead of using the
variable name, i, we can use more meaningful names for the two loops. We will use day
for the loop that handles the days and hour for the loop that controls the hours.

Iteration with the for loop 171

This is what the program should look like:

 for day = 0 to 7

 print "day " + day

 for hour = 0 to 24

 print "hour " + hour

 end for

 end for

The output would look something like this:

day 0

hour 0

hour 1

hour 2

…

hour 23

day 1

hour 0

hour 1

hour 2

…

day 6

…

hour 21

hour 22

hour 23

Note
We are leaving out parts of this long output. The parts left out are indicated by
an ellipsis.

If we follow the logic of this program, we can see that we first start out with the outermost
loop, that is, the one that handles the days. We have a variable called day and assign it to
the starting value of 0.

Then, we print the text, day, and append the value stored in the variable named day.
Note that day within quotes is a string that will be printed as it is, and day without
quotes is the variable.

172 Program Control Structures

Then, we come to the innermost loop. This will handle the hours. This also starts out with
a value of 0 and uses a variable called hour. It will print the current hour in the same way
that we did with the days.

The program will run inside the inner loop until we get a value of 24 inside the variable,
hour. Then, it will exit. The program will now go back to the beginning of the outer loop,
the one handling days. It will increase the day variable by one, and check whether it is less
than 7. And, because it is, we will enter the loop, and the process will repeat.

It is also possible to go backward in a for loop. We just need to switch the starting and
end values and decrease the loop variable instead of increasing it. It can look something
like this:

for i = 10 to -1 step -1

 print i

end_for

Here, we will count down from 10 to 0. Since we want the value of 0 to be printed, we
have set the stop value to -1. We can see the stop value as the first value that should not be
part of the range. Since we are decreasing the variable by 1, the first value after 0 is -1. We
have also changed the step to -1. This will cause the variable to decrement by 1 each time.

Sometimes, we don't know how many times we want to repeat something. We can use
another type of for loop, that is, the while loop. Let's explore what that is.

Iteration with the while loop
Let's assume that we want to write a small dice-guessing game. The user will need to enter
a guess between 1 and 6. The computer will then roll a dice and let the user know whether
their guess was correct or not. The program will then allow the user to guess again, and
again, and again. However, if the user enters a value of 0 as their guess, we will let them
exit the game.

We have no way of knowing how many times the user wants to play the game. They might
give up after the first try or go on for hundreds of attempts (which is not that likely as this
is a rather dull game, but you get the point).

A for loop would not work that well for us here as we would need to say how many times
the user would need to play before we let them out of the loop. Instead, another type of
loop that is perfect for this scenario is the while loop. This loop works on a condition
instead of a count. If the condition is true, it will continue to loop.

Iteration with the while loop 173

The structure looks like this:

while condition

 …

end_while

If the condition is true, we will continue looping. This means that somewhere within the
loop, the condition must be able to change or it will never get out of the loop.

We will still need a variable to use in the condition. For example, we could use a Boolean
variable for this. Recall that a Boolean variable only can hold the values of true and
false, and a condition is something that will be evaluated to either true or false. It can
look like this:

continue = true

while continue

 …

 some code that eventually sets continue to false

end_while

Here, we declare a variable called continue and set it to true.

The while loop will look at the content of this variable, and, since it is true, it will enter
the loop.

It will now continue to loop as the variable has the value of true. It is, therefore, vital that
we, at some point inside the loop, assign a value of false to the variable so that we can
get out of the loop.

Let's now build our guessing game using a while loop:

continue = true

while continue

 print "I will roll a dice. Guess the result(end with 0): "

 input guess

 dice = random(1, 6)

 if guess == 0 then

 continue = false

 else

 if guess == dice then

 print "Yes, you got it!"

 else

174 Program Control Structures

 print "Sorry, better luck next time."

 end_if

 end_if

end_while

print "Thank you for playing this exciting game."

Before going over the program and how it works, take a look at the following output from
a potential game:

I will roll a dice. Guess the result(end with 0): 4

Sorry, better luck next time

I will roll a dice. Guess the result(end with 0): 2

Sorry, better luck next time

I will roll a dice. Guess the result(end with 0): 6

Yes, you got it!

I will roll a dice. Guess the result(end with 0): 0

Thank you for playing this exciting game.

Looking at the code, we can observe the following:

• We can see that we first create our variable that will keep track of when to stop
looping. Since the while loop runs if something is true, we set this variable to
true. If it is set to false, we will not enter the loop and the game will be over
before we even had a chance to play.

• Then comes the actual loop. Since the variable initially is set to true, we will enter
the loop.

• The first thing that happens in the loop is that there is some text that provides
instructions to the user. This is an excellent idea to let the user know how to exit
the game.

• We then take the input from the user and store it in a variable called guess.

• Now it is time to roll a virtual dice. The random(1, 6) will give us a random
number between 1 and 6. We store that random number in a variable named dice.

Before we check whether the user made a correct guess or not, we will examine whether
the user has entered 0 to indicate that the game is over. The reason we do that before we
check whether the guess is correct or not is because if the user wants to end the game, we
don't want to check their guess as we know 0 will indicate a wrong guess. We don't want to
treat the input of 0 as a guess.

Iteration with the do while loop 175

If guess is equal to 0, we want to exit the loop. We do that by assigning false to the
continue variable.

As the rest of the content of the loop is in an else block, we will skip that if the input was
0. When we move to the line with while, continue will now be false, and we will
exit the loop and print the thank you line at the end of the program.

If the user has, instead, entered something other than 0, we will enter the first else block.

The first line inside of this block is where we check whether the user made a correct guess.
If the value we store in guess and the value that is in the dice variable is equal, we have
a winner.

If so, we will print a message congratulating the user. If not, we will let the user know that
the guess was wrong.

Looking at the code, we can see that the indentation of the code helps us to see which part
belongs to which block. Note the block that starts with the following line:

if guess == dice then

This can only be reached if the user did not enter a value of 0 since it is within an else block.

As you can see, a while loop is a handy feature. It has a sibling, the do while loop,
which is almost identical to the while loop but with a little twist. Let's examine that next.

Iteration with the do while loop
The do while loop has the same features as the while loop. do while works on a
condition and can be used when we don't know how many iterations we will need to make.

The difference from the while loop is that where a while loop might never execute
because the condition could be false the first time we test it. In comparison, the do
while loop is guaranteed to run at least once. The reason for this is because the condition
is moved from the beginning of the loop to the end of it.

This can be good for several reasons, and it can make our guessing game slightly less
complicated. However, before we do that, we should look at what a do while loop
looks like:

do

 …

 some code that eventually sets the condition to false

while condition

176 Program Control Structures

The do keyword marks the beginning of the loop. As you can see, there is nothing more
on this line, so the program must run through the code inside the loop at least once to
reach the condition at the very end.

Just as with the while loop, we must have some code that somehow modifies the
condition so that we can get out of the loop.

One interesting aspect, when compared with the while loop, is that we don't need to
create a variable outside the loop to hold a value that we can use for our condition. The
reason for this is that, since we are checking the condition at the very end, we might be
able to perform the condition check using a variable that we create inside the loop. To see
this in action, let's modify our guessing game to use a do while loop. Take a look at the
following snippet:

do

 print "I will roll a dice. Guess the result(end with 0): "

 input guess

 dice = random(1, 6)

 if guess != 0 then

 if guess == dice then

 print "Yes, you got it!"

 else

 print "Sorry, better luck next time."

 end_if

 end_if

while guess != 0

print "Thank you for playing this exciting game."

The program is a bit shorter. This is because the continue variable is gone. If you look
at the condition found on the penultimate line, you will see that we are using the guess
variable directly to check whether it is not 0 (remember that the != operator means, does
not equal to). This means if the user does not input 0, we will repeat.

We have also changed the if statement inside the loop. It now checks whether the guess
variable is not equal to 0, and only if it is, we will treat it as a proper guess.

If we have a sequence of things, such as an array, for example, it can be handy to go
through that sequence one item at a time. We do have a loop for that too, which is the
for each loop. Let's explore how that works next.

Iterating over sequences using for each 177

Iterating over sequences using for each
When we have a sequence of things, we often want to go through it item by item. We can,
of course, do that using a for loop, like this:

names = ["Anna", "Bob", "Carl", "Danielle"]

for i = 0 to names.length

 print "Hi " + names[i]

end_for

On the first line, we declare an array of strings containing some names. We are using a
variable called names to store the values.

Then, we use a for loop, starting at 0. To find out how many times we will iterate, we
ask the array how many items it currently has stored. We do that by using the names
variable, and, by using a dot, we can get what is known as a property from the array. This
property is a value that stores how many items the array currently has. The way we can ask
a sequence how many items it has will differ from language to language, but it will most
likely be something like what we have done.

We need to remember two things here:

• When using an index to retrieve a value from the array, we start at 0. This means that
we need to give our loop a start value of 0, since Anna will be stored at that index.

• We need to make sure that the ending value is one that is greater than the last index
in the for loop. Our array has four values, so when we ask it for its length, that is
the value we get. However, when indexing into the array, we need to use the values
of 0, 1, 2, and 3. This is four values, and the counting starts at 0, not 1. Since we
know that the second value we give in the for loop is the ending value, and it is the
next value outside the range we want, then saying that we want to end at names.
length ensures that we only get the values of 0, 1, 2, and 3.

Inside the loop, you can see that we are using the loop variable to index into the array.
The first time, we will get Anna, the next time, we will get Bob, and so on.

An easier and safer way to do this is by using something known as a for each loop.
What this will do is it will go through a sequence and give us one of its items, one at a
time. Taking the same previous code and using such a loop will now be like the following:

names = ["Anna", "Bob", "Carl", "Danielle"]

foreach name in names

 print "Hi " + name

end_foreach

178 Program Control Structures

Now, this is much nicer. We can read this as follows:

• From the sequence names, give us the first item and store its value in the
name variable.

• In the first iteration, name will contain Anna. The loop keeps track of where it
is in the sequence. So, in the next iteration, name will be given the value of Bob.

Additionally, note that we don't need to keep track of how many things there are
in the sequence, and we don't need to use any indexing, since indexing starts at
0 and not 1.

This kind of loop gives us cleaner and more readable code that also reduces the risk of us
inserting any errors into the code.

We can use this loop to iterate over any sequence. As a string is a sequence of characters,
using this loop on a string will give us each character that the string is made up of.
Consider the following code example:

print "Please enter your name: "

input name

foreach character in name

 print character

end foreach

Here, we ask the user for a name and store the answer in a variable called name. We will
then iterate through the variable, one character at the time. The current character will be
stored in a variable called character. Inside the loop, we will just print that character.

Running this program will give us an output like this:

Please enter your name: Charlotte

C

h

a

r

l

o

t

t

e

Summary 179

We have looked at four different ways to make iterations and all of them have their
different use cases. View them as a set of tools that we have at our disposal and can pick
and use as needed. Add to that the tools for selection that we looked at earlier in this
chapter and the toolset will keep improving!

Summary
Sequence, selection, and iteration are the three pillars that programming rests upon, and,
in this chapter, we have covered the latter two.

Selection is when we test values in variables using a condition that can be either true or
false. If our test turns out to be true, we can let the program execute a block of code. If it
turns out to be false, we can have another block that only runs if in the case. This is done
with the help of if statements.

Sometimes, we have multiple options to choose from, and we need to pick one. We could
then use a switch statement. Using it instead of an if statement can make your code
less verbose and easier to read.

The common task of repetition can be done in at least four ways, with the most common
being the for loop. This loop will let us iterate a fixed number of times.

When we don't know how many times we want to iterate, we can use either a while loop
or a do while loop. They will both iterate as long as a condition is true. This will let us
write very flexible applications that might repeat something twice.

The difference between the while loop and the do while loop is where the condition
is located. In a while loop, it comes at the beginning, and, in a do while, it comes at
the end.

If we have a sequence of something, using a for each loop is the best choice, since it
will go through the sequence and give us one of its objects at a time. It is a safe structure to
use because it makes sure that we actually get all the values and don't miss out on the first
or the last one.

In the next chapter, we will structure our code with the help of functions. They are a great
way to make our code easier to read, understand, and maintain. They are also perfect for
helping us to reuse the code that we have written.

8
Understanding

Functions
There are a number of useful concepts that we, as programmers, always should follow.
One is to write code that is easy to read and understand. Another is to avoid duplicating
code. When you start out your career as a programmer, you will find yourself copying and
pasting code and just changing some small things here and there. This is a bad habit as it
nullifies the first concept of code that is easy to read because reading more or less the same
lines over and over is tedious and it is hard to spot the tiny differences.

A better solution is to package code that we want to reuse several times into a function.
A function is a way for us to give a name to a block of code and then, with this name, the
code block can be called over and over every time we want it to execute.

In this chapter, you will learn the following:

• Deciding what goes into a function

• Writing a function

• Returning values from a function

• Passing arguments to a function

• Working with local and global variables

182 Understanding Functions

Deciding what goes into a function
A function is a way for us to package a code block and give it a name. This is a good idea
for several reasons. Back in Chapter 4, Software Projects and How We Organize Our Code,
we talked about software modules and that dividing our code into small parts is wise as it
will give us code that is easier to read, update, and maintain. The same reason applies to
functions as they, too, package our code into smaller units. Another reason we want to use
functions is so we can easily reuse parts of our code.

When deciding what will go into a function, we can have one rule of thumb. A function
should always do only one thing and it will be named after what reflects that. What this
means is that if we have a function called send_email_and_print_invoice, we are
doing things wrong. This function does two distinct tasks and should, therefore, be two
separate functions. We can rephrase this rule with a quote by Robert C. Martin, the author
of an excellent book on writing clean code:

"A function should do something or answer something, but not both."
What this means is that a function either should have a very well-specified task and
only do that task and nothing else or it should answer a well-specified question and only
answer that question and nothing else, and a single function should absolutely not do both
of these things.

 Another quote from Robert C. Martin about functions is as follows:

"The first rule of functions is that they should be small."
This is an interesting quote because it raises some questions. What if I have a very well-
defined problem that I would like to package within a function so it follows the first
quote, but the problem is rather complex and the resulting function ends up being several
hundred lines of code? Would that not contradict the second quote? Yes, it would and we
will need to deal with it. We can take this long function and find subtasks and move these
subtasks into separate functions. How we split a function into several smaller functions
might not be that obvious at first glance, but this is something we will see in the Splitting
the code further section.

If we create a function with the first quote in mind, it does only one thing, and if this is
true, would not breaking it up into smaller things contradict the second quote, meaning
that the function does several things? No, not necessarily. Think of something you often
do, such as making breakfast. That is one single thing, but it can be broken down into
several smaller things that together make up the tasks of cooking breakfast. You would
make coffee or tea, toast some bread, boil an egg, and so on.

Deciding what goes into a function 183

Observe the following figure:

Figure 8.1 – A function that uses other functions to fulfill its task

The preceding figure illustrates how a function, here called function A, has been broken
up into several smaller functions, and to accomplish its task, it uses subtasks of function
B, function C, and function D. Compare this to the following figure, where we illustrate
making breakfast in the same way:

Figure 8.2 – The task of making breakfast broken down into subtasks

Functions are an important building block of computer programs; let's see how we can
write them. So, after understanding what comprises a function, let's see how to use it.

184 Understanding Functions

Writing a function
Let's see what a function looks like in code:

function name()

 code within this function

 more function code

end_function

Here, we see that a function has a name, just like a variable. The conventions used by
a language for naming functions are usually the same as those used for variables. If
you don't remember what those were, you can find them in Chapter 6, Working with
Data – Variables, in the Naming conventions section.

After the function name, we find open and close parentheses. Whenever we refer to this
function, they will be included after the name. They will also have another use, which we
will see later in this chapter.

After that, we see a code block, the body of loops and if statements, for example. This is
the code that will be executed when the function is called.

A function can be called just by using its name, and we must not forget the parentheses.
Calling the preceding function would look like this:

name()

All of the code within this function will now run. Once this is done, the program
execution will return to where the call occurred and continue from there.

The following program illustrates this:

function say_hi()

 print "Hi there!"

end_function

print "Before the function"

say_hi()

print "After the function"

Writing a function 185

Even if the code for the function is above the rest of the function, it will not execute until
we call the function, so the output when running this program will be this:

Before the function

Hi there!

After the function

We can now call the function as often as we like, and all of the code within it will run each
time. So, for example, check the following code:

function say_hi()

 print "Hi there!"

end_function

print "Before the function"

say_hi()

say_hi()

say_hi()

print "After the function"

We can see that we are making three calls to the function. This is reflected in the output,
as follows:

Before the function

Hi there!

Hi there!

Hi there!

After the function

Now that we know what a function looks like, we can try to write a more realistic one and
see how it can make code easier to read and better structured.

Moving code into a function
Assume that we are writing a program that calculates how many seconds have passed
since midnight.

186 Understanding Functions

The code for this might look like the following:

time_now = now()

time_midnight = Date(time_now.year, time_now.month. time_now.
 day)

time_diference = time_now – time_midnight

seconds_since_midnight = time_difference.total_seconds()

This code will first get the current date and time. Note that it is the full date-time, that is, the
year, month, day, hour, minute, and second. All of this is stored in the time_now variable.

On the second line, we create an object that will hold the date and time for the previous
midnight. We are using the current year, month, and day. As we have the current date
and time in the time_now variable, we can use it to get the current year, month, and day.
This will set the hour, minutes, and seconds to 0 as we did not provide a value for them.
The idea is that today's date with hour = 0, minute = 0, and second = 0 is the
previous midnight.

Then, we take the current date and time and subtract the date and time for midnight. This
will give us the time difference between now and past midnight.

Finally, we use this difference and convert it into the total number of seconds. In this case,
the time_difference variable is an object that can hold time information, that is, how
many hours, minutes, and seconds have elapsed since midnight. How this works will differ
from language to language. Here, this object provides the functionality to give us this
time in the total number of seconds. Now we have a variable called seconds_since_
midnight that contains the number of seconds since the last midnight.

But if we want to do this now and again in a number of places in our program, we will end
up with something like this:

time_now = now()
time_midnight = Date(time_now.year, time_now.month. time_now.
 day)
time_diference = time_now – time_midnight
seconds_since_midnight = time_difference.total_seconds()

do some other stuff
do some more stuff

time_now = now()
time_midnight = Date(time_now.year, time_now.month. time_now.
 day)

Writing a function 187

time_diference = time_now – time_midnight
seconds_since_midnight = time_difference.total_seconds()

As we can see, the four lines that calculate the time get repeated. And we would need to do
this every time we want to get the number of seconds that has passed since midnight.

A better solution would be to move the code where we perform the calculation into a
function. It would look something like this:

function calculate_seconds()

 time_now = now()

 time_midnight = Date(time_now.year, time_now.month. time_
 now.day)

 time_diference = time_now – time_midnight

 seconds_since_midnight = time_difference.total_seconds()

end_function

Every time we need the calculation, we can now call the function and we no longer need
to repeat the code.

The full program will now look like this:

function calculate_seconds()

 time_now = now()

 time_midnight = Date(time_now.year, time_now.month. time_
 now.day)

 time_diference = time_now – time_midnight

 seconds_since_midnight = time_difference.total_seconds()

end_function

calculate_seconds()

do some other stuff

do some more stuff

calculate_seconds()

As we can see, this is much better as we only need to code for calculating the time once.
But we do have a problem. The result from the calculation is trapped within the function.
By trapped, I mean that we calculate the correct number of seconds but the value obtained
can't get out of the function so there is no way for us to use this value outside of it. To
solve this problem, we will need to return the result back out to the caller. Let's see how
that works.

188 Understanding Functions

Returning values from a function
The idea behind a function is that it not only can be used to package code so we can
reuse it over and over but can also do something that will produce some sort of value.
In our example with the time calculator, the function has calculated a result, the number
of seconds that have elapsed since midnight, and we now want that value at the location
where we called the function. Functions have the ability to return data, and this is a
feature we can use to get the value.

In its simplest form, returning a value from a function works like this:

function greet()

 return "Hello my friend"

end_function

result = greet()

print result

Here, we have a function called greet. All it does is return a string containing the
greeting, Hello my friend. Remember that the code within a function is not executed
until the function is actually called. The call happens below the function. Consider what
happens when the following row is called:

result = greet()

Things work as they always do. The thing to the right of the assignment operator (=) is
executed first. This is the call to the function.

Now the program will jump to the actual function, executing the code within it. The only
thing inside the function is this:

return "Hello my friend"

We must understand two things about this line. First, a line with the return keyword
will exit the function, even if there is more code following it. This might sound strange,
and we will soon come back to that. Secondly, it will return whatever follows the word
return back to the location that called the function.

This will take us back to this line:

result = greet()

We are now done with the operation on the right of =, and that has returned the Hello
my friend string. That string is now assigned to the result variable.

Returning values from a function 189

On the last line, the content of that variable is printed.

Now, this is a silly program, as the function always returns the same thing, but it illustrates
how return works. We can now use this in our function that calculates the number of
seconds since midnight, as follows:

function calculate_seconds()

 time_now = now()

 time_midnight = Date(time_now.year, time_now.month. time_
 now.day)

 time_diference = time_now – time_midnight

 seconds_since_midnight = time_difference.total_seconds()

 return seconds_since_midnight

end_function

We did this by just adding one line at the end that returns the content of the
seconds_since_midnight variable.

As this variable is created on the line just above return, we could actually remove
it and instead return the result immediately like this:

function calculate_seconds()

 time_now = now()

 time_midnight = Date(time_now.year, time_now.month. time_
 now.day)

 time_diference = time_now – time_midnight

 return time_difference.total_seconds()

end_function

We can now call this function over and over and get the current number of seconds since
midnight, as follows:

seconds_since_midnight = calculate_seconds()

print "Seconds since midnight: " + seconds_since_midnight

do some other stuff

do some more stuff

seconds_since_midnight = calculate_seconds()

print "Seconds since midnight: " + seconds_since_midnight

190 Understanding Functions

Here, we take the result returned back from the function and store it in a variable called
seconds_since_midnight. We then print a text together with the result. The output
might look something like this:

Seconds since midnight: 36769

This is great because now we can package a piece of code and we can call it whenever we
want that code to run. We can also get data back from the function. But there is one piece
missing. What if we would like to send data to the function? We can do that with the help
of function arguments.

Function arguments
Often, we want our functions to be somewhat flexible, so they don't do exactly the same
thing every time we call them. Consider the following two functions:

function add_2_and_3()

 return 2 + 3

end_function

function add_5_and 9()

 return 5 + 9

end_function

These two functions add two numbers and return the result. The first one adds 2 and
3, and the second one does the same but with 5 and 9. Now, these are just two pairs of
numbers. If we would like to have a function that could add any numbers, we would need
to create an endless number of functions.

But if we look at what the functions do, we can see that they are actually doing the same
thing. They add two numbers and return the result. The only thing that changes are the
numbers that are used in the addition operation.

What we want is to be able to pass the numbers we want to be added to the function so
it can use them in the calculation, and by that, only have one function that can add any
two numbers.

Function arguments 191

We can pass data to functions. We say that the function can accept arguments. For a
function that can add two numbers, this can look like this:

function add(number1, number2)

 return number1 + number2

end_function

Here, we can see that we now have made use of the parenthesis that has followed the
function name. This is where we can specify variables that will receive the data we want
to pass to the function. Now we can use this function like this:

result = add(73, 8)

print(result)

result = add(2, 3)

print result

result = add(5, 9)

print result

The output, when running this program, will be this:

81

5

14

As we can see, we can now serve any two numbers using only one single function. Let's
examine this a bit closer to really understand how this works.

Let's remove two of the calls to the function and only focus on what happens when we
call the function the first time. We will have this code:

function add(number1, number2)

 return number1 + number2

end_function

result = add(73, 8)

print result

192 Understanding Functions

When we make the call to the function, we are passing in the values, 73 and 8. These are
called arguments. On the receiving side, that is, in the add function, these two values will
be assigned to two variables, number1 and number2. These are called the parameters
of the function. The first argument that we pass in, the value, 73, is assigned to the first
parameter, number1, and the second argument, the value, 8, will be assigned to the
parameter called number2.

When we enter the function body, we now have these two variables and they are assigned
the values that were passed to the function. So, this time, the variables will have the
values 73 and 8 respectively.

When we call the function with the values, 2 and 3, then number1 will get 2 and
number2 will get 3. This means that the parameters in the function will receive data in
the same order as the paramters are passed to the function:

add(4, 5)

Here, number1 will get the value 4, and number2 will get the value 5:

add(5, 4)

Here, things are reversed as number1 gets 5 and number2 gets 4.

Now we can create functions that can take arguments and return values. Let's put all of
this together and use it in a more realistic application, our automatic light app.

Now, having a function that adds two numbers together is pointless as we already have an
operator that performs addition. It is only used here to illustrate the concept of arguments.

Functions in action
If we again go back to our application for turning on the lights outside our house and
focus on the application running on our phone, we will see that we have at least two
distinct things we need to do over and over again.

We will need to get our current position and we need to calculate our distance to home so
we know whether it is time to turn on the lights or not.

Functions in action 193

These are two distinct tasks, and they are very well suited to being packaged up into two
different functions, namely, get_current_position and calculate_distance_
to_home, as shown in the following figure:

Figure 8.3 – main_application calls two different functions

This diagram shows that we have a block that we call main_application. This is a
function, and it calls a function called get_current_position that will return the
longitude and latitude, indicating the current position of the phone. Equipped with this
information, main_application can now make another function call, this time, to a
function called calculate_distance_to_home, and pass the longitude and latitude
just obtained to it. This function will do some calculations and return either true or
false, indicating whether we are within the range or not.

The question is, how did I decide to divide the code into these functions? Would we even
need to have them, or could this program be written without the use of them? The answer
is yes, it could, and we will now see why it is a good idea to use functions instead of just
having all of the code in one place.

194 Understanding Functions

In Chapter 7, Program Control Structures, we had the following figure:

Figure 8.4 – Flowchart of the phone application

Here, we can see that we have a loop that runs forever (remember that forever in
programming means as long as the program is running). We also have a selection
statement that checks whether we are within the range and if we are, the signal is sent.
After that, no matter whether we sent a signal or not, we will go back to the beginning
and ask for our current position again.

Now, imagine the code for this application. It might look something like this:

while true

 some code that connects to the phone GPS

 some code that asks the GPS for the current position

 some code the calculates the distance to our home

 if distance_to_home < range_limit then

 some code that connects to the home computer

 some code that sends a notification to home computer

 end_if

end_while

Functions in action 195

Every line that starts with some code will most likely be made up of several code lines in
the real application.

If we read the code, we can see that we start ours with a while loop that runs as long as
true is true. true will always be true so this is how we can create an endless loop that
will just go on and run forever.

If you compare the program to the flowchart in figure 8.4, you can see that the logic
is identical:

• The oval at the top is the two lines in the code, which is connecting to the GPS
and communicating with the GPS.

• The rectangle that follows the oval is represented by the code that calculates
the distance.

• The diamond shape is the if statement and the code within the if statement is the
final rectangle in the flow chart.

• The two arrows that bring us back to the top is the while loop that encapsulates
the rest of the code.

Looking at the code, it might not look that bad, but remember that this is just an outline
of what needs to be done.

If we now start to change this to see what the program actually might look like, we can
change the two first lines into something like this:

location = Location

my_latitude = location.get_latitude()

my_longitude = location.get_longitude()

The first line creates some sort of location object that can be used to communicate with
the GPS. Note that we store this object in a variable called location, with all lowercase
letters. Location with a capital L, to the right, is the thing that creates this object for
us. To see how this is actually done, we will need to read the documentation for the
programming language we are currently using. Most likely, it will be done in a line that
resembles this.

We can then use this location variable to get the current latitude and longitude.

196 Understanding Functions

Calculating the distance between two geographical coordinates is something that most of
us can't even imagine how we should do. Searching online might scare us. What we will
get back is that we must use something called the haversine formula (there are other ways
to accomplish this too, but for this example, we will stick with this formula). Then, we get
something like this that will explain the formula:

𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠2(∆𝜑𝜑/2) + cos 𝜑𝜑1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝜑𝜑2 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠2(∆𝜆𝜆/2)

𝑐𝑐 = 2 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 (√𝑎𝑎, √(1 − 𝑎𝑎))

𝑑𝑑 = 𝑅𝑅 ∙ 𝑐𝑐

Here, ϕ is latitude, λ is longitude, and R is the Earth's radius (the mean radius is 6,371
km). Note that all angles need to be in radians.

Don't be scared if you don't understand any of that. Most likely, someone else has already
looked at that formula and translated it into source code for the language you are using. This
is good as we can use it without actually understanding the formula. We must make sure,
though, that the calculations done with it match other tools that do the same things. We will
soon do such a test, but first, let's just see what such an implementation can look like.

In this example, we pretend that we are at the Musée des Lettres et Manuscrits in Paris
and that we rent a home on Avenue Victor-Hugo in the same city. Musée des Lettres et
Manuscrits is located at latitude 48.855421 and longitude 2.327688. Our pretend home
on Avenue Victor Hugo is located at latitude 48.870320 and longitude 2.286560:

my_latitude = 48.855421

my_longitude = 2.327688

home_latitude = 48.870320

home_longitude = 2.286560

earth_radius = 6371

my_lat_radians = radians(my_latitude)

my_long_radians = radians(my_longitude)

home_lat_radians = radians(home_latitude)

home_long_radians = radians(home_longitude)

lat_distance = home_lat_radians – my_lat_radians

long_distance = home_long_radians – my_long_radians

a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

distance = 2 * earth_radius * asin(sqrt(a))

print "The distance is " + distance + " km"

Functions in action 197

Wow, scary stuff, but the good thing is that we don't need to understand it to use it.
We must just make sure that it works. As we can see at the top, we have the coordinates
to the museum (that we pretend that we are visiting), followed by the coordinates to
our home (that we pretend that we are renting). Running this program will give us the
following output:

The distance is 3.4345378351411333 km

Plugging these same coordinates into an online geo coordinate distance calculator will
give us the result shown in figure 8.5:

Figure 8.5 – Online geo coordinate distance calculator

As we can see, the result matches ours. We should perform more tests by trying other
coordinates, both in our program and the calculator, to verify that the results match.

Great, now we can perform this calculation even if we don't understand all of the details
for how it works.

We now have a distance that tells us how far we are from our Paris home. Now we need
to decide how close we need to be to our home before we turn on the light. Maybe 500
meters is a good distance as we don't want to turn it on too early and not too late; 500
meters is 0.5 kilometers, so this is the value we can compare our distance to:

if distance < 0.5 then

 some code that connects to the home computer

 some code that sends a notification to home computer

end_if

198 Understanding Functions

For now, let's ignore the code that connects to the home computer and sends the
notification, and just put everything together that we have so far:

while true

 location = Location

 my_latitude = location.get_latitude()

 my_longitude = location.get_longitude()

 home_latitude = 48.870320

 home_longitude = 2.286560

 earth_radius = 6371

 my_lat_radians = radians(my_latitude)

 my_long_radians = radians(my_longitude)

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 distance = 2 * earth_radius * asin(sqrt(a))

 if distance < 0.5 then

 some code that connects to the home computer

 some code that sends a notification to home computer

 end_if

end_while

Reading this code is hard and confusing. What can we do about it? Functions are the
answer. Let's see how that works.

Splitting the code further
When breaking a long code into small functions, we must remember that a function
should do one thing or answer one question.

Functions in action 199

One trick we can use to identify separate tasks within the code is to read it from beginning
to end, and when we feel that the application shifts its focus from one thing to another,
we can insert a blank line into the code. Let's do that for the application that we have
used so far:

while true

 location = Location

 my_latitude = location.get_latitude()

 my_longitude = location.get_longitude()

 home_latitude = 48.870320

 home_longitude = 2.286560

 earth_radius = 6371

 my_lat_radians = radians(my_latitude)

 my_long_radians = radians(my_longitude)

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 distance = 2 * earth_radius * asin(sqrt(a))

 if distance < 0.5 then

 some code that connects to the home computer

 some code that sends a notification to home computer

 end_if

end_while

As we can see, there are now blocks of code separated by blank lines. Let's study
them closely.

There is nothing we can do about the first line with while, at least not at this point. It will
just sit at the top and make sure that we repeat the code over and over.

200 Understanding Functions

After the line with while, three lines follow that all have to do with establishing our
location. When reading the code, we should ask ourselves, what task does this line help us
to accomplish? For all of these lines, the answer will be, answer the question where we are.
But when we hit the line that begins with home_latitude, this is no longer true. We are
now in a block of code that does something else. The code has shifted focus, so we insert a
blank line.

We now have two lines that answer the question "where do we live?". They obviously
belong together. But after these two lines, there is a line defining the radius of the earth.
This is a noticeable shift in the focus so why did I not insert a blank line here?

The answer can be found if we look closer at these three lines. All three do have something
in common. They all have fixed values that will never change. We say that these are
constant values. We will deal with them later, but let's move on.

Then, we come to a larger block that deals with the distance calculation. That is a single task.

In the end, we have the if statement containing the signaling to the home computer that
we have left unimplemented so far.

To begin with, we have two strong candidates for becoming functions here and that is
where we get our current location and the distance calculation. Let's try to turn them into
functions and we start with the part that tells us where we are.

Currently, that part of the code looks like this:

 location = Location

 my_latitude = location.get_latitude()

 my_longitude = location.get_longitude()

We can move these three lines into a function like this:

function get_current_position()

 location = Location

 my_latitude = location.get_latitude()

 my_longitude = location.get_longitude()

end_function

Now, we must check two things. First, does this function need any data as input? The
answer is no. To accomplish its task, it does not need any more data. This means that this
function will not take any arguments.

Secondly, will this function need to return any data back to the location where we called
the function? The answer to this is yes, but it is a bit tricky.

Functions in action 201

The current longitude and latitude are now created inside a function and this makes it
inaccessible outside it. These are called local variables, a topic we will discuss in more
detail at the end of this chapter. We had the same problem with the function that
calculated the number of seconds since midnight. We solved it then by returning the result
using the return keyword. We will need to do that here too, but most programming
languages will only let us return one single value from a function, but we need to return
two values, both the latitude and longitude.

We can get around this limitation by putting the two values inside an array. Remember
that an array is a sequence of things, and an array is treated as one single item, even if it
contains many values.

We can change our function so it looks like this:

function get_current_position()

 location = Location

 my_latitude = location.get_latitude()

 my_longitude = location.get_longitude()

 return [my_latitude, my_longitude]

end_function

Note that the two values are inside square brackets. This creates an array and inserts
latitude as its first value and longitude as its second.

We must now call the function and receive the coordinates in location in the code
where we previously fetched the location. The while loop now looks like this:

function get_current_position()

 location = Location

 my_latitude = location.get_latitude()

 my_longitude = location.get_longitude()

 return [my_latitude, my_longitude]

end_function

while true

 position = get_current_position()

 home_latitude = 48.870320

 home_longitude = 2.286560

202 Understanding Functions

 earth_radius = 6371

 my_lat_radians = radians(my_latitude)

 my_long_radians = radians(my_longitude)

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 distance = 2 * earth_radius * asin(sqrt(a))

 if distance < 0.5 then

 some code that connects to the home computer

 some code that sends a notification to home computer

 end_if

end_while

On the first line inside the while loop, we are now making a call to the function. We
will get the array containing the latitude and longitude and we store them in a variable
we call position.

We have a problem now as, later on, when we calculate the distance, we will be using the
variables, my_latitude and my_longitude. These two now only exist inside the
function, so when we reach the lines that convert them into radians, we will get an error
saying that my_latitude is undefined. This is how a programming language will tell
you that it has no idea what my_latitude is.

The problem here is that we have packaged the coordinates inside an array that we have
named position. We could solve this by replacing the two problematic lines with this:

 my_lat_radians = radians(position[0])

 my_long_radians = radians(position[1])

Remember that we can access individual items within an array by using the index to the
position that the item has within the array. Also, remember that the indexing starts at 0.

Note
If you need a reminder on how arrays work, we talked about them in Chapter 6,
Working with Data – Variables in the Composite types section.

Functions in action 203

As we added the latitude as the first element in the array, it can be found at index 0 and
the longitude at index 1. This code is harder to read through as we must know how the
array was created within the function to know that the latitude came before the longitude.

Another option that would make our code easier to read would be to unpack these two
values into variables again like this:

 position = get_current_position()

 my_latitude = position[0]

 my_longitude = position[1]

Now, after we are making the call, we insert the first value into a variable called
my_latitude and the second into a variable called my_longitude. As we picked the
same name that was later used in the calculation, we will not need to change it at all if we
use this option.

I will go with a third option and will leave the variables in the array for now and not
change the code in the calculation. We will soon see why.

We can now turn our attention to the calculation code and turn that into a function. This
function will now look like this:

function calculate_distance_to_home()

 my_lat_radians = radians(my_latitude)

 my_long_radians = radians(my_longitude)

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 distance = 2 * earth_radius * asin(sqrt(a))

end_function

Again, we will now check to see whether this function needs any more data to fulfill its
task. Yes, as this is written, we are missing several things. This function does not know
about our latitude and longitude. It does not know the home latitude and longitude either
and earth_radius is also unknown to it.

204 Understanding Functions

Let's turn the attention back to the three lines where we defined the home location and
the radius of the earth. Who will need this data? When we think about it, the answer is,
only the function we just created. This means that we can move these three lines into the
function like this:

function calculate_distance_to_home()

 home_latitude = 48.870320

 home_longitude = 2.286560

 earth_radius = 6371

 my_lat_radians = radians(my_latitude)

 my_long_radians = radians(my_longitude)

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 distance = 2 * earth_radius * asin(sqrt(a))

end_function

We add them at the top, so they are all defined when they are needed later on in
the function.

Now, we are only missing the latitude and longitude for our current position. This
function must accept them as their arguments. We can now either say that this function
takes two arguments, latitude and longitude, as separate parameters like this:

function calculate_distance_to_home(my_latitude, my_longitude)

Another option is that we can let this function accept an array with the values. This suits
our needs as we know that we will get an array back from the other function we wrote. So,
let's use that option.

It will look like this:

function calculate_distance_to_home(current_position)

Functions in action 205

We now accept an array, and we call it current_position. We must now make
one change inside the function on the lines where we use my_latitude and my_
longitude. We can do the same as we saw before and index into the array as follows:

 my_lat_radians = radians(current_position[0])

 my_long_radians = radians(current_position[1])

The full function now looks like this:

function calculate_distance_to_home(current_position)

 home_latitude = 48.870320

 home_longitude = 2.286560

 earth_radius = 6371

 my_lat_radians = radians(current_position[0])

 my_long_radians = radians(current_position[1])

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 distance = 2 * earth_radius * asin(sqrt(a))

end_function

Putting it all together
Now we must check whether this function needs to return something. It calculates the
distance and we need that outside the function, so that value needs to be returned.

Again, we have two options. We can either return the value contained inside the variable
distance like this:

 distance = 2 * earth_radius * asin(sqrt(a))

 return distance

206 Understanding Functions

Or, if not the previous option, we can make this shorter, though, as the distance
variable is only used to hold the distance for one line. So, instead of using it to hold the
value we want to return, we can return the result from the calculation directly and get rid
of the distance variable. It would look like this:

 return 2 * earth_radius * asin(sqrt(a))

That is better. The function is now finished and looks like this:

function calculate_distance_to_home(current_position)

 home_latitude = 48.870320

 home_longitude = 2.286560

 earth_radius = 6371

 my_lat_radians = radians(current_position[0])

 my_long_radians = radians(current_position[1])

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 return 2 * earth_radius * asin(sqrt(a))

end_function

We will now need to call it. Our while loop is now much cleaner and its main
responsibility is to call our two functions. The loop now looks like this:

while true

 position = get_current_position()

 distance = calculate_distance_to_home(position)

 if distance < 0.5 then

 some code that connects to the home computer

 some code that sends a notification to home computer

 end_if

end_while

Functions in action 207

We call the new function by passing the position array to it, and we will get the
distance back and store it in a variable called distance.

Now, this is more pleasant to look at. If you think about it, you can treat this as a table
of contents in a book. On the first line, we call a function called get_current_
position. The name of the function is chosen to reflect what it does. So, reading this
line explains what happens. We can now decide whether we are interested in seeing what
happens when we get the current position or not. If not, we can just accept that we get the
current position back. If we do want to know how it works, we can go to the function and
read the code there.

We can then treat the next line in the same way. The name tells us what the function does,
so there is no need for us to go and read that. We can trust that it does its job and that we
get a distance back.

The code is easier to read, maintain, and update, thanks to the use of functions. Another
benefit is that complex distance calculation is hidden away in a function and we don't
need to see it if we don't want to.

We now only have the part inside the if statement left. To communicate with the home
computer, we can use something called sockets. The concept of sockets is rather advanced,
and we will not go into any details of it here. We can just say that all of that code will go
into a function of its own and we can call that function from within the if statement by
using a final while loop that looks like this:

while true

 position = get_current_position()

 distance = calculate_distance_to_home(position)

 if distance < 0.5 then

 notify_home_computer()

 end_if

end_while

Compare this to the code we started with, which looked like this:

while true

 location = Location

 my_latitude = location.get_latitude()

 my_longitude = location.get_longitude()

208 Understanding Functions

 home_latitude = 48.870320

 home_longitude = 2.286560

 earth_radius = 6371

 my_lat_radians = radians(my_latitude)

 my_long_radians = radians(my_longitude)

 home_lat_radians = radians(home_latitude)

 home_long_radians = radians(home_longitude)

 lat_distance = home_lat_radians – my_lat_radians

 long_distance = home_long_radians – my_long_radians

 a = sin(lat_distance / 2)**2 + cos(my_lat_radians) *

 cos(home_lat_radians) * sin(long_distance / 2)**2

 distance = 2 * earth_radius * asin(sqrt(a))

 if distance < 0.5 then

 some code that connects to the home computer

 some code that sends a notification to home computer

 end_if

end_while

This is a major clean up of the code and is indeed very helpful, not to mention less scary
and more pleasing to the eye!

In this section, we have seen that when we create a variable inside a function, it becomes
inaccessible for all of the code outside that function. We will now discuss this further with
local and global variables.

Local and global variables
A variable declared (created) inside a function is called a local variable, and it can only
be accessed from within the function. Outside the function, it is as if the variable never
existed at all. Check the following code:

function my_function()

 name = "Lisa"

end_function

my_function()

print name

Local and global variables 209

Here, we create and assign a value to the name variable inside the my_function
function. Outside the function, we first call the function, and then we try to print the
name. The program will crash with an error on the line where we try to print the name.
The reason is that the name variable is unknown in this part of the program. It is only
valid as long as we execute code inside the function.

This is a local variable. It is local as it is created inside the function.

If we instead change the program so it looks like this, things will be different:

name = "Bill"

function my_function()

 name = "Lisa"

end_function

my_function()

print name

It might be hard to see what happens here. To understand this, we must read the code as
the compiler/interpreter will read the code when it executes it:

• It will start at the first line and see that we create a variable called name and assign
the Bill string to it.

• It will then continue and see the function. It will not run the function; just
remember that it exists.

• Then, we call the function, so the execution of the program will now jump up and
run the code inside the function.

• Here we find a line where we assign the Lisa string to a variable called name. As it
already knows about this variable, it will change its content and will store Lisa in it
and the Bill string is now gone.

• The end of the function is now reached, so the execution jumps back down to where
it came from.

• On the last line, the content of the variable name will be printed, which is Lisa.

From the working of the preceding code, we saw that as we moved the declaration of the
variable out of the function, it turned global (for use in code) and so it is now a global
variable. A global variable can be accessed from any location.

210 Understanding Functions

Some programming languages will not let us modify a global variable, as we did in the
preceding example, but instead of the assignment of Lisa within the function, it will
create a new variable with the same name.

It might sound as if global variables are the way to go. But it is actually the opposite. We
shall always strive to use local variables as often as we can. The reason is that it is hard to
control global variables.

Imagine that you have a program that is thousands of lines long, and all variables are
global. They get changed here and there and all over, and then you discover that one of the
variables has a value that would be impossible for it to have. Somewhere, a code line has
changed this variable in a bad way. This is an error in our program, and we need to find it
and fix it. But where is that line? As all parts of the program can change that variable (and
all of the others that are declared global), it can be extremely hard to find that location. It
might also be so that the reason this variable has a bad value is that some other variable
had a bad value and that we discovered the error was just a side effect.

Code like this is called spaghetti code. The reason it is called this will be obvious if you
look at figure 8.6, which illustrates how five functions change four global variables. Look
at it and try to figure out how changed what and when:

Figure 8.6 – Five functions changing four global variables

Summary 211

By using local variables, we will make things much cleaner and easier to understand. We
can do this by passing data into a function using arguments and returning results from the
function to the location that called it.

We should also note that function parameters are considered local variables. What this
means is that if we look at the calculate_distance_from_home function that we
created earlier, we can see that we have a parameter called current_position:

function calculate_distance_to_home(current_position)

It will be treated as a local variable within this function.

Summary
In this chapter, we have seen that functions are a powerful tool we can use to organize and
structure our code to make it more readable and reusable.

We saw how functions have a name, and that name can be used to call them. Calling a
function makes the code inside it to execute. This is something we can do over and over
again as often as we need to.

Sometimes, we want functions to produce a value as a result of its operations. In those
cases, we can let the function return something. We can then use that value in the location
where we called the function.

Then, we learned that we can also pass data into a function. This can be done using function
arguments. The function receives these arguments in local variables called parameters.

With the introduction of functions, we also have the concepts of variables being either
global or local. We saw that global variables can be accessed from any location within the
program and local variables can only be used within the function where they are created.

Sometimes, things will not go according to plan, and we will discover that our program
either produces the wrong results or simply crashes. In the next chapter, we will see how
we can identify bugs in our programs and handle errors that can be harder to predict.

9
When Things Go

Wrong – Bugs and
Exceptions

Writing software can be hard, and when we write it, we will make errors. We will,
unintentionally, introduce bugs to our application.

Some of them will be rather trivial to find and fix, but some can set us off on a wild goose
chase through the code where we try to understand the reasons as to why things are not
working the way we expect them to.

It is not unheard of that people spend days, and sometimes weeks, attempting to track
down a bug. To be able to find bugs in our applications, we will need to understand what
kinds exist and how they affect the way our applications run. This chapter will help us
recognize them.

214 When Things Go Wrong – Bugs and Exceptions

In this chapter, you will learn about the following topics:

• Understanding software bugs

• Finding bugs using a debugger

• Working with exceptions

• Handling exceptions

In this chapter, we will also talk a bit about variables and data types. Look back at Chapter
6, Working with Data – Variables, if you need to refresh your memory about these.

Understanding software bugs
When writing software, things will not always go according to plan. The programs we
create will contain bugs.

The term bug to describe an error, flaw, or fault in a program dates way long before we had
any computers. It has been recorded as a part of engineering jargon since the 1870s. In a
letter, dated 1878, to an associate, Thomas Edison wrote the following:

"It has been just so in all of my inventions. The first step is an intuition,
and comes with a burst, then difficulties arise—this thing gives out and [it
is] then that "Bugs"—as such, little faults and difficulties are called—show
themselves and months of intense watching, study, and labor are requisite

before commercial success or failure is certainly reached."
The first mechanical pinball game, Baffle Ball, was advertised as being free from bugs in
1931, and in 1944, Isaac Asimov used the term bug to describe issues with a robot in the
short story Catch That Rabbit.

One story that has often been given tribute for being the origin of the term bug in software
comes from Grace Hopper. In 1946, she joined the Harvard Faculty at the Computation
Laboratory, where she continued her work on the Mark I and Mark II computers.

The Mark II computer produced errors and, after some searching, the operators found
that the cause was a moth trapped in a relay. The moth was carefully removed and taped to
the logbook. Under the moth, the following was written:

"First actual case of a bug being found."

Understanding software bugs 215

The date in the logbook was September 9 1947, and that was the first time we had the term
bug used in computer science:

Figure 9.1 – The moth found in the Mark II computer in 1947 – US Naval Historical Center Online
Library Photograph (Public Domain [PD])

The likelihood that an actual bug will make our programs produce the wrong output is
almost nonexistent. It is much more likely that the source of the error is ourselves.

There are many different types of bugs. To understand some of them, and to see what
damage a bug can cause, we'll look at two incredibly expensive software bugs.

NASA's Mars Climate Orbiter
This is one of the most famous bugs in the history of computing. The Mars Climate
Orbiter was a space probe that was launched by NASA on December 11, 1998. Its mission
was to study the Martian climate, atmosphere, and surface changes. On September 23,
1999, all communication with the spacecraft was lost. It is not known if it was destroyed in
the Martian atmosphere or if it continued existing in space.

On November 10, 1999, the Mars Climate Orbiter Mishap Investigation Board released a
Phase I report. In it, it was made clear that the reason for the disaster was a bug in a piece
of ground-based software provided by one of NASA's contractors. This software produced
a result in the United States customary units (units used in the US, such as inch, foot, and
mile) while the NASA software expected the input to be in SI units (the metric system).

216 When Things Go Wrong – Bugs and Exceptions

The cost of this mistake was estimated at 125 million US dollars.

The Morris worm
In 1988, a Cornell University student named Robert Morris released a computer worm
that was designed as a harmless experiment. It exploited some flaws in the Unix operating
system's sendmail program that were spread from computer to computer. When a new
computer was found, the program checked to see if this computer was already infected.
Morris understood that this would be an easy way for system administrators to stop the
spread and help the system identify if it was infected already. To compensate for this,
Morris designed his worm so that it infected any computer that responded with a yes 1
out of 7 times.

This was the big mistake that made the worm not only spread rapidly across the internet
but also infect the same computers multiple times, disrupting the target machines. The
Morris worm was the first known internet worm, and the cost of cleaning up the mess
it created was an estimated 100 million US dollars. Morris was fined 10,000 US dollars
but made a good career later; he is now a professor at the Massachusetts Institute of
Technology. A disk with the source code of the worm is on display at the Computer
History Museum in California.

Both of these examples show us that even a small error can have enormous consequences.
In the first example, one single programmer made an error that went unnoticed in the
final product. The biggest problem here is not the error that was introduced but that no
one saw it and stopped it before it was too late.

As for the second example, here, we had a person who created something on his own. The
nature of this program was that no one should know about the program. The problem
here is that he had no organization behind him with other developers who could help him
make a plan for how the program should work. It is extremely hard to think about all the
consequences one decision will have if you are alone and don't have anyone else to discuss
your ideas with. In the latter case, having other people around him would hopefully result
in them telling him that the idea as a whole was bad and should never have been done in
the first place.

Here, we have seen two examples of what a bug is, but there are so many other kinds
around. Due to this, the first thing we should do is attempt to define what a bug is.

Understanding types of software bugs 217

Defining a software bug
To understand what a software bug is, we can first look at Techopedia's definition:

"A software bug is a problem causing a program to crash or produce invalid output. The
problem is caused by insufficient or erroneous logic. A bug can be an error, mistake, defect,
or fault, which may cause failure or deviation from expected results."

As we can see from this definition, a bug is caused by software that is not functioning
correctly. This can result in incorrect or unexpected results. We can understand this if, say,
we provide a program with some well-defined data. Here, we expect a certain result back.
If the result is not what we expect, the reason can either be that there is something wrong
with the data we provided or there is something wrong with the program. Let's say we, for
example, provide a calculator app with the following data:

3 + 4

Here, we will expect the following result:

7

If we get anything else, we can say that there is a bug in our application.

The definition also says that a program can behave in unintended ways. This is when
we expect a program to do one thing, but it turns out that it does something completely
different. If we have a program that should turn down the thermostat in our home when
it's reached a certain temperature, but it turns it up, then that would be a bug.

Why do we have bugs in our software? There isn't a single answer to this. To understand
this, we will need to define some different types of bugs.

Understanding types of software bugs
There are many different ways we can classify bugs. Here, we will look at some common
types, see what they are, and see what they can look like.

Arithmetic errors
Arithmetic bugs, as the name suggests, have to do with arithmetic operations. There are a
few things we should look out for, as outlined in the following sections.

218 When Things Go Wrong – Bugs and Exceptions

Division by zero
One such thing is division by zero. This is not only related to computers as we can also
never perform a division where the divisor is zero. In mathematics, dividing by zero has

no meaning, because if we do
6
2

 , we will get 3. If we multiply 3 and 2, we will get 6 back.
But if we take 6

0
 , there is no number we can multiply by zero to get back to 6.

This might seem simple enough, but sometimes, it happens anyway, especially when we
are working with variables.

Let's assume that we have two variables that get their value somewhere in our application,
like this:

x = 3

y = 14

Later on in the program, we perform some calculations, maybe with some other variables,
it might look like this:

y = y – current_temperature

If the current_temperature variable now has the same value as y, which is 14 in our
case, we will store the result, 0, back in y.

If we then did something like this, our application will crash:

result = x / y

The reason for this is that we are dividing by zero. It might not be obvious that y is zero, so
the problem is not easy to spot.

Arithmetic overflow/underflow
In Chapter 6, Working with Data – Variables, in the Primitive data types section, we talked
about integer types and that they could have a fixed size. What that means is that some
integer types have a predefined size that describes how much memory they will use.
This also gives a variable of this type a maximum and minimum value. As long as we are
storing values between the maximum and minimum value, there will be no problem, but
what happens if we try to store a value that is larger or smaller than these values? Let's
look at an example.

Understanding types of software bugs 219

We will now assume that we are using a programming language that has a data type called
byte. This data type can store values between -128 and 127.

We can create a variable of this type and assign it a value as follows:

my_byte = 127

Now, what would happen if we increased this variable by one?

my_byte = my_byte + 1

Naturally, we expect 127 + 1 will result in 128. To our surprise, it is -128.

The reason for this is that when we are at the maximum value a data type can handle and
increase it by one, we will end up at the smallest number it can handle; in this case, -128.
If we had increased it by 2 instead of 1, we would have ended up with -127.

This is an overflow error. If we were at the lowest value the data type can handle and
decrease the value by one, we would go to the largest value of this data type. This is called
an underflow error.

Loss of precision
As we mentioned in Chapter 6, Working with Data – Variables, floating-point numbers are
something that is tricky for computers to work with, and we are always faced with the risk
of losing precision when it comes to rounding off a value.

In some languages, this can become obvious.

Let's assume we have this code:

x = 1.3

y = 1.1

print x + y

The expected output of this program would, of course, be this:

2.4

To our surprise, some languages will instead give us this:

2.4000000000000004

220 When Things Go Wrong – Bugs and Exceptions

This is the computer showing the problems it has with floating-point numbers. If you need
a refresher on how this works, go back to Chapter 6, Working with Data – Variables, and
read the section about floating-point numbers under the Numeric type heading.

We could argue that an error of 0.0000000000000004 is not much, but what if we were
working with several of these results and added them together? This error would now
accumulate and soon, we will have a value that is way off.

These three are the most common arithmetic errors we will find in software. The next
group of errors are not as fun for us programmers as they are introduced when our logic
is incorrect.

Logical errors
A logical error will usually not make a program crash but produce an unintended result.
Unfortunately for us, there are a lot of opportunities to make logical errors.

We could, for example, accidentally use the wrong operator. An example would be if we
wanted to check if somebody's age was above 18, but we did this:

if age < 18 then

 …

end_if

Another common thing is to forget to use less than or equal to or greater than or equal to.
Here, we could write something like this:

if age > 18 then

 …

end_if

This is incorrect as we actually wanted to check if the age was greater or equal to 18, like this:

if age >= 18 then

 …

end_if

Another common error is to use one equals sign instead of two. Some languages will let us
do something like this:

if age = 20 then

 …

end_if

Understanding types of software bugs 221

Here, we intended to use the equal to operator, ==, but instead, we used the assignment
operator, =. Some languages will interpret this as assigning value to age. This will give us
two problems. First, we might enter the if statement, even if, in reality, we shouldn't. The
other problem is that the value that was in the age variable now will be overwritten by
the value 20.

One thing that has always amazed me is how hard it can be to get the logical operators
right. Even though they are only two, it is very common that we use one instead of the
other. Yes, even I do that at times.

If we intend to check if the age is above 12 and below 20, we might write this:

if age > 12 or age < 20 then

 …

end_if

However, what we wanted to do was this:

if age > 12 and age < 20 then

 …

end_if

The first example will always be true, as age will always be either greater than 12 or less
than 20.

These are just some examples of logical errors. They can be hard to find as the code is
valid, meaning that the program will run, but its behavior will be unexpected.

An easier group of errors to amend is when the code is written so it can't run because we
are breaking the language syntax rules. Let's take a look at these in more detail.

Syntax errors
The rules that tell us how code should be written in a particular language are called its
syntax. When we write code that does not follow the syntax rules, we get what is called a
syntax error.

These are rather easy to spot compared to many other errors as the compiler or interpreter
will tell us where the problem is and also give us a hint about what the error is.

Let's look at some syntax errors and investigate what message we get back that can assist
us in fixing the error.

222 When Things Go Wrong – Bugs and Exceptions

Here is one syntax error. Can you spot it?

print "Hello

Here, we are trying to print a string, but we forgot the closing quote. Languages will report
this error differently. As we will see, the message we get back does not always direct us to
the real error.

Here are four examples from four different programming languages – Python, Go, C#, and
JavaScript, respectively:

SyntaxError: EOL while scanning string literal in line 1 column
12

1:12 syntax error: unexpected newline

Compilation error (line 1, col 12): Newline in constant

error: unknown: Unterminated string constant (1:12)

The second and third are talking about newline, while the first and last ones are talking
about strings. We will need to learn the messages we get back from the language we
are using. All of them will also direct us to where the error was discovered. In different
formats, we are directed to line 1, column 12.

The location that's given is not always where the actual error is, it is where the compiler/
interpreter discovered the error. If you don't find anything at the location given, look at
the line above or sometimes some lines above this location.

We know from earlier chapters that we cannot name variables with a number as its first
character. Let's do that anyway and do something like this:

1apple = 1

This will give us messages like the following:

SyntaxError: invalid syntax in line 1 column 2

1:2 syntax error: unexpected apple at end of statement

Compilation error (line 1, col 2): Identifier expected

error: unknown: Identifier directly after number (1:2)

As we can see, some languages call these errors syntax errors, while others will name them
things such as compilation errors. Again, we will need to learn what the language we are
using is calling these errors as it will help us identify them.

Finding bugs using a debugger 223

Often, our editor will assist us in finding syntax errors by marking them even before
we run the application. It uses the same technique as a spellchecker in a MS Word
processor – a wiggly red line below the error.

Look at the following screenshot. Here, we can see that the editor had marked a syntax
error before we tried to run the program:

Figure 9.2 – An editor showing a syntax error in the programming language Python

Syntax errors are, as mentioned previously, rather easy to find as the program will not run
and we will be directed to a location close to where the error is. But how do we find bugs
when we have logical errors? We have tools for this called debuggers.

Finding bugs using a debugger
A debugger is a tool that can help us see what happens when a program is running. As we
have already mentioned, some bugs can be hard to find and understand just by running
the program. Often, we will discover a strange behavior in the program, but it might not
be obvious what the reason behind this behavior is.

A debugger is an application that is tailored for a particular programming language and
can be used to pause the application at a specified code line. At this point, we can inspect
what values all the variables have.

We can also resume the execution of the program or execute it one line at a time to see
what happens.

Let's try using a debugger. To do this, we first need to pick a language and then write
a small program that contains a logical error. We can take one of the errors that we
previously looked at:

if age > 12 or age < 20 then

 …

end_if

Remember that in this example, we accidentally used or instead of and.

224 When Things Go Wrong – Bugs and Exceptions

Let's write this program in Python. In the following screenshot, we can see what it
looks like:

Figure 9.3 – A small program written in Python that contains a logical error

On the first line, we declare (remember that declaring a variable means that we are
creating it) a variable called age and assign the value 17 to it.

Then comes our if statement, where we're checking if the age is greater than 12 or less
than 20. The error here is that we used or.

When running this program, we get the expected output:

You are a teenager.

If we now change the program, that is, we assign another value to age, say 24, and run it,
it will not give us the predicted result:

You are a teenager.

You can see the changed program in the following screenshot:

Figure 9.4 – The same program with another value for age

Finding bugs using a debugger 225

Now, let's use a debugger and explore this error. The first thing we need to do is set
a breakpoint.

Breakpoints
A breakpoint is a way for us to say, run the program to this point, then pause it and show
me the status of the program.

In the following screenshot, we can see that we have a breakpoint on the line containing
an if statement:

Figure 9.5 – A program with a breakpoint on line 3

If we now run the program, it will stop when it reaches this line. At this point, the line
that contains the breakpoint has still not executed. It will look like what's shown in the
following screenshot:

Figure 9.6 – The debugger has stopped at the breakpoint

The line we are about to execute is marked with a blue line. Also, note that this debugger
is showing the age value in gray on line 1. This helps us understand what value it
currently has.

226 When Things Go Wrong – Bugs and Exceptions

If we zoom out a bit, we will see that we have some other tools that have popped up as the
program paused at this line. We can see what it looks like in the following screenshot:

Figure 9.7 – The debugger tools

What we see here there are several tools that are provided to us by the debugger
application. Let's understand what they consist of:

• To the right, we see a section marked Variables. Here, we can see all the variables
that are currently defined and what values they have.

• Above this window, we can see some arrows pointing in different directions. They
are used to advance the program one step. We have some options here. The first one
is the arrow that first goes up and then goes down (marked as 1 in the preceding
screenshot). This is called step over. If we have a function call on this line, step over
will not jump to that function. Instead, it will call that function, run all the code
within it, and then stop again when it returns to where we currently are.

• The next arrow, the one pointing straight down, is step into (marked as 2). This will,
if we have a function on this line, jump to that function and let us step through it.

Finding bugs using a debugger 227

• We can ignore the two arrows that follow and instead look at the one pointing
straight up (marked as 3). This one is called step out. We can use this one if we
have stepped into a function and changed our minds. It will run all the code in the
function and stop again when we go back to the location we came from.

• To the far left, we have some other tools that will restart the program (marked as
4), resume the execution of the program (marked as 5), pause a running program
(marked as 6), stop the program (marked as 7), allow us to view all the breakpoints
we currently have in the program (marked as 8), and ignore all the breakpoints and
continue to run (marked as 9).

For our problem, none of these tools will be able to help us. We know that the program
will enter the if statement as the output was as follows:

You are a teenager.

Instead, there is another tool that might help us. In the following screenshot, we can see it
marked with a rectangle:

Figure 9.8 – The evaluate expression button

This tool, which looks like a small calculator, is the evaluate expression tool. If we click it,
we will see a window like the one shown in the following screenshot:

Figure 9.9 – The evaluate expression window

In the top field, we can enter an expression. This can help us understand what is
happening. We are currently on this line:

if age > 12 or age < 20:

228 When Things Go Wrong – Bugs and Exceptions

If we enter a part of this expression into the evaluation expression tool, it will show us
the result. Let's take the first part of this if statement. Entering it into the tool will look
as follows:

Figure 9.10 – Evaluating an expression

Here, we can see that this part of the if statement is true.

If we now do the same with the second part, we will see that the result is false, as shown in
the following screenshot:

Figure 9.11 – Evaluating another expression

We can now take both of these statements, since we have written them in the code, and
check the result, as shown in the following screenshot:

Figure 9.12 – Evaluating the full expression

Here, we can see that the result of the full expression is true, even though the value is
greater than the last part of the condition, 20.

We can now suspect that the culprit is or. Let's change it to an and and see the result.

Finding bugs using a debugger 229

In the following screenshot, we can see that the result is now evaluated to false, which is
the value we expected:

Figure 9.13 – Evaluating the expression with and instead of or

We can now stop the debugger and change our code.

This was one example of when the debugger can help us understand a problem. We will
frequently run into errors like this one, and what the problem is might not be obvious to
us right away. As a programmer, we should learn to use the debugger, what features it has
to offer, and how we can use it.

Sometimes, we have other types of errors where the syntax is correct, but still, the
program will crash. These are called exceptions. We will move on to those next.

Working with exceptions
An exception (short for exceptional event or exceptional condition) is an error or an
unexpected event that occurs while a program is running. It is caused by a condition in
the software where the program has reached a state where it can no longer run.

There are many reasons we can get an exception. One example could be if our program
needs to read data from a file, but the file is not where it is supposed to be. Since the
program has a reason to read the data from this file, a failure to do so will put the
application in a state where it can no longer guarantee that its output will be correct. The
best option, in this case, is just to halt the program and give back an error that hopefully
instructs us about what the problem is so we can fix it.

No software developer wants to write an application that crashes. It can make the users
of the application lose unsaved work, though the consequences might be even worse,
depending on the nature of the program.

Soon, we will talk about how we can handle exceptions so that they don't crash our
program. But before we do that, let's explore exceptions a bit so that we have an
understanding of how they work.

230 When Things Go Wrong – Bugs and Exceptions

Let's look at some common reasons we get exceptions.

Common reasons for exceptions
As we saw, a missing file can be one reason we get an exception. Another common reason
is that when we are trying to index into a sequence, we use an index that is larger than the
sequence. Let's take a look at an example:

names = ["Anna", "Bob", "Cara", "David"]

Here, we have an array (you can read more about array's in Chapter 6, Working with
Data – Variables, in the Composite type section). It contains four values; in this case, four
names. We can index into this array to retrieve a single value, as follows:

print names[2]

This will give us the following output:

Cara

Remember that the index value for the first item is 0, not 1, so the third item, Cara, has
index 2.

What will happen if we use an index value that is greater than the number of items we
have, like this?

print names[6]

There is no value at this location, so the program cannot fetch it for us. The syntax is
correct, and if we had enough values, it would work perfectly fine. But this time, it won't,
as we have used an index for something that does not exist.

The program cannot continue at this point as it cannot guess what it should do. We have
given an instruction that says that we want a value from this location. The programming
language cannot just come up with a value for us. The most sensible thing to do at this
point is to just end the program and wait for it to give us an error. This error might look
something like this:

IndexOutOfRangeException: Index was outside the bounds of the
array at line 2.

This is an exception. We can see it in the output as it clearly says
IndexOutOfBoundException.

Finding bugs using a debugger 231

How much we use exceptions, and how many different exceptions we will need to deal with
the different issues available, will differ greatly between languages. Some, such as Java, make
heavy use of exceptions. C++, on the other hand, has just a handful of built-in exceptions.
Then, we have languages such as Go that don't have exceptions at all, but instead will let a
function return an error type alongside the real return value from the function.

Some of the errors that we already have seen in this chapter will also generate exceptions.
One such exception will happen if we divide something by zero.

Most languages support exceptions. Even if the number of exceptions a programming
language has differs, the way they work will be pretty much the same, no matter what
language we are using. The names will differ, as well as what kinds of exceptions we have,
but the way we work with them will be the same.

At times, it can be hard to understand the output we get from an exception. The reason for
this is that when we get an exception, something called the call stack is also printed.

Exceptions and the call stack
Imagine that we have a program and that in it, we have a main function. This function is
calling another function that calls another function, and so on. We will have something
like the following:

Figure 9.14 – A function that calls a function that calls a function, and so on

Keeping track of where we are in this chain of function calls is called the call stack, and
that is handled by the programming language when we run the program.

232 When Things Go Wrong – Bugs and Exceptions

Now, imagine that we get an exception in the last function called function c. This
function will now exit immediately and return to where it was called. That is function b.
This function will also exit as soon as the control gets handed back to it, and we will be
returned to where we came from. This time, it is function a. Again, this function will be
terminated immediately, and we are returned to the main function. The last thing that will
happen is that this function will also end. Since this was the first function that was called
in this application, the application as a whole will end.

The reason why all the functions will exit is that none of them handle the exception.

Now, we will get not only the exception information printed to the screen but also the
call stack.

To illustrate this, let's use a very simple program like the following one:

function c()

 result = 10 / 0

end_function

function b()

 c()

end_function

function a()

 b()

end_function

function main()

 a()

end_function

This is a rather silly program, but it will illustrate what will happen. At the bottom, we
have a function called main. The main function will be called automatically when we run
this program.

Inside the main function, we call the function named function a. This function will call
function b, which calls function c.

When we enter function c, function b is still running and is waiting for
function c to finish. The same thing is true for function a, which waits for
function b. The main function is waiting for function a to finish, so at this point,
we have four active functions.

Finding bugs using a debugger 233

Now, inside function c, we perform a division by zero, causing an exception to go off.

At this point, function c will exit immediately. Control will be handed back to
function b, which will exit, giving the control back to function a, which exits back
to main, and finally, the program will exit.

The output we'll get will look something like this:

Callstack

function c() at line 2

function b() at line 6

function a() at line 10

function main() at line 14

ZeroDivisionError: division by zero

As we can see, all the function calls are there. How this is displayed will differ from
language to language. Some will print all the functions in the opposite order. Again, this is
something we will need to learn when we pick up a new language.

The reason we get all this information is that it can help us figure out where things
went wrong. Even if the error occurred in function c, the reason it happened might
originate somewhere else. Let's assume that the program looked as follows instead:

function c(x, y)

 result = x / y

end_function

function b()

 c(10, 0)

end_function

function a()

 b()

end_function

function main()

 a()

end_function

234 When Things Go Wrong – Bugs and Exceptions

Now, function c takes two arguments, and it uses these to perform the calculation.
This happens when function c is called from function b. The problem arises when
we pass in 10 and 0 as arguments to the call.

Since the data has its origins in function b, this is where the problem came from.
function c does not know the origins of these two values. They might come from
some user input, they might have been read from a file, or they may have come from any
other source.

To fully understand the origins of this problem, we will need the information that we get
from the call stack as it tells us how we ended up in function c when the error occurred.

But what if we don't want the program to crash? No problem. We can write code that will
handle exceptions. Let's look at that next.

Handling exceptions
To understand how we can handle exceptions, we must first understand what the origins
of a problem might be. It is only when we have understood this that we can insert
measures to handle them correctly.

Let's return to our function that divides two values. Let's say this function takes two
arguments, as it did in our previous example:

function c(x, y)

 result = x / y

end_function

We should assume that this function does something more than just print this single line.
We can mark it out with some comments, as follows:

function c(x, y)

 // The function does some things ere

 result = x / y

 // And even more things here

 // It might even return a value

end_function

We know that as this function divides two values, we might get an exception if y is given
a value of 0.

Handling exceptions 235

The first thing we should ask ourselves is if this is the best place to handle the problem.
It could be, but most likely, it is not. This function is getting two values sent to it as
arguments. Several parts of the application might use the function, so it has no way of
knowing the source of the data that is being sent to it.

What we can do, though, is check if y is equal to zero before we perform the division. Let's
do that now. At the same time, we can change the function's name to calculate as it
better reflects what the function does:

function calculate(x, y)

 if y == 0 then

 // y is zero, so we cannot perform the division

 end_if

 // The function does some things ere

 result = x / y

 // And even more things here

 // It might even return a value

end_function

But what should we do if y is zero? We cannot continue running the function as we would
then perform the division anyway. We cannot change y to something else either, because
what would we even change it to?

We need a way to signal to the caller of the function that we cannot accept a value of
zero for y.

One way to do this would be to let the exception happen and remove the if statement
again. If we did that, the caller could handle the error.

Let's see how we can handle an exception when we call a function. The call to the function
would then need to be within a special block of code called a try statement. It could look
something like this:

try

 calculate(10, 0)

catch ZeroDivisionError

 // We will end up here if we get a ZeroDivisionError
 // exception

end_catch

Here, we can see that the call to the calculate function is located within a try block.

236 When Things Go Wrong – Bugs and Exceptions

If everything is fine and we return from the function without any exception, the program
will jump to the line after end_catch and resume its execution.

But if we get an exception and that exception is of the ZeroDivisionError type, we
will end up in the block below, which begins with a catch.

Exceptions can be caught, but we need to specify what exception it is we want to handle.
If we get another exception, one that does not have a matching catch, the program will
crash as before.

Calling the function like this could be a solution for us, but is it a good solution? Not
really. Imagine that the calculate function is located in a different module that is in
a different file. It might even be written by somebody else. In this situation, how do we
know that it will perform a division and that it will use the second value we pass to it
as the divisor in that division? We will most likely not know anything about that, or
we should at least assume that the users do not know anything about how the function
is written.

Therefore, we could not assume that they will use a ZeroDivisionError exception in
their catch statement. Instead, we could give them another exception that might make
more sense.

Let's change our calculate function, as follows:

function calculate(x, y)

 if y == 0 then

 throw ValueError("Second argument cannot be zero")

 end_if

 // The function does some things ere

 result = x / y

 // And even more things here

 // It might even return a value

end_function

throw will create another exception; this time, one called ValueError. We are also
passing a string to this exception. If someone now calls our function and gives us a value
of zero for y, they will get this exception with the message we provided.

Summary 237

When they call our function, they could now check for this exception instead:

try

 calculate(10, 0)

catch ValueError

 // We will end up here if we get a ValueError exception

end_catch

Since this is the location where the bad value for y originated, it is much more likely that
this is where we can change it. If this, for example, was a value that was given to us by the
user of the program, we could give a nice error message back, saying that they cannot
enter a value of zero.

We can say that this is the location that owns the data and therefore has the opportunity
to change it.

If we use try…catch blocks around calls to functions that can throw exceptions, the
program will no longer crash. In this case, the calculate function will still exit as soon
as we throw the ValueError exception, but since we are catching it right after the call to
the function, we might be able to correct the problem and call the function again with a
correct value.

Exceptions are a great way to handle conditions when we can't decide what to do due to a
condition that we could not predict when we wrote the program. Without them, it would
be very difficult to signal to other parts of the program that something is wrong. We
should use them when we need to, but also ensure proper care. Exceptions always send a
clear message regarding what is wrong and assist the author of the code that receives the
exception with understanding what the problem is.

Summary
In this chapter, we realized that we, as humans, make mistakes, but we can go back and fix
them as well.

A software bug is an error in an application that can have several causes. Depending on
what is behind the bug, we must approach it differently when trying to fix it.

In some cases, as with syntax errors, we will be told what the cause of the bug is right
away, and even be directed to the correct location in the code.

238 When Things Go Wrong – Bugs and Exceptions

Other bugs will be harder to find. When the programming language syntax is correct, but
the logic is not, the program will behave in unexpected ways. To be able to find these bugs,
we can use a tool called a debugger. It helps us track down the bugs by letting us pause the
execution of the program and see all the values the variables have; it will even let us step
through the execution one line at a time.

An exceptional event is when things that should not happen still happen. In
programming, they are referred to as exceptions. When they happen, they will
immediately halt the execution of the program if they are not handled. Fortunately,
we can handle them by inserting code that will only run if the exceptional event occurs
so that we can try to fix the problem.

In the next chapter, we will look at different ways to approach a problem and create a
solution with code. This is called a paradigm. A programming language will use one of
these. As we will see, some languages will use concepts from more than one paradigm.

10
Programming

Paradigms
If we look at all the programming languages, we can see patterns and similarities between
them, and we can use these to classify them into different paradigms. The word paradigm
means a typical example or pattern of something, and this is precisely what we are looking
for in programming languages when grouping them.

The reason we want to do this classification is because the way we write a program in
one of these groups will differ significantly from how we do so in languages belonging to
another group.

A computer program will almost always, in one way or another, model something in the
real world. We are solving real-world problems using software. The question is how best
we can model and represent real-world things in code and how best we can structure the
solution we have to this real-world problem.

240 Programming Paradigms

In this chapter, you will learn about the following topics:

• Understanding structured programming

• Understanding object-oriented programming

• Understanding functional programming

• Understanding logic programming

• Understanding other paradigms

• Understanding multi-paradigm languages

Let's begin with the paradigm that we are most familiar with: structured programming.

Understanding structured programming
Structured programming is what we have looked at in this book. Loops, conditionals,
and functions define the flow of a program that uses this paradigm. If you have read the
previous chapters of this book, then they should all be familiar to you by now.

Structured programming is a branch of a family of paradigms called imperative
programming. Languages that use the concepts of imperative programming use
statements to change the program's state.

If we look at that definition, we must first learn what statements and program state are.

Statements
In the first part of this definition, we'll talk about statements. A statement, as described
in Chapter 5, Sequence – The Basic Building Block of a Computer Program, in the
Understanding statements section, this can be viewed as a command that we give to the
application. In natural language, we have something that is called the imperative mood.
The imperative mood is something that forms a command, such as Move!, Don't be late!,
or Work hard!. In imperative programming, we give instructions to the computer with
something that is like the imperative mood; that is, a command that is expressed in the
form of a statement.

That is the first half of the definition of imperative programming. The second part talks
about changing the program's state.

Understanding structured programming 241

Program state
A program is said to have a state if it remembers previous events that have occurred. A
program stores data in variables. At any given point, during the program's execution, we
can look at the data that is currently in all the variables we have defined. The combined
value in all these variables is what makes up the state of the program.

If we change one variable, the state of the program will also change. When we are talking
about imperative programming, we mean that as soon as a statement changes the content
of a variable, it has changed the program state.

This is what forms the memory of preceding events. When an event – a statement, in
our case – occurs and it changes a variable, it will affect the behavior of the program.
If we have an application that will launch a rocket, we might have a function that takes
care of the countdown. To keep track of what number we are currently at, we need to
have a variable. Changing this variable during the countdown will change the state of the
application. When the variable reaches zero, it will trigger the event of sending the start
signal to the rocket.

If this is imperative programming, how are things different in structured programming?
Let's compare them.

Comparing imperative and structured programming
Programs written in assembly language use a concept known as GOTOs. It is a technique
that's used to control the flow in a program. To use them, we insert labels into the
code, and we can then instruct the program to jump to one such label and resume its
execution there.

A small code snippet of assembly language can illustrate this:

 mov eax,3
 jump exit
 mov eax,123 ; <- not executed!
exit:
 ret

Here, we have a label called exit. On the first line, we move the value 3 into a register
(remember that a register in an assembly is like a variable) called eax. On the second line,
we do an unconditional jump to our label, exit. The jump being unconditional means
that we will always do this jump. In the assembly language, there are also conditional
jumps where we only jump if a register is equal to, less than, or higher than some value.

242 Programming Paradigms

Since the jump is unconditional, line three will never execute as we will always jump past
this line.

Many languages that came into existence in the 60s and 70s also had the same concept
of an unconditional jump. Here, we can find languages such as BASIC and C. In these
languages, it is not called a jump. Instead, the term GOTO is used. The programming
language C++ is based upon C, so it also uses GOTO. The same program written in C++
will look like this:

 int x = 3;

 goto quit;

 x = 123; // <- not executed!

quit:

 return x;

Today, it is, under most circumstances, considered a bad practice to use GOTOs as the
code will be hard to read, understand, and maintain. There is hardly ever any need to
perform a GOTO as languages such as BASIC and C support constructs that can let us
achieve the same result and maintain good code quality.

Using this style of programming was what first defined imperative programming. As
programming languages developed and we got other tools, such as loops, if statements,
and functions, there was a need to distinguish these more modern languages from the
older style. Even though these programming languages use the same ideas as assembly
language, these statements will change the state of the program. This is because they no
longer rely on jumps or GOTOs to accomplish this. This was when we got the definition
structured programming. A language that supports structured programming is a language
that modifies the state of the program using statements and has functions, loops, and if
statements as tools to accomplish this.

We will sometimes also hear the terms procedural and modular languages. There is
no need to go into the details of what the difference is between these as this is mostly
academic. We can safely consider all these the same thing.

Some well-known languages that support structured programming or their relatives,
procedural and imperative programming, are as follows:

• Ada

• ALGOL

• BASIC

• C

Understanding object-orientated programming 243

• C++

• C#

• COBOL

• Fortran

• Go

• Java

• JavaScript

• Pascal

• Perl

• PHP

• Python

• Ruby

• Rust

• Swift

• Visual Basic

Structured programming is a popular paradigm, as this long list of languages proves. In
the 90s, another paradigm gained popularity and is still one of the essential paradigms in
use. It is called object-oriented programming. Let's see what this is about.

Understanding object-orientated
programming
The main idea within object-oriented programming is to model the code in the same way
as we as humans look at the world.

Even if you've never thought about it, we are always classifying things and grouping things
together using abstraction. We can talk about vehicles, and we have shared knowledge
of what is included in this group. Cars, bicycles, boats, and airplanes are, while pencils,
ducks, and swimsuits are not.

I could say, I need to go to town. Can anyone lend me a vehicle?

244 Programming Paradigms

You will interpret this in such a way that the actual kind does not matter, but it must
be something that can transport me to town. It could just as well be a car as it could
be a skateboard.

Grouping things into these abstractions make our lives easier as we will not go into details
every single time, we talk about something. I can ask for a vehicle instead of describing
that I need a device that can transport me from my current location to town.

Things within such an abstraction can be very different, but if they share some key
characteristics, we will understand it. Take a look at the following image. Here, we have
two items that can both be grouped into something that we can call remote controls.

One of them will control your TV and let you change channels and change the volume.
The other one will let you lock and unlock your car:

Figure 10.1 – Remote controls

Even though they work with different devices and the result of pushing their buttons will
be very different, they share the behavior in that they control something from a distance
wirelessly. We have labeled these devices remote controls to make our communication
more convenient.

What if we could do the same when writing software? This is where object orientation
comes in. It will let us use the same approach.

If we are going to write a program that keeps track of the warehouse inventory and we
want to do so object-oriented style, we can look at a real warehouse and describe it just
as we see it.

Understanding object-orientated programming 245

In the warehouse, we have things such as the following:

• Products

• Shelves

• A coffee machine

• Warehouse employees

• A dead flower in the window

Our system will need to know about some of these things, but not all of them. In the
preceding list, we can ignore the flower and the coffee machine, but the other three are
good candidates for making it into our program.

If we look at one of these products, we will see that it can be several things, all the way
from tiny screws and bolts to machines or devices of some sort. But from the perspective
of a warehouse, they share the same characteristics. They are all items that we store,
and we can describe them using the same attributes. They have a name, a weight, and
manufacturer; we have a certain amount of them; and so on.

In object-oriented programming, we try to preserve this way of describing things and
represent them in a way that is not too different from how we just described them here.

To understand how object-oriented programming works, we will need to break it down
into some main concepts that we will need to understand. Let's check them out.

Classes and objects
In object-orientated programming, a class is like a blueprint, or description, of something.
Let's take the concept of a person as an example. How can we describe a person? We can
start to make a list of things that apply to all people. It might look something like this.

A person has the following attributes:

• A name

• An age

• A gender

• Height

• Weight

• Hair color

246 Programming Paradigms

• Eye color

• Shoe size

• Nationality

• Address

• Telephone number

The list can go on. We can now decide that these are things that apply to all people. If we
think about it, this is all data about a person. We have not described any behavior. We
could make another list that describes things a person can do.

A person can do the following:

• Jump

• Run

• Walk

• Sit

• Stand

• Sleep

• Chill

• Work

• Play

• Dance

The same thing applies here – this list can be very long.

If we are going to represent a person in a program, we won't need all the available data
and behavior. Instead, we need to make an abstract of a person in such a way that we can
represent them with the things that are interesting for us. Name, age, and sex might all be
such things, but shoe size will most likely not be unless we are writing an application for a
shoe store. Let's focus on the data and pick some things that might be interesting enough
to implement in an application. We might pick the following:

• Name

• Age (most likely in the form of date of birth)

• Gender

• Address

Understanding object-orientated programming 247

• Nationality

• Phone number

• Email address

Now, we'll learn how to define a blueprint – called a class in object-oriented programming
– for a person since we have a list of data that applies to all people.

We give it a descriptive name and list the things we are interested in. It might look
something like this:

Figure 10.2 – A class called person

The preceding image depicts a class in a simplified way; that is, a rectangle with three
sections. In the top section, we have the name that we have given this class. In the middle
section, we've described the data we want to use to describe a person. The last section is
for behavior, which is something we will come back to soon.

Object-oriented programming is very focused around data, so when we're deciding what
a class will look like, this is often where we start. The data that makes it into our class will
often dictate what kind of behavior we want it to have. This behavior often dictates the
operations we need to perform on the data.

The behavior we identified for a person earlier, such as jump, run, and sleep, will most
likely not be something we will need to represent. Instead, we will usually find things that
will modify the data, such as changing the address.

For now, we will leave the third section of the class empty, but we will come back to it later.

248 Programming Paradigms

Now, we have a class and the blueprint for a person, but we haven't represented any actual
people yet. A representation of a thing – in our case, a person – is called an object. An
object will always belong to a class. Now that we have a class, we can create an object from
it, and each object will represent one person.

If we have a group of people that we want to represent in our application, a representation
of them could look as follows:

Figure 10.3 – Four objects from the person class

As we can see in the preceding diagram, all four objects have their own set of data; a
name, a date of birth, a gender, an address, a nationality, a phone number, and an email
address. The data in one object is independent of the data in other objects that belong to
the same class. If we change the address in one object, it will not affect any other object.

To summarize this, we can state that a class is a model or the blueprint for the objects. The
data that is defined within the class is often referred to as member variables or attributes.

Member variables
A member variable is just like any other variable, with one key difference: it lives inside
of an object.

Understanding object-orientated programming 249

To illustrate this, we can consider a very minimal class for a person. It could look
something like this:

class Person

 name

 age

end_class

Here, we're defining a class called Person. It has two variables inside it: name and age.

At this point, no actual variables exist in the computer's memory as this is just a blueprint
for what a person object will look like. To make them come into existence, we need to
create objects, often referred to as instances, from this class.

This can be done like this:

p1 = Person("Dipika", 34)

p2 = Person("Manfred", 58)

This creates two objects. We use the variable names p1 and p2 to reference them. The
interesting part is what happens when we create these objects. If we take a closer look at
line one, we will see that a chain of events will occur:

1. The first thing that happens is that, somewhere in the computer's memory, an object
from the Person class is created with a set of two variables called name and age,
as shown in the following image

Figure 10.4 – An object from the person class

250 Programming Paradigms

2. The next step is that the member variables get initialized with the data we passed in
when we created the object. This is illustrated in the following image:

Figure 10.5 – The member variables in the object are initialized

3. The last step is that the p1 variable now points out where in memory this object is
located, as illustrated in the following image:

Figure 10.6 – The object is referenced by the p1 variable

Then, this process is repeated for the object that contains the name Manfred. By doing
this, we get something that looks similar to the following:

Figure 10.7 – Two objects from the Person class

Understanding object-orientated programming 251

Now that we have two objects, we can see that we have two variables called name and
age. One of each is inside the p1 object and the p2 object. For every object we create
from the Person class, we will get a new set of these two.

We will soon change this class, but as it looks now, we can access these variables like this:

p1 = Person("Dipika", 34)

p2 = Person("Manfred", 58)

print p1.name

print p1.age

print p2.name

print p2.age

This will give us the following output:

Dipika

34

Manfred

58

Object-oriented programming states that member data should be encapsulated within its
object and that direct access to this data from the outside should be prevented. Let's see
why this is a critical concept in object orientation.

Understanding encapsulation
Encapsulation, also known as information hiding, is a concept where the object's internal
implementation is hidden from everything outside the object.

Encapsulation can be described in many ways. The American computer engineers James
Rumbaugh and Michael Blaha described it like this:

"One design goal is to treat classes as "black boxes," whose external interface is public but whose
internal details are hidden from view. Hiding internal information permits implementation of a
class to be changed without requiring any clients of the class to modify code."

The vital key here is the interface. An interface is what we use to communicate with
an object. Look at the remote controls in Figure 10.1. The buttons we can push is the
interface. We use them to communicate with the internal logic inside the device.

252 Programming Paradigms

The remote control object is a black box as we can't see the internals of the remote, and
there is no need for us to either. The only thing we need to understand to be able to use
the object is the interface. If the remote is not working correctly, we can take it to someone
who understands the inner workings of it, and they can repair it. If they don't change the
interface, the buttons, and what functionality that is associated with them, we won't need
to change the way we use the remote before and after the modification.

One thing we should hide from the outside world is the data. No, wait! If the data is
hidden inside an object, how could we then use it? Let's look at an example to see what we
mean by hiding the data inside an object.

If you walk down the street and you meet another person, you cannot, just by observing
that person, see things such as the person's name, what they had for breakfast, their age,
and where they live. This data is encapsulated inside the object:

Figure 10.8 – Data encapsulated inside a real-world object

To get this information, we will need to ask the person. We say that objects communicate
by passing messages to each other. This looks something like this:

Figure 10.9 – Two objects communicating by sending messages

Understanding object-orientated programming 253

We will need to modify our class so that the data is hidden and we have a way to
communicate with it.

We can hide the data by using the private keyword. The class will now look something
like this:

class Person

 private name

 private age

end_class

By declaring name and age as private, we can no longer access them from outside the
class. This means that the lines where we printed the name and age of the two objects will
no longer work.

The class, as it looks now, is useless as we can create an object and assign values to its
variables, but there is no way for us to do anything with this data after this point as it is
hidden from us. We will need to create an interface, such as the buttons on the remote
control, that will let us work with the data. We will do that with the help of class methods.

Class methods
A class method is nothing but a function that belongs to a class. The reason we have a
different name for these functions is so that we can distinguish between a function that is
part of a class and one that is not. As soon as you hear someone mention a method, you
know that it is a function that belongs to a class.

Two popular methods that we will find in classes are what are called getters and setters.
A getter is a method that returns the value of a private member variable, while a setter is
a method that lets us change its value.

To make a method available outside the class, we can use the public keyword. To this,
we can add getters and setters for our class, and it will then look like this:

class Person

 private name

 private age

 public function get_name()

 return name

 end_function

254 Programming Paradigms

 public function set_name(new_name)

 name = new_name

 end_function

 public function get_age()

 return age

 end_function

 public function set_age(new_age)

 age = new_age

 end_function

end_class

This will give us access to the member variables. We can now create objects, get the private
data stored inside of them, and change their value if needed.

It will look something like this:

p1 = Person("Dipika", 34)

p2 = Person("Manfred", 58)

print p1.get_name() + " is " + p1.get_age() + " year old"

p1.set_age(35)

print p1.get_name() + " is " + p1.get_age() + " year old"

This will produce the following output:

Dipika is 34 years old

Dipika is 35 years old

A natural question at this point is why we need to bother having these getters and setters.
Why can't we just say that name and age are public and let anyone read and change
them as they want? The reason is that keeping the data private and controlling access to it
through methods will give us control.

If a stranger walks up to you and asks for your name, you will have some options. You
could respond with your actual name, you could tell them that it is none of their business,
or you could lie and tell them a different name. You have control over the access to your
private data, just as the class will have control over the access to its private data with the
help of these methods.

Understanding object-orientated programming 255

When the set_age method is called, we could, for example, check the value that is being
passed in to make sure that it is within a valid range. We could, for example, refuse to set
the age if it is a negative number or higher than any expected human age. We could make
use of exceptions, which we covered in Chapter 9, When Things Go Wrong – Bugs and
Exceptions, in the Working with exceptions section. The set_age method would then
look something like this:

public function set_age(new_age)

 if age < 0 or age > 130 then

 throw ValueError("Error. Age must be between 0 and 130")

 end_if

 age = new_age

end_function

We will now get an exception if the value that's being passed to the method is below 0 or
greater than 130.

Now, we can add some class methods to the diagram we looked at previously in Figure
10.2 . In the following image, we can see that we're making use of the lower part of the
rectangle for this:

Figure 10.10 – A class with member variables and methods

256 Programming Paradigms

A class can, of course, have methods other than just getters and setters. It is up to us to
decide what methods we want our class to have. Our Person class could, for example,
have a method called birthday where we increase the age of a person by one, as shown
in the following code snippet:

class Person

 private name

 private age

 public function birthday()

 age = age + 1

 end_function

 // Getters and setters as before are defined here

end_class

We could now use it like this:

p1 = Person("Dipika", 34)

print p1.get_name() + " is " + p1.get_age() + " year old"

p1.birthday()

print p1.get_name() + " is " + p1.get_age() + " year old"

The output of this program will be the same as it was previously:

Dipika is 34 years old

Dipika is 35 years old

As we can see, the power of object-oriented programming is that objects are self-contained
entities that control their data. But object-oriented programming has another powerful
feature that will let us reuse code, and that is the concept of inheritance.

Understanding object-orientated programming 257

Inheritance
If I asked you if I could borrow your phone to make a call, it would not matter if you
gave me your smartphone, an old mobile phone from 2005, or even access to a landline
telephone. They all share some of the same features, with one of them being the ability to
make phone calls. We could define this with a chain of statements, as follows:

• A smartphone is a mobile phone

• A mobile phone is a telephone

• A telephone can make phone calls

• A smartphone can, therefore, make phone calls

We could say that we have several levels of abstractions where we have a relationship
between the levels. This is what we call an is-a relation. We can illustrate this with the
following diagram:

Figure 10.11 – Is-a relations between telephones

We can say that because a smartphone is a mobile phone, it can do anything a mobile
phone can. We also know that a smartphone can do things that an old-style mobile phone
can't, such as allowing us to use the GPS together with a map app to help us navigate.

A mobile phone, on the other hand, can do everything the landline telephone can;
that is, make and receive calls. But it can also do other things, such as allow us to send
text messages.

258 Programming Paradigms

We can also view this relationship as a parent-child relationship. The smartphone is a child
of the mobile phone, and the mobile phone is its parent. This also means that a child will
inherit from its parent. This is how inheritance works in object-oriented programming.

A class can inherit another class, and by that, get everything that is defined in the parent
class and just add the things that make this class unique. To see what this might look like,
we will need two classes. We can have a Person class that is defined like the one we saw
in figure 10.10. It might look something like this:

class Person

 private name

 private date_of_birth

 private gender

 private address

 private nationality

 private phone_number

 private email_address

 public function get_name()

 return name

 end_function

 public function set_name(new_name)

 name = new_name

 end_function

 // Getters and setters for all the other

 // variables are implemented here

end_class

In this class, we define all the member variables as private members of the class, and all
the getters and setters are defined as public.

The information used here applies to all people, but we might have some people that we
need to store additional information for. This could, for example, be employees. They are
people, and by that, all the information we store about a person will apply to them as well,
but we have additional data that we want to store about employees. This could be things
such as salary and department. We don't want to define them, however, as shown in the
following image:

Understanding object-orientated programming 259

Figure 10.12 – Two classes not using inheritance

Here, we can see that everything we have in the Person class is repeated in the
Employee class. The only difference is that we have added Salary and Department.
What we can do instead is we can say that the Employee class will inherit from the
Person class and, by that, they automatically get everything that is defined in Person.
This will look something like this:

Figure 10.13 – Employee inheriting from Person

260 Programming Paradigms

Here, the Employee c;ass will inherit everything from Person. The only thing we will
need to define in the Employee class is the things that make this class unique. Just as we
usually represent classes with the rectangle with three sections, inheritance is visualized
with a hollow, arrow-like symbol, as shown in the preceding image.

When implementing this inheritance in code, we don't need to make any changes to the
Person class. So, the Employee class will look like this:

class Employee inherit Person

 private salary

 private department

 public function get_salary()

 return salary

 end_function

 public function set_salary(new_salary)

 salary = new_salary

 end_function

 public function get_department()

 return department

 end_function

 public function set_department(new_department)

 department = new_department

 end_function

end_class

Even though we only have code for the salary and department in this class, from the first
line we can say that we inherit the Person class.

Exactly how object-oriented programming is implemented differs from language to
language. Languages that support object-orientation will also sometimes have slightly
different rules for how object-orientation is used. As always, we will need to learn how
the language we are using has defined the object-oriented principles.

Understanding functional programming 261

The following is a list of some popular languages that support object orientation, either
entirely or as an option:

• C++

• C#

• Java

• JavaScript

• Object-C

• PHP

• Python

• Ruby

• Scala

• Swift

Object orientation is one of the major paradigms. It has many fans who like it and think it
is a good way to structure code. The next paradigm we will look at has been around for a
long time but has gained in popularity in the last few years: functional programming. It is
now considered one of the more interesting paradigms by many programmers.

Understanding functional programming
Functional programming is a paradigm that has gained popularity. It is not new; we can
trace its roots back to Lambda calculus, which was introduced in the 1930s. In the 1950s,
the programming language Lisp was developed and implemented this paradigm.

As we will see, this paradigm has a very different approach to how programs are
structured and implemented. You will need to rethink the way you look at programming
and code structure to be able to understand the strength of this paradigm.

We will begin by looking at a definition of functional programming. The definition will,
itself, be hard to understand, so we will also need to look at some parts of it to understand
what this is all about.

One definition is as follows:

"Functional programming is a way of structuring a computer program that treats
computation as the evaluation of mathematical functions and avoids changing the state of
the program and the use of mutable data."

262 Programming Paradigms

Let's start by deciphering this definition. The treats computation as the evaluation of
mathematical functions part might sound scary. If we look closely at this, we will see that
this is rather straightforward. Let's look at two mathematical functions and see how we
can use and understand them in order to understand what the definition of functional
programming is talking about.

Pure functions
We will start simple with the following function:

𝑦𝑦 = 𝑥𝑥

Here, x is the input we provide to the function and y is the result. This simple function
just states that whatever we pass a value to it, it will also be returned. A diagram for this
function looks as follows:

Figure 10.14 – Diagram for y = x

Here, we can see that if x is 1, y is also 1 and that if x is -3, y is also -3. What's even more
essential for us to understand regarding what the definition talks about is the fact that the
same input to x will always yield the same value as a result in y. If we input 5 for x, we will
always get 5 for y.

Let's look at another function to see if the same thing is true:

𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐

Understanding functional programming 263

This is a function for a straight line. The value of m will define the slope of the line,
while c will be the value of y when x = 0. If we set m to 2 and c to 3, we will get the
following diagram:

Figure 10.15 – Diagram for y = mx + c when m = 2 and c = 3

Again, the most important thing to learn from this is that the result, the value of y will
always be the same if we provide the same value for x. The value we get for y will always be
3 if x is 0, and always be 1 if x is -1.

When talking about mathematical functions in terms of functional programming, it is this
fact that is the crucial thing: a function with the same input will always return the same
answer. In functional programming, this is known as a pure function.

But isn't this always true for any function? Look at the following function:

function add(a, b)

 return a + b

end_function

Let's call this function:

print add(2, 3)

264 Programming Paradigms

On calling the function, we will always get the following response:

5

We can say that this is a pure function. But what happens when we call this function from
the math module?

print Math.random()

print Math.random()

Now, the output might look like this:

0.34

0.75

Calling the random function with the same arguments (none in our case) will not
give us the same answer. This is not a pure function. This is the meaning of evaluating
mathematical functions in the preceding definition.

Next up is the second part of the definition, avoids changing the state of the program and
the use of mutable data. Changing the state is something we recognize from when we
talked about structured programming. There, we said that structured programming uses
statements to change the program's state. It seems like functional programming is talking
about the absolute opposite of what structured programming did. We said that the state
the program is in is defined by the combination of the data stored in all its variables at any
given time. Changing the value of one variable will change the state of the program.

What would it mean if a program avoids changing its state? Would we not be able to
change any variables? The answer to this is yes, and that is what is part of the final part of
the definition: that it also avoids the use of mutable data. What does mutable data mean?
We'll see what this is about in the next section.

Mutable and immutable data
Mutable means liable to change, while immutable means unable to be changed. The term
mutable data means that we have data that we can change. We know that we store data in
variables and that we can change it as we please, as shown in the following code block:

x = 10

y = 20

x = y

Understanding functional programming 265

Here, we first assign the value 10 to the x variable and then assign the value 20 to the y
variable. On the last line, we change the value of x so that it's the same as y, which is 20.
We could say that x is mutable as we can change it. But is this proof that x is mutable?
In some languages, it is, but in others, this is not true at all, even if the final value in x
will always be 20. How is it possible that x changes its value from 10 to 20 if we cannot
change it? This sounds impossible.

The answer is in the way a language treats its variables. If we just think of a variable like
a box where we can store a value and, at any time, replace it with another value, it is
changeable, but if instead we treat a variable like something that is pointing out a value
somewhere in the computer's memory, things will be slightly different.

Let's perform a little thought experiment. We can start with the two variables, x and y,
and again assign the values 10 and 20 to them, as we did previously:

x = 10

y = 20

The following diagram illustrates what it may look like if x and y reference a
memory location:

Figure 10.16 – Two variables referencing two memory locations

As we can see, the values 10 and 20 are not stored inside the variables. Instead, the
variables are pointing out where these values are located in memory. What will happen if
we change the value x references from 10 to 20?

266 Programming Paradigms

It will look something like this:

Figure 10.17 – Two variables that reference the same memory location

Now, let's consider what would happen if the value at the memory location can be
changed if we change one of the variables if we, for example, run this line of code:

y = 22

We would then have a situation similar to the following:

Figure 10.18 – Changing the value of one variable reference

Now, let's print the value of the x reference, as follows:

print x

We would get the following result:

22

Even if we never assigned 22 to x, it would have that value as we allowed y to change the
content of the memory location of both references.

Understanding functional programming 267

If we instead make the memory location immutable, what would happen when we assign
22 to y? We would get something like the following:

Figure 10.19 – Assigning a new value to an immutable variable

As we can see, the value did not change at all. Instead, y is now referencing a new memory
location. If y was redeclared, we would get a new fresh variable with the same name as the
old y variable.

This is how immutability works. The variables are not changed. Instead, a new value
is created in another location in memory. As we cannot change any variables, we can't
change the state of the program either.

But why is it important that our variables are immutable and that we can't change the state
of the program? The answer is called side effects.

Avoiding side effects
A side effect in computer programming is when an expression modifies some values in the
variables that are outside its local environment. To understand this, let's look at an example:

x = 0

function some_func(value)

 x = x + value

 return x + 3

end_function

First, this program is very naïve, but it illustrates the point we need to make. Here, we
have a variable, x, and a function called some_func. The variable is declared outside of
the function but is modified inside it. We can now use the following expression:

 x = x + value

268 Programming Paradigms

This is modifying a value outside its environment, and the body of the function is the
environment that expression lives in.

This is true if the language we are using has defined x as mutable so that we can change it.
But in a language where x is immutable, there would be no change. Instead, we would get
a new x variable that only exists inside of the function.

What would the disadvantage be if we did this in a language where x was mutable? To see
this, we can call the function twice and print its result, as follows:

print some_func(10)

print some_func(10)

The output will look as follows:

13

23

This is not a good behavior as calling the function with the same arguments should
always return the same value. Here, it does not, and the reason this happens is because the
program has side effects. This is because the result the function returns is dependent on
what happened in previous calls to the function.

If we have a program that has no side effects, it will be very predictable what will happen
when the program runs. If we think about the previous small program, we saw that it will
be almost impossible for us to predict what a call to the function will result in as the result
will depend on previous calls, as well as what data we provided as arguments in these calls.

The next principle of functional programming is called declarative programming. Let's see
what it's all about.

Declarative programming
To understand what declarative programming is, we can compare it to something we
know, and that is imperative programming. In imperative programming, we focus on
describing how something will be done. In declarative programming, on the other hand,
the focus is on what we want to achieve.

To understand this, we will look at some real-world examples. If you go to a restaurant,
you can either be an imperative or declarative guest.

Understanding functional programming 269

The imperative guest would make an order like this:

"I would like the cod, please. First, bake it in the oven for 10 to 12 minutes. In the end, check
it regularly so it won't overcook. While the cod is in the oven, please boil the potatoes. To
prepare the cream sauce, first, melt some butter in a medium-sized pan over medium heat.
Slowly add corn starch and stir for about a minute. While constantly whisking, slowly add
whipping cream and milk. Finally, add some parmesan cheese. Let the sauce reduce on a low
heat while you whisk occasionally."

If, on the other hand, you are a declarative restaurant guest, you would say something
like this:

"I would like the cod, please."

The first guest answers the question of how, while the second one focuses on what.

An excellent example of something declarative in computer science is SQL. It is an
abbreviation of Structured Query Language and is used to store and retrieve data from
databases. If we want to get the first and last name of all the customers stored in the
customer's table, we could write the following:

SELECT firstName, lastName FROM customers;

This is declarative as we say what we want – the first and last names of the customers –
but we say nothing about how the data will be retrieved. Somewhere in the underlying
database system, some parts must know how this will be done, but if we are using SQL, we
don't need to understand how this is done.

Python is a programming language where we can write both imperative and declarative
programs. Let's look at two programs that perform the same thing, one in an imperative
way and one in a declarative way.

First is a short program that has been written in an imperative style:

strings = ['06', '68', '00', '30']

numbers = []

for value in strings:

 if int(value) != 0:

 numbers.append(int(value))

print(numbers)

270 Programming Paradigms

From the preceding code, we can observe the following:

1. On the first line, we define a list of strings. Each string contains a two-digit number.
Values below 10 will be prefixed with a 0.

2. On the second line, we declare an empty list. We will convert the numbers in the
first list from strings into integer values and store them in this array.

3. We will then enter a for loop. In each iteration of this loop, a value from the first
list will be assigned to the value variable. The first time it will be 06, the second
time it will be 68, and so on.

4. We then have an if statement. It will convert the value into an integer and compare
it to zero. If that is false – that is, it is anything but zero – we will enter the if block.

5. Inside this block, we will append the value we converted into an integer to the
list numbers.

6. When we have gone through all the values in the first list, we print the contents of
the second list and get the following output:

[6, 68, 30]

As you can see, the zero prefixes we had for the first value are now gone as these are
integers, and 06 is just 6. Also, the value that had a double zero is not in the list at all as
it made the if statement false, and the line where we appended the value was skipped
in that iteration.

The second version of this program is written in a declarative style and looks as follows:

strings = ['06', '68', '00', '30']

numbers = [int(value) for value in strings if int(value) != 0]

print(numbers)

This program does the same thing as the previous one, but the way it is written is very
different. It uses something called a list comprehension. It is the part after numbers =.
If you look closely, you can see a for loop in the middle of this expression. It looks just
like the for loop in the other example. Following this loop, we can see an if, and it looks
just like the if statement in the first program. An if at this location in a comprehension
serves as a filter. If this is evaluated as true, the current value will be passed to the front of
this expression. Here, we convert the value into an integer. This converted value will be
part of a list called numbers.

This is declarative because we don't say how this value will get into the new list, we just say
what will go into the list.

Understanding functional programming 271

The final principle used by functional programming that we will cover is called
first-class functions.

First-class functions
Functional programming uses the principle of first-class functions. A function is said to
be first-class if it is treated as a first-class citizen of the programming language in question.
A first-class citizen is something that we can modify, pass as an argument to a function,
return from a function, and so on.

In a programming language that supports first-class functions, we can do things such as
the following:

function formal_greeter(name)

 return "Dear, " + name

end_function

function informal_greeter(name)

 return "Yo, " + name

end_function

function greeter(greeter_func, name)

 greeter_func(name)

end_function

greeter(formal_greeter, "Bob")

greeter(informal_greeter, "Bob")

This program declares two functions, formal_greeter and informal_greeter.
Both accept a name as its argument and will return a greeting with the name appended.

We then have a function called greeter. This function accepts a reference to a function
as its first argument and a name as its second. The two last lines in the program are calling
the greeter function. The first one is passing a reference to the formal greeter function,
while the second is passing one to the informal greeter.

The greeter function will use the function passed to it, so the two calls will result in the
following output:

Dear, Bob

Yo, Bob

272 Programming Paradigms

Being able to work with functions like this has several benefits. Let's look at an example.
Earlier in this chapter, we talked about object-oriented programming, and we defined a
class called Person. We saw that we could create several objects from this class, each one
representing one person.

Later in this chapter, we will see that programming languages can use more than one
paradigm, and if we use one that lets us define classes and use functions as first-class
citizens, we can do something very useful.

If we create a couple of person objects with name and age and insert them into a list
structure, this might look something like the following:

p1 = Person("Dipika", 34)

p2 = Person("Manfred", 58)

p3 = Person("Ahmed", 38)

p4 = Person("Rita", 39)

persons = [p1, p2, p3, p4]

We now have four person objects stored in a list called persons. If we want to sort the
list, we can use a sorting function provided by the language. But there is a problem. The
sorting function will not know what we want to sort on; that is, name or age. It does not
even know anything about Person objects as they are defined by a class that we have
written. What it knows is how to sort a list, but it needs the help of a function that can
receive two objects from the Person class, and which returns true if the first object is
larger than the second and false if it is not. We will need to write that function and, in
it, define what makes one object larger than the other one. We can decide if it should be
name or age.

If we want to sort the objects by their age, we could do the following:

function compare(person1, person2)

 return person1.get_age() > person2.get_age()

end_function

sorted_persons = sort(compare, persons)

Here, we have a function called compare. It will accept two person objects as its
arguments. If the age of the first person is greater than the age of the second person, this
function will return true. Otherwise, it returns false.

Understanding functional programming 273

The sort function accepts as its first argument a reference to this function. When it is
performing the sort, it will need to compare two different objects to determine in what
order it should place them in the sorted list.

In our example, it will first pass Dipika, who is 34, and Manfred, who is 58, to the
function. The compare function will return false since the age of Manfred is greater
than the age of Dipika.

The sort function will now take the winner from the last round, Manfred, and pass this
object along with Ahmed's object. This time, Manfred will be passed first, so he will be
the person1 object in the function, while Ahmed will be person2.

This time, the first object has an age that is greater than the second one, so the function
returns true.

This is how the sort function can use a function that we provide to fulfill its task to sort
the list. If we want to sort on the names instead, we will only need to change the compare
function so that it compares the names instead of the ages.

If we print the sorted_persons list, which contains the sorted list, we will get this
result if we sort on age:

Dipika, 34

Ahmed, 38

Rita, 39

Manfred, 58

If, instead, we sort on the names, we will get the following result:

Ahmed, 38

Dipika, 34

Manfred, 58

Rita, 39

First-class functions are a compelling feature that let us write functions that are more
general-purpose as we can pass another function that will do parts of its job, just as the
sort function works.

Functional programming has several concepts that are both powerful and let us write
higher quality code. That is the reason why functional programming is constantly
gaining popularity and why many non-functional programming languages are borrowing
functional concepts.

274 Programming Paradigms

The following is a list of some popular languages that support functional programming,
either as its primary paradigm or are using many concepts from functional programming:

• C++ (since C++ 11)

• C#

• Clojure

• Common Lisp

• Erlang

• F#

• Haskell

• JavaScript

• Python

• Ruby

Functional programming is not only a very interesting paradigm, but it is also influencing
many established languages to incorporate functional concepts. The next paradigm is not
as widely used as the ones we have looked at so far, but it has some interesting concepts.

Understanding logic programming
This paradigm is based on formal logic. A program written in a language that implements
this paradigm is constructed of a set of sentences in a logical form that will express facts
and rules about a specific problem domain.

This might sound complicated and strange, but as we will see, the basic concepts of this
paradigm are rather simple. Consider the following diagram:

Figure 10.20 – A family tree

Understanding logic programming 275

In the preceding diagram, we can see a family tree. Looking at it, we can see the following:

• Anna and Bob have a child, Lisa.

• Lisa and Fred have a child, Karen.

• Fred and Sue have a child, John.

• Karen's grandparents are Anna and Bob.

In a programming language that uses logic programming, we can define this family tree
using something called predicates. This will look something like this:

mother(anna,lisa).

mother(lisa,karen).

mother(sue,john).

father(bob,lisa).

father(fred,karen).

father(fred,john).

They might seem to come in an odd order, but most logic languages want us to group all
predicates of the same kind together so, in this case, we first define all the mothers and,
after that, all the fathers.

On the first line, we can see that Anna is the mother of Lisa, while on the fourth line, we
can see that Bob is the father of Lisa. The names are called atoms because they represent
a single value, and atoms need to be defined by lowercase letters only.

We can now define some rules that dictate what makes someone a parent and
grandparent. It might look like this:

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

Here, X, Y, and Z are variables. Variables are defined with an initial capital letter. We can
read this as

For any X, Y, Z,

 If X is a parent of Y, and Y is a parent of Z

 Then X is the grandparent of Z

The two last rows define what a parent is. It is either if X is the father of Y or if X is the
mother of Y.

276 Programming Paradigms

We can now use this to ask questions like this:

grandparent(anna, karen).

This question will produce the following answer:

yes

This is true as Anna is the grandmother of Karen.

We can also ask who Karen's grandparents are, as follows:

grandparent(Q, karen).

Here, Q is a variable, and we will get the following response:

bob

anna

We could also ask who the grandchild of Anna is:

grandparent(anna, Q).

This will tell us that it is Karen:

karen

There are, of course, more things that you can do in a logic programming language, but
this was a little taste of what logic programming can look like.

The following is a list of some languages that support logic programming:

• ALF

• Curry

• Fril

• Janus

• Prolog

The way we structure the code in logic programming is very different from all other
paradigms, making it an interesting outsider.

We have now looked at the leading players in the paradigm field. But before we leave these
paradigms behind, let's just mention a few more to get a more complete picture.

Other paradigms 277

Other paradigms
The paradigms we have covered so far in this chapter are the most commonly used, but
there are several others. Let's have a quick look at some of them.

Function-level
In function-level programming, we have no variables at all. Instead, programs are built
from elementary functions, combined with function-to-function operations, sometimes
referred to as functionals or functional forms.

Languages that implement this paradigm are built around the following hierarchy:

• Atoms are the data that the functions operate on. They will only appear as input or
output to the programs and will never be found inside the actual program.

• Functions will convert atoms into other atoms. The programming language will
define a set of functions, and the programmer can create new ones using functional
forms. The program itself is also a function.

• Functional forms are used to convert functions into other functions. They can be
used by the programmer to create new forms.

Array programming
In array programming, operations will be performed on an entire set of values at once.
These solutions are commonly used for scientific and engineering applications.

Operations are generalized to apply to both scalars and arrays. In this book, we have
encountered scalars in the form of variables that can only hold one single value at a time.
We have also looked at arrays. If you need a refresh your memory on variables and arrays,
you can read more about them in Chapter 6, Working with Data – Variables.

The a + b operation will act differently if a and b are scalars and if they are arrays. If they
are scalars, the result will be the sum of adding the two values. If they are arrays, the result
will be the sum of all values stored in the two arrays.

Array programming can simplify programming at the cost of efficiency. This means
that it can be easier to use these kinds of languages when we write the code but running
them might take a longer time than if the program is written in a language that uses
another paradigm.

278 Programming Paradigms

Quantum programming
This is the paradigm of the future. To be able to use this paradigm, we will need quantum
computers. A quantum computer uses the quantum-mechanical properties particles
defined in quantum physics. These particles have a superposition, meaning that before
we observe them, they will be in any possible position. A quantum computer will use this
by defining something known as a qubit. A normal computer has bits that can either be
0 or 1. A qubit will be both, and using this property, a quantum computer will be able to
calculate all possible results of any given input in a fraction of the time it takes to perform
the same calculations with the kind of computers we are using today.

Quantum programming is not a paradigm per se, but to be able to write programs for
quantum computers, we will need languages that will support other kinds of operations
than the ones we are using today:

Figure 10.21 – Part of a quantum computer built at IBM Research in Zurich.
Photo by IBM Zurich Lab, cc-by-2.0.

Multi-paradigm languages 279

Even though we are just seeing the first quantum computers slowly take form, several
languages that we can use for them are already defined. They are built upon already
existing paradigms, such as imperative and functional programming. When we have fully
functional and accessible quantum computers, we will see an explosion of new languages
that will utilize the powers of these computers.

Multi-paradigm languages
Most programming languages will not stick to just one paradigm but instead use several.
This is why they are called multi-paradigm languages. We can make a table of some of the
most popular languages to see what paradigms they support:

Table 10.1

It can always be argued how much a paradigm influences a programming language.
Here, I have looked at the main paradigms we have looked at in this chapter and how
the documentation of the languages describes themselves.

A language that is marked with Some has implemented some concepts of this paradigm.
A language that has a Yes in the column for a paradigm might not have this paradigm as
its main one but has implemented many of its features.

280 Programming Paradigms

Summary
In this chapter, we looked at some of the most popular programming paradigms.

The first two that we looked at, structured and object-oriented programming, are the two
paradigms that have dominated programming over the last 35-40 years.

In structured programming, the program state is modified using statements, and the flow
of the program is controlled using loops and selections, such as if statements.

Object-oriented programming builds upon the ideas of structured programming, but the
code is organized using concepts known to us humans, such as classifying things that have
similar data and behavior. This is described in classes that act as blueprints for objects that
represent real-world things, such as people or bank accounts.

Functional programming is the oldest of the paradigms we covered in this book but
has gained popularity in the last decade. In functional programming, we don't want to
modify the state of the program and are using the concept of pure functions to achieve
this. Writing programs using this paradigm can reduce errors in the code and make our
applications more stable.

In logical programming, we define predicates that will define rules that we can use to
answer logical questions. Compared to the other three paradigms, local programming is
far less popular.

There are many other paradigms available, and they are often rather specialized or used by
a few obscure languages.

Most programming languages are multi-paradigm in that they use concepts from more
than one paradigm.

In the next chapter, we will see that our work, as programmers, is not done when the code
is written.

11
Programming Tools
and Methodologies

Now, it's time for us to take a closer look at the development cycle. Producing software
is more than just writing code. We must plan what will be coded, write the code, integrate
the code we write with already existing code, share our code with other developers, test
the code, deploy the code so that the application can be accessed by the users, add new
features to the application, and fix bugs and errors that will show up in the code that has
been released.

To accomplish this, a development team will typically use different tools and
methodologies for how things will be done and in what order.

In this chapter, we will look at all the components that are part of the development
process that is not the actual coding.

282 Programming Tools and Methodologies

In this chapter, we will cover the following topics:

• Understanding what a version control system is and what it can be used for

• Understanding unit tests

• Understanding integration tests

• Understanding the concept of a release

• Understanding software deployment

• Understanding code maintenance

• Understanding software development process methodologies

We have lots to cover, so let's start with an essential tool in software development: version
control systems.

Understanding version control systems
A version control system (VCS) is used to manage changes in documents, computer
programs, or other collections of files. They are used by programmers to manage different
revisions of their code.

It is possible to restore earlier reversions if needed. This makes it safer to edit files,
as we always have a way for us to restore what we had if we decide that the changes we
made need to be reset.

VCSs are also used so that developers can work together on the same project and, in a safe
manner, work in the same source code files. Version control systems also keep track of
who changed what in a document, and when the change was made.

Files that are version controlled are stored in what is called a repository. When changes
are made to a file, the user of the VCS can commit these changes to the repository, and by
extension of that, create a reversion point. It is at these points where the version control
system takes a snapshot of all the changes made.

To illustrate how this works, we can use one of the most popular version control systems
available: Git. Git was created by Linus Torvalds, the creator of Linux, in 2005. It was
initially created to be used by the programmers who were working on the Linux kernel
code, but soon gained popularity outside the Linux project. Today, it is by far the most
popular version control system.

Understanding version control systems 283

Let's start by writing some code. Let's say we have this code in a file called calc.code:

function add(a, b)

 return a + b

Save this file in an empty folder. We can now use the GIT software to create a repository.
This means that we can start to version control the files within this folder. From the
command line, we can do this by writing the following code:

git init

At this point, nothing is version controlled yet. We will need to tell GIT what files we want
to add to version control. We can do that with the following command:

git add calc.code

Our file is now staged. This means that its changes will be tracked, but we will need to do
one more thing to record the changes that have been made to our file. What we'll do is
called a commit. A commit will record our changes and store them in our repository. Let's
do that with the following command:

git commit -m "Initial Commit"

-m tells git that we will provide a commit message, and the message is what comes
within the quotes. The messages will help us see what is changed in a commit, so we
should take some time to come up with descriptive messages.

The changes we have made are now stored on what is called the master branch. The
following diagram illustrates what this looks like:

Figure 11.1 – The master branch after our initial commit

We would now like to continue to work on our program and add more code to this file.
To make life a little bit safer, we can create a new branch and make our changes in this
branch. We will soon see why this might be a good idea.

284 Programming Tools and Methodologies

To create a new branch called subtract, we can use the following command:

git branch subtract

Creating a new branch will give us an exact copy of the branch we created it from, which
in this case is the master branch. This can be illustrated as follows:

Figure 11.2 – Creating a new branch called subtract from the master branch

We are still on the master branch, so any changes we make will be on this branch.
So, before we do anything else, we should switch branches. We can do that with the
checkout command:

git checkout subtract

We are now on the subtract branch. Now, we can update our source code file, so let's
add another function, making the file look like this:

function add(a, b)

 return a + b

function subtract(a, b)

 return a - b

If we save these changes, we can add the file to the staging area and commit the changes
with the following commands:

git add calc.code

git commit -m "Added the subtract function."

Understanding version control systems 285

We can illustrate this commit with another circle on the submit branch, as shown in the
following diagram:

Figure 11.3 – Committing to our new branch

Now that we have committed our changes to GIT, we can switch branches. Let's do that
with the following command:

git checkout master

If we open our file now, we will see the following content:

function add(a, b)

 return a + b

The changes we made are not here. This is because these changes are not in the master
branch. Keeping the file open in our editor, we can now switch back to the subtract
branch by using the following command:

git checkout subtract

Like magic, the changes we made to the file are back, and the subtract function is as
we left it:

function add(a, b)

 return a + b

function subtract(a, b)

 return a - b

286 Programming Tools and Methodologies

This illustrates that if we, for some reason, decide that the changes we made were no good,
we can always go back to our master branch, and everything will be like it was before we
started. However, if we, on the other hand, are happy with the changes, we can now bring
the two branches together. In GIT, this is called a merge. The first thing we should do
before merging the two branches is make sure that the branch we want to merge is active.
In this case, it is the master branch, so we write the following:

git checkout master

Now, we are ready to merge the changes we made back into the master branch. We can do
this with the following command:

git merge subtract

This means we take the changes made in the branch called subtract and merge
it with the content of the current branch, master. We can illustrate this with the
following diagram:

Figure 11.4 – Merging the subtract branch with the master branch

This is how we can use version control with GIT on our local machine. Now, let's see how
we can use it to collaborate with other programmers who work on the same project as us.
For that, we will need not only our local repository but also a central repository that we
can use to update the other on the changes we make.

Let's assume that Alice and Bob are both working on the same project and want to use
GIT to update each other on the changes they make to any files in the project. They will
not only have their local GIT repositories, as we saw in the preceding example, but they
will also connect to a centralized repository. Any changes they make can now be pushed
to this repository, and they can also pull down any changes the other person made from
that repository.

Understanding version control systems 287

This will look something like the following:

Figure 11.5 – Two programmers connected to a central repository

We can now assume that they will both work on the same file we saw previously, calc.
code, and that it has the same content as we left it with, like this:

function add(a, b)

 return a + b

function subtract(a, b)

 return a - b

The central repository is often referred to as the origin. Let's say that Alice now wants to
create a multiply function:

1. The first thing she should do is pull down the latest version from the central
repository (origin) with the following command:

git pull origin master

Here, origin points out the central repository, and master is the branch she
wants to pull down.

2. She now has the latest version, and she can begin implementing her function. She
decides to do this in a new branch, so she executes the following command:

git branch multiply

3. She will then switch to this branch with the following command:

git checkout multiply

4. Now, she can make the necessary changes, so she adds the following code to the file:

function add(a, b)

 return a + b

288 Programming Tools and Methodologies

function subtract(a, b)

 return a – b

function multiply(a, b)

 return a * b

Let's leave Alice here and check what Bob is doing.

While Alice has started her work, Bob decides he wants to create a divide function:

1. Just like Alice, he will pull down the latest version of the master branch and create
a new branch called divide, switch to it, and then change the calc.code file, so
that it looks as follows:

function add(a, b)

 return a + b

function subtract(a, b)

 return a – b

function divide(a, b)

 return a / b

At this point, Alice is happy with her changes, so she commits them to her branch
and merges her branch with the master.

2. Now, she wants to push these changes to the central repository. Before she does
that, though, she wants to make sure that changes have been made to the central
repository. So, first, she tries to pull down any changes to her repository with the
same command she ran previously:

git pull origin master

3. Since nothing has happened to the central repository since her last pull, nothing will
happen. She can now push her changes with the following command:

git push origin master

Now, her changes are stored in the central repository. At this point, her local version of the
master branch and the version stored in the central repository are identical.

Understanding version control systems 289

Let's go back to Bob, who has finished his function. He commits his changes to his local
repository in his branch and merges it into the master branch. Now, he is ready to commit
his changes to the central repository:

1. Just like Alice, first, he wants to make sure that he has the latest changes from the
central repository, so he issues a pull command:

git pull origin master

2. This time, things will not go so well. He gets a message that there has been a merge
conflict. What's that? He opens the code file, and he now sees this:

function add(a, b)

 return a + b

function subtract(a, b)

 return a - b

<<<<<<< HEAD

function multiply(a, b)

 return a * b

=======

function divide(a, b)

 return a / b

>>>>>>> div

What happened was that he and Alice made changes to the same file on the same
line, which is at the end of the file in this case.

GIT became confused due to this and needs help to decide what will be in the file.

Bob looks at this and understands that Alice has added a function to the same
location in the file that he did, and he understands that both functions should
be there.

The <<<<<<< HEAD marker indicates the beginning of the conflict. What is
between that line and the ======= line is the changes he pulled down. The code
between ======= and >>>>>>> div are his changes.

290 Programming Tools and Methodologies

3. Since he decides that both functions should be in this file, he removes the three
marker lines from the file, so it now looks like this:

function add(a, b)

 return a + b

function subtract(a, b)

 return a - b

function multiply(a, b)

 return a * b

function divide(a, b)

 return a / b

He can now commit his changes to his local repository and then push the changes so that
Alice can get the changes later.

This illustrates how a version control system can be used to share work between multiple
programmers in a project. There are, of course, many other aspects of version control
systems that we did not cover here, but now, you at least have an idea about what a version
control system can do for you and how it can be used to share work with others.

This tool is used throughout the development process. Now, let's look at what we do when
the code is written, as well as how we can make sure that it is working before we push it
to the central repository.

It's now time for unit testing!

Unit testing
Testing our code is essential so that we can verify that it does what it should. We will also
use tests to make sure that any changes we make to the code have not made things that
previously worked stop working or behave in an undesired way.

Several kinds of testing can be done on our code, and the first type of test we will look at
is called a unit test. The unit part indicates that the test will be done on a separate unit
of our code. This is typically at a function level. This means that we will try to isolate one
single function (or another small unit of code) and run our tests on just that unit.

Unit testing 291

These tests are typically written by the developer of the code unit to be tested and are often
automated. This means that as soon as a block of code is ready to be committed to the
version control system, it must first pass the unit test written for it.

Since the unit test only tests a single code unit, they are typically rather trivial. To test our
calc functions, we must first decide what we want to test. First, we can set up some test
cases for valid input and match these inputs to some expected results.

We could do this in a table like this one:

Table 11.1

We can use this to write our tests.

Unit tests are typically written in a separate file that will call the code to be tested. They
might look something like this:

function test_add_one()

 result = add(2, 3)

 assert.equal(5, result)

The first argument, assert.equal, is what we expect as a result, and it is compared
to the content of the result variable. If they match, this test will pass; if not, the test will
fail. We can now go ahead and create tests in the same manner for the rest of our
test cases:

function test_add_two()

 result = add(0, 10)

 assert.equal(10, result)

292 Programming Tools and Methodologies

function test_subtract_one()

 result = subtract(2, 3)

 assert.equal(-1, result)

function test_subtract_two()

 result = subtract(7, 4)

 assert.equal(3, result)

Here, we are just listing the first ones, but we continue like that with the rest.

For simple tests like these, the structure will be the same—call the function we want
to test, store the returned value in a variable, and compare the returned value with the
expected one. We should also think of odd cases and what kind of result we expect to
get. For example, what will happen if we make this call to divide? Here is how the
code appears:

result = divide(10, 0)

As we discussed in Chapter 9, When Things Go Wrong – Bugs and Exceptions, we can't
divide a number by zero. This will result in an exception. If we expect to get an exception
when this is done, the function works, but if we expect the function to handle this case,
it will need to be modified. This is done so that it returns whatever we decide it should
return. This may happen if we decide that we should get another exception that indicates
that we can't pass a 0 as the second argument. So, no matter what we expect, it should
be tested.

This is one type of test that we should run on our code, but these tests will just test a single
unit; that is, an isolated part of the application. We will also need to perform another type
of test, called an integration test. We'll see what this is in the next section.

Integration testing
Integration testing is about putting several units together and testing them so that they
work correctly when they are no longer isolated, but work together.

Units that work together will need to communicate, and they will communicate by passing
data between them. This means that integration testing is about checking that the data
transfer and data representation aspects work.

Integration testing 293

Imagine that we are working on a project that is divided into several modules. To speed up
development time, we let several programmers work on the separate modules. This might
look something like this:

Figure 11.6 – Four developers working on four different modules

These four developers will now start to write their modules, and they will make sure that
their modules meet the requirements by running unit tests on them. But the only thing
these tests will show is that this module works in isolation.

But in the final application, these modules will need to interact with each other, and
when they do, they will need to send data back and forth. The problem here is that all
four programmers are human, and humans tend to interpret even the most detailed
description differently. So, if Carl needs to pass a value for a year to the module Alice
is writing, he might pass it as a two-digit value, such as 23. But Alice, who is writing the
code receiving this data, might expect that the year comes in a four-digit format, so she
expects 2023.

294 Programming Tools and Methodologies

If we trace the communication between the modules when they are put together, this
might look something like this:

Figure 11.7 – Modules communicating

This is just a small example. In real applications, there will be many more modules and
many more lines of communication. But the point is that we will need to verify that all the
data that's passed back and forth is valid and works in all situations.

In this case, we will need to do what's called an integration test. This is when we test that
different parts of the application are working when they're put together.

This can be done in several ways. There is a big-bang approach we can take, which means
that we wait for all the modules to be completed, and then we put them together and test
them. The disadvantage of this is that the modules will not be ready at the same time. If
Alice, who writes Module A, is done with her work, she will need Bob to finish his work
before she can integration test her module, as her work is making a call to Bob's work.
The same goes for Bob: he needs Carl to finish his work before he can integrate his module
into the application.

Other types of tests 295

There are other approaches where we don't wait for all the parts to be finished before
we begin testing. Instead, we create fake modules, called stubs and drivers. A stub is a
module that gets called by another module, while a driver is a module calling another
module. We can create these to pass and accept data so that we can begin testing. They
are not fully functional modules, but they act as the real modules for the sake of testing.
As modules get completed, they can replace these stubs and drivers, and tests can then be
performed on the real modules.

Having these tests in place is essential, partly because it verifies that the modules can
interact with each other, but also for the future. When we add new functionality later, either
by changing existing modules or adding new ones, we want to make sure that everything
that worked previously still does. Inserting new code into an existing application can have
unwanted side effects, and we must make sure that this has not happened.

Other types of tests
Unit and integration testing are not the only types of tests we have. Depending on what
kind of application we are creating and what requirements our software has when it
comes to things such as data integrity, handling large workloads, compatibility with other
applications, and so on, we can choose to expose the code for several different test types.

Let's briefly look at some of these tests.

System testing
System testing tests a system when it is completely integrated into its execution
environment. Here, we will test things such as whether the login works, whether we can
create and edit data in the application, whether the user interface presents data correctly,
and whether we can delete entries.

These things are typically tested earlier in the development process too, but they need to
be verified when the source code is in its live production environment.

Acceptance testing
Acceptance testing is often divided into four different types:

• User acceptance testing

• Operational acceptance testing

296 Programming Tools and Methodologies

• Constructional and regulatory acceptance testing

• Alpha and beta testing

Let's understand these in detail:

• User acceptance testing: This is a way to verify that the solution created works for
the end users of our application. The questions we are trying to answer with these
tests are if the users can use the software, if it is what they asked for, whether they
have any trouble using it, and if the application behaves as anticipated.

• Operational acceptance testing: This is done to verify the operational readiness
of an application before it is released to end users.

• Constructional and regulatory acceptance testing: This is done to verify that
the developed software fulfills the conditions specified in the agreement that was
entered into with the organization that ordered the software. Regulatory testing
verifies that the software conforms to the current regulations.

• Alpha and beta testing: These are two tests that are performed to verify and
identify all possible issues and bugs. Alpha testing is performed early in the
development process, while beta testing is done near the end of the development
process. They are both conducted by potential users of the finished product or by
a group of people with a similar skill level as the end users of the application.

Regression testing
Regression testing focuses on finding defects after a significant code change and seeks to
uncover software regressions. A software regression is a bug that will make some features
in an application stop functioning after the update. There is also software performance
regression, where the software still operates correctly, but where an update harmed the
system's performance.

These were some other tests we can perform on our software. There are many more, but
the ones we have covered here are among the most typical tests you will get exposed to
as a software developer.

When we have code that is tested, we can make it available to the end users of our
application. Before we talk about how to make the code we have written available to
our users, we should stop and talk about what a release is.

Software releases 297

Software releases
When creating software, we don't want to start with an idea for the finished project
and then get to work on everything that this application needs to do and, several years
later, finally publish the finished software. The reason we don't want to do this is that
during development time, several things will happen; for example, the requirements for
this application might change, new laws can make us need to do things differently, and
competing software solutions might be released, to name a few.

Instead, we want to implement some core features, release them to our users, and then
immediately begin the development of the next release, which will contain some more
features. This can be illustrated as follows:

Figure 11.8 – Development process through continuous iterations

We start with a vision or an idea. Then, we take some fundamental parts of this idea and
implement them in what is called an iteration. During this iteration phase, we perform
several steps, all of which we will look at in more detail soon. At the end of the iteration,
we have code that works that we can release to our users. We then begin the next iteration,
implementing more features that are released as soon as this iteration is complete.

The steps that are taken during an iteration will vary, depending on the development
methodology, but commonly, it will be something similar to the following:

Figure 11.9 – Typical steps during one iteration

298 Programming Tools and Methodologies

Here, we can see that we take our ideas and requirements into the development cycle.
First, we will perform an analysis and design the steps. Here, we are trying to answer
two questions:

• What is it that we will do (analysis)?

• How can we do it (design)?

When we know what we should do and how to do it, we can start to implement the
different parts that go into this iteration.

As we finish a section of code, it gets unit tested, and then all the code undergoes
integration tests. Other tests might also be performed before the code is released to
end users. Releasing the code is called a deployment, a step we will look closer at soon.

What we have accomplished now is a release, and this means that our software now has
some new features or bug fixes.

We can now begin the next iteration. This is completed by evaluating the iteration we
just ended. This is done so that we can fine-tune our workflow, see whether we have
discovered some problems during the last cycle, or any other issues that we need to
consider in the next iteration.

We can then specify what will go into the next iteration, and by using that repeat the
whole process.

Now, let's take a closer look at the deployment phase to learn what it is and how it can
be done.

Understanding software deployment
When we have some code to release, we will need to deploy it. Deployment is the process
of making sure the software is installed in the right location, that it is secured to prevent
any hacker attacks, and making sure that privileges are given to the software so that
it can read and write files as needed.

When the code is deployed, we usually want to test it again to make sure that everything
is still working the way it is intended.

Deploying the code is usually done in several steps. Developers will typically have a server
that's used during the development process. This is called the development server, and
during development, the code can be executed and tested on this server. It will often come
with a development database that, if the application we develop uses a database, is used
to simulate the real data the application handles. Still, it can be modified any way the
developer wants as it is detached from the real data the users see and work with.

Understanding software deployment 299

Before the code is moved to the production server, that is, the server the application users
will use to run the application, the code is usually moved to an intermediate server, often
referred to as a staging server. The role of this server is to be as much like the production
server as possible so that the new code can be tested alongside the code that was already
released. The idea is to make sure that everything runs smoothly and that no bugs appear
when the new code hits the live production server.

The staging server also has a database. The data in this database is often copied from the
production database to make sure that everything is a mirror of the real server.

Finally, when the team is confident that everything works correctly, the code is moved to
the production server. Apart from moving the code, other adjustments might be needed,
such as adding things to the production database that the new software version will need,
adding other applications and code libraries that are used by the new code, and so on. This
is depicted here:

Figure 11.10 – Example of servers and their databases

We must also have a strategy for how we can undo this deployment if needed. No matter
how thorough our test has been, when the code hits production and users start to use it,
things that we never imagined begin surfacing. Users might behave in unpredicted ways,
and there might be differences in the production environment compared to the staging
environment that we overlooked.

We always hope for the best, but we will need a plan for what we will do if things backfire.
What we want is a way to undo all the changes and go back to what we had before the
deployment as quickly as possible. This is called a rollback strategy.

We can accomplish such a rollback in several ways. One of them would be to take
a backup of the production database before the deployment occurs. This way, we can
ensure that we have a snapshot of how all the data in the application was, before the
release of the new code.

300 Programming Tools and Methodologies

The actual code is usually deployed to the server with the help of a VCS, so rolling back
the actual code to a previous version is rather simple.

The steps involved in deploying code to the production environment are often automated,
meaning that different tools and applications take care of all the steps. Let's see how this
automation works.

Deployment automation
It is often a good idea to automate as many of the deployment steps as possible. The reason
is that there are usually many steps involved that need to be done in the correct order,
a job ideally suited for automation. At the same time, it's something where humans often
make mistakes by forgetting to do something or do something in the wrong order.

Depending on the complexity of the system, we can use several tools that will help us
accomplish automated deployment.

Automating deployment will ensure that we have high-quality code since the automation
process typically runs tests and lets the code through to the production server that passes
the tests.

It will also save time as the deployment steps will be performed much faster by the
deployment tools than they would be if humans performed them.

When the code is deployed, the work with it is not over. Deployed code must
be maintained.

Code maintenance
A typical software developer will spend more time maintaining existing code than writing
new exciting features.

This is not very strange if we think about it. First, the lifespan of an application is typically
much longer than the time it took to develop it. This means that there are more and more
softwares out there that are running and performing their tasks.

Programs that are used will always need maintenance as users will find bugs that we must
fix, new features will be added to the application as demands from users change, and old
features must be updated and improved.

This means that developers spend most of their time in old code, fixing and updating it.
This can be code written decades ago by someone who has left the company a long time
ago, or it can be written by you just the other week.

Understanding software deployment 301

If you think ahead to what your life as a programmer will look like, you will most likely
imagine yourself writing new, exciting software that uses the latest tools and features that
are out there. Still, the fact is that it is much more likely that you will be poking around
in code written a long time ago, in a version of the language that was released when you
were in preschool.

At times, you will have the chance to write that brand-new, cool, and shiny piece of
software, but remember, if you do a good job, that code will live on and will need to be
maintained by others (or yourself) in the future.

That is the life of a software developer. This means that we need to ensure that the code
we write is as maintainable as possible. A skilled software developer is someone who
writes highly maintainable code. This means that the code is clear, easy to understand,
and easy to change, without the risk of people introducing some unwanted side effects
in the application.

There is a simple rule we can follow to help us create maintainable code: the boy
scout rule.

The legend of the boy scout rule says:

Leave the campground cleaner than you found it.

I have no evidence that this rule was ever used by actual scouts. It is more likely a variant
of a message the founder of the scout movement, Robert Baden-Powell, left to the
movement before his death. In that message, he said, Try to leave this world a little better
than you found it.

In the book Clean Code, the author, Robert C. Martin, also known as Uncle Bob,
transformed this rule so that it could be applied to code. He states that if we apply this rule
when we maintain our code, we should always leave our code a little cleaner and better
each time we maintain it so that its quality will increase over time. We can rephrase the
boy scout rule in relation to software development so that it says, Always leave the code
you're editing a little better than you found it.

The changes do not have to be huge. You will not have to rewrite large sections of code. If
you change a variable name to something that better describes the value it is holding, or
adding documentation to a piece of code where it was missing previously will increase the
code's quality slightly.

Note
In Chapter 12, Code Quality, and Appendix A, How To Translate the Pseudocode
into Real Code, we will dive deeper into how we can write high-quality code,
among other things, while keeping maintainability in mind.

302 Programming Tools and Methodologies

Now that we have an idea of how to get the software to our users, when we are done
writing and testing it, we should take a closer look at the actual development process.

Software development process methodologies
Since the 1960s, different methodologies have been developed to help system developers
be more productive, on target, and create higher quality code. Here, we will look at some
of the more essential methodologies – some that are in use today and some that have been
superseded by newer and more flexible ones.

Waterfall development
The waterfall development model is one that almost everyone loves to hate. We will look
at it anyway, as many newer methodologies have been developed as a reaction to it.

The reason it is hated, is that it will not take changing requirements into account.

In the waterfall model, several defined steps are completed, one preceding the next. An
example of these steps can be seen in the following diagram:

Figure 11.11 – The steps in the waterfall model

Software development process methodologies 303

This is how the model works:

1. First, we gather all the requirements needed for this application.

2. After that, we make a system design, where we describe how different
responsibilities will be divided between different parts of the application.

3. Then, we write the code.

4. During the verification phase, the code is tested.

5. Finally, when the software is released, it goes into the maintenance phase, where
it is maintained.

The main criticism of this model is that it will not capture new requirements that might
(and often will) arise during the development phase. The process of going from an initial
idea to a finalized product can be rather long, and during this time, a lot of things will
happen that will have an impact on this application. New laws can come into place,
competing applications might be released, new versions of operating systems and other
software that this application relies on might be released, and so on.

If we have a development model that cannot capture these changes, we will most likely
have developed a product that is outdated before it has even been released.

Now that we have looked at a methodology that is not in use anymore, or at least, no one
will say that they are using it, we can look at some that are in use and that are created as a
reaction to the waterfall model.

Spiral model
In 1986, the American software engineer Barry Boehm described and depicted a model
that, instead of going from one phase to the next, was shaped as a spiral.

This idea has since been developed and modified into several new methodologies. Still, the
basic idea of driving the development process by a spiral has been prevalent since then.

One key concept in the spiral model is that risk is taken into consideration as a critical
concept when developing software.

304 Programming Tools and Methodologies

In the following diagram, we can see a simplified version of the spiral model:

Figure 11.12 – A simplified version of the spiral model

Here, we have four distinct phases. Instead of going through them once in order, we will
iterate through them over and over as many times as necessary until the application is
developed. Let's take a look:

1. In the first phase, we look at the objectives, as we see them at this point in the
development process.

2. We then look at the risks. What can hinder us from succeeding in implementing the
objectives we just determined? By identifying the risks, we have a higher chance of
avoiding them or at least minimizing the impact they will have on our software.

3. When that is done, we will go ahead and develop and test the software.

4. The last phase is a review phase. Here, we look back at what we have done in
the other three phases during this iteration, including what went well and what
problems we had. We can learn from this so that the next iteration is better.

We will then start over with the objectives for the next iteration by determining the risks
and developing and reviewing them repeatedly.

Software development process methodologies 305

The growing spiral illustrates that, for each iteration, more of the software has
been created.

Even if the spiral model was created as a reaction to the shortcomings of the waterfall
model, this claim shows that the problem is not the Waterfall model in itself, but that the
development process becomes very prolonged and therefore can't react to rapid changes
in requirements.

The spiral model gave inspiration to several new methodologies, where the development
process is divided into smaller iterations. The next one is one such example and the one
that is currently the foundation of how most software projects are run.

Barry Boehm also said that this model is just a series of small waterfall models.

Agile development
Agile software development refers to a group of software methodologies, all based on
iterative development.

The term agile comes from a group of 17 software developers who met at a resort
in Snowbird, Utah, in 2001. After the meeting, they published Manifesto for Agile
Software Development.

The manifesto is a short description of what should be prioritized during the software
development process.

It can be found at https://agilemanifesto.org/.

This manifesto is then outlined in more detail by twelve principles, called Principles behind
the Agile Manifesto, and they can be found here at https://agilemanifesto.org/
principles.html.

These ideas had a significant impact on the software industry, and several new software
development methodologies were developed in response to the manifesto.

Let's look at some of the more popular of these.

Agile Scrum methodology
This methodology, better known as Scrum, is a lightweight project management
framework that uses an iterative and incremental approach.

In Scrum, the product owner – a person with the power to decide what items will go into
the application – plays a central role. This person needs to play an active role throughout
the development process.

https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html

306 Programming Tools and Methodologies

The product owner works closely with the development team to create a prioritized list of
system functionality, called the product backlog. The product backlog consists of whatever
needs to be done to deliver a working software system successfully. The items in the
backlog can be things such as the features of the application, bugs that need to be fixed, and
non-functional requirements such as certification, accessibility, and data integrity.

When the properties in the backlog have been prioritized, a team of developers
(and potentially other roles, if needed) will start to develop in what can be called
potentially shippable increments.

This means that the team will take some of the highest prioritized items from the backlog
and start to implement them during a short time frame, known as a sprint. A sprint will
typically last for somewhere between 14 and 30 days.

The outcome of the sprint is preferably fully functional so that it can immediately be put
into production, and users can start using this functionality.

The team will then start over with a new sprint. This will be repeated as many times
as necessary.

Lean software development
This Agile methodology is iterative, just like Scrum, and focuses on delivering fully
functional batches. The methodology is highly flexible and does not have any rigid
rules or guidelines.

Its main idea is to eliminate what is called waste. This is done by letting users of the system
select only the precious features for the system. These features are then prioritized and
delivered in small batches.

It relies on rapid and reliable feedback from the users of the software. In Lean
development, the work is pulled by customer requests.

Extreme Programming (XP)
This methodology was first described by Kent Beck, an American software engineer
who took software best practices to an extreme level. One example of this is code review.
Standard practice is that another developer should review all the code before it can be
merged with the code that goes into a release. In XP, this is done by using the concept
of pair programming. Pair programming is when two developers are using one computer
to develop code. One is called the driver and is the one that will write the code. The other
developer is called the observer or the navigator and will observe and review what the
driver is doing. The two will frequently switch roles.

Summary 307

Compared to the traditional code review process, this will speed things up as the review
is done during the development phase. Other benefits of pair programming include the
fact that the driver will consistently get input from the observer regarding how to solve the
current task.

The goal of XP is to reduce the cost of changes in the requirements. To do this, XP uses
short development cycles.

In XP, changes in requirements are a natural, inescapable, and desirable aspect of
software development.

Summary
In this chapter, we looked at some of the more essential concepts that go into software
development that have nothing to do with the actual coding. Even if we are not working
on large-scale, professional projects, we should still version control our code, write tests to
verify that the code does what it is supposed to, and work iteratively.

We began by learning that version control systems are a great tool that will help us not
only be able to go back in time to an earlier version of the code, but also help us share our
code with other developers in our team.

Then, we saw that to verify that the code we have written is doing what it is supposed to,
we need to test it. In this case, we have something called unit tests and integration tests
that we should perform to make sure that the application produces the correct result and
that the new code does not produce any side effects, which would produce an undesirable
result for a code that worked successfully in a previous version.

After this, we saw that the software release life cycle defines what steps are to be
performed to make a piece of code mature enough to be released to end users. When
code is ready to be released, we need to deploy it to the environment (for example, as an
application server) so that the end users of this application can access it. When the code
is used, we need to maintain it. Bugs will be discovered, features will need to be added or
changed, and so on.

Lastly, we learned that to handle the development process, a software development team
will typically use a development methodology. The methodology will describe in what
order things should be done, how the team will cooperate to achieve a good result, and
how to decide what will go into a software release.

In the next chapter, we will take a look at how we can write high-quality code, and what
we mean by code quality.

In this section, we will talk about code quality, what it is, and some best practices to
help us write high-quality code.

This section has the following chapter:

• Chapter 12, Code Quality

Section 3:
Best Practices

for Writing
High-Quality Code

12
Code Quality

There are many aspects of code quality. We can talk about efficient code, which is code
that runs fast or doesn't waste resources such as memory. It can also be source code that is
easy to read and understand for us humans and therefore is easy to read and maintain. In
this chapter, we'll talk about this and look at some best practices
for writing high-quality code.

We will also look at some examples of things we should try to avoid if we want to write
high-quality code.

In this chapter, we will learn about the following topics:

• Understanding what code quality is

• Writing readable code

• Writing efficient code

• Understanding that smart code is not always smart

• Understanding some of the best practices for writing quality code

Before we learn how to write quality code, we should define what code quality is.

312 Code Quality

Defining code quality
It is tough to define the meaning of quality when it comes to program code. The reason
is that all developers will have their own opinion of what it means. One developer can
argue that we should focus on writing readable code as it will be easier to understand and
maintain and, by that, reduce the chance of us inserting any bugs into the code. Another
developer could argue that we shall focus on writing compact code; that is, as few code
lines as possible. Even if the code is harder to read, less code will give us fewer chances to
introduce bugs in the code.

Here, the two developers would argue for the same thing – fewer bugs in the code – with
two contradictory positions.

Let's look at a small example using Python as our language. We want to create a list that
holds all possible combinations we can get by rolling two dice.

The first one will use more code, but it will be easier to understand:

two_dice = []

for d1 in range(1, 7):

 for d2 in range(1, 7):

 two_dice.append((d1, d2))

On the first line, we create an empty list.

Then, we have a for loop for the first dice. The d1 variable will get the value 1 the first
iteration, 2 the second, and so on. Remember that the end value, 7, is when it will stop, so
this is 7, not 6, as it will stop when it reaches this, giving us the values 1 to 6.

We will then do the same kind of loop for the second dice.

On the last line, we will insert the values of d1 and d2 into the list. Having an extra pair of
parentheses on appending the values will put them in what is called a tuple. A tuple is like
a list, but it cannot be changed once we have inserted values into it. We do this to indicate
that d1 and d2 belong together as one combination.

We can accomplish the same things with a single line of code. It will look like this:

two_dice = [(d1, d2) for d1 in range(1, 7) for d2 in range(1,
 7)]

As we can see, the second example has less code but at the cost of readability.

But who is right – the developer arguing for readability or the one arguing for less code?
We can't say, as they both are right.

Defining code quality 313

What we need is a better definition of what code quality is, and more importantly, it
should be measurable.

Many efforts to define a model for measuring code quality have been made, and one of the
better known is CISQ's quality model. We'll see what that is next.

CISQ's quality model
The Consortium for Information Software Quality (CISQ) has defined five rules that
can be used to measure the quality of code. It was first defined with business software in
mind but was later extended to also include embedded systems, used mainly in Internet
of Things (IoT) applications. These rules are as follows:

• Reliability: Reliability measures the level of risk and the likelihood of failures. It
will also measure the defects that are injected into existing code when it is updated
or modified. The goal of measuring reliability is to prevent the time an application
can't run because of severe bugs.

• Performance efficiency: When an application is running, the speed with which
it performs its operations depends on how the code is written and structured.
Measuring the efficiency at a code level will help to improve both the overall
response time of an application and how we identify the potential risk of
applications that need to process data at a high speed that fail as they fail to process
data fast enough.

• Security: The security rule will measure the likelihood of potential security breaches
due to poor coding practices.

• Maintainability: When we are talking about the maintainability of code, we usually
refer to three things. We say that the code should be, namely, adaptable, which is code
that we can adapt to changes as per the requirements; portable, which is code that can
be used on different platforms, such as different operating systems; and transferable,
which is code that can be transferred from one development team to another.

This can be applied to, more or less, all code, but we want to be able to do all three of these
with as little effort as possible.

• Size: Size is not a quality attribute per se, but the size of the code can have an impact
on its maintainability. The more code we have, the harder it will be to navigate,
understand, and follow its logic.

We have now talked about the quality aspects regarding code. But what about quality from
the user's perspective?

314 Code Quality

Understanding user quality
What the CISQ model focuses very little on is quality from the user's perspective. An
application can match all the CISQ rules, but a user of this application may still consider it
being of poor quality.

Dr. Tom DeMarco, an American software engineer, has proposed that a product's quality is
a function of how much it changes the world for the better.

This statement can be interpreted as meaning that an application's functional quality and
user satisfaction are more important than the structural quality of the code.

The American computer scientist Gerald Weinberg has said that Quality is value to some
person. This implies that quality is subjective – what one person would define as quality
in an application might be the opposite for another person. This view will focus on
asking the questions Who are the people that want to value our software? and What will be
valuable to them?

With these definitions in mind, we will start to realize that crafting software is much more
than just writing code. Even if the code has excellent quality, if the users don't like what we
have created, they will not use it. It is like if we build a chair using the best craftsmanship,
but if it is incredibly uncomfortable, no one will buy it.

We must, therefore, understand our users and their needs. Doing so is not always easy
as our potential users might not know about these needs. Before you had your first
smartphone, you did not miss it as you did not know what it could offer you. Now, on
the other hand, you would miss it just after a few hours if it was taken away from you.

To get to the point where we understand our user's needs before they understand it, we
need to use our imagination. We can start by asking some simple questions. They could
be, what problem will this application solve? Who will benefit from it? Is there a pattern
that the people who will benefit from using this application have in common? What kind
of applications does this group already use? Are there features, patterns, or ideas used in
those applications that we can reuse in our application to make this group more familiar
with how our application works from the start?

When we have an idea about who our future users might be, we will need to focus on the
flow within the application. We all know how frustrating it is when we use a program, or
any other product for that matter, and we can't figure out what to do. We try one thing
after the other, and rather soon, we lose all interest in using it.

If you invest time and money in developing something, you should at least give that great
idea of yours every chance to succeed.

Defining code quality 315

Great! We now have an idea of what code quality is and we also understand the quality
aspects from a user perspective. I am sure you want both in your software, so let's put
them together.

Putting them together
If we think about it, the art of creating quality software is, of course, neither writing code
with high quality nor writing an application that the users find valuable; it is both.

As we have seen in earlier chapters, applications that are used will be updated, modified,
and extended. This means that the code needs to be read by other programmers (or by us)
if we want to find where changes need to be made.

It will all boil down to a question about money. We want to create software that gives our
users added value and we can sell our application. But maybe even more important is that
the programmers that maintain the code of the application can work efficiently. If they can
find a bug quickly, they will spend less time fixing it.

If the code is easy to read and understand, the programmers will also have a higher chance
of avoiding inserting new bugs into the code, thus reducing the cost of fixing them.

One problem many programmers will face is that they are not given the time needed
to create the quality code they want and that can be understood. Tight time schedules,
managers who don't fully understand the importance of well-crafted code, and impatient
customers can all be aspects that will force programmers to produce code quickly,
resulting in a loss of quality. This is, of course, a very short-term approach.

You might ship the software faster, but with lower quality, both for the users and for the
programmers who will need to maintain the code in the future. This will most likely be
less cost-efficient than crafting high-quality code to begin with.

It should also be noted that if we start a project with poorly written code, this project will
most likely always contain low-quality code as the cost of going back and improving all
the code will be too high.

We have everything to win if we do a good job and write quality code and deliver software
that is considered high quality by our users.

The rest of this chapter will not focus on user quality. That does not mean that it's not
essential, but this is a book about writing code, so let's see how we can do that with quality
and style.

316 Code Quality

Writing code with readability in mind
Code that you write will not only be executed by the computer. It will also be read both by
yourself and by others. Therefore, is it essential that you write code that is as easy to read
and understand as possible.

There are some simple rules we can follow that will assist in achieving readable code.

Using comments and documentation wisely
When creating code, you need an understanding what you do and why you do it. But
when coming back to your code a couple of months later, it is not always as clear what
these thoughts were and why you wrote things the way you did. Commenting on tricky
lines of code is a great way to document your thoughts for both your future self and others
that will read your code.

But comments can also make the code less readable. Never comment on things that are
obvious – things that any programmer, including yourself, will understand.

You should use comments when you look at a line of code and understand that a reader
who sees this line will need to stop and think before understanding what it does.

Commenting on functions and methods is often a good idea. These comments will
usually come right before the function or method or as the first thing inside it. What you
should use depends on what language you are using, as well as the conventions used by
programmers of that language.

In the following screenshot, we can see an example of this for a JavaScript function:

Figure 12.1 – Documenting a JavaScript function

Writing code with readability in mind 317

The following is what we can infer from the preceding code:

• The first text line in this comment describes the overall responsibility of this
function. Then, using the predefined @param name, the meaning of the two
parameters are documented.

• Within the curly braces, the data type that is expected is defined. This is especially
important if the language we are using is dynamically typed. A dynamically typed
language will accept any type we assign to a variable, rather than using only the
type we specify. JavaScript is dynamically typed, so this will assist any programmers
using this function.

• After that comes the name of the parameter (table and headers).

• Then, after a dash, we will document what this parameter is used for.

Many editors used by programmers can use this documentation if formatted correctly.
The format we can see here is called JSDoc.

In the following screenshot, we can see that when we write the code that will call this
function, the editor can show us the information that was found in this comment:

Figure 12.2 – Programming editor showing data from the function documentation

Comments are not the only way we can document our code. We can also let the code be
partly self-documenting by naming things nicely.

Using names as documentation
By naming variables and functions wisely, the names by themselves will act as
documentation. Look at the following function:

function download_and_extract_links(url)

 page = download_page(url)

 links = extract_links(page)

 return links

end_function

318 Code Quality

Here, we have a function that will download a web page and extract all the links found on
that page. When we call this function, we pass the address to the page we want to extract
the links from. That address is stored in the url parameter.

Inside, a function called download_page is called. As the name describes clearly what
that function does, when reading the code, there is no need for us to go to that function to
understand what it does. The variable that receives the returned data is called page, so we
understand what data it holds.

We can see the same thing on the next line. If a function is called extract_links, we
can assume that is what that function does. We store the data we get back in a variable
called links, so our assumption seems to be right.

The function names will almost act like a table of content when reading this function. We
understand what happens there, and we can go there if we want, but there is no need to do
so just to learn what it does. The idea of a table of content in a book is that you will both
learn what a chapter is about and learn where to find it. The same thing applies here. If we
name our functions well, they will let us know what they do. Most integrated development
environments will let us click the name, which means we will be taken to that function if
we want to read it.

Later in this chapter, in the Limiting function/method length section, we will learn more
about how to use this technique.

To be able to understand what good code looks like, we must see both good and bad code.
Therefore, to become a good programmer, we must read code.

Reading other people's code
As a beginner programmer, the best thing we can do is read code written by
experienced developers.

A good source is open source projects. Experienced programmers develop these projects,
and their code is available online for anyone.

Pick any project, preferably in the same language you are using. At first, approaching such
a project might be overwhelming as there will be maybe hundreds of files structured in
several folders. But take your time and poke around in this file structure. Maybe the most
important thing is not to understand the file structure of the project, but just looking at
the code and trying to understand parts of it.

Writing code with readability in mind 319

This will give you an insight into how experienced programmers structure their code. It
should be noted that all senior developers will not always do a perfect job, but most of the
time, the code you can see here would be considered to be of relatively high quality.

If you look at code written by a beginner programmer and compare it with the code written
by an experienced one, you will see the difference. Now, refer to the following code:

Figure 12.3 – A program that was written by a beginner programmer

Look at the preceding program. It is written in C# and will ask the user for a sentence. It
will then calculate the number of characters, not counting spaces, that the user entered and
finally calculate and print the average number of characters of the words in the sentence.

320 Code Quality

This code has many characteristics of a beginner programmer. I have been teaching
programming for 30 years and this is not, by far, the worst example I have seen. Now, refer
to the following code:

Figure 12.4 – The same program shown previously, written by an experienced programmer

Now, compare the code we provided at the start of this section with the code shown in
the preceding screenshot, which is the very same program written by an experienced
programmer. A user of these two programs will not be able to tell any difference.
Executing both will produce an output like this:

Enter your sentence

hi there people

There are 13 characters in total.

There are 4.333333333333333 characters on average in these
words.

From the user's perspective, we can say that the quality of the two programs is identical.

But the quality of the code is not identical at all. Let's list some of the differences:

• The first version – written by a beginner programmer – does not use any
indentation, making the code very compact and hard to read.

• The first version does not use any blank lines, while in the other version, the blank
lines divide the code into sections.

Writing code with readability in mind 321

• In the first version, the newScen variable is assigned values, but it is never used, so
it can be removed from the program.

• In the first version, the variable names do not reflect what they are storing. In the
second version, the myScen variable is renamed to sentence, n is renamed to
word, and countedWords is renamed to averageCharCount.

• The first version is using a for loop to count all the characters except spaces. In
the second version, a language-specific construct is used to do the same thing on a
single line.

• The first version declares all the variables at the beginning of the main method. In
the second version, they are declared when they are first used.

• The first version uses some other unnecessary code, such as Convert.ToString
on line 16, and some of the comments do not add any new knowledge to the reader
of the code.

Even if you don't understand the code, just looking at it reveals that the second version is
much more pleasant to look at.

Also, note that even though the second program introduced blank lines in the code, the
number of lines dropped from 31 to 22.

As a beginner programmer, you are very focused on getting things to work, and you
should. But when you get there and your program is working, you should go back and
look at your code and think about how you can raise the quality. Maybe you won't come
up with the same one-line solutions the experienced programmer is using, but at least you
can use blank lines, indentation, and sensible variable names.

To be able to learn to write high-quality code, you will need to be exposed to it, which
is why reading code written by senior developers will help you write better code. Don't
forget that when you do read it, try to understand as much as you can about the code you
are reading. It might be a slow process, but it is not like reading a book – you don't have
to read all the code there is. Take a function or a method and focus on only the code you
find there. A good source to go to is the Stack Overflow website, where programmers
can ask questions and other programmers will answer them. Go to https://
stackoverflow.com/ and look around. You can filter the questions so that you will
only see questions related to the language you are interested in. Focus on the answers,
as the people who answer these questions are often very experienced and their code is
often of high quality. You can, of course, also use this site to ask your own programming
questions, and who knows – soon, you might be answering some too.

https://stackoverflow.com/
https://stackoverflow.com/

322 Code Quality

Rewriting your code
As we saw in the previous example, just making the program work is not enough. When
it does, we shall go back and look at the code we just wrote to see if we can restructure it
to make it more pleasant to look at and read, and maybe come up with a better solution to
the problem we are trying to solve.

An excellent way to tackle a programming task is first to come up with a working solution,
and then when you have it, work on it and tweak it to make it better. This will not only
result in better code quality, but you will also learn from it, and the next time you face a
similar problem, you will start with a better first solution.

This is why an experienced programmer will not start with something like what was
shown in Figure 12.3, but with something closer to what was shown in Figure 12.4.

Going back to the code you have written will make you look at it with fresh eyes, and you
will see things that you did not see when you first wrote the code.

Letting your code go through several iterations will be beneficial in more than one way.
Hopefully, it will give you higher quality code. You also understand the problem your code
is trying to solve better because if you process the problem in your head and work on a
solution, you will gain a broader and more in-depth understanding of the problem itself
and how it could be solved.

You will also improve your language and programming skills as you will need to learn
more about the language you are using, in order to use the right features the language has
to offer for this problem.

Even programmers who have used a language for years will discover things they had no
idea existed.

With more experience, you will also recognize patterns in the problems you are solving
and the code you are writing. As you do, the process of rewriting your code will be faster.
Not only will you come up with improved ideas quicker, but your code will also start at a
higher level to begin with.

Always have readability as your primary focus when rewriting your code. Sometimes,
you need to sacrifice readability to make the code more efficient or faster, but if it is your
primary goal, this will be reflected in your code.

When you look at your code, you should always ask yourself the most fundamental
question: Is this code I would like to read if someone else wrote it?

If the answer is no, change it so you can answer yes.

Readable code is excellent, but the code should be efficient too.

Writing code with efficiency in mind 323

Writing code with efficiency in mind
When we talk about efficient code, we can mean several different things. Let's look at
some of the things people might mean when they talk about efficient code.

Removing redundant or unnecessary code
You should always make sure that you remove redundant code. Redundant code is code
that does not affect the output of the application, but will be executed.

Look at the following code:

number = 10

for i = 1 to 1000

 number = number + i

end_for

number = 20

print number

Here, we created a variable, number, and set it to 10.

Then, we have a for loop. This loop will iterate 999 times. The first time this happens, the
i variable will have a value of 1; the second time, it will be 2, and so on until it reaches
1000. Then, we will exit the loop.

Each time we're inside the loop, we will take whatever value the variable number currently
has, add the current value of i to it, and store the result in the number variable.

After we exit the loop, we assign the value 20 to the variable number, and by doing
that, we will overwrite the value we just calculated.

This means that everything we did before the line where we assigned 20 to number is
unnecessary. Deleting those lines will not have any effect on the output of the program,
but when we run the application, this unnecessary loop will run, and by that, consume
some resources and waste time.

Having code like this will also make the code harder to read as we will spend some time
trying to figure out what the loop does and why it is there.

With the unnecessary code removed, we can now see how we can use the computer's
hardware more efficiently.

324 Code Quality

Optimizing the use of memory and processors
It is easy to waste memory without even knowing it. Depending on what language you
use, memory will be handled differently.

There might also be features in your programming language that will use the computer
hardware in a more efficient way than the first solution you come up with. Let's look at
one example from Python.

In this example, we will concatenate strings together using two different techniques. In the
first version, we will use the + operator to concatenate them. We will repeat this 2 million
times and measure how long it takes. Refer to the following code:

s1 = "aaaabbbb"

s2 = "ccccdddd"

result = ""

for _ in range(2000000):

 result += s1 + s2

Let's see how this code works:

• On the two first lines, we create two variables, s1 and s2, that hold the two strings
we want to concatenate.

• On the third line, we create a variable called result, which, initially, is an empty
string.

• We then enter our loop, which will iterate 2 million times. The underscore after for
is there because we won't need a variable to hold the current iteration value (which
is 0 the first iteration, 1 for the second, and so on).

• Each time we're inside the loop, we take what is currently in the result variable
and add it together with the content of the s1 and s2 variables.

After the first iteration, result will contain the following:

aaaabbbbccccdddd

After the second iteration, it will contain the following:

aaaabbbbccccddddaaaabbbbccccdddd

The result, after 2 million iterations, will be a string that is 32 million characters long!

Writing code with efficiency in mind 325

Now, let's create the same application but use another technique for concatenating
the strings. This is not as easy to understand, and don't worry if you don't get how the
code works.

Python has something called the string join method. It is designed to join strings together
in a very efficient way. The code for the program looks like this:

s1 = "aaaabbbb"

s2 = "ccccdddd"

result = "".join(s1 + s2 for _ in range(2000000))

This program will also iterate 2 million times, concatenate the two strings together, and
produce a string that is 32 million characters long.

The first program we wrote took about 42 seconds to complete on my computer.

The second program will, on the same machine, complete in 0.34 seconds.

Adding two strings together as many times as we did here is, of course, not something
we do very often, but these two programs illustrate the impact of choosing one solution
instead of another.

It is not only language constructs such as the one we saw here that can also improve the
performance of our applications. Choosing the right algorithm can also have a significant
impact on speed and memory usage.

Using efficient algorithms
An algorithm is a solution to a problem. The algorithm will describe the logical steps
needed to get something done. Let's look at an example. If we have a sequence of numbers
and we want this sequence sorted, we can use a sorting algorithm. We have several
algorithms to choose from, and all will get the job done; that is, sorting a sequence.

The reason we have more than one algorithm is that they are more or less effective when
it comes to speed and usage of memory. How hard it is to write the code that implements
the algorithm will also differ.

Let's look at one of the easiest sorting algorithms to implement: bubble sort. It is also one
of the least effective algorithms, as we will see:

function bubbel_sort(sequence)

 do

 swapped = false

 for i = 1 to length(sequence) – 2

326 Code Quality

 if sequence[i] > sequence[i+1] then

 swap(sequence[i], sequence[i+1])

 swapped = true

 end_if

 end_for

 while swapped

 return sequence

end_function

Look at the code and see if you understand what it does. I will not go through the details
of it. Instead, we will go through the bubble sort algorithm step by step. After we have
done that, you can come back to the code and try to figure out what is happening here.

The sequence we will work with looks like this:

sequence = [5, 3, 1, 8, 2]

Let's look at the logic of bubble sort:

1. In the following image, you can see a graphical representation of the sequence we
are working on:

Figure 12.5 – The sequence to be sorted

2. Bubble sort will start by comparing the first two values – in our case, 5 and 3 – as
shown in the following image:

Figure 12.6 – Comparing the first two values
If they are not in the right order, they will be swapped. As they are out of order, 3
will be moved to the first position, while 5 will be moved to the second, resulting in
the following sequence:

Figure 12.7 – The values 5 and 3 swap places

Writing code with efficiency in mind 327

3. Next, 5 and 1 will be compared, and again get swapped if they're not in order, as
shown in the following image:

Figure 12.8 – Comparing 5 and 1
They are not in the correct order, so they get swapped, as shown here:

Figure 12.9 – The values 5 and 1 swap places

4. Now, 5 and 8 are compared, but as they are in the right order, nothing is done, as
shown in the following image:

Figure 12.10 – The values 5 and 8 are in the right order

5. Then, 8 and 2 will be compared, as follows:

Figure 12.11 – The values 8 and 2 are compared
They will be swapped as they are out of order, as shown here:

Figure 12.12 – The values 8 and 2 swap places

We have now reached the end of the sequence and, as you can see, it is not sorted. But one
item is sorted, and that is the value 8. As this is the largest value in the sequence, it has
been pushed to the end, and by that, it has reached its correct location.

This is where the name of the algorithm comes from, since one value has bubbled to
the end.

328 Code Quality

At this point, the algorithm will start over, comparing the first two values and swapping
them if necessary. This time, though, the last value – 8, in our case – will not be part of the
comparison as it has already found its place.

After the second round, the sequence will look as follows:

Figure 12.13 – The sequence after two rounds

5 and 8 are now in the correct location (marked with a thicker border), and the algorithm
will start over again.

In the third run, the values 1, 3, and 2 will be considered, and after that run, the sequence
will look as follows:

Figure 12.14 – The sequence after three rounds

As we can see, the sequence is now sorted, but the algorithm will pass over the remaining
values once more. It will discover that it could go over them without swapping any values,
and this means that the sequence is sorted, and we are done.

The reason bubble sort is inefficient is because it will go over the sequence multiple
times. In fact, in the worst case, it will need to do as many passes as there are items.
For a short sequence such as this one, this isn't a problem, but for a larger sequence,
it will be noticeable.

Other sorting algorithms are much more efficient, but they're harder to write code for.
Examples of these include Quicksort and Merge sort. We will not cover how they work
here as they are somewhat complicated. If you want to know more about these algorithms,
you can do a web search – you will find lots of useful resources that will explain how they
work and give you readymade code for them in any programming language you want.

If we compare bubble sort and Quicksort, we will see the difference. On my computer,
bubble sort sorted a sequence of 10,000 values in 9.8 seconds. Quicksort managed to sort
the same sequence in 0.03 seconds.

Is smart code smart? 329

The reason Quicksort and Merge sort will do better in most cases is that they will need to
perform fewer operations. It should also be noted that bubble sort can beat the others if
the sequence is sorted or almost sorted to begin with. If we have a sorted sequence, bubble
sort will go through it once and discover that it is sorted and stop.

This was just a small example, but it illustrates the impact of choosing an efficient
algorithm can have on the performance of your application.

We will sometimes hear people talk about smart code. What is it, and is it always smart to
use it? Let's check it out!

Is smart code smart?
When you are a beginner programmer, you are happy that your programs work at all,
and you will not pay much attention to what your code looks like or how it performs. The
important thing is that you get the result you want on the screen.

But as you get more experienced and learn more, you will start to embrace what you
might consider smart solutions. A smart solution, for you, might be that you can rewrite
10 lines of code so that it now is done in three.

The question you always should ask yourself is whether changes that are made to working
code improve it in any way. Only if they do will the new code be considered smarter than
it was before.

Imagine that you wrote a little game in Python. It has a loop that runs 10 times, and in
each iteration, it will ask the user for a number, either 0 or 1. It will also randomly pick
either a 0 or a 1. If the user guessed the same number as the computer picked, the user
wins; otherwise, the user loses. The code might look as follows:

Figure 12.15 – A small guessing game in Python

330 Code Quality

This program does not have an error checker for if the user enters a number other than 0
or 1, but apart from that, it works fine, and you feel happy.

But then you feel it is time to code this game smarter, and you end up with something like
the following:

Figure 12.16 – Same program as before, written in one line

When running the two programs, you won't notice any difference. But is the second
version smarter in any way? It sure takes up fewer lines, and if we count, also fewer
characters. But what have we gained? Will the second program run faster? That is a
somewhat irrelevant question for this kind of application as the program will spend most
of its time waiting for the user to enter a number.

What about readability? Just because the second program has fewer lines and fewer
characters does not make it easier to read and understand – it is the opposite. Even
an experienced programmer will need to spend more time understanding the second
program compared to the first.

There is only one reason for you to create something like the second example, and that
is as an exercise to use language features, but that's it. Go ahead and make your small
programs as compact as you can; you will learn a lot from it, but when writing code that
will be used for something else, you should have readability in mind.

There are situations when small, smart tricks are in their correct places. Look at the
following function:

function is_legal_age(age)

 if age >= 21 then

 return true

 else

 return false

 end_if

end_function

You can pass an age to this function, and it will return true if this age is equal to or
greater than 21; if not, it will return false.

Is smart code smart? 331

This function works, but we can make it smarter, and this time the change will be an
improvement. If we think about what is happening inside the function, we see that the if
statement will compare the age passed to this function with 21. If the if statement is
true, we return true. If it is false, we return false. This means that we return the same
thing as the condition evaluates to, so why not return that? Let's change the function:

function is_legal_age(age)

 return age >= 21

end_function

That is a smart change as we made the code more compact and easier to read and got rid
of any unnecessary code.

Being smart when coding can mean different things to different people. I was once
working on a telecom project that was written in C. There was a bug, and I was assigned
to fix it. But when reading the code, I was horrified. I have tried to recreate what parts of it
looked like:

Figure 12.17 – Code that is extremely hard to read

As you can see, there are three if statements nested inside each other. In the real example,
there were at least 20 levels of nested if statements like this!

Also, the variable names are saying nothing about what data they hold. We need to try to
figure out what values these variables will have for us in order to enter the innermost if
statement.

I did spend almost 2 weeks understanding and rewriting the code before I could even
begin searching for the bug.

Now, you might be wondering why I am showing this example here. This can hardly be
considered smart code. The consultant who wrote it probably thought this was smart.
Maybe the idea was to be irreplaceable, and that can be smart from a consultant's point of
view. But that's not smart from the point of view of the company that owns the code. I can
also mention that if that was down to the tactics from the consultant's side, it did not work
as he or she was no longer with this company.

Whatever you do, never write code like this. Instead, you should keep some best practices
for writing quality code in mind.

332 Code Quality

Code quality – best practices
As stated earlier in this chapter, what we focus on here is the quality of the code, not the
quality of the user experience when using our applications.

When writing code, there are some things we can keep in mind to make our code better,
quality-wise.

We will look at some best practices and talk about why it is a good idea to use them.

Limiting line length
Long lines are never a good idea. Look at any newspaper and think about why the text
hardly ever runs on one line across the full width of the page:

Figure 12.18 – A newspaper uses columns to limit the line length. Photo by Wan Chen on Unsplash

A rule of thumb is that if the line is wider than what can fit on the screen, then it is too
wide. Use your common sense and divide the code into several lines if needed, but do so
in a way that makes sense.

Code quality – best practices 333

Take a look at the following screenshot. The code shown here is just one single statement
and could have been written on a single line, but that line would have been very long and
hard to read. Instead, it has been broken up in separate lines, and the line breaks occur in
a natural location so that the code is easier to read:

Figure 12.19 – A lengthy statement that has been broken up into several lines

Some programming editors will assist you in determining the maximum length of your
code lines by showing a line to indicate when it is time to add a line break.

It is not only the length of the code lines that should be limited. Next, we will see that this
also applies to the length of functions and methods.

Limiting function/method length
A function or method should do one thing only, and they should be small. If your
functions are hundreds of lines long, you need to make them smaller. When they are 50
lines long, you should probably make them even smaller.

Long functions are hard to read, and it is hard to follow the logic as it goes in and out of
if statements and loops.

There is no fixed rule for how long a function should be, but I try to keep my functions
below 20 lines if I can.

The important thing is not the actual line count. Instead, you should focus on writing
code that is easy to read. To help you write your functions and methods, you should let
logic guide you.

If you have a long function, just by looking at it, there might be clues that it is made up of
multiple logical blocks. The things that can be an indication of this is blanks lines in the
code as they are often used to indicate a logical transition of sorts. These decided segments
of code can be good candidates to be lifted out of the original function and instead go into
a function of their own. We can then just call that function from the place where the code
was previously.

334 Code Quality

Another hint can be code that is indented by more than one level. Each level of
indentation marks a block of code. Look at the logic that goes on there and ask yourself if
you can't make the code cleaner by turning these blocks into functions.

Writing high-quality small functions is an art that takes practice to master, but if you
don't practice, you will never master it. Get into the habit of always reviewing code you've
written and ask yourself if the function or method you just wrote only does one thing.

But what is one thing? Is the game Mario Kart one thing? Is asking the user for their credit
card number one thing? Is incrementing a number one thing?

If a function has a single task, then we might be able to break this task into several
subtasks. We could then let the main task be a function and let this function call a
function for each subtask.

Look at the following screenshot. Here, we can see a function written in C++. Its task is to
search a file for a specified string pattern and replace it with a new pattern. Instead of doing
all the steps needed, it is broken up into sub-tasks, each located in a separate function:

Figure 12.20 – An example of a C++ function that uses other functions to fulfill its task

From the preceding code, we can observe that the following:

1. First, we will call a function that reads all the contents of the file specified and
returns it to us as a string.

2. Next, we will call a function that will call a function called update_content. To
this, we are passing the original content of the file, the string we want to be replaced,
and the string we want to replace the old string with.

This function will return an updated version of the file content. This updated
content is then saved to a file with the same name as the original file, and by that,
the old file will be overwritten.

As the function names describe what the function is doing and the variable names
describe what gets returned from those functions, reading this code is now very easy.

Code quality – best practices 335

Reading this function will almost be like reading an index of a book. We can see that, first,
we read the content of a file. Good – and if we trust that the only thing that function does
is performing exactly the same thing, there is no need for us to go and look at that code.
The same thing goes for update_content and save_file_content.

This is much more readable than what it would have looked like if we had everything
in one function. Look at the preceding screenshot once more and compare it to the
following one:

Figure 12.21 – The original update_file function

When we see these two versions of the function, it is easy to understand why we want to
reduce the function's length and let the function and variable names do the documentation.

336 Code Quality

If we look at the structure of the code in the preceding screenshot, we can see two blank
lines. They divide the code into three sections, and these sections are what we have moved
into the three functions. The first section is what became the read_file_content
function. The second section became update_content, while the last section became
save_file_content.

When we move the code sections into separate functions, we will need to modify the
code slightly, but that is usually not hard and is done rather quickly. The main logic is
already there.

The final version of all four functions will look something like the following:

Figure 12.22 – The primary function and its three helper functions

Code quality – best practices 337

If we want to, we can ignore the first three functions and just read the last one to get an
idea of what is going on here.

Another thing we should consider is avoiding deep nesting when it comes to control
structures, such as conditional and loop statements.

Avoiding deep nesting
It is sometimes tempting to put several if statements or for loops inside each
other. But many levels of nested if statements or for loops can make them hard
to read and understand.

Look at the following code:

function calculate_pay(age)

 if age > 65 then

 result = 25000

 else

 if age > 20 then

 result = 20000

 else

 result = 15000

 end_if

 end_if

 return result

end_function

Here, we have an if statement and in its else part, we have a new if statement with an
else part. This is unnecessarily complex and hard to follow. We can rewrite it like this:

function calculate_pay(age)

 if age > 65 then

 return 25000

 if age > 20 then

 return 20000

 return 15000

end_function

The two functions will give us the same result, but the second one will return as soon as it
knows the correct amount. By doing that, it reduces the number of lines, avoids the nested
if statement, and overall makes the code cleaner and easier to read.

338 Code Quality

When you have nested structures that go beyond one level, you should ask yourself if
there is a better way to do this. The first thing you can do is what we did here and place the
control structures after each other, rather than within each other.

Another option is to move the logic into separate functions and call them instead. In some
situations, this will simplify the code and make it easier to read.

Another thing we want to avoid is repeating ourselves. To help us avoid that, we can use
the DRY principle.

Using the DRY principle
DRY stands for Don't Repeat Yourself and was formulated by Andy Hunt and Dave
Thomas. It states the following:

"Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system."

This states that we should not repeat the same or similar code more than once. A clear
indication that you are about to contradict this principle is when you copy and paste code
to a new location in your program, maybe with only some slight changes. This should
always be avoided.

The idea of DRY boils down to dividing the code into small reusable parts. Let's look at
an example.

Let's assume you have some data and that this data is stored in a dictionary type (you can
read more about the dictionary type in Chapter 6, Working with Data – Variables, in the
Dictionary type section).

Sometimes, you want to print this data to the screen, while other times, you want to save it
to a file. You might end up with two functions that look as follows:

function show(data)

 print data["name"]

 print data["price"]

 print data["weight"]

 print data["height"]

 print data["width"]

end_function

function save(data)

 data_to_save = data["name"] + "\n" +

Code quality – best practices 339

 data["price"] + "\n" +

 data["weight"] + "\n" +

 data["height"] + "\n" +

 data["width"] + "\n"

 save_file("data.txt", data)

end_function

The first function, show, will print the items in the dictionary on the screen.

The second function, save, will build a string containing all the items in the dictionary.
It adds a line break between each item. \n means newline and is used to indicate that a
linefeed should occur at this location.

Both functions deal with the same data, but it might not be obvious that we are repeating
ourselves here – at least not until we need to update the dictionary. Let's say that we
need to add an item to the dictionary, maybe the manufacturer. We would need to make
changes to both functions. The new code would look like this:

function show(data)

 print data["name"]

 print data["manufacturer"]

 print data["price"]

 print data["weight"]

 print data["height"]

 print data["width"]

end_function

function save(data)

 data_to_save = data["name"] + "\n" +

 data["manufacturer"] + "\n" +

 data["price"] + "\n" +

 data["weight"] + "\n" +

 data["height"] + "\n" +

 data["width"] + "\n"

 save_file("data.txt", data)

end_function

340 Code Quality

As you can see, the line for the manufacturer was added to both functions. What
would happen if we forgot to add it to one of them? At some point, we will discover the
difference, but when we do, we can't be sure if the manufacturer line was added to one
function or removed from the other.

Let's apply the DRY principle to the code. If we think about what is happening, we will
discover that the show function has multiple lines within print. We also know that
print will print something on one line and then insert a line feed so that the next print
will start on a new line.

But what would happen if we had one print that printed a string like the one in the
save function? It contains the new line indicator, \n, in all the locations where we want a
new line, so printing that string will give the same result as our current show function.

We can make use of this and add a function that creates and returns that string, and then
both functions can call that function, as shown in the following code:

function create_string(data)

 return data["name"] + "\n" +

 data["manufacturer"] + "\n" +

 data["price"] + "\n" +

 data["weight"] + "\n" +

 data["height"] + "\n" +

 data["width"] + "\n"

end_function

function show(data)

 print create_string(data)

end_function

function save(data)

 save_file("data.txt", create_string(data))

end_function

Here, we have the create_data function, which creates the string and returns it to the
caller. It is called from both the show and the save functions. In show, the create_
string function is called first of all, and the string that gets returned will be printed.

In the save function, we call the create_string function from within the call to a
function called save_file. The returned string will be passed as the second argument
to the save_file function, just as it was in our first version.

Code quality – best practices 341

This also makes the code more readable and shorter.

Many languages or software companies have scandalized the way we format the code we
write. This is called code conventions, and this is what we will look at next.

Using code conventions
Most programming languages have code conventions. These are recommendations for
how we shall organize our files, indent our code, format comments, and use naming
conventions, just to mention a few.

These are not rules but a recommended code style and the idea is that if all programmers
using a language use the same code convention, their code will look more or less the same.
This means that if you know the convention, it is easier for you to navigate the code and
read it. It is, therefore, essential to learn the convention for every programming language
you are using.

We will look at some typical conventions and see how they differ among a couple
of languages.

Naming conventions
A naming convention is a set of rules for formatting the names of variables, types,
functions, and other entities in the source code.

Sometimes, programming languages come with official naming conventions. Other
times, they are not official but commonly used by the community using a language.
Some companies have developed their own naming conventions for the code written
within that company.

A naming convention is not about how you name things, but how you format the names.
A naming convention dictates how uppercase and lowercase characters should be used
and how names consisting of multiple words should be formatted. Some different styles
are frequently used. Let's look at some of them.

Camel case
In camel case, each word in a multi-word name has an initial capital letter, except for the
initial letter. For example, if we want to store a value for the outside temperature, the name
used for that variable would be outsideTemperature in camel case.

342 Code Quality

Camel case is also known as camel caps. The name refers to the apparent humps that the
capital letters form. One early use of this style was by the Swedish chemist Jöns Jacob
Berzelius, who suggested, in an 1813 essay in Annals of Philosophy 2, that chemical
elements should be written as one-letter or two-letter symbols with the first letter
capitalized. That would allow formulae such as NaCl to be written without any spaces.

Pascal case
Pascal case is like camel case, with the only difference being that the first letter is also
written using a capital case. So, the pascal case, the outside temperature variable would be
named OutsideTemperature.

Pascal case gets its name from the programming language Pascal. Even though Pascal is
case-insensitive, the practice was popularized by the Pascal convention to use this style.

Snake case
In snake case, all letters are written in lowercase, and an underscore separates
words. The outside temperature variable, when written in snake case, would be
outside_temperature.

Snake case has been in use for a long time but did not have any established name. An early
reference to the name snake_case comes from Gavin Kistner, who, in 2004, wrote a post
named Appropriate use of CamelCase in the group comp.lang.ruby on Usenet. In it, he said
the following:

"BTW...what *do* you call that naming style? snake_case? That's what I'll call it until
someone corrects me."

Indentation conventions
There are several different styles that are used when it comes to indentation and how
compound statements are indicated.

For languages that use braces, how the braces are placed is a never-ending debate. Let's
look at some variants.

K&R style

The K&R style originates from the Kernighan and Ritchie book The C Programming
Language from 1978.

Code quality – best practices 343

When following this style, each function has its opening brace on a new line and the same
indentation level as the function header.

Blocks inside the function will have their opening brace at the same line as the statement
they are opening.

The following screenshot shows an example of the K&R style:

Figure 12.23 – The K&R bracing style

1TBS

1TBS is an abbreviation for one true brace style and is a variant on the K&R style. The
only difference is that the opening brace for functions is located on the same line as the
function header. Also, in 1TBS, control structures only containing one line will always
have braces, a habit not always used in the K&R style. See the following screenshot for an
example of this style:

Figure 12.24 – The 1TBS bracing style

Java

In Java, a commonly accepted practice is to use the K&R style, extended so that all
opening braces are on the same line as the statement it opens. This applies to control
structures, classes, and methods.

344 Code Quality

See the following screenshot for an example of this style:

Figure 12.25 – The Java bracing style

Allman style

The Allman style, named after the American programmer Eric Allman, puts all opening
braces on a new line.

People arguing for this style means that it becomes easier to see where a block begins and
ends, when the opening and closing braces are on the same indentation level.

See the following screenshot for an example of this style:

Figure 12.26 – The Allman bracing style

Lisp or Python style

This style can be used in any language that uses braces, but is mostly used by languages
that don't use braces and use an indentation level to identify blocks of code instead,
such as Lisp and Python. In the following screenshot, we can see a Lisp program that
uses this style:

Code quality – best practices 345

Figure 12.27 – The Lisp block indentation style

In the following screenshot, we can see the same program written in Python, using the
same type of indentation to mark blocks:

Figure 12.28 – The Python block indentation style

In Python, the indentation levels are part of the language. This is sometimes called the
offside rule, a name coined by the British computer scientist Peter J. Landin, most likely
as a pun on the offside rule in football, compared to languages that use braces, meaning
indentation levels are not decided on by the language.

These are not the only conventions you will find described in a convention document.
Next, we will look at some other things you most likely will find when reading them.

Other conventions
Other conventions might be described for a language. One thing that is often described in
a convention document is how comments should be formatted.

Some languages have tools that can generate documentation from the comments found in
the code. For this to work, the comments must follow a strict format. Some examples of
these are Java's Javadoc and Doxygen for C and C++.

Some languages also support special kind of comments known as docstrings. They are
comments, but when regular comments are stripped away from the executable code by
the compiler, they are retained so that the programmer can inspect them when the
program is running.

346 Code Quality

There can also be conventions for how the source code files should be organized in folders
and packages (to learn more about packages, see Chapter 4, Software Projects and How We
Organize Our Code, in the Working with packages to share code section). There can also be
conventions in place for how to name files.

A code convention can also dictate the use of tabs versus spaces when we indent our code.
Here, most conventions prefer the use of spaces over tabs, but there are exceptions to this.

You might also find things that are not directly related to coding and coding style in a coding
convention document. For example, one thing that you might find is recommendations
for source file encoding. The file encoding dictates how the characters in the file will be
interpreted. The two most frequent encodings are ASCII and UTF-8. Sometimes, there are
recommendations about part of a file. The convention document might state that comments
or string literals must use a particular encoding, not the whole file.

Another thing often found in code convention documents is how blanks lines and spaces
should be used. For example, in the official Python style guide, called Pep 8, it is stated
that two blank lines should separate functions and methods within a class by one blank
line, and that there should never be more than one blank line between code lines within a
function or method.

There can also be recommendations regarding how to write expressions. Again, the
Python style guide says that these lines use a recommended style:

i = i + 1

submitted += 1

x = x*2 - 1

hypot2 = x*x + y*y

c = (a+b) * (a-b)

Compare those to the following lines, which do not follow the recommended style:

i=i+1

submitted +=1

x = x * 2 - 1

hypot2 = x * x + y * y

c = (a + b) * (a - b)

Code quality – best practices 347

The last convention we will cover here, which can also be found in code conventions, is
how long lines should be break up long lines into several lines.

For example, when working with a long line that contains binary operators (such as +, -. *,
and /), we can break up these operators, but what would happen if the operator appears as
the last character on a line or as the first on the next one?

Look at this example:

full_name = title +

 first_name +

 middle_name +

 last_name

Now, compare it to this variant, where the operators are moved to the next line:

full_name = title

 + first_name

 + middle_name

 + last_name

The American computer scientist Donald Knuth states, in his book The TeXbook from
1984, the following:

"Although formulas within a paragraph always break after binary operations and relations,
displayed formulas always break before binary operations and relations."

This would suggest that when a formula is printed, it is always printed in the form shown
in the second example. This is not a universal truth, though. If you read mathematical
texts, you will find both forms represented, and sometimes even a third form where the
operator is both at the end of the line and the beginning of the next.

But sometimes, this argument by Knuth is used to recommend the form where the
operator begins a line over the one where it comes at the end.

Different conventions are a topic most programmers have an opinion about. Still, if there
is one in place, either for the language you are using or the project you are working on,
you should stick to it, even if it contradicts what you think is a good way of writing code.

348 Code Quality

Summary
In this chapter, you have reached the end of this journey into programming, and you now
know what it takes to write quality code that is efficient and easy to read and maintain.

We talked about the fact that we have two aspects of quality when it comes to software –
one being the quality of the code and the other being quality from the user's perspective.

We then turned our attention to how to achieve code quality. First, we talked about how
we can create readable code and how this will improve the code's overall quality.

After that, we looked at how efficient code, which is code that efficiently uses the
computer's resources, will improve the quality of our code.

Smart coding tricks are not always the smart way to write code if code quality is
something we value. We saw some examples of things we should avoid.

Finally, we looked at some best practices that we can use to increase the quality of the
code we write.

With this, we have come to the end of the main chapters of the book. I hope you have
enjoyed this journey as much as I have. I have tried to put together everything that is
relevant and important from a beginner's point of view, and I am sure many of you will
benefit from it.

Appendix A
How to Translate

the Pseudocode
into Real Code

The code examples in this book have, for the most part, been written using pseudocode, as
the aim of the book is to give you an understanding of what programming is, rather than
focusing on any particular language.

To be able to write code, you will need to use a real language, and here we will look at
some of the more popular ones and see how the code used in this book would translate
into these languages.

The languages we will look at are as follows:

• C++

• C#

• Java

• JavaScript

• PHP

• Python

350 How to Translate the Pseudocode into Real Code

For each language, we will start with a short introduction.

You will not be able to start to write your very own programs just from these short
examples, but you will get a feel for these languages, and maybe seeing them like this
will help you decide what language you want to learn first.

Before we look at the different languages, we will have a couple of pseudocode examples.
These examples will then be translated into the preceding six languages. So, let's begin!

The pseudocode examples
In this section, we will look into a few code examples for pseudocode.

Hello world in pseudocode
The first example will be a short program that just prints Hello, World! to the screen.

In our pseudocode, it will look like this:

print "Hello, World!"

Variables declaration in pseudocode
In this example, we will create a couple of variables. The first one will store an integer.
The second one will store the value from the first one but converted into a string:

my_int_value = 10

my_string_value = string(my_int_value)

The for loop in pseudocode
In this example, we will have a for loop that iterates 10 times and prints the values 0 to 9:

for i = 0 to 10

 print i

end_for

Functions in pseudocode
In this example, we will create a small function that will accept three integers as
arguments. The function should then return the largest of them. We will also call the
function and display the result.

The pseudocode examples 351

In the function, we first check whether the first argument is larger than the two others.
If it is, we have found the largest value, and we return it.

As we do a return as soon as we find the largest value, we will not need to use any else
statements in this program as a return will exit the function immediately.

We will, therefore, only need to compare the second argument with the third. If the
second is larger than the third, we return it; otherwise, we will return the third argument
as it must be the largest value. This is shown with the following code:

function max_of_three(first, second, third)

 if first > second and first > third then

 return first

 end_if

 if second > third then

 return second

 end_if

 return third

end_function

maximum = max_of_three(34, 56, 14)

print maximum

while loops, user input, if, and for loops in pseudocode
In this example, we will illustrate several concepts at the same time.

This program will ask the user to enter numbers, as many as they want. They can stop
entering new values by entering a negative number. All values, except the final negative
one, will be stored in a dynamic array.

Before the program exists, we will print all the values that we have stored with the
following code block:

values = []

inputValue = 0

while inputValue >= 0

 print "Enter a number: "

 input inputValue

 if inputValue >= 0

352 How to Translate the Pseudocode into Real Code

 values.add(inputValue)

 end_if

end_while

From the preceding code, we see that:

1. First, we create a dynamic array. Remember that this is a list in which we can add
and remove values during the program execution; that is, it is not a fixed-size array
for which we will need to define how many items we want to store in it:

2. We will then enter a while loop, and inside it, ask the user for a number.

3. We will add the entered number to the dynamic array and will keep doing that until
the user enters a negative number. This negative number should not be added to the
array, but instead, it will act as an indication that the user is done entering numbers
so we can exit the loop.

C++
C++ was developed by Bjarne Stroustrup, a Danish computer scientist, and he initially
called it C with Classes. The work began in 1979, and he wanted to create a language that
had the power of the C programming language and the object-oriented features he had
been exposed to when programming for his Ph.D. thesis.

In 1982, he renamed the language C++, where the two addition operators are a reference
to the ++ operator in C, which increments a variable by one. The idea is that C++ is C
with one thing added, and that thing is object-orientation.

The first commercial release of the language was in 1985.

C++ is a general-purpose compiled programming language that is often used in situations
requiring high execution speed, where the programmer is in control over how data is
stored and managed in the computer's memory.

Here are some quick facts about it:

• Name: C++

• Designed by: Bjarne Stroustrup

• First public release: 1985

• Paradigm: Multi-paradigm, procedural, functional, object-oriented, generic

• Typing: Static

• Most frequently used file extension(s): .cpp, .h

C++ 353

Hello world in C++
All applications that are written in C++ need to have a function called main that will act
as the starting point for program execution.

The output is shown to the console window by using what is known as an output stream.
The language provides a ready-made object from the ostream class for this purpose,
called cout. The language also provides a function (this type of function is known as
a manipulator function in C++) called endl, which will add a newline character to the
output stream. Data is sent to the output stream using the << operator.

The std:: part in front of cout and endl indicates that these two are defined in the
standard namespace of the language.

As the main function in C++ should return an integer value that indicates the result of
the execution, we return 0, which is the value representing success.

Note that all non-compound statements in C++ end with a semicolon, as follows:

#include <iostream>

int main()

{

 std::cout << "Hello, World!" << std::endl;

 return 0;

}

Variable declaration in C++
As C++ is a statically typed language, we must specify what data type a variable can use.
After that, this will be the only data type this variable can handle.

Strings in C++ are defined in a class, and to be able to use that class, we must include
string, as we do in the first line.

Inside the main function, we first declare our integer variable. We specify that the type is
an integer with int.

Then, we want to convert our integer into a string. We can do that with the help of
a function called to_string. It is defined in the standard namespace and must be
preceded by std::.

354 How to Translate the Pseudocode into Real Code

When declaring the type for the string variable, we must also state that the string
class is located in the standard namespace:

#include <string>

int main()

{

 int my_int_value = 10;

 std::string my_string_value = std::to_string(my_int_value);

 return 0;

}

We can, if we want to, simplify this program and let the compiler figure out what type the
variables will have. The auto keyword will help us with this. As we are assigning a value
to the variables as we create them, they will be of the same type as the data we assign to
them. Refer to the following code:

#include <string>

int main()

{

 auto my_int_value = 10;

 auto my_string_value = std::to_string(my_int_value);

 return 0;

}

The for loop in C++
C++ uses the C style of for loops. It has three sections, separated by a semicolon, as
shown here:

#include <iostream>

int main()

{

 for(int i = 0; i < 10; i++) {

 std::cout << i << std::endl;

 }

}

C++ 355

From the preceding code, we see the following:

• The first section will initialize the loop variable to its starting value; in our case, that
will be 0.

• The next section is the condition that will tell us for how long the for loop will run;
in our case, that is as long as the variable is less than 10.

• The final section is how the variable will change in each iteration. We are using the
++ operator here so that the variable will increase by one each iteration.

Inside the loop, we will print the value of the loop variable.

Functions in C++
A function in C++ must first state its return type – that is, what data type the function
returns. We must also specify the type each argument has. In our case, we will pass in
three integers, and as the function will return one of them, the return type will also
be an integer.

Note that in C++, the && symbols means and:

#include <iostream>

int max_of_three(int first, int second, int third)

{

 if (first > second && first > third) {

 return first;

 }

 if (second > third) {

 return second;

 }

 return third;

}

int main()

{

 int maximum = max_of_three(34, 56, 14);

 std::cout << maximum << std::endl;

}

356 How to Translate the Pseudocode into Real Code

while loops, user input, if statements, and foreach
loops in C++
We need to use a dynamic data structure so we can add as many values as we like while
the program is running. One such option we have in C++ is to use a class called vector.
This class is created such that it can hold data of any type, and that is why we have int
between < and > in the declaration. Let's see how this works:

1. As with so many other things, the vector class needs to be specified as belonging
to the standard namespace with std::.

2. Next, we declare the integer variable that will accept the input. We will set it to
0 for now. We need that value on the next line when we enter our while loop.
As the loop iterates, as long as input_value is equal to or greater than 0, we
must set it to a value within that range.

3. Inside the loop, we print a message to the user that we require a value. To get input
from the user, we use cin, which works a bit like cout but in reverse. Instead of
sending things to the screen, it accepts things from the keyboard. Usually, when we
talk about cout and cin, we don't say that the output goes to the screen and the
input comes from the keyboard, as these can be remapped to be other things such
as files. Instead, we say that cout goes to the standard output, which is usually the
screen, and cin reads from the standard input, which is usually the keyboard.

4. When we have the input, we check whether it is 0 or a positive value. These are
the only ones that we want to store in our vector. If it is, we use a method called
push_back on our vector, which will insert the current value into the vector at
the end.

5. This will continue until the user enters a negative value. Then, we exit the while
loop and enter something that is called a range-based for loop in C++. It is like
a foreach loop in that it will iterate through all the items we have in the vector.
The current item will be stored in the variable value, and inside the loop, we print
it. The code for it is here:

#include <iostream>

#include <vector>

int main()

{

 std::vector<int> values;

 int input_value = 0;

C# 357

 while (input_value >= 0) {

 std::cout << "Enter a number: ";

 std::cin >> input_value;

 if (input_value >= 0) {

 values.push_back(input_value);

 }

 }

 for (auto value : values) {

 std::cout << value << std::endl;

 }

}

C#
C#, pronounced like the musical note with the same name, is a language developed by
Microsoft and was first released in 2000 as a part of the company's .NET initiative. The
language was designed by Anders Hejlsberg, a Danish software engineer, who first called it
Cool (for C-like Object-Oriented Language). Microsoft renamed it before its first official
release for copyright reasons.

The language is designed to be a simple, modern, and object-oriented programming
language. The language is primarily used within Microsoft's .NET Framework.

Note that all non-compound statements in C# end with a semicolon.

Here are some quick facts:

• Name: C#

• Designed by: Anders Hejlsberg, Microsoft

• First public release: 2000

• Paradigm: Object-oriented, generic, imperative, structured, functional

• Typing: Static

• Most frequently used file extension(s): .cs

358 How to Translate the Pseudocode into Real Code

Hello world in C#
All programs written in C# must exist within a class, and one class in our project must
have a method called Main that will be the starting point for the program execution. It
should also be noted that all C# applications should exist within a project.

The first thing we should note is that the first thing we see on the line containing the Main
method header is the static keyword. Declaring a method as static means that it can
execute without the need to create an object of the class it is defined in. Simply put, this
means that the Main method can be executed as a function; that is all we need to know
at this point.

Console is a class that handles all the input and output for console applications in C#.
A console application is a program that does not have a graphical user interface. All input
and output is done through a console or terminal window, using just text.

Inside the Console class, there is another static method called WriteLine. Here we can
see that a static method can be called using the class name. This method, WriteLine,
will output whatever we send to the console window. Refer to the following code:

using System;

class Program

{

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

}

Variable declaration in C#
As C# is a statically typed language, we must specify what data type a variable can use.
After that, this will be the only data type this variable can handle.

We declare the myIntValue variable as an integer using int.

C# 359

In C#, int is not just a primitive data type, as in many other languages. It is something
called a struct. A struct is, in a way, the same thing as a class. This struct will
inherit things from a class called Object, and this class defines a method called
ToString that we can use to convert the integer into a string:

using System;

class Program

{

 static void Main(string[] args)

 {

 int myIntValue = 10;

 string myStringValue = myIntValue.ToString();

 }

}

We can simplify this program by letting the compiler figure out what data type the
variables will have. As we are assigning a value to them as we declare them, the compiler
will create them as that data type. We do this with the help of the var keyword:

using System;

class Program

{

 static void Main(string[] args)

 {

 var myIntValue = 10;

 var myStringValue = myIntValue.ToString();

 }

}

360 How to Translate the Pseudocode into Real Code

The for loop in C#
C# uses the C-style of for loop. It has three sections, separated by a semicolon:

• The first section will initialize the loop variable to its starting value; in our case, that
will be 0.

• The next section is the condition that will tell us for how long the for loop will run;
in our case, that is as long as the variable is less than 10.

• The final section is how the variable will change in each iteration. We are using the
++ operator here so that the variable will increase by one each iteration.

Inside the loop, we will print the value of the loop variable:

using System;

class Program

{

 static void Main(string[] args)

 {

 for(int i = 0; i < 10; i++)

 {

 System.Console.WriteLine(i);

 }

 }

}

Functions in C#
The first thing we should note is that in C#, there are no functions as all code must be
defined within a class, and functions that are declared inside a class are called methods.
They do behave like normal functions, though.

As we saw in earlier examples, if we want to call a method without having an object of this
class, the method must be declared static, and that is the first thing we see on the line
where we declare the function.

In C#, we must also specify what data type a method will return. That is why it says int in
front of the method name. It will return an integer as we pass in three integers, and it will
return the largest of the three. As we can see, we must also state the data type for each of
the arguments.

C# 361

Note that in C#, the && symbols means and. Refer to the following code:

using System;

class Program

{

 static int MaxOfThree(int first, int second, int third)

 {

 if (first > second && first > third) {

 return first;

 }

 if (second > third) {

 return second;

 }

 return third;

 }

 static void Main(string[] args)

 {

 int maximum = MaxOfThree(34, 56, 14);

 System.Console.WriteLine(maximum);

 }

}

while loops, user input, if statements, and foreach
loops in C#
We need to use a dynamic data structure so we can add as many values as we like while
the program is running. One such option we have in C# is to use a class called List:

• This class is created so a list can hold data of any type, and that is why we have int
between < and > in the declaration.

• Next, we declare the integer variable that will accept the input. We set it to 0 for
now. We need that value on the next line when we enter our while loop. As the
loop iterates as long as inputValue is equal to or greater than 0, we must set it to
a value within that range.

362 How to Translate the Pseudocode into Real Code

• Inside the loop, we print a message to the user that we want a value. To get input
from the user, we use the ReadLine method that is located in the Console class.
The value we get from ReadLine is a string. That is why we use the Int32.Parse
method. It will convert whatever the user enters into an integer.

• When we have the input, we check whether it is 0 or a positive value. It is only 0
values that we want to store in our list. If it is, we use a method call Add on our list,
which will insert the current value into the list at the end.

• This will continue until the user enters a negative value. Then, we exit the while
loop and enter a foreach loop, which will iterate through all the items in the list.

The current item will be stored in the variable value, and inside the loop, we print it:

using System;

using System.Collections.Generic;

class Program

{

 static void Main(string[] args)

 {

 List<int> values = new List<int>();

 int inputValue = 0;

 while (inputValue >= 0) {

 System.Console.Write("Enter a number: ");

 inputValue = Int32.Parse(System.Console.ReadLine());

 if (inputValue >= 0) {

 values.Add(inputValue);

 }

 }

 foreach(var value in values) {

 System.Console.WriteLine(value);

 }

 }

}

Java 363

Java
Work on the Java programming language started in 1991, and the design goals were
to create a simple, object-oriented language with a syntax that was familiar to existing
programmers.

James Gosling was the leading designer behind the language, and he initially named it
Oak, as an oak tree was growing outside his window. For copyright reasons, it was later
renamed Java after the Java coffee.

An essential concept in the design of the language was to let programmers write once and
run anywhere, abbreviated to WORA. The idea is that an application written in Java can
run on most platforms without any modification or recompilation.

The portability was achieved by letting the Java source code compile into an intermediate
representation, called Java byte code, instead of platform-specific machine code. The
byte code is then executed by a virtual machine that is written for the hardware hosting
the application.

Here are some quick facts about it:

• Name: Java

• Designed by: James Gosling, Sun Microsystems

• First public release: 1995

• Paradigm: Multi-paradigm, object-oriented, generic, imperative

• Typing: Static

• Most frequently used file extension(s): .java, .jar

Hello world in Java
Java requires all code to be written within a class, and all applications need one class that
has a method called main.

One peculiarity of Java is that every class must be written in a source code file that has
the same name as the class. As the class in this example is named Hello, it must be
saved in a file called Hello.java.

To print something to a console window, we will be using System.out.println.
Now, System is a class that, among other things, handles input and output. Inside the
System class, an output stream is defined, called out, and this stream has a method
named println, which prints the data passed to it and terminates by inserting a newline
character at the end of the stream.

364 How to Translate the Pseudocode into Real Code

Note that all non-compound statements in Java end with a semicolon:

class Hello {

 public static void main(String[] args) {

 System.out.println("Hello, World!");

 }

}

Variable declaration in Java
As Java is a statically typed language, we must specify what data type a variable can use.
After that, this will be the only data type this variable can handle.

We first declare our integer variable using int.

All primitive data types have a class representation in Java. We can use the Integer class
to convert our integer to a string. We do that by calling a static method in the Integer
class and passing the integer value we want to be converted to it:

class Variable {

 public static void main(String[] args) {

 int myIntValue = 10;

 String myStringValue = Integer.toString(myIntValue);

 }

}

Java does not have a feature for automatic type deduction, like the auto and var
keywords we find in C++ and C#.

The for loop in Java
Java uses the C-style of for loops. It has three sections, separated by semicolons. The
first section will initialize the loop variable to its starting value; in our case, that will be 0.
The next section is the condition that will tell us for how long the for loop will run; in
our case, that is as long as the variable is less than 10. The final section is how the variable
will change in each iteration. We are using the ++ operator here, so that the variable will
increase by one each iteration.

Java 365

Inside the loop, we will print the value of the loop variable:

class For {

 public static void main(String[] args) {

 for(int i = 0; i < 10; i++) {

 System.out.println(i);

 }

 }

}

Functions in Java
The first thing we should note is that in Java, there are no functions as all code must be
defined within a class, and functions that are declared inside a class are called methods.
They do behave like normal functions, though.

As we saw in earlier examples, if we want to call a method without having an object of this
class, the method must be declared as static, and that is the first thing we see on the
line where we declare the function.

In Java, we must also specify what data type a method will return. That is why it says int
in front of the method name. It will return an integer as we pass in three integers, and it
will return the largest of the three. As we can see, we must also state the data type for each
of the arguments.

Note that in Java, the && symbols means and:

class Function {

 static int maxOfThree(int first, int second, int third) {

 if (first > second && first > third) {

 return first;

 }

 if (second > third) {

 return second;

 }

 return third;

 }

 public static void main(String[] args) {

 int maximum = maxOfThree(34, 56, 14);

366 How to Translate the Pseudocode into Real Code

 System.out.println(maximum);

 }

}

while loops, user input, if statements, and foreach
loops in Java
We need to use a dynamic data structure so that we can add as many values as we
like while the program is running. One such option we have in Java is to use a class
called ArrayList:

1. This class is created so a list can hold data of any type, and that is why we have
Integer between < and > in the declaration. In Java, we cannot use a primitive
data type as the type to store in the list. Instead, we use the class representation of
int, which is Integer.

2. Next, we declare the integer variable that will accept the input. We set it to 0 for
now. We need that value on the next line when we enter our while loop. As the
loop iterates as long as inputValue is equal to or greater than 0, we must set it to
a value within that range.

3. Java does not have a built-in method for user input, so we need to create an object
from a class called BufferedReader that can handle the input. We call this object
reader.

4. Inside the loop, we print a message to the user that we want a value. To get input
from the user, we use our reader object and its readLine method. The value
we get from readLine is a string. That is why we use the Integer.parseInt
method. It will convert whatever the user enters into an integer.

5. When we have the input, we check whether it is 0 or a positive value. It is only
0 values that we want to store in our list. If it is, we use a method called add on
our list that will insert the current value into the list at the end.

6. Java will force us to handle the event of the user entering something other than
a number. If they do, we will get an exception when we try to convert the string to
a number. That is why we need the try block with a catch statement. If the user
enters anything other than numbers, we will enter the catch statement.

Java 367

7. This will continue until the user enters a negative value. Then, we exit the
while loop and enter a for loop that will iterate through all the items in the
list. The current item will be stored in the value variable, and inside the loop,
we print it:

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.ArrayList;

class For {

 public static void main(String[] args) {

 ArrayList<Integer> values = new

 ArrayList<Integer>();

 int inputValue = 0;

 BufferedReader reader = new BufferedReader(new

 InputStreamReader(System.in));

 while(inputValue >= 0) {

 System.out.print("Enter a value: ");

 try {

 inputValue = Integer.parseInt(reader.readLine());

 if (inputValue >= 0) {

 values.add(inputValue);

 }

 } catch (NumberFormatException | IOException e) {

 e.printStackTrace();

 }

 }

 for (int value : values) {

 System.out.println(value);

 }

 }

}

368 How to Translate the Pseudocode into Real Code

JavaScript
In the early years of the World Wide Web, there was only one web browser with support
for a graphical user interface, namely Mosaic, released in 1993. The lead developers of
Mosaic soon started the Netscape corporation and released a more polished browser
called Netscape Navigator in 1994.

The web was a very different place in these early years, and web pages could only display
static content. Netscape wanted to change this and decided to add a scripting language
to its Navigator. At first, they looked at two options for how to achieve this. One was to
collaborate with Sun Microsystems and use the Java programming language. The other
option was to let the newly hired Brendan Eich embed the Scheme programming language
into the browser.

The decision was a compromise between the two. Brendan Eich was tasked with creating
a new language, but its syntax should be closely related to Java and less like Scheme. The
language was first named LiveScript, and that was the name it was released under in 1995.

As Java was the brand new language at the time, the name was changed to JavaScript
so it could get more attention. The similarity in names between the two languages has
led to much confusion over the years, especially among people not so familiar with
programming.

Here are some quick facts about JavaScript:

• Name: JavaScript

• Designed by: Brendan Eich

• First public release: 1995

• Paradigm: Event-driven, functional, imperative

• Typing: Dynamic

• Most frequently used file extension(s): .js

Hello world in JavaScript
The first thing we should note about JavaScript is that it is designed to have its programs
executed within a web browser. You can run JavaScript applications in a console
window, but to be able to do that, we will need a JavaScript engine that can execute
the code for us. One such engine is Node.js, which can be downloaded for free from
https://nodejs.org.

https://nodejs.org

JavaScript 369

JavaScript is a scripting language, so we will not need to put our code within any
particular function or class.

In JavaScript, we can use the console object to output data. It is usually used to
print data to a web browser's debugging console, but if we use Node.js to execute that
application, the output will be printed to the console window. The console object has
a method called log that will output anything we pass to it.

Note that all non-compound statements in JavaScript end with a semicolon:

console.log("Hello, World!");

Variable declaration in JavaScript
JavaScript does not have a specific data type for integers. Instead, it has a data type called
Number that handles both integer and floating-point numbers.

We declare variables either by using the older var keyword or the newer let.

As JavaScript is dynamically typed, we will not need to specify what type a variable will
use. This will be inferred automatically when we assign a value to it.

Converting a number into a string can be done with a method in the Number class called
toString. As our variable, myIntValue, is an object from the Number class, it has
such a method. Note that we are passing the value 10 to the toString method. This is
the base we want the number to be in. We want a decimal number, so we pass 10. This is
done as follows:

let myIntValue = 10;

let myStringValue = myIntValue.toString(10);

The for loop in JavaScript
JavaScript uses the C style of for loops. It has three sections, separated by semicolons:

• The first section will initialize the loop variable to its starting value; in our case, that
will be 0.

• The next section is the condition that will tell us for how long the for loop will run;
in our case, that is as long as the variable is less than 10.

• The final section is how the variable will change in each iteration. We are using the
++ operator here, so that the variable will increase by one each iteration.

370 How to Translate the Pseudocode into Real Code

Inside the loop, we will print the value of the loop variable:

for (let i = 0; i < 10; i++) {

 console.log(i);

}

Functions in JavaScript
As JavaScript is dynamically typed, we will not need to specify any data type for the return
value of the function or for the arguments as we need to do in C++, C#, and Java.

We use the function keyword to define that this is a function.

Note that in JavaScript, the && symbols mean and:

function maxOfThree(first, second, third) {

 if (first > second && first > third) {

 return first;

 }

 if (second > third) {

 return second;

 }

 return third;

}

let maximum = maxOfThree(34, 56, 14);

console.log(maximum);

while loops, user input, if statements, and foreach
loops in Java
First of all, we must note that this example will not do JavaScript justice, as JavaScript
is not created to write applications like this one. This has to do with JavaScript being
designed to run within a web browser and not as console applications.

JavaScript 371

In JavaScript, things are often done asynchronously. That is, the program code will not
run in sequence as we are used to in most other languages and situations. If we try to
implement this program in the same way as the pseudocode version and the version
written for all other languages, we will see that it goes into an endless loop just asking us
to enter a value, over and over again.

This program is somewhat complicated, so let's not go into too much detail. The first
lines are there to create something that will handle the input. At the heart of it is a
function called question that will return a promise object. A promise object is
something that promises to give us a value at some point in the future. To be able to use
this promise, it must be called from a function, and that function must be declared
as async. This means that this function can use the promise (to simplify things
somewhat).

This function does not have a name, but as you can see, it is surrounded by parentheses
and has two empty parentheses at the very end. This construct will make this function
execute immediately:

1. Inside this function, we create a dynamic array called values. We will initialize
it to be empty, as we don't have any values to store in it yet.

2. Next, we find the variable we will use for our input. We set this to 0 so that when we
come to the while loop on the next line, we will enter the loop.

3. On the next line, we will use all the code we see at the top of the program, which
handles the user input. We say that we await the question function. The await
keyword will let the application go and do some other things if it needs to, but when
we get a value entered by the user, we will come back here and resume execution.
That is a short description of how asynchronous calls work. This is an advanced
topic, so if this code confuses you, no problem.

4. If the value entered is greater than or equal to 0, we push this value to the back of
our array.

5. When the user enters a negative number, we exit the while loop and enter a for
loop that will iterate as many times as there are items in the array. The pos variable
will have an index value, 0 the first time, 1 the second time, and so on. When we
want to print the values inside the loop, we can use this value as an index into the
array, so that we get the first value the first time, the second time, and so on. Refer
to the following code:

const readline = require("readline");

const rl = readline.createInterface({

372 How to Translate the Pseudocode into Real Code

 input: process.stdin,

 output: process.stdout,

});

const question = (q) => {

 return new Promise((res, rej) => {

 rl.question(q, (answer) => {

 res(answer);

 });

 });

};

(async () => {

 let values = [];

 let inputValue = 0;

 while (inputValue >= 0) {

 inputValue = await question("Enter a number: ");

 inputValue = parseInt(inputValue);

 if (inputValue >= 0) {

 values.push(inputValue);

 }

 }

 for (let pos in values) {

 console.log(values[pos]);

 }

})();

PHP
In 1994, Rasmus Lerdorf, a Danish-Canadian programmer, wrote several Common Gate
Interface (CGI) programs in C. CGI is an interface specification that will let web servers
execute programs that can generate dynamic web content. Lerdorf created this for his
private web page and extended and added functionality to handle web forms and database
communication. He named the project Personal Home Page/Forms Interpreter,
abbreviated to PHP/FI.

PHP 373

Lerdorf has later admitted that he never intended to create a new programming language,
but the project got a life of its own, and a development team was formed, and in 1997
PHP/FI 2 was released.

The language is primarily used on web servers to create dynamic web content.

Here are some quick facts on it:

• Name: PHP

• Designed by: Rasmus Lerdorf

• First public release: 1995

• Paradigm: Imperative, functional, object-oriented, procedural

• Typing: Dynamic

• Most frequently used file extension(s): .php

Hello world in PHP
The primary use of PHP is to run alongside a web server, and applications written in
PHP will most often be used to produce dynamic web content. But we can run PHP
applications as standalone console applications if we download the PHP executable
from https://php.net:

• As PHP code can be written in the same document as HTML code, all PHP source
code that we write must be within php tags. The opening tag is <?php and the
closing tag is ?>.

• We use echo to display our message in the console window. You will not need to
use any parentheses with echo, as it is not a function but a language construct.

Note that all non-compound statements in PHP end with a semicolon:
<?php

 echo "Hello, World!";

?>

Variable declaration in PHP
As PHP is a dynamically typed language, we will not need to provide any implicit
information on what data type to use when we declare variables. The variable type will be
deducted automatically for us, and the type we end up with depends on what we assign to
the variable.

https://php.net

374 How to Translate the Pseudocode into Real Code

An oddity that PHP has inherited from the language Perl is that all variable names must
start with a dollar sign. In Perl, this had a meaning as different signs identified different
types, but PHP only has the dollar sign for all types.

Let's try this. We first assign the value 10 to our $myIintValue variable.

To convert this integer into a string, we will use a strval function and pass the integer to
it. This will convert this value into a string, as shown here:

<?php

 $myIntValue = 10;

 $myStringValue = strval($myIntValue);

?>

The for loop in PHP
PHP uses the C style of for loops. It has three sections, separated by semicolons. The
first section will initialize the loop variable to its starting value; in our case, that will be 0.
The next section is the condition that will tell us for how long the for loop will run; in
our case, that is as long as the variable is less than 10. The final section is how the variable
will change in each iteration. We are using the ++ operator here so that the variable will
increase by one each iteration.

Inside the loop, we will print the value of the loop variable.

As echo in PHP will not provide any newline character, we will need to append it after
our loop variable in each iteration. We can concatenate the value of the loop variable and
the newline character (\n) by inserting a period between the two:

<?php

 for($i = 0; $i < 10; $i++) {

 echo $i . "\n";

 }

?>

Functions in PHP
As PHP is dynamically typed, we will not need to specify any data type for the return
value of the function or for the arguments as we need to do in C++, C#, and Java.

PHP 375

We use the function keyword to define that this is a function.

Note that in PHP, the && symbols mean and:

<?php

function maxOfThree($first, $second, $third) {

 if ($first > $second && $first > $third) {

 return $first;

 }

 if ($second > $third) {

 return $second;

 }

 return $third;

}

$maximum = maxOfThree(34, 56, 14);

echo $maximum;

?>

while loops, user input, if statements, and foreach
loops in PHP
In PHP, we can create a dynamic array by using array(). An array in PHP is not an
array but an ordered map, in other languages known as a dictionary or an associative
array. But for this application, this does not matter:

1. After the array is created, we declare the input variable that will hold the values the
user enters. We set it to 0, so when we come to the while loop on the next line, we
will enter the loop.

2. Next, we will use readline to get a value from the user. We can pass a string to
readline, and that string will be printed to the screen as a prompt to the user.
This way, we will not have a separate line that prints this message.

3. The value we get from readline will be a string, so we use intval to convert it
to an integer.

376 How to Translate the Pseudocode into Real Code

4. Next, we check whether the value is greater than or equal to 0. If it is, we will use
the array_push function. This function takes two arguments. The first one is the
array into which we want to push a value, and the second argument is the value we
want to be pushed.

5. When the user enters a negative number, we will exit the while loop and enter
a foreach loop that will print all the values the user entered. If you compare this
program with the ones written for the other languages, you will see that the array
and the variable have switched placed in PHP compared to the others.

Inside the foreach loop, we print the values to the console:
<?php

 $values = array();

 $inputValue = 0;

 while($inputValue >= 0) {

 $inputValue = intval(readline("Enter a value: "));

 if($inputValue >= 0) {

 array_push($values, $inputValue);

 }

 }

 foreach($values as $value) {

 echo $value . "\n";

 }

?>

Python
Python was designed and created in the late 1980s by the Dutch programmer Guido van
Rossum as a successor to the ABC language. The main design philosophy behind the
language is code readability.

While developing the language, van Rossum enjoyed the British comedy group Monty
Python and decided to name his new language after them.

The popularity of the language has grown exponentially over the last few years, and it is
now ranked as one of the most popular languages out there.

Python 377

It is a general-purpose language that can be used for most types of applications. The
common uses for the language include the development of web applications and use in
data science. As it is considered one of the easiest programming languages to learn for
beginner programmers, it is often used as an introductory language.

Here are some quick facts about it:

• Name: Python

• Designed by: Guido van Rossum

• First public release: 1990

• Paradigm: Multi-paradigm, functional, imperative, object-oriented, structured

• Typing: Dynamic

• Most frequently used file extension(s): .py

Hello world in Python
As Python is a scripting language, we will not need to put our code within any special
function or class. To print a message to the console window, we will just use the print
function and pass whatever we want to print to it:

print("Hello, World!")

Declaring variables in Python
As Python is a dynamically typed language, we will not need to provide any information
on what type our variables will use. That will be deducted automatically for us when we
assign a value to the variable.

To declare an integer variable, we just assign an integer to it.

To convert this integer to a string, we can use a class called str and pass the integer to it.
As everything in Python is an object, this will return a new string object to us:

my_int_value = 10

my_string_value = str(my_int_value)

378 How to Translate the Pseudocode into Real Code

The for loop in Python
When it comes to for loops, Python will be different from all the other languages we
look at here. It does not implement a for loop that uses the C-style format. A for loop
in Python will iterate over a sequence of some sort. As we don't have any sequence, we
can use something called range. Now, range looks like a function, but in reality, it is
something that is called a generator. A generator will generate one single value in a range
of values each time a new value is needed. By providing the value 10, at the first iteration,
it will generate the value 0. In the next iteration, the generated value will be 1, and so on
up to 9.

Also, note that Python does not use braces to indicate a compound statement, as we can
see in this for statement. Instead, the content of the for loop is indented with four
spaces. Also, note the colon as the last character on the first line. It is an indication that the
next line should be indented:

for i in range(10):

 print(i)

Functions in Python
As Python is dynamically typed, we will not need to specify any data type for the return
value of the function or for the arguments as we need to do in C++, C#, and Java.

We use the def keyword to define that this is a function:

def max_of_three(first, second, third):

 if first > second and first > third:

 return first

 if second > third:

 return second

 return third

maximum = max_of_three(34, 56, 14)

print(maximum)

Python 379

while loops, user input, if statements, and foreach
loops in Python
In Python, we can use a list to store the values the user enters. A list in Python is dynamic,
so it can grow as the user enters new values:

1. We declare the list and make it empty, to start with.

2. Next, we declare the variable we will use for the user input and set it to 0. The
reason we use zero is so that when we come to the line with the while loop, we
want the condition to be true. It will be true if the input_value variable is 0
or greater.

3. Inside the while loop, we will use the input function to let the user enter values.
The input function lets us pass a string to it, and that string will be displayed to
the user. This takes away the need we have in some other languages to actually print
this message first and then get the user input.

4. The value we get from the input function is a string, so we need to convert it to
int. We do that by passing the entered string to int(). This will create an integer
with the value entered.

5. Next, we check whether the entered value is greater than or equal to 0. If it is, we
will append it to our list.

When the user enters a negative number, we will exit the while loop and continue
to a for loop. for loops in Python always work like foreach loops. A for loop
wants a sequence, and it will go through all the values of that sequence. Our list is
such a sequence, so we will get one item each time we iterate, and we can now print
that item value, as shown here:

values = []

input_value = 0

while input_value >= 0:

 input_value = int(input("Enter a number: "))

 if input_value >= 0:

 values.append(input_value)

for value in values:

 print(value)

Appendix B
Dictionary

A
ALGOL – A family of programming languages developed in 1958 by a committee of
European and American computer scientists.

Algorithm – A set of rules or a description of steps to be followed in problem-solving
operations. Examples of algorithms used in computer science are sorting and
searching algorithms.

Analog – Using signals or information represented by continuously changing a physical
quantity, such as the voltage or spatial position.

Application – A computer program that is designed for a particular purpose.

Arithmetic – A branch of mathematics dealing with the properties and manipulation
of numbers.

Arithmetic overflow/underflow – The result of a calculation that exceeds the memory
space designated to hold the result.

Array type – A data type that represents a collection of elements that can be selected by
the use of indices.

ASCII-table – A character-encoding standard that uses numbers to represent characters.

Assembly language – A name used for any low-level programming language that has a
strong correlation between its instructions and the corresponding machine code instructions.

382 Dictionary

B
Base 10 – See Decimal.

Base 16 – See Hexadecimal.

Base 2 – See Binary.

Binary – A numbering system that works in base 2 – that is, it only uses two digits: zero
and one.

Blank line – Used in programming to separate blocks of code that logically
belong together.

Block comment – A comment in programming code that spans several lines.
See Comment.

Boolean algebra – A branch of algebra in which operations are performed only on the
true and false values. The name comes from George Boole, who introduced it in 1847.

Boolean type – A data type that stores the Boolean true and false values. See
Boolean algebra.

Break – A statement used by many programming languages to exit the current code
block. See Code block.

Breakpoint – Used when debugging applications to pause the execution at a particular
line of code.

Brief code – A precursor of the Short code programming language. See Short code.

BUG – A tag used as a comment to indicate code that contains a bug that has not yet
been fixed.

Byte – A group of binary digits, usually 8, that is operated on as a single unit.

Byte code – Intermediate code that a programming language can be compiled into. It can
then be interpreted more efficiently if the source code was interpreted directly.

C
C – A programming language designed by Dennis Ritchie at Bell Labs in 1972. Its syntax
has influenced many other programming languages.

C# – Pronounced C sharp. A programming language developed by Microsoft in 2000.

C++ – A programming language created by Bjarne Stroustrup in 1985. It was developed as
an object-oriented extension to the C programming language.

C 383

Camel case – A practice for naming multi-word identifiers, such as variables and function
names. In camel case, the first word is written in all lowercase, and the first character in
any word that follows is written in uppercase. All spaces are removed. Camel case written
in camel case is camelCase.

Central processing unit – The component of a computer in which operations are
controlled and executed.

Class method – In object orientation, a class method is a function that belongs to a class.
A class method is called on the class itself, rather than an instance. See Method.

Class – In object-orientation, a class is a template used for creating objects. See Object.

Client software – An application that plays the client role in a client-server solution.

Client-server – A distributed application structure that partitions the workload between
a server and one or more clients. The client initiates the communication, and the server
provides a function or a service to the clients.

Clojure – A programming language created by Rich Hickey in 2007. The language is a
Lisp dialect. See LISP.

Cloud computing – On-demand availability of computer system resources, such as
storage or computing power, that is accessed over the internet.

COBOL – This acronym stands for Common Business-Oriented Language and is a
compiled English-like programming language designed for business use. COBOL was
developed in 1959 by a group called CODASYL and is based on the FLOW-MATIC
programming language. See FLOW-MATIC.

Code block – A block of code that usually spans several lines and belongs to the same
statement. The beginning and end are often marked with { and } or an indentation.

Code module – A section of code that implements a particular functionality. It is usually
packaged in a single unit, such as a code file.

Command prompt – See Terminal window.

Comment – A programmer-readable explanation or annotation in the source code.
Comments give instructions to humans and are ignored by the programming language.

Common Lisp – A programming language developed to consolidate other Lisp dialects. It
was released in 1984.

384 Dictionary

Compiled language – A programming language that will translate all the statements that
make up a program. When all the statements are translated, the program can be executed.
Programs written in a compiled programming language will typically be faster than
programs written in an interpreted language.

Composite type – A data type that is made up of more than one value.

Compound statement – A statement that is the body of other statements. Some examples
are if, for, and while statements.

Continue – A statement used in loops. When encountered, the current iteration will be
halted, and execution will immediately continue with the next iteration.

CPU – See Central Processing Unit.

D
Database – An organized set of data, stored and accessed electronically. Other
applications typically use the data.

Debugger – A tool used by programmers to find errors in a program code. It will let
the programmer step through the code line by line while executing the code, and the
programmer can inspect the values of variables and the execution path that is taken.

Decimal – A numbering system that works in base 10 – that is, it uses 10 digits to
represent numbers. It is the numbering system that we usually use.

Dictionary type – A data type that stores data in key-value pairs. The key value must be
unique for every item in the dictionary.

Directive comment – A comment in the source code not intended for humans but other
programming tools, such as compilers.

Division by zero – An error that occurs in a division where the divisor is zero.

Docstring – A comment that is formatted in a predefined way.

E
Encapsulation – Used in object orientation to restrict direct access to some of an
object's components.

Enumeration – A data type, sometimes referred to as enum, that has a set of named values.

Expression – An entity in a programming language that can be evaluated for its value,
such as x + 1.

F 385

F
First-class function – If a language supports first-class functions, this means that
functions can be passed as arguments to other functions or returned as a result from
a function.

FIXME – A tag that is used in comments to indicate that a particular section of code
needs to be rewritten or updated.

Floating-point types – A data type that can represent real numbers.

FLOW-MATIC – A programming language designed by Grace Hopper in 1955. It was
the first English-like data processing language.

Fortran – A programming language invented in 1954 at IBM by John Backus.

Function – A sequence of program instructions that are packaged as one unit and
(usually) given a name.

Function call – A call to a function will pass control to that function. Once the function
has executed, control is given back.

Functional programming – A paradigm where programs are constructed by composing
and applying functions.

G
Gate – See Logic gate.

Go – A programming language designed by Robert Griesemer, Rob Pike, and Ken
Thompson that was released in 2009.

H
HACK – A tag that is used in comments to indicate that a particular section of code is a
workaround and that this code needs to be rewritten in the future.

Hard drive – An electromechanical data storage device that uses rapidly rotating platters
coated with magnetic material. It can be used to store and retrieve digital data.

Hardware – The machine and physical components that make up a computer or other
electronic systems.

Hexadecimal – A numbering system that works in base 16 – that is, it uses 16 digits to
represent numbers. It uses the digits 0–9, followed by the letters A–F, with A being 10 and
F being 15.

386 Dictionary

I
IaaS – Infrastructure as a service is an online service that let users use an instant
computing infrastructure that is provisioned and managed over the internet.

IDE – An integrated development environment is a program or suite of programs that
gives a programmer the tools needed to, among other things, write, edit, debug, and test
applications.

Immutable data – Data that cannot be changed once it has got its initial value. See
Mutable data.

Indentation – A technique for making code more readable where lines of code have initial
empty space at the beginning of the line.

Instance – See Object.

Integer – A number that can be written without a fractional component, such as 21, 133,
-7, and 0.

Integer data type – A data type that can represent integer values.

Interpreted language – A programming language that translates programming
instructions from a given programming language into machine code, one statement at a
time. Once a statement is translated into machine code, it is sent to the central processing
unit for execution.

iOS – A mobile operating system created and developed by Apple Inc.

IP address – A numerical address assigned to each device connected to a computer
network that uses the Internet Protocol for communication.

Iteration statement – A statement that causes other statements that are defined within its
body to repeat zero an infinite number of times.

J
Java – A programming language developed by James Gosling. It was first released in 1995.

JavaScript – A programming language developed by Brendan Eich. It was first released in
1995.

K
Keyword – In a programming language, a keyword is a reserved word that has a particular
meaning in that language.

L 387

Kotlin – A programming language designed by the Czech software development company
JetBrains. It was first released in 2011.

L
Language syntax – See Syntax.

Lisp – A family of programming languages, initially specified by John McCarthy in 1958.
Among the modern dialects of Lisp, we can find languages such as Racket, Common Lisp,
Scheme, and Clojure.

Logic gate – A physical electronic device that is used to implement logical operations on
binary input.

Low-level programming – Creating programs that interact directly with the computer
hardware. A benefit of low-level programming is that there is no abstraction level between
the hardware and the written code, making the programs execute faster.

M
Machine code – Program instructions written in a numerical format that can be executed
directly by the central processing unit.

Member variable – A concept used in object-oriented programming where a variable
belongs to one particular object.

Memory – A generic term for all the different technologies a computer may use to
store data.

Method – A concept used in object-oriented programming. A method is a function
associated with a class and its objects.

Mobile application – An application written to be executed on a mobile device.

Mutable data – Data that can be changed. See Immutable data.

N
Namespace – A way to group objects of various kinds and ensure that all objects within
the same namespace have unique names.

Napster – A service released in 1999 where users could share music over a peer-to-peer
network.

Node – A device in a computer network.

388 Dictionary

Numeric type – A data type that can represent numeric values. See Integer data type and
Floating-point types.

O
Objective-C – A programming language designed by Tom Love and Brad Cox. It was first
released in 1984. It was the primary programming language supported by Apple until the
introduction of Swift in 2014. See Swift.

Object orientation – A software engineering paradigm in which concepts are represented
as objects.

Object-oriented programming – A paradigm based on a concept where programs are
constructed using objects.

Object – A representation used in object orientation that is made up of data in the form of
fields (often called attributes or properties) and code in the form of functions (referred to
as methods to distinguish them from functions defined outside classes).

Ones' complement – The ones' complement of a binary number is accomplished by
inverting all the bits in that number (swapping zeros for ones and vice versa).

Opcode – An abbreviation of operation code, this is a portion of a machine language
instruction that specifies what operation to perform.

Open source – Software for which the source code is made freely available and may be
redistributed and modified.

Operand – An input value to an operator. See Operator.

Operator – A symbol that performs an operation that behaves like a function but is
syntactically different from a function call.

Order of operation – The order in which multiple operations will be executed.

P
P2P – See Peer-to-peer.

PaaS – Platform as a service is a type of cloud service that provides a platform where
customers can develop, run, and manage applications.

Package manager – An application, or collection of applications, that automates the
process of downloading, installing, configuring, and removing software.

R 389

Peer-to-peer – A distributed network application where the nodes in the network
communicate directly with each other.

Perl – A programming language developed by Larry Wall. It was first released in 1987.

PHP – A programming language developed by Rasmus Lerdorf. It was first released
in 1995.

Pixel – A physical point in a raster image or the smallest element of a computer screen
(or other types of display devices).

Plankalkül – One of the first programming languages, designed by Konrad Zuse. It was
first released in 1948.

Processor – See Central processing unit.

Punch card – A card with punched holes. The location of the holes can be used to
represent data or program code instructions. This was formerly used by computers as the
primary storage device.

Pure function – A function that has the property of always returning the same value for
the same argument and whose evaluation has no side effects.

Python – A programming language designed by Guido van Rossum. It was first released
in 1990.

R
Record type – A data type that is made up of several fields. Each field can be of any other
type, including other records.

Register – A component inside a central processing unit used for storing information.

Repository – A storage location for software or code.

Reserved word – A reserved word is a word that is reserved by a programming language
and cannot be used by the programmer as a name for things such as functions and
variables.

S
SaaS – An online service, software as a service, where software is licensed and
hosted online.

Scalability – The ability to handle a growing amount of work.

390 Dictionary

Selection statement – A statement that evaluates a condition to be either true or false
and can execute different blocks of code depending on the result.

Sequence – An enumerated collection of objects.

Server – A computer program or device that provides services and functionality to other
devices, called clients.

Set type – A data type that can store a collection of unique values without a
particular order.

Scheme – A programming language developed by Guy L. Steele and Gerald Jay Sussman.
It was first released in 1975.

Short code – Considered by many as being the first high-level programming language,
proposed by John Mauchly in 1949.

Signed magnitude representation – A way to represent negative numbers in binary form.

Simula – A programming language design by Ole-Johan Dahl. It was first released
in 1962.

SMR – See Signed magnitude representation.

Snake case – A style for formating multi-word names. In snake case, only lowercase
characters are used, and an underscore separates words.

Source code – The code written by programmers using the syntax of a
programming language.

Standalone application – An application that can work offline.

Statement – A unit of code of an imperative programming language that expresses
some action.

String type – A data type that can represent a sequence of characters.

Substring – A continuous sequence of characters within a string.

Swift – A programming language developed by Apple Inc. as the successor of the
Objective-C programming language. It was released in 2014. See Objective-C.

Syntax – Rules that define what symbols and keywords make up a programming
language. It also defines how the keywords and symbols should be combined to form
valid source code.

Syntax error – An error that occurs when source code is breaking the syntax rules of a
programming language.

T 391

T
TCP/IP – A suite of protocols that are used for transmitting data over the internet.

Terminal window – An application that lets the user execute text commands, usually to
the operating system.

Text string – See String type.

TODO – A tag that is used in comments to indicate that a particular section of code is
still not implemented.

Touchscreen – A screen that lets the user control a connected device by touching the screen.

Two's complement – A technique for representing signed numbers in binary form.

U
Unicode – A character-encoding standard that can represent over 140,000
different characters.

Unsigned integer – A data type that can only represent positive integer values.

V
Variable – A named representation of a memory address used in programming to
access data.

W
Web browser – An application used to access information on the world wide web.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Modern Computer Architecture and Organization
Modern Computer Architecture and Organization
ISBN: 978-1-83898-439-7

• Get to grips with transistor technology and digital circuit principles

• Discover the functional elements of computer processors

• Understand pipelining and superscalar execution

• Work with floating-point data formats

• Understand the purpose and operation of the supervisor mode

• Implement a complete RISC-V processor in a low-cost FPGA

• Explore the techniques used in virtual machine implementation

• Write a quantum computing program and run it on a quantum computer

https://www.packtpub.com/cloud-networking/modern-computer-architecture-and-organization

394 Other Books You May Enjoy

40 Algorithms Every Programmer Should Know
Imran Ahmad
ISBN: 978-1-78980-121-7

• Explore existing data structures and algorithms found in Python libraries

• Implement graph algorithms for fraud detection using network analysis

• Work with machine learning algorithms to cluster similar tweets and process
Twitter data in real time

• Predict the weather using supervised learning algorithms

• Use neural networks for object detection

• Create a recommendation engine that suggests relevant movies to subscribers

• Implement foolproof security using symmetric and asymmetric encryption on
Google Cloud Platform (GCP)

https://www.packtpub.com/programming/40-algorithms-every-programmer-should-know

Leave a review - let other readers know what you think 395

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
acceptance testing

about 295
alpha testing 296
beta testing 296
constructional acceptance testing 296
operational acceptance testing 296
regulatory acceptance testing 296
user acceptance testing 296

agile development 305
Agile Manifesto, principles

reference link 305
Agile Scrum methodology 305, 306
ALGOL 381
algorithm 381
Allman style 344
alpha testing 296
analog 381
application 381
application types

about 59
programming software 59
serverless application 60
systems software 59

A Programming Language (APL) 102

arithmetic 381
arithmetic errors 217
arithmetic operators 141
arithmetic overflow 219, 381
arithmetic underflow

about 218, 381
loss of precision 219

array programming 277
array type 381
artificial intelligence (AI) 56
ASCII 15
ASCII-table 381
assembly language 381
atoms 275
attributes 248

B
Base 2 382
Base 10 382
Base 16 382
best practices, code quality

about 332
code conventions, using 341
deep nesting, avoiding 337, 338
DRY principle, using 338-341

398

function/method length,
limiting 333-337

line length, limiting 332, 333
beta testing 296
binary 382
binary system

about 12-15
ASCII 15
forms, representing of data 16, 17
Unicode 15

Bird Style 102
bit 15
blank line 99, 100, 382
block comment 103, 382
Boolean algebra 17, 18, 382
Boolean type 117, 382
break 382
breakpoint

about 382
setting up 225-229

brief code 382
bug 382
byte 15, 382
byte code 382

C
C#

about 357, 382
foreach loop 361, 362
for loop 360
functions 360
Hello world 358
user input 361, 362
variable declaration 358, 359
while loop 361, 362

C++
about 352, 382

foreach loop 356
for loop 354
functions 355
Hello word 353
user 356
user input 356
variable declaration 353
while loop 356

call stack 231-234
camel caps 342
camel case 115, 383
central processing unit 383
central processing unit (CPU) 11, 384
chat application

example 46, 47
C language 382
class 383 245
class method 383 253-256
client-server 383
client-server application

about 44, 45
chat application, example 45-47
email client, example 47
solution 48

client software 383
C-like Object-Oriented

Language (Cool) 357
clojure 383
cloud-based application

about 54, 55
cloud service models 56

cloud-based application, advantages
about 55
reduced costs 55
scalability 55, 56

cloud-based solutions
advantages 58

cloud computing 383

 399

cloud service models
about 56
Infrastructure as a Service (IaaS) 56
Platform as a Service (PaaS) 57
Software as a Service (SaaS) 57

code
commenting out 105
moving, into function 186, 187
readable, making 98
sharing, with packages 68

code block 40, 383
code conventions

indentation conventions 342
naming conventions 341
other conventions 345-347
using 341

code module 64-67, 383
code quality

best practices 332
combining, with user quality 315
defining 312

code readability
about 316
code, reviewing 322
comments and documentation,

using 316, 317
names, using as documentation 317, 318
other people's codes, reading 318-321

code translation
about 31
compilation, using 32
interpretation, using 32
interpretation, versus compilation 33-35
language, compiling 35, 36
language, interpreting 35, 36

command prompt 383
comment

about 383

controversy 108
using 101

comments, usage
about 106
algorithmic description 106
code description 106
planning 106
reviewing 106

commit 283
Common Business-Oriented

Language (COBOL) 383
Common Gate Interface (CGI) 372
compilation

advantages 35
disadvantages 35
using 32
versus interpretation 33-35

compiled language 384
composite type

about 132, 384
dictionary type 137, 138
dynamic array 134, 135
enumeration (enum) 139, 140
fixed array 133
numbers, working with 146, 147
operators 140, 141
record type 135, 137
reference variables 143
set type 138
strings, manipulating 148
value variables 143

compound statement 92-384
computer

history 4, 5
computer program

about 7-10
components 10
working with 11, 12

400

conditional statement
about 157
example 157

Consortium for Information
Software Quality (CISQ)

about 313
quality model 313
rules, for measuring code quality 313

constructional acceptance testing 296
continue 384

D
database 384
debugger

about 223, 384
breakpoint, setting up 225-229
call stack 231-234
exception 231-234
exception, common reason 230
used, for finding software bugs 223-225

decimal 384
declarative programming 268-270
deployment 298
development server 298
device drivers 8
dictionary type 137-384
directive comment 105, 384
distributed application

about 52
peer-to-peer network 54
SETI@home 53

division by zero 384
docstring 103, 345, 384
Don't Repeat Yourself (DRY) 338
double type 131
do while loop

using, for iteration 175, 176

drivers 295
Dromedary case 115
dynamic array 134, 135

E
efficient code

efficient algorithms, using 325-328
memory and processors usage,

optimizing 324, 325
redundant or unnecessary

code, removing 323
writing 323

Electronic Numerical Integrator
and Computer (ENIAC) 5

email client
example 47

email server 47
encapsulation 384 251
enumeration (enum) 139, 140, 384
exception

about 229, 232-234
common reason 230, 231
handling 234-237
working with 229

exceptional condition 229
exceptional event 229
execution path

controlling 154
expression 90, 91, 384
Extreme Programming (XP) 306, 307

F
first-class function 271-273, 385
fixed array 133, 134
FIXME 385
float type 131

 401

floating-point types 130-385
FLOW-MATIC 385
for each

using, for iteration 177-179
foreach loop

in C# 362
in C++ 356
in Java 366
in JavaScript 370, 371
in PHP 375
in Python 379

for loop
in C# 360
in C++ 354, 355
in Java 364, 366
in JavaScript 369
in PHP 374
in pseudocode 350
in Python 378
using, for iteration 168-172

Fortran 385
function

about 385
code, moving 185, 187
code, splitting 199-205
implementing 205-208
in action 192-198
in C# 360
in C++ 355
in Java 365
in JavaScript 370
in PHP 374
in pseudocode 350, 351
in Python 378
overview 182, 183
values, returning 188-190
writing 184, 185

functional programming
about 261, 262
first-class function 271-273
immutable data 267
mutable data 264, 265
pure functions 262-264
side effects, avoiding 267, 268

functionals 277
function arguments 190-192
function call 385
function-level programming 277
function programming 385

G
Gate 385
generator 378
getter 253
global variables 208-211
Go 385
GOTOs technique 241

H
HACK 385
hard drive 385
hardware 385
Hello world

in C# 358
in C++ 353
in Java 363, 364
in JavaScript 368
in PHP 373
in pseudocode 350
in Python 377

hexadecimal 385

402

home application
about 88
problem, defining 83
sequence 89
solution breakdown 83-86
solution, to problem 83

I
if statement

in C# 361
in C++ 356
in Java 366
in JavaScript 370, 371
in PHP 375
in pseudocode 351
in Python 379
using, for selection 158-162

immutable data 267, 386
imperative programming

about 240
versus structured programming 241-243

indentation 386
indentation conventions

1TBS bracing style 343
about 342
Java bracing style 343, 344
K&R bracing style 343
Lisp or Python style 344, 345

indentation technique 98, 99
Infrastructure as a Service (IaaS)

about 56, 386
big data 56
disaster recovery 56
testing and development 56

inheritance 257-260
instance 386
integer 386

integer data type
about 117, 118, 386
one's complement 125, 127
signed integers 119
Signed Magnitude Representation

(SMR) 119-124
two's complement 127, 129
unsigned integers 119, 129

integrated development
environment (IDE) 60, 67, 386
integration testing 292, 294
interface 251
Internet Protocol (IP) 46
Internet Protocol version 6 (IPv6) 48
interpretation

advantages 34
disadvantages 34
using 32
versus compilation 33-35

interpreted language 386
iOS 386
IP address 386
iteration 297
iteration statement

about 156, 157, 386
with do while loop 175, 176
with for each 177-179
with for loop 168-172
with while loop 172-174

J
Java

about 363, 386
foreach loop 366, 367
for loop 364
functions 365
Hello world 363

 403

if statements 366, 367
user input 366, 367
variable declaration 364
while loop 366, 367

Java bracing style 343
Java byte code 363
JavaScript

about 368, 386
foreach loop 370, 371
for loop 369
functions 370
Hello world 368
if statements 370, 371
user input 370, 371
variable declaration 369
while loop 370, 371

K
keyword 38, 386
kotlin 387
K&R style 342

L
language syntax 387
Lean Software Development 306
line comment 101-103
Lisp 387
Lisp or Python style 344, 345
list comprehension 270
local variables 201, 208-211
logical error 220, 221
logical operators 142, 143
logical structures

conditional statement 157
iteration statement 156, 157
selection statement 154, 155

logic gate 387
logic programming 274-276
lower camel case

about 115
example 115

low-level programming 387

M
machine code

about 19, 387
example 20, 21

magic comment 105
manipulator function 353
mantissa 131
mathematic relations 40
member variable 387 248-251
memory 387
merge 286
method 360, 387
mobile application 52, 387
Morris worm 216
multi-paradigm languages 279
mutable data 264, 265, 387

N
namespace

about 387
in C++ 75
in JavaScript 73, 74
in other languages 76
in Python 74, 75
overview 72, 73
used, for avoiding conflicts 70, 71
using, in calculator application 76

404

naming convention
about 115, 116, 341
camel case 341
Pascal case 342
snake case 342

naming variables
about 114, 115
camel case 115
snake case 116
standard rules 115

napster 387
NASA's Mars Climate Orbiter 215
node 387
Node.js

URL 368
numbers

working with 146, 147
Numeric type

about 117, 388
floating-point types 130, 131
integer data type 117, 118

O
object 248, 388
objective-C 388
objective-orientation 388
object-oriented programming

about 243, 244, 388
class 245-247
class method 253-256
encapsulation 251-253
inheritance 257-260
object 248

offside rule 345
ones' complement 125, 127, 388
one true brace style (ITBS) 343
opcodes 19

open source 388
operand 388
operating system 8
operational acceptance testing 296
operation code (opcode) 388
operations

order of operations 91, 92
operator

about 39, 140, 141, 388
arithmetic operators 141
logical operators 142, 143
relational operators 142

order of operation 388
origin 287

P
package manager 68-70, 388
packages

working with, to share code 68
paradigm 239
Pascal case 115
peer-to-peer (P2P) network 54, 389
Pep 8 346
Perl 389
Personal Home Page/Forms

Interpreter (PHP/FI) 373
phone application

about 86, 87
sequence 87

PHP
about 372, 389
foreach loop 376
for loop 374
functions 374, 375
Hello world 373
if statements 375, 376
URL 373

 405

user input 375, 376
variable declaration 373, 374
while loop 375, 376

Pixel 389
Plankalkül language 27, 389
Platform as a Service (PaaS)

about 57, 388
reduced costs 57
reduced time 57

predicates 275
primitive data types

about 117
Boolean type 117
Numeric type 117

product backlog 306
program state 241
programming

history 6, 7
programming languages

building blocks 36-38
code blocks 40
developing 29
family tree 29-31
keywords 38
mathematic relations 40
modern era 28
operators 39
overview 27, 28
syntax 36-38

programming software 59
pseudocode

examples 350
for loop 350-352
functions 350, 351
Hello, Word! 350
statements 351, 352
user input 351, 352
variables declaration 350

while loop 351, 352
punch card 389
pure function 262-264, 389
Python

about 376, 389
foreach loop 379
for loop 378
functions 378
Hello world 377
if statements 379
user input 379
variable declaration 377
while loop 379

Q
quantum programming 278

R
range-based for loop 356
record type 135, 136, 389
reference variables 144, 145
register 389
regression testing 296
regulatory acceptance testing 296
relational operators 142
Remark (REM) 102
repository 282, 389
reserved word 389
rollback strategy 299

S
scalability 389
scheme 390
Scrum 305
Search for Extraterrestrial

406

Intelligence (SETI) 53
selection statement

about 154, 155, 390
with if statement 158-162
with switch statement 163-167

sequence
about 82, 390
significance 82

server 46, 390
serverless application 60
SETI@home 53
setter 253
set type 138, 390
shebang 105
short code 390
signed integers 119
signed magnitude representation 390
Signed Magnitude Representation

(SMR) 119-124
simula 390
smart code 329-331
snake case

about 116, 390
example 116

social network
example 50

Software as a Service (SaaS)
about 57, 389
office software, maintenance 57
sharing information 57

software bugs
about 214, 215
arithmetic errors 217
arithmetic overflow 218
arithmetic underflow 218
defining 217
division by zero 218
finding, with debugger 223-225

logical error 220, 221
Morris worm 216
NASA's Mars Climate Orbiter 215
syntax error 221-223
types 217

software deployment
about 298, 299
automating 300
code maintenance 300-302

software development process
methodologies

about 302
agile development 305
spiral model 303, 304
waterfall development model 302, 303

software projects
working with 67

software releases 297, 298
source code 31, 390
spiral model 303, 305
sprint 306
staging server 299
standalone application 44, 390
statement

about 90, 240, 390
separating 95-97

string join method 325
strings

concatenating 148
manipulating 148
splitting 148

string type 390
structured programming

about 240
versus imperative

programming 241-243

 407

Structured Query Language (SQL) 269
stubs 295
substrings

about 149, 390
case conversion 150, 151

swift 390
switch statement

using, for selection 163-167
syntax 390
syntax error 221, 222, 390
systems software 59
system testing 295

T
tags 104
TCP/IP 391
terminal window 391
test, types

about 295
acceptance testing 295
regression testing 296
system testing 295

text string 391
TODO 391
touchscreen 391
tuple 312
two's complement 127, 129, 391

U
Unicode 15, 391
unit testing 290-292
unsigned integers 119, 129, 391
unstructured data 56

upper camel case
about 115
example 115

user acceptance testing 296
user input

in C# 361
in C++ 356
in Java 366
in JavaScript 370, 371
in PHP 375
in pseudocode 351, 352
in Python 379

user quality
about 314

combining, with code quality 315

V
values

returning, from function 188-190
value variables 143, 144
variables

about 112, 114, 391
declaring 112
declaring, in C# 358, 359
declaring, in C++ 353, 354
declaring, in Java 364
declaring, in JavaScript 369
declaring, in PHP 373
declaring, in pseudocode 350
declaring, in Python 377
initializing 112
naming convention 116
naming variables 115

version control system (VCS) 282-290

408

W
waterfall development model 302, 303
web application

about 48-50
overview 51
social network, example 50

web browser 391

while loop
in C# 361
in C++ 356
in Java 366
in JavaScript 370, 371
in PHP 375
in pseudocode 351, 352
in Python 379
using, for iteration 172-174

write once and run anywhere
(WORA) 363

	Cover
	Copyright
	About PACKT
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Computer Programs and Computer Programming
	Chapter 1: Introduction to Computer Programs
	A brief history of computing
	A brief history of programming
	What is a program?
	How does a computer program work?

	Understanding the binary system
	Understanding ASCII and Unicode
	Representing other forms of data
	Boolean algebra
	Machine code – the native language of the computer
	Example machine code

	Summary

	Chapter 2: Introduction to Programming Languages
	Why do we have programming languages?
	How programming languages have evolved?
	The modern era of programming languages
	Why so many languages?

	The family tree of programming languages
	Translating code into something that the computer understands
	Interpreting
	Compiling
	Comparing interpretation and compilation
	Languages that both compile and interpret

	Syntax and the building blocks of a programming language
	Keywords
	Operators
	Code blocks
	Relations to mathematics

	Summary

	Chapter 3: Types of Applications
	Standalone applications
	Client-server applications
	Example of a chat application
	Example of an email client
	Client-server, a two-part solution

	Web applications
	Example of a social network
	What makes web applications unique?

	Mobile applications
	Distributed applications
	SETI@home
	Peer-to-peer networks

	Cloud-based applications
	Advantages of adopting cloud-based applications
	Cloud service models

	Other types of applications
	Systems software
	Programming software
	Serverless applications

	Summary

	Chapter 4: Software Projects and How We Organize Our Code
	Code modules
	Working with software projects
	Working with packages to share code
	Package managers

	Avoiding conflicts using namespaces
	Delving into namespaces
	Namespaces in JavaScript
	Namespaces in Python
	Namespaces in C++
	Namespaces in other languages
	Using namespaces in our calculator application

	Summary

	Section 2:
Constructs of a Programming Language
	Chapter 5: Sequence – The Basic
Building Block of a Computer Program
	The importance of sequences
	Defining the problem
	The solution to the problem
	Understanding statements
	Compound statements
	Separating statements
	Making the code readable by indenting and using empty lines
	Making the code understandable using comments

	Summary

	Chapter 6: Working with
Data – Variables
	Declaring and initializing variables
	Understanding variables

	Primitive data types
	Boolean type
	Numeric type

	Composite type
	Operators – things we can do with variables
	The concept of values and reference variables
	Working with numbers
	Manipulating strings

	Summary

	Chapter 7: Program Control Structures
	Controlling the execution path
	Selection statements
	Iteration statements
	Conditional statements

	Selection with the if statement
	Selection with the switch statement
	Iteration with the for loop
	Iteration with the while loop
	Iteration with the do while loop
	Iterating over sequences using for each
	Summary

	Chapter 8: Understanding Functions
	Deciding what goes into a function
	Writing a function
	Moving code into a function

	Returning values from a function
	Function arguments
	Functions in action
	Splitting the code further
	Putting it all together

	Local and global variables
	Summary

	Chapter 9: When Things Go Wrong – Bugs and Exceptions
	Understanding software bugs
	NASA's Mars Climate Orbiter
	The Morris worm
	Defining a software bug

	Understanding types of software bugs
	Arithmetic errors
	Division by zero
	Arithmetic overflow/underflow
	Logical errors
	Syntax errors

	Finding bugs using a debugger
	Breakpoints
	Working with exceptions
	Common reasons for exceptions
	Exceptions and the call stack

	Handling exceptions
	Summary

	Chapter 10: Programming Paradigms
	Understanding structured programming
	Statements
	Program state
	Comparing imperative and structured programming

	Understanding object-orientated programming
	Classes and objects
	Understanding encapsulation
	Class methods
	Inheritance

	Understanding functional programming
	Pure functions
	Mutable and immutable data
	Avoiding side effects
	Declarative programming
	First-class functions

	Understanding logic programming
	Other paradigms
	Function-level
	Array programming
	Quantum programming

	Multi-paradigm languages
	Summary

	Chapter 11: Programming Tools and Methodologies
	Understanding version control systems
	Unit testing
	Integration testing
	Other types of tests
	Software releases
	Understanding software deployment
	Deployment automation
	Code maintenance

	Software development process methodologies
	Waterfall development
	Spiral model
	Agile development

	Summary

	Section 3:
Best Practices
for Writing
High-Quality Code
	Chapter 12: Code Quality
	Defining code quality
	CISQ's quality model
	Understanding user quality
	Putting them together

	Writing code with readability in mind
	Using comments and documentation wisely
	Using names as documentation
	Reading other people's code
	Rewriting your code

	Writing code with efficiency in mind
	Removing redundant or unnecessary code
	Optimizing the use of memory and processors
	Using efficient algorithms

	Is smart code smart?
	Code quality – best practices
	Limiting line length
	Limiting function/method length
	Avoiding deep nesting
	Using the DRY principle
	Using code conventions

	Summary

	Appendix A: How to Translate Pseudocode into Real Code
	The pseudocode examples
	Hello world in pseudocode
	Variables declaration in pseudocode
	The for loop in pseudocode
	Functions in pseudocode
	while loops, user input, if, and for loops in pseudocode

	C++
	Hello world in C++
	Variable declaration in C++
	The for loop in C++
	Functions in C++
	while loops, user input, if statements, and foreach loops in C++

	C#
	Hello world in C#
	Variable declaration in C#
	The for loop in C#
	Functions in C#
	while loops, user input, if statements, and foreach loops in C#

	Java
	Hello world in Java
	Variable declaration in Java
	The for loop in Java
	Functions in Java
	while loops, user input, if statements, and foreach loops in Java

	JavaScript
	Hello world in JavaScript
	Variable declaration in JavaScript
	The for loop in JavaScript
	Functions in JavaScript
	while loops, user input, if statements, and foreach loops in Java

	PHP
	Hello world in PHP
	Variable declaration in PHP
	The for loop in PHP
	Functions in PHP
	while loops, user input, if statements, and foreach loops in PHP

	Python
	Hello world in Python
	Declaring variables in Python
	The for loop in Python
	Functions in Python
	while loops, user input, if statements, and foreach loops in Python

	Appendix B: Dictionary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Other Books You May Enjoy
	Index

	Index

